H. L. Sumner, Jr. Vice President Hatch Project

3

Southern Nuclear Operating Company, Inc. Post Office Box 1295 Birmingham, Alabama 35201

Tel 205.992.7279

March 9, 2004

Energy to Serve Your World[™] NL-04-0369

Docket No.: 50-321

U. S. Nuclear Regulatory Commission ATTN: Document Control Desk Washington, D. C. 20555-0001

Edwin I. Hatch Nuclear Plant Unit 1 Unit 1 Cycle 22 Core Operating Limits Report (COLR)

Ladies and Gentlemen:

In accordance with Technical Specification 5.6.5, Southern Nuclear Operating Company (SNC) hereby submits the Edwin I. Hatch Nuclear Plant Unit 1 Cycle 22 Core Operating Limits Report (COLR), Version 1.

This letter contains no NRC commitments. If you have any questions, please advise.

Sincerely, limph

H. L. Sumner, Jr.

HLS/IL/daj

Enclosure: Unit 1 Cycle 22 Core Operating Limits Report, Version 1

 cc: <u>Southern Nuclear Operating Company</u> Mr. J. B. Beasley, Jr., Executive Vice President Mr. G. R. Frederick, General Manager – Plant Hatch RTYPE: CHA02.004

> <u>U. S. Nuclear Regulatory Commission</u> Mr. L. A. Reyes, Regional Administrator Mr. C. Gratton, NRR Project Manager – Hatch Mr. D. S. Simpkins, Senior Resident Inspector – Hatch

SOUTHERN NUCLEAR OPERATING COMPANY EDWIN I. HATCH NUCLEAR PLANT

T

Unit 1 Cycle 22 CORE OPERATING LIMITS REPORT

Version 1

Southern Nuclear Operating Company Post Office Box 1295 Birmingham, Alabama 35201

Edwin I. Hatch Nuclear Plant Unit 1 Cycle 22 Core Operating Limits Report

2

.

TABLE OF CONTENTS

<u>Section</u>	Title	<u>Page</u>
1.0	Introduction	1
2.0	APLHGR Limits	2
3.0	MCPR Operating Limits	6
4.0	LHGR Limits	16
5.0	PBDA Amplitude Setpoints	24
6.0	References	25

-

1

.

TABLES

<u>Table No.</u>	Title	Page
3-1	MCPR Operating Flexibility Options	8
4-1	LHGR Operating Flexibility Options	17

.

ĩ

.

•

FIGURES

Figure No.	<u>Title</u>	Page
2-1	Flow-Dependent APLHGR Multiplier (MAPFAC _F) versus Core Flow	3
2-2	APLHGR Limit versus Average Planar Exposure <i>(Fuel Type: GE13)</i>	4
2-3	APLHGR Limit versus Average Planar Exposure <i>(Fuel Type: GE14)</i>	5
3-1A	Power-Dependent MCPR Limit (MCPR _P) versus Core Power from 24% to 28% of Rated Core Power <i>(Turbine Bypass Valves Operable)</i>	9
3-1B	Power-Dependent MCPR Limit (MCPR _P) versus Core Power from 24% to 28% of Rated Core Power <i>(Turbine Bypass Valves Inoperable)</i>	10
3-2	Flow-Dependent MCPR Limit (MCPR _F) versus Core Flow	11
3-3A	Power-Dependent MCPR Multiplier (K _P) versus Core Power (<i>Pressure Regulator</i> <i>Operable</i>)	12
3-3B	Power-Dependent MCPR Multiplier (K _P) versus Core Power (<i>Pressure Regulator</i> Inoperable)	13
3-4A	MCPR Limits versus Average Scram Time (BOC to EOR-1800 MWd/st)	14
3-4B	MCPR Limits versus Average Scram Time (EOR-1800 MWd/st to EEOC)	15
4-1	Flow-Dependent LHGR Multiplier (LHGRFAC _F) versus Core Flow	18

,

•

.

:

.

.

Figure No.	<u>Title</u>	Page
4-2 A	Power-Dependent LHGR Multiplier (LHGRFAC _P) versus Core Power (<i>Turbine</i> <i>Bypass Valves Operable and Pressure</i> <i>Regulator Operable</i>)	19
4-2B	Power-Dependent LHGR Multiplier (LHGRFAC _P) versus Core Power (<i>Turbine</i> Bypass Valves Inoperable and Pressure Regulator Operable)	20
4-2C	Power-Dependent LHGR Multiplier (LHGRFAC _P) versus Core Power <i>(Pressure Regulator Inoperable)</i>	21
4-3	LHGR versus Peak Pellet Exposure (Fuel Type: GE13)	22
4-4	LHGR versus Peak Pellet Exposure (Fuel Type: GE14)	23

۰.

.

.

.

1.0 INTRODUCTION

τ

The Core Operating Limits Report (COLR) for Plant Hatch Unit 1 Cycle 22 is prepared in accordance with the requirements of Technical Specification 5.6.5. The core operating limits presented herein were developed using NRC-approved methods (References 1, 2, 3, and 4). Results from the reload analyses for the fuel in Unit 1 Cycle 22 are documented in References 3, 4, 5 and 6.

The following core operating limits are included in this report:

- a. Average Planar Linear Heat Generation Rate (APLHGR) Technical Specification 3.2.1
- b. Minimum Critical Power Ratio (MCPR) Technical Specification 3.2.2
- c. Linear Heat Generation Rate (LHGR) Technical Specification 3.2.3

From a fuel thermal limits perspective, the following limitations are placed on Unit 1 operation with equipment out of service.

Equipment / Condition	Limitation
EOC-RPT Out of Service AND	Not analyzed
Turbine Bypass Valves Inoperable Simultaneously	Not analyzed
Single-Loop Operation (SLO)	 Core thermal power ≤ 2000 MWth Core Flow ≤ 56% of Rated
Pressure Regulator Inoperable	Option B Scram Speeds Must be Met (in place)

Also included in this report are the maximum allowable scram setpoints for the Period Based Detection Algorithm (PBDA) in the Oscillation Power Range Monitor (OPRM).

٦

2.0 APLHGR LIMITS (Technical Specification 3.2.1)

The APLHGR limit for each six inch axial segment of each fuel assembly in the core is the applicable APLHGR limit taken from Figure 2-2 or 2-3, multiplied by the flow-dependent multiplier, $MAPFAC_F$, from Figure 2-1.

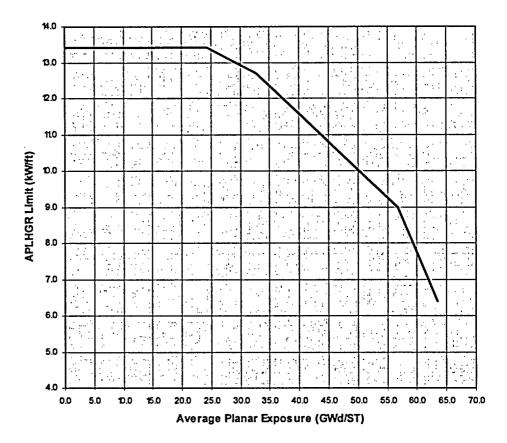
.

ŝ

Ор			
Flow SLO / TLO Fuel Type			MAPFAC _F
30 ≤ F ≤ 61	TLO	All	0.86
61 < F	TLO	Ali	1.00
30 ≤ F	SLO	GE13	0.85
30 ≤ F	SLO	GE14	0.80

F = Percent of Rated Core Flow

FIGURE 2-1

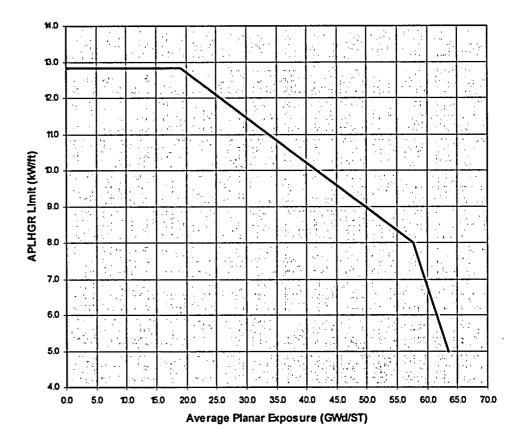

Flow-Dependent APLHGR Multiplier (MAPFAC_F) versus Core Flow

ł

Average	
Planar	APLHGR
Exposure	Limit
0.00	13.42
24.40	13.42
32.66	12.70
56.70	9.00
63.50	6.40

3

1


FIGURE 2-2

APLHGR Limit versus Average Planar Exposure (Fuel Type: GE13)

Average	
Planar	APLHGR
Exposure	Limit
0.00	12.82
14.51	12.82
19.13	12.82
57.61	8.00
63.50	5.00

7

ı

FIGURE 2-3

APLHGR Limit versus Average Planar Exposure (Fuel Type: GE14)

.

3.0 MCPR OPERATING LIMITS (Technical Specification 3.2.2)

The MCPR operating limit (OLMCPR) is a function of core power, core flow, average scram time, number of operating recirculation loops, EOC-RPT system status, operability of the turbine bypass valves, and whether both pressure regulators are operable.

With both recirculation pumps in operation (TLO), the OLMCPR is determined as follows:

- a. For 24% ≤ power < 28%, the power-dependent MCPR limit, MCPR_P, as determined by Table 3-1.
- b. For power \geq 28%, the OLMCPR is the greater of either:
 - 1) The flow-dependent MCPR limit, MCPR_F, from Figure 3-2,

or

2) The product of the power-dependent multiplier, K_P, and the rated-power, rated-flow OLMCPR, as determined by Table 3-1.

With only one recirculation pump in operation (SLO), the OLMCPR is the TLO OLMCPR plus 0.02.

These limits apply to all modes of operation with intermittent feedwater temperature reduction, as well as operation with normal feedwater temperatures.

In Figures 3-4A and 3-4B, Option A scram time OLMCPRs correspond to $\tau = 1.0$, where τ is determined from scram time measurements performed in accordance with Technical Specifications Surveillance Requirements 3.1.4.1 and 3.1.4.2. Option B values correspond to $\tau = 0.0$. For scram times between Option A and Option B, the rated-power, rated-flow OLMCPR corresponds to τ . If τ has not been determined, Option A limits are to be used.

7

The average scram time of the control rods, τ , is defined as:

 $\tau = 0, \text{ or } \frac{\tau_{ave} - \tau_B}{\tau_A - \tau_B} , \text{ whichever is greater.}$

where: $\tau_A = 1.08 \text{ sec}$ (Technical Specification 3.1.4, Table 3.1.4-1, scram time limit to notch 36).

$$\tau_{\rm B} = \mu + 1.65 * \sigma * \left[\frac{N_1}{\sum_{i=1}^n N_i}\right]^{1/2}$$

where: $\mu = 0.822$ sec (mean scram time used in the transient analysis).

 $\sigma = 0.018 \text{ sec}$ (standard deviation of μ).

$$\tau_{\text{ave}} = \frac{\sum_{i=1}^{n} Ni\tau_{i}}{\sum_{i=1}^{n} Ni}$$

where: n = number of surveillance tests performed to date in the cycle.

 N_i = number of active control rods measured in the *ith* surveillance test.

 τ_i = average scram time to notch 36 of all rods in the *ith* surveillance test.

 N_1 = total number of active rods measured in Technical Specifications Surveillance Requirement 3.1.4.1.

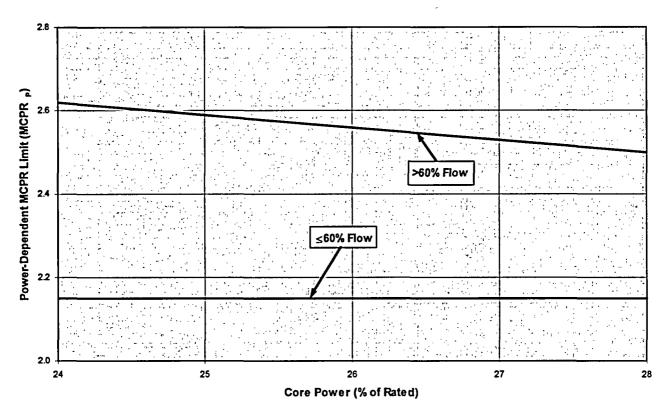

7

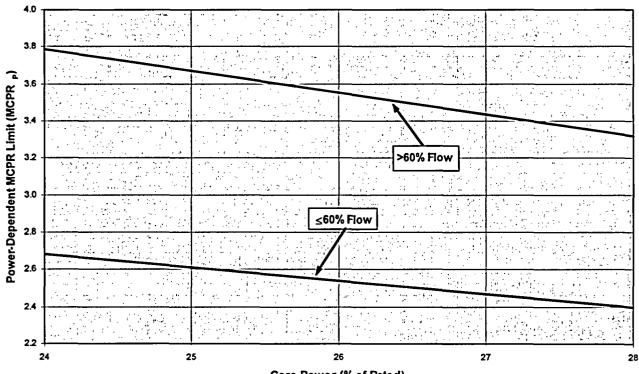
TABLE 3-1

MCPR Operating Flexibility Options

Cycle Average Exposure	EOC-RPT	Turbine Bypass Valves	MCPR _P Curve	Pressure Regulator	Kp Curve	Rated- Power, Rated-Flow OLMCPRs
BOC to EOR-1800	In Service or	Operable	Figure 3-1A	Operable	Figure 3-3A	Figure 3-4A
	Out of Service		rigulo o m	Inoperable	Figure 3-3B	
	In Service Inoperable	Figure 3-1B	Operable	Figure 3-3A		
	III Service		rigule 5-1D	Inoperable	Figure 3-3B	
	In Service	Oranahla	Figure 0.4 A	Operable	Figure 3-3A	
EOR-1800 to EEOC	or Out of Service	Operable	Figure 3-1A	Inoperable	Figure 3-3B	Figure 3-4B
		•	Figure 0.4D	Operable	Figure 3-3A	
	In Service	Inoperable	Figure 3-1B	Inoperable	Figure 3-3B	

BOC = Beginning of Cycle EOR = End of rated conditions (100% power, 100% flow, ARO, with nominal feedwater temp.) EEOC = Extended End of Cycle (beyond EOR, 100% power, 105% flow, with reduced feedwater temp.)

MCPR_P = A + B (28 - P)


F	A	В
F ≤ 60	2.15	0.00
F > 60	2.50	0.03

P = Percent of Rated Core Power

F = Percent of Rated Core Flow

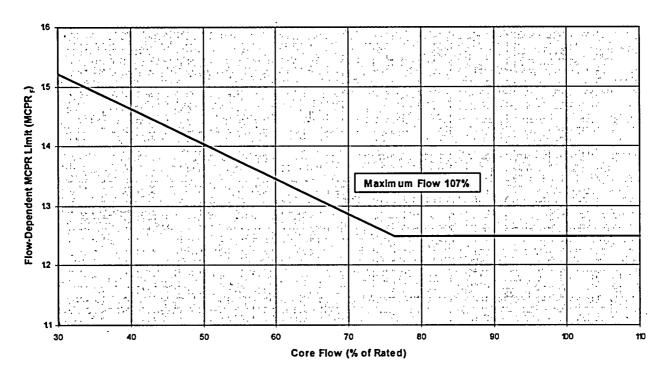
FIGURE 3-1A

Power-Dependent MCPR Limit (MCPR_P) versus Core Power from 24% to 28% of Rated Core Power (Turbine Bypass Valves Operable)

Core Power (% of Rated)

 $MCPR_{P} = A + B (28 - P)$

F	A	B
F ≤ 60	2.40	0.070
F > 60	3.32	0.1167


P = Percent of Rated Core Power

F = Percent of Rated Core Flow

FIGURE 3-1B

Power-Dependent MCPR Limit (MCPR_P) versus Core Power from 24% to 28% of Rated Core Power (Turbine Bypass Valves Inoperable)

1

 $MCPR_F = Maximum [1.25, (A*F + B)]$

Operating Conditions	Values of Variables	
Maximum Core Flow (% of Rated)	A B	
107.0	-0.00586	1.697

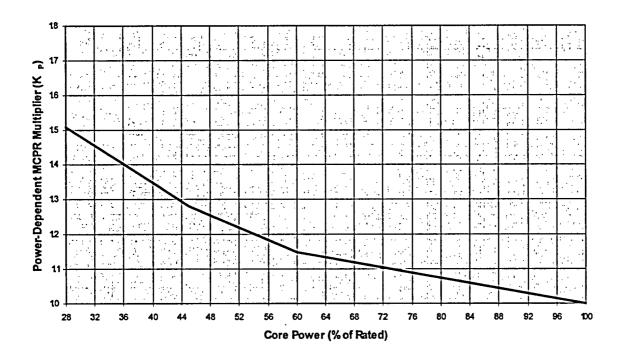
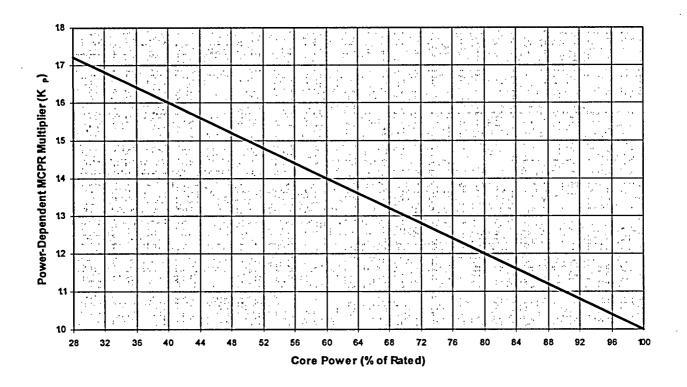

F = Percent of Rated Core Flow

FIGURE 3-2

Flow-Dependent MCPR Limit (MCPR_F) versus Core Flow

2

1


 $K_{P} = A + B (P_{0} - P)$

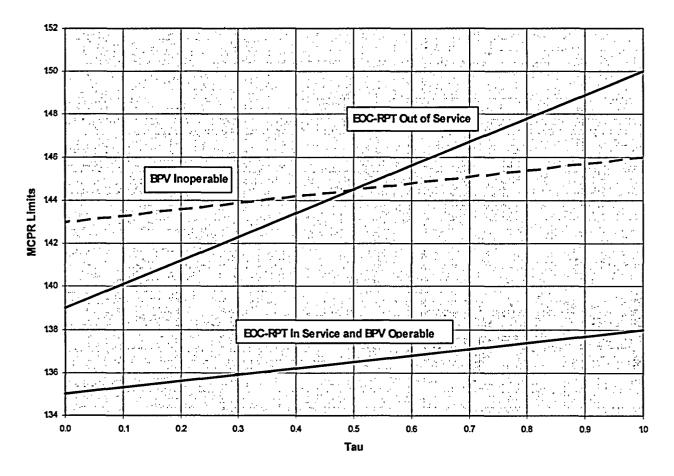
Р	A	В	Po
28 ≤ P < 45	1.28	0.01340	45
45 ≤ P < 60	1.15	0.00867	60
60 ≤ P	1.00	0.00375	100

P = Percent of Rated Core Power

FIGURE 3-3A

Power-Dependent MCPR Multiplier (K_P) versus Core Power (Pressure Regulator Operable)

-- --


 $K_{P} = A + B (P_{0} - P)$

Р	A	В	Po
28 ≤ P ≤ 100	1.00	0.01000	100
Dev Deve and of Dev	ad Onen Deven		

P = Percent of Rated Core Power

FIGURE 3-3B


Power-Dependent MCPR Multiplier (K_P) versus Core Power (Pressure Regulator Inoperable)

Operating Conditions		OLMCPR	
EOC-RPT	OC-RPT Bypass Valves		Tau = 1.0
In Service	Operable	1.35	1.38
Out of Service	Operable	1.39	1.50
In Service	Inoperable	1.43	1.46

FIGURE 3-4A

MCPR Limits versus Average Scram Time (BOC to EOR-1800 MWd/st)

Operating	Operating Conditions		ACPR
EOC-RPT Bypass Valves		Tau = 0.0	Tau = 1.0
In Service	Operable	1.40	1.43
Out of Service	Operable	1.46	1.63
In Service	Inoperable	1.43	1.46

FIGURE 3-4B

MCPR Limits versus Average Scram Time (EOR-1800 MWd/st to EEOC)

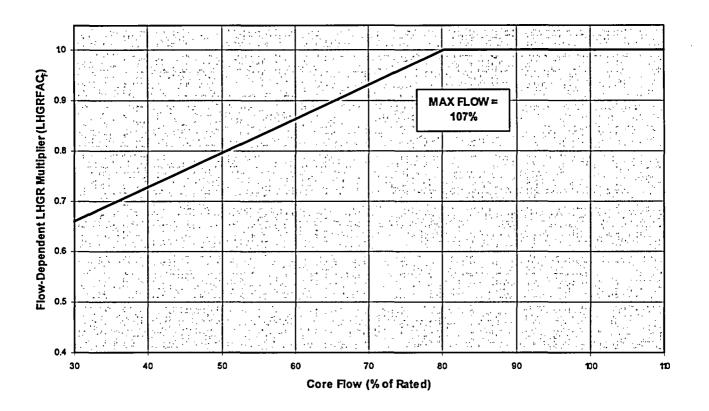
4.0 LHGR LIMITS (Technical Specification 3.2.3)

The LHGR limit for each six inch axial segment of each fuel rod in the core is the applicable rated-power, rated-flow LHGR limit taken from Figure 4-3 or 4-4, multiplied by the smaller of either:

a. The flow-dependent multiplier, LHGRFAC_F, from Figure 4-1,

or

b. The power-dependent multiplier, LHGRFAC_P, as determined by Table 4-1.

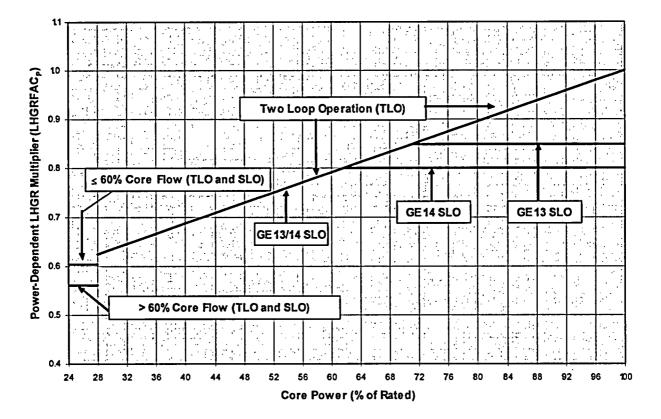

Figures 4-3 and 4-4 show the LHGR limits for both UO_2 rods (which contain no gadolinium) and the most limiting gadolinium-bearing rods for GE13 and GE14 fuel types, respectively. Other gadolinium-bearing rods may have proprietary LHGR limits which lie between these two curves. Compliance with the proprietary limits will be monitored by the plant's process computer, in which case some gadolinium-bearing rods may operate at power levels above the more restrictive limits shown on these curves.

•

Table 4-1

LHGR Operating Flexibility Options

Bypass Valves	Pressure Regulator	LHGRFAC _P Curve
Operable	Operable	Figure 4-2A
Inoperable	Operable	Figure 4-2B
Operable or Inoperable	Inoperable	Figure 4-2C


 $LHGRFAC_F = Minimum [1.0, (A+B*F)]$

Maximum Core Flow (% of Rated)	A	В
107.0	0.4574	0.006758

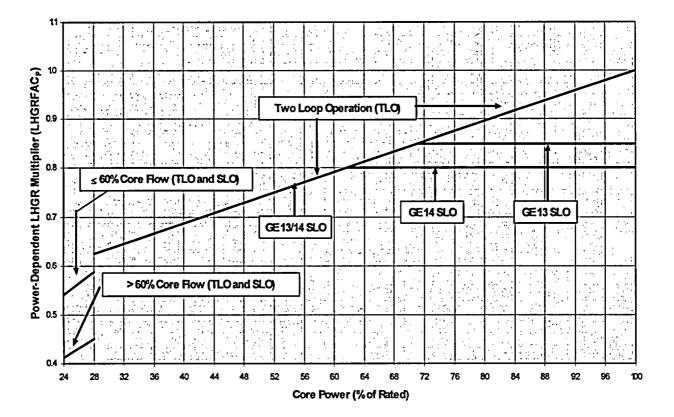
F = Percent of Rated Core Flow

FIGURE 4-1

Flow-Dependent LHGR Multiplier (LHGRFAC_F) versus Core Flow

 $LHGRFAC_{P} = A - B (P_{0} - P)$

Operating Conditions			Values	s of Variable	es	
P	F	SLO/TLO	Fuel Type	А	В	P₀
24 ≤ P < 28	F≤60	SLO / TLO	All	0.603	0.000	28
24 ≤ P < 28	F > 60	SLO / TLO	All	0.560	0.00	28
28 ≤ P < 61.72	All	SLO / TLO	All	1.00	0.005224	100
61.72 ≤ P < 71.28	All	SLO / TLO	GE13	1.00	0.005224	100
61.72 ≤ P < 71.28	All	TLO	GE14	1.00	0.005224	100
P ≥ 71.28	All	TLO	All	1.00	0.005224	100
P ≥ 71.28	All	SLO	GE13	0.85	0.00	100
P≥61.72	All	SLO	GE14	0.80	0.00	100


P = Percent of Rated Core Power

F = Percent of Rated Core Flow

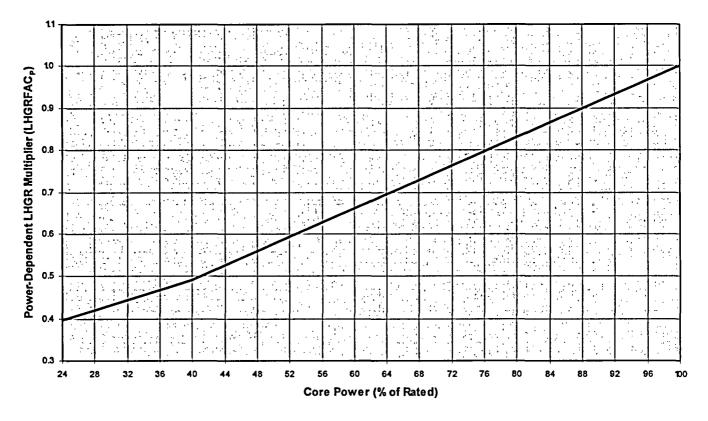
FIGURE 4-2A

Power-Dependent LHGR Multiplier (LHGRFAC_P) versus Core Power (*Turbine Bypass Valves Operable and Pressure Regulator Operable*)

.

 $LHGRFAC_{P} = A - B (P_{0} - P)$

Оре	Values	of Variable	es			
Р	F	SLO/ TLO	Fuel Type	А	В	P₀
24 ≤ P < 28	F≤60	SLO / TLO	All	0.588	0.01167	28
24 ≤ P < 28	F > 60	SLO / TLO	Ali	0.450	0.00967	28
28 ≤ P < 61.72	All	SLO / TLO	All	1.00	0.005224	100
61.72 ≤ P < 71.28	All	SLO / TLO	GE13	1.00	0.005224	100
61.72≤ P < 71.28	All	TLO	GE14	1.00	0.005224	100
P ≥ 71.28	All	TLO	All	1.00	0.005224	100
P ≥ 71.28	All	SLO	GE13	0.85	0.000	100
P≥61.72	All	SLO	GE14	0.80	0.000	100


P = Percent of Rated Core Power

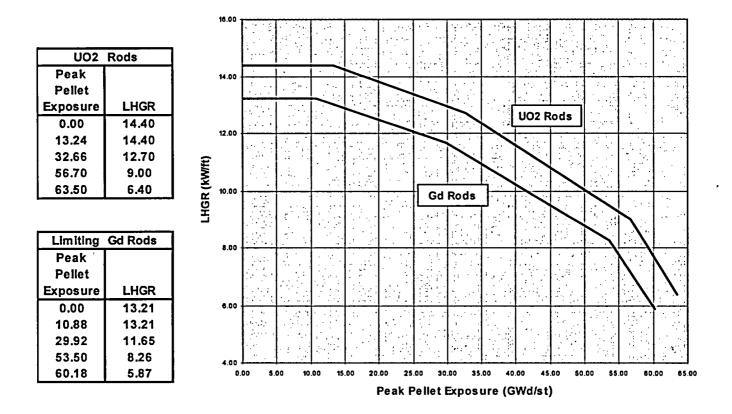
F = Percent of Rated Core Flow

FIGURE 4-2B

Power-Dependent LHGR Multiplier (LHGRFAC_P) versus Core Power (*Turbine Bypass Valves Inoperable and Pressure Regulator Operable*)

•

 $LHGRFAC_P = A - B (P_0 - P)$


Operating	Operating Conditions		Values of Variables		
Р	F	Fuel Type	А	В	Po
24 ≤ P < 40	All	All	0.49	0.0058	40
40 ≤ P ≤ 100	All	A!I	1.00	0.0085	100

P = Percent of Rated Core Power

F = Percent of Rated Core Flow

FIGURE 4-2C

Power-Dependent LHGR Multiplier (LHGRFAC_P) versus Core Power (Pressure Regulator Inoperable)

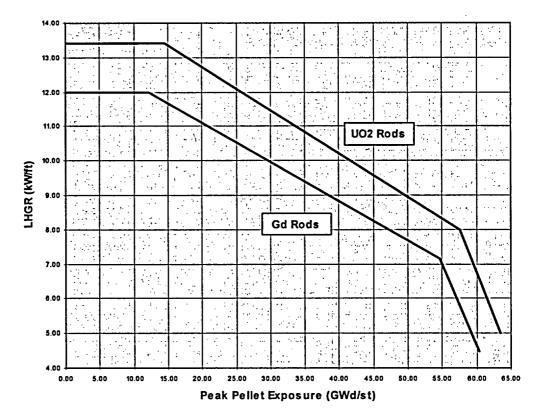


FIGURE 4-3

LHGR versus Peak Pellet Exposure (Fuel Type: GE13) ł

UO2 Rods					
Peak					
Pellet					
Exposure	LHGR				
0.00	13.40				
14.51	13.40				
57.61	8.00				
63.50	5.00				

Limiting	Gd Rods
Peak	
Pellet	
Exposure	LHGR
0.00	12.00
12.17	12.00
54.59	7.16
60.39	4.48

FIGURE 4-4

LHGR versus Peak Pellet Exposure (Fuel Type: GE14)

5.0 PBDA AMPLITUDE SETPOINTS

The amplitude trip setpoint in the Period Based Detection Algorithm in the OPRM system shall not exceed the values reported in the Table below. This applies to instruments 1C51K615 A, B, C, and D. Projected Figure of Merit (FOM) value(s) throughout the cycle will be supplied by the Hatch Core Analysis Group.

OLMCPR	0.0 ≤ FOM ≤92.1	92.1 < FOM ≤96.9	96.9 < FOM ≤ 102.4	102.4 < FOM ≤ 108.0
1.35	1.15	1.13	1.11	1.10
1.36	1.15	1.13	1.11	1.10
1.37	1.15	1.14	1.11	1.11
1.38	1.15	1.14	1.12	1.11
1.39	1.15	1.14	1.12	1.11
1.40	1.15	1.14	1.12	1.11
1.41	1.15	1.15	1.12	1.11
1.42	1.15	1.15	1.13	1.12
1.43	1.15	1.15	1.13	1.12
1.44	1.15	1.15	1.13	1.12
1.45	1.15	1.15	1.13	1.12

6.0 REFERENCES

- 1. "General Electric Standard Application for Reactor Fuel," NEDE-24011-P-A-14, June 2000, and the US Supplement, NEDE-24011-P-A-14-US, June 2000.
- GNF Letter "Plant Hatch Technical Specification Modification to include LHGR," M.
 E. Harding (GNF) to E. B. Gibson, January 22, 2004.
- Global Nuclear Fuel document 0000-0018-9797-SRLR, "Supplemental Reload Licensing Report for Edwin I. Hatch Nuclear Power Plant Unit 1, Reload 21 Cycle 22," Revision 0, March 2004.
- 4. SNC Memo CAH-NF-2464, "H1C22 Pressure Regulator Failure Downscale (PRFDS) Analysis," W. R. Mertz to K. S. Folk, March 1, 2004.
- 5. SNC Memo CAH-NF-2465, "TPO Low Power ARTS Multipliers," W. R. Mertz to K. S. Folk, March 1, 2004.
- Global Nuclear Fuel document 0000-0018-9797-FBIR, "Fuel Bundle Information Report for Edwin I. Hatch Nuclear Power Plant Unit 1, Reload 21 Cycle 22," Revision 0, March 2004.