
SOFTWARE RELEASE NOTICE

01. SRN Number: PA-SRN-024

02. Project Title: Project No.

PREFOR is designed to process code written in Fortran in which preFOR 20-5702-723

commands have been embedded. The output is standard Fortran thus increasing
code portability..

03. SRN Title: PREFOR

04. Originator/Requester: Date:

Thomas J. Ratchford 03/23/94

05. Summary of Actions

* Release of new code admitted to CM System (R. Janetzke)

LI Release of modified code:

° Enhancements made

o Corrections made

* Change of access code (R. Baca)

06. Persons Authorized Access

Name RO/RW A/C/D

07. Element Manager Approval: Date:

08. Remarks:

A copy of the software package PREFOR, Ver. 1.1 was retained by the Principle Investigator for use
in the CNWRA work center; therefore, a new release may not be necessary.

CNWRA Form TOP-6 (08/93)

SOFTWARE SUMMARY FORM

0I.Summary Date: 02. Summary prepared by(Namne and Phone) 03. Summary Action:

03/23/94 T.J. Ratchford 522-3083

04. Software Date: 05. Short Title: New

8/15/93 PREFOR

06. Software Title: PREFOR - A preprocessor used with TPA codes. 07. Internal Software ID:

NONE

08. Software Type: 09.Processimg Mode: 10. APPLICATIONAREA|

A. General:

o Automated Data System ° Interactive 0 Scientific/Engineering ° Auxiliary Analyses

0 Total System PA

* Computer Program ° Batch 0 Subsystem PA 0 Other

o Subroutine/Module * Combination b. Specific: TPA Preprocessor

11. Submitting Organization and Address: 12. Technical Contact(s) and Phone:

CNWRA, SwRI, San Antonio, Texas R. Janetzke, (210) 522-3318

13. Narrative:

PREFOR - PREFOR is designed to process code written in Fortran in which preFOR commands have been embedded. The output is standard Fortran thus

increasing code portability.

14. Computer Platform 15. Computer Operating System: 16. Programming Language(s): 17. Number of Source Program
Statements:

CRAY/XMP UNIX FORTRAN 21,837 lines of code

18. Computer Memory 19. Tape Drives: 20. Disk/Drum Units: 21. Graphics:

Requirements:
UNKNOWN NONE N/A UNKNOWN

22. Other Operational Requirements

NONE

23. Software Availability: 24. Documentation Availability:

* Available 0 Limited 0 In-House ONLY * Available 0 Inadequate 0 In-House ONLY

25. Submission Package Status:

Acceptance Criteria: Met * Not Met 0 Software QA Assessment: Successful * Unsuccessful 0

Code Custodian: Date:

CNWRA Form TOP-4-1 (08/93)

V/qR
CNWRA INFORMATION PROCESSING STANDARD SOFTWARE SUMMARY

01. Summary Date 02. Summary ppd by (ANW .rn anSrry mu

Y r.I . x3318 New Reptim O iedon
912 lfio 11 518 OF 09M_
04. SoftwreD preFOR; A Pre-processor for FORTRAN files E 0

Yr rJeft07.tmaemul tware ID

06 Short 11ft hillware 10

06. Solrware type T9 PeonSU~ Mode 10. Gerleral A GPLEAKNRA4 A Soailc

0 Automated Data Sytm h]Fl ve i Cor w S ,na 0gy - voush configuration
i Computer Program ueBauQ Sdw cngISE Vh 0 Pi em ow control

0- Subroutin&Uod~e Calon*uan 0 BbNOg~woxweai Q]OOn
11. Submi*t organzafon arid adelm s

SwRI Ron Janetzke

512-522-3318

13. Narruove

preFOR is designed to process code written in FORTRAN in which preFOR commands have
been embedded. The output of the processing will be a standard FORTRAN file that can be
compiled like an other FORTRAN file. The preFOR commands allow the programmer
significant flexibility in coding. preFOR commands include creation of code blocks that can be
inserted at appropriate places. These insertions can be made conditional on use of a particular
central processing unit (CPU), thus increasing code portability. In addition, the preFOR utility
provides other features such as numbering of lines in the code, deletion of comments, and
trimming of trailing characters in lines of code. preFOR is written in ANSI standard
FORTRAN 77.

14.K

FORTRAN,

Pre-processor

15. Computr manufacur srW moWM I 6. Carflw opermg R 17. P ops .ig lrqe) 1. LPNler of stoee program statementm
DEC/VAX VMS FORTRAN 77 1147

19. ComPutermemorMy requ rWe ZmeTlm 0. TeO d o wtk uniZ Tsinwu61

Virtual 0 0 0
23. Otter operabolAf requ_ _efin

None
24. Software avalailty Z*. 1 _-ungr0 EM

Avalaie h-houee a* abbl Ivhade hihorl e onlyEX 0 0 0 03 0

'. FOR SUBMITTia ORANZATPO UC

Us4 ~# zs * Jr co '£WI 'AJ 7w jszui ,44Z 2.
7'W

CNWRA Form TOP-4 10/90

upcase.f.Z*
gemstone.10
prefor.f.Z:
gemstone.11
total 290
-rwxrwxr-x
-rwxrwxr-x
-rwxrwxr-x
-rwxrwxr-x
-rwxrwxr-x
-rwxrwxr-x
-rwxrwxr-x
-rwxrwxr-x
-rwxrwxr-x
-rwxrwxr-x
-rwxrwxr-x
-rwxrwxr-x
-rwxrwxr-x
-rwxrwxr-x
-rwxrwxr-x
-rwxrwxr-x
-rwxrwxr-x
-rwxrwxr-x
gemstone.12

upcase.l.Z* upstrg.f.Z* upstrg.l.Z* writer.f.Z* writer.l.Z*
-/tpa/PREFOR/WKDIR => uncompress *
No such file or directory
-/tpa/PREFOR/WKDIR => ls -1

1 tjrl tjrl
1 tjrl tjrl
1 tjrl tjrl
1 tjrl tjrl
1 tjrl tjrl
1 jet tjrl
1 tjrl tjrl
1 tjrl tjrl
1 tjrl tjrl
1 tjrl tjrl
1 tjrl tjrl
1 tjrl tjrl
1 tjrl tjrl
1 tjrl tjrl
1 tjrl tjrl
1 tjrl tjrl
1 tjrl tjrl
1 tjrl tjrl

-/tpa/PREFOR/WKDIR =>

946
2977

13222
134102
748056
23062
64819
99380

950
8058
1804

11114
934

5829
782

7790
5783

22440

Jul
Jul
Jul
Jul
Jul
Jul
Jul
Jul
Jul
Jul
Jul
Jul
Jul
Jul
Jul
Jul
Jul
Jul

8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8

1993
1993
1993
1993
1993
1993
1993
1993
1993
1993
1993
1993
1993
1993
1993
1993
1993
1993

Makefile*
cname.f*
cname. 1*
listing*
prefor*
prefor.f*
prefor.l*
prefor.m*
strail.f*
strail.1*
tabfix.f*
tabf ix. 1*
upcase.f*
upcase.l*
upstrg.f*
upstrg.l*
writer. f*
writer. 1*

134.20.1.1 11:02:33

PREFOR Analysis March 10, 1994

PREFOR Fortran Program
Static and Dynamic Analysis

March 10, 1994

Earl S. Marwil
John E. Tolli

Scientific Computing Unit
Idaho National Engineenng Laboratory

1. Introduction

This analysis was performed on the Cray version of the software as provided by
Southwest Research Institute (SwRI).

One sample problem was used along with the source code. The program was analyzed
using the Craft (Cross Reference Analysis of Fortran) tool, FORWARN, the Fortran 77
analyzer, and PC-Metric. These tools provide static analysis, coverage analysis, and
complexity analysis.

2. References

[1] N.H. Marshall and ES. Marwil, Cross Reference Analysis of Fortran (CRAFT), EG&G-
CATT-9198, EG&G Idaho, Inc., July 1991.
[2] Fortran 77 Analyzer User's Manual, National Bureau of Standards, NBS GCR 81-359,

1981
[3] FORWARN User's Guide, Quibus Enterprises, Inc., July 1991.
[4] PC-Metric User's Guide, SET Laboratories, Inc., 1987.

3. Functions
The PREFOR program contains 7 Fortran routines.

There are no alternate entry points.

4. Common Block Irregularities
There are no common blocks in the PREFOR program.

5. Interface Irregularities
No Exceptions to report.

6. Local Variable Irregularities
Local variable exceptions are noted as follows:

PREFOR Analysis March 10, 1994

Module Variable Exception

prefor deckcd Defined, Unused
writer indent UNUSED
writer lcmind UNUSED
writer lcomnt Undefined, Unused
writer 1tabin UNUSED
writer ltabrp Undefined, Unused
writer upcase Undefined, Unused

7. Fortran Extensions
The following modules contain potential overlaps in character assignment
statements:

prefor, tabfix, writer.

The following modules contain lowercase characters in their active Fortran:

prefor, cname, strail, tabfix, upcase, upstrg, writer.

8. Optimization
The following table summarizes the performance data gathered from execution of the
sample problem. Only those routines exercised by the sample problem are shown
(see "Coverage Analysis" for a list of routines not exercised by the sample problem,
i.e., coverage = 0%). The table lists all program modules in descending order
according to CPU time. To optimize code execution time, emphasis should be placed on
those modules which appear highest in the listing.

In order to obtain meaningful statistics for performance evaluation, the program
should execute for a reasonable amount of time. Note that the execution time for this
sample problem is short (< 10 sec) and that the resulting statistics may therefore not
accurately reflect program performance for more typical (possibly longer) runs.

The performance data show that a high percentage of the overall execution time
(99.894%) is spent in the first 3 routines listed. This is due primarily to the following
(applies to some or all of the 3 routines):

1) a low percentage of floating point operations which are performed
in vector mode (%Vflops is small)

2) a high overhead factor for calls to the routines (IFact > 1)

3) a high rate of instruction buffer fetches (IBFR > 1).

A detailed optimization analysis effort should focus on these 3 areas.

PREFOR Analysis March 10, 1994

PERFORMANCE DATA FOR PREFOR

ROUTINE NAME Time

WRITER 5.802
PREFOR 1.976
STRAIL 0.741
CNAME 0.007
UPCASE 0.002
UPSTRG 0.001

%ExTime

68.034
23. 175
8.685
0.081
0.019
0.006

%AccumT

68.034
91.209
99.894
99.975
99.994

100.000

%Vf lops

0 .00000
0.00000
0.00000
0.00000
0.00000
0.00000

IFact

0.71
0.00
5.53
0.13
1.10
0.00

MC/MR

0.154
0.315
0.222
0.998
1.708
3.728

IBFR

1.075
0.743
0.089
0.517
0.846
1.455

Totals (All Traced Routines)
8.528 100.000 100.000 0.00000 1.99 0.202 0.912

Key:
%AccumT
%ExTime
%Vflops

IBFR
IFact

MC
MR
Time

- accumulated percentage of total CPU time
- percentage of total CPU time
- percentage of floating point operations due
to vector floating point operations

- Instruction Buffer Fetch Rate (megafetches/sec)
- Inline Factor (total calls to routine /

average time spent in routine for each call)
- number of memory conflicts
- number of memory references
- total CPU time (sec)

9. Coverage Analysis
A coverage analysis shows that the sample problem yielded a 58% segment coverage
of PREFOR. Sample problems provided with simulation programs typically achieve
only 35% to 50% coverage. A statement of software quality cannot be made for
routines that have low coverage, i.e., large portions of the code are untested.

Note that 1 routine has 09% coverage. This routine is not tested with the supplied
sample problem.

One routine achieves 20'Yo-39% coverage, 2 routines achieve 6096-79% coverage, 2
routines achieve 85%-90% coverage, and 1 routine achieves 100% coverage.

Module Number of
Name Segments

in module
PREFOR 123
CNAME 29
STRAIL 7

Number of
Segments
Executed

74
26
6
0
4
4
16

Percent
Segment
Coverage

60.2
89.7
85.7
0.0

100.0
80.0
39.0

TABFIX
UPCASE
UPSTRG
WRITER

16
4
5
41

Totals 225 130 57.8

PREFOR Analysis March 10, 1994

0.20 0.40 0.60 0.80 1.00

PREFOR I I
CNAME I I
STRAIL I I
TABFIX I I I I I
UPCASE
UPSTRG I

WRITER I******************** I I

coverage - 0. TABFIX

0.20 <- coverage < 0.40 WRITER

0.60 <- coverage < 0.80 PREFOR UPSTRG

0.85 <- coverage < 0.90 CNAME STRAIL

coverage - 1.00 UPCASE

Program coverage for this run -0.58

10. Complexity Analysis
Some key metrics are the number of executable statements (sloc), the number of
non-blank comments (ncomt), McCabe's extended cyclomatic complexity (vg2), the
number of branching statements (cgoto, ugoto, bIF, and IIF), and Halstead's predicted
number of errors in (re)writing the code (bhat). Measures are normalized per 100
executable statements for ease of comparison and are listed in the table below.

The branching measures for this code (ugoto/sloc, lif/sloc) indicate moderately high
values for some routines. This code may benefit from a restructuring effort aimed at
reducing the number of unconditional GO TO and logical IF statements in these
routines.

All routines show a good ratio of non-blank comments to source code.

McCabe's extended cyclomatic complexity (vg2), normalized per 100 lines of source
code, indicates high values. Generally, the routines with the highest complexity are
those most likely to have defects. As a guideline, normalized measures of 15 or
greater should be considered complex. A software maintenance program should
focus on those routines with the highest measures.

PREFOR Analysis March 10, 1994

Complexity Report by Subprogram for PREFOR

ncomt vg2 cgoto ugoto bif lif
Name loc sloc cmnt ncomt /sloc /sloc cgoto /sloc ugoto /sloc bIF /sloc lIF /sloc Bhat

preFOR 657 241 354 300 124.5 35.3 0 0.0 23 9.5 28 11.6 16 6.6 4
CNAME 98 47 54 42 89.4 46.8 0 0.0 5 10.6 4 8.5 7 14.9 1
strail 42 14 22 15 107.1 35.7 0 0.0 2 14.3 0 0.0 2 14.3 0
tabfix 68 25 34 26 104.0 28.0 0 0.0 1 4.0 3 12.0 1 4.0 0
upcase 38 7 29 22 314.3 42.9 0 0.0 0 0.0 1 14.3 0 0.0 0
upstrg 39 10 25 16 160.0 30.0 0 0.0 1 10.0 0 0.0 1 10.0 0
WRITER 198 60 108 89 148.3 35.0 0 0.0 1 1.7 11 18.3 5 8.3 1

Legend of Metrics in Report

loc -- lines of code
sloc -- number of executable statements
cmnt -- total number of commnts
ncomt -- number of non-blank COMMENT statements
100*ncomt/sloc -- percent, nonblank comments to number of executable statements
100*vg2/sloc -- percent, extended complexity of number of executable statements
cgoto -- number of COMPUTED GO TO statements
100*cgoto/sloc -- percent, computed GOTO's to number of executable statements
ugoto -- number of UNCONDITIONAL GO TO statements
100*ugoto/sloc -- percent, unconditional GOTO's to number of executable statements
bIF -- number of BLOCK IF statements
100*bif/sloc -- percent, Block IF statements to number of executable statements
lIF -- number of LOGICAL IF statements
100*lif/sloc -- percent, logical IF statements to number of executable statements
Bhat -- Halstead's predicted number of errors in writing code

