SOFTWARE RELEASE NOTICE

01. SRN Number: PA-SRN-024

02. Project Title: Project No.
PREFOR is designed to process code written in Fortran in which preFOR 20.5702.723
commands have been embedded. The output is standard Fortran thus increasing et

code portability..

03. SRN Title: PREFOR

04. Originator/Requester:

Date:
Thomas J. Ratchford (;3(3/23/94
05. Summary of Actions
| Release of new code admitted to CM System (R. Janetzke)
O Release of modified code:
O Enhancements made
o Corrections made
[| Change of access code (R. Baca)
06. Persons Authorized Access
Name RO/RW A/C/D
07. Element Manager Approval: Date:

08. Remarks:

A copy of the software package PREFOR, Ver. 1.1 was retained by the Principle Investigator for use
in the CNWRA work center; therefore, a new release may not be necessary.

CNWRA Form TOP-6 (08/93)

SOFTWARE SUMMARY FORM

01.Summary Date:
03/23/94

02. Summary prepared by(Name and Phone)

T.J. Ratchford 522-3083

03. Summary Action:

04. Software Date:
8/15/93

05. Short Title:
PREFOR

06. Software Title: PREFOR - A preprocessor used with TPA codes.

New

07. Internal Software ID:

NONE

08. Software Type:

O Automated Data System

u Computer Program

[Subroutine/Module

09.Processing Mode:

O Interactive

O Batch

B Combination

10. APPLICATION AREA
A. General:

O Scientific/Engineering
O Total System PA

o Subsystem PA

b. Specific: TPA Preprocessor

] Auxiliary Analyses

0 other

CNWRA, SwRI, San Antonio, Texas

13. Narrative:

increasing code portability.

11. Submitting Organization and Address:

R. Janetzke, (210) 522-3318

PREFOR - PREFOR is designed to process code written in Fortran in which preFOR commands have been embedded. The output is standard Fortran thus

12. Technical Contact(s) and Phone:

I —————
—ey

14. Computer Platform

CRAY/XMP

15. Computer Operating System:

UNIX

16. Programming Language(s):

FORTRAN

17. Number of Source Program
Statements:
21,837 lines of code

18. Computer Memory
Requirements:
UNKNOWN

19. Tape Drives:

NONE

20. Disk/Drum Units:

N/A

21. Graphics:

UNKNOWN

22. Other Operational Requirements

NONE

23. Software Availability:

24. Documentation Availability:

Code Custodian:

W Available O Limited O In-House ONLY W Available O Inadequate O In-House ONLY
25. Submission Package Status:
Acceptance Criteria: Met B Not Met O Software QA Asscssment: S ful @ U ful O

Date:

CNWRA Form TOP-4-1 (08/93)

;/>
e

CNWRA INFORMATION PROCESSING STANDARD SOFTWARE SUMMARY

o1, Summuy Date U2 Summary prepared by (Name and hore)
Yr. Day | R. 3318

Now Repiacement Deletion

9]2 Eh ols8

04. Software Date

preFOR; A Pre-processor for FORTRAN files

O O

Yr. Mo. Day o ©
u‘.‘u#a"a.
Pre Fort
08. Solware type . Processing Mode 70. APPURCATION AREX)
Genery) Spegific
[AuwomawdDamsysem | [[] imeractve [x] Compuser Sysems Supporvuminy Dwmlconflgtlxratlon
Computer Program] caxn [[] sdenifcEnginesring [[] Process Conrol contro
[subroutneModuie Combination [] ssograpnioTexnal] otwr
11. Submitting organizaton 0
SwRI Ron Janetzke
512-522-3318
13. Narrative
preFOR is designed to process code written in FORTRAN in which preFOR commands have
been embedded. The output of the processing will be a standard FORTRAN file that can be
compiled like an other FORTRAN file. The preFOR commands allow the programmer
significant flexibility in coding. preFOR commands include creation of code blocks that can be
inserted at appropriate places. These insertions can be made conditional on use of a particular
central processing unit (CPU), thus increasing code portability. In addition, the preFOR utility
provides other features such as numbering of lines in the code, deletion of comments, and
trimming of trailing characters in lines of code. preFOR is written in ANSI standard
FORTRAN 77.
14, Keywords
FORTRAN,
Pre-processor
15, Computer manulacturer and MOG | 18. COMPUIS OPrRing system T7. Programming 1anguege(s) . [18. Rumber of source program saiement |
DEC/VAX VMS FORTRAN 77 1147

10, Computer memory requrements | 20. Tape Gves

. Oeorumune . [Z Temnak

Virtual 0 0 0
. regquirements
None
. [Z3 Sofware avalabity 25, DocuUmentason evebany
Availsble Urmited in-house only Avalable inadequase in-house only

[O O

| O

[25. FOR SUBKITTING ORGARIZATRN USE
Bos /s # sTivel #lan® cods usd(é/ espsS 73 729 Mlass 2.,

G 12/31/5p

CNWRA Form TOP-4 10/90

upcase.f.Z* upcase.l.Z* upstrg.f.Z* upstrg.l.2* writer.f.Z* writer.1l.2%*
gemstone.1l0 ~/tpa/PREFOR/WKDIR => uncompress *

prefor.f.Z: No such file or directory

gemstone.1ll ~/tpa/PREFOR/WKDIR => ls -1

total 290

—“rWXrWwXr—-x 1 tjrl tjri 946 Jul 8 1993 Makefilex*
—-rWXrwXr-x 1 tjr1 tjrl 2977 Jul 8 1993 cname.f*
~YWXrwXr—x 1 tjrl tijra 13222 Jul 8 1993 cname.l¥*
—“rWXrwxXr-x 1 tjrl tijrl 134102 Jul 8 1993 listing*
~rWXrwxXr-x 1 tjra tirl 748056 Jul 8 1993 prefor*
~rWXTYWXYr=X 1 jet tjrl 23062 Jul 8 1993 prefor.f*
-YWXrwxr-x 1 tjri tirl 64819 Jul 8 1993 prefor.l*
-TWXTWXTr—X 1 tjrl tjri 99380 Jul 8 1993 prefor.m*
-~rWXrwxr-x 1 tjrl tirl 950 Jul 8 1993 strail.f*
~rWXYWXr=-X 1 tjrl tirk 8058 Jul 8 1993 strail.l*
-“rWXrWXr—-xX 1 tjrl tjrl 1804 Jul 8 1993 tabfix.f*
-rwXrwxr-x 1 tjrl tirk 11114 Jul 8 1993 tabfix.l*
~rWXrwXr-x 1 tjrl tjr1 934 Jul 8 1993 upcase.f*
~rWXrWwXr-X 1 tjr1 tjrl 5829 Jul 8 1993 upcase.lx*
“rwXrwXr-x 1 tjrl tjra 782 Jul 8 1993 upstrg.f*
-rwXrwxr-x 1 tjrl tirl 7790 Jul 8 1993 upstrg.l=*
~rWXYWXr-X 1 tjrl tjrl 5783 Jul 8 1993 writer.f*
“rWXTrWXr—X 1 tjrl tjrl 22440 Jul 8 1993 writer.l%*
gemstone.12 ~/tpa/PREFOR/WKDIR =>

134.20.1.1 11:02:33

PREFOR Analysis \ March 10, 1994

PREFOR Fortran Program
Static and Dynamic Analysis

March 10, 1994

Earl S. Marwil
John E. Tolli
Scientific Computing Unit
Idaho National Engineering Laboratory

1. Introduction

This analysis was performed on the Cray version of the software as provided by
Southwest Research Institute (SwRI).

One sample problem was used along with the source code. The program was analyzed
using the Craft (Cross Reference Analysis of Fortran) tool, FORWARN, the Fortran 77
analyzer, and PC-Metric. These tools provide static analysis, coverage analysis, and
complexity analysis.

2. References

[1] N.H. Marshall and E.S. Marwil, Cross Reference Analysis of Fortran (CRAFT), EG&G-
CATT-9198, EG&G Idaho, Inc., July 1991.
[2] Fortran 77 Analyzer User's Manual, National Bureau of Standards, NBS GCR 81-359,

1981
[3] FORWARN User's Guide, Quibus Enterprises, Inc., July 1991.
[4] PC-Metric User's Guide, SET Laboratories, Inc., 1987.

3. Functions
The PREFOR program contains 7 Fortran routines.

There are no alternate entry points.

4. Common Block Irregularities
There are no common blocks in the PREFOR program.

5. Interface Irregularities
No Exceptions to report.

6. Local Variable Irregularities
Local variable exceptions are noted as follows:

PREFOR Analysis March 10, 1994

Module Variable Exception

prefor deckcd Defined, Unused
writer indent UNUSED

writer Tcmind UNUSED

writer lcomnt Undefined, Unused
writer 1tabin UNUSED

writer 1tabrp Undefined, Unused
writer upcase Undefined, Unused

7. Fortran Extensions
The following modules contain potential overlaps in character assignment
statements:

prefor, tabfix, writer.
The following modules contain lowercase characters in their active Fortran:

prefor, cname, strail, tabfix, upcase, upstrg, writer.

8. Optimization

The following table summarizes the performance data gathered from execution of the
sample problem. Only those routines exercised by the sample problem are shown

(see "Coverage Analysis" for a list of routines not exercised by the sample problem,
i.e., coverage = 0%). The table lists all program modules in descending order
according to CPU time. To optimize code execution time, emphasis should be placed on
those modules which appear highest in the listing.

In order to obtain meaningful statistics for performance evaluation, the program
should execute for a reasonable amount of time. Note that the execution time for this
sample problem is short (< 10 sec) and that the resulting statistics may therefore not
accurately reflect program performance for more typical (possibly longer) runs.

The performance data show that a high percentage of the overall execution time
(99.8949) is spent in the first 3 routines listed. This is due primarily to the following
(applies to some or all of the 3 routines):

1) a low percentage of floating point operations which are performed
in vector mode (%Vflops is small)

2) a high overhead factor for calls to the routines (IFact > 1)
3) a high rate of instruction buffer fetches (IBFR > 1).

A detailed optimization analysis effort should focus on these 3 areas.

PREFOR Analysis

ROUTINE NAME

March 10, 1994

PERFORMANCE DATA FOR PREFOR
Time %ExTime %AccumT %Vflops IFact MC/MR IBFR

WRITER
PREFOR
STRAIL
CNAME

UPCASE
UPSTRG

5.802 68.034 68.034 O 0
1.976 23.175 91.209 O. . 0.
0.741 8.685 99.894 0.00000 5.53 0.222 0.089
0.007 0.081 99.975 0. 0
0.002 0.019 99.994 O 1
0 3

Totals (A11

. Key:

Traced

%AccumT = ac

%EXxTime = pe
%Vflops = pe

to
IBFR = In
IFact = In

av
MC = nu
MR = nu
Time = to

Routines)
8.528 100.000 100.000 0.00000 1.99 0.202 0.912

cumulated percentage of total CPU time
rcentage of total CPU time

rcentage of floating point operations due
vector floating point operations

struction Buffer Fetch Rate (megafetches/sec)
1ine Factor (total calls to routine /

erage time spent in routine for each call)

mber of memory conflicts

mber of memory references

tal CPU time (sec)

9. Coverage Analysis

A coverage analysis shows that the sample problem yielded a 58% segment coverage
of PREFOR. Sample problems provided with simulation programs typically achieve
only 35% to 50% coverage. A statement of software quality cannot be made for
routines that have low coverage, i.e., large portions of the code are untested.

Note that 1 routine has 0% coverage. This routine is not tested with the supplied
sample problem.

One routine achieves 20%-39% coverage, 2 routines achieve 60%-79% coverage, 2
routines achieve 859%-90% coverage, and 1 routine achieves 100% coverage.

Module
Name

PREFOR
CNAME

STRAIL
TABFIX
UPCASE
UPSTRG
WRITER

Totals

Number
Segment
in modu
123
29

7

16

4

5

41

225

of Number of Percent

s Segments Segment
le Executed Coverage

74 60.2

26 89.7

6 85.7

0 0.0

4 100.0

4 80.0

16 39.0

130 57.8

PREFOR Analysis March 10, 1994

0.20 0.40 0.60 0.80 1.00
e SO nl Lo e L Bt AR EEEES SRt
PREFOR l****************************** |
CNAME I*** |
STRAIL I*** |
TABF IX | | | | | |
UPCASE l**
UPSTRG hhkkhkkkhkhkhkhkhkhkkhkhkhkhkkkhkhkkhkkkhhkkhkkhkhkkhkhkhkkkk l
WRITER I******************** I I I
el BT) P e R et EEE Sl
coverage = 0. TABFIX
0.20 <= coverage < 0.40 WRITER
0.60 <= coverage < 0.80 PREFOR UPSTRG
0.85 <= coverage < 0.90 CNAME STRAIL
coverage = 1.00 UPCASE

Program coverage for this run =0.58

10. Complexity Analysis

Some key metrics are the number of executable statements (sloc), the number of
non-blank comments (ncomt), McCabe's extended cyclomatic complexity (vg2), the
number of branching statements (cgoto, ugoto, bIF, and 1IF), and Halstead's predicted
number of errors in (re)writing the code (bhat). Measures are normalized per 100
executable statements for ease of comparison and are listed in the table below.

The branching measures for this code (ugoto/sloc, lif/sloc) indicate moderately high
values for some routines. This code may benefit from a restructuring effort aimed at
reducing the number of unconditional GO TO and logical IF statements in these
routines.

All routines show a good ratio of non-blank comments to source code.

McCabe's extended cyclomatic complexity (vg2), normalized per 100 lines of source
code, indicates high values. Generally, the routines with the highest complexity are
those most likely to have defects. As a guideline, normalized measures of 15 or
greater should be considered complex. A software maintenance program should
focus on those routines with the highest measures.

PREFOR Analysis
Complexity Report by Subprogram for PREFOR

March 10, 1994

1if
1IF /sloc Bhat

ncomt vg2 cgoto ugoto bif

Name loc sloc cmnt ncomt /sloc /sloc cgoto /sloc ugoto /sloc bIF /sloc
prefFOR 657 241 354 300 124.5 35.3 0 0.0 23 9.5 28 11.6
CNAME 98 47 54 42 89.4 46.8 0 0.0 5 10.6 4 8.5
strail 42 14 22 15 107.1 35.7 0 0.0 2 14.3 0 0.0
tabfix 68 25 34 26 104.0 28.0 0 0.0 1 4.0 3 12.0
upcase 38 7 29 22 314.3 42.9 0 0.0 0 0.0 1 14.3
upstrg 39 10 25 16 160.0 30.0 0 0.0 1 10.0 0 0.0
WRITER 198 60 108 89 148.3 35.0 0 0.0 1 1.7 11 18.3

Legend of Metrics in Report

loc -- lines of code

sloc -- number of executable statements

cmnt -- total number of commnts

ncomt -- number of non-blank COMMENT statements

100*ncomt/sloc -- percent, nonblank comments to number of executable statements
100*vg2/sloc -- percent, extended complexity of number of executable statements
cgoto -- number of COMPUTED GO TO statements

100*cgoto/sloc -- percent, computed GOTO’s to number of executable statements
ugoto -- number of UNCONDITIONAL GO TO statements

100*ugoto/sloc -- percent, unconditional GOTO’s to number of executable statements
bIF -- number of BLOCK IF statements

100*bif/sloc -- percent, Block IF statements to number of executable statements
1IF -- number of LOGICAL IF statements

100*1if/sloc -- percent, logical IF statements to number of executable statements
Bhat -- Halstead’s predicted number of errors in writing code

