SOFTWARE RELEASE NOTICE

01. SRN Number: PA-SRN-020											
02. Project Title: C14H, Gaseous Transport of Radionuclides, subroutine for TPA, CNWRA VersionProject No. 20-5702-7231.1											
03. SRN Title: C14H											
04. Originator/Requester: Date: 03/09/94											
05. Summary o											
	Release of new code admitted to CM System (R.Janetzke)										
	Release of modified code:										
	Enhancements made										
	Corrections made										
	Change of access code (Robert Baca)										
06. Persons Authorized Access											
	Name	RO/RW	A/C/D								
07. Element Ma	nager Approval:	Date:	1								
08. Remarks:											
A copy of th Investigator	te software package C14H, CNWRA Ver. 1.1 was retained for use in the CNWRA work center; therefore, a new rel	ed by the Principl ease may not be	e necessary.								

SOFTWARE SUMMARY FORM

01.Summary Date: 03/09/94	02. Summary prepared by (Name and Pho T.J. Ratchford 522-3083	03. Summary Action:				
04. Software Date: 8/15/93	05. Short Title: C14H	New				
06. Software Title: C14H - Gaseous	Transport of Radionuclides.		07. Internal Software ID:			
			NONE			
08. Software Type:	09.Processing Mode:	10. APPLICATION AREA A. General:				
□ Automated Data System	□ Interactive		Auxiliary Analyses			
Computer Program	□ Batch	■ Subsystem PA □	Other			
Subroutine/Module	Combination	b. Specific:				
11. Submitting Organization and Add	dress:	12. Technical Contact(s) and Phone				
CNWRA, SwRI, San Antonio, Texa	15	R. Janetzke, (210) 522-3318				
13. Narrative: The C14H code determines Gaseous	Transport of Radionuclides at the Yucca Mo	nuntain sitc.				
14. Computer Platform	15. Computer Operating System:	16. Programming Language(s):	17. Number of Source Program Statements:			
CRAY/XMP	UNIX	FORTRAN	3,446 lines of code			
18. Computer Memory	19. Tape Drives:	20. Disk/Drum Units:	21. Graphics:			
Requirements: UNKNOWN	NONE	N/A	UNKNOWN			
22. Other Operational Requirements						
NONE 23. Software Availability: Available District	In-House ONLY	24. Documentation Availability: ■ Available □ Inadequate □ In-House ONLY				
25. Submission Package Status:		•				
Acceptance Criteria: Met ■ Net Code Custodian:	A Met D Software QA Assess	ment: Successful 🔳 Unsuccessful 🗆	Date: 3/9/94			

CNWRA Form TOP-4-1 (08/93)

CI4H Gray Listing

gemstone.7 ~/tpa/C14H/VCS => ls p.Makefile* C14HTAR.TJR* p.c14ha.F* p.c14h.pre* p.datarep.F* p.gasdev.F* p.lhsoooo.out* p.layer.F* p.read1.F* p.rdgas.F* p.relrat.F* p.seth.F* p.vfun.F* p.vapor.F* s.c14h.pre* s.c14ds.F* s.c14trds.F* s.datarep.F* s.layer.F* s.iter.F* s.rdgas.F* s.ran1.F* s.relrat.F* s.relout.F* s.vapor.F* s.ufun.F* gemstone.8 ~/tpa/C14H/VCS =>

p.TPA_C14.CGD*
p.c14map.dat*
p.gwt.F*
p.opnfil.F*
p.readgl.F*
p.sotc14.dat*
s.Makefile*
s.c14ha.F*
s.gasdev.F*
s.lhsoooo.out*
s.read1.F*
s.seth.F*
s.vfun.F*

p.blkdat.F*
p.c14time.F*
p.itemp.F*
p.presid.F*
p.readlhs.F*
p.source.F*
s.TPA_C14.CGD*
s.c14map.dat*
s.gwt.F*
s.opnfil.F*
s.readgl.F*
s.sotc14.dat*

p.c14ds.F*
p.c14trds.F*
p.iter.F*
p.relout.F*
p.ufun.F*
s.blkdat.F*
s.c14time.F*
s.itemp.F*
s.presid.F*
s.readlhs.F*
s.source.F*

3/9/94

C14H Fortran Program Static and Dynamic Analysis

June 28, 1993

Earl S. Marwil John E. Tolli Scientific Computing Unit Idaho National Engineering Laboratory

1. Introduction

This analysis was performed on the Cray version of the software as provided by Southwest Research Institute (SwRI).

The C14H program contains 25 Fortran routines. Access to the source code was provided by SwRI on the INEL Cray. The code is normally passed through a preprocessor named prefor to select a version. In the c14h.pre file, there are apparently versions for VAX and Cray.

One sample problem was supplied along with the source code. The program was analyzed using the Craft (Cross Reference Analysis of Fortran) tool, FORWARN, the Fortran 77 analyzer, and PC-Metric. These tools provide static analysis, coverage analysis, and complexity analysis.

2. References

[1] N.H. Marshall and E.S. Marwil, <u>Cross Reference Analysis of Fortran (CRAFT)</u>, EG&G-CATT-9198, EG&G Idaho, Inc., July 1991.

[2] Fortran 77 Analyzer User's Manual, National Bureau of Standards, NBS GCR 81-359, 1981

[3] FORWARN User's Guide, Quibus Enterprises, Inc., July 1991.

[4] PC-Metric User's Guide, SET Laboratories, Inc., 1987.

3. Functions

There were no alternate entry points in C14H. There was one unreferenced statement function in c14ds. This could be eliminated without affecting the functionality.

4. Common Block Irregularities

The common block declarations are consistent throughout the code.

There are a number of variables in common block *com1* which are not used. Some of these are defined but unused while other are neither defined nor used. These variables are *perm, gamma, c5, dhdt0, hvzero, amcon,* and *hzero.* No elements of *com2* are used in *c14time*; this common block declaration may be safely removed from that routine.

5. Interface Irregularities

There is a size mismatch of dummy arguments *nyear* and *gasin* in *rdgas* compared to those in the calling routine, *c14ha*. In *rdgas*, the dimensions are 10000, while in *c14ha* the dimensions are 300. The subroutine could simply use assumed-size array dimensions, such as *nyear*(*). This would eliminate the need for hard coded dimensions in the subroutine. In addition, the array size in the parent program could be declared using a parameter statement and the input array dimension tested against this limit.

There is a similar mismatch of arguments *nyear* and *gasin* in *source* compared to *c14htrds*.

6. Local Variable Irregularities

The parameter *ileft* is declared in routine c14ds but is unused. Local variables c7, *rhop4*, and t4 are unused in c14ds.

In c14ha, variables *ivect*, *lhs*, *map*, *numdat*, *place*, and *sub* are unused. In c14time, previous usage of variables *sum* and *tavg* was apparently deactivated by changing statements to comments.

In c14trds, the character variable title is used but not defined. Since this occurs in a write statement, there is no effect on the computations. Some compilers will initialize character variables to blanks. This error may not be noticed on printed reports and output.

In opnfil, the variables attrib and iostat are not used and could be eliminated.

Several dummy arguments (*nkjend, nkjst, nklay, nskip, ntime,* and *times*) which are not used in *readgl* could be eliminated. This routine is called from *c14ha* where corresponding changes in the call list could be made as well.

7. Fortran Extensions

Fortran 77 requires that entity names be no longer than 6 characters. There are 39 instances of entity names which are 7 characters or longer. Fortran 77 requires use of only the uppercase alphabetic characters. There are 19 instances of entity names which use lowercase characters. These are extensions to the language which are recognized by most compilers. No changes need be made to these names.

A count is required preceding the x format specifier. This is omitted in the read statement:

read(map, '(a6,x,i5,x,i5)',end=199) varnam,place,sub

in *readlhs* at approximately line 33. This should be changed to standard FORTRAN as follows:

read(map, '(a6,1x,i5,1x,i5)',end=199) varnam,place,sub

8. Optimization

The following table summarizes the performance data gathered from execution of the sample problem. Only those routines exercised by the sample problem are shown (see "Coverage Analysis" for a list of routines not exercised by the sample problem, i.e., coverage = 0%). The table lists all program modules in descending order according to CPU time. To optimize code execution time, emphasis should be placed on those modules which appear highest in the listing.

In order to obtain meaningful statistics for performance evaluation, the program should execute for least 10 CPU seconds. The performance data show that the sample problem executed for a total of 35.849 CPU seconds.

The performance data show that a high percentage of the overall execution time (85.929%) is spent in the first 4 routines listed (ITER, GWT, RAN1, GASDEV). This is due primarily to the following (applies to some or all of the 4 routines):

1) a low percentage of floating point operations which are performed in vector mode (%Vflops is small)

2) a high overhead factor for calls to the routines (IFact > 1)

3) a high level of memory conflicts (MC/MR > 1)

4) a high rate of instruction buffer fetches (IBFR > 1).

A detailed optimization analysis effort should focus on these 4 areas.

۰.

ROUTINE NAME	Time	%ExTime	%AccumT	%Vflops	IFact	MC/MR	IBFR		
ITER GWT RAN1 GASDEV ITEMP VFUN UFUN PRESID VAPOR C14TIME RELOUT C14DS READLHS RDGAS DATAREP C14TRDS READ1 SETH C14HA SOURCE READGL	18.609 6.517 3.457 2.221 1.581 1.184 1.101 0.987 0.052	51.910 18.180 9.642 6.197 4.410 3.302 3.071 2.754 0.146 0.098 0.071 0.069 0.060 0.033 0.023 0.012 0.005 0.004 0.003 0.003	51.910 70.090 79.732 85.929 90.338 93.640 96.711 99.465 99.611 99.781 99.781 99.943 99.910 99.943 99.966 99.978 99.982 99.987 99.987 99.991 99.994	67.93081 7.52978 0.00000 0.00000 57.15903 0.00000 65.65439 98.94281 0.07572 16.37933 98.93375 68.13826 87.74908 55.46730 25.60517 85.88373 99.92641 91.92902 94.92870 96.78000 60.64642	0.00 0.01 1224.75 368.43 0.00 691.43 743.45 0.00	0.462 0.396 1.008 0.510 0.158 0.691 0.683 0.581 0.119 0.211 0.303 0.470 0.134 0.078 0.174 0.339 0.088 0.191 0.395 0.006 0.261 0.367	0.002 1.191 0.817 1.132 0.911 0.787 0.847 0.023 0.154 0.361 1.033 0.197 0.758 0.919 0.958 0.704 1.153 0.195 0.683 0.003 0.780 0.817		
OPNFIL LAYER	0.000	0.001	100.000	0.00000	0.00	0.367	0.817		
Totals (All Traced Routines) 35.849 100.000 100.000 61.98849 637.13 0.470 0.462									
<pre>Key: %AccumT = accumulated percentage of total CPU time %ExTime = percentage of total CPU time %Vflops = percentage of floating point operations due to vector floating point operations IBFR = Instruction Buffer Fetch Rate (megafetches/sec) IFact = Inline Factor (total calls to routine / average time spent in routine for each call) MC = number of memory conflicts MR = pumber of memory references</pre>									

PERFORMANCE DATA FOR C14H

MR - number of memory references Time - total CPU time (sec) ٠,

9. Coverage Analysis

One sample problem was supplied. A coverage analysis shows that this problem yielded an 87% segment coverage of C14H. Sample problems provided with typical simulation programs achieve only 35% to 50% coverage. A statement of software quality cannot be made for subroutines that have low coverage, i.e. large portions of the code are untested.

Note that subroutine *relrat* has 0% coverage. This routine is not tested with the supplied sample problem. Routine *opnfil* has under 40% coverage. All other routines exceeded 75% coverage. The following table shows the percent coverage for each routine.

Module Name C14HA C14DS C14TIM C14TRD DATARE GASDEV GWT ITEMP ITER LAYER OPNFIL PRESID RAN1 RDGAS READ1 READ1 READ1 READ1 READ1 READ1 READ1 READ1 READ1 READ1 READ1 READ1 READ1	Number of Segments in module 9 42 14 9 5 6 14 27 15 11 28 16 7 3 3 1 25 3 6 5 10	Number of Segments Executed 7 38 13 9 5 6 12 27 15 11 11 11 16 6 3 3 1 24 3 0 5 10	Percent Segment Coverage 77.8 90.5 92.9 100.0 100.0 100.0 100.0 100.0 100.0 39.3 100.0 39.3 100.0 85.7 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
			100.0 100.0 100.0 100.0
Totals	266	232	87.2

	0.20	0.40	0.60	0.80	1.00
C14HA	********	****	******	*****	
C14DS	*******	*****	*******	*******	**
C14TIM	i *********	******	*******	*******	***
C14TRD	*******	******	******	*******	******
DATARE	******	******	******	*******	******
GASDEV	*******	*******	******	******	******
GWT	*******	******	*******	******	·
ITEMP	*******	******	*******	******	******
ITER	*******	******	******	******	******
LAYER	*******	******	******	******	******
OPNFIL	*******	*****	l l	1	1
PRESID	*******	******	*******	*******	******
RAN1	*******	******	*******	******	1
RDGAS	******	*****	*******	******	******
READ1	******	******	*******	******	******
READGL	*******	******	*******	*******	******
READLH	******	******	*******	******	****
RELOUT	*******	******	********	*******	******
RELRAT	i I	1	1	ł	1
SETH	*******	*******	********	*******	******
SOURCE	******	*******	*******	*******	*****
UFUN	******	*******	******	******	******
VAPOR	******	******	*******	******	******
VFUN	******	******	*******	******	******
	' + -	+ -	+	+	-+

coverage - 0.	RELRAT				
0.20 <= coverage < 0.40	OPNFIL				
0.60 <= coverage < 0.80	C14HA				
0.85 <= coverage < 0.90	GWT	RAN1			
0.90 <= coverage < 0.95	C14DS	C14TIM			
0.95 <= coverage < 1.00	READLH				
coverage = 1.00	C14TRD LAYER RELOUT VFUN	DATARE PRESID SETH	GASDEV RDGAS SOURCE	ITEMP READ1 UFUN	I TER READGL VAPOR

Program coverage for this run =0.87

10. Complexity Analysis

Some key metrics are the number of executable statements (sloc), the number of non-blank comments (ncomt), McCabe's extended cyclomatic complexity (vg2), the number of branching statements (cgoto, ugoto, bIF, and lIF), and Halstead's predicted number of errors in (re)writing the code (bhat). Measures are normalized per 100 executable statements for ease of comparison and are listed in the table below.

The branching measures for this code indicate very few unconditional GO TO statements and logical IFs. This code appears to be well structured.

Seventeen routines have a good ratio of non-blank comments to source code. Seven routines (*datarep, gasdev, layer, ran1, ufun, vapor, vfun*) have less than 10 non-blank comments per 100 lines of source code.

McCabe's extended cyclomatic complexity (vg2), normalized per 100 lines of source code indicates relatively high values. Generally, the routines with the highest complexity are those most likely to have defects. As a guideline, normalized measures of 15 or greater should be considered complex. A software maintenance program should focus on those routines with the highest measures.

C14H Analysis

June 28, 1993

Complexity Report by Subprogram C14H

Name	loc	sloc	cmnt	ncomt	ncomt /sloc	vg2 /sloc	cgoto	cgoto /sloc	ugoto	ugoto /sloc	bIF	bif /sloc	١IF	lif /sloc	Bhat
C14Ha	126	29	61	57	196.6	10.3	0	0.0		3.4	2	6.9	0	0.0	1
C14DS	227	121	88	86	71.1	17.4	ŏ	0.0	i	0.8	2	1.7	ž	1.7	3
C14TIME	66	22	34		145.5	31.8	ŏ	0.0	Ō	0.0	1	4.5	Ō	0.0	0
C14TRDS	79	21	44	44	209.5	23.8	ŏ	0.0	ŏ	0.0	Ō	0.0	ŏ	0.0	ň
DATAREP	40	30	0	0	0.0	10.0	ŏ	0.0	ŏ	0.0	ŏ	0.0	ŏ	0.0	1
GASDEV	17	16	Ő	Õ	0.0	18.8	Õ	0.0	ĩ	6.3	ı 1	6.3	1	6.3	ń
GWT	47	35	6	5	14.3	17.1	ŏ	0.0	ī	2.9	3	8.6	ō	0.0	õ
ITEMP	62	35	13	13	37.1	40.0	Õ	0.0	ō	0.0	ŏ	0.0	ĩ	2.9	ĩ
ITER	64	35	11	11	31.4	22.9	Ō	0.0	Ŏ	0.0	Ŏ	0.0	ō	0.0	i
LAYER	21	15	0	0	0.0	33.3	Ō	0.0	Ŏ	0.0	ī	6.7	ŏ	0.0	ō
opnfil	208	59	131	118	200.0	27.1	0	0.0	0	0.0	8	13.6	ŏ	0.0	ŏ
PRESID	72	42	11	11	26.2	19.0	0	0.0	0	0.0	1	2.4	Ŏ	0.0	Ž
RAN1	29	24	1	1	4.2	25.0	0	0.0	0	0.0	1	4.2	ĺ	4.2	ō
rdgas	27	8	16	14	175.0	25.0	0	0.0	0	0.0	0	0.0	Ō	0.0	Ŏ
READ1	40	22	9	9	40.9	9.1	0	0.0	0	0.0	0	0.0	Ó	0.0	Ō
READGL	34	14	13	13	92.9	7.1	0	0.0	0	0.0	0	0.0	0	0.0	Ō
READLHS	69	40	26	23	57.5	25.0	0	0.0	3	7.5	4	10.0	2	5.0	Ó
relout	33	24	8	8	33.3	8.3	0	0.0	0	0.0	0	0.0	0	0.0	0
relrat	20	9	7	7	77.8	33.3	0	0.0	0	0.0	1	11.1	0	0.0	0
SETH	24	9	5	5	55.6	33.3	0	0.0	0	0.0	0	0.0	0	0.0	0
SOURCE	36	21	11	10	47.6	23.8	0	0.0	0	0.0	0	0.0	0	0.0	0
UFUN	19	13	1	1	7.7	7.7	0	0.0	0	0.0	0	0.0	0	0.0	0
VAPOR	47	28	4	2	7.1	10.7	0	0.0	0	0.0	0	0.0	0	0.0	0
VFUN	27	22	0	0	0.0	4.5	0	0.0	0	0.0	0	0.0	0	0.0	0

June 28, 1993

Legend of Metrics in Report

loc -- lines of code sloc -- number of executable statements cmnt -- total number of commnts ncomt -- number of non-blank COMMENT statements 100*ncomt/sloc -- percent, nonblank comments to number of executable statements 100*vg2/sloc -- percent, extended complexity of number of executable statements cgoto -- number of COMPUTED GO TO statements 100*cgoto/sloc -- percent, computed GOTO's to number of executable statements ugoto -- number of UNCONDITIONAL GO TO statements 100*ugoto/sloc -- percent, unconditional GOTO's to number of executable statements bIF -- number of BLOCK IF statements 100*bif/sloc -- percent, Block IF statements to number of executable statements 100*bif/sloc -- percent, logical IF statements to number of executable statements Bhat -- Halstead's predicted number of errors in writing code