SOFTWARE RELEASE NOTICE

|| 01. SRN Number: PA-SRN-019 "

r e T T e

02. Project Title: Project No.
CANT?2, Temperature Model for canisters at Yucca Mountain site, subroutine for | 20-5702-723
TPA, CNWRA Version 1.1

03. SRN Title: CANT?2

04. Originator/Requester: Date:
Thomas J. Ratchford 03/09/94

05. Summary of Actions
| Release of new code admitted to CM System (R.Janetzke)
O Release of modified code:
0 Enhancements made
] Corrections made

| W Change of access code (Robert Baca)

06. Persons Authorized Access
| Name RO/RW I A/C/D

B

07. Element Manager Approval: Date:

08. Remarks:

A copy of the software package CANT2, CNWRA Ver. 1.1 was retained by the Principle
Investigator for use in the CNWRA work center; therefore, a new release may not be necessary.

— 1}

CNWRA Form TOP-6 (08/93)

SOFTWARE SUMMARY FORM

01.Summary Date:
03/09/94

02. Summary prepared by(Name and Phone)
T.J. Ratchford 522-3083

03. Summary Action:

04. Software Date:
8/15/93

05. Short Title:
CANT?2

08. Software Type:

0D Automated Data System

O Computer Program

W Subroutine/Module

06. Software Title: CANT?2 - Temperature Model for Source Term.

09.Processing Mode:

O Interactive

O Batch

B Combination

New

07. Interal Software ID:

NONE

10. APPLICATION AREA
A. General:

O scientific/Engineering
O Total System PA

] Subsystem PA

b. Specific:

0O Auxiliary Analyses

O Other

11. Submitting Organization and Address:

CNWRA, SwRI, San Antonio, Texas

13. Narrative:

12. Technical Contact(s) and Phone:

R. Janetzke, (210) 522-3318

The CANT?2 code determines the temperature of individual canisters and average temperature in large zones at the Yucca Mountain site.

14. Computer Platform

15. Computer Operating System:

16. Programming Language(s):

17. Number of Source Program
Statements:
2,225 lines of code

CRAY/XMP UNIX FORTRAN
18. Computer Memory 19. Tape Drives: 20. Disk/Drum Units: 21. Graphics:
Requirements:

UNKNOWN NONE N/A UNKNOWN

22. Other Operational Requirements

NONE
23. Software Availability: 24. Documentation Availability:
B Available O Limited 0 In-House ONLY W Available O Inadequate O In-House ONLY

25. Submission Package Status:

Acceptance Criteria; Met l

Not Met oftware QA Assessment: Successful B Unsuccessful O

Se— 4 /% Wa’%

|

|

oe_3[7/74

CNWRA Form TOP-4-1 (08/93)

CNWRA INFORMATION PROCESSING STANDARD SOFTWARE SUMMARY

01, Summary Date 0Z. Summary prepared by (Name and phone) 03, Summary acton

Ye. Mo. | Day Jan enke %% { 9 New Repiacement Deletion
A2 1] s O K 0O
°;'f°““k’; ?‘" = Can TL Previous intemai Software 1D
-?g% Liialo
- Shart e o Tl S
' canTi
08, Soltware lype) ng Mode 10. | A Soectic
[[] AutmawdDama Sysem | [[] imeractve (] computer Systems Supporvitiity [_] ManagemenvBusiness
(] computer Program (4 saen (8 saentifcEnginesring (] Procees Contral
[suboutneModule (] combination (] eisographicTexnal [CJoter
77, SUbMItENg orgamzaton and & 2. T6ChNiCal CONACI?; &nd phone
NRC Diekk Codell
13. Nasragve

New o‘n'OUT -§~'(e fOV' CA NTZ-

CanTA.ln
14, Keywords
15. Computer manufacturer and model | 18. Computer operatng system 17. Prooranmng language(s) 18. Number of source program statements
19. Computer memory requirements 20. Tape dnves . units Termnals
i

[24. Software avaiabikty 2. Documentason avanabaity
Avaiiable Umited in-house only Available inadequae in-heuse only

O O X O O

CNWRA Form TOP-4 10/90

CANTZ C /Zﬂf [/ < f/ﬂi

gemstone.4 ~/tpa/CANT2/VCS => ls -1

total 32

“rwWXrwx-—-—-— 1 tjra tjrl 1127 Jul 8 1993 s.Makefilex*
~rWXrwxX=—-—-— 1 tjra tirl 3653 Jul 8 1993 s.avtemp.F*
~rwXrwx-—-—- 1 tjra tijrl 6283 Jul 8 1993 s.cant2.F%*
~rWXrwX=—=—- 1 tjrl tirli 20633 Jul 8 1993 s.cant2.cpp*
~YWXrwx—-—- 1 tjra tijrl 20641 Jul 8 1993 s.cant2.fsourcx*
—rWXrwx—-—- 1 tjrl tjrl 1680 Jul 8 1993 s.cant2.in%*
—rWXYrwX=-- 1 tjrl tjr1i 1730 Jul 8 1993 s.cant2.in.ori*
~rWXrwx——- 1 tjrl tijrl 2087 Jul 8 1993 s.cantemp.F*
~rWXYrwX——-— 1 tjrl tjri 925 Jul 8 1993 s.driftpt.F*
~rWXYrWX—=—-— 1 tjrl tirlk 425 Jul 8 1993 s.erf.F*
~rWXIwWX——— 1 tjrl tjr1i 476 Jul 8 1993 s.presub.F*
“rWXYrWX=—- 1 tjrl tjrl 500 Jul 8 1993 s.presub2.F*
~rWXrwX=-—- 1 tjra tjri 941 Jul 8 1993 s.ranl.F*
“rWXYrwxX——-— 1 tjril tjri 1338 Jul 8 1993 s.sethtab.F*
“YWXYwWX——-— 1 tjrl tjri 2568 Jul 8 1993 s.sett.F¥*
“rWXrwX—-—- 1 tjril tjri 1642 Jul 8 1993 s.sett2.F*
—~rWXrWxX=—-—- 1 tjr1 tjrl 310 Jul 8 1993 s.subx.F*
~rWXrwX—-—-— 1 tjra tirl 325 Jul 8 1993 s.subx2.F*
“YWXYWX——- 1 tjril tiri 453 Jul 8 1993 s.subz.F*
—rWXrwWX=== 1 tjrl tjrl 284 Jul 8 1993 s.x.cant2.covr*
~rWXTrWX=== 1 tjrl tiri 704 Jul 8 1993 s.x.cant2.test*

gemstone.5 ~/tpa7CANT2/VCS =>

%W ?/?/g% 134.20.1.1 08:10:16

CANT2 Fortran Program
Static and Dynamic Analysis

June 28, 1993

Earl S. Marwil
John E. Tolli
Scientific Computing Unit
Idaho National Engineering Laboratory

1. Introduction

This analysis was performed on the Cray version of the software as provided by
Southwest Research Institute (SwRI).

One sample problem was supplied along with the source code. The program was
analyzed using the Craft (Cross Reference Analysis of Fortran) tool, FORWARN, the

Fortran 77 analyzer, and PC-Metric. These tools provide static ana1y31s coverage
analysis, and complexity analysis.

2. References

[1] N.H. Marshall and E.S. Marwil, Cross Reference Analysis of Fortran (CRAFT), EG&G-
CATT-9198, EG&G Idaho, Inc., July 1991.

2] Em:mﬂAnalnger_e&ManmL National Bureau of Standards, NBS GCR 81-359,
1981

[3] FORWARN User's Guide, Quibus Enterprises, Inc., July 1991.
[4] PC-Metric User's Guide, SET Laboratories, Inc., 1987.

3. Functions

The CANT2 program contains 14 Fortran routines.

CANT?2 has no alternate entry points.

4. Common Block Irregularities

There are no common blocks in the CANT2 program.

5. Interface Irregularities

Main program module "cant2" calls module "cantemp" with variable "tc" in argument
position 19. This variable is dimensioned to 50 in "cant2", but is dimensioned to 100 in
"cantemp".

CANT2 Analysis . June 28, 1993

6. Local Variable Irregularities

Parameter "nr" is assigned a value of 30 in "cant2" and "avtemp", but is assigned a
value of 20 in "sethtab" and "sett".

Parameter "nr" is declared but unused in "sethtab".
Dummy argument "akm" is unused in "sethtab".
7. Fortran Extensions

All program modules contain some lower case alphabetic characters in their active
Fortran.

Program modules "cant2", "cantemp", "driftpt", "presub2"”, "sethtab", "sett2", and
"subz" contain entity names which are longer than 6 characters.

8. Optimization

The following table summarizes the performance data gathered from execution of the
sample problem. Only those routines exercised by the sample problem are shown

(see "Coverage Analysis" for a list of routines not exercised by the sample problem,

i.e., coverage = 0%). The table lists all program modules in descending order
according to CPU time. To optimize code execution time, emphasis should be placed on
those modules which appear highest in the listing.

The performance data show that a high percentage of the overall execution time
(81.729%) is spent in the first 4 routines listed (ERF, SUBX, SETT, SUBX2). This is due
primarily to the following (applies to some or all of the 4 routines):

1) a low percentage of floating point operations which are performed in vector
mode (%Vflops is small)

2) a high overhead factor for calls to the routines (IFact > 1)
3) a high level of memory conflicts (MC/MR > 1)
4) a high rate of instruction buffer fetches (IBFR > 1).

A detailed optimization analysis effort should focus on these 4 areas.

CANT2 Analysis June 28, 1993

PERFORMANCE DATA FOR CANT2
ROUTINE NAME Time %ExTime %AccumT %Vflops IFact MC/MR IBFR

ERF 3.327 25.744 25.744 0.00000 3088.42 4.133 0.236
SUBX 3.121 24.146 49.891 0.00051 485.72 3.110 0.979
SETT 2.973 23.005 72.895 0.00231 0.00 1.808 1.316
SUBX2 1.142 8.833 81.729 0.00000 120.97 3.037 1.042
SUBZ 0.939 7.265 88.994 0.00000 403.58 2.981 0.450
PRESUB 0.755 5.841 94.835 61.29032 502.00 1.802 0.560
SETT2 0.410 3.169 98.004 0.00528 0.00 2.004 1.095
DRIFTPT 0.116 0.894 98.897 99.02768 0.01 0.898 0.014
AVTEMP 0.079 0.613 99.511 69.65018 0.00 0.658 0.932
CANT2 0.053 0.408 99.919 46.25665 0.00 1.128 0.936
SETHTAB 0.003 0.026 99.945 0.78864 0.00 1.803 1.165
PRESUB2 0.003 0.024 99.968 63.33333 2.01 1.943 0.557
RAN1 0.003 0.022 99.990 0.00000 0.83 5.624 0.553
CANTEMP 0.001 0.010 100.000 56.96263 0.00 0.992 1.002

Totals (A11 Traced Routines)
12.925 100.000 100.000 26.69263 2827.71 2.571 0.802

Key:

%AccumT = accumulated percentage of total CPU time

%ExTime = percentage of total CPU time

%Vflops = percentage of floating point operations due
to vector floating point operations

IBFR = Instruction Buffer Fetch Rate (megafetches/sec)

IFact Inline Factor (total calls to routine /
average time spent in routine for each call)

MC = number of memory conflicts

MR number of memory references

Time total CPU time (sec)

9. Coverage Analysis

One sample problem was supplied. A coverage analysis shows that this problem
yielded a 92% segment coverage of CANT2. Sample problems provided with simulation
programs typically achieve 35% to 50% coverage. A statement of software quality
cannot be made for routines that have low coverage, i.e., large portions of the code

are untested.

Two routines achieve 40%-59% coverage, 1 routine achieves 80%-99% coverage, and
11 routines achieve 100% coverage.

CANT2 Analysis June 28, 1993

The following table shows the percent coverage for each routine.

Module Number of Number of Percent
Name Segments Segments Segment

in module Executed Coverag
CANT2 17 17 100.0
AVTEMP 35 35 100.0
CANTEM 3 3 100.0
DRIFTP 8 8 100.0
ERF 6 6 100.0
PRESUB 9 5 55.6
PRESUB 9 5 B5.6
RAN1 7 6 85.7
SETHTA 3 3 100.0
SETT 9 9 100.0
SETT2 6 6 100.0
SUBX 1 1 100.0
SUBX2 1 1 100.0
SUBZ 5 5 100.0
Totals 119 110 92.4
0.20 0.40 0.60 0.80 1.00
PR EORT BTl B e DTt ORI
CANTZ I**
AVTEMP I**
CANTEM I**
DRIFTP I**
ERF '**
PRESUB l**************************** | I |
PRESUB I**************************** | I |
RANl |***
SETHTA I**
SETT '**
SETTZ I**
SUBX dhkkkkhkhkhkhkhhkkAkrAhkhkrkAkhkAXkhkhkhkhkhkhkhkhkhkdkhkhkhkkhkhkhkkhkhkhkkhkhhkikk
SUBXZ |**
SUBZ I**
R Bt el B A B E SR bl RERte it
0.40 <= coverage < 0.60 PRESUB PRESUB
0.85 <= coverage < 0.90 RAN1
coverage = 1.00 CANT2 AVTEMP CANTEM DRIFTP ERF
SETHTA SETT SETT2 SUBX suBx2
SUBZ

Program coverage for this run =0.92

-4-

CANT2 Analysis June 28, 1993

10. Complexity Analysis

Some key metrics are the number of executable statements (sloc), the number of
non-blank comments (ncomt), McCabe's extended cyclomatic complexity (vg2), the
number of branching statements (cgoto, ugoto, bIF, and 1IF), and Halstead's predicted
number of errors in (re)writing the code (bhat). Measures are normalized per 100
executable statements for ease of comparison and are listed in the table below.

The branching measures for this code indicate few unconditional GO TO statements
and logical IFs for most program modules. This code appears to be well structured.

Most routines have a low ratio of non-blank comments to source code. Additional
comments would be helpful.

McCabe's extended cyclomatic complexity (vg2), normalized per 100 lines of source
code, indicates moderate to high values. Generally, the routines with the highest
complexity are those most likely to have defects. As a guideline, normalized measures
of 15 or greater should be considered complex. A software maintenance program
should focus on those routines with the highest measures.

CANT2 Analysis _ June 28, 1993
Complexity Report by Subprogram for CANT2

ncomt vg2 cgoto ugoto bif 1if

Name loc sloc cmnt ncomt /sloc /sloc cgoto /sloc ugoto /sloc bIF /sloc 1IF /sloc Bhat
cant2 154 91 43 41 45.1 9.9 0 0.0 0 0.0 0 0.0 0 0.0 2
avtemp 97 83 13 11 13.3 20.5 0 0.0 0 0.0 0 0.0 4 4.8 2
cantemp 48 8 33 26 325.0 25.0 0 0.0 0 0.0 0 0.0 0 0.0 0
driftpt 27 18 6 6 33.3 22.2 0 0.0 0 0.0 1 5.6 0 0.0 0
erf 14 13 1 1 7.7 23.1 0 0.0 1 7.7 0 0.0 2 15.4 0
presub 13 13 1 1 7.7 38.5 0 0.0 1 7.7 0 0.0 3 23.1 0
presub2 13 13 1 1 7.7 38.5 0 0.0 1 7.7 0 0.0 3 23.1 0
ranl 29 24 0 0 0.0 25.0 0 0.0 0 0.0 1 4.2 1 4.2 0
sethtab 37 18 11 11 61.1 11.1 0 0.0 0 0.0 0 0.0 0 0.0 0
sett 76 53 12 12 22.6 9.4 0 0.0 0 0.0 1 1.9 0 0.0 1
sett2 55 41 10 10 24.4 7.3 0 0.0 0 0.0 0 0.0 0 0.0 1
subx 9 7 1 1 14.3 14.3 0 0.0 0 0.0 0 0.0 0 0.0 0
subx2 10 8 1 1 12.5 12.5 0 0.0 "0 0.0 0 0.0 0 0.0 0
subz 15 12 3 3 25.0 25.0 0 0.0 0 0.0 0 0.0 2 16.7 0

Legend of Metrics in Report

loc -- lines of code

sloc -- number of executable statements

cmnt -- total number of commnts

ncomt -- number of non-blank COMMENT statements

100*ncomt/sTloc -- percent, nonblank comments to number of executable statements
100*vg2/sloc -- percent, extended complexity of number of executable statements
cgoto -- number of COMPUTED GO TO statements

100*cgoto/sloc -- percent, computed GOTO’s to number of executable statements
ugoto -- number of UNCONDITIONAL GO TO statements

100*ugoto/sloc -- percent, unconditional GOTO’s to number of executable statements
bIF -- number of BLOCK IF statements

100*bif/sloc -- percent, Block IF statements to number of executable statements
1IF -- number of LOGICAL IF statements

100*1if/sloc -- percent, logical IF statements to number of executable statements
Bhat -- Halstead’s predicted number of errors in writing code

