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ABSTRACT 

1 

The objective of this report is to document the BIGFLOW code, Version 1.0, including the underlying 
mathematical and numerical models, and to present test problems, benchmarks, and applications of the 
code. BIGFLOW is actually a software package composed of a simulation code (BIGFLOW), and an 
interactive data processing code (DATAFLOW). The simulation code can be used for detailed modeling 
of transient or steady state flow systems in three-dimensional (3D) or lowerdimensional, unsaturated, 
partially saturated, or saturated, heterogeneous porous media. A preliminary version of this code was 
initially developed in 1985 by R. Ababou. Since then, it has undergone extensive modifications and 
improvements at the Center for Nuclear Waste Regulatory Analyses (CNWRA). Over the years, 
BIGFLOW has been used for studying macro-scale behavior of saturated and unsaturated flow processes 
in randomly heterogeneous media, for performance assessment of a high-level nuclear waste geologic 
repository in the presence of layers and fault, as well as for hydrologic simulations such as strip-source 
infiltration in layered soils, groundwater flow through lakes, etc. 

The BIGFLOW code solves linear and nonlinear porous media flow equations based on Darcy’s law, 
appropriately generalized to account for 3D, deterministic or random heterogeneity. It is written in ANSI 
Standard Fortran 77, is free of machinedependent directives, and is portable without modifications to 
a variety of computer systems, mainframes, and workstations. An implicit finite difference scheme is 
used for discretization. Optionally, a modified Picard scheme is used for linearizing unsaturated flow 
equations (outer iterations), and a preconditioned iterative method is used for solving the resulting matrix 
systems (inner iterations). Iterative matrix solvers which have been extensively used so far are the 
Strongly Implicit Procedure (SIP) and Diagonally Scaled Conjugate Gradient (DSCG). These solution 
modules were especially coded to take advantage of sparsity and symmetry of the finite difference 
systems. The data processor (DATAFLOW), also written in ANSI Standard Fortran 77, allows 
interactive data entry, manipulation, and analysis of BIGFLOW’s 3D datasets. A statistical analysis 
module is also included within DATAFLOW. 

In addition to presenting detailed input instructions, this report presents the mathematical and numerical 
basis of BIGFLOW, as well as case studies aimed at testing and verifying the code. In particular, the 
code has been extensively used for simulating highly heterogeneous 3D flow systems, on large numerical 
grids comprising on the order of lob to lo7 nodes. For such large grids, analyses of computational 
performance were carried out using Cray-2 and Cray-Y/MPS supercomputers. In addition, a number of 
smaller onedimensional (1D) and twodimensional (2D) flow tests were also developed in order to verify 
and benchmark BIGFLOW against other independently developed codes such as PORFLOW and 
CMVSFS (Connection Machine Variably Saturated Flow Simulator). 
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1 INTRODUCTION AND OVERVIEW 

1.1 INTRODUCTION 

BIGFLOW is a numerical solver for the partial differential equations governing 
three-dimensional (3D) flow in a heterogeneous porous medium. It accommodates steady and transient 
flows in saturated, partially saturated, or unsaturated media, possibly with highly heterogeneous or 
spatially random hydrodynamic coefficients: 

The BIGFLOW package was initially developed at Massachusetts Institute of Technology (MIT) 
by Dr. Rachid Ababou for investigating fully 3D saturated-unsaturated flow in random porous media 
(Ababou, 1988). The MIT precursor of BIGFLOW was named BIGFLO. The current BIGFLOW 
package is the result of subsequent modifications aimed at enhancing its scope, flexibility, and 
computational efficiency. The package comprises two modular Fortran 77 codes, respectively, for 
simulating and pre- or postprocessing 3D flow fields in heterogeneous porous media. The simulator code 
is named BIGFLOW, and the data processing code is named DATAFLOW. In addition, auxiliary 
graphics display programs were also developed in conjunction with the main package. Partial 
documentation of BIGFLOW's main functions and applications can be found in several publications of 
the hydrology literature. 

The interactive data processor, DATAFLOW, serves as a convenient tool for certain 
preprocessing tasks such as setting up boundary conditions, initial conditions, and material properties, 
and for postprocessing tasks such as cell-by-cell calculation of 3D flux vectors, spatial-statistical analyses, 
extraction of sub-dimensional datasets, and so on. Auxiliary graphic techniques for displaying large 3D 
datasets have also been developed, as mentioned earlier. BIGFLOW and DATAFLOW were written in 
Fortran 77 in full accordance with the ANSI standard, except for the possible use of the non-standard 
INCLUDE statement described below. The current version of BIGFLOW, possibly distributed under the 
alias name BIGFLO-PACK, will run on most systems including Vax's Virtual Management System 
(VMS) and Cray's Unix Cray Operating System (UNICOS), provided a fully American National 
Standards Institute, Inc. (ANSI) compatible Fortran 77 compiler is available. 

One of the few modifications that may be required with some compilers concerns the 
non-standard INCLUDE statement. This statement is used in many places to include a set of common 
blocks from a Fortran file COMBIG the declared common blocks being the same in all the subroutines 
of BIGFLOW. If the compiler does not accept the INCLUDE statement for example, CFT77 on 
CRAY-2, or Fortran 200 on CYBER-205, then one may use a text editor to actually include the contents 
of the COMBIG file in place of each occurrence of the "INCLUDE 'COMBIG' 'I instruction. Naturally, 
doing this can be tedious and should be avoided if possible. Finally, with compilers that do accept the 
INCLUDE statement, a compilation error may still occur if the name of the include file is not exactly 
correct. On MicroVax machines running VMS, the compiler looks in the current directory for an include 
file named "COMBIG.FOR" or possibly "COMBIG" . On machines with the UNIX-based operating 
system, the compiler looks in the current directory for an include file named "COMBIG". The quotes 
are not part of the file name. 

The porous medium flow simulation by BIGFLOW satisfies locally the hydrodynamic 
constitutive laws of Darcy (1856) and Buckingham (1907). The governing partial differential equations 
are expressed either in terms of hydraulic head for saturated flow, or in terms of moisture content and 
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pressure head for partially saturated and unsaturated flow. The latter formulation is a mixed variable 
version of Richards’ equation (Richards, 193 1). The differential equations are discretized by an implicit 
finite difference scheme, two-point backward Euler in time, and seven-point centered in space. The 
spatial mesh is a regular rectangular lattice. The time step is generally variable and self-adjusted. The 
computational domain is a rectangular parallelepiped, whose coordinate system may be inclined at 
arbitrary angles with respect to the natural, horizontal-vertical coordinate system. 

Multidimensional inputs to BIGFLOW code are specified as either node-by-node or block-by- 
block with the aid of the interactive data processor, DATAFLOW. The multidimensional input functions 
are the initial conditions, the planar boundary conditions, and up to six 3D parameters for spatially 
variable hydrodynamic coefficients and nonlinear constitutive relations. The boundary conditions are of 
three types: (i) pressure or hydraulic head, (ii) normal flux, or (iii) zero pressure gradient for 
gravitational drainage. The latter type of boundary conditions are described in Ababou (1988) and 
McCord (1991). Spatially variable and mixed-type boundary conditions can be defined separately for 
each of the six boundary planes. 

Lowdimensional flow systems are simulated by reducing the size of the grid to just a few 
nodes, that is, at least one interior node plus four boundary nodes along any unmodeled dimension. The 
two-dimensional (2D) or one-dimensional (1D) solution is obtained from the numerical output at the 
middle node. This is efficient for 2D problems. This feature has been frequently implemented in 
previous applications of BIGFLOW. For 1D problems, dedicated 1D flow simulators should be preferred 
if available. Low-dimensional datasets such as transects and cross-sections can be either generated by 
the simulation code or extracted from existing 3D datasets by using the data processing code 
DATAFLOW. Finally, irregular boundaries may be introduced, in some cases, by selecting extremely 
small or large hydraulic conductivity values in subregions located between the physical flow domain and 
the outer computational boundaries. There is, however, no direct option for explicitly specifying 
irregular boundaries. The boundary conditions themselves can be specified for each node of the planar 
boundaries, and can, therefore, be spatially variable on these planes without any restriction. 

The flow code solves nonlinear equations in the case of unsaturated or partially saturated flow, 
and linear equations in the special case of fully saturated flow. In the latter case, a sparse symmetric 
matrix system is generated at each time step. Steady flow problems can be solved either directly, based 
on steady state equations equivalent to one infinite time step, or indirectly, by time-stepping the transient 
flow equations up to very large times. For nonlinear flow problems, a modified Picard scheme is used. 
This yields a sequence of sparse symmetric matrix systems converging to the solution of the nonlinear 
system at each time step (outer iterations). The linearized systems have the same sevendiagonal structure 
as in the linear case. 

In all cases, the symmetric matrix systems are solved by a fast preconditioned iterative solver 
(inner iterations). Several sparse solution modules that qualify as fast preconditioned iterative solvers are 
presently available, including the Strongly Implicit Procedure (SIP), and Diagonal Scaling Conjugate 
Gradients (DSCG). All arrays are stored in-core, and a diagonal-bydiagonal matrix storage scheme is 
used. This data structure minimizes in-core memory requirements and central processing unit (CPU) 
time. Furthermore, the code dynamically allocates the correct dimensions to the various arrays that 
describe the flow system. For a given set of inputs, the code computes the total size of the master array 
needed for storage of all vector-matrix variables, and starts the simulation only if the declared size is 
sufficient. 
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The total in-core memory required to simulate fully heterogeneous 3D systems is modest, about 
10 words per node for saturated flow, and roughly twice as much for partially saturated or unsaturated 
flow. Thus, owing to the efficiency and sparseness of discretization and solution procedures, relatively 
large simulations are feasible in reasonable amounts of computer time and with minimal memory 
requirements. In the case of saturated flow, the grid size can be on the order of two hundred thousand 
nodes for a minicomputer such as Microvax-2, and typically one to ten million nodes for the 1985-90 
generation of supercomputers such as Cray-2. For partially saturated flow problems, the feasible grid 
size can decrease by up to one order of magnitude relative to the linear case, depending on the nature of 
nonlinearities and initial-boundary conditions. For transient unsaturated flow the actual computational 
domain size can be made variable in time, provided this makes sense physically, for example, infiltration 
in initially dry soils. This option is available exclusively for unsaturated or partially saturated flow. 

Hydraulic properties for saturated media are the hydraulic conductivity (K,) and the specific 
storativity (S,), both spatially variable if needed. For partially saturated or unsaturated media, the 
hydraulic conductivity (K) is an exponential function of pressure head (h) with a given slope (a) up to 
a given bubbling pressure (hb) where K reaches the saturation value (K,). All three coefficients K,, a, and 
hb can be spatially variable. Finally, the soil moisture retention curve 001) can be an arbitrary function 
with several parameters, two of which can be spatially variable. The code computes the soil moisture 
capacity by a chord-slope differentiation of 001). In addition, the specific storativity (S,) is taken into 
account in regions of positive pressure. Note that S, can be spatially variable for purely saturated flow 
but is assumed constant in space for partially saturated flow. In this case the spatial variability of the soil 
moisture curve and the conductivity curve is more relevant. 

The governing equations are discretized by a seven-point centered finite difference scheme in 
3D space, and a backwards (fully implicit) finite difference scheme in time. Since the discrete system is 
fully implicit in time, the case of a steady state is handled by making the transient term zero and solving 
for only one (virtually infinite) time step. The nonlinear flow problem, unsaturated or partially saturated, 
is approximately linearized by a modified Picard, or approximate Newton, iteration scheme. Thus, an 
approximate linear system has to be solved at each iteration step, and this is repeated for each time step. 

The linear or linearized finite difference system is solved iteratively by using one of several 
preconditioned iterative methods. For the nonlinear case, this yields a doubly iterative cycle: outer 
iterations for linearization, and inner iterations for solution of a linear system. The available matrix 
solvers used in this code are all based on approximate factorization for the preconditioning stage. The 
"SIP-based" solvers use a particular type of approximate Lower Upper (LU) factorization and iterate 
using a modified Picard scheme (different versions are available). The Incomplete Choleski Conjugate 
Gradient (ICCG) solver uses an approximate Choleski factorization of the symmetric matrix, and solves 
the preconditioned system iteratively by the conjugate gradients method. The SIP and ICCG solvers differ 
both in the preconditioning method and in the iterative solution method they use. 

The inputs and outputs for/from the BIGFLOW code can be processed interactively (for the 
most part) by using the companion code DATAFLOW, a special-purpose data processor for lD, 2D, or 
3D data processing, and statistical analysis. Random field generation must be handled separately by using 
a 3D Turning Bands code (CTURN). This code is not a part of the BIGFLOW package. 
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1.2 OVERVIEW 

1.2.1 Evolution of BIGFLOW Code 

A precursor of the BIGFLOW code was first developed, debugged, and tested at MIT on 
MICROVAX-1 and MICROVAX-2 minicomputers running the VMS operating system. It was 
subsequently modified to execute jobs on a CRAY-2 supercomputer, under the UNICOS operating system 
and using the CFT77 Fortran compiler. These modifications eliminated a few minor non-standard 
features, such as instructions with more than 20 continuation lines. A slightly modified version of the 
code is also running presently on a CYBER-205 supercomputer. 

1.2.2 Main Features of BIGFLOW 

The BIGFLOW code, Version 1.0, is based on a finite difference approximation of the flow 
equation governing the hydraulic head (saturated flow) or the pressure head (partially saturated or 
unsaturated flow). The governing equation is obtained from the generalized Darcy equation and the 
continuity equation without source/sink terms. The computational flow domain is a 3D parallelepiped, 
discretized into an orthogonal grid (iAx, j a y ,  and kAz). Simulations of 1D and 2D problems can be 
performed by shrinking the grid along the unmodeled directions to just five nodes - three internal nodes, 
plus two boundary nodes. In the case of transient infiltration in dry soil, or any similar "sharp front" 
problem, the size of the computational domain can be made timedependent, automatically computed by 
the code's algorithms. For instance, combining the previous features will allow one to simulate lD,  2D, 
or 3D transient infiltration problems with variable domain size. Simulating transient groundwater flow 
problems is also possible, but only with fixed domain size, and no sinks or sources except at boundaries. 

The boundary conditions accepted by the code are, respectively, a fixed head, a fixed flux 
normal to the boundary, and a null head gradient normal to the boundary. The prescribed fluxes and 
heads can vary arbitrarily node-by-node over each of the six plane boundaries. More generally, the type 
of boundary condition (head, flux, or gradient) can vary node-by-node on each plane boundary. Note 
finally that in the case of unsaturated or partially saturated flow, the direction of the gravity vector, with 
respect to the coordinate system attached to the flow domain, can be prescribed freely by the user. In 
other words, the parallelepiped domain may be at an arbitrary angle with respect to the vertical. 

The input hydraulic properties for saturated flow are the saturated hydraulic conductivity K, 
[LT'] and the specific storativity S, [L']. Both can be chosen arbitrarily variable in 3D space, that is 
defined by the finite difference grid. In the case of partially saturated or unsaturated flow, the hydraulic 
conductivity K(h) is assumed to be an exponential function of pressure head (h), with slope parameter 
(a), up to a bubbling pressure (hb), where K(h) reaches the saturation value K,. Each of the three 
coefficients K,, a, and hb, can be chosen spatially variable over the 3D grid. On the other hand, the 
moisture retention curve 001) may be an arbitrary nonlinear function involving several parameters, two 
of which can be spatially variable. The current version of the code includes subroutines for the following 
types of 0(h) functions: piecewise linear, exponential, and "van Genuchten. " The moisture capacity 
C=dO/dh is automatically computed from 001) by a chord-slope difference approximation. In the case 
of partially saturated flow, where regions of positive as well as negative pressure may exist, the input 
specific storativity S, is only taken into account where pressure is positive, and it is assumed constant in 
space. 

1-4 



Finally, note that for each of the cases considered above both steady and transient flow regimes 
can be specified, at least in principle. However, steady flow problems may not have solutions for certain 
boundary conditions, for example, lD, 2D, or 3D flow with flux Q at top, flux q, < qo at bottom, null 
flux on all other boundaries, and no sinks or sources. Moreover, experience suggests that some "hard" 
steady flow problems, both strongly nonlinear and randomly variable in space, are better solved in a 
transient mode with increasingly large time steps as time goes on. As an example, see the 3D steady 
rainfall infiltration problem in randomly heterogeneous soil, which was actually solved in the transient 
mode (Ababou, 1988). On the other hand, linear problems of steady groundwater flow in random 
aquifers were solved directly in the steady state mode (Ababou, 1988). 

1.2.3 BIGFLOW Capabilities and Limitations 

1.2.3.1 Randomness, Three-Dimensionality, and Spatial Resolution 

Loosely speaking, the numerical flow model has been "optimized" for applications requiring 
a fine spatial resolution over fairly large 3D domains. All the algorithms of BIGFLOW, including the 
discretization scheme, are extremely sparse. The solution method is iterative rather than direct, and the 
modular structure of the code allows for testing various kinds of preconditioned iterative methods that 
are reputed to be fast (at present only SIP has been extensively tested). In its present version, the 
BIGFLOW code has been tested for a wide variety of flow problems in saturated and unsaturated porous 
media that are highly heterogeneous and/or random. 

1.2.3.2 Flow Domain and Grid Geometry 

BIGFLOW assumes that the 3D domain has the shape of a parallelepiped rectangle. However, 
that rectangle can be slanted at any angle with respect to the vertical. Furthermore, it is possible to let 
the size of the computational domain vary with time for certain transient flow problems. Finally, the 
finite difference mesh is a fixed regular network of orthogonal links and nodes. In brief, the model's grid 
is essentially regular and non-adaptive. 

1.2.3.3 Source Terms 

There are no volumetric source or sink terms in the interior of the flow domain. However, it 
is possible to impose local boundary sources and sinks via the flexible boundary condition routines. 

1.2.3.4 Boundary Conditions 

Boundary conditions can be of three types and are assumed constant in time (fixed head, fixed 
flux, or null head gradient). It should be noted that any of these three types of boundary conditions can 
be imposed at any chosen boundary node. For instance, in the case of unsaturated flow, it is possible 
to prescribe a surface infiltration source with a geometry approximating a circle. The same can be done 
for groundwater flow. It is also possible to prescribe a spatially variable head over selected boundaries. 
Complex boundary conditions of this nature must be stored in a file, which can be created quite 
efficiently by selecting routine INBC from the menu of the interactive processor DATAFLOW. A brief 
description of the interactive use of the DATAFLOW code will be given later. 
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1.2.3.5 Water Table 

The classical 2D equation of unconfined flow with a free water table cannot be solved directly 
with the BIGFLOW code. However, one may consider instead solving a partially saturated flow problem 
in 3D space, including both the regions below and above the water table. This is possible in principle, 
but has not been fully tested. Alternatively, a more trivial approach may be justified in some cases: the 
unconfined problem may be treated as an equivalent confined aquifer problem, in the obvious way. 
Reducing the problem's dimensionality from 3 to 2 may be achieved by simulating a 3D confined flow 
in a thin slab. 

1.2.3.6 Solution Algorithms 

The governing equation is the usual combination of (generalized) Darcy equation and mass 
conservation equation, expressed in terms of hydraulic head for saturated flow, or pressure head for 
partially saturated flow. This equation is then discretized by a seven-point centered finite difference 
scheme in 3D space, and a fully implicit "Euler-backwards" finite difference scheme in time. The steady 
state case corresponds to an infinite time step (or more appropriately Ar'=O). The code includes an 
option for choosing either transient or steady state solution algorithms. 

The nonlinear finite difference equations of partially saturated or unsaturated flow are 
approximately linearized by a modified Picard iteration scheme. Thus, an approximate linearized system 
must be solved at each iteration step, and this is repeated several times for each time step. In the case of 
saturated flow, of course, this nonlinear iteration loop reduces to just one step. 

For saturated flow as well as linearized unsaturated flow, the resulting matrix system is solved 
iteratively by using a fast sparse preconditioned iterative method. For the nonlinear case, this gives a 
nested iteration scheme: the outer iteration loop is for linearization, and the inner iteration loop is for 
matrix solution. The few available matrix solvers in the current version of the BIGFLOW code are 
different variants of the Strongly Implicit Procedure (SIP). The SIP solver is based on an approximate 
LU factorization for preconditioning, and a modified Picard-type iteration scheme for converging towards 
the exact solution. Other routines corresponding to various Conjugate Gradient (CG) solvers have been 
considered, but are not fully tested at this point. In contrast, both the linear and nonlinear 
implementations of SIP have been extensively tested for all sorts of flow problems, including the case of 
randomly heterogeneous soils and aquifers (Ababou, 1988). 

1.2.3.7 Code Size, Array Sizes, and Storage Requirements 

The BIGFLOW source file is moderately large, about 0.5 Mbytes, or 13,000 lines of code. In 
most cases, nearly 100 percent of the storage that is required at link time and execution time is allocated 
to the master array ABIG, according to the dimension declared in the main program unit MAINFLO. 
The size of this master array can and should be modified as needed. In case of insufficient array size, 
BIGFLOW will return an error message in the output file OUTBAD and stop execution. The error 
message will actually show the minimum required size of the ABIG array for the job at hand. Re-running 
with the correct array size will fix the problem, provided that the size is compatible with the 
characteristics of the computer system. 

Given the sparse iterative method(s) used to solve the finite difference algebraic systems in 
BIGFLOW, the required size of the master array is simply proportional to N, the total number of nodes 

1 -6 



of the 3D grid. Thus, the required storage will be about 12N for a simulation of steady saturated flow 
with spatially variable conductivity, and possibly up to 20N for a simulation of transient unsaturated flow 
with spatially variable hydrodynamic parameters. These numbers are only indicative. It is not difficult 
to evaluate the exact factor of proportionality by looking at the BIGFLOW outputs in files OUT10 and/or 
OUTBAD. More details on "Inputs/Outputs" will be given in subsequent sections. 

Experience shows that fairly large 3D problems can be handled routinely on minicomputers like 
the MICROVAX-2. The linker will accept jobs when the size of the master array is below 1-1.5 million 
words. For saturated flow, this corresponds roughly to a grid size of 100,000 nodes, although problems 
twice as large have also been solved on a MICROVAX-2 at MIT. For unsaturated flow, the admissible 
grid size may be about 50,000 nodes, but limitations due to relatively large CPU times have generally 
limited our simulations of unsaturated flow to 30,000 node grids on MICROVAX-2. On the other hand, 
the four-quadrant CRAY-2 will accept jobs requiring nearly 250 million words of memory, at least in 
principle. Thus, BIGFLOW has been used to solve several large 3D problems of stochastic groundwater 
flow up to 1 million nodes and of stochastic unsaturated flow up to 300,000 nodes (Ababou, 1988) on 
the CRAY-2 machine with CFT77 compiler. 

An important detail of implementation should be emphasized in connection with problem size. 
When changing the dimension of the ABIG array in BIGFLOW, one should also modify the parameter 
LPAR located just below the ABIG dimension statement, in such a way that it has exactly the same value 
as the dimension of ABIG. Failure to modify LPAR may result in unpredictable output. Only these two 
lines of code, the ABIG dimension and the LPAR parameter statements, need to be modified by the user. 

1.2.4 Previous Applications of BIGFLOW in the Literature 

Several patterns of material heterogeneity were tested in various implementations of the 
BIGFLOW package by the code developer. These included, for example, perfectly layered structures 
generated with the aid of the data processing code and 3D isotropic, as well as anisotropic (imperfectly 
stratified) random functions of space generated by the turning bands method of Tompson and others 
(1989). Several examples of such generic applications of the BIGFLOW code for both saturated and 
unsaturated flow systems can be found in Ababou (1991b), and Ababou and others (1992a). The code 
is also being used at the Center for Nuclear Waste Regulatory Analyses (CNWRA) to simulate plausible 
patterns of variably saturated flow in layered, faulted, and inclined geological formations for Iterative 
Performance Analysis (IPA) of the Yucca Mountain site [see Bagtzoglou et al., (1992a) for an interim 
report on these simulations]. 

In other applications, Townley and others (1991 and 1992b) presented a study of flow through 
lakes, which receive groundwater on their upgradient side and discharge lake water to the regional aquifer 
on their downgradient side. Initially, a systematic analysis based on 2D simulations was conducted by 
these authors. Further analysis based on 3D simulations conducted with the BIGFLOW package revealed 
that the dividing surface defining the capture zone was shallower (vertically) and narrower (horizontally) 
than predicted with the 2D analysis. 

Finally, the BIGFLOW code was also used to analyze patterns of contaminant transport in real 
or simulated 3D formations. For instance, Tompson and Gelhar (1990) used stochastic groundwater 
velocity fields generated by the BIGFLOW code to simulate stochastic contaminant transport and analyze 
the resulting concentration fields. Trefry and Townley (1991) and Townley and others (1992a) used the 

1-7 



BIGFLOW package in a preliminary analysis of 3D heterogeneous flow and transport pathways at the 
Koongarra uranium orebody, which is the site of the Alligator Rivers Natural Analogue Project (studied 
by the INTRAVAL group). Bagtzoglou and others (1992b) have presented flux vector and particle 
tracking results using the BIGFLOW code and its postprocessors. Their analysis was aimed at evaluating 
the effects of some common geological features, such as layering and fault presence, on groundwater 
travel time evaluations. 

Specific applications and comparisons of BIGFLOW with field data include: 

Random Porous Media and Stochastic Theories 

- Saturated Flow (3D Random): Ababou and others (1985, 1989); and Ababou (1988). 

- Saturated Flow and Transport (3D Random): Tompson and Gelhar (1990). 

- Unsaturated Flow (3D Random): Ababou (1988); and Polmann and others (1991). 

Other Types of Geologic Heterogeneity 

- Unsaturated Flow with Vertical and Horizontal Layers: Ababou (1988). 

- Unsaturated Flow with Dipping Horizontal Layers and Vertical Fault: Bagtzoglou and 
others (1992a). 

- Unsaturated Flow and Transport with Vertical Fault: Bagtzoglou and others (1992b). 

Experimental and Field-Related Studies 

- Saturated Flow Through Lakes: Townley and others (1991, 1992b). 

- Saturated Flow and Transport at the Koongarra Uranium Ore Body: Trefry and Townley 
(1991); and Townley and others (1992a). 

- Unsaturated Flow, Strip Source Infiltration and Drainage, Las Cruces Trench 
Experiment 1: Ababou (1988). 

Computational Aspects and Benchmark Tests 

- Saturated and Unsaturated Flow in Homogeneous and Heterogeneous media: Ababou 
(1988, 1991a,b); and Bagtzoglou and others (1992~). 

- Saturated Flow in Homogeneous and Heterogeneous Porous Media: Ababou and others 
(1989,1992a). 
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2 

2.1 

MATHEMATICAL MODEL AND NUMERICAL METHOD 

INTRODUCTION 

The main purpose of this section is to present the direct numerical approach and, by the same 
token, to address the main computational issues in the case of large, multidimensional, saturated, or 
unsaturated flow systems through highly heterogeneous porous media. The most obvious type of 
application we have in view, although not the only one, is the direct simulation of single-realization 
stochastic flow fields with the help of the BIGFLOW numerical code. Even though the model problems 
will not include partially saturated flow systems where both saturated and unsaturated zones coexist, this 
possibility is not ruled out in principle from our modeling approach. The BIGFLOW code is based on 
a seven-point centered finite difference scheme in space, and a fully implicit one-step (Euler backwards) 
scheme in time. 

2.2 GOVERNING EQUATIONS FOR SATURATEDKJNSATURATED FLOW 

Variably saturated flow in a heterogeneous porous medium is assumed to be governed at the 
local scale by the mass conservation equation, and by the generalized Darcy or Darcy-Buckingham 
equation relating flux to the pressure gradient. This relation is linear for saturated flow and nonlinear 
(quasi-linear) for unsaturated flow. In both cases, the coefficient of proportionality is called the hydraulic 
conductivity of the medium. 

Local mass conservation in a slightly compressible and variably saturated porous medium 
without sourcelsink terms is expressed by the equation 

where Q is the flux vector or specific discharge rate (L/T), h is the water pressure head, 001) is the 
volumetric soil water content (L3/L3) relative to the incompressed soil matrix, and M(h) is an elastic 
storage term (L3/L3) due to the combined compressibility of water and solid porous matrix. This term 
may be assumed negligible for unsaturated flow (M = 0 if h < 0), and proportional to pressure head 
for saturated flow (M = S,h if h > 0). 

The generalized Darcy equation for variably saturated flow 
(x,,x2,x3) coordinate system as 

qi = - K ( h )  - a ( h  + gjxj) 

ax, 

can be expressed in an arbitrary 

(2-2) 

where implicit summation on repeated indices is used. In this equation, K(h) is the unsaturated hydraulic 
conductivity (L/T), h is the water pressure head relative to atmospheric pressure, negative in the 
unsaturated zone and positive in the saturated zone (L), and gi is a cosine vector of unit length 
corresponding to the acceleration of gravity with a minus sign [take g =  (-1 ,O,O) if the first axis is vertical 
and positive downwards]. Note that the water content 001) and the conductivity K(h) are in general 
spatially variable functions of pressure head h. It should be noted that the current version of BIGFLOW 
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assumes that the principal components of the hydraulic conductivity tensor are alligned with the 
coordinate axes (i.e., K, = 0 for i # j). 

Equations (2-1) and (2-2), and the forthcoming numerical model, are applicable in principle to 
the general case of variably saturated flow. That is, they are applicable to the case where the flow 
domain is partially saturated and partially unsaturated. However, the present discussion can be simplified 
by considering separately: (i) purely saturated flow (h 2 0); and (ii) purely unsaturated flow (h 5 0). 
The assumption of purely unsaturated flow is justified only if it can be shown that positive pressures do 
not appear at any time within the flow domain. This was indeed the case for sufficiently low rate 
infiltration in dry soils, even in the presence of significant heterogeneity (layers, blocks, and random 
fields). In fact, most of the unsaturated simulations presented in this report (except as noted) did not 
produce noticeable saturation zones. Accordingly, the mixed case of partially saturated flow, as handled 
by the BIGFLOW code, will not be treated in detail in this section. 

Inserting the Darcy equation into the mass conservation equation yields the Richards' equation 
of unsaturated flow, here generalized to accommodate the case of a fully heterogeneous three-dimensional 
(3D) porous medium 

(2-3) 

On the other hand, in 
potential is introduced 

the case of saturated flow (h 2 0), a new variable H for the total hydraulic 

H = h + sixi (2-4) 

where gj is the gravity vector as defined in Eq. (2-2), and the summation of repeated indices is over the 
three dimensions. Inserting a linear storativity term M = S,h in Eq. (2-1), and noting that the saturated 
moisture content 8, and conductivity K, do not depend on pressure, yields a linear parabolic equation 
governing saturated flow in a 3D heterogeneous porous medium 

(2-5) 

Note that S, is the "specific storativity", that is, the volume of water produced, per unit volume of the 
porous medium, for a unit decrease of hydraulic head (L3/L3/L). Finally, if a steady groundwater flow 
regime exists for the given boundary conditions, it is a solution of the linear elliptic equation 

As explained above, unsaturated and saturated flow models are developed separately based on 
the nonlinear equation [Eq. (2-3)], and the linear equation [Eq. (2-5)], respectively. However, the actual 
numerical computations implemented in BIGFLOW are based on a single, modularly structured program 
that can either solve the general problem of transient, variably saturated flow, or more specialized flow 
problems such as saturated and/or steady state flows. Accordingly, special options exist in BIGFLOW 
for simulating steady and/or saturated flow simply by skipping some of the algorithms. These special 
options are very convenient, but they are not always the best way to solve the problem. For instance, 
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the case of purely saturated flow can be treated like the general case of variably saturated flow for 
numerical testing purposes, or if the user is uncertain about the nature of flow under given initial- 
boundary conditions. Also, for strongly nonlinear flow problems, steady state solutions can sometimes 
be obtained at lesser cost by simulating transient flow starting from some well chosen initial conditions. 
The infinite-time steady state flow can be detected using mass balance criteria as described in Bagtzoglou 
and others (1992a). Examples of steady state solutions by both methods, direct steady state solution or 
transient time-stepping, can be found in Section 3. 

2.3 HETEROGENEOUS HYDRODYNAMIC COEFFICIENTS AND 
CONSTITUTIVE RELATIONS 

Consider first the special case of steady groundwater flow. In this case, only one spatially 
variable parameter need be specified, the saturated hydraulic conductivity K,(x). 

In the stochastic approach the heterogeneity of the porous medium may be represented by a 
single realization of a statistically homogeneous random conductivity field in 3D space. Because 
conductivity is necessarily non-negative, a log-normal probability distribution is assumed for K,, and 
accordingly, a Gaussian log-conductivity (PnK,) is generated. The mean of this random field is constant, 
and its two-point covariance depends only on the separation vector; these statistical moments determine 
entirely the N-point spatial structure of the conductivity field. In practice, the Turning Band Method 
(TBM) can be used to generate single or multiple realizations of Pn K,(x), with the desired statistical 
properties, on the nodes of the numerical grid. For details on the 3D TBM random field generator, see 
Tompson and others (1989). 

In the more general case of transient unsaturated flow, the governing equation is nonlinear and 
depends on two constitutive relations, the moisture retention curve relating moisture content to pressure 
head, Om), and the hydraulic conductivity curve relating conductivity to pressure head, K(h). For a 
heterogeneous medium, these are functions of both pressure and spatial location. Below, we present the 
assumed analytical forms of these functional relationships as used in BIGFLOW for the unsaturated flow 
simulations presented in this report. Spatial dependence is modeled by taking some or all of the 
parameters in these nonlinear relations to be spatially variable as desired. In the stochastic case, this 
means that the parameters in the nonlinear relations were single realizations of random fields, again 
generated by the TBM (Ababou, 1988). Furthermore, cross-correlated random field parameters can also 
be generated by the TBM method, for example, based on the cross-correlation model proposed by 
Ababou and others for unsaturated media [Ababou (1988), Ababou (1991a)l. 

In BIGFLOW, the unsaturated conductivity-pressure relation is assumed to be a truncated 
exponential function involving at most three spatially variable parameters, that is 

W , x )  = q 4  exp{a (x )  [ h  - h , ( 4  3 } i f h  s h&) 
(2-7) 

K ( h , x )  = K,(x) i f h  2 hb(X) 

The parameters are K, [saturated conductivity, (L/T)], h, [bubbling pressure, or air entry pressure head, 
(L)], and a [scaling parameter, (L-')I. Each or all of them can be taken spatially variable as desired in 
three spatial dimensions. 
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For a given length scale of interest, L, the product aL represents a convection/difision ratio. 
Indeed, it will be seen later that the discretized equations involve a grid Peclet number of the form 
Pe=aAx. The inverse as' = X, is a moisture dispersivity length scale (Ababou, 1991a). Alternatively, 
X, can also be interpreted as a pore size distribution index (Yeh et al., 1985), an equivalent capillary 
fringe thickness (White and Sully, 1987). 

A survey of the literature indicates that the exponential conductivity model is in good agreement 
with measured conductivity curves in a variety of soils, at least within a moderate range of soil water 
pressures (Ababou 1981, Bresler 1978). In their stochastic solutions, Mantoglou and Gelhar (1987a,b,c) 
used the same exponential model with random K,(x) and a(x), but zero bubbling pressure (hb = 0). 

For the soil moisture retention curve 8(h,x), BIGFLOW allows a choice between several 
functional forms, including a truncated exponential similar in form to Eq. (2-7), and the van Genuchten 
function (van Genuchten, 1980), among others. These relations are also allowed to include some 
spatially variable, 3D parameters. For instance, the van Genuchten function is modified and generalized 
as follows to accommodate the case of spatially variable parameters 

1-' 
4') (1 + [ -  P(x) hj"(')} 

i f h s O  

where n is a dimensionless shape factor (a real number, not an integer), 6 is an inverse pressure head 
scale factor (J-'), 8, is the saturated water content, or effective porosity of the medium, and 8, is the 
residual water content at very high or infinite negative pressure. Parameter 8, is an empirical adjustment 
which should be taken equal to zero unless a better fit to experimental curves is obtained by using some 
nonzero value. 

In this presentation, it is assumed apriori that all the parameters of Eqs. (2-2) and (2-8) are 
spatially variable. For instance, both the conductivity curve and the moisture retention curve were 
assumed spatially variable in simulations of transient infiltration in perfectly layered soils (Ababou, 1988), 
and in a layered and faulted rock formation (Bagtzoglou et al., 1992a,b). Finally, note that Eqs. (2-7) 
and (2-8) are only meant to describe the nonlinear relationships that were used in the particular 
applications discussed in this report. The numerical model itself is by no means limited to these 
particular functional forms. It is expected that future versions of BIGFLOW will incorporate a more 
extensive set of multi-parameter, spatially variable, nonlinear relations K(h,x) and 8(h,x), in the form of 
additional modules. 

2.4 FINITE DIFFERENCE DISCRETIZATION IN 3D SPACE 

In the case of highly heterogeneous or random porous media, and in the case of highly nonlinear 
flows, the fine details of the flow field must be adequately resolved in all three spatial dimensions in 
order to obtain meaningful solutions. High order discretization schemes such as pseudo-spectral methods, 
spectral finite elements, and some other weighted residual schemes, may work well for relatively smooth 
flow fields. In the heterogeneous case however, fine grid resolution remains a necessary requirement 
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even when using high order schemes; these schemes can therefore require a very significant increase of 
computational work relative to lower order schemes (for similar levels of accuracy). 

The BIGFLOW code is based on a low-order, seven-point centered finite difference scheme in 
space, and a fully implicit one-step (Euler backwards) finite difference scheme in time. The spatial mesh 
can be rectangular, but must be uniform along each direction. On the other hand, the time step can be 
variable. As will be seen, the resulting coefficient matrix is symmetric and very sparse, having only 
seven nonzero diagonals. It also possesses interesting algebraic properties that make it well suited for 
fast iterative solvers such as the Strongly Implicit Procedure (SIP) and Preconditioned Conjugate 
Gradients (PCG). 

The finite difference discretization scheme for both unsaturated and saturated flow is developed 
below, keeping in mind that the latter can be obtained by specializing the former. The analogy between 
saturated and unsaturated flow leads us to introduce a single designation (P) for the pressure head (h) and 
hydraulic head (H=h+z). Indeed, this is the strategy adopted for implementing the saturated-unsaturated 
equations in the BIGFLOW code. Accordingly, let P = h for unsaturated flow, and P = H for saturated 
flow. 

In addition, let the vector V designate the gradient operator 

With these notations, the unsaturated flow Eq. (2-3) becomes 

ae - - v [ K V ( P ) ]  - g . V ( K )  = 0 
at 

(2- 10) 

where in general 8=8(P,x), and K=K(P,x). As observed previously, the equation for purely saturated 
flow is a special case of the former. For instance, to obtain the equation governing steady state saturated 
flow, let 8 = 0, g = 0, and K = K,, which yields 

- v [KSV (P)] = 0 (2- 1 1) 

where in general K,=K,(x) is spatially variable or random in 3D space. 

Let us now briefly develop the seven-point centered finite difference approximation of Eq. (2- 
10) in 3D space. We start with the flux discretization. Recall that the first component of the flux vector 
is given by the generalized Darcy equation 
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This flux component is now approximated by a two-point centered difference scheme as follows 

(2-13) 

where the pressure is evaluated at the nodes x(i,j,k) of the regular orthogonal finite difference grid, while 
the flux and the conductivity are both evaluated at the mid-nodal points x(i+1/2,j,k), which define a 
staggered grid distinct from the original grid (i,j,k). A similar scheme is used for discretizing the flux 
divergence. For instance, aq,/dx, is approximated at the grid points by the two-point centered finite 
difference 

(2-14) 

Using similar approximations for q2, q3, aq2/axz, and dq,/ax,, one obtains finally a seven-point finite 
difference approximation of the spatial operators of Eqs. (2-10) and (2-1 1) in terms of the nodal pressure 
P, evaluated at the grid points x(i,j,k). By the same token, the flux components 91, 42, and q, are 
evaluated on three different staggered grids, one for each flux component. Nevertheless, there is a 
provision in the postprocessing modules for generating cell-averaged flux components. This alternative 
form of the flux is useful for subsequent simulations of solute transport, for example, by particle tracking 
methods. 

In order to write down explicitly the discretized spatial operators, it will be convenient to use 
a shorthand notation for triple indices, as shown below in square brackets 

[OI = (i,j,k) 
[i f l/2] 
[i f 11 

= (i f lh,j,k) 
= (i f l,j,k) 

The hat sign (^) will also be used to designate discretized differential operators. Accordingly, the 
discretized spatial operators corresponding to V[KV(P)] and gV(K) are given by 

2 -6 



- b [ K Q ( P )  ] = 

- (2-15) P [ i + l ]  - P [ j + l ]  - P [ k +  11 
( A X J  ( A % f  ( A x 3 f  

and 

(2-16) 

where 9 is the first order difference operator that approximates the gradient operator V. These discrete 
spatial operators are valid for saturated flow [Eq. (2-15)], as well as unsaturated flow [Eqs. (2-15) and 
(2-16)], provided a different interpretation of the "pressure" variable's, as explained earlier. A sketch 
of the seven-point finite difference molecule corresponding to Eq. (2-15) is shown in Figure 2-1. 

2.5 BOUNDARY CONDITIONS 

So far, only the spatial finite difference scheme in the interior of the computational domain (n) 
is defined. Let us now discuss the same discretization scheme under specific boundary conditions on the 
boundary (I'). First, the boundary conditions accepted by the BIGFLOW code are described. 
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Figure 2-1. Seven-point finite difference molecule corresponding to the saturated groundwater flow 
equation 
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The boundary conditions implemented in BIGFLOW are of three types. The following 
classification is based on physics (the mathematical classification is indicated in parentheses). 

1. Pressure condition (Dirichlet): P = PB(x), x E rl. 

2. Normal flux condition (Neumann): q . n = q~(x), x E rz. 
3. Gravity drainage or null pressure gradient (Neumann): V P n = 0, x E r3. 

In these equations, n represent the vector normal to the boundary ri, and r = r1+r2+r3. Each ri may 
consist of a disconnected set of boundary nodes. That is, the different types of boundary conditions can 
co-exist on any of the six planar faces composing the boundary of the hexahedral domain. For example, 
two types of conditions will co-exist, on a single planar face, in the following case: water supply or 
withdrawal at fixed pressure on part of ground surface, and zero flux on the remaining part of ground 
surface. This situation occurs in the test problem entitled "Flow of Water Through a Hole in a Box 
Under Pressure" (Section 3), which mimics the case of an artesian spring. 

In the case of unsaturated flow, note that the second and third types of conditions are nonlinear. 
Since the boundary condition equations are eliminated by a process known as matrix condensation, they 
become part of the interior domain equations, which are thereafter linearized by Picard-type iterations. 
In short, this implies that the nonlinear boundary conditions are themselves linearized by the same 
iterative process. Therefore, the correct solution of the original nonlinear boundary value problem is 
obtained as the number of iterations increases, provided that the Picard iterations do not diverge. 

There is no particular difficulty in accommodating Dirichlet-type conditions in the above 
equations, since fixed pressure conditions can be enforced exactly at the boundary nodes. However, 
Neumann-type conditions (fixed flux or pressure gradient) must be approximated by using a centered 
finite difference scheme as in Eq. (2-14). The order of accuracy of this approximation is the same as that 
in the interior of the domain, provided that the physical boundary is assumed to be located precisely at 
a mid-nodal point rather than at a node. The third type of condition, gravity drainage, is peculiar to 
unsaturated flow. In BIGFLOW, it can be implemented only for the lower horizontal boundary (if any). 
It was noted in the literature (McCord, 1991) that BIGFLOW and its precursor (Ababou, 1988) is one 
of a few multidimensional flow codes which provide the gravity drainage condition. McCord tested the 
effectiveness of this gravity drainage condition in the case of hillslope infiltration with deep water table 
on a truncated domain located far above the water table. He compared the results obtained with fixed 
head, fixed flux, and gravity drainage to the solution obtained on the full domain extending down to the 
water table. He concluded that the best solution, which minimizes errors with respect to water flux and 
(therefore) tracer transport, is obtained with the gravity drainage condition. 

The centered mid-nodal formulation of Neumann-type conditions has the advantage of preserving 
the sparsity structure, symmetry, and positive definite characteristics of the finite difference system, as 
obtained after elimination of boundary pressures from the system and linearization. More precisely, note 
that the condensed matrix will be positivedefinite if at least one boundary node is under fixed pressure. 
It is worth noting that this important algebraic property holds not only for saturated flow, but also for 
linearized unsaturated flow. More precisely, this is true in the case of a Picard-type nonlinear iterative 
solver as used in BIGFLOW. 
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2.6 MID-NODAL CONDUCTMTIES 

In order to completely define spatial discretization, it remains to be seen how the mid-nodal 
conductivities appearing in Eqs. (2-15) and (2-16) are to be evaluated. In the most general case, a 
mid-nodal conductivity coefficient like K[i+ 1/21 is a function of both pressure and spatial location, these 
variables being defined on a staggered grid (i+ 1/2,j,k). That is 

(2-17) 

In BIGFLOW, one can choose to approximate the mid-nodal conductivities by any of the following 
schemes: (i) geometric weighing; (ii) harmonic weighing; or (iii) arithmetic weighing. The arithmetic 
weighing is not recommended, except for testing purposes. Both geometric and harmonic weighing 
schemes have been frequently used in the literature. However, it is recommended to use the geometric 
weighing scheme. 

If the geometric scheme is chosen, the mid-nodal conductivity between two neighboring nodes 
is defined as the geometric average of nodal conductivities 

In particular, for the exponential conductivity function given by Eq. (2-7) with a zero "bubbling 
pressure," this yields 

Finally, for the special case of saturated flow, this scheme reduces to a geometric mean of saturated nodal 
conductivities, that is, the same as Eq. (2-19), but without dependence on pressure. 

The preference given to geometric over harmonic and arithmetic schemes is rather empirical. 
In terms of order of accuracy, the three schemes are equivalent (they preserve the second order accuracy 
of the spatial finite difference operator). Rather, the choice of geometric mean is motivated in part by 
the form of the large scale effective conductivity from approximate analytical solutions of 3D flow in 
random porous media. This is briefly reviewed below. 

In the case of saturated flow in a random, statistically isotropic medium, the large scale effective 
conductivity is known to be exactly equal to the geometric mean in two dimensions; it is bounded above 
and below by the arithmetic and harmonic means in three dimensions, in which case it is always closer 
to the geometric mean (Matheron, 1967; Bakr et al., 1978; Ababou, 1988; and others). Similarly, in the 
case of unsaturated flow with randomized exponential conductivity function, the analytical results of 
Mantoglou and Gelhar [ 1987(a,b,c)] indicate that the effective conductivity is roughly proportional to 
K,exp{(ah)), where K, is the ensemble geometric mean of the random saturated conductivity, h is 
pressure head, and the <brackets > represent the ensemble mean operator. One should observe the 
similarity of this expression with Eq. (2-19). 

In summary, the geometric weighing scheme [Eq. (2-18)] seems justified by analogy with the 
above-mentioned theoretical results for random, saturated as well as unsaturated, multi-dimensional 
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porous media. In addition, extensive numerical experiments by Vauclin and others (1979), and 
Haverkamp and Vauclin (1979), indicate that the geometric scheme yields the most accurate results in 
the case of onedimensional (1D) infiltration in homogeneous soils. 

2.7 TIME DISCRETIZATION 

Having developed the spatial discretization scheme, one can now proceed to discretize the 
transient equation of unsaturated flow in time. We choose to implement a fully implicit one-step finite 
difference scheme, known to be first order accurate in time. From the semi-discretized form of Eq. (2- 
lo), this choice leads to the fully discretized equation 

where 

(2-20) 

(2-2 1) 

is the variable time step. The spatial difference operator 6 is the same that appeared in Eqs. (2-15) and 
(2-16). For clarity, the direct dependence of 8 and K on spatial location has been omitted, as well as the 
discrete-space index (i,j,k). It is understood that, in general, O=O(P,,,x,,J, K=K(Pijk,xijJ, and that P 
stands for Pi, in Eq. (2-20). 

The fully implicit Euler backward scheme was selected among other one-step implicit schemes 
in view of numerical experiments reported in the literature (e.g., Vauclin et al., 1979, among others). 
The Euler forward explicit scheme was ruled out because of the well known fact that it requires a 
stringent stability condition, At I 2 D Axz for the linear diffusion equation (a similar condition is likely 
required for the nonlinear diffusion equation). In the case of unsaturated flow, the nonlinear soil moisture 
diffusivity (D=K/C) may become quite large in wet soils. Thus, the time step may have to be taken 
dramatically small in order to satisfy the explicit scheme stability condition, and there may be additional 
instabilities due to the nonlinear gravitational term. 

On the other hand, it can be shown by Fourier analysis that implicit schemes are linearly stable, 
regardless of time step size (unconditionally stable). However, for nonlinear diffusion problems, the 
proof of unconditional stability is based on Fourier analysis assuming "frozen coefficients." Due to this 
approximation, one should keep in mind that the nonlinear stability of the implicit scheme is not truly 
guaranteed for strongly nonlinear equations like unsaturated flow. It is nonetheless probable that the 
implicit scheme allows larger time steps than the explicit scheme, as demonstrated experimentally by 
Vauclin and others (1979), and others. The current version of BIGFLOW has no provision for 
implementation of an explicit time-integration scheme. For more on nonlinear stability of the discretized 
unsaturated flow equation, see Ababou (1990). 

2.8 ITERATIVE LINEARIZATION 

In the case of unsaturated flow, an approximate linearized solution method must be devised to 
deal with the nonlinear system. For instance, implementing a Picard iteration scheme will transform the 
sparse and symmetric nonlinear system into a more tractable sequence of equally sparse and symmetric 
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matrix systems. The question of solving large symmetric matrix systems, and of coupling the matrix 
solution process with the nonlinear iteration process, will be discussed later. Here, the iterative 
linearization approach that transforms the nonlinear system into a sequence of linear systems is developed. 

Let us describe how the highly nonlinear spatial and temporal operators of the unsaturated flow 
system are linearized iteratively using a Picard-type approach. The modified Picard iteration scheme 
defined below approximates Eq. (2-20) as a sequence of systems (k=0,1,2 ...) where the unsaturated 
conductivities appear linearly at each iteration level 

(2-22) 

Note that k +  1 represents the current iteration level, while n+ 1 represents the current time step. The 
residual term on the right hand side of Eq. (2-22) is known, since it depends only on the previous 
iteration level (n+ l,k), and on the previous time step (n+ l,O), simply denoted (n). The spatial operator 
on the left hand side operates on a pressure increment rather than pressure itself. This incremental 
formulation, or "modified" Picard scheme, was obtained by subtracting a known quantity from both sides 
of the standard Picard equation. The modified Picard scheme is not only more elegant, but also 
computationally more stable than the standard Picard scheme with respect to round-off errors (Ababou, 
1988). 

There remains a pressure-dependent moisture content in Eq. (2-22). To obtain a fully linear 
system at each iteration level, the storage term is now linearized by using a first order difference 
approximation of the 00)-increment. Specifically, one may construct a "chord-slope" approximation of 
the soil moisture capacity (C=aB/aP) as follows 

8 p k )  - 8 (PO) 
P k  - PO 

c (Pk) = (2-23) 

This chord-slope formula is now inserted in a first order difference approximation of the 00)-increment 

(2-24) 

where all variables are implicitly taken at time level (n + l),  except for Po which is the pressure at iteration 
level (0), that is, the solution of the previous time step. 

Alternatively, a pointwise evaluation of moisture capacity could be used instead of Eq. (2-24). 
However, as noted in Ababou (1988), the chord-slope scheme should be favored, as it appears to improve 
the convergence of nonlinear iterations (Huyakorn et al., 1984), and is mass-conservative in the sense 
defined by Milly (1985). Note that the resulting finite difference system is a discrete approximation of 
the mixed form equation, rather than the pressure-based Richards' equation. This mixed form is identical 
to that developed in Ababou (1988). A similar mixed form approach was adopted by Bouloutas (1989) 
and Celia and others (1990). 
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Combining Eqs. (2-22) and (2-24) finally leads to a sequence of fully linear systems of equations 
to be solved for incremental pressures. Omitting the spatial index (i,j,k) for convenience, the iterative 
sequence is given by 

(2-25) 

where 6P is the unknown pressure increment taken over consecutive iteration levels, that is 
a p n + l , k + I  = p n + l , k + l  - p n + l , k  (2-26) 

and R is a known linearized residual, given by 

With just one iteration in the outer iteration loop (k), the nonlinear system solver yields a simple 
linearized implicit finite difference scheme. For 1D flow and spatially constant soil properties, the finite 
difference equation, in terms of pressure head (h), is 

(2-2 8) 

The superscript n indicates the time level, and g is a gravity factor which takes the value g = 0 for 
horizontal flow and g = * 1 for vertical flow, depending on the chosen orientation of the z axis. 

The form of the finite difference system [Eq. (2-28)] suggests that, while the nonlinear diffusion 
term is treated implicitly, the nonlinear "gravity term" is in fact treated explicitly as it appears only on 
the right hand side of the linearized system. Based on this remark, it is interesting to examine how this 
discrepancy (implicit versus explicit) affects the numerical stability of the solution. The proposed method 
is to develop a Fourier stability analysis of Eq. (2-28) with partially frozen coefficients. This is 
analogous to the usual frozen coefficients analysis except that here the nonlinearity of the gravity term 
is taken into account rather than simply "frozen." This is achieved by using the following quasi-linear 
approximation 

K " ,  - K " ,  
- hi l l )  + 0 (Az') Ki" a 

= g - - (hi:l A z  A z  2 

it- i - -  
2 2 

where a = d(ZnK)/dh . 

(2-29) 
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Admittedly, this approximation will not be accurate unless the absolute value of 
a (hi+l  - hi)  = a A z ( a h / & )  is on the order of unit or less. Nevertheless, even rough indications on 
the numerical stability of the nonlinear unsaturated flow system can be useful given the lack of theoretical 
results in this area. With this provision, inserting Eq. (2-29) into Eq. (2-28) yields the mixed 
implicit/explicit scheme 

(2-30) 
- 1 1 

2 2 

- 
- - g  a A z D i  * h r  + - g a Az Di hi:1 

where 6 is the dimensionless diffusion coefficient 

(2-3 1) 

Now, a standard Fourier stability analysis of Eq. (2-30) with “frozen” diffusion coefficients 
yields the complex time amplification factor 

1 + j a g A z  Oi sin(kAx) 
(2-32) 

1 + 0. I + E i -  1 [ l  - cos ( ~ A z )  ] - J  5. 1 - O. 1 
I - -  

2 
( I + -  

2 2 
p =  ( , + -  

2 

where k is the Fourier mode or wave number taking discrete values in (7r/L, ..., nn/L). Applying the 
inequality I p I I 1 to Eq. (2-32) finally leads to the necessary and sufficient stability conditions 

(2-33) 

In summary, Eqs. (2-25) and (2-27) define a linearized system of equations approximating the 
unsaturated flow equation at each time step (n+ 1) and each iteration level (k+ 1). The following points 
should be recalled: 

1. The spatial index (i,j,k) has been omitted for clarity. 

2.  The nonlinearity and spatial variability of hydrodynamic coefficients were fully taken into 
account although not shown explicitly. 

3. The spatial difference operator V was previously defined through Eqs. (2-15) and (2-16). 

4. The dependent variable P represents either pressure head for unsaturated flow or total hydraulic 
head for saturated flow. 
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Obviously, the linearization sequence is not needed for saturated flow. In that case, the equations reduce 
to the zero iteration, k = 0, taken with the coefficients appropriate for saturated flow, as described earlier 
in Eq. (2-1 1). Finally, Eqs. (2-25) through (2-27) are also valid in the general case of variably saturated 
flow. This flow regime was actually assumed apriori for all "Unsaturated" test problems, thereby 
allowing pressures to be positive as well as negative, as the case may be. 

2.9 STRUCTURE OF THE ALGEBRAIC SYSTEM 

In this section, it will be most convenient to reformulate the finite difference equations in 
matrix-vector form. Bold face upper cases are used for matrices (A) ,  and bold face lower cases for 
vectors (p). 

Consider the discretized Eqs. (2-25) to (2-27), which are either linear (for saturated flow) or 
linearized (for unsaturated flow). In the case of unsaturated flow, let C be the diagonal matrix of specific 
moisture capacities of Eq. (2-23), K the matrix of unsaturated conductivities arising from the elliptic 
operator of Eq. (2-15), Sp the vector of incremental pressures of Eq. (2-26), and b the right hand side 
vector. The latter includes the residual term on the right hand side of Eq. (2-27), as well as additional 
terms obtained after elimination of boundary values from the linearized system (matrix condensation). 
With these notations, the iterative sequence of linearized unsaturated flow systems can be written 
equivalently as 

+ Kn + l ,k  6 p n  + 1.k 1 = b n  + 1.k 1 (2-34) 

The case of saturated flow leads to a similar algebraic equation, with C a diagonal matrix of specific 
storativities rather than moisture capacities, and K a matrix of saturated rather than unsaturated 
conductivities. The more general case of variably saturated flow also leads to a similar equation, with 
C a diagonal matrix containing both specific storativities and moisture capacities. 

The simplest case is that of steady saturated flow, which can be used as a base case to analyze 
generic properties of the algebraic system [Eq. (2-34)]. To reduce the transient Eq. (2-34) to a steady 
state equation, one may either take a single infinite time step (At --. a), or else use the steady state 
system [Eq. (2-1 l)] after expressing it in matrix-vector form. When solving directly for steady state, the 
method adopted in BIGFLOW is to let Arl = 0 in Eq. (2-34), where At-' is a distinct Fortran variable 
equal to the inverse time step. Either way, for a linear steady state flow problem, the result is of the 
form 

K . p = b  (2-35) 

where p is the vector of pressures (total pressures here), and b is a vector containing the boundary terms 
that arise after matrix condensation. Note that the structure of the conductivity matrix, K, would remain 
unchanged in the case of unsaturated flow (within each Picard iteration). The properties of K are as 
follows. 

In both Eqs. (2-34) and (2-35), the conductivity matrix K is a weakly diagonaldominant 
symmetric matrix with only seven nonzero diagonal lines. In the transient case, the system is more 
strongly diagonally dominant and therefore better conditioned as At decreases. This is due to the 
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presence of a diagonal storage matrix of the form C I A .  This important property should be kept in mind 
when experimenting with transient solution strategies: smaller time steps may be advantageous since they 
may require fewer iterations to achieve convergence. 

More precisely, it can be shown that the coefficient matrices of systems [Eqs. (2-34) and (2-35)] ’ 
are symmetric, positive-definite M-matrices. In an M-matrix, all diagonal terms are strictly positive and 
all off-diagonal terms are negative or null. Symmetry and positive-definiteness are required for Conjugate 
Gradient (CG) matrix solvers. The M-matrix property is a also required for some preconditioned iterative 
solvers. The reader is referred for example to Meijerink and Van der Vorst (1977), who proved the 
existence of Incomplete Choleski (IC) factorizations, and Chen (1988), who proved a theorem on 
convergence of the Strongly Implicit Procedure (SIP), both requiring the M-matrix property. It should 
be emphasized that these algebraic properties do not necessarily carry on to other spatial discretization 
methods (Ababou, 1988; and Ababou et al., 1989). 

The appropriate strategy for solving the above finite difference matrix systems depends, in part, 
on their size. As explained previously, the matrices are sparse but can be very large when simulating 
3D heterogeneous flow systems on high resolution grids. Consider for instance the case of a cubic grid 
of size N = n3. If N is on the order of l@ to 106, direct solution by substitution (Gauss) or by exact 
triangular factorization (Choleski) seems infeasible due to prohibitive computational work and storage 
requirements. Indeed, the banded triangular matrices arising in the solution process are full within a band 
of size O(nZ), even though the original system is very sparse. Here, n is the uni-dimensional size of the 
cubic grid, for example, n= I00 for a million node grid. Typically, a standard band solver like Gauss 
or Choleski will require O(n3 floating point operations and O(d)  words of storage. 

Besides being large, the coefficient matrix will also have highly heterogeneous coefficients due 
to spatial variability of material properties, nonlinearity, or both. This can lead to large matrix condition 
number, a measure of the difficulty of solving the associated system. The condition number of matrix 
K is typically proportional to the squared number of nodes along the largest side of the grid. See Golub 
and Van Loan (1989) for a precise definition of condition numbers, Ababou (1988), and Ababou and 
others (1992a) for more details on the condition number of conductivity matrices. The influence of 
condition number, system size, and coefficient variability on the convergence of iterative solvers, is 
briefly analyzed below. See also Ababou and others (1992a) for convergence of PCG on very large 
matrix systems arising in saturated flow. 

2.10 OVERVIEW OF ITERATIVE MATRIX SOLVERS 

Given the severe conditions described above, the optimal solution strategy may be a combination 
of direct and iterative methods. In other words, the sparse matrix system is first approximated by a direct 
factorization or matrix splitting method (preconditioning step). The resulting preconditioned system, 
which is also sparse, is then solved iteratively to obtain the solution of the original system (iterative 
steps). 

Matrix solution methods considered in BIGFLOW are the SIP and various PCG solvers. The 
SIP solver and the Incomplete Choleski Conjugate Gradients (ICCG) are two types of iterative methods 
where the preconditioner is based on an approximate triangular factorization of the sparse, symmetric 
coefficient matrix. On the other hand, the Diagonal Scaling Conjugate Gradient (DSCG) solver involves 
a matrix preconditioner that is particularly inexpensive in terms of storage and computer time, since it 
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consists only of a symmetric diagonal scaling of the coefficient matrix. The solvers which have been 
most extensively debugged and successfully tested in BIGFLOW are: ( i )  DSCG solver; and ( i i )  several 
variants of the SIP solver. Therefore, DSCG and SIP are the recommended solvers, although the user 
is free to experiment with other solvers as needed. 

The SIP, DSCG, and other solvers were coded in BIGFLOW as separate modules. These solver 
modules employ a specialized vector storage scheme, suitable for the 3D finite difference system at hand. 
For example, the symmetric seven-diagonal coefficient matrix is stored as four vectors, one for the main 
diagonal and three for the lower nonzero off-diagonals. Each vector is in fact a 3D array a(i,j,k), with 
triple index representing Cartesian grid coordinates. In what follows, the BIGFLOW implementations of 
SIP and DSCG are described for the specific matrix systems at hand. For completeness, a brief review 
of the literature is given below and in the following sections describing DSCG and SIP, respectively. 

Successful vectorization of a solver module can speed-up computations by two orders of 
magnitude on vector supercomputers. Numerical analysis of triangular factorization preconditioners have 
shown that a suitable renumbering of the nodes can circumvent to some extent their inherent lack of 
ability to vectorize. Although this approach was not pursued in BIGFLOW, the interested reader is 
referred to Van der Vorst (1981) for Vector-ICCG implementations. On vector machines, DSCG is 
essentially fully vectorizable. Thus, BIGFLOW’s DSCG module executes almost entirely in vector mode 
when implemented on a Cray-2 or Cray-Y/MP system, and this without any modification of the code or 
its modules. 

Finally, we point out that the method of choice depends on its ability to be implemented 
concurrently (for parallel machines). Dougherty (199 l), and Bagtzoglou and others (1992c), obtained 
satisfactory results in terms of computer time with massively parallel versions of DSCG coded in the 
CM-FORTRAN language on the Connection Machine CM-2. Ababou and others (1992a) obtained similar 
timings with a coarse-grained parallel implementation of DSCG on Cray-Y/MP8, using Cray’s 
autotasking utility. In the latter work, the simulations were performed using the unmodified, ANSI 
Fortran 77, BIGFLOW code. 

It is, therefore, concluded that the method of choice for ill-conditioned steady state linear 
problems - which require the largest amount of iterations - may be either DSCG, or perhaps one of 
the newly developed vector variants of ICCG mentioned above. On the other hand, for relatively well 
conditioned transient systems and/or for nonvector machines, the standard SIP solver may remain 
competitive. However, in transient and/or nonlinear flows, the preconditioned matrix system must be 
computed anew at each time step and/or Picard iteration. On any given computer system, the DSCG 
preconditioner requires fewer operations than that of SIP or ICCG. Overall, DSCG should be the first 
choice, particularly on vector and parallel machines, and SIP the second choice. 

2.11 DIAGONAL SCALING CONJUGATE GRADIENT @SCG SOLVER) 

2.11.1 Brief Review of Conjugate Gradient (CG) and Preconditioned CG Solvers 

The CG method is an effective solver for symmetric matrix systems that yields the exact 
solution after at most N iterations for an N x N matrix (Hestenes and Stiefel, 1952). For large sparse 
matrices, CG may be considered as an iterative accelerator of convergence rather than an exact solver, 
and it works best with preconditioners that tend to cluster the eigenvalues of the system (Kershaw, 1978; 
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and Gambolati and Perdon, 1984). Numerical experiments with various Preconditioned CG solvers were 
developed by Kershaw (1978), Kuiper (1981,1987), Gambolati and Perdon (1984), Jackson and Robinson 
(1985), and Meyer and others (1989), among many others. 

One popular preconditioner is the IC factorization (Du Pont et al., 1968; Meijerink and Van 
der Vorst 1977; and Gustafsson 1978). The IC factorization is applicable, in principle, only to 
M-matrices like the finite difference matrices arising in BIGFLOW. Two variants of IC factorization 
were coded for use as CG preconditioners in-BIGFLOW; however, they have not been extensively tested 
to date, and should be avoided in routine simulations. Furthermore, these IC preconditioners are 
computationally intensive and do not vectorize well on current supercomputers. This is due to the 
inherent recursiveness of triangular factorization. The precise "loop dependencies" that prevent 
vectorization depend much on the particular multi-dimensional difference stencil, node ordering scheme, 
and programming style. 

For these reasons, the simple Diagonal Scaling ( D S )  algorithm may be an attractive alternative 
to the more "expensive" preconditioners reviewed above. The symmetric DS algorithm is a fully 
vectorizable, extremely sparse, and symmetric preconditioner, which can be advantageously used in 
conjunction with CG. The combination of DS and CG yields the DSCG solver. In what follows, we will 
now focus exclusively on DS in conjunction with CG iterations. First, the basic algorithm is presented 
(below), and secondly, a summary assessment of the computational efficiency of this solver is provided. 

2.11.2 Basic DSCG Algorithms 

The DSCG solver is based on the following algorithms. First, let the finite difference system 
be expressed in the generic algebraic form 

A . y = b  (2-36) 

where y is the vector of nodal pressures (PiiJ; b is the vector containing boundary terms as well as 
residual terms from nonlinear iteration and/or time-stepping; and A is the seven-diagonal, heterogeneous 
conductivity matrix. Recall that A is symmetric positive-definite, weakly diagonal dominant, and 
possesses the M-matrix property, having strictly positive diagonal elements and negative off-diagonal 
elements. 

A diagonal-by-diagonal storage scheme is used for the sparse symmetric matrix A .  Specifically, 
only four vectors are stored, corresponding to the main diagonal and three nonzero offdiagonal lines in 
the lower half of the matrix. Each "vector" is in fact represented by a triple-indexed array variable (one 
index per spatial dimension). This specialized algebra and data structure minimizes both storage and 
Central Processing Unit (CPU) time. The total memory required for solving heterogeneous 3D systems 
with DSCG is modest, about 13 words per node for saturated flow, and up to twice as much for 
unsaturated flow. 

The DSCG algorithm is implemented in two steps, first by applying symmetric DS to the 
original system, and secondly by solving the scaled symmetric system using the CG method. First, 
symmetric DS is implemented as shown in Figure 2-2. Secondly, given an initial guess for the (scaled) 
solution vector, the iterative CG algorithm (Golub and Van Loan, 1989) is implemented to solve the 
(scaled) symmetric system as indicated in Figure 2-3. 
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0 Diagonal preconditioner: Do = diag(A) 

0 Scaled coefficient matrix: A. = DO.' A DO.' 

0 Scaled right-hand side: b. = D;' b 

Scaled system: A. y. = b. 

Scaled solution: y. = Dot' y 

Figure 2-2. Symmetric diagonal scaling 

0. Initialize parameters: pold = pnew = w = 0 

Initialize residual vector:r = b - A y 

Initialize search vector: p = 0 

1. Update p-parameter: pold = p,,, pnew = l/(rT.r) 

2.  Update search vector: p = r + ~ o l d ~ ~ n . , )  p 

3. Compute auxiliary vector: z = A p 

4. Compute w-parameter: w = [p,,, (pT * z)]-' 

5. Update solution vector: y = y + up 

Update residual vector: r = r - wz 

6 .  GO TO step 1 IF stopping criterion NOT satisfied, ELSE STOP 

Figure 2-3. Conjugate gradient iterations 
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To obtain the full DSCG solver, one should replace the A, y, and b, of Figure 2-3 by the A, 
y., and b. quantities defined in Figure 2-2. Note that Do is the main diagonal of the unscaled matrix A. 
In Step 6, the stopping criterion may be a number of iterations or an error norm, such as the b- or 
L,-norm of the error vector ('ynm-y0,,,). In Step 3, the matrix-vector product z = Ap is computed as a 
sum of seven shifted dot products, one for each nonzero diagonal line of A. All other array operations 
are straight dot products, except for the L,-norm of error. 

2.11.3 Convergence Behavior of DSCG Solver 

The convergence behavior of DSCG, particularly for flow in heterogeneous porous media, was 
analyzed by Dougherty (1990), Bagtzoglou and others (1992c,d), and Ababou and others (1992a). Below, 
an expansion on some results and observations from the work of Ababou and others with emphasis on 
those aspects independent of hardware can be found. Certain practical consequences of the convergence 
behavior of DSCG will be discussed. For hardware-dependent aspects, such as vectorization, 
parallelization, and actual timings, the reader is referred to the above discussion and references. 

For a wide class of iterative solvers that includes CG and DSCG, the number of iterations 
required to decrease the error by, for instance, six orders of magnitude is known to be approximately 
proportional to the square root of the condition number of the coefficient matrix. In the case at hand, 
the condition number is typically O(n3, where n represents the unidirectional size of the grid along its 
largest side (Ababou, 1988). For each iteration, the computational work or number of operations is 
proportional to N, the multidimensional number of nodes. Multiplying by the estimated number of 
iterations yields a total work on the order O(NP), with exponent p = 413 for a 3D-cubic grid [p = 3/2 
for a twodimensional (2D) square grid; p = 2 for a one-dimensional (1D) grid]. 

These order of magnitude estimates give indications on the relation between computer time and 
problem size. However, they have several shortcomings: (i) the convergence rate estimate does not 
indicate the influence of conductivity heterogeneity and spatial structure; (ii) it is only a worst case 
estimate obtained from an approximate error upper bound; (iii) this worst case estimate must break down 
as the number of iterations approaches the number of equations (N), since the CG method gives the exact 
solution in no more than N iterations (within machine precision); and (iv) the assumption that 
computational work per iteration is proportional to grid size (N) does not take into account possible 
nonproportional speedups due to vector and parallel processing. 

In the special case of constant conductivity, DS has no effect and the DSCG solver is equivalent 
to the conventional CG solver. Let the number of iterations (I) be defined as that required to decrease 
the La-norm of error by six orders of magnitude. Tests on grids ranging from (8)3 up to (128)3 nodes 
(over two million nodes) showed approximately linear increase of I(n), with respect to unidirectional grid 
size (n). This behavior, depicted in Figure 2-4 (Bagtzoglou et al., 1992c), is in agreement with the 
simplified theory presented above. The difference in the slope observed between BIGFLOW and 
CMVSFS is attributed to the use of a relative error versus an absolute error as the algorithm stopping 
criterion. What is important to keep in mind, however, is that both codes show an almost exact linear 
behavior, characteristic of their independent agreement with the theory. 

The convergence behavior of the DSCG solver can be, however, more complicated (as indicated 
in the theoretical discussion above). For illustration, Figure 2-5 depicts several curves of the L,-norm 
of error versus iteration count for test problems with different degrees of heterogeneity, grid sizes, and 
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Figure 2-4. Number of DSCG iterations as a function of unidirectional grid size for BIGFLOW and CMVSFS 
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log-conductivity structures. These test problems are summarily described in Table 2-1. Grid sizes range 
from a few thousand nodes up to 7.6 million nodes. The degree of heterogeneity is represented by u, 
the standard deviation of log-conductivity (InK). 

In Figure 2-5, note the singular behavior exhibited by curve number 600B. Initially, 
convergence is slow as expected, due to the large unidirectional size of the grid (n = 1001). However, 
after over 700 iterations, the error drops quickly to machine precision and cannot decrease further. This 
behavior is in agreement with the fact that the CG method always yields the exact solution, within 
machine precision, after N iterations at most (N is not very large for this problem). On the other hand, 
comparing curves labeled number 510 (a = 1) and number 520 (a =d3) indicates the influence of 
degree of heterogeneity (slower convergence). Comparing curves number 520 (Gaussian distribution) and 
number B52 1 (binary distribution) demonstrates the equally important influence of spatial structure. And 
comparing curves number 520 (1 million nodes) and number 72A (7.6 million nodes) shows the influence 
of grid size (slower convergence). 

The convergence behavior reported in Figure 2-5 complements the theoretical convergence rate 
estimates given earlier. Taken together, these results could be used to assess the typical number of 
iterations required for analogous saturated flow problems. In the case of constant or mildly 
heterogeneous conductivity, the theoretical estimate given earlier indicates how CPU time grows with grid 
size. For highly variable coefficients, this estimate must be corrected based on empirical tests, such as 
those shown in Figure 2-5 and Table 2-1. Note, for instance, that after lo00 iterations, the error 
decreases by 12 orders of magnitude for moderate variability (Test #510), compared to "only" 9 orders 
of magnitude for larger variability (Test #520). 

Finally, the empirical tests also demonstrate that essentially exact solutions can be obtained in 
a finite number of iterations (Test #600B). With the CG method, it is known theoretically that the 
number of iterations can never exceed the total number of equations (or grid points). Empirical tests 
indicate that, for grids with very large aspect ratio, the number of iterations to achieve essentially exact 
solution is on the order of the number of nodes along the largest dimension of the grid. Indeed, Test 
#600B, with a quasi "one-dimensional" grid of size 1001 x 5 x 5, required roughly lo00 iterations 
(more precisely 800 iterations) to achieve essentially exact solution. These indications may be useful to 
BIGFLOW users who wish to tailor their grid size and geometry based in part on computational criteria. 

2.11.4 Computational Efficiency of DSCG Solver 

Following the approach developed by Ababou and others (1985, 1989), Meyer and others (1989) 
analyzed performance of DSCG and other preconditioned solvers for single realizations of stochastic 
groundwater flow on grids on the order of one million equations. The grid sizes and statistical properties 
were similar or identical to those previously used in million node simulations with the nonvectorized SIP 
solver (Ababou, 1988). Comparing the SIP timings by Ababou (1988), and using certain equivalence 
rules to convert computer times from different machines, Meyer and others (1989) concluded in favor 
of DSCG over SIP. The advantage of DSCG over SIP can be explained in part by the more efficient 
vectorization of DSCG on the use of the vector-parallel Alliant machine. 

The efficiency of the DSCG solver was also demonstrated more recently in large-scale numerical 
experiments by Ababou and others (1992a). In the latter work, heterogeneous conductivity systems on 
the order of ten million equations were accurately solved in times on the order of minutes, using Cray-2 
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Table 2-1. Summary of test problems for the DSCG solver of BIGFLOW 

Test 
Number 

600B 

In O<) Grid Size 
Distribution 

Constant a=O N = 1001X5X5 

N = n, x n, x n, 

~~ ~~ 

520 

52 1 

Gaussian isotropic a d 3  

Binary isotropic a d 3  

N = 101X101X101 

N = 101X101X101 

and Cray-Y/MP8 computers. Furthermore, it was found that SIP was roughly 20 times less efficient than 
DSCG when executing on the same Cray-2 machine in vector mode. Finally, efficient vectorization and 
coarse-grained parallelization, typically 85 - 90 percent of the entire BIGFLOW code, were achieved on 
a Cray-Y/MP8 system with eight concurrent processors. Parallelization was performed by using Cray’s 
autotasking utility. Both vectorization and parallelization were achieved without special directives or any 
other modification of the code (Ababou et al., 1992a). The results are summarized below. 

72A 

The performance of the DSCG-based code, expressed in CPU seconds, depends on grid size 
Following and number of iterations and on machine-dependent additive and multiplicative factors. 

Ababou (1988), timings can be expressed approximately in the form 

T(Z,N) = ( U Z  + b )  N (2-37) 

Gaussian anisotropic a d 3  N = 178X120X357 

where T is the total CPU time (seconds), a represents specific iterative work (seconds/iteration/million 
nodes), and b represents work spent outside the iterative solution process or overhead (seconds/million 
nodes). As before, I is the number of iterations, and N is the number of nodes in multi-dimensional 
space. Note that I may be a pre-selected number of iterations, or alternatively, the number of iterations 
to decrease the error by a certain amount (say, six orders of magnitude). In view of the theoretical 
estimate given earlier and confirmed experimentally, the number of iterations is proportional to N”3 for 
cubic grids. 

For the DSCG-based code running serially on Cray-2 and Cray-YMP machines, it was found 
empirically: 

a(Seria, Cray-2) = 0.48 seconds per iteration per million nodes; and 

a(Seria, Cray-YIMP) = 0.20 seconds per iteration per million nodes. 
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These constants were obtained from timings of several large test problems with randomly heterogeneous 
conductivities, with most, but not all, involving cubic grids. The Cray dependency analyzer and 
optimizer (fpp) was used on both machines; the aggressive optimization option was used on the 
Cray-Y/MP. Note that the Cray-Y/MP machine is faster than Cray-2 by a factor around 2.5 for these 
types of problems (in serial mode). 

The serial Cray-2 timings were analyzed in detail using the flowtrace utility. It was found that 
the fpp dependency analyzer decreased a by just a few percent. All inner loops vectorized with or 
without fpp. The overhead constant b was found to be sensitive to InputdOutputs (I/Os); with 
unformatted I/Os, this constant was found to be 28 seconds per million nodes, compared to 116 seconds 
per million nodes with formatted I/O’s. 

Coarse-grained parallelization was studied by allowing the BIGFLOW code to run concurrently 
on k processors of the Cray-Y/MP8 in dedicated mode (1 5 k 5 8). Again, the DSCG solver was used 
for solving random conductivity problems involving one to several million grid points. The BIGFLOW 
source code was not modified for multiprocessing. Instead, the Cray autotasking software performed the 
necessary code modifications and enhancements (using a compiler option to inline the CG solver module). 
Estimates of speedups and of parallelizable fraction of code were obtained by comparing cumulated CPU 
times to wall clock times, and by applying Amdahl’s law. 

Let k denote the number of processors, & the parallel CPU time or wall clock time for k 
the serial CPU time for a single processor. 

into 
concurrent processors running in dedicated mode, and 
Definefas the fraction of parallelizable code, measured in serial CPU time units. Decomposing 
parallelizable and nonparallelizable parts yields 

(2-38) 

The serial-to-parallel speedup ratio is given by r(k) = T,/Tk, and satisfies r 2 1. Substituting Tk yields 
the following relation, known as Amdahl’s law 

k r ( k )  = 
k ( 1 - f )  + f  

(2-39) 

If the parallelizable fraction f is known, Amdahl’s law can be used to obtain speedups. 
Amdahl’s law can also be inverted to obtain the fractionffrom observed speedups. Defining 

as the average speedup per active processor, it is interesting to note thatfcan be expressed in the simple 
form 

In other words, Eq. (2-41) simply means that the parallelizable fraction of code is given by the ratio of 
“per processor speedup” for k-1 and k processors, respectively. 

Figure 2-6 depicts two speedup curves r(k) obtained for a 1 million node test problem (lower 
curve) and for a 7.6 million node test problem (upper curve). The test problems were described earlier 
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Figure 2-6. Speedup curves: Parallel/serial speedup ratio (r) versus number of 
Cray-Y/MPS processors running concurrently (k) 
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in Table 2-1 (test numbers 510 and 72A, respectively). Figure 2-5 shows both actual speedups (circles), 
and analytical curves r(k) (solid lines) from Amdahl's law. These curves were obtained after evaluation 
of the parallelizable fraction "f". The dashed straight line represents the ideal case f = 100 percent, 
corresponding to a fully parallelizable code. 

Under the Cray autotasking utility, it was found that f = 82.5 percent for the one million node 
problem (number 510), and f = 89.1 percent for the 7.6 million node problem (number 72A). The 
corresponding speedup ratios for eight processors are 3.59 and 4.53, respectively. The sensitivity of 
speedup curve to grid size and grid geometry may be due to trade-offs between vector processing and 
multiprocessing. The largest problem, with 7.6 million grid points, executed at about 750 MFLOPS (wall 
clock). Having recently identified certain ambiguities in the DSCG solver and the norm calculation 
modules, we expect to achieve faster rates, possibly well over 1 GFLOPS, by simple modifications of 
these modules in the future (the current version of BIGFLOW does not incorporate such modifications). 

Applying a speedup ratio of approximately 3.5 - 4.5 to the serial Cray-Y/MP timings given 
earlier, we have 

aParallel Cray-YIMPI) = 0.04-0.06 seconds per iteration per million nodes. 

This performance is on the same order as that achieved by other DSCG-based codes running on the 
Connection Machine CM-2 (Bagtzoglou et al., 1992c,d; and Dougherty, 1991). Thus, for a 
homogeneous (128)' problem, a performance of 0.070 sec/iter/million nodes was achieved on 16 K 
processors (Bagtzoglou et al., 1992c,d), and 0.043 sec/iter/million nodes on 32 K processors (Dougherty, 
1991). Recent hardware and software optimizations made the code CMVSFS much more efficient. It 
can now achieve performances of 0.033 sec/iter/million nodes on a 16 K CM-200 machine. However, 
to keep these comparisons in perspective, it should be noted that the BIGFLOW code includes a relatively 
large number of features and options, and is apparently more complex than the CM-2 or CM-200 codes 
used for these comparisons. Also, other CM-2 timings reported in the above-cited references indicated 
in fact much slower computations for grid sizes not exactly equal to powers of two, a problem not 
encountered with BIGFLOW on the Cray-Y/MPS machine. 

2.12 THE STRONGLY IMPLICIT PROCEDURE (SIP SOLVER) 

The preconditioner used in SIP is a nonsymmetric triangular factorization that has the advantage 
of being potentially more accurate, that is, higher order in Ax, than the IC factorization (Gustafsson, 
1978). Unfortunately, the SIP preconditioner cannot be used in conjunction with CGs, since the CG 
iterations require a symmetric system, thus a symmetric preconditioner. Below, the SIP solver for the 
3D, sevendiagonal finite difference systems at hand is developed. First, a brief review of the origin and 
properties of this solver is given. 

The SIP was originally devised by Stone (1968) for solving the 2D heat equation, and was then 
extended to the 3D case by Weinstein and others (1969) in the context of oil recovery simulations. SIP 
has also been used for simulating 2D and 3D groundwater flow problems of moderate size (Trescott, 
1975; McDonald and Harbaugh, 1984; Kuiper, 1981 and 1987). Partially saturated flow processes have 
been previously simulated numerically using a SIP-based method (Cooley, 1983). Here, we will 
implement SIP to solve very large heterogeneous flow systems in both saturated and unsaturated media, 
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following earlier work reported in Ababou and others (1985, 1989), Ababou (1988), and Ababou and 
Gelhar (1988). 

The SIP solver is specifically tailored for sparse centered finite difference approximations of 
elliptic or parabolic equations. It is based on an approximate, nonsymmetric, triangular factorization 
preconditioner. A Picard-type iteration scheme is used to smooth out the residual error due to the 
approximately factored matrix. In the case at hand, we apply SIP to both linearized unsaturated flow 
and/or linear saturated flow. As before, a e  linear or linearized system to be solved can be expressed 
in the generic form 

A * y = b  

where y represents a vector of pressures (or incremental pressures in the nonlinear case); b is a vector 
that contains boundary terms plus residual terms in the nonlinear and/or transient case; and A represents 
the conductivity matrix, with additional diagonal mass terms in the transient case. 

Briefly, the preconditioned SIP iteration works as follows. Let the unknown lower and upper 
triangular factors be denoted L and U. The iterative solution scheme is based on splitting in the form 
A = LU+ E,  where E is an error matrix hopefully close to zero in some norm. This leads quite naturally 
to 

(2-43) 

where m is the iteration counter, and w is a relaxation parameter. Note that the solution is obtained in 
terms of the incremental vector (y,+,-y,,,), similar to the strategy adopted for the nonlinear iterations 
(modified Picard scheme). Again, this modified form is known to be more stable with respect to 
round-off errors. 

It is easily seen that Eq. (2-43) is a consistent iteration scheme. If the iterations converge, the 
limit m --+ o) yields the exact solution, y, of Eq. (2-43). However, the key problem is to choose the 
L and U matrices in a way that ensures fast convergence and fast solution of the preconditioned system. 
In SIP, the LU factorization is nonsymmetric ( L  # U), and such that L and U have the same sparsity 
structure as A .  Consequently, Eq. (2-43) only involves sparse triangular systems of size N. These are 
solved recursively by forward (t) and backward (U) substitutions, requiring only O(N) operations per 
iteration. 

Given the previously described structure of LU, it is easily seen that the system LU=A is 
overdetermined; thus A cannot be factored exactly in the form LU. This is clearly indicated by the extra 
diagonals in the LU product matrix. On the other hand, given an error matrix E,  the system LU-A=E 
is underdetermined. We conclude that many choices of L, U, and E are possible. The particular 
factorization developed by Weinstein and others (1969) approximates the original partial differential 
equation by a nonsymmetric 13-point finite difference molecule, rather than the seven-point centered 
molecule. It is a generalization of the original algorithm developed by Stone (1968) for 2D problems, 
where the original system is five-diagonal instead of seven-diagonal. 
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For the 2D Laplace equation, it was shown (Stone, 1968) that LU approximates A with second 
order accuracy in terms of mesh size; the error matrix actually includes cross-terms like O(Ax.Ay). For 
the more general 3D equations at hand, this finding may be loosely expressed as 

E = LU - A = C O(Ax, AxXi) 
i. I 

( i  = 1,2,3 ; j = 1,2,3) 

In comparison, the IC factorization used in ICCG is only first order accurate (Gustafsson, 1978); the 
accuracy of the factorization is, however, only one among other measures of efficiency of the SIP and 
ICCG solvers. 

To compute the SIP triangular factors L and U requires a nonlinear recursive algorithm that 
involves O(N) operations. This factorization algorithm, not detailed here, is analogous to the well-known 
Thomas factorization of tridiagonal systems, although more complex. In particular, the L and U factors 
are allowed to depend on a cyclic parameter y, E [0,1] that greatly influences convergence. The cyclic 
y,-sequence advocated by Stone (1968) was inspired by results from alternate direction methods and from 
a Fourier analysis of amplification rates (Stone, 1968). A variant of SIP with alternate node ordering 
(standardheverse) has also been advocated (Stone, 1968; and Weinstein et al., 1969). The nonalternate 
version based on the standard Cartesian node numbering scheme is the one that will be implemented here. 
This and other details have been described in Ababou (1988). An error concerning the cyclic 
y,-sequence in Stone's paper was corrected. 

The convergence theory of SIP is far from complete at the time of this writing. Unlike Alternate 
Direction Implicit (ADI) methods, the optimal y,-sequence is not known, even for the simple Laplace 
equation. This uncertainty has prompted us to introduce an additional relaxation parameter, w .  A recent 
work on the convergence properties of SIP (Chen, 1988) seems to validate this relaxation strategy. Chen 
essentially proved the following result: 

"There exists a value of y = yo in [0,1], and a value w = wo in [0,2], such that if the 
y-parameter satisfies 0 5 y I yo, and if the relaxation parameter satisfies 0 < w < %, then 
SIP converges. " 

In practice of course, the conditions assumed in this proof may not be met. For instance, y is actually 
cyclic, not constant. Nonetheless, our experience indicates that choosing certain values of w with w 5 1 
can force convergence of SIP in cases involving very large weakly diagonal dominant and heterogeneous 
coefficient matrices. 

It should be kept in mind that the algebraic and convergence properties of the system depend 
on: (i) flow regime; and (ii) space-time discretization. It is known that the coefficient matrix A is 
sevendiagonal, symmetric positivedefinite, and diagonally dominant. But more specifically, A is only 
weakly diagonal dominant in the steady state case, and it can even become nondominant (indefinite) if 
there is no Dirichlet boundary condition on any boundary node. Strict diagonal dominance always holds 
in the transient case, provided that the storage term (C/At) remains strictly positive at all times and all 
locations, as will occur for low rate infiltration in a moderately dry soil, or for saturated groundwater 
flow with storativity effects. As diagonal 
dominance is enhanced, the condition number of the matrix decreases and the SIP solver yields more 
accurate solutions in fewer iterations. The latter observations apply to PCG solvers as well. 

Diagonal dominance increases as time step decreases. 
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2.13 NONLINEAR SOLVERS AND NESTED ITERATIONS 

The iterative matrix solvers DSCG and SIP are applicable to unsaturated flow as well as 
saturated flow. The iterative linearization procedure was developed earlier independently from any 
particular matrix solver (see modified Picard algorithm). However, a strategy must be devised for 
coupling or nesting the iterative matrix solver with the iterative linearization procedure. 

Briefly, the overall nonlinear solution strategy is as follows. For each time step (n), the 
linearization procedure (Picard) operates as an outer iteration loop (k), while the matrix solver (DSCG 
or SIP) is the inner iteration loop (m). The inner matrix iterations yield the solution of the linearized 
system at each outer iteration; the outer iterations yield the solution of the nonlinear system; and this is 
repeated for each time step. The fully nested iteration scheme can be expressed by inserting the DSCG 
iterations or the SIP iterations, with y = 6p, in the nonlinear Picard scheme [Eq. (2-34)]. 

In the case of SIP - which we use for illustration - this yields 

for n=0,1,2 ,... (time steps), 

for k=O, 1,2,. . . (outer linearization loop), and 

for m=O,1,2, ... (inner matrix solution loop). 

(LUY + lDk ( % + I  n + l , k + l  - 8p: + ' I k  + ') = 0 ( b  + I.& - A n  + 1.k (2-45) 

where the incremental pressure Sp should go to zero as the correct nonlinear solution is being approached. 
Equation (2-45) defines the nonlinear-SIP solver. A similar algorithm, with same nested structure, is 
implemented for the nonlinear-DSCG solver. 

In summary, the nonlinear finite difference system is iteratively linearized at each time step 
using the modified Picard method, and the resulting sequence of matrix systems is solved iteratively using 
available matrix solver modules (DSCG, SIP). Note that SIP itself uses a Picard-type iteration to smooth 
out errors due to its approximately factorized preconditioner. Therefore, with nonlinear SIP, we have 
in effect two Picard-type schemes being activated, one in the outer loop (k) for linearization, and another 
one in the inner loop (m) for solution of the preconditioned matrix. 

Finally, a few practical points should be emphasized. In the case of nonlinear-SIP, notice that 
Eq. (2-45) is being solved for a double increment of pressure, (6p,+,-Spm). When this quantity becomes 
small in some sense, the inner iterations (m=O, 1,2.. .) should be stopped. Likewise, the outer iterations 
(k=0,1,2, ...) should be stopped when the pressure increment Sp = $"-p' becomes small in some sense. 
In the case of initially dry media, the stopping criteria should be based on comparing the maximum 
absolute value of pressure increments at all grid points &--norm) to a preset tolerance. In most test 
cases, the tolerance was roughly 0.1 cm of pressure head for the outer loop, and 0.01 cm for the inner 
loop. These numbers were relatively small compared to the maximum pressure head variation over space 
and time, typically on the order of 100 cm for our unsaturated test problems (see applications in 
Section 3). The same remarks are essentially applicable to the nonlinear-DSCG solver as well. 
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In closing, let us point out that alternative nonlinear-SIP procedures have been previously 
developed, notably by Trescott and Larson (1977), and Kuiper (1981,1987), for the mildly nonlinear 
equation of unconfined groundwater flow. Also, a relatively complex SIP-Newton method was developed 
by Cooley (1983) for solving partially saturated flow with seepage faces. In all of these numerical 
studies, the sizes of the test problems were small, on the order of 1000 nodes or less. The paper by 
Kuiper (1987) compares the performance of a number of solution methods based on SIP and ICCG matrix 
solvers, in conjunction with various Picard and Newton strategies for dealing with the mild nonlinearity 
due to the variable transmissity of unconfined groundwater flow. 

It is interesting to note that some of Kuiper’s tests involve in particular a nonlinear Picard solver 
limited to 1-5 inner iterations. In comparison, the solution strategy recommended for the BIGFLOW 
code is somewhat more flexible: keep the number of iterations low by tightly controlling the time step 
size, while enforcing the iteration stopping criteria based on the L,-norm of pressure increments. The 
dynamic time-stepping algorithm, through which time-step size can be controlled, is described in 
Section 2.14. 

2.14 TIME STEPPING STRATEGY 

Given the implicit time integration scheme being used, there is no obvious stability-type 
limitation on time step size. In practice however, nonlinear instability and/or poor accuracy can result 
from large time steps. In addition, time step size also influences the condition of the algebraic system, 
as discussed earlier. Therefore, the choice of time step size is an important feature of the overall solution 
strategy for transient problems; we will discuss here mainly the case of transient unsaturated flow. 

In the transient test problems, unless stated otherwise, a variable time step size related to the 
variation of pressure with time is used in the following fashion 

IIP” + - P”II, 

1 %  - POI 

where p is an empirical growth factor (p = 1.05-1.25), P(‘ is a representative value of initial pressure, 
and Po is a typical value of pressure at the boundaries (e.g., solution of K(Po) = qo if the boundary 
condition is a fixed flux q = qo). The first time step At, was calculated independently so as to be fairly 
small (e.g. ,  At, proportional to squared mesh size, and inversely proportional to the maximum value of 
soil moisture diffusivity calculated from known initial and boundary conditions). 

Recall from the earlier discussion that decreasing the time step enhances diagonal dominance 
through the storage term (C/At). Also, given the strongly nonlinear character of problems such as 
infiltration in dry soil, the time steps cannot be taken too large if the nested iterations are to converge. 
By applying Eq. (2-46) one is in effect tightly limiting the magnitude of the time step. This strategy leads 
to improved matrix condition and faster convergence of the nonlinear-SIP or -DSCG solver at each time 
step. 

More precisely, it was found that decreasing the time step within certain bounds did not 
necessarily increase the total computational work. The reason is that, with smaller time step, the larger 
number of time steps was almost exactly balanced by the smaller number of iterations per time step. In 
the case of the nonlinear-SIP solver, with the stopping criteria described earlier, only a few (typically no 
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more than five) inner iterations of the SIP solver were generally sufficient to solve infiltration-type 
problems. This suggests that, with the proper choice of time step, the approximate factorization 
preconditioner of SIP can be considered as a relatively accurate “noniterative solver” (Ababou, 1988). 

To put this in perspective, note that the computational work for factorization, and for each inner 
iteration, is proportional to the total number of nodes N. Therefore, if only a few iterations are needed, 
that is, O(1) iterations, the computational work required to solve the matrix system is effectively 
proportional to N, that is, O(N). Naturally, the total work is also proportional to the number of outer 
iterations per time step (nonlinear Picard loop), and to the total number of time steps (which depends on 
time scale of simulation as well as time step size). 
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3 VERIFICATION AND BENCHMARK TESTING OF BIGFLOW 

3.1 INTRODUCTION 

The principal objective of this section is to evaluate and demonstrate the general capabilities of 
Two types of BIGFLOW. 

computational testing were conducted: (i) verification; and (ii) benchmarking. 
Six test problems with varying degrees of complexity are presented. 

Spatially distributed models such as BIGFLOW can be tested in more or less specialized fashion. 
It is convenient to distinguish testing procedures aimed at verifying the consistency of well defined 
components of the model, and groundtruth experiments which aim at an overall assessment of the model 
under real field conditions (Ababou et al., 1992b). 

Consistency tests purposely limit the scope of testing in order to focus on the reliability of 
particular solutions for precisely known model inputs. Groundtruth tests, on the other hand, attempt to 
assess the validity of the postulated model under conditions that are not fully controlled (e.g., due to 
unknown material properties), and that may lie outside the accepted range of validity of specific model 
postulates (e.g., inadequacy of postulated constitutive laws). Numerical tests aim at checking the 
consistency of the numerical implementation, without questioning basic governing equations, postulated 
constitutive relations, etc. The consistency of the numerical model can be tested in many different ways, 
which can be classified broadly as follows: (i) internal tests such as mass balance and sensitivity to space- 
time mesh size; and (ii) comparisons of model’s outputs with other analytical, quasi-analytical, or 
numerical solutions, all obtained independently. 

Verification testing was performed by comparing known analytical solutions of appropriate 
problems with equivalent simulations using BIGFLOW. The primary objective of the verification testing 
was to check the computational accuracy of the numerical techniques used within the code. Benchmark 
testing was conducted to verify the agreement of the simulation results using BIGFLOW and another code 
of similar capability. In this section, we used PORFLOW (Runchal and Sagar, 1992) and the Connection 
Machine Variably Saturated Flow Simulator (CMVSFS) to perform the benchmark testing. PORFLOW 
was used during the benchmarking because it was readily available and has been used in the industry over 
a considerable time for groundwater simulation flow and transport studies. CMVSFS, a code developed 
for the massively parallel computer CM-200, was used for result benchmarking and computational 
efficiency comparisons. It should be kept in mind that no verification, in the strict sense, was conducted 
since no quantitative performance measures were used. The comparisons presented in this section are 
only qualitative unless otherwise stated. 

The test problems presented here are by no means indicative of all the capabilities of 
BIGFLOW. They are only meant to illustrate the main features of the code. These test problems involve 
both saturated and unsaturated flow in a geologic medium and were obtained from technical publications. 
In the following, the test problems are described 

TEST-1: Onedimensional (1D) transient saturated groundwater flow. The 1D Richards’ equation 
is solved with BIGFLOW for the special case of exponential K(h) and 8(h) relations. Under 
these conditions the problem is analogous to the heat equation with constant coefficients. 
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TEST-2: ID transient vertical infiltration. In this test problem, unsaturated flow in a vertical column 
was simulated. Fluid flow through the soil occurs through capillary action and gravity. A 
quasi-analytic solution for this problem was published by Philip (1957). This test provided a 
means to determine BIGFLOW’s ability to solve the nonlinear Richards’ equation for a 
relatively simple unsaturated flow problem. 

TEST-3: Two-dimensional (2D) infiltration caused by a line source above a shallow water table. In 
this test problem, flow from a trickle or subsurface irrigation system consisting of a perforated 
pipe placed above a shallow water table is simulated. An analytical solution for this problem 
was published by Warrick and Lomen (1977). This test provided a means to test BIGFLOW’s 
ability to obtain steady state results directly, without time marching. 

TESTA: 2D infiltration caused by a strip source above a shallow water table. In this test problem, 
flow from multiple subsurface porous pipes placed adjacent to each other was investigated. No 
analytical solution was present for this problem, therefore the verification of the BIGFLOW 
simulation output was limited to benchmark testing with PORFLOW, which is another code 
with equal capability. This test provided a means to test BIGFLOW’s ability to obtain steady 
state results using a time marching approach. 

TEST-5: 2D infiltration in a heterogeneous medium. This test problem is physically similar to TEST4 
with the exception of the presence of an obstacle (modeled by a zone with a lower saturated 
conductivity). No analytical solution was present for this problem, therefore the verification of 
the BIGFLOW simulation output was limited to benchmark testing with PORFLOW. The 
objective of placing an obstacle in the path of the water flow was to determine BIGFLOW’s 
ability to simulate realistic field conditions. It further showed the computational efficiency of 
BIGFLOW in the presence of high conductivity contrasts. 

TEST-6: Flow of water through a hole in a box under pressure. This test problem makes use of 
BIGFLOW’s ability to simulate boundary conditions of different types, co-existing on the same 
planar face. It is a mathematical/numerical analog of water withdrawal at fixed pressure, and 
mimics the case of flow from an artesian spring. 

3.2 INTERNAL TESTS (MESH SIZE SENSITMTY AND MASS BALANCE) 

Internal tests are generally based on results of numerical analysis. In the first place, space-time 
discretization methods must be selected so as to be theoretically consistent with governing equations: 
discretized equations must converge to governing equations as space-time mesh size goes to zero. 
Typically, however, numerical analysis does not give sufficient information on the rate of convergence 
of discrete equations to governing equations. The reader is referred to Ababou (1990), and Ababou and 
others (1992b), for analyses of stability and truncation errors relevant to the BIGFLOW code. 

In the nonlinear case in particular, it was concluded that numerical analysis, while indicating 
the order of accuracy of the discretization, does not give suffkiently reliable information on the accuracy 
to be expected for noninfinitesimal space-time mesh size. For these reasons, numerical experimentation 
is required in order to better evaluate the effects of space-time mesh size. This may be particularly useful 
in the case of heterogeneous as well as nonlinear material properties, where truncation error estimates 
become very difficult to evaluate. 
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Consider for instance, the case of transient strip-source flux infiltration in a 2D, perfectly 
layered soil with alternating sandhilt layers of equal thickness (Ababou, 1988). Figure 3-1 shows a 
comparison of pressure profiles on a vertical transect coinciding with the axis of symmetry of the strip- 
source. The solution is obtained by BIGFLOW with a geometric weighing of mid-nodal conductivities. 
The layering consists of alternating sandlsilt layers of equal thickness. The "fine" mesh corresponds to 
three grid spacings per layer, and the "coarse" mesh to just one grid spacing per layer. While some 
detailed fluctuations of the pressure field have been lost in passing from fine to coarse discretization, 
Figure 3-1 indicates that the coarser discretization does preserve the global features of the wetted region, 
including the location of the wetting front. However, the distribution of fluxes in the "coarse" simulation 
needs to be verified as well; it may not be as accurate as that of pressure or moisture. 

Similar numerical experiments can be conducted for testing time-step discretization. In such 
internal tests, numerical solutions obtained with the smallest space-time mesh sizes are considered to be 
essentially exact in comparison to coarser discretizations. However, in the presence of highly contrasted 
vertical fault zones the time step is an essential stability criterion (Bagtzoglou et al., 1992b). 

In addition to discretization errors, the numerical implementation of spatially distributed flow 
models entails errors due to approximate solution of nonlinear (though quasilinear) systems, and round-off 
errors due to limited machine precision for floating-point operations. When using iterative solution 
schemes, the combined solution errors and round-off errors can be estimated numerically by computing 
"on-line" the norm of the residual, or incremental solution between consecutive iterations. The magnitude 
of this error norm, and its rate of convergence toward zero, give approximate indications of the errors 
incurred in the solution process (see, for instance, Ababou et al., 1989, for iterative solutions of large 
linear systems). 

In the case of steady saturated flow, the only available quantities for mass balance checks are 
the total discharge rates through 2D sections. When zero flux conditions are used on four lateral 
boundaries and hydraulic head conditions on the remaining boundaries, the longitudinal discharge rates 
through fixed head boundaries should be equal, and the transverse discharge rate through any longitudinal 
section should be zero. These principles have been used to evaluate mass balance errors for large single 
realizations of stochastic groundwater flow (Ababou, 1988). 

Conservation principles such as global mass balance are useful as internal checks of overall 
accuracy in the following restricted sense. Since the exact solution must satisfy exactly global mass 
conservation, the accuracy of the numerical solution can be assessed by evaluating the discrepancy 
between the net discharge rate entering the system and the rate of change of mass (converted to volume) 
of water present in the system. However, even if global mass balance is found to be satisfied accurately, 
this does not rule out the possibility of significant local errors which may cancel out on average, for 
example, spatial oscillations as shown in Bagtzoglou and others (1992a). 

If significant mass balance discrepancies are found, they may be due to spatial discretization 
errors, time discretization errors, nonlinear solution errors, and/or round-off errors. Mass balance 
calculations should be consistent with the space-time discretization scheme used in the numerical model. 
Consider the case of transient unsaturated flow based on the mixed form of Richard's equation with a 
volumetric source term (s), and prescribed boundary conditions 
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Figure 3-1. Comparison of pressure profiles for the fine mesh (three cells per 
layer: crosses) and coarse mesh (one cell per layer: square boxes) along vertical 
transect through the axis of the strip at times t = 0.3 day and t = 1 day 
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where 6, + Q, + Q, = 6 represents the boundary of computational domain fl, and s is a distributed 
volumetric single/source density within a subdomain 0, of fJ (e.g., due to water uptake in the root zone). 
Integrating Eq. (3-1) over !J and applying Green's divergence theorem yields 

where M is the total mass (converted to volume of water), and S the total sink-source term (m:'/s) 

M = 8dr ( 3 4 )  

s = /ips Sdr (3-7) 

To evaluate mass balance ex-post, Eqs. (3-5) to (3-7) must be discretized in both space and 
time. For consistency, the discretization schemes must be identical to those used for numerical solution. 
Consider for instance, the case of implicit second-order finite differences. In this case, the total mass 
M must be evaluated by summing water contents over node-centered cells. The elementary mass of a 
node-centered cell is 

m(il,i2,i3) = €l[h(il,i2,i3)] Axl AxzAx3 (3-8) 

and the total mass is 

(3-9) 

The boundary fluxes on the right hand side of Eq. (3-5) must be evaluated using the same 
midnodal scheme as that used in the interior domain. Thus, on the fixed pressure boundary (GI) ,  the 
boundary flux is evaluated by a scheme of the form 
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(3-10) 

where the index 1/2 indicates the mid-nodal location adjacent to the nodal boundary under consideration. 
The boundary integral in Eq. (3-7) must be evaluated by assuming piecewise constant boundary fluxes 
over node-centered boundary cells. 

Equation (3-5) must now be discretized according to the same implicit scheme that was used 
for numerical solution. Let M represent the discrete estimate of total mass, 3 the discrete estimate of 
total source term, and 
Discretizing Eq. (3-5) 

6, the discrete estimate of total boundary flux (net discharge rate at boundaries). 
yields 

(3-1 1) 

This equation expresses the approximate equality of net boundary discharge rate (6, on the right hand 

side), and total rate of change of mass inside the domain (6, on left-hand side). The term Ep represents 
the absolute mass balance error in terms of discharge rates (m3/s). 

For transient flow, relative measures of global mass balance errors can be defined as 

Qdr) -6,(t) 
eQ0) = 

QJO 
(3-12) 

(3-13) 

I‘Q& ?& ’ 
0 

respectively, in terms of discharge rate (Q), and time-accumulated discharge rate (V). On the other hand, 
in the case of steady flow without source terms, a convenient measure of relative mass balance error can 
be devised by distinguishing inlet boundaries and outlet boundaries. Thus, the computed boundary 
discharge rate is decomposed as 

and the following relative mass balance error can be defined in terms of steady state boundary discharge 
rates 
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Similar measures could be constructed for local mass balance at the mesh size. Local mass 
balance measures, although highly desirable, are not computed by the current version of BIGFLOW. We 
also submit that conservation principles other than mass balance may be useful, although they have not 
been traditionally used in the context of porous media flow. One such principle is curl conservation, 
which expresses the irrotational properties of hydraulic gradient. Let 

J ’ =  ’j(h+z) = - 4 
K 

since J’ is a gradient, its curl must vanish locally, that is 

a x . J = a  

Integrating over the computational domain yields 

x J = a 

(3-16) 

(3-17) 

(3-18) 

Applying Green-like theorems to this volume integral leads to the following boundary integral identity 

J’ x iida = 0‘ (3-19) 

The discrepancy between this boundary integral and 6 would give a global measure of the degree to 
which the numerical solution preserves the irrotational character of the hydraulic gradient vector. Note 
that the hydraulic gradient is directly related to flux (via Darcy’s law). 

Figure 3-2 depicts the temporal variation of the mass balance error measure G(t) for test 
problem TEST-4. It can be seen that at time t = 30 hours the error is 0.7 percent indicating excellent 
mass balance as steady state conditions are attained. Note that this simulation was conducted by marching 
in time and using transient pressure head results as initial conditions for subsequent simulations. 

3.3 TEST PROBLEMS 

3.3.1 1D Transient Saturated Groundwater Flow 

Consider the lD, mixed variable, form of Richards’ equation (2-3) with the following nonlinear 
constitutive relations 

(3-20) 

In the case a = 8, this equation becomes equivalent to the linear heat equation, with a constant diffusion 
heat coefficient D = KJ(crO,), governing the total hydraulic head (P = h + z). 
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Figure 3-2. Temporal variation of mass balance error eQ for TEST4 



The analytical solution to the 1D heat equation 

ap - a2p 
at &f 

P(0,f) = 1. 

P(1,f)  = 0. 

P(x,O) = 0. 

- - -  0 5 x s 1, f 2  0 

(3-21) 

is given by the rapidly convergent series 

where erf(x) is the error function 

(3-22) 

(3-23) 

When expressed in terms of dimensional quantities, the solution to the usual groundwater flow equation 
in a domain of size L, with conductivity K, storativity S, and D = K/S, may be obtained from Eq. (3-22) 
by substituting (x/L) for x, and @t/L2) for t. This exact solution is compared with the output of the 
numerical flow simulator. Figure 3-3 shows the transient solution for fixed hydraulic heads at the two 
end points, as obtained by BIGFLOW using variable time steps and a nonlinear system solver. The 
analytical and numerical results are identical. 

3.3.2 1D Transient Vertical Infiltration 

For this test problem the physical setting was a vertical, homogeneous soil column. The initial 
condition was a uniform pressure head. The pressure head at the upper boundary was held at a value 
corresponding to saturation. The bottom boundary was held constant at the initial pressure head. 
Transient infiltration of moisture in the vertical direction resulted from capillary forces and gravity. 

The simulation of the movement of the moisture front was performed with BIGFLOW and the 
pressure head profiles were obtained at three different times: 0.005 days, 0.05 days, and 0.1 days. These 
profiles were graphically plotted and compared with the semi-analytical solution of Philip (1957). A total 
of 101 nodes was used that were uniformly spaced over the length of the domain (300 cm). 
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Figure 3-3. Numerical (solid curve) and analytical (discrete marks) solutions for 1D diffusion in a 
homogeneous medium (TEST-1). Solution is shown at t = 0.001, 0.005, 0.05, and 1. 
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The soil properties used are 

K, = 5.85 c m h r  
a = 0.073 cm-’ 
e, = 0.3 
e, = 0.055 
n = 2.0304 
m = 0.5075 

A graphical comparison of BIGFLOW and the semi-analytical solution of Figure 3-4(a) shows 
that overall BIGFLOW performs a successful simulation of vertical movement of a moisture front in a 
homogeneous unsaturated soil. The differences observed near the saturation level are attributed to the 
effect of the difference in the number of nodes used for the moisture front calculations. Figure 3-4@) 
depicts the comparison of BIGFLOW with CMVSFS for the same problem. The results are in excellent 
agreement, except from the very initial time steps. The speed of the moisture front is calculated to be 
33 c m h r  for both codes. This speed is attained at time tpv = 0.8 hr, after which gravity flow 
dominates, as predicted theoretically. 

3.3.3 2D Infiltration Caused by a Line Source Above a Shallow Water Table 

This problem describes flow from a single trickle or subsurface irrigation system of porous pipe 
that is placed above a shallow water table. Figure 3-5(a) shows an illustration of the physical setting of 
this test problem. No flow boundaries are imposed on all sides of the cube, and the initial pressure head 
is described by a linear distribution with zero at the bottom and -122 cm at the top. The water table is 
at a finite depth of 122 cm from the top surface. 

Due to the symmetry and the infinite extent of the problem along the direction of the porous 
pipe, the three-dimensional (3D) physical problem is mathematically equivalent to a 2D problem with a 
point source of flux Q at the left top corner of the 2D domain. A no flow boundary condition is imposed 
on the left and right edge of the 2D domain, and the initial pressure head is given by a linear distribution 
with zero at the bottom and -122 cm at the top. Figure 3-5@) shows the 2D mathematical equivalent of 
Figure 3-5(a). The water table is at the bottom of the 2D domain. 

The analytic solution is based on the solution by Warrick and Lornen (1977), who presented a 
solution for steady state conditions. The 2D domain [see Figure 3-5@)] dimensions are 61 cm and 
122 cm along the X and Z axis, respectively. A total of 62 nodes and 123 nodes were evenly spaced 
along the X and Z axis, respectively. The following exponential Gardner model was used to characterize 
the conductivity-pressure head relationship of the soil 

K(h) = K, exp(ah) (3-24) 

where 
K, (Saturated hydraulic conductivity) = 0.001 12 cm/sec 
a (characteristic inverse length scale) = 0.1258 cm-l 
h is the pressure head 
K is the hydraulic conductivity 
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Figure 3-4(a). Comparison of numerical solution from BIGFLOW (solid line) with analytical solution (discrete marks) 
of Philip (1957) (TEST-2) 
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The van Genuchten model used to represent the water retention curve is 

(3-25) 

where 
8, (saturated water moisture content) = 0.441 1 
8, (residual water moisture content) = 0.0189 
n (real exponent) = 3.8720 
m (real exponent) = 0.7417 

The input flux 90 is 0.00105 cm3/sec/cm, slightly lower than the saturated hydraulic 
conductivity. The movement of the moisture front was analyzed by comparing steady state pressure head 
contours from the BIGFLOW output and those from the analytical solution of Warrick and Lomen (1977). 
Figure 3-6 shows this comparison. The BIGFLOW numerical solution was obtained with the nonlinear 
solver being set to an under-relaxation factor (HNLAX) of 0.1. The Conjugate Gradient (CG) solver 
(inner), and the nonlinear (outer) solver are forced to perform 200 iterations each. Although, there are 
very small deviations of the BIGFLOW results from the analytical solution, BIGFLOW compares well 
with the analytical solution. The success of this exercise demonstrated BIGFLOW's capability to reach 
steady state solutions directly, without marching in time. 

As a further verification test, we compared the BIGFLOW results with another code, namely 
PORFLOW. Figure 3-7 shows PORFLOW pressure head contours at 120 hours. The PORFLOW 
numerical solution was obtained using the same constitutive relationships to describe the soil properties 
and the PORFLOW simulation was marched slowly in time. Although the PORFLOW results in 
Figure 3-7 correspond to only a near steady state, the similarity with Figure 3-6 provides an additional 
verification of the BIGFLOW results. 

3.3.4 2D Infiltration Caused by a Strip Source Above a Shallow Water Table 

This test problem is an extension to the problem described in Section 3.3.3. In this problem, 
multiple porous pipes are laid adjacent to each other (such that they are in contact). Figure 3-8(a) shows 
an illustration of the physical setting of this test problem. No flow boundaries are imposed on all sides 
of the cube, and the initial pressure head is described by a linear distribution with zero at the bottom and 
-122 cm at the top. The water table is at a depth of 122 cm from the top surface. 

In a similar manner as described in Section 3.3.3, the symmetry and the infinite extent of the 
problem can be exploited to formulate a mathematically equivalent 2D problem, illustrated in 
Figure 3-8(b). The top boundary has two boundary conditions: (i) first half comprising a constant flux 
boundary with flux qo = 0.001 cm3/sec/cm and (ii) second half consisting of a no flow boundary. A 
no flow boundary condition is imposed on the left and right edge of the 2D domain of Figure 3-8@), and 
the initial pressure head is given by a linear distribution with zero at the bottom and -122 cm at the top. 
The water table is at the bottom of the 2D domain. The soil specifications (water retention curve, and 
hydraulic conductivity versus pressure head) for this test problem are identical to those described in 
Section 3.3.3. 

The BIGFLOW simulation output was compared with PORFLOW, an independent, comparable 
code. Figure 3-9 shows transient pressure head comparisons at node B 0(=44 cm, 2 = 116 cm) [see 
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Figure 3-8(b)] using BIGFLOW and PORFLOW. The results are in excellent agreement. 

The pressure head contours of both BIGFLOW and PORFLOW were also compared for a time 
snapshot at 10 hours. Figure 3-10 shows the pressure head contours from the BIGFLOW simulation and 
Figure 3-1 1 illustrates the same from the PORFLOW simulation. A comparison of the aforementioned 
figures reveals that both BIGFLOW and PORFLOW results are very similar but not identical. For 
example, the "toe" of the moisture plume has reached an elevation Z = 51 cm in the case of BIGFLOW, 
as opposed to an elevation of Z = 53 cm for PORFLOW. This may be a result of the different 
numerical techniques used within both codes, namely: BIGFLOW used the Diagonally Scaled Conjugate 
Gradient (DSCG) method while PORFLOW used the Alternate Direction Implicit (ADI) technique. It 
may also be attributed to the use of tabular constitutive relationships and the associated interpolation. 
This was found necessary due to the fact that PORFLOW does not accomodate the combination of the 
Gardner (K-h) and the van Genuchten (8-h) relationships. 

An additional verification test was conducted with the strip source spanning the whole width of 
the 2D domain, leading to an essentially 1D problem. Figure 3-12 depicts the comparison of the 
temporal variation in pressure heads at node A (X=31 cm, Z =  115 cm) for BIGFLOW and PORFLOW. 
Furthermore, Figure 3-13 shows a comparison of pressure heads at a vertical transact in the middle of 
the 2D domain at t = 3 hours. Again, the results are in very good agreement. 

3.3.5 2D Infiltration in a Heterogeneous Medium 

The physical setting of this problem is similar to that described in Section 3.3.4. The 
heterogeneity was implemented by a zone of lower saturated hydraulic conductivity as illustrated in 
Figure 3-14. No flow boundaries are imposed on all sides of the 2D domain, and the initial pressure 
head is described by a linear distribution with zero at the bottom and -122 cm at the top. The water table 
is at a depth of 122 cm from the top surface. 

The soil specifications (water retention curve, and hydraulic conductivity versus pressure head) 
for this test problem are identical to those described in Section 3.3.3. Two zones are used to represent 
the heterogeneous medium: zone 1 which spans the entire 2D domain; and zone 2 with a width and height 
of 20 cm each. The X and 2 coordinates of the corners of the second zone are shown in Figure 3-14. 
The exponential Gardner model is used to describe both the aforementioned zones. The saturated 
hydraulic conductivity and the characteristic inverse length scale of the Gardner model for both zones are 
defined as follows 

ZONE 1 (entire 2D domain): 
Saturated hydraulic conductivity K, = 0.001 12 cm/sec 
Characteristic inverse length scale Q = 0.1258 cm-' 

ZONE 2 (20 cm I X I 40 cm, 80 cm I Y I 100 cm): 
Saturated hydraulic conductivity K, = 2.24 x 
Characteristic inverse length scale Q = 0.0839 cm-' 

cm/sec 

Figure 3-15 depicts the unsaturated hydraulic conductivity relationship for the two zones. The 
location of zone 2 in this test problem was determined such that the cross-over point, where zone 2 
becomes more conductive than zone 1 is located at the interface between the two zones at  point A (see 
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Figure 3-10. Pressure head contours for the half strip source infiltration problem (TEST-4) as obtained at t = 10 hours 
with BIGFLOW. Pressure head values are in centimeters. 
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Figure 3-11. Pressure head contours for the half strip source infiltration problem VESTQ) as obtained at t = 10 hours 
with PORFLOW. Pressure head values are in centimeters. 



0 

-20 

- -40 E 

x w 

-6C 

-8( 

-lo( 

I I I 1 I I I 

I 
I 

I 

- 

I I I I I I I 

0 1000 2000 3000 4000 5000 6000 7000 

Time (Seconds) 

Figure 3-12. Comparison of the temporal variation in pressure heads at node A [see Figure 3-8(b)] using BIGFLOW 
(solid line) and PORFU)W (dashed line) 



I40 

I20 

100 

A , -  

0 80 
v 

x 
P 

40 

20 

0 

1 I I I 1 1 1 1 I 

Porflow /) 

'\ Bigflow 

I I I I I I 1 I I 

-100 -90 -80 -70 -60 -50 -40 -30 -20 -10 0 

Pressure Head (cm) 

Figure 3-13. Comparison of the pressure heads at a vertical transect in the middle of the 2D domain [see Figure 3-8(b)] at time 
three hours using BIGFLOW (solid line) and PORFLOW (dashed line) 



Z 

No Flow 1- 
Z = 100cm 

Z = 80cm 

*3l crn 4 

Q) 
C 
0 
N 

L 

Figure 3-14. 
heterogeneous medium (TEST-5) 

Schematic for the 2D infiltration with a strip source in a 

3-25 



107 

104 

10' 

10-2 

10-5 

10-8 

10-1' 

10-14 

1047  

10-20 

I 0-23 
0 

\ 

50 100 150 200 250 

Suction Head (cm) 

300 350 

Figure 3-15. Unsaturated hydraulic conductivity relationship for the two zones of TEST-5. Zone 1 is represented by a 
solid line and Zone 2 is represented by a dashed line. 



Figure 3-14). This makes the test problem a more challenging, computationally intensive exercise. The 
van Genuchten model was used to describe the water retention curve of both zones. The parameters of 
the van Genuchten model for both zones were selected identical to those described in Section 3.3.3. 

The top of the 2D domain (see Figure 3-14) has two boundaries: (i) first half comprising a 
constant flux boundary with flux q, = 0.001 cm3/sec/cm and (ii) second half comprising a no flow 
boundary. A no flow boundary condition is imposed on the left and right edge of the 2D domain of 
Figure 3-14, and the initial pressure head is given by a linear distribution with zero at the bottom and 
-122 cm at the top. The water table is at the bottom of the 2D domain. 

Figure 3-16 shows the pressure head contours at a time snapshot of six hours using BIGFLOW. 
The PORFLOW pressure head contours at the same time are illustrated in Figure 3-17. A comparison 
of Figures 3-16 and 3-17 reveals a very good similarity in numerical results between the two codes. 
BIGFLOW completed the aforementioned simulation in 2.5 CPU hours, while PORFLOW performed the 
simulation in 7 CPU hours. One should also keep in mind that BIGFLOW actually solved a 3D problem 
with 62 x 5 x 123 nodes, five times more nodes than the number of nodes involved in the PORFLOW 
simulation. This comparison confirms the optimum manner with which BIGFLOW performs reliable flow 
simulations in heterogeneous media. Figure 3-18 shows a further comparison of the transient pressure 
head obtained from BIGFLOW and PORFLOW for node A located at the interface between the two 
zones. 

The speed with which the moisture plume is travelling downwards is greater for the BIGFLOW 
simulations. However, at no time does the pressure head difference, between BIGFLOW and 
PORFLOW, become greater than 10 percent. Moreover, as the simulation approaches steady state 
conditions the results converge to an almost perfect agreement. Finally, it is worthwhile noticing that 
the BIGFLOW simulation predicts the creation of a small perched zone on top of zone 2, as indicated 
by the positive pressure heads. 

3.3.6 Flow of Water Through a Hole in a Box Under Pressure 

This problem is a mathematical analog of flow of water from an artesian spring. Even though 
no direct comparison with the BIGFLOW results was conducted, this problem tested the ability of the 
code to simulate boundary conditions of different types. In particular, this problem involved no flow and 
constant head boundary conditions co-existing on the same planar face. Figure 3-19 presents a schematic 
of this problem. In Figure 3-19(a) a vertical cross-section is depicted, whereas Figure 3-19@) shows a 
horizontal plane view. 

The dimensions of the cubical domain are 100 x 100 x 100 crn, discretized into 51 X 51 X 
51 nodes. The flow system is saturated and the hydraulic conductivity is K = 1 cm/sec. The boundary 
flux is q = 1 cm’/sec/cm and the head at the top boundary is maintained at H, = lo00 cm. Figure 3-20 
depicts a horizontal map of the steady state hydraulic head at a plane Z = 50crn. The physics of the 
problem are honored since the equipotential lines are perpendicular to the no flow boundaries and the 
lowest point of the equipotential surface is at the prescribed head region. The physical soundness of these 
results is further demonstrated in Figure 3-2 1 and 3-22 where streamlines are shown for a vertical cross- 
section at X = 50cm and a horizontal cross-section at Z = 50cm, respectively. Once again, the results 
appear to be very reasonable since the streamlines converge to the prescribed head opening of the cubical 
domain. 
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Figure 3-16. Pressure head contours for 2D infiltration in a heterogeneous medium (TEST-5) as obtained at t = 6 hours 
with BIGFLOW. Pressure head values are in centimeters. 
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Figure 3-17. Pressure head contours for 2D infiltration in a heterogeneous medium (TEST-5) as obtained at t = 6 hours 
with PORFLOW. Pressure head values are in centimeters. 
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Figure 3-20. Hydraulic head contour for a horizontal plane Z = 50 cm for 
TEST-6 
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Figure 3-22. Streamlines for problem TEST-6 at a horizontal plane Z = 50 cm 
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4 BIGFLOW USER'S GUIDE: FLOW SIMULATIONS 
AND DATA PROCESSING 

4.1 BIGFLOW PACKAGE DESCRIPTION 

The BIGFLOW Package (Fortran source files) comprises the following components: 

Flow Simulator: BIGFLOW 

This Fortran file contains the entire simulation code, except for COMMON blocks located in 
a separate file (COMBIG) which must be located in the same directory. The BIGFLOW code does not 
require direct interaction with the user from the console and can, therefore, be executed in "batch" mode 
as well as "interactive" mode. 

Auxiliary File: COMBIG 

This Fortran file is an INCLUDE file which contains all the COMMON blocks used in 
BIGFLOW; it is required to be present in the same directory as BIGFLOW when compiling BIGFLOW. 

Data Processor: DATAFLOW 

This interactive Fortran program contains several routines for efficiently processing BIGFLOW 
InputdOutputs (I/Os), for example making input files for BIGFLOW, and performing analyses of 
multidimensional flow data. Outputs of DATAFLOW are in ASCII or binary form, but they are not 
graphics metafiles. The DATAFLOW code requires interaction with the user from the console. Thus, 
it can only be executed in "interactive" mode, not in "batch" mode. 

Related Codes for Data Generation and Data Visualization: 

Turning Band Code: CTURN 

This Fortran program generates three-dimensional (3D) random fields using the Turning Band 
Method (TBM). While it is not considered part of the BIGFLOW package, it may be used to generate 
random field datasets in a format directly accepted by BIGFLOW. For a reference on the 3D Turning 
Band Method, see Tompson and others (1989). The TBM code (CTURN) has been extensively tested 
through its use in simulations of stochastic flow (Ababou, 1988; and Ababou et a]., 1992a). It is a 
slightly modified version of the code previously used by Tompson and others (1987 and 1989), and it is 
available upon request from the authors of this report. 

Graphics Package for Personal Computers: PLOTFLOW 

This auxiliary graphics package, writxen by Ashok Nedungadi of Southwest Research Institute, 
can be used to display BIGFLOW data on personal computers under the DOS operating system. 
A "VGA" color monitor and graphics card are required. This package complements the BIGFLOW 
package described above, but it is not considered part of it, and has not been extensively tested to this 
date. Briefly, PLOTFLOW is composed of a set of user friendly interactive programs for visual display 
of one-dimensional (1D) and two-dimensional (2D) datasets compatible with BIGFLOW data formats. 
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The 2D data can be either scalar fields, leading to color shaded contour plots, or vector fields, leading 
to vector plots. A typical usage is as follows: first, the DATAFLOW processor may be used to produce 
3D vector fields (flux) from scalar fields (head); second, DATAFLOW can be used to extract 1D 
transects and/or 2D slices from scalar or vector 3D datasets; and finally, PLOTFLOW can be used for 
quick visualization of these transects or slices on the screen. PLOTFLOW can be obtained upon request 
from the authors of this report. 

4.2 BIGFLOW CODE STRUCTURE 

The BIGFLOW computer code has 43 subroutines arranged in at least five levels. The first 
level is the main program MAINFLO, which dimensions a single "master array" (ABIG). MAINFLO 
calls the second level routine MIDFLO once, in such a way that the master array is broken up in a 
number of arrays. MIDFLO is mainly a memory manager or "middle man" which reads the basic input 
file INPUT1 and allocates to each of these arrays the exact dimension required for the case at hand (if 
the array is not needed, its dimension is reduced to one). MIDFLO then calls the third level routine 
SUBFLO, usually only once (except in the case of dynamic control of domain size - see "ACTIV" 
option). 

SUBFLO is the largest subroutine of BIGFLOW (in terms of executable code). It performs a 
number of tasks, such as reading multi-dimensional datasets, initializing arrays, performing some limited 
algebra, and most importantly, managing the flow of conditional calls to many algebraic and 110 modules. 
These modules are fourth level routines of BIGFLOW. 

The computational kernel of BIGFLOW is composed of just a small subset of the fourth-level 
modules, principally the matrix solver modules. The fourth level modules may in turn call fifth level 
modules: for example, the solver modules call certain error norm computation modules many times. 

The names and functions of all the subroutines composing the BIGFLOW code (in alphabetical 
order) are: 

No. Subroutine Function 

1. BCLlO Implements boundary conditions after subroutine "SYSL" has been called. 

2. BCL20 Implements boundary conditions after subroutine "SYSL" has been called. 

3. BCL30 Implements boundary conditions after subroutine "SYSL" has been called. 

4. BCNLlO Implements boundary conditions (Fixed Head) for the nonlinear system 
(unsaturated flow). The temporary head array is also updated at boundary nodes. 

5. BCNL20 Implements boundary conditions (Fixed Flux) for the nonlinear system 
(unsaturated flow). The temporary head array is also updated at boundary nodes. 

yr 
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No. 

6. 

7. 

8. 

9. 

10. 

1 1 .  

12. 

13. 

14. 

15. 

16. 

17. 

18. 

19. 

20. 

21. 

22. 

23, 

24. 

Subroutine 

BCNL30 

BFLUXl 

BFLUX2 

BFLUX3 

BHEADl 

BHEAD2 

BHEAD3 

BHZERO 

DNORM2 

DNORM3 

DSCALE 

ICCG 

ICFAC 

LCOND 

NORM2 

NORM3 

MICFAC 

MIDFLOW 

NLCOND 

Function 

Implements boundary conditions (Zero Head Gradient) for the nonlinear system 
(unsaturated flow). The temporary head array is also updated at boundary nodes. 

Computes values of normal fluxes at boundaries, that is at midnode locations 
adjacent to boundaries. 

Computes values of normal fluxes at boundaries, that is at midnode locations 
adjacent to boundaries. 

Computes values of normal fluxes at boundaries, that is at midnode locations 
adjacent to boundaries. 

Computes values of array "AH" at boundary nodes for output purposes only. 

Computes values of array "AH" at boundary nodes for output purposes only 

Computes values of array "AH" at boundary nodes for output purposes only. 

Sets the boundary node values of the head array to be zero 

Computes the L-Norm of the difference between two array variables 

Computes the L,-Norm of the difference between two array variables 

Performs a scaling of the matrix system just before and after some of the matrix 
solver calls if the diagonal scaling option is activated. 

Solves the linear system [A]{h} = (b} by the method of "Preconditioned 
Conjugate Gradients; 

Finds the L matrix in the incomplete Cholesky factorization of the original matrix 
[A1 

Computes three 3D Arrays of midnodal saturated conductivity. 

Computes the b-Norm of the solution error 

Computes the L,-Norm of the solution error 

Finds the L-matrix in the modified Incomplete Cholesky Factorization of the 
original matrix [A]. 

Reads part of the inputs (file INPUT l), computes array dimensions and array 
addresses in array "ABIG", and calls the subroutine SUBFLO 

Computes the nonlinear unsaturated conductivity as a function of pressure head. 
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p.. 
I No. Subroutine Function 

25. SIP1 Solves the linear system of BIGFLOW using a standard SIP algorithm (no 
alternate node ordering) 

26. SIP2 Solves the linear system of BIGFLOW using either a fixed node ordering 
(standard) or alternate node ordering (standardheverse) SIP algorithm. 

YL 27. 

28. 

SIPFAC Performs a SIP factorization 

SUBFLO Reads various three-dimensional data sets that may be needed for the particular 
case at hand, and calls other fourth level modules. 

29. SYSLl Computes coefficients of the discrete system excluding the effect of boundary 
conditions, terms in coefficients (ARHS, AD) that depend (linearly) on the past 
solution, and/or the variable time step. This routine is used for both transient 
and steady saturated flow. 

SYSNLl Computes coefficients of the nonlinear system, excluding the effect of boundary 
conditions (unsaturated flow). 

30. 

SYSNL2 Computes coefficients of the nonlinear system, excluding the effect of boundary 
conditions (unsaturated flow). 

31. 

32. SYSNL3 Computes coefficients of the nonlinear system, excluding the effect o f  boundary 
conditions (unsaturated flow). 

33. 

34. 

35. 

36. 

THETA 10 Computes the water content-pressure head curve (piecewise linear). 

THETA20 Computes the water content-pressure head curve (exponential with cut-off). 

Ilr THETA30 Computes the water content-pressure head curve (van Genuchten Function). 

THETA3 1 Computes the water content-pressure head curve (Composite Dek and Dieri 
soils). 

37. THETA32 Computes the water content-pressure head curve (Composite Dek and Montfavet 
soils). 

38. TSTEP Computes the next time step, not including the initial (first) time step which is 
computed separately. 

TSYSl Updates the Right Hand Side (R.H.S) and main diagonal coefficients at each new 
time step. 

39. E 
40. WHEAD Writes unformatted full 3D array of heads for saturated flow. 
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No. Subroutine Function 

41. WPROBE Writes values of heads at certain nodes (single transect plane). 

42. WRIT10 Writes initial variables and certain data in a formatted output file (OUTlO). 

43. WRIT1 1 Writes data and computed variables at certain time instants or time steps to an 
output file. 3D arrays are not included. 

44. WRIT22 Writes formatted data of 3D array “AH“ (Heads) 

Not all the subroutines are used in a given execution of the code. Figure 4-1 shows a schematic 
flowchart of the BIGFLOW code. 

4.3 BIGFLOW EXECUTION PROCEDURE 

A brief description of the recommended procedures necessary to run a BIGFLOW simulation 
is given below. More details on I/O files will follow. 

STEP 1 - Prepare basic input file (INPUTl): 

Run DATAFLOW (select INPUT1 from menu) to create the basic input file required for the 
BIGLOW code. The generic name of this data file is INPUT1 (see below for naming conventions). 

STEP 2 - Prepare other input files (multidimensional datasets): 

Find out which other input files are needed. Information on this will appear on the screen 
when DATAFLOW prompts for the names of the input files. The random field generator, CTURN may 
be used if the conductivity field is random. The generic name INPUT2 is reserved for the 3D initial 
condition file, INPUT3 is for the planar boundary condition file, and INPUT4 through INPUT9 are for 
3D hydraulic property files. Only some of these data files may be needed, depending on the particular 
simulation at hand. For instance, none of the data files INPUT2 through INPUT9 would be needed for 
a flow problem with uniform initial condition, uniform boundary condition on each face of the domain, 
and spatially constant hydrodynamic parameters (material properties). On the other hand, if, for example, 
the conductivity K, is spatially variable, then the actual file name of the generic data file INPUTS must 
be specified correctly, for example, KSAT5. The conductivity file KSAT5 may be generated either with 
DATAFLOW, or, if random, by using the CTURN code. 

STEP 3 - Input file name conventions: 

Once all the required input data files have been created, their actual file names should be 
changed by the user to reflect the particular flow problem being simulated. This will avoid confusion 
with previously created data files. The actual file names, as chosen by the user, must then be specified 
inside the basic INPUTl file, along with the other input variables specified in that file. The INPUTl file 
itself may have a different name, for example, the user may choose to name this file IN1-TEST999 rather 
than INPUTI. However, at run time, it is necessary that the INPUTl file’s actual name be INPUTl, 
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Figure 4-1. Schematic flowchart of BIGFLOW 
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Figure 4-1 (Cont’d). Schematic flowchart of BIGFLOW 
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since BIGFLOW automatically searches for a file named INPUTl.  Alternatively, system commands 
could be used to assign the actual file name of INPUTl to the logical name "INPUT1" just before 
running BIGFLOW. 

STEP 4 - Run BIGFLOW: 

Run BIGFLOW either in "batch mode" or "interactive mode" 

NOTE #1: For complex problems, it may be useful to run first with the flag LRUN=O as 
a short preliminary test. Look at the output files OUT10 and OUTBAD to check 
for parameters computed by the code, then, if all is as expected, run a full 
simulation with flag LRUN= 1. 

NOTE #2: BIGFLOW's numerical outputs, as well as inputs, can be large. To reduce the 
size of BIGFLOW's 3D datasets, both inputs and outputs, choose the 
"unformatted" option by setting the flag LUNF to LUNF= 1. Unformatted files 
are about four times more compact, but they are not usually portable to different 
computer systems, unlike formatted (ASCII) files. If portability is important, 
choose LUNF=O for "formatted" files. 

STEP 5 - Look for possible error messages: 

At run time, two categories of errors may occur: (i) run time errors detected by the operating 
system (such as overflow); and (ii) errors or data conflicts detected by the BIGFLOW code itself. Error 
messages from the BIGFLOW code will appear in a file named OUTBAD, which is overwritten at each 
new simulation whether there is a BIGFLOW error or  not. If there are no such errors, the message will 
be of the form "BIGFLOW errors: ... none." On the other hand, a detected error or data conflict will 
cause a different message to be printed in OUTBAD, and will also cause premature end-of-execution. 
Note that this may occur even in the case of a short test run with the flag LRUN=O. If a BIGFLOW 
error occurs while LRUN=O, the error is probably due to incompatible or nonexistent input file(s). 
More generally, the possible errors that can be detected by BIGFLOW are of three types: 

1. Insufficient dimension of the master array ABIG (main program MAINFLO). 

2. Incompatible or  erroneous data in input file INPUTl;  the error code LBAD=-n will help 
locate the error (see Appendix A for a listing of various error descriptions). 

3. Erroneous or nonexistent input data file INPUT2 through INPUT9. The  error code 
LBAD=-n will help locate the problem; in particular the 1st digit of n indicates which input 
file was at fault. For instance, n=-52 would indicate a problem with the input file whose 
generic name is INPUT5 (3D saturated conductivity field). For example, if the actual file 
name for INPUT5 is KSAT5, then the error may be due to KSAT5 being nonexistent in the 
current directory (perhaps with the wrong name, too short/too long, or with an incorrect 
format). 

t 
i 

5 
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STEP 6 - Examine and rename output files: 

The 3D head solution is stored in file HEAD-TO for steady state flow problems, in files 
HEAD Tn or H Tnnn for transient flow problems. These files can be formatted (ASCII) or unformatted 
(binary). In the transient case, the head values at certain locations may also be given at each time step 
(all time steps) in the mass balance file OUT13 discussed below. 

The post-processing routines of the DATAFLOW code can be used to obtain other outputs such 
as 3D flux and 3D head gradient vectors, transects or plane sections of 3D fields, and also statistical 
properties. Basic data and numerical information such as iteration errors will be found in the output files 
OUT10, OUT11, and OUT12, depending on the case at hand. All output files should be renamed to 
avoid confusion with previous simulation outputs. It is advised to incorporate the generic names above 
as part of the new names, for example, rename OUT13 as "OUT13-TEST999" for test run 999. 

4.4 BIGFLOW INPUT/OUTPUT FILES 

Most of the inputs/outputs of the BIGFLOW code can be processed interactively by using the 
companion code DATAFLOW. The special-purpose data processor DATAFLOW can be used to: 
(i) create the basic BIGFLOW input file describing the nature of the flow problem and a number of 
options; (ii) create other BIGFLOW inputs that require two- or three- dimensional data fields; and 
(iii) process lD, 2D, and 3D datasets in a number of ways. For instance, one may generate a 3D flux 
field from 3D head and conductivity fields, perform various statistical analyses of 3D datasets, and extract 
lowerdimensional datasets along transects or slices. 

The generation of random field parameters can be handled independently by the 3D CTURN. 
The formats used in the latter code are indeed compatible with those used in BIGFLOW and 
DATAFLOW. This means that a random conductivity field generated with the CTURN code can be 
processed by DATAFLOW for statistical analysis (this is recommended), and can then be used as input 
to BIGFLOW for conducting stochastic flow simulation(s). Furthermore, DATAFLOW also contains a 
routine to interactively rescale the random conductivity field, for example, for modifying the 
log-conductivity standard deviation, or the geometric mean conductivity, or both. 

The BIGFLOW code itself is noninteractive, and can, therefore, be run as a batch process as 
well as directly from the console. The required input files have the logical names INPUTj (i=1, ... 9). 
The "basic" input file is INPUTl. This short file contains the chosen names of all the other input files, 
as well as the basic description of the flow problem and a number of numerical options. It is 
recommended that the DATAFLOW code for creating INPUTl interactively be used. The task is 
particularly easy when it is only required that an existing INPUTl file be slightly modified , The 
remaining input files may be created using either DATAFLOW and/or the CTURN code. For example, 
one may use DATAFLOW to create a 3D conductivity field corresponding to a layered or 
block-structured medium; one may alternatively use the CTURN code to generate a 3D conductivity field 
for a randomly heterogeneous medium; and one may even use DATAFLOW to superimpose layers or 
blocks of specified conductivity onto an existing random field output of the CTURN code (or any other 
BIGFLOW-compatible 3D dataset for that matter). 

Some of the numerical outputs from BIGFLOW can be quite large, but there are also two small 
output files created at the start of execution: (i) one file containing basic information on the simulation 
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parameters (OUT10); and (ii) a short error file (OUTBAD) which may show an error message if trouble 
was detected by BIGFLOW. On the other hand, output files like OUT11 and OUT12, which contain 
purely numerical information (residual iteration errors), can be long depending on the total number of 
iterations. File OUT13 contains output data that needs to be issued at each time step, such as mass 
balance information from which mass balance errors may be assessed, and head values at selected 
locations (the "probe" option). The 3D field of hydraulic head or pressure head can be very large, and 
is only stored at selected times in the case of transient simulations. For steady flow, there is only one 
3D head output, stored in a data file named HEAD TO. For transient flow, there may be a number of 
3D head outputs issued at selected times chosen by the user. These outputs are stored in data files named 
either HEAD-Tn or H-Tnnn, where n or nn or nnn represents an integer with, at most, three digits 
(0 < nnn I 999). In case BIGFLOW has trouble with this numbering scheme, or exhausts all the 
available digits, then a "mystery file" named HEAD - TX may be created. 

The format of 110 files containing 3D datasets can be either formatted (ASCII) or unformatted 
(binary). In order to save space on the file storage system, it is recommended to use the latter option in 
the case of large simulations (bowever, binary data files are not easily transportable among different 
operating systems). Also, it is advisable to rename all output files after completion of each BIGFLOW 
job, since the code always uses the same generic file names for its outputs. This is true also for the data 
processor code DATAFLOW, for example, when used to postprocess the numerical 3D head field. The 
result of such processing may be the creation of a 3D flux vector field from the existing 3D head and 
conductivity fields, the extraction of 2D plane sections of these fields, lD, unidirectional covariance 
functions obtained by spatial moment analysis, etc. In some cases, the resulting data files are given 
generic names and may have to be renamed for clarity. But, most often, the DATAFLOW code will 
prompt the user for a file name. 

Figure 4-2 shows the general interrelationship between the 110 files of BIGFLOW. 

4.4.1 BIGFLOW Input Files 

All the input files of the computer code BIGFLOW are listed and described in Table 4-1. 

4.4.2 Description of Variables in File INPUTl 

In the following, all the basic input variables needed for conducting a BIGFLOW simulation 
are listed and explained. These variables are encountered by a user while directly editing an INPUTl 
file, or during an interactive session with DATAFLOW while creating a new INPUTl file, or modifying 
interactively an existing INPUTl file. Note that the names of all other input datasets required by 
BIGFLOW (if any) are themselves considered as basic input variables, to be specified in file INPUT1. 

Variable Explanation 

IDATE Date (integer with six digits: day-month-year) 

IDRUN Identification number for the run (at most six digits) 

LRUN Set this flag to 1 if actual simulation is required 

19 
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Table 4-1. List of BIGFLOW input files 

Input File 

INPUT1 

Description 

Basic data 

II INPUT2 I Initial heads II 
INPUT3 

INPUT4 

INPUT5 

INPUT6 

INPUT7 

Boundary condition type and actual value 

Specific storativity (S , )  

Nodal saturated conductivity (K,) 

Slope of  the unsaturated lnK(h), h relation (a) 

Volumetric water content at saturation (8,) 

6 

INPUT8 

INPUT9 

i, 

m 

Shape coefficient or slope in the 001) retention curve (p) 

Bubbling pressure head, for unsaturated conductivity 
and/or water retention curves (h,) 

L U N F  Flag for unformatted input/output data files (LUNF= 1). If L U N F  = 0 then input/output 
data files are all formatted 

GRID SIZE 

NGRIDl,2,3 Total number of nodes along the X, Y, and Z axis, respectively. This includes 
fixed head nodes, and also exterior nodes for flux or gradient boundary 
conditions (i.e., boundary nodes as well as interior nodes). 

MINGl,2,3 This is needed only if one or more boundaries will be moving during the 
(TRANSIENT) flow Simulation. The rules are: 

(1): MINGj less than or equal to NGRIDj 
(2): MINGj greater than or equal to 4 
(3): MINGj odd(even) if NGRIDj odd(even) 

If both opposite faces (Aj,Bj) are fixed. then MINGj will automatically be set 
equal to NGRIDj by the BIGFLOW code 

4-12 



. . . . . . - - - . 

MDELTj 

HDELT 

LDELT 

GRAV 1,2,3 

LTYPA(J) , 
LTYPB(J) 

FIXAj, 
FIXBj 

PARAMETERS FOR ACTIVATION ALGORITHM 

Node-size of the region adjacent to the boundaries, where the flow code searches 
for pressure changes with respect to the initial pressure head 

Absolute value of pressure head difference, used as decision criterion to activate 
boundaries 

Integer code for choosing the kind of norm to be used for computing the typical 
pressure difference Norm(H-Hin) within search zone : LDELT=2 or < 2  : 
Mean-square norm LDELT=3 or > 3 : Absolute Maximum norm 

Orientation of axes relative to gravity 

BOUNDARY CONDITION TYPE ON EACH FACE 

Boundary condition type on each face: For J = 1 through 3. The index J 
corresponds to the coordinate axis (for example J = 1 along X axis, J = 2 along 
Y axis, and J =3 along Z axis). Therefore, LTYPA(1) describes the Y-Z plane 
at X1 = 0, and LTYPB(1) describes the Y-Z plane at X1 = XLl (maximum 
node along the X direction). 

= 0 if activated boundary 
= 1 if uniform fixed head 
= 11 if nonuniform fixed head 
= 2 if uniform fixed flux 
= 22 if nonuniform fixed flux 
= (-)12 if mixed head-AND-flux 

Minus sign if flux condition is more severe than head condition, 3 if zero 
pressure head gradient 

For example: 
ENTER : 
LTYPA(l), LTYPB(1) ... FOR Xl=O., X l = X L l ,  where XL1 is the maximum 
node along the X direction 
LTYPA(2), LTYPB(2) ... FOR X2=0., X2=XL2, where XL2 is the maximum 
node along the Y direction 
LTYPA(3), LTYPB(3) ... FOR X3=0., X3=XL3, where XL3 is the maximum 
node along the Z direction 

VALUE OF FIXED HEAD OR F'LUX ON EACH FACE 

Value of fixed head or flux on each face. If one or more faces have nonuniform 
boundary conditions, .then all the values will be disregarded as boundary 
conditions (they will be given in a separate data file INPUT3). However, if this 
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is the case, one should still give typical values of pressure or flux, as these will 
be used to compute stability parameters. Also, use FIXaj=HIN for the moving 
boundaries. 

For example: 
ENTER: 
FIXA1, FIXB1 ... FOR X1 =O., X1 = X L l  
FIXA2, FIXB2 ... FOR X2 = O., X2 = XL2 
FIXA3, FIXB3 ... FOR X3=0. ,  X3=XL3 

Figure 4-3(a) illustrates LTYPA(J) and LTYPB(J) boundaries with FIXA(J) and 
FIXB(J) (J= 1,2,3) boundary values. Figure 4-3(b) depicts the location of planes 
A and B, relative to the origin of the coordinate system. 

MESH SIZE 

DX1, DX2, DX3 Mesh size if LGRID = 1, domain size if LGRID=2 

FLOW REGIME AND VARIOUS OPTIONS 

LFLOW 

LTRANS 

LKWNOD 

LHIN 

HIN 

= 1 : saturated (hydraulic head-based equations) 
= 2 : partially saturatedhnsaturated (pressure head-based equations) 
= 3 : steady unsaturated flow (Kirchoff transform-based equations) 
(option 3 not available) 

= 0 : steady state flow 
= 1 : transient flow 

Option for the scheme used in computing midnodal saturated conductivities, given 
the nodal values (interpolation scheme) 
LKWNOD = 1: use geometric mean 

= 2: use harmonic mean 
= 3: use arithmetic mean 

LKWNOD= 1 is recommended for most applications of saturated flow; this has 
no influence on unsaturated flow simulations 

= 0: initial head is spatially uniform 
= 1: initial head is arbitrarily non-uniform 
= 10: linear profile along the X1 axis 
= 20: linear profile along the X2 axis 
= 30: linear profile along the X3 axis 
WARNING: Head= hydraulic head for saturated flow; head=pressure head for 
unsaturated flow 

Initial head if LHIN=O above, or else some reference head value if LHIN= 1 or 
10 or 20 or 30 above 
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Figure 4-3. 
planes, and (b) the location of planes relative to the origin 

Schematic depicting: (a) the LTYPA(J) and LTYPBQ boundary 
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HYDRAULIC PROPERTIES/STATISTICS 

NOTE: The porous medium hydraulic properties are assumed u priori to be 
defined as random variables or random functions. However this interpretation is 
not necessary; for those properties not random, use relevant values as explained 
below. 

Value of the data (if constant in space) or some reference value (if variable) 

Zero (if constant data), else some measure of variability (maximum amplitude, 
etc.) 

Zero (if constant data), else some fluctuation scale or wavelength 

Mean 

Standard Deviation 

Correlation Scale 

FKGM Geometric mean 

FKDEV Standard Deviation of In(K) 

FKL1, 
FKL2, FKL3 Three Correlation Scales of In(K) 

SPECIFIC STORATIVITY (TRANSIENT SATURATED FLOW) 

CAPGM 

CAPDEV 

CAPLl , 
CAPL2, CAPL3 

ALFGM 

ALFDEV 

ALFA 1, 
ALFA2, ALFA3 

TTGM 

N O E :  This property can also be used as the specific storativity for unsaturated 
flow; in this case it must be constant (CAPDEV=O) and will only be turned on 
for regions with positive pressures. 

Geometric mean of specific storativity 

Standard Deviation of specific storativity 

Three correlation scales of specific storativity 

HYDRAULIC PROPERTIES FOR UNSATURATED FLOW 

Mean of coefficient Q of the InK(h) relationship (unsaturated flow regime) 

Standard deviation of Q 

Three correlation scales of a 

Mean of saturated volumetric water content or porosity (unsaturated flow only; 
not required if steady state) 

ii 
ii 
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TTDEV 

T T L I ,  
m L 2 ,  TTL3 

BTGM 

BTDEV 

BTL 1, 
BTL2, BTL3 

HBB 

LTHETA 

TTDRY 

VGN 

HSMALL 

DTI N 

DTMIN 

DTMAX 

Standard deviation of saturated volumetric water content or porosity (unsaturated 
flow only; not required if steady state) 

Three correlation scales of saturated volumetric water content or porosity 
(unsaturated flow only; not required if steady state) 

Mean of fl  coefficient of the water retention curve (unsaturated flow only; not 
required if steady state) 

Standard deviation of fl  coefficient of the water retention curve (unsaturated flow 
only; not required if steady state) 

Three correlation scales of p coefficient of the water retention curve (unsaturated 
flow only; not required if steady state) 

Air entry or "bubbling" pressure head (for InK(h) and 8(h) curves; unsaturated 
flow only) 

OTHER INPUTS FOR UNSATURATED SOIL PROPERTIES 

10 ------ > Piecewise linear 
20 ------ > Exponential curve, with cut-off at h =HBB 
30 ------ > Van-Genuchten curve 
3 1 ------ > Dek and Dieri soils 
32 ------> Dek and Montfavet soils 

(LTHETA is not needed in steady state and/or saturated flow) 

- - 
- - 
- - 
- - 
- - 

Dry residual water content (real constant) 
(TTDRY is not needed in steady state and/or saturated flow) 

Van-Genuchten "n" parameter (real constant) 
(VGN is not needed in steady state and/or saturated flow) 

Small pressure head difference used to compute unsaturated soil moisture 
capacity; should be small enough for a good finite difference approximation of 
the derivative of 801). (HSMALL is needed only for unsaturated flow) 

TIME-STEP AND RELATED DATA ON IXOW DYNAMICS 
CASE OF TRANSIENT FLOW 

Initial time step 

Minimum time step 

Maximum time step 
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DTMUL 

DTIN 

DTMIN 

DTMAX 

DHSTAB 

CONDMA 

SCAPMI 

LSOLV 

Time step multiplier for a geometric increase of time step with respect to time. 
Use 1 < DTMUL < 2 for unsaturated flow, or even more for saturated flow; 
taking DTMUL < 0 will indicate another version of the time step algorithm as 
described in the following. The  time-stepping algorithm is based on the rate of 
change of heads compared to the largest absolute head difference DHSTAB 
(computed from boundary and initial conditions), as follows: 

RMUL = ABSPTMUL)  ; 
DTB=DTIN*DHSTAB/MAX(H(K+ 1)-H(K)) 
DT(K+ l)=Min(RMUL*DT(K) , DTB ) if DTMUL > 0 
DT(K+ l)=RMUL*Min( DT(K) , DTB ) if DTMUL < 0 

The 1st time step unless it is zero, in which case the 1st step is computed by the 
code so that it be very (very) small. For steady state flow, DTIN is irrelevant. 

Minimum 1st time step. For steady state flow, DTMIN is irrelevant. 

Maximum 1st time step. For steady state flow, DTMAX is irrelevant. 
NO7E: DTIN = DTMIN = DTMAX will force the code to use a constant time 
step, except for the 1st one. (This is not recommended). 

OTHER DATA ON NUMERICS AND FLOW DYNAMICS 

Reference value of head difference, used to compute time-step according to: 
DT(K+ l)=DTIN*DHSTAB/MAX(H(K+ 1)-H(K)). This value may be over- 
ridden by the code if it is found to be too small. 

Approximate maximum of saturated or unsaturated conductivity 

Approximate minimum of either specific storativity (for saturated flow) or soil 
moisture capacity (for unsaturated flow) 

LINEAR SYSTEM SOLVER (INNER ITERATIONS) 

Choice of the linear system solver. Two main types of preconditioned iterative 
solvers are available: SIP solvers, and Conjugate Gradients (CG) solvers. 

0 = +-I  10: "SIPl" solver - standard ordering: (larger storage; smaller 
CPU time if constant iteration parameter; larger CPU time if cyclic 
iteration parameter) 

0 = +-120: "SIP2" solver - standard ordering; (smaller storage; larger 
CPU time) 

0 = +-121: "SIP2" solver - alternate ordering; (smaller storage; larger 
CPU time) 
(minus sign for pre-diagonal scaling recommended) 

+ -200: "CG" and "DSCG" conjugate gradients solver; 
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LNORM 

ERMIN 

ERMAX 

ERMIN 

ITEND 

LPEPIT 

a = + 2 10: "ICFAC + PCG" solver: Incomplete Choleski and Conjugate 
Gradients 

a = +220: "MICFAC +PCG" solver: Modified Incomplete Choleski (IC) 
and Conjugate Gradients. Examples: + 120 (standard SIP), -200 
(diagonally scaled CG) 

Controls computation of error norm in both the linear and nonlinear iteration 
loops (respectively ERNORM and ENL): 
0: do not compute ERNORM 
-1,-2,-3,-4,-5: compute ERNORM only at the last iteration step 
+ 1 ,+2 ,  +3, +4, +5: compute ERNORM each iteration step, and apply the 
ERMIN convergence test 
+-1: L I  norm (mean absolute value) 
+-2: L2 norm (mean-squared norm) 
+-3: L-infinity norm (absolute maximum) 
+-4: L2 and L-infinity both computed, with L2 used for computing ERMIN 
+-5: L2 and L-infinity both computed, with L-infinity used for ERMIN. 
If LNORM > 0: ERNORM compared to ERMIN to end iterations 
If LNORM= < 0: ERNORM not used as stopping criterion 
RECOMMENLIED: +4 (convergence test with quadratic norm); even safer: +5  
(convergence test with infinity norm) 

Admissible norm-of-error (convergence criterion) 

Maximum allowed error (more under relaxed or exit) (must be given in head 
units) 

Minimum allowed error (must be given in head units) 

ERMIN > 0 ---> compared to error at each iteration 
ERMIN < 0 ---> ABS(ERM1N) is compared to max error over 1 SIP cycle 
(i.e., over "MIT" iterations) 
ERMIN = 0 ---> ERMIN is ignored (same for ERMAX) 
LNORM < 0 ---> ERMIN is also ignored in this case 
HINT: Take ERMIN < 0 for a stringent convergence criterion, take ERMAX=O 
to avoid max-error stopping 

Maximum number of inner iterations for each outer iteration (OR EACH TIME 
STEP). Typically: 10-50 transient; 100-1OOO steady; maybe more for large 
steady state problems. 
NO=: The actual number of iterations will always be equal to "ITEND" if 
LNORM < 0 or  if ERMIN is very small. 

Option for the SIP iteration parameter: 
LPEPIT=O: PIT is constant over iterations 
LPEPIT= 1: PIT is periodic over iterations 
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RECOMMEMED: LPEPIT= 1 

M IT Integer period of cyclic iteration parameter: 
MIT=O if constant iteration parameter (LPEPIT=O) 
MIT=4  recommended, and no more than 8 (LPEPIT= 1) 
Also note: for alternate-SIP, actual cycle is 2 x MIT 

PITMAX Maximum value of the SIP iteration parameter (or its constant value, if not 
cyclic): 
PITMAX=Real number between 0.0 and 1.0; however, a zero value indicates 
that PITMAX will be computed by the code 
RECOMMENDED: Pick value close to one, or better take PITMAX=O.O to let the 
code do the job 

SIP SOLVER(S) RELAXATION PARAMETER 

UNLAX BLAX( 1); where the formula for BLAX(M) for non-stationary relaxation is: 
BLAX(M) = UNLAX+ [OVLAX-UNLAX]*[ 1-EXP(-VARLAX*(M-l))]; M is 
the iteration count 

OVLAX BLAX(M) AS M-- > 0 

VARLAX The rate of change of BLAX(M) (half the rate if alternate-SIP is used) 

Notes on the choice of solver relaxation: 

For neutral iterations (no relaxation): UNLAX= 1 ., OVLAX= l . ,  VARLAX=O 

For stationary under-relaxation, say BLAX=0.5: UNLAX=0.5, 
OVLAX =0.5, VARLAX =O 
HINT: For a first try, do not relax (enter: l,l,O). If solver diverges, under-relax 
(e.g., 0.5, 0.5, 0). Avoid too small under relax: keep under-relax > 0.1 

NONLINEAR SYSTEM SOLVER (OUTER ITERATIONS) 
CASE OF UNSATURATED FLOW 

ENLMIN Admissible norm-of-error (convergence criterion) 
ENLMAX Maximum allowed error (more under-relax.. .or exit) 

NOTE: ENLMIN must be >0, given in head units (same for ENLMAX), 
ENLMIN will be ignored if LNORM C 0 (given above), ENLMIN will also be 
ignored if zero (same for ENLMAX) 
HINT: Let ENLMAX be ignored (ENLMAX=O.) 

INLMAX Maximum number of outer (nonlinear) iterations for each time step; Typically: 
10-50 transient; maybe more for steady state problems. Note that the actual 
number of iterations will be equal to "INLMAX" if LNORM < 0 or if ENLMIN 
is very small. 
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INLBC Number of additional iterations to update just the heads at boundaries; this may 
not work at all (set INLBC=O in most cases). 
HINT: Set INLBC = 0 

RELAXATION OF NONLINEAR ITERATIONS FOR UNSATURATED FLOW 

HNLAX 
RNLAX 

Relaxation factor for the head increment 
Relaxation factor for the Right Hand Side residual 
IMPORTANT: The flow code requires at least one of these two parameters to be 
equal to 1. This is because they are just different ways of doing the same thing 
(HNLAX ex-post; RNLAX ex-ante). 

Ocher rules: 

HNLAX, RNLAX = 1. for neutral scheme (no relax.) 

0 < HNLAX, RNLAX < 1. for under-relaxation 

1 <HNLAX, RNLAX < 2. for over-relaxation 

HNLAX, RNLAX zero or  negative for automatic control of relaxation: if zero, 
the code finds the starting value; if negative, the code uses the absolute value as 
a starting value. 

HINT: Let HNLAX= 1. and RNLAX= 1. for a first try. If divergence occurs, 
try RNLAX= 1/2,1/4, or less. 

OUTPUT OPTIONS FOR TRANSIENT SIMULATIONS 

KTMAX 

TYMAX 

LTOUT 

KTOUT 

Maximum number of time steps (end-of-simulation): 
For  steady state flow, the code automatically sets this value to be  1, regardless 

of what is entered. 

Let KTMAX=O if no limit on the total number of time steps (the code will 
disregard KTMAX). 

Maximum time in physical units (end-of-simulation): 
Note that TYMAX limits the duration of simulation in terms of simulated time, 
while KTMAX limits actual computer time. This parameter is ignored in case 
of steady state flow. 

Flag for outputs at specified time instants 
LTOUT= 1 for "YES" , LTOUT=O for "NO" 

Number of 3D head outputs to be delivered at given times; must be less than 100 
but the number of outputs is actually not limited; take KTOUT=l  for steady 
state flow. 
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T Y  MOUT(k) Output times, k = l  through KTOUT ; 
TYMOUT is assumed to be the period for further outputs. 
For example, to get an output with period "PPP": 
1 [Return] 
PPP [Return] 

Periodic output: The last value of 

PERIODICITY OF OUTPUTS 

KOUT 10 Basic information (no arrays) for each time step, delivered every "KOUT10" 
time steps, in file "OUTlO"(about 1 pagektep) 

KOUT 1 1 Basic information (no arrays) for each inner iteration, given every "KOUTl 1" 
iteration steps, in file "OUT1 1 " 

KHOUT 3D array of heads provided every "KHOUT" time steps; usually, let KHOUT=O 
for transient flow. However, selecting outputs at given time instants are to be 
preferred: recall the LTOUT flag defined previously in this session. 

Details on the choice of "KOUTIO, KOUTl l ,  KHOUT": 
l , l ,  1 -- > for steady flow with one 3D output 
l , l ,O --> for steady flow without 3D output 
O,O,O -- > for steady flow without 3D output and minimal simulation information 
1 , l  ,O -- > for transient flow without 3D output every "K" time steps, and with 
maximal simulation information 
0,1,0 --> for transient flow without 3D output every "K" time steps, with 
minimal simulation information per t-step, and with full iterative solver output 
(note that this concerns only outputs at given steps; outputs at given times are 
obtained with flag LTOUT= 1 above). 
Note that setting Kxxx =O disables that output option. 
HINT: Always use KHOUT=O for long TRANSIENT runs; the 3D heads can 
be  written in output files at some fixed times rather than time-steps. Let 
KHOUT= 1 to obtain 3D heads in steady state flow 

FORM OF OUTPUTS, IN PARTICULAR 3D HEAD OUTPUT 

LFORM 1 1 (OBSOLETE: OUT10 always formatted) 

LFORM2 1 (OBSOLETE: OUT1 1 always formatted) 

LHOUT Form of the 3D head outputs (if any): 
-1: for no head output at all (this will override everything) 

0: for a small formatted head output, limited to a (10 X 10 x 10) window (use only 
for testing purposes) 

c 

1 : for a complete 3D head output, (unformatted/formatted file if LUNF= 1/0) 
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H I W .  For full normal results, just enter: 1,1,1 for LFORM1, LFORM2, and 
LHOUT 

PROBE THE HEAD SOLUTION AT CERTAIN LOCATION 

IPROB 1,2 , 3 Location of the node, line, or plane 

This in effect monitors the value of the head field at certain nodes, with output 
delivered every time step for these nodes. The options are: 

no probe 
probe a single node (or none) 
probe a line of nodes (along Xj) 
probe a plane of nodes (along X,, X,J 

For example: 
O,O,O 
i,j,k 
O,j,k 
O,O,k 
NOTE: Indices (i,j,k) run from 0 or 1 through NGRIDj (0= "undefined"); exclude 
boundary nodes 1 & NGRIDj 

-----> no probe (this cancels probe output) 
-----> one node, at location (Il=i,  I2=j, I3=k) 
-----> one line, parallel to XI, located at (I2=j, I3=k) 
----- > one plane, orthogonal to X3, located at I3 = k 

HINT: If not sure what to do, just type O,O,O 

SPECIAL OPTIONS 

LBFLUX 

LMASS 

SRELPR 

RSMALL 

INPUT2 

INPUT3 

INPUT4 

INPUT5 

Compute boundary fluxes (YES= 1, NO=O) 

Compute mass balance (YES = 1, NO=O) 
NOTE: Total mass (LMASS = 1) computed only for case of transient unsaturated 
flow; the boundary fluxes (LBFLUX= 1) are computed for any kind of flow; for 
transient unsaturated flow, the code assumes LBFLUX=l and also implies 
LMASS= 1 and vice-versa. Outputs will be stored in file "OUT13". 

SYSTEM-DEPENDENT CONSTANTS 

10 x (Single relative precision ) 

100 x (Smallest real number) 

Name (not to exceed 10 characters) for INPUT2 file 

Name (not to exceed 10 characters) for INPUT3 file 

Name (not to exceed 10 characters) for INPUT4 file 

Name (not to exceed 10 characters) for INPUT5 file 
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INPUT6 Name (not to exceed 10 characters) for INPUT6 file 

INPUT7 Name (not to exceed 10 characters) for INPUT7 file 

INPUT8 Name (not to exceed 10 characters) for INPUT8 file 

INPUT9 Name (not to exceed 10 characters) for INPUT9 file 

4.4.3 BIGFLOW Output Files 

Basic data and numerical information such as iteration count and errors will be found in the 
output files OUT10, OUT11, and OUT12, depending on the case at hand. Table 4-2 summarizes the 
output files of BIGFLOW. 

4.5 INTERACTIVE DATA PROCESSOR DATAFLOW 

DATAFLOW is BIGFLOW's companion code that enables a user to interactively create the input 
files for a BIGFLOW run. DATAFLOW creates the necessary input files for BIGFLOW during an 
interactive session with the user, in which the user responds to specific prompts. In addition, 
DATAFLOW also offers postprocessing capabilities of BIGFLOW 3D output data such as cell-by-cell 
calculation of 3D flux vectors, spatial statistical analyses, extraction of sub-dimensional data sets (1D 
transects or 2D cross sections), etc. DATAFLOW is written in standard ANSI Fortran 77 and has been 
successfully tested on a variety of computing platforms. At the user's option, the output of DATAFLOW 
can be either in ASCII or binary format. 

4.5.1 Features and Functions of DATAFLOW 

In the following, we describe the names and functions of the most important subroutines 
comprising the DATAFLOW code. 

No. Subroutine Type Function 

1 INFLOl Preprocessor : Creates a formatted input file named "INPUT1" by 
interacting with the user. This routine also allows the 
user to modify an existing "INPUTl" file. 

2 INHEAD Preprocessor: Creates a 3D array of nodal values of heads (hydraulic 
or pressure head). This array must have the same 
dimensions as the head array (AH) i.e, 
NPPl  x NPP2 x NPP3, where NPPl  = N1 + 2, NPP2 
= N2 + 2, NPP3 = N3 + 2,  where N1, N2, and N3 
are the number of interior nodes along the three 
othogonal directions. 

E 
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Table 4-2. List of BIGFLOW output files 

Output File 

OUTBAD 

OUT10 

OUT1 1 

OUT12 

OUT 13 

HEAD-TO 

Description 

Error file containing errors detected in the 
input files or BIGFLOW warnings 

Summary of Simulation Results 

Matrix Solver iterations 

Nonlinear iterations 

Probe Heads versus time at given 
space locations 

Full 3D Head Arrays HEAD-TO: for steady state flow 
HEAD-Tnnn (nnn < 100): for transient flow 

No. Subroutine Type 

3 INBC Preorocessor : 

4 INPROP Preorocessor : 

5 INCAP 

INPUTS --> 
INPUT6 --> 
INPUT7 --> 
INPUT8 --> 
INPUT9 --> 

Preorocessor : 

Function 

Creates 3D arrays for the boundary conditions on each 
of the 6 faces of the 3D grid. There are six arrays for 
the type of boundary condition (BC), and six other 
arrays for the corresponding value. Table 4-3 
summarizes the boundary condition type and the 
corresponding value. 

Creates 3D array of nodal values of saturated 
conductivity or  any other hydraulic property, except 
specific storativity. The following files are created: 

Saturated conductivity (K,) 
(11 parameter in InK(h) of the unsaturated curve 
Saturated water content (0,) 
6 parameter in water retention curve 
Bubbling pressure (hb) 

Creates a 3D array of nodal values of capacities such as 
specific storativity. This array must have the dimensions 
N 1 x N2 x N3, where N 1, N2, and N3 are the number of 
nodes in each of the orthogonal directions. 

4-25 



Table 4-3. List of boundary condition types 

BC Type 

TYP = 0 
Activated boundary 

BC Value 

FIX = HIN or 
arbitrary 

TYP = 1 
Fixed uniform head 

TYP = 11' 
Fixed variable head 

TYP = 2 
Fixed uniform flux 

TYP = 22' 
Fixed variable flux 

FIX = Hydraulic or 
pressure head 

FIX = Hydraulic or 
pressure head 

FIX = Flux 
(specific discharge rate) 

FIX = Flux 
(specific discharge rate) 

II TYP = 3 I FIX = Non-applicable 

TYP = 122 /I Fixed head and flux 

NOTE #1 TYP = 11 comes with two options, one being to prescribe two distinct values of 
heads insideioutside a rectangle, the other being to require a linear variation of 
heads from one side of the rectangular face to the opposite side. 

FIX = Head or flux 

NOTE #2 TYP = 12 means that both types of boundary conditions may occur on the same 
face (fixed head at certain nodes, and fixed flux at others). 

No. Subroutine Type Function 

6 DISPLA Posmrocessor : Reads the header (basic information) of 
unformatted/formatted data files that are 3D inputs or 
outputs for BIGFLOW. 

7 MODIFY Preprocessor: Modifies the contents of the conductivity file as created 
by INCOND or the turning band generator. A new file 
("INPUTS") may be created by this routine. 
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No. Subroutine Type Function 

8 PIKLIN Postprocessor: Prints 3D results from BIGFLOW along user selected 
lines. One data file is created for each line. It also 
computes the arithmetic mean along each line (excluding 
the boundaries). This routine can extract 1D transects of 
3D head data, 3D conductivity data, and 3D vectors of 
head gradients and flux. The 1D transects are stored in 
either a user specified file or a default file name as 
selected by the routine. Table 4-4 summarizes the 
functions of this routine. 

9 PIKMAP Poshxocessor: Selects and stores a 2D data slice taken along a plane 
from the 3D data field from BIGFLOW, such as 3D 
conductivity, 3D Head or flux. The name of the 3D file 
is provided interactively by the user. The 2D slice that 
this routine outputs will be stored in a user specified file 
or in the default file "MAP22". 

10 GFLUX Postprocessor: Computes the gradient or flux of a scalar quantity in 3D 
space. The following table summarizes the inputs and 
outputs of this routine. 

1 1  STAT 1 Postprocessor: Computes statistics of a scalar field (for example the 3D 
head field) or of one of the components of a vector field 
(for example, 3D flux field). The computed statistics 
are: (i) the mean; (ii) the global variance; and (iii) the 
correlation function along each of the three axes. It is 
assumed that the input represents a 3D head field. 
However, this could actually be any 3D array of nodal 
values, provided the input file has the appropriate 
format. If the input file is a vector field then a single 
component of this vector field is treated. 

4.5.2 Generation of Input for BIGFLOW Using the Interactive DATAFLOW Code 

All inputs (INPUT1 through INPUT9) can be generated using the interactive DATAFLOW 
code. Once the user invokes DATAFLOW, a DATAFLOW menu presents the following: 

Premocessors : 

INPUT1 
INHEAD 
INBC 
INPROP 
INCAP 
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Table 4-4. Functions of routine PIKLIN 

From 

3D Head 

3D Conductivity 

3D Head Gradient 

3D Flux 

5 

I 

To Default File Name 

1 D  Head PLOT2 1 

I D  Conductivity PLOT5 1 

1 D  Head Gradient PLOT7 1 

1 D  Flux PLOT8 1 

Postprocessors: 

DISPLA 
MODIFY 
PIKLIN 
PIKMAP 
GFLUX 
STAT1 

A concise description of each of the above selections can be obtained by entering "MENU" at 
the prompt. The user must first create the basic data file " INPUTl"  for any BIGFLOW run. The data 
file may be created by entering "INPUT1" at the prompt. At this point, the user has the option to create 
a completely new "INPUT1" data file or modify an existing INPUTl  file. If the user chooses to modify 
an existing " INPUTl"  file, the following rules must be observed: 

Read the definitions given on the screen 
Look at the values read from old INPUTl  file 
To change any of these values, type any character (except space bar or zero), for example 
"C" followed by a "RETURN". The new value may now be entered. 
To save old values, strike the "RETURN" key. 
Do not use more than 10 characters to specify the name of the "INPUT1" file. 

At this point, DATAFLOW is ready to createhodify the basic data file "INPUTl".  The user 
must now respond to a series of questions that define the variables needed for a simulation. The 
definition of each variable along with the choice of responses (where appropriate) is displayed on the 
screen. The user is referred to section 4.4.2 for a complete definition of all variables that constitute 
INPUTl .  

The porous medium hydraulic properties are assumed a priori to be defined as random 
variables or random functions. The randomness of the hydraulic property is defined by its geometric 
mean, standard deviation and correlation scales along the three axes X, Y,  and Z. In the case of spatially 
constant hydraulic data, the mean corresponds to the value of the variable, the standard deviation and the 
correlation scales must all be set to zero. In the case of spatially varying hydraulic data, the mean 
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corresponds to a reference value, the standard deviation represents a measure of variability (for example 
maximum amplitude) and the correlation scales represents a fluctuation scale or wavelength along each 
Cartesian coordinate axis. This aspect is specially useful when creating a spatially varying, layered 
conductivity field. Routine "INPROP" must be invoked to create a spatially varying hydraulic property. 
"INPROP" enables a user to create the following spatially varying properties: 

Saturated conductivity (K,) 
The "a" parameter [slope of Ink@)] 
Saturated water content (0,) 
The "/3" parameter [of the retention curve, 0@)] 
The bubbling pressure (hb) 

Once the flow regime (saturated on unsaturated) is specified, the user can invoke the 
"BLOCKS" option to enable a zone or subdomain with hydraulic properties that are different from the 
imbedding domain. The following rules must be observed: 

First generate the ernbedding matrix (background) 
Then create one or many blocks that the user wishes to superimpose onto the embedding 
matrix 
Up to 500 blocks maybe embedded 

The routine "INHEAD" generates a 3D array of heads and saves this to file "INPUT2". The 
user first enters the exact number of nodes along each of the coordinate axes X, Y, and 2. Upon 
entering the mesh size, the orientation of the Z axis, the user must successively input the head values 
FIXA and FIXB along each of the coordinate axes (see Section 4.4.2 for the definition of FIXA and 
FIXB). The head may either be a constant or linearly varying for hydrostatic pressure head distribution. 
Note that, for unsaturated flow, the pressure head is used instead of the total pressure head. INBC 
generates several 2D arrays for the boundary conditions (type of condition and/or value) on each of the 
six faces of the 3D domain and saves these to file "INPUT3". The user is prompted for the type of 
boundary condition (LTYPA or LTYP3) and value (FIXA and FIXB) for each of the six faces of the 3D 
calculation domain. See Section 4.4.2 for a description of available boundary conditions and 
corresponding values. 

4.5.3 Postprocessing of BIGFLOW Output Using DATAFLOW 

DATAFLOW offers a range of postprocessing options that can be appIied to BIGFLOW output 
data. The following is a list of DATAFLOW'S postprocessing routines: 

DISPLA 
MODIFY 
PIKLIN 
PIKMAP 
GFLUX 
STAT1 

A concise description of each of the above routines can be obtained on the screen by typing 
"MENU" followed by a RETURN. Section 4.5.1 also describes each of the above routines. The 
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following describes the interaction with "PIKMAP" to create a 2D slice out of a 3D data set. All other 
postprocessing routines operate in a similar mode. 

Upon entering the exact node dimensions of the domain, the field is specified to be a scalar or 
a vector. The desired 2D plane (slice) is obtained by first selecting the (X2, X3), (Xl ,  X3), or (Xl ,  X2) 
plane (LDIR= 1, 2, 3, respectively) followed by entering the nodal coordinate of the selected plane. For 
example, in a 125 x 25 x 25 domain, the (Xl ,  X2) plane at X3 = 100 can be obtained by selecting 
LDIR = 3 and the nodal coordinate = 100. The extracted slice is saved in a user specific file in 
formatted or unformatted form. 

L 
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ERROR MESSAGES OF BIGFLOW 



ERROR MESSAGES OF BIGELOW 

BIGFLOW error messages will appear in a file named "OUTBAD", which is overwritten at each new 
simulation whether there is a BIGFLOW error or not. If there are no such errors, the message will be 
of the form "BIGFLOW errors: ... none." On the other hand, a detected error or data conflict will cause 
a different message to be printed in OUTBAD, and will also cause premature end-of-execution. In 
Table A-1 the error messages that may result when executing a simulation with BIGFLOW are listed. 
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Table A-1. Error messages of BIGFLOW 

, 
Meaning 

4 

OI 

LBAD = -1 

LBAD = -2 

LBAD = -3 

LBAD = -4 

LBAD = -5 

LBAD = -6 

LBAD = -7 

LBAD = -8 

LBAD = -9 

LBAD = -10 

11 Error # 

Data inconsistent with flow type 

Illegal boundary type selected 

Inconsistent use of zero gradient boundary condition 

Inconsistent use of moving boundary 

The specified gravity vector does not have unit length 

An illegal value for LBFLUX was selected 

Inconsistent specification of transient outputs 

Incorrect specification of input/output file formats 

An invalid value for LGRID was selected 

Steady state unsaturated flow currently unavailable 
(Kirchoff transform-based equations) 

~ LBAD = -13 I (LFLOW = 1 OR LTRANS = 0) AND LMASS = 1 ' LBAD = -14 

LBAD = -11 I Inconsistent specification of matrix solver relaxation 

11 LBAD = -12 I Bubbling head cannot be strictly positive 

LBAD = -15 

LBAD = -16 

LBAD = -19 

LBAD I_ -20 

IF((LLLSSS. NE. 1 10). AND. (LLLSSS. NE. 120).AND.(LLLSSS. NE. 12 1). AND 
. LLLSSS . NE .200). AND. (LSOLV. NE. + 2 10) .AND. (LSOLV. NE. + 220)) 

Incorrect specification of flow type 

Illegal initial head distribution selected 

Illegal option selected for computation of error norm 

An error was detected in the input file "INPUTX", 
where X is the first digit of the error code LBAD 

A -2 
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APPENDIX B 
PARTIAL INPUT AND OUTPUT FILES FOR 

TEST PROBLEM # 5 (Section 3.5) 



INPUT 1 FILE (GENERAL DATA) 

B-I 



IDATE (DAY-MONTH-YEAR): 
71192 
IDRUN (SIMULATION ID NUMBER): 
10000 
LRUN (0:TEST RUN/l:FULL RUN): 
1 
LUNF (O:FORMATTED/l :UNFORMATTED): 
0 
NGRID1,2,3 (FULL GRID SIZE: TOTAL No.of NODES): 
62, 5, 123 
MING1,2,3 (STARTING GRID SIZE: TOTAL No.of NODES): 
62, 5, 123 
MDELT1,2,3 (SEARCH ZONE FOR ACTIV); HDELT; LDELT : 
3*1, l., 1 
GRAV1,2,3 (GRAVITY VECTOR, DEFINES AXES): 
2*0., + l .  
TYPE OF BNDRY CONDITIONS: LTYPA(i),LTYPB(j),j = 1,2,3: 
2 *2 
2 *2 
1 ,  22 
BNDRY (or stability) CONDITIONS:(FIXAj,FIXBj)j = 1,2,3: 
2 *o. 
2*0. 
2*0. 
MESH SIZE DXl,DX2,DX3: 
3*1. 
FLOW REGIME: LFLOW = (1  :SATURATED/2,3:UNSATURATED): 
2 
TRANSIENTETEADY FLOW (LTRANS = 110): 
1 
LKWNOD= 1,2,3 (MIDNOD.KSAT:GEOM,HARMON,ARITHM MEAN): 
1 
LHIN (0:Hin UNIFORM, 1 :NONUNIFORM, lO*i:LINEAR-Xi): 
1 
HIN (INITIAL OR REFERENCE HEAD VALUE): 
-122. 
Ksat STATISTICS (FKGM.FKDEV,FKLl ,FKL2,FKL3): 
1.12E-3, l . ,  3*1. 
STORATIVITY STATISTICS (CAPGM,CAPDEV,CAPL1,2,3): 
5*0. 
ALFA STATISTICS (ALFGM,ALFDEV,ALFALl,2,3): 
0.1258, l. ,  3*1. 
TTsat STATISTICS ("TGM,TTDEV,TTL 1 ,TTL2,TTL3): 
0.4411, 4*0. 
BETA STATISTICS (BTGMJTDEV , BTL 1, BTL2 ,BTL3): 

BUBBLE PRESSURE STATISTICS (HBBGM,HBBDEV,HBBL1,2,3): 
5*0. 

5.E-2, 4*0. 

, 
PI 
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INPUT 1 
(Con t ' d) 

LTHETA=Theta@) option; TTDRY; VGN = VanGENUCHTEN "n" : 
30, 1.89E-2, 3.872 

HSMALL (FOR UNSAT. MOISTURE CAPACITY COMPUTATION): 
0.5 
TIME STEP @TIN ,DTMIN ,DTMAX,DTMUL): 
0.2, 0.1, lo., 1.2 
DHSTAB (TYPICAL HEAD DIFFERENCE FOR T-STEP CONTROL): 
122. 
CONDMA ("MAXIMUM" SAT/UNSAT CONDUCTIVITY): 
I .  12E-3 
SCAPMI ("MINIMUM" STORATIVITY OR MOISTURE CAPACITY): 
0. 
LSOLV (LINEAR SYSTEM SOLVER OPTION): 
-200 
LNORM (OPTION FOR CHOICE OF ERROR NORM): 
5 
ERMIN,ERMAX (ERROR NORMS/INNER ITER: E < ERMIN-- > CONV): 
l.E-3, 0. 
ITEND (MAX. NUMBER O F  LINEAR SOLVER JTERATIONS): 
50 
LPEPIT (SIP ITER. PARAM. : CSTANT(0) OR CYCLIC(1)): 
1 
MIT (PERIOD OF SIP ITER. PARAM., IF  CYCLIC): 
4 
PITMAX (MAX. ITER. PARAM. O F  "SIP": 0 IF  UNKNOWN): 
0. 
LINEAR SOLVER RELAXATION (UNLAX,OVLAX,VARLAX): 
2*1., 0. 
ENLMIN,ENLMAX (ERR. NORM/OUTER ITER: E < ENLMIN- > CONV): 
l.E-3, 0. 
INLMAX (MAX.No.NONLINEAR OUTER ITERATIONS); INLBC =O : 
50, 0 
HNLAX,RNLAX (RELAX FACTORS FOR NONLINEAR ITERATIONS): 
2*1. 
KTMAX (MAX. OR TOTAL NUMBER OF TIME STEPS): 
20000 
TYMAX (MAX. OR TOTAL TIME OF TRANSIENT SIMULATION): 
36000. 
LTOUT (OPTION FOR OUTPUTS AT GIVEN TIMES): 
1 
KTOUT (NUMBER O F  EARLY OUTPUT TIMES): 
1 
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INPUT 1 
(Con t 'd) 

EARLY OUTPUT TIMES TYMOUT( l),. . .,TYMOUT(ktout): 
7200. 
OUTPUTS OPTIONS KOUTlO,KOUT11,KHOUT: 
2*2000, 0 
OUTPUT "FORMATS" OPTIONS LFORM 1 ,LFORM2,LHOUT: 
3*1 

LOCATION OF NODE/LINE/PLANE FOR THE PROBE (IPROBj): 
31, 3, 0 
SPECIAL OPTIONS LBFLUX,LMASS: 
2*1 
MACHINE DEPENDENT CSTANTS: SRELPR,RSMALL: 
1.E-6, l.E-30 
ACTUAL NAMES OF ALL INPUT FILES (INPUTl/. ../INPUT9): 
IN  1 
I N2 
IN3 
INPUT4 
IN5 
I N 6  
INPUT7 
INPUTS 
INPUT9 

i 

lib 
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PARTIAL INPUT 2 FILE (INITIAL CONDITIONS) 

B-5 



10000 21192 2 2 
0 0.0000000E+00 

62 5 123 
O.lOOOOOOE+Ol 0.1000000E+Ol O.lOOOOOOE+Ol 
0.0000000E + 00 0.0000000E + 00 0.1 OOOOOOE + 0 1 
0. OOOOOOOE + 00 0. OOOOOOOE + 00 0.0000000E + 00 0. OOOOOOOE + 00 0. OOOOOOOE + 00 

0.0000000E + 00 0. OOOOOOOE + 00 0. OOOOOOOE + 00 0. OOOOOOOE + 00 0. OOOOOOOE + 00 
0.0000000E + 00 0.0000000E + 00 0.0000000E + 00 0.0000000E + 00 0. OOOOOOOE + 00 

0. OOOOOOOE + 00 0.00000OOE + 00 0.0000000E + 00 0.0000000E + 00 0. OOOOOOOE + 00 
-O.lOOOOOOE+Ol -O.lOOOOOOE+Ol -O.lOOOOOOE+Ol -O.lOOOOOOE+Ol -0.1000000E+01 
-O.lOOOOOOE+Ol -0.1OOOOOOE+01 -0.1OOOOOOE+01 -0.1OOOOOOE+Ol -0.1OOOOOOE+01 
-O.lOOOOOOE+Ol -O.lOOOOOOE+Ol -O.lOOOOOOE+Ol -O.lOOOOOOE+Ol -0.1OOOOOOE+01 
-O.lOOOOOOE+Ol -O.lOOOOOOE+01 -0.1000000E+01 -0.1OOOOOOE+01 -0.1000000E+01 
-0. IOOOOOOE+OI -O.lOOOOOOE+Ol -O.lOOOOOOE+OI -0.1000000E+01 -0.1000000E+Ol 

-0.2000000E + 0 1 -0.2000000E + 0 1 -0.20000OOE + 0 1 -0.2000000E + 0 1 -0.2000000E + 0 1 
-0.2000000E +O 1 -0.2000000E + 0 1 -0.2000000E + 0 1 -0.2000000E + 01 -0.2000000E + 0 1 
-0.20000OOE + 0 1 -0.2000000E + 0 1 -0.2000000E + 0 1 -0.2000000E + 0 1 -0.2000000E + 0 1 
-0.2000000E + 0 1 -0.2000000E + 0 1 -0.2000000E + 0 1 -0.2000000E + 0 1 -0.2000000E + 0 1 
-0.2000000E + 0 1 -0.2000000E +O 1 -0.2000000E + 0 1 -0.2000000E + 01 -0.20000OOE + 0 1 
-0.20000OOE + 0 1 -0.2000000E + 0 1 -0.2000000E + 0 1 -0.2000000E + 0 1 -0.2000000E + 0 1 

yr 
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lo000 21192 3 1 
0 0.0000000E+00 

62 5 123 
0.0000000E+00 0.0000000E+00 0.0000000E +00 
0.0000000E + 00 0.0000000E + 00 0.1 OOOOOOE + 0 1 
0.0000000E + 00 0. OOOOOOOE + 00 0. OOOOOOOE + 00 0. OOOOOOOE + 00 0. OOOOOOOE + 00 

0.0000000E + 00 0. OOOOOOOE + 00 0. OOOOOOOE + 00 0. OOOOOOOE + 00 0.0000000E + 00 
0.0000000E +00 0.0000000E+00 0.0000000E +00 0.0000000E+00 0.0000000E +00 

0.0000000E+00 -0.1000000E-02 -0.1000000E-02 -0.1000000E-02 -0.1000000E-02 
-0.1000000E-02 -0.1000000E-02 -0.1000000E-02 -0.1000000E-02 -0.1000000E-02 
-0.1000000E-02 -0.1000000E-02 -0.1000000E-02 -0.1000000E-02 -0.1000000E-02 
-0.1000000E-02 -0.1000000E-02 -0.1000000E-02 -0.1000000E-02 -0.1000000E-02 
-0.1000000E-02 -0.1000000E-02 -0.1000000E-02 -0.1000000E-02 -0.1000000E-02 
-0.1000000E-02 -0.1000000E-02 -0.1000000E-02 -0.1000000E-02 -0.1000000E-02 
-0.1000000E-02 -0.1000000E-02 0. OOOOOOOE + 00 0.0000000E + 00 0. OOOOOOOE + 00 
0. OOOOOOOE + 00 0.0000000E + 00 0.0000000E + 00 0. OOOOOOOE + 00 0. 000000OE + 00 
0.0000000E + 00 0. OOOOOOOE + 00 0.0000000E + 00 0. OOOOOOOE + 00 0. OOOOOOOE + 00 
0.0000000E + 00 0. OOOOOOOE + 00 0.0000000E + 00 0.0000000E + 00 0.0000000E + 00 
0. OOOOOOOE + 00 0. OOOOOOOE + 00 0. OOOOOOOE + 00 0. OOOOOOOE + 00 0. OOOOOOOE + 00 
0.0000000E + 00 0.0000000E + 00 0. OOOOOOOE + 00 0.0000000E + 00 0.0000000E + 00 
0.0000000E+00 0.0000000E+OO 0.0000000E+00 -0.1000000E-02 -0.1000000E-02 

-0.1000000E-02 -0.1000000E-02 -0.1000000E-02 -0.1000000E-02 -0.1000000E-02 
-0.1000000E-02 -0.1000000E-02 -0.1000000E-02 -0.1000000E-02 -0.1000000E-02 
-0.1000000E-02 -0.1000000E-02 -0.1000000E-02 -0.1000000E-02 -0.1000000E-02 
-0.1000000E-02 -0.1000000E-02 -0.1000000E-02 -0.1000000E-02 -0.1000000E-02 
-0.1000000E-02 -0.1000000E-02 -0.1000000E-02 -0.1000000E-02 -0.1000000E-02 
-0.1000000E-02 -0.1000000E-02 -0.1000000E-02 -0.1000000E-02 O.OOOOOOOE+OO 
0.0000000E + 00 0.000OOOOE + 00 0.0000000E + 00 0.0000000E + 00 0.0000000E + 00 
0.0000000E + 00 0.0000000E + 00 O.OOO0000E + 00 0. OOOOOOOE + 00 0. OOOOOOOE + 00 
0.0000000E + 00 0.00OOOOOE + 00 0.0000000E + 00 0.0000000E + 00 0.OOOOOOOE + 00 
0.0000000E + 00 0.0000000E + 00 0.0000000E + 00 0.0000000E + 00 0.0000000E f 00 
0.0000000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00 
0.0000000E+00 0.0000000E+OO 0.0000000E+00 0.0000000E+00 0.0000000E+00 

-0.1000000E-02 -0.1000000E-02 -0.1000000E-02 -0.1000000E-02 -0.1000000E-02 
-0.1000000E-02 -0.1000000E-02 -0.1000000E-02 -0.1000000E-02 -0.1000000E-02 
-0.1000000E-02 -0.1000000E-02 -0.1000000E-02 -0.1000000E-02 -0.1000000E-02 
-0.1000000E-02 -0.1000000E-02 -0.1000000E-02 -0.1000000E-02 -0.1000000E-02 
-0.1000000E-02 -0.1000000E-02 -0.1000000E-02 -0.1000000E-02 -0.1000000E-02 
-0.1000000E-02 -0.1000000E-02 -0.1000000E-02 -0.1000000E-02 -0.1000000E-02 
-0.1000000E-02 0.0000000E + 00 0.0000000E + 00 0.0000000E + 00 0.0000000E + 00 
0.0000000E+00 O.OOOOOOOE+OO 0.0000000E+00 0.0000000E+00 O.O000000E+00 
0.0000000E + 00 0.0000000E + 00 0. OOOOOOOE + 00 0. OOOOOOOE + 00 0. OOOOOOOE + 00 
0.0000000E + 00 0.0000000E + 00 0.0000000E + 00 0. OOOOOOOE + 00 0.0000000E + 00 
0.0000000E + 00 0.OOOOOOOE + 00 0.0000000E + 00 0.0000000E + 00 0.0000000E + 00 

k 

ir 

L 
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INPUT 3 
(Cont’d) 

0.0000000E + 00 0.0000000E +00 0.00000OOE+ 00 0.0000000E+ 00 0.0000000E +00 
0.0000000E+00 0.0000OOOE+00 
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PARTIAL INPUT 5 FILE (SATURATED CONDUCTIVITY KJ 
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a 

1 

a 

1 

1 

1 

10000 71192 5 2 
0 0.0000000E+00 
62 5 123 

0.1 OOOOOOE + 0 1 0.1 OOOOOOE + 0 1 0.1 OOOOOOE + 0 1 
0.0000000E+00 0.0000000E+00 O.lOOOOOOE+Ol 
0.1120000E-02 O.lOOOOOOE+Ol O.lOOOOOOE+Ol O.lOOOOOOE+Ol O.lOOOOOOE+Ol 

0.1120000E-02 0.1120000E-02 0.1120000E-02 0.1120000E-02 0.1120000E-02 
0.1120000E-02 0.1120000E-02 0.1120000E-02 0.1120000E-02 0.1120000E-02 

0.2240000E-04 0.224OOOOE-04 0.224oooOE-04 0.22400OOE-04 0.224ooOOE-04 
0.2240000E-04 0.2240000E-04 0.2240000E-04 0.2240000E-04 0.2240000E-04 
0.224000OE-04 0.224OOOOE-04 0.2240000E-04 0.224OOOOE-04 0.2240000E-04 
0.224OOOOE-04 0.2240000E-04 0.2240000E-04 0.2240OOOE-04 0.224OOOOE-04 
0.224000OE-04 0.1120000E-02 0.1120000E-02 0.1120000E-02 0.1120000E-02 
0.1120000E-02 0.1120000E-02 0.1120000E-02 0.1120000E-02 0.1120000E-02 
0.1120000E-02 0.1120000E-02 0.1120000E-02 0.1120000E-02 0.1120000E-02 
0.1120000E-02 0.1120000E-02 0.1120000E-02 0.1120000E-02 0.1120000E-02 
0.1120000E-02 0.1120000E-02 0.1120000E-02 0.1120000E-02 0.1120000E-02 
0.1120000E-02 0.1120000E-02 0.1120000E-02 0.1120000E-02 0.1120000E-02 
0.1120000E-02 0.1120000E-02 0.1120000E-02 0.1120000E-02 0.1120000E-02 
0.1120000E-02 0.1120000E-02 0.1120000E-02 0.1120000E-02 0.1120000E-02 
0.1120000E-02 0.1120000E-02 0.2240000E-04 0.224oooOE-04 0.2240000E-04 
0.224000OE-04 0.2240000E-04 0.2240000E-04 0.2240000E-04 0.2240000E-04 
0.2240000E-04 0.2240000E-04 0.224oooOE-04 0.2240000E-04 0.2240000E3-04 
0.2240000E-04 0.2240000E-04 0.2240000E-04 0.2240000E-04 0.2240000E-04 
0.2240000E-04 0.224oooOE-04 0.2240000E-04 0.1 120000E-02 0.1 120000E-02 
0.1120000E-02 0.1120000E-02 0.1120000E-02 0.1120000E-02 0.1120000E-02 
0.1120000E-02 0.1120000E-02 0.1120000E-02 0.1120000E-02 0.1120000E-02 
0.1120000E-02 0.1120000E-02 0.1120000E-02 0.1120000E-02, 0.1120000E-02 
0.1120000E-02 0.1120000E-02 0.1120000E-02 0.1120000E-02 0.1120000E-02 
0.1120000E-02 0.1120000E-02 0.1120000E-02 0.1120000E-02 0.1120000E-02 
0.1120000E-02 0.1120000E-02 0.1120000E-02 0.1120000E-02 0.1120000E-02 
0.1120000E-02 0.1120000E-02 0.1120000E-02 0.1120000E-02 0.1 120000E-02 
0.1120000E-02 0.1120000E-02 0.1120000E-02 0.1120000E-02 0.2240000E-04 
0.2240000E-04 0.2240000E-04 0.2240000E-04 0.2240000E-04 0.224oooOE-04 
0.224oooOE-04 0.224OOOOE-04 0.224oooOE-O4 0.224ooOOE-04 0.224OOOOE-04 
0.224ooOOE-04 0.2240000E-04 0.224OOWE-04 0.224OOOOE-04 0.224OooOE-04 
0.2240000E-04 0.22400OOE-04 0.224OOOOE-04 0.224ooOOE-04 0.22400WE-04 
0.1120000E-02 0.1120000E-02 0.1120000E-02 0.1120000E-02 0.1120000E-02 
0.1120000E-02 0.1120000E-02 0.1120000E-02 0.1120000E-02 0.1120000E-02 
0.1120000E-02 0.1120000E-02 0.1120000E-02 0.1120000E-02 0.1120000E-02 
0.1120000E-02 0.1120000E-02 0.1120000E-02 0.1120000E-02 0.1120000E-02 
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INPUT 5 
(Con t ’ d) 

0.1120000E-02 0.1120000E-02 0.1120000E-02 0.1120000E-02 0.1120000E-02 
0.1120000E-02 0.1120000E-02 0.1120000E-02 0.1120000E-02 0. I120000E-02 
0.1 120000E-02 0.224000OE-04 0.224OOOOE-04 0.224OOOOE-04 0.224OOOOE-04 
0.224OOOOE-04 0.224OOoOE-04 0.2240000E-04 0.224OOOOE-04 0.22400OOE-04 
0.224oOOOE-04 0.224OOOOE-04 0.2240OOOE-04 0.224OOOOE-04 0.22400OOE-04 
0.224OOOOE.3-04 0.2240000E-04 0.224OOOOE-04 0.2240000E-04 0.22400OOE-04 
0.2240000E-04 0.2240000E-04 0.1120000E-02 0.1120000E-02 0.1120000E-02 
0.1120000E-02 0.1120000E-02 0.1120000E-02 0.1120000E-02 0.1120000E-02 
0.1120000E-02 0.1120000E-02 0.1120000E-02 0.1120000E-02 0.1120000E-02 
0.1120000E-02 0.1120000E-02 0.1120000E-02 0.1120000E-02 0.1120000E-02 
0.1120000E-02 0.1120000E-02 0.1120000E-02 0.1120000E-02 0.1120000E-02 
0.1120000E-02 0.1120000E-02 0.1120000E-02 0.1120000E-02 0.1120000E-02 
0.1120OOOE-02 0.1120000E-02 0.1120000E-02 0.1120000E-02 0.1120000E-02 
0.1120000E-02 0.1120000E-02 0.1120000E-02 0.1120000E-02 0.1120000E-02 
0.1120000E-02 0.1120000E-02 0.1120000E-02 0.224OOOOE-04 0.22400OOE-04 
0.224OOOOE-04 0.224OOOOE-04 0.224OOOOE-04 0.2240000E-04 0.224OOOOE-04 
0.224OOOOE-04 0.224OOOOE-04 0.224OOOOE-04 0.2240000E-04 0.224OOOOE-04 
0.224ooOOE-04 0.224OOOOE-04 0.224OOOOE-04 0.224OOOOE-04 0.224OOOOE-04 
0.2240000E-04 0.224OOOOE-04 0.2240000E-04 0.2240000E-04 0.1 120000E-02 
0.1120000E-02 0.1120000E-02 0.1120000E-02 0.1120000E-02 0.1120000E-02 
0.1120000E-02 0.1120000E-02 0.1120000E-02 0.1120000E-02 0.1120000E-02 
0.1120000E-02 0.1120000E-02 0.1120000E-02 0.1120000E-02 0.1120000E-02 

0.1120000E-02 0.1120000E-02 0.1120000E-02 0.1120000E-02 0.1120OOOE-02 
0.1120000E-02 0.1120000E-02 0.1120000E-02 0.1120000E-02 0.1120000E-02 
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PARTIAL INPUT 6 FILE (CHARACTERISTIC INVERSE LENGTH a) 
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10000 71192 6 2 
0 0. OOOOOOOE + 00 
62 5 123 

O.lOOOOOOE+Ol 0.1000000E+01 O.lOOOOOOE+Ol 
0. OOOOOOOE + 00 0. OOOOOOOE + 00 0.1 OOOOOOE + 0 1 
O.l258OOOE+OO O.lOOOOOOE+Ol 0.1000000E+01 0. IOOOOOOE+Ol 0.1000000E+01 

0.1258000E+OO 0.1258000E+00 0.1258000E+00 0.1258000E+00 0.12580OOE+00 
0.8390000E-01 0.8390000E-01 0.839OOOOE-01 0.839OOOOE-01 0.839OOOOE-01 
0.839WOE-0 I 0.8390OOOE-0 1 0.8390000E-0 1 0.8390000E-0 1 0.8390000E-O 1 
0.8390000E-01 0.8390000E-01 0.8390000E-01 0.8390000E-01 0.8390000E-01 
0.839OOOOE-01 0.839OOOOE-0 1 0.839OOOOE-01 0.839OOOOE-01 0.83900OOE-01 
0.839OOOOE-01 0.125800OE+OO O.1258OOOE+OO 0.1258000E+00 0.1258OOOE+OO 
0.1258000E+OO 0.12580OOE+OO 0.12580OOE+OO 0.12580OOE+OO 0.1258000E+OO 
0.1258000E+00 0.1258000E+00 0.1258000E+00 0.1258000E+00 0.125800OE+OO 
O.l2580OOE+OO 0.125800OE+OO 0.1258000E+00 0.125800OE+OO 0.12580OOE+OO 
O.l258000E+OO 0.1258000E+00 0.1258OOOE+OO 0.1258000E+00 0.1258000E+00 
0.1258OOOE+OO 0.1258000E+00 0.1258OOOE+00 0.1258000E+OO 0.1258OOOE+OO 
0.1258OOOE+OO 0.1258000E+00 0.1258000E+00 0.12580OOE+OO 0.1258000E+00 
O.l258OOOE+OO 0.1258000E+00 0.1258000E+00 O.l258000E+OO 0.1258000E+00 
0.1258000E+00 0.12580OOE+OO 0.8390000E-01 0.839OOOOE-01 0.839OOOOE-01 
0.839OOOOE-01 0.839OOOOE-0 1 0.839OOOOE-01 0.839OOOOE-01 0.83900OOE-0 1 
0.839OOOOE-01 0.8390000E-01 0.8390000E-01 0.8390000E-01 0.83900OOE-01 
0.8390000E-01 0.839OOOOE-01 0.839OOOOE-01 0.839OOOOE-01 0.83900OOE-011 
0.839OOOOE-01 0.8390000E-01 0.839OOOOE-01 0.1258000E+OO O.l258OOOE+OO 
0.1258OOOE+OO 0.1258000E+00 O.l258OOOE+OO 0.12580OOE+OO 0.1258000E+OO 
0.1258000E+00 0.1258000E+00 O.l258OOOE+OO 0.12580OOE+OO 0.1258000E+00 
O.l258OOOE+OO O.l258OOOE+OO 0.1258000E+00 0.1258000E+00 0.1258000E+00 
0.1258OOOE+00 0.1258000E+00 0.1258000E+00 0.1258000E+OO 0.1258OOOE+OO 
0.1258000E + 00 0.1258000E + 00 0.1258OOOE + 00 0.1258000E + 00 0.1258OOOE + 00 
0.1258OOOE+OO 0.1258000E+00 0.1258000E+OO 0.1258OOOE+OO 0.1258OOOE+00 
0.1258OOOE+00 0.1258000E+00 0.1258000E+OO 0.1258000E+00 0.1258OoOE+OO 
0.1258000E+00 0.1258000E+OO 0.1258000E+00 O.l258000E+OO 0.839OOOOE-01 
0.839OOOOE-0 1 0.839OOOOE-01 0.83900OOE-01 0.839OOOOE-01 0.83900OOE-01 
0.839oooOE-01 0.839OOOOE-0 1 0.839OOOOE-0 1 0.8390OOOE-O 1 0.839ooOOE-0 1 
0.839ooOOE-0 1 0.839OoOE-0 1 0.8390WE-O 1 0.839OOOOE-01 0.839OOOOE-01 
0.8390000E-01 0.8390000E-01 0.8390000E-011 0.839OOOOE-01 0.839OOOOE-01 
0.1258OOOE+00 O.l258000E+OO 0.1258000E+00 O.l258OOOE+OO 0.1258000E+00 
O.l258000E+OO 0.1258OOOEi-00 O.l258000E+OO 0.12580OOE+OO O.l2580OOE+OO 
0.1258OOOE+00 0.1258000E+00 0.12580OOE+OO 0.1258000E+00 0.12580OOE+OO 

mi 

fr .i 

a 
rt 

I 
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INPUT 6 
(Con t 'd) 

0.1258000E + 00 0.1258000E + 00 0.1 258000E + 00 0.1 25 8000E + 00 0.1258000E + 00 
0.1258OOOE+00 0.1258000E+00 0.1258000E+00 0.1258OOOE+00 0.1258OOOE+00 
0.1258OoOE+OO 0.1258000E+00 0.12580OOE+00 0.1258OOOE+00 0.1258OOOE+00 
O.l258WE+ 00 0.8390WE-01 0.839WOE-0 1 0.8390000E-01 0.8390000E-01 
0.839oooOE-0 1 0.83900OOE-01 0.839OOOOE-01 0.839OOOOE-01 0.839OOO0E-01 
0.8390000E-01 0.8390000E-01 0.8390000E-01 0.839OOOOE-01 0.839oooOE-Ol 
0.839WOE-0 1 0.839OOOOE.3-0 1 0.839OOOOE-0 1 0.839OOOOE-0 1 0.839OOoOE-0 1 
0.839ooOOE-01 0.8390000E-01 0.1258000E+00 0.1258000E+00 0.125800OE+OO 
0.1258000E + 00 0.1 258OOOE + 00 0.1 258000E + 00 0.1 258WOE + 00 0.12580OOE + 00 
0.1258OOOE+OO 0.1258OOOE+00 0.1258OOOE+00 0.1258OOOE+00 0.12580WE+W 
0.1258OOOE+OO 0.1258OOOE+00 0.1258000E+00 0.1258000E+00 0.12580OOE+00 
0.1258000E+00 0.1258000E+00 0.1258000E+00 O.I25800OE+OO 0.1258OOOE+00 
0.1258000E+00 0.12580OOE+OO 0.1258000E+00 0.1258000E+00 O.l258000E+OO 
O.l258000E+OO 0.1258000E+00 0.1258000E+00 O.l258000E+OO 0.1258000E+00 
0.1258000E+00 0.1258000E+00 0.1258000E+00 0.1258000E+00 0.1258000E+00 
0.1258000E+00 0.125800OE+OO 0.1258000E+00 0.8390000E-01 0.8390000E-01 
0.839OOOOE-0 1 0.839oooOE-01 0.8390000E-0 1 0.8390OOOE-01 0.8390OOOE-01 
0.839OOOOE-0 1 0.8390000E-0 1 0.8390000E-01 0.839OOOOE-01 0.839oooOE-O1 
0.839OOOOE-0 1 0.8390000E-01 0.839OOOOE-0 1 O.839OOOOE-01 0.8390OOOE-01 
0.839ooOOE-0 1 0.839OOOOE-01 0.8390WOE-0 I 0.8390000E-01 O.l25800OE+00 
0.1258OOOE+00 0.1258WE+00 O.l258WOE+00 0.1258OoOE+OO 0.1258OOOE+OO 
0.1258000E+00 O.l258000E+00 O.l258000E+OO 0.1258000E+00 0.12580OOE+OO 
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PARTIAL HEAD-6 OUTPUT FILE (HYDRAULIC PRESSURE 
HEAD AT TIME T = 6  HOURS) 

B- 16 

I 



10000 71192 23 2 
2190 0.2159526E+05 

62 5 123 

0.0000000E + 00 0. OOOOOOOE + 00 0.1 OOOOOOE + 0 1 
0.1000000E+01 O.lOOOOOOE+Ol O.lOOOOOOE+Ol 

0.1120000E-02 0.1OOOOOOE+01 0.1OOOOOOE+01 0.1000000E+01 0.1OOOOOOE+OI 

0.0000000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00 
0.0000000E + 00 0. OOOOOOOE + 00' 0. OOOOOOOE + 00 0.0000000E + 00 0. OOOOOOOE + 00 

-0.6859475E + 0 1 -0.70243 14E + 01 -0.72 19880E + 0 1 -0.7452353E + 0 1 -0.7730099E + 0 1 
-0.8064729E + 0 1 -0.8472863E +01 -0.8978525E +01 -0.961 3236E +O 1 -0.1039 152E +02 
-0.152 1656E + 02 -0.3078397E +02 -0.45564 10E + 02 -0.6442622E + 02 -0.7797465E + 02 
-0.7990353E+02 -0.7999640E+02 -0.7999988E+02 -0.8000000E +02 -0.8000000E+02 
-0.8000000E + 02 -0.8000000E + 02 -0.8000000E + 02 -0.8000000E + 02 -0.8000000E + 02 
-0.8000000E + 02 -0.8OO0000E + 02 -0.8000000E + 02 -0.8000000E + 02 -0.8000000E +02 
-0.8000000E+02 -0.8000000E+02 -0.8000000E+02 -0.8000000E+02 -0.8000000E+02 
-0.800OOOOE + 02 -0.8OOOOOOE + 02 -0.800OOOOE + 02 -0.8000000E + 02 -0.8000000E + 02 
-0.8000000E + 02 -0.80OOOOOE + 02 -0.8000000E + 02 -0.8000000E + 02 -0.8000000E + 02 
-0.8000000E + 02 -0. 8000000E + 02 -0.8000000E + 02 -0.800OOOOE + 02 -0.8000000E + 02 
-0.80OOOOOE + 02 0.0000000E + 00 -0.624295 I E + 0 1 -0.624295 I E + 0 1 -0.62547 17E + 0 1 
-0.6278490E + 0 1 -0.63 14777E + 0 1 -0.6364286E + 0 1 -0.6428 10 1 E + 0 1 -0.6507524E + 0 1 
-0.6604298E +01 -0.6720688E +01 -0.6859475E + 01 -0.70243 14E + 01 -0.72 19880E +01 
-0.7452353E + 0 1 -0.7730099E+ 01 -0.8064729E + 0 1 -0.8472863E + 01 -0.8978525E +O 1 
-0.96 13236E + 0 1 -0.1039 152E + 02 -0.152 1656E + 02 -0.3078397E + 02 -0.45564 10E + 02 
-0.W2622E + 02 -0.7797465E +02 -0.7990353E +02 -0.7999640E +02 -0.7999988E +02 
-0.8000000E+02 -0.8000000E+02 -0.8000000E+02 -0.8000000E+02 -0.8000000E+02 
-0.8000000E+02 -0.8000000E+02 -0.8000000E+02 -0.8000000E+02 -0.8000000E+02 
-0.8000000E + 02 -0.8000000E + 02 -0.800OOOOE + 02 -0.8000000E + 02 -0.8000000E + 02 
-0.8000000E + 02 -0.8000000E + 02 -0.8000000E + 02 -0.800WOE + 02 -0.8000000E + 02 
-0.8000000E + 02 -0.8000000E + 02 -0.8000000E + 02 -0.8000000E + 02 -0.8000000E + 02 
-0.8000000E + 02 -0.8000000E + 02 -0.8000000E + 02 -0.8000000E + 02 -0.8000000E + 02 
-0.8000000E+02 -0.8000000E+02 -0.8000000E+02 -0.8000000E+02 -0.6242949E+01 
-0.6242949E + 0 1 -0.6254747E + 0 1 -0.62785 12E + 0 1 -0.63 1477 1 E + 0 1 -0.6364322E + 0 1 
-0.6428 1 10E + 0 1 -0.6507534E + 01 -0.6604337E+ 0 1 -0.67207OOE +01 -0.68595WE +01 
-0.7024345E +O 1 -0.72 199 12E+01 -0.7452397E+Ol -0.7730 138E + 0 1 -0.8064763E+ 01 
-0.8472904E + 0 1 -0.8978558E +01 -0.9613292E +01 -0.1039 149E +02 -0.152 1654E +02 
-0.3078396E +02 -0.4556409E+02 -0.6442619E+ 02 -0.7797ME + 02 -0.7990353E + 02 
-0.7999640E+02 -0.7999988E+02 -0.8000000Et-02 -0.8000000E+02 -0.8000000E+02 
-0.8000000E+02 -0.8000000E+02 -0.8000000E+02 -0.8000000E+02 -0.8000000E+02 
-0.8000000E + 02 -0.80OOOOOE + 02 -0.8000000E + 02 -0.80OOOOOE + 02 -0.8000000E + 02 
-0.8OOOOOOE + 02 -0.8OOOOOOE +02 -0.8000000E + 02 -0.8000000E +02 -0.8000000E +02 
-0.8000000E + 02 -0.80OOOOOE + 02 -0.8000000E + 02 -0.8000000E + 02 -0.8000000E + 02 
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INPUT 6 
(Cont’d) 

-0.1000000E+03 -0.1277587E+01 -0.1277587E+Ol -0.1275357E+01 -0.1270716E+01 
-O.l263502E+Ol -O.l253380E+Ol -0.123986OE+Ol -0.1222339E+Ol -0.1200040E+01 
-O.l171877E+Ol -O.l136669E+Ol -O.l092670E+Ol -O.l037945E+Ol -0.9697806E+00 
-0.8849020E +00 -0.7789644E + 00 -0.6465534E +00 -0.48 12425E + 00 -0.2786942E +00 
-0.528 1955E-01 0.1002 19 1 E + 01 0.2225468E + 0 1 0.2599 149E +O 1 0.27448 16E +01 
0.2774986E +O 1 0.2723646E + 0 I 0.26046 12E +O 1 0.2422578E + 0 1 0.2 178572E + 01 
0.1872746E+01 0.1504556E+Ol 0.10740OOE+01 0.5808875E+00 0.1342259E-01 

-0.6493974E +00 -0.142 1050E +01 -0.2327769E +01 -0.34162 13E + 01 -0.4754379E +01 
-0.6514933E+01 -0.1013225E+02 -0.1368492E+02 -0.1532645E+02 -0.173757OE+O2 
-0.1977 lOOE + 02 -0.22547WE + 02 -0.257791 8E +02 -0.2960512E + 02 -0.34307 14E +02 
-0.4059699E+02 -0.5408818E +02 -0.9344700E+02 -0.9994563E+02 -0.9999971E+02 
-0.1000000E+03 -O.lOOOOOOE+03 -0.1000000E+03 -0.1000000E+03 -O.lOOOOOOE+03 
-0.1000000E+03 -0.lOOOOOOE+03 -0.1000000E+03 0.0000000E+00 -O.l277587E+Ol 
-O.l275357E+Ol -O.l270716E+01 -O.l263502E+Ol -0.1253380E+01 -O.l239860E+Ol 
-O.l222339E+Ol -0.1200040E+01 -0.1 171877E+01 -O.l136669E+Ol -0.1092670E+Ol 
-0.1037945E +01 -0.9697806E +00 -0.8849020E +00 -0.7789644E + 00 -0.6465534E + 00 
-0.48 12425E + 00 -0.2786942E + 00 -0.528 1955E-0 1 0.1002 19 1 E + 0 I 0.2225468E + 01 
0.2599 149E+01 0.2744816E+01 0.2774986E301 0.2723646E +01 0.2604612E+Ol 
0.2422578E+01 0.2178572E+OI 0.1872746E+Ol O.l504556E+Ol 0.1074000E+01 
0.5808875E +00 0.1342259E-01 -0.6493974E + 00 -0.142 1050E + 01 -0.2327769E+Ol 

-0.34 162 13E +01 -0.4754379E + 01 -0.65 14933E + 0 1 -0.101 3225E +02 -0.1368492E +02 
-0.1532645E +02 -0.1737570E +02 -0.1977 lOOE + 02 -0.2254700E +02 -0.25779 18E +02 

E 

I 

0.OOOOOOOE + 00 0.0000000E + 00 0.0000000E + 00 0.0000000E + 00 0.0000000E + 00 
0.OOOOOOOE + 00 0.00000OOE + 00 0.0000000E + 00 0.0000000E + 00 0.00000OOE + 00 
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