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QUALIFICATION STUDIES ON THE FINITE ELEMENT CODE
HONDO I AGAINST SOME BENCHMARK ANALYTICAL PROBLEMS

PURPOSE

The purpose of this report is to present the results of studies that assess the performance of the

two-dimensional finite element code, HONDO II, in analysis of some benchmark problems in the mechanics
of discontinuous rock.

SCOPE

Qualification studies on a computer code involve assessment of code performance by comparison of
computed solutions for particular problems with the analytical solutions to these problems, or suitable
approximations to the analytical solutions. In the current study, the original intention was to consider four

benchmark problems, two quasi-static and two dynamic, examining the performance of the joint model in
HONDO II, which is a Coulomb formulation based on velocity-dependent friction. However, because
limitations of the code were observed, specifically the inability of the joint model to reproduce the essential

feature of hysteretic response, the scope of the work was restricted to one quasi-static and one dynamic
problem.

1. INTRODUCTION

1.1 BACKGROUND

This report is the second of a series of reports to be prepared on qualification studies of the performance
of computer codes, which may simulate the behavior of discontinuous rock masses. Implicitly, it includes

an assessment of formulations of joint deformation, which are incorporated in the codes. The justification
for and scope of this work is outlined in Task 3, Assessment of Analytical Models/Computer Codes, Seismic
Rock Mechanics Project (Hsiung et al., 1989). The purpose of the comparative studies on code performance
is to determine which of the codes identified in an earlier effort (Kana et al., 1989) are appropriate and efficient

simulators of the behavior of jointed rock masses under repeated dynamic loading. The studies are of two
types, which together are intended to evaluate the constitutive relations for rock masses and discontinuities
and their implementation in various codes for seismic analysis of excavations in jointed rock. The first type

of study is intended to confirm that a code can reproduce the response of several well-established conceptual
models of the performance of a jointed rock mass. In the second type of study, each qualified code from the
first study will be used to analyze the dynamic response of well-designed and executed laboratory experiments
to be performed in Task 2 (Hsiung et al., 1989) on elements of jointed rock. At the conclusion of these studies,
it will be established which codes satisfactorily represent the fundamental dynamics of jointed rock, and also

can predict the behavior of a representative element of a jointed rock mass to an acceptable engineering
tolerance.

In the earlier study (Kanaet al., 1989), several codes, which may be applicable to the analysis of dynamic
loading of excavations in ajointed, brittle, partially saturated, welded tuff rock mass, were identified as current

candidates for assessment. The identified codes include the distinct element codes UDEC and 3DEC

(Cundall, 1988), the discrete element code DECICE (Williams et al., 1985), the finite element codes
HONDO II and SPECTROM-331 (Key, 1986), and the boundary element code BEST3D (Baneijee and

Ahmad, 1985). These codes may model the dynamic performance of jointed rock masses. The particular

feature of each code, which qualifies it for consideration in the comparative studies, is the formulation of an
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interface on which rigid body slip or separation can occur under static or dynamic loading. Whether the
interface meets the requirements for satisfactory simulation of discontinuous deformation of jointed rock is
the concern of these studies.

The two benchmark problems employed in the current qualification studies on HONDO II represent

the simplest quasi-static and dynamic analyses of the loading and performance of jointed rock. A jointed
block subject to cyclic loading (Olsson, 1982; Brady et al., 1985) is the only static problem for which an exact

solution is available. For dynamic analysis, the solution for the transmission of a harmonic incident shear
wave across a cohesive interface in a bar (Miller, 1978) is also exact. In both these problems, the joint is
assumed to be rigid-plastic in shear, with the limiting shear resistance determined by simple Coulomb friction.

The joint deformation model implemented in HONDO II assumes rigid-plastic deformation under shear

loading, with the limiting shear strength defined by Coulomb friction. As will be noted later, the formulation

is complicated by the inclusion of terms that account for dynamic friction and decay of dynamic friction with

decreasing velocity. In principle, however, the joint model in the code is compatible with that employed in

the benchmark problems. On that basis, the comparison between the numerical solution to a problem and
the analytical solution should be rigorous.

Details of the formulation of the HONDO II code have been documented by Key et al. (1978). Although

there have been some enhancements to the code since preparation of that documentation, it is understood that

these do not affect its capacity to analyze the benchmark problems considered here. The general features of
the code are as follows.

1.2 GENERAL FEATURES OF HONDO II

HONDO II is a finite element-based computer code for the analysis of large deformation, elastic and
inelastic transient dynamic response of solids, for which a plane strain or axisymmetric representation is

appropriate. The Galerkin formulation of the finite element method is used to generate the spatial discretiza-
tion (Zienkiewicz, 1977). Four-noded rectangular elements are used, and the motion is assumed to vary

bi-linearly over the element using isoparametric coordinates. The code provides the option to use a one-point
or two-point Gaussian quadrature, allowing stresses to be evaluated either at one or four integration points

within the element, respectively.

The resulting simultaneous equations in time are integrated using an explicit central difference

expression for velocity and acceleration. Because this integration procedure is conditionally stable with
respect to the timestep size, the code continually monitors the step size during the calculations, and updates
the size of the time step if necessary. In the course of the calculation sequence, a global quality assessment
of the calculations is made by continuously comparing the energy supplied to the system with the sum of the
kinetic energy and the internal energy of the system.

In terms of capacity to simulate material constitutive behavior, the code offers a choice of several
material models such as elastic, elastic-plastic including strain hardening, crushable foam or soil behavior,

and viscoelastic behavior. The code is written such that new material subroutines can be added easily.

A sliding interface is simulated in the code. As noted above, the constitutive behavior of the interface
for shear deformation is characterized as rigid-perfectly plastic. Initiation of sliding is governed by a
Coulomb friction model. The shear force acting parallel to the interface is given by the expression

G = [gt + (g, - _)e 7v]Fn (1.1)

2
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In this expression, pV0 and , are friction coefficients for low and high sliding velocities, respectively,
while y is a decay constant characteristic of the transition between low and high sliding velocities. F. is the
normal force acting across the interface.

In specifying initial and boundary conditions, only velocities may be prescribed. The boundary
conditions available are: (1) kinematic boundaries where nodal points are prevented from displacing in either
the vertical or horizontal direction, or both, and (2) pressure boundaries, where a uniform or linearly varying
pressure can be prescribed along an element side as a function of time.

Although HONDO II permits time-dependent pressure boundaries, the same history function is applied
to all boundary pressures. However, the arrival time of the pressure can be different for different boundaries.
The code permits specification of a rigid boundary where a stiffness can be prescribed.

2. CYCLIC LOADING OF A SPECIMEN WITH A SLIPPING JOINT

2.1 PROBLEM DEFINITION

This problem concerns an elastic block with an inclined internal closed joint (Figure 2.1) subject to a
cycle of uniaxial loading.

A linearly-increasing force F is applied to one end of the block, and the other end is fixed. Upon loading,
inelastic slip takes place along the joint. At some point, the applied force is decreased linearly until zero force
remains. Olsson (1982) showed that the stress-displacement relation for the loaded specimen is composed
of three distinct components (Figure 2.2):

(1) a loading segment (OA) which involves elastic deformation and slip along the joint;

(2) an initial unloading segment (AB), where the joint does not slip; and

(3) a final unloading segment (BO), again with elastic deformation and slip.

2.2 PURPOSE

The purpose of this problem is to evaluate the simulation of discontinuous rock deformation, and to test
the formulation of the relations in HONDO II representing joint deformation (Key et al., 1978). Other code
functions tested by this problem include:

(1) the ability of the code to model solid elastic behavior; and

(2) the ability of the code to model quasi-static behavior.

2.3 PROBLEM SPECIFICATION

A single inclined joint is located in an elastic block. The mechanical properties of the medium and
dimensions of the block are listed below.

Young's modulus (E') 88.9 GPa
Poisson's ratio (vM) 0.26
height (H) 2 m
width (W) 1 m

3
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The mechanical and geometric properties of the joint are as follows.

joint normal stiffness (Kn) 220 GPa/m
joint shear stiffness (Ks) 220 GPa/m
joint friction angle (>) 160
joint inclination (a) 450
slipping segment of joint (1) 0.47 m( )

M')A slipping segment of 0.71 m was also investigated.

2.4 ASSUMPTIONS

The material in which the joint is embedded is linearly elastic, homogeneous, and isotropic. It is
assumed in this analysis that the specimen is restrained perpendicular to the plane of analysis (i.e., plane strain
conditions apply). It is further assumed that the joint can be represented by a single, finite length discontinuity
(i.e., the material is continuous on either side of the discontinuity).

2.5 CONCEPTUAL MODEL

Several investigators have proposed simple conceptual models of a single, closed joint to explain
phenomena associated with the deformational response of jointed rock (e.g., Walsh, 1965, and Jaeger and
Cook, 1976). One such model is a single joint embedded in an elastic solid subjected to a cycle of uniaxial
compression.

Brady et al. (1985) present relations for the three slopes in Figure 2.2 in terms of the elastic stiffness of
the solid, the elastic and frictional properties of the joint, and the orientation of the joint. The conceptual
model is illustrated in Figure 2.3. Note that the joint simulated in HONDO II, as in the simple conceptual
model, is not continuous, but occupies only the distance identified by "I " in Figure 2.3.

In the conceptual model, k is the equivalent axial elastic stiffness of the block, including the through-
going discontinuity. The equivalent elastic compliance is given by

1 H cos2a+ sinm2 (.
k WE' KnL K5L

where L = W/cosa.

It should be noted that the term (H/WE') in Eq. (2.1) represents the compliance of the solid in the
conceptual model for plane stress conditions. The analysis in HONDO II is based on plane strain conditions.
However, the plane strain solution can be determined from the plane stress solution with the following
substitutions:

E= 1 +2v' E
(1 +v')2 (2.2)

v 1 +, v'(2.3)
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where E' and V are the Young's modulus and the Poisson's ratio of the medium, and

E and v are the equivalent plane strain parameters.

The stiffnesses for the three slopes are therefore given as

slope OA =k
s k sina sin(cx - (2.4)

K1 (L-l) coso

slope AB = k (2.5)

slopeBO= k
+ k sincc sin(cx + ) (2.6)

K,(L-1) coso

2.6 COMPUTER MODEL

In the HONDO II analysis, the elastic material is discretized into four-noded quadrilateral finite
elements, as shown in Figure 2.4.

As noted in Section 1.2, the constitutive relation for the sliding interface in HONDO II is characterized
as rigid-perfectly plastic. Initiation of sliding is governed by a Coulomb friction relation between shear and
normal forces operating on the interface. The shear force defined in Eq. (1.1) includes friction coefficients
' and g- for low and high sliding velocities, respectively, and a decay constant y characteristic of the
transition between the low and high sliding velocities. Fn is the normal force across the interface. In the
current analysis, g and y were assigned values of zero. Two elastic moduli, Ei and E2, are also required to
describe the sliding interface. These moduli are associated with the determination of the normal contact
forces at the interface. For the current problem, these moduli were assigned the same value as the Young's
modulus of the solid material.

For the sake of completeness, the values of the input parameters used in HONDO II for this problem
are listed in Table 2.1.

Table 2.1

HONDO II Input Parameters

Rock Material Sliding Interface

E = 85.1 GPa(l) .o = 0.287(2)

v = 0.21(l) P= 0.

p = 2850 kg/mi3 Y= 0.

El = 85.1 GPa

E2 = 85.1 GPa

(')Values reflect adjustment for use in plane strain calculations as compared to those listed in Section 2.3
(2)0ther values used were 0. and 0.7.

8
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2.7 RESULTS AND DISCUSSION

The model shown in Figure 2.1 was loaded from 0 to 8.5 MPa, and subsequently unloaded to 0. To
represent quasi-static behavior, the load and unload phases were each performed over a 0.1 second time
interval. The global axial stiffness was calculated every 0.005 second timestep as the ratio of the average
vertical stress to the maximum vertical displacement. Figure 2.5 is a plot of the calculated vertical stress
versus vertical displacement for the complete load/unload cycle for a friction coefficient, go, of 0.287. It is
notable that the stress/displacement behavior indicated in this figure does not reproduce the characteristic
hysteresis in the load cycle which was described previously for the conceptual model. Because the
constitutive model of the sliding interface for shear is rigid-perfectly plastic, the global axial stiffness
immediately upon unloading should reflect the elastic behavior of the intact material. That is, because the
interface is frictionally locked at this stage, there should be no contribution from deformation of the interface
to the overall specimen deformation. This behavior is not expressed in the results of the analysis shown in
Fig. 2.5.

The amount of hysteresis in a load cycle depends on the coefficient of friction for the joint, with
hysteresis non-existent for a frictionless joint and increasing with the magnitude of the coefficient. To
examine the effect of this parameter in the current analysis, joint friction coefficients of 0 and 0.7 were also
investigated. However, the results were identical to those for po of 0.287. As one would expect, increasing
the length of the inclined joint from 0.47 m to 0.71 m results in a decrease in the predicted global stiffness,
as indicated by a comparison of Figs. 2.5 and 2.6. Even at the higher value of the coefficient, no hysteresis
was observed in the unloading phase of the cycle. Without investigating the details of the solution procedure
in HONDO II, it is not possible to identify the reasons for its failure to reproduce hysteresis during a loading
cycle.

A direct comparison of the calculated global axial stiffness with those determined from the conceptual
model is presented in Table 2.2. Besides the discrepancy during unloading, the predicted stiffness during
loading is slightly higher than that determined from the conceptual model. Thus, with the exception of not
being able to reproduce the hysteretic behavior of the jointed block during unloading, HONDO II appears
capable of modelling solid elastic behavior and quasi-static behavior.

Table 2.2

Comparison of HONDO II Results with Conceptual Model Solution for
Cyclic Loading of a Specimen with a Slipping Crack

HONDOII HONDOII
Conceptual Model

Loading Segment Crack Length = 0.47 m Crack Length = 0.71 m
Stiffness (GPahn) Stiffness (GPa/m) Stiffness (GPa/m)

Load (OA) 36.34 40.35 37.63

Unload (AB) 38.89 40.35 37.63

Unload (BO) 34.52 40.35 37.63

The simulation of discontinuities may be important in the context of evaluating the mechanical behavior
of a geologic nuclear waste repository subject to static and dynamic loading. Therefore, the limitation in the

10
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capacity of HONDO II to simulate the details of deformation ofjointed rock under pseudostatic cyclic loading
imposes substantial restrictions on its usefulness forevaluating the performance of the host rock for a geologic
repository under these loading conditions.

3. SLIP IN A JOINTED BODY INDUCED BY A HARMONIC SHEAR WAVE

3.1 PROBLEM STATEMENT

This problem concerns the dynamic behavior of a plane discontinuity subjected to a propagating
harmonic shear wave. The incident shear wave induces shear stress in the joint. When the shear stress exceeds
the limiting shear strength, slip will occur, resulting in reflection, transmission and absorption of the strain
energy in the shear wave. In an analysis reported by Miller (1978), closed-form solutions are established for
the coefficients of reflection, transmission and absorption. The problem, shown in Figure 3.1, consists of
two homogeneous, isotropic, semi-infinite, elastic bodies separated by a planar discontinuity and a normally-
incident, plane harmonic shear wave. In principle, this problem can be modeled with HONDO II, because of
assumed compatibility with the code formulation in terms of geometry, loading conditions and constitutive
behavior of the interface between the elastic regions.

3.2 PURPOSE

The purpose of this study is to evaluate the capacity of HONDO II to model the dynamic performance
of a discontinuity in an elastic medium subject to loading by a harmonic shear wave. A comprehensive
evaluation involves determination of the transmission, reflection and absorption coefficients from the
numerical analysis and comparison with the closed-form solutions.

3.3 ANALYTICAL SOLUTION

Miller (1987) solved the wave propagation problem considering dissimilar media, 1 and 2, on opposite
sides of the interface. Referring to Figure 3.1, the incident wave is described by the expression

u U sin Si oMt (3.1)

Gi 1/2~~~~~~~~~~~~~~~

where C1 = [PiJ (i = 1,2) represents the wave velocity in medium i,

U = amplitude, and

co = frequency.

Miller showed that the shear displacement at the interface may be described by

d(t) = D cos(o t - ) (3.2)

where D= amplitude of joint shear, and

0 phase shift occurring at the boundary.

The solution for D is obtained from the expression

13
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C ) +[vy'y2 D/(y +y2)-S(D)] =[2e Uy /(Y + y2)2]

where 1 ,27
C(D) = -J1 R(D cose, - o D sinG) cosO dO

ICo

S(D) = IJ22s(D cosO, - o D sine) sinO dO

y = (p.G;)

If cs is independent of displacement, as is assumed for a cohesive interface, considerable simplification
of these expressions is possible.

After solving for D, the associated phase angle is given by

4 = tanl f{[S (D) - ylyD / (y, +72)] / C(D)} (3.4)

Motion in the transmitted and reflected waves is defined by

uT(x,t) =TU sin - co3.5)

where T and R are the transmission and reflection coefficients, and OT and $R (determined by 4) are phase
shifts at the boundary.

By satisfying displacement conditions at the interface, it is found that

T = U sin - 2] + 2 cos } 'Y + (3.6)

R ={(D/U) 2 cos2 4)+[(D/U) sino + (Y + Y2) - 1]2} 1/(y + 'Y) (3.7)

Equations 3.6 and 3.7 permit direct calculation of the transmission and reflection coefficients from the
properties of the medium and the interface, and the wave characteristics.

An alternative interpretation of wave propagation coefficients T and R is in terms of the energy flux in
the transmitted and reflected waves. If Ei, ER and ET are the energy fluxes per unit area per cycle of oscillation
for the incident, reflected and transmitted waves respectively, it may be shown that

T = (7y/) (E /El) 1 (3.8)

15



R = (E/E') (3.9)

Further, energy is absorbed at the boundary by the dissipative nature of joint slip. An absorption
coefficient is defined by

A= [1 -R 2 /_ (,y/,) T2]½ (3.10)

In the assessment of HONDO II performance in modeling of joint slip, a technique is required to
determine energy fluxes in the incident, transmitted and reflected waves. For the plane incident wave, the
energy flux, EI, per unit area and per unit cycle oscillation is given by (Kolsky, 1963)

= PC 1+T 2 (3.11)EI = pJ VI dt
ti

where vI(t) = the particle velocity in the incident wave,

T = period of ground motion

= 27c/eo.

Similar expressions apply to fluxes in the transmitted and reflected waves. The various fluxes may be
determined in a HONDO II analysis by numerical integration of the plots of v2 versus time. From these fluxes,
Eqs. 3.8, 3.9 and 3.10 may be used to calculate the transmission, reflection and absorption coefficients. They
may be compared with the coefficients calculated from the analytical solutions.

3.4 ANALYSIS WITH HONDO H

3.4.1 Numerical Model

The problem geometry modeled with HONDO II is shown in Fig. 3.2. The block was modeled with
an elastic solid of height h and width b, and was discretized into a set of four-noded quadrilateral finite
elements. Two different distributions of elements were considered: (a) one element spanning the horizontal
dimension of the block, and 161 in the vertical dimension; (b) three elements spanning the horizontal
dimension, and 161 in the vertical dimension, as shown in Fig. 3.3. Because of a restriction in the code
formulation preventing application of transverse boundary tractions, the harmonic shear wave was introduced
to the system by applying a normal pressure on element 81 in the transverse direction. As shown in Figs.
3.3a and 3.3b, in each case the dynamic load was applied at the center of the model, so that there is no spurious
reflection from the boundary AB. (Fig. 3.2) The time function of the normal pressure representing the
transverse dynamic load is sinusoidal.

In setting boundary conditions for the analysis, displacements at boundaries AC, BD, AB and CD (Fig.
3.2) were restrained in the y-direction and unrestrained in the x-direction, to simulate plane shear wave
conditions. The sliding interface was located between elements 121 and 122 (Fig. 3.2), at a distance "a" from
the x-axis.

16
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The geometric data for the model are as follows:

h = 16,100 m

b = 100 m for discretization (a)
= 300 m for discretization (b)

s = 8050 m (center of element 81)

a= 12,100 m

3.4.2 Mechanical Properties of Continuous Media and Discontinuity

The rock material on opposite sides of the interface is taken to respond elastically to imposed load.
Material type 6 is the relevant material specification in the input to the code, appropriate to materials exhibiting
finite strain, elastic-plastic strain-hardening behavior. Elastic behavior is invoked by setting the yield stress
parameters to zero.

With regard to the properties of the interface assigned in the analysis, it was noted previously that the
shear force of the sliding interface in HONDO II is defined by Eq. 1.1. This involves the terms go and g-,
which are coefficients of friction for low and high sliding velocities respectively, y* a decay constant
characteristic of the transition between low and high sliding velocities, and v, the relative velocity between
the opposing surfaces. In addition, two elastic constants, El and E2 (representing the rock mass on either
side of the interface), are required for evaluation of restoring normal forces. Table 3.1 presents the values of
these input parameters used for the current study.

Table 3.1

Mechanical Properties of the Elastic Media and Discontinuity

Intact Material Properties Discontinuity Properties

Mass Density 2650 kg/m3
0 = 0.0, 0.287, 0.7

Young's Modulus 24.82 GPa 1.= 0

Poisson's Ratio 0.42 BY = 0

Shear Wave Velocity 1942.5 m/sec El = 24.82 GPa

E2 = 24.82 GPa

3.4.3 Dynamic Loading

The harmonic pressure applied transversely to the central section of the model had the following
characteristics.

maximum induced shear stress 1.0 MPa
frequency of incident wave 1 Hz
type of harmonic wave sinusoidal
duration of incident wave 4 secs

In an initial analysis to examine code performance on a problem with a mode of response readily related
to input conditions, the discontinuity was assigned properties intended to impose continuous elastic behavior
of the block. However, it was found that HONDO II does not provide for perfect bonding of the sliding
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interface. Subsequently, this problem was modeled without a joint. For problem discretization (a), a pressure
of amplitude 1 MPa and frequency 1 Hz was applied on element 81 in the transverse direction. Four (4)
Gauss points were chosen for the numerical integration, and the average of the stresses at these points was
recorded as the stress history for a particular element. The shear stress was monitored at Points A, B, C, D,
E and F, as shown in Figure 3.3. Points A, B, C, D and E are at distances 1000 m, 1900 m, 3700 m, 3900 m
and 4000 m, respectively, from element 81. In the input of the applied load, a sinusoidal pressure history for
a duration of 4 secs was discretized into 41 piece-wise linear increments. Pressures at the successive time
intervals were input to the code.

In the subsequent analysis, a horizontal joint was introduced which transected the block. The joint was
located a distance 4000 m above the point of load application. The shear wave was applied as a transversely
applied sinusoidal load of magnitude 1 MPa, frequency 1 Hz and duration 4 secs. The shear stress histories
were monitored at locations A through F (Fig. 3.3). All four boundaries are constrained to move only in the
horizontal direction. The analysis was performed for three different values of the coefficient of friction, Po.

3.5 RESULTS

For the preliminary elastic analysis, the time history of shear stress at points A through F is shown in
Figure 3.4. The stress histories at all these points trace the sinusoidal input shear wave with peak amplitude
of 1 MPa and are separated by time intervals consistent with their mutual separation and with the distance of
these points from the source. This confirms that the model generates and transmits a plane shear wave to the
far field and that spurious reflection of waves from the boundary did not distort the primary motion at the
specified points during the elapsed time of the applied load.

Ideally, the performance of the code in analysis of the jointed block would be assessed by comparison
of the acoustic coefficients for transmission, reflection and absorption at the interface, calculated from the
numerical and analytical solutions. The comparison is conducted in terms of the dimensionless stress td of
the incident wave, defined by

U
'd = w X (3.12)

where co = circular frequency of the incident wave,

y = mass density,

U = displacement amplitude of the incident wave, and

5 = joint shear stress.

In developing the closed-form solution for the acoustic coefficients, Miller (1978) considered the shear
resistance of the interface to be defined by a Coulomb friction law; i.e. for a cohesionless interface, the joint
shear strength, ¶s, is determined by the normal stress, on, on the joint and the friction angle 0, according to

Ts = An tans (3.13)

To achieve suitable states of stress on the joint to evaluate the effects of slip induced by the shear wave,
it is necessary to control the normal stress Un independently of the shear stress. However, in HONDO II, it
is not possible to apply two sets of boundary loads with independent time histories. The result is that it is not
possible to apply a constant normal stress in the axial (vertical) direction while, at the same time, applying
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time-dependent transverse (horizontal)load to the central part of the problem. As a result, the joint shear
stress Is, and the derived dimensionless stress td, cannot be varied independently of On.

With these limitations, it was not possible to conduct the code assessment in terms of the acoustic
coefficients. Instead, it was necessary to concentrate on characteristics of wave propagation for the case of
zero applied normal load. The shear stress at Points A through F with friction coefficients go = 0.0 for the
sliding interface are shown in Figures 3.5 and 3.6 for discretization schemes (a) and (b), respectively. From
the history at Point F, it is clear that there is virtually no shear stress transmitted across the interface. Point
A reaches steady state at the peak shear stress of 1 MPa. Point E is affected by the reflection due to slip at
the interface. Points B, C and D, located at some distance from the interface, show amplification in shear
stress. These points experience superposition of incoming waves from the source (i.e., point of load
application), and the reflected wave from the joint. The behavior is consistent with a flexural mode of
vibration. With the introduction of the joint and with no transverse restraint applied to it, the model behaves
like a beam with a free end.

Figures 3.7 and 3.8 show the response at Points A through F for friction coefficients of 0.286 and 0.7
for discretization scheme (b). Comparing Figs. 3.6 through 3.8, response at the respective points appears
similar for the different problem input parameters. Focusing attention on Point F in Figs 3.6 through 3.8,
increasing the friction coefficient did not result in transmission of energy through the interface. This is
because at the state of zero applied normal stress, the joint had no shear strength, Ts. The interface was
incapable of supporting and transmitting the shear wave.

4. CODE LIMITATIONS

In order to appreciate sources of difficulty in computational analysis of this problem with HONDO II,
the following limitations in the code formulation may be noted.

(1) The version of the code investigated here does not have provision for applying non-reflecting
boundary conditions. The boundary of the model needs to be sufficiently remote to ensure that
the transient response at the point of interest is not affected by the wave reflected from the
boundary.

(2) Input data for the joint properties are pt_ (the friction coefficient for high sliding velocity), po (the
friction coefficient for low sliding velocity), and y (a decay constant). These properties are
required to determine the joint shear strength through Eq. (1.1).

For most rock discontinuities, the friction coefficients at high and low sliding velocities and the decay
constant are not known. In the current analysis, p and y were assigned the value of zero, resulting in a linear
(Coulomb) relation between shear stress and normal stress and zero joint cohesion. In that case, the friction
coefficient at low sliding velocity determines the shear strength of the interface.

(3) There is no option in HONDO II to generate a perfectly bonded or welded interface. Therefore,
it was not possible to investigate the performance of the code in modeling perfect transmission
across an interface of very high shear strength.

(4) Evaluation of the dynamic performance of the discontinuity involves determination of transmis-
sion, reflection and absorption coefficients and comparison with closed-form solutions by Miller
(1978).

22



0

FRICTION COEFFICIENT = 0.0
DISCRETIZATION A

2

1

C-

-2

POINT A

POINT B

POINT C..............

POINT D

POINT E

POINT F

0 1 2 3
TIME (s)

4

Figure 3.5 Shear Stress Histories for the Jointed Block at Points A through F,
Coefficient of Friction = 0, Discretization Scheme (a)

23



0

FRICTION COEFFICIENT = 0.0
DISCRETIZATION B

2

1

I-

LL
IEC,

-1

-2

POINT A

POINT B

POINT C_POINTD_ _

POINT E

POINT E

POINT F_._._._.

0 1 2 3
TIME (s)

4

Figure 3.6 Shear Stress Histories at Points A through F, Coefficient of Friction = 0,
Discretization Scheme (b)

24



0

FRICTION COEFFICIENT = 0.286
DISCRETIZATION B

2

1

CDl
EL

U)
LUCr0
<:

LU

-2

POINT A

POINT B

POINT C..............

POINT D

POINT E

0 1 2 3 4
TIME (s)

Figure 3.7 Shear Stress Histories at Points A through F. Coefficient of Friction = 0.286,
Discretization Scheme (b)

25



0

FRICTION COEFFICIENT = 0.7
DISCRETIZATION B

2

1

U)

C,,c o

Cr

LU
I
C,)

-1

-2

POINT A

POINT B

POINT C..............

POINT D

POINT E

POINT F

0 1 2 3 4

TIME (s)

Figure 3.8 Shear Stress Histories at Points A through F, Coefficient of Friction = 0.7,
Discretization Scheme (b)

26



In the analysis with HONDO II, it was not possible to apply independent stress components in a way
which would permit evaluation of the various acoustic coefficients. It seems that a constant normal stress
cannot be applied to the joint at the same time as a time-dependent shear wave is applied.

(5) HONDO II has no bandwidth constraint because a stiffness matrix is not required, eliminating
major storage requirements. However, the nodal numbering scheme in the mesh generation
section of the code lacks flexibility. As a result, the generation of geometric data associated with
the sliding interface becomes complicated and is best achieved manually.

(6) The capacity to apply an external load to the boundary of a problem in terms of a normal traction
or pressure only, severely restricts the code application and versatility. The nature of the permitted
boundary loading reflects the application of the code intended originally, rather than a limitation
in the formulation.

5. SUMMARY AND CONCLUSIONS

The intention in conducting the quasi-static and dynamic analyses of jointed blocks considered in this
report was to determine if HONDO II could be applied in its current form to the static and dynamic analysis
of jointed rock masses. A specific aim of the evaluation was to determine if the joint deformation model in
HONDO II provides an adequate representation of the discontinuous deformation of jointed rock, resulting
from slip or separation on planes of weakness embedded in an otherwise continuous solid. Both the benchmark
problems considered in the study are concerned with joint slip, because this is regarded as a more acute
problem in analysis than the mechanics of joint separation.

In the static deformation of a jointed elastic block subject to a load-unload cycle, the essential feature
of the response is hysteresis in the load-displacement path resulting from joint slip and frictional locking at
various stages of block deformation. The HONDO II analysis of a jointed block did not reproduce the
expected hysteretic response. Because hysteresis in a load cycle is a highly discriminating test of the joint
model, this result suggested the joint formulation in HONDO II is not sufficiently rigorous to express the
mechanics of joint deformation. Because of some restrictions on the way in which boundary tractions may
be applied in an analysis with HONDO II, it was not possible to conduct some simple test studies, such as
analysis of a direct shear test, which would permit identification of the source of the problem. Further, it was
considered that a detailed exploration of the code logic implementing the joint model was beyond the scope
of the current project.

The evaluation of the capacity of HONDO II to simulate the dynamic response of a jointed medium
was intended to be based on a comparison with the analytical solution for a shear wave propagating in a
jointed block. A convenient way of doing this would be to compare the coefficients for energy transmission,
reflection and absorption at the slipping interface, for the HONDO II and analytical solutions. The way in
which boundary tractions can be specified in the code prevented making this comparison. The particular
problem is that it is not possible to apply a static normal traction on one boundary and an independent,
time-varying traction, either normal or shear, to another. This prevented application of a static normal stress
to the joint, which is required to mobilize the joint shear strength and thus support wave propagation across
it. Therefore, it was necessary to consider the performance of the code in simulating a jointed medium in
qualitative terms, by examining the nature of the motion associated with shear wave interaction with a joint
of zero shear strength. In this evaluation, the joint reflected the wave virtually completely.

It is concluded from the preceding discussion that, in its current formulation, HONDO II is not capable
of simulating the mechanics of jointed rock in a way suitable for repository design and performance
assessment. Some of its deficiencies in this respect are related to the application of static and dynamic
boundary loads in the analysis. These reflect the original purpose of the code, which was for the analysis of
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impact between finite bodies. However, the inadequacy of the interface formulation for simulation of joint
static deformation implies this aspect of the code would need substantial improvement to permit its application
in analysis of discontinuous deformation of jointed rock masses.
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APPENDIX 1- HONDO II INPUT DATA FILES
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INPUT DATA FILES

HONDO: elastic matrix with 45 deg slide line - friction coeff 0.287

1 328 288 12 4 3 1.0e6 1 0 1 4 1 500
0.

0 .0
313 315
7 282
1 6
Generic
85. 11e9

0.21

.2
317 319

.05
321 323

0 .0 .2 .005 500 .0
325

2850.0
rock properties

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
2.

1.000
1.083
1.167
1.250
1.309
1.417
1.500
1.583
1.691
1.750
1.833
1.917

2.000
1.000
1.083
1.167

.000

.000

.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.042
.049
.056

nodal point coordinates discontinued here,
but are present in the original input file

322
323
324
325
326
327
328

1
2
3
4
5
6
7

1.750
1.833
1.917
2.000
1.417
1.500
1.583

2 15
3 16
4 17
5 18
6 19
7 20
8 21

2.000
2.000
2.000
2.000
.917

1.000
1.083

14 1
15 1
16 1
17 1
18 1
19 1
20 1

1
2
3
4

5
6
7

element connection array discontinued here,

but are present in the original input file
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0 0

281 304 305 318 317 1
282 305 306 319 318 1
283 306 307 320 319 1
284 307 308 321 320 1
285 308 309 322 321 1
286 309 310 323 322 1
287 310 311 324 323 1
288 311 312 325 324 1
313 314 1.e+O I.e+O 0.
314 315 l.e+O 1.e+O 0.
315 316 l.e+O l.e+O 0.
316 317 1. e+O 1.e+O 0.
317 318 l.e+O l.e+O 0.
318 319 l.e+O l.e+O 0.
319 320 l.e+O l.e+O 0.
320 321 l.e+O I.e+O 0.
321 322 l.e+O 1.e+O 0.
322 323 1.e+O ;.e+O 0.
323 324 l.e+O l.e+O 0.
324 325 l.e+O l.e+O 0.

0. .001
1.Oe-1 8.5e+6
1.5e-1 5.Oe+6
2.Oe-1 .001
1

328
1 3 3

85.11e9 85.11e9 .287 0. 0.
162 163 164

326 327 328

end
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MILLER PROBLEM

1 324 161

PROPAGATION

2 41 3
OF SHEAR WAVE WITHOUT

1.0e5 1 0

0.0 0.000

SLIPPING

0 4

0 .000

INTERFACE

1 0
5

0

0 .0 4el .le-2
241
90 100 115 118 120 121
1 6 2650.0
property of rock mass
24.83e9

0.42

1
323

2
324
1
2
3
4
5

2
2
2
2
1
3
5
7
9

1.000 1.000
1.000 16101.000

101.000 1.000
101.000 16101.000
2 4 3 1
4 6 5 1
6 8 7 1
8 10 9 1

10 12 11 1

2

2

element connection arrays
input file.

155
156
157
158
159
160
161
163
164

309
311
313
315
317
319
321
161
162

.000
.1
.2
.3
.4
.5
.6
.7

.8

.9
1.0
1.1
1.2

310
312
314
316
318
320
322

312
314
316
318
320
322
324

1.
-1.

311
313
315
317
319
321
323

discontinued here, but are present in the original

1
1
1
1
1
1
1

1. .000
-1. .000

.le-3
.587e6
0.95e6
.951e6
.588e6

.0016e6
-.586e6

-.950e6
-.951e6
-.590e6

-.0032e6

.585e6

.949e6
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1.3 .952e6
1.4 .591e6
1.5 .0047e6
1.6 -. 583e6
1.7 -. 949e6
1.8 -. 953e6
1.9 -. 592e6
2.0 -. 0064e6
2.1 0.5823e6
2.2 0.9488e6
2.3 0.9533e6
2.4 0.5939e6
2.5 0.7960e3
2.6 -. 581e6
2.7 -. 9483e6
2.8 -. 9537e6
2.9 -. 5950e6
3.0 -. 9550e3
3.. .5797e6
3.2 .9478e6
3.3 .9542e6
3.4 .5965e6
3.5 .0110e6
3.6 -. 5784e6
3.7 -. 9473e6
3.8 -. 9547e6
3.9 -. 5977e6
4.0 -. 0127e6

1 0. .00
324 0. .00
END
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INPUT DATA FILE FOR DISCRETAZATION SCHEME (a)

0

MILLER PROBLEM; SLIPPING JOINT

1 326 161 2 41 3

0.0 .4el .le-2

241 243

90 100 115 118 120 121

1 6 2650.0

property of rock mass

24.83e9

0.42

FRIC. COEFF. = 0.0.

1.0e5 1 0

0.0 0.000
1 4 1 0 0

0 .000 5

1
239

2
240
241
242
243
244
245
325
246
326

1
2
3
4
5
6
7

8
9

10
11

2
2
2
2
0
0
0
0
2
2
2
2
1
3
5
7
9
11
13
15
17
19
21

1.000
1.000

101 . 000
101. 000

1.000
101. 000

1.000
101. 000

1.000
1.000

101.000
101. 000

1.000
11901.000

1.000
11901.000
12001.000

12001.00
12001.000
12001.00
12101.00
16101.000
12101.000
16101. 000

2

2

2

2
2
4
6
8

10
12
14
16
18
20
22

4
6
8

10
12
14
16
18
20
22
24

3
5
7
9

11
13
15
17
19
21
23

1
1
1
1
1
1
1
1
1
1
1

element connection arrays discontinued here, but are present in the original

input file.

34



0

153
154
155
156
157
158
159
160
161
163
164

307
309
311
313
315
317
319
321
323
1 61
162
000

.1

.2

.3
.4
.5
76
.7
.8
.9

1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
2.0
2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
3. 0
3. 1
3.2
3.3
3.4
3.5
3.6

308 310
310 312
312 314
314 316
316 318
318 320
320 322
322 324
324 326

1.
-1.

.le-3
.587e6
0.95e6
.951e6
.588e6
0016e6

-. 586e6
-. 950e6
-. 951e6
-. 590e6

-. 0032e6
.585e6
.949e6
.952e6
.591e6

.0047e6
-. 583e6
-. 949e6
-. 953e6
-. 592e6

-. 0064e6
0.5823e6
0.9488e6
0.9533e6
0.5939e6
0.7960e3

-. 581e6
-. 9483e6
-. 9537e6
-. 5950e6
-. 9550.3

.5797e6

.9478e6
.9542e6
.5965e6
.0110e6

-. 5784e6

309
311
313
315
317
319
321
323
325

I
1
1
1
1
1
1
1
1

1 .
-1.

.000

.000
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0

3.7 -. 9473e6
3.8 -. 9547e6
3.9 -. 5977e6
4.0 -. 0127e6

1 0. .00
326 0 . .00

1 2 2
24.82e9 24.82e9 0.00

241 242

243 244

END

1

0 0
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INPUT DATA FILE DISCRETIZATION SCHEME (b)

MILLER PROBLEM; SLIPPING JOINT FRIC. COEFF. - 0.0

1 652 483 2 41 3 1.0e5 1 0 1 4 1 0 0

0.0 .4el .le-2 0.0 0.000 0.000 5
283 650
251 261 276 279 281 282

1 6 2650.0
property of rock mass

24.83e9
0.42

1 2 1.000 1.000
120 2 1.000 11901.000 1
121 0 1.000 12001.000
122 2 1.000 12101.000
162 2 1.000 16101.000 1
163 2 101.000 1.000
282 2 101.000 11901.000
283 0 101.000 12001.000
284 2 101.000 12101.000
324 2 101.000 16101.000 1
325 2 201.000 1.000
444 2 201.000 11901.000
445 0 201.000 12001.000
446 2 201.000 12101.000
486 2 201.000 16101.000 1
487 2 301.000 1.000
606 2 301.000 11901.000
607 0 301.000 12001.000
608 2 301.000 12101.000
648 2 301.000 16101.000 1
649 0 1.000 12001.000
650 0 101.000 12001.000
651 0 201.000 12001.000
652 0 301.000 12001.000
1 1 163 164 2 1
2 2 164 165 3 1
3 3 165 166 4 1
4 4 166 167 5 1
5 5 167 168 6 1
6 6 168 169 7 1
7 7 169 170 8 1

8 8 170 171 9 1
9 9 171 172 10 1

10 10 172 173 11 1
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0

element connection arrays
input file.

476
477
478
479
480
481
482
483

82
568

478
479
480
481
482
483
484
485
81

567
.000

.1

.2

.3

.4

.5

.6

.7

.8

.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
2.0
2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
3.0
3.1
3.2
3.3
3.4

640
641
642
643
644
645
646
647

641
642
643
644
645
646
647
648

3.
-3.

479
480
481
482
483
484
485
486

discontinued here, but are present in the original

1
1
1
1
1
1
1
1

3.
-3.

.000

.000
.le-3

.587e6
0. 95e6
.951e6
.588e6
.0016e6
-. 586e6
-. 950e6
-. 951e6
-. 590e6

-. 0032e6
.585e6
.949e6
.952e6
.591e6

.0047e6
-. 583e6
-. 949e6
-. 953e6
-. 592e6

-. 0064e6
0.5823e6
0.9488e6
0.9533e6
0.5939e6
0.7960e3

-. 581e6
-. 9483e6
-. 9537e6
-. 5950e6
-. 9550e3

.5797e6

.9478e6

.9542e6

.5965e6
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3.5 .0110e6
3.6 -. 5784e6
3.7 -. 9473e6
3.8 -. 9547e6
3.9 -. 5977e6
4.0 -. 0127e6

1 0. .00
652 0. .00 1

1 4 4
24.82e9 24.82e9 0.00 0 0

649 650 651 652

121 283 445 607

END
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