

Contents

Entries by David R. Turner -SORPTION MODELING FOR HLW PERFORMANCE ASSESSMENT - TASK 2, . CNWRA CONTROLLED COPY <u>646</u> The Boorum & Pease[™] Quality Guarantee The materials and craftsmanship that went into this product are of the finest quality. The pages are thread sewn, meaning they're bound to stay bound. The inks are moisture resistant and will not smear. And the uniform quality of the paper assures consistent rulings, excellent writing surface and erasability. If, at any time during normal use, this product does not perform to your expectations, we will replace it free of charge. Simply write to us: Boorum & Pease Company 71 Clinton Road, Garden City, NY 11530 Attn: Marketing Services One Good Book Deserves Many Others.

Look for the complete line of Boorum & Pease[™] Columnar, Journal, and Record books. Customdesigned books also available by special order. For more information about our Customized Book Program, contact your office products dealer. See back cover for other books in this series. Made in U.S.A.

Page

SORPTION MODELING FOR HIGH-LEVEL WASTE PERFORMANCE ASSESSMENT TASK 2 - David R. Turner

SORFTION MODELING USING THE MINTEGAD Code.

6/2/42

SPJ

The MINTERAL, Version 3.0 geochemical equilibrium code is being used to model radionuclide sorption. The code (executable) being used is compiled for the IBM PC/XT/AT. The objectives of this research are outlined in the Sorption Modeling for HLW Performance Assessment Troject Plan, and in the Task 2 Workplan for Hydrogeochemical Modeling

Version 3.0, MINTEGAD is described in the User's Monual (Allison at al., 1990). A Hardcopy is available through DRT and is under configuration control. The preprocessor PRODEFAD is also described in the monual.

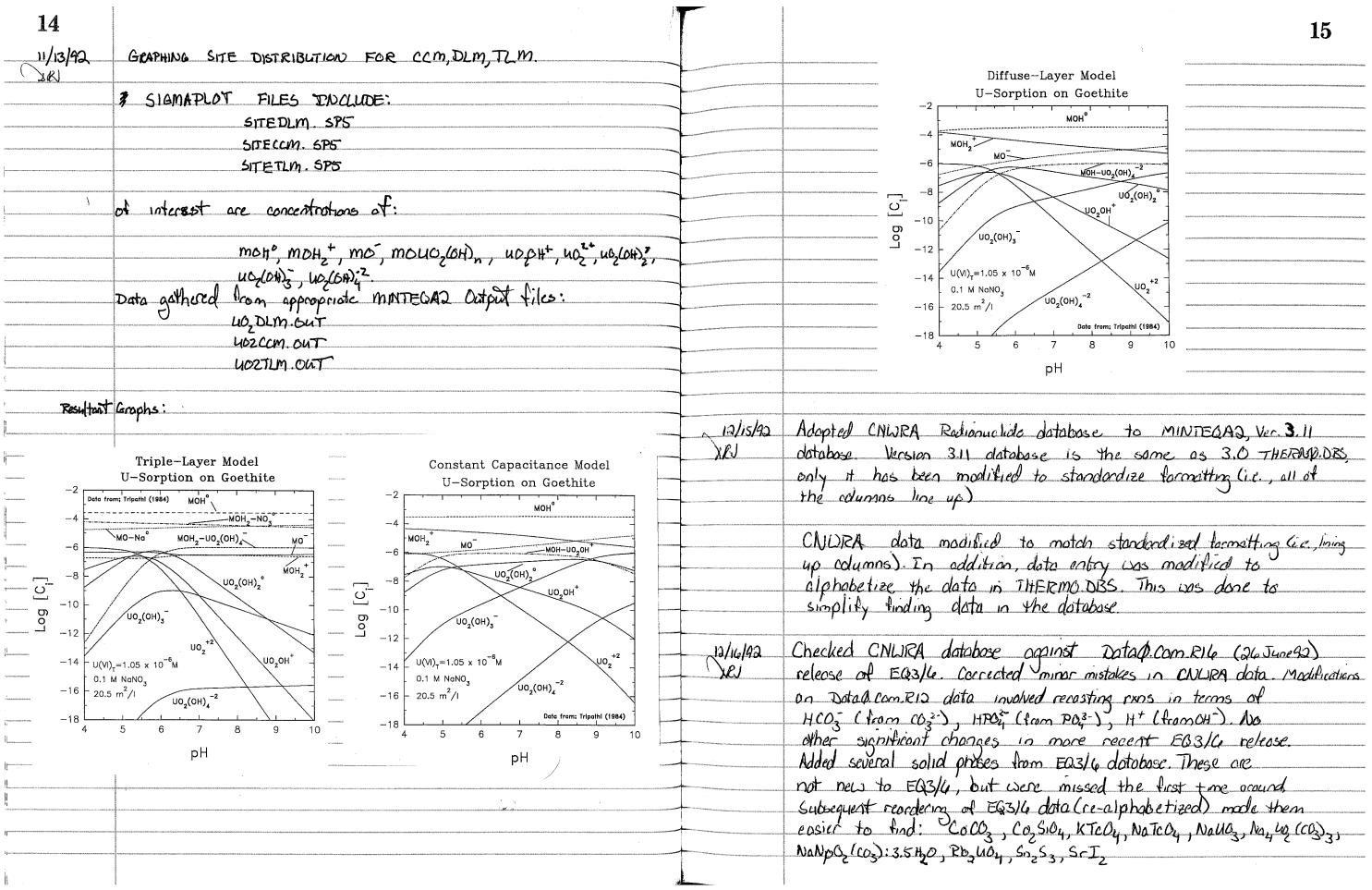
Magnetic copies of MINTEGA2/PRODEFA2 as distributed from the U.S. EPA are available on the directory C:\MINTEGA2 on the IBM PS/2 model 70 of DRT. Copies are also under configuration control.

MINTEQAD uses extensive thermodynamic databases. These are described in the user's manual (Allison et al., 1990). Original magnetic copies are under configuration control at CIUWRA. Hardcopies of all original databases are stored as quality assurance documents. Magnetic copies are also stored on DRT'S IHM PS/2 under the directory C: MINTEGAD OLDDATA

- is model rodioniclide ouption, it is necessary to construct on appropriate datatose. This was undertaken to add Py, Np, Am, Tc, Th, Sn, Cs, Co, Ru, Zr, Ra, Ey and update usanium in the appropriate databases.

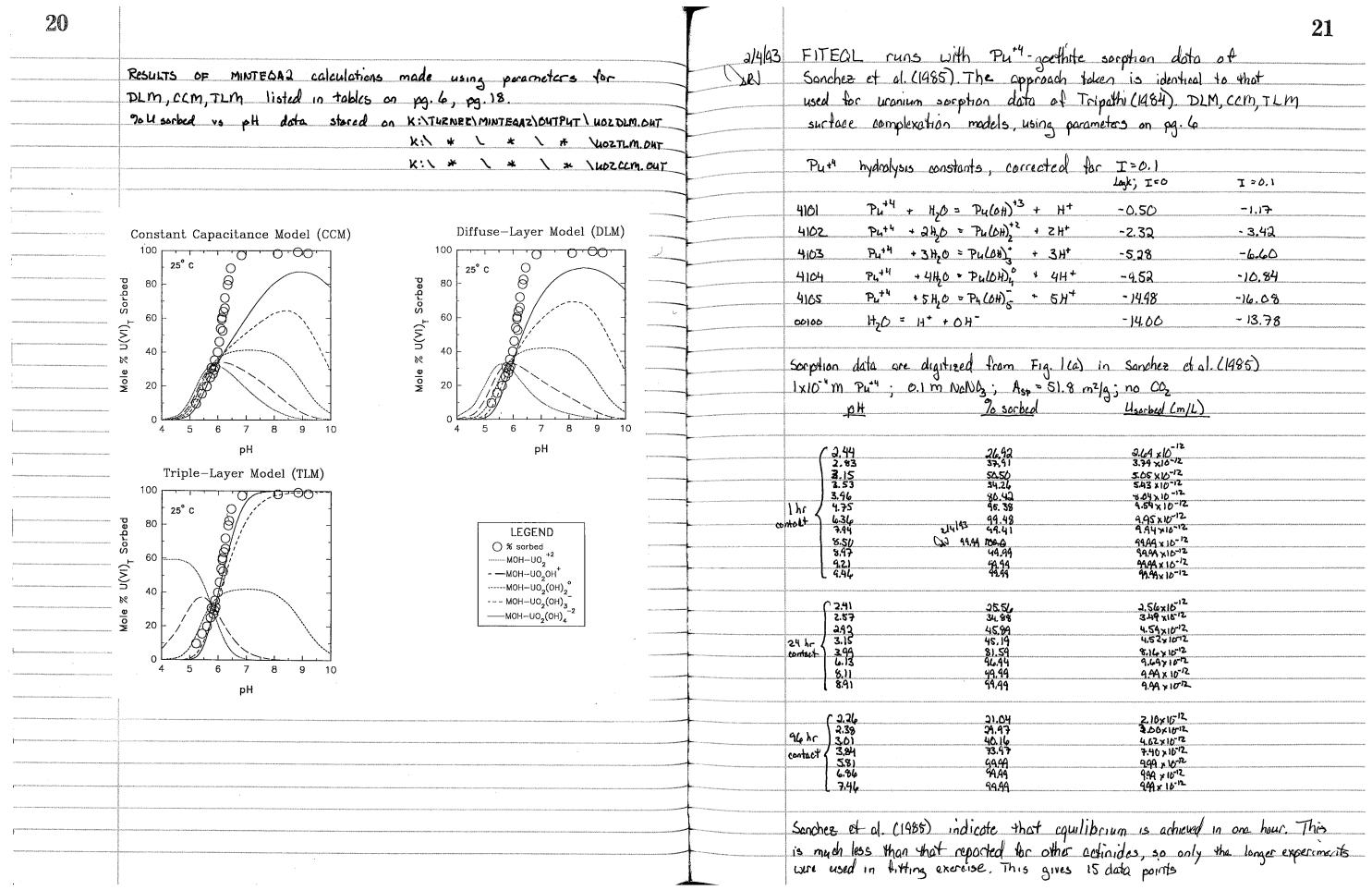
Data sources (and the references therein) included:

2		3
		6/12/92 Initial Entry DRJ 1/17/47
	EQ3/6 Data Ø. Com. R7 (Lidery et al., 1990)	(DR)
	Phillips et al. (1988) Sondia Aqueous Solutions Patabase	In order to "translate" thermodynamic data from EO3/le (Datad. com. R7)
, 	Berner (1991) MINEOL/PSI (Paul Scherrer Institute, Switzerland)	into MINTEGAR components, the following reactions are used:
	CHEMVAL	Logk <u>AHE</u> (kcal/mai) Source
		$i) PO_{4}^{3-} + H^{+} = HPO_{4}^{2-} + 12.3218 - 305.3 EQ3/6$
	- The data was formatted for MINTEQAD as described	2) $HPO_{4}^{2-} + H^{+} = H_{2}PO_{4}^{-} + 7.2054 - 309.82 EQ3/6$
ang manaka kata Mangala	in user's manual (Allison et al., 1990). Alteral files are: Thermo. dbs,	3) $CO_3^2 + H^+ = HCO_3^- + 10.3288 - 164.898 EQ3/6$
28.50 de compara recenter de compara de compara de la compara de compara de compara de compara de compara de co	Typele.dbs, Redax.dbs, Comp.dbs.	$4) 4H^{+} + 4e^{-} + 0_{2} = 2H_{2}O + 83.12 MINTEGA2$
	- Logk data from EG3/6 except:	5) SIO2100 + 2H20 = H45104 + 0.1184 -348.48 E03/6 + MINTEDA2
	HTCO, HzTCO, HTCO, HTCO, Phillips et al. (1988)	$i V_0^{+} + 2H_2 0 = 4H^{+} + V_0^{-} -28.4475 = E03/6$
	Th (AH) Becare (1991)	7) H2ASO + 2H+ = H2ASO + 2.2492 -215.70 EG3/6
	LOTUS-123 (18) 6/4/92	8) $Z_{r}^{4+} + 2H_{2}O = Z_{r}(OH)_{2}^{2+} + 2H^{+} + O.2385 = EO.3/6$
See some	ler - AH- coloulated using AUATTRA PRA Sycendsheet scarce on	
hand colcul	designed by Tim Griffin and AH, values from EG3/4 and	
paga, the yolume.	"Thillips et al. (1988). Phillips et al. (1988) used esp. for Np, Pu, Th, U	6/22/42
OSRI SVID		Des
		Tim Griffin and D. Turner upgraded MINTEQA2 to include.
		data from Data (Com. R12 release of EQ3/6 database. With the
	- The current versions of the MINTEGA2 radionuclide	exception of CSBr, CSCI, + CSI aqueous species, Aagk values (@ 2542)
Manuar mana manangar mananan manana mananan kanan k	dotabase are found as hardcopy and computer files	remained unchanged from Data & Com. R7 release.
	on C: MINTEGAZ on DRT'S IBM PS/2 Model 70. A CNWRA	J
hiji manan kanan dalam kanan kana kana kana kana kana kana k	Memorandum from DRT dated 5/7/92 was sent to the	AHP values more complete in Date &. Com. RIZ. Sources listed
	Element Manager (J. Russell), Tchhnical Director (W. Patrick) and	in Ea3/le dotabase. Only the following species include AHe from
	QA Director (B. Mabrita) to petition for exemption from qualification	Phillips et al. (1988). The rest are from Data O. Com. R12
	for MINTEGAD dota. Approval of petition granted 5/8/42.	AHO From Phillips et al. (1888):
		() Am:
		$Am(co_3)_2; AmCO_3^+; Am(OH)_2^+; Am(OH)_2^+; Am(OH)_3^+; Am(SO_4)_2^+; AmCI_3^+; Am$
		AmF,*
		(a) Eu: (3) No:
		$EuCl^{+2} \qquad Np(HPQ_{1})_{3}^{2}; NpO_{2}(H_{2}PQ_{1})^{2}; NpO_{2}Cl^{+}$
		<u>B</u> <u>Bu</u> :
an 1979 1975 1974 1974 1976 (a da da tara an antica da sa ana sa ana sa ana sa ang sa ana sa an		$P_{u}(H_{2}P_{0})^{2}$; $P_{u}(S_{0})^{2}$; $P_{u}Cl^{+3}$; $P_{u}F^{+3}$; $P_{u}(HP_{0})^{+2}$; $P_{u}(HP_{0})^{-2}$; $P_{u}(HP_{0})^{-4}$; $P_{u}O_{u}(C_{3})^{4}$; $P_{u}O_{u}(C_{3})^{-4}$; P_{u}
		(Pub2) 264*; Pub2(H2PO4)
		(f) Th:
and a sub-sub-sub-sub-sub-sub-sub-sub-sub-sub-		$Th(H_{2}PO_{4})^{+4}; Th(H_{2}PO_{4})^{+3}; Th(H_{2}PO_{4})^{+2}; Th(HPO_{4})^{-2}; Th(OH)^{+2}; Th(SO_{4})^{-4}; Th(1)^{+2};$
		$ThCl_{3}^{+}$
	1	


4		5
<u>e</u>	U	
Solids -	K-Autunite; Na-Autunite; Sr-Autunite; U, Og; U, Og; U(SOy)2: 8H2O; Coffinite (USiOy);	Example of Output: (SO482+)
	Gummite (UB, LOH); $U(OH)_{2}^{+2}$; $U(OH)_{3}^{-1}$; $U(OH)_{5}^{-1}$; UF_{5}^{-2} ; $UG_{2}(OH)_{2}^{-1}$; $(UO_{2})_{2}CO_{3}(OH)_{3}^{-1}$;	
Aqueous -	$U(OH)_2^{-2}$; $U(OH)_3^{-2}$; $U(OH)_3^{-2}$; UF_3^{-2} ; UF_4^{-2} ; $UO_2_1^{-2}$; $UO_2_1^{-2}$; $UO_2_1^{-2}$; $UO_2_1^{-2}$; UO_2^{-2} ;	VALUES OF ADJUSTABLE PARAMETERS AT EACH ITERATION: LOG K, T, LOG X I V(Y): SOS/DF 1233
	$UQ_{2}HPO_{4}^{2}$; $UC_{2}(HPO_{4})_{1}^{2}$; $UO_{2}(H_{3}PO_{4})^{2}$; $UO_{2}(H_{3}PO_{4})_{3}^{2}$; $UO_{3}(H_{3}PO_{4})_{3}^{2}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
7/30/92	FITEQL Data used in Jan 1 - June 30, 1992 Semi-Annual Report	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Jsk)	FITEQL, Version 2 - Input Data From Tripathi (1984). 105×104m, NO CO2	7 3.609E-01 -3.396E+00 8 3.594E-01 -3.324E+00 9 3.585E-01 -3.270E+00 10 3.580E-01 -3.230E+00
	Input File - Example:	11 3.578E-01 -3.200E+00 12 3.577E-01 -3.179E+00 13 3.576E-01 -3.164E+00
	$\frac{1}{2} + \frac{1}{2} + \frac{1}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	$\frac{dentate}{dentate} = SOH + UO_2^{2+} = (SO-UO_2^{2+})^+ + H^+ - PSIO + 2PSIB$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
	0000020 00000030 00000040 00000050	20 3.575E-01 -3.129E+00 21 3.575E-01 -3.128E+00 22 3.575E-01 -3.127E+00
na a na ana ana ana ana ana ana ana ana		21 3.575E-01 -3.127E+00 22 3.575E-01 -3.127E+00 23 3.575E-01 -3.127E+00 24 3.575E-01 -3.126E+00 25 3.575E-01 -3.126E+00 26 3.575E-01 -3.126E+00 27 3.575E-01 -3.126E+00
	00162 -0.1 0.00000 PSTD / Components 00000094	27 3.575E-01 -3.126E+00 28 3.575E-01 -3.126E+00
	00000120	**** OPTIMIZATION PROCEDURE CONVERGED
	00050 0.00 055 1 00020 0.00 021 1 00000126 00201 -5.21 025 1 00000126 00202 1.01 0200 1.01 02000126 002001 -1.22 020 1.01 02000126 002001 -1.22 020 1.01 02000126 002001 -1.22 020 -1 00000126 002001 -1.22 0.05 -1 00000126 002001 -1.22 0.05 -1 00000126 002001 -1.12 0.05 -1 00000126 002001 -1.12 0.05 -1 00000130 002001 -1.19 0.03 00000130 00000131 002001 -1.19 0.03 00000132 00000132	29 $3.575E-01 \underbrace{(3.126E+00)}_{-2.0} - Log K_{50} \cdot uo_2^{2+}$
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
In the second	$ \begin{array}{c} 03208 & -15.59 & 032 & 3050 & -5 \\ 03209 & -15.59 & 032 & 3050 & -7 \\ 03210 & -21.95 & 032 & 4050 & -7 \\ 03210 & -21.95 & 032 & 4050 & -7 \\ 03210 & -21.95 & 032 & 4050 & -7 \\ 03210 & -10.90 & 0101 & 160 & 1050 & 1 \\ 01000 & -1.50 & 0001 & 1.60 & 1050 & 1 \\ 01103 & -6.33 & 001 & 1.60 & -1050 & 1 \\ 01003 & -6.33 & 001 & 1.60 & -1050 & 1 \\ 01003 & -7.60 & 0001 & 1.60 & -1.051 & 1050 & 1 \\ 00001 & -0.0001 & 1.60 & -1.161 & 2.050 & -1.003 & 1 \\ 00001 & -0.0001 & 1.60 & -1.161 & 2.050 & -1.003 & 1 \\ 000001 & -0.0001 & 1.160 & -1.161 & 2.050 & -1.003 & 1 \\ 00001 & -0.0001 & 1.160 & -1.161 & 2.050 & -1.003 & 1 \\ 00001 & -0.0001 & 1.160 & -1.161 & 2.050 & -1.003 & 1 \\ 000001 & -0.0001 & 1.160 & -1.161 & 2.050 & -1.003 & 1 \\ 000001 & -0.0001 & 1.160 & -1.161 & 2.050 & -1.003 & 1 \\ 000001 & -0.0001 & -1.160 & -1.161 & 2.050 & -1.003 & 1 \\ 000001 & -0.0001 & -1.160 & -1.161 & 2.050 & -1.003 & 1 \\ 000001 & -0.0001 & -1.160 & -1.161 & 2.050 & -1.003 & 1 \\ 000001 & -0.0001 & -0.000 & -1.161 & -0.000 & -1.000 & -1.000 & -1.000 & -1.000 & -1.000 & -1.000 & -1.000 & -1.0000 & -1.0000 & -1.0000 & -1.0000 & -1.0000 & -1.0000 & -1.0000 & -1.0000 & -1.0000 & -1.00000 & -1.00000 & -1.000000 & -1.000000000000000000000000000000000000$	
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	For TLM: Input Perameters
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Look* 5.0 Smith + Jenne (1991) Note Have at 1 (1001) - 233422
	25 1 0 00000230 33 0 0000240 0000240 1.017E-7 0000240 0000240 1.018E-7 0000240 0000240	Look* 5.0 Smith & Jenne (1991) ? Note Hoyes et al (1991) es 713422 Look -10.9 Smith & Jenne (1991) S recommend Apka #>4.0
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	C; 0.8 F/m ² Hoyes et al. (1991)
	3.2828-7 3.6898-7 4.2138-7 4.2138-7 5.5268-7 5.5488-7 5.5488	C2 0.2 F/mz Hoyes et al (1991)
1	5.5266-7 5.6478-7 6.2166-7 6.3356-7 6.5905-7 6.5905-7 6.5905-7 6.5905-7 (Molarity) 00000560 0000050 0000050 0000050 0000050 0000050 0000050 000050 000050 0000050 0000050 0000050 0000050 0000050 0000050 000050 000050 000050 0000050 0000050 0000050 0000050 000	Log KNA, -8.33 Hoyes et al. (1991)
	6. 501E-7 7. 545E-7 8. 5120E-7 8. 6139E-7	Logk Noz 8.74 Hayes of al (1991)
		No 10 sites/nm2 Hayes et al (1991)
		Output (FITEOL, Version 2.0)
 In 2018 BUILDON for An OLDER & Conference on the content of the cont	$\left(\begin{array}{c}1.0397-6\\1.0317-6\\-5.423\\-5.423\\-5.423\end{array}\right)$	$\frac{\log K_{u_0^{2+}}}{\log^{2+}} = \frac{30^{-} \log^{2+}}{-3.126}$
	-5.738 -5.822 -5.824 -5.874 -5.769 -5.769 -5.904	$Log K_{uozoht} = 50^{-} Uozoht^{\dagger} = -9.063$
	$\left \begin{array}{c} -5.864 \\ -5.997 \\ -6.054 \\ -6.170 \\ -6.105 \end{array} \right\rangle \log a_{H7}$	$\frac{1}{2000} \frac{1}{1000} \frac{1}{1000$
anana manganan ar san amanana si kanan makaténgi paténén paténén pana ang ang ang ang ang ang ang ang ang	-6.105 -6.106 -6.162 -6.203 -6.204	$\frac{\log k_{uo_2(0H)_3}}{\log (0H)_3} = \frac{\log k_2 + \log (0H)_3}{\log (0H)_3} = -4.298$
Kontantan wakananan managangkan para sa managananan managanan managanan managanan managanan managana managanan	$ \begin{array}{c} \begin{array}{c} -5,230 \\ -5,613 \\ -5,750 \\ -5,764 \\ -5,764 \\ -5,804 \\ -5,804 \\ -5,804 \\ -5,804 \\ -5,804 \\ -5,804 \\ -5,804 \\ -5,804 \\ -6,105 \\ -6,105 \\ -6,166 \\$	$\frac{\log k_{\log_2(0H)_1}}{\sin k_{\log_2(0H)_1}} = \frac{\sin k_2 - \sin k_2 - \sin k_2}{\sin k_{\log_2(0H)_1}} = -10.02$
	-8.121 -8.859 -9.217 00 00 0000130	

6										С.,	7
10/12/22	SCM Compo	irison (CCM,T	DLM, TLM) fo	r U(VI)-goethite	sarption		Sample INPUT	FOR FITEOL		10/16/92	Noncompagements of the second s
	FITERL Input volume). Log K volues according to st corrected usin, ore equal for and Morel, 1990 Logk values for for ionic stread solutions with Also, TLM	t slightly madit for chemical en perme outlined in g Davies Egn. charged species. charged species. complexation re gth, since these ionic strength & parameters for a detailed	hicd from earli pullibrium mod Dzombok + M and assuming (See section (See section kns (i.e. K, k cuere determine 0.1 (Hayes et K, and K_ acc		Lsee pg. 4-5, this 1 M volues coerthicients 13, Dzombok not corrected II. prod Jenne (MAD),	$\begin{array}{c} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$	33 1992 xouo2.ccm Page 1 5 3.405-4 XOH 3 1 5 0.008000 PST0 1.058-6 U0242 0.008000 U02ada Turana una 11	00000020 00000020 00000030 0000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 000000000 00000100 00000100 00000100 00000100 00000120 00000121 00000123 00000131 00000132 00000131 00000132 00000131 00000132 00000133 00000145 00000175 00000135 00000136 00000137 00000138 00000139 00000130 00000131 00000132 00000135 00000136 00000137 00000138 00000139 00000130 00000131 00000132 00000135 <t< th=""><th>Oct 16 16:03 1992 xous2.ccm Page 2 6.6918-7 6.9138-7 7.5959-7 8.3538-7 9.3858-7 9.3858-7 9.3858-7 9.3858-7 9.3858-7 9.3858-7 9.3858-7 9.3858-7 9.398-7 9.398-6 1.0318-6 1</th><th>00000560 00000560 00000500 0000050 00000520 00000520 00000520 00000520 00000520 00000520 00000520 00000720 0000720 00000720 00000720 00000720 00000720 0000720 0000720 0000720 0000720 0000720 0000720 0000720 0000720 0000720 0000720 00000700 00000700 00000000</th><th></th></t<>	Oct 16 16:03 1992 xous2.ccm Page 2 6.6918-7 6.9138-7 7.5959-7 8.3538-7 9.3858-7 9.3858-7 9.3858-7 9.3858-7 9.3858-7 9.3858-7 9.3858-7 9.3858-7 9.398-7 9.398-6 1.0318-6 1	00000560 00000560 00000500 0000050 00000520 00000520 00000520 00000520 00000520 00000520 00000520 00000720 0000720 00000720 00000720 00000720 00000720 0000720 0000720 0000720 0000720 0000720 0000720 0000720 0000720 0000720 0000720 00000700 00000700 00000000	
		ENTLY FIXED S		ERS USED IN TH	1		:08 1992 xouo2.tlm Page 1	00000000 00000000 00000000 00000000			
	Parameter	TLM _{a,b}	CCM _₀	DLM		99 000001 -3 00160 -1	1 0 5 1 3 1 5 3.402-4 XOH 0 0.00500 PS10 5 0.00500 PS1B 1, 0.00500 PS1D	00000050	Oct 16 15:08 1992 xouo2.tlm Page 2 5.5138-7 5.6608-7	00000480 00000500	
\$207.00.000.000.000.000.000.000.000.000.0	Log K ₊	5.0	6.8	7.1		00161 -0 00162 -0 00032 -6 00033 0 00050 0	.0 1.05E-6 UO2+2 .0 0.00E00 UO2ads .0 0.00E00 H+		5.5136-7 5.6026-7 6.2358-7 6.3358-7 6.6318-7 6.6918-7 6.9136-7	00000520 00000540 00000560	
	Log K_	-10.9	-10.2	-10.2		00003 -1 00005 -1 00055 0 00032 - 03201 -1 03202 -10	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	00000120 00000124	7,5498-7 8,6398-7 9,3658-7 1,0208-6 1,0318-6	00000600 00000610 00000620 00000630 00000640 00000650	
ֈ֎՟֎՟֎՟֎՟֎֎֎֎֎֎֎֎֎֎֎֎֎֎֎֎֎֎֎֎֎֎֎֎֎֎֎֎֎	C ₁	0.8 F/m ²	1.0 F/m ²				5:00 032 1 5:43 032 1 050 -1 0:54 032 1 050 -2 0:23 032 1 050 -2 0:23 032 1 050 -3 2:49 032 1 050 -1 2:49 032 1 050 -1 2:49 032 1 050 -1 2:49 032 1 050 -1	00000127 00000128 00000129 00000130	1.0418-6 1.0338-6 50 -5.23 -5.43	00000660 0000670 public construction 00000680 00000690 00000700	2010010-0000000000000000000000000000000
aur eine seit seiten under volgen eine seiten auf der volge geschen seiten seiten seiten seiten seiten seiten s	C ₂	0.2 F/m ²				03207 -12 03208 -10 03209 -31 03210 -22 03211 - 0	5,22,032,1050,-3, 5,23,032,1050,-4, 5,42,032,2,656,-2, 2,27,032,3,056,-4, 6,25,032,3,056,-5, 1,49,032,3,056,-7, 2,83,032,4,050,-7, 2,93,032,4,050,-7, 2,93,032	00000131 www 00000133 00000134 00000135 00000137 www	-5.61 -5.73 -5.83 -5.87 -5.77	00000710 00000720 00000730 00000740 00000760	
	Log K _{Na} +	-8.33				00100 -13 01050 5 01100 -10 01103 -6 01055 F	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	00000137 Www 00000139 00000140 00000145 00000146 00000147 Www	-5.91 -5.89 -5.99 -6.05 -6.17	00000780 00000800 00000820 00000840 00000860	
	Log K _{NO3} -	8.74				03301 - 7	2.00 001 1 7.60 001 1 7.60 001 1 160 -1 161 2 050 -1 032 1 033 1	00000177 00000150 xouo2 00000174 00000175	-6.10 -6.14 -6.15 -6.20 -6.25	00000880 0000920 0000920 0000940	
	N _s	10 sites/nm ²	10 sites/nm ²	10 sites/nm ²		0.1 1.0 1 3301 25 33		00000185 00000190 00000195 **** 00000230 00000240	-5.61 -5.73 -5.83 -5.87 -5.97 -5.97 -5.98 -5	00000980 00001010 00001030 00001050 00001070	
	(b) Hayes e	nd Jenne (1991 t al. (1991))			1.015E-7 1.624E-7 2.601E-7 2.630E-7 3.005E-7 3.005E-7 3.217E-7 3.217E-7 3.274E-7 3.274E-7 4.205E-7 4.205E-7 4.205E-7 5.25E-7		000002260 00002280 00002300 0000320 00000320 00000360 00000360 00000400 00000420 00000440 00000460	-8.12 -8.84 -9.20 00 00	00001090 00001110 00001370	
anteren papalogen sjonepalogen av de se de s	Terminolog	sy:				Man / w Tagan in a fair fair a chung a chung c			алаан жал жала уул алгааг жалаалагы каларуу булда бола аккатар жалар жалар жалар жалар жалар жалар жалар жалар		******
	<u>хон</u> =	Soll = mor									

8					10/16/42							9
					July 10, 14	RESULTS	OF FITEG	L RUNS	(log Ku	o ₂ (e#) _n)		
	Oct 16 14:46 1992 xouo2.dlm Page 1	00000020 0000030 0000040 0000050	Oct 16 14:46 1992 xouo2.dlm Page 2 6.691E-7 6.913E-7 7.549E-7 8.353E-7	00000560 00000580 00000500 00000610		CCM	SOBJ	DLM	5051	TLM		
	40 1 3 1 00001 -3.5 3.408-4 XOH 00169 -1.0 0.00200 PSI0 00169 -1.0 0.00200 PSI0	00000060 00000070 00000080	6.535E-7 9.385E-7 1.020E-6 1.031E-6 1.031E-6 1.033E-6	00000620 00000630 00000640 ~		Logk	/DF	LOGK	/DF	LOGK	/DF	in come, constituined and and with not constitue and an even of the company.
ana ana mangkana ana ana ang ang ang ang ang ang ang	00033 - 0.0 1.058-6 002+2 00033 0.0 0.00000 U02003 - Dhmmy 12+16616 00050 0.0 0.00000 H+	00000090 00000098 00000100 00000102 00000102		0000650 00000660 00000670 00000680 00000690				age na sea a manair an ann an de de de La de la calaire de la calaire de la calaire de la calaire de la calaire L		nan manunan manuna barta manuna mata mata mata mata mata mata mata ma	na dia mandra di mandra mandra mandra di mandra di mandra di mandra di mandra di mandra mandra mandra mandra m Mandra di mandra di ma	del sens to se televisione en la constante de la constante de sense de sense de sense de sense de sense de sens
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	00000098 0000100 0000102 00000104 00000106 00000110 00000120 00000124 00000125 00000127 00000128	- 5.43 -5.61 - 5.73 - 5.83	00000700 00000710 00000720 00000730	xo.uoz+	1.85	.09	1.15		- 3.34		
n an	0/202 -10:31 032 1 050 -3 0/201 -13:22 032 1 050 -3 0/201 -3:33 001 1 050 -3 0/206 -3:42 012 2 050 -1 0/206 -3:42 012 2 050 -1	00000129	-5.07 -5.71 -5.89 -5.89 -6.05	00006740 00007760 00000780 00000820 00000820 00000840	XOH.NOZ+	10.56	.09	9.1	.23	5.23		on and and of the start index of the start o
	03207 -12:37 032 3 050 -4 03208 -16:25 032 050 -5 03209 -31:49 032 3 050 -7 03210 -2:85 032 4 050 -7 03210 -2:85 032 4 050 -7 03210 -0:78 032 1 005 1 0051 - 0:78 032 1 005 1 0050 - 1	00000132 00000133 00000134 00000135 00000137 00000139 **	-5.23 -5.61 -5.73 -5.77 -5.87 -5.99 -6.99 -6.99 -6.17 -6.14 -6.14 -6.14 -6.15 -6.25 -7.25 -7.55 -7	00000860 00000880 00000900 00000920 00000920 00000940 00000960	XO.UQ.(OH)	-15.5		-14.87		- 14.78	annan an a	
	00100 -13:78 036 -1 003 1 0150 7:10 001 1 160 1 050 1 0150 -10:24 001 1 160 -1 050 -1 00001 0.00 001 1 160 -1 050 -1 03301 -10:00 001 1 160 1 050 -1 037 1 033 1	00000139 ** 00000140 00000145 00000150 xouo24 00000174	~625 -635 -638 -616 -7184	00000980 00001010 00001030 00001050	XOH. MOS(OH)2	-6.84	.69	-6.81	.09	-6.74	. 69	
	00002 50.0 0.410 0.1 1.0 1 3301 25 1 1 0	0000135 xouo24 00000174 00000185 00000185 00000195 00000195 00000195	-8.12 -8.84 -9.20 00 00	00001070 00001090 00001110 00001130 00001370	XOH- 402(0H)2		•09).15		1.65		annan an annan an annan an annan an annan an
	1. 0158-7 1. 6248-7 2. 6306-7 2. 6306-7 2. 6359-7	00000230 00000240 00000260 00000280 00000320 00000320 00000340			XD.UO,OH	-6.84	Ø	-6.81	.09	-9.28		
	3.2/19E-/ 3.604E-7	00000340 00000360 00000380 00000420 00000420			XOH-UZOH+	1.85	.9	1.15	.17	4.56		
**************************************	5.6608-7	00000480 00000500 00000520 00000540	· · · · · · · · · · · · · · · · · · ·		XOH.UO,COH)	-15.5	<u>.</u>	-)4.87	.03	-12.57		
					хон2. чо2 Сон)	- 6.84	.09	-(6.8)	.09	-4.51		vuudavanaan namaan sa
TNPL	T FILES:				XOH·UQ(OH)	2 -24,1	<u>.</u>	- 22.89	-0)	-17.96	. 604	*****
					XOHZ-UOZ(CH)4			- 14.87	.03	-10.23	.003	
ananan ar any ana amin'ny ana amin'ny a	$x_{0402} = x_{0.402}^+$	****	where '*	is DLM, CCM, or TLM			TENENTING THE SECOND AND AND AND AND AND AND AND AND AND A				n an	••••••••••••••••••••••••••••••••••••••
	$XOHUO2. = XOH \cdot UO2^{2+}$	1830 b. M. Sala A. S. Sala Sala Sala Sala Sala Sala Sala	depending on t	he model.			-		MARIN MANAGAMAN MANA	ang ng n	an ann an stainn ann an ann ann an an ann an an ann ann an a	
	XOUOZOH. = XO.UQOH		J J	****		OUTPUT	FILES:					annananan annanan annan an ang ang annanan an ang ang
	XOHUQOH. *= XOH.UQOH+	and also a fact of the second s		1987 1987 1987 1987 1988 1988 1988 1987 1997 199			anangan gungan pangangan kanangan kanangan kanangan kanangan kanangan kanangan kanangan kanangan kanangan kana Inggan gungan pangan kanangan k			11940-1240-1240-1240-1240-1240-1240-1240-12	n de l'écologie de l'écologie de l'écologie de la company de la company de la company de la company de la comp	
Miller staff kommune om en en en en egne gete det staffet en	XOUDZOH. * = XO.UDZ(GH)					*	x ت اMCCM	•			ZDLMI, etcc.	
	XOHUOCH J. * = XOH·UQ(OH)2	******					ccma = X			and UO2	TLMI, etc.	
	XOHAUDHA. = XOHAUDOHA+						1ccm) = xc					
	XOHUOOH3.* = XOH.UQ (OH)		\$				accm2 = Xc			NURA LAN		
	ХОНДИОНЗ * = XOH2. 402 (OH)3 ХОНЦООНЧ. * = XOH. 402 (OH)3	*****	Х. 1997 година и порта порта и порта до порта до 2010 година и порта				$2CCM) = \chi_0$			K;) 14KI	NER FITEOLI	OUTPUT X
	XOHRUOH4. * = XOH UO (OH)						accma axo accma axo	H·UDZCOHJZ H·UA (cu) +			* is DLM,CC	m T/W
		*****	\$10,000,000,000,000,000,000,000,000,000,	99999991999999999999999999999999999999			SCCM) = XOI	12 UC2(0H)2 H·UO2(0H)2				and granded and a second second second
		******					3ccma = x0				a a service de la constance de	
	These files are stored o	n CN	WRA LAN on:			1	4CCm1 = X0	- L -				n ann ann an
	K:\TURNER	VEITE	SLITNPUT)* (i.e	. DLM, CCM, TLM)		4044	400 m2 = x0	H, UO, (OH)	14 14			
	and supercede the earlier Fl	THRAN	, input files				-				n in a final find fan de fan en	
	•		•									


10				11
10/19/92	Added Sr (Strontium) log K volues from Data P.com. R12		<u>.</u>	
SOR	release of EQ3/EQ6 database to MINTEQA2 database.	10/03/92 FITERL INPLIT - WITH DRJ U(VI)-SORPTION DATA FR	p(CQ)=10 ^{-3.5} atm; I=0.1 M; DLM Rom TRIPATHI (1984)	; 1.05 × 10 ° M WW)
	References for radionuclides compiled in files:	EXAMPLE:		
k, waa ahaa ahaa ahaa ahaa ahaa ahaa ahaa		Oct 23 08:55 1992 xohucl.dlm Page 1	Oct 23 08:55 1992 xohuol.dlm Page 2	
	K: TURNER MINTEGA2) SPECIES. REF		00000010 1.0158-7 00000020 1.629E-7 00000030 2.092E-7	00000260 00000270
	K: \TURNER\MINTEGAZ\RADREFS.DAT	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	00000280 00000290 00000310 00000310 00000320 00000330
10/20/92	BEGIN TO MODEL U(VI)-CO2 SORPTION DATA OF	00032 -6.0 1.05E-6 10242 00140 -3.5 3.16E-4 co29 00131 0.0 0.00600 003ads Dummy variables 00033 0.0 0.00600 H 00003 -1.0 0.00600 Nat 00005 -1.0 0.00600 Nat	00000097 3.688-7 00000098 4.2178-7 00000099 4.8518-7 0000010 5.5228-7	00000350 00000360 00000370 00000380
1 DEL	Tripathi (1984)	00050 0.0 0.00E00 H+ 00003 -1.0 0.00E00 Na+ 00005 -1.0 0.00E00 No3-	0000100 5,5228-7 0000102 5,6598-7 0000104 6,0308-7 00000106 6,6998-7 00000106 6,2918-7	00000390 00000400 00000410
		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	00000120 7.5555-7 00000128 8.3448-7 00000124 8.6358-7 00000126 9.3908-7	00000420 00000430 00000440 00000450 00000460
	USED DLM MODEL. FITEGL WITH DLM Parameters (K, K, Ns)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	00000128 1.021E-6 00000130 1.013E-6 00000132 1.024E-6 00000134 9.562E-7	00000470 00000480 00000490 00000500
2019 1982 1983 1983 1984 1984 1984 1984 1984 1984 1984 1984	from \$ Hayes et al. (1991) [see table on pg. 6)	03206 -5.42 032 2 050 -2 03207 -12.37 032 3 050 -4 03208 -16.25 032 3 050 -5 03209 -11.49 032 3 050 -7	00000136 9.579E-7 00000139 9.185E-7 00000140 8.720E-7 00000140 8.161E-7	00000510 00000520 00000530 00000540
n de statistica de la desta con de transmission a companya de segura de segura de segura de segura de segura c	Monodentate complexes, recast for Coz as component, according to:	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0000014 7.645E-7 00000146 7.027E-7 00000148 6.730E-7 0000015 6.016E-7	00000550 00000560 00000570 00000580
	Julion Company, 12001 101 02 00 Company, Lachding 10.	03215 -70.09 032 11 140 6 050-24 03216 -19.28 032 2 140 1 050 -5 03217 -18.11 032 3 140 1 050 -5	00000152 5.401E-7 00000154 4.431E-7 00000156 3.543E-7 00000158 3.261E-7	00000590 00000600 00000610 00000620
	$XOH + UO_{2}^{2+} + CO_{3}^{2-} = XOH \cdot UO_{2}CO_{3}^{2} + HT$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	00000630 00000640 00000650 00000660
	$CO_2 + H_0 = CO_2^{2-} + 2H^{+}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	00000163 1.0158-7 00000164 1.6298-7 00000165 2.0928-7 00000166 2.6388-7	00000670 00000680 00000690
foren and an and the state of the second state and the state of the second state of th		00001 0.00 001 1 01100 -10.24 001 1 160 -1 050 -1 03301 0.00 001 1 160 0 050 -2 032 1 033 1 140 1 141 1	00000168 2.866E-7 00000170 3.105E-7 xohuc1 3.228E-7	00000700 00000710 00000720 00000730
	$XOH + UO_2^{2+} + CO_2 + H_2O= XOH \cdot UO_2CO_2^{0} + 2H^{+}$, 00002 50.0 0.410 0.1 1.0	00000182 3.688E-7 00000184 4.217E-7 00000185 4.651E-7	00000740 00000750 00000760 00000770
 		3301 40 2 1 0 5 33	00000190 5.522E-7 0000195 5.559E-7 00000230 6.300E-7 00000240 6.689E-7	00000780 00000790 00000800 00000810
	Also correct/recast chemical equilibria for CO2 as component:	Oct 23 08:55 1992 xohucl.dlm Page 3	Oct 23 08:55 1992 xohucl.dlm Page 4	•••••
	Log K	6.9218-7 7.5558-7 8.3448-7	00000820 -7.53 00000830 -7.62 00000840 -7.58 00000850 -7.65	00001380 00001390 00001400
	$UO_2^{24} + CO_3^{2^{-}} = UO_2CO_3^{-} - 9.6147$	8.3442-7 9.3905-7 1.0212-6 1.0132-6 1.0242-6	00000840 -7.58 00000850 -7.65 00000860 -7.69 00000860 -7.76 00000800 -7.84 00000800 -7.84 00000800 -7.93 00000910 -8.11	00001400 00001410 00001420 00001430 00001440
	$\frac{CD_2 + H_2O}{CD_2 + H_2O} = \frac{CD_3^{2-1} 2H^4}{12H^4} - \frac{18.16}{12H^4}$	1.0242-6 9.9528-7 9.57392-7 9.1052-7 9.1052-7	00000900 -7.86 00000900 -7.93 00000910 -8.11 00000920 00 00	00001450 00001460 00001470 00001480
	That to a the set out of the	7 8.1608-7 7.6458-7 7.0278-7	00000930 0000940 00000950 00000950	
	$uo_{2}^{21} + co_{2} + H_{2}o = uo_{2}co_{3}^{2} + 2H^{+} - 8.545$	6.730E-7 6.324E-7 6.015E-7	00000970 0000990 0000990	
	1	3.543E-7 4.431E-7 3.543E-7 3.261E-7 3.261E-7 2.960E-7	0001010 0001010 0001030 00001040	
	COMPLEXES FIT TO DATA UGING FITEOL:	2.9806-7 2.3756-7 1.601E-7 50	00001050 00001060 .00001070	
	Input FILE Cutput File	-5.42 -5.60 -5.60 -5.73	0001080 0001090 00001100 00001110	
1	XOH·UO2CO3° XOHUCI.DLM UCIDLMI.GUT	-5.82 -5.87 -5.76 -5.90	00001120 00001130 00001140 00001150	
	XOH, UO, (CA) XOHQUCO.DLM UCZDLM I.DUT	-5.88 -5.99 -6.04 -6.16	00001160 00001170 00001190	
	$\begin{array}{llllllllllllllllllllllllllllllllllll$	-5.23 -5.24 -5.24 -5.60 -5.70 -5.82 -5.87 -5.87 -5.88 -5.89 -5.88 -5.89 -6.04 -6.16 -6.10 -6.16 -6.10 -6.16 -6.12 -6.25 -6.25 -6.25 -6.25 -6.35 -6.37 -6.37 -6.37 -7.08	00001200 00001210 00001220 00001230	
	x_{OH_2} (up) (0+1) x_{OH_2} (0+	-6.25 -6.35 -6.37 -6.46	00001240 00001250 00001260 00001270	
	XOH UOZOH)-2 XOH UOH4C. DLM UOH4DLMC. OUT	-6.39 -7.09 -7.11	0001280 0001290 0001300	
		7,122 -7,22 -7,34 -7,34	00001310 00001320 00001330 00001340	
		-7.45 -7.50 -7.62	00001350 00001360 00001370	

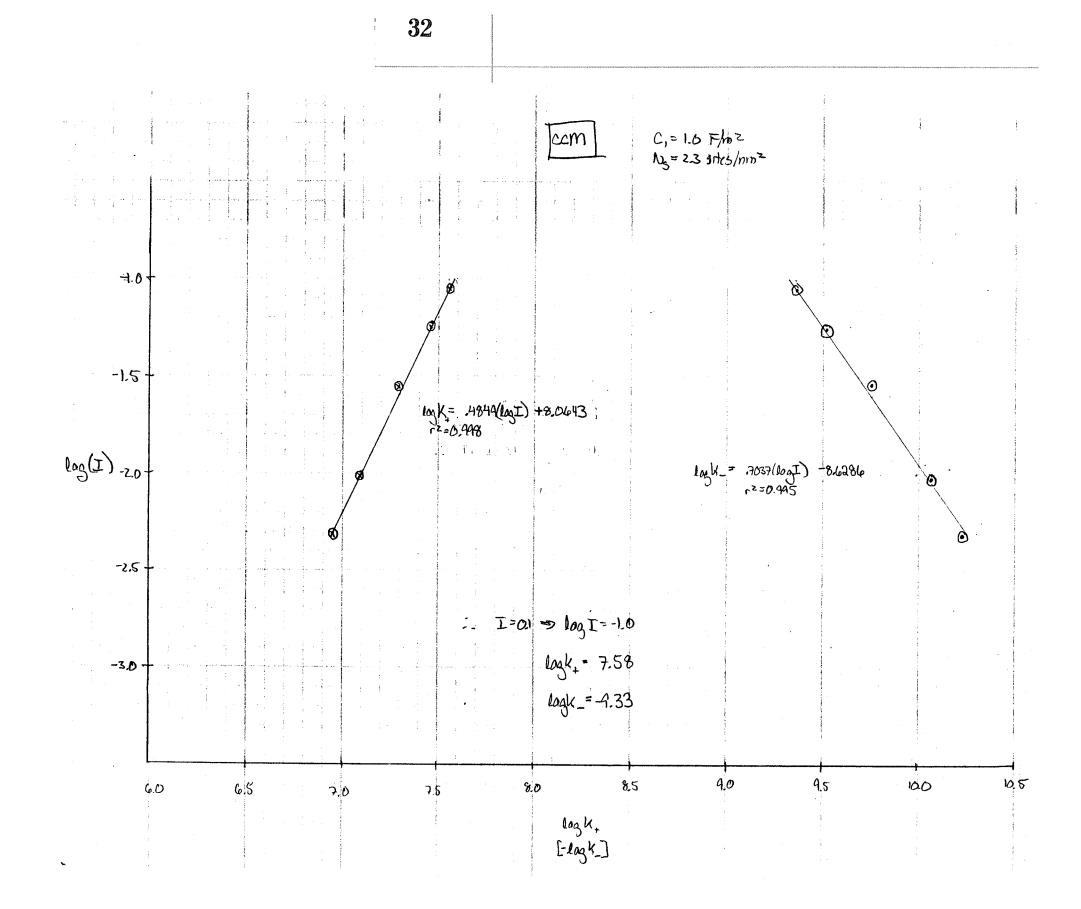
12			
10/23/92 2RJ			nammarana ang mangana mananana ang manang kang manana ang manana ang manana ang manana ang manana ang manana ma
1 DR	LOGK VALUES FROM FITEOL RUNS (CORRECTED TO CO3 +2H+ = HO+CG)		aan amee waa maa maa maa maa maa maa maa maa maa
	R×n JCO2	ZFOLITE DATA:	
	LOGK SOS/DF LOGK = LOGK + 18,16)		
XOH·HOCOZ	-3.125 .07 15.64		
XOH - 40,(003)			
XON 2. U02(10))-3		EU= 2.0 ×10 m ulz (203)2	
)2 -7.49) .04 10.67 J		- инно, улиу т. у.ш. нин улиу ули – ни ч истродицини историти тологодин тологодин сулиу.
X0H2 (UD)2 (03 (0)		Forward Koverse 102003 (wei)(13/04)3	anna ann ann an a' a' a' a' an anna 300 ann an
XOH·LIOZLOH)y	-23.11 1.82 -23.11 * (No CO2, so no change)	pH equil %U lost Rev pH equil Rev %Ulost 1.335x10 ⁻⁶ 2.225x15 ⁻⁷	. 1927 - CENER T. C. I. 1937 - D. C. M. M. P. M. MARTING AND
aya neberda mana kara da ang ang ang ang ang ang ang ang ang an		$\frac{2.93}{3.71}, \frac{22.248}{24.566}, \frac{4.5666}{3.21}, \frac{24.374}{16.397}, \frac{1.486x10.5}{57}, \frac{2.477x10.7}{57}$	nia nan mananan mananan mananan mananan mananan mananan mananan mananan mananan manana manan mananan manana man
10/23/42 Sel	FITEGL + MINTEGAD RUNS USING CNURA data for U(VI)-Sorption	4.05, 75.294, 1-3046 5.72, 40.00 5.698 x 15 9 6.05 94.79, 1.894 x 16 7	na an a
and the second s	on Clinophilolite	6 5 97 038).941x10* 6 01 94.882	
	•	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	Using only 14 focusord reactions @ 2×10-4 M UG_(NO3)2 from Pobalon + Tycner (1992).	6.89. 94.118. 1.592/10 6.89 90.228 5.04(x10 - 1.103/0) 7.07 01.287 1.525/10 7.1 81.846 5.444 x10 4 9.40 x 10 7	
	Pahalan + Timper (1992)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	valuut koon vaa vat "Astenoniel") vää 5. honn ohtenon-studiet valude valut valud vaa eliiteideliideliide konvaneeziitetti käällises.
		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	an managana pangan ang kang kang kang kang kang kang
		8,94, 0.14706, 3,44 k/0 * 8.91, U 5, 5-3-5/U k + 1 k/U	₩1.9₩1.6=1.8.50%08/00.005.005.002.002.002.002.002.002.002.0
	Assuming a specific surface area of 700 m²/g; DLM; corrected for I=0.1 m	$\Sigma \mathcal{U} = \mathcal{R} \cdot \mathcal{O} \times \mathcal{O} \overline{\mathcal{O}} \mathcal{O} \mathcal{U} \mathcal{O} \mathcal{O} \mathcal{O} \mathcal{O} \mathcal{O} \mathcal{O} \mathcal{O} O$	an manan ya saran sanganya ka mananganta di sagan ka kaka na kananan kananan kanan kanan kanan kanan ka kanan k
e ala da da ante en esta con en la contra da		Pawand Reverse	
	Modeleol data Using 5 species:		n alanda nayang mengang mengang mengang mengang pertang pertang mengang mengang mengang pertang mengang mengang
1/2017 16 / 1/2022/2022/1/2020/2020/2020/2020/202	Modeleol data using 5 species: <u>LOGK</u> <u>INPUT FILE</u> (K:\TURDERDETTED) EFUTION	pHeq %Ulost. pH eq %Ulost	n marina una constanta na mana na nontratan na martina atama atama atama atama atama atama atama atama atama at
1 1973/1993/12: 14: 14: 14: 14: 15: 14: 14: 14: 14: 14: 14: 14: 14: 14: 14	XOH·402002 10/04220 15.0-) 62EOLUCI.DLM	2.81, 10.504, $a.101 \times b^{-4}$ 2.06, 23.109 3.68, 11.134, 2.227 $\times b^{-4}$ 2.96, 5.2521	an ala nagana kalanangkanangkanangkanang manatarangkanangkanangkanang kalangkanangkanangkanangkanangkanangkanan
	XOH2. UO2(CO3)2 10/04/20)287 62EOLUCZ.DLM	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	erang ang pang kang mang mang mang mang mang mang mang m
1	XOH- 40 (10) -3 10000 341 wrom 62 EOLUCS, DUM	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
	XOH 2 (LO2) 2 CO3 (OH) 3 DOM D) 10.7 (Logk CZEOLUCO. DLM	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
	XOH·UQ(OH)=2 10/18/100-23.1 62EOLUOH.DLM	6.98, 81.282,1.424×10 ⁻⁶ 6.7, 82.205 7.18, 77.311, 1.5%+×10 ⁻⁵ 7.05, 80.651	a, da a shan maran a anna 1900 anna anna anna anna anna anna anna a
	Ren U CO2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
FOR		8,44, 0, 0 8.26, 0 8.94, 1.0504,0.10/x10 ⁷ 8.85, 0	hinar 16 kan kan bir bir bara han onunde solende odersternen om garpeetermende gegegege
			a an
3	x0H·42CQ° -4.23 .14 13.94		a alata 1979 ya lanan dharana dharana dharana charana chilara dharana an dharana dharana dharana dharana dharan
	X6H2·40210032 -8.95 .50 27.37		na, qa ma na manan na manakinika dhanan ana anaman aran manananan ana anakinik kiki.
9856/000898889899969734/14/14/17171988.00°-010826452652623624646444	xoHz. 402(Coz) 3 -21.82 1.30 32.66		
	xoH2. (UQ)203 (OH)3 - 8.58 0.14 9.58		
VANDELEVANE WAR WAR PORTENDING STOLEN STATEMENT WAR ME IN DATE ON STRATE AND AND AND AND AND AND AND AND AND AN	XOH. UO2 (OH) -2 -24.68 0.81 -24.68 No O2 > CO3 correction nouse	MINTERAZ OUTPUT FILES Include (all on K:) TURNER/MIN	TEGADOUTPUT):
			Pohalon ecolite
i and the second s		1002 D m $cott (166 m 4(vi))$	Dota. Forward
		402BLM.OUT NO COZ	rxn only. 10th M.
All Laboration of the Alexandron of the second second second of the Second Second Second Second Second Second S			den name en ante en
		4 COZDLM. OUT - TRIPATHI (1984); DLM, 106 M 4(VI), Atmos. CC2	
		LOH4DLM.OUT - VORIABLE LOG K formallo, (OH), complex	
		SITECONCOUT - NO usz, Goethite site conc. U varible pH	•

16						17
1/8/93	Directory structure on K: drive (LAN) modified to que		An example 1	of the revised FI	ITEQL input 1 resultant output is	shown
(JR)	better idea of data location. This involved creation of		here:		· · · ·	
ny gangan yangangangan panam dan karanta da san kata da 2000 kata 1000 kata 1000 kata 1000 kata 1000 kata 1000 k	element specific subdirectories for FITEQL runs. All					. and/00/02/02/02/02/02/02/02/02/02/02/02/02/
NOV 2014 7.2.2010/07/04-9.2.7.904/1040000-0-1011 Ngimmana Namasama ang Ngimmana ng Ngimmang Ngimmang Ngimmang N	file nomes remain unchanged. But, for example, location of	and the second se			No CO2	effoldestandersmarks(sr.)genosmentes
aar-aan-to-sinishaalaa siina soo aa a	file nomes remain unchanged. But, for example, location of all DLM uranium runs are located in:					ระการระบาด การประเทศได้สูงสุดภู
	K:\TURNER\FITE&L\INPUTIDLMIURANIUM	Jan 26 11:06 199	3 xouo2.tlm Page 1	0000020 0000030 0000040 00000050 00000050 00000050 00000050	Jan 26 11:06 1993 xouo2.tlm Page 2 5.5138-7 5.6608-7 6.2358-7 6.3358-7 5.9138-7 5.9138-7 5.9138-7 5.40724 K:\TURNER\FITEGL\IMPUT	00000480 00000500 00000520 00000540 00000560 00000580
• • • • • • • • • • • • • • • • • • •	Separate subdirectories for plutonium + Np are prepared	100	1 3 1 40E-4 XOH .00E00 PSI0 .00R00 PSIB	00000090 00000092	8. 3538-7 8. 6398-7 9. 3056-7	00000610 00000620 00000630 00000640
	in anticipation of FITEQL runs for sorption data	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	00600 PSTB 00600 PSTD 0052-6 U0242 00520 U02ads - dummy V 00600 H4 00600 NA4 00600 NA4	00000104 00000106 00000110	$\begin{array}{c} 1.0208-6\\ 1.0318-6\\ 1.0318-6\\ -5.23\\ -5.43\\ -5.61\\ -5.73\\ -5.63\\ -5.73\\ -5.63\\ -5.73\\ -5.63\\ -5.73\\ -5.83\\ -5.1\\ -5.73\\ -5.83\\ -5.1\\ -5.73\\ -5.83\\ -5.1\\ -5.73\\ -5.83\\ -5.$	00000550 0000660 00000670 00000690 00000690 00000690 00000700
	e.g. K: \TURNER\FITEQL\INPUT\DLm\#PLUTONUM K: \TURNER\FITEQL\INPUT\DLm\NEPTUNUM	03202 -10.54 0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0000120 0000124 00000126 0000127 0000127 0000128 0000129 00000130 00000131	-5,04 -5,73 -5,83 -5,87 -5,87 -5,91 -5,89 -5,89 -6,05	00000720 MARIA Construction 00000730 00000740 00000780 00000780 00000800 00000820 00000820 0000060
	Similar directory structures adopted for TLM + CCM.	03209 -31.49 0 03210 -22.83	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	00000133 00000134 00000135 00000137 00000137 00000140 00000140 00000140 00000140 00000140 00000140 00000140 00000140 00000140 000000140 000000140	6.17 6.10 6.15 6.20 6.25 6.25 6.35 6.38 6.38 6.46 6.84 8.12 8.12 8.12	00000800 0000900 0000920 0000940 0000960 0000090 00001010 0000100 00001050 00001050
1/26/93	Corrected previous FITERL runs for data (u(vi)-goethite) of Tripathi (1984)		.410 0.8 0.2	00000175 00000180 00000185 00000190 00000190	33 0.08 8.05-08 { Tripathi's error 1.890	00001110 00001130 00001170 00001180 00001190
<u>ARI</u>	Mistake was made in using the default error estimates (1×10-6 m) for	3301 25 33 1.015E-7	1 1 0	00000230 00000240 00000260	.0%x 1×10 ⁻⁴	
	Mistake was made in using the default error estimates (1×10 ⁻⁶ m) for an extremely dilute solution (also 1×10 ⁻⁶ m u(vi)). Using the experimental error of the order of the solution concentration resulted	1.624E-7 2.081E-7 2.630E-7		00000280 00000300 0000320 0000320	=8×10 ⁻⁸	-
	experimental error of the order of the solution concentration resulted	2.659E-7 3.089E-7 3.217E-7 3.274E-7		00000360 00000380 00000400		
•	in erroneously low values of Vy= SOS/DF in the FITEOL	3.694E-7 4.200E-7 4.845E-7		0000420 00000440 00000460))	
	nuns.			an 26 11:06 1993 uo2tlm	al out Page 7	
1999 (S. M.S. Martin, S. Martin, S					m.out rage /	
namen ole fa fonder son en sen en	The runs were redone using the estimated error of ±8% due to				AMETERS AT EACH ITERATION: LOG K, T, LOG X	
997 M M M M M M M M M M M M M M M M M M	sorption on the container walls reported by Tripothi (1987). All other parameters, values, and file name/locations are the same as reported previously (pg. 046/6; 046/88 through 12) all files are located as described above in 1/8/93 entry.		unun fanansı un en	I V(Y): SOS/DF	3301 Juntal guess	
	parameters, values, and file name/locations are the same	an a	and and the second as a second and a second as the second as	0 2.179E+01 -7.600 1 2.023E+01 -4.951	1E+00	
an a	as reported previously (pg. 046/6; 046/8 through 12) all files are		NUMBER A STATE AND A STATE SHE	2 1.943E+01 -4.595 3 1.907E+01 -4.405 4 1.892E+01 -4.293	$\frac{5E+00}{5E+00}\log K_{x0-u0,1} = -4.123$	
	located as described above in 1/8/93 entry.		2000-000 - 1	4 1.892E+01 -4.295 5 1.886E+01 -4.226 6 1.883E+01 -4.185	5E+00	
12 KONCUL DAVISH POLISHING AND AN ANTINY STRATEGY (MALANE AND AND		an Anna an	NGCOM CONTRACTOR	7 1.882E+01 -4.160 8 1.882E+01 -4.146	0E+00	an aa amaa magaala ahay yaa ah a
THE CONTRACT OF THE OWNER OF THE		needed and a second		9 1.882E+01 -4.137 10 1.882E+01 -4.131	1E+00	
na wana wananganganganganganga angot at mana cara at matara ang ang ang ang ang ang ang ang ang an				$\begin{array}{cccccccccccccccccccccccccccccccccccc$	BE+00 Portial output showing resultant	
27 Mar 1900 Mar Mar Martin Martine 2001 Wellington a Andrea Martine Anna Angel		and the first of the second		15 1.882E+01 -4.124		
an a can be an a state and		an a		16 1.882E+01 -4.123 17 1.882E+01 -4.123	3E+00 3E+00	
and a manufacture statement of the		and the second		18 1.882E+01 -4.123 19 1.882E+01 -4.123		
na sala na na ma na ma na ma na mana sa		and the second	*	*** OPTIMIZATION PROCEDU	·	
		1 in		19 1.882E+01-4.123	<u>3E+00</u>	

18		19
	Resultant Parameters and error estimates from FITEGL runs	
	Tripathill1984) U(VI)-goethite sogetion data, 1.05 x10-6 M use (NOS)2, NO CO2, 0.1 M No NO3	1/28/93 Discovered errors in CCM input files. Forgot to change the FITEGL
	FOR CCM, BLM, TLM LOGK	SRJ flag indicating which SCM should be used (see pg. 7, corrections on
	CCM SOS/DF DLM SOS/DF TLM SOS/DF	sample output). Also, used DLM parameters for K+ + K
	x0-403 + 0.87 1.69 7.4274 0.45 8.32 -4.12 1882	This problem has been corrected and the FITEQL calculations redone.
	XOH- 402+2 8.74 10-39 9.147 4.946 8.84 11.31 4.62 16.97	correct values listed below and on Table on pg. 18.
		MINTEQAD cakulations rerun using correct log K values, and 12/17/92
2 	XO-4000H -6.98-7.00 4.813 4.93 -6.96 4.64 -9.56 13.61	CNURA radionuclide database. Resultant graphs shown below
	XOH-4020H+ 0.87 Lta 7.427 4.434 0.45 8.32 -1.21 13.21	<u>C C C C C C C C C C C C C C C C C C C </u>
ccm values-		LOG K SOS/DF
	x0-u0, (0H)2 -14.89 -15.69 2.30 4.433 -14.95 1.48 -14.97 4.61	xo-u02+ 0.87 7.427
	XOH-UO2(OH)2° -6.99-200 4.813493 -6.96 4.64 -6.89 4.90	XoH·uo,*2 8.74 9.147
2497949494992929292929292949449494949494	x042-402(04)2+ 0.87 2-69 7.4274934 0.95 8.32 1.46 5.24	
		x0-4020H° -6.98 4.813
• • • • • • • • • • • • • • • • • • •	XOH-U02(0H)3 -14.99-15-64 2304433 -14.95 1.68 -12.61 0.45	$x_{OH+u_{2}OH} + 0, s_{7} - 7.427$
• VESSER & STATEMENT (See Spring) & del 2 de companyo (See Vesser) (See Vesser), se de companyo (See Vesser)	xonz-uglanz -6.48-200 4.813493 -6.96 4.64 -4.53 0.33	XC-40,10H)14.89 2.30
	XCH-UC2(04)-2 -2279-2479 1.33 4ATT -22.94 0.64 -17A9 0.25	
	XOH-2002(04) -14.89-15-64 2.30 4923 -14.95 1.68 -10.22 0.23	$x_{0}+z_{2}-u_{0}(0+)_{2}^{+}$ 0.87 7.427
		$x_{OH} - u_{2}(C_{H})_{3}$ - 14.89 A.30
	Note: Westall (1982) states that SOS/DF values between 0.1 + 20	$x_{0+1} = u_{0} = (0+1)_{3}^{\circ} = -6.98 = 4.813$
	are indicative of a reasonable fit. The smallet the number,	NOI12-452-10-3
a den nom den	the better the 'fit' to the data.	$x_{0H} - u_{0}(_{0H})_{4}^{-2} - 22.79 $ 1.33
		$\times OH_2 - UQ_2 (OH)_4 - 14.89 - 2.30$
	FOR U(VI)-CO2-H2O-goethite system (DLM model only)	
) 1	Corrected/Changed to CO.=2	File nomes remain unchanged. Corrected FITEBL runs replace earlier
	LOG K SOSIDE	runs. DLM + TLM volues unchanged.
	XOH·UO2CO3 -3.27 4.29 + 14.89	J
	XOH: UQ(CO3) -7.78 1.77 +28.54	
Landon-store concernation and an	x0H2·U02(C03)3 -20.43 0.66 +34.05	
	x0H2·(402), CO3(OH)3 -7.62 4.6) +10.54	
	XOH·U02(OH)2 -23.27 32.29 -23.27	
	•	
	Change to CO2 as component described above on pg. 12 (046/12)	
t		
1		

22	DLM:	Callelor Th					23
			DLM Constants:	1×15" M Pul	NO2), ; No CG,	; 0.1 M K	a tog
	Initial FITEAL runs did not converge. Graduelly increased					****	
	estimated error in an effort to relax convergence criteria.		Reaction	Logk	Vy (505/6F)		Error Used *
ente 2010 augusta parte a la compañía de la compañí	This does not have a large affect on log k value for						~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
	binding constants, but it does affect the goodness-of-fit parameter. The effect on log K ~ 0.1 a-ress (observed). Hower, the		XO-Pu+3	14.62	0.93	0.30	,
a the second	parameter. The effect on log K ~ 0.1 articles (observed). Hower, the		214D		ann an sciaidh an Saint Reich an Saint Ann an Anna an Saint Anna Anna Anna Anna Anna Anna Anna An	Na NGNYa mikana kang kang kang kana na kana na kang kang	
	standard deviation reported by FITEQL is large in the rense of 0.2-05.		XOH-PUCH+2	8.13	4.68	6.15	
จะการการการการการการการการการการการการการก	Prior to increasing estimated error, the runs would converge towards						ĸĸĸĸŢĸĊĸĹŶŎŎĹŶĹŶĬŎĹĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸ
	a value, but not quite metet convergence criteria. This gave an		XO-Pu(OH);	2.47	0.97	0.4)	<u>₩ 6846988888888889899898989898989898989898</u>
	idea what value was being anacceled and what must be		XOH-Pu(01)+2	8.13	4.68	0.15	
-XXXVII-SXXVIIA-XXXVIIA-SXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	valid. Slow convergence suggests an ill-conditioned system using the conceptual model.						~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
< 30.000.000.000.000.000.000.000.000.000.	valid. Slow convergence suggests an ill-conditioned system using the conceptual model.		XO-Pu(0H)3	<i>~5.3</i> 5	0.14	0.55	******
	The data is heavily weighted towards complete sorphion Because the		XOH -PULON)+	2.47	0.97	<u>e4</u>)	un na sealan base na manana manana manana na manana manana di Abdi Sedi Masini, da Manana manana ng apapa sa sa
CATOR AND AND AND AND AND AND AND AND ADDRESS ADDRES	sorption edge is of most interest due to capid changes in 20 socked over				~~~~~		₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩
	a narrow alt monae, we first drapped the 100% sailed data at		XO-Pu (CH)	- 11.48	0.13	6.54	
	high ptt. This improved the convergence characteristics of the		XCH-Py (OH)	-5.35	0.14	<u>D.55</u>	
	high ptt. This improved the convergence characteristics of the model, and wann, the effect on calculated/estimated log k is not the there is not the the south of the south of the there is not the south of the south of the there is not the south of the there is not the south of the so		x0H2-P4(0H)+	2.47	0.97	6.41	
	fairly small (±0.1-0.2). This was done only for XORUCOND; XORUCOND				nennennen en sen an en		
2			XOH-PULOH)	~ 1).98	0.13	0.54	
	Given the difficulty in atting the DLM to converge ender		XOH = PL (CH) 5"	- 5.35	<u>0.14</u>	0.55	₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩
	Given the difficility in gitting the DLM to converge ender These conditions, the resultout lon & values should be verified with skepticism and used othe caption. This is expressed, the green the iterate long storetonal devictions, calculated of the bonching constants.				1917 - 1917 - 1917 - 1917 - 1917 - 1917 - 1917 - 1917 - 1917 - 1917 - 1917 - 1917 - 1917 - 1917 - 1917 - 1917 -		
	skysticism and ista outh carting. This is principally the given the						
	whether long storetoned all values, colorlated pr this bonding		Errors Used.	S _{T,rcl}	S _{7,ats}	S _{X,re} l	S. Abs
јанитеритеритеритеритеритеритеритеритеритер	constatts.	anna ann ann ann ann ann ann ann ann an					ĸĸĸĸŧĸĸħĸĿŎĸĿŎŶĸħĸţġŦţġġġġġġġġġġġġġġġġġġġġġġġġġġġġġġġġġ
			XO-P4+3	6.35	3.5×10-12	0.05	
		1. 7 9 M M Caller ANY 2020 M Constraint Constraint Constraint Constraint Constraint Constraint Constraint Const	XOPLOH"2, XOH-PLU		1.0x10-12	0.10	
			·Pulow2; XO4.Pulor)3; XO	• •	5.0x10-12	0.10	
			R. (6H); ; XOH. P. (0H); ; XOH		5.0×10 ¹²	0.10	6
1950/1951 - N. M. M. M. M. M. Martin and an appropriate strategy of the strate	++		XO.Pu(OH), ; XOH.P	4(0H) = 0.03	·5.0×10-2	010	
 		n an	*****		Constant de Carlon de La constant d		
	· · · · · · · · · · · · · · · · · · ·	an a					
	+					and a support of the second	
	+						
	+	88				********	
50000000000000000000000000000000000000						****	
i			**************************************				

- and possible

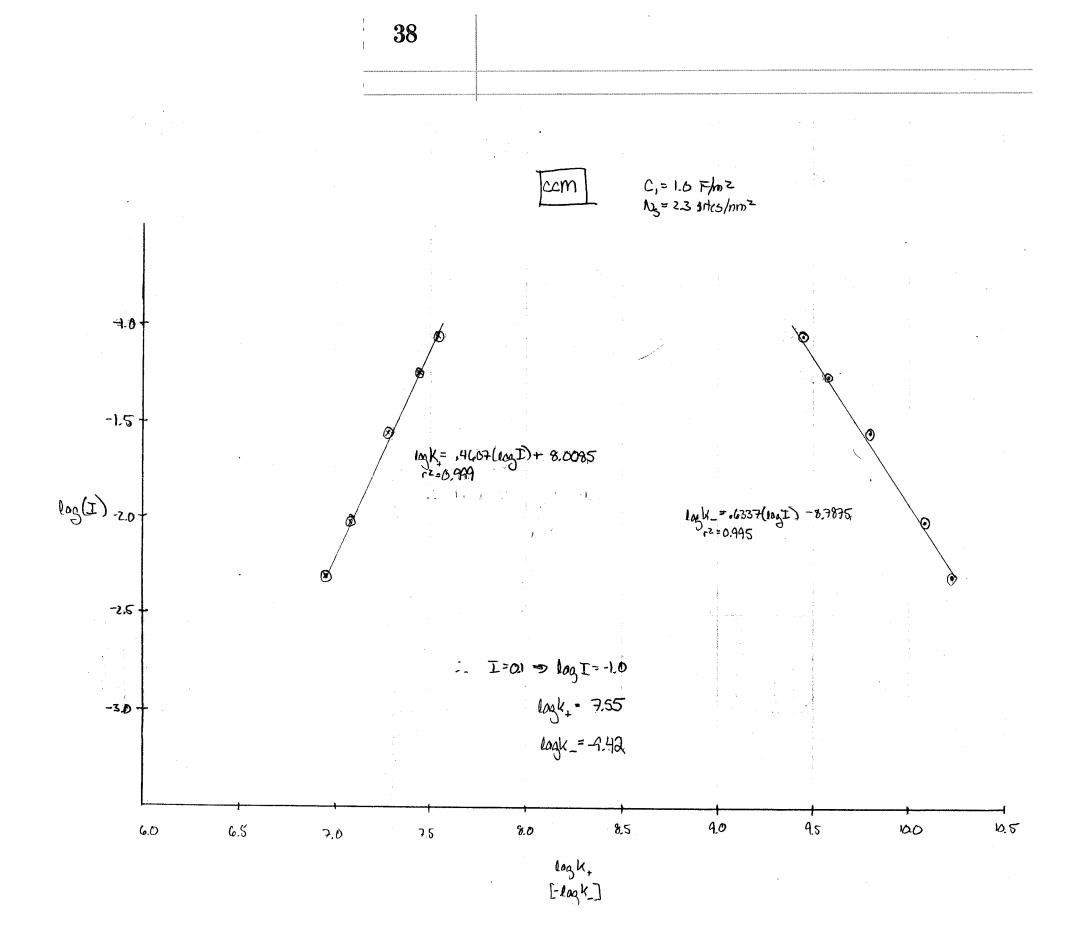

-

24		•								3/2/43 (control)									25
3/2/93	Back +	to Pu ⁺⁴ -	sorption							Pul	IN) = 10-10	M ;]I=0.	I M NOM	slz				galan ang katalan katal	nn yn mathata a'r yn mynafal y charar yn gan yn
	Condition	nal Equili	brium Con	stants	have be	en deter	mined	for		DLM CCM-							TLM		
STERNISSON SIGNISSON SIN SIN SIN SIN SIN SIN SIN SIN SIN SI	DLM, CC	m, TIM	models at	· I>0.	1 m and	l using	the da	ta			Logk	505/DF	Thank	Logk	SOS/DF	= Skork	Logk	SOSIDE	Jak-
	of sonch	hez et al	1.(1983) for	- Pull)-Goothit	o sorption	n. Bath			Surface Species	থ	alang manang malang malang sa	-J.	U		7.			
	data for	- Pu(IV) _T	= 1×10-"	m and	(Pudu) =	= 1×10 ⁻¹⁰ V	n hou	٤											99 M MM M + M + M + M + M + M + M + M +
	Deen th	t using	fitting prog	ram F	-TEQL					x0-P1+2	14.58	7.17	6.10	16.38	2.52	B.12	-447	14.06	0.44
	<u>Results:</u>	I=0.11	M, Pu(lv)	- 10" M			99999999999999999999999999999999999999			XO-PLOH+2	7.80	14.10	0.04	8,83	1.87	<u>0.13</u>	-6.29	13.67	
	10"" M	Ъrw			ccn)		TLM		XO-PUCOHD,+	1.00	1.99	0.13	1.23).35	0.13	-8.23	10.69	6.12
	LogK	505/DF	elaks std.dev. Di (the Teogle)	Logk	SOS/DF	Jensk	Logk	SOS/DF	Jeogic	X014-Pulot)2+2	7.80	14.10	0.04	8.83	1.87	0.13	-01)	16.75	0.15
Surface Species	,					-0-			-9-		-								
		1999 - Miller Markeller (1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 19				ana ana ang mang mang mang mang mang man				XO-Pu(OH)	-6.20	1.27	0.14	-6.41	1.05	6.14	-11.0k	5,09	0.10
XO-Put3	14.62	0.93	<u>c.30</u>	17.17	<u>8,7</u>]	0.))	-3.84	15.03	0.14	XOH-PU(OH)3+	1.00	1.49	0.13	1.23	1.35		-2.92	5.)4	0.10
XOPLOH +2	8,13	4.68	0.15	9,71	3.47	6.)8	-5.46	14.24	0.11	XO-PULOHDy XOH-PULOHDy	-13:45 -6.20	1.58 1.27	6.17 0.16	-14.05 -641	0.44 1.05		-14.50 -6.33	1.05	0.14 0.14
XO-Pu(oH)+	2.47	0.977	6,41	2.38	6.57	0.12	-8.22	12.49	0.04	XCH-PU(OH)	1.00	1.49	0.13	1.23	1.35		+1.83		<u>0.13</u>
XOH-PL(6H) +2	813	4.68		9.71	3.47	6.18	-0.10	5.59	0.09										
										XOH-PULOH)	-1345	1.58	0.A	-)4.05	0.46	0.14	-10.17	1.74e	D.F.
NO-PUGH)30	-5.35	0.14	<u>6.55</u>	-5.74	150	0.15	-10.84	10.42	0.10	XOH-PLLOH) 5		1.27-	0.16	-6.41	1.05	0.14	-2.02.	1.73	0.17
XOH PLOHS	2.47	047	0.41	<u>1.38</u>	6.57	0.12	-2.73	3.37	0.10							•			******
XO-PLIOH),	-11.48	0.13	0.54	-12.61	I.S)	0.)9	·13.03	1.38	0.20		Nato:	To managa	the	10-10 M	data cot	was muc	a pacier	- 40 cen	•1
XDH PU(OH)	-5.35	0.14	0.55	-5.74	1.50	0.15	љ.с.				/	CONVERSED ??	Diven	the con	stavints ad	a single,		lear	
XOH-PL(OH)+	2.47	0.97	0.41	2.35	6.57	0.12	3.17	5.11	0.12	-		surface st	PCUS. T	his sum	s to be	due to 4	ne fact	that	
												the 10-"	m data	set inc	ludes o r	number of	BAIDS O	here	
XOH-PULOH)5	-11.48	0.13	0.54	-)2.4]	1.51	0.19	n.c.				Se	sorption a	10090.	The sm	aller 10-10	m data s	et did n	of includ	k
XOH-PWOH)s	-5.35	0.14	0.55	-5.74	1.50	0.15	<u>n.c.</u>									in trying			
n.c. = no conve	rgence											******			איז				
												-	******			and a start with the second start and st	1948 - 1949 - 1949 - 1949 - 1949 - 1949 - 1949 - 1949 - 1949 - 1949 - 1949 - 1949 - 1949 - 1949 - 1949 - 1949 -		an un naman de milionale por menter Miliola Miliona de Miliona de Caracteria
						para antina antina canana da mini na tana da		ara (a 1980) an								La 			
							******		000000.0000000000000000000000000000000			43 109 100 100 100 100 100 100 100 100 100							annanger angenangen angenangen angenangkan kanangkan kanangkan kanangkan kanangkan kanangkan kanangkan kanangka
																			9949 (Hani 2000) Hala Mala Mana Kana Panghan Sana Mala Kana Kana Kana Kana Kana Kana Kana K
) 															200 MB 100 MB 200 MB 100 MB	*******	ay and a contract of the contr		an in an ann an an an ann ann ann ann an
٩	vener:								·		1000								

26			and the st	3/2/63								27
3/2/93 (cont'd)	Once log k + Jrogh volu 15 possible to use the cre	illing scheme and the top	Dankele a there (1990)	SIJISS (contid)	Note:	Thee	e equilibri	un contra	At an had the	al assetad		
	to develop a single data set.	ignting schemic proposed by	2 ZOISDEM, VIIDELI (ITTD)	cemas	Note: These equilibrium constants are conditional constants as determined by FITEQL, and valid for I=0.1 m. Prior							
2019;04;04;05:04;04;04;04;04;04;04;04;04;04;04;04;04;0	To acretop a single cana ser.											
		₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩			to use in MINITEGAD, they need to be "retrofitted" or corrected to I = 0 m. This was done using Davies Eqn. and Table 2.13 from Drombale + Morel (199							
	look = Z12 (look).	nere the weighting factor	1.) · · · · · · · · · · · · · · · · · · ·			بەر <u>ت</u>	Loucerer	and Tak	le 213 from T	as abole 1 m	nosi ligan.	
	U S						L 911.)
	μ ₂ -	(1/ Teogk);										e deutro monarchi de la della della della deutro mana messa de la deutro della della della della della della de
2007/0000000000000000000000000000000000		(1/Jeage);										e name dan sere a para dan sere a a construction da a construction da a construction da a construction da a con
	Therefore:				Information potentially subject to copyright protection was redacted						cted	
	DLM	CCM	TLM						ed material (Table 2	.13: Activity		
Suctace	$10^{-10} + 10^{-11} = Lock$	10-10 + 10" = Logk	10-10 + 10-11 = Logk			coen	icients) is in		owing reference.			
Species		U		· · · · · · · · · · · · · · · · · · ·	******				lorel. "Surface Comp		-	
	0.36		1997 199		a) Malanin - Incasing - Incasing - Incasing		ous Ferric Oxi 5. 1990.	Ide." New `	York City, New York:	John Wiley ar	nd	www.common.common.common.common.common.com
XO-Pu+3	(0.75) (0.24)(14.58) + (0.25)(14.62)= 14.59	(48)(14.38)+(.52)(17.17)= 16.79	(.24)(-447) + (.76)(-3.84) = -3.49			Conc	. 1000.					NP ND MM MARK BROCK MINUTARIAN CONTRACT
xo-P4(0H)+2	(0.74)(7.80)+(A)(8.13)=7.87	(.58)(8.83) + (.42)(9.71) = <u>9.20</u>	(.31)(-6.29)+(.69)(-5.46)=-6.06									
XO-Pu (OH)2+	(0.76)(1.00) + (.24)(2.47)= <u>1.35</u>	(.48)(1.23)+(.52)(2.38)= 1.83	(42)(-8.23)+(.58)(-8.22) = -8.22									
XOH-PULOH)2+2	(0.74)(7.96)+ (021)(8.13) = 7.87	(.5= X8.83)+(.42)X17.17)=9.20	(.42)(-0.11) + (.58)(-0.10) = -0.10		. L							
						•	DLM		ccm		TLM	Stabilitation of the stabilitation of the Maline wave constrained and construct
XO-P4 (OH),	(0.77)(-6.20)+(0.23)(-5.35)=6.01	52)(-6.41)+ (.48)(-5.74)=-6.64	(.5) (-11.04) + (.5×-10.86)=-10.96			I=0.)	I≈0	I=0.1	I=0	I=0,)		≈⊘
XOH-PU(6H)3+	(0.76)(1.00)+(0.24)(2.47)= 1.35	(.48×1.23)+L52×2.38)=1.83	(.5)(-2.A2) + (.5)(-2.73)=-2.83				QD 3643		SD 3/8/43		W 3/84	3 3
				XO-P4+3)	4.59	16.24 13:25	16.79	18.44 17.45	-3.49	-2.34 -3	-83
XO-Pulothy			(.54)(-14,56) + (41)(-13,23)= -13,48	XO-PUOH+2		7.87	9.41 8.47	9.20	10.74 70:30	-6.04	-4,52-~4	Se
XOH-Puloh)y		(.52)(-6.41) + (.48)(-5.74)=-6.09		XO-PULOH)		1.35	2.78 2.67	1.83	3.26 2.82	-9.22	-6.79 -6	<u>40</u>
X04z-Pu(0H)4+	(0.76)(1.06) + (0.24)(2.47) = 1.35	(48)(1.23) + (.52)(2.38)= 1.83	(48)(1.83) + (.52)(3.17) = 2.53	XOH-P4(0H)2		7.87	9.41 8.47	9.20	10.74 10:36	-0.10	<u>).44 t</u> ,	002
				XO-Pu (OH)	-	0.01	-4.69	-6.09	-4.77-74.77	-10.94	-9.64 -9 .	69
XOH Py (OH)5	(0.76)(-13.45)+(0.24)(-11.98)=-13.10			XOH-Pulon);+		.35	2.78 2.67	1.83	3.26 2.82	- 2.83	-1.40 =1.	<u>SL</u>
XOHZ-PULOH)5	(0.77 X-6.20)+(0.23X-5.35)=-6.01	(.szX-6.41)+(.49)(-5.74)=-6.04	-2.02 *	XO-PU(OH)			-11.89 -12.06	-13,44	-12.23-72:34	-13.98	-12.77-72-	
		anna a sana ana manana manana ana ana ana ana an		XOH-Pu(OH)	-6	<u>, 0)</u>	-4.69 -77.69	-6.09	-4.77 - 4.73	-4.33	-5.01 -5.6	2
* 10-"	M did not sonverge		1979 1984 1987 1988 1987 1999 1999 1999 1999 1999	XOH- Th(OH)y		,35	2.78 2.67	1.83	3.26 2.82	A.53	3.96 3.8	5
				XOH - PUCHDE			-11.89=+2.00	-13,44	-12.23 -72.34	-10.17	-8.96 -9.0	
	Note: A spreadsheet prog	ram has been developed t	o calculated the weighted)	XOH2-Pu(GH)S			4.69-4.69	-6.09	-4.77-*4.77	-2.02	-0.70 -0.7	
	ang. Jogk 495% cont	Idence limits based on bram	bak and Morel (1990) See	n a sana na ana ana ana ana ana ana ana	Note: ch	anges in	corrected voll	es becaus	e should not how	e included su	rface species	
	pp. 95 for sample hon	d calculations. DEJ 8/12/94			Ør	isinal i	onic strength co	diculations.	L) 3/8/93			

28								29
3/8/43	Correcting Ur	ranium Look	values to I	=0 m (Pa. 18))		3/8/43 (contia)	
Call	Logk = L	oak ^{0.1M} +	log 8 lo	.≡0 M (Pg.18) Y ^y reactants				
	J	J	- J prod	J reactants			Corrected to CO2 using	
	DLM			CCM		TLM		
¹ 1988 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1997 - 1997 - 1997 - 1997 - 1997 - 19 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1			1999 Million and Carlos and a state of the s				$CO_3^{-2} + 2H^+ = CO_2 + H_2O$ $logk = 18.16$	
	<u>T=0.1 M</u>	I=0 M	I=0.1 M	I=OM	I=0.1	η I=om		
***************************************		*****		nendatur enen survermanara hanenanara nanen sur her hurchard en di Divinição ya Materia Materia Materia		ana manan sanahan jaran jaran ng kata kaja kaja kana sanaka sa	I=0	
XOLO2+	0.95	1.28	<u>ር. </u>	1.20	-4.12	-3.79	xoH·46262 = +15.11	******
×0+402+2	8.84	9.38	8.74	9.18	4.62	5,04	XOH2 W02(LO3)2 +28.45	Sader SAR Schule Antonio Antonio constructiva antone dan data
							xoH2U02(103)3 +33.94	20000000000000000000000000000000000000
xouozoh°	-6.96	~6.74	- 4.48	-6.76	- 9.54	-9.34	XOH2(402)2(03(6H)3 +10.98	
XOH LOZOH+	0.95	1.28	<u>0.87</u>	1.20	- 1.2)	-0.98	XOH·U02(0H)4-2-23.27	

xoucrothz	1	- 14.જપ	- 14.89	-)4,78	~)4.47	-14.84	·	
XOH LLOZ (OH)2	-6.96	~ 6.74	-6.48	- 6.7le	-6.89	-6.67		
XOH2U62(0H)2+	0,95	1.28	6.87	1.20	1.46	1.74		90091074740020912091200100000000000000000000
	- JII ACC	VI 61				- 10.CÅ		
XOH UD2(OH)3	- 14.95	-)4.84	-14.89	- 14.78	- 12.6)	-12.56		
XOH2UQ(OH)3	-6.96	-6.74	-6.98	<u>-6-76</u>	-4.53	- 4.31		*******
X04-Ц020н)-2	51242 94 -22.79	- 22.44	-2274	- 23.74	-17.49	~17.99		
	1	~14.84	-)4.89	-14.78	-10.22	-		0
XOH2U02(OH)						- (0.1)		
		********						*****
	For CO2- U(VI) Com	nalexation c	en chine:	nen eine eine eine eine eine eine eine		Logx		
			5 %	******	T≈0.1 I	м <u>т</u> =0 т		and and a second sec
	$XOH + uo_{2}^{+2} + C$	6 + H.O=	XOH - UA M	P + 2H ⁺	-3.27	-3.65		
	· · · · · · · · · · · · · · · · · · ·	~2 ~						
	$XOH + 40^{+2} + 20$	10, + 2H,0 =	XOH, - 40, (CO.		-7.78	-7.67		
	•	€ C	ے ہے۔					
	$XOH + 40^{+2} + 3CC$	5+34,0=	X6H, UG (CO)	-3 + 5)f	-20.43	-20.54		
				-		-		
	X04 + 2402+2 + CO	2+44,05	XOH, (UG), CO.	(0H) + 4H+	-7.62	-7.18		
				-				uden soven sone belange solvedard ald black ditte Maddweide win.
	$X0H + U0^{+2} + i$	$4H_{20} = x0)$	+. UC_(CH)-2	+4+	-23.27	- 23.27		
								anna fananana anna ann
- -								


30													3	
*****	3/17/43					1		nte (24 ante - Indean francesco en constante de la constante de la constante de la constante de la constante de		·····	A. 5/ .5	n an an de san de s	1.200 m	
Der		****		*****			$\frac{CCM}{N_s = 2.3 \text{ sites/nm}^2}$							
						for goethite					a.s shes/nm=		2012-02-02-02-02-02-02-02-02-02-02-02-02-02	
	is less th	non the IC	sites/nm2	proposed b	ly Hayes et a	al. [199]).	I (M)	٨٠٠١٢					*******	
	Lower Vo	lues acc	also propo	used for ter	citydrite ir	The extensive		eogk,	logK_	SOS/DF	Stogk+	Slogk -	200000000000000000000000000000000000000	
	compilation	, in 'Shc	face Comp	lexation moo	leling by J)zombak + Marel (1990).	0.005	6.95	-10.22	2.58	6.106×153	1.173×10-2		
							0.0095	7.09	-10.07	3.27	6.934×10 ⁻³	L.174×10-2		
	- Therefore,	we have use	d FITEQL	to reinterp	rot the po	steatiometric	0.0275	7.29 7.29	-9.76	4.55	7.982×10 ⁻³	1.259×10-2	an faife ann an Anna An Aire	
	tritration	data used	by Hayes	et al. (199	1), assumina	A lover	0.054	7.46	-4.5)	4.50 (6.2)	9.067×10-3	1.259 x10 ⁻²	N./10.500/00.00.00.00.00.00	
	volue tor	site densi	ty (No)- I	The titration	data is ta	ibulated		•						
dia derivative desemperio data concerció di Standona de adade a de ciencia de	in Mayes	s et al. cig	90), NURI	EG/CR-554	7. This is	4 more	<u>0.087</u>	7:55	-4.3Le	6.52).014x162	1.463×10-2	. che facto na fecta de	
	<u>complete</u>	version of t	the results	presented in	n Hayes et	al. (1991). The volue chosen for		N A. L	Λ. / .				*********	
	$N_{\rm s} = 2.3$ side	eslam ² . This	is the value	of Dzombak	+ march and is	is the more (0.5-16) of Messere (40)	A plot o	t logk	he (and)) <u>allows</u> 6	easy extrapo next page).	ation to		
						1NO3 background	A cum lo	NC STECHEN	IIS SEC ATTA	ched graph, r	rext pages.		*****	
20 M M M M M M M M M M M M M M M M M M M	electrolyte	: 0.005;	0.0095;0.	0275; 0.054	j 0.087 (ma	les Atter).	A shirple.	L.K. MSH	$\frac{115}{5} \frac{10}{10}$	~). @ A1117	. L			
	The DLI	m + mm	models	are theoretic	ally applicable	ot any		loght		T)+8.0643	r2 = 0.991			
*****	ionic strength, and only one set o			t of paramet	ers is neces	sory. The			= = = //	T)-41041	r2 50,446			
	ccm, h	sidever, is	strictly spe	aking, valid o	nly for one	ronic storngth,		logn_	.7037 Ledy	L) - D. 4204	1		*******	
21% cm/9100 - conservation (conservation)	CCM, however, is strictly speaking, valid only for one ionic storngth, and the parameters must be indetermined for each new set of experimental					- V	T=AIM (.		المعطو مأرماريا و	sorption experim		4-14-14-16-16-16-16-16-16-16-16-16-16-16-16-16-		
	conditions	•							ommon 15 mbs	togionuchac	sorption experim	12/1[5.]		
1994 - 1994 - Antonio Carlon, and an		yn gargergegegegen an							k, = 7.58	CCM		anna a cuin a cuin ann an fadh a le cuinn ann an theach tha dh'fhal a seach ann ann an tha	Neneristoneneskeikkan	
		annan an an tha an		orm (No= 6	1.3 sites/pm2)				-				sharan bon ne ranoo	
	_ ~ ^ ~ `						and a final film of the stand of the	1000	k_ = -4.33	****	****	ĸĸĸġġĸĸĿŎĸġĊĸĸĸŎġŎĸġĊĸĊĸŎŎŎŎĸŎŎĊĸŎŎĊĸĸŎĸŎĸŎĸĊĸĊĸŎĸŎŎŎŎĸĸŎŎŎŎĸĸŎŎŎŎĸĸŎŎŎŎŎĸĸŎŎŎ	*****	
	I (M)	logk,	log K_	505/DF	Skogk+	- Stogt -					******			
		******	******						*****	******			20 10 20 20 20 20 20 20 20 20 20 20 20 20 20	
1899 - 1899 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 -	0.005	NC	NC	NC.	NC	NC			***************************************				***********	
	0.0045	8.50	-8.84	173.2	3,474x102	4.844x16 ²	***************************************			******				
ala la companya a su companya a companya da	0.0275	8.00	-9.08	65.0	1.758×10-2	2.379x16-2	*************************************							
	0.054	7.76		36.5	1.081x10-2	8			1					
	0.087	7.49	-4.37	24.8	8.54×10-5	1.353×10-2	********** **************************					~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
				1		ин или или или или или или или или или и	**************************************			ananananan ku oo adala dala dala ku ana pananganan ku anan ku anan ku			**********	
nin hai di karina karin kara na njaka kara kara (kara (kira na kara na mara)	Using Well	ynting meth	od of Dz	ombok + m	10-01 (1440)	Esee pg. 26], the			ֈֈֈֈՠ֎ՠ֎ՠ֎ֈՠֈ֎ՠ֎֎ՠ֎֎ՠ֎֎ՠ֎֎ՠ֎֎ՠ֎֎ՠ֎֎ՠ֎֎ՠ֎	*****	aan ahaa ahaa ahaa ahaa ahaa ahaa ahaa	and the fill and a construction of the second s		
Marchaelle commencement preservation and a second	volues are	••••••••••••••••••••••••••••••••••••••							gene for an end of the providence of the standard of the second standard standard standard standard standard s				pro	
						N/m) - T			****					
		$\log K_{+} = (.081)$)(85)+(.14	75)(8.00) + (.3	318)(7.70)+ (.4	(1)(7,44) = 7.74 DLm (-9.37) = (-9.22)				######################################		erensennen ander erensen an		
		$D_{0} = (.164)$) (-8,86) + (.2	CA)(-9.08) + (.3	310)(-9.24)+ (.3	77)(-9.37) = (-9.22	*************************************		95456-070978-07098-070-070-0709-0709-0709-070			and de antique de la construction d	ana manimu	
		• •							Sille fait yn anter o fait fallen yn ar fallin fan yn fallen yn fan yn ar fallen yn fallen yn ar fallen yn fal		an mana tana any amin'ny amin'n			

logk, = 5.0 } from Smith logk_ = -10.9 } and Jenne (1991) TLM C,=0.8 F/m2 Cz=0.2 F/m2 I (m) dogknat dagknos SOS/DE Ologkna- Stogknoz--9.26 0.005 7.94 2.85 6.154×153 1.253×10-2 0.0045 -9.10 1.2.39×10-2 8.09 6.477410-3 3.34 -8.78 8.29 0.0275 4.57 8.006× 10-3 1.297210-2 0.054 -8.52 8.46 9.085×10-3 1.384×10-2 6.22 1.485×10-2 0.087 -8.37 8.55 6.52 1.015×10-2 $dog k_{Na^{+}} = (.25)(-9.26) + (.22)(-9.10) + (.20)(-8.78) + (.17)(-8.52) + (.16)(-8.37) = -8.86$ TLM Log KND= = (.21)(7.94) + (.21)(8.09) + (.21)(8.24) + (.14)(8.414) + (.18)(8.55) = 8.25 These values for logk, logk_, logk Nov, Logk Noz on then substituted in the FITEGL upput files for uranium K: \TURNER\FITESL INPUT CCM URANIUM +. CDZ (DZ = Dzombak + More) K: TURNER FITERL) INPUT (DLM) URANIUM (*. DDZ K:)TURNER) FITEOL / INPUT / TLM/URANIUM +. TDZ The results are given on the nost page: (Note: these are conditional constants for I=0.1 m. sec pas. 27-28)

34		u(vi) sorpt	im on	goothite; no	5 CO2;).(05×10-611	n having; Ns=	23 sites/nm?							35
3/18/43	na na fan san fan san fan san fan fan san fan fan fan san san fan san fan san fan san fan san fan san fan san f	N (* 1992) Mar and a state of the		de	ng K							na hérgapang gang gang gang ang ang ang ang ang a	Corrected	A- I>0	elle si seketan 2014 ina ma manana di makatan kanana mananani mananakati kana kakata kata ka	440% 444 million and a superior and
Cres	100900101201001201201901000000000000000			n gagaar ugaar ayaar karang kababababababababa				99.900-40.000.00000000000000000000000000					ng-ngag-manana manananana kanana k			
		CCM	1999 (1997)		DLM		and Mandage groups and a second s					<u> </u>			and the second	<u></u>
	Logk	SOS/DF	Jeogk	Logk	SOS/DF		Logk	SOSTOF	Teosk	and and an all and an all and a second and a s						needla fan militaine a falfandar militaine fan falfandar fan falfandar fan falfandar falfandar falfandar falfan
XOUO2+	1,66	7.17	.042	1.68	7.74		-2.31	17.04	.065	and an experimental statement of the second statement of the second statement of the second statement of the s	I=0.)	O= I	I=0.)	I 50	I=0.1	I=0
XOHU02+2	9.50	9.18	•044	9.40 3)7145D	11.47	.044	6.15	15.06	•092							• ^^
		*****		.09 -6 9	2 7/		-970	11.85	NUC	X0402+	1.66	1.99 9.44		201	-23)	-1.98
XOU020HD	-6.19	4.38	.041		3.76		-9.20 -0.26	11.00	-045_	xohuo2+2	9.50	· ••••••••••••••••••••••••••••••••••••	9.46	9.84	4.15	6.59
XOHUOZOHA	1.66	7.17	-042	1.68	7,74		U. de		.056	XOUQOH ⁶	- 6.19	~ 5.67	-6.69	······································	-8.20	-748
·····	- 4.08	1.98	A/17	-13.95	1.16	<u>میں</u>	-13.86	2.43	.053	XOHLOZCH+	1	1.99	1.68		-0.26	+0.07
XOUOLOH)	-6.19	4.38	.041	3177 - 69 -6.09	3.76		-6.26	4.46	.041	<u>runuzon</u>		******				
хон 402 (0H)2 Хон2402 (0H)2+	1.66	7.17		1.68	7.74		1.72	7.09	.052	XOUQ LOH)	-14.08	-1397	~ <u>13.45</u>	- 13.54	- 13.8Le	-13.75
										XOHUO2(OH)2		-5.97	-6.09	-5,87	-6.26	-6.04
хон Цо, Сон)	-14.08	1.98	.043	-13.45	1.16	.045	-12.13	0.48	-659	XOH UC2(CH)	1	1.99	1.68	2.01).???	2.05
XOH2462(OH)3		4.3%		-6.09	3.76		~4.53	0.47	.648			-				
					~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~					X CH UD/LOH)	- 14.08	- 13.97	-13.45	-13.84	-12.13	-12.02
XOH UG(OH)4	-21.96	1.06	.647	-21.79	0.41	.051	-17.56	0.32	•091	XCH240260H3	-6.19	~5.47	-6.09	-5.87	-4.53	-4.31
1		1.98	.043	-13.95	1.14	•645	-10.37	0.20	.045			*****		****		
							1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 -			хониогонду		-21.96	- 21.79	-21.79	-17.54	-17.56
							Λ			XOH2U02(0H)	-)4.08	-13.97	-13.45	~13.94	-10.37	-10.26
	In most	Cases, A is	worth	noting '	that the	"goodhus	s-of-lit	" measure		<b>a</b> n an		₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩				
	SACHE	in larve A	or Vhece	walure	campared +	a na 18	This in	dirates that						₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩		
****	the fit i	is better	assumina	a lave	ryour tor	Ns, in	agr <i>ee m</i> ent	<u>- Цяк</u>							ħ₩₽ŎĬŎĨŶŶŧŎĨŦĊĨĬŎŎĸĸĸŎĸĸŔĸĸĊĸĸĿŔŶġĿŦĬŎĸĬĬŎĸĬĬŎŎĬŎĸŎŎĸŎĸŎĸŎĸŎĸŎŎŎŎ	
	observation	ns at Mesu	iere (199	చి).												
	Alas - to c	that calculat	ad los	C valine	ALL ARADA	lly high	er ta a	mounte	foc					******	\$1410.000.000.000.000.000.000.000.000.000	
	the certification	that calculat		blo citor	are geners	7 5		unpu sone								99 19 40 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
***************************************				- 4 alter an an Tarlanda alter										99999999999999999999999999999999999999		
		-												******		
			andbaldelikari kana ata maka minga panja, ag sajaga				ter geographic programme and a state of the			nin takan dalam dalam dalam dalam sa berupa dan menerikan sa menerikan sa kata bertakan sa kata bertakan sa kat				and the second sec		
		an in the second se						10-2010 (10-2010) (10-2010) (10-2010) (10-2010) (10-2010) (10-2010) (10-2010) (10-2010) (10-2010) (10-2010) (10-2010) (10-2010) (10-2010) (10-2010) (10-2010) (10-2010) (10-2010) (10-2010) (10-2010) (10-2010) (10-2010) (10-2010) (10-2010) (10-2010) (10-2010) (10-2010) (10-2010) (10-2010) (10-2010) (10-2010) (10-2010) (10-2010) (10-2010) (10-2010) (10-2010) (10-2010) (10-2010) (10-2010) (10-2010) (10-2010) (10-2010) (10-2010) (10-2010) (10-2010) (10-2010) (10-2010) (10-2010) (10-2010) (10-2010) (10-2010) (10-2010) (10-2010) (10-2010) (10-2010) (10-2010) (10-2010) (10-2010) (10-2010) (10-2010) (10-2010) (10-2010) (10-2010) (10-2010) (10-2010) (10-2010) (10-2010) (10-2010) (10-2010) (10-2010) (10-2010) (10-2010) (10-2010) (10-2010) (10-2010) (10-2010) (10-2010) (10-2010) (10-2010) (10-2010) (10-2010) (10-2010) (10-2010) (10-2010) (10-2010) (10-2010) (10-2010) (10-2010) (10-2010) (10-2010) (10-2010) (10-2010) (10-2010) (10-2010) (10-2010) (10-2010) (10-2010) (10-2010) (10-2010) (10-2010) (10-2010) (10-2010) (10-2010) (10-2010) (10-2010) (10-2010) (10-2010) (10-2010) (10-2010) (10-2010) (10-2010) (10-2010) (10-2010) (10-2010) (10-2010) (10-2010) (10-2010) (10-2010) (10-2010) (10-2010) (10-2010) (10-2010) (10-2010) (10-2010) (10-2010) (10-2010) (10-2010) (10-2010) (10-2010) (10-2010) (10-2010) (10-2010) (10-2010) (10-2010) (10-2010) (10-2010) (10-2010) (10-2010) (10-2000) (10-2010) (10-2010) (10-2010) (10-2010) (10-2010) (10-2010) (10-2010) (10-2010) (10-2010) (10-2010) (10-2010) (10-2010) (10-2010) (10-2010) (10-2010) (10-2010) (10-2010) (10-2010) (10-2010) (10-2010) (10-2010) (10-2010) (10-2010) (10-2010) (10-2010) (10-2010) (10-2010) (10-2010) (10-2010) (10-2010) (10-2010) (10-2010) (10-2010) (10-2010) (10-2010) (10-2010) (10-2010) (10-2010) (10-2010) (10-2010) (10-2010) (10-2010) (10-2010) (10-2010) (10-2010) (10-2010) (10-2010) (10-2010) (10-2010) (10-2010) (10-2010) (10-2010) (10-2010) (10-2010) (10-2010) (10-2010) (10-2010) (10-2010) (10-2010) (10-2000) (10-2000) (10-2000) (10-2000) (10-2000) (10-2000) (10-200)								
entente de la filiete non desenventente entre inter de la filie de anterna anterna puede			alla de la companya en esta de la companya de la co											₩₩₩₽₩₽₩₩₩₽₩₩₩₩₩₩₩₩₩₩₩₽₩₩₽₩₩₽₩₩₩₩₩₩₩₩₩₩	na an a	
าการ กระบาร ๆ หลายสามาร์ เป็นการสาว (1996) (กระบาร (1996) (กระบาร (1996) (กระบาร (1996) (1996) (1996) (1996) (1									10-10-110-110-110-110-11-11-11-11-11-11-					an a san an a		
			211 December of the state of the	all a stand and the stand a										*****		and the second sec
		1994 State 1994 State State and a second a second				engeneration and a statistical contraction of the			10. 17.3 March 1949 (1949) (1949) (1949) (1949) (1949) (1949) (1949) (1949) (1949) (1949) (1949) (1949) (1949)			an a				anananan kasaanan araa a

36		37							
3/19/93	Continue work of reexamining U(VI)- pathite sacption data	4/1/43 Re-analyze trication data of Hoyes et al. (1990). Some mistakes							
3/19/93 SRJ	Continue work of reexamining U(VI)-earthite sarption data assuming a smaller site density (Ns=2.3 sites/hm2)	DRJ found in FITEGL input files							
		i.e. TLM - C, changed from 1.0 to 0.8 E/m2							
19 - Langer and a strategy and approximately and any server and a strategy and a strategy and a strategy and a	This work considers U(vi)-H20-CO2 system with p(co2)=10-348 atm.	- Also, ianic strength incorrectly entered as 0.005							
	Dota is from Tripathi (1984),	in all files							
an a		All files - dissociation constant at water not corrected							
	u(vi), = 1.05 × 10-4 m	properly for ionic strength effects							
ан от а а а а а а а а а а а а а а а а а а	Ns= 2.3 sites/hm2								
*******	C= 0.410g FEOOH/1	Input files corrected; Following results supercede those reported on pp. 30-32							
	Asp = 50 m²/g								
nnhandanssenantes sussette sussette verenen verenet fölgde het det begrep verene verenet.	$I = 0.1 \text{ M} \text{ NaNO}_3$	DLM Not Z.3 sites/nm2							
		I(M) log K, log K SOS/DF Though Tingk-							
	dog K-DLM Extrapolate to	6.005 NC NC NC NC NC							
	Lagk SOS/DF - Thagk I=0	41/193 41/193 0.0095 8.44 255 2 -8.96 -8.96 -8.96 338×102 4.25×10 ⁻²							
	( XOH·UDCO3 -2.44 3.24 0.023 -2.22	0.0275 796 800 -9,16 -79,08 59.2 1.62×10 ⁻² 2.32×10 ⁻²							
reaction written	xoH2. 462(CO3) -6.81 1.14 6.027 -6.70	0.054 7.67 7.70 -9.32 -9.32 32.2 1.03×16 ⁻² 1.66×10 ⁻²							
w coz	XOH2. UO2 (CO3) - 19.23 0.83 0.035 - 19.34	0.087 7.47 7.49 -9.45 -3.37 21.7 8.34×10 ² 1.40×10 ⁻²							
-	XOH2·(U02)2(02(0H)3 -6.81 3.87 0.03) -6.37								
	$1 \times 0H \cdot UC_2(OH)_4^{-2} -22.21 32.51 0.045 -22.21$	weighted volues:							
		dook, = (.096)(8.44) + (.200)(7.96) + (.315)(7.67) + (.384)(7.47) = 7.72							
	Extrapolation to I=0 from I=0.1 using method outlined on pg. 27-28	$log_{K_{-}} = (.14)(-3.96) + (217)(-9.16) + (.34)(-9.22) + (.340)(-9.29) = (-9.29)$							
	Converting $CO_2 + H_2O = CO_3^2 + 2H^4$	CCM C,=1.60 F/m2							
		Ns= 2.3 sites/nm2							
	I=0,1 M I=0M	I(m) dogk, dogk_ SOS/DF Thogk, Thogk_							
	XOH·402003 15.72 15.44	- 5.+							
	XOH; UO2(103)2 29,51 29.62	0.005 6.95 -10.22 2.73 6.11×10 ⁻³ 1.17×15 ²							
	XOH2: 402 (CO2)3 35.25 35.14	0.0045 7.08 -10.09 3.05 6.92×10 ³ 1.20×10 ⁻²							
	XOH2(U02)2(03/04)3 11.35 11.79	0.0275 7.28 -9.80 3.54 7.90×103 1.30×102							
	XOH. 402/0H)4 -22.21 -22.21	0.054 7.43 ~9.58 3.43 881×103 1.40×102							
เหตุการแขนเขาการแนกเขาการแกรง แม่งการการการการการการการการการการการการการก		0.087 7.52 -9.45 3.66 9.6A×10 ⁻³ 1.49×10 ⁻²							
	· · · · ·	© I=0.1							
		Lincar Kegression (see next page):							
; 		Logk = 0.4607 (logI)+8.0085 Logk = 7.55 dogk = .6337 (logI) - 8.7875 Logk = -9.42							
		dog K = .6337 (log I) - 8.7875 dog K = -9.42							



Note: 4/13/43 (D.R.) 39 discovered and more error in input files for TLM only Log K = 5.0 G=0.8 F/m2 TIM Logk = -10,9 L= 0.2 F/m2 Im Log K Nat Logkpoz SOS/DF Jlagk Nat Jeagk NO3-A1:34:3 CY) 9.51 8.21 -771-761 1.37×102 7.01×103 14.4 0.005 -73 -893 9,41 8.34 8.51×10-3 0.0095 1.47×152 14.9 -7.82 - 8.89 1.95×102 4.25 mar 1.35×10-2 0.0275 11.4 -754-7.94 A41 974 3.72×10-2 3.11×10-2 0.054 8.1 -7.20-7.26 9.76770 1.16×10-1 6.1 138×10-1 0.087 weighting -7:73 = (.321)(-3.61) + (.299)(-8.93) + (.726)(-8.38) + (.118)(-7.46) + (.026)(-7.32)= Log K Not -8.62 dog KNOZ = (.380/(8-21) + (.313)(8-34) + (.148)(8-32) + (.086)(9-24) + (.023)(9.36) 9-51 941 9.28 9.41 9.74 8.48 2 443 Of course, these changes will filter through the homining data reported on pp. 34-36: TLM DLM CCM Jeogk Loy K 505/DF Jeogk Logk SOSIDE Logk SOS/DF Jeogle ST WINS -2.48.2.76 19.18 1703 Dec. 121 XO.40,+2 7.26 042 1.63 042 1.66 7.81 XOH-U02+2 Tex2 630 15-091-36 .091.091 9,46 9.37 044 4.31 044 11.56 - 7-34 -354 13-04 1302 , 245-04 3,75 XO.UOZOHO 641 042 -6.20 4.36 -6.10 042 -262 203 064 1274 . 1976.09 XOH. UOZOH+ 7.24 1.66 7.81 1.63 042 NO.UG2LOH)2 -646 -1395 -1414 221 340 . 753,00 -14.08 1.89 043 -13.45 1.11 xon.norlon) -042 -6-23-546 448 465 -6.20 . 241.041 ,041 6.10 3.75 4.36 хон--иог(он)2+ 188 257 67 5.64 7.81 CHZ 1.66 .042 .052.051 1.63 7.26 XOH-402(0H) - 14.08 046 -72.08-1175 048.50 . Dogan 1.84 043 -13.45 1.11 XOH2. U02 (0H)3 - 6.20 -24-26 -3.64 Duty . 35 -6.10 3.75 -048.04 OY) .642 4.36 NOH. UO2(0H)-2 -21.94 05) -17-46-17.04 0:33.38 : 093.095 047 -21.79 0.39 1.0) .046 -10-16 -142 0.20.21 XOH-40(0H) -14.08 -13.95 1.11 . alt. 26) 1.89 043 All changes in red 4/13/93 (20)

40									41
				Jogk				- h 102	
								8/3/93	Checks for accuracy/precision of digitizing equipment
	<u>CCI</u>			איזב		TLM		ARJ	D SummaGraphics Microgrid & Digitizing Tablet
	I=61	I 20		=0,1	J=6	L 76.)	I. D. D.		Located in CNWRA computer room, run on IRIS work station
NUMERICAN CONTRACTOR OF CONTRACT						1. c. ALL &			LOCALLY IT CHWEN OMPHICS (WITH, THE ON INTO WOLK SHATON
X0.402+	1.63	1.96 9.90	1.6 9.3	•	1.99 6.81	-848-274 622 630	-2.45 -3.43 6.56 4.74		Operator: Tim Griffin, D. Turner - Spring 1912
XOH.UO.tz	9.46	7,-10		2		orta cur			1 1 2 11
XO LIDJOHO	-6.20	-5.98	-/-	.16	-5.88	->>>=	-8-12 -8.32		Software: getcoords.c. program written by R. Martin, April 1992
<i>C</i> , , , , , , , , , , , , , , , , , , ,	- <u>e.co</u> 1.(c3	1.96		ú	1.99 ·	-834 -8.34 -0726 W113 -7.02 D-003	+0:07 +.30		3 1 3 7 3 7
XOH.UO20H*	ana ta Gana ana ana ana ana ana ana ana ana a			ee		an a			Apr 10 09:21 1992 getcoords.c Page 1
XO.UO, (OH),	- 14.68	-13,47	- 13	5,95	-13.84	-1395 -14,04	-13.84 -13.93		
, 2 0	-6.ZB	-5.4%		».)O	-5.88	-6.23 -5.46			<pre>#include <stdio.h></stdio.h></pre>
XOH2.U02(0H) +	1.63	IALe		64	1.49	+) \$ 8 2.57	2.21 2.40		<pre>main(argc,argv) /* copy input to output; 2nd version */ int argc; char *argv[];</pre>
and and a second s	1.111 (1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1								{ int CarriageReturn = 13;
XOH·UO, COH)	-14.08	-13.47	-13.	45	-13.84	-1208-1175	-11.97-11.64		int LineFeed = 10; int c;
XOH 402(0H)2		-S.48	-6.		- 5.66	-4.36 -3.64	- 42 -3.44		/* FILE *fopen(), *fclose(); */ FILE *tablet_fp, *myfile_fp;
		•					17.04		<pre>if (argc != 2) {     printf(" Usage: %s outfile \n",argv[0]);</pre>
X04.40, (0H)-2	-2)44	- Z],44	-z .7	79	-21.79	- 17.46-17.04	-21.74 -17.46		exit (0);
XOHZ: UOJOH)		- 13.47	-13	45	-13.84	-10-26 -12:47	-10:05 -9.31		<pre>tablet_fp = fopen("/dev/ttyd10","r"); myfile_fp = fopen(argv[1],"w");</pre>
									while $(c = fgetc(tablet fp))$ != EOF) {
		****	-						<pre>fputc(c,myfile_fp); fputc(c,stdout); if (c == LineFeed ) {</pre>
********	Note: cha	omqia	nom iduo	uporta	t on pp.	34-36 one my	non		fflush(myfile_fp);
		0			· · ·		603 ²		fclose(myfile_fp); fclose(tablet_fp);
		****	dogk(==0,1)	SOS/DF	Joogle	I =Q	dog K		
	XOH·LIO2CO30		-2.45	3.24	<u>_02'3</u>	-2.23	15.93		
	XOH2: 402(003)2		-6.82	1.10	.027	-6:71	37.61		
	XOHz. LOZICOZ	-3 उ्	-19.25	0.95	036	- 19.36	35.12		Checks on data of Tripathi (1984) indicate precision of .2 to .5 mm
	XOH2 (102) CO30	ંભમેડુ	- 682	3.85	,031	~6.38	11.78		This will include digitizer nominal reproducibility and operator
	XOH.UOZ (OH)		~ 22.20	32.63	.046	~ 22.20	-22.20		reproducibility. In the case of Tripoth, data, this translates to
1. 		*****				n van de service van de service service en de service de service de service de service de service de service d			Nt. 02 pH and ~t. 1 to .3 % sorbed. Reproduction distortion and
					n television and a second s				figure enlargment are also included
						NIG NIG TIM THE TRANSPORT OF STREET, THE TAKEN THE T			
					ann ann a chann an ann an ann an ann an an an ann an a	******			
			********		****	*******			
						9° 1.49° 10° 10° 10° 10° 10° 10° 10° 10° 10° 10			
	******								

42							43
	CVE2 SIJAA3						
	3) Sign Numonics 2200 Accugrid Digitizing Tablet Software: SigmaScan Computer: IBM 486 Model 90 PS/2						
	Softwace: SiamaScan						
	Computer: TRM 48/2 Madel AA PS/2				ት እስከ የአለም የትም የሚሰላቸው የሚሰባቸው የትም		
	Operator: Stephen Sasaman, Summer 1993	When the weather and the state of the state					En course, accordination menor process contration of the second strategy and the se
	Operation - Stephen Sossition, summer 1745	type of source o		HYDROUS FERR YATES (1975)	IC OXIDE		
talah dara dara manaka sama manga kata dara sa sa sa	In a test of reproducibility, Stephen Sassman was able to			Output	t Example from		
	reproduce graph corners within ~.1 to .2 mm. Again, this			i	Appendix N.B1		
	In a test of reproducibility, Stephen Sassman was able to reproduce graph "corners" within ~1 to 2 mm. Again, this includes nominal digitizer reproducibility and operator reproducibility.	IONIC STRE	NGTH (mol/l	_) = .01	Dzombok (1485)		South second
		SURFACE AR	EA (sq.m/g	) = 257		icd volues	
	Ale Childe A like Like A D D D D D	SOLID CONC	(g/L) = 1	1.4	તેષ્ઠ	in the second	
	Also - Check of spreadsheet developed by D.R. Turner to convert potentiometric data from UC/cm2 to TOTH.						Spreadsha
	to convert potentiometric data from UC/cm2 to TOTH.			SURFACE CHA	RGE	тотн )	Values:
an a	This code is adapted from the Basic program ABDATZ. BAS	1989 (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (199	uC/sq.cm				
	reported in Appendix IV.B of: Dzombak, D. 1985. 'Toward	4.025	30.644	ueqv/g 816.245	mol/L 1.143E-03	mol/L	-71-2371×10-3
	a Uniform Model for the Sorphion of Inorganic Jons on	4.308	28.038	746.831	1.046E-03	1.095E-03	
	Hydrous oxides, Ph.D Dissectation, MIT	4.621 5.041	24.731 20.889	658.744	9.222E-04	9.462E-04	
	Spreadshedt: QUATTEO	5.344	18.412	556.407 490.429	7.790E-04 6.866E-04	7.831E-04 6.911E-04	
		<b>5.73</b> 6	14.903	396.962	5.5578-04	5.576E-04	
****	Necessary input:	<b>6.220</b>	10.815	288.072	4.033E-04	4.039E-04	
		6.726 7.236	7.465 4.497	198.841 119.784	Z.784E-04	2.785E-04	
*****	Jonic Strength, pH, ASP, UC/cm² serial data, solid concentration	7.839	1.165	31.031	1.677E-04 4.344E-05	1.675E-04 4.263E-05	1
		9.185	-1.115	-29.700	-4.158E-05		
	Checking against sample problem reported in Appendix IV.B shows	8.419 8.892	-2.836	-75.541	-1.058E-04	-1.090E-04	
	and property provides in approximation of the second secon	9.695	-6.168 -13.672	-164.293 -364.172	-2.300E-04	-2.3965-04	
	agreement		19.072	304.177	-5.098E-04	(-5.708E-04	
1071/104/104/104/104/104/104/104/104/104/10				en an			
		The spreadshe d.ffecent sprea		81343 00	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
		The spreadshe	et consists	of Atta formul	las that can b	e copied to	
		d Man + man	debasta Ara	d. Alagent	dast an atoin J. J.	- and in data	
		MAIFTERAISPULC	USLIKEIS TOC	anneren po	Sentiomentic FI	Maria Cara	
			999 999 999 999 999 999 999 999 999 99	1 			le hand
						(- Calcul	ations on
						pp 43	Ay this
			~			vdun	L.
						10	ord shaley
			an had a state of the				

44 3/4/93	FITERL code slightly modified to allow hondling of slightly larger problems. This required redimensioning several matrices and increasing the limits of several variables as described in the Users' Manual for FITERL, Version 1.2 (Westall, 1982) The matrices increased were the number of components allowed (10 -> 20) and the number of secial data points allowed (40 -> 50)		1INTEQA2	mine is done rolized A cteal fro	adeling activities using FITEQL and acidity constants for DLM, CCM, +TLY assuming Ns=2.31 sites/nm2; and sp. Potentiametric titration data on open literature. Data sources
#"Data pts	Dimension variables affected include Old New NDPDIM 40 50	Mineral	Generalized $A_{sp}$ (m ² /g)	$pH_{ZPC}$ (±1 $\sigma$ )	Reference(s)
	NEC 10 20 NEC 10 20 NULIDIM 10 20 NULIDIM 10 20	Goethite	50	8.0±0.8 (n=11)	Hsi and Langmuir (1985); Hayes et al. (1990); Yates and Healy (1975); Balistrieri and Murray (1981); Mesuere (1992)
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Ferrihydrite	_(a) 600	8.0±0.1 (n=9)	Hsi and Langmuir (1985); Davis (1977); Swallow (1978); Yates (1975)
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Magnetite	5	6.7±0.1 (n=2)	Regazzoni et al. (1983)
	Once changed in the source code, FITERL was	Pyro-SiO ₂	175	2.8±0.3 (n=3)	Abendroth (1970); Bolt (1957)
	recompiled on an IBM 486 PS/2 machine using the Lahey F77L-EM/32, Version 510 Fortron compiler	α-Al ₂ O ₃	12	8.9±0.4 (n=4)	Hayes et al. (1990)
	The new code is stored as FITADIM. FOR (Source Code) and FITADIM. Exe (Executable). Testing versus sample files show that	γ-Al ₂ O ₃	120	8.4±0.3 (n=3)	Huang and Stumm (1972); Sprycha (1989)
	the outrait is identical for the accurat and the accurat barried	δ-MnO ₂	270	1.9±0.5 (n=7)	Murray (1974); Catts and Langmuir (1986)
	Version of the code. In otherwords, output calculated using FIT2. EXE as the code is matched by using FIT2DIM. EXE, and bother autput files agree with the output file included with the original distribution of FITEOL.	TiO ₂ (anatas	e) (b)	6.1±0.2 (n=2)	Sprycha (1984); Berube and de Bruyn (1968)
	with the original distribution of FITEOL.	TiO ₂ (rutile)	30	5.9±0.3 (n=4)	Berube and de Bruyn (1968); Yates (1975)

oonoo oo saa														
	~ 1			****	99999000000000000000000000000000000000									
	Dat	ta di	artized using	syste	ms and	metho	s out )	ned						
l	on	00. 41	artized using -43. Conver	Sinn m	Anto .	to TAT	-14	-11						
		11	. 1 1	51013 U sU			IT and	-pti						
·····	QCC	omplu	shed using ombole - me	method	15 desce	ribed in	Dzsmb	ok (Bo						
·····	<u>Ar</u>	nd Dz	somboli + Mc	orel (19	<i>40)</i> .			••						
192	All '	Patenti	motois Titme	<b>シー</b> 入。	4. 7.	. 11								
	A DD T C C L L L L L L L L L L L L L L L L L													
<u> </u>	of	of D.R. Tumer. Summary of the Acidity Constants												
	(KKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKK													
******	( ) (ation) Anion) we will there of completing the													
· ·	5	2	volues 15 giv		se:									
	Th	ese	values are	assume	d to be	L for T	=m a	xcept f						
		CC						<b>,</b> /						
				sauce	SIUPe -	<u>r=0.1 m</u>	is use	ď.						
Tab)	le 1. Best ]	Estimate Values	for SCM Constants - Simple Hyd	roxides.										
	Mineral	Mineral Properties,	References	Model	Log K. (± 95%),	Log K_ (± 95%)	Log KAnion	Log K _{Cation}						
		pHzpc=8.0	Yates and Healy (1975);	CCM(0.1M)	6.47±0.72	-9.03±0.22	(± 95%) _b	(± 95%) _b						
God	oethite	A _{sr} =50m²/g	Balistrieri and Murray (1981); Hsi and Langmuir (1985); Hayna at al. (1990);	DLM	7.35±0.11	-9.17±0.08	n.a.	D.8.						
			Hayes et al. (1990); Mesuere (1992)	TLM(d)	6.00	-10.00	8.78±0.13	-7.64±0.07						
	Ferrihydrite _e	pH _{zpc} =8.0	Yates (1975);	CCM(0.1M)	7.35±1.08	-8.45±2.23	n.a.	n.a.						
Fe		A _{sp} =600m²/g		DLM	7.29±0.10	-8.93±0.07	n.a.	 L.a.						
			Hsi and Langmuir (1985)	TLM(d)	6.00	-10.00	8.43±0.04	-7.66±0.12						
			Description of states	CCM(0.1M)(e)	6.26	-7.32	n.a.	n.a.						
		pH _{zpc} =6.7	Regazzoni et al. (1983)	CCM(U.IM)(e)	0.20	-7.52								
	agnetite	pH _{zrc} =6.7 A _{sr} =5m ² /g	Regazzoni et al. (1983)	DLM	6.72±0.02	-7.32 -6.37±0.71	D.8.	n.a.						
1000 M2	agnetite		Regazzoni et al. (1985)					n.a. -5.47±0.06						
00004			Abendroth (1970);	DLM	6.72±0.02	-6.37±0.71	D.8.							
		A _{ar} =5m²/g		DLM TLM(d)	6.72±0.02 4.70	-6.37±0.71 -8.70	п.а. 7.95±0.11	-5.47±0.06						
		A _{3P} =5m²/g pH _{ZPC} =2.8	Abendroth (1970);	DLM TLM(d) CCM(0.1M)	6.72±0.02 4.70 (f)	-6.37±0.71 -8.70 -7.04±0.09	n.a. 7.95±0.11 n.a.	-5.47±0.06						
sic		A _{3P} =5m²/g pH _{ZPC} =2.8	Abendroth (1970);	DLM TLM(d) CCM(0.1M) DLM TLM(d)	6.72±0.02 4.70 (f) (f)	-6.37±0.71 -8.70 -7.04±0.09 -7.20±0.05 -4.90	n.a. 7.95±0.11 n.a. n.a.	-5.47±0.06 n.a. n.a.						
		A ₃₉ =-5m ² /g pH _{2rc} =-2.8 A ₃₉ =-175m ² /g	Abendroth (1970); Bolt (1957)	DLM TLM(d) CCM(0.1M) DLM TLM(d)	6.72±0.02 4.70 (f) (f) 0.90 <b>7.92</b> <6, ] J	-6.37±0.71 -8.70 -7.04±0.09 -7.20±0.05	n.a. 7.95±0.11 n.a. n.a. (f)	-5.47±0.06 n.s. n.s. -6.22±0.05						
		A ₃₂ =-5m ² /g pH ₂₂₀ =-2.8 A ₃₂ =-175m ² /g pH ₂₂₀ =-8.9	Abendroth (1970); Bolt (1957)	DLM TLM(d) CCM(0.1M) DLM TLM(d) CCM(0.1M)(o)	6.72±0.02 4.70 (f) (f) 0.90 <b>7.92</b> <6, ] J	-6.37±0.71 -8.70 -7.04±0.09 -7.20±0.05 -4.90	na. 7.95±0.11 n.a. n.a. (\$) n.a.	-5.47±0.06 n.a. n.a. -6.22±0.05 n.a.						
Si Si Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ 		A ₃₂ =-5m ² /g pH ₂₂₀ =-2.8 A ₃₂ =-175m ² /g pH ₂₂₀ =-8.9	Abendroth (1970); Bolt (1957) Hayes et al. (1990) Huang and Stumm (1972);	DLM TLM(d) CCM(0.1M) DLM TLM(d) CCM(0.1M)(e) DLM	6.72±0.02 4.70 (f) (i) 0.90 <b>3.98</b> C 12 8.33±0.15 1212	-6.37±0.71 -8.70 -7.04±0.09 -7.20±0.05 -4.90 -9.322 -9.75 <i>L</i> 4 -9.73±0.12	na. 7.95±0.11 n.a. n.a. (f) n.a. n.a.	-5.47±0.06 n.s. n.s. -6.22±0.05 n.s. n.s.						
	D3 N Al2O3	A ₂₇ =5m ² /g pH ₂₂₀ =2.8 A ₃₇ =175m ² /g pH ₂₂₀ =8.9 A ₃₇ =12m ² /g	Abendroth (1970); Bolt (1957) Hayes et al. (1990)	DLM TLM(d) CCM(0.1M) DLM TLM(d) CCM(0.1M)(e) DLM TLM(d)	6.72±0.02 4.70 (f) (f) 0.90 7.98 3.33±0.15 1212 6.90	-6.37±0.71 -8.70 -7.04±0.09 -7.20±0.05 -4.90 -8.32 -9.73±0.12 -10.90	na. 7.95±0.11 n.a. n.a. (f) n.a. 10.12-0.03	-5.47±0.06 n.a. n.a. -6.22±0.05 n.a. n.a. -7.73±0.07						
	D3 N Al2O3	A ₃₇ =5m ³ /g pH _{22C} =2.8 A ₃₇ =175m ² /g pH _{22C} =8.9 A ₃₇ =12m ² /g pH _{22C} =8.4 A ₃₇ =12m ² /g	Abendroth (1970); Bolt (1957) Hayes et al. (1990) Huang and Stumm (1972); Sprycha (1989)	DLM TLM(d) CCM(0.1M) DLM TLM(d) CCM(0.1M)(e) DLM TLM(d) CCM(0.1M) DLM TLM(d)	6.72±0.02 4.70 (f) 0.90 <b>7.82</b> 3.12 8.33±0.15 1212 6.90 6.92±0.06	-6.37±0.71 -8.70 -7.04±0.09 -7.20±0.05 -4.90 -8.32 -9.73±0.12 -10.90 -9.00±0.15	na. 7.95±0.11 n.a. n.a. (?) n.a. 10.12•0.03 n.a.	-5.47±0.06 n.a. n.a. -6.22±0.05 n.a. n.a. -7.73±0.07 n.a.						
Six	D3 N Al2O3	A ₃₇ =5m ³ /g pH ₂₂₀ =2.8 A ₃₇ =175m ³ /g pH ₂₂₀ =8.9 A ₃₇ =12m ² /g pH ₂₂₀ =8.4	Abendroth (1970); Bolt (1957) Hayes et al. (1990) Huang and Stumm (1972); Sprycha (1989) Murray (1974);	DLM TLM(d) CCM(0.1M) DLM TLM(d) CCM(0.1M)(e) DLM TLM(d) CCM(0.1M) DLM	6.72±0.02 4.70 (f) (f) 0.90 <b>7.98</b> <6.12 8.33±0.15 6.90 6.92±0.06 6.85±0.06	-6.37±0.71 -8.70 -7.04±0.09 -7.20±0.05 -4.90 -9.5±0.09 -9.05±0.09	na. 7.95±0.11 n.a. (?) n.a. n.a. 10.12+0.03 n.a. n.a. n.a.	-5.47±0.06 n.a. n.a. -6.22±0.05 n.a. n.a. -7.73±0.07 n.a. n.a. n.a.						
Six	D2 Al40, N20,	A ₃₇ =5m ³ /g pH _{22C} =2.8 A ₃₇ =175m ² /g pH _{22C} =8.9 A ₃₇ =12m ² /g pH _{22C} =8.4 A ₃₇ =12m ² /g	Abendroth (1970); Bolt (1957) Hayes et al. (1990) Huang and Stumm (1972); Sprycha (1989)	DLM TLM(d) CCM(0.1M) DLM TLM(d) CCM(0.1M)(e) DLM TLM(d) CCM(0.1M) DLM TLM(d) CCM(0.1M)	6.72±0.02 4.70 (f) (f) 0.90 798 6.12 8.33±0.15 1212 6.90 6.85±0.06 6.85±0.06	-6.37±0.71 -8.70 -7.04±0.09 -7.20±0.05 -4.90 -8.22 -7.5 <i>L</i> ¢ -7.5 <i>L</i> ¢ -7.5 <i>L</i> ¢ -7.73±0.12 -10.90 -9.05±0.09 -10.40	n.a.         7.95±0.11         n.a.         n.a.         (f)         n.a.         10.12*0.03         n.a.         10.12*0.03         n.a.         8.28±0.05	-5.47±0.06 n.a. n.a. -6.22±0.05 n.a. -7.73±0.07 n.a. -7.95±0.11						
Six	D2 Al40, N20,	A ₃₇ =5m ³ /g pH ₂₂₀ =2.8 A ₃₇ =175m ³ /g pH ₂₂₀ =8.9 A ₃₇ =12m ² /g pH ₂₂₀ =8.4 A ₃₇ =120m ² /g pH ₂₂₀ =1.9 A ₃₇ =270m ² /g	Abendroth (1970); Bolt (1957) Hayes et al. (1990) Huang and Stumm (1972); Sprycha (1989) Murray (1974); Catts and Langmuir (1986)	DLM TLM(d) CCM(0.1M) DLM TLM(d) CCM(0.1M)(e) DLM TLM(d) CCM(0.1M) DLM TLM(d) CCM(0.1M) DLM	6.72±0.02 4.70 (f) (g) 0.90 <b>3.53±0.15</b> 1217 6.90 6.92±0.06 6.85±0.06 6.40 (f) (f) (f) (f) 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.05 0.90 0.90 0.90 0.05 0.90 0.05 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.	-6.37±0.71 -8.70 -7.04±0.09 -7.20±0.05 -4.90 -4.90 -9.75±0.12 -10.90 -9.00±0.15 -9.05±0.09 -10.40 -2.14±24.7 -3.27±0.73 -3.9	n.a.         7.95±0.11         n.a.         n.a.         (f)         n.a.         10.12*0.03         n.a.         10.12*0.03         n.a.         10.12*0.03         n.a.	-5.47±0.06 n.a. n.a. -6.22±0.05 n.a. -7.73±0.07 n.a. -7.95±0.11 n.a.						
	D2 Al40, N20,	A ₃₇ =5m ² /g PH ₂₂₀ =2.8 A ₃₇ =175m ² /g PH ₂₂₀ =8.9 A ₃₇ =12m ² /g PH ₂₂₀ =8.4 A ₃₇ =120m ² /g PH ₂₂₀ =1.9	Abendroth (1970); Bolt (1957) Hayes et al. (1990) Huang and Stumm (1972); Sprycha (1989) Murray (1974);	DLM TLM(d) CCM(0.1M) DLM TLM(d) CCM(0.1M)(e) DLM TLM(d) CCM(0.1M) DLM TLM(d) CCM(0.1M) DLM	6.72±0.02 4.70 (f) (f) (g) 9.98 4.70 (f) 8.33±0.15 1.212 6.90 6.92±0.06 6.85±0.06 6.40 (f) (f) (f) 6.64	-6.37±0.71 -8.70 -7.04±0.09 -7.20±0.05 -4.90 -4.90 -9.5 <i>L</i> µ -9.75 <i>L</i> µ -9.05±0.09 -10.40 -2.14±24.7 -3.27±0.73 -3.9 -5.60	n.a. 7.95±0.11 n.a. n.a. (f) n.a. 10.12=0.03 n.a. 10.12=0.03 n.a. 8.28±0.05 n.a. n.a. n.a.	-5.47±0.06 n.a. n.a. -6.22±0.05 n.a. -7.73±0.07 n.a. -7.95±0.11 n.a. n.a. n.a.						
Six	D2 ALO, LLO, MnO2	A ₃₇ =5m ³ /g pH ₂₂₀ =2.8 A ₃₇ =175m ³ /g pH ₂₂₀ =8.9 A ₃₇ =12m ² /g pH ₂₂₀ =8.4 A ₃₇ =120m ² /g pH ₂₂₀ =1.9 A ₃₇ =270m ² /g	Abendroth (1970); Bolt (1957) Hayes et al. (1990) Huang and Stumm (1972); Sprycha (1989) Murray (1974); Catts and Langmuir (1986) Sprycha (1984);	DLM TLM(d) CCM(0.1M) DLM TLM(d) CCM(0.1M)(e) DLM TLM(d) CCM(0.1M) DLM TLM(d) CCM(0.1M)(e) DLM	6.72±0.02 4.70 (f) (i) 0.90 798 4.12 8.33±0.15 1212 6.90 6.92±0.06 6.85±0.06 6.40 (f) (i) -0.10 6.64 5.37±0.30	-6.37±0.71 -8.70 -7.04±0.09 -7.20±0.05 -4.90 -9.73±0.12 -10.90 -9.00±0.15 -9.05±0.09 -10.40 -2.14±24.7 -3.27±0.73 -3.9 -5.60 -5.92±0.12	n.a.         7.95±0.11         n.a.         n.a.         (f)         n.a.         10.12-0.03         n.a.         10.12-0.03         n.a.	-5.47±0.06 n.a. n.a. -6.22±0.05 n.a. n.a. -7.73±0.07 n.a. -7.73±0.07 n.a. -7.95±0.11 n.a. 1.a. -7.95±0.11 n.a. n.a. n.a. n.a. n.a. n.a. n.a. -7.5±0.84 n.a. n.a. n.a. n.a. n.a. -0.75±0.84						
Six	D2 ALO, LLO, MnO2	A ₃₇ =5m ³ /g PH ₂₂₀ =2.8 A ₃₇ =175m ³ /g PH ₂₂₀ =8.9 A ₃₇ =12m ² /g PH ₂₂₀ =8.4 A ₃₇ =120m ² /g PH ₂₂₀ =1.9 A ₃₇ =270m ² /g PH ₂₂₀ =6.1 A ₃₇ =(c)	Abendroth (1970); Bolt (1957) Hayes et al. (1990) Huang and Stumm (1972); Sprycha (1989) Murray (1974); Catts and Langmuir (1986) Sprycha (1984); Berube and de Bruyn (1968)	DLM TLM(d) CCM(0.1M) DLM TLM(d) CCM(0.1M)(e) DLM TLM(d) CCM(0.1M) DLM TLM(d) CCM(0.1M) DLM TLM(d) CCM(0.1M)(e) DLM TLM(d)	6.72±0.02 4.70 (f) (i) 0.90 <b>7.98</b> C 12 6.90 6.92±0.06 6.85±0.06 6.40 (f) (f) (f) (i) 6.54 5.37±0.30 4.10	-6.37±0.71 -8.70 -7.04±0.09 -7.20±0.05 -4.90 -8.32 -7.20±0.05 -4.90 -9.15 -9.05±0.09 -10.40 -2.14±24.7 -3.27±0.73 -3.9 -5.60 -5.92±0.12 -8.10	n.a.         7.95±0.11         n.a.         n.a.         (f)         n.a.         10.12-0.03         n.a.	-5.47±0.06 n.a. n.a. -6.22±0.05 n.a. n.a. -7.73±0.07 n.a. -7.95±0.11 n.a. n.a. -0.75±0.84 n.a.						
	D2 ALO, LLO, MnO2	A ₃₇ =5m ² /g PH ₂₂₀ =2.8 A ₃₇ =175m ² /g PH ₂₂₀ =8.9 A ₃₇ =12m ² /g PH ₂₂₀ =8.4 A ₃₇ =120m ² /g PH ₂₂₀ =8.4 A ₃₇ =120m ² /g PH ₂₂₀ =6.1 A ₃₇ =(c) PH ₂₂₀ =5.9	Abendroth (1970); Bolt (1957) Hayes et al. (1990) Huang and Stumm (1972); Sprycha (1989) Murray (1974); Catts and Langmuir (1986) Sprycha (1984);	DLM TLM(d) CCM(0.1M) DLM TLM(d) CCM(0.1M)(e) DLM TLM(d) CCM(0.1M) DLM TLM(d) CCM(0.1M)(e) DLM TLM(d) CCM(0.1M)(e)	6.72±0.02 4.70 (f) (i) 0.90 <b>3.33±0.15</b> 1212 6.90 6.92±0.06 6.40 (f) (i) 0.10 6.64 5.37±0.30 4.10 3.91	-6.37±0.71 -8.70 -7.04±0.09 -7.20±0.05 -4.90 -8.32 -7.5 <i>L</i> ψ -9.15 <i>L</i> ψ -9.05±0.09 -10.40 -2.14±24.7 -3.27±0.73 -3.9 -5.60 -5.92±0.12 -8.10 -7.79	n.a.         7.95±0.11         n.a.         n.a.         (f)         n.a.         n.a.         10.12*0.03         n.a.         10.12*0.03         n.a.         10.12*0.03         n.a.         (f)         n.a.         n.a.         n.a.         n.a.         n.a.         (f)         n.a.         n.a.         n.a.         (f)         n.a.         (f)         n.a.         n.a.         (f)         n.a.         n.a.         n.a.         n.a.         n.a.         n.a.         n.a.         n.a.         n.a.	-5.47±0.06 n.a. n.a. -6.22±0.05 n.a. n.a. -7.73±0.07 n.a. -7.95±0.11 n.a. -0.75±0.84 n.a. n.a. -4.59±0.10 n.a.						
	D2 Al4O3 MnO2 D2(anatase)	A ₃₇ =5m ³ /g PH ₂₂₀ =2.8 A ₃₇ =175m ³ /g PH ₂₂₀ =8.9 A ₃₇ =12m ² /g PH ₂₂₀ =8.4 A ₃₇ =120m ² /g PH ₂₂₀ =1.9 A ₃₇ =270m ² /g PH ₂₂₀ =6.1 A ₃₇ =(c)	Abendroth (1970); Bolt (1957) Hayes et al. (1990) Huang and Stumm (1972); Sprycha (1989) Murray (1974); Catts and Langmuir (1986) Sprycha (1984); Berube and de Bruyn (1968);	DLM TLM(d) CCM(0.1M) DLM TLM(d) CCM(0.1M)(e) DLM TLM(d) CCM(0.1M) DLM TLM(d) CCM(0.1M) DLM TLM(d) CCM(0.1M)(e) DLM TLM(d)	6.72±0.02 4.70 (f) (i) 0.90 <b>7.98</b> C 12 6.90 6.92±0.06 6.85±0.06 6.40 (f) (f) (f) (i) 6.54 5.37±0.30 4.10	-6.37±0.71 -8.70 -7.04±0.09 -7.20±0.05 -4.90 -8.32 -7.20±0.05 -4.90 -9.15 -9.05±0.09 -10.40 -2.14±24.7 -3.27±0.73 -3.9 -5.60 -5.92±0.12 -8.10	n.a.         7.95±0.11         n.a.         n.a.         (f)         n.a.         n.a.         10.12*0.03         n.a.         10.12*0.03         n.a.         10.12*0.03         n.a.         10.12*0.03         n.a.         10.12*0.03         n.a.         n.a.	-5.47±0.06 n.a. n.a. -6.22±0.05 n.a. n.a. -7.73±0.07 n.a. -7.95±0.11 n.a. -0.75±0.84 n.a. n.a. -4.59±0.10						

(b) 95 % confidence interval based on BTTEQL standard deviation and defined using the methods of Dzombak and Morel (1990).
(c) Mineral properties and DLM parameters for fertihydrile are from Dzombak and Morel (1990).
(d) For TLM, Log K, and Log K_ fixed by convention. See text for discussion.
(e) FITEQL did not converge at I = 0.1 M. Extrapolated from Log₁₀(I) vs Log K, and Log K_.
(f) Not considered for 8-MnO₂ and am-SiO₂.

------

.

۰.

					``				•					
Virez												1	JR_	
					8005 (2.09	m2/g) data			Wed,	Oct 20, 1993 12:04 PM	L		Jun F	# 0*
	рН	U (ppb)	рH	U (ppb) ave	CL correction L	l (ppb) CL cor	U/107	Minus 1	%U sorbed	U(m)CLcor ໃເລ	rbed		Jurner	Ś
1	1.990	106.430	1.990	106.525	0.100	106.625	0.996	-0.004	0.350	4.488-7 1,16×	10-1		· · · · · ·	
2	1.990	106.620	2.180	107.815	0.100	107.915	1.009	0.009	-0.855	4.53 <b>8-7</b> (7	2	7		
3 4	2.180 2.180	108.330 107.300	2.460 2.770	105.990 107.100	0.100 0.100	106.090 107.200	0.991 1.002	-0. <b>009</b> 0. <b>002</b>	0.850 -0.187	4. <b>469-7</b> 3,40x 4. <b>509-7</b> 0	16 0		2	
+ 5	2.460	105.690	2.940	105.780	0.100	105.880	0.990	-0.010	1.047	4.45e-7 4.29x	15- 2		ului	
6	2.460	106.290	2.990 -		0.150	105.955	0.990	-0.010	0.977	4.45e-7 3.97-x	10- 8	Jhay		
7	2.770	107.340	3.140	105.395	0.150	105.545	0.986	-0.014	1.360	4.430-7 S.69x	10	~R	1	
8	2.770	106.860	3.240	105.920	0.200	106.120	0.992	-0.008	0.822	4.460-7 3.28x	<u> </u>		-ALC	
9 10	2.940 2.940	106.020 105.540	3. <b>37</b> 0 3.550	106.300 106.150	0.250 0.250	106.550 10 <b>6.400</b>	0.996 0.994	-0.004 -0.006	0.421 0.561	4.489-7 1.47×1 4.476-7 2.1091		deta	203	
11	2.990	105.890	3.680	104.610	0.300	104.910	0.980	-0.020	1.953	4.410-7 8.30×	No IC		w	
12	2.990	105.720	3.920	101.915	0.400	102.315	0.956	-0.044	4.379	4.30e-7 1 93x	10	· 07	•	
13	3.140	106.030	4.420	98.125	0.600	98.725	0.923	-0.077	7.734	4.150-7 3.43×1 3.450-7 1.04×1	0  00	~	ŝ	
14	3.140	104.760	5.110+		2.800	82.135	0.768	-0.232	23.238	3.450-7-1.04+1		LIRAR	Š	
15 16	3.240 3.240	106.260 105.580	5.580 5.870	61.205 48.720	4.800 5.500	66.005 54.220	0.617 0.507	-0.383 -0.493	38.313 49.327	2.776-7 1.72×1 2.286-7 2.2)×1	tot tot	e e	sorphion	
17	3.370	105.940	6.300	36.910	5.400	42.310	0.395	-0.605	60.458	· 1./08-/	<u>)</u>		io i	
18	3.370	106.660	6.750	43.375	4.000	47.375	0.443	-0.557	55.724	1.990-7 2.50×1		-12-	ð	
19	3.550	105.910	6.890	45.690	4.300	49.990	0.467	-0.533	53.280	2.10e-7 2.34x1	67 <b>X</b>	18		
20	3.550 3.680	106.390 103.980	7.140 7.470	48.040 58.420	2.800 0.600	50.840	0.475	-0.525	52.486	2.140-7 2.36x	107 HELOC	2	ð-	
21 22	3.680	103.980	7.470	77.140	-0.200	59.020 76.940	0.552 0.719	-0.448 -0.281	44.841 28.093	2.480-7 2.014 3.230-7 1.264		MCANKO	data	
23	3.920	101.920	8.180	98.960	-1.500	97.460	0.911	-0.089	8.916	4.09e-7 3.97x	15 ⁻¹	×	44	
24	3.920	101.910	8.340	103.890	-1.650	102.240	0.956	-0.044	4.449	4.299-7 1.46 x1	0-7			
25	4.420	98.450	8.460	106.010	-1.750	104.260	0.974	-0.026	2.561	4 386-7 1.1150	0 ⁻	man		
26 27	4.420 5.110	97.800 79.920	8.670 8.860	106.120 105.210	-1.800 \ -1.850	104.320 103.360	0.975 0.966	-0.025	2.505	4.388-7 1.08×1 4.348-7 1.49×1	0° N-16	Ē		
28	5.110	78.750	8.510	106.245	-1.750	104.495	0.977	-0.034 -0.023	3.402 2.341	4.396-7 1.51VI	o t			
29	5.580	60.860	8.710	105.940	-1.800	104.140	0.973	-0.027	2.673	4.378-7 1.16x1	0  C	4		
30	5.580	61.550	8.830	105.690	-1.800	103.890	0.971	-0.029	2.907	4.368-7 1.27 ×	0			
31	5.870	48.630	4.040 -		0.450	107.810			1.794	4.53e-7 6.22×1	0	7		
32 33	5.870 6.300	48.810 36.830	4.560 4.940	98.310 89.540	0.680	98.990	= 100 -0		9.829 16.797	4.1 <b>6e-7</b> 4.33yi0 3.8 <b>4e-7</b> 7.54yi		ř.		
34	6.300	36.990	6.000 -		5.600	49.630	JT=109.29		54.791	2.080-7 2.51×10	•7	Priknyl		
35	6.750	42.600	6.530	39.250	5.200	44.450	= 4.59×107		59.510	1.870-7 2,32×10	-7			
36	6.750	44.150										5		
37 38	6.890	45.790 45.590										24		
39	6.890 7.140	47.900								4.1	740000-1-V			
40	7.140	48.180										0		
41	7.470	58.610										2		
42	7.470	58.230				Main	, ,				v prev Al das			
43 44	7.710 7.710	77.700 76.580										CUURA		
45	8.180	99.650	Frail	~ 106.9 0	1	mg/L ug/1					or unitable	P		
46	8.180	98.270	10011	- 100.7 0	ρ <b>B</b>	U					- 19			
47	8.340	103.870	11	- 11 410	7m							ab	a por provincia de la companya de la	
48 49	8.340 8.460	103.910 105.990	U ₇ =	= 4.49×10			_		233,028	9,000-	40,000 M			
50	8.460	106.030		= - 269 ppb		7	38.02	s ppm -	U	,		ð		
51	8.670	106.090		Jon 600				1.1				ana	value of the second sec	
52	8.670	106.150			i v	vijem						Ľ		
53 54	8.860 8.860	105.210 105.210								:				47
54	8.510	106.080							NA =			M	M	
56	8.510	106.410				238,02	~	i			number of the second seco		<u> </u>	
57	8.710	105.920			InA :	73802	1 000 PI	05			******			
58 59	8.710 8.830	105.960 105.540				<u> </u>								
59 60	8.830	105.840												
61	4.040	107.630				06.			\ };	56 99				
62	4.040	107.090								~ * 11				
63 64	4.560	98.940												
64 65	4.560 4.940	97.680 89.140												
66	4.940	89.940												
67	6.000	44.260												
68	6.000	43.800												
69 70	6.530 6.530	38.980 39.520												
	0.530	38.320												

	<u>ن</u>	<u></u>			ş 8		- 3		98 BA BA	4 5 S		and the second s	and the second	
~					8006 (.22	?9 m2/g) data			Wed	, Oct 20, 1993				JR _
	рH	U (ppb)	рH	U (ppb) ave	CL correction	U (ppb) CL cor	U/113.8	Minus 1	%U sorbed	U (m) CL cor	Usorbed			11/8/23 Jurner
1	1.980	112.940	1.980	112.545	0.100	112.645	0.990	-0.010	1.015	4.73e-7	485x10			R B
2	1.980	112.150	2.350	112.805	0.100	112.905	0.992	-0.008	0.786	4.74e-7	3.76×107		}	
3	2.350	112.980	2.690	113.375	0.100	113.475	0.997	-0.003	0.286	4.77 <b>e-7</b>	1.37×07	J.		
4	2.350	112.630	2.970	112.015	0.150	112.165	0.986	-0.014	1.437	4.710-7	1.37×10-9 6.87×10-9	R A		herry
5	2.690	113.310	3.070	112.255	0.150	112.405	0.988	-0.012	1.226	4.72e-7	5.86×10-7			6
6	2.690	113.440	3.300	111.795	0.200	111.995	0.984	-0.016	1.586	4.71e-7	7.58×10-9	8	$\leq$	Ξ,
7	2.970	111.860	3.460	112.075	0.250		0.987	-0.013	1.296	4.72e-7		Martha	Jhay 1	
8	2.970	112.170	3.680	110.870	0.300	111.170	0.977	-0.023	2.311	4.67e-7	10-8	6	P	1
9	3.070	112.440	3. <b>880</b> շ	113.030	0.400	113.430	0.997	-0.003	0.325	4.778-7	1.5× 10-9	84		ALC3
10	3.070	112.070	4.140 5	112.780	0.470	113.250	0.995	-0.005	0.483	4.7 <b>6e-7</b>	231×10-7		5	N
11	3.300	112.020	4.340	111.095	0.570	111.665	0.981	-0.019	1.876	4.69 <b>9-</b> 7	2.10410-8	ou	deta	
12	3.300	111.570	4.610	108.135	0.670	108.805	0.956	-0.044	4.389	4.578-7	2-10410-8	R	24	$\omega$
13	3.460	112.270	5.550	93.745	4.600	98.345	0.864 0.828	-0.136 -0.172	13.581 17.214	4.13e-7 3.96e-7	2.10×10-8 649×10-8 823×10-8	1	8 8	
14	3.460	111.880	5.780	88.810	5.400	94.210 87.600	0.828	-0.230	23.023	3. <b>969-7</b> 3. <b>689-7</b>	1.10×107	graven	~	S
15	3.680	111.210	6.040-	82.050	5.550	84.455	0.742	-0.258	25.786	3.55 <b>8-7</b>	1.23×107	2	LINN	Š.
16	3.680	110.530	6.190 6.730	78.955 80.820	5.500´ 4.800	85.620	0.752	-0.248	24.763	3.609-7	118×10-7	2	ê.	-6
17	3.880	113.070	6.850	82.380	4.800	86.830	0.763	-0.237	23.699	3.65 <b>e-7</b>		5		sarphion
18	3.880 4.140	112.990 112.510	6.920	84.310	4.200	88.510	0.778	-0.222	22.223	3.72e-7				2
19 20	4.140	113.050	6.970	84.545	4.000	88.545	0.778	-0.222	22.192	3.720-7		2	Z	
21	4.340	111.300	7.040	87.915	3.500	91.415	0.803	-0.197	19.670	3.849-7		Jelas	UCENNED	
22	4.340	110.890	7.170	91.235	2.700	93.935	0.825	-0.175	17.456	3.959-7	0 74VID-0	Č	8	data
23	4.610	108.190	7.260	93.985	2.000	95.985	0.843	-0.157	15.655	4.03 <b>e-7</b>		٢	6	5
24	4.610	108.080	7.530	99.870	0.600	100.470	0.883	-0.117	11.714	4.228-7	S LAVIN V		R.	P
25	5.550	93.710	7.730	106.390	-0.200	106.190	0.933	-0.067	6.687	4.46e-7	3,20×10	~		
26	5.550	93.780	7.970	111.430	-1.150	110.280	0.969	-0.031	3.093	4.63e-7			B	
27	5.780	88.890	8.220	113.705	-1.500	112.205	0.986	-0.014	1.402	4.71e-7	670410-9		ma	
28	5.780	88.730	8.560	115.100	-1.770	113.330	0.996	-0.004	0.413	4.76e-7	A2410-7		2	
29	6.040	81.710	8.980	113.465	-1.850	111.615	0.981	-0.019	1.920	4.69 <b>e-7</b>	9.18×10-9			
30	6.040	82.390											4	
31	6.190	78.600											ſ :	
32	6.190	79.310											Prikay	
33	6.730	80.870											2	
34	6.730	80.770											È.	
35	6.850	82.210 82.550										· ·	<	
36	6.850	84.230											-	
37 38	6.920 6.920	84.390				113.7	040					100 Miles	2	
39	6.970	84.540			V	1(VI)= 115.7	-					ALC: NOT	24	
40	6.970	84.550			-	1(VI) = 113.7 4.78×1	0 M					1000-007		
41	7.040	87.950										v beenders	0	
42	7.040	87.880										4007544	8	
43	7.170	91.340										Increased	$\sim$	, and the second
44	7.170	91.130											CULURA	
45	7.260	94.060										v	モ	
46	7.260	93.910										2.00000		
47	7.530	100.030										run vorm		
48	7.530	99.710										- chrone and	4	
49	7.730	106.310										N MACINO	B	
50	7.730	106.470										And the second se		
51	7.970	111.140										www.www.	ano	
52	7.970	111.720										a a a a a a a a a a a a a a a a a a a	8	and a second
53	8.220	113.750										200	× I	
54	8.220	113.660										survey of the second seco	<b>``</b>	
55	8.560	114.450										****	001	
56	8.560	115.750											M	M
57	8.980	114.390										- ~		
58	8.980	112.540												
4														

47

____

Wed, Oct 20, 1993 12:13 PM

11/8/3 D.R. Iuma

4(v)-A203

sorption data

The results on green

Nhal

data ira

NUCENOK

hann

J. Prikny 1 at CULURA Lab and

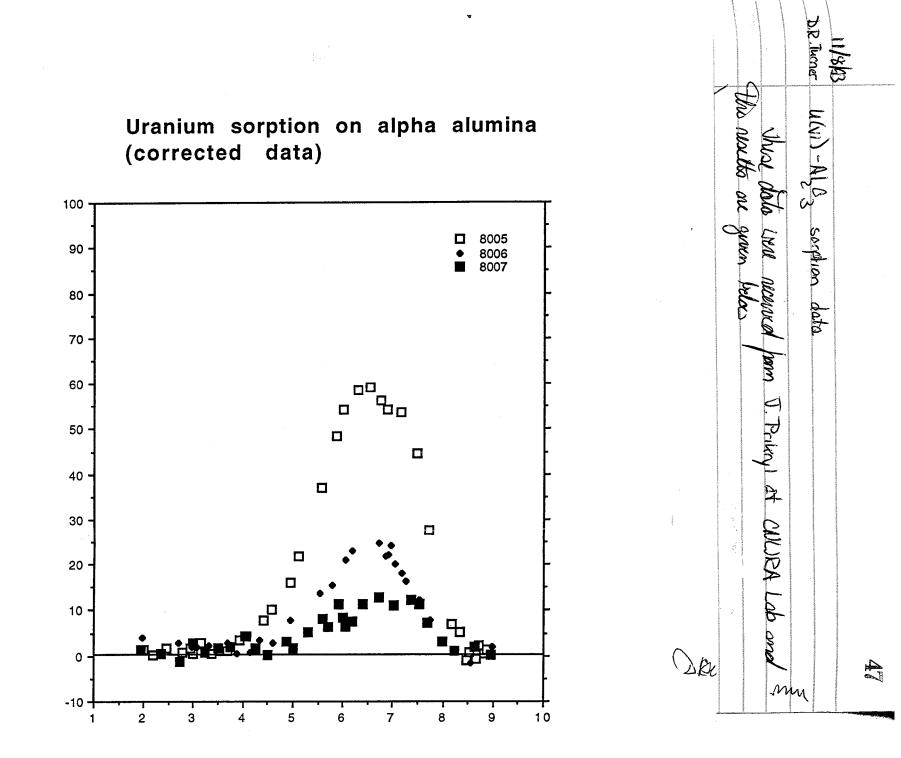
my

47

Pelas

-Orbeiter

8007 (.0686 m2/g) data


- - -

					8007 (.00	oo magy dala					
	рН	U(ppb)	рН	U (ppb) ave	CL correction	U (ppb) CL cor	U/115.93	Minus 1	%U sorbed	U (m) CL cor	Usorbed
	•	114,540	1.950	114.540	0.100	114.640	0.989	-0.011	1.113	4.828-7	5.42×10
1	1.950 1.950	114.540	2.340	115.790	0,100		1.000	-0.000	0.035	4.87 <b>e-</b> 7	1.70×10-10
2	2.340	116.560	2.730	116.505	0.100	116.605	1.006	0.006	-0.582	4.90 <b>e-7</b>	$\sim$
3	2.340	115.020	3.000	115.335	0.150		0.996	-0.004	0.384	4.85 <del>e-</del> 7	1.87×15-9
4	2.730	116.270	3.240	115.935	0.200	116.135	1.002	0.002	-0.177	4.88 <b>e-7</b>	0
5	2.730	116.740	3.510	114.670	0.250		0.991	-0.009	0.871	4.83 <b>e-7</b>	4.24410
6	3.000	115.340	3.750	113.525	0.350		0.982	-0.018	1.773	4.78 <b>e-7</b>	8.63×10-4
7	3.000	115.330	4.050	113.450	0.450		0.982	-0.018	1.751	4.798-7	8.53×10-9
8	3.240	115.740	4.250	113.410	0.520		0.983	-0.017	1.725	4.79e <b>-7</b>	8.40×10-7
9	3.240	116.130	4.500	113.656	0.680		0.986	-0.014	1.375	4.80 <b>e-7</b>	6.70×10-4 1.34×10-8
10	3.510	114.960	4.880	111.065	1.670		0.972	-0.028	2.756	4.74 <b>8-7</b>	1.34×10-
11	3.510	114.380	4,990	110.390	2.200	112.590	0.971	-0.029	2.881	4.73e-7	1.40×10-8
12	3.750	112.450	5.300	108.210	3.800		0.966	-0.034	3.381	4.71 <b>e-7</b>	1.65×10-
13	3.750	114.600	5.600	99.815	4.800	104.615	0.902	-0.098	9.760	4.40e-7	4.75×10-2
14	4.050	113.540	5.700	101.795	5.100	106.895	0.922	-0.078	7.793	4.498-7	3.80410
15 16	4.050	113.360	5.990	99.625	5.600	105.225	0.908	-0.092	9.234	4.420-7	4.50×10-0
10	4.050	113.050	6.040	101.240	5.550	106.790	0.921	-0.079	7.884	4.49e-7	3.84×10-8
18	4.250	113.770	6.180	100.235	5.500	105.735	0.912	-0.088	8.794	4.440-7	4,28×100
19	4.200	113.370	5.920	95.925	5.500	101.425	0.875	-0.125	12.512	4.26 <b>e-7</b>	6.09×10
20	4,500	113.760	6.390	96.085	5.300	101.385	0.875	-0.125	12.546	4.26e-7	6.11×10-8
21	4.880	110.680	6.730	97.055	4.800	101.855	0. <b>879</b>	-0.121	12.141		5-91210-8
22	4.880	111.450	7.020	98.900	3.950	102.850	0.887	-0.113	11.283		5.50×10-8
23	4.990	110.910	7.380		1.100	102.290	0.882	-0.118	11.766		5.73×10-8
23	4.990	109.870	7.540		0.400	105.445	0.910	-0.090	9.044		4.40×10-8
25	5.300	108.590	7.690		-0.200	106.135	0.916	-0.084	8.449	4. <b>46<del>e-</del>7</b>	4.12×108
26	5.300	107.830	7.980		-1.200	111.915	0.965	-0.035	3.463	4.70 <b>9-7</b>	1.61×10-8
20	5.600	100.180	8.240		-1.550	114.055	0.984	-0.016	1.617	4.79e-7	7.87x10
28	5.600	99,450	8.630	115.290	-1.800	113.490	0.979	-0.021	2.105	4.77 <b>e-7</b>	1.03×10-9
29	5.700	101.860	8.940	117.585	-1.850	115.735	0.998	-0.002	0.168	4.8 <b>6e-7</b>	8.18×16-1
30	5.700	101.730	2.2.0								
31	5,990	99.260									

115.9 U(11)T = 4.57×10-7

7	3.000	115.340
8	3.000	115.330
9	3.240	115.740
10	3.240	116.130
11	3.510	114.960
12	3.510	114.380
13	3.750	112.450
14	3.750	114.600
15	4.050	113.540
16	4.050	113.360
17	4.250	113.050
18	4.250	113.770
19	4.500	113.370
20	4.500	113.760
21	4.880	110.680
22	4.880	111.450
23	4.990	110.910
24	4.990	109.870
25	5.300	108.590
26	5.300	107.830
27	5.600	100.180
28	5.600	99.450
29	5.700	101.860
30	5.700	101.730
31	5.990	99.260
32	5.990	99.990
33	6.040	100.690
34	6.040	101.790
35	6.180	100.310
36	6.180	100.160
37	5.920	95.540
38	5.920	96.310
39	6.390	95.560
40	6.390	96.610
41	6.730	96.760
42	6.730	97.350
43	7.020	99.790
44	7.020	98.010
45	7.380	101.260
46	7.380	102.120
47	7.540	104.880
48	7.540	105.210
49	7.690	106.220
50	7.690	106.450
51	7.980	112.540
52	7.980	113.690
53	8.240	115.550
54	8.240	115.660
55	8.630	115.220
56	8.630	115.360
57	8.940	117.940
58	8.940	117.230

/*



рΗ

%U sorbed

48		49
11/3/93		11/17/93 u(vi)-Sorption on Clinoptilolite
D.Turnes	- A	Dita for 2 wanium compositions:
der der Sein Sein Statistik ander der der der der der der der der der	Asp: $8005 = 2.04 \text{ m}^2/\text{g}$ $8006 = 0.229 \text{ m}^2/\text{g}$	Data tor 2 wanium composit concentrations:
	$8007 \approx 0686 \text{ m}^{-1}a$	54 = 500 aub = 2 / ×10-6 M
****	SCO / COBU III IG	ΣU= 500 ppb = 2.1 × 10 ⁻⁶ M ΣU= 50 ppb = 2.1 × 10 ⁻⁷ M
	- No - 2.31 sites/nm2	
	- K, K_ are taken from table on pg. 44e of this lab notabook and corrected to I=0.1 M	Data are from CNLIFA laboratories, provided by R. Pabolon.
		Reported Cliniptilalite concentration is:
	FITERL results lassuming 190 error) are listed in a three-nig binder - "Binding Constants-Uranium" Number 046-A	(NQ, 807 0.123 .0031 J+0349 1.448 .044 1.6044 Job 24.72
	in the possession of D.R. Turner @ CIUURA	Assuming surface sites are statichiemotric ratios of SiBH*: AIBH* This yields 10.044/1.948 = 5.156:1
C - 1 - 1 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2	•	Experimental Conditions:
		T = 0.1  m NaNOz
NG 2000		Cs=2g/l (.1g/some)
		Assyming No=2.31 sites/m² (Deombak + Morel, 198) Asp=16 m²/g (LANL Monthly report, April 1993)
		Asp=16 m2/2 (LANL Monthly report, April 1993)
	•	TXOH = 1.23× 10-4 modes sites / HZD
00-100-00-00-00-0000000000000000000000		Jsion = 1.028×10-4 moles sites/ HzD)
		$\frac{J_{sioH} = 1.028 \times 10^{-4} \text{ moles sites/l Hz0}}{T_{AIOH} = 1.994 \times 10^{-5} \text{ moles sites/l Hz0} \frac{SiOH^{\circ}}{AIOH^{\circ}} = 5.156/1$
	· ·	
		- FITEAL, Version 2.0 is used with NEA uranium data corrected to I=0.1
randan met forde for a for a provinsion of space and so that was not considered as a source		- Single complexation reactions for each site are considered. Si + Al - U-binding reactions are considered separately, but protonation/deprotonation reactions for both sites are considered in all chemical equilibrium
		- U-binding reactions are considered superately, but protonation deprotonation
narraman an a		models.
		Madels employed: DLM + TLM. Madel momenters aires
		Models employed: DLM + TLM. Model parameters given in Table 1 on page 46.

U(v1)= 500 ppb=2.1 × 10-6 M

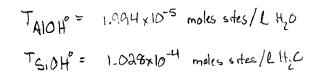
Clinoptilolite

CNURA Data

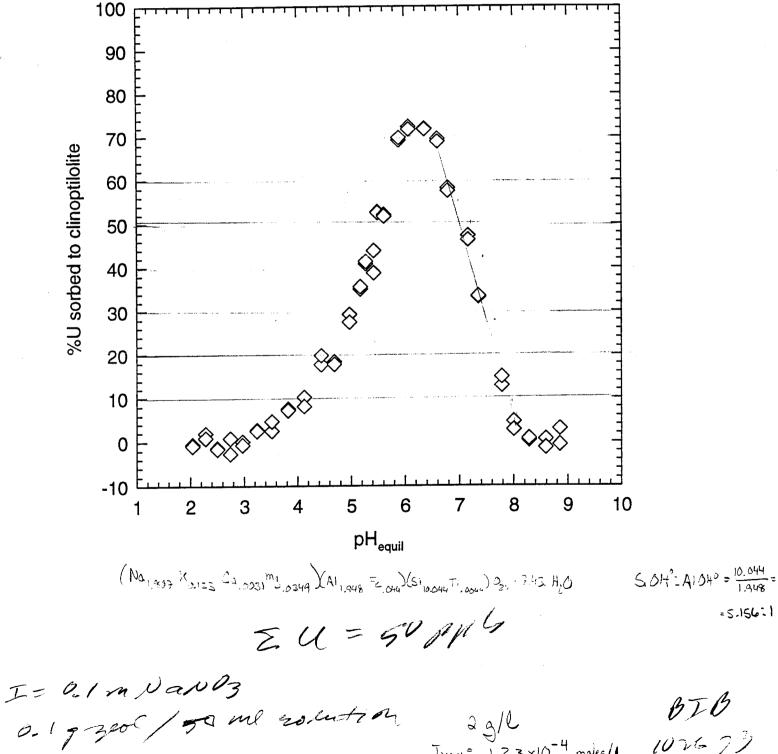
V NUMBER

U(VI) = 50ppb=2.1×10⁻⁷ M Clinoptilolite Data CNLIRA

200

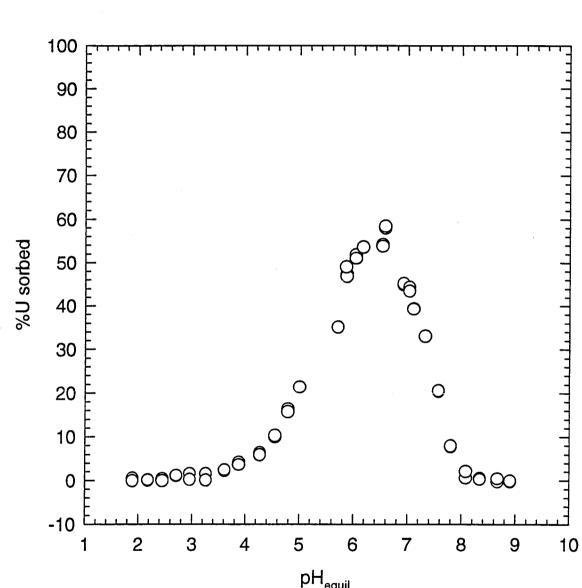

50ppb	50ррь	50ррь	50ppb	50ррь	50ррь	50ррь	50ррь	500ppb	500ррь	600h	600t	(00)	(00 J		
pH	% sorbed	conc. sorbed	avg sorbed	uco(*0.5)	ucl(1*)	uc2(*2.0)	uc3(*3.0)	pH		500ppb	500ppb	500ppb	500ppb	500ppb	500ppb
2.04	-0.559393723	-1.175e-09	wy boloon				u.s(*5.0)	1.89	% sorbed 0.486126239	conc. sorbed	avg sorbed	uco(*0.5)	ucl(1*)	uc2(*2.0)	uc3(*3.0)
2.04	-0.887891792	-1.865e-09	-1.520e-09	-7.600c-10	-1.520e-09	-3.040e-09	-4.560e-09			1.0210-08	2 000 00	1 011 00			
2.28	1.902716472	3.997e-09	-1.5200-09	-7.000-10	-1.3206-07	-3.0400-09	-4.3006-09	1.89	-0.122144491	-2.566-09	3.823e-09	1.911e-09	3.8230-09	7.6460-09	1.1470-08
2.28	0.905531470		2.040, 00	1 (75, 00)	0.040, 00	6 000, 00		2.18	0.056409336	1.185e-09					
	-1.318722230	1.9020-09	2.949e-09	1.4750-09	2.949e-09	5.899e-09	8.848e-09	2.18	0.091426750	1.920e-09	1.553e-09	7.7640-10	1.553e-09	3.105-09	4.658c-09
2.50	·····	-2.770e-09						2.45	0.358279784	7.5260-09					
2.50	-1.575988446	-3.310e-09	-3.040c-09	-1.520e-09	-3.040c-09	-6.081e-09	-9.1210-09	2.45	-0.085891242	-1.804c-09	2.861e-09	1.430e-09	2.861c-09	5.7220-09	8.5830-09
2.74	-2.656107753	-5.579e-09	~					2.71	0.983086014	2.065e-08					
2.74	0.823078382	1.729e-09	-1.925e-09	-9.626e-10	-1.925e-09	-3.850e-09	-5.776e-09	2.71	1.099278047	2.309e-08	2.187e-08	1.094e-08	2.187c-08	4.3740-08	6.561e-08
2.97	0.118370276	2.486-10				· · · · · · · · · · · · · · · · · · ·		2.96	1.565298510	3.288e-08					
2.97	-0.680686044	-1.430=-09	-5.90610	-2.953e-10	-5.906e-10	-1.181c-09	-1.772c-09	2.96	0.174763909	3.6710-09	1.828c-08	9.138e-09	1.828e-08	3.655e-08	5.483e-08
3.24	2.740551649	5.7570-09						3.26	1.516708543	3.1860-08					
3.24	2.478563153	5.206-09	5.4820-09	2.741c-09	5.482e-09	1.0966-08	1.644c-08	3.26	0.029004510	6.093e-10	1.623e-08	8.117c-09	1.623e-08	3.247c-08	4.870c-08
3.52	2.522902973	5.300e-09						3.61	2.227414181	4.679e-08					
3.52	4.698852434	9.870c-09	7.585=-09	3.792c-09	7.585c-09	1.517e-08	2.2750-08	3.61	2.465137749	5.178e-08	4.929e-08	2.464c-08	4.929e-08	9.857e-08	1.479c-07
3.82	7.581396179	1.593c-08						3.88	4.156969030	8.732e-08					
3.82	7.189997924	1.5100-08	1.551e-08	7.7570-09	1.5510-08	3.103-08	4.654e-08	3.88	3.609530025	7.582e-08	8.157e-08	4.079 <del>c</del> -08	8.157c-08	1.6310-07	2.447 <del>c</del> -07
4.12	10.198458060	2.1420-08						4.27	6.384341280	1.341e-07					
4.12	8.109854643	1.704e-08	1.923e-08	9.615e-09	1.923e-08	3.846-08	5.769e-08	4.27	5.878612042	1.2350-07	1.288c-07	6.440c-08	1.288e-07	2.576-07	3.864c-07
4.44	17.677479640	3.713e-08						4.55	9.922313057	2.084c-07					
4.44	19.793922770	4.158c-08	3.9360-08	1.968c-08	3.936-08	7.871 <del>c</del> -08	1.181c-07	4.55	10.263180260	2.156e-07	2.120e-07	1.060e-07	2.120c-07	4.240c-07	6.360e-07
4.69	18.310575020	3.846=-08						4.79	16.410929480	3.4470-07					
4.69	17.755947330	3.730=-08	3.788c-08	1.894e-08	3.7880-08	7.576c-08	1.136e-07	4.79	15.744076760	3.307c-07	3.377e-07	1.68%-07	3.377e-07	6.754c-07	1.013e-06
4.97	29.230988510	6.140c-08						5.01	21.336140470	4.4820-07					
4.97	27.436600560	5.763e-08	5.952c-08	2.976=-08	5.952e-08	1.190=-07	1.786-07	5.01	21.393763640	4.494c-07	4.488c-07	2.244c-07	4.488c-07	8.976-07	1.346c-06
5.17	35.090431370	7.371e-08						5.71	35.173979290	7.389=-07					
5.17	35.616260680	7.481c-08	7.426e-08	3.713e-08	7.426e-08	1.485e-07	2.228e-07	5.71	35.063090470	7.3650-07	7.377e-07	3.688c-07	7.377c-07	1.475-06	2.213e-06
5.27	40.838906510	8.579e-08						5.87	47.319316600	9.940c-07					
5.27	41.371235580	8,690=-08	8.634e-08	4.317e-08	8,634e-08	1.7270-07	2.590e-07	5.87	46.852356100	9.842c-07	9.891e-07	4.945 <del>c</del> -07	9.891c-07	1.978e-06	2.967c-06
5.42	43.840331750	9.20%-08						5.86	49.036161010	1.030e-06					
5.42	38.789914580	8.148e-08	8.679e-08	4.3390-08	8.679e-08	1.7360-07	2.604c-07	5.86	48.998465870	1.029e-06	1.030e-06	5.1480-07	1.030e-06	2.05%-06	3,089e-06

U(VI)-Clinoptilolite Sorption Data corrected for container loss (CNWRA, 1993)


"

é

									·		r	T	T	· · · · · · · · · · · · · · · · · · ·	F
5.49	52.712164970	1.1070-07						6.04	51.837290210	1.089e-06					
5.49	52.553513900	1.104c-07	1.1066-07	5.528e-08	1.106e-07	2.211 <b>0-07</b>	3.3170-07	6.04	51.046056160	1.072c-06	1.081e-06	5.4030-07	1.081e-06	2.161 <b>-06</b>	3.242e-06
5.61	52.075497140	1.094c-07						6.17	53.631463100	1.127c-06					
5.61	51.689915790	1.0860-07	1.0908-07	5,449e-08	1.090c-07	2.180e-07	3.270e-07	6.17	53.568737930	1.1250-06	1.126=-06	5.630e-07	1.1260-06	2.252c-06	3.378e-06
5.89	69.191375680	1.4530-07						6.92	44.803172810	9.4110-07					
5,89	69,766669680	1.466c-07	1.459e-07	7.297e-08	1.4590-07	2.919 <b>c-07</b>	4.378c-07	6.92	45.212675200	9.497e-07	9.4540-07	4.7270-07	9.454e-07	1.8910-06	2.8360-06
6.07	72,323124250	1.51%-07						6.58	57.939988870	1.217c-06					
6.07	71,722392520	1.507c-07	1.513e-07	7.564e-08	1.513e-07	3.026e-07	4.539=07	6.58	58.414716190	1.2270-06	1.222e-06	6.110e-07	1.2220-06	2.444c-06	3.6660-06
6.36	71,916918830	1.511e-07						6.53	54.170801690	1.1380-06					
6.36	71.742316860	1.507e-07	1.50%-07	7.544e-08	1.509e-07	3.018c-07	4.527e-07	6.53	53.821990680	1,1310-06	1.1340-06	5.671e-07	1.134e-06	2.2688-06	3.403e-06
6.60	69,528648660	1.4610-07						7.11	39.355980870	8.267e-07					
6.60	68.878907550	1.4470-07	1.454c-07	7.268c-08	1.454c-07	2.907e-07	4.3610-07	7.11	39.276739510	8.2500-07	8.259e-07	4.1290-07	8.259c-07	1.6520-06	2.478c-06
6.79	58.154160910	1.2220-07						7.03	44.310525680	9.308c-07					
6.79	57.500681910	1.208e-07	1.215-07	6.074e-08	1.2150-07	2.4290-07	3.644c-07	7.03	43.433365460	9.124c-07	9.216 <del>c</del> -07	4.608c-07	9.2160-07	1.843e-06	2.765e-06
7.16	47,305088010	9.937c-08						7.32	32.946929280	6.921e-07					
7.16	46.342953320	9,735e-08	9.836-08	4.918c-08	9.8360-08	1.967e-07	2.951e-07	7.32	33.049703410	6.942e-07	6.932c-07	3.4660-07	6.932e-07	1,3860-06	2.0790-06
7.35	33.266019120	6,988e-08						7.57	20.430301150	4.292e-07					
7.35	33.475771450	7.032c-08	7,010c-08	3.5050-08	7.010e-08	1.402c-07	2.103e-07	7.57	20.594468420	4.3260-07	4.30%-07	2.154c-07	4.309e-07	8.618c-07	1.293c-06
7.78	12.830301370	2.695c-08						7.80	7.772297870	1.6330-07					
7,78	14.878945120	3.125-08	2.910c-08	1.4550-08	2.910c-08	5.821e-08	8.731e-08	7.80	7.966601939	1.673e-07	1.653e-07	8.265e-08	1.653e-07	3.3060-07	4.9590-07
8,00	4.591366668	9.645e-09						8.08	0.556747658	1.169e-08					
8.00	2.721626861	5.7170-09	7.681c-09	3.840e-09	7.6810-09	1.536c-08	2.304c-08	8.08	2.035994578	4.277e-08	2.723e-08	1.362c-08	2.7230-08	5.446e-08	8.169e-08
8.28	0.331536355	6,964e-10						8.34	0.499067884	1.048e-08	N				
8.28	0.720798516	1.514c-09	1.105e-09	5.526e-10	1.1050-09	2.211e-09	3.3160-09	8.34	0.230051610	4.8320-09	7.658e-09	3.8290-09	7.658e-09	1.532e-08	2.297e-08
8.59	0.562990793	1.183e-09	1					8.67	-0.287563509	-6.0410-09					
8.59	-1.338678531	-2.812e-09	-8.1470-10	-4.073e-10	-8.147c-10	-1.629e-09	-2.444c-09	8.67	0.398791595	8.3770-09	1.168e-09	5.841 <del>0</del> -10	1.168e-09	2.336-09	3.505=-09
8.85	-0.656187639	-1.378e-09						8.90	-0.274221110	-5.760e-09					
8.85	2.936338348	6.168e-09	2.395-09	1.197e-09	2.395e-09	4,790c-09	7.1840-09	8.90	-0.098708559	-2.073e-09	-3.917e-09	-1.958e-09	-3.9170-09	-7.834c-09	-1.175e-08
8.85	2.930338348	0.1086-09	4.3930-09	1.17/0-09	1 200700 07				1	1	<u>L</u>				




%U sorbed vs. pH



23/6

TX0H= 1.23×10-4 moles/1 102677



%U sorbed vs. pH

pH_{equil}

IU=900716

I= 0.1 m NaNO3 0.19 yeal 150 ml solution

TXOH= 1.23×10-4 moles sites/2 2 Le = 500 M/

## **U(VI)-Clinoptilolite Binding Constants**_†

Some

of the resulting binding constants include:

сл Ш

Log K (I=OM)	SiOH°		AIOH°				
	DLM	TLM	DLM	TLM			
	Model Parameters						
XO-	-7.20	-4.90	-9.73	-10.80			
XOH ₂ ⁺	n.a.	0.90	8.33	6.80			
XO-Na°	n.a.	-6.22	n.a.	-7.73			
XOH ₂ -NO ₃ °	n.a.	n.a.	n.a.	10.12			
L	J(VI) Bindii	ng Constai	nts				
XOH-UO ₂ ⁺⁺	5.86	n.d.	9.23	n.d.			
XO-UO ₂ ⁺	0.17	-2.71	2.66	1.73			
XO-UO ₂ OH°	-6.35	-6.09	-4.24	-2.13			
XOH-UO ₂ (OH) ₂ °	-6.35	-6.35	-4.24	-2.92			
XOH-UO ₂ CO ₃ °	15.51	15.52	17.96	19.18			

n.a. Not applicable to DLM

n.d. Not determined for TLM

[†] Binding constants determined using FITEQL, Version 2.0 (Westall, 1982) with data from NEA Thermodynamic Database for Uranium (Grenthe et al., 1992).  $N_s = 2.31$  sites/nm²;  $A_{sp} = 16 \text{ m}^2/\text{g}$ . Values listed are weighted combination of values determined from the 50 ppb and 500 ppb datasets.

52 11/18/93 D. Tucous	Using the binding constants determined from the chaptilolite data (pg. 49-51 this bade), MINTEQAD was used to model the sorphion behavior. The CNWRA database for MINTEQAZ (12/17/92 version) was used with ununum data from NEA database (Grenthe et al., 1992). The results are shown below.	53 12/3/43 a-ALO2 data from CNUPEA. Attempt to fit/poredict D.Turner sorption data @ other Surface Area/Valume ratios using one data set. Fitting data for Asp = 2.04 m²/2 gives a binding constant for XO-(UO2) co2 (04) of Log K = 10.64. Using this data to model lawer sA/Valume. ratios (MINTEGA2, Version 3. with 12/17/42 CNURA alatabase), the results are shawn below.			
	U(VI)-SORPTION ON CLINOPTILOLITE Diffuse-Layer Model (DLM) SiOH ^o :AlOH ^o = 5.15:1 $\begin{array}{c} 000\\ 60\\ 60\\ 7\\ 40\\ 8\\ 20\\ 0\\ 12 3 4 5 6 7 8 9 10\\ \hline pH\\ \hline 0\\ 60\\ 60\\ 7\\ 60\\ 7\\ 60\\ 7\\ 60\\ 7\\ 60\\ 7\\ 60\\ 7\\ 60\\ 7\\ 60\\ 7\\ 60\\ 7\\ 60\\ 7\\ 60\\ 7\\ 60\\ 7\\ 60\\ 7\\ 7\\ 60\\ 7\\ 60\\ 7\\ 7\\ 7\\ 7\\ 7\\ 7\\ 7\\ 7\\ 7\\ 7\\ 7\\ 7\\ 7\\$	Diffuse-Layer Model (DLM) U-Sorption; $p(CO_2)=10^{3.48}atm$ U-Sorption; $p(CO_2)=10^{3.48}atm$ RM 8005 2.09 m ² /g RM 8005 2.09 m ² /g RM 8007 .0686 m ² /g Diffuse-Layer Model (DLM) U-Sorption; $p(CO_2)=10^{3.48}atm$ RM 8007 .0686 m ² /g Diffuse-Layer Model (DLM) U-Sorption; $p(CO_2)=10^{3.48}atm$ RM 8007 .0686 m ² /g Diffuse-Layer Model (DLM) RM 8007 .0686 m ² /g Diffuse-Layer Model (DLM) Diffuse-Layer M			

•,

i int A			T	
54				66
	$\begin{array}{c} x-A_{1}O_{2} & model in results using B \\ ueighted values as shown below: \\ \end{array}$	$\frac{DLM Constants}{Log K_{+}=8.33} Log K_{=}=9.73 Log K_{8005}=12.64 Log K_{8005}=12.64 Log K_{8006}=12.70 Log K_{8007}=12.91 Best-Fit$	12/21/43 D. Tucaes	CNURA, at brief background of MINTEGAZ is include with the inclusion of radiaclement thermodynamic data added to the MINTEGAZ databases and data sources. The primary documentation for MINTEGAZ, Ver 3.11 consists of the User's Manual prepared by EPA (Allison et al., 1991 - MINTEGAZ/ PRODEFAZ, A Beachemical Assessment Model for Environmental Systems: Version 3.0 User's Manual, EPA/600/3-91/621) and internal documentation for modifications of 3.0 to 3.11 in the code treates. Code Versions used have been and will continue to be documented in this back and in reports and articles in which model results are reported. MINTEGAZ and the preprocessor code PRODEFAZ have been under development at the EPA Center for Exposure Assessment Modeling in Athens, GA. The database as distributed is from WATEGA, a USGS aqueous speciation code, and data sources from the documentation for WATEGA3 con be used to identify data sources for the more common clements such as Ca ²⁴ , Ma ⁴⁴ , Ca ²⁻ , etc.
		0		The version of MINTEGA2/PRODEFAD is used at CNWRA is version 3.11 and was obtained by D.R. Turner from the CEAM staff in Affanta Georgia in August 1992 As compressed liles on a single 31/2" diskette. This diskette is attached to the back of this book. This software has been installed as a PC version on the JBM PS/D of David Turner of CNUTRA. Additional installation was on the LAN Server under
				Additional installation was an the LAN server under K: ITURNER MINTEQAZ, although this may change as space is needed on the server. The only modifications to the code have been to the 4 databases COMP. DBS, THERMO. DBS, TYPEG. DBS, and REDOX. DBS, as described below and on pg. 15. Database modification methods are described in the user's manual.

Untortunately MINTEGAZ requires databases have the original
Unfortunately, MINTEGAZ requires databases have the original nomes for use by the codes, and version numbers have not
been added.
Petition for data exemption is attached below:
Radionuclide/Radioelement log k values are attached to the opposite page.
en e

## Memorandum

PERCOMM

From:

To:

Subject:

Date:

Exemption for qualification of data in the MINTEQA2/PRODEFA2 software package

Wesley C. Patrick (Technical Director)

David R. Turner AR

and Bruce E. Mabrito (Director of Quality Assurance)

May 7, 1992

The MINTEQA2/PRODEFA2 geochemical speciation code is under continuing development at the Environmental Research Laboratory of the U. S. Environmental Protection Agency in Athens, Georgia. Version 3.0 will be used in research and technical assistance activities at the Center for Nuclear Waste Regulatory Analyses, and it is anticipated that updated versions will be incorporated and evaluated as they become available. The PRODEFA2 code is the preprocessor used to prepare input files for the MINTEQA2 code, and as such does not directly use any geochemical data. As it is currently constructed, the MINTEQA2 code uses extensive databases to provide the information necessary in calculating equilibrium species distribution between liquid, solid, and gas phases from well established thermodynamic principles. The purpose of this memorandum is to petition for exclusion and exemption of these existing data from qualification requirements under Quality Assurance Procedure OAP-015.

Section 5.1.3 in QAP-015 provides for the exclusion of existing data from qualification if "The existing data were generated by the DOE or its contractors and the purpose of the Center activity or project is to provide an independent evaluation of that data" and/or "The existing data are being used as a basis of comparison in confirmatory research or other evaluations". The original MINTEQ code was developed at Pacific Northwest Laboratory and funded in part by the DOE. Much of the original data are based on the U. S. Geological Survey's WATEQ3 code, which has been used extensively in the scientific community and is well documented. At CNWRA, the MINTEQA2 database has also been expanded to include radioelement data from the EQ3/6 software package, also developed by the DOE. In addition, many of the data in the MINTEQA2 database (such as molecular weights and species charge) "... are accepted in the scientific and engineering community as established fact.", the third criteria justifying exclusion from qualification (Section 5.1.3).

Section 5.3 in QAP-015 also permits exemption of existing data from qualification where "In certain circumstances, programmatic requirements and constrains or other factors may make it necessary to use data which are not qualified". If such data are used in Center reports, a clear statement on the qualification status of the data is to be provided. Progress in numerous research and technical assistance activities at the CNWRA requires the use of geochemical data. While some of the data in the MINTEQA2 database are recognized by the scientific and engineering community as uncertain, they represent the current best estimates in the evolving state of geochemical data. Even though activities at CNWRA may address the state-of-the-art in geochemical data in narrowly defined areas, it is beyond the scope of the CNWRA program and resources to do so for all of the data in the MINTEQA2/PRODEFA2 package, which currently includes data for over 1200 species involving more than 125 components.

Concurrence

John L. Russeil Element Manager

Approval Wesley C.

Wesley C. Jatrick Technical Director Approval

la hain

Bruce E. Mabrito Director of Quality Assurance

				-				
0401400	Am(CO3)2-1		2.464	13.3000		-1.	4.0	0.0
4.00 2	2.000 1 AmCO3+1	40	1.000 3.599	40 8.2600		1.	4.0	0.0
2.00 2	1.000 1 Am(CO3)3-3	40	1.000	40 14.9500		-3.	4.0	0.0
6.00 2	3.000 1		1.000 -3.703	40		2.	4.5	0.0
0401800 2	1.000 1	80	1.000	40				
0401801 2	AmCl2+1 2.000 1		-7.65 1.000	1.5628 40		1.	4.0	0.0
0402700 2	AmF+2 1.000 2	70	1.671 1.000	4.2881 40		2.	4.5	0.0
0402701	AmF2+1		4.424 1.000	7.3740		1.	4.0	0.0
2 0402702				10.5626		0.	3.0	0.0
2 0404920	3.000 2 AmNO3+2	270	1.000	40 1.1530		2.	4.5	0.0
2 0404921	1.000 4 Am(NO3)2+1	<b>9</b> 2	1.000	40		1.	4.0	0.0
2	2.000 4 Am(OH)+2		1.000 13.831	40 -6.5900		2.	4.5	0.0
3	1.000	2	1.000		000 330	1.	4.0	0.0
3	Am(OH)2+1 2.000	2	1.000	40 -2.	000 330			
0400022	Am(OH)3 3.000	2	22.545	-23.7852 40 -3.	000 330	0.	3.0	0.0
0407320	Am(SO4)+1 1.000		5.124 1.000	3.6137 40		1.	4.0	0.0
0407321	Am(SO4)2-1		10.764	5.0280 40		-1.	4.0	0.0
2 0405800	2.000 Am(H2PO4)+	2	1.000	22.2760	~~~	2.	4.5	0.0
3 0405801	1.000 ! Am(H2PO4)2		1.000	42.8148	000 330	1.	4.0	0.0
3	2.000 Am(H2PO4)3	580	1.000	40 4. 63.3391	000 330	0.	3.0	0.0
3	3.000	580	1.000		000 330	-1.	4.0	0.0
3	Am(H2PO4)4 4.000	580	1.000	40 8.	000 330	0.	3.0	0.0
0421400	Am(02)HCO3 1.000		1.000		000 330			
1351300 2	CoBr2 1.000	135	-0.135 2.000	-0.0358 130		0.	3.0	0.0
1351800	CoCl +1 1.000		41.066	0.1547		1.	4.0	0.0
	CoHS +1			5.9813		1.	4.0	0.0
2 1357301	1.000 Co(HS)2		1.000	9.0306		0.	3.0	0.0
2 1353800	1.000 Col2	135	2.000 0.759	730 -0.0944		0.	3.0	0.0
2		135	2.000			1.	4.0	0.0
2	1.000	135	1.000	492		1.		
3	CoOH +1 1.000	135		002 -1.	.000 330			
	Co(OH)2 1.000	135	2.000	-18.8000 002 -2.	.000 330	0.		
	Co(OH)4 -2 1.000	2		-45.7804 002 -4.		-2.	4.0	0.0
1350023	Co2(OH)3 +	⊦1		-11.2000 002 -3		1.	4.0	0.0
1350024	2.000 Co4(OH)4 4	-4		-30.3804		4.	5.5	0.0
	CoS203			002 -4 42.3035			3.0	
	1.000	135	2.000 0.094	732 10 0.0436	.000 330	8.000 0.		-5. 0.0
2	1.000	135	1.000	732 2.7000			3.0	
2	CoSeO4	135	1.000	762				
2201300 2	CsBr 1.000	220	2.62 1.000	-0.2712 130		0.		0.0
2201800				-0.1385 180		0.	3.0	0.0
	) CsI			0.2639		0.	3.0	0.0

-

. 🖪

۰. ۷.

ć

2203800 CsI

2

2

2611300 EuBr +2

-1.57

1.000 220

1.000 261

1.000 380

1.000 130

0.2639

0.5572

	Ka	dion	uclide	auta
	Û	latab	use.	12/17/
۱.	4.0	0.0	363.0184	
۱.	4.0	0.0	303.0092	
5.	4.0	0.0	423.0276	
2.	4.5	0.0	278.4527	,
1.	4.0	0.0	313.9054	
2.	4.5	0.0	261.9984	
1.	4.0	0.0	280.9968	6
0.	3.0	0.0	299.9952	2
2.	4.5	0.0	305.0049	)
1.	4.0	0.0	367.0099	)
2.	4.5	0.0	260.0073	5
1.	4.0	0.0	277.0147	,
0.	3.0	0.0	294.0220	)
1.	4.0	0.0	339.0636	5
1.	4.0	0.0	435.1272	2
2.	4.5	0.0	339.9872	2
1.	4.0	0.0	436.974	5
0.	3.0	0.0	533.961	7
1.	4.0	0.0	630.949	0
0.	3.0	0.0	336.015	9
0.	3.0	0.0	218.741	2
1.	4.0	0.0	94.385	9
1.	4.0	0.0	92.005	2
0.	3.0	0.0	125.077	2
0.	3.0	0.0	312.742	1
1.	4.0	0.0	120.938	1
1.	4.0	0.0	75.940	5
0.	3.0	0.0	92.947	9

0.0 126.9626

0.0 303.7622

0.0 171.0634

0.0 154.9948

-5.000 002

4.5 0.0 231.8690

168.8884

201.8908

212.8094

168.3581

259.8099

0.0

3.0 0.0

2.

Radionuclide dota added to MINTEOA2 92

57

- 1

0.2145 1. 4.0 0.0 311.7730 2611301 EuBr2 +1 2.000 130 1.000 261 2 2. 0.0 279.8672 4.5 2611302 EuBr03 +2 -141.5895 -6.000 001 -6.000 330 1.000 130 3.000 002 5 1.000 261 7.8005 4.0 0.0 211.9744 1. 2611400 EuCO3 +1 1.000 140 1.000 261 2.000 2 0.0 271.9838 12.2583 -1. 4.0 2611401 Eu(CO3)2 -1 2.000 140 1.000 261 4.000 2 4.0 0.0 331.9932 -3. 14.1709 2611402 Eu(CO3)3 -3 3.000 140 1.000 261 6.000 2 11.9225 2. 4.5 0.0 212.9823 2611403 Eu(HCO3) +2 1.000 140 1.000 330 1.000 261 1.000 3 228.9817 ٥. 3.0 0.0 1.8347 2611404 EuOHCO3 -1.000 330 1.000 261 1.000 002 1.000 140 3.000 4 5.4816 4.0 0.0 288.9911 -2. 2611405 EuOH(CO3)2-2 -1.000 330 2.000 140 1.000 002 5.000 4 1.000 261 -1. 4.0 0.0 245.9891 2611406 Eu(OH)2CO3-1 -7.5174 1.000 140 -2.000 330 2.000 002 4.000 4 1.000 261 0.6915 0.0 187.4177 2. 4.5 0.023 2611800 EuCl +2 1.000 261 1.000 180 2 1. 4.0 0.0 222.8704 0.2553 2611801 EuCl2 +1 2.000 180 1.000 261 2 4.5 0.0 170.9634 2. 2612700 EuF +2 3.6416 1.000 270 1.000 261 2 6.0854 4.0 0.0 189.9618 1. 2612701 EuF2 +1 2.000 270 1.000 261 2 0.0 326.8677 2.829 2. 4.5 2613800 EuI03 +2 2,156 1.000 261 1.000 381 2 1.0392 4.5 0.0 213.9699 2. 2614920 EuNO3 +2 1.000 492 1.000 261 2 168.9723 -7.8214 2. 4.5 0.0 2613300 EuOH +2 1.000 261 1.000 002 -1.000 330 3 -14.8609 0.0 185.9797 4.0 1. 2613301 Eu(OH)2 +1 -2.000 330 1.000 261 2.000 002 3 202.9870 -24.1253 002 -3.000 330 ٥. 3.0 0.0 2613302 Eu(OH)3 1.000 261 3.000 002 3 219.9944 4.0 0.0 -36.5958 -1. 2613303 Eu(OH)4 -1 -4.000 330 1.000 261 4.000 002 3 -6.9182 4. 5.5 0.0 337.9447 2613304 Eu2(OH)2 +4 2.000 002 -2.000 330 3 2.000 261 0.0 248.0266 4.0 3.9029 1. 2617320 EuSO4 +1 4.192 1.000 261 1.000 732 2 4.0 0.0 344.0882 5.4693 -1. 6.129 2617321 Eu(SO4)2 -1 2.000 732 2 1.000 261 0.0 254.0553 4.5 5500020 Np(OH)+2 11.976 -7.0000 2. 1.000 550 -1.000 330 2 1.000 3 21.9300 2. 4.5 0.0 334.0351 5505800 Np(H2PO4)+2 -11.888 1.000 550 2.000 330 1.000 580 3 0.0 431.0222 -27.057 42.7500 1. 4.0 5505801 Np(H2P04)2+ 1.000 550 4.000 330 2.000 580 -3 3.0 0.0 528.0093 64.1800 0. 5505802 Np(H2P04)3 .253 -45 6.000 330 3.000 580 1.000 550 3 537.0940 4.599 38.3000 -6. 4.0 0.0 5511400 Np(CO3)5-6 1.000 551 10.00 2 5.000 140 5.0 0.0 272.5007 0.2000 3. 4.873 5511800 NpCl+3 1.000 551 1.000 180 2 4.5 0.0 307.9534 -0.1000 2. 5511801 NpCl2+2 22.614 1.000 551 2.000 180 2 256.0464 3. 5.0 0.0 5512700 NpF+3 0.818 8.7000 1.000 270 1.000 551 2 275.0448 15.4000 2. 4.5 0.0 5512701 NpF2+2 1.449 1.000 551 2.000 270 2 -1.0000 551 -1.000 330 3. 5.0 0.0 254.0553 5513300 Np(OH)+3 12.192 2 1.000 551 1.000 3 4.5 0.0 271.0620 -2.8000 2. 5513301 Np(OH)2+2 18.42 1.000 551 -2.000 330 2 3 2.000 4.0 0.0 288.0699 -5.8000 1. 5513302 Np(OH)3+1 23.792 2 1.000 551 -3.000 330 3.000 0. 3.0 0.0 305.0772 -9.6000 5513303 Np(OH)4 26.193 1.000 551 4.000 -4.000 330 2 3 -14.3000 0.0 322.0847 -1. 4.0 29.109 5513304 Np(OH)5-1 -5.000 330 1.000 551 5.000 2 3 333.0272 25.2200 2. 4.5 0.0 -1.71 5515800 Np(HP04)+2 1.000 551 1.000 330 3 1.000 580 48.0400 ٥. 3.0 0.0 429.0064 -15.449 5515801 Np(HPO4)2

1.000 551

2.000 580

3

2.000 330

5515802 Np(HPO4)3-2 3.000 580 3 5515803 Np(HP04)4-4 3 4.000 580 5515804 Np(HPO4)5-6 5.000 580 3 5517320 Np(SO4)+2 2 1.000 732 5517321 Np(SO4)2 2.000 732 2 5521400 NpO2(CO3)-1 2.00 2 1.000 140 5521401 Np02(C03)2-3 2.000 140 4.00 2 5521402 Np02(C03)3-5 6.00 2 3.000 140 5521800 NpO2Cl 2 1.000 180 5522700 NpO2F 1.000 270 2 5523300 NpO2(OH) 3 1.000 2 5525800 Np02(H2P04) 1.000 580 3 5525801 Np02(HP04)-1 3 1.000 580 5527320 Np02(S04)-1 1.000 732 2 5531400 NpO2(CO3)2-2 4.00 2 2.000 140 5531401 Np02(C03)3-4 6.00 2 3.000 140 5531800 NpO2CL+1 2 1.000 180 5532700 Np02F+1 1.000 270 2 5532701 Np02F2 2.000 270 2 5533300 NpO2(OH)+1 2 3 1.000 5533301 (NpO2)2(OH)2 2.000 2 3 5533302 (NpO2)3(OH)5 3 5.000 2 5535800 NpO2(H2PO4) 1.000 580 3 5535801 Np02(HP04) 3 1.000 580 5537320 Np02(S04) 1.000 732 2 6401800 PuCL+2 1.000 180 2 6403300 Pu(OH)+2 3 1.000 2 6405800 Pu(H2PO4)+2 1.000 580 3 6407320 Pu(SO4)+ 1.000 732 2 6407321 Pu(\$04)2-2.000 732 2 6411800 PuCl+3 1.000 180 2 6412700 PuF+3 1.000 270 2 6412701 PuF2+2 2.000 270 2 6412702 PuF3+ 2 3.000 270 6412703 PuF4 4.000 270 2 6413300 Pu(OH)+3 1.000 2 3 6413301 Pu(OH)2+2 2 3 2.000 6413302 Pu(OH)3+1 3.000 2 3

-21.533 70.3700 -2. 4.0 0.0 3.000 330 1.000 551 92.4900 4.0 -30.085 -4. 0.0 1.000 551 -37.532 113.610 -551 5.000 330 4.000 330 -6. 4.0 0.0 4.959 5.5000 2. 4.5 0.0 1.000 551 9.565 9.9000 0. 3.0 0.0 1.000 551 4.6000 -1. 4.0 0.0 13.018 1.000 552 7.0000 -3. 4.0 0.0 6.876 1.000 552 8.5000 -5. 0.0 4.0 6.237 1.000 552 3.696 -0.4000 0. 3.0 0.0 1.000 552 1.0000 3.0 0.0 ٥. 8.19 1.000 552 -8.9000 552 -1.000 330 10.427 0. 3.0 0.0 1.000 552 ٥. 0.0 16.844 20.1300 3.0 2.000 330 1.000 552 15.8200 -1. 4.0 0.0 8.405 1.000 330 1.000 552 0.4000 -1. 4.0 0.0 4.576 1.000 552 14.0000 -2. 4.0 0.0 6.662 1.000 553 4.0 0.0 -9.783 20.4000 -4. 1.000 553 -0.2000 4.0 0.0 2.871 1. 1.000 553 4.0 0.0 0.215 4.6000 1. 1.000 553 7.8000 ٥. 3.0 0.0 307.0436 0.63 1.000 553 10.368 -5.2000 1. 4.0 0.0 286.0541 1.000 553 -1.000 330 -6.4000 4.5 572.1082 10.921 2. 0.0 -2.000 330 2.000 553 ) 555 -17.5000 -17.5000 330 26.937 1. 4.0 0.0 892.1769 3.000 553 21.8300 1. 4.0 0.0 366.0339 -36.956 1.000 553 2.000 330 20.5200 0. -5.061 3.0 0.0 365.0260 1.000 330 1.000 553 3.3000 3.0 0.0 365.1104 4.753 ٥. 1.000 553 2. 279.4527 0.0017 4.5 0.0 1.000 640 12.79 -7.9680 2. 4.5 0.0 261.0073 1.000 640 -1.000 330 22.0035 340.9871 3.322 2. 4.5 0.0 2.000 330 1.000 640 3.492 3.4935 4.0 0.0 340.0636 1. 1.000 640 4.0 0.0 436.1272 3.39 -1. 1.000 640 279.4527 3.984 0.1435 3. 5.0 0.0 1.000 641 5.091 8.4600 3. 5.0 0.0 262.9984 1.000 641 281.9968 15.4000 2. 4.5 0.0 1.000 641 5.3000 4.0 0.0 300.9952 1. 1.000 641 4.2000 ٥. 3.0 0.0 319.9936 1.000 641 -0.5048 5.0 0.0 261.0073 3. 11.516 1.000 641 -1.000 330 77 -2.3235 1.000 641 -2.000 330 2. 4.5 0.0 278.0146 17.77 -5.2810 4.0 0.0 295.0219 23,084 1. 1.000 641 -3.000 330

524.9856 620.9648 716.9440 333.1116 429.1752 329.0560 389.0652 449.0744 304.4995 288.0452 286.0541 366.0339 365.0260 365.1104 389.0652 449.0744 304.4995 288.0452

-9.5174 6413303 Pu(OH)4 26.08 -4.000 330 4.000 2 1.000 641 3 -14.9802 6413304 Pu(OH)5-1 30.037 -5.000 330 3 5.000 2 1.000 641 6415800 Pu(HPO4)+2 6.12 25.3321 1.000 641 1.000 330 3 1.000 580 48.4919 6415801 Pu(HP04)2 -0.83 2.000 330 2.000 580 1.000 641 3 541 70.4253 3.000 330 6415802 Pu(HPO4)3-2 -12.092 7 3.000 580 1.000 641 92.5339 6415803 Pu(HPO4)4-4 -32.572 1.000 641 4.000 330 4.000 580 3 6417320 Pu(SO4)+2 5.7710 2.95 1.000 641 2 1.000 732 6417321 Pu(S04)2 9.806 10.2456 2.000 732 1.000 641 2 6423300 PuO2(OH) -9.6323 16.486 -1.000 330 3 1.000 2 1.000 642 6431400 Pu02(C03)(ag 12.7000 2.00 2 1.000 140 1.000 643 14.9148 6431401 Pu02(C03)2-2 5.485 4.00 2 2.000 140 1.000 643 6431402 Pu02(C03)3-4 -9.304 18.5000 1.000 643 6.00 2 3.000 140 2.78 -0.2084 6431800 Pu02Cl+1 1.000 180 1.000 643 -1.241 5.6674 6432700 Pu02F+1 1.000 643 1.000 270 2 6432701 Pu02F2 -3.69 10.9669 2.000 270 1.000 643 2 15.9160 6432702 Pu02F3-1 -7.016 1.000 643 3.000 270 2 6432703 Pu02F4-2 -9.54 18.7628 1.000 643 4.000 270 2 -5.6379 6433300 PuO2(OH)+1 10.823 1.000 2 1.000 643 -1.000 330 -8.2626 643 -2.000 330 6433301 (PuO2)2(OH)2 13.83 2 2.000 643 2.000 3 33.335 -21.6550 6433302 (PuO2)3(OH)5 5.000 2 3.000 643 -5.000 330 3 6433303 PuO2(OH)2(aq -11.9000 1.000 643 -2.000 330 -3 2.000 -20.7000 6433304 (PuO2)(OH)3-3.000 2 1.000 643 -3.000 330 207.367 -4.3000 6433305 (PuO2)2(OH)+ 1.000 2 2.000 643 543 23.5277 11 2.000 330 -1.000 330 3 6435800 PuO2(H2PO4)+ -5.1 1.000 643 3 1.000 580 6437320 Pu02(S04) 3.2658 4.8 1.000 643 1.000 732 2 6901800 Rucl +1 -0.4887 1.000 690 1.000 180 2 6907320 RuSO4 2.3547 1.000 690 1.000 732 2 6911800 RuCl +2 2.1742 1.000 691 1.000 180 2 6911801 RuCl2 +1 3.7527 1.000 691 2.000 180 2 4.2976 6911802 RuCl3 1.000 691 3.000 180 2 6911803 RuCl4 -1 4.1418 1.000 691 4.000 180 2 6911804 RuCl5 -2 3.8457 1.000 691 5.000 180 6911805 RuCl6 -3 3.4446 1.000 691 6.000 180 2 6913300 RuOH +2 -2.2392 1.000 691 1.000 002 -1.000 330 6913301 Ru(OH)2 +1 -3.5148 2.000 002 -2.000 330 3 1.000 691 6917320 RuSO4 +1 1.9518 1.000 691 1.000 732 2 6917321 Ru(S04)2 -1 3.0627 2.000 732 1.000 691 2 7.1960 6923300 Ru4(OH)12+4 4.000 002 -4.000 330

4.000 692

3

3.0 0.0 312.0292 0. -1. 4.0 0.0 329.0365 2. 4.5 0.0 339.9792 0. 3.0 0.0 435.9583 -2. 4.0 0.0 531.9375 -4. 4.0 0.0 627.9166 4.5 0.0 340.0636 2. ٥. 3.0 0.0 436.1272 ٥. 3.0 0.0 293.0061 0. 0.0 0.0 336.0080 4.0 0.0 396.0172 -2. 0.0 0.0 456.0264 -4. 0.0 311.4515 1. 4.0 294.9972 1. 4.0 0.0 313.9956 ٥. 3.0 0.0 0.0 332.9940 -1. 4.0 -2. 3.0 0.0 351.9924 0.0 293.0061 4.0 1. 2. 4.5 0.0 586.0122 0.0 913.0329 1. 4.0 0. 0.0 0.0 310.0134 327.0208 -1. 0.0 0.0 3. 0.0 0.0 569.0049 1. 4.0 0.0 372.9859 0. 3.0 0.0 372.0624 1. 4.0 0.0 136.5227 3.0 0.0 197.1316 0. 4.5 0.0 136.5227 2. 1. 4.0 0.0 171.9754 3.0 0.0 207.4281 ٥. 4.0 0.0 242.8808 -1. 4.0 -2. 0.0 278.3335 0.0 -3. 4.0 313.7862 2. 4.5 0.0 118.0773 4.0 0.0 135.0847 1. 4.0 0.0 197.1316 1. 4.0 0.0 293.1932 -1. 5.5 0.0 608.3681 4.

170.5374 0.0 4.0 1. 1.3858 6921800 Ru(OH)2CL+1 1.000 180 1.000 692 2 205.9901 3.0 0.0 ٥. 1.8081 6921801 Ru(OH)2CL2 2.000 180 1.000 692 2 -1. 4.0 0.0 241.4428 1.6172 6921802 Ru(OH)2Cl3-1 3.000 180 2 1.000 692 276.8955 4.0 0.0 -2. 2.7052 6921803 Ru(OH)2CL4-2 1.000 692 4.000 180 2 0.0 231.1463 ٥. 3.0 1.7941 6927320 Ru(OH)2SO4 1.000 732 2 1.000 692 4.0 0.0 154.1627 1.0500 1. 7801800 SnCl +1 2.511 1.000 780 1.000 180 2 0.0 189.6154 0. 3.0 1.7100 2.931 7801801 SnCl2 2.000 180 2 1.000 780 -1. 4.0 0.0 225.0681 1.6900 7801802 SnCl3 -1 5.173 1.000 780 3.000 180 2 137.7084 4.0 0.0 -1.056 4.0800 1. 7802700 SnF +1 1.000 270 1.000 780 2 ٥. 3.0 0.0 156.7068 6.6800 7802701 SnF2 -0.063 1.000 780 2,000 270 2 175.7052 0.0 -1. 4.0 9.4600 -7.346 7802702 SnF3 -1 3.000 270 1.000 780 2 4.0 0.0 135.7173 1. -3.9851 4.943 7803300 SnOH +1 1.000 780 1.000 002 -1.000 330 3 0.0 152,7247 3.0 -7.9102 ٥. 10.05 7803301 Sn(OH)2 2.000 002 -2.000 330 1.000 780 3 4.0 0.0 169.7320 -1. -17.4053 002 -3.000 330 22.633 7803302 Sn(OH)3 -1 1.000 780 3.000 002 3 135.7173 0.0 5.0 0.6049 3. 7813300 SnOH +3 -1.196 -1.000 330 1.000 002 1.000 781 3 0.0 152.7247 4.5 2. -0.1902 -0.482 7813301 Sn(OH)2 +2 2.000 002 -2.000 330 1.000 781 0.5147 -3.000 330 3 169.7320 0.0 1. 4.0 -1.887 7813302 Sn(OH)3 +1 3.000 002 1.000 781 3 186.7394 ٥. 3.0 0.0 0.8496 -2.642 7813303 Sn(OH)4 4.000 002 -4.000 330 1.000 781 3 310.8372 ٥. 3.0 0.0 -0.8072 7817320 Sn(SO4)2 1.000 781 2.000 732 2 0.0 214.7736 4.5 2. -3.1094 7817321 SnS04 +2 1.000 732 1.000 781 2 0.0 0. 0.0 147.6292 2.8653 8001400 SrC03(aq) 1.000 140 1.000 800 2.00 2 123.0730 4.0 0.0 1. -0.2485 8001800 SrCl+ 1.000 180 1.000 800 2 4.0 0.0 106.6184 1. 0.1393 8002700 SrF+ 1.000 270 1.000 800 2 0.0 149.6249 1. 4.0 0.800 8004920 SrN03+ 1.000 800 1.000 492 2 4.0 0.0 104.6273 1. -13.29 8003300 SrOH+ 1.000 002 -1.000 330 1.000 800 3 182.5914 -1. 4.0 0.0 5.48 8005800 SrP04-1.000 800 1.000 580 2 3.0 0.0 183.5993 0. 14.406 8005801 SrHP04(aq) 1,000 330 1.000 580 1.000 800 -3 0.0 184.6073 4.0 20.2834 1. 8005802 SrH2P04+ 2.000 330 1.000 580 1.000 800 3 4.0 261.5633 -2. 0.0 1.6561 8005803 SrP207-2 -1.000 002 2.000 330 1.000 800 2.000 580 4 3.0 0.0 183.6776 0. 2.30 8007320 SrSO4(aq) 1.000 732 1.000 800 2 0.000-1.00 0.00 0.00 299.5734 0.000 55.6181 8001431 SrFe(CN)6-.8300 -69 1.000 800 1.000 281 6.000 143 0.00 3 3.0 0.0 296.0282 ۵. -0.1271 8610020 ((TcO(OH)2)2 2.000 861 -4.000 330 4.000 2 3 3.0 0.0 148.0140 ٥. -3.3221 8610021 TcO(OH)2 -2.000 330 1.000 861 2 3 2.000 131.0067 1. 4.0 0.0 -1.3355 8610022 TcO(OH)+ -1.000 330 1.000 861 1.000 2 3 0.0 163.0055 0.0 -1. 8.7070 8633300 HTcO4-1.000 863 1.000 330 2 164.0135 0. 0.0 0.0 9.0050 8633301 H2TcO4 2.000 330 1.000 863 2 0.0 0.0 163.0055 0. 1.1600 8643300 HTcO4 1.000 864 1.000 330 2 5.0 0.0 267.4908 3. 0.9533 8661800 ThCl +3 0.019 1.000 866 1.000 180 2

	ThC12 +2	20.906 0.6755	2.
	1.000 866 ThCl3 +1	15,769 1,4972	1.
2 8661803		3.000 180	0.
2	1.000 866	4.000 180	
8662700 2	1.000 866	-1.161 7.8722 1.000 270	3.
-	ThF2 +2 1.000 866	-1.851 14.0881 2.000 270	2.
8662702	ThF3 +1	-2.787 18.7353	1.
2 8662703	1.000 866 ThF4	3.000 270 -3.533 22.1511	0.
2	1.000 866 ThoH +3	4.000 270 5.982 -3.8874	3.
3	1.000 866	1.000 002 -1.000 330	
	Th(OH)2 +2 1.000 866	14.023 -7.1071 2.000 002 -2.000 330	2.
	Th(OH)3 + 1.000 866	20.348 -11.70	1.
8663303	Th(OH)4 aq	27.24 -15.9000	0.
	1.000 866 Th2(OH)2 +6	4.000 002 -4.000 330 15.23 -6.4624	6.
3	2.000 866		8.
3	Th4(OH)8 +8 4.000 866	8.000 002 -8.000 330	
	Th6(OH)15+9 6.000 866	109.531 -37.7046 15.000 002 -15.000 330	9.
8665800	Th(H2PO4)2+2	-6.44 47.8503	2.
3 8665801	Th(HPO4)2	-10.287 47.3372	0.
8445902	1.000 866	2.000 580 2.000 330	-2.
3	1.000 866	3.000 580 3.000 330 12.38 23.4412	
8665803	1.000 866	12.38 23.4412 1.000 580 3.000 330	4.
8665804	1.000 866 ThH2P04 +3 1.000 866	11.59 24.0276 1.000 580 2.000 330	3.
8667320	ThSO4 +2	1.000 580 2.000 330 3.91 5.3140	2.
2 8667321	1.000 866 Th(SO4)2		0.
2	Th(SO4)2 1.000 866 Th(SO4)3 -2 1.000 866 Th(SO4)4 -4 1.000 866 UBr +3	2.000 732 11.88 10.4010	-2.
2	1.000 866	3.000 732	
8667323	Th(SO4)4 -4 1.000 866	13.37 8.3999 4.000 732	-4.
	UBr +3 1.000 891	1.4250	3.
8911400	U(CO3)4 -4	20 0070	-4.
8.00 2 8911401	1.000 891 U(CO3)5 -6	4.000 140	-6.
10.00 2	1.000 891 UCL +3		_
2	1.000 891	1.000 180	3.
8912700 2	UF +3 1.000 891	-1.336 9.2413 1.000 270	3.
8912701	UF2 +2	-0.903 16.1403	2.
2 8912702	UF3 +1	2.000 270 0.036 21.4818	1.
2 8912703		3.000 270 -0.972 25.3412	0.
2	1.000 891	4.000 270	
8912704 2		4.38 26.8110 5.000 270	-1.
8912705 2		3.29 28.8414 6.000 270	-2.
8913800	UI +3	1.2152	3.
2 8914920	1.000 891 UNO3 +3	1.000 380 1.4514	3.
	1.000 891 U(NO3)2 +2	1.000 492 2.2617	2.
2	1.000 891	2.000 492	
	1.000 891	11.205 -0.5381 1.000 2 -1.000 330	3.
8913301 3	U(OH)2 +2 -2.000 330	20.434 -2.270 1.000 891 2.000 2	2.
J	2.000 330	1.000 071 2.000 2	

2.	4.5	0.0	302.9435
1.	4.0	0.0	338.3962
0.	3.0	0.0	373.8489
3.	5.0	0.0	251.0365
2.	4.5	0.0	270.0349
1.	4.0	0.0	289.0333
0.	3.0	0.0	308.0317
3.	5.0	0.0	249.0454
2.	4.5	0.0	266.0528
1.	0.0	0.0	283.0602
0.	3.0	0.0	300.0675
6.	6.0	0.0	498.0909
8.	6.0	0.0	1064.2111
9.	6.0	0.0	1647.3387
2.	4.5	0.0	426.0123
0.	3.0	0.0	423.9964
2.	4.0	0.0	519.9755
4.	5.5	0.0	330.0331
3.	5.0	0.0	329.0252
2.	4.5	0.0	328.1017
0.	3.0	0.0	424.1653
2.	4.0	0.0	520.2289
4.	4.0	0.0	616.2925
3.	5.0	0.0	317.9329
4.	4.0	0.0	478.0665
6.	4.0	0.0	538.0759
3.	5.0	0.0	273.4820
3.	5.0	0.0	257.0274
2.	4.5	0.0	276.0258
1.	4.0	0.0	295.0242
0.	3.0	0.0	314.0226
1.	4.0	0.0	333.0210
2.	4.0	0.0	352.0194
3.	5.0	0.0	364.9334
3.	5.0	0.0	300.0338
2.	4.5	0.0	362.0387
3.	5.0	0.0	255.0364
2	0 0	0 0	272 0437

-4.935 ? -3.000 330 8913302 U(OH)3 +1 26.651 1. 0.0 0.0 289.0511 3.000 2 1.000 891 ٦ -4.5577 0. 8913303 U(OH)4 AQ 28.798 0.0 0.0 306.0586 2 1.000 891 4.000 -4.000 330 3 8913304 U(OH)5 -1 -13.120 30.245 -1. 0.0 0.0 323.0659 1.000 891 5.000 2 -5.000 330 3 -17.229 8913305 U6(OH)15+9 9. 0.0 0.0 1683.2846 6.000 891 15.000 2 -15.000 330 3 6.5016 36.961 2. 4.5 0.0 334.0906 8917320 USO4 +2 1.000 732 1.000 891 2 7.946 8917321 U(SO4)2 AQ 10.3507 ٥. 3.0 0.0 430.1522 1.000 891 2.000 732 2 8921400 U02(C03)3 -5 7.3898 -5. 4.0 0.0 450-0559 3.000 140 1.000 893 6.00 2 8931300 U02Br +1 0.1731 1. 4.0 0.0 349.9317 1.000 893 1.000 130 2 8931400 U02C03 AQ 9.6147 1.202 0.0 ۵. 3.0 330.0372 1.000 140 1.000 893 2.00 2 8931401 U02C03)2-2 4.297 16.9698 -2. 4.0 0.0 390.0465 1.000 893 2.000 140 4.00 2 8931402 U02C03)3-4 -9.281 21.5846 4.0 0.0 450.0559 -4. 6.00 2 1.000 893 3.000 140 8931403 U02)3C03)6 -16.323 53.9127 4.0 0.0 1170.1395 -6. 3.000 893 6.000 140 12.00 2 -2 36.2277 4.0 0.0 3534.4492 8931404 UO2)CO3OH) 11.000 893 6.000 140 12.000 002 -12.000 330 12.00 4 8931405 UO2)2CO3OH)3 -14.394 -0.8969 -1. 4.0 0.0 651-0868 3.000 002 -3.000 330 1.000 140 2.000 893 2.00 4 0.7066 8931406 U020HC02 1. 4.0 0.0 939.1296 3.000 893 1.000 140 4.000 002 -3.000 330 2.00 4 8931800 U02CL +1 1.921 0.1567 1. 4.0 0.0 305,4808 1.000 180 1.000 893 2 8931801 U02CL2 3.593 -1.1257 0. 3.0 0.0 340.9331 1.000 893 2.000 180 2 8932700 U02F +1 0.413 5.0497 1. 4.0 0.0 289.0262 1.000 893 1.000 270 2 8932701 U02F2 AQ 0.513 8.5394 0. 3.0 0.0 308.0246 2 1.000 893 2.000 270 8932702 U02F3 -1 10.7800 0.0 327.0230 0.575 -1. 4.0 3.000 270 2 1.000 893 8932703 U02F4 -2 0.088 11.5403 -2. 4.0 0.0 346.0214 1.000 893 4.000 270 2 8934920 UO2NO3 +1 0.2801 332.0326 1. 4.0 0.0 2 1.000 893 1.000 492 8933300 DO20H +1 10.325 -5.2080 0.0 0.0 287.0352 1. 1.000 2 -1.000 330 1.000 893 3 8933301 U02(OH)2 18.094 -10.3221 0. 3.0 0.0 304.0424 1.000 893 2.000 002 -2.000 330 3 8933302 UO2(OH)3 -1 -19.2222 0.0 321.0497 -1. 4.0 1.000 893 3.000 002 -3.000 330 3 8933303 UO2(OH)4 -2 -33.0294 -2. 4.0 0.0 338.0571 1.000 893 4.000 002 -4.000 330 8933304 UO2)20H +3 -2.7091 3. 5.0 0.0 557.0627 1.000 002 -1.000 330 3 2.000 893 -5.6368 8933305 U02)20H2+2 9.000 2. 4.5 0.0 574.0703 2.000 893 2.000 -2.000 330 -3 -11.9312 8933306 UO2)30H)4 2. 4.5 0.0 878.1125 3.000 893 4.000 002 -4.000 330 3 8933307 U02)30H5+1 23.224 -15,5895 4.0 0.0 895,1203 1. 5.000 -5.000 330 3.000 893 -3 2 8933308 UO2)30H)7 -31.0542 4.0 0.0 929.1345 -1. 3 3.000 893 7.000 002 -7.000 330 8933309 UO2)40H)7 -21.9540 4.0 0.0 1199.1622 1. 4.000 893 7.000 002 -7.000 330 -3 8935800 UO2HPO4 AQ -2.03 21.2298 0.0 366.0072 ٥. 3.0 1.000 893 1.000 580 1.000 330 3 23.9926 8935801 U02H2P04+1 -3.66 1. 4.0 0.0 367.0151 3 1.000 893 1.000 580 2.000 330 8935802 U02H2P04)2 79.15 46.6163 0. 3.0 0 464.002 2.000 580 4.000 330 1.000 893 3 8935803 UO2H2PH3P +1 47.4362 1. 4.0 0.0 465.007 3 1.000 893 2.000 580 5.000 330 8935804 UO2H3PO4 2 23.6405 2. 4.5 0.0 368.0229 1.000 580 3.000 330 3 1.000 893 8935805 U02P04 -1 14.8528 -1. 4.0 0.0 364.9991

٠.

. .

2

1.000 893

1.000 580

57

υ,

8937320 U02S04 AQ 1.000 893 2 8937321 U02s04)2-2 1.000 893 2 8937700 UO2H3SIO4 1.000 893 3 9102700 ZrF +3 1.000 910 2 9102701 ZrF2 +2 2 1.000 910 9102702 Zrf3 +1 1.000 910 2 9102703 ZrF4 1.000 910 2 9102704 ZrF5 -1 2 1.000 910 9102705 ZrF6 -2 2 1.000 910 9103300 ZrOH +3 2 1.000 910 9103301 Zr(OH)2 +2 1.000 910 3 9103302 Zr(OH)3 +1 1.000 910 3 9103303 Zr(OH)4 1.000 910 3 9107320 ZrS04 +2 2 1.000 910 9107321 Zr(\$04)2 1.000 910 2 9107322 Zr(SO4)3 -2

1.000 910

2

3.0632 4.738 1.000 732 3.9796 8.523 2.000 732 -2.4 1.000 770 -1.000 330 8.5835 1.000 270 15.7377 2.000 270 21.2792 3.000 270 25.9411 4.000 270 30.3098 5.000 270 34.0188 6.000 270 0.0457 1.000 002 -1.000 330 0.2385 2.000 002 -2.000 330 -0.6693 3.000 002 -3.000 330 -1.4666 4.000 002 -4.000 330 3.6064 1.000 732 6.2965 2.000 732 7.3007 3.000 732

0.	3.0	0.0	366.0894
-2.	4.0	0.0	462.1510
1.	0.0	0.0	365.135
3.	5.0	0.0	110.2224
2.	4.5	0.0	129.2208
1.	4.0	0.0	148.2192
0.	3.0	0.0	167.2176
-1	4.0	0.0	186.2160
-2.	4.0	0.0	205.2144
3.	5.0	0.0	108.2297
2.	4.5	0.0	125.2387
1.	4.0	0.0	142.2460
0.	3.0	0.0	159.2534
2.	4.5	0.0	187.2876
0.	3.0	0.0	283.3512
-2.	4.0	0.0	379.4148

Data Sources 12/17/92 Database

> 1. .

AQUEOUS	
SPECIES	
Am(CO3)2- Am(CO3)3 -3 Am(O3)3 -3 Am(NO3)2+ Am(NO3)2+ Am(OH) +2 Am(OH)2+ Am(OH)3 (aq) Am(SO4)2- AmCl +2 AmCl +2 AmCl +2 AmF +2 AmF +2 AmF2+ AmF2+ AmF2+ Am(H2PO4) +2 Am(H2PO4)2+ Am(H2PO4)3 (aq) Am(H2PO4)4- AmO2HCO3	
Co(HS)2 (aq) Co(OH)2 (aq) Co(OH)4 -2 Co2(OH)3+ Co4(OH)4 +4 CoBr2 (aq) CoCl+ CoHS+ CoI2 (aq) CoN03+ CoOH+ CoS2O3 (aq) CoSeO4 (aq)	
CsBr CsCl CsI	
CsCl	

.

a

LOGK REF 86KER/SIL 86KER/SIL 86KER/SIL 84KER 84KER 86KER/SIL 86KER/SIL 86KER/SIL 84KER 74NAU/RYZ 76BAE/MES 76SMI/MAR 76BAE/MES 76SMI/MAR 82WAG/EVA 74NAU/RYZ 74NAU/RYZ 82WAG/EVA 76SMI/MAR SUPCRT91 74NAU/RYZ 76SMI/MAR 82WAG/EVA SUPCRT91 SUPCRT91 SUPCRT91 87RAR2 87RAR2 87RAR2 87RAR2 87RAR2 87RAR2 87RAR2 87RAR2 87RAR2 85RAR2 87RAR2 85RAR2 85RAR2 85RAR2 85RAR2 85RAR2 87RAR2 **85RAR2** 85RAR2 85RAR2 85RAR2 87RAR2 85RAR2

84LEM 84LEM 84LEM 84LEM 84LEM 84LEM 84LEM 84LEM e#

NpCl NpCl2 NpF+ NpFP Np(HP Np(HP Np(HP NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2( NpO2())))))))))))))))))))))))))))))))))))	4) +2 4)2 (a) +3 +2 4)2 (2) (04)3 -2 (04)3 -2 (04)3 -2 (04)3 -2 (03)2 (03)3 H (aq) H2P04) H2P04) H2P04) H2P04) H2P04) H2P04) (aq) H2P04) H2P04) (aq) H2P04) H2P04) (aq) H2P04) (aq) H2P04) (aq) H2P04) (aq) H2P04) (aq) H2P04) (aq) H2P04) (aq) H2P04) (aq) H2P04) H2P04) (aq) H2P04) H2P04) (aq) H2P04) H2P04) (aq) H2P04) H2P04) (aq) H2P04) H2P04) H2P04) H2P04) H2P04) H2P04) H2P04) H2P04) H2P04) H2P04) H2P04) H2P04) H2P04) H2P04) H2P04) H2P04) H2P04) H2P04) H2P04) H2P04) H2P04) H2P04) H2P04) H2P04) H2P04) H2P04) H2P04) H2P04) H2P04) H2P04) H2P04) H2P04) H2P04) H2P04) H2P04) H2P04) H2P04) H2P04) H2P04) H2P04) H2P04) H2P04) H2P04) H2P04) H2P04) H2P04) H2P04) H2P04) H2P04) H2P04) H2P04) H2P04) H2P04) H2P04) H2P04) H2P04) H2P04) H2P04) H2P04) H2P04) H2P04) H2P04) H2P04) H2P04) H2P04) H2P04) H2P04) H2P04) H2P04) H2P04) H2P04) H2P04) H2P04) H2P04) H2P04) H2P04) H2P04) H2P04) H2P04) H2P04) H2P04) H2P04) H2P04) H2P04) H2P04) H2P04) H2P04) H2P04) H2P04) H2P04) H2P04) H2P04) H2P04) H2P04) H2P04) H2P04) H2P04) H2P04) H2P04) H2P04) H2P04) H2P04) H2P04) H2P04) H2P04) H2P04) H2P04) H2P04) H2P04) H2P04) H2P04) H2P04) H2P04) H2P04) H2P04) H2P04) H2P04) H2P04) H2P04) H2P04) H2P04) H2P04) H2P04) H2P04) H2P04) H2P04) H2P04) H2P04) H2P04) H2P04) H2P04) H2P04) H2P04) H2P04) H2P04) H2P04) H2P04) H2P04) H2P04) H2P04) H2P04) H2P04) H2P04) H2P04) H2P04) H2P04) H2P04) H2P04) H2P04) H2P04) H2P04) H2P04) H2P04) H2P04) H2P04) H2P04) H2P04) H2P04) H2P04) H2P04) H2P04) H2P04) H2P04) H2P04) H2P04) H2P04) H2P04) H2P04) H2P04) H2P04) H2P04) H2P04) H2P04) H2P04) H2P04) H2P04) H2P04) H2P04) H2P04) H2P04) H2P04) H2P04) H2P04) H2P04) H2P04) H2P04) H2P04) H2P04) H2P04) H2P04) H2P04) H2P04) H2P04) H2P04) H2P04) H2P04) H2P04) H2P04) H2P04) H2P04) H2P04) H2P04) H2P04) H2P04) H2P04) H2P04) H2P04) H2P04) H2P	aq) 2 4 6 -3 -5 -2 -4 2 +2 5+ aq) +	
PuCl Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH Pu(OH P	+ + + + + + + + + + + + + +	) q) 2 4 q) -2 -4 2 +2 -4 2 +2 -4 2 +3 )	
RuCl RuCl2 RuCl3 RuCl4	(aq)		

RuCi4-

.

.

84LEM 84LEM 84LEM 84LEM 84LEM 84LEM 84LEM 84LEM 84LEM 84LEM

84LEM 84LEM 84LEM 84LEM 84LEM

84LEM 84LEM 84LEM 84LEM

84LEM 84LEM 84LEM 84LEM 84LEM 84LEM 84LEM 84LEM 84LEM 84LEM 84LEM

80LEM/TRE 80LEM/TRE CHEMVAL 80LEM/TRE 82SCH/FEL 80LEM/TRE 80LEM/TRE 80LEM/TRE 80LEM/TRE 80LEM/TRE 80LEM/TRE 80LEM/TRE 82SCH/FEL 84NAS/CLE 84NAS/CLE 84NAS/CLE 84NAS/CLE 80LEM/TRE 85RAR1 85RAR1

85RAR1 85RAR1

RuCl5 -2 RuCl6 -3 RuOH +2 Ru(OH)2+ RuSO4+ Ru(SO4)2- RuCl+ RuSO4 (aq) Ru(OH)2Cl4 Ru(OH)2Cl2 (aq) Ru(OH)2Cl3- Ru(OH)2Cl4 -2 Ru(OH)2SO4 (aq) Ru4(OH)12 +4	85RAR1 85RAR1 85RAR1 85RAR1 85RAR1 85RAR1 85RAR1 85RAR1 85RAR1 85RAR1 85RAR1 85RAR1 85RAR1
Sn(OH)2 (aq) Sn(OH)3- SnOH+ SnCl+ SnCl2 (aq) SnCL3- SnF + SnF2 (aq) SnF3- Sn(OH)2 +2 Sn(OH)2 +2 Sn(OH)3+ Sn(OH)4 (aq) SnOH +3 SnSO4 +2	84 JAC/HEL 84 JAC/HEL 84 JAC/HEL 84 JAC/HEL 84 JAC/HEL 84 JAC/HEL 84 JAC/HEL 84 JAC/HEL 84 JAC/HEL 84 JAC/HEL 82 WAG/EVA 84 JAC/HEL 82 WAG/EVA
SrCl+ SrC03 (aq) SrF+ SrH2P04+ SrN03+ SrO3+ SrP207 -2 SrP04- SrS04 (aq)	SUPCRT91 SUPCRT91 SUPCRT91 76SM1/MAR 76SM1/MAR 76BAE/MES 76SM1/MAR 76SM1/MAR 76SM1/MAR 83REA
(TcO(OH)2)2 TcO(OH)2 TcO(OH)+ HTcO4- H2TcO4 (aq) HTcO4 (aq)	83RAR 83RAR 83RAR 83RAR 83RAR 83RAR 88PHI
ThH3P04 +4 ThH2P04 +3 Th(H2P04)2 +2 Th(HP04)2 (aq) Th(HP04)3 -2 Th(OH)2 +2 Th(OH)3+ Th(OH)4 (aq) Th(S04)2 (aq) Th(S04)3 -2 Th(S04)4 -4 Th2(OH)2 +6 Th4(OH)8 +8 Th6(OH)15 +9 ThCl +3 Th6l +3 Th6l +3 Th6l4 (aq) ThF +3 ThF2 +2 ThF3+ ThF4 (aq) ThOH +3 ThS04 +2	SOLAN/HER SOLAN/HER SOLAN/HER SOLAN/HER SOLAN/HER SOLAN/HER SOLAN/HER SOLAN/HER SOLAN/HER SOLAN/HER SOLAN/HER SOLAN/HER SOLAN/HER SOLAN/HER SOLAN/HER SOLAN/HER SOLAN/HER SOLAN/HER SOLAN/HER SOLAN/HER SOLAN/HER SOLAN/HER SOLAN/HER SOLAN/HER
UOH +3 U(OH)2 +2 U(OH)3+	92NEA 90NEA 90NEA

.

. ....

U(OH)4 (aq)	90NEA
U(OH)5-	90NEA
U6(OH)15 UF +3	92NEA 92NEA
UF2 +2	92NEA
UF3+	92NEA
UF4 (aq)	92NEA
UF5- UF6 -2	92NEA 92NEA
UCL +3	92NEA
UBr +3	92NEA
UI +3	92NEA
U(CO3)4 -4 U(CO3)5 -6	92NEA 92NEA
UNO3 +3	92NEA
U(NO3)2 +2	92NEA
US04 +2	92NEA 92NEA
U(S04)2 (aq) U02(C03)3 -5	92NEA
UO20H+	92NEA
U02(0H)2 (aq)	92NEA
UO2(OH)3- UO2(OH)4 -2	92NEA 92NEA
(U02)20H +3	92NEA
(UO2)2(OH)2 +2	92NEA
(UO2)3(OH)4 +2	92NEA
(UO2)3(OH)5+ (UO2)3(OH)7-	92NEA 92NEA
(U02)4(0H)7+	92NEA
UO2F+	92NEA
U02F2 (aq)	92NEA
U02F3- U02F4 -2	92NEA 92NEA
U02CL+	92NEA
U02Cl2 (aq)	92NEA
	92NEA
U02C03 (aq) U02(C03)2 -2	92NEA 92NEA
U02(C03)4 -4	92NEA
(U02)2(C03)6 -6	92NEA
(U02)11(C03)6(OH)12 -2	90NEA
(UO2)2CO3(OH)3- UO20HCO2+	90NEA 90NEA
U02N03+	92NEA
U02S04 (aq)	92NEA
U02(S04)2 -2 U02HP04 (aq)	92NEA 90NEA
U02H2P04 (aq)	90NEA
U02(H2PU4)2 (aq)	90NEA
UO2(H2PO4)(H3PO4)+	90NEA
U02H3P04 +2 U02P04-	90NEA 90NEA
U02H3Si04	90NEA
Zr(OH)3+ Zr(OH)4 (aq)	74NAU/RYZ 74NAU/RYZ
Zr(S04)2 (aq)	74NAU/RYZ
Zr(\$04)3 -2	74NAU/RYZ
ZrF +3	74NAU/RYZ
ZrF2 +2 ZrF3+	74NAU/RYZ 74NAU/RYZ
ZrF4 (aq)	74NAU/RYZ
ZrF5-	74NAU/RYZ
ZrF6 -2	74NAU/RYZ
ZrOH +3 ZrSO4 +2	74NAU/RYZ 74NAU/RYZ
Zr(OH)2 +2	74NAU/RYZ
SOLIDS	LOGK REF
Am (c)	760ET/RAN
Am(OH)3 (s)	86KER/SIL
Am(OH)3 (am)	86KER/SIL
Amohco3 (s)	86KER/SIL

Co(c)	79ROB/HEM
CoS	74NAU/RYZ
Co(OH)2 CoFe204	76BAE/MES 74NAU/RYZ
Co0	82WAG/EVA
CcC03	84SVE
CoCl2	82WAG/EVA
CoCl2:2H2O	82WAG/EVA
CoCl2:6H2O	82WAG/EVA
CoF2	82WAG/EVA 79KUB/ALC
CoF3 Co(NO3)2	65GAR/CHR
CoSO4	82WAG/EVA
CoSO4:3CoOH2	82WAG/EVA
CoSO4:6H2O	82WAG/EVA
CoSO4:H2O	74NAU/RYZ
CoSeO3 Co2SiO4	76SMI/MAR 82WAG/EVA,74NAU/RYZ
Co3(PO4)2	82WAG/EVA
CoHPO4	82WAG/EVA
Co3(As04)2	82WAG/EVA
Cs(c)	89COX/WAG
Cs2U207	90NEA 90NEA
Cs2U4012	YUNEA
Eu(c)	85RAR2
EuS	85RAR2
Eu(OH)2Cl	85RAR2
Eu(OH)3	87RAR2
Eu203(cubic)	85RAR2
Eu203(mono)	85RAR2
Eu304	85RAR2
EuO EuOCl	85RAR2 87RAR2
EuBr3	85RAR2
EuCl2	87RAR2
EuCl3	85RAR2
EuCl3:6H2O	85RAR2
EuF3:5H2O	85RAR2
Eu(103)3:2H20	85RAR2
Eu2(C03)3:3H20	87RAR2
Eu(NO3)3:6H2O Eu2(SO4)3:8H2O	85RAR2 85RAR2
EuSO4	85RAR2
Np(c)	84LEM
NaNp02C03:3.5H20	84LEM
Np(OH)4	84LEM
Np02	84LEM 84LEM
Np(HPO4)2 NpO2(OH) (am)	84LEM
Np205	84LEM
Np02(0H)2	84LEM
5 /6117	
Pu(OH)3	80LEM/TRE
Beta-Pu203 PuF3	80LEM/TRE 80LEM/TRE
Purs Pu(c)	86MOR
Pu(0H)4	80LEM/TRE
PuO2	80LEM/TRE
PuF4	80LEM/TRE
Pu(HP04)2	80LEM/TRE
PuO2(OH) (am)	80LEM/TRE
	80LEM/TRE
Pu02(HP04)	80LEM/TRE
Ra (c)	82WAG/EVA
Ra(N03)2	82WAG/EVA
RaCl2:2H2O	82WAG/EVA
RaSO4	82WAG
Bula	85DAD1
Ru(c) Ru(OH)3:H2O	85RAR1 85RAR1
Ru02:2H20	85RAR1
RuO2	85RAR1

RuBr3 RuCl3 RuI3	85RAR1 85RAR1 85RAR1
Sn(c) Sn2S3(Ottemanite) Sn3S4 Sn(OH)2 Romarchite(SnO) Cassiterite(SnO2) SnBr2 SnBr4 SnCl2 Sn(SO4)2 Sn(SO4) SnSe SnSe2	SUPCRT91 79KUB/ALC 82WAG/EVA SUPCRT91 SUPCRT91 79KUB/ALC 82WAG/EVA 79KUB/ALC 79KUB/ALC 79KUB/ALC 79KUB/ALC
Sr(c) Sr(NO3)2 Sr(NO3)2:4H2O Sr(OH)2 Sr2SIO4 Sr3SIO3 SrBr2:6H2O SrBr2:6H2O SrCl2:H2O SrCl2:H2O SrCl2:2H2O SrCl2:2H2O SrCl2:6H2O SrI2 SrF2 SrF2 SrF2 SrF2 SrBr2 SrD3 Strontianite Celestite	79ROB/HEM 79ROB/HEM 82WAG/EVA 85CHA/DAV 77BAR/KNA 82WAG/EVA 82WAG/EVA 82WAG/EVA 82WAG/EVA 82WAG/EVA 82WAG/EVA 82WAG/EVA 82WAG/EVA 82WAG/EVA 82WAG/EVA 82WAG/EVA 82WAG/EVA 82WAG/EVA 82WAG/EVA 82WAG/EVA 82WAG/EVA
KTcO4 NaTcO4 Tc(OH)2 Tc(OH)3 Tc304 TcS2 TcOH TcO2:2H2O (am) Tc407 TcS3 TcO3 TcC3 TcC3 TcC3 TcC257	83RAR 83RAR 83RAR 83RAR 83RAR 83RAR 83RAR 83RAR 83RAR 83RAR 83RAR 83RAR 83RAR 83RAR 83RAR
Th(c) Th2S3 Th7S12 ThS2 Th(OH)4 Th02 ThBr4 ThCl4 ThF4 ThF4:2.5H20 ThF4:2.5H20 Th14 Th(N03)4:5H20 Th(S04)2 Th2Se3	89COX/WAG 82WAG/EVA 82WAG/EVA 74NAU/RYZ 89COX/WAG 82WAG/EVA 80LAN/HER 80LAN/HER 82WAG/EVA 82WAG/EVA 82WAG/EVA 82WAG/EVA 82WAG/EVA
Autunite H-Autunite K-Autunite Na-Autunite Sr-Autunite USb2 U3Sb4	90SVE 90NEA 90SVE 90SVE 78LAN

, ÷

٠

.

Ningoyite Uramphite Saleeite Uranocirite Bassetite Torbernite Przhevalskite Uranophane UBr2Cl UBr3 UC13 UBrCl2 UOCL UF3 UI3 UO2 (am) U409 (c) U308 (c) UBr4 UOBr2 UBr3Cl UBrCl3 UCL4 UBr2Cl2 UOC12 U202CL5 UF4 (c) UF4:2.5H20 U2F9 U4F17 UCLF3 UCL2F2 UC13F UOF2 UOF2:H20 UOFOH UI4 UCL13 UC1212 UCL3I U(C03)2 U(OH)2SO4 U(S04)2 U(S04)2:4H20 U(SO4)2:8H2O U(HP04)2:4H20 Coffinite Na3U04 UBr5 UOBr3 UC15 UOCL3 UO2CL U5012CL Alpha-UF5 Beta-UF5 UP05 Beta-UO2(OH)2 Schoepite Dehyd-Schoep(.393) Dehyd-Schoep(.648) Dehyd-Schoep(.850) Dehyd-Schoep(.900) Dehyd-Schoep(1.00) Uraninite Alpha-U03 Beta-UO3 Gamma-UO3 Gummite K2U04 Li2U04 Na2U207 Alpha-Na2U04

BaU04

CaUO4

MgUO4

78LAN 78LAN 90SVE

78LAN

**78LAN** 

90SVE

78LAN 78LAN 90NEA

90NEA

90NEA 90NEA

90NEA 90NEA

90NEA 90NEA

78LAN 90NEA

90NEA

90NEA 90NEA 90NEA

90NEA

90NEA 90NEA

90NEA

90NEA 90NEA 90NEA

89NEA 90NEA

90NEA

90NEA

90NEA 90NEA

90NEA

90NEA

90NEA 90NEA

90NEA

90NEA

90NEA 90NEA

90NEA 90NEA

90NEA

90NEA 90NEA

90NEA

90NEA

90NEA

90NEA 90NEA

90NEA

90NEA

90NEA

90NEA

90NEA 90NEA

880HA/LEW

880HA/LEW 880HA/LEW 90NEA

880HA/LEW

90NEA 90NEA

90NEA 90NEA

78LAN 90NEA

90NEA

90NEA

90NEA

90NEA

90NEA 90NEA

NaU03 NaU02(C03)3 Rb2U04 Alpha-SrU04 U02Br2: U02Br2:H20 U02Br2:H20 U02Br0H:2H20 U02C12:H20 U02C12:H20 U02C12:H20 U02C10H:2H20 U02F0H:U20 U02F0H:U20 U02F0H:U20 U02F0H:U20 U02F0H:U20 U02F0H:U20 U02F2:3H20 U22F3 U22F3 U22F4 U22F3H20 U22F3 U22F4 U22F3H20 U22F3 U22F4 U22F2:H20 U22F2:U22F2 U22F2:H20 U22F2:H20 U22F2:U2F2 U22F2:H20 U22F2:U2F2 U22F2:H20 U22F2:H20 U22F2:H20 U22F2:H20 U22F2:H20 U22F2:H20 U22F2:H20 U22F2:H20 U22F2:H20 U22F2:H20 U22F2:H20 U22F2:H20 U22F2:H20 U22F2:H20 U22F2:H20 U22F2:H20 U22F2:H20 U22F2:H20 U22F2:H20 U22F2:H20 U22F2:H20 U22F2:H20 U22F2:H20 U22F2:H20 U22F2:H20 U22F2:H20 U22F2:H20 U22F2:H20 U22F2:H20 U22F2:H20 U22F2:H20 U22F2:H20 U22F2:H20 U22F2:H20 U22F2:H20 U22F2:H20 U22F2:H20 U22F2:H20 U22F2:H20 U22F2:H20 U22F2:H20 U22F2:H20 U22F2:H20 U22F2:H20 U22F2:H20 U22F2:H20 U22F2:H20 U22F2:H20 U22F2:H20 U22F2:H20 U22F2:H20 U22F2:H20 U22F2:H20 U22F2:H20 U22F2:H20 U22F2:H20 U22F2:H20 U22F2:H20 U22F2:H20 U22F2:H20 U22F2:H20 U22F2:H20 U22F2:H20 U22F2:H20 U22F2:H20 U22F2:H20 U22F2:H20 U22F2:H20 U22F2:H20 U22F2:H20 U22F2:H20 U22F2:H20 U22F2:H20 U22F2:H20 U22F2:H20 U22F2:H20 U22F2:H20 U22F2:H20 U22F2:H20 U22F2:H20 U22F2:H20 U22F2:H20 U22F2:H20 U22F2:H20 U22F2:H20 U22F2:H20 U22F2:H20 U22F2:H20 U22F2:H20 U22F2:H20 U22F2:H20 U22F2:H20 U22F2:H20 U22F2:H20 U22F2:H20 U22F2:H20 U22F2:H20 U22F2:H20 U22F2:H20 U22F2:H20 U22F2:H20 U22F2:H20 U22F2:H20 U22F2:H20 U22F2:H20 U22F2:H20 U22F2:H20 U22F2:H20 U22F2:H20 U22F2:H20 U22F2:H20 U22F2:H20 U22F2:H20 U22F2:H20 U22F2:H20 U22F2:H20 U22F2:H20 U22F2:H20 U22F2:H20 U22F2:H20 U22F2:H20 U22F2:H20 U22F2:H20 U22F2:H20 U22F2:H20 U22F2:H20 U22F2:H20 U22F2:H20 U22F2:H20 U22F2:H20 U22F2:H20 U22F2:H20 U22F2:H20 U22F2:H20 U22F2:H20 U22F2:H20 U22F2:H20 U22F2:H20 U22F2:H20 U22F2:H20 U22F2:H20 U22F2:H20 U22F2:H20 U22F2:H20 U22F2:H20 U22F2:H20 U22F2:H20 U22F2:H20 U22F2:H20 U22F2:H20 U22F2:H20 U22F2:H20 U22F2:H20 U22F2:H20 U22F2:H20 U22F2:H20 U22F2:H20 U22F2:H20 U2F2:H20 U2F2:H20 U2F2:H20 U2F2:H20 U2F2:H20 U2F2:H20 U2F2:H20 U2F2:H20 U2F2:H20 U2F2:H20 U2F2:H20 U2F2:H20 U2F2:H20 U2F2:H20 U2F
Zr(c) Baddelyite Zircon
REDOX SPECIES
Eu+3/Eu+2 U+3/U02+2 U+4/U02+2 U02+/U02+2 Am+4/Am+3 Am02+/Am+3 Am02+/Am+3 Np+3/Np+4 Np02+2/Np+4 Np02+2/Np+4 Np02+2/Np+4 Pu02+/Pu+4 Pu02+/Pu+4

90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA 90NEA	
79ROB/HEM 79ROB/HEM 79ROB/HEM	
LOGK REF	
SUPCRT91 90NEA 90NEA 84KER 84KER 84KER 84KER 84LEM 84LEM 76FUG/OET 80LEM/TRE 80LEM/TRE 80LEM/TRE	

*

.

Ru+2/Ru04-2
Ru+3/Ru04-2
Ru(OH)2+2/RuO4-2
Ru04-/Ru04-2
Sn+2/Sn+4
Tc+3/Tc04-
Tc0+2/Tc04-
Tc04-3/Tc04-
Tc04-2/Tc04-
Co+2/Co+3

85RAR1 85RAR1 85RAR1 85RAR1 84JAC/HEL 83RAR/84RAR 83RAR/84RAR 83RAR/84RAR 83RAR/84RAR 83RAR/84RAR 8JPCRT91

•

.

-

REFERENCES

Baes, C. F., and R. E. Mesmer. 1976. The Hydrolysis of Cations. New York, New York: Wiley-Interscience Publication, John Wiley and Sons. 76BAE/MES
Cox, J. D., D. D. Wagman, and V. A. Medvedev, eds. 1989. CODATA Key Values for Thermodynamics. New York: Hemisphere Publishing. 89COX/WAG
Fuger, J., and F. L. Oetting. 1976. The Chemical Thermodynamics of Actinide Elements and Compounds. Part 2. The Actinide Aqueous Ions. Vienna, Austria: International Atomic Energy Agency (IAEA). 76FUG/OET
Garrels, R. M., and C. L. Christ. 1965. Solutions, Minerals, and Equilibria. San Francisco, California: Freeman, Cooper and Company. 65GAR/CHR
Grenthe, I., J. Fuger, R. J. Lemire, A. B. Muller, C. Nguyen-Trung, and H. Wanner. 1990. NEA. 1989. NEA-TDB: Chemical Thermodynamics of Uranium: Draft Report. OECD/NEA-TBD Report. 89NEA

. ÷.

- Grenthe, I., J. Fuger, R. J. Lemire, A. B. Muller, C. Nguyen-Trung, and H. Wanner. 1990. NEA. 1990. NEA-TDB: Chemical Thermodynamics of Uranium: Final Draft. OECD/NEA-TBD Report, 655p. 90NEA
- Grenthe, I., J. Fuger, R. J. Lemire, A. B. Muller, C. Nguyen-Trung, and H. Wanner. 1992. Chemical Thermodynamics Series, Volume 1: Chemical Thermodynamics of Uranium. Nuclear Energy Agency (NEA), Organization for Economic Cooperation and Development (OECD). New York: Elsevier. 92NEA
- Hemingway, B. S. 1982. Thermodynamic Properties of Selected Uranium Compounds and Aqueous Species at 298.15 K and 1 bar and at higher temperatures--Preliminary Models for the Origin of Coffinite Deposits. U. S. Geolgical Survey Open-File Report, USGS-OFR-82-619. Reston, Virginia: USGS. 82HEM
- Jackson, K. J., and J. C. Helgeson. 1985. Chemical and thermodynamic constraints on the hydrothermal transport and depositon of tin. I. Calculation of the solubility of cassiterite at high pressures and temperatures. Geochim. Cosmochim. Acta 49: 1-22. 85JAC/HEL
- Johnson, J. W., E. H. Oelkers, and H. C. Helgeson. 1991. SUPCRT92: A Software Package for Calculating the Standard Molal Thermodynamic Properties of Minerals, Gases, Aqueous Species, and Reactions from 1 to 5000 bars and 0o to 10000C. Livermore, California: Lawrence Livermore National Laboratory (LLNL). SUPCRT91
- Kerrisk, J. F. 1984. Americium Thermodynamic Data for the EQ3/6 Data Base. LA-10040-MS. Los Alamos, New Mexico: Los Alamos National Laboratory (LANL). 84KER
- Kerrisk, J. F. 1985. An Assessment of the Important Radionuclides in Nuclear Waste. LA-10414-MS. Los Alamos, New Mexico: LANL. 85KER
- Kerrisk, J. F., and R. J. Silva. 1986. A Consistent Set of Thermodynamic Constants for Americium(III) Species with Hydroxyl and Carbonate. Proceedings of the Workshop on Geochemical Modeling. Fallen Leaf Lake, California: 167-175. 86KER/SIL
- Kubaschewski, O., and C. B. Alcock. 1979. Metallurgical Thermochemistry. 5th Ed. Oxforrd, UK: Pergamon Press. 79KUB/ALC
- Langmuir, D. 1978. Uranium solution-mineral equilibria at low temperatures with applications to sedimentary ore deposits. Geochim. Cosmochim. Acta. 42: 547-569. 78LAN
- Langmuir, D., and J. S. Herman. 1980. The mobility of thorium in natural waters at low temperatures. Geochim. Cosmochim. Acta. 44: 1753-1766. 80LAN/HER
- Lemire, R. J. 1984. An Assessment of the Thermodynamic Behavior of Neptunium in Water and Model Groundwater from 25 to 1500 C. AECL-7817. Pinawa, Manitoba: Atomic Energy of Canada Limited (AECL). 84LEM
- Lemire, R. J., and P. R. Tremaine. 1980. Uranium and plutonium equilibria in aqueous solutions to 2000 C. J. Chem. Eng. Data. 25: 361-370. 80LEM/TRE
- Mills, K. C. 1974. Thermodynamic Data for Inorganic Sulphides, Selnides and Tellurides. London, UK: Butterworths. 74MIL
- Morss, L. R. 1986. Thermodynamic properties. The Chemistry of the Actinide Elements, 2nd Ed. T. T. Katz, G. Seaborg, and L. R. Morss, eds. New York: Chapman and Hall: 1278-1360. 86MOR
- Nash, K. L., and J. M. Cleveland. 1984. The thermodynamics of plutonium(IV) complexation by fluoride and its effect on plutonium(IV) speciation in natural waters. Radiochim. Acta 36: 129-134. 84NAS/CLE
- Naumov, G. B., B. N. Ryzhenko, and I. L. Khodakovsky. 1974. Handbook of Thermodynamic Data. USGS-WRD-74-001, trans. NTIS-PB-226 722/AS. Springfield, Virginia: National Technical Information Service. 74NAU/RYZ
- Oetting, F. L., M. H. Rand, and R. J. Ackerman. 1976. The Chemical Thermodynamics of Actinide Elements and Compounds. Part 1. The Actinide Elements. Vienna, Austria: IAEA. 760ET/RAN

O'Hare, P. A. G., B. M. Lewis, S. N. Nguyen. 1988. Thermochemistry of Uranium Compounds, XVII. Standard Molar Enthalpy of Formation at 298.15 K of Dehydrated Schoepite UO3:0.9 H2O. Thermodynamics of Schoepite + Dehydrated Schoepite + Water. UCRL-21053 s/c 610-007. Livermore, California: LLNL. 880HA/LEW

Owens, B. B., and S. W. Mayer. 1964. The thermodynamic properties of uranyl sulphate. J. Inorg. Nucl. Chem. 26: 501-507. 640WE/MAY

Phillips, S. L., F. V. Hale, L. F. Silvester, and M. D. Siegel. 1988. Thermodynamic Tables for Nuclear Waste Isolation. NUREG/CR-4864. Washington, D. C.: NRC. 88PHI

Rard, J. A. 1983. Critical Review of the Chemistry and Thermodynamics of Technetium and Some of its Inorganic Compounds and Aqueous Species. UCRL-53440. Livermore, California: LLNL. 83RAR

Rard, J. A. 1984. Errata Sheet to UCRL-53440. Unpublished Note, March 1984: LLNL. 84RAR

- Rard, J. A. 1985a. Chemistry and thermodynamics of ruthenium and some of its inorganic compounds and aqueous species. Chemical Rev. 85: 1-39. 85RAR1
- Rard, J. A. 1985b. Chemistry and thermodynamics of europium and some of its simpler inorganic compounds and aqueous species. Chemical Rev. 85: 555-582. 85RAR2
- Rard, J. A. 1987a. Thermodynamic Data Bases for Multivalent Elements: An Example for Ruthenium. UCRL-96555. Livermore, California: LLNL. 87RAR1
- Rard, J. A. 1987b. Update of the Europium Data Base, October, 1987. Internal Memorandum: LLNL. 87RAR2
- Rickard, D. T., and J. O. Nriagu. 1978. Aqueous environmental chemistry of lead. The Biochemistry of Lead in the Environment. J. O. Nriagu, ed. New York: Elsevier. 78RIC/NIR
- Robie, R. A., B. S. Hemingway, and J. R. Fisher, 1979. Thermodynamic Properties of Minerals and Related Substances at 298.15 K and 1 bar (105 Pascals) Pressure and At Higher Temperatures. USGS Bull. 1452, Reston, Virginia: USGS. 79ROB/HEM
- Schwab, A., and A. Felmy. 1982. Review and Reevaluation of Pu Thermodynamic Data, Draft Manuscript. PNL-SA-10731. Richland, Washington: Pacific Northwest Laboratory (PNL). 82SCH/FEL
- Smith, R. M., and A. E. Martell. 1976. Critical Stability Constants. Volume 4: Inorganic Complexes. New York: Plenum Press. 76SMI/MAR

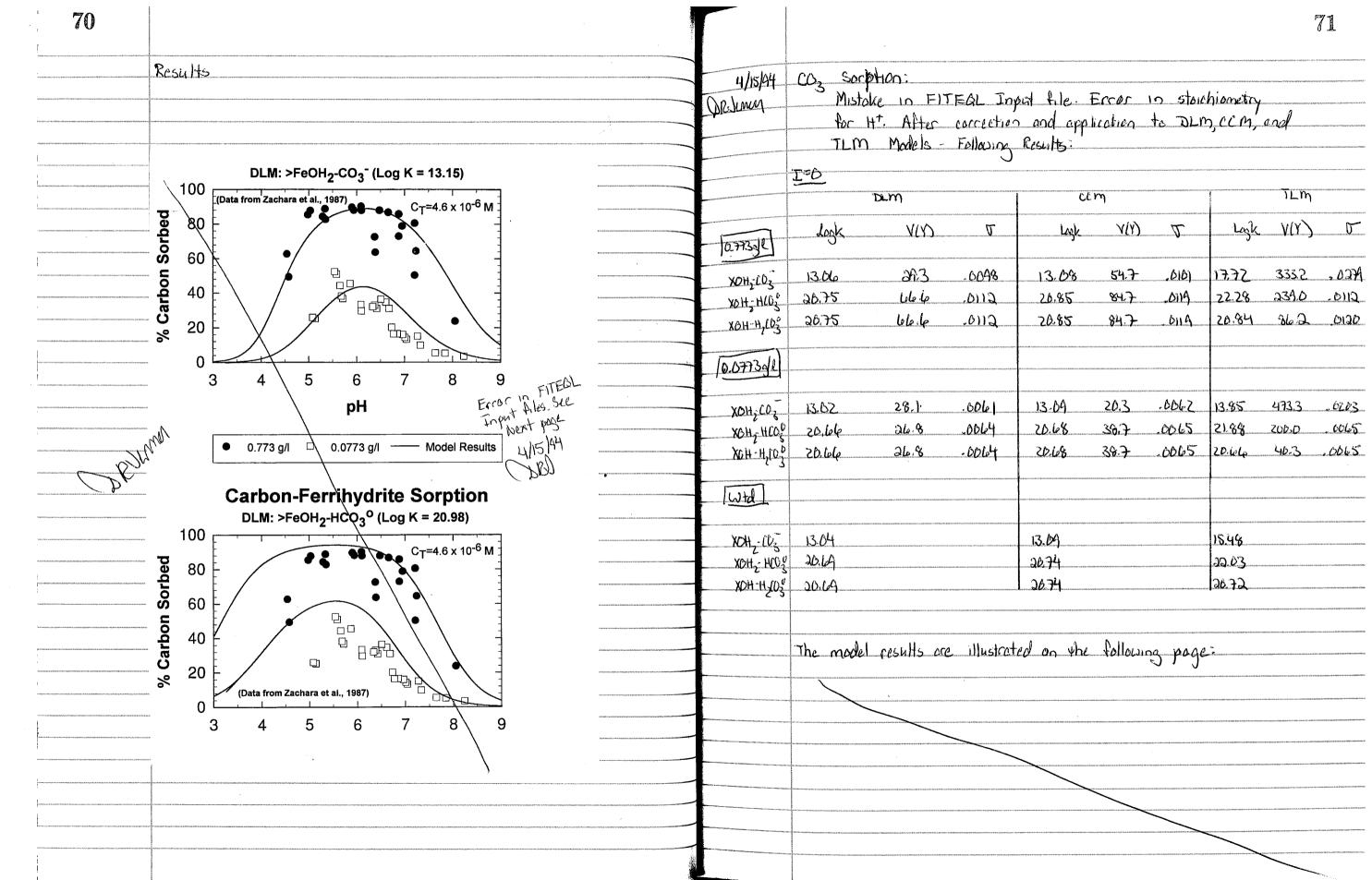
Sverjensky, D. A. 1984. Prediction of Gibbs free energies of calcite type carbonates and the

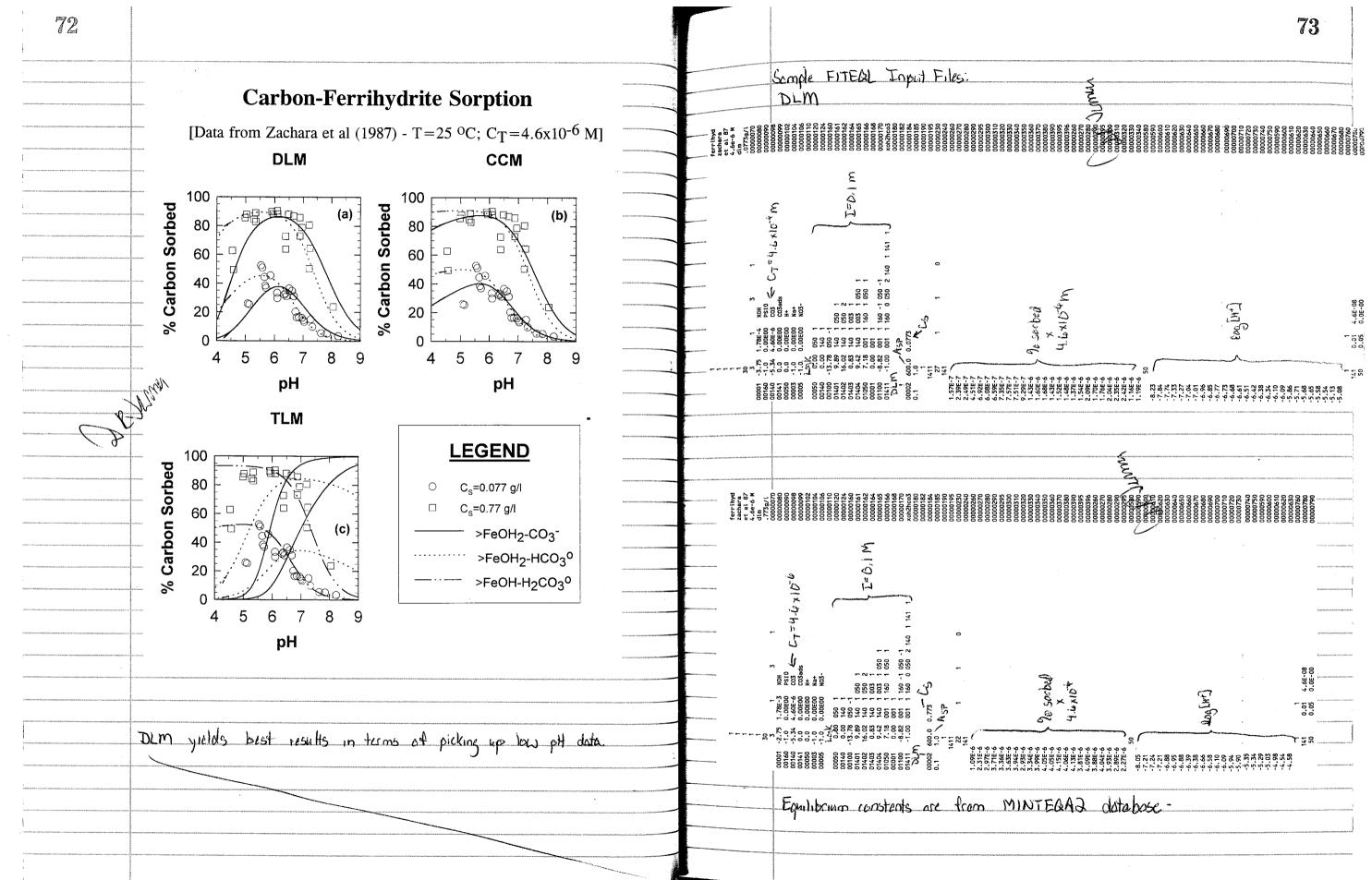
equilibrium distribution of trace elements between carbonates and aqueous solutions. Geochimica et

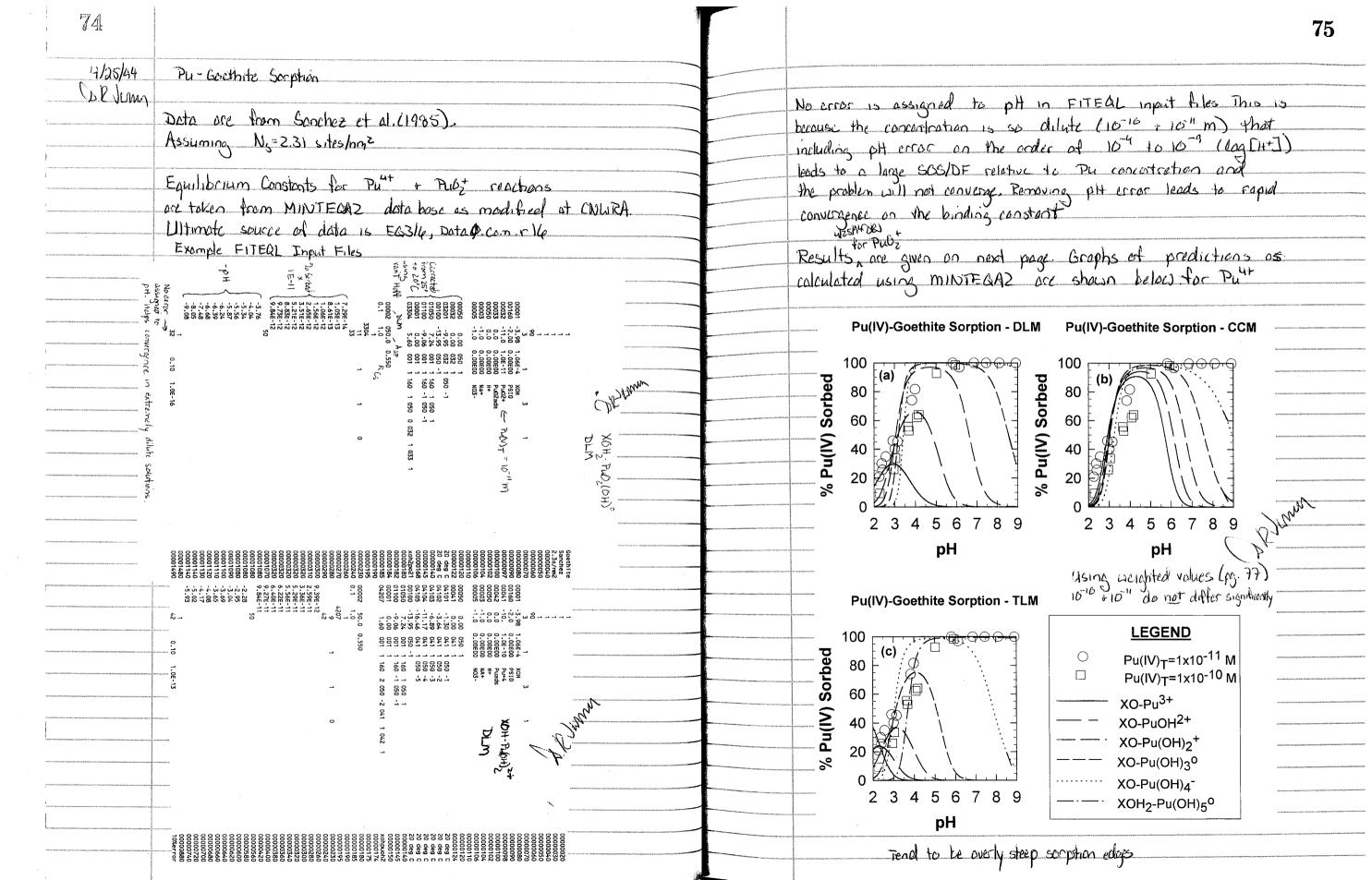
Cosmochimica Acta 48: 1127-1134. 84SVE

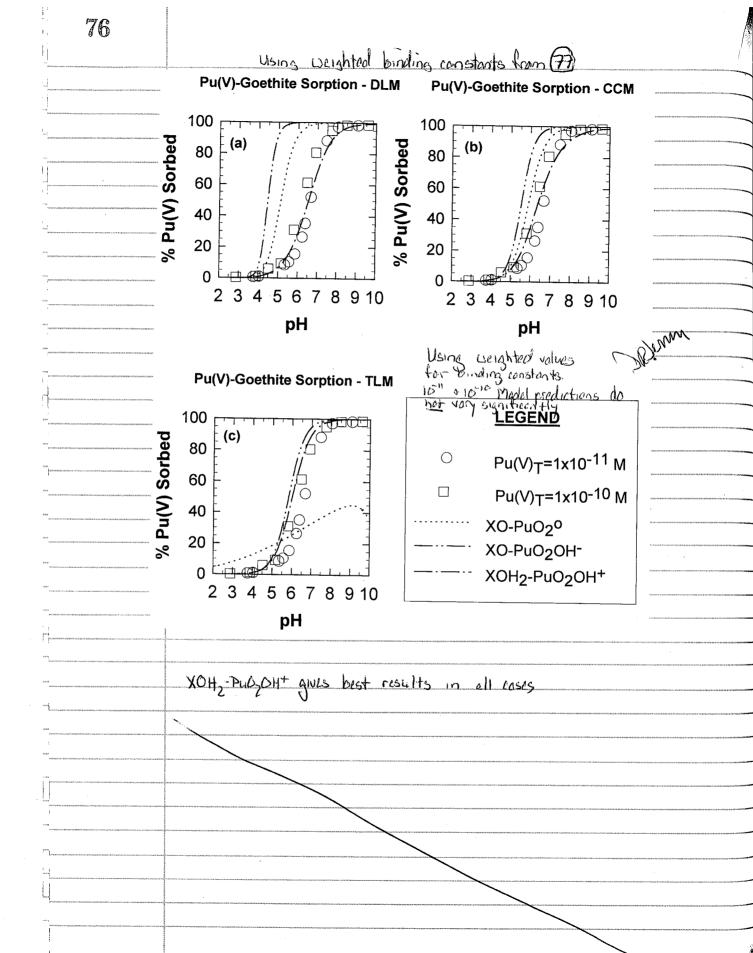
- Sverjensky, D. A. 1990. Progress report for geochemical investigations of uranium mobility in the Koongarra ore deposit - A natural analogue for the migration of radionuclides from a nuclear waste repository. In: P. Duerden (ed.) Alligator Rivers Analogue Project Progress Report: 1 September 1989 - 30 November 1989. Australian Nuclear Science and Technology Organisation. pp.35-40. 90SVE
- Tripathi, V. S. 1984. Uranium(VI) Transport Modeling: Geochemical Data and Submodels. Ph.D. Dissertation, Stanford, CA: Stanford University. 84TRI
- Wagman, D. D., W. H. Evans, V. B. Parker, R. H. Shumm, I. Halow, and S. M. Bailey et al. 1982. The NBS Tables of Chemical Thermodynamic Properties. Selected Values for Inorganic and Cl and C2 Organic Substances in SI Units. New York, New York: American Chemical Society. 82WAG/EVA

	59
1/11/244	Minor change to MINITEDAD File COMP. DBS - Zr mistakenly
DRTurne	entired as 2r2+. Changed to 2r4+ (this motiones the change
	assumed in the reactions used in THERMO.DBS and TYPER.DBS) No other changes made at this time to other databases. Corrected
	No other changes made at this time to other databases. Corrected
	versions on disk in back pocket.
1/14/64	Changes to databases for Co-solids. Formatting error in
D.R. Turnes	THERMO.DBS and TYPEG.DBS. These chonces were made
	so that the stoichiometrics and component IDs were
	in the appropriate column. UNFRMT program they
	run to produce THEPMOUNT + TYPELOUNE.
	corrected databases on disk in back packet.
	Corrected databases on disk in back packet. Only cabalt solids data affected
2/1/94	Compiled EQMOD, Version 1.1? , HYDROFLOW (Version 1.1) and
SUrring	HYDROGEOCHEM (VICSION L.I) for the TRM 486 PC USIN
	HYDROGEOCHEM (Version 1.1) for the IBM 486 PC using the Lahey F77L-EM/32 (Version 5.10) Fortron compilers.
nya wakawa na manina na manina makamanya minakawa na kata na manina kata na manina kata na manina kata na manin	All three codes compiled without fotal error except for
	HYDROFLOW where the vorable TMAX was set on line #460 ct
	1550. This exceeds the upper limit of 3.40E38 for real
00	mater is the later and the Presetter TMAY is it 25 allowed
	numbers in the Lahey compiler. Resetting TMAX to IE38 allowed
	the code to comple and link
	There there and and distate day in the here (100) he
	These three codes are as distributed in November (1993) by George Yeh, the code author, at Deportment of (1111) Engineering, Pean State Univ, University Park, PA 16802
namenen meger ob etterlikke en konstruktion faktion faktion faktion faktion faktion faktion faktion faktion fak	Be (1, to 14 min Date Date Do 14 000
	rean state univ, university fork, pra 16802
	A EAMON males also also have be
	(D) EQMOD is a geochemical speciation code, similar in operation
	to MINTERAD, only without the nice preprocessing of MINTERAD/PIRODEFA: EQMOD also does not come with the internal databases like
loonna an	Ecomod also does not come with the internal databases like
	MINTEOR. The geochemical data and for both the moss
-	balance and mess action must be included in each input file
	submitted to the system. The format of the input file is discussed
	in the EQMOD user's manual provided with the code + prepared
	by Dr. Yeh. The code is written in FORTRAN 77
9°, 2014 mar ang akanaka ang kalama sa sa sa pang kanang kanang kalamang kanang kanang kanang kanang kanang ka	in the EQMOD users manual provided with the code + prepared by Dr. Yeh. The code is written in FORTRAN 77 EQMOD forms the basis for the geochemical module in the
	J


60				61
	coupled budgepreachemical reading tomorrast code.	L. DU	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
	HYDROGENHED (see below) Burning compiled version	D.F.		
	coupled hydrosecochemical reactive transport code HYDROGEOCHEM (see below). Running compiled version reproduced EQMODOTI + EQMODOTS sample problems distributed i) code.			
	3) HYDROFIN) is a finite element madel for actual atter			Million of the second and a second discord devices and a second s
	2) HYDROFLOW is a finite-element model for groundwates flow through saturated/Unsaturated Parous media			
	HYDROFLOD is a simplified version of the code			
	FEMUATER and provides the hydrologic flow variables	<b></b>		
An an an an an ann ann ann ann an ann an	required by HYDROGEOCHEM. The code is written in FORTRAN 77			
	According to the user's monual, HYDROFLOW con designed to Direct heterogeneous, anisotropic media, 2) spotially		Information potentially subject to copyright protection was redacted	
	t temporally distributed coursekular & determine veryelister		from this location. The redacted material (Figure 4.1: Program structure) is from the following reference.	
	B('s of evaluation infilitation as seconde: 4) check mass balance.			
	+ temporally distributed source/sinks; 3) determine variable BC's at evaporation, infiltration or seepage; 4) check mass balance over entire region @ each time step, and employs a		HYDROGEOCHEM Users' Manual. Issued November 1992).	
I	number of different BC's (Couchy, Neumann, Dirichlet) using			- 1999-1999-1999-1999-1999-1999-1999-19
	a variety of numerical techniques. The formatted input			
	is described by the user's manuals provided by			
	Dr. G. Yeh of Penn State Univ.	L		
				enonementenenementenenementenenenenenen
				agaronan ungapanganonan ang pangangangangang p
	· · ·			
2/4/94	3) HYDROGEOCHEM is a readive transport code			
Alling	developed by George Yeh at Penn State University. The	 		
	geochemical module is based on EDMOD as described			****
	blow The flow module is HYDROFLOW, a simplified	( le )		
ŎŎŎŶĔŴĔĠĿŎŴŔĸŎĿŇŴŔĿĬŎĔĊĬĔŎġĸĸĸħŶŎĿŎţŎŎ <mark>ŴĸŢŎĸŗŦŢŢĬŢŎ</mark>	version of FEMLIDIER, also described above	4	NANA.	construction of the product of the p
			ARCK	
1012 01111110 0100 01000 0100-010-010-010-01		*****		
			•	
1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 -		 11.1941.194 (Martin and Antonio and		
		*****		
	<u> </u>			
		EGMOT	D Description from User's Manual (Issued November, 1992)	
		- -		


62					63
	HYDROFLOW Description + flow diagram from Usess Manuel (Issued November 1492)		HYDRD descr	REDCHEM - Two-step coupled reactive transport code. Brief ription and flow diagram (from November 1992 issue for Versis	<u>611)</u>
			D. F. W.	Information potentially subject to copyright protection was redacted	
	HYDROGEOCHEM Users' Manual. Issued November 1992).	•		from this location. The redacted material (Figure 4.1: Program structure) is from the following reference. HYDROGEOCHEM Users' Manual. Issued November 1992).	
	Must run first to get flow field for HYDROGECCHEM		Min () i Sul Sul and an		


64					65
02/16/94	Completed modifications to EGMOD. FOR to include an				na cara a manana na cara na cara ana ana ana ana ana ana ana ana ana
De Jimen	astron to read a date Ale sasta in the same of		947 - Proposition of the second secon		ennen isan isan isan isan talah talah tingkan kana kana kana kana kana kana kana
	option to read a data file containing the nomes of the input and output files. To check Eamon, constructed				
	The input and output riles. 10 check ERTIPD, constructed		-	Unanium Speciations	€านารางหาง⊶าส์กระวงสะสุของ หาง
	a set of inpit files to predict uranium speciation as a function of pH. Compared to EQ3 & MINITEGA2 predictions			Uranium Speciation:	Photoscopy approximation and
	a thorston of ptt. compared to EQS & MINIERARY predictions		-	2E-5 M UO ₂ (NO ₃ ) ₂ ; No CO ₂ ; 0.1 M NaNO ₃	
	$u(v)$ = $2 \times 10^{-5}$ m			100 EQMOD ····	
	No CD-2		A		30000000000000000000000000000000000000
	O.I m Natooz	C 6.30	Ners		•••••••••••••••••••••••••••••
	pH = 2 + 0 + 0	and the second		All speciations calculat 30 All speciations calculat using NEA thermody	
				dotabases for ucontum	
	$T_{h} = 1  T_{h} = 1  T_{h$		es		
	Thermodynamic Data for Uranium from NEA database (Greathe et d. 19	52)	pecies		
	T. t. avanala		s (iv		
9993-9933-99493-9949-9949-9949-9949-994	Inpuit example		(IV) %		: Formation and better management
 	21 Uranium speciation using NEA database: U(total)=2.0 x 10-5 M; pH=7.00 00 C ******* DATA SET 2: NUMBER OF COMPONENTS, SPECIES, AND TIME INCREMENTS		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
	C ******** DATA SET 2: NUMBER OF COMPONENTS, SFECTES, AND TIME INCLAMENTS 4 0 12 0 0 NONA NONS NOMY NOMZ NOMP C ******* DATA SET 3: H+, E-, IONIC STRENGTH, AND SORPTION INFORMATION				
diritikanan ana mananan mananan kanan k	0.1 2 3 0 SICOR ICOR INH INE 0.0 0.0 0.0 0.0 298.2 1.0 0 0 0 0 CEC CAP1 CAP2 SREA TEMP PRESU IADS INO			20 U0,0H ⁺ ((U0 ₂ ) ₂ (OH) ₂ ⁺	
	-20.0 20.0 0.0 20.0 PEMN PEMN PHMN C ******* DATA SET 4: BASIC AND INTEGER REAL PARAMETERS				
	1.0 1.0D-6 4 1 50 10 OMEGA EPS KPR KAU NITER NPCYL C ******* DATA SET 5: TOTAL ANALYTICAL CONCENTRATION OF ALL COMPONENTS		****	$10 - (UO_2)_4(OH)_7 - (UO_2)_5(OH)_7 - (UO_2)_7 - $	-
	Na+ 1.00D-1 U02+2 2.00D-5				Ben the other contraction of the second s
	H+ 0.00D00 N03- 1.0004D-1		www.com	2 3 4 5 6 7 8 9 10	Libro - marcons characteristica between a second and a
	C ******* DATA SET 6: COMPONENT SPECIES AND THEIR ION-EXCHANGED SPECIES FREE NA+ 0		weber.	2 0 4 0 0 7 0 3 10 pH	
	7.94D-7 1 0 CP(I) VJ(I) IONEX FREE U02++ 0		andre :	μι	
	6.03D-7 2 0 CP(I) VJ(I) IONEX FREE H+ 3				••••••••••••••••••••••••••••••••••••
	1.00D-7 1 0 CP(I) VJ(I) IONEX FREE NO3- 0				
	3.98D-5 -1 0 CP(I) VJ(I) IONEX C ******* DATA SET 7: COMPLEXED SPECIES AND THEIR ION-EXCHANGED SPECIES				
	OH- 0 1.00D-12 -14.00 0 0 -1 0 0 0 0 -1 0 CP(II) PKIPD AXYZP(I,J) IONEX		Agri	greenent is very good considering the complexity of they system, t seems that EGMOD is installed, compiled, linked, and running	50
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		jt'	t seems that EQMOD is installed compiled linked and chaping	
	1.002-7 -5.21 0 1 -1 0 0 0 1 -1 0 U 202(0H)2(aq) 0		DM	Unadooc	
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		1	scopecty	
	7.00D-9 -19.22 0 1 -3 0 0 0 1 -3 0 U02(0H)4 0				
	3.20D-9 -33.03 0 1 -4 0 0 0 1 -4 0 (U02)20H+++ 0		~		
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
	7,00D-9 -5.64 0 2 -2 0 0 0 2 -2 0 (U02)3(0H)4++ 0				
	3.20D-9 -11.93 0 3 -4 0 0 0 3 -4 0 (U02)3(0H)5+ 0				
	6.80D-8 -15.59 0 3 -5 0 0 0 3 -5 0 (U02)3(0H)7- 0				
	1.00D-7 -31.05 0 3 -7 0 0 0 3 -7 0 (U02)4(0H)7+ 0				
	1.00D-7 -21.95 0 4 -7 0 0 0 4 -7 0 END OF JOB				<b>N</b> an
	LOAK				


66		67
3/1/94 D-Jurnes	Modifications to FITADIM to create FITADIM. EXE D Increased convergence criteria for chemical equilibrium problem EPS from 5F-55 to 5F-4	Values digitized from Figure 2 using the Numanics 2200 Digitizing Tablet described on pg. 42 of this natebook. Results
	Discreased convergence criteria for chemical equilibrium problem EPS from 5E-5 to 5E-4 Discreased convergence criteria for fitting rowtime DEL from IE-4 to 5E-4 Discreased ITMAX (number of iterations for convergence of chem equilibrium problem) from 30 to 50 Discreased in the total problem	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
	Recompiled using Lahey F77L3-EM32, Version 5.10 for DOS 32 Bit. FIT3DIM.EXE. Changes noted in source code. Test files for original FIT2 reproduced.	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
3/18/94 D.R. J. Lann	Carbon sorption on Ferribydrite The data come from Zachara et al. (1987) - "Chromate adsorption on Amorphous Iron Oxyhydroxides in the Presence of Major Groundwater Ions" Environ Science and Technology, Vol. 21, pg. 589-544.	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
	Figure 2 $I=0.1 \text{ MNaNO3}$ Asp= 600 m²/g (from Davs et al., 1978) $C(T) = 4.6 \mu \text{mol}/l = 4.6 \times 10^{-6} \text{ M}$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
	$100 - SOH-H_2CO_3^{*} - SOH-H_2CO_3^{*} - SOH_2^{*}HCO_3^{*} - SOH_2^{$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
/	Figure 2. Closed-system adsorption of carbonate species ( $[C_T] = 4.6$	These results will be used together with FITEQL Version 2.0 (Modification FIT3DIM described on pg tole of this notebook) to determine tog K values for XOH2-CO3, XOH2-HCO3, XOH-H2CO3.

68		69
3/18/44 Lent-d	Correct table digitized results	3/30/64 Modified COMP. DBS to include CIG, and modified? MINTERAZ DRUMM THERMO. DBS + REDOX DBS to include the redox
	Zehm et al. (1997)79: 3         Image: 1         Image: 1 <thimage: 1<="" th=""> <thimage: 1<="" th=""> <thimage: 1<<="" th=""><th>$\begin{array}{c} () \\ () \\ () \\ () \\ () \\ () \\ () \\ ()$</th></thimage:></thimage:></thimage:>	$ \begin{array}{c} () \\ () \\ () \\ () \\ () \\ () \\ () \\ () $
	Calculated values for C srbid (mol/L) for Fe(T)=8.7e-3 M were incorrect.	









Plutonium (IV) Sorption Binding Constants

fonodentate, mononuclear c	ompounds									1
Solid: Goeffin (c Asp: SO m218 Data Source: Earstreen Concentration: Weight	Construct at (1963) Weighted (150 + 10")			1): ) Do exp. 10 1): Stue to los tionuclide): 0.10 dionuclide): 1 E		Ionic Strengt $N_s = 2.31 s$	US3	- ANN		
		DLM			ССМ			TLM		$\mathbb{N}$
No Cóz	$Log K_{+} = 7.$ $Log K_{-} = -4$ $T=0$	35 .1 <del>7</del>	ouly 1 deg- freedom	$Log K_{+} = 6$ $Log K_{-} = -9$ $T = 0$	.47 .03		$Log K_{+} = 4$ $Log K_{-} = -4$ $Log K_{Cat} = -4$ $Log K_{Aa} = -4$	7.64	18 B.	
	Log K	V _Y	95% **Dog-K	Log K	Vy	45%	Log K	V _Y	95% σ _{Log K}	
XO-Pu ³⁺	14-26		1.57	15,77		2.87	0.31	ļ	2.64	
XO-PuOH ²⁺	842		1.62	9.2%		3.44	-2.24		2.24	
XO-Pu(OH)2+	3.36		4-66	2.80		4.31	-5.00	ļ	1.35	
XOII-Pu(OH)22+	8.42		1.62	9.28		3.46	245		1,43	
XO-Pu(OH) ₃ °	-2.62		2.33	-3.(4)		5.45	-8.10		2.11	
XOH-Pu(OH)3+	3-36		4.66	2.80		4.31	-0,40		1.80	
XO-Pu(OH)4	-9.14		8.34	- 15,96		3.32	-11.28	<u> </u>	5.ldq	
XOH-Pu(OH)4°	- <u>2.102</u>		2.33	-3.64	ļ	6.45	-3.58		5.12	
XOH ₂ -Pu(OH) ₄ ⁺	3.36		4.66	2.20		4.31	4.12		4.42	
XOH-Pu(OH)5	-9.19		8.74	- 10/16		3.32	~ 8.54 ¥		3.0649	10
XOH ₂ -Pu(OH) ₅ °	-2-62		2.33	-3.124	ļ	5.45	-0.71 *		0.0656	174
OTHER SPECIES:			_			<u> </u>				
		L		l		ļ				
			`	<u> </u>		ļ				-
					<u> </u>	<u> </u>		<u> </u>		

77

## Plutonium (IV) Sorption Binding Constants Monodentate, mononuclear compounds

Solid: $Gachile A_{sp}$ : So m ² /3 Data Source: $Sance B$ Concentration: $10^{-10}$	et al (1485) M		Abs Error ( Rel Error (r	pH): 3 to experime pH): 3 specified : adionuclide): 0,1 radionuclide): 1 E	to to locil (R.)	115 - 2.51	gth (electrolyte): 0.1 M NaAVZ sites/nm ² s = 0.550 all				
		DLM			ССМ		<u> </u>	TLM			
Νο (0 ₂	$     Log K_{+} = 7.2     Log K_{-} = -4.     1:0.1(1:0) $	35 17		$Log K_{+} = 6.$ $Log K_{-} = -4.$	47 03	$Log K_{+} = (L, D)$ $Log K_{-} = -10.D$ $Log K_{Cat} = -7.64$ $Log K_{An} = 3.78$					
DRJUMME	Log K	Vγ	σ _{Log K}	Log K	V _Y	σ _{Log K}	Log K	-76 Vy	σ _{Log K}		
XO-Pu ³⁺	12.42(14.07)	lole la	.0291	13.74 (15.14)	19.0	. 0334	-1.72(-0.07)	94.5	.0492		
XO-PuOH ²⁺	7.20 (4.74)	20.4	- 0230	7.34 (8.88)	13.2	0363	-4.14(-2.60)		- 63A6		
XO-Pu(OH) ₂ ⁺	1.37 (280)	17.9	,0410	0.21 (2.29)	16.4	,0401	-6.91-5.16)	22.2	.0271		
XOH-Pu(OH) ₂ ²⁺	7.20 (8.74)	20.4	-0261	7.34 (8.80)	17.5	-0363	0.94 (2.48)	613	.0791		
XO-Pu(OH) ₃ °	-4.21 (-2.89)	302	.0448	-5.64 (-4.32)	187	.0461	-9.66 (-8.34)	20,3	.0306		
XOH-Pu(OH) ₃ ⁺	1.37 (2.80)	17.9	-0410	0.86 (2.23)	164	-0461	-203 (-0.10)		-0244		
XO-Pu(OH)4	-11.50 (-10.28)	38.0	.0660	-12.07(-10.91)	22.6	,050%	-1320(-11.99)	<b>20</b> .6	2479		
XOH-Pu(OH)4"	421 (-283)	30.2	.0448	-5,44(-432)		.0461	5.55(-4.23)		.0440		
XOH ₂ -Pu(OH) ₄ ⁺	1.37 (280)	17.1	.0410	0.84 (2.29)	16.4	1.0401	2.09 (3.52)	16.7	0490 0428		
XOH-Pu(OH)5	-11.50 (-10.29)	38.0	.0460	-12.071-10.26	22.6	.0508	-9.75 (-8.54)	34.1	A19		
XOH ₂ -Pu(OH)5 ^d	-4.21 (-2.49)	30.2	.04498	5.64 (432)	18.7	.0461	-2.63(-0.71)	33.1			
OTHER SPECIES:	_								.0650		
						·······			•		

į.

Plutonium (IV) Sorption Binding Constants Monodentate, mononuclear compounds

t al. (19785) 1		Rel Error (radionuclide): 0.10 Abs Error (radionuclide): 1.0E -14				lonic Strength (electrolyte): $0.1 \text{ M} \text{ NsAW}_3$ Ns = 2.31 sites/nm ² $L_5 = 0.553a/2$				
			$Log K_{+} = \frac{6}{4}$ $Log K_{-} = -4$	ссм 47 1.03		$\log K_{-} = -10$	,0		-	
]=0.1 (]=0) Log K	V _Y	σ _{Log K}	Log K	v _y	σ _{Log K}			σισεκ		
1277 (14.42)	524	.0241	14.43(14.08)	465	.0313	-1.11 (0.54)	76.7	.0303	5.3	
756 (910)	44.3	.6277	8.11 (4.65)	43.2	.0333	3.63 (-2.04)	65.6	.Dal.3	-1.4	
2.41 (3.84)	39.4	-0356	1.82 (3.25)	39.2	.03\$5	-6.29 (-4.86)	49.1	.0241	- 6.	
7.56 (9.10)	44.3	-0277-	8.11 (4.65)	43.2	.0333	1.26 (2.80)	50.4	.0241		
-3(A (-2.37)	30.G	·6455	-4.42 (3.10)	30.6	.6365	-9.19 (-7.87)	469	.0301		
	34.4	-0356	1.82 (3.25)	34.2	.0855	-1.63 (-0.20)	46.2	1960.	4	
	304	-6212	-11.33 (-10.12)	23.7	.0435	-11.93 (-10.72)	વ્ય.ર	-0374	-	
	30.6	. 6155		30 k	-6365	-4.36 (-3.64)	ડા.૦	.0361	-	
		.0356		34.2	.0355		33.0	.0351	-	
		-02)2			.0435	n.C.			-	
-3.(A (-2.37)	30.lo	20455	-4.42 (-3.12)	<u>30.6</u>	-0345	n.L.			-	
									- ,	
	$\frac{1}{100} K_{+} = 7.3 \\ Log K_{-} = -9.1 \\ 1 = 0.1 (1-0) \\ Log K \\ 1 = 77 (14.40) \\ 7.56 (9.10) \\ 2.41 (3.84) \\ 7.56 (9.10) \\ 7.56 (9.10) \\ 1 = 100 \\ 1 = 100 \\ 1 = 100 \\ 1 = 100 \\ 1 = 100 \\ 1 = 100 \\ 1 = 100 \\ 1 = 100 \\ 1 = 100 \\ 1 = 100 \\ 1 = 100 \\ 1 = 100 \\ 1 = 100 \\ 1 = 100 \\ 1 = 100 \\ 1 = 100 \\ 1 = 100 \\ 1 = 100 \\ 1 = 100 \\ 1 = 100 \\ 1 = 100 \\ 1 = 100 \\ 1 = 100 \\ 1 = 100 \\ 1 = 100 \\ 1 = 100 \\ 1 = 100 \\ 1 = 100 \\ 1 = 100 \\ 1 = 100 \\ 1 = 100 \\ 1 = 100 \\ 1 = 100 \\ 1 = 100 \\ 1 = 100 \\ 1 = 100 \\ 1 = 100 \\ 1 = 100 \\ 1 = 100 \\ 1 = 100 \\ 1 = 100 \\ 1 = 100 \\ 1 = 100 \\ 1 = 100 \\ 1 = 100 \\ 1 = 100 \\ 1 = 100 \\ 1 = 100 \\ 1 = 100 \\ 1 = 100 \\ 1 = 100 \\ 1 = 100 \\ 1 = 100 \\ 1 = 100 \\ 1 = 100 \\ 1 = 100 \\ 1 = 100 \\ 1 = 100 \\ 1 = 100 \\ 1 = 100 \\ 1 = 100 \\ 1 = 100 \\ 1 = 100 \\ 1 = 100 \\ 1 = 100 \\ 1 = 100 \\ 1 = 100 \\ 1 = 100 \\ 1 = 100 \\ 1 = 100 \\ 1 = 100 \\ 1 = 100 \\ 1 = 100 \\ 1 = 100 \\ 1 = 100 \\ 1 = 100 \\ 1 = 100 \\ 1 = 100 \\ 1 = 100 \\ 1 = 100 \\ 1 = 100 \\ 1 = 100 \\ 1 = 100 \\ 1 = 100 \\ 1 = 100 \\ 1 = 100 \\ 1 = 100 \\ 1 = 100 \\ 1 = 100 \\ 1 = 100 \\ 1 = 100 \\ 1 = 100 \\ 1 = 100 \\ 1 = 100 \\ 1 = 100 \\ 1 = 100 \\ 1 = 100 \\ 1 = 100 \\ 1 = 100 \\ 1 = 100 \\ 1 = 100 \\ 1 = 100 \\ 1 = 100 \\ 1 = 100 \\ 1 = 100 \\ 1 = 100 \\ 1 = 100 \\ 1 = 100 \\ 1 = 100 \\ 1 = 100 \\ 1 = 100 \\ 1 = 100 \\ 1 = 100 \\ 1 = 100 \\ 1 = 100 \\ 1 = 100 \\ 1 = 100 \\ 1 = 100 \\ 1 = 100 \\ 1 = 100 \\ 1 = 100 \\ 1 = 100 \\ 1 = 100 \\ 1 = 100 \\ 1 = 100 \\ 1 = 100 \\ 1 = 100 \\ 1 = 100 \\ 1 = 100 \\ 1 = 100 \\ 1 = 100 \\ 1 = 100 \\ 1 = 100 \\ 1 = 100 \\ 1 = 100 \\ 1 = 100 \\ 1 = 100 \\ 1 = 100 \\ 1 = 100 \\ 1 = 100 \\ 1 = 100 \\ 1 = 100 \\ 1 = 100 \\ 1 = 100 \\ 1 = 100 \\ 1 = 100 \\ 1 = 100 \\ 1 = 100 \\ 1 = 100 \\ 1 = 100 \\ 1 = 100 \\ 1 = 100 \\ 1 = 100 \\ 1 = 100 \\ 1 = 100 \\ 1 = 100 \\ 1 = 100 \\ 1 = 100 \\ 1 = 100 \\ 1 = 100 \\ 1 = 100 \\ 1 = 100 \\ 1 = 100 \\ 1 = 100 \\ 1 = 100 \\ 1 = 100 \\ 1 = 100 \\ 1 = 100 \\ 1 = 100 \\ 1 = 100 \\ 1 = 100 \\ 1 = 100 \\ 1 = 100 \\ 1 = 100 \\ 1 = 100 \\ 1 = 100 \\ 1 = 100 \\ 1 = 100 \\ 1 = 100 \\ 1 = 100 \\ 1 = 100 \\ 1 = 100 \\ 1 = 100 \\ 1 = 100 \\ 1 = 100 \\ 1 = 100 \\ 1 = 100 \\ 1 = 100 \\ 1 = 100 \\ 1 = 100 \\ 1 = $	$\begin{array}{c c} & DLM \\ \hline \\ Log K_{+} = 7.35 \\ Log K_{-} = -9.17 \\ \hline \\ \hline \\ 12-0.1 (1-0) \\ \hline \\ Log K & V_{Y} \\ \hline \\ 1277 (14.42) & 52.9 \\ \hline \\ 7.56 (9.16) & 44.5 \\ \hline \\ 2.41 (3.84) & 39.9 \\ \hline \\ 7.56 (9.16) & 44.3 \\ \hline \\ 3.64 (-2.57) & 30.6 \\ \hline \\ 2.41 (3.84) & 34.9 \\ \hline \\ -3.16 (-2.57) & 30.6 \\ \hline \\ 2.41 (3.94) & 34.9 \\ \hline \\ -3.16 (-2.57) & 30.6 \\ \hline \\ 2.41 (3.94) & 34.9 \\ \hline \\ -3.16 (-2.57) & 30.6 \\ \hline \\ 2.41 (3.94) & 34.9 \\ \hline \\ -3.14 (-2.57) & 30.6 \\ \hline \\ 2.41 (3.94) & 34.9 \\ \hline \\ -3.14 (-8.33) & 30.4 \\ \hline \end{array}$	I al. (1962)       Rel Error (ra         Abs Error (ra       Abs Error (ra         DLM       Log K_ = 7.35         Log K_ = -9.17       I=0.1 (I=0)         I=0.1 (I=0)       Log K         Vy $\sigma_{Log K}$ I=0.1 (I=0)       .0241         7.56 (9.1b)       44.3         .0356       .0455         2.41       .3.84)       .04         .0455       .0455         2.41       .3.84)       .04         .0354       .0354         .0455       .0455         .041 (3.34)       .30.4         .0515       .30.4         .0515       .30.4         .0354       .0354         .041 (5.34)       .30.4         .0515       .30.4         .041 (5.34)       .30.4         .0515       .30.4	1 al. (14c2)       Rel Error (radionuclide): $0.12$ Abs Error (radionuclide): $1.0$ DLM         Log K_ = $7.35$ Log K_ = $-9.17$ Log K = $-9.11$ $9.74$ $-9.54$ $-9.54$ $-9.54$ $-9.54$ $-9.54$ $-9.54$ $-9.54$ $-9.54$ $-9.54$	Abs Error (radionuclide): $I_{,OE} = I_{,Q}$ DLM         CCM           Log K_ = 7.35         Log K_ = 6.47           Log K_ = -4.17         Log K_ = -4.03           1=0.1 (I=0)         Image:	Rel Error (radionuclide): $a lo$ DLM       CCM         Log K. = $7.35$ Log K. = $6.47$ Log K. = $-4.17$ Log K. = $-4.63$ I $cog K$ Vy $\sigma_{log K}$ Log K. = $-4.63$ I $cog K$ Vy $\sigma_{log K}$ Log K. = $-4.63$ I $cog K$ Vy $\sigma_{log K}$ Log K. = $-4.63$ I $cog K$ Vy $\sigma_{log K}$ Log K. = $-4.63$ I $cog K$ Vy $\sigma_{log K}$ Log K. = $-4.63$ I $cog K$ Vy $\sigma_{log K}$ Log K. = $-4.63$ I $cog K$ Vy $\sigma_{log K}$ Log K. = $-4.63$ I $cog K$ Vy $\sigma_{log K}$ Log K. = $-4.63$ I $cog K$ Vy $\sigma_{log K}$ Log K. = $-4.63$ I $cog K$ Vy $\sigma_{log K}$ Log K. = $-4.63$ I $cog K$ Vy $\sigma_{log K}$ Log K. = $-4.63$ I $cog K$ Vy $\sigma_{log K}$ Log K. = $-4.63$ I $cog K$ Vy $\sigma_{log K}$ Log K. = $-4.63$ I $cog K$ Vy $\sigma_{log K}$ Log K. = $-3.033$ I $cog K$ I $cog$	I al. (14c)       Rel Error (radionuclide): $a l b$ $L g K$ $L g K$ $L g K$ $L g K$ $L g K_{-} = 0.5$ DLM       CCM         Log K_ = 7.35       Log K_ = 6.47       Log K_ = -4.17       Log K_ = -4.63 $L g K K$ $V_{Y}$ $\sigma_{Log K}$ Log K = -4.63       Log K_ = -7.63         Log K $V_{Y}$ $\sigma_{Log K}$ Log K = -4.63       Log K = -7.63 $L g K K$ $V_{Y}$ $\sigma_{Log K}$ Log K = -7.63       Log K = -7.63         Log K $V_{Y}$ $\sigma_{Log K}$ Log K = -7.03       Log K = -7.03 $L g K$ $V_{Y}$ $\sigma_{Log K}$ Log K = -7.03       Log K = -7.03         Log K $V_{Y}$ $\sigma_{Log K}$ Log K = -7.03       Log K = -7.03 $L g K$ $V_{Y}$ $\sigma_{Log K}$ Log K = -7.03       Log K = -7.03         Log K $V_{Y}$ $\sigma_{Log K}$ Log K = -7.03       Log K = -7.03 $277$ -( $\mu_{42}$ )       S2.0       .03277       8.11       (4.65)       43.2       .0333       -3.65       (-2.34)         2.41       (3.84)       34.4       .0355       -4.92       .0325       -4.93       (-2.36)	No. (14c)       Ref Error (radionuclide): $\Delta D_{S}$ $\Delta D_{S}$ Ref Error (radionuclide): $\Delta D_{S}$ $\Delta D_{S}$ TLM         Log K. = 7.35       Log K. = $(-4, 1)^{2}$ 1 obs       V. $\sigma_{Log K}$ V. $\sigma_{Log K}$ V. $\sigma_{Log K}$ V.         1 obs       V. $\sigma_{Log K}$ Log K. = $(-4, 0)^{2}$ Log K. = $(-7, 0)^{2}$ Log K. = $(-7, 0)^{2}$ Log K       V. $\sigma_{Log K}$ Log K. = $(-4, 0)^{2}$ Log K. = $(-7, 0)^{2}$ Log K. = $(-7, 0)^{2}$ 1 obs       V. $\sigma_{Log K}$ Log K.       V. $\sigma_{Log K}$ Log K. = $(-7, 0)^{2}$ 1 obs       V. $\sigma_{Log K}$ Log K.       V. $\sigma_{Log K}$ Log K.       V.         1 277       (142)       524       .0277       8.11       (4, 4)^{2}       .0333       .14 (-2, 2)^{2}       .0333       .14 (-2, 2)^{2}         241       (3, 3, 4)       344       .0327       .0335       .04 (-2, 2)^{2}       .04 (-2, 2)^{2}       .04 (-2, 2)^{2}       .04 (-2, 2)^{2}       .04 (-2, 2)^{2}       .04 (-2, 2)^{2}       .04 (-2, 2)^{2}       .04 (-2, 2)^{2}	I al. (1962)       Rel Error (radionuclide): $a_{10} E_{-144}$ $\zeta_S = a_{-}SS3_{-3}/a_{-}$ DLM       CCM       TLM         Log K_ = 7.35       Log K_ = -4.17       Log K_ = -4.63       Log K_ = -3.05         Log K       V_Y $\sigma_{Log K}$ Log K = -4.63       Log K_ = -7.64         Log K       V_Y $\sigma_{Log K}$ Log K = -7.64       Log K_ = -7.64         Log K       V_Y $\sigma_{Log K}$ Log K V $\sigma_{Log K}$ Log K V $\sigma_{Log K}$ Log K       V_Y $\sigma_{Log K}$ Log K V $\sigma_{Log K}$ Log K V $\sigma_{Log K}$ Log K        V $\sigma_{Log K}$ 103 K       V_Y $\sigma_{Log K}$ Log K V $\sigma_{Log K}$ Log K V $\sigma_{Log K}$ $\sigma_{Log K}$ $\sigma_{Log K}$ 12-0.1 (1:0)       Uag K       V_Y $\sigma_{Log K}$ Log K V $\sigma_{Log K}$ $\sigma_{SO}$ 12-0.1 (1:0)       SDA       .002 K       V_Y $\sigma_{Log K}$ Log K $V_Y$ $\sigma_{Log K}$ 12-0.1 (1:0)       SDA       .002 K       V_Y $\sigma_{Log K}$ Log K $V_Y$ $\sigma_{Log K}$ 12-0.1 (1:0)       SDA       .002 K       V_Y	

 $\mathbf{77}$ 

Concentration: Weight	te Souchez (2003) : Wrighted			): The property I): Solue lionuclide): 0-1 dionuclide): 1 y	0 0 10 ⁻¹⁵ 1,10 ⁻¹⁶	Ionic Strength $N_s = 2.31$ sit		J.C.		
No CO2	$Log K_{+} = 7.7$ $Log K_{-} = -9.3$	DLM 35 17	26 cl	$Log K_{+} = 6.$ $Log K_{-} = -9$ $I = 6$	ССМ 47 103	NR) 95pcl	Log $K_{+} = 4.C$ Log $K_{-} = -10.$ Log $K_{Cat} = -7.1$ Log $K_{An} = 9.7$	0 44	₩) I=0 95906.	CP.
	]=O Log K	Vy	45%CL	Log K	Vy	TO ICIC.	Log K	Vy	- Citwag K	
XO-PuO ₂ °	-0.67		5.52	-1.71		ə.54	-4.06		0.ºA	
XOH-PuO2+	5.51		1.75	5.02		1.74	4.07		0.63	
XO-PuO ₂ OH ⁻	-6.58		9.50	-8.38		3.19	-9,44		0,78	
XOH-PuO ₂ OH ^o	-0.67		5.53	- 1.71		2.56	-1.59		247	
XOH2-PuO2OH+	5.51		1.75	5.02		1.79	6.28		5.70	
OTHER SPECIES:										

77

ì

(generate)

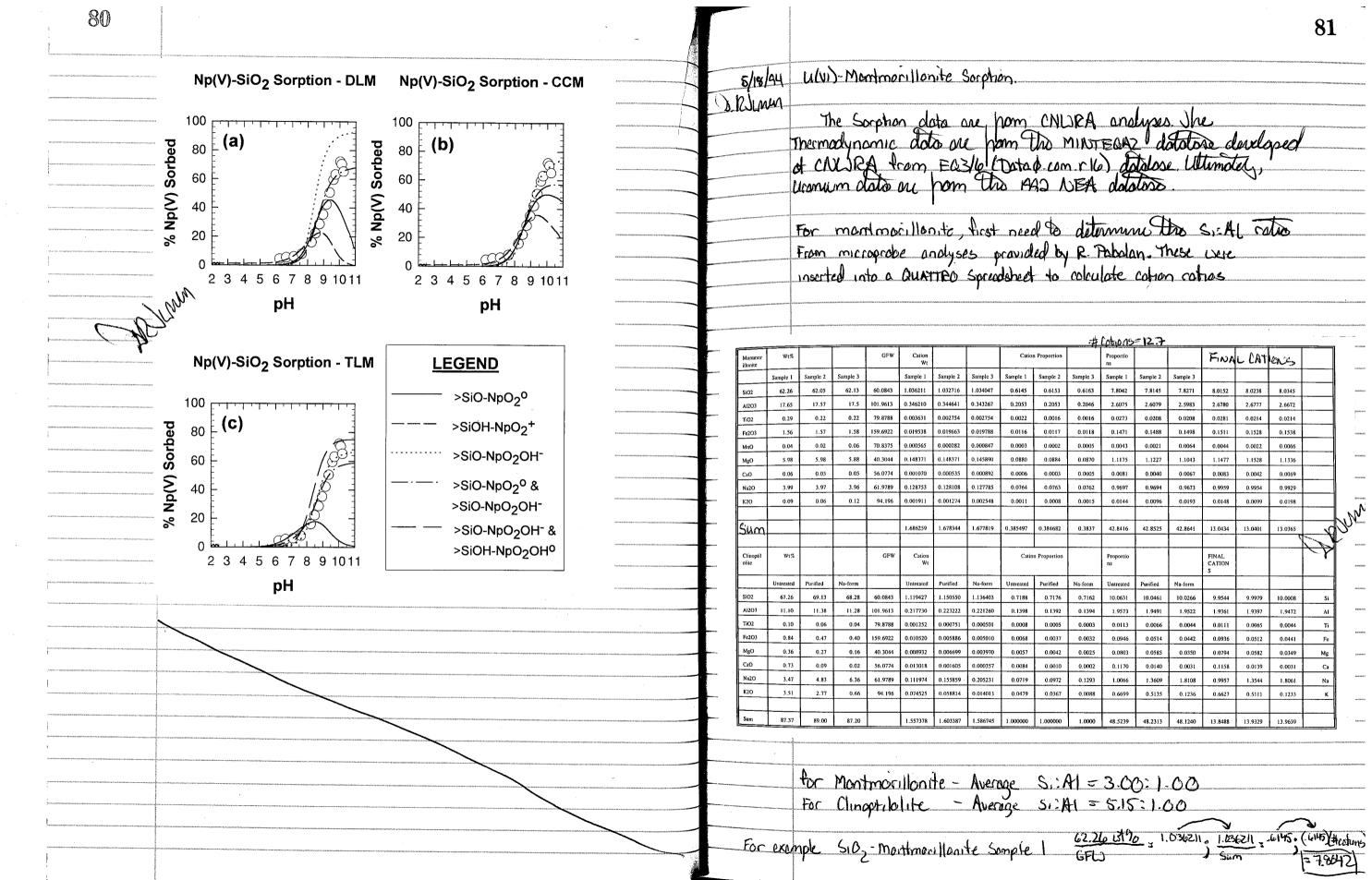
. . .

Plutonium (V) Sorption Binding Constants Monodentate, mononuclear compounds

Solid: Goethide. Asp: SOM4 Data Source: San her et Concentration: 10 ⁻¹⁰ M	al (1985)		I Rel Error (ra	H): No experim H): Sasture (): H): Sasture ():		Ionic Strength (electrolyte): 0.1 b) Malson $N_s = 2.31 \text{ sites/nm}^2$ $C_s = 0.550 \text{ g/L}$				
		DLM			ССМ		1	TLM		
No COz	$     \text{Log } \mathbf{K}_{+} = 7 . \\     \text{Log } \mathbf{K}_{-} = -4 . $	35 .17		$   \begin{array}{l}     \text{Log } \mathbf{K}_{+} = \mathbf{L}_{-}^{\mathbf{L}} \\     \text{Log } \mathbf{K}_{-} = -4_{-}^{\mathbf{L}}   \end{array} $			$Log K_{+} = 6$ $Log K_{-} = -10$ $Log K_{Cat} = -7$	.0		
~~~	1:0.1 (1:0)						$\log K_{An} = \gamma_{An}$			
D.R. Thinks	Log K	Vy	σ _{Log K}	Log K	V	σ _{Log K}	Log K	Vy	σ _{Log K}	
XO-PuO2°	-0.02 (-0.02)	53.7	.0294	-1.41 (-1.41)	28.7	.0235	4.00 (-4.00)	23.Lo	10201	
XOH-PuO2 ⁺	5.61 (5.72)	7.7	6213	5.12 (5.23)	6.5	.6214	4.03 (4.14)	87,9	-0218	
XO-PuO ₂ OH	-5.28 (-5.39)	39.4	.03A6	-7.83 (-7.44)		.6256	-9.01(-9.12)	35.0	.0240	
XOH-PuO ₂ OH ^o	-0.02 (-0.0Z)	53.7	.5219	-1.41 (-141)	28,7	.0235	-1.30 (-1.30)	05. X	.0233	
XOH ₂ -PuO ₂ OH ⁺	5.61 (5.72)	7.7	19:3	3.n (5.73)	6.5	.6214	6.43 (6.54)	1610	6226	
OTHER SPECIES:										
					·····					
·										

ŧ

Plutonium (V) Sorption Binding Constants Monodentate, mononuclear compounds


Solid: Goeth-le, A_{sr} : SO m^2/g , Data Source: Sonchae et , Concentration: M^{11} M	al. 11985) - Fig. 1	-b (1 kr)	Rel Error (ra	H): Z Aw experiment H): Z assigned d dionuclide): B.1(adionuclide): 1.0	' >	Inic Strength (electrolyte): $\delta_{1} = 0.2500$ N _s = 2.31 sites/nm ² $C_{3} = 0.5500$					
		DLM			ССМ	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	TLM				
No COZ					17 63		$ \begin{array}{c} \text{Log } K_{+} = 6 \Delta \\ \text{Log } K_{-} = -10.0 \\ \text{Log } K_{Cai} = -7.1.04 \\ \text{Log } K_{An} = 9.7 \\ \widehat{\gamma} \end{array} $				
D.R. Turner	Log K	Vy	σ _{Log K}	Log K	<u> </u>	σ _{Log K}	Log K	V _Y	σ _{Log K}		
XO-PuO ₂ °	-1.25 (-1.25)	43.1	.0049	-1.98 (-1.98)	30.D	.0219	-4.11 (-4.11)	827	.0182		
XOH-PuO2 ⁺	5-22 (5.33)	3.3	.0189	4.72 (4,83)	5,5	.0190	3.89 (4.00)	42.5	(0)93		
XO-PuO2OH	-7.41 (-7.52)	42.1	-6310	-8.54 (-8.65)	39.6	.0225	-9.63 (-9.74)	33.10	.0225		
XOH-PuO ₂ OH ^a	-1.25 (-1.25)	43.1	. 5369	-198 (-1.98)	30.6	-0219	-1.85 (-1.95)	27.7	.0216		
XOH ₂ -PuO ₂ OH ⁺	5.22 (5.33)	3.3	5187	4.72 (4.83,	5.5	-0190	5.94 (6.05)	20.3	.6207		
OTHER SPECIES:				L							
		-									
	· · ·										
	ļ										

•

,

78												
5/3/44 D.R.Jenny	Np(V)-SiOz Serption		- Using FITEQL, V - Thermodynamic du	lersion 2.0 (ata from t	(Madified =&3/6, Versic	to FIT3D 20 DataC.C	IM) Omrike					Character of the state of the s
	Data are from Righetto et al. (1997)		Neptunium (V) Sorption Bindi Monodentate, mononuclear co	ing Constants ompounds								
	"Competitive Actiguate Interactions in Collordal Humie Acid-Mineral		Solid: SIO			Rel Error (pl Abs Error (n	H): 7 Set at 0 H): S extremely dionuclide): 10	dilute to	Ionic Strengt	h (electrolyte): 6	1 M Nac	1Q4
	Oxide Systems' Environ. Sci. + Technol., V.25: 1913-1919		Solid: SIO2 Asp: 175 m/2 Data Source: Righetto e Concentration: 10-M N	+ al.(1991)		Rel Error (ra Abs Error (ra	dionuclide): 10	x10 ¹⁸ M		1.2 g/l		•
			Madeled		DLM			ССМ			TLM	
	Equilibrium constants for Np02+ are taken from MINTEQA2 database as modified at CNURA. Ultimate source of Data is EQ3/16 (Database)		assuming no CBZ		a. .20 (-7.09 (@ I=0.1m)	$Log K_{+} = n$ $Log K_{-} = -7$	а, 04(-6.93)	1=01 m)	$\log K_{CH} = -6.$	0}0, pk = 4 22	
1979 1979 1979 1989 1989 1989 1989 1989	as modified at CNURA. Ultimate source of Data is EB3/6 Endedrom. r.K)		D.R.Turno	<u>1=0.1 (1=6)</u> Log K	V _Y	σ _{Log K}	Log K	Vy	σ _{Log K}	$Log K_{An} = n.4$ $Log K$	v, Vy	σLog K
	dotabase with data sources listed on attachment to pg. 5% - whis valume.		XO-NpO ₂ °	-5.39 (-5.39)	a4.9	0.0174	-5,49(-5,99)	16.9		-3.84 (-3.84)	50.3	.0174
	Example FITEQL Input File:		XOH-NpO2 ⁺	1.19 (1.30)	41.1	0.0168	1.07 (1.18)	17月		-0.25 (-0.14)	55.4	.0174
			XO-NpO ₂ OH	-11.78(-11.99)		06215	-12.16 (-12.27)	ગ.ા	. 0221	-9.32 (-9.43)	17.8	6302
*******			XOH-NpO ₂ OH°	-5.39 (-5.39)	a4,4	0.0179	-5.44 (-5.44)	16.9	.0188	-5.52 (-5.52)	16.9	.0191
1999 Martin and an and a second and a second sec			XOH ₂ -NpO ₂ OH ⁺ XOH ₂ -NpO ₂ CO ₃ °	1214 (1.30)	41,1	0.0169	1.07 (1.18)	174	.0161	-1.74 (-1.63)	16.5	.0181
	0 Neptunum 1 on 0 silica		XOH ₂ -NpO ₂ (CO ₃) ₂ ²						· · · · · · · · · · · · · · · · · · ·	++		<u> </u>
	0 2.3s\nm2 1 00000050		XOH ₂ -NpO ₂ (CO ₃) ₃ ⁴									
	90 3 1 3 1 00000060 00001 -3.09 8.06E-4 XDH 00000080		OTHER SPECIES:									
	00160 -2.0 0.00E00 PS10 00000090		(x0)N00-	-12.42(-12.5)	23.3	00235	-12.16(-1227)		10221	-12.14	JJ.D	.0225
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5 m	WH Stonpo			0.0506	-5.57(-5.57)	18.3		-4.17 (-4.17)	7.8	-0376
	00003 -1.0 0.10E00 Na+ 00005 -1.0 0.10E00 CL04- DLM 00000106 00000110		(XO-NODZOH-	-12.68(-12.79)	<u>v</u>	0.0637	-12.84 (-12.95)			-9.46 (-9.57)		ാൺ
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		XOHNOGONO							n.c.) used	tare complex	Victors
	03100 -8.79 031 1 050 -1 00100 -13.78 050 -1 01100 -7.09 001 1 160 -1 050 -1		L XO-NPODHT	·						Inc. Sin Min	TEGAD IN	2
*******	00001 0.00 001 1 00000150 00000150 00000150 00000150 00000150						<u> </u>		I			
	00000174 00000175 00002 175.0 1.202 000000180						ราม (1997) การ สุดทุก (1997) การ (1997)			****		
				ala da se da se		***		*****			•	energenen en
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		Binding cons	stants fo	or Nol	2-SiD-	, sonot	ion an	ven abo	we. In	denes	el,
	32 0000020 4.5489E-16 0000020 5.5698E-16 0000020 6.1346E-16 0000020		Binding cons >SiO-NpO2C >SiO-NpO2DH	DH+ ACAUL	ded he	et lit	[Mm + .	TI M.	For th	LM. >	SID-N	+ ⁰ .00
	6.1346E-16 8.0280E-16 1.6107E-15 000000000 00000000 00000000 0000000			en pick			HAT HAT	, v		- ')		-2
*****	2.2342E-15 2.8760E-15		SID-NOUDH	provoluo	-uns	verses (useux.					
	3.5406E-15 00000710 4.2281E-15 00000660 5.0350E-15 00000680			T		1,	~~~~~					2012-00-00-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0
	5.9557E-15 00000700 6.3178E-15 00000710		See nort	poor 10	n ris	ubo-						
	7.2208E-15 00000660 7.0425E-15 00000680 6.5255E-15 00000700			101	•	•						
	50 00000540 Parameter and a second and a sec											
	-6.64 00000600 -7.11 00000620 minimum											
	-7.62 0000640 -8.24 0000660 -8.49 0000660		1997 1997 1997 1997 1997 1997 1997 1997									
	-8.74 00000700 -8.96 00000710		**************************************				and the second			****		****
	-9.18 0000660 -9.38 0000660 -9.61 00000700 -9.74 00000710											
	-10.04 0000680											
	- 10.13 00000700											21.202.027.0200.000000.00000000
	10.24 1 32 0.10 1.0E-18 00000880 10%error					***						
	1 00000880							****	1990 - The State of State State of State			
	1 00000880											
	1 00000880											

do 14

5/20/94 U(VI)-montmorillonite s	orphan (State	Uranium Sorption Binding Monodepate, mononuclear Monodepate, mononuclear Monodepate, mononuclear	compounds (Si Di		Error (pH): 005 Εττοτ (pH): 005		Ionic Strep	eth (clectrolyte)		
Only DLM has been cons	inde south	As: 76 m2/a (Triay et Data Source: CMUFA Concentration: 54.8 pc	6 (2.30 × 10-7 m)	Abs Rei Abs	Error (pH): 0.00 Error (radionuclide): Error (radionuclide)	0.01		sites/nm² S4/L		
Franker A - 74 - 7/2 Marsh	at at 1002 - Tot WILL Manual & Bread a	encontralitation of the second s		DLM		CCM		<u> </u>		
Ng = 2.31 sites/nm2 (Dz D(cg)= 10 ^{3.5} otm	et al., 1993 - Int. HLW Management Receedings) combole & Morcl, 1996)	Atm Co2	- (1=0) - xi/	-7.22 I=0.1M	Log K. s			Log K, = Log K_ = Log K _{OM} = Log K _{AM} =	TLM	
Example FITEQL Input F	Jan The second	XO-UO ₂ +	Log K		Log K	V	OLOE K	Log K	V	σ _{Log K}
E ALLER ALLER	1 1.1. 1. 26- 1	X0+-U0 ₂ ²⁺	<u>2.81 (1.14)</u> 5.67 (6.11)		£7/					
for conversion purposes, lett	$-0\mu T = species (UO_2)_3(CO_2)_6 + (UO_2)_4(CO_2)_6(OH)_{12}$	XO-UO ₂ OH°	5.67 (6.11) -6.35 (-6.12)		083					
These are minor species and	out species (402); (co2) + (402); (co3; (0H); - have no effect on binding constants.	XOH-UO20H+	0.81 (114)		Xo2					
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		XO-UO ₂ (OH)2	-13.49 (-13.33)		574 40		_			
	5 5 5 5 5 5 5 5 5 5 5 5 5 5	XOH-UO2(OH)2°	635 (-63)		57					
30 C000060	1 2:00000 3 1 3 1 2:000000 5 1 3 1 2:000000 5 1 0 1 2:000000	XOH2-UO2(OH)2+	0.81 (1.14)		R16					
33 CODOC	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} $	XOH-UO ₂ (OH),	-13,48 (-13,37)	2002 .00	20					
00003 -1.0 0.00000 Na+ C A 14 C 00000104	00000 0.00 1000 0.0000 μ 00000 0.0 0.0000 μ 00000 -1.0 0.0000 μ 00000 -1.0 0.0000 μ 0000 -1.0 0.0000	XOH ₂ -UO ₂ (OH) ₃ °	-635 (-6.13)	1207 .0	1/2_	_				
00050 0.00 050 1 00032 0.00 032 1 00032 54 0132 1 050 1 0000172	0005 -1.0 0.06600 NO3- AID-UD2DH 12000106 00050 0.00 050 1 0000120 1	XOH-UO ₂ (OH), ²					_			
0012 0.00 012 1 0000172 01201 -0.30 015 1 0000176 01202 -0.30 015 1 0000176 01203 -0.34 015 -1 0000176 01203 -0.32 015 - 00000176 01203 -0.22 050 - 00000170 01203 -0.22 050 - 00000130 01204 -12.59 012 050 - 00000132 01205 -5.42 012 050 - 00000134 01205 -5.42 012 050 - 00000136	00050 0.00 650 1 2000 180 00130 0.00 12 2000 180 2000 180 00130 0.00 12 2000 180 2000 180 00130 0.00 12 2000 180 2000 180 00120 2000 180 1 2000 180 00120 -10.56 050 1 2000 186 001220 -10.56 050 1 2000 186 001220 -10.56 050 1 2000 126 00120 -10.50 156 - 2 2000 126 00120 -10.50 156 - 2 2000 126 00120 -10.50 -10.50 156 - 2 00120 -10.50 -10.50 156 - 2 00120 -10.50 -10.50 156 - 2 00120 -10.50 -10.50 -10.50 00120 -10.50 -10.50 -10.50 00120 -10.50 -10.50 -10.50 00120 -10.50 -10.50 -10.50	XOH ₂ -UO ₂ (OH) ₄ XOH-UO ₂ CO ₃ °	-13.57 (-13.57)	2092 .00	0		_	<u> </u>		
03205 - 2.4 032 2 050 - 1 0000134 03207 - 12.37 032 3 050 - 2 0000138 03207 - 12.37 032 3 050 - 4 00000138 03208 - 16.25 052 3 050 - 5 00000140	G2G20 177.22 622 1507 12000112 G2G20 1255 622 605 12000114 G1200 52.24 052 2506 12 G1200 52.24 052 2506 12	XOH ₂ -UO ₂ (CO ₃) ₂	-2.22 (16.16) -622 (31.21)	873.3 .00			_			
01268 -16,25 023 036 -5 00000160 01269 -11,0 023 036 -7 0000162 01210 -21,0 023 050 -7 0000162 01210 -22,05 012 4 050 -7 0000162 01211 - 27 023 1 160 165 -2 0000164	12.59 12.79 03 100 1 2200114 12.59 12.60 12.60 1 2200114 15.59 12.60 12.60 1 2200114 15.50 12.60 12.60 1 2200114 15.50 12.50 15.60 1 2200116 15.20 12.50 15.60 5 2200114 15.20 15.60 5 2200114 15.20 15.60 5 2200114 15.20 15.60 7 2200114	XOH ₂ -UO ₂ (CO ₃) ³	-15.29 (39.02)	736.8 -013 255.0 -013						
0215 -30.81 032 1 140 3 050 -6 00000156 03216 -192.86 032 2 140 1650 -5 50000156 03217 -198.11 032 140 1650 -5 50000156	3210 - 22.38 012 4 050 - 7 500044 63211 - 67, 7 032 1 140 1 050 - 2 500046 53212 - 19.35 032 1 140 2 050 - 4 5300164 53212 - 19.05 032 1 140 3 050 - 5 5300160	XOH ₂ -(UO ₂) ₂ CO ₃ (OH) ₃ °	-5.55 (3.05)	255.0 .013 1130 .01						
02112 -90_55 021 140 2 050 -4 2000144 0213 -90_55 021 400 950 -6 0000159 0215 -90_28 021 140 950 -6 0000159 0217 +9_28 022 140 150 -5 02000156 0217 +81 022 140 150 -5 02000158 02128 +0.69 82 160 1 500 -6 02128 +0.69 160 50 - 02000158 -6 02128 +0.69 160 - 0000158 -6 -6 01428 -7.41 140 160 - 0000162 -6 <t< td=""><td>000164 1/0, 40 002 2 100 000 -5 0000168 01210 -00 002 100 10 00 -5 0000169 01001 -17,50 100 1060 -2 0000169 01001 -17,50 100 1060 -2 0000161</td><td>XO-(402)3(04)5</td><td></td><td>1424 .01</td><td>and the second se</td><td></td><td></td><td></td><td></td><td></td></t<>	000164 1/0, 40 002 2 100 000 -5 0000168 01210 -00 002 100 10 00 -5 0000169 01001 -17,50 100 1060 -2 0000169 01001 -17,50 100 1060 -2 0000161	XO-(402)3(04)5		1424 .01	and the second se					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1250 1220 1250 <td< td=""><td>D. A'</td><td>als Foots</td><td></td><td>asala a</td><td>Ista ri</td><td>a cal</td><td>.sal 0</td><td>ns all</td><td>data</td></td<>	D. A'	als Foots		asala a	Ista ri	a cal	.sal 0	ns all	data
1 0 00000219 0.0000240 00000240 0.0000240 00000240		Dirating consta	MS. FICSI C	nonter			- 11	feed U.		
	2,2155-08 2,741-08 3,0545-08 4,0131-08	Only used S	10-U02 s	A)0-U	$O_{2}(OH) +$	or 0.2	sallo	Nota Sinc	e these	sour
0.0027-02 4.0717-02 2.077-02 2.077-02 2.077-02 3.077-02 3.077-02 1.557-07 1.577-07 1.577-07 1.577-07	1. 6914 68 4. 6914 68 6. 5944 68 1. 5924 68 1. 5924 68 1. 5924 69 1. 592	Binding constor Only used S best regults	for 2.5 g	12 data	Results	on ne	xt page			
1,588-07 1,588-07 1,588-07 1,588-07 1,588-07 1,588-07 1,588-07 1,066-07	2.235.07 2.231.07 2.231.07 2.231.07 2.231.07 2.236.07 2.236.07 2.236.07 2.236.07 2.236.07						***			10.000.000.000.000.000.000.000.000
1.048:07 · . 1.058:07 1.051:07 1.060:07 1.060:07 	2.2284-07 2.2246-07 2.2316-07 2.258-07 2.258-07 2.258-07 2.1272-07 2.1272-07 2.1364-07									
: 144E-07 AND	2, 1516-07 2, 1272-07 2, 0546-07 1, 7816-07	annen an			****		******			en e
. 1 / 1 / 2 / 3 / 3 / 3 / 3 / 3 / 3 / 3 / 3 / 3	1, 344-07 6, 1222-06 1, 6602-06 5, 4775-19 2, 3225-10		uunin kunnen miseren							
39 намакальна 1,01 2,18 - 2,50	50 1.85							****		
-2.76 -2.59 -3.31 -3.63	2.18 2.47 -2.90 -3.23		•							
3.97 4.23 5.26	-1.68 •4.77 •4.65 •5 19									
6.03 5.79 5.54	1499 FARMENTAL CONTROL OF CONTRON		*****		waa ahaa ahaa ahaa ahaa ahaa ahaa ahaa					
-5.62 -6.07 -6.17 -6.27 -6.42	- 6,40 - 5,26 - 6,45 - 6,45 - 6,58 - 5,50	*****	-		MANUTATION CONTRACTOR OF CONTRACTOR					
* 0.88 7.09 • 7.15										
-7.63										
- 7, 83 - 7, 50 - 7, 50 - 8, 25 - 8, 64 - 8, 68 - 1 - 33 - 0, 01 - 2, 35 - 10 - 0, 0000760 - 10 - 0, 01 - 0, 01 - 0, 01 - 0, 0000760 - 0, 0000760	-7:75 -7:75 -0:27 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0					······································				

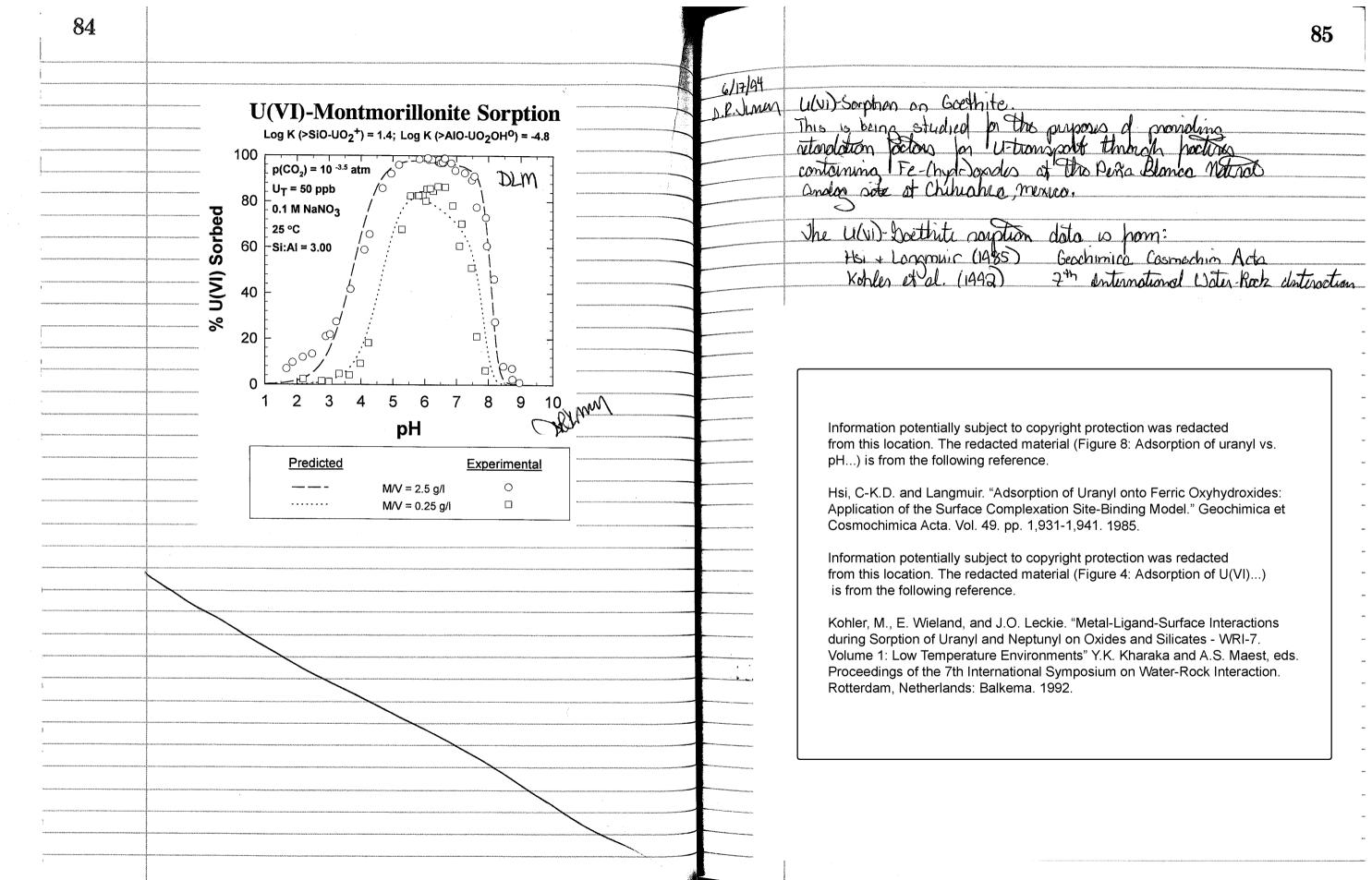
Uranium Sorption Binding Constants

Stale/94

Solid: Montmorillonite As: 7% m ² /5 (Tria) ** a Data Source: CNURA Concentration: 54% ppb	1: 78 m ² / (Triag ** ~ IHUJm (A13) ta Source: CNURA neentration: 54.8 ppb (23.0×16 ³)			H): H): dionuclide): adionuclide):		Ionic Streng N _s = 2.31 s	th (electrolyte): hites/nm ²			an too more the owner owner the
		DLM			ССМ			TLM		nucleon and a second
Atm (Oz	$Log K_{+} = 9.2$ $Log K_{-} = -9.2$ For Side of a Log K: (1-0)			Log K ₊ = Log K_ =	• •		$Log K_{+} =$ $Log K_{-} =$ $Log K_{CM} =$ $Log K_{AM} =$			
	Log K	V _Y	GLog K	Log K	Vy	σ _{Log K}	Log K	V _Y	o _{log I}	
XO-UO ₂ +	2.06 (2.39)	1524	-0/51							
XOH-UO ₂ ²⁺	9.27 (9.71)	438.4	.0072					·		
XO-UO2OH*	-5.32 (-5.10)	3423	.0035							14510-00-00-00-00-00-00-00-00-00-00-00-00-0
XOH-UO₂OH⁺	2.06 (22)	1624	.0051							
XO-UO ₂ (OH) ₂	-13.40 (-137À)	6238	. 0043							
XOH-UO2(OH)2°	-5.32 (-510)	3423	.0035							
XOH2-UO2(OH)2+	206 (23A)	524	.0051							Fer
XOH-UO ₂ (OH)3	-13.40 (-3.2À.	1238	.553							
XOH2-UO2(OH)3°	-5.32 (-510)	3423	.0335					-,		
XOH-UO2(OH)42									ļ	
XOH2-UO2(OH)4	-3.40 (-8)	620%	.0043						ļ	
XOH-UO2CO3°	-021 (17.57)	1383	0259							
XOH ₂ -UO ₂ (CO ₃)2 ⁻	-3.85 (32.58)	980.6	.0089							ana
XOH2-UO2(CO3)33	-13.79 (40.58)		.0100							Carry and the Williams
XOH ₂ -(UO ₂) ₂ CO ₃ (OH) ₃ °	-4.13 (14.47)	:441	.0097-							
X0-(42)(0:1)5	-11.56 (-10.74)	1782	.0126							

Binding constants. First analyzed 2.5 g/l data. Then analyzed 0.25 g/l data Only used SiD-U02⁺ + AID-U02(OH)^o for 0.25 g/l data since these gour best recults for 2.5 g/l data. Results on next page:

nodentale, mononuclear compounds SIDH ² Solid: Montmorilloante (SI:AI = 3, ASI (AD) Ag: Francia, (Tray at a Trition (AD) Data Source: (SIX)RA Concentration: 45.54 ppb			Rel Error p Abs Error (j Rel Error (r Abs Error (r		c10 ⁻¹⁰	$N_{g} = 2.31 si$	h (electrolyte): ites/nm² 0.25 JL	8.1 m #	1.11003	
		DLM		T	ССМ				-	
Atm CO2	Log K ₊ = $h^{a_{+}}$ Log K ₋ = -7.6 $h^{a_{+}}$ $h^{a_{+}}$	XA 8.22 } I=0,1 :-2.62	m	Log K ₊ = Log K_ =			$Log K_{+} = Log K_{-} = Log K_{CM} = Log K_{AA} = $			
	Log K	V _Y	OLOS K	Log K	V _Y	^O Log K	Log K	Vy	oLog K	
XO-UO₂⁺	1.07 (1.40)	174.0	.0042							
XOH-UO22+			ļ	-						
XO-UO ₂ OH°										
XOH-UO2OH+	1.57 (1.40)	174.0								binikanatatinanana
XO-UO2(OH)2			ļ	<u> </u>				ļ		1
XOH-UO2(OH)2°							<u> </u>			
XOH2-UO2(OH)2+	107(1.40)	1740	_ SHO.					· · · · · · · · · · · · · · · · · · ·		Low
XOH-UO2(OH)			ļ			.				-
XOH ₂ -UO ₂ (OH) ₃ *										
XOH-UO2(OH)42				-i						
XOH ₂ -UO ₂ (OH) ₄										Martin Martin Constant
XOH-UO2CO2					. <u></u>					
XOH ₂ -UO ₂ (CO ₃)2										
XOH ₂ -UO ₂ (CO ₃) ₃ ¹	_			_}						
XOH ₂ -(UO ₂) ₂ CO ₃ (OH) ₃ °				_		<u> </u>	<u> </u>		<u> </u>	


Stac/94

Binding constants. First analyzed 2.5 g/l data. Then analyzed 0.25 g/l data Only used SiD-U02⁴ + AID-U02(OH)⁶ for 0.25 g/l data since these gour best results for 2.5 g/l data. Results on next page:

State/94

	1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -									
Monodentz.e, mononuclear	compounds AIOF	Ľ								
Solid: Montmorillonit Az: 78m²/g (Triay et Data Source: CNURA Concentration: 45.54	al., THEWM 43	0:1.æ))	Rel Error (p Abs Error (p Rel Error (rs Abs Error (s	H, : /Sonuclide):		$N_{s} = 2.31$	th (electrolyte): (sites/nm² s= 0.25 a/L	3.1 M N	allyz	in the second
		DLM			ССМ		1	— — — — — — — — — — — — — — — — — — —		Excellence and a second s
film (Oz	Log K. = 8.7 Log K_ = -9.1 For C-104' JogK	2 3 I:0	si m	Log K. = . og K_ =			$Log K_{+} =$ $Log K_{-} =$ $Log K_{Cat} =$ $Log K_{Aa} =$			
	Log K	V _Y		Log K	Vy		Log K	V _Y		P.000000000000000000000000000000000000
XO-UO2+						1				·
XOH-UO22+										
XO-UO ₂ OH°	-506 (-4.84)	3772	.0037			1		······································		
XOH-UO20H+										provement of the second s
XO-UO ₂ (OH) ₁						1				
XOH-UO2(OH)2*	5.06 (-4.94)	3772	.0037				1			1.11.2.2.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.
XOH2-UO2(OH)2+							††			From
XOH-UO3(OH)			1				<u>∤</u> }		$\sim \mathcal{A}$	_
XOH2-UO2(OH)3°	·506 (-4.94)	3772	.9637		·····		<u>├</u>			64.96.2 million and the second s
XOH-UO2(OH)42										for the proving the system of the state of t
XOH ₂ -UO ₂ (OH)4										Reserved course dest and a spectra second
XOH-UO2CO3.										
XOH2-UO2(CO3)2										hamman and a second
XOH2-UO2(CO3),1										
XOH2-(UO2)2CO3(OH)3°				-						

Binding constants. First analyzed 2.5 gll data. They analyzed 0.25 gll data Only used SiD-U02⁺ + A1D-U0, (OID^o for 0.25 gll data since these gour best results for 2.5 gll data. Results on next page:

86			8
Values were digetized using equipment des	onled on pg.42	Example FITEQL Input Files:	
Kohler et al. (1942) Kohler et al. (1942) No CO2 $p(CO2) = 2 \times 10^{-2} atm$ pH 90 Sorbed 3.36385 26.66729 3.54728 27.94154 4.03584 53.60729 3.69183 35.64942 4.0335 82.99959 3.89416 29.54701 6.70791 94.35876 4.00333 52.50006 8.36919 3.49117 4.17735 64.30691 9.84738 9.50506 4.47020 87.05881 4.69028 94.4037 4.7790 95.83499 5.65065 98.24534 6.55880 98.20817 9.57776 97.69626	Adhler et al (1442) $p(co_2) = 3 \times 10^{-41} atm$ $p(to_2) = 1, 20939$ $p(to_2) = 1, 2093$	For Both, Uconum data f_{con} NEA For Its, + Longmuic CC_2^{2-} is compared equil. constants converted to rans write C_1^{-10} C_1^{-10} C_2^{-10} C_1^{-100} C_2^{-100} C_1^{-100} C_2^{-100} C_1^{-100} C_2^{-100} C_1^{-100} C_2^{-100}	dotabaasse. (Greentine et al. 1992) st for corbon. For koblec et al. (1992) ca with CO2 as described can pp 10 - 52 $\frac{1}{12}$ $\frac{1}{12}$

38		Alf & School & Ball & B							****	reconcernation of the second					1969-1971 - 1971 - 1971 - 1971 - 1971 - 1971 - 1971 - 1971 - 1971 - 1971 - 1971 - 1971 - 1971 - 1971 - 1971 - 1 1971 - 1971 - 1971 - 1971 - 1971 - 1971 - 1971 - 1971 - 1971 - 1971 - 1971 - 1971 - 1971 - 1971 - 1971 - 1971 - 1		ung nga na mang		
120/94	FITE	eal R	esults.	: Some purpos	dota pa	oints elli converge	minoted oce (Ind	in Kor dicated b	vec dot	a for			Lanium Sorption Binding Co Monodentate, mononuclear co	nstants mpounds					
Urapitr	9 m Sorption Binding Co	onstante				5			•		-		solid: Goethite Ase: SD m²la Data Source: A Kohler Concentration: 1 x 16.6	a 1. (1992)	- <u> </u>	Rel Error (pl Abs Error (p Rel Error (ra Abs Error (ra	H): .05 H): 0.08 idionuclide): 0.1 adionuclide):)	b DF-9	
Monode	entate, mononuclear co	ompounds		Hsi + Long	Amer (198	85)	No COz							<u>†</u>	DLM		T t	ССМ	
A _{SP} : Data	: Goethite 50 m²/g Source: Hsit Lang entration: 10 ⁻⁵ M	mur(1475)		Rei Error (p Abs Error (p Rei Error (r Abs Error (r	DH): 05 pH): 0.05 adionuclide): 11 radionuclide): 11			gth (electrolyte): sites/nm ²	0.1 M N	1NO3			No Oz	$Log K_{+} = 7$ $Log K_{-} = -9$.24 (7.35 .06 (-9.17	ie I=Om ie I=Om)	$Log K_{+} = 6$ $Log K_{-} = -6$		ł
			DLM		1	ССМ		1			4			Log K	V _Y	σLog K	Log K	V _Y	
	No CO2	$ Log K_{+} = Log K_{-} = \cdot $	7.24 9.06		Log K ₊ = Log K __ = .	6.47 ? I=0.)	$Log K_{+} = 1$ $Log K_{-} = 1$	9 28		Novigiture (and a second		XO-UO ₂ + XOH-UO ₂ ²⁺	3.08 (3.41) 9.48 (9.92)	9.3	.0346	2.64 (247) A.R.I (965)	1	-
		(1=0)	· · · · · · · · · · · · · · · · · · ·		(1=1	6)		$Log K_{CM} = -$ $Log K_{An} = -$	7.64 8.56		1		XO-UO ₂ OH°	3.34 (-3.17)	1		-4.00 (3.78)	9.7	_
<u> </u>		Log K	V _Y	OLOG K	Log K	V _Y	σ _{Log K}	Log K	V _Y	σ _{Log K}	-		XOI-UO,OH+	3.68 (3.41)	4,3	-03441	<u>-4.00 (3.78)</u> 2.64 (2.43)		•
X0-U		2.80 (3.13		.0352	2.36/2.4	A) 1.9	.0350	-2.84(2.5		.0400			XO-UO ₂ (OH) ₂	-9.88 (-9.97)	1	-0346 .0534	-1010 (1247)		
XOH-		9.42 (9.96	10.8	.0279	9.12 (95		0338	6.1365		.0400			XOH-UO ₂ (OH) ₂ *	-3.3A (-3.17)		.0539 .0441	-4.00 (-378		1
XO-U		-3.76(-3.54)	3.9	,0432	- 4.30 (40		.0377	-7.55(73	The second se	.0245	1		XOH ₂ -UO ₂ (OH) ₂ ⁺	3.08 (3.41)	43	.03(16	3.64 (3.37) 3.64 (3.37)		ł
	UO20H+	2.80 (3.13)	1	.0352	2.36/21	A 19	.0250	0.64/097	The second se	-0385			XOH-UO2(OH)2	-9.88 (-9.77)	1	-0534	-10,00 (10,47)		1
	O ₂ (OH) ₂	- 10.30 (-10.14)		.0518	-10.88(-10)	3 24	-641)	-11.49(-113		.0373			XOH2-UO2(OH)3°	3.34 (3.17)			-4.00 (3.38)		
	UO2(OH)2°	3.76(3.59)	3.9	.0432	-4.30(4,0	2.0	.0377	-4.21 (3.4		-6375			XOH-UO ₂ (OH)4 ²	-16.36 (-4.36)		-044)	-4.00 (-3.98) -17.19 (-17.14)		ł
	UO ₂ (OH) ₂ +	2.80 (3.13)	1.6	.0352	2.366.6	1.4	.0350	3.96(4.29)		0007C			XOH ₂ UO ₂ (OH) ₄	-9.88 (-9.77)		-0631			ł
	JO ₂ (OH)3	-10.30(-DJA)	6.0		-10,88 (-107	24	0411	- 8.07(-7.96					XOH-UO2CO3.	(4,14) BBRIT	16.8	-0534	10.60 (-10.13)		ł
	UO ₂ (OH) ₃ °	-3,76(3.54)	3A	.0432	-4.30(-404	2.0	.63377	-0.77(0.55		.046)			XOH ₂ -UO ₂ (CO ₃) ₂						ł
	JO ₂ (OH)4 ²	-16.80(1680)	7.3		-17.34-17.5	2.2	,1157	- 11.40(-11.40	T	.6734	•		XOH ₂ -UO ₂ (CO ₃) ₃ ³	+					ł
	UO ₂ (OH)4	-10.30(-10.19)	(e:D	.0518	-10.821-107	D 2.0	.011)	-4.61(-45)		.0134			XOH ₂ -(UO ₂) ₂ CO ₃ (OH) ₃ °	1					ł
XOH-U									1.0	. Clod S			A0112(002)2C03(011)3		l				Ļ
	UO ₂ (CO ₃) ₂ .										10000000000000000000000000000000000000								
	JO2(CO3)32																		
XOH ₂ -(UO ₂) ₂ CO ₃ (OH) ₃ °												*						
											ercerentinous and					*****	*****	******	0945
											- 						*******	*****	
					÷						/								
																	****	******	****
			*****	***		-													
								****							\sim				

			aan taa ahaa ahaa ahaa ahaa ahaa ahaa ah		**********					****	947 (* 473) - 60 (* 16 MAR 1990) - 60 (* 16 MAR								194
		*****		in farmer on the second	*****	9.99 m 48.95 m 48.95 m 49.95 m 49.96 m									a de la de la decensión de la d				0.00
				\mathbf{X}	-												\mathbf{i}		
															*****				-
																			tur
Are the second and the second according to the			****			\sim		***											
							<				-	5		*****			****	*****	
****		*****	*****	*****	inter al 12ado - Santa a companyo na companyo na companyo										*****	****	*****		ær
****														-			entering all and a second s		~
								$\overline{}$									an an an an Anna an Ann		
					1				<u> </u>					*****					-
	***************************************		****			****								*****					~~~
*****						*****					and the second			****	*****				w
	3										· · · · ·	150 	1						

* Deleted highest pH: pH=9.58 Posorbed=97.7%

Log K

-3.42 (3.09)

4.3A (4.83)

7.49 (-727)

a. (0.A)

11.55 (11.44)

3.AI (-3.LA)

3.85 (4.18)

-8.00 (-7.89)

0.35 (-0,13)

12.02 (-12.02

4.48 (-4.37)

- ~ ung

σ_{Log K}

.0341

,0330

.0374

.0341

03498

-0374

.0341

.039X

.6374

.0425

.0398

TLM

Vγ

30.Z

32.4

12.9

13.2

9.6

9.6

8.5

14.2

14.3

17.8

18,8

σ_{Log K}

-6548

.0288

.0284

.0284

-0394

.0371

-0370

.041844

0467

0615

.0587-

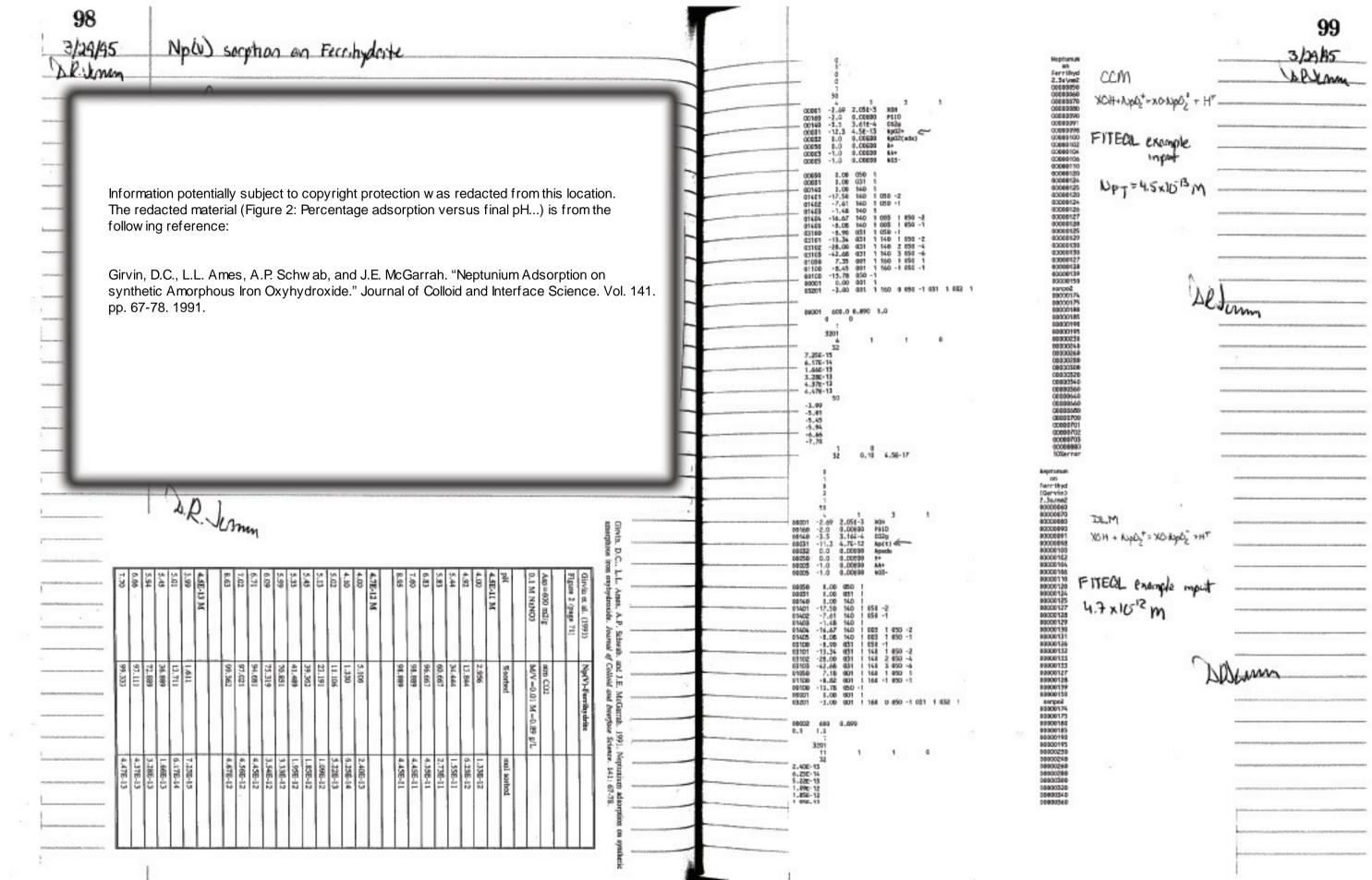
	QL Res		purpose	s of co	nvergene	e (India	oted by	asterish		An Sorption Binding of Another And Sorption Binding of Another And Sorption And Sorption Data Source: Valuer of	compounds		Rel Error (р Н): 65 рН): 666		Ionic Stree	with (direction)	<u> </u>	
cption Binding Co									.4	Data Source: "Kohler (Concentration: 1×15-6	1 ol (1472) M		I Rel Error 6	pH); 0.66 adionuclide); 0. radionuclide);) 5	.10	$N_8 = 2.31$	sites/nm ²	D.I M	Nocioy
ate, mononuclear co d: Goethite	mpounds		Rel Error (pl	H): B.OS		Ionic Strength	(clectrolyte): (s.1 m Kas	λύς.	and the second second		DLM			ССМ		1312	TLM	
: 50m ² /g a Source: Hs1 + Long acentration: 1x10 ⁻⁵ M	mu.c (1985)			H): 0.00 Idionuclide): 0.16 adionuclide): 1.01		N _s = 2.31 sit	Cs= 13/L			p((02)=3×15%)	$\frac{\log K_{+}}{\log K_{-}} =$	-1.06 (9.17	ĕ [=0) ĕ [=0)	$Log K_{+} = 6$ $Log K_{-} = -9$	47) J=0.	1	Log K, = Log K_ =- Log K _{Ce} =	5.84	(0.0 13.0 I=C
		DLM		ļ <u>.</u>	ССМ			TLM			Log K	V _Y	OLog K	Log K	v _r		Log K _{An} =	*.54 (- 1.64 - 2.78
C7 = 10-2 M	$Log K_{+} = \frac{7}{4}$ $Log K_{-} = -\frac{4}{4}$	24 (7.3 .06 (-9.1	³³ ∉ I÷0)	$ \operatorname{Log} \mathbf{K}_{+} = 4 \\ \operatorname{Log} \mathbf{K}_{-} = -4, $	47? I=01 .035		Log K ₊ = 5.5 Log K ₋ = -3.5 Log K _{OH} = -7	144 -	4.00 -16.00 2 I+G 7 64 2 I+G	XO-UO ₂ * XOH-UO ₂ ²⁺	1.03 (1.31 7.21 (7.65	2 50.6	-0426	0.72 (1.05)	49,6	.0467	Log K -5.9) (-5.58	V _Y	0104 к 2174
			1				Log K _{Au} = % Log K	-56	*.7% T	XO-UO ₂ OH°	7.34 (-7.12	1 1010	-1200	7.11 (7.55)	75,3	.0783	1.79 (2.23)	84.2	.2188
	Log K	V _Y	OLOG K	Log K	V _Y	OLOG K	6.27 (4.40)	V _Y	OLOG K	XOH-UO₂OH+	1.03 (136		.0485	-7.36 (-714)	<u> 65,5</u>	SENC.	4.8) (-4.54)	82.7	.1321
-UO2+ H-UO22+	5.97-(6.20) 14.14 (14.58)	<u>5,4</u> . 5.4	.0457	5.61 (5.44) 13.72 (44.16)	<u> </u>	.0598	6.27 (0.00) 15.17 (15.61)	10.2	.0748 .0485	XO-UO ₂ (OH)2	-15.86 (-15.7		0426	0.72 (1.05)	49.6	.0467	-2.16 (-1.83)	<u>83.2</u>	-1471
-UO20H°	-2.33 (-2.1)	43	-0535 -0161	13.72 (14.16)	44	.0548	-2.18 (-1.94)	4.2	.0552	XOH-UO2(OH)2°	-7.34 (-7.12	and the second second	.0485	-7.36 (-7.4)	<u>75.9</u>	0657	-15.33 (-15.22)	69.6	-0522
H-UO,0H ⁺	5.87 (6.20)	<u> </u>	.0457-	5.61 (5.44)	65	-9442	6.21 (6.54)	7.1	.010H10	XOH ₂ -UO ₂ (OH) ₂ +	1.03 (13)	50.6	.04210	0.72 (1.05)	<u>49.6</u>	.0472	-7.23(-761)	(el.)	.0177-
-UO,(OH),	-10.44 (-10.33)	<u> </u>	.0457	-10.22 (-10.11)	27	0371	-9.81 (9.70)	2.6	.0524	XOH-UO ₂ (OH) ₁	-15.840 (-15.7	······································	- 0614	15.84 (-15.73)	- <u></u>	-0497	0.85 (1.18)	62.1	.0453
H-UO ₂ (OH) ₂ °	233 (211)	4.3		238 (-2.16)	4,4	.0116	-2.22 (-2.60)	4.3	.0414	XOH ₂ -UO ₂ (OH) ₃ °	-7.34 (-7.12	+	.2185	-7.36 (-2.4)		0657 0472	-14.55 (-1644) -8.49 (-8.27)	78.	.6759
H ₂ -UO ₂ (OH) ₂ +	5.87 (6.20)	54	.0457-	5.61 (5.94)	6.5	1490	6.14 (647)	3.]	.6530	XOH-UO ₂ (OH) ₄ ²	-24,33 (-24,32	76.8	. 0688	24.22(2422)	77.7	.0730	-8.44 (-8,27) -25.67 (256)	78.0	.0351
H-UO2(OH)3.	-1044 (-10.33)		-02.87	-10.22 (-10.11)	22	-5371	-9.47 (-A.36)	15.2	.0410	XOH ₂ -UO ₂ (OH) ₄ XOH-UO ₂ CO ₃ • (-12	15.86 (-15.75	74,5	.0614	1584 (-15.23)	75.9		17.62 (-17.5)	74,7-	.0844
H₂-UO₂(OH)₃°	-2.33(21)	4.3	- 0414	-2.38 (-2.1W)	4,4	.04116	-2.65 (-1.83)	11.5	.0:47-	XOH-UO ₂ CO ₃ ° (- 12 XOH ₂ -UO ₂ (CO ₃) ₂	-2.03 (16.35)	18.7	-0389	2.38 (1600)	a7.8	.0380	-2.28 (16.16)	78,7-	
H-UO2(OH)4 ^{2.}	-22.22 (-22.22	2,4	0374	-21.65 (-21.60	28	.0369	-16.03(-16.13	53. ¥	.0691	XOH ₂ -UO ₂ (CO ₃) ¹	-5.04 (313A)	12.7	CA8 -	5.60 (30,93)	a1,6	4524	-6.59 (29.94)	61.2	-0377-
H ₂ -UO ₂ (OH)4	-1644 (-1833)	2.0	0387	-10.22 (-10.1)	2.2	.6371	-5.04 (41.93)	63.3	.6237	XOH ₁ -(UO ₂) ₂ CO ₃ (OH) ₃ °	16.27 (3810) 5.76 (284)	- 8.le		16.03 (3834)	9.1	.0514	19.59 (34.78)	70.3	.0372 .0524
H-UO2CO3°	1753 (1841)	19.5	.0SI7	17.78 (18.60	11.8	.6494	17.77 (1815	9.4	.040xp		5, fle (12,84)	16.0	.0489 -	5.78 (12.82)	15.6	.0486	6.62 (1198)	45.0	
H ₂ -UO ₇ (CO ₃) ₂	29.43 (30.46	12.5	-0519	29.68 (31.11)		.0446	30.35 (31.78)	3.3	.0391								<u> </u>		
H ₂ -UO ₂ (CO ₃), ³⁻	n.c.	<u> </u>		34.59 (36.44)	1 '	.0596	37.88 (39.75)	21.4	-C40-										
H ₂ -(UO ₂) ₂ CO ₃ (OH) ₃ °	16.62 (7.72)	10.9	.0594	16.56 (1766	11.0	.0'39lo	16.82 (17A2)	3.5	.0475										
									h				*******				uny		• • • • • • • • • • • • • • • • • • •
															******		-		
							. 1.117.0												
							'ng		****										************************
uuruun kan saan saan kan saan ka saan ka saan ka saan ka sa		*****										ma fan en mener an en		******				*****	
				******		******	******		99 (1997) 1997 (1997) 1997 (1997) 1997 (1997) 1997 (1997) 1997			and the second					****		
		ana an	****	****		*****			*****				and an and and						
***		\sim	<u> </u>			****	-01-20-02-02-02-02-02-02-02-02-02-02-02-02-		****		00000000000000000000000000000000000000		\sim						6/0070070000000000000000000000000000000
			$\overline{)}$,							anne an			******	1999 - Calendar San	
													90.98-14-24-24-28-28-28-28-28-28-28-28-28-28-28-28-28-			*****	****		

****							- Sector and a sector of the sector and a sector and a sector of the sec											*÷	
										Management of the second se				40000000000000000000000000000000000000					-06-75270-16-06-96-96-96-96-96-96-96-96-96-96-96-96-96
				****	*****							******	nin ana amin'ny faritr'ora amin'ny faritr'ora dia 1900. Ny faritr'ora dia mampiasa dia mam			un and frances and			1-10-10-10-10-10-10-10-10-10-10-10-10-10
				*****						*****************************			******		*****	/			
1							\sim		***								\sim		00 harter errez terrezek taldeste terrezek er
				-													funner an	-	

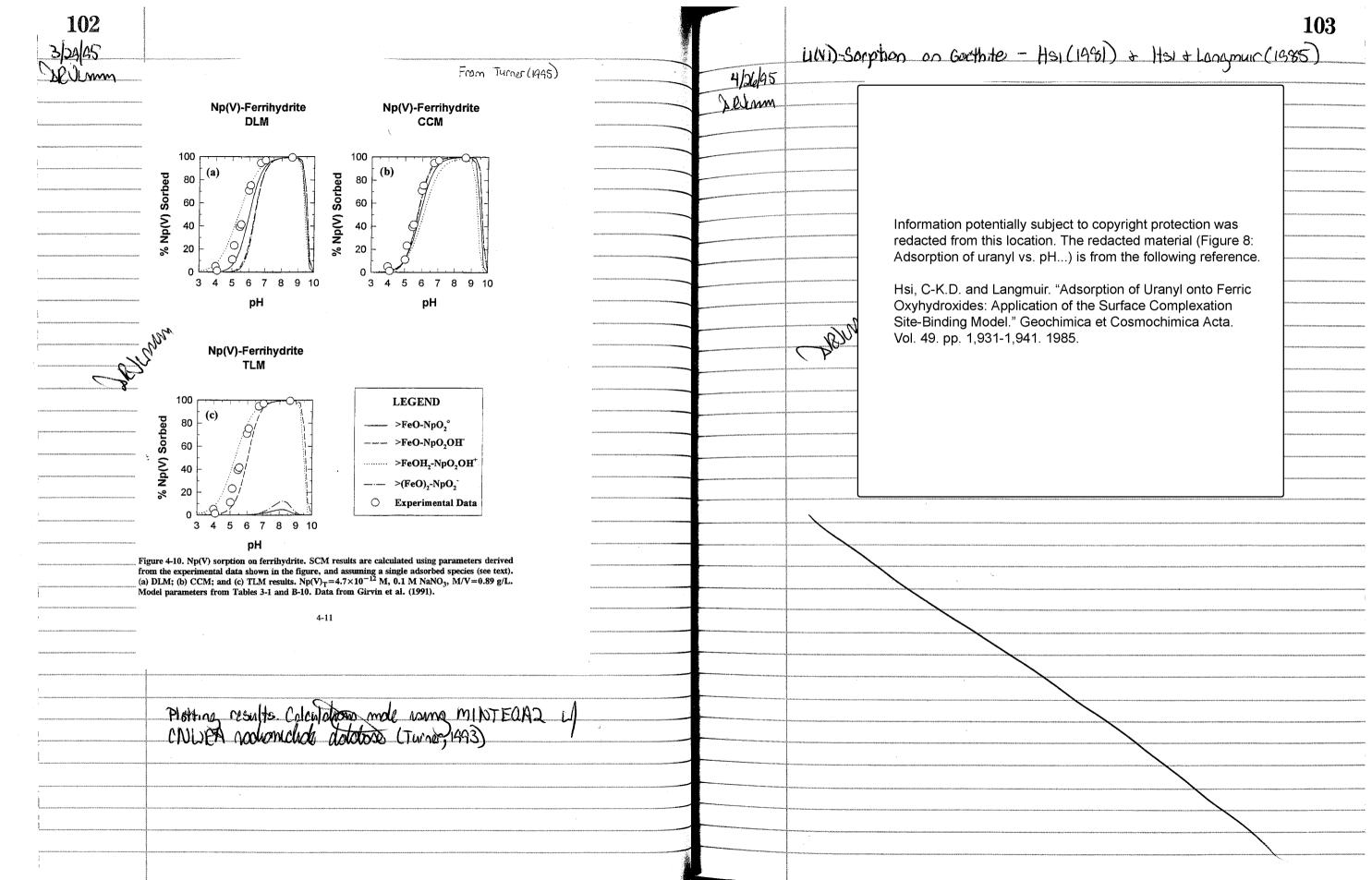
$\frac{1}{42}, \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{10000} \frac{1}{10000} \frac{1}{100000} \frac{1}{10000000} \frac{1}{10000000000000000000000000000000000$	Ar.: 50 m/b Solution Solution		QL Results:	purposes	s of convergence	e (Indi	coted by as	storish *		Sorption Binding C						- t		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Aption Binding Co								Ass: 50 m²lg Data Source: Kohler et c	ul (1942) M		Rel Error (radionuclide) 0.	13	lonic Streng N _s = 2.31 s		
But Source (198-3) Refere referenced by Color (198-3) DLM Cost CL_1(2) C_1 = 10 ² M Log K = -120 Log K K = -120 <th>TLM Log K $= 9.64$ $(-q_{-1} + 2 - b)$ Log K $= 4.65$ Log K $= 3.84$ -1.61 TLM Log K V a_{max} Log K V a_{max} Log K $= 3.84$ -1.61 4 (0.50) 1.60 V a_{max} Log K V a_{max} Log K $= 4.52$ (1.2) 4 (0.50) (1.20) Log K V a_{max} Log K V a_{max} Log K V a_{max} Log K $= 4.52$ (2.3) 4 (0.50) (2.60) 3.62 $.0543$ 3.40 0.013 3.52 (3.51) (4.61) (2.7) (2.7)<th>a: Goethite.</th><th></th><th></th><th></th><th>Ionic Strengt</th><th>th (electrolyte): 0.1</th><th>m 1 22 MO3</th><th></th><th></th><th>Log K, = 7.2</th><th></th><th></th><th></th><th>ссм</th><th></th><th>Ţ</th><th>TL</th></th>	TLM Log K $= 9.64$ $(-q_{-1} + 2 - b)$ Log K $= 4.65$ Log K $= 3.84$ -1.61 TLM Log K V a_{max} Log K V a_{max} Log K $= 3.84$ -1.61 4 (0.50) 1.60 V a_{max} Log K V a_{max} Log K $= 4.52$ (1.2) 4 (0.50) (1.20) Log K V a_{max} Log K V a_{max} Log K V a_{max} Log K $= 4.52$ (2.3) 4 (0.50) (2.60) 3.62 $.0543$ 3.40 0.013 3.52 (3.51) (4.61) (2.7) <th>a: Goethite.</th> <th></th> <th></th> <th></th> <th>Ionic Strengt</th> <th>th (electrolyte): 0.1</th> <th>m 1 22 MO3</th> <th></th> <th></th> <th>Log K, = 7.2</th> <th></th> <th></th> <th></th> <th>ссм</th> <th></th> <th>Ţ</th> <th>TL</th>	a: Goethite.				Ionic Strengt	th (electrolyte): 0.1	m 1 22 MO3			Log K, = 7.2				ссм		Ţ	TL
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	TLM (I = 0) (I = 0) Iog K V _x a_{uxx} Log K V _y <thlog k<="" th=""> Log K</thlog>	Data Source: His and La Concentration: 105 M	Snomu.r (1985)	Rel Error (rad	tionuclide): O (A)				âneros espe	priozie anice tatm	$Log K_{-} = -9,0$	6 (-a,r	5 ÷ 1=0)	$Log K_{-} = -4$	1.03 J = 0.1		$Log K_{+} = 5$ $Log K_{-} = -4.$	89
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		DLM		ССМ	4		TLM	-				·	(I-0)	·		$Log K_{Cal} = -9$ $Log K_{Aa} = -9$	10
Log K V, e.g. K V, K E.g. K V, K E.g. K V,	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$C_T = 10^{-3} \text{ m}$	$\log K_{*} = 7.24$ (7)	33 @I=O)	Log K. = 4.47 2 I= 6.	1		(6.00		Yo lio t		· · · · · · · · · · · · · · · · · · ·	1		V _Y	OLOG K	Log K	Vy
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	So $(7,78)$ $(7,$		$\log K_{-} = -4.06$	_17 _	Log K_ =-9.63 _		Log K_ =-9,84 Log K_ =-7.64	1 1000 3	0						39.0	.0543	-3.52 (-3.1A)	64.
xouo; 382 (315) 6.0	$\begin{array}{c c c c c c c c c c c c c c c c c c c $					1	$Log K_{An} = \%.5Log$	<u>6 (7.78</u>		·					45.5			45.
Action Add (315) 6.0 Add (215) 2.0 Cast (215) Cast (215) <t< td=""><td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td><td>X0.110 *</td><td></td><td></td><td></td><td>1</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>.0541</td><td></td><td>55.</td></t<>	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	X0.110 *				1										.0541		55.
Xouoon Structure	$\begin{array}{cccccccccccccccccccccccccccccccccccc$																	569
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$															1		24.5
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						1			XOH2-UO2(OH)2+								29.0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									XOH-UO ₂ (OH) ₃								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $									XOH ₂ -UO ₂ (OH) ₃ °								
$\frac{1}{2} \left(\frac{1}{2} - \frac{1}{2} \right) = \frac{1}{2} \left(\frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} \right) = \frac{1}{2} \left(\frac{1}{2} - \frac{1}{2}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									XOH-UO2(OH)42								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									XOH2-UO2(OH)4				I				
XOH-U0_(OH)_2 k_0 ? $(4_0$ A?) 2λ $.0808$ (124) 0.56 $.0587$ (1174) 0.17 $.0000$ XOH-U0_(OH)_2 k_0 ? $(4_0$ A?) 2λ $.0808$ (124) <td>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</td> <td></td> <td></td> <td>1 1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>XOH-UO2CO3</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			1 1						XOH-UO2CO3								
XOH_rUO_A(OH),i 10.48 (-10.33) 1.7 .00.480 -11.67 (-10.94) 0.559 .05.50 n.c. XOH-rUO_A(OH),i 15.24 (11.17) 7.68 .03.61 11.482 (15.76) 12.4 n.c. n.c. <td>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</td> <td>XOH-UO2(OH)42.</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>XOH₂-UO₂(CO₃)₂</td> <td>-6.15 (30.28)</td> <td>4.4</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	XOH-UO2(OH)42.								XOH ₂ -UO ₂ (CO ₃) ₂	-6.15 (30.28)	4.4						
XOH-UO,CO,* IS24 (16.17) 7.68 .0361 14.72 (15.36) 105 .0811 14.82 (15.36) $2A$.6308 XOH-UO,CO,* Zo.33 (37.40) 26.72 .6288 14.65 (38.08) 124 .0308 .0308 XOH-UO,CO,* Zo.33 (37.40) 26.72 .6288 14.65 (38.08) .74 .0283 .86.08 (24.51) .85 .0308 XOH-UO,CO,* Zo.33 (35.36) .000 .0431 .74 .0283 .86.08 (24.51) .85 .0308 XOH-UO,CO,* St.00 (35.87) 5.0 .0584 .33.23 (35.10) .000 .0434 n.c.	20A	XOH ₂ -UO ₂ (OH)4		i I						XOH ₂ -UO ₂ (CO ₃) ₃ ³	ne.	nc						
$\frac{x_{0H_{2}}u_{0A}c_{0}}{x_{0H_{2}}u_{0A}c_{0}} = \frac{2u_{0.33}}{31,20} \frac{2u_{0.7}}{5.0} = \frac{6288}{33,23} \frac{4u_{0.65}}{33,23} \frac{2u_{0.83}}{33,23} \frac{2u_{0.83}}{32,23} $	<u>78.5 1049</u>	XOH-UO2CO3•								XOH ₂ -(UO ₂) ₂ CO ₃ (OH) ₃ °	3.22(1538)	26.0	(A)A)			1		
XOH, UO, (CO,), 34. 60 (35.87) 5.0 0589 33.23 (35.10) 100 .0434 n.c		XOH2-UO2(CO3)2																d1.4
		XOH2-UO2(CO3)35	34.00 (35.87) 5.0				, , , ,									$\langle \rangle$		
J.R.V.M.		XOH ₂ -(UO ₂) ₂ CO ₃ (OH) ₃ •	10.12 (13.22) 42			.0533	14.82 (15.42)	21-7 .06								Jhi		
JAVammer						^							ana ar a da da ana ar a da da araa ar	*****			aner	
2 R. Vermen					1	16											-1	
within the second secon					4	RR/	20							******	*****			100 ALC
						VG	men		2.100.000000	**********	on a sur							
				***			-1						*****			****		
												\searrow						
		*****								*****								
																		teresti teresti anno

......

.


91 90 Weighted results using methods outlined in Dzombak + Marel(1990) Uranium Sorption Binding Constants Monodentate, mononuclear compounds Combined/Weighted "Best Estimates" for U(Vi)- Boothite Solid: Goeth He An: 50 m²/4 Data Source: Ast Langment (835; Kohkr es al. (1432) Concentration: Ionic Strength (electrolyte): N_s = 2.31 sites/nm² TLM (I=0) H+L(85) Koh (92) DLM (I=0) CCM (I-0.1) 156 m $Log K_{+} = 6.47$ $Log K_{-} = -4.03$ Log K₊ = 6.00Log K₋ = -16.00Log K_{cat} = -7.64Log K_{Aa} = -7.64 $Log K_{+} = 7.33$ $Log K_{-} = -9.17$ No CU G=10²M NO COZ 2102 atm Corrected to I=O I=0.0 9590 C-1 TLOS K 67=15=m 15-3.5 atm 9590 C.L. 9590 C.L. V, Vy Log K Vγ Log K Log K xo-uo1+ (n=6) 0.64 0.64 -1.97 138 3.40 3.00 XOH-UO22+ 1.57 9.98 643 10.37 0.78 0.79 n=6 xo-UozoH° n=6 -6.74 0.88 -3.73 -413 0.68 0.75 XOH-UO20H* DEL 0.64 0.64 1.37 0.96 3.40 3.00 XO-UO2(OH)2 156 0.89 0.78 -11.35 0.76 -11-00 -11.11 -4.01 XOH-UO2(OH)2 いこん -3.73 0.75 -4,13 0.68 0,68 0.64 4.03 672 XOH2-UO2(OH)2* n=(e 3.40 0.64 300 -9.84 XOH-UO2(OH); h= 6 1.22 0.84 0,78 -11,00 -)(JI 1,07 XOH2-UO2(OH)3 h=6 -3.73 0.75 -4,13 0.68 -2D XOH-UO2(OH)42 02 (0 1.34 1.0A 2,43 - 19,52 -16.0% -19.20 0.89 -7.14 2.74 XOH_UO2(OH) - n=(0.76 -11.00 -11.1) 1.04 XOH-UO2CO3. 0.76 1644 1.02 16.54 16.23 7:4 0.49 1.41 CA.HL 30.09 XOH2-UO2(CO3)2 29.70 1.16 n:3 0-2 3.74 # 2.35 W 3:14 35.44 15.50 15.50 2.41 XOH2-UO2(CO3)35 10,01 36.55 37.03 N2) h:1 1.93 XOH₂-(UO₂)₂CO₃(OH)₃° 1.70 14.34 14.76 J. E. Verney DRJ 11/22/94

92 8/12/44 DRJ	Sample hand calculations for spreadsheet calculation of AHr. Sources of AHr values discussed on pg. 2-4, this values Also calculates molecular weight of complex	3/12/94 DRJ	93 Conversion of Surface Charge date (JUC/cm2) to TotalH+ (JOTH)
	$\begin{split} \hline \begin{array}{c c c c c c c c c c c c c c c c c c c $		$\frac{type of solid:}{transformation of the source of data:} +VDROUS FERRIC OXIDEsource of data: VATES (1375) (ONIC STRENSTH (nol/L) = .01 SURFACE AREA (sc. n/g) = 257 SOLID CON((g/L) = 1.2 DH SURFACE CHARGE TOTH LC/sc. cn user/go mol/L mol/L 4.825 Sol.644 815.725 1.143E-83 1.3375-83 4.339 20.839 746.831 1.442E-83 1.3375-83 5.344 120.889 556.487 7.738E-84 7.8425-84 5.345 1.439 236.961 2.5375 84 5.5375-84 5.756 7.455 196.961 7.738E-84 7.7355-84 7.735 1.459 19.784 1.678E-84 7.7355-84 7.735 1.459 1.159 7.1081-84 7.158E-84 5.419 7.255 7.551 1.1.98E-84 1.678E-84 5.419 7.255 7.551 1.1.98E-84 1.678E-84 5.419 7.255 7.551 7.38E-84 7.386E-84 5.419 7.354 1.452 7.551 7.38E-84 7.386E-84 5.419 7.355 1.155 7.551 7.58E-84 7.386E-84 5.419 7.355 7.551 7.58E-84 7.386E-84 5.419 7.386 7.551 7.591 7.386E-84 7.386E-84 5.419 7.385 7.551 7.595 7.51 7.58E-84 7.386E-84 5.419 7.385 7.551 7.595 7.591 7.386E-84 7.386E-84 5.419 7.385 7.551 7.595 7.591 7.386E-84 7.386E-84 5.419 7.385 7.551 7.595 7.591 7.386E-84 7.595E-84 5.419 7.385 7.551 7.595 7.591 7.58E-84 5.419 7.555 7.591 7.585 7.591 7.58E-84 7.386E-84 5.419 7.595 7.551 7.591 7.585 7.591 7.585 7.591 7.585 7.591 7.585 7.591 7.585 7.591 7.585 7.591 7.585 7.591 7.585 7.591 7.596E-84 5.419 7.595 7.591 7.595 7.591 7.595 7.591 7.595 7.591 7.596E-84 5.419 7.595 7.591 7.595 7.591 7.595 7.591 7.596E-84 7.595E-84 5.685 7.595 7.591 7.595 7.591 7.595 7.591 7.595 7.591 7.595 7.591 7.595 7.591 7.595 7.591 7.595 7.591 7.595 7.591 7.595 7.595 7.595 7.595 7.595 7.595 7.595 7.595 7.595 7.595 7.595 7.595 7.595 7.595 $


10000

94 8/12/94 DRJ					3/12/94 2/82	Somp confu	ble colculo lence limit	tions for ts. All sul	determining sequent space	best estimate L Idsheet calculation	.og K volues on ions are made i	1 3590 n this me	JJ .005
$\mu eq/g \text{ to moles charge/L:}$ $(816.245 \ \mu eq/g)*(10^{-6} \text{ moles})$ $moles charge/L \text{ to TOTH}$ $0.0011427 + 10^{-4.025} - 10^{-6}$ $where \log \gamma \text{ is the activity}$ $\log \gamma = [2(-0.508 \ *\{[SQ]] \}]$	I.S. 0.01 0.02 (in mol/L): (in mol/L): (in coefficient for the ic RT(0.01)]/[1 + SQR	$(1/F) = 816.245 \ \mu eq/g$ 4.61 $\mu C/\mu eq$ 0.0011427 motes ch 012371 mol H+/L onic strength (I.S.), calc RT(0.01)] - 0.24*(0.01)	culated using the Davies	03 1.2371e-03 03 1.0948e-03 04 9.4617e-04 04 7.8807e-04 04 6.9113e-04 04 5.5758e-04 04 4.0388e-04 04 2.7850e-04 04 1.6754e-04 04 1.6754e-04 05 4.2627e-05 05 -4.3456e-05 04 -5.7078e-04		Jointhase et al. (1985) Computation of Varientye ¹ Log K values Computation of Varientye ¹ Log K values Computation of Varientye ¹ Log K values I=0AK DLM CCM TLM DLM CCM TLM N=0K Log K values Log K values Log K values Log K values Same Sx continn Sum Sx continn Sum Surf Comp Log K values Log K values Log K values Log K values Same Sx continn Sum Sx continn Sum	Control All 0.023 J. 0.023 Control Con	Re(y)=16/11 M (a) <	The analysis used here is from Deemback (1986) and Deomback and theored (1996) The analysis used here is from Deemback (1986) and Deomback and theored (1996) Calculating Best-Fit Log K ~ Example For com? $\sum \frac{1}{h_{c}} = (\text{sum 1/sig K}) = \frac{1}{\text{sig k}}, \frac{1}{s_{1}s_{1}}, \frac{1}{s_{1}}, \frac{1}{s_{2}} = [38, 3]53$	$\frac{1}{10^{-11}} = \frac{1}{10^{-11}} = \frac{1}$	She confidence limit nee $S_x^2 = \sum_{i=1}^{n} (u_i f_i)_i (logk_i - limit)$	e there are a values), # le-tailed students t-di	$\int 2^{2} h \cos(1) \sin \frac{1}{2} \left(\int_{x_{0}}^{2} \right) \left(\int_{x_{0}}^{2} \right) = (10, 30) \text{ H} = \frac{12, 5598}{2, 5598} V$

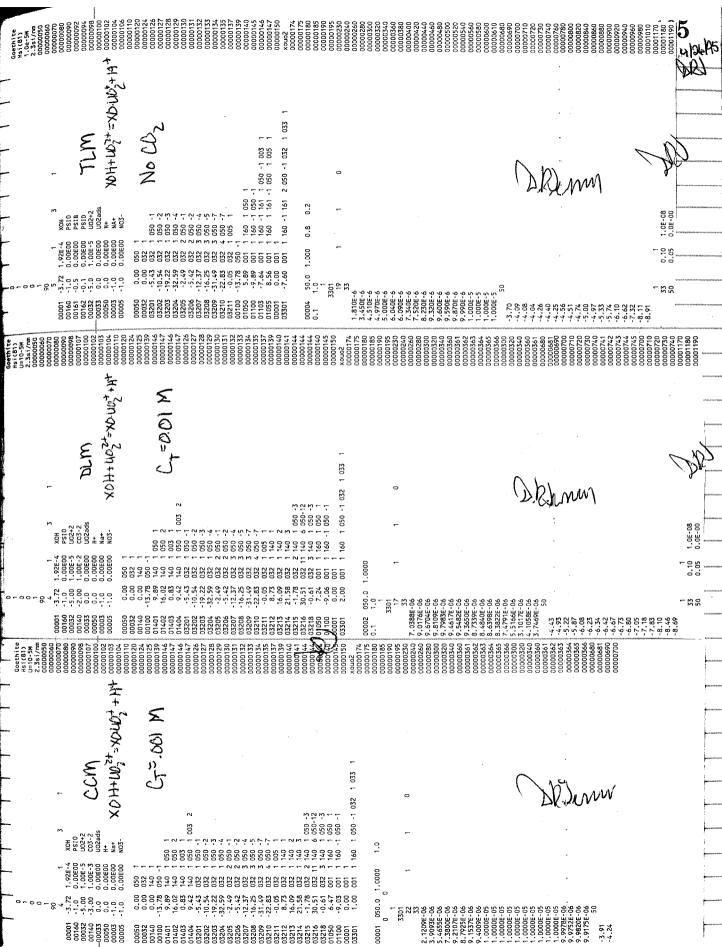
96 8/12/44	Reference List for some of the data sources identified in this	8/12/94	Reference List-continued
QRI	scientific notebook	- ACU	
Providence and a second s	bendroth, R.P. 1970. Behavior of pyrogenic silica in aqueous electrolytes. Journal of Colloid and Interface Science 34:591-596.		Moulin, V., D. Stammose, and G. Ouzounian. 1992. Actinide sorption at oxide-water interfaces: Application to α alumina and amorphous silica. Applied Geochemistry Supplemental Issue 1:163-166.
	rube, Y.G., and P.L. de Bruyn. 1968. Adsorption at the rutile-solution interface. 1. Thermodynamic and experimental study. Journal of Colloid and Interface		Murray, J.W. 1974. The surface chemistry of hydrous manganese dioxide. Journal of Colloid and Interface Science 46:357-371.
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			Nakayama, S., and Y. Sakamoto. 1991. Sorption of neptunium on naturally-occurring iron-containing minerals. Radiochimica Acta 52/53:153-157.
•	olt, G.H. 1957. Determination of the charge density of silica soils. Journal of Physical Chemistry 61:1166-1169.		Payne, T.E., and T.D. Waite. 1991. Surface complexation modelling of uranium sorption data obtained by isotope exchange techniques. Radiochimica Acta 52/53:487-493.
	uts, J.G., and D. Langmuir. 1986. Adsorption of Cu, Pb and Zn by δ-MnO ₂ : Applicability of the site binding surface complexation model. Applied sectometers 1:255-264.		Payne, T.E., K. Sekine, J.A. Davis, and T.D. Waite. 1992. Modeling of radionuclide sorption processes in the weathered zone of the Koongarra ore body. P.
	wis, J.A. 1977. Adsorption of Trace Metals and Complexing Ligands at the Oxide/Water Interface. Ph.D. Dissertation, Stanford University: Stanford, CA.		Duerden, ed. Alligator Rivers Analogue Project Annual Report, 1990-1991. Australian Nuclear Science and Technology Organization (ANSTO):57-85.
D ac	wis, J.A., and J.O. Leckie. 1978. Surface ionization and complexation at the oxide/water interface 2. Surface properties of amorphous iron oxyhydroxide and source of the		Regazzoni, A.E., M.A. Blesa. and A.J.G. Maroto. 1983. Interfacial properties of zirconium dioxide and magnetite. Journal of Colloid and Interface Science 91:560-570.
, D	vis, J.A., and J.O. Leckie. 1979. Speciation of adsorbed ions at the oxide water interface. Chemical Modeling in Aqueous Systems, Speciation, Sorption, lubility, and Kinetics. E A. Jenne, ed. ACS Symposium Series 93. Washington, D.C.:American Chemical Society: 299-317.		Ricse, A.C., Adsorption of Radium and Thorium onto Quartz and Kaolinite: A Comparison of Solution/Surface Equilibria Models. Ph.D. Dissertation. Colorado School of Mines: Golden, CO.
D	vis, J.A., R.O. James, and J.O. Leckie. 1978. Surface ionization and complexation at the oxide/water interface 1. Computation of electrical double layer operaties in simple electrolytes. Journal of Colloid and Interface Science 63:480-499.		Righetto, L., G. Bidoglio, B. Marcandalli, and I.R. Bellobono. 1988, Surface interactions of actinides with alumina colloids. Radiochimica Acta 44/45:73-75.
D	vis, J.A., and D.B. Kent. 1990. Surface complexation modeling in aqueous seechemistry. Paviant in Mineralacu, Values 23, Marcula Values 24, Ma		Righetto, L., G. Bidoglio, G. Azimonti, and I.R. Bellobono. 1991. Competitive actinide interactions in colloidal humic acid-mineral oxide systems. Environmental Science and Technology 25: 1913-1919.
1	benemany. M.F. Hochena, Jr. and A.F. White, eds. Washington, DC: Mineralogical Society of America: 177-260.		Sanchez, A.L., J.W. Murray, and T.H. Sibley. 1985. The adsorption of plutonium IV and V on goethite. Geochimica et Cosmochimica Acta 49:2297-2307.
	lla Mea, G., J.C. Dran, V. Moulin, J.C. Petit, J.D.F. Ramsay, and M. Theyssier. 1992. Scavenging properties of inorganic particles toward heavy elements.		Sprycha, R. 1984. Surface charge and adsorption of background electrolyte ions at anatase/electrolyte interface. Journal of Colloid and Interface Science 102:173-185.
Da Te	ombak, D.A. 1986. Toward a Uniform Model for the Sorption of Inorganic Ions on Hydrous Oxides. Ph.D. Dissertation. Massachuseus Institute of		Sprycha, R. 1989. Electrical double layer at alumina/electrolyte interface. Journal of Colloid and Interface Science 127:1-11.
Dz	manake, DAL 1960. Toward a Onlyin model for the Sorption of Inorganic tons on Hydrous Oxides. Ph.D. Dissertation. Massachusetts Institute of pmbak, D.A., and F.M.M. Morel. 1990. Surface Complexation Modeling: Hydrous Ferric Oxide. New York: John Wiley and Sons.		Stammose, D., J.M. Dolo. 1990. Sorption of americium at trace levels on a clay mineral. Radiochimica Acta 51:189-193.
Gi	vin, D.C., L.L. Ames, A.P. Schwab, and J.E. McGarrah. 1991. Neptunium adsorption on synthetic amorphous iron oxyhydroxide. Journal of Colloid and		Swallow, K.C. 1978. Adsorption of Trace Metals by Hydrous Ferric Oxide. Ph.D. Dissertation. Massachusetts Institute of Technology: Cambridge, MA.
Ha Ma	res, K.F., G. Redden, W. Ela, and J.O. Leckie. 1990. Application of Surface Complexation Models for Radionuclide Adsorption: Sensitivity Analysis of del Input Parameters. NUREG/CR-5547. U.S. Nuclear Regulatory Commission: Washington, D.C.		Tripathi, V.S. 1984. Uranium(VI) Transport Modeling: Geochemical Data and Submodels. Ph.D. Dissertation. Stanford, California: Stanford University. Venkataramani, B., and A.R. Gupta. 1991. Effect of anions on the sorption of uranyl ions on hydrous oxides: Application of the surface hydrolysis model.
	res, K.F., G. Redden, W. Ela, and J.O. Leckie. 1991. Surface complexation models: An evaluation of model parameter estimation using FITEQL and oxide		Colloids and Surfaces 53:1-19.
	and and sound of conois and interface science 142:448-469.		Yates, D.A. 1975. The Structure of the Oxide/Aqueous Electrolyte Interface. Ph.D. Dissertation. University of Melbourne; Melbourne, Australia. Yates, D.A., and T.W. Healy. 1975. Mechanism of anion adsorption at the ferric and chromic oxide/water interfaces. Journal of Colloid and Interface Science
	C-K.D. 1981. Sorption of Uranium(VI) by Iron Oxides. Ph.D. Dissertation. Golden, Colorado: Colorado School of Mines.		анализичениения 52:222-228. Эмператоры (1997)
	C-K.D. and D. Langmuir. 1985. Adsorption of uranyl onto ferric oxyhydroxides: Application of the surface complexation site-binding model. Geochimica		Zachara, J.M., D.C. Girvin, R.L. Schmidt, and C.T. Resch. 1987. Chromate adsorption on amorphous iron oxyhydroxide in the presence of major groundwater ions. Environmental Science and Technology 21:589-594.
1	ng, C.P., and W. Stumm. 1972. The specific surface area of γ-Al ₂ O ₃ . Surface Science 32:287-296.		
)	ter, K.A., D.J. Hawke, and L.K. Choo. 1988. Equilibrium adsorption of thorium by metal oxides in marine electrolytes. Geochimica et Cosmochimica Acta		
Jan Col	es, R,O., and G. Parks. 1982. Characterization of aqueous colloids by their electrical double-layer and intrinsic surface chemical properties. Surface and oid Science 12:119-216.		
	ler, M., E. Wieland, and J.O. Leckie. 1992. Metal-ligand-surface interactions during sorption of uranyl and neptunyl on oxides and silicates. Proceedings of ^A International Symposium on Water-Rock Interaction - WRI-7. Volume 1: Low Temperature Environments. Y.K. Kharaka and A.S. Maest, eds. Rotterdam: Balkema.		
Knu	parkenna. pka, K.M., R.L. Erikson, S.V. Mattigod, J.A. Schramke, and C.E. Cowan. 1988. <i>Thermochemical Data Used by the FASICHEM Package</i> . EPRI-EA- 2, Palo Alto, California:Electric Power Research Institute (EPRI).		
, LaF	amme, B.D., and J.W. Murray. 1987. Solid/Solution Interaction: The effect of carbonate alkalinity on adsorbed thorium. Geochimica et Cosmochimica 51:243-250.		
Lies	r, K.H., and B. Thybusch. 1988. Sorption of uranyl ions on hydrous titanium dioxide. Fresenius Zeitschrift für Analytisch Chemie 332:351-357.		
Mes	nere, K.L.G. 1992. Adsorption and Dissolution Reactions Between Oxalate, Chromate, and an <u>Iron</u> Oxide Surface: Assessment of Current Modeling repts. Ph.D. Dissertation. Oregon Graduate Institute of Science and Technology: Beaverton, OR.		
	•		



					<b>101</b> 3/29/45 Delimm	
1991)	Rel Error (pH): (a) Abs Error (pH): (a) Rel Error (radionuclide): 0.10	Ionic Streng $N_s = 2.31 \text{ s}$ M/V = 0.89	sites/nm ²	1 M NaNO3		
DLM Log K _* = 7.29 Log K __ = -8.93			$Log K_{-} = -10.0$ $Log K_{Cat} = -7.6$	.00 66 ))	2)cama	
Log K         Vγ           -3.02         8.9           5.04         9.8	σ _{1rg K} Log K         V.           .0219         -2.83         7.9           .0216         4.65         12.2	γ σ _{Log K} .0225 .0211	Log K -5.97	Vγ         σLog K           77.0         .0256           81.9         .0277		
-11.08         8.3           -3.02         8.9           5.04         9.8	.0222         -10.35         8.1           .0219         -2.83         7.9           .0216         4.65         12.2	.0242 .0225 .0211	-2.90	8.1 .0223		
-8.28 8.3 pH to allow convergence for extr	.0222 -7.37 9.0 tremely low radionuclide concentrations.	.0250	-10.69	65.3 .0226		
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~						
91) F	Rel Error (pH): (a) Abs Error (pH): (a) Rel Error (radionuclide): 0.10	Ionic Strength $N_s = 2.31$ sit	ites/nm ²	M NaNO3		
DLM Log K ₊ = 7.29 Log K_ = -8.93		1	$Log K_{+} = 6.00$ $Log K_{-} = -10.00$)4mm	
			$Log K_{An} = 8.43$			
-2.85 1.6 . 4.56 1.6 .	.0308 -2.68 2.9 .0278 4.85 0.7	.0320	-5.63 64 2.05 74	64.0 .0270 74.7 .0295		
-2.85 1.6 .	.0452 -10.24 7.0 .0308 -2.68 2.9 .0278 4.85 0.7	.0352 .0320 .0291	-2.75 2.	2.5 .0316		
-7.08 21.9 .	.0492 -7.28 8.8	.0366	-10.36 42	12.4 .0245		
H to allow convergence for extre	remely low radionuclide concentrations.					
EITEC	22 results					
		~~~~~~				
çanan manana manan manan kara kara kara kara kara kara kara						
1991) 	$\begin{array}{c} 1) \\ -12 \text{ M} \\ \hline \\ -12 \text{ M} \\ \hline \\ -12 \text{ M} \\ \hline \\ -12 \text{ M} \\ \hline \\ -13 \text{ M} \\ \hline \\ -108 \text{ 8.9} \\ \hline \\ -3.02 \text{ 8.6} \\$	Rel Error (pH): (a) Abs Error (radionuclide): 0.10 Abs Error (radionuclide): 4.7E-16 M         DLM       CCC         Log K = 7.29 .og K = 7.29 .og K = -8.93       Log K & TE-16 M         Log K       Vy $\sigma_{log K}$ Log K       V         3.02       8.9       .0219       -2.83       7.9         5.04       9.8       .0216       4.65       12.2         11.08       8.3       .0222       -10.35       8.1         3.02       8.9       .0219       -2.83       7.9         5.04       9.8       .0216       4.65       12.2         11.08       8.3       .0222       -10.35       8.1         3.02       8.9       .0216       4.65       12.2         8.28       8.3       .0222       -7.37       9.0         to allow convergence for extremely low radionuclide concentrations         Rel Error (pH): (a) Abs Error (radionuclide): 0.10 Abs Error (radionuclide): 0.10 Abs Error (radionuclide): 4.5E-15 M         DLM       CCC         Log K_+ = 7.29 Ig K = -8.93         Log K_+ = 7.35 Log K = -8.45         Log K_+ = 7.35 Log K = -8.45 <th cols<="" td=""><td>Abs Error (pI): (a) Rel Error (radionuclide): 4.7E-16 M       N₂ = 2.31 M/V = 0.1         DLM       CCM         $cog K_{+} = 7.29$ $cog K_{-} = -8.93$       Log K Vr       $\sigma_{Log K}$         10       9.8       0.219       -2.83       7.9       0.0225         5.04       9.8       0.216       4.65       12.2       0.211         11.08       8.3       0.0222       -10.35       8.1       0.0242         3.02       8.9       0.216       4.65       12.2       0.211         11.08       8.3       0.0222       -10.35       8.1       0.0242         3.02       8.9       0.216       4.65       12.2       0.211         8.28       8.3       0.0222       -7.37       9.0       0.0250         to allow convergence for extremely low radionuclide: 0.10 Abs Error (rpl): (a) Abs Error (rpl): (a) Abs Error (radionuclide): 0.10 Abs Error (radionuclide): 0.10 Abs Error (radionuclide): 4.5E-15 M       Ionic Strengt N₂ = 2.31 s M/V = 0.89         1 M       DLM       CCM         DLM       CCM         ug K_* = 7.29 ug K_* = 7.29 Jug K_* = -8.45       Log K_* = 7.35 Log K_* = -7.35 Log K_* = -8.45       0.320         56       1.6       0.308       -2.68       2.9       0.320         <td< td=""><td>Ref Error (pH): (a) Abs Error (radionuclide): 0.10 Abs Error (radionuclide): 4.7E-16 M         Ionic Strength (electrolyte): 0. N₂ = 2.31 sites/mm² M/V = 0.89 g/L           DLM         CCM         Log K = -6.0 Log K = -8.53         Log K = -7.35 Log K = -8.45         Log K = -6.0 Log K = -7. Soft = -7.29 Log K = -8.45           3.02         8.9         0.219         -2.83         7.9         0.225         -5.97           3.04         9.8         .0216         4.65         12.2         .0211         1.71           11.08         8.3         .0222         -10.35         8.1         .0242         -10.68           3.02         8.9         .0216         4.65         12.2         .0211         1.71           11.08         8.3         .0222         -10.35         8.1         .0242         -10.68           3.02         8.9         .0216         4.65         12.2         .0211         4.87           8.28         8.3         .0222         -7.37         9.0         .0250         -10.69           10         Mb Error (radionuclide): 0.10 Abs Error (radionuclide): 4.5E-15 M         Kinsc Strength (electrolyte): 0.1 N₈ = 2.31 sites/mm² M/V = 0.89 g/L           11         DLM         CCM         Ionic Strength (electrolyte): 0.1 N₈ = 2.31 sites/m² M/V = 0.89 g/L</td><td>Net Error (pi): (a) Abs Error (radioucidic): 0.10 Abs Error (radioucidic</td></td<></td></th>	<td>Abs Error (pI): (a) Rel Error (radionuclide): 4.7E-16 M       N₂ = 2.31 M/V = 0.1         DLM       CCM         $cog K_{+} = 7.29$ $cog K_{-} = -8.93$       Log K Vr       $\sigma_{Log K}$         10       9.8       0.219       -2.83       7.9       0.0225         5.04       9.8       0.216       4.65       12.2       0.211         11.08       8.3       0.0222       -10.35       8.1       0.0242         3.02       8.9       0.216       4.65       12.2       0.211         11.08       8.3       0.0222       -10.35       8.1       0.0242         3.02       8.9       0.216       4.65       12.2       0.211         8.28       8.3       0.0222       -7.37       9.0       0.0250         to allow convergence for extremely low radionuclide: 0.10 Abs Error (rpl): (a) Abs Error (rpl): (a) Abs Error (radionuclide): 0.10 Abs Error (radionuclide): 0.10 Abs Error (radionuclide): 4.5E-15 M       Ionic Strengt N₂ = 2.31 s M/V = 0.89         1 M       DLM       CCM         DLM       CCM         ug K_* = 7.29 ug K_* = 7.29 Jug K_* = -8.45       Log K_* = 7.35 Log K_* = -7.35 Log K_* = -8.45       0.320         56       1.6       0.308       -2.68       2.9       0.320         <td< td=""><td>Ref Error (pH): (a) Abs Error (radionuclide): 0.10 Abs Error (radionuclide): 4.7E-16 M         Ionic Strength (electrolyte): 0. N₂ = 2.31 sites/mm² M/V = 0.89 g/L           DLM         CCM         Log K = -6.0 Log K = -8.53         Log K = -7.35 Log K = -8.45         Log K = -6.0 Log K = -7. Soft = -7.29 Log K = -8.45           3.02         8.9         0.219         -2.83         7.9         0.225         -5.97           3.04         9.8         .0216         4.65         12.2         .0211         1.71           11.08         8.3         .0222         -10.35         8.1         .0242         -10.68           3.02         8.9         .0216         4.65         12.2         .0211         1.71           11.08         8.3         .0222         -10.35         8.1         .0242         -10.68           3.02         8.9         .0216         4.65         12.2         .0211         4.87           8.28         8.3         .0222         -7.37         9.0         .0250         -10.69           10         Mb Error (radionuclide): 0.10 Abs Error (radionuclide): 4.5E-15 M         Kinsc Strength (electrolyte): 0.1 N₈ = 2.31 sites/mm² M/V = 0.89 g/L           11         DLM         CCM         Ionic Strength (electrolyte): 0.1 N₈ = 2.31 sites/m² M/V = 0.89 g/L</td><td>Net Error (pi): (a) Abs Error (radioucidic): 0.10 Abs Error (radioucidic</td></td<></td>	Abs Error (pI): (a) Rel Error (radionuclide): 4.7E-16 M       N ₂ = 2.31 M/V = 0.1         DLM       CCM $cog K_{+} = 7.29$ $cog K_{-} = -8.93$ Log K Vr $\sigma_{Log K}$ 10       9.8       0.219       -2.83       7.9       0.0225         5.04       9.8       0.216       4.65       12.2       0.211         11.08       8.3       0.0222       -10.35       8.1       0.0242         3.02       8.9       0.216       4.65       12.2       0.211         11.08       8.3       0.0222       -10.35       8.1       0.0242         3.02       8.9       0.216       4.65       12.2       0.211         8.28       8.3       0.0222       -7.37       9.0       0.0250         to allow convergence for extremely low radionuclide: 0.10 Abs Error (rpl): (a) Abs Error (rpl): (a) Abs Error (radionuclide): 0.10 Abs Error (radionuclide): 0.10 Abs Error (radionuclide): 4.5E-15 M       Ionic Strengt N ₂ = 2.31 s M/V = 0.89         1 M       DLM       CCM         DLM       CCM         ug K_* = 7.29 ug K_* = 7.29 Jug K_* = -8.45       Log K_* = 7.35 Log K_* = -7.35 Log K_* = -8.45       0.320         56       1.6       0.308       -2.68       2.9       0.320 <td< td=""><td>Ref Error (pH): (a) Abs Error (radionuclide): 0.10 Abs Error (radionuclide): 4.7E-16 M         Ionic Strength (electrolyte): 0. N₂ = 2.31 sites/mm² M/V = 0.89 g/L           DLM         CCM         Log K = -6.0 Log K = -8.53         Log K = -7.35 Log K = -8.45         Log K = -6.0 Log K = -7. Soft = -7.29 Log K = -8.45           3.02         8.9         0.219         -2.83         7.9         0.225         -5.97           3.04         9.8         .0216         4.65         12.2         .0211         1.71           11.08         8.3         .0222         -10.35         8.1         .0242         -10.68           3.02         8.9         .0216         4.65         12.2         .0211         1.71           11.08         8.3         .0222         -10.35         8.1         .0242         -10.68           3.02         8.9         .0216         4.65         12.2         .0211         4.87           8.28         8.3         .0222         -7.37         9.0         .0250         -10.69           10         Mb Error (radionuclide): 0.10 Abs Error (radionuclide): 4.5E-15 M         Kinsc Strength (electrolyte): 0.1 N₈ = 2.31 sites/mm² M/V = 0.89 g/L           11         DLM         CCM         Ionic Strength (electrolyte): 0.1 N₈ = 2.31 sites/m² M/V = 0.89 g/L</td><td>Net Error (pi): (a) Abs Error (radioucidic): 0.10 Abs Error (radioucidic</td></td<>	Ref Error (pH): (a) Abs Error (radionuclide): 0.10 Abs Error (radionuclide): 4.7E-16 M         Ionic Strength (electrolyte): 0. N ₂ = 2.31 sites/mm ² M/V = 0.89 g/L           DLM         CCM         Log K = -6.0 Log K = -8.53         Log K = -7.35 Log K = -8.45         Log K = -6.0 Log K = -7. Soft = -7.29 Log K = -8.45           3.02         8.9         0.219         -2.83         7.9         0.225         -5.97           3.04         9.8         .0216         4.65         12.2         .0211         1.71           11.08         8.3         .0222         -10.35         8.1         .0242         -10.68           3.02         8.9         .0216         4.65         12.2         .0211         1.71           11.08         8.3         .0222         -10.35         8.1         .0242         -10.68           3.02         8.9         .0216         4.65         12.2         .0211         4.87           8.28         8.3         .0222         -7.37         9.0         .0250         -10.69           10         Mb Error (radionuclide): 0.10 Abs Error (radionuclide): 4.5E-15 M         Kinsc Strength (electrolyte): 0.1 N ₈ = 2.31 sites/mm ² M/V = 0.89 g/L           11         DLM         CCM         Ionic Strength (electrolyte): 0.1 N ₈ = 2.31 sites/m ² M/V = 0.89 g/L	Net Error (pi): (a) Abs Error (radioucidic): 0.10 Abs Error (radioucidic

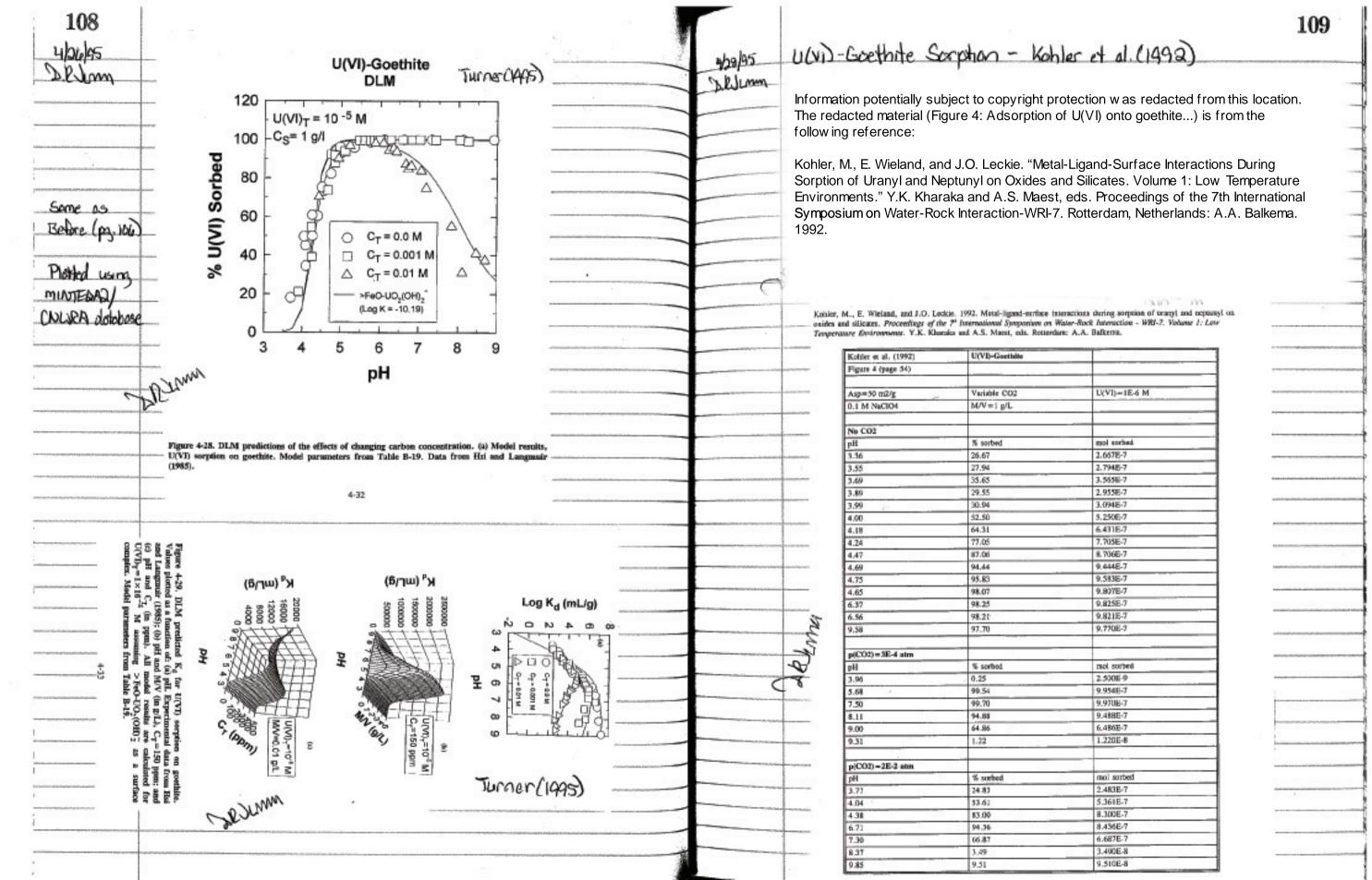


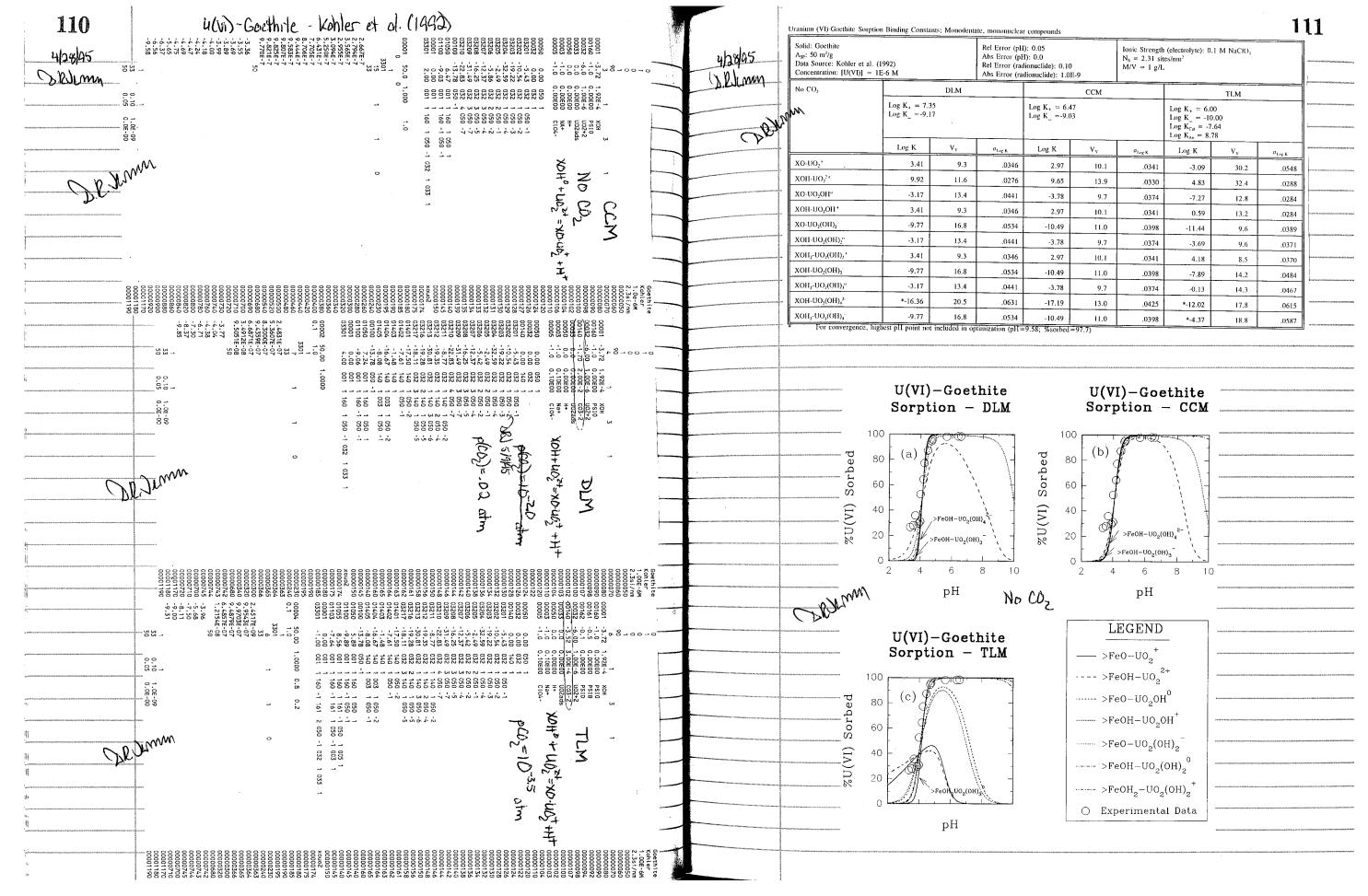
104 4/26/45 DEJum

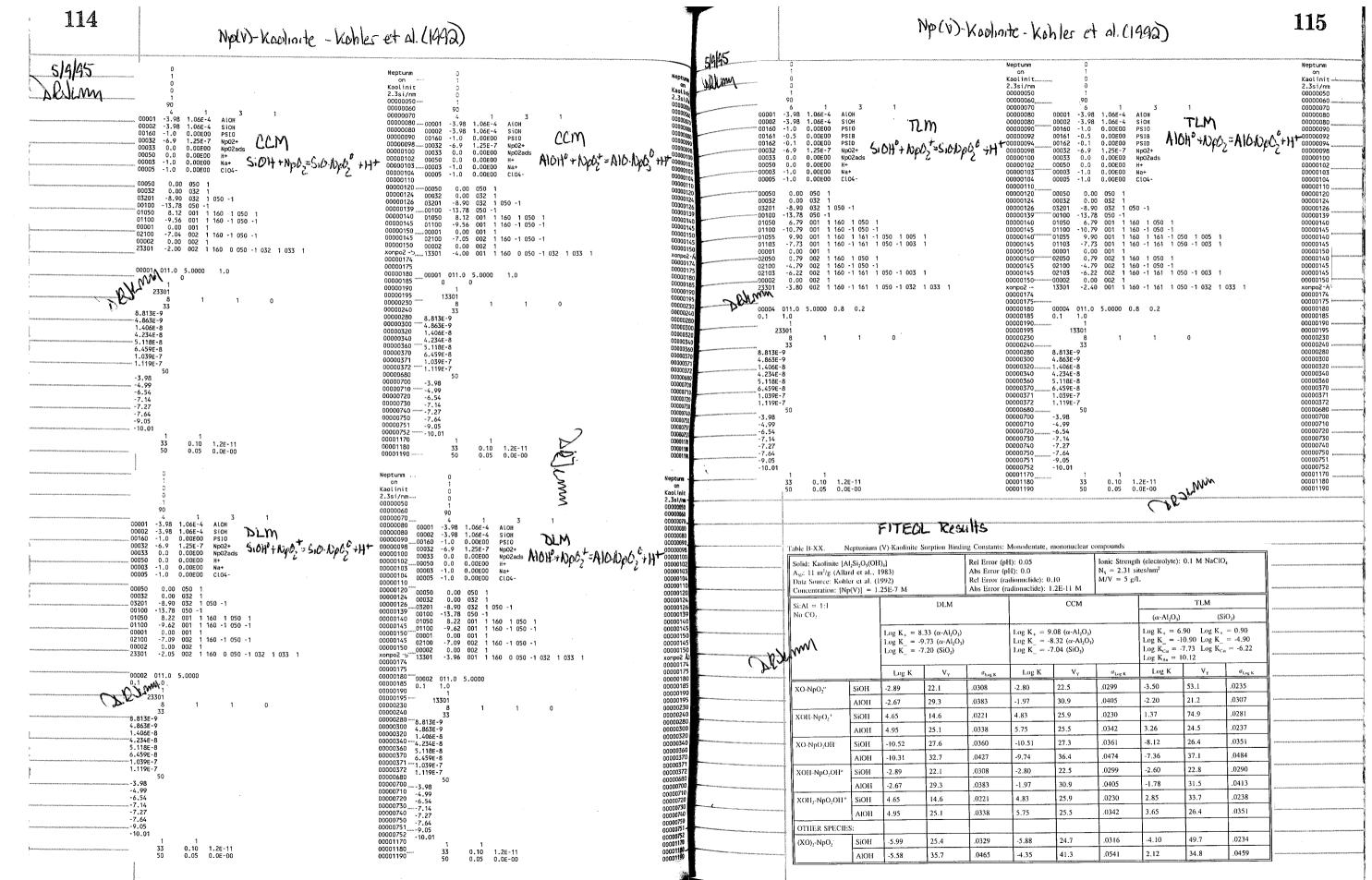

Hsi, C-K.D, and D. Langmuir. 1985. Adsorption of uranyl onto ferric oxyhydroxides: Application of the surface complexation site-binding model. *Geochimica et Cosmochimica Acta* 49: 1931-1941.

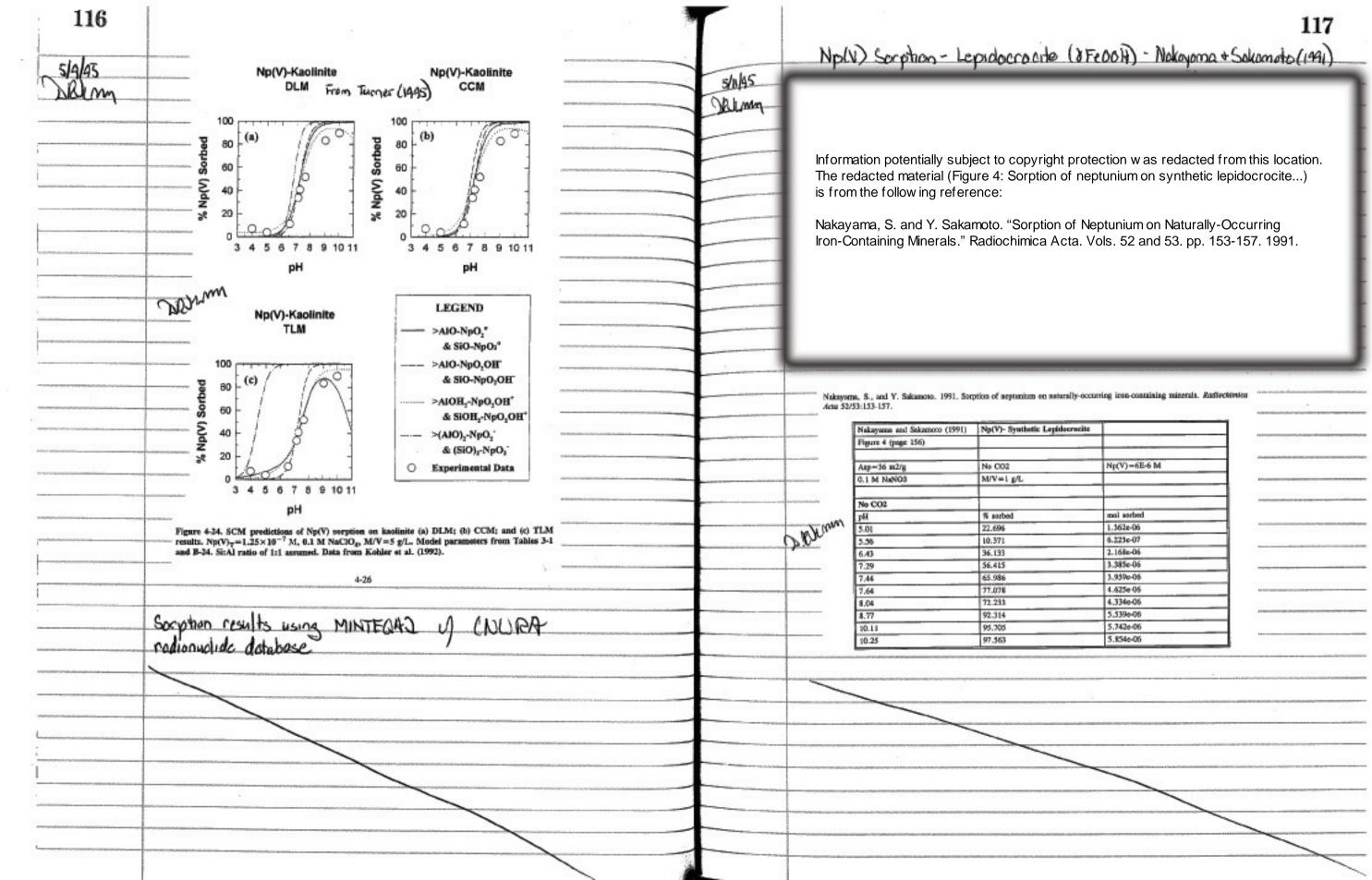
Also:

Hsi, C-K.D. 1981. Sorption of Uranium(VI) by Iron Oxides. Ph.D. Dissertation. Golden, CO: Colorado School of Mines.


gmuir (1985) U(VI)-Goethite	Hsi (1981)	4.75
ge 1939)	Figures 10 and 64	4.85
		4.84
/g M/V=1 g/L		5.10
D3 1E-5 M		5.47
		5.59
		5.73
%sorbed	mol sorbed	5.84
		5.93
18.10	1.810E-6	6.01
34.50	3.450E-6	6.23
45.10	4.510E-6	. 6.27
49.70	4.970E-6	6.59
50.00	5.000E-6	6.82
60.40	6.040E-6	7.03
60.90	6.090E-6	7.42
73.40	7.340E-6	. 8.03
75.20	7.520E-6	8.24
82.30	8.230E-6	
		рН
		C(t) = 0.01
		4.43
		4.93
		5.22
		5.87
		6.08
		6.23
99.99	9.9991-5	6.34
(7 an-had		6.42
	mor sorbed	6.67
	2.105.07	6.73
		6.80
		7.05
		7.18
73.80	7.38E-06	7.83
		8.10
***************************************		8.46
		8.69
		$\boldsymbol{\zeta}$
		-
		-
		- 
Example ElTE		-
Example FITE	EQL Input File	
Example FITE	EQL Input File	
Example FITE	EQL Input File	
Example FITE	EQL Joput File	3
	D3 1E-5 M %sorbed 18.10 34.50 45.10 49.70 50.00 60.40 60.90 73.40 75.20	O3         IE-5 M           %sorbed         mol sorbed           %sorbed         mol sorbed           18.10         1.810E-6           34.50         3.450E-6           45.10         4.510E-6           49.70         4.970E-6           50.00         5.000E-6           60.40         6.040E-6           60.90         6.090E-6           73.40         7.340E-6           75.20         7.520E-6           82.30         8.230E-6           93.20         9.320E-6           96.00         9.600E-6           95.90         9.590E-6           98.70         9.870E-6           99.91         9.990E-6           99.92         9.998E-5           99.93         9.998E-5           99.94         9.998E-5           99.95         9.998E-5           99.99         9.999E-5           %sorbed         mol sorbed           M         21.21         2.12E-06           39.09         3.91E-06           54.66         5.47E-06


	92.11	9.21E-06	
	87.93	8.79E-06	
	91.54	9.15E-06	
	94.01	9.40E-06	
	99.97	1.00E-05	
	99.98	1.00E-05	
	99.96	1.00E-05	
	99.95	1.00E-05	
	99.99	1.00E-05	
	99.96	1.00E-05	
	99.95	1.00E-05	
	99.99	1.00E-05	
	99.99	1.00E-05	
	99.99	1.00E-05	Goethite Hsickl) Ual0-5M
	99.98	1.00E-05	
	99.75	9.98E-06	
	99.82	9.98E-06	
	99.18	9.92E-06	
	%sorbed	mol sorbed	
1			
	70.39	7.04E-06	
	90.18	9.02E-06	
	96.70	9.67E-06	
	98.11	9.81E-06	
	97.98	9.80E-06	
	94.62	9.46E-06	
	95.48	9.55E-06	
	93.65	9.37E-06	
	87.34	8.73E-06	
	84.84	8.48E-06	0-0
	86.40	8.64E-06	
	83.82	8.38E-06	
	74.79	7.48E-06	.t
	55.17	5.52E-06	Goethite
19	. 31.02	3.10E-06	Ø
- 6-	41.06	4.11E-06	
9	37.47	3.75E-06	
and the			
8			
		******	
		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	



106	Uranium (VI)-Goethite Sorption	n Binding Constants; Monoder		EQL R	1850 HS							·		FITEQ		ults					107
4)26/45 D.R. Linn	Solid: goethite A_{SP} : 50 m ² /g Data Source: Hsi & Langmuir Concentration: [U(VI)] = 1e-:	e-5 M			$\begin{array}{c} 10 \\ .0e-8 \end{array} M \end{array} N_{S} = \\ M/V \\ \end{array}$	ic Strength (el = 2.31 sites/ $V = 1 \text{ g/L}$					Crantine (VI) Goethite Sorption Solid: goethite A _{sp} : 50 m ² /g Data Source: Hsi & Langmui	ir (1985); Hsi (1		Rel Error (pH Abs Error (pH Rel Error (rad): 0.05 I):0.0 lionuclide): 0.10		Ionic Strength $N_s = 2.31$ sit M/V = 1 g/L		.1 M NaNO3		4/20/95 Deliny
1997 - 2000 - 20	Fig. 10, extension .DGO No CO ₂	DLM		t	ССМ			TLM			Concentration: [U(VI)] = 1e	-5 M		Abs Error tra	dionuclide): 1.0			1			
annen an	CUN	Log K ₊ = 7.35 Log K __ = -9.17		$Log K_{+} = 6.4$ $Log K_{-} = -9.4$			Log K ₊ = 6.0 Log K ₋ = -10 Log K _{Cal} = -7. Log K _{Ab} = 8.7	-10.00 -7.64			CO ₂ : $C_{T} = 0.01$ Fig 64 #2 (65)	$Log K_{+} = 7.$ $Log K_{-} = -9$	DLM 35 .17		$Log K_{+} = 6.$ $Log K_{-} = -9$			$Log K_{+} = 6.0$ $Log K_{-} = -10$ $Log K_{Ca} = -7$	0.00 7.64	SR.	
\searrow ,	(<u> </u>	Log K V _Y	Ulog K	Log K		σ _{Log K}	Log K	V _y	σ _{Log K}				1	1	<u>_</u>	I	1	$Log K_{An} = 8.$.78	.	
. 1	XO-U0 ₂ +	3.13 1.6		2.69	1.9 .0350	<u>)</u>	-2.51	45.0	.0400			Log K	V _Y	σ _{1 pg K}	Log K	V _Y	σ _{Log K}	Log K	V _Y	σ _{Log K}	
	XOII-UO ₂ ²⁺	9.86 10.8		9.56	8.3 .0338		6.57	43.3	.0638		XO-UO2*	6.20	5.4	.0457	5.94	6.5	.0492	6.60	10.2	.0798	
	XO-UO ₂ OH"	-3.54 3.9		-4.08	2.0 .0377		-7.33	14.7	.0295		XOH-UO22+	14.58	5.9	.0525	14.16	7.3	.0598	15.61	6.8	.0985	
	XOH-UO ₂ OH ⁺	3.13 1.6		2.69	1.9 .0350		0.97	18.3	.0385		XO-UO2OH"	-2.11	4.3	.0414	-2.16	4.4	.0416	-1.96	9.2	.0552	
, ,	XO-UO ₂ (OH) ₂	-10.19 6.0		-10.77	2.4 .0411	·	-11.38	0.8	.0459		XOH-UO2OH+	6.20	5.4	.0457	5.94	6.5	.0492	6.54	7.1	.0646	
	XOH-UO ₁ (OH) ₂ "	-3.54 3.9		-4.08	2.0 .0377		-3,99	2.0	.0375		XO-UO ₂ (OH) ₂	-10.33	2.0	.0387	-10.11	2.2	.0371	-9.70	2.6	.0529	
	XOH ₂ -UO ₂ (OH) ₂ ⁺	3.13 1.6		2.69	1.9 .0350		4.29	0.7	.0458	T	XOH-UO ₂ (OH) ₂ ^a	-2.11	4.3	.0414	-2.16	4.4	.0416	-2.00	4.3	.0414	
·	XOH-UO ₂ (OH) ₃	-10.19 6.0		-10.77	2.4 .0411		-7.96	2.5	.0530		XOH ₂ -UO ₂ (OH) ₂ *	6.20	5.4	.0457	5.94	6.5	.0492	6.47	3.1	.0530	
	XOIL ₂ -UO ₂ (OII) ₃ ^a	-3.54 3.9		-4.08	2.0 .0377	<u> </u>	-0.55	4.9	.0461		XOH-UO ₂ (OH) ₃	-10.33	2.0	.0387	-10.11	2.2	.0371	-9.36	15.2	.0410	
· · ·	XOH-UO ₂ (OH) ₄ ²	-16.80 7.3		-17.39	2.2 .0457	1.	-11.40	1.7	.0734		XOII ₂ -UO ₂ (OH) ₃ "	-2.11	4.3	.0414	-2.16	4.4	.0416	-1.83	11.5	.0297	-
. P	XOH ₂ -UO ₂ (OH) ₄	-10.19 6.0	.0518	-10.77	2.0 .0411	<u> </u>	-4.50	4.8.	0623		XOH-UO2(OH)42	-22.22	2.4	.0379	-21.60	5.8	.0369	-16.03	53.8	.0691	
											XOH ₂ -UO ₂ (OH) ₄	-10.33	2.0	.0387	-10.11	2.2	.0371	-4.93	63.3	.0207	
		י)U	vl)-Goethif	te	A V		Goethite	,			XOH-UO ₂ CO ₃ °	18.41	12.5	.0517	18.66	11.8	.0494	18.65	9.9	.0406	
1			VI)-Goethite DLM	From	her CHIQ5)		CM	R	You a different of a strain of		XOH ₂ -UO ₂ (CO ₃) ₂	30.86	12.5	.0519	31.11	11.9	.0496	31.78	3.2	.0391	
				TUCO	,e. C.						XOH ₂ -UO ₂ (CO ₃) ₃ ^{3.}	n.c.	n.c.	n.c.	36.46	9.6	.0596	39.75	21.9	.0627	M M M M M M M M M M M M M M M M M M M
		100			100		$\infty 2000$	∩			$\frac{\operatorname{XOH}_{2} \cup \operatorname{UO}_{2}}{\operatorname{XOH}_{2} \cdot (\operatorname{UO}_{2})_{2} \operatorname{CO}_{4}(\operatorname{OH})_{3}^{n}}$	17.72	10.9	.0594	17.66	11.0	.0596	17.92	7.2	.0475	
Res Calculation Using MINI UJ CNURA CTURNER, A	O_mode IEOAD dotobe=e	padros (IV) V V V V V V V V V V V V V	2))		paquos (I/) n % 20 -	100					Uranium (VI)-Goethite Sorptic Solid: goethite A_{sr} : 50 m ² /g Data Source: Hsi & Langm Concentration: [U(VI)] = 1	uir (1985); Hsi		Rel Error (p Abs Error (p Rel Error (r	H): 0.05		Ionic Streng $N_S = 2.31$ s M/V = 1 g.		0.1 M NaNO3		
CTurner, E	#3)					· · · <u>· ·</u> ·	\ 	X	han a sure of the second s		CO_2 ; $C_T = 0.001$ Fig. 64 #1		DLM			ССМ			TLM		
		234	5678 pH	9 10	23/	4 5 6 pH	6 7 8 9	9 10			Fig 64 #1	$ \begin{array}{l} \text{Log } \mathbf{K}_{+} = 7 \\ \text{Log } \mathbf{K}_{-} = -7 \end{array} $			$ Log K_{+} = 0 Log K_{-} = - $			$\begin{array}{c} \text{Log } K_{+} = 6\\ \text{Log } K_{-} = -\\ \text{Log } K_{Cat} = \\ \text{Log } K_{An} = \end{array}$	-10.00	D.B.	MM
		.~\	hu	Α.	^ ^	P	1		*******			Log K	V _y	٦	Log K	V _y	1				
	manage of the second			No	COS							······		σ _{1.0g K}		<u> </u>	0400	Log K	Vγ	0400	-
	Nº	110	1 m O - othe l/		C						XO-UO2+	3.15	6.0	.0402	2.70	7.0	.0409	-2.30	68.4	.0490	Providence of the second
	C DAI	U(V	VI)-Goethite	,e	<u> </u>		. <u> </u>				XOH-UO ₂ ²⁺	9.98	29.9	.0315	9.60	18.7	.0387	7.10	60.7	.0707	
			TLM		J	LEGENI	D				XO-UO ₂ OII"	-3.72 (1.0	.0560	-4.23	0.8	.0475	-7.20	32.7	.0330	-
	real and a second s						.				* XOH-UO2011+	3.15	6.0	.0402	2.70	7.0	.0409	1.22	34.9	.0434	
	All CONTRACTOR CONTRACTOR AND	100	-, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	أنسصر	>F	eOH-U(0 ²⁺				XO-UO ₂ (OH) ₂	-10.37	1.7	.0680	-10.96	0.6	.0538	-11.54	0.9	.0560	
	2078/04/16/04/04/04/04/04/04/04/04/04/04/04/04/04/	(c)	R	1	>F	-OH-II	то о н ⁺				XOII-UO ₂ (OII) ₂ "	-3.72	1.0	.0560	-4.23	0.8	.0475	-4.13	0.9	.0468	
			5/~			2011-01	J ₂ 0 11				XOII ₁ -UO ₂ (OII) ₂ ⁺	3.15	6.0	.0402	2.70	7.0	.0409	4.21	2.1	.0531	
		10 60 0	x \	_	>F	eOH-U	JO,(OH),°		*****		XOH-UO ₂ (OH) ₃	-10.37	1.7	.0680	-10.96	0.6	.0538	-8.22	0.7	.0702	
		s p	5	-		о. ОП Г.		-			XOH ₂ -UO ₂ (OH) ₃ °	-3.72	1.0	.0560	-4.23	0.8	.0475	-0.74	1.4	.0606	
1	1010	<u></u> 40		-	>F						XOH-UO2(OH)42.	-16.97	2.2	.0808	-17.61	0.6	.0597	-11.79	0.5	.1011	
			\ \	. 1	——————————————————————————————————————	eOH-U	UO ₂ (OH) ₄ ²⁻	•			XOH ₂ -UO ₂ (OH) ₄	-10.37	1.7	.0680	-10.96	0.6	.0538	n.c.	n.c.	n.c.	
			/ /	X -	- F	marime	ental Data				XOH-UO ₂ CO ₃ "	16.17	7.7	.0361	15.60	10.5	.0311	15.70	10.9	.0308	
						Jernnen	Hai Data				XOH ₂ -UO ₂ (CO ₃) ₂	27.76	26.7	.0288	28.08	17.9	.0253	29.51	78.5	.0242	
	******	234	5678	9 10					bollediane reconspondence opener		XOH ₂ -UO ₂ (CO ₃) ₃ ³	35.87	5.0	.0589	35.10	10.0	.0434	n.c.	n.c.	n.c.	
			рН								XOH ₂ -(UO ₂) ₂ CO ₃ (OH) ₃ ^a	13.22	4.2	.0586	12.74	5.7	.0533	15.92	21.7	.0692	-
i i	Fi	igure 4-19. U(VI) sorption	n on goethite.	. SCM result	s are calculated u	sing para	ameters der	rived from				<u></u>				1	1	<u> </u>			
	(a)	a) DLM; (b) CCM; and (c	(c) TLM results	lts. U(VI) $_{T} = 1$	=1×10 ⁻⁵ M. 0.1 M	M NaNO ₂	$_{2}, M/V = 1 g/$	g/L. Model	*********			90 h 4 h 4 h 4 h 4 h 4 h 4 h 4 h 4 h 4 h								voorantiperanteen en van een maailikke (14	
	ba.	arameters from Tables 3-	3-1 and B-19. J	Data from J	Asi and Langmuir	(1985).															
										Sec. 1	§	64609-4500-11-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	CONTRACTOR ACTOR ACTOR METER ACTOR ACTOR ACTOR		An and a second s						


4-20

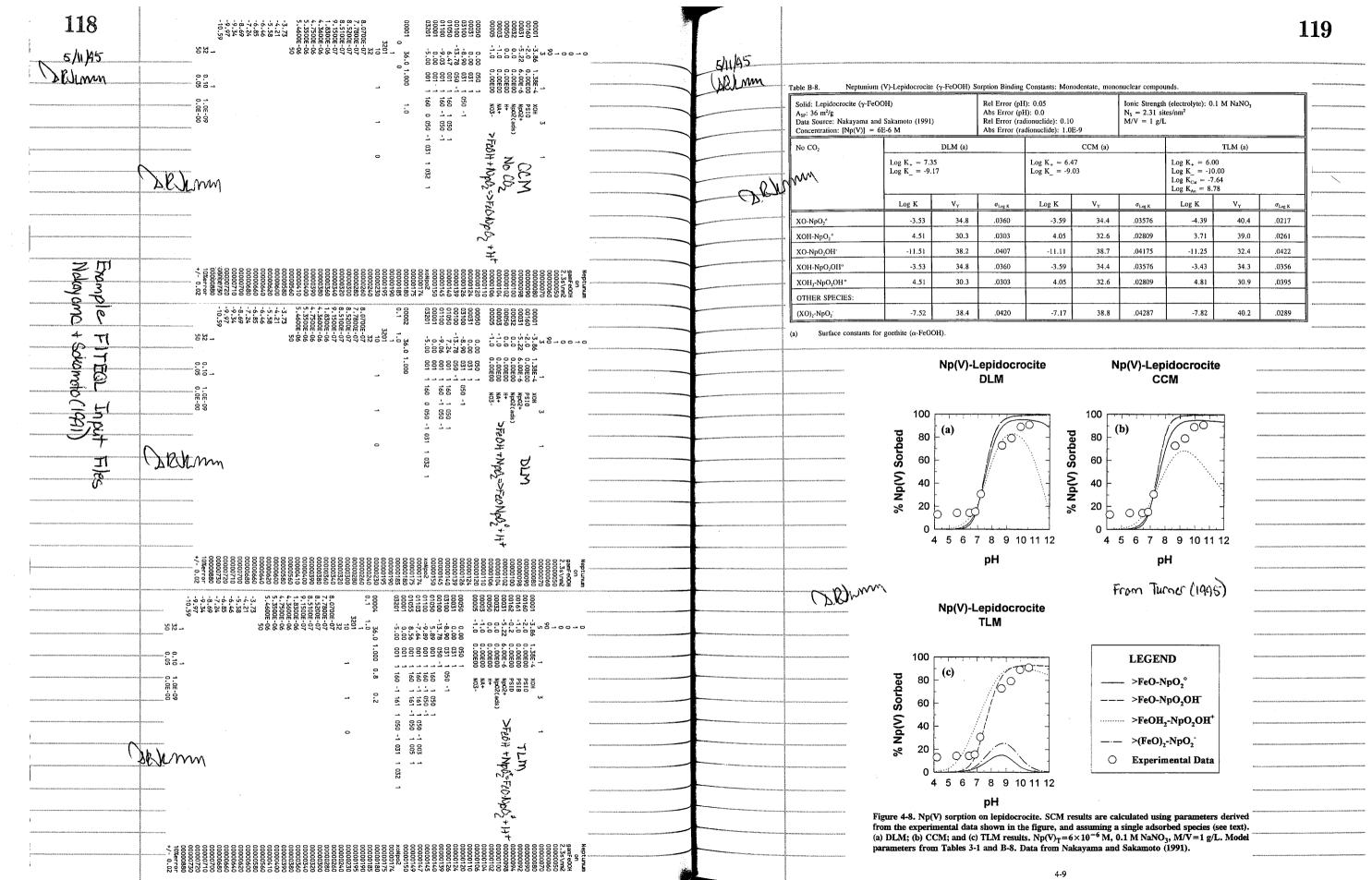
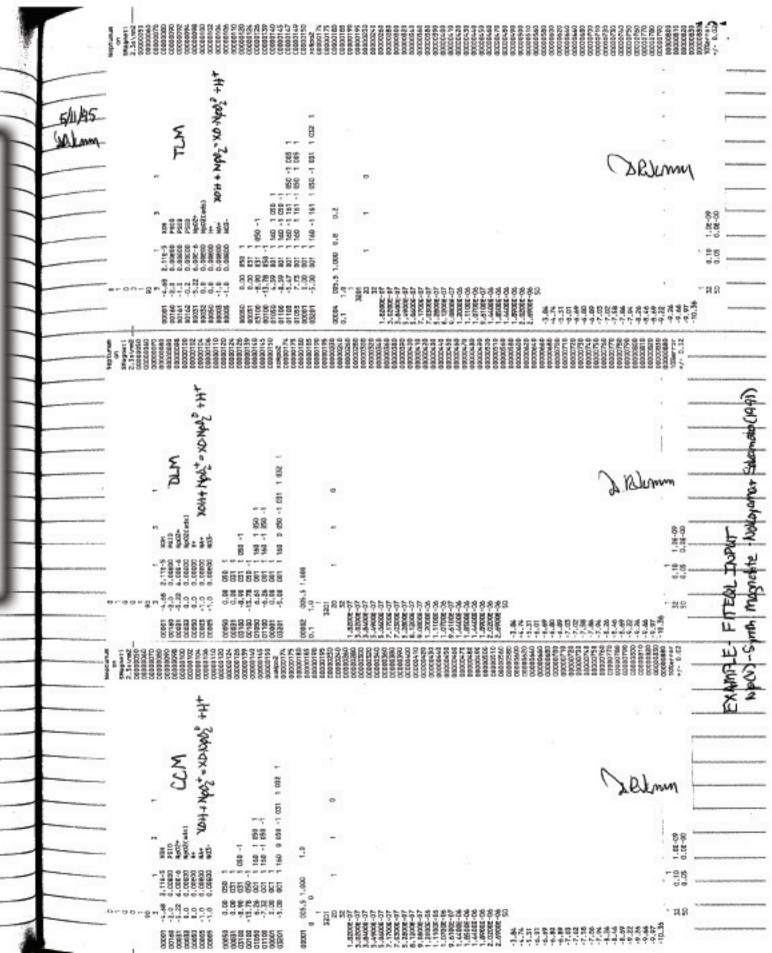
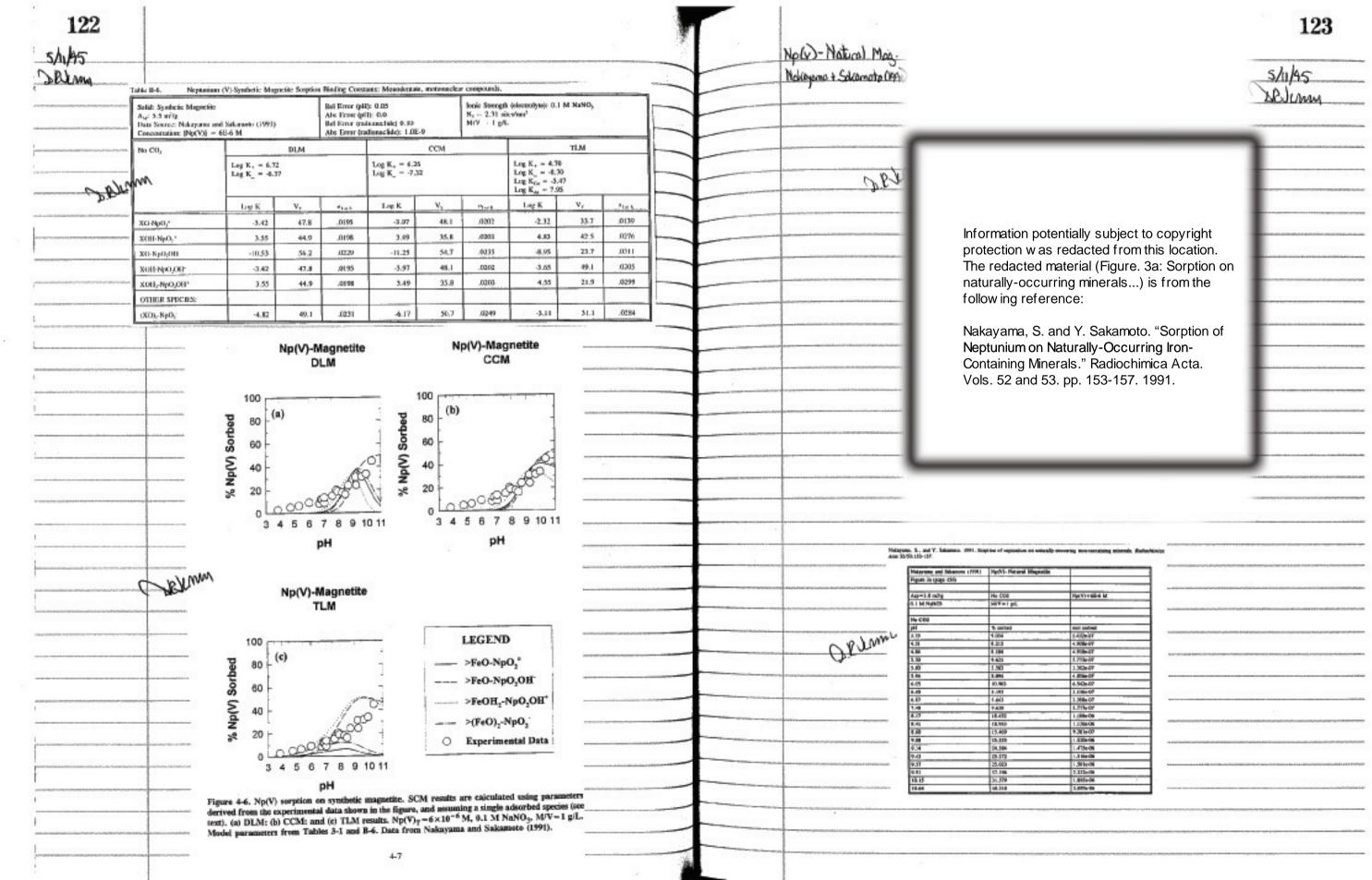
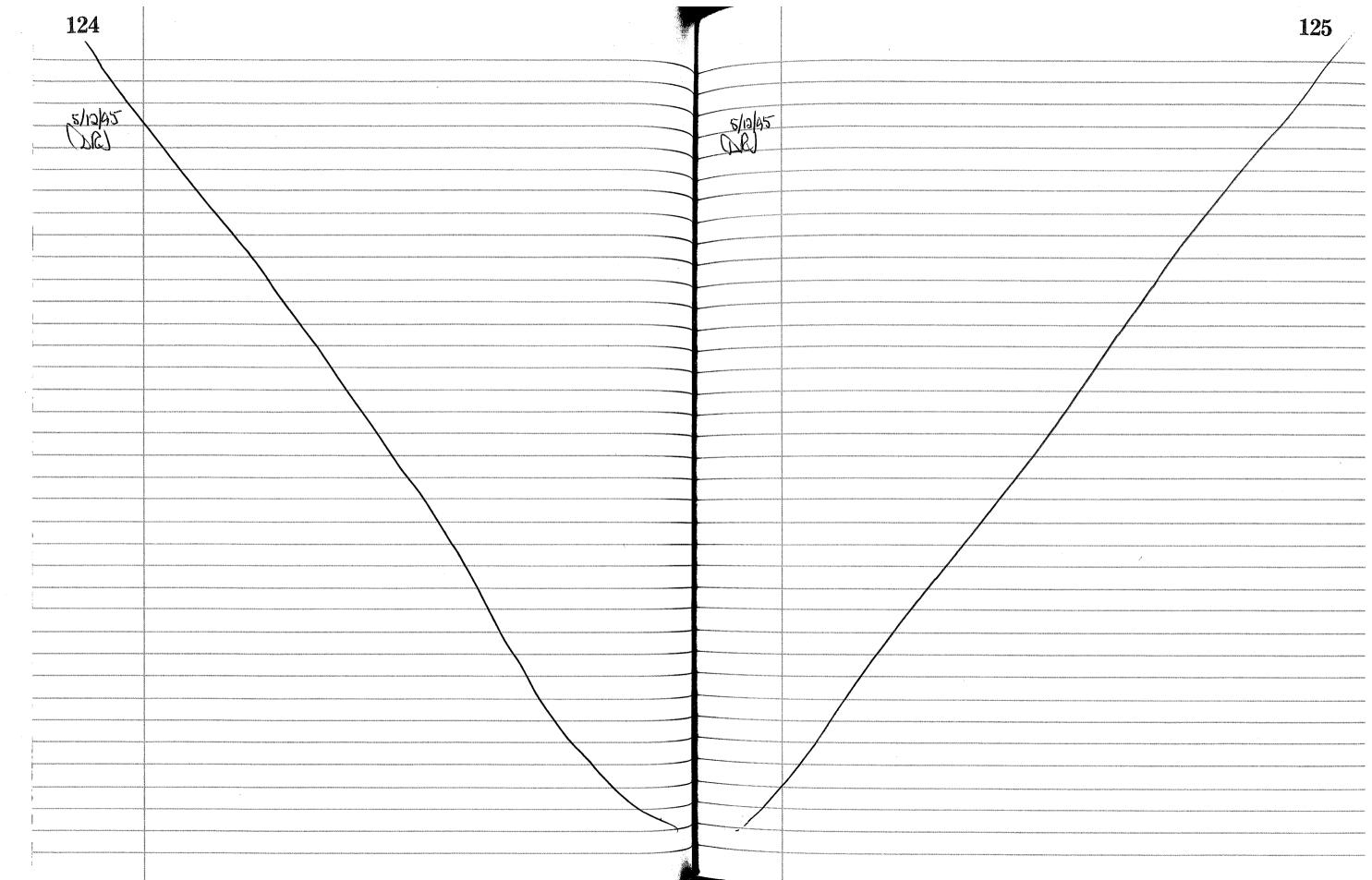


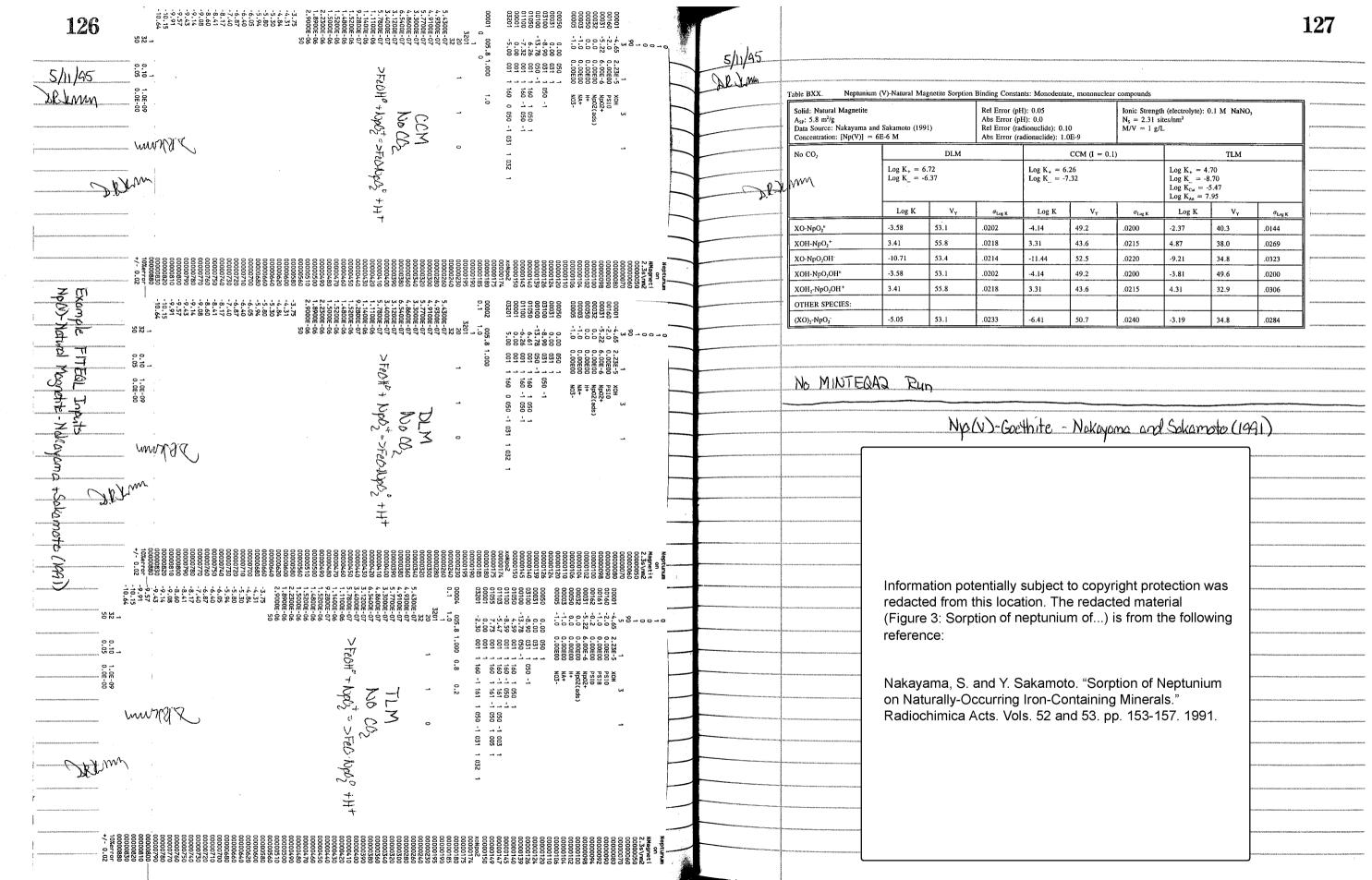
Image:	Ap: 30 m//g Data Source: Kohler et al. Concessration: [U(VD)] =	(1992) IE-6 M					lonic Strength $N_{\rm A} = 2.31$ sin MIV = 1 g/L		M NiKID,		5/9/95 Jalm		Tabeat H	iolinite - Ko		114
Last V Solution First V Solution 0000/ 100 2000 <td< th=""><th>(COL) = 0.12 and</th><th>1.0g K₊ = 7.3 Log K₊ = 9.1</th><th>5</th><th></th><th></th><th>3</th><th></th><th>Log K_ = -10/</th><th>00</th><th></th><th>- ACCE</th><th></th><th></th><th></th><th></th><th></th></td<>	(COL) = 0.12 and	1.0g K ₊ = 7.3 Log K ₊ = 9.1	5			3		Log K_ = -10/	00		- ACCE					
Bits Bit Bit <th>3</th> <th></th>	3															
Standard Bit Bi	-						9.48	Lug K	Vr	11.00			ille in presence			wing reference.
Buschaper 44 16 20 43 13 20 13 23 200 20		-						-3.19	64.1	.0466		Kohler N	A E Wieland	and LO Lockie	"Metal-Ligang	d-Surface Interact
Non-Walt Name							1311	4.72	65.1	35.51.						
Boolog Hale Ale <								-7.34	55.7	.0488						
Non-United State Use A - A - B - B - B - B - B - B - B - B -	and an and a second sec	-							56.9	.0501						
No.6, Optim, J. 40 P32 P40 P30 P30 P30 P30 P30 <td></td> <td></td> <td></td> <td></td> <td></td> <td>Contract of the local division of the local</td> <td></td> <td>-11.33</td> <td>24.5</td> <td>12201</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						Contract of the local division of the local		-11.33	24.5	12201						
With View Constraints With View Constra		-				-			29.0	.0542		Interaction	on-WRI-7. Rotte	erdam, Netherla	ands: A.A. Balk	kema. 1992.
XXX.40001/2 148 141 208 123 200 20 <th20< th=""> 20 20</th20<>		-	THE OWNER WATER OF													
Status Visual Status </td <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>		-						-								
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$						-	and the second second									
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$									Carl Carl Carl							
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	and the second designed in the second designed designed in the second designed designed in the second designed de		1.000													in the last
$ \frac{1}{200, 400, 400, 400, 100}{100, 400, 100, 100, 100, 100, 100, 100, $					and the second sec			-				neotuavi on	oxides and silicates. Proce	rediress of the 7 th Internation	anal Symposium on Water	sr-Rock Interaction -
$ \frac{114}{1000} \frac{11}{1000} $						21.9	.0402		56.5			WRf-7. Volu	me I: Low Temperature E	anironneurs. Y.K. Kharak	a and A.S. Maest, eds. P	Roberdam: A.A.
Image: Normal conditions in the section of the sectin of the section of the section of the sec	-							and the second se	80.5		-	Balkerna				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	warking by alking?	15.38	26.0	.0681	14.69	31.3	.0654	18.49	21.6	1004	and the second se		Kohler et al. (1992)	Np(V)-Kaolinite		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		an Binding Constan	is; Monedania	STREET, STREET									Asp=11 m2/g 0.1M NaCIO4	atm CO2 M/V = 5 g/L		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Solid: Gooffrie Ag: 50 m/g Data Source; Kabler et al.	(1992)	n; Monederna	Rel Erner (pH Alss Erner (pH Rel Erner (rel): 0.05 (): 0.0 (ionucliske): 0.10		$N_{2} = 2.31 \text{ size}$	es/war ²	M NsCHO,				Asp=11 m2/g 0.1M NaCR04 Np(V)=1.25E407	ann CO2 M/V = 5 g/L Si:Al = 1:1	mol sorbed	
$ \begin{array}{ c c c c } \hline \begin{tabular}{ c c c c } \hline \begin{tabular}{ c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c c c } \hline \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Salid: Gooffrite Aq: 50 m/g Data Source: Kabler et al.	(1992)	n; Monedern	Rel Erner (pH Alss Erner (pH Rel Erner (rel): 0.05 (): 0.0 (ionucliske): 0.10		$N_{2} = 2.31 \text{ size}$	es/war ²				~ klum	Asp=11 m2/g 0.1M NaCR04 Np(V)=1.25E407	atas CO2 M/V = 5 g/L Si:Al = 1:1 Saorbed		
Ling K V. k_{4} Kr. k_{5}	Solid: Conthine Aug: 50 m/g Data Source; Kabler et al. Concentrative: [U(VI)] ~	(1092) LE-6 M	DLM	Rel Erner (pH Alss Erner (pH Rel Erner (rel): 0.16 (): 0.0 licras:fide): 0.10 Geneclide): 1.05	CCM	$N_{2} = 2.31 \text{ size}$	es/instr ²	ТІМ			ablum	Asp=11 x2/g 0.1M NaCR04 Np(V)=1.25E-07 pH 3.98172	atas CO2 M/V = 5 g/L Si:Al = 1:1 Ssorbed 7.04764	8.813E-09	
Ing K V.v Aug. K V.v Aug. K V.v Aug. K V.v Aug. K K0-U0, ¹ 1.36 56.6 0406 1.05 44.9 0407 -5.58 94.2 2174 K0-U0, ¹ 7.65 02.2 1.200 7.55 75.3 0783 2.23 48.2 2174 K0-U0, ¹ 7.72 66.9 0.086 7.16 65.5 0.763 0.772 0.459 0.076 1.0395.07 K0-U0,0/017' -1.55 0.46 0.55 0.772 0.729 0.17 1.031 39.54764 1.1197.07 K0-U0,0/017' -1.55 74.5 0.46 -1.45 0.61 -1.47 0.477 K0-U0,0/011/* -7.12 66.5 0.443 0.407 -0.41 0.417 -0.41 0.417 K0-U0,0/01/* -7.12 66.5 0.443 0.407 -0.41 0.41 -0.41 0.41 -0.41 -0.41 -0.41 -0.41 -0.41 -0.41 <td>Satist: Goodhin: A₀₀: 30 ra¹/g Data Source: Kabler et al. Concentrative: [U(V0)] = p(CO₁) = 0.0003 and</td> <td>(1992) IE-6 M</td> <td>DLM 5</td> <td>Rel Erner (pH Alss Erner (pH Rel Erner (rel</td> <td>): 0.05 (): 0.0 (consclide): 0.10 (consclide): 1.08 Log K. = 6.47</td> <td>CCM</td> <td>$N_{2} = 2.31 \text{ size}$</td> <td>es/mr² Log K, = 6.00 Log K = -003</td> <td>TLM</td> <td></td> <td></td> <td>Spierm</td> <td>Asp=11 x2/g 0.1M NaCR04 Np(V)=1.25E-07 pH 3.98172 4.98764 6.54432</td> <td>atas CO2 M/V = 5 g/L Si:Al = 1:1 %sorbed 7.04764 3.88953 11.25083</td> <td>8.813E-09 4.863E-09 1.405E-08</td> <td></td>	Satist: Goodhin: A ₀₀ : 30 ra ¹ /g Data Source: Kabler et al. Concentrative: [U(V0)] = p(CO ₁) = 0.0003 and	(1992) IE-6 M	DLM 5	Rel Erner (pH Alss Erner (pH Rel Erner (rel): 0.05 (): 0.0 (consclide): 0.10 (consclide): 1.08 Log K. = 6.47	CCM	$N_{2} = 2.31 \text{ size}$	es/mr ² Log K, = 6.00 Log K = -003	TLM			Spierm	Asp=11 x2/g 0.1M NaCR04 Np(V)=1.25E-07 pH 3.98172 4.98764 6.54432	atas CO2 M/V = 5 g/L Si:Al = 1:1 %sorbed 7.04764 3.88953 11.25083	8.813E-09 4.863E-09 1.405E-08	
K0-U0/s L126 S0-6 Adde L105 Adde	Satist: Coordinic A ₀₀ : 30 ra ¹ /g Data Source: Kabler et al. Concentrative: [U(V0)] ~ p(C0); = 0.0003 ann	(1992) IE-6 M	DLM 5	Rel Erner (pH Alss Erner (pH Rel Erner (rel): 0.05 (): 0.0 (consclide): 0.10 (consclide): 1.08 Log K. = 6.47	CCM	$N_{2} = 2.31 \text{ size}$	es/wr ² Log K. = 6.00 Log K. = -303 Log K. = -374	TILM DI H			ablum	Asp=11 x2/g 0.1M NaCR04 Np(V)=1.25E-07 pH 3.98172 4.98764 6.54432 7.13741	atas CO2 M/V = 5 g/L Si:Al = 1:1 %sorbef 7.04764 3.88953 11.25085 33.86852	8.813E-09 4.863E-09 1.405E-08 4.234E-08	
NB-00; 1.58 3.68 M48 1.00 49.4 .0.61 0.61.2 0.11.7 NB-00; 7.64 82.2 3.780 7.53 <td>Satki: Goodhie A₀: 30 m³/g Data Source: Kithler et al. Concentrative: [U(V0)] ~ p(C0); = 0.0003 and</td> <td>(1992) 15-6 M Log K₊ = 7.3 Log K_ = -9.17</td> <td>DLM 5 7</td> <td>Rd Erner (pH Abs Erner (pd Rd Erner (nd Abs Ernor (na</td> <td>): 0.05 (): 0.0 licenzifile): 0.10 disenselide): 1.08 Log K_ = 6.4 Log K_ =-9.03</td> <td>CCM</td> <td>N₅ = 231 sko M/V = 1 g/L</td> <td>$log K_{s} = 0.00$ $log K_{s} = -0.01$ $log K_{rs} = -3.0$ $log K_{ss} = 3.7$ $log K_{ss} = 3.7$</td> <td>TEM DOJ PA R</td> <td></td> <td></td> <td>ablum</td> <td>Asp=11 m2/g 0.1M NaClO4 Np(V)=1.25E407 pH 3.98172 4.98764 6.54432 7.13791 7.27113</td> <td>atas CO2 M/V = 5 g/L Si:Al = 1:1 %sorbef 7.04764 3.88953 11.22083 33.86852 40.93505</td> <td>8.813E-09 4.863E-09 1.406E-08 4.234E-08 5.118E-08</td> <td></td>	Satki: Goodhie A ₀ : 30 m ³ /g Data Source: Kithler et al. Concentrative: [U(V0)] ~ p(C0); = 0.0003 and	(1992) 15-6 M Log K ₊ = 7.3 Log K_ = -9.17	DLM 5 7	Rd Erner (pH Abs Erner (pd Rd Erner (nd Abs Ernor (na): 0.05 (): 0.0 licenzifile): 0.10 disenselide): 1.08 Log K_ = 6.4 Log K_ =-9.03	CCM	N ₅ = 231 sko M/V = 1 g/L	$log K_{s} = 0.00$ $log K_{s} = -0.01$ $log K_{rs} = -3.0$ $log K_{ss} = 3.7$ $log K_{ss} = 3.7$	TEM DOJ PA R			ablum	Asp=11 m2/g 0.1M NaClO4 Np(V)=1.25E407 pH 3.98172 4.98764 6.54432 7.13791 7.27113	atas CO2 M/V = 5 g/L Si:Al = 1:1 %sorbef 7.04764 3.88953 11.22083 33.86852 40.93505	8.813E-09 4.863E-09 1.406E-08 4.234E-08 5.118E-08	
NO-HONO Hono	Solid: Goodhie A ₀ : 50 rd/g Data Source: Rahler et al. Concentrative: [U(V1)] - p(C(h)) = 0.0003 zme	(1992) 15-6 M Log K., = 7.3 Log K=-9.1 Log K	DLM 5 7 Vy	Red Error (pH Abs Error (pl Red Error (rad Abs Error (rad Abs Error (rad	3: 0.05 (1: 0.0 lizenziále): 0.10 dopadiklej: 1.08 Log K., = 6.4 Log K., = 9.0 Log K.	ССМ 7 3 У ₁	N ₂ = 2.31 sko M/V = 1 p/L	$eq:k_k_k_k_k_k_k_k_k_k_k_k_k_k_k_k_k_k_k_$	TLM DJ H R V,	Stational Color		ABUM	Asp=11 m2/g 0.1M NaClO4 Np(V)=1.25E407 pH 3.98172 4.98764 6.54432 7.13791 7.27113 7.63693	atus CO2 M/V = 5 g/L Si:Al = 1:1 %sorbed 7.04764 3.88953 11.22083 33.86852 40.92505 51.66640	8.813E-09 4.863E-09 1.405E-08 4.234E-08 5.118E-08 6.459E-08	
X0H-U0_0H* 1.36 94.4 U820 1.06 49.6 94.6 -1.83 45.2 .1471 X0H-U0_0H* 415.75 74.5 94.4 -15.77 73.5 0.687 4.5.22 96.6 0.052 X0H-U0_0H* -1.25 64.5 0.445 -7.14 45.5 0.672 -7.64 7.64 -6.1 -8477 X0H_U0_0H* -1.35 50.6 0.442 1.08 49.6 -1.44 -7.11 -6.1 -8477 X0H_U0_0H* -1.57 74.5 0.644 1.08 49.7 -1.644 78.1 -9799 X0H_U0_0H* -1.57 74.5 0.644 -1.57 94.5 -1.644 78.1 -9799 X0H_U0_0H* -1.57 74.5 0.645 -9472 4.37 74.0 1751 X0H_U0_0H* -24.33 76.8 0.689 -24.42 77.7 0.916 -25.67 78.7 .9844 X0H_U0_0OD* -15.75 34.5 0.614	 Salki: Goodhie: A₁₀: 50 m/lg Data Source: Kalder et al. Concentrative: [U(VI)] = p(CO₃) = 0.0003 and MMA X0-UO₂¹ 	(1992) IE-6 M Log K., = 7.3; Log K_ = -9.15 I.og K I.36	DLM 5 7 V _V 30.6	Rd Errer (pH Abs Error (pd Abs Error (nd Abs Error (nd Ab)	2 0.05 (): 0.0 (): mucfield): 0.10 downelide): 1.05 Log K. = 6.4 Log K. = 9.09 Log K	ССМ 7 3 У _х 49.6	N ₂ = 2.31 sto M/V = 1 g/L e _{1.41} 0407	esterr ² Log K. = 0.00 Log K. = -100 Log K. = 3.7 Log K. = 3.7 Log K -3.34	TLM 00 94 8 V, 84.2	.2174		SBILM	Asp=11 m2/g 0.1M NaClO4 Np(V)=1.25E407 pH 3.98172 4.98764 6.54432 7.13761 7.27113 7.63693 9.05135	atus CO2 M/V = 5 g/L Si:Al = 1:1 %sorbed 7.04764 3.88953 11.2083 33.86852 40.93505 51.66640 83.14527	8.8138-09 4.863E-09 1.405E-08 4.234E-08 5.118E-08 6.459E-08 1.039E-07	
X0-D0400Hy 41575 74.5 944 -15.77 73.9 0.067 4.522 66.6 0.522 X0H-D0400Hy -7.12 66.5 0.643 7.14 65.5 0.047 7.7.66 66.1 0.477 X0H-D0400Hy -1.53 55.6 0.442 1.08 44.4 0.467 1.18 64.1 0.477 X0H-D0400Hy -1.53 55.6 0.442 1.08 44.4 0.467 1.18 64.1 0.473 X0H-D0400Hy -1.53 76.5 0.665 0.472 -1.644 78.1 0.059 X0H-D0400Hy ⁵ -1.712 66.9 0.485 0.417 -1.644 78.1 0.059 X0H-D0400Hy ⁵ -1.712 66.9 0.485 0.417 78.0 0.051 0.051 X0H-D0400Hy ⁵ -1.575 74.5 0.463 1.751 78.7 0.883 X0H-D0400Hy ⁵ -1.575 74.5 0.860 1.649 29.2 0.877 X0H_P0400Dy <td> Solid: Goodhie: Aug: 50 m/g Data Source: Kahler et al. Concentrative: [U(VI)] = p(CO₃) = 0.0003 atte MO-UO₂¹ XO-UO₂¹ </td> <td>(1992) 15-6 M Log K. = 7.3 Log K = -0.17 Log K 1.36 7.65</td> <td>DLM 5 7 Vy 30.6 82.2</td> <td>Rd Errer (pH Abs Errer (pH Abs Errer (nd Abs Errer (nd Abs</td> <td>): 0.06 (j): 0.0 licenschile): 0.10 disenschile): 1.00 Log K. = 6.47 Log K_ =>0.0 Log K Log K Lo5 7.55</td> <td>ССМ 7 3 У_V 48.6 73.3</td> <td>N₂ = 2.31 sto M/V = 1 g/L 9.44 .0407 .0783</td> <td>esterr² Log K., = 0.00 Log K.₂ = -10 Log K.₂ = -3.7 Log K.₂ = 3.7 Log K. -3.58 2.23</td> <td>TEM 00 00 00 00 00 00 00 00 00 00 00 00 00</td> <td>.2174</td> <td></td> <td>ablum</td> <td>Asp=11 m2/g 0.1M NaClO4 Np(V)=1.25E407 pH 3.98172 4.98764 6.54432 7.13761 7.27113 7.63693 9.05135</td> <td>atus CO2 M/V = 5 g/L Si:Al = 1:1 %sorbed 7.04764 3.88953 11.2083 33.86852 40.93505 51.66640 83.14527</td> <td>8.8138-09 4.863E-09 1.405E-08 4.234E-08 5.118E-08 6.459E-08 1.039E-07</td> <td></td>	 Solid: Goodhie: Aug: 50 m/g Data Source: Kahler et al. Concentrative: [U(VI)] = p(CO₃) = 0.0003 atte MO-UO₂¹ XO-UO₂¹ 	(1992) 15-6 M Log K. = 7.3 Log K = -0.17 Log K 1.36 7.65	DLM 5 7 Vy 30.6 82.2	Rd Errer (pH Abs Errer (pH Abs Errer (nd Abs): 0.06 (j): 0.0 licenschile): 0.10 disenschile): 1.00 Log K. = 6.47 Log K_ =>0.0 Log K Log K Lo5 7.55	ССМ 7 3 У _V 48.6 73.3	N ₂ = 2.31 sto M/V = 1 g/L 9.44 .0407 .0783	esterr ² Log K., = 0.00 Log K. ₂ = -10 Log K. ₂ = -3.7 Log K. ₂ = 3.7 Log K. -3.58 2.23	TEM 00 00 00 00 00 00 00 00 00 00 00 00 00	.2174		ablum	Asp=11 m2/g 0.1M NaClO4 Np(V)=1.25E407 pH 3.98172 4.98764 6.54432 7.13761 7.27113 7.63693 9.05135	atus CO2 M/V = 5 g/L Si:Al = 1:1 %sorbed 7.04764 3.88953 11.2083 33.86852 40.93505 51.66640 83.14527	8.8138-09 4.863E-09 1.405E-08 4.234E-08 5.118E-08 6.459E-08 1.039E-07	
X0H200000/* -7.12 66.5 A445 -7.14 65.5 D472 -7.60 66.1	Stable: Greethin: Aux: 50 m/g: Data Source: Rabler et al. Concentrative: [U(V0] = p(C0); = 0.0003 and P X0-U0; ¹ X0H-U0; ² X0H-U0; ²	(1992) IE-6 M Log K., = 7.3: Log K. = -9.1 Log K 1.36 7.65 -7.12	DLM 5 7 50.6 82.2 66.9	Rd Errer (pH Alm Error (pl Rd Errer (ra Abs Error (ra ⁰ hys. .0426 .1200 .0485): 0.06 (1: 0.0 lioracfide): 0.10 domedide): 1.08 Log K. = 6.4 Log K. = 9.00 Log K Log K 1.05 7.55 -7,14	CCM 7 3 7 49.6 73.3 63.5	N ₂ = 2.31 sto M/V = 1 g/L 0.467 .0783 .0472	$k_{st} = -6.00$ $k_{st} = -4.00$ $k_{st} = -4.00$ $k_{st} = -3.00$ $k_{st} = -3.70$ $k_{st} = -3.70$	TILM 00 H R V, 84.2 84.2 84.2 84.2	.2174 .2118 .1321			Asp=11 m2/g 0.1M NaClO4 Np(V)=1.25E407 pH 3.98172 4.98764 6.54432 7.13761 7.27113 7.63693 9.05135	atus CO2 M/V = 5 g/L Si:Al = 1:1 %sorbed 7.04764 3.88953 11.2083 33.86852 40.93505 51.66640 83.14527	8.8138-09 4.863E-09 1.405E-08 4.234E-08 5.118E-08 6.459E-08 1.039E-07	
X0Hz-00_000p/ X0Hz00_001p/ X0Hz00_001p/ X0Hz00_001p/ X0Hz00_001p/ - 1.35 59.6 .0434 L.05 44.4 .0467 1.31 .04.1 .0493 X0Hz00_001p/ X0Hz00_001p/ X0Hz00_001p/ X0Hz00_001p/ X0Hz00_001p/ X0Hz00_001p/ - -19.35 74.5 .0614 -15.73 75.9 .0657 -16.44 78.1 .0199 X0Hz00_001p/ X0Hz00_001p/ X0Hz00_001p/ - -17.12 46.9 .0485 -0.14 66.5 .0472 -48.27 78.1 .0199 X0Hz00_001b/ - - -13.75 .0468 -24.32 .77.7 .0136 .25.67 .78.7 .0883 X0Hz00_001b/ - -13.75 .0464 .15.33 .75.9 .04651 .17.51 .01.2 .0883 X0Hz00_001b/ - .15.75 .0498 .04.03 .16.10 .23.2 .0377 X0Hz00_002b/ - .51.99 .04.99 .04.99 .04.99 .04.99 .04.99 .04.97 X0Hz00_002b/ - .51.99 .04.99 .04.10 .05.92 .04.77 .0493 X0Hz00	 Satki: Goodhie A₀: 50 m/g Data Source: Kathler et al. Concentration: (U(VI)) = p(CO₃) = 0.0003 atte p(CO₃) = 0.0003 atte MMA XO-UO₃¹ XO-UO₃¹ XO-UO₃/CE¹ XOH-UO₃OH² 	(1992) IE-6 M Log K. = 7.3 Log K = -9.1 Log K 1.36 7.65 -7.12 1.36	DLM 5 7 50.6 82.2 66.9 50.6	Red Error (pH Alm Error (pl Red Error (rad Abs Error (rad Abs Error (rad Abs Error (rad Abs Erro	3: 0.05 (1: 0.0 (1: marfield): 0.10 (domedide): 1.08 Log K. = 6.4 Log K. = 9.03 Log K Log S. = 9.03 Log S. = 1.05 7.55 -7,14 1.05	CCM 7 3 7 48.4 73.3 63.5 69.6	N ₂ = 2.31 sto M/V = 1 g/L 0.467 .0783 .0472 .0467	$k_{m} = 0.00$ $k_{m} = 0.00$ $k_{m} = -0.00$ $k_{m} = -3.7$ $k_{m} = -3.$	TILM 003 04 8 7 84.2 84.2 84.2 84.2 84.2 84.2 84.2 84.2 84.2	.2174 .2188 .1321 .1471		ABILIM	Asp=11 m2/g 0.1M NaClO4 Np(V)=1.25E407 pH 3.98172 4.98764 6.54432 7.13761 7.27113 7.63693 9.05135	atus CO2 M/V = 5 g/L Si:Al = 1:1 %sorbed 7.04764 3.88953 11.2083 33.86852 40.93505 51.66640 83.14527	8.8138-09 4.863E-09 1.405E-08 4.234E-08 5.118E-08 6.459E-08 1.039E-07	
X0H-U0AC011/i -15.75 74.5 .0614 -15.75 71.5 0.0677 -16.44 78.1 .0059 X0H-U0AC011/i -7.12 66.9 .0485 .3.14 66.5 .0477 -48.27 78.1 .0534 X0H-U0AC011/i -7.12 66.9 .0485 .3.14 66.5 .0477 -48.27 78.1 .0534 X0H-U0AC011/i -15.75 74.5 .0614 -15.73 75.9 .0657 -17.51 .0833 X0H-U0AC014/i -15.75 74.5 .0614 -15.73 75.9 .0657 -17.51 .18.2 .0833 X0H-U0AC014/i -16.35 18.7 .0399 16.00 27.8 .0359 .0437 .0437 X0H_U0AC03/i 18.39 12.3 .0499 .0338 .0464 .0529 .29.84 .66.2 .8972 X0H_U0AC03/i 38.10 8.6 .0704 .0514 .34.38 .70.3 .4524	 Satki: Goodhie A₀: 50 m/g Data Source: Kathler et al. Concentrative: (U(V0) p(C0)) = 0.0003 ann p(C0)) = 0.0003 ann MAN X0-UO₂¹ X0H-UO₂⁵¹ X0H-UO₂OH² X0H-UO₂OH² X0-UO₂OH² 	(1992) 18-6 M Log K., = 7.3: Log K = -9.1 1.0g K 1.36 7.65 -7.12 1.36 -(5.75	DLM 5 7 50.6 82.2 66.9 59.0 74.5	Rd Error (pH Abs Error (pl Rd Error (ra Abs	3: 0.05 (1: 0.0 (1: macfield): 0.10 downelide): 1.08 Log K. = 6.4 Log K. = 9.03 Log K. = 9.03 Log S. = 9.03 1.05 7.55 -7,14 1.05 -13.73	CCM 7 3 48.4 73.3 63.5 49.6 73.9	N ₂ = 2.31 sto M/V = 1 g/L 0.407 0.783 0.467 0.667	esterr ² Log K. = 0.00 Log K. = -10 Log K. = -77 Log K. = -8.77 Log K -3.58 2.23 -9.59 -1.83 -45.22	TILM 01 01 01 01 01 01 01 01 01 01	.2174 .2188 .1321 .1471 .0522		SBILIM	Asp=11 m2/g 0.1M NaClO4 Np(V)=1.25E407 pH 3.98172 4.98764 6.54432 7.13761 7.27113 7.63693 9.05135	atus CO2 M/V = 5 g/L Si:Al = 1:1 %sorbed 7.04764 3.88953 11.2083 33.86852 40.93505 51.66640 83.14527	8.8138-09 4.863E-09 1.405E-08 4.234E-08 5.118E-08 6.459E-08 1.039E-07	
X001_4X0_0000," -7.12 460.9 JM85 -7.14 66.5 9472 -8.27 78.0 JD13 X001_4X0_0000," -7.12 460.9 JM85 -24.22 77.7 6034 -25.67 78.7 JB84 X001_400_0000," -15.75 34.5 0.614 -15.73 75.9 0.665 -17.51 78.7 JB84 X001_400_000," -15.75 34.5 0.614 -15.73 75.9 0.665 -17.51 78.7 JB83 X001_400_000," -16.35 18.7 78.99 16.00 27.8 JB830 JB830 X001_400_000," 16.35 18.7 78.99 16.00 27.8 JB820 JB830 X001_40_000," 31.99 12.3 0.493 29.84 66.2 .9372 X001_400_00," 38.40 8.6 0343 34.18 70.3 .8524 X014_400_00,0," 38.40 8.6 0343 34.18 70.3 .8524	Sofk1: Goodhit: Ap: 50 rd/g Data Source: Kaliker et al. Concentrative: (U(V0) p(C0)) = 0.0003 and X0-UO2' X0H-UO2'' X0H-UO2'' X0H-UO2'' X0H-UO2'' X0H-UO2'' X0H-UO2'' X0H-UO2OH'' X0H-UO2OH'' X0H-UO2OH''	(1992) 1E-6 M Log K., = 7.3 Log K= -9.1 1.0g K 1.36 7.65 -7.12 1.36 -(5.75 -7.12	DLM 5 7 50.6 82.2 66.9 59.4 74.5 66.9	Rel Error (pH Abs Error (pl Rel Error (ra Abs Error (ra) Abs Error (ra Abs Error (ra A	3: 0.05 (1: 0.0 (1: muclish): 0.10 downelish): 0.10 downelish): 1.05 Log K, = 6.4 Log K Log K Log K Log 5 7.55 -7,14 1.05 -15,17 -7,14	CCM 7 49.6 73.3 68.5 49.6 73.9 65.5	N ₅ = 2.31 sto M/V = 1 g/L 0467 0783 0467 0687 0687 0462	esterr ² Log K., = 0.90 Log K., = -100 Log K., = 3.70 Log K., = 3.73 Log K -3.34 2.23 -9.39 -1.83 -45.22 -7.04	TLM 00 Hi 8 20 84.2 84.2 84.2 84.2 84.2 84.2 84.2 84.2	.2174 .2188 .1321 .1471 .0522 .9477		ablum	Asp=11 m2/g 0.1M NaClO4 Np(V)=1.25E407 pH 3.98172 4.98764 6.54432 7.13761 7.27113 7.63693 9.05135	atus CO2 M/V = 5 g/L Si:Al = 1:1 %sorbed 7.04764 3.88953 11.2083 33.86852 40.93505 51.66640 83.14527	8.8138-09 4.863E-09 1.405E-08 4.234E-08 5.118E-08 6.459E-08 1.039E-07	
X0H-U0A0Hh ³ 24.33 76.8 .0688 -24.22 77.7 .0130 -25.67 78.7 .0844 X0H-U0A0Hh ³ .15.75 34.5 .0614 .15.73 75.9 .0657 .17.51 78.7 .0833 X0H-U0A0Hh ³ .15.75 34.5 .0614 .15.73 75.9 .0657 .17.51 78.7 .0833 X0H-U0A00H ³ .16.35 18.7 .0399 16.00 27.8 .0080 16.19 29.2 .0377 X0H ₂ -U0A(CO ₃) .11.29 .0493 .02.29 .29.84 .66.2 .0372 X0H ₂ -U0A(CO ₃) ² .38.10 .8.6 .0347 .0.514 .34.78 .70.3 .4524	Satki: Goodhie: Au: 50 m/g Data Source: Rahler et al. Concentrative: [U(VI)] = P(CO) = 0.0003 and WM X0-UO ₂ ¹ X0H-UO ₂ ²¹ X0H-UO ₂ ²¹ X0H-UO ₂ OH ² X0H-UO ₂ OH ² X0H-UO ₂ OH ² X0H-UO ₂ OH ²	(1992) IE-6 M Log K. = 7.3 Log K = -9.1 Log K 1.36 7.45 -7.12 1.36 -(5.75 -7.12 1.36	DLM 5 7 50.6 82.2 66.9 50.6 74.5 66.8 50.6	Rd Errer (pH Alm Error (pH Rd Errer (rad Abs Error (rad Abs Error (rad Abs Error (rad Abs Error (rad Abs Error (rad Abs Error	b) 0.06 (1) 0.0 (ioracfield): 0.10 (ioracfield): 1.08 Log K, = 6.4 Log K Log K Log K Log K Log K L05 7.55 -7,14 1.05 -13.77 -7.14 L05	CCM 7 49.6 73.3 63.5 49.6 73.9 65.5 43.6	9,4 2 31 sto M/V = 1 g/L 9,4 4 .0467 .0783 .0472 .0467 .0687 .0472 .0467	esterr ² Log K., = 0.00 Log K. _e = -10 Log K. _e = -7.4 Log K. _e = -3.7 Log K. -3.58 2.33 -9.59 -1.83 -45.22 -7.64 1.38	TEM 01 01 01 01 01 01 01 01 01 01	.2174 .2188 .1321 .1471 .0522 .0477 .0453		ABUM	Asp=11 m2/g 0.1M NaClO4 Np(V)=1.25E407 pH 3.98172 4.98764 6.54432 7.13761 7.27113 7.63693 9.05135	atus CO2 M/V = 5 g/L Si:Al = 1:1 %sorbed 7.04764 3.88953 11.2083 33.86852 40.93505 51.66640 83.14527	8.8138-09 4.863E-09 1.405E-08 4.234E-08 5.118E-08 6.459E-08 1.039E-07	
X011/00/0016 -15.75 34.5 0.614 -15.73 75.9 0.6657 -17.51 38.7 0.8838 X011/00/0016 16.35 18.7 0.999 16.00 27.8 0.0800 16.10 29.2 0.9372 X011/00/0016 51.99 12.7 0.498 30.83 21.6 0.529 29.84 66.2 0.972 X011/00/0016 38.10 8.6 0.947 31.34 9.1 0.914 34.35 70.3 .4524	Satist: Gauditic Aux: 50 m/lg Data Source: Rahler et al. Concentrative: [U(V1)] = p(C0); = 0.0003 atte MM X0-U0; ' X0H-U0; ' X0H-U0; '' X0H-U0; '' X0H-U0; '' X0H-U0; OHP X0H-U0; OHP,' X0H-U0; OHD;' X0H-U0; OHD;' X0H-U0; OHD;'	(1992) IE-6 M Log K. = 7.3: Log K = -9.1 ILog K 1.36 7.65 -7.12 1.36 -(15.75 -7.12 1.35 -(15.35	DLM 5 7 50.6 82.2 66.9 50.6 74.5 50.6 74.5	Rd Error (pH Alm Error (pl Rd Error (ra Abs Error (ra 465 Kror (ra 6426 .1200 .0485 .0426 .0414 .0485 .0424 .0614	2: 0.05 (1: 0.0 (1: marfield): 0.10 domedide): 1.06 Log K, = 6.4 Log K, = -9.03 Log K Log K 1.05 7.55 -7.14 1.05 -15.13 -7.14 L05 -15.73	CCM 7 3 7 49.4 73.3 63.5 69.6 73.9 65.5 49.6 73.9 65.5 49.4 73.9	N ₂ = 2.31 sto M/V = 1 g/L 0.467 0.783 0.472 0.467 0.687 0.0472 0.0467 0.0467	estherr2 Log K, = 4.00 Log K _{rd} = -30 Log K _{rd} = 3.7 Log K -3.38 2.33 -9.39 -1.83 -15.22 -7.04 1.38 -16.44	TILM 201 54 8 7 84.2 84.2 84.2 84.2 84.2 84.2 84.2 85.5 65.6 66.1 61.1 78.1	.2174 .2188 .1321 .1471 .0522 .9477 .9453 .0759		Caleburni	Asp=11 m2/g 0.1M NaClO4 Np(V)=1.25E407 pH 3.98172 4.98764 6.54432 7.13761 7.27113 7.63693 9.05135	atus CO2 M/V = 5 g/L Si:Al = 1:1 %sorbed 7.04764 3.88953 11.2083 33.86852 40.93505 51.66640 83.14527	8.8138-09 4.863E-09 1.405E-08 4.234E-08 5.118E-08 6.459E-08 1.039E-07	
NON-DOLCD/ 16.35 18.7 .0349 1.6.00 27.8 .0080 16.10 23.2 .8377 XOH-DOLCD/ 31.39 12.7 .0494 30.83 21.6 .0529 29.84 66.2 .8372 XOH_PUD_(COL)/ 38.10 8.6 0547 31.34 9.1 .0514 34.38 70.3 .4524	Satist: Goodhite: Au:: 50 raf/g Data Source: Kahler et al. Concentrative: (U(VI)] = p(CO)) = 0.0003 zm WM X0-UO,' X0H-UO,' X0H-UO,' X0H-UO,OH' X0H-UO,OH' X0H-UO,OH' X0H-UO,OH' X0H-UO,OHO,' X0H-UO,OHO,' X0H-UO,OHD,' X0H-UO,OHD,' X0H-UO,OHD,' X0H-UO,OHD,'	(1992) IE-6 M Log K. = 7.3: Log K = -9.1 1.og K 1.36 7.65 -7.12 1.36 -(5.75 -7.12 1.36 -(5.75 -7.12 1.36 -19.73 -7.12	DLM 5 7 50.6 82.2 66.9 50.6 74.5 66.9 50.6 74.5 60.9	Rel Error (pH Alm Error (pl Rel Error (ra Abs Error (ra) Abs Error (ra Abs Error (ra A	2: 0.05 (1: 0.0 (1: mar.field): 0.10 downelide): 1.08 Log K. = 6.4 Log K. = 9.09 Log K. = 9.09 Log K. = 1.05 7.55 -7,14 1.05 -13,73 -7,14 L05 -13,73 -7,14 L05 -13,73 -7,14 L05 -13,73 -7,14 L05 -13,73 -7,14 L05 -13,73 -7,14	CCM 7 3 48.4 73.3 65.5 49.6 73.9 65.5 43.4 73.9 65.5	N ₆ = 2.31 sko M/V = 1 g/L 0.467 0.783 0.9472 0.9467 0.9467 0.9467 0.9467 0.9467 0.9467 0.9467	esterr ² Log K. = 6.00 Log K. = -800 Log K _{rot} = -7.4 Log K _{rot} = -7.4 Log K -3.58 2.33 -9.59 -1.83 -45.22 -7.44 1.38 -16.44 -8.27	TILM 701 84 8 7 84.2 84.2 84.2 84.2 84.2 84.2 84.2 85.7 65.6 66.1 61.1 78.1 78.1	.2174 .2188 .1321 .1471 .0522 .0477 .0453 .0759 .0751		SBILIM	Asp=11 m2/g 0.1M NaClO4 Np(V)=1.25E407 pH 3.98172 4.98764 6.54432 7.13761 7.27113 7.63693 9.05135	atus CO2 M/V = 5 g/L Si:Al = 1:1 %sorbed 7.04764 3.88953 11.2083 33.86852 40.93505 51.66640 83.14527	8.8138-09 4.863E-09 1.405E-08 4.234E-08 5.118E-08 6.459E-08 1.039E-07	
X0H2/U04(C03); 31.39 12.7 .0498 30.83 21.6 .0529 29.84 61.2 .6372 X0H2/U04(C03); 38.10 8.6 0547 31.34 9.1 .0514 34.36 70.3 .4524	Satki: Goodhie A ₀ : 50 m ³ /g Data Source: Kathler et al. Concentration: (U(VI)) = p(CO ₃) = 0.0003 ann MM XO-UO ₃ ¹ XO-UO	(1992) IE-6 M Log K., = 7.3: Log K =-9.1' Ing K 1.36 7.65 -7.12 1.36 -(5.75 -7.12 1.35 -15.75 -7.12 1.35 -7.12 1.35	DLM 5 7 50.6 82.2 66.9 50.6 74.5 66.8 50.6 74.5 66.9 74.5 66.9 74.5	Rel Error (pH Abs Error (pl Rel Error (ra Abs Error (ra) Abs Error (ra Abs Error (ra A	2: 0.05 (1: 0.0 (1: macfield): 0.10 downelide): 1.08 Log K. = 6.4 Log K. = 9.03 Log K. = 9.03 Log K. = 1.05 7.55 -7,14 1.05 -13.73 -7,14 L05 -13.73 -7,14 L05 -13.73 -7,14 L05 -13.73 -7,14 L05 -13.73 -7,14 L05 -13.73 -7,14	CCM 7 3 49.6 73.9 63.5 49.6 73.9 65.5 49.6 73.9 65.5 49.6 73.9 65.3 77.7	N ₅ = 2.31 sto M/V = 1 g/L 0.467 0.783 0.0472 0.0467 0.0467 0.0467 0.0467 0.0467 0.0457 0.0457 0.0457	esterr ² Log K. = 0.00 Log K. = -10 Log K. = -37 Log K. = -3.7 Log K. = -3.7 Log K. = -3.78 -3.58 2.23 -0.29 -1.83 -45.22 -7.04 1.18 -16.44 -8.27 -25.67	TILM 201 21 24 28 28 28 28 28 28 28 28 28 28	.2174 .2188 .1321 .1471 .0522 .9477 .9453 .0799 .0759 .0759 .0754		(JB)cm	Asp=11 m2/g 0.1M NaClO4 Np(V)=1.25E407 pH 3.98172 4.98764 6.54432 7.13761 7.27113 7.63693 9.05135	atus CO2 M/V = 5 g/L Si:Al = 1:1 %sorbed 7.04764 3.88953 11.2083 33.86852 40.93505 51.66640 83.14527	8.8138-09 4.863E-09 1.405E-08 4.234E-08 5.118E-08 6.459E-08 1.039E-07	
X0H2-U04(C04)/ ^b 38.00 8.6 0547 31.74 9.1 0.514 34.78 70.3 .4524	Satki: Geoditic A ₂ : 50 m ³ /g Data Source: Kathler et al. Concentrative: (U(V0) p(C0)) = 0.0003 ann MMA X0-U0, ¹ X0H-U0, ² X0H-U0, ²	(1992) 15-6 M Log K., = 7.3 Log K = -9.1 Log K 1.36 7.45 -7.12 1.36 -15.75 -7.12 1.35 -45.75 -7.12 1.35 -45.75 -7.12 1.35 -7.12 -7.55 -7.12 -7.55 -7.12 -7.55 -7.12 -7.55 -7.12 -7.55	DLM 5 7 50.6 82.2 66.9 50.6 74.5 66.9 50.6 74.5 66.9 50.6 74.5 66.9 50.6 74.5 66.9 50.6 74.5 66.9	Red Error (pH Abs Error (ph Red Error (m Abs Error (m))) (m Abs Error (m))) (m)) (m)) (m)) (m)) (m)) (m)) (m)	2: 0.05 (1: 0.0 (1: 0.0 (1: muclish): 0.10 downdikley: 1.06 Log K, = 6.4 Log K, = 6.4 Log K Log K Log K Log K Log S 7.55 -7,14 1.05 -15,13 -7,14 L05 -15,13 -3,14 -24,22 -15,73	CCM 7 49.6 73.3 65.5 49.6 73.9 65.5 49.6 73.9 65.5 77.7 75.9	N ₅ = 2.31 sto M/V = 1 g/L 0467 0783 0.4472 0467 0.4657 0.4657 0.4657 0.4657 0.4572 0.457	esteer ² Lag K., = 0.90 Lag K., = -400 Lag K., = 3.73 Lag K -3.34 2.23 -0.59 -1.83 -45.22 -7.64 1.38 -16.44 -8.27 -25.67 -17.51	TLM DJ H 8 V, 84.2 84.2 84.2 84.2 84.2 69.6 66.1 61.1 78.1 78.1 78.7	.2174 .2188 .1321 .1471 .0522 .9477 .9473 .0759 .0751 .0894 .0833		Calebum	Asp=11 m2/g 0.1M NaClO4 Np(V)=1.25E407 pH 3.98172 4.98764 6.54432 7.13761 7.27113 7.63693 9.05135	atus CO2 M/V = 5 g/L Si:Al = 1:1 %sorbed 7.04764 3.88953 11.2083 33.86852 40.93505 51.66640 83.14527	8.8138-09 4.863E-09 1.405E-08 4.234E-08 5.118E-08 6.459E-08 1.039E-07	
	Subit: Coordinate Aux: 50 m/g Data Source: Kabler et al. Concentration: (U(VI)] = p(CO ₂) = 0.0003 and MM X01-UO ₂ ¹ X011-UO ₂ OH ¹	(1992) IE-6 M Log K. = 7.3: Log K. = -9.1 Log K 1.36 7.65 -7.12 1.36 -(5.75 -7.12 1.35 -15.75 -7.12 1.35 -15.75 -7.12 1.35 -15.75 -7.12 1.35 -7.12 -7.5 -	DLM 5 7 50.6 82.2 66.9 50.6 74.5 66.9 50.6 74.5 66.9 74.5 66.9 50.6 74.5 76.8 74.5 18.7	Rd Error (pH Alm Error (ph Rd Error (m Abs Error (m 6426 .1200 .0485 .0426 .0426 .0428 .0428 .0428 .0428 .0428 .0428 .0428 .0428 .0428 .0428 .0428 .0428 .0428	k 0.06 (t) 0.0 (inreacfield): 0.10 downelide): 1.06 Log K, = 6.4 Log K, = -9.0 Log K 1.05 7.55 -7.14 1.05 -15.13 -7.14 1.05 -15.13 -7.14 1.05 -15.13 -7.14 1.05 -15.13 -7.14 1.05 -15.13 -7.14 1.05 -15.13 -7.14 1.05	CCM 7 49.4 73.3 63.3 63.3 63.3 63.5 63.5 49.6 73.9 65.5 49.4 73.9 65.5 77.1 75.9 27.8	N ₂ = 2.31 sto M/V = 1 g/L 0.467 0.783 0.467 0.467 0.467 0.467 0.467 0.467 0.467 0.467 0.467 0.467 0.467 0.4657 0.457	esteer ² Log K., = 0.00 Log K., = -100 Log K., = -3.7 Log K., = -3.7 Log K. -3.58 2.33 -9.39 -1.83 -9.39 -1.83 -15.22 -7.64 1.38 -16.44 -38.27 -25.67 -17.51 16.10	TEM 201 201 201 201 201 201 201 201	.2174 .2188 .1321 .1471 .0522 .9477 .9453 .0759 .0751 .0884 .08833 .0377		Caleburn	Asp=11 m2/g 0.1M NaClO4 Np(V)=1.25E407 pH 3.98172 4.98764 6.54432 7.13761 7.27113 7.63693 9.05135	atus CO2 M/V = 5 g/L Si:Al = 1:1 %sorbed 7.04764 3.88953 11.2083 33.86852 40.93505 51.66640 83.14527	8.8138-09 4.863E-09 1.405E-08 4.234E-08 5.118E-08 6.459E-08 1.039E-07	
* X08L_(023,LC0,020),* 12.84 16.0 .0489 12.82 15.6 0486 11.98 48.0 .0555	Subit: Coordinic A ₄ : 50 m ³ /g Data Source: Kahler et al. Concentration: (U(VI)] = p(CO ₃) = 0.0003 and MM XOI-UO ₃ ¹ XOII-UO ₃ ¹ XOII ₂ ¹ XOII	(1992) IE-6 M Log K. = 7.3: Log K. = -9.1 Log K 1.36 7.65 -7.12 1.36 -15.75 -7.12 1.35 -15.75 -7.12 1.35 -15.75 -7.12 1.35 -7.12 -7.12 1.35 -7.12 -7.13 -7.12 -7.13 -7.13 -7.13 -7.13 -7.12 -7.13 -7.14 -7.15 -7.5 -7.15 -7.	DLM 5 7 50.6 82.2 66.9 50.6 74.5 66.9 50.6 74.5 66.9 50.6 74.5 66.9 50.6 74.5 66.9 50.6 74.5 66.9 50.6 74.5 66.9 50.6	Rel Error (pH Abs Error (pl Rel Error (ra Abs Error (ra 0426 .1200 .0485 .0426 .0485 .0428 .0428 .0428 .0428 .0428 .0428 .0428 .0428 .0428 .0428 .0428 .0428 .0428 .0428 .0428 .0428	2: 0.05 (1: 0.0 lizenzfilde): 0.10 dopmetide): 1.06 Log K. = 6,4' Log K. = 9,0' Log K. = 9,0' Log K. = 1.05 7.55 -7,14 1.05 -15,73 -7,14 L.05 -15,73 -3,14 -24,22 -15,73 16,00 30,83	ССМ 7 49.4 73.3 63.5 49.6 73.9 65.5 49.6 73.9 65.5 49.4 73.9 65.5 49.4 73.9 65.5 77.7 75.9 27.8 21.6	N ₅ = 2.31 sko M/V = 1 g/L 0.467 0.783 0.467 0.0472 0.0472 0.0472 0.0472 0.0472 0.0472 0.0472 0.0472 0.0472 0.0472 0.0472 0.0472 0.0472 0.0472	esterr ² Lag K. = 0.00 Lag K_ = -100 Lag K _m = -3.7 Lag K _m = -3.7 Lag K -3.38 2.23 -9.59 -1.83 -0.59 -1.84 -1.04 -1.04 -1.04 -1.05 -1.	TEM 01 14 8 2 84.5 84.5	.2174 .2188 .1321 .1471 .0522 .0477 .0453 .0759 .0751 .0844 .0833 .0377 .0377 .0377		Caleburn	Asp=11 m2/g 0.1M NaClO4 Np(V)=1.25E407 pH 3.98172 4.98764 6.54432 7.13761 7.27113 7.63693 9.05135	atus CO2 M/V = 5 g/L Si:Al = 1:1 %sorbed 7.04764 3.88953 11.2083 33.86852 40.93505 51.66640 83.14527	8.8138-09 4.863E-09 1.405E-08 4.234E-08 5.118E-08 6.459E-08 1.039E-07	

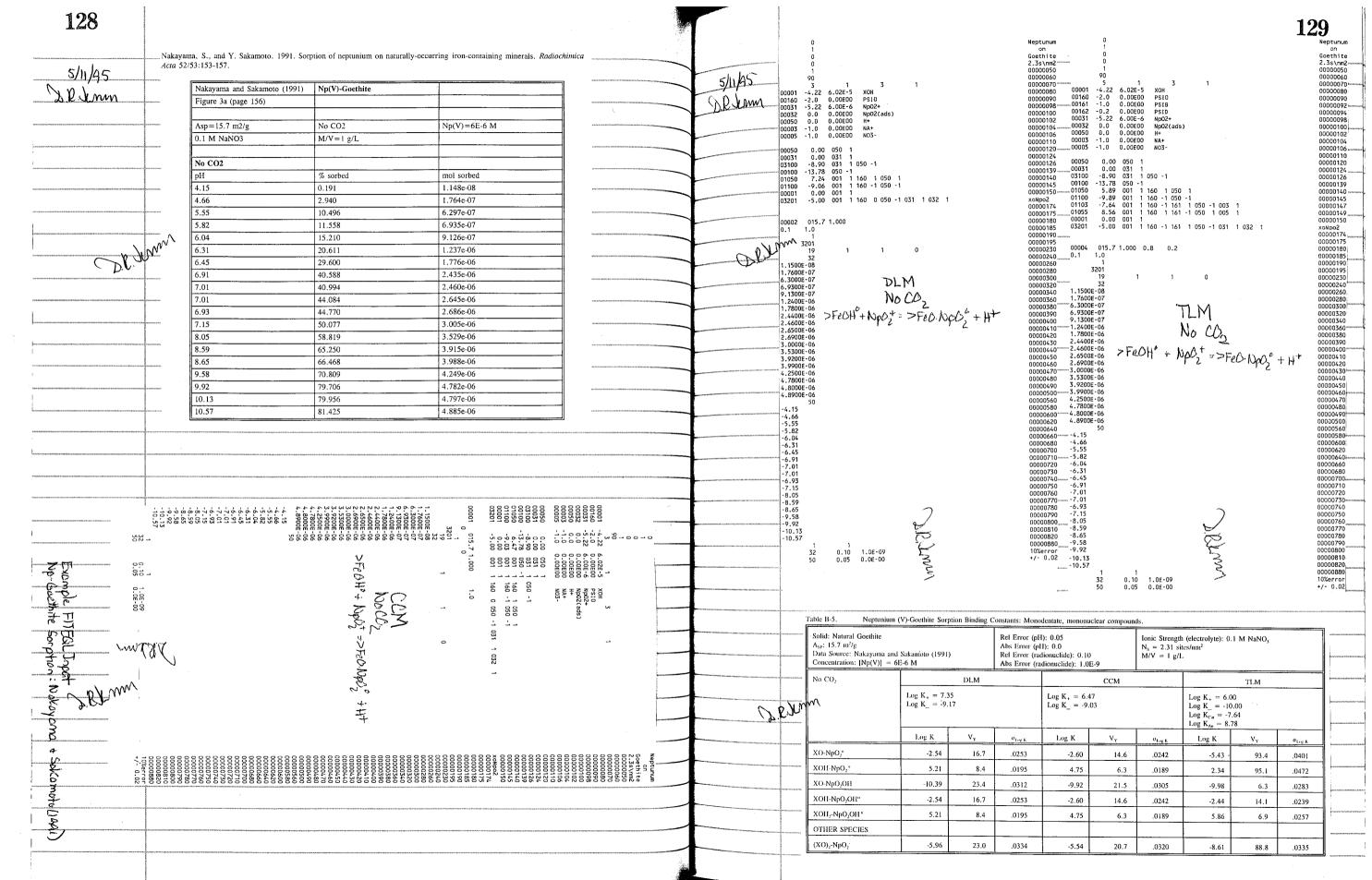
5/1)/45 D.R.V.mm

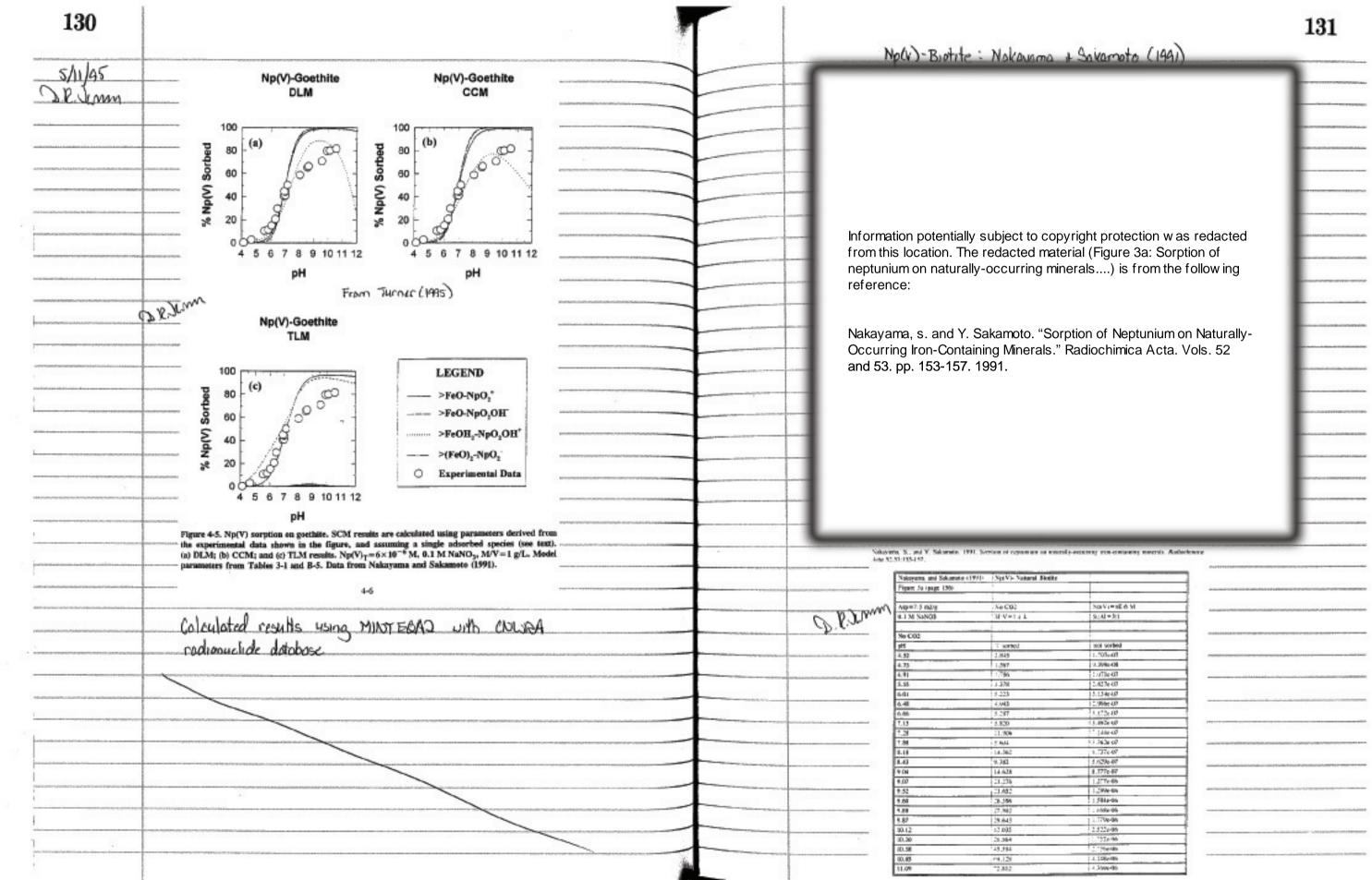

Np(v) Sonation on Synth. Magnetite-Nolicycoma + Sakameter (1991)

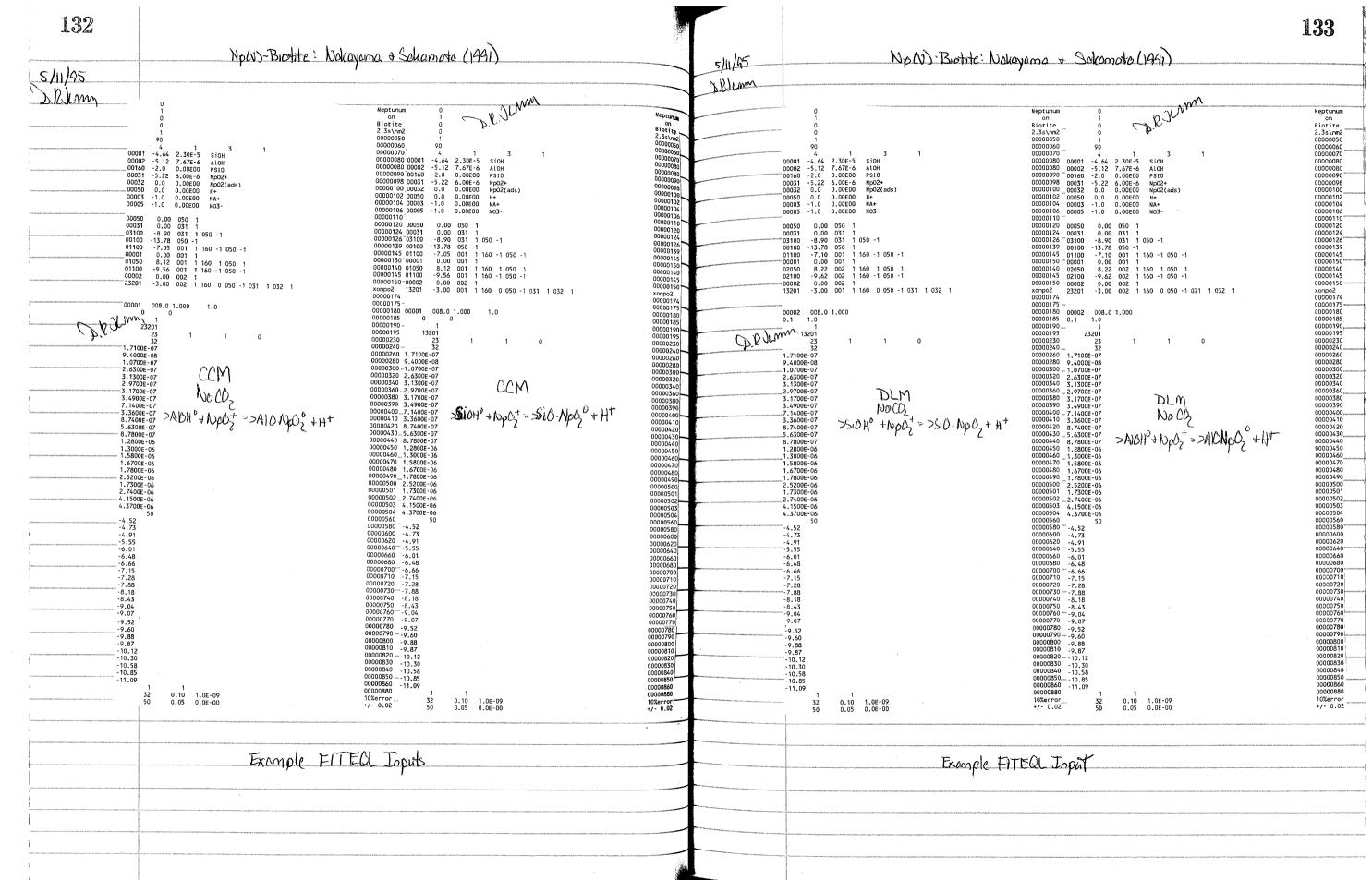

Information potentially subject to copyright protection was redacted from this location. The redacted material (Figure 3: Sorption of neptunium on...(b) synthetic hematite...) is from the following reference:

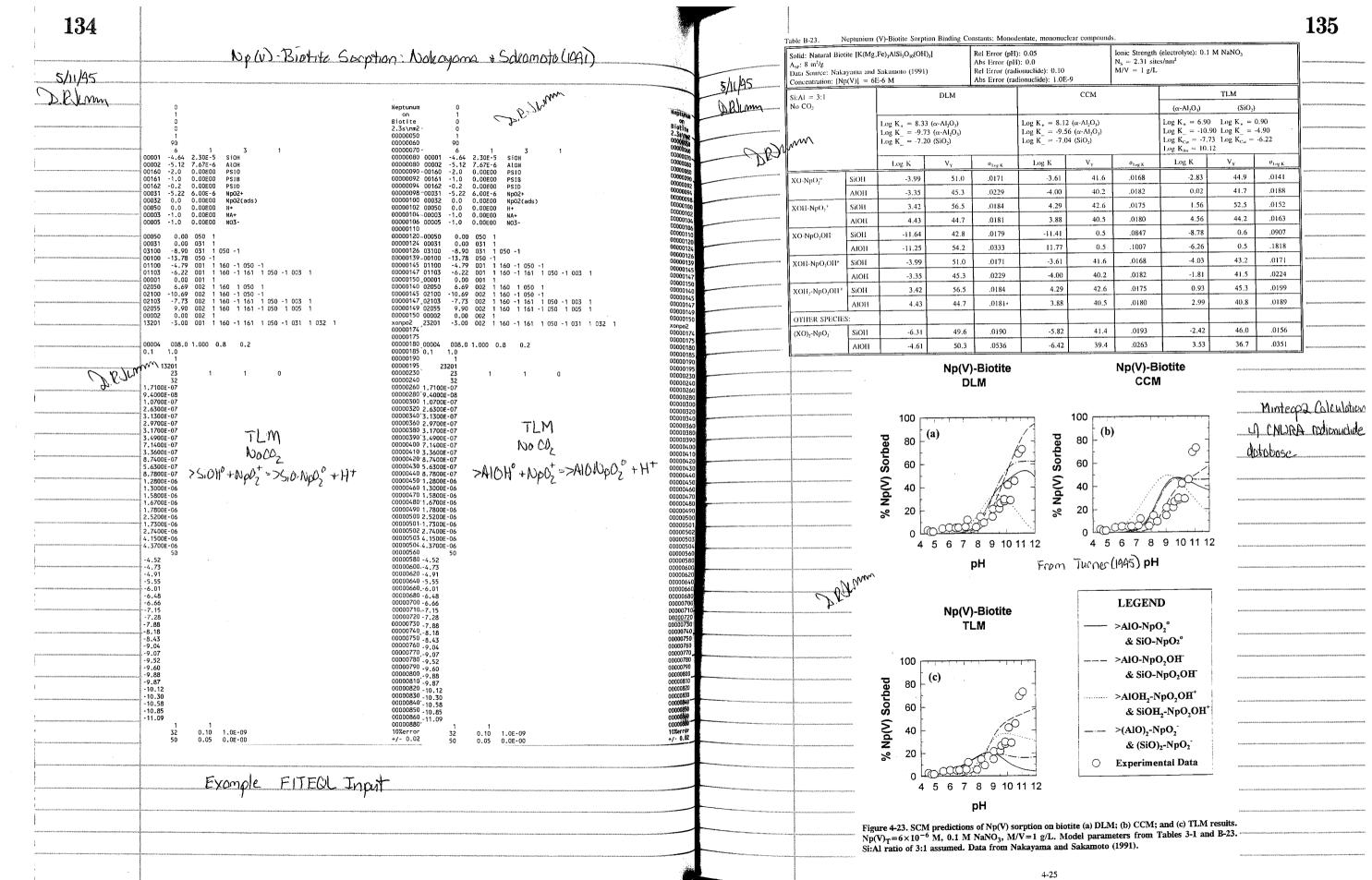

Nakayama, S. and Y. Sakamoto. "Sorption of Neptunium on Naturally-Occurring Iron-Containing Minerals." Radiochimica Acta. Vols. 52 and 53. pp. 153-157. 1991.

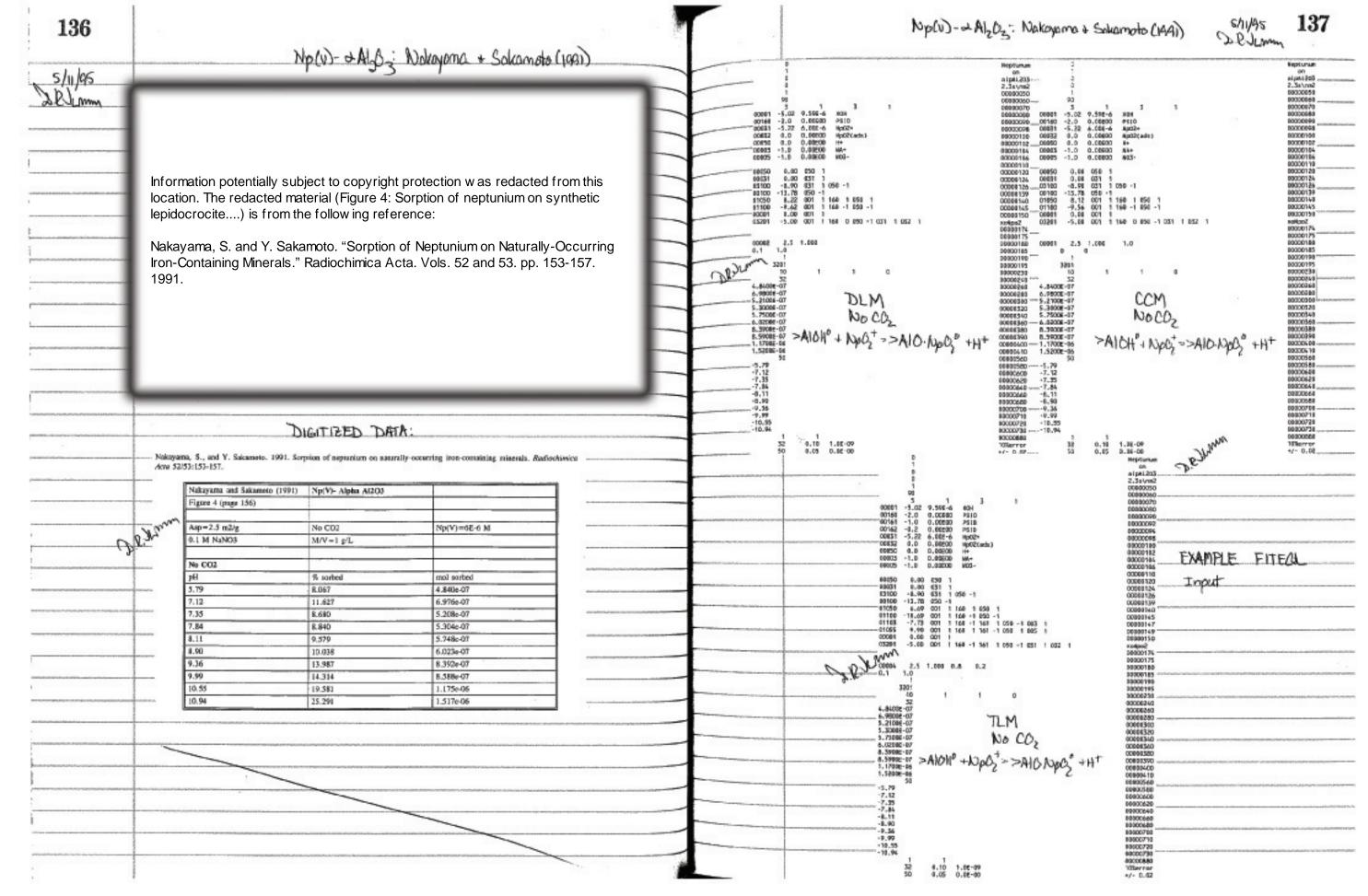


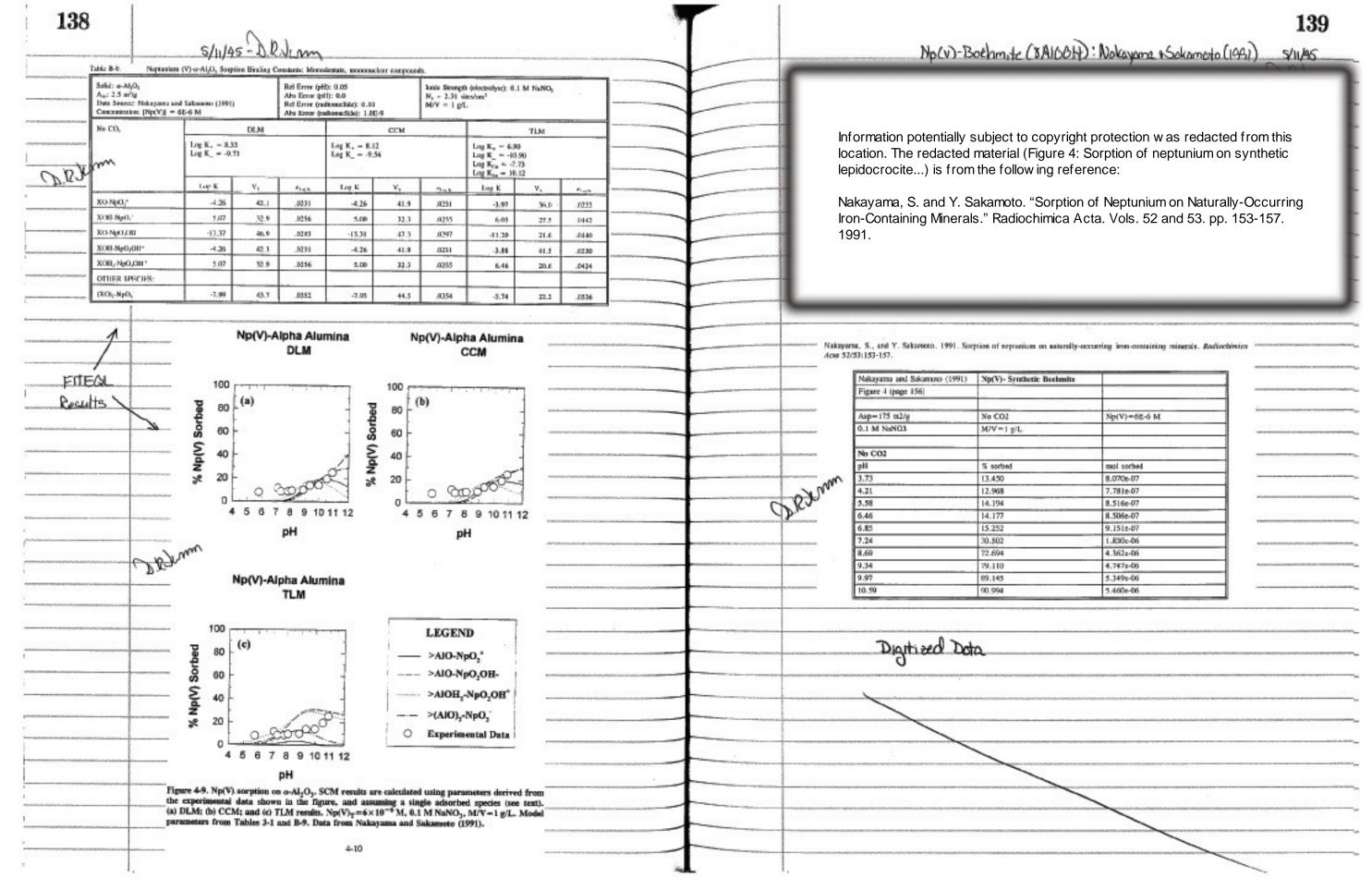

Nakayama and Sakamana (1991)	Npi-Vi- Synahotic Mugnetike	
Figure 36 (page 1364		
Asp=5.5 mb/g	No COS	SpWeed-6-M
0.1 M Xi803	MAY = 1 g L	
Na CO2		
PH	S sorted	mak saribed
1.84	3.087	1.822a-67
4.73	1.038	3.025e-67
5.34	6.385	1.837e-07
6.04	9.155	5.493e-07
6.69	11.440	5.064e-97
6.90	11.844	7.366e-07
5.97	11.721	P.dStevaT
7.45	1.803	5.282e-07
7.92	13.532	3.1199-07
7.58	15.135	9.0004e-0.0
7.86	20.046	1.203e-06
2.944	18.571	1.114448
1.26	17.438	1.070e-06
1.46	16.034	9.608e4.0
5.09	23.966	1.4384-06
9.22	10.881	1.852e4.6
2.26	24.002	1.442/408
7.66	11.439	1.0966-64
19.91	23.589	2.01564/6
0.36	44.785	2.687e406

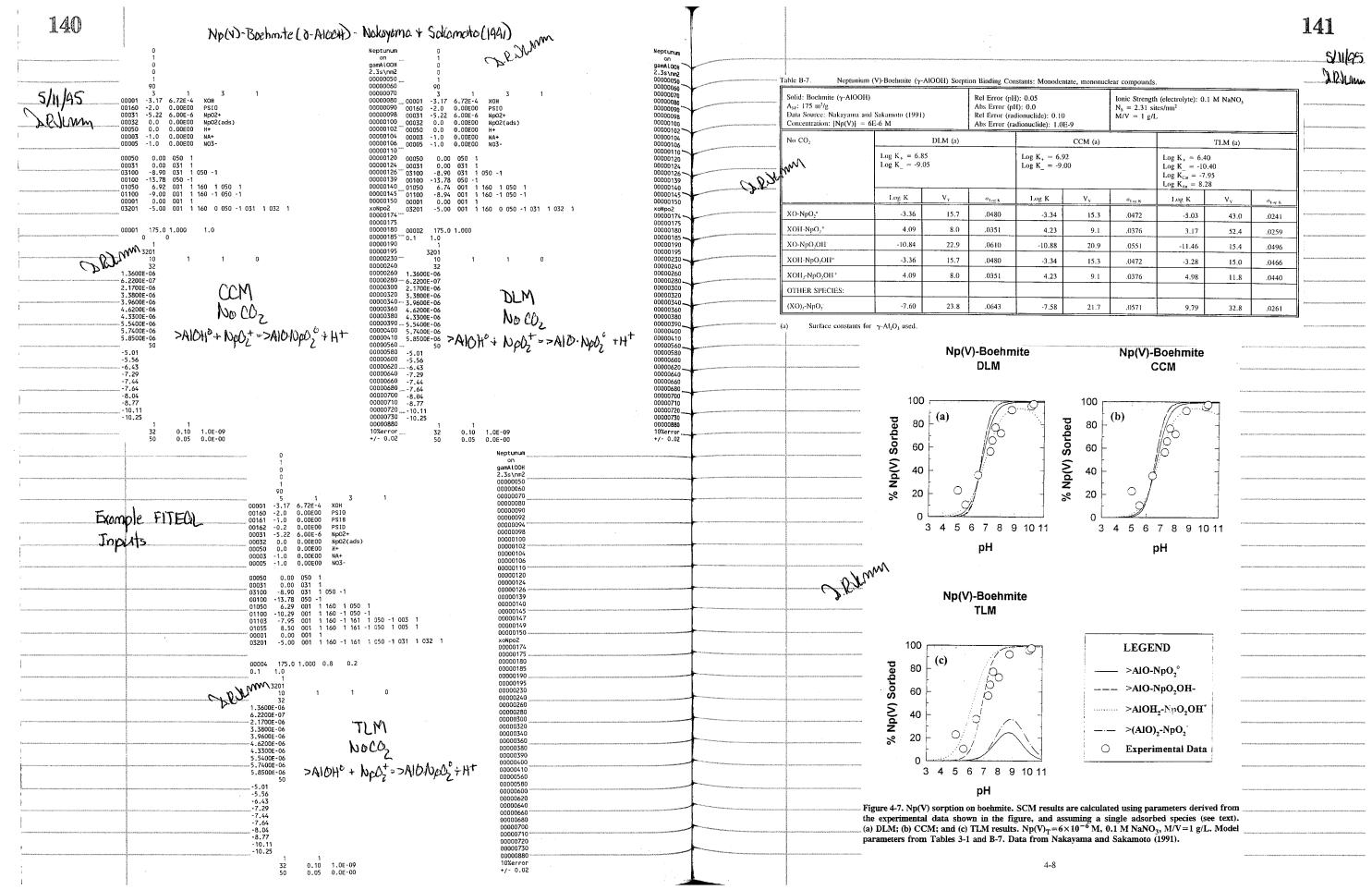


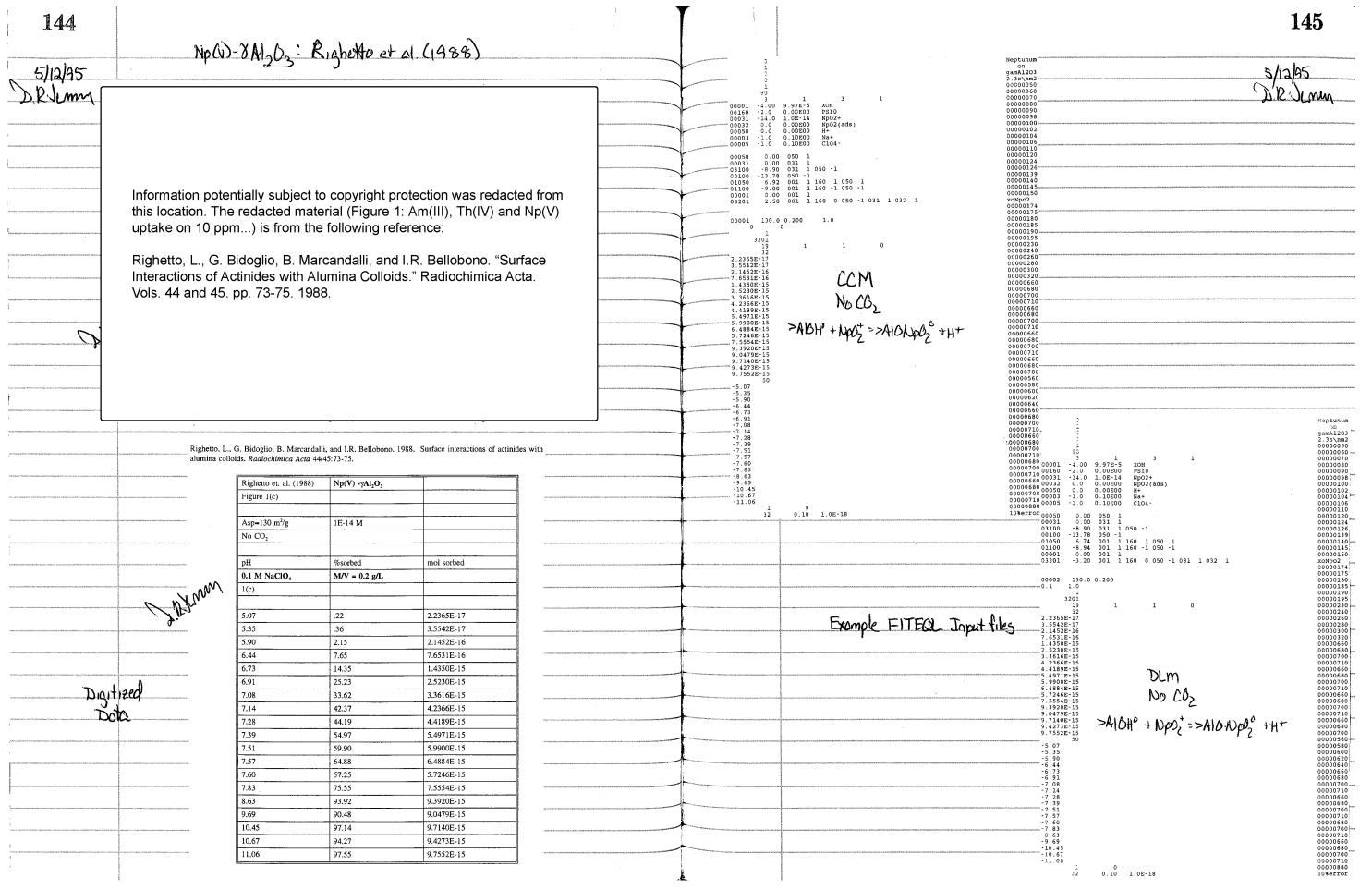




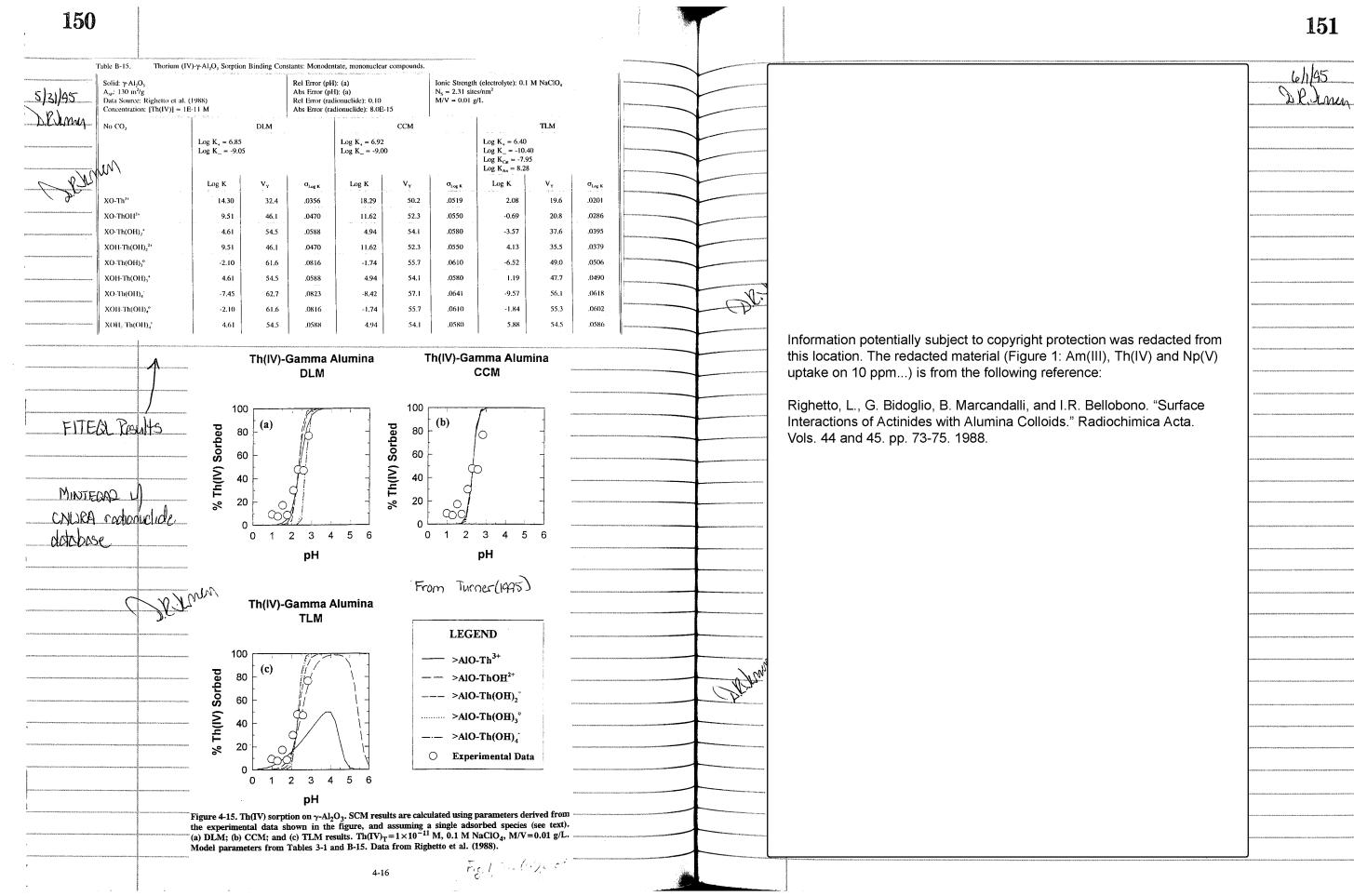






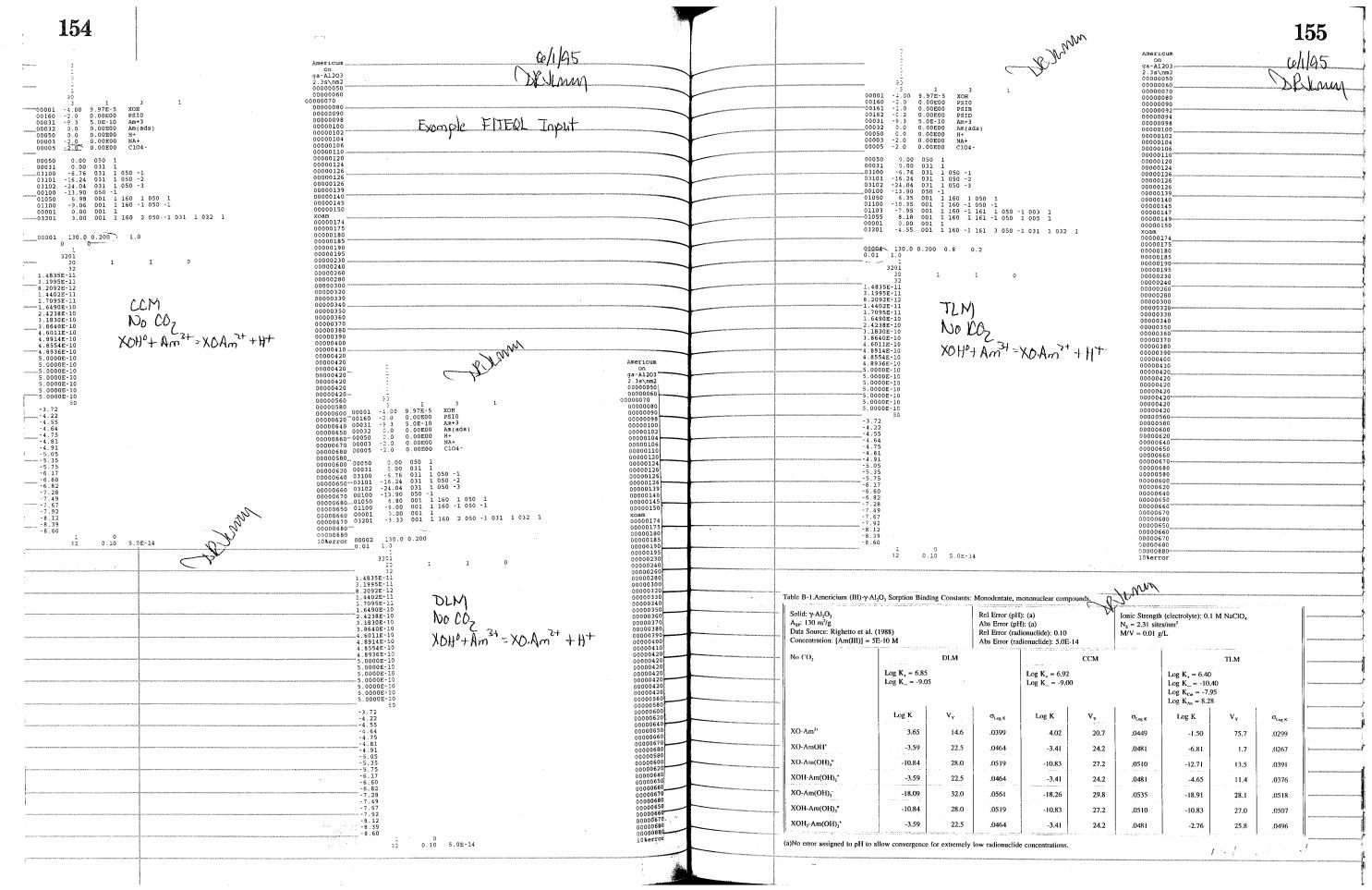


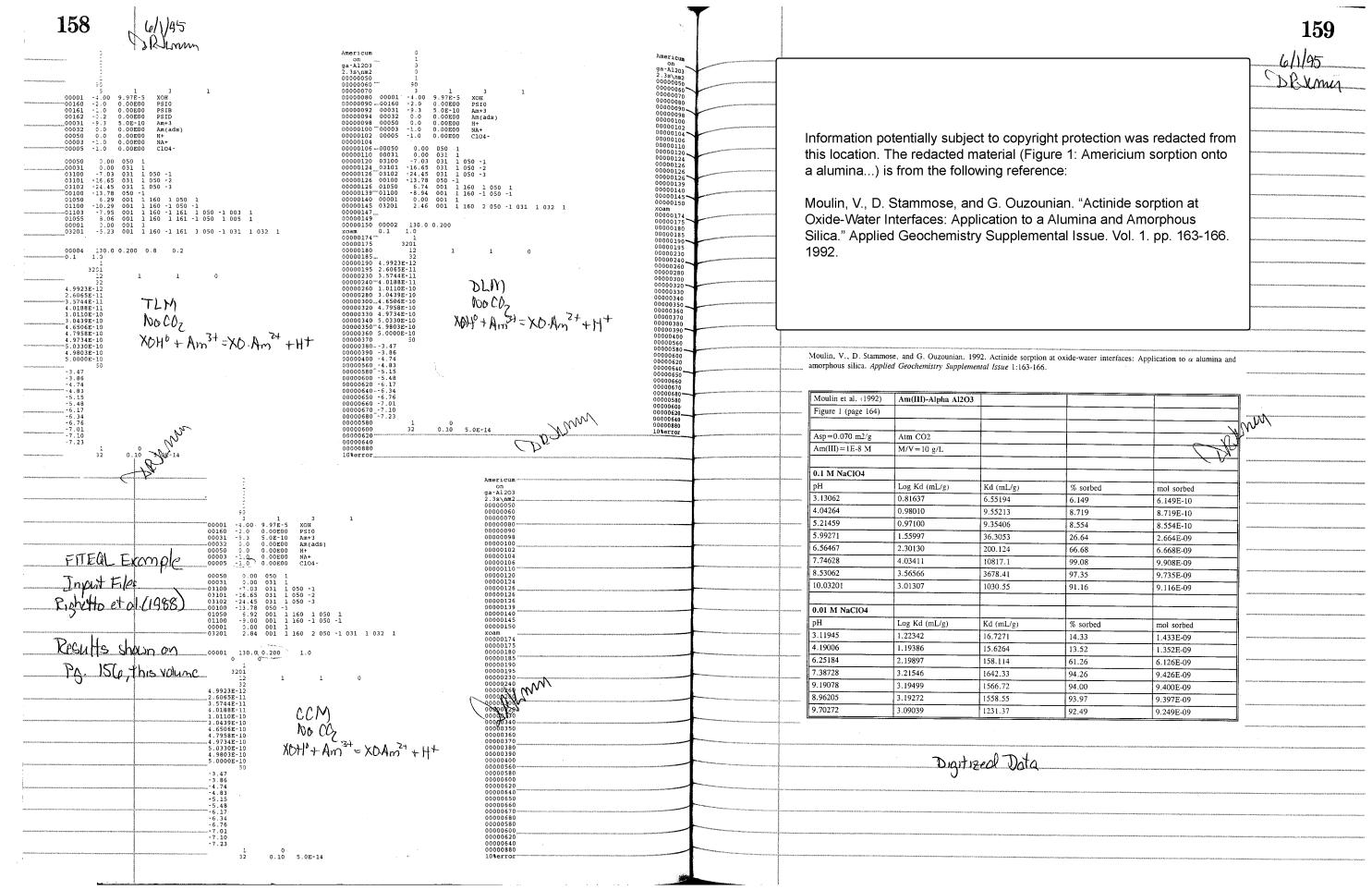
					Nakawama C and V C-burner (00)	Complete a Constant	u	
***************************************		Np(V)-Hemotite - Nakayama + Sakamata(1991)			Acta 52/53:153-157.	Sorption of neptunium on nati	urally-occurring iron-containing minerals. Ra	Permanente ante ante ante ante ante ante ant
12/45			-		Nakayama and Sakamoto (199	(V)- Synthetic Hema	atite	
Jum	am (based) - Al (c) - M (b) - Al (c) -				Figure 3b (page 156)			
18 46 19 48 19 49 19 49 19 49 19 49 19 49 19 49 19 49 19 49 19 49 19 49 19 49 19 49 19 49 19 49 19 49 19 49 19					Asp=5.9 m2/g	No CO2	Np(V)=6E-6 M	
	****				0.1 M NaNO3	M/V = 1 g/L		kannouncesaan
								<u>d</u>
					No CO2 pH	% sorbed	mol sorbed	d
					4.32	6.464	3.878e-07	
	********************************				4.80	4.316	2.589e-07	A.
					5.57 6.44	9.015 8.481	5.409e-07 5.089e-07	
					6.56	15.554	9.333e-07	<u></u>
					6.64	12.419	7.452e-07	du
		Information potentially subject to copyright protection was			6.90 7.22	10.342	6.205e-07	
		redacted from this location. The redacted material (Figure 3:			8.06	29.027	7.138e-07 1.742e-06	
		Sorption of neptunium on (b) synthetic hematite) is from			8.68	32.009	1.921e-06	_
		the following reference:			8.68	39.745	2.385e-06	
		-			9.21	38.360 47.962	2.302e-06 2.878e-06	
		Nakayama, S. and Y. Sakamoto. "Sorption of Neptunium on			9.42	60.356	3.621e-06	No
		Naturally-Occurring Iron-Containing Minerals." Radiochimica			10.16	44.198	2.652e-06	tor
		Acta. Vols. 52 and 53. pp. 153-157. 1991.			10.34	64.705 71.714	3.882e-06 4.303e-06	
					10.57	72.150	4.329e-06	doit
					10.62	55.894	3.354e-06	
				-	10.86	85.794	5.148e-06	
					Nakayama, S., and Y. Sakamoto. 1991. Acta 52/53:153-157.	*		
					Acta 52/53:153-157.	4		
	00000000000000000000000000000000000000				Acta 52/53:153-157.	4		
					Acta 52/53:153-157. Nakayama and Sakamoto (199 Figure 3a (page 156)	4	ite	
			· · · · · · · · · · · · · · · · · · ·		Acta 52/53:153-157.	1) Np(V)- Natural Hemati		
			· · · · · · · · · · · · · · · · · · ·		Acta 52/53:153-157. Nakayama and Sakamoto (199 Figure 3a (page 156) Asp=3.2 m2/g 0.1 M NaNO3	1) Np(V)- Natural Hemati	ite	
				· · · · · · · · · · · · · · · · · · ·	Acta 52/53:153-157. Nakayama and Sakamoto (199 Figure 3a (page 156) Asp=3.2 m2/g	1) Np(V)- Natural Hemati	ite	
					Acta 52/53:153-157. Nakayama and Sakamoto (199 Figure 3a (page 156) Asp=3.2 m2/g 0.1 M NaNO3 No CO2 pH 3.50	 Np(V)- Natural Hemati No CO2 M/V=1 g/L % sorbed 3.185 	ite	
			· · · · · · · · · · · · · · · · · · ·		Acta 52/53:153-157. Nakayama and Sakamoto (199 Figure 3a (page 156) Asp=3.2 m2/g 0.1 M NaNO3 No CO2 pH 3.50 4.15	 Np(V)- Natural Hemati No CO2 M/V=1 g/L % sorbed 3.185 4.530 	ite	
					Acta 52/53:153-157. Nakayama and Sakamoto (199 Figure 3a (page 156) Asp=3.2 m2/g 0.1 M NaNO3 No CO2 pH 3.50	 Np(V)- Natural Hemati No CO2 M/V=1 g/L % sorbed 3.185 	ite	
	· · · · · · · · · · · · · · · · · · ·				Acta 52/53:153-157. Nakayama and Sakamoto (199 Figure 3a (page 156) Asp=3.2 m2/g 0.1 M NaNO3 No CO2 pH 3.50 4.15 4.44 5.15 5.366	 Np(V)- Natural Hemati No CO2 M/V=1 g/L % sorbed 3.185 4.530 4.593 10.682 12.118 	ite	
					Acta 52/53:153-157. Nakayama and Sakamoto (199 Figure 3a (page 156) Asp=3.2 m2/g 0.1 M NaNO3 No CO2 pH 3.50 4.15 4.44 5.15 5.36 5.94	 Np(V)- Natural Hemati No CO2 M/V=1 g/L % sorbed 3.185 4.530 4.593 10.682 12.118 4.068 	ite	
					Acta 52/53:153-157. Nakayama and Sakamoto (199 Figure 3a (page 156) Asp=3.2 m2/g 0.1 M NaNO3 No CO2 pH 3.50 4.15 4.44 5.15 5.366	 Np(V)- Natural Hemati No CO2 M/V=1 g/L % sorbed 3.185 4.530 4.593 10.682 12.118 	ite	
					Acta 52/53:153-157. Nakayama and Sakamoto (199 Figure 3a (page 156) Asp=3.2 m2/g 0.1 M NaNO3 No CO2 pH 3.50 4.15 4.44 5.15 5.36 5.94 6.18 6.75 6.94	 Np(V)- Natural Hemati No CO2 M/V=1 g/L % sorbed 3.185 4.530 4.593 10.682 12.118 4.068 4.599 5.849 9.408 	ite	
					Acta 52/53:153-157. Nakayama and Sakamoto (199 Figure 3a (page 156) Asp=3.2 m2/g 0.1 M NaNO3 No CO2 pH 3.50 4.15 4.44 5.15 5.36 5.94 6.18 6.75 6.94 7.05	 Np(V)- Natural Hemati No CO2 M/V=1 g/L % sorbed 3.185 4.530 4.593 10.682 12.118 4.068 4.599 5.849 9.408 6.756 	ite	
					Acta 52/53:153-157. Nakayama and Sakamoto (199 Figure 3a (page 156) Asp=3.2 m2/g 0.1 M NaNO3 No CO2 pH 3.50 4.15 4.44 5.15 5.36 5.94 6.18 6.75 6.94	 Np(V)- Natural Hemati No CO2 M/V=1 g/L % sorbed 3.185 4.530 4.593 10.682 12.118 4.068 4.599 5.849 9.408 	ite	
					Acta 52/53:153-157. Nakayama and Sakamoto (199 Figure 3a (page 156) Asp=3.2 m2/g 0.1 M NaNO3 No CO2 pH 3.50 4.15 4.44 5.15 5.36 5.94 6.18 6.75 6.94 7.05 7.19 8.36 8.79	 Np(V)- Natural Hemati No CO2 M/V=1 g/L % sorbed 3.185 4.530 4.593 10.682 12.118 4.068 4.599 5.849 9.408 6.756 12.936 	ite Np(V)=6E-6 M Np(V)=6E-6 M mol sorbed 1.911e-07 2.718e-07 2.756e-07 6.409e-07 7.271e-07 2.441e-07 2.759e-07 3.510e-07 5.645e-07 4.053e-07 7.762e-07	
					Acta 52/53:153-157. Nakayama and Sakamoto (199 Figure 3a (page 156) Asp=3.2 m2/g 0.1 M NaNO3 No CO2 pH 3.50 4.15 4.44 5.15 5.36 5.94 6.18 6.75 6.94 7.05 7.19 8.36 8.79 8.93	Np(V)- Natural Hemati No CO2 M/V=1 g/L % sorbed 3.185 4.530 4.593 10.682 12.118 4.068 4.599 5.849 9.408 6.756 12.936 8.914 18.279 12.817	ite Np(V)=6E-6 M Np(V)=6E-6 M mol sorbed 1.911e-07 2.718e-07 2.718e-07 2.756e-07 6.409e-07 7.271e-07 2.441e-07 2.759e-07 3.510e-07 3.510e-07 5.645e-07 4.053e-07 7.762e-07 5.348e-07 1.097e-06 7.690e-07	
					Acta 52/53:153-157. Nakayama and Sakamoto (199 Figure 3a (page 156) Asp=3.2 m2/g 0.1 M NaNO3 No CO2 pH 3.50 4.15 4.44 5.15 5.36 5.94 6.18 6.75 6.94 7.05 7.19 8.36 8.79 8.93 8.95	Np(V)- Natural Hemati No CO2 M/V=1 g/L % sorbed 3.185 4.530 4.593 10.682 12.118 4.068 4.599 5.849 9.408 6.756 12.936 8.914 18.279 12.817 13.036	ite Np(V)=6E-6 M Np(V)=6E-6 M mol sorbed 1.911e-07 2.718e-07 2.718e-07 2.756e-07 6.409e-07 7.271e-07 2.441e-07 2.759e-07 3.510e-07 3.510e-07 5.645e-07 4.053e-07 7.762e-07 5.348e-07 1.097e-06 7.690e-07 7.821e-07	
					Acta 52/53:153-157. Nakayama and Sakamoto (199 Figure 3a (page 156) Asp=3.2 m2/g 0.1 M NaNO3 No CO2 pH 3.50 4.15 4.44 5.15 5.36 5.94 6.18 6.75 6.94 7.05 7.19 8.36 8.79 8.93 8.95 9.16 9.51	Np(V)- Natural Hemati No CO2 M/V=1 g/L % sorbed 3.185 4.530 4.593 10.682 12.118 4.068 4.599 5.849 9.408 6.756 12.936 8.914 18.279 12.817	ite Np(V)=6E-6 M Np(V)=6E-6 M mol sorbed 1.911e-07 2.718e-07 2.718e-07 2.756e-07 6.409e-07 7.271e-07 2.441e-07 2.759e-07 3.510e-07 3.510e-07 5.645e-07 4.053e-07 7.762e-07 5.348e-07 1.097e-06 7.690e-07	
					Acta 52/53:153-157. Nakayama and Sakamoto (199 Figure 3a (page 156) Asp=3.2 m2/g 0.1 M NaNO3 No CO2 pH 3.50 4.15 4.44 5.15 5.36 5.94 6.18 6.75 6.94 7.05 7.19 8.36 8.79 8.93 8.95 9.16 9.93	Np(V)- Natural Hemati No CO2 M/V=1 g/L % sorbed 3.185 4.530 4.593 10.682 12.118 4.068 4.599 5.849 9.408 6.756 12.936 8.914 18.279 12.817 13.036 19.060 13.506 19.625	ite	
					Acta 52/53:153-157. Nakayama and Sakamoto (199 Figure 3a (page 156) Asp=3.2 m2/g 0.1 M NaNO3 No CO2 pH 3.50 4.15 4.44 5.15 5.36 5.94 6.18 6.75 6.94 7.05 7.19 8.36 8.79 8.93 8.95 9.16 9.93 10.35	Np(V)- Natural Hemati No CO2 M/V=1 g/L % sorbed 3.185 4.530 4.593 10.682 12.118 4.068 4.599 5.849 9.408 6.756 12.936 8.914 18.279 12.817 13.036 19.060 13.506 19.625 25.899	ite Np(V)=6E-6 M Np(V)=6E-6 M mol sorbed 1.911e-07 2.718e-07 2.756e-07 6.409e-07 7.271e-07 2.441e-07 2.441e-07 2.759e-07 3.510e-07 5.645e-07 4.053e-07 7.762e-07 5.348e-07 1.097e-06 7.690e-07 7.821e-07 1.144e-06 8.103e-07 1.17re-06 1.554e-06	
					Acta 52/53:153-157. Nakayama and Sakamoto (199 Figure 3a (page 156) Asp=3.2 m2/g 0.1 M NaNO3 No CO2 pH 3.50 4.15 4.44 5.15 5.36 5.94 6.18 6.75 6.94 7.05 7.19 8.36 8.79 8.93 8.95 9.16 9.93	Np(V)- Natural Hemati No CO2 M/V=1 g/L % sorbed 3.185 4.530 4.593 10.682 12.118 4.068 4.599 5.849 9.408 6.756 12.936 8.914 18.279 12.817 13.036 19.060 13.506 19.625	ite	

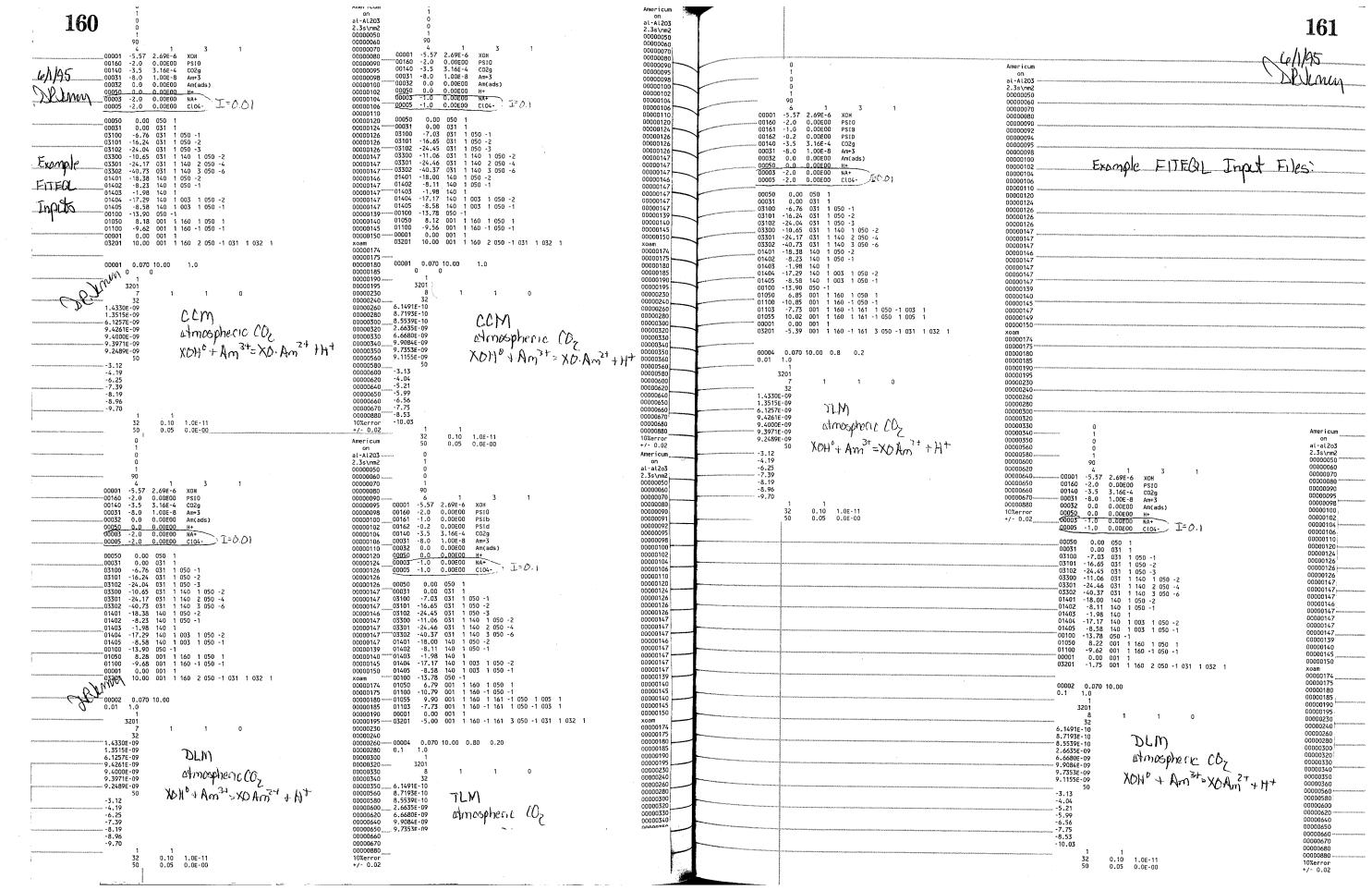


5/31/45 DR 1m

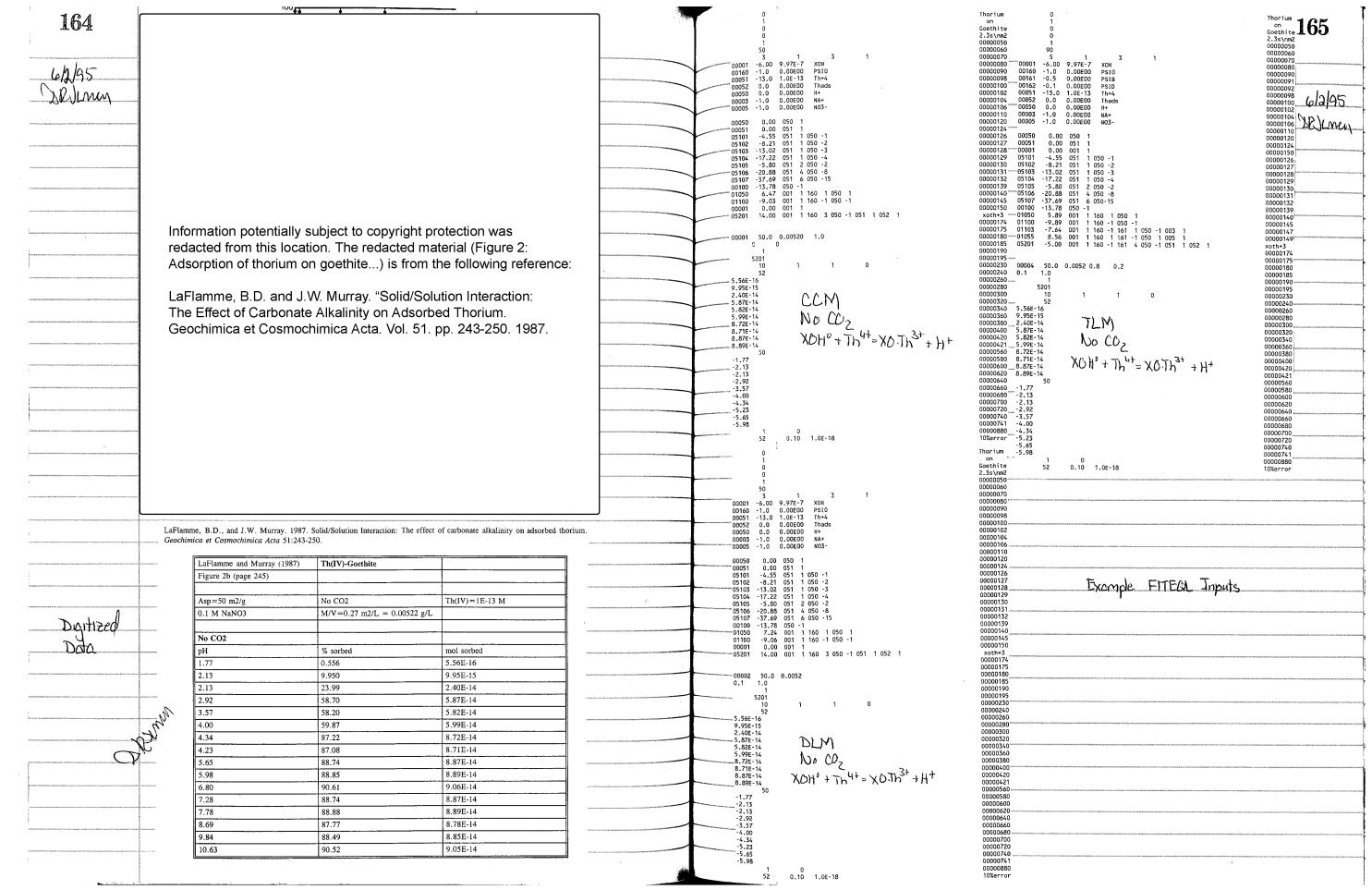
5/31/45 DRUMUN 149 Thorium Thorium on gam-Al20 2.3s\nm2 00000050 00000060 00000070 on gam-Al20 2.3s\nm2. 00000050 00000060 00000070 00000080** 00000090 3 1 -5.30 4.99E-6 -1.0 0.00E00 -11.0 1.0E-11 0.0 0.00E00 0.0 0.00E00 -1.0 0.00E00 -1.0 0.00E00 1 XOH PSIO Th+4 Thads H+ NA+ ClO4-1 1 4.99E-6 0.00E00 1.0E-11 0.00E00 0.00E00 0.00E00 0.00E00 XOH PSIO Th+4 Thads H+ NA+ ClO4-00001 00160 00051 00052 00050 00003 00003 -5.30 -1.0 -11.0 0.0 0.0 -1.0 -1.0 00000080 00001 00160 00051 00052 00050 00003 00003 00000090 00000098 00000098 00000100 00000102 00000104 00000106 00000102 00000104 00000106 00000110 00000120 00000124 DLM 00050 00051 05101 05102 05103 05104 05105 05106 0510700100 01050 01050 01000 01000 01000 00000110 00000120 00000124 00000126 00050 00051 05102 05103 05104 05105 05106 05107 00100 01100 00100 05201 00000126 XOH" + THIF = XOIN 3+ + H+ 00000128 00000128 00000129 00000130 00000131 Information potentially subject to copyright protection was redacted from 00000127 00000128 00000129 this location. The redacted material (Figure 1: Am(III), Th(IV) and Np(V) XOH" + Th = XO. Th = + H+ 00000129 00000130 00000131 00000132 00000139 00000140 00000145 uptake on 10 ppm...) is from the following reference: 00000132 00000139 00000140 00000145 00000150 xoth+3 00000174 00000150 Righetto, L., G. Bidoglio, B. Marcandalli, and I.R. Bellobono. "Surface 000001507 xoth+3 00000174 00000175 00000180 00000185 -00002 J D.1 P. 9. 7 00000175 130.0 0.010 1.0 Interactions of Actinides with Alumina Colloids." Radiochimica Acta. 00000180 00001 130.0 0.010 1.0 00000185 1 5201 10 52 00000185 00000190 00000195 00000230 Vols. 44 and 45. pp. 73-75. 1988. 5201 1 0 00000195 10 52 1 1 0 00000230 00000240 9.2903E-13 ...7.6385E-13 1.7088E-12 8.5183E-13 00000240 00000380 00000400 00000420 52 9.2903E-13 7.6385E-13 1.7088E-12 8.5183E-13 2.9874E-12 4.7673E-12 4.7673E-12 4.6888E-12 9.0841E-12 9.0841E-12 50 00000380 00000400 00000420 00000421 00000422 00000423 9874E-12 00000423 1.7673E-12 00000422 4.6888E-12 7.6545E-12 ~6.3240E-12 9.0841E-12 00000423 00000424 0000042 00000425 00000426*** 00000427 00000560 00000580 00000620 00000427 -0.994 -0.994 -1.294 -1.543 -2.085 -2.314 -2.593 -2.847 -3.100 -3.617 00000560 --0.994 -1.294 -1.543 -1.771 -2.085 -2.314 -2.593 -2.847 -3.100 -3.617 00000580 00000600 00000620 00000640 00000680 00000660 00000680 00000700 00000720 00000720 00000740 00000740 00000740 00000741 00000880 10%error 1 52 0 0.10 8.0E-15 00000880 10%error 1 52 0 0.10 8.0E-15 Righetto, L., G. Bidoglio, B. Marcandalli, and I.R. Bellobono. 1988. Surface interactions of actinides with Thorium alumina colloids. Radiochimica Acta 44/45:73-75. on gam-A120 2.3s\nm2 0000005 Righetto et. al. (1988) Th(IV) - YAl2O3 0000006 00001 00160 00161 00162 00051 00052 00050 00003 00005 XOH PSIO PSIB PSID Th+4 Thads H+ NA+ ClO4-Figure 1(a) 00000080 00000090 0000009 00000093 00000098 Asp=130 m²/g 1E-11 M No CO₂ TLM Example FITERL 00000104 00000106 $XOH^{0} + Th^{4+} = XO \cdot Th^{3+} + H^{+}$ 0000011 00050 00051 05101 05102 05103 05104 05105 05106 05107 00100 01050 01103 ~01055 00001 05201 00000120 00000124 00000126 00000126 Input Files pН m %sorbed mol sorbed M/V = 0.01 g/L 0.1 M NaClO No CO2 0000012 1(a) 0000012 00000131 00000131 00000132 00000139 00000140 .99 9.29 9.2903E-13 1.29 7.64 7.6385E-13 -1 1 160 1 050 1 1 160 -1 050 -1 1 160 -1 161 1 050 -1 003 1 160 1 161 -1 050 1 005 1.54 17.09 1.7088E-12 0000014 0000014 1.77 8.52 8,5183E-13 0000014 0000014 00000150 xoth+3 0000017 0000017 1 160 -1 161 4 050 -1 051 1 052 1 2.09 29.87 2.9874E-12 2,31 47.67 4.7673E-12 00004 0.1 130.0 0.010 0.8 1.0 00000180 2.59 00000180 00000190 00000195 00000230 00000240 46.89 4.6888E-12 5201 2.85 76.55 7.6545E-12 10 52 1 0 3.10 6.324E-12 63.24 .2903E-13 .6385E-13 .7088E-12 0000038 3.62 90.84 9.0841E-12 00000400 00000420 00000421 8.5183E-13 2.9874E-12 .7673E-12 4.7673E-12 4.6888E-12 7.6545E-12 6.3240E-12 9.0841E-12 00000424 00000425 00000426 Digitized Data -0.994 -1.294 -1.543 -1.771 -2.085 -2.314 "-2.593 -2.847 -3.100 -3.617 00000560 00000600 00000620 00000640 00000660 00000680 00000700 00000720 00000740


1 52 0 0.10 8.0E-15 00000741 00000880 10%error

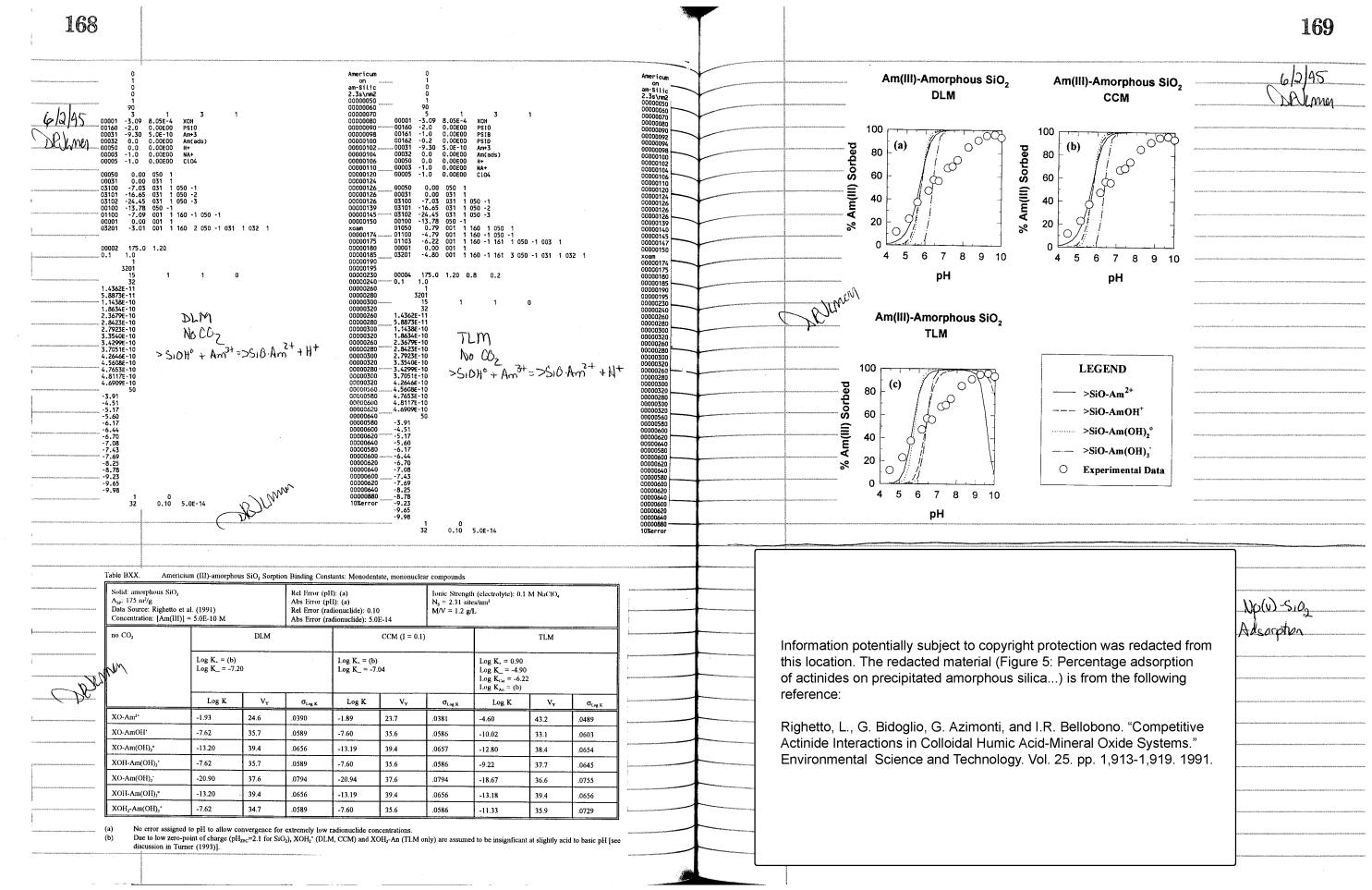

151

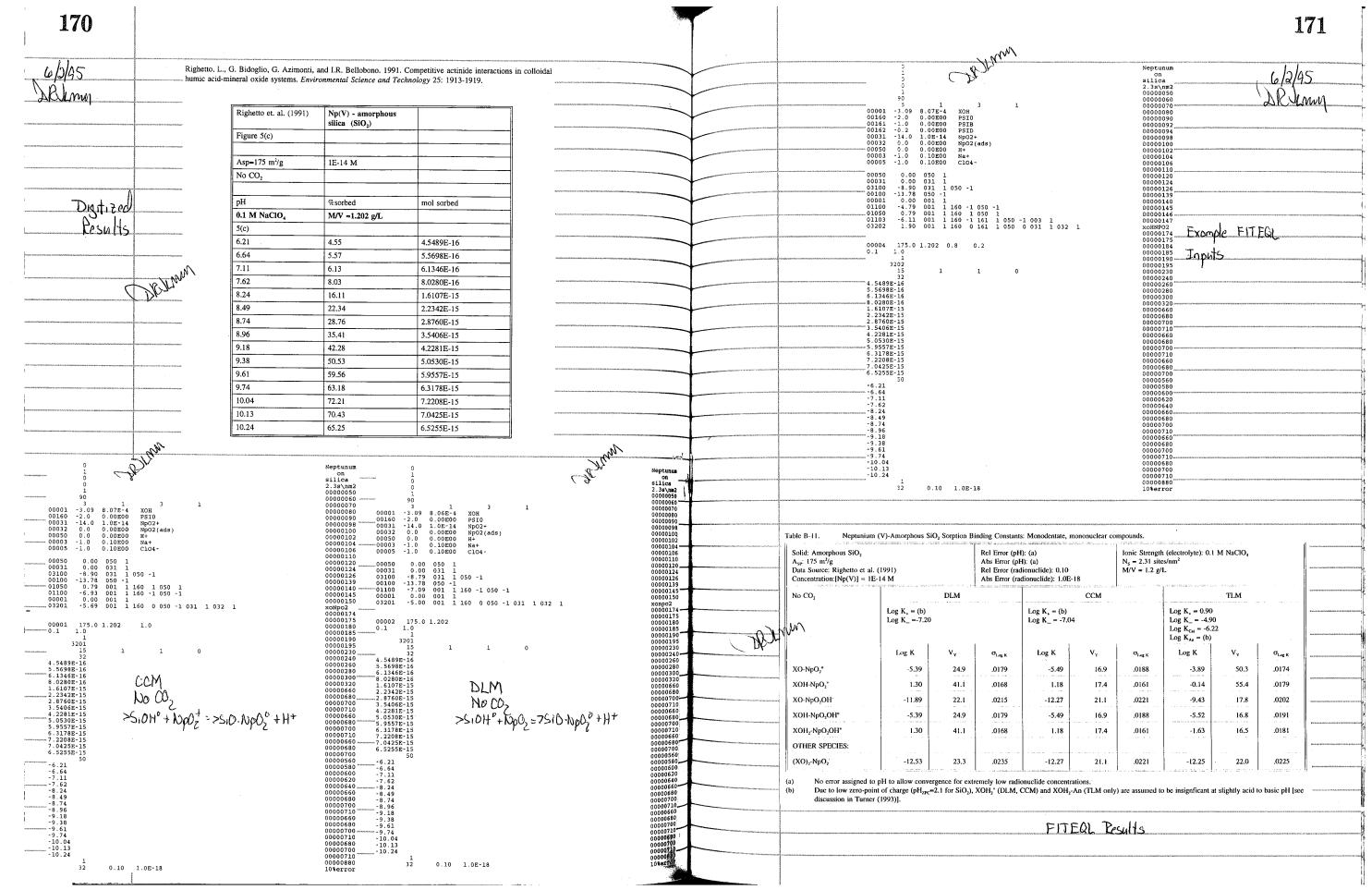

6/195

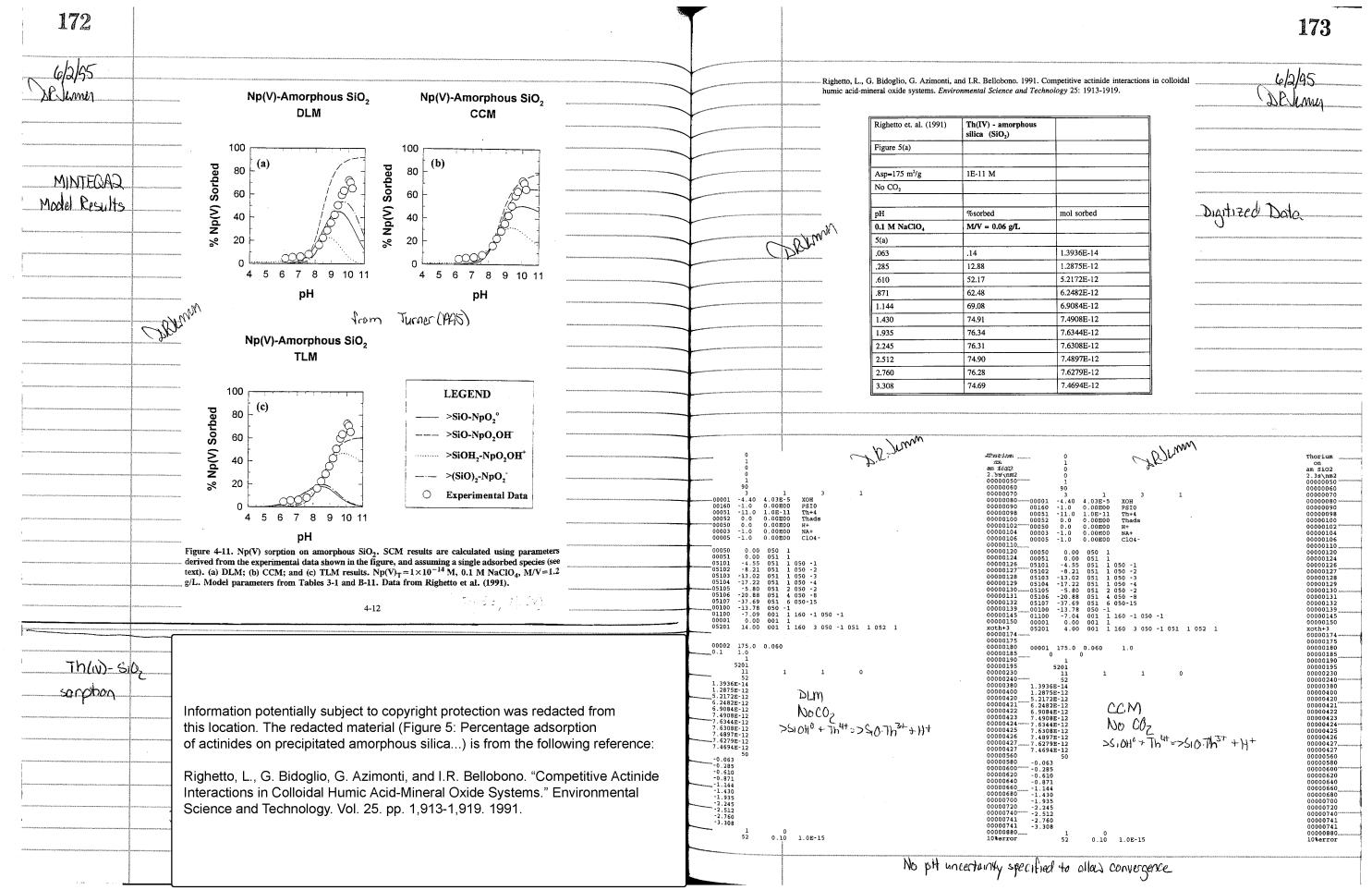
Mark Reference State is a construction of solution of the solution of solution of the	152											153	
Auto Add. Number of UNEX Statistical St	 										6/1/95	100	,
No. C. L. (10) No. C.	6/1/95	Righetto. L., alumina coll	, G. Bidoglio, B. Marcandai loids. <i>Radiochimica Acta</i> 44	lli, and I.R. Bellobono. 198 W45:73-75.	8. Surface interactions of actinides v	with					SRIMM.	งานแหน่งหมางการการการการการการการการการการการการการก	where the first of the second states
Press Bit Minute Difference Difference </th <th>D.R.Jemin</th> <th>1000 1000 1000 100 100 100 100 100 100</th> <th>Righetto et. al. (1988)</th> <th>Am(III) -γAl₂O₃</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>on</th> <th></th> <th></th> <th>mericum "</th>	D.R.Jemin	1000 1000 1000 100 100 100 100 100 100	Righetto et. al. (1988)	Am(III) -γAl ₂ O ₃						on			mericum "
$\frac{1}{100} = \frac{1}{100} + \frac{1}$	2019/00/00/00/00/00/00/00/00/00/00/00/00/00									2.3s\nm2 xxx		g; 2 01	a-A1203 .3s\nm2 0000050
Image: Constraint of the stand of			$\Delta cn = 120 m^2/\sigma$	5E 10 M			00001 -5.3	1 3 0 4.99E-6 XOH	1	00000070 3 00000080 **** 00001 -5,30 4.	1 3 1 99E-6 XOH	01	0000060
Image: Constraint of the stand of				5E-10 M			00160 -2.0 00031 -9.3 00032 -2.0	0.00E00 PSI0 5.0E-10 Am+3 0.00E00 Am(ads)		00000090 00160 -2.0 0. 00000098 00031 -9.3 5. 00000100 **** 00032 0.0 0	00E00 PS10 0E-10 Am+3 D	DLM 0	0000098
Image: Constraint of the stand of							00050 0.0	0.00E00 H+ 0.00E00 NA+	CCM	00000102 00050 0.0 0 00000104 00003 -1.0 0	00E00 H+ N 00E00 NA+	0 (07	0000102 0000104
Image: Constraint of the stand of					mol sorbed		000050	00 050 1	No CO2	00000110 00050 -1.0 0.0000110 00000120 00050 0.00 0	100E00 C104-	"+A-3+5X0.A-2++++")000106 0000110 0000120
Image: Constraint of the stand of				M/V = 0.01 g/L			00031 0.0 03100 -7.0 03101 -16.0	$\sum_{\substack{03\\55\\03111050-2}}^{00} \sum_{\substack{031\\1050-2}}^{0311} \sum_{\substack{1050\\20}}^{1} \sum_{\substack{031\\1050}}^{1} \sum_{\substack{031\\20}}^{1} \sum_{\substack{031\\1050}}^{1} \sum_{\substack{031\\20}}^{1} \sum_{$	0H0+ Am3+=X0.Am27	+ + + + $00000124 - 00031 - 0.00 (0 -7.03 (0$	31 1 31 1 050 -1 31 1 050 -2		0000124 0000126 ** 0000126
Image: Constraint of the stand of				1.23	6.1552E-12		03102 -24.	45 031 1 050 -3 78 050 -1 92 001 1 160 1 050 1	,	00000126 03102 -24.45 0 00000139	1 050 -3 950 -1	00	0000126
Image: Constraint of the stand of	12/10/2020/2020/2020/2020/2020/2020/202						01050 5. 01100 -9.0 00001 3.0	00 001 1 160 -1 050 -1 00 001 1 160 -1 050 -1		00000145 01100 -8.94 0 00000150 00001 0.00 0	101 1 160 1 050 1 101 1 160 -1 050 -1 101 1	. 01 01 01	0000140 [™] 0000145 0000150
Image: Constraint of the stand of	40000000000000000000000000000000000000	****						19 001 1 160 2 050 -1 0	31 1 032 1	xoam 03201 3.02 (00000174 00000175	001 1 160 2 050 -1 031 1	00	oam 🐜 0000174 0000175
Image: Constraint of the stand of							00001 130	.0 0.010 1.0 0		00000180 00002 130.0 0. 00000185 0.1 1.0	010	04	0000180 0000185
Image: Constraint of the stand of					4.8149E-10			1 1	0	00000195 3201 00000230 **** 7	1 1 0	00	0000195 0000230
$\frac{1}{322} = \frac{1}{6.6} + \frac{1}{31995 + 11} + \frac{1}{422} = \frac{1}{6.6} + \frac{1}{31995 + 12} + \frac{1}{2} = \frac{1}{6.1} + \frac{1}{5.66 + 16} + \frac{1}{602} + \frac{1}{12} = \frac{1}{6.1} + \frac{1}{5.66 + 16} + \frac{1}{6} + \frac$			7.09	98.36	4.9182E-10		6.1552E-12 5.6046E-11	`		00000240 32 00000260 6.1552E-12 00000280 5.6046E-11		00	0000240 0000260 0000280
$\frac{1}{322} = \frac{1}{6.6} + \frac{1}{31995 + 11} + \frac{1}{422} = \frac{1}{6.6} + \frac{1}{31995 + 12} + \frac{1}{2} = \frac{1}{6.1} + \frac{1}{5.66 + 16} + \frac{1}{602} + \frac{1}{12} = \frac{1}{6.1} + \frac{1}{5.66 + 16} + \frac{1}{6} + \frac$	\u0.4944\u0.4944\u0.4944\u0.4944\u0.4944\u0.4944\u0.4944\u0.4944\u0.4944\u0.4944\u0.4944\u0.4944\u0.4944\u0.494 •	M.	pH	%sorbed	mol sorbed		1.5033E-10 2.7186E-10			00000300 1.5033E-10 00000320 2.7186E-10 00000330 3.7001E-10		00	0000320
$\frac{1}{322} = \frac{1}{6.6} + \frac{1}{31995 + 11} + \frac{1}{422} = \frac{1}{6.6} + \frac{1}{31995 + 12} + \frac{1}{2} = \frac{1}{6.10} + \frac{1}{5.66 + 16} + \frac{1}{602} + \frac{1}{10} + $		- Alla		M/V = 0.2 g/L			4.8149E-10 4.9182E-10			00000340 **** 4.8149E-10 00000350 4.9182E-10 00000550		00	0000340 0000350
$\frac{4.75}{4.81} = \frac{1.42}{2.88} = \frac{1.09962-11}{1.09402-10}$ $\frac{4.75}{4.81} = \frac{1.42}{2.288} = \frac{1.09962-10}{1.09402-10}$ $\frac{4.75}{5.05} = \frac{1.42}{7.28} = \frac{1.3402-10}{1.00}$ $\frac{5.75}{5.75} = \frac{92.02}{4.4011-10}$ $\frac{4.8546-10}{6.60} = \frac{97.11}{7.11} = \frac{4.8546-10}{4.8546-10}$ $\frac{6.60}{6.60} = \frac{97.11}{7.11} = \frac{4.8546-10}{4.8546-10}$ $\frac{6.60}{6.60} = \frac{97.11}{7.11} = \frac{4.8546-10}{4.8546-10}$ $\frac{6.60}{7.28} = 100 = \frac{5.00006-10}{5.00006-10}$ $\frac{7.9}{7.9} = 100 = \frac{5.00006-10}{5.00006-10}$ $\frac{7.9}{7.9} = 100 = \frac{5.00006-10}{5.00006-10}$ $\frac{7.9}{7.9} = 100 = \frac{5.00006-10}{5.00006-10}$ $\frac{8.12}{1.00} = \frac{100}{5.00006-10}$ $\frac{8.12}{1.00} = \frac{100}{5.0006-10}$ $\frac{8.12}{1.00} = \frac{100}{5.00000-10$	*****	-N					-4.54 -5.20			00000580 mm -4.54 00000600 -5.20		00	0000560 0000580 0000600
$\frac{4.75}{4.81} = \frac{1.42}{2.88} = \frac{1.09962-11}{1.09402-10}$ $\frac{4.75}{4.81} = \frac{1.42}{2.288} = \frac{1.09962-10}{1.09402-10}$ $\frac{4.75}{5.05} = \frac{1.42}{7.28} = \frac{1.3402-10}{1.00}$ $\frac{5.75}{5.75} = \frac{92.02}{4.4011-10}$ $\frac{4.8546-10}{6.60} = \frac{97.11}{7.11} = \frac{4.8546-10}{4.8546-10}$ $\frac{6.60}{6.60} = \frac{97.11}{7.11} = \frac{4.8546-10}{4.8546-10}$ $\frac{6.60}{6.60} = \frac{97.11}{7.11} = \frac{4.8546-10}{4.8546-10}$ $\frac{6.60}{7.28} = 100 = \frac{5.00006-10}{5.00006-10}$ $\frac{7.9}{7.9} = 100 = \frac{5.00006-10}{5.00006-10}$ $\frac{7.9}{7.9} = 100 = \frac{5.00006-10}{5.00006-10}$ $\frac{7.9}{7.9} = 100 = \frac{5.00006-10}{5.00006-10}$ $\frac{8.12}{1.00} = \frac{100}{5.00006-10}$ $\frac{8.12}{1.00} = \frac{100}{5.0006-10}$ $\frac{8.12}{1.00} = \frac{100}{5.00000-10$, P					-5.90		N	00000620 -5.56 00000640 -5.90 00000650 -6.16		00	0000620 0000640 0000650***
$\frac{4.75}{4.81} = \frac{1.42}{2.88} = \frac{1.09962-11}{1.09402-10}$ $\frac{4.75}{4.81} = \frac{1.42}{2.288} = \frac{1.09962-10}{1.09402-10}$ $\frac{4.75}{5.05} = \frac{1.42}{7.28} = \frac{1.3402-10}{1.00}$ $\frac{5.75}{5.75} = \frac{92.02}{4.4011-10}$ $\frac{4.8546-10}{6.60} = \frac{97.11}{7.11} = \frac{4.8546-10}{4.8546-10}$ $\frac{6.60}{6.60} = \frac{97.11}{7.11} = \frac{4.8546-10}{4.8546-10}$ $\frac{6.60}{6.60} = \frac{97.11}{7.11} = \frac{4.8546-10}{4.8546-10}$ $\frac{6.60}{7.28} = 100 = \frac{5.00006-10}{5.00006-10}$ $\frac{7.9}{7.9} = 100 = \frac{5.00006-10}{5.00006-10}$ $\frac{7.9}{7.9} = 100 = \frac{5.00006-10}{5.00006-10}$ $\frac{7.9}{7.9} = 100 = \frac{5.00006-10}{5.00006-10}$ $\frac{8.12}{1.00} = \frac{100}{5.00006-10}$ $\frac{8.12}{1.00} = \frac{100}{5.0006-10}$ $\frac{8.12}{1.00} = \frac{100}{5.00000-10$							-6.82 -7.09	0	- Mi	00000660 -6.82 00000670 -7.09 00000880	0		0000660 0000670
$\frac{481}{491} = \frac{32.98}{484} = \frac{1.64006 \cdot 10}{4.24286 \cdot 10}$ $\frac{481}{5.05} = \frac{32.98}{6.66} = \frac{1.64006 \cdot 10}{5.05}$ $\frac{3.35}{5.72.28} = \frac{3.36606 \cdot 10}{3.35}$ $\frac{5.7}{72.8} = \frac{3.36606 \cdot 10}{6.60}$ $\frac{6.17}{72.8} = \frac{7.7}{72.8} = \frac{3.36606 \cdot 10}{6.60}$ $\frac{6.17}{72.8} = \frac{1.64006 \cdot 10}{1.00}$ $\frac{6.17}{7.29} = \frac{1.00}{5.00006 \cdot 10}$ $\frac{6.17}{7.49} = \frac{1.00}{5.00006 \cdot 10}$ $\frac{6.10}{7.29} = \frac{1.00}{5.0006 \cdot 10}$ $\frac{6.10}{7.29} = \frac{1.00}{5.0006 \cdot 10}$ $\frac{6.10}{1.16} = \frac{1.00}{5.0006 \cdot 10}$ $\frac{6.10}{5.0006 \cdot 10} = 1$							32	0.10 5.0E-14	-Hell	10%error 32		$\sqrt{2}$	0%error
$\frac{491}{5.55} = \frac{46.6}{7.728} = \frac{3860E+10}{3860E+10}$ $\frac{5.55}{5.75} = \frac{92.02}{7.28} = \frac{4691E+10}{3860E+10}$ $\frac{5.75}{6.60} = \frac{97.11}{7.973} = \frac{48974E+10}{48554E+10}$ $\frac{6.60}{6.62} = \frac{97.87}{7.11} = \frac{48554E+10}{48554E+10}$ $\frac{6.62}{7.728} = 100$ $\frac{5.000E+10}{7.747} = 100$ $\frac{5.000E+10}{7.747} = \frac{100}{5.000E+10}$ $\frac{7.92}{7.77} = 100$ $\frac{5.000E+10}{5.000E+10}$ $\frac{7.92}{7.97} = 100$ $\frac{5.000E+10}{5.000E+10}$ $\frac{7.92}{7.97} = 100$ $\frac{5.000E+10}{5.000E+10}$ $\frac{7.92}{7.97} = 100$ $\frac{5.000E+10}{5.000E+10}$ $\frac{6.12}{7.92} = \frac{100}{5.000E+10}$ $\frac{6.12}{7.92} = \frac{100}{7.92} = \frac{100}{7.92}$ $\frac{6.12}{7.92} = \frac{100}{7.92} = \frac{100}{7.$								a fan in sen se				naran katalan k	#*####################################
$\frac{5.05}{5.75} = \frac{92.02}{92.02} + \frac{4.011E-10}{4.01} = \frac{1}{5.75} = $		***											90790 NON MARKANIN NAVARINA SA
$\frac{5.75}{6.0} = \frac{92.02}{4.8914E \cdot 10} + \frac{4.8914E \cdot 10}{4.575} + \frac{1}{2.585E \cdot 10} +$						a conservative and a second	·				on ga-A1203		
$\frac{100}{100} = \frac{9402}{9402} = \frac{40011610}{48914610}$ $\frac{100}{642} = 97.87 = 44894610}{642} = 97.87 = 44894610}$ $\frac{642}{7.49} = 100 = 50000610}{7.49} = 100 = 50000610}$ $\frac{7.49}{100} = 100 = 50000610}$ $\frac{7.67}{100} = 100 = 50000610}$ $\frac{7.92}{100} = 50000610$ $\frac{7.92}{100} = 100$ $\frac{7.92}{100} = 50000610$ $\frac{7.92}{100} = 100$ $\frac{7.92}{100} = 100$ $\frac{7.92}{100} = 100$ $\frac{7.92}{100} = 50000610$ $\frac{7.92}{100} = 100$ $\frac{7.92}{100} = 1000$ $\frac{7.92}{100} = 1000$ $\frac{7.92}{100} = 1000$ $\frac{7.92}{100} = 1$									 90		0000050		
$\frac{7.49}{7.67} 100 \frac{5.0000E-10}{100} \frac{9000E-10}{100} \frac$		100 m							5 1 00001 -5.30 4.99E-6 X0 00160 -2.0 0.00E00 P3	OH	00000070		000000000000000000000000000000000000000
$\frac{7.49}{7.67} 100 \frac{5.0000E-10}{100} \frac{9000E-10}{100} \frac$				97.11	4.8554E-10				00161 -1.0 0.00E00 PS 00162 -0.2 0.00E00 PS 00031 -9 3 5.0E-10 PS	SID ILM	00000092	***************************************	
$\frac{7.49}{7.67} 100 \frac{5.0000E-10}{100} \frac{9000E-10}{100} \frac$		1944-1917 -							00032 0.0 0.00E00 Ar 00050 0.0 0.00E00 H- 00050 0.0 0.00E00 H-	$\frac{1}{10000000000000000000000000000000000$	+ L U+ 00000100 00000102	anna ann an ann an an ann an ann an ann	Martin Contraction Service Second
$\begin{array}{c c c c c c c c c c c c c c c c c c c $									000000 1.0 0.00B00 C	104-	TI 00000104 00000106 M	~~	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Managana na katala k	200 million and a second s	7.67						00050 0.00 050 1 00031 0.00 031 1 03100 -7.03 031 1 050	-1			
pH %sorbed mol sorbed 00000174 00000175 0.1 1.0 0.1 1.0 00000185 0.1 0.1 1.0 00000195 00000185 2(b) 7 1 1 0 00000195					v73				03101 -16.65 031 1 050 03102 -24.45 031 1 050 00100 -13 78 050 1	-2	00000126		
pH %sorbed mol sorbed 00000174 00000175 0.1 1.0 0.1 1.0 00000185 0.1 0.1 1.0 00000195 00000185 2(b) 7 1 1 0 00000195	Richetto e	a. (1468)							01050 6.29 001 1 160 01100 -10.29 001 1 160	1 050 1 -1 050 -1	00000140	Example FILEGL	and a second
pH %sorbed mol sorbed 00000174 00000175 0.1 1.0 0.1 1.0 00000185 0.1 0.1 1.0 00000195 00000185 2(b) 7 1 1 0 00000195	Tinitized	thata							01103 07.95 001 1 160 01055 8.06 001 1 160 00001 0.00 001 1	-1 161 1 050 -1 003 1 1 161 -1 050 1 005 1	00000149	input files	
pH %sorbed mol sorbed 00004 130.0.0.010 0.8 0.2 00000185 0.1 0.1 0.1 1 0 00000185 00000185 2(b) 7 1 1 0 00000195											xoam 00000174		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			1		mol sorbed				00004 130.0.0.010 0.8 0.1 1.0	0.2	00000180 00000185		
		****					4		3201 7 1 32 ,	1 0	00000195	******	20000000000000000000000000000000000000
3.47 1.00 4.9923E-12 6.1552E-12 00000280					4.9923E-12				6.1552E-12 5.6046E-11		00000260	1844 (1979) - Martin Martin, Martin Martin, Martin, Martin, Martin, Martin, Martin, Martin, Martin, Martin, Mar	
3.86 5.21 2.6065E-11 00000300 00000320									2.7186E-10		00000300 00000320		2004-01-14 Care cauto cauto a Carta Carta
$\frac{4.8149E-10}{4.9182E-10} 00000340$									4.8149E-10 4.9182E-10		00000340 00000350		
-4.54 5.15 20.22 1.0110E-10 -5.20			5.15	20.22					-4.54 -5.20		00000580 00000600		
5.48 60.88 3.0439E-10 -5.56 00000620 -5.90 -6.16									-5.90 -6.16		00000640		
$\frac{0.1}{7}$ $\frac{9501}{9000660}$ $\frac{4.0000E-10}{7.09}$ $\frac{5.82}{900070}$									-7.09		00000660	an na manana manana kata manana mana mana	200001000-00000000000000000000000000000
0.34 95.92 4.7958E-10 6.76 99.47 4.9734E-10									32 0.10 5.0	0E-14	10%error	***	
7.01 100 5.0330E-10													
7.10 99.61 4.9803E-10 7.23 100 5.0000E-10										ĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸ	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	99999999999999999999999999999999999999	**********
					5.00001-10					an ya dagana ya sawan difa da sawaka sa kata ya na mana mana kata ya sa			
	t											alaan waxaa maha ka maa ka Maa maa ka ma	107107010101010100000000000000
		8899						Second Second					

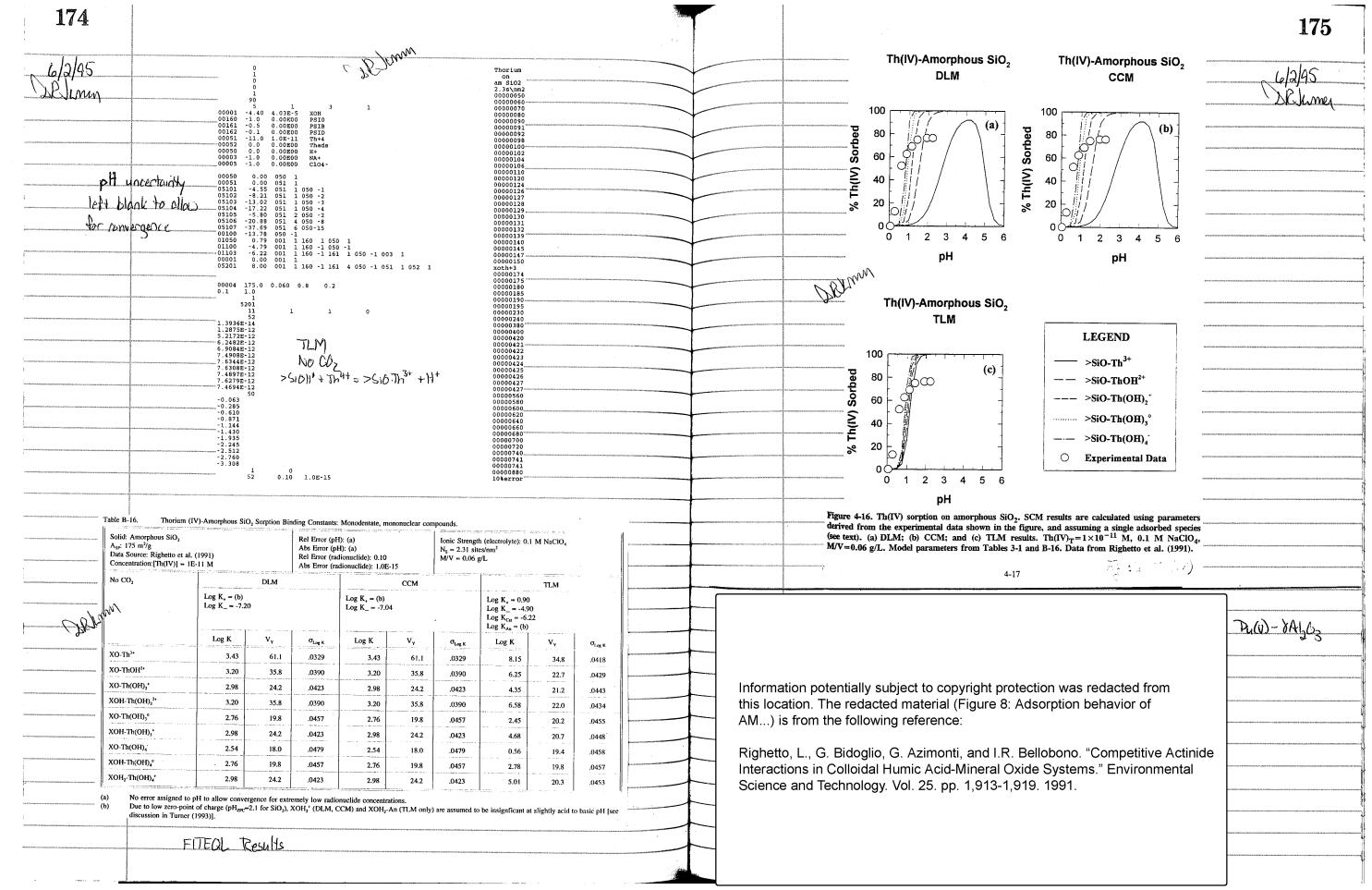


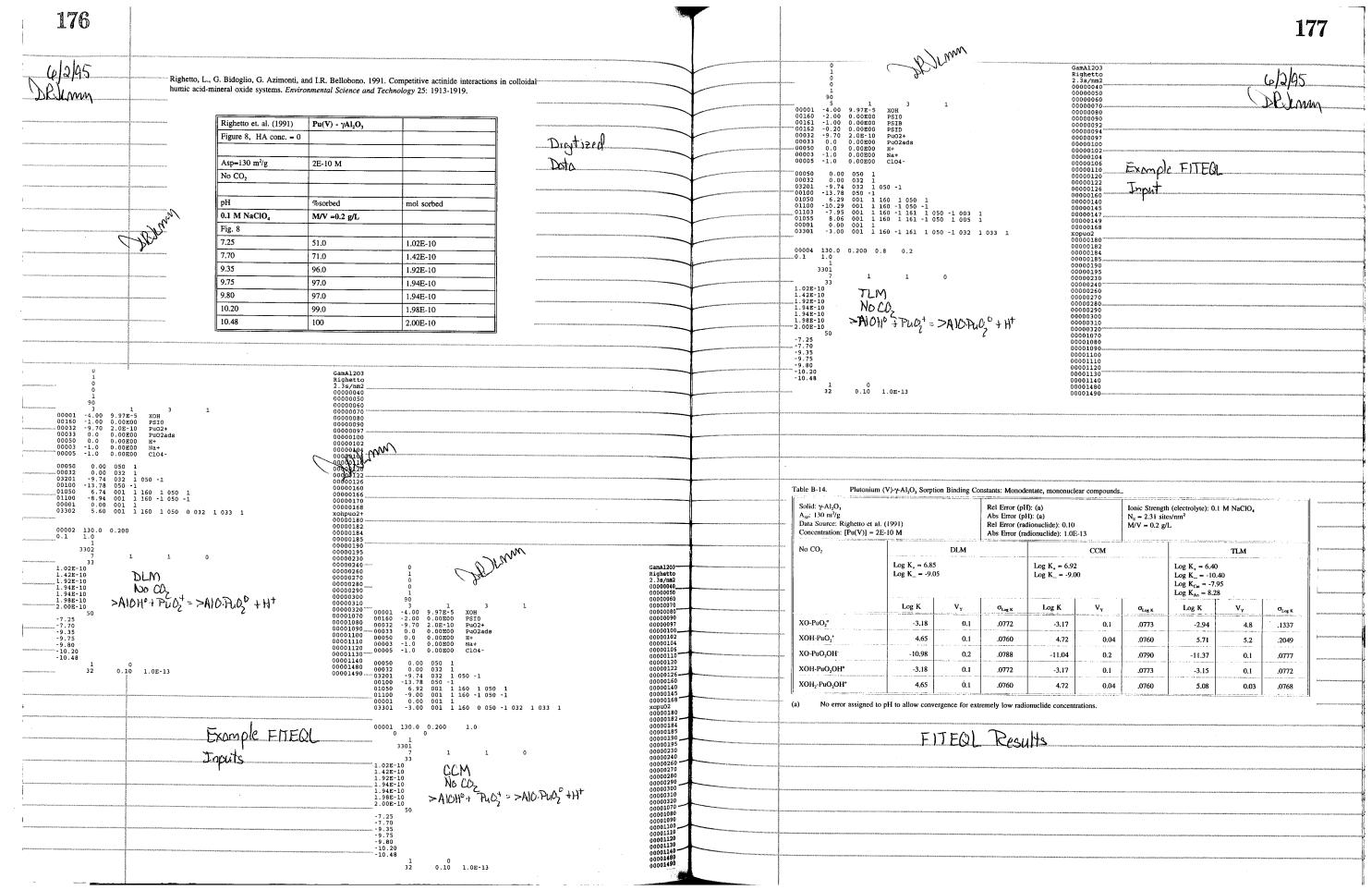
AM35 Antilly Gamma Aumina Autility Gamma Au	156											157
Link DLM CCM Interaction of the state structure struc	6/1/95	*****		Augusta 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999		*****	****					
Here Address DLM CCM DLM CCM DLM DLM <thdlm< th=""> DLM DLM <thdlm<< td=""><td>SRIMM</td><td></td><td></td><td>*****</td><td></td><td></td><td></td><td></td><td></td><td></td><th>Am(III)-Gamma Alumina Am(III)-Gamma A</th><td>umina 6/1/45</td></thdlm<<></thdlm<>	SRIMM			*****							Am(III)-Gamma Alumina Am(III)-Gamma A	umina 6/1/45
LANK Aussing Hypercel for the interview Water Function Control of the MASCAL INFORMATION CONTROL								m			DLM CCM	$\int dn d$
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			ium (III)-7-Al2O3 Sorption Binding	Constants: Mon	odentate, monor	nuclear compour	nds_JU-W					anna a tha ann ann ann ann ann ann ann ann ann a
$\frac{1}{100} \frac{1}{100} \frac{1}$		A _{sp} : 130 m ² /g Data Source: Righetto et	al. (1988)	Abs Error (p Rel Error (r.	pH): (a) adionuclide): 0.1		$N_s = 2.31 s$	ites/nm ²	: 0.01 M NaCl	O4		Manual sector
Image: Second	*******			Abs Error (1	radionuclide): 5.							
Image: Second		10 002			$Log K_{1} = 6$		UT)	Log K. = (
$\frac{\log k}{\log 2} \frac{v_{1}}{\log 2} \frac{v_{2}}{\log 2} $			Log K_ = -9.05		Log K_ = -	9.06		Log K_ = Log K _{Cat} =	-10.40 -7.95			
Date of the second s				σ _{Log K}	Log K	V _Y	σ _{Log K}	Log K	Vy	O _{Log K}		
Description 1108 102											.	9 10
$\frac{ \nabla U_{n} = (w_{1} - w_{2}) _{1}}{ \nabla U_{n} = (w_{1} - w_{2}) _{1}} \frac{ U_{n} = (w_{1} - w_{2}) _{1}}{ U_{n} = (w_{1} - w_{2}) _{1}} \frac{ U_{n} = (w_{1} - w_{2}) _{1}}{ U_{n} = (w_{1} - w_{2}) _{1}} \frac{ U_{n} = (w_{1} - w_{2}) _{1}}{ U_{n} = (w_{1} - w_{2}) _{1}} \frac{ U_{n} = (w_{1} - w_{2}) _{1}}{ U_{n} = (w_{1} - w_{2}) _{1}} \frac{ U_{n} = (w_{1} - w_{2}) _{1}}{ U_{n} = (w_{1} - w_{2}) _{1}} \frac{ U_{n} = (w_{1} - w_{2}) _{1}}{ U_{n} = (w_{1} - w_{2}) _{1}} \frac{ U_{n} = (w_{1} - w_{2}) _{1}}{ U_{n} = (w_{1} - w_{2}) _{1}} \frac{ U_{n} = (w_{1} - w_{2}) _{1}}{ U_{n} = (w_{1} - w_{2}) _{1}} \frac{ U_{n} = (w_{1} - w_{2}) _{1}}{ U_{n} = (w_{1} - w_{2}) _{1}} \frac{ U_{n} = (w_{1} - w_{2}) _{1}}{ U_{n} = (w_{1} - w_{2}) _{1}} \frac{ U_{n} = (w_{1} - w_{2}) _{1}}{ U_{n} = (w_{1} - w_{2}) _{1}} \frac{ U_{n} = (w_{1} - w_{2}) _{1}}{ U_{n} = (w_{1} - w_{2}) _{1}} \frac{ U_{n} = (w_{1} - w_{2}) _{1}}{ U_{n} = (w_{1} - w_{2}) _{1}} \frac{ U_{n} = (w_{1} - w_{2}) _{1}}{ U_{n} = (w_{1} - w_{2}) _{1}} \frac{ U_{n} = (w_{1} - w_{2}) _{1}}{ U_{n} = (w_{1} - w_{2}) _{1}} \frac{ U_{n} = (w_{1} - w_{2}) _{1}}{ U_{n} = (w_{1} - w_{2}) _{1}} \frac{ U_{n} = (w_{1} - w_{2}) _{1}}{ U_{n} = (w_{1} - w_{2}) _{1}} \frac{ U_{n} = (w_{1} - w_{2}) _{1}}{ U_{n} = (w_{1} - w_{2}) _{1}} \frac{ U_{n} = (w_{1} - w_{2}) _{1}}{ U_{n} = (w_{1} - w_{2}) _{1}} \frac{ U_{n} = (w_{1} - w_{2}) _{1}}{ U_{n} = (w_{1} - w_{2}) _{1}} \frac{ U_{n} = (w_{1} - w_{2}) _{1}}{ U_{n} = (w_{1} - w_{2}) _{1}} \frac{ U_{n} = (w_{1} - w_{2}) _{1}}{ U_{n} = (w_{1} - w_{2}) _{1}} \frac{ U_{n} = (w_{1} - w_{2}) _{1}}{ U_{n} = (w_{1} - w_{2}) _{1}} \frac{ U_{n} $:									-	Hq Hq	
$\frac{10000000}{10000000} \frac{1000}{1000} \frac{100}{1000} \frac{1000}{1000} \frac{1000}$											· · · ·	
$ \frac{1}{100} 1$	JAN MARANGA CI MANANGANA MANANGANA A KATATAN MANANGAN MANANA MANANGAN MANANGAN MANANGAN		-18341 18.3	.0235	-18.23	18.3	.0233	-19.03	18.4	.0231		
$\frac{ }{ } = \frac{ }{ } = \frac{ }{ } = \frac{ }{ } = \frac{ }{ } = \frac{ }{ $												
$\frac{1}{100} \frac{1}{100} \frac{1}$				·			.0228	-3.21	18.6			
Table XX American (III) 9-ALO, Sequent Binding Construct Kernowskalan, minaccular comparation Diff: $f_{1}(x)$ (D) $F_{2}(x)$ Binding and the form (III) 9-ALO, Sequent Binding Construct Kernowskalan, minaccular comparation $f_{2}(x)$ <th< td=""><td></td><td>(a) No error assigned</td><td>t to pH to allow convergence for c</td><td>xtremely low rac</td><td>dionuclide conce</td><td>entrations.</td><td>****</td><td></td><td>J:.</td><td>$\sim 7 - 1^{\circ}$</td><th></th><td></td></th<>		(a) No error assigned	t to pH to allow convergence for c	xtremely low rac	dionuclide conce	entrations.	****		J:.	$\sim 7 - 1^{\circ}$		
Table XX American (III) 9-ALO, Sequent Binding Construct Kernowskalan, minaccular comparation Diff: $f_{1}(x)$ (D) $F_{2}(x)$ Binding and the form (III) 9-ALO, Sequent Binding Construct Kernowskalan, minaccular comparation $f_{2}(x)$ <th< td=""><td></td><td></td><td></td><td>****</td><td></td><td></td><td></td><td>****</td><td></td><td></td><th>\sim >AlO-Am²⁺</th><td></td></th<>				****				****			\sim >AlO-Am ²⁺	
Table XX American (III) 9-ALO, Sequent Binding Construct Kernowskalan, minaccular comparation Diff: $f_{1}(x)$ (D) $F_{2}(x)$ Binding and the form (III) 9-ALO, Sequent Binding Construct Kernowskalan, minaccular comparation $f_{2}(x)$ <th< td=""><td></td><td>-</td><td></td><td></td><td></td><td>****</td><td></td><td></td><td></td><td></td><th></th><td></td></th<>		-				****						
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1	Fable BXX. Americiu	m (III)-y-Al ₂ O ₃ Sorption Binding	Constants: Mono	dentate, mononu	uclear compound	ds					0.000000000000000000000000000000000000
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				Rel Error (pl	I): (a)	<u> </u>	1	h (electrolyte):	0.1 M NaClO	1		
$\frac{ v + v ^2}{ v ^2} + \frac{ v ^2}{ v ^2} + \frac{ v ^2}{ v ^2} + \frac{ v ^2}{ v ^2} + \frac{ v ^2}{ v$		Data Source: Righetto et a		Rel Error (ra	dionuclide): 0.10		$N_s = 2.31 \text{ sit}$ M/V = 0.2 g/	es/nm² /L				
$ \frac{1}{10^{4}} $ $ \frac{1}{10^{6}} $ $ 1$				Abs Error (ra	idionuclide): 5.0		<u> </u>	Γ	TIM			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		20	$Log K_{+} = 6.85$			92	,	Log K ₊ = 6.	.40			
No. No. <td>in not</td> <td>Nº. `</td> <td>Log K_ = -9.05</td> <td></td> <td>Log K_ = -9</td> <td>0.00</td> <td></td> <td>Log Ken =</td> <td>-7.95</td> <td></td> <th></th> <td>lonival from</td>	in not	Nº. `	Log K_ = -9.05		Log K_ = -9	0.00		Log Ken =	-7.95			lonival from
No. No. <td>CDR</td> <td></td> <td></td> <td>-</td> <td>Lon K</td> <td>v</td> <td></td> <td></td> <td></td> <td>_</td> <th>the experimental data shown in the figure, and assuming a single adsorbed speci</th> <td>s (see text).</td>	CDR			-	Lon K	v				_	the experimental data shown in the figure, and assuming a single adsorbed speci	s (see text).
No-AmOlF -3.94 2.6 0.48 -3.70 2.5 0.50 -1.65 0.50 Xo-Am(Olly,* -11.00 2.62 0.391 -11.02 2.53 0.380 -13.30 18.8 0.368 XolH-Am(Olly,* 3.94 2.64 0.48 -3.70 2.5 0.528 0.528 0.504 Xo-Am(Olly,* -18.08 2.22 0.433 -18.35 0.69 -0.666 <t< td=""><td>:</td><td></td><td></td><td>1</td><td></td><td>1</td><td></td><td></td><td></td><td></td><th>Model parameters from Tables 3-1 and B-1. Data from Righetto et al. (1988).</th><td></td></t<>	:			1		1					Model parameters from Tables 3-1 and B-1. Data from Righetto et al. (1988).	
X0H-Am(OH),* 3.94 22.6 0348 3.70 23.5 0.359 5.28 0.301 X0-Am(OH),* 18.08 29.2 0.433 18.35 26.9 0.400 19.06 25.8 0.366 X0H-Am(OH),* 11.00 26.2 0.391 11.02 25.3 0.360 10.35 25.1 0.378 X0H-Am(OH),* 3.94 22.6 0.348 3.70 23.5 0.359 3.21 24.4 0.369	1				1						the second s	
XO-Am(OH), -18.08 29.2 .0433 -18.35 26.9 .0400 -19.06 25.8 .0386 XOH-Am(OH),° -11.00 26.2 .0391 -11.02 25.3 .0380 -11.03 25.1 .0378 XOH,-Am(OH),° -3.94 22.6 .0348 -3.70 23.5 .0359 -3.21 24.4 .0369		XO-Am(OH) ₂ °	-11.00 26.2	.0391	-11.02	25.3	.0380	-13.30	18.8	.0308		- 4
X0H-Am(OH)3° -11.00 26.2 .0391 -11.02 25.3 .0380 -11.03 25.1 .0378 X0H ₂ -Am(OH)3° -3.94 22.6 .0348 -3.70 23.5 .0359 -3.21 24.4 .0369 (a) No error assigned to pH to allow convergence for extremely low radionuclide concentrations. F.9.7 1 1/2 Nr		XOH-Am(OH) ₂ ⁺	-3.94 22.6	.0348	-3.70	23.5	.0359	-5.28	18.2	.0301		
XOHy-Am(OH);* -3.94 22.6 .0348 -3.70 23.5 .0359 -3.21 24.4 .0369 (a) No error assigned to pH to allow convergence for extremely low radionuclide concentrations. F. g. f. j. j. J. J. N. F. g. f. j. j. J. J. N.												
(a) No error assigned to p11 to allow convergence for extremely low radionuclide concentrations.						-			-		FITERI, Model Results	
	:				. h.,		.0359	-5.21				
FITEOL Results			to pri to anow convergence for er	treniery low radi	tonucide concer	ntrations.			1.9.			
FITEOL Results						*****						
FIIEQ Results					-01 8	~ 11	an a		••••••••••••••••••••••••••••••••••••			
			an a	F f	OL I	1285114	3					
										ana		
			na managana managana managana managana na managana na managana na managana na managana na managana na managana						· ••••••••••••••••••••••••••••••••••••			
			-									
												en en en fan fan fan in en
								er onen ARDADAR FÜRSCHLÜNNIG under Son				
	1		n na							00-0-2019/00-000-2010000000-00001304-000-		

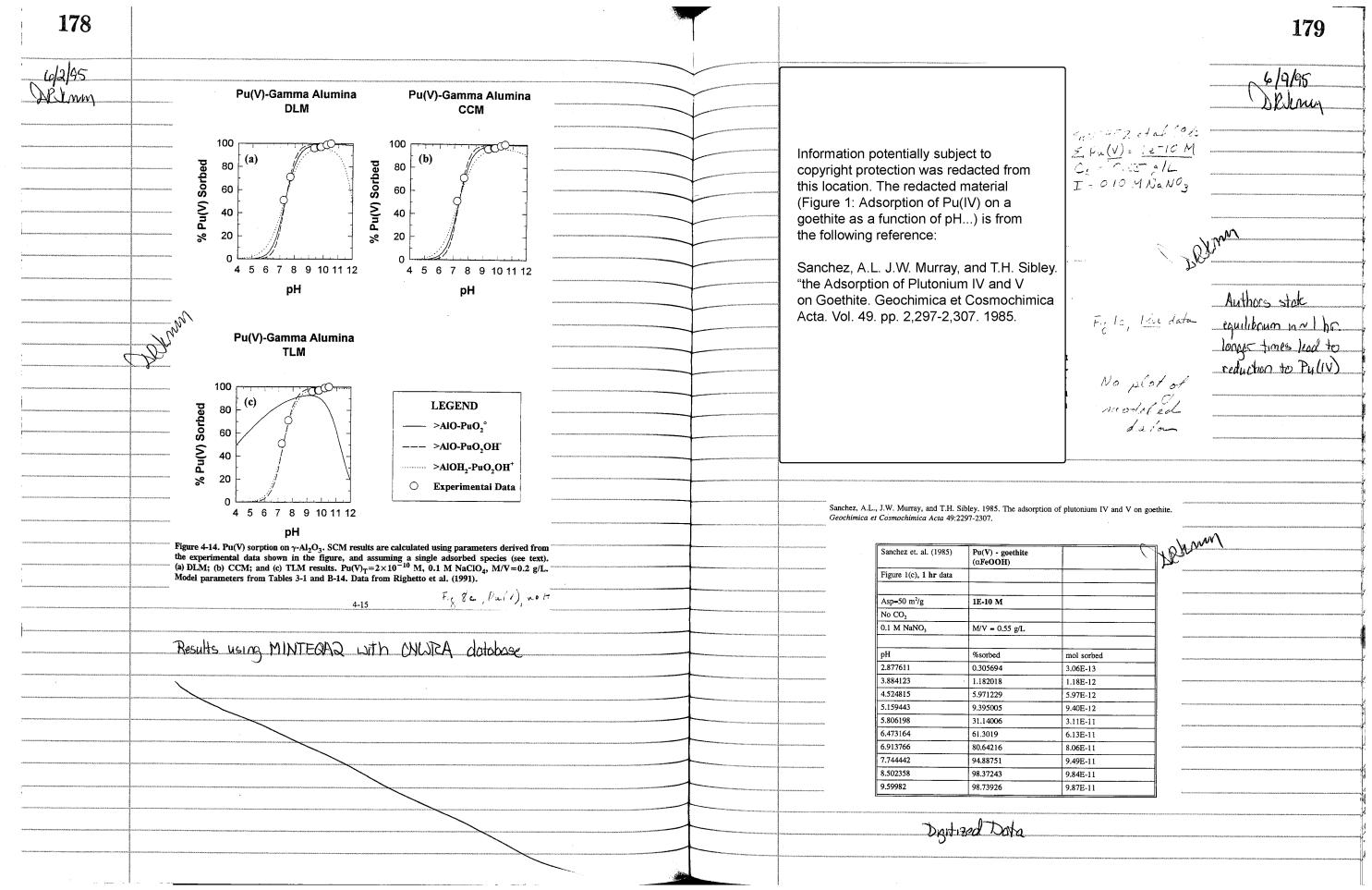


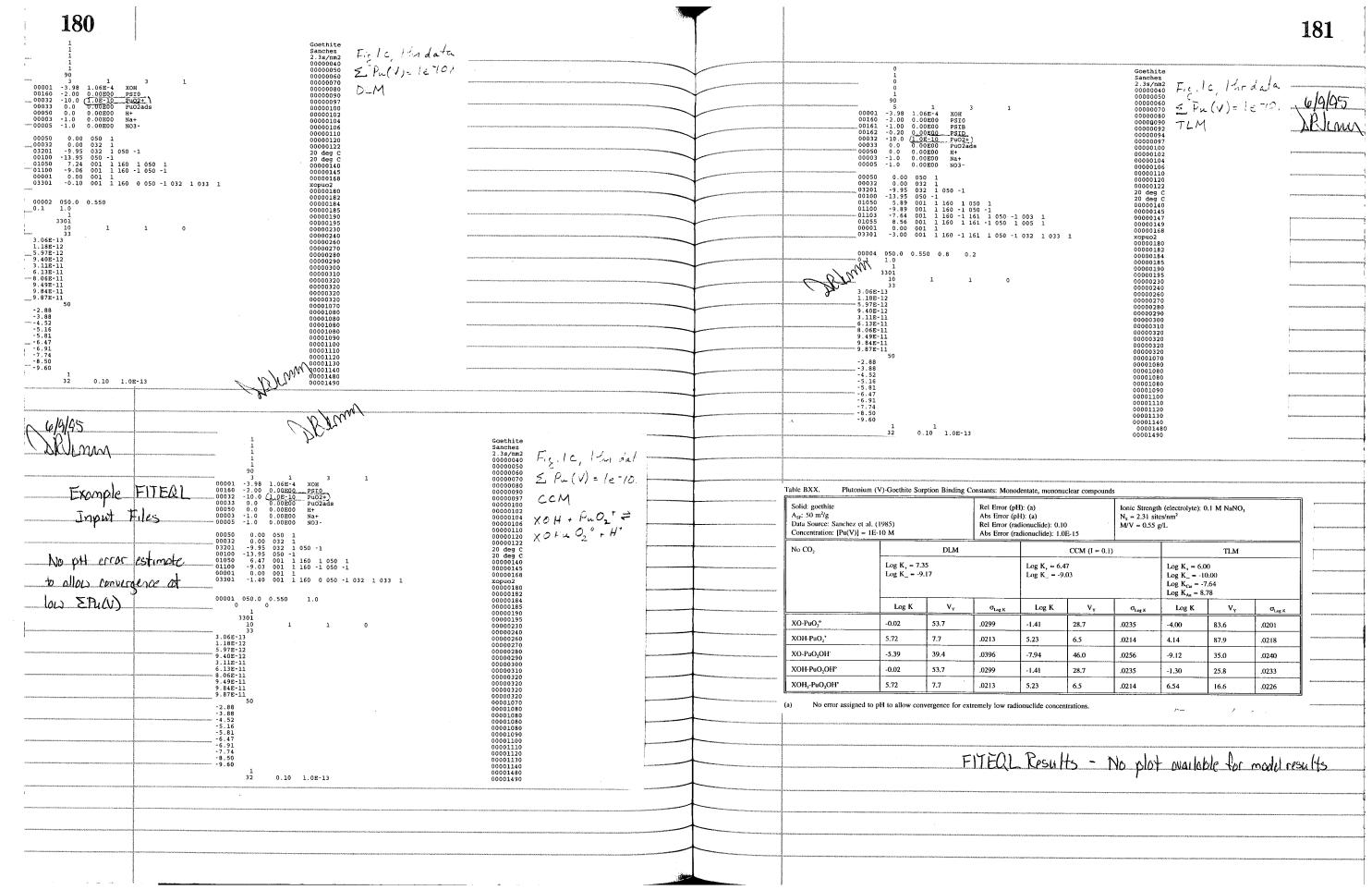


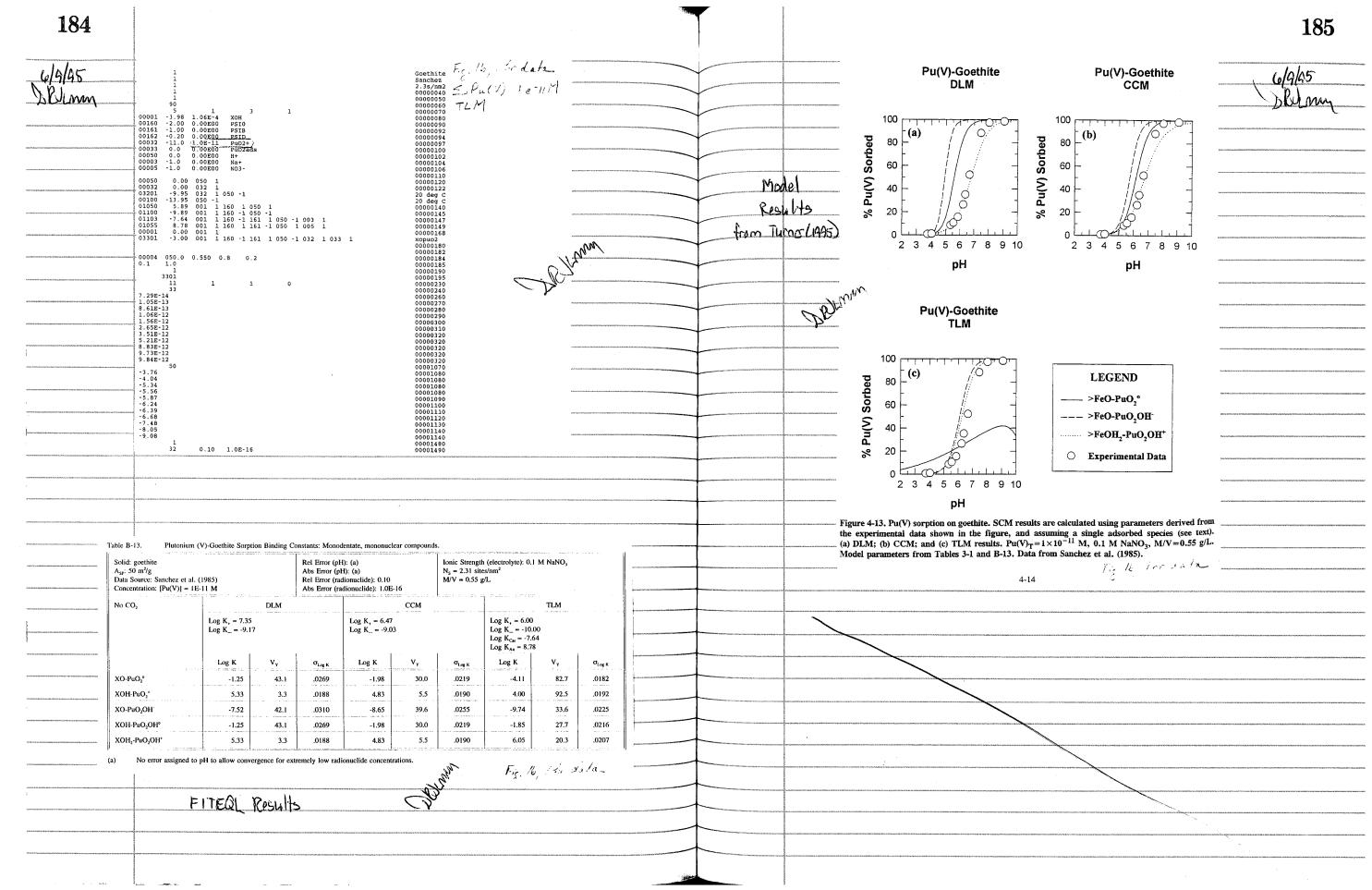

162								16
	Table B-2. Americium ((III)-α-Al ₂ O ₃ Sorption Binding	Constants: Mor	nodentate, mononuclear compou	nds.			G/1/95
e/1/95 Righting	Solid: α -Al ₂ O ₃ A ₅₀ : 0.07 m ² /g Data Source: Moulin et al. (Concentration: [Am(III)] =	1992) IE-8 M		H): 0.05 pH): 0.0 adionuclide): 0.10 radionuclide): 1.0E-11	Ionic Strength $N_s = 2.31 \text{ sin}$ M/V = 10 g/	a (electrolyte): 0.01 M NaClo tes/nm² /L),	SEIM
	p(CO ₂) = 1E-3.5 atm	DLM		ССМ		TLM		
Coli	m	Log $K_{+} = 8.33$ Log $K_{-} = -9.73$		$Log K_{+} = 8.18$ $Log K_{-} = -9.62$		Log K ₁ = 6.90 Log K ₂ = -10.90 Log K _{Cat} = -7.73 Log K _{An} = 10.12		Am(III)-Alpha Alumina Am(III)-Alpha Alumina
Opr.		Log K V _y	σ _{Log K}	Log K V _Y	σ _{Leg K}	Log K V _y	σ _{Log 06036 K}	DLM CCM
	XO-Am ²⁺	8.54 21.1	.0707	8.91 21.3	.0797	-1.32 65.1	.0378	
	XO-AmOH*	0.86 21.3	.0823	0.89 21.3	.0831	-6.32 18.9		
	XO-Am(OH)2 ^a	-6.81 21.3		-7.13 21.3	.0867	-11.07 21.2		
	XOII-Am(OH)2+	0.86 21.3		0.89 21.3	.0831	-2.49 21.1		
	XO-Am(OII) ₃	-14.47 21.3		-15.10 21.3	.0905	-15.79 21.3		
	XOII-Am(OII) ₃ "	-6.81 21.3 0.86 21.3		-7.13 21.3 0.89 21.3	.0867	1.33 21.3		
	XOH ₂ -Am(OH) ₃ * XO-AmCO ₃ °	12.88 19.7		12.55 19.7	.0612	8.62 19.5		
	XOH-AmCO ₃ ⁺	16.48 27.0		16.28 27.0		17.19 19.1		$ \begin{array}{c c} & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & $
	XOH ₂ -Am(CO ₃) ₂ ^o	32.56 12.4		32.23 12.4	.0709	35.92 12.4	.0803	
	XOH ₂ -Am(CO ₃) ₃ ² ·	n.c. n.c	. n.c.	33.05 23.2	.0949	36.86 15.3	.1417	pH Fro m Tusner pH
TEQL Sults	Table BXX. Americium	n (111)-α-Al2O3 Sorption Bindi	ng Constants: Mo	onodentate, mononuclear compo	1			$\frac{Am(III)-Alpha Alumina}{TLM} LEGEND$ $\frac{>AIO-Am^{2+}}{>AIO-AmOH^{+}}$
	Solid: α -Al ₂ O ₃ A _{5p} : 0.07 m ² /g Data Source: Moulin et al. Concentration: [Am(III)] =		Rel Error Abs Error Rel Error Abs Error	(pH): 0.05 (pH): 0.0 (radionuclide): 0.10 (radionuclide): 1.0E-11	Ionic Streng $N_S = 2.31$ M/V = 10	th (electrolyte): 0.1 M NaCl sites/nm ² g/L	D ₄	 $\begin{array}{c ccccccccccccccccccccccccccccccccccc$
C B	p(CO ₂) = IE-3.5 atm	D1.M Log K ₊ = 8.33 Log K ₋ = -9.73		$\frac{CCM (1 = 0)}{Log K_{+} = 8.12}$ $Log K_{-} = -9.56$).1)	$\begin{array}{c c} TI.M \\ Log K_{+} = 6.90 \\ Log K_{-} = -10.90 \\ Log K_{Cat} = -7.73 \\ Log K_{An} = 10.12 \end{array}$		$ = >AlO-AmCO_{3}^{\circ} $ $ = >AlOH_{2}-Am(CO_{3})_{2}^{\circ} $ $ = >AlOH_{2}-Am(CO_{3})_{2}^{\circ} $ $ = >AlOH_{2}-Am(CO_{3})_{2}^{\circ} $ $ = >AlOH_{2}-Am(CO_{3})_{2}^{\circ} $
		Log K V _Y	σ _{Log K}	Log K V _y	σ _{Leg K}	Log K V _y	σ _{1.02.06036})	
	XO-Am ²⁺	4.72 32.	.0683	4.91 33.9	.0785	-2.11 53	6 .0294	2345678910
	XO-AmOH+	-3.55 16.		-3.50 34.6		-7.73 37		
	XO-Am(OII) ₂ "	-11.77 35.		-11.90 35.1		-14.07 31		Figure 4-2. Am(III) sorption on α-Al ₂ O ₃ . SCM results are calculated using parameters derived from
	XOH-Am(OH),*	-3.55 16.		-3.50 34.0		-5.24 30		the experimental data shown in the figure, and assuming a single adsorbed species (see text).
	XO-Am(OII) ₃ XOH-Am(OH) ₃ ⁰	-19.96 36.		-20.29 35.5		-20.32 34 -11.56 35		(a) DLM; (b) CCM; and (c) TLM results. Am(III) _T = 1×10^{-8} M, 00.1 M NaClO ₄ , M/V=10 g/L; p(CO ₂)= $10^{-3.5}$ atm. Model parameters from Tables 3-1 and B-2. Data from Moulin et al. (1992).
	XOII ₂ -Am(OII) ₃ ⁺	-3.55 16		-3.50 34.0		-2.76 34		
	XO-AmCO ₃ °	8.15 29		8.04 31.5		5.99 40		4-3
	XOH-AmCO ₃ *	16.32 33				14.83 40	.1 .0359	
	XOII ₂ -Am(CO ₃) ₂ "	28.16 28	0 .0577	28.06 27.7	7 .0542	30.87 20	.7 .0727	NINTERIAD ANTHE A LILL
	XOH ₂ -Am(CO ₃) ₃ ²	31.75 26	5 .0644	31.39 29.3	2 .0518	38.57 19	.1 .1077	MINITEGA2 USLAS - Calculated Using CNWRA radionuclide database.
								CNWRA radionuclide database
******			*****			han na dalawaka na manana mila nciana minana manana manana manana ma	****	

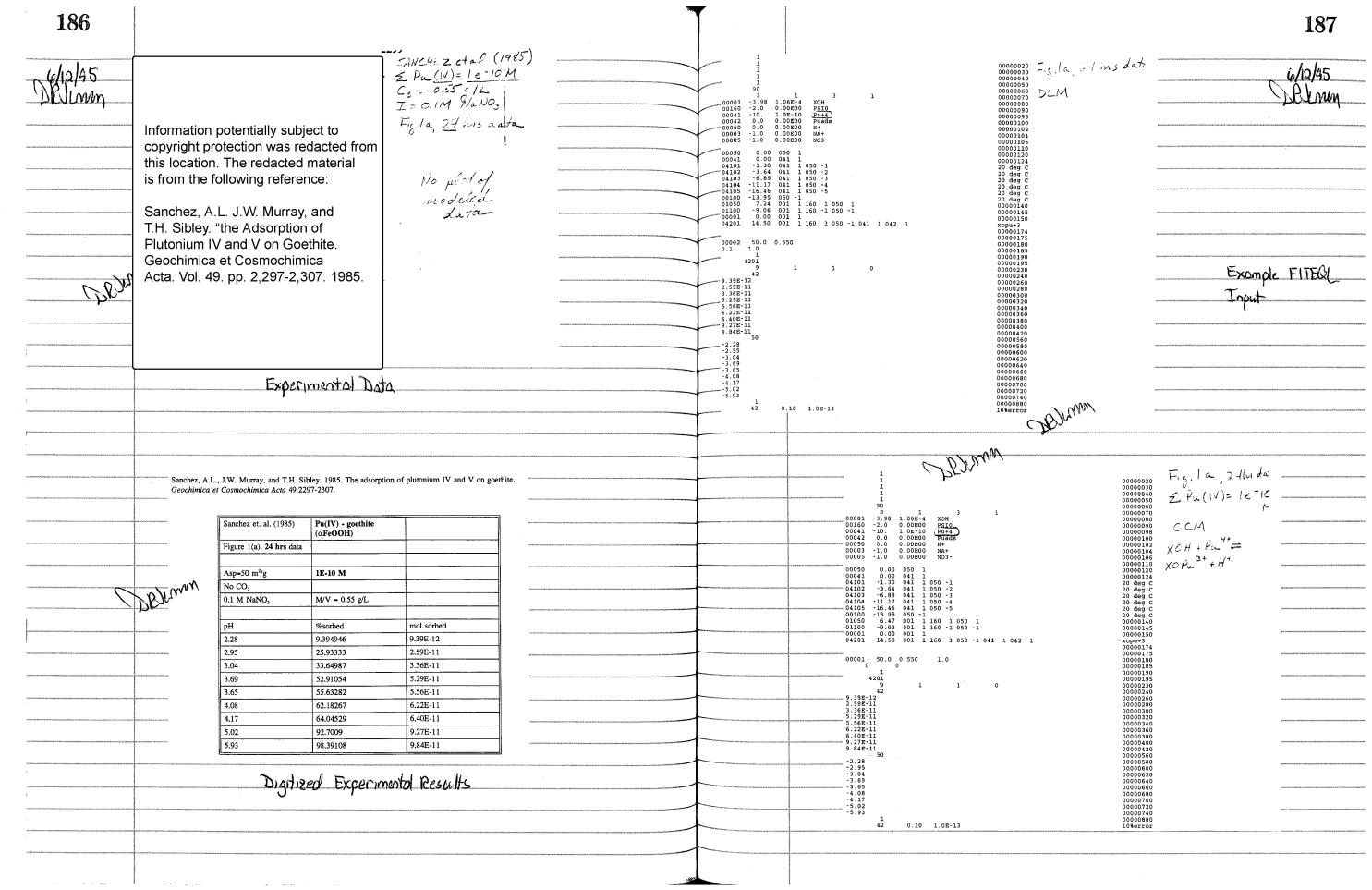


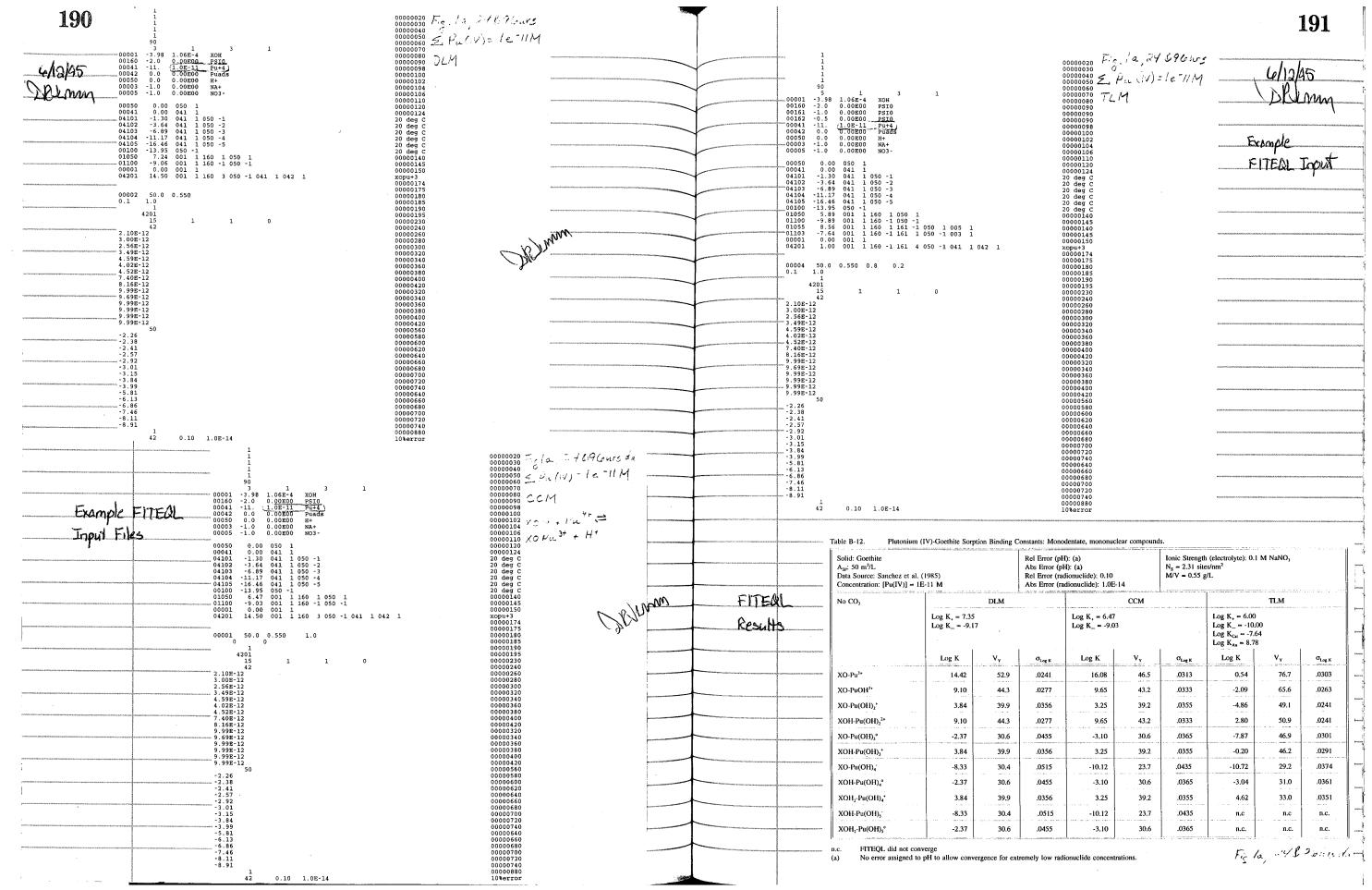

Intervention Intervention<	ble BXX. Thorium (IV) colid: amorphous Goethite A_{SP} : 50 m ² /g Jata Source: LaFlamme and Concentration:[Th(IV)] = 1E		Rel Error (pl Abs Error (p Rel Error (ra	I): (a)				1 NaNO,				Righetto. L humic acid	L., G. Bidoglio, G. Azimonti, I-mineral oxide systems. <i>Envi</i>	and I.R. Bellobono. 1991. Co ronmental Science and Techr	ompetitive actinide interactions i nology 25: 1913-1919.	n colloidal
International interactions in Colloidal Humic AcideMineral Oxide Systems 1 Interactions in Colloidal Humic AcideMineral Oxide Systems 2 Interactions in Colloidal	4ο CO <u>,</u>							TLM				and the American Contract of C	Righetto et. al. (1991)			
$\frac{\log k_{1}}{\log (2k_{1} + k_{2})} = \frac{\log k_{1}}{\log (2k_{2} + k_{3})} + \frac{\log k_{1}}{\log (2k_{3} + k_{3})} $	or pH < 6.0 used in	$Log K_{+} = 7.35$ $Log K_{-} = -9.17$		Log $K_{+} = 6.47$ Log $K_{-} = -9.03$		-	Log K = -10.00				-					
$\frac{1}{1000} \frac{1}{1000} \frac{1}{10000} \frac{1}{10000} \frac{1}{100000} \frac{1}{10000000000000000000000000000000000$				Lon K	V			V				949-929-924-924-99-94-94-94-94-94-94-94-94-94-94-94-94		5E-10 M		
Information potentially subject to copyright protection was redacted from the following reference: Information potentially subject to copyright protection was redacted from the following reference: Information potentially subject to copyright protection was redacted from the following reference: Information potentially subject to copyright protection was redacted from the following reference: Information potentially subject to copyright protection was redacted from the following reference: Information potentially subject to copyright protection was redacted from the following reference: Information potentially subject to copyright protection was redacted from the following reference: Information potentially subject to copyright protection was redacted from the following reference: Information potentially subject to copyright protection was redacted from the following reference: Information potentially subject to copyright protection was redacted from the following reference: Information potentially subject to copyright protection was redacted from the following reference: Information potentially subject to copyright protection was redacted from the following reference: Information potentially subject to copyright protection was redacted from the following reference: Information potentially subject to copyright protection was redacted from the following reference: Information potentially subject to copyright protection was redacted from the following reference: Information potentially subject to copyright protection was redacted from the following reference: Information potentially subject to copyright protection was redacted from the following reference: Information potentially subject to copyright protection was redacted from the	(O-Th ³⁺			1												
Solution: 0.00 0.00 0.01	(O-ThOH ²⁺	9.92 22.1	.0298		43.4	.1145		54.5	.0302				-		mol sorbed	Digitized I
Non-with the second	(O-Th(OII) ₂ +	0.59 49.0	.1015	0.11	49.0	.1014	-4.63	22.9	.0324	**************************************				M/V ≅1.202 g/L		
and particular and bit of the second sec										T					1.4362E-11	
Alternation potentially subject to copyright protection was redacted from this location. The redacted material (Figure 5: Percentage adsorption of actinides on precipitated amorphous slica) is from the following reference. Righetto, L., G. Bidoglio, G. Azimonti, and I.R. Bellobono. "Competitive Actinide Interactions in Collodad Humine Aldowed Setters." Environmental Science and Technology. Vol. 25, pp. 1,913-1,919, 1991.																
Active			+									~M				
All Holding Los			· · · ·	1								oth	1			
Information potentially subject to copyright protection was redacted from this location. The redacted matrial (Figure 5: Percentage adsorption of actinides on precipitated amorphous silica) is from the following reference: Righetto, L, G. Bidoglio, G. Azimonti, and I.R. Bellobono. "Competitive Actinide Interactions in Collicial Humch Acti-Mineral Duke Systems." Environmental Science and Technology. Vol. 25. pp. 1,913-1,919. 1991.										T	\square	Kor		56.85	2.8423E-10	
ETECL Results - No MINTEGAD results 140 1400 14000 14000000000000000000000000000000000000						.1014	1.55	49.1	.1017		****		l			
Information potentially subject to copyright protection was redacted from this location. The redacted material (Figure 5: Percentage adsorption of actinides on precipitated amorphous silica) is from the following reference: Righetto, L, G. Bidoglio, G. Azimonti, and I.R. Bellobono. "Competitive Actinide Interactions in Colloidal Humic Acid-Mineral Oxide Systems." Environmental Science and Technology. Vol. 25. pp. 1,913-1,919. 1991.	No error assigned to r	oll to allow convergence for e	stremely low ra	dionuclide concenti	rations.				process			01100000000000000000000000000000000000				
Information potentially subject to copyright protection was redacted from this location. The redacted material (Figure 5: Percentage adsorption of actinides on precipitated amorphous silica) is from the following reference: Righetto, L., G. Bidoglio, G. Azimonti, and I.R. Bellobono. "Competitive Actinide interactions in Colloidal Humic Acid-Mineral Oxide Systems." Environmental Science and Technology. Vol. 25. pp. 1,913-1,919. 1991.				*****								-14-00-00-00-00-00-00-00-00-00-00-00-00-00	J			
Information potentially subject to copyright protection was redacted from this location. The redacted material (Figure 5: Percentage adsorption of actinides on precipitated amorphous silica) is from the following reference: Righetto, L., G. Bidoglio, G. Azimonti, and I.R. Bellobono. "Competitive Actinide interactions in Colloidal Humic Acid-Mineral Oxide Systems." Environmental Science and Technology. Vol. 25. pp. 1,913-1,919. 1991.	EI	TEGL Result:	5 - No	MINTEG	D SAS	results									4.2646E-10	
Information potentially subject to copyright protection was redacted from this location. The redacted material (Figure 5: Percentage adsorption of actinides on precipitated amorphous silica) is from the following reference: Righetto, L., G. Bidoglio, G. Azimonti, and I.R. Bellobono. "Competitive Actinide Interactions in Colloidal Humic Acid-Mineral Oxide Systems." Environmental Science and Technology. Vol. 25. pp. 1,913-1,919. 1991.		•	-			_										
Information potentially subject to copyright protection was redacted from this location. The redacted material (Figure 5: Percentage adsorption of actinides on precipitated amorphous silica) is from the following reference: Righetto, L., G. Bidoglio, G. Azimonti, and I.R. Bellobono. "Competitive Actinide Interactions in Colloidal Humic Acid-Mineral Oxide Systems." Environmental Science and Technology. Vol. 25. pp. 1,913-1,919. 1991.					****		*******	*****	-							
Information potentially subject to copyright protection was redacted from this location. The redacted material (Figure 5: Percentage adsorption of actinides on precipitated amorphous silica) is from the following reference: Righetto, L., G. Bidoglio, G. Azimonti, and I.R. Bellobono. "Competitive Actinide Interactions in Colloidal Humic Acid-Mineral Oxide Systems." Environmental Science and Technology. Vol. 25. pp. 1,913-1,919. 1991.		****										a 2000,000,000,000,000,000,000,000,000,00	9.98	93.82		
	this locatio on precipit Righetto, I Interaction	on. The redacte ated amorphou , G. Bidoglio, is in Colloidal H	d materi is silica. G. Azim umic Ac	al (Figure) is from onti, and :id-Minera	e 5: Per the foll I.R. Be al Oxide	centage lowing r llobono. e Syster	e adsorptic eference: "Competi	on of ac tive Act	inide				1 3 1 8.055-4 XCH 3 1 0.00E00 FS10 0.00E00 Am+3 0.00E00 Am+3 0.00E00 Am+ 0.00E00 Am+ 0.00E00 Am+ 0.00E00 CLO4 031 1050 -2 031 1050 -2 031 1050 -2 031 1050 -2	04 001 1160 -1 050 -1 06 001 1160 -1 050 -1 031 1 032 1 00 001 1160 2 050 -1 031 1 032 1 5.0 1.20 1.0 1 1 0	CCM No CO2 >SIDH" + Am 3 = SSID. Am 7 + HT	Skilmen

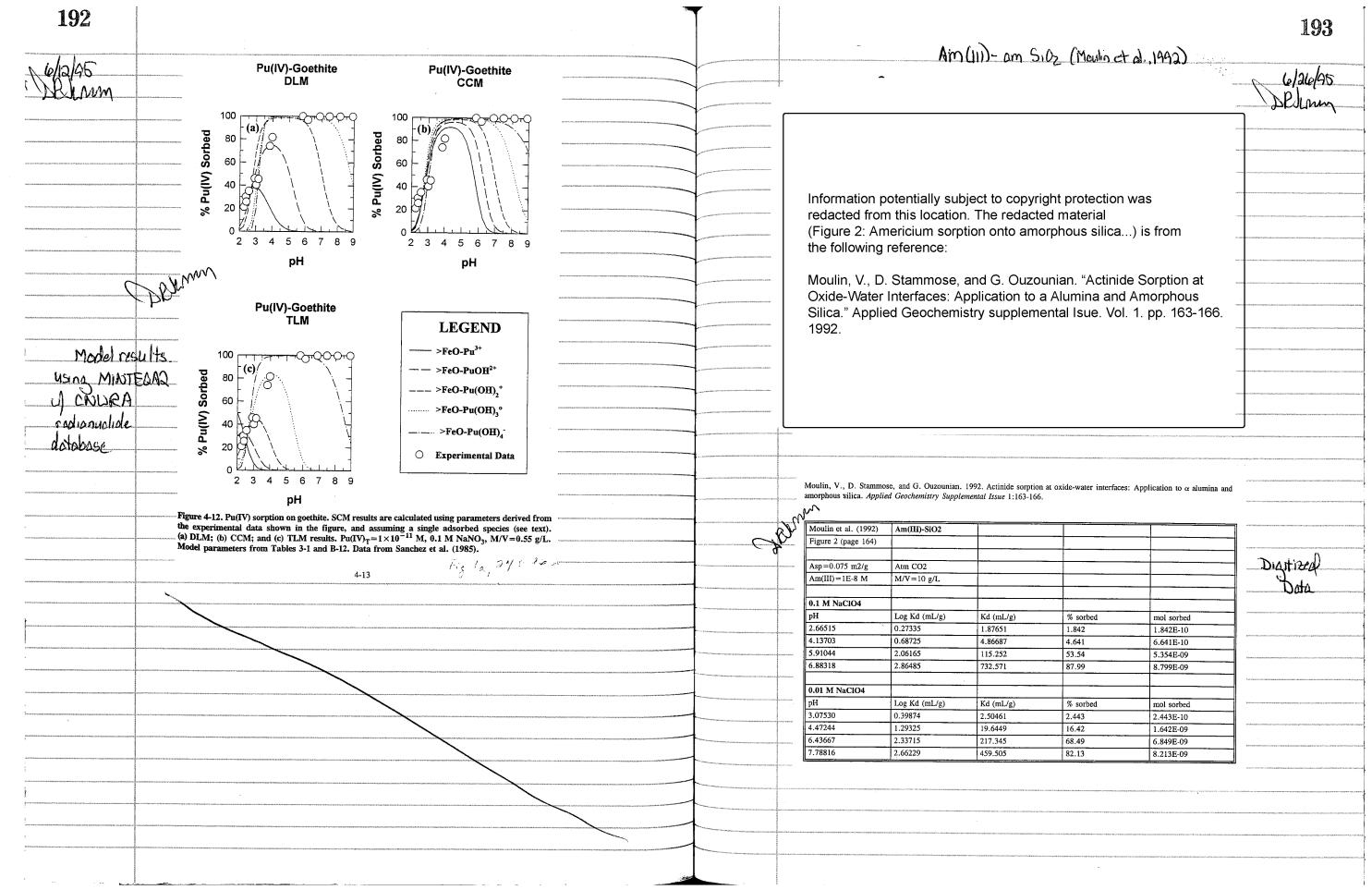


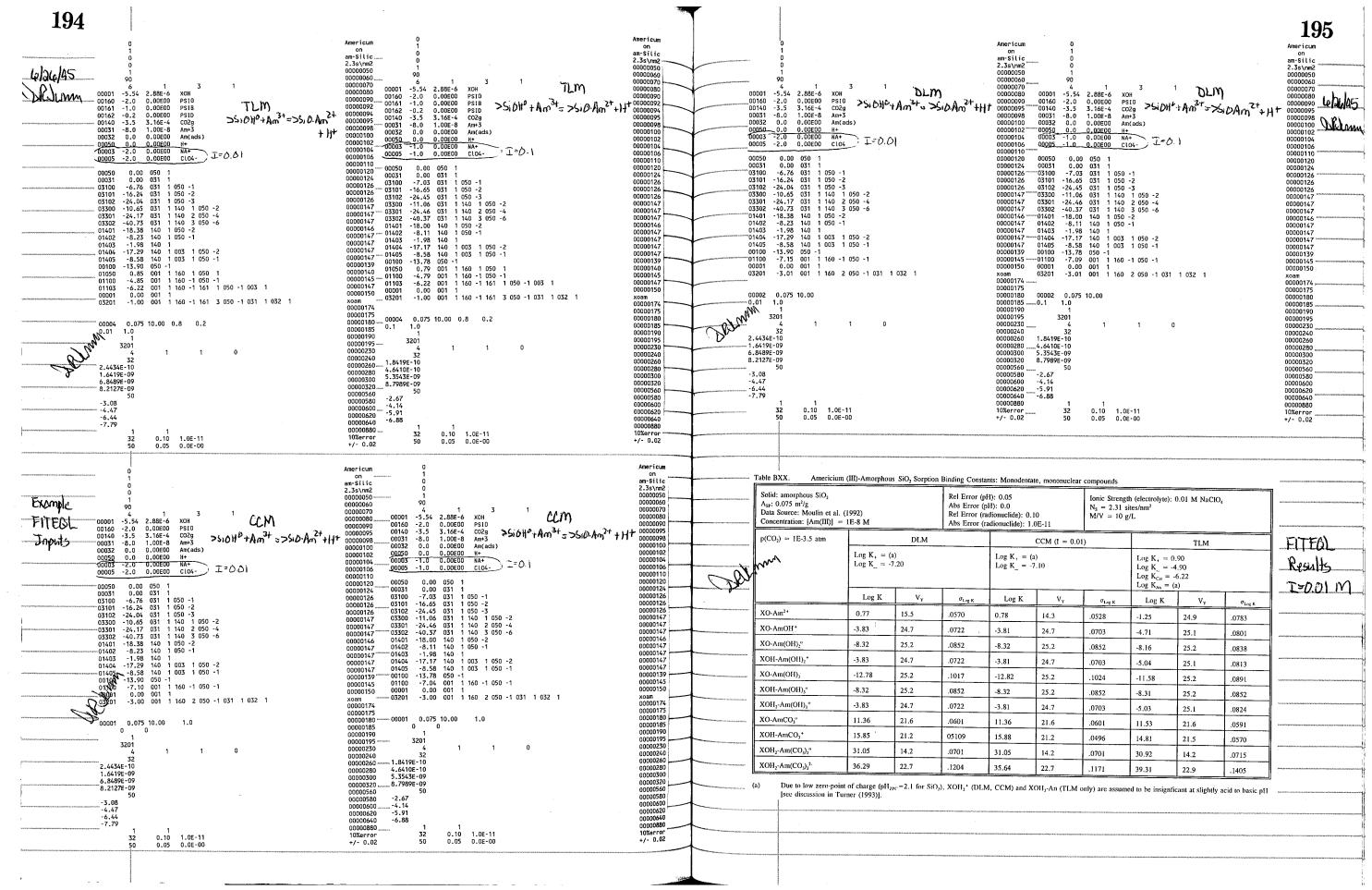




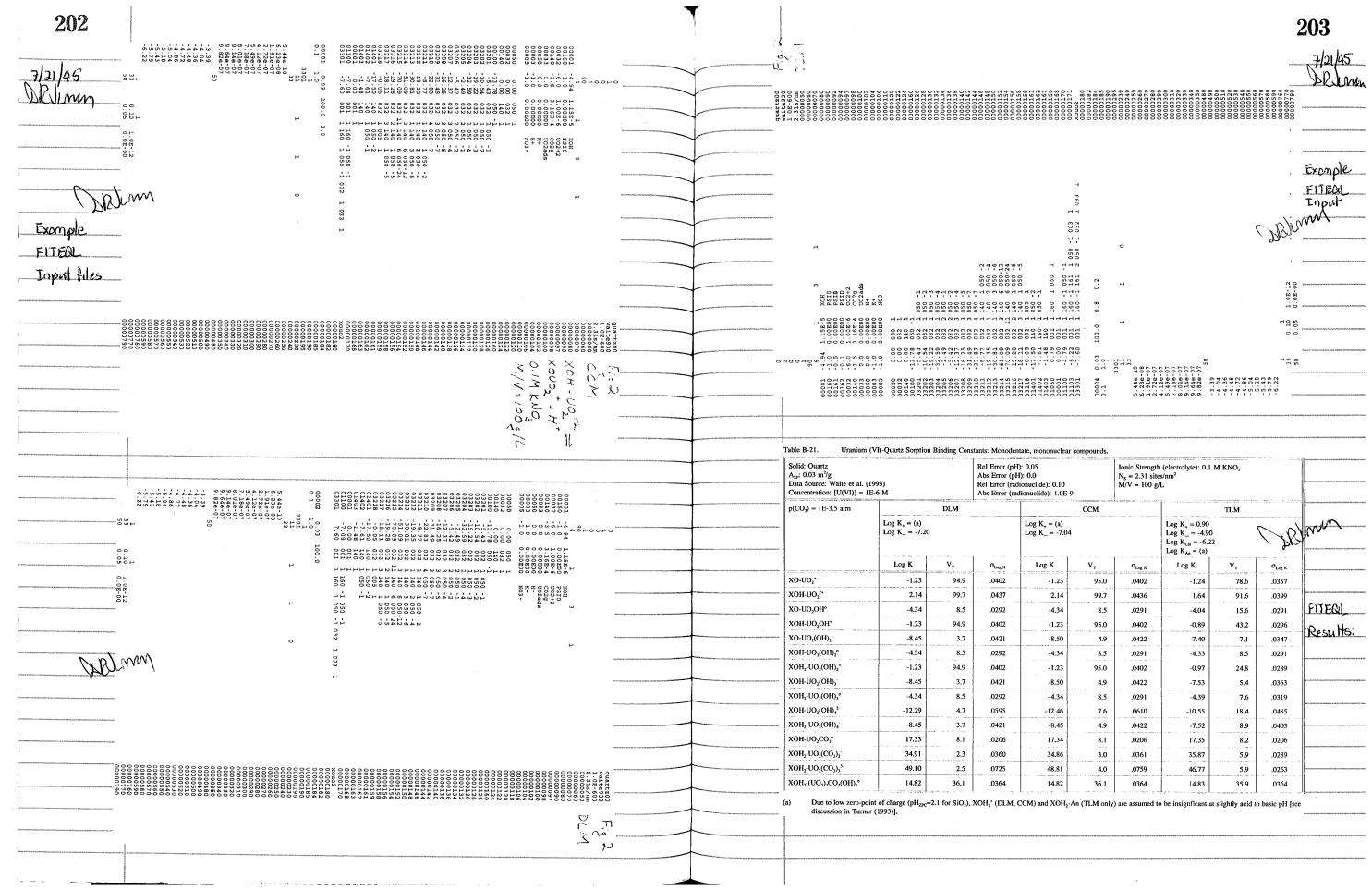


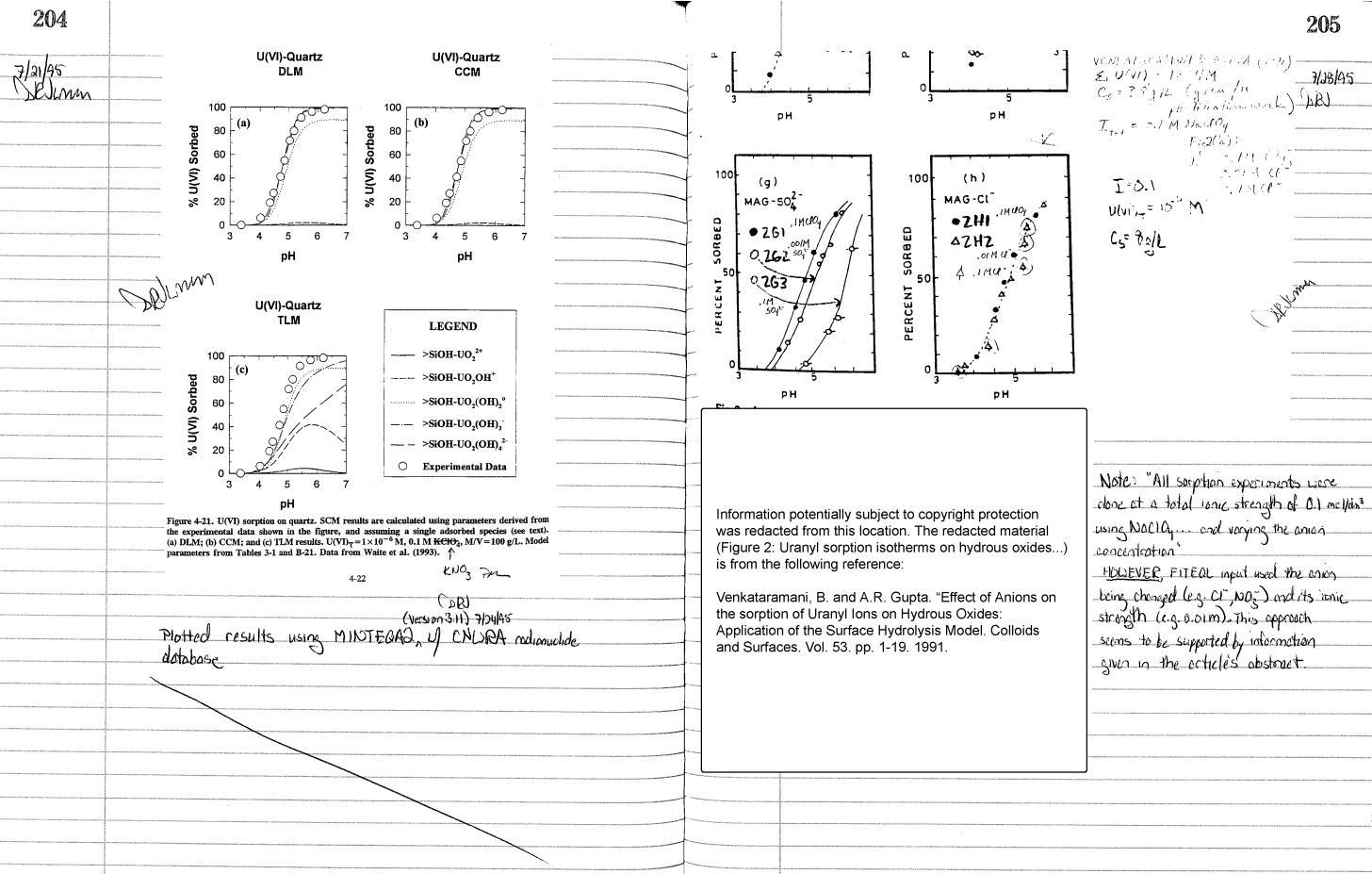



182							183
6/9/25 DRUmm	copyright pro this location is from the f Sanchez, A.	potentially subject to otection was redacted from . The redacted material following reference: L. J.W. Murray, and 'the Adsorption of	- F 2 10 - 1 - 12 - 12 - 12 - 13 - F 2 10 - 12 - 12 - 12 - 12 - F 2 10 - 12 - 12 - 12 - 12 - 12 - 12 - 12	0000 0000 0000 0000 0000 0000 0000 0000 0000	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Goethite Finite for data $2.3s/mm2$ $Finite data$ 2.000040 $Finite data$ 0000050 $D-M$ 00000102 0000102 00000100 00000120 00000120 00000120 00000120 00000120 00000120 00000120 00000120 00000120 00000120 00000145 00000145 00000145 00000182 00000182 00000182 00000184	6/9/95 Delimy
	Plutonium I\ Geochimica	/ and V on Goethite. et Cosmochimica). pp. 2,297-2,307. 1985.		7.29 1.05 8.61 1.06 1.66 1.55 3.51 5.21 8.83 9.73 9.84 	E-12 E-12 E-12 50 6 4 4	00000195 00000230 00000240 00000270 00000280 00000290 00000290 00000320 00000320 00000320 00000320 00000320 00000320 00000320 00000320 00000320 00000320 00000320 00001080	Example FITEQLInpat
	Sanchez, A.I Geochimica	, J.W. Murray, and T.H. Sibley. 1985. The adsorpt et Cosmochimica Acta 49:2297-2307.	ion of plutonium IV and V on goethite.		4 9 8 8 5	00001080 00001080 0000100 00001100 00001100 00001120 00001130 00001140 00001140 00001480 00001490	
		Sanchez et. al. (1985) Pu(V) - goethite (αFeOOH) Figure 1(b), 1 hr data			1 1 90 00001 -3.98 1.065-4 X0H 3 1	$\begin{array}{c} \text{Goethite} \hline \\ \text{Goethite} \hline \\ \text{Sanchez} \\ 2, 3s/m2 \hline \\ 00000040 \\ 00000050 \hline \\ 00000050 \\ 00000050 \\ 00000050 \\ 00000070 \\ 00000000$	lindata I) = le IIM
	DRYmun	0.1 M NaNO3 M/V = 0.55 g/L pH %sorbed 3.756502 0.729335 4.036996 1.053485 5.344619 8.610211 5.562556 10.55511	mol sorbed 7.29E-14 1.05E-13 8.61E-13 1.06E-12		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3 1 00000010 000000100 000000100 00000102 00000102 00000102 00000104 00000122 20 deg C 00000145 00000168 00000168 00000180	
		5.867265 15.55916 6.238565 26.47893 6.385874 35.17018 6.678475 52.12723 7.477578 88.31037 8.046637 97.26499 9.075785 98.37925	1.56E-12 2.65E-12 3.51E-12 5.21E-12 8.83E-12 9.73E-12 9.84E-12		00001 050.0 0.550 1.0 0 0 1.1 1 0 11 1 1 0 0 7.29F-14 1.05E-13 6.1E-13 1.06E-12 1.06E-12 1.06E-12 2.65E-12 3.51E-12 3.51E-12 3.51E-12 3.61E-13 8.81E-12 3.51E-12 8.81E-12 8.81E-12 3.51E-12 3.51E-12	00000182 00000184 00000185 00000195 00000195 00000230 00000230 00000270 00000270 00000290 00000290 00000310 00000310 00000320	
·		Digitized Dote			9.732-12 9.842-12 50 -3.76 -4.04 -5.34 -5.56 -5.87 -6.24 -6.29 -6.68 -7.48 -8.05 -9.08	6 0000320 00000320 00000320 0000170 0000180 0000180 0000180 0000180 0000180 0000180 0000110 0000110 0000110 00001120 00001140 00001480	
			***************************************		32 0.10 1.0E-16	00001490	

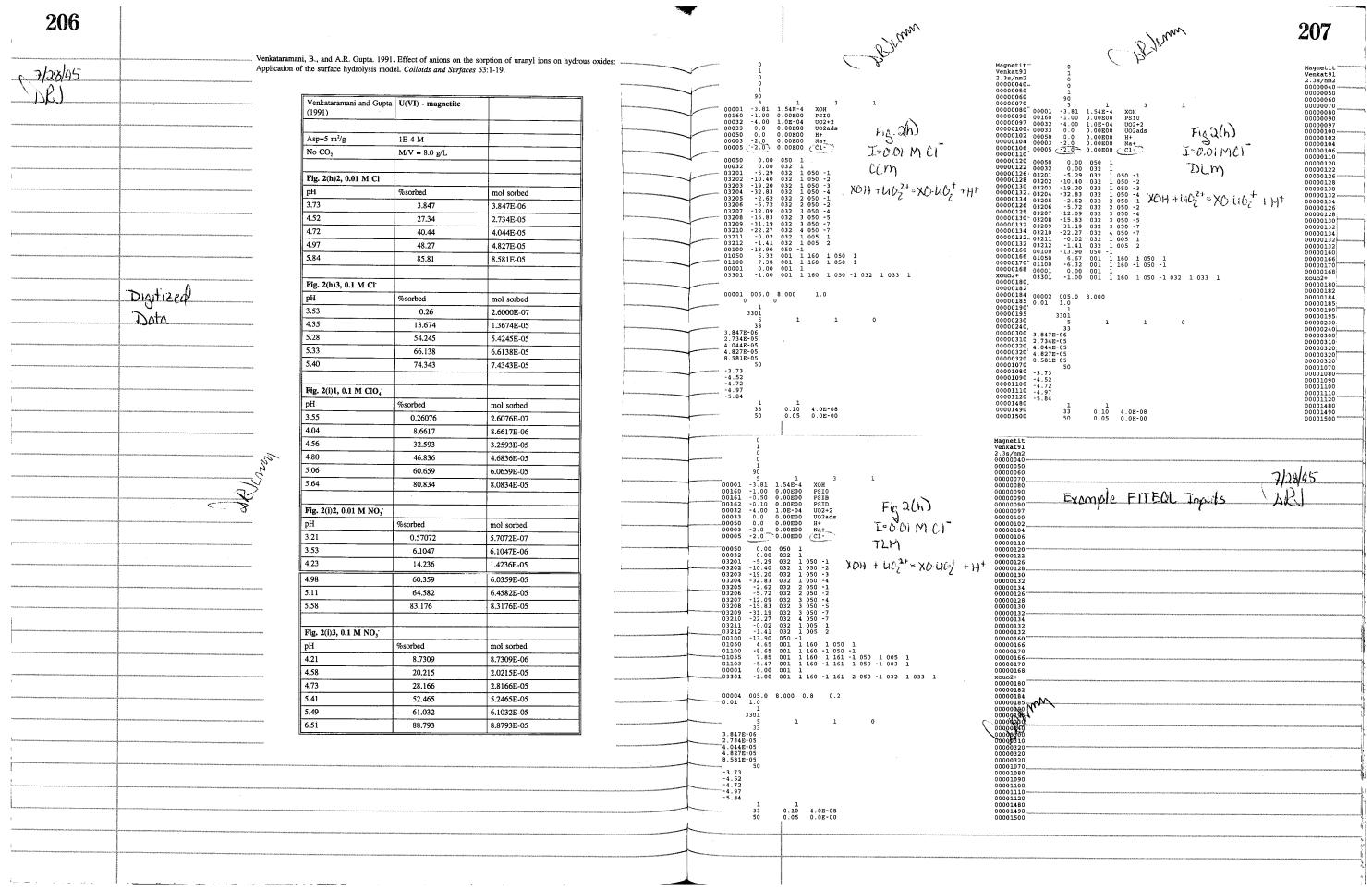


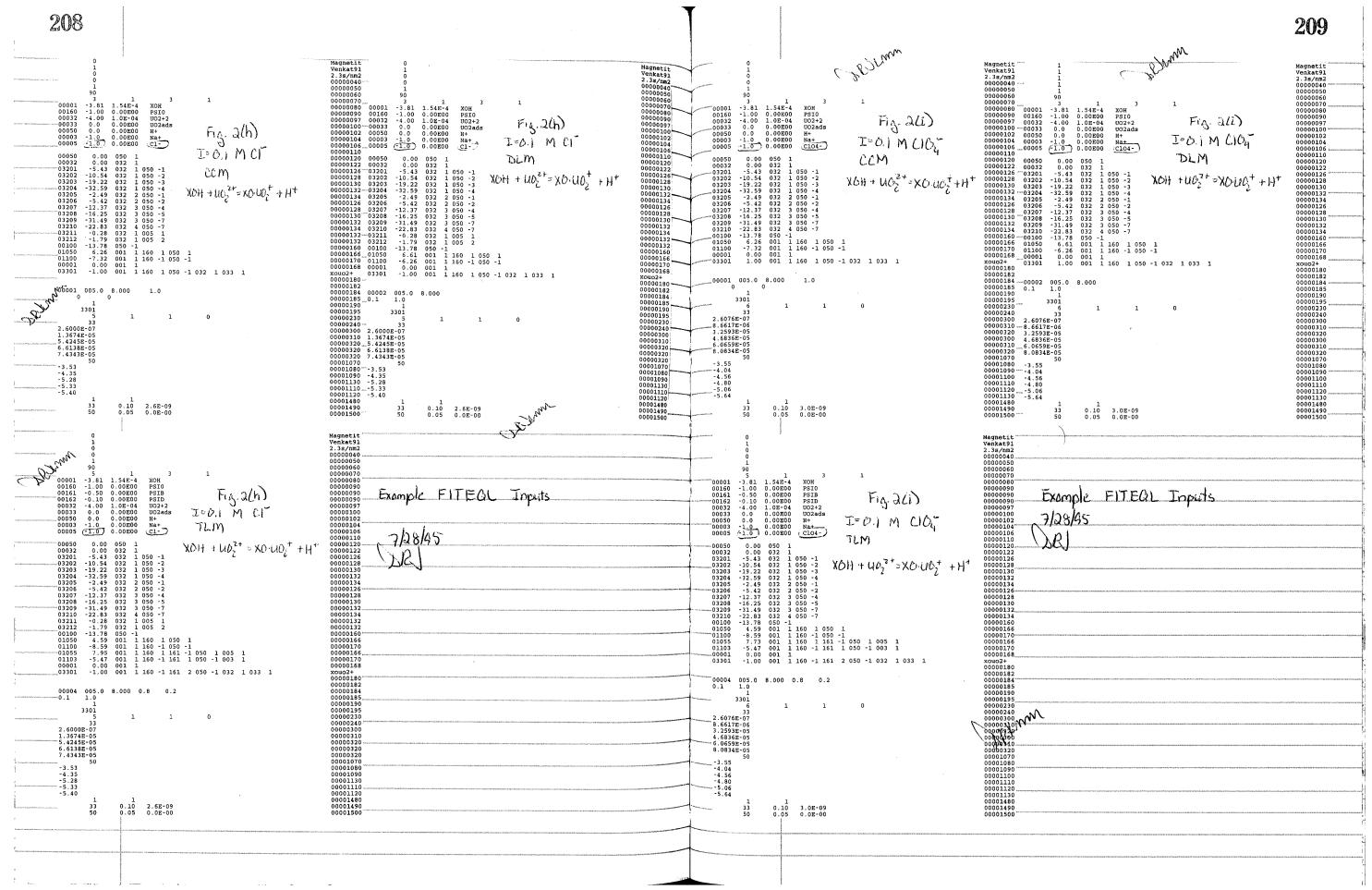
188														189
4/12/45 6 6 6 6 6 6 6 6 6 6 6 6 6	1 3 1.06E-4 XOH 0.00E00 PSI0 0.00E00 PSI0	1			0000006 0000006 0000007 0000008 0000009	0	, RY has	da la ense			2299 C.c. T.c.	(1)=1e-1 - 0.55 3/L - 1.1M Na NO	Ş	ie/12/45 DRJimy
000160 -2.0 00161 -1.0 00162 -0.5 00041 -10. 00042 0.0	0.00E00 PS10 0.00E00 PS10 1.0E-10 (Pu+4) 0.00E00 Puads 0.00E00 H+				0000009 0000009 0000009 0000010 0000010	0 8 0		Elsowop			Fig. la	-, <u>24 596</u> hr:	s dat	
00003 -1.0 00005 -1.0	0.00E00 NA+ 0.00E00 NO3-				0000010 0000010 0000011	14 16 .0			***		V	<u> </u>		######################################
04101 -1.30 4102 -3.64 04102 -3.64 04103 -6.89 04104 -11.17 04105 -16.46 04106 -13.95 01050 5.89 01050 5.89 01050 5.89 01050 5.66 01030 -7.64 00001 0.00 04201 2.00	041 1 050 -5 050 -1 001 1 160 1 0 001 1 160 -1 0 001 1 160 -1 1 001 1 160 -1 1 001 1 160 -1 1	61 4 050 -:	1 005 1 1 003 1 1 041 1 042	1	000012 20 deg 20 deg 20 deg 20 deg 20 deg 20 deg 20 deg 20 deg 000014 000014 000015 xcpu+3 000017 000017 000017	24 C C C C C C C C C C C C C C C C C C C			torm	Information potentially su copyright protection was this location. The redacte (a line drawing on p. 2,29 the following reference:	edacted from d material			Experimental Results
00004 50.0 0.1 1.0 1 4201 9 9 9.39E-12 2.59E-11 3.36E-11 5.29E-11 5.29E-11 5.29E-11 5.29E-11 5.22E-11 5.22E-11 5.22E-11 5.22E-11 5.22E-11	0.550 0.8 0.				0000018 0000019 0000023 0000024 0000026 0000026 0000028 0000030 0000030 0000036 0000036 0000036 0000036	35 30 35 30 30 30 30 30 30 30 30 30 30 30 30 30		4000 1000 1000		Sanchez, A.L. J.W. Murra "the Adsorption of Plutoni on Goethite. Geochimica Acta. Vol. 49. pp. 2,297-2	um IV and V et Cosmochimi		- DR	J. M.
9.84E-11 50 -2.28 -2.95 -3.04 -3.69 -3.65 -3.55 -3.65 -3.55 -3.65 -3.55 -3.65 -3.55 -3.65 -3.55 -3.65 -3.55 -3.65 -3.55 -3.65 -3.55 -3.65 -3.55 -3.65 -3.55					0000042 000056 0000062 0000062 0000062 0000066 0000066 0000066 0000077 0000077 0000074 0000074	20 50 30 20 20 40 50 80 20 20 40 80		5.000 						
42	0.10 1.0E-13				10%erro	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0000 alexil alexies and a second second second			Sanchez, A.L., J.W. Murray, and T.H. S Geochimica et Cosmochimica Acta 49:2	ibley. 1985. The adsorption 297-2307.	of plutonium IV and V	on goethite.	
Table BXX. Plutor	ium (IV)-Goethite So	·····					Je W	NW		Sanchez et. al. (1985)	Pu(IV) - goethite (aFeOOH)			
Solid: Goethite A ₃ , 50 n ³ /L Data Source: Sanchez I Concentration: [Pu(IV)	et al. (1985)		Rel Error (pl Abs Error (p Rel Error (ra	H): (a)	0		th (electrolyte) ites/nm ²): 0.1 M NaNO ₃	<u></u> .	Figure 1(a), 24 + 96 hr data				Bhum
No CO ₂		DLM	Abs Enor (ra		CCM (I = 0.1	. 1)		TLM		Asp=50 m ² /g No CO ₂	1E-11 M		$\neg \beta$	
	$Log K_{+} = 7.$ $Log K_{-} = -9$	35		$Log K_{+} = 6.4$ $Log K_{-} = -9$	47		Log K ₊ = Log K_ =	6.00		0.1 M NaNO ₃	M/V = 0.55 g/L			ĸţĸŦŶŦĸĸĊĸĊŎĸŎĸŎŊŢĸĸĸŎŦĸĸĊŎĊĸŎŎŎĸŎĊŎŎĊŎŎĸŎĸŎĸŎĸŎĸŎĸŎĸŎĸŎĸŎ
				208			$Log K_{Cat} = Log K_{An} =$	-7.64 8.78		pH	%sorbed	mol sorbed		
	Log K	Vy	σ _{Log K}	Log K	Vy	GLOE K	Log K	V _Y	σ _{Log K}	2.26	21.0414	2.10E-12		
XO-Pu ³⁺	14.07	66.6	.0291	15.44	19.0	,0334	-0.07	94.5	.0492	2.38	29.96558	3.00E-12		Digitized Experimental Results
!	2.80	20.4	.0281	8.88	17.5	.0363	-2.60	87.5	.0396	2.41	25.5649	2.56E-12		Results
XO-Pu(OH) ₂ XOH-Pu(OH) ₇ ²⁺	8.74	20.4	.0410	2.29 8.88	16.4	.0401	-5.16	55.5 61.3	.0271	2.57	34.87797	3.49E-12 4.59E-12		
XOIPI ((OII) ₂ XO-Pu(OH) ₃ °	-2.89	30.2	.0498	-4.32	17.5	.0363	-8.34	20,3	.0281	2.92	45.88991 40.15879	4.02E-12		***************************************
XOH-Pu(OH) ₁ *	2.80	17.9	.0498	2.29	15.5	.0401	-0.60	20.3	.0306	3.15	45.19399	4,52E-12		
XO-Pu(OH) ₄	-10.29	38.0	.0656	-10.86	22.6	.0508	-11.99	20.0	.0294	3.84	73.97241	7.40E-12		
XOH-Pu(OH) ₄ °	-2.89	30.2	.0498	-10.86	18.7	.0308	-4.23	18.3	.0479	3.99	81.58661	8.16E-12		
XOH I U(OH)4 XOH_Pu(OH)4	2.80	17.9	.0498	2.29	16.4	.0401	3.52	18.3	.0440	5.81	100.7449	9.99E-12		
XOH ₂ -ru(OH) ₄	-10.29	38.0	.0410	-10.86	22.6					- 6.13	96.93783	9.69E-12		
XOH ₂ -Pu(OH) ₅ °	-2.89	30.2	.0498	-10.86	18.7	.0508	-8.54	34.1	.0648	6.86	101.011 100.4174	9.99E-12 9.99E-12		
						.0401	-0.71	33.1	.0650	8.11	100.9292	9.99E-12 9.99E-12		
(a) No error assign	ed to pH to allow con	nvergence for e	extremely low rad	lionuclide conce	ntrations.			E. /	2 Land	8.91	101.1543	9.99E-12		
·								ris, la .	27-15 80	L	<u> </u>			
			- ト			1 ()	, i Λ						ACT-21124200-0000-0000-0000-0000-000	ĸĸĸĸĸĸĸĸĸĊŎŦŎŎĊĸĸĸŎŎŎŎŎŎŎŎŎŎŎŎŎŎŎŎŎŎŎŎŎ
2					<u> </u>	161 1	f g 61		1.	1 No.				
		FIT	EQL Re	sults.	No pl	of availa	ble to	model	regults				talan alawaha wana dan dalam dalam dalam dalam dari dan darik	

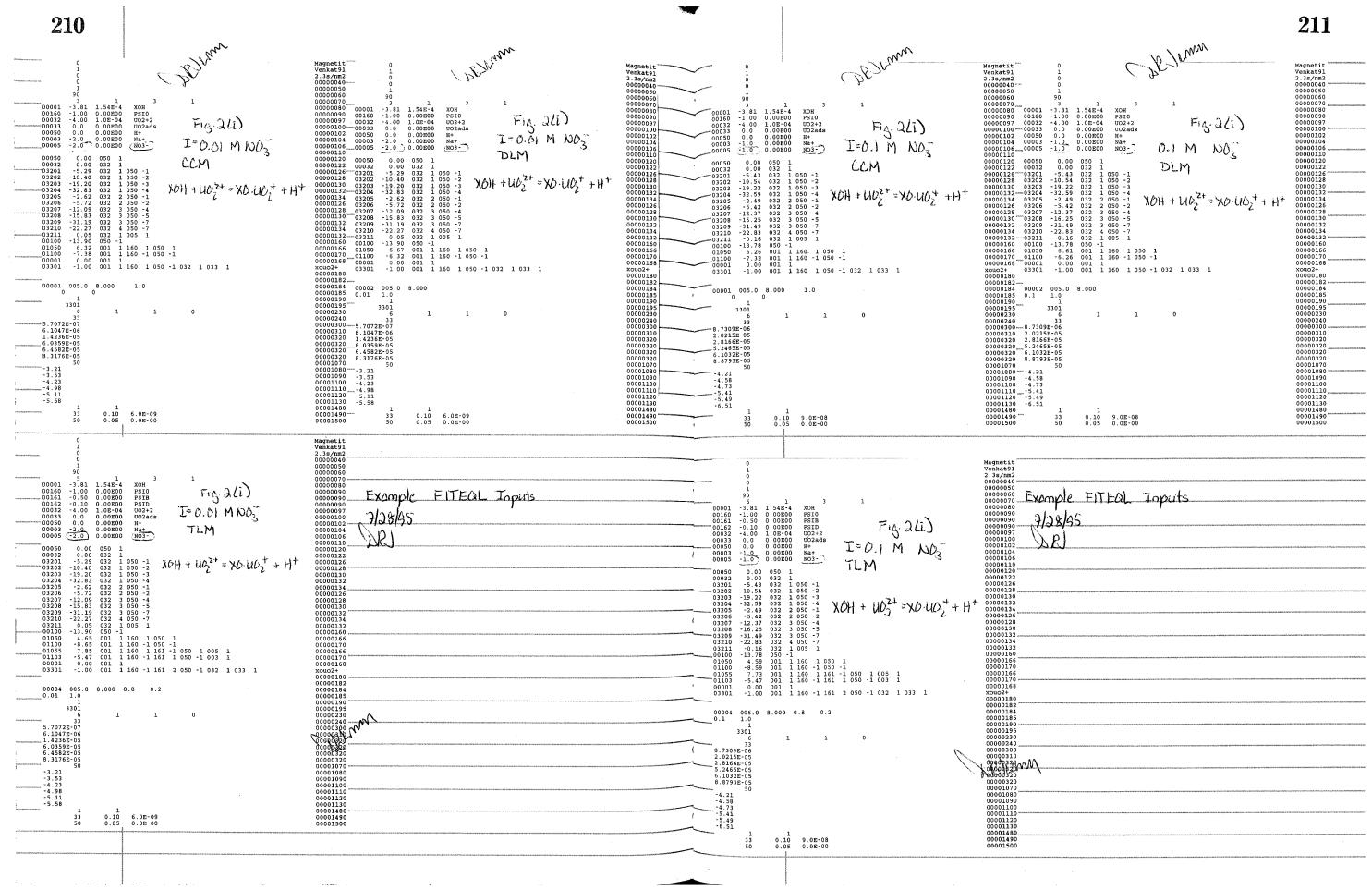



196												-																-	197
and the second sec		aan aan am farah da farihin ka da ahaa ahaa ahaa ahaa ahaa ahaa aha						alle Mada and a state of the fact that the state of the s		ononen alleinen er en	 		1987 Martin Martin Strategy (1927)	0.4829120.00120.000.100.000.000.000.000	*****	Ì	u (vi)) ~ K	adin	ite	Sorp	han	(Payn	e et i	01.,14	4a)		_7/(e/95
6/26/95	Solid: amorphous SiO ₂ A _{SP} : 0.075 m ² /g Data Source: Moulin et		SiO ₂ Sorption	Rel Error (pH) Abs Error (pH Rel Error (rad): 0.05 [): 0.0 ionuclide): 0.10	0			0.1 M NaClO ₄						4+4+++++++++++++++++++++++++++++++++++				2.3.1.1.¥.1	*****					-				String
	Solid: amorphous SiO ₂ A_{SP} : 0.075 m ³ /g Data Source: Moulin et Concentration: [Am(III) $p(CO_2) = 1E-3.5$ atm M XO-Am ²⁺ XO-AmOH* XO-Am(OH) ₂ * XO-Am(OH) ₁ ,* XO-Am(OH) ₁ ,* XO-Am(OH) ₁ ,* XOH-Am(OH) ₂ * XO-AmCO ₃ * XOH ₂ -Am(CO ₃) ₃ * XOH ₂ -Am(CO ₃) ₃ * Dillow to low zeroo- [see discussion i	al. (1992)	DLM 20 V _Y 24.3 38.3 38.8 38.8 38.8 38.8 38.8 38.8 38.8 38.3 31.7 32.6 21.5 18.4 c=2.1 for SiO ₂	Rel Error (pH) Abs Error (rad Abs Error (rad σLng K .0697 .0713 .0855 .0713 .0855 .0713 .0657 .0713 .00697 .0713 .0855 .0713 .0766 .0506 .0694 .1087 .0 .087): 0.05): 0.0 ionuclide): 0.1(lionuclide): 1.0 Log K ₊ = (a) Log K _ = -7 Log K 0.83 -3.31 -7.53 -3.31 -7.53 -3.31 12.15 16.39 31.84 36.78 , CCM) and X0	$\begin{array}{c} 0 \\ 0 \\ DE-11 \\ \hline \\ CCM (I = 0. \\) \\ 04 \\ \hline \\ 23.2 \\ 38.3 \\ 38.3 \\ 38.3 \\ 38.3 \\ 38.3 \\ 38.3 \\ 38.3 \\ 38.3 \\ 38.3 \\ 38.3 \\ 38.3 \\ 38.3 \\ 38.3 \\ 38.4 \\ 38.3 \\ 38.3 \\ 38.4 \\ 38.3 \\ 38.4$	Ionic Streng Ns = 2.31 s M/V = 10 g 1) $\sigma_{Log,K}$.0693 .0712 .0855 .0712 .0855 .0712 .0855 .0712 .0803 .0506 .0506 .0694 .1083 101y) are assumed to make the strength of the streng of the strength of the strength of the strength of the stren	Sites/nm ² g/L Log K ₊ = 0 Log K ₀ = - Log K ₀ = - Log K - = - Log K - = - 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 +	TLM 0.90 4.90 -6.22 (a) 37.7 38.6 38.8 33.2 21.5 18.4 Ticant at slightly	<u>q_{Leg K}</u> .0746 .0780 .0834 .0796 .0897 .0854 .0816 .0589 .0562 .0709 .1156 асіd to basic pl		ad T.D. Waite. 1992. Modeling of radionuclide sorption processes in the sorption processes in the sorption Processes in the source. Alligator Rivers Analogue Project Annual Report, 1990.	this I U(VI)-Kaolinite (ANSTO):57-85.	med)	n. The ption , K. S logue ience	ntiall to K Sekin Proj and	y sul acted Ga-1 e, J. the ect A Tech	oject d ma l kao A. Da Wea Annua nnolo	to co terial linite avis, there al Re gy O	pyrig (Fig and ed Zo port, rgan	ght priure 7 s from T.D. Vone of , 1990 izatio	otect Effe the f Vaite f the D-199 n. p	ion wa ect of s follow Koon 01. P. I	as rec solid/l ing re deling garra Duerc 85. 19	dacte iquid ferer Ore den, o 992.	ed fro rationce: Radio Body ed. A	on nuclide " Allig ustralia ^{3731E07}	9 422E-07	
· · · · · · · · · · · · · · · · · · ·		······································										Payne, T.E., K. Sekine, J.A. Davis, a weathered zone of the Koongarra ore b 1001 American Michon Science and	Australian Nuclear Science an Payne et al. (1992)	Figure 7 (page 75) Asp=11 m2/g (assum 0.1M NaNO3	$\frac{M/V}{M} = 1 \text{ g/L}$	2.99511 3.98533	4.88398 5.42983	<u>5.89250</u> 6.52955	6.91263 7.12724	$\frac{7.58807}{M/V} = 4 \text{ g/L}$	<u>рн</u> 2.97867 3.48851	3.98533 4.47388	4.94350 5.47024 6.10257	6.62757 7.13625	M/V = 16 g/L pH 2 000010	3.57160	4.42887 4.88356 5.43677	5.80361 7.01900 7.33777	

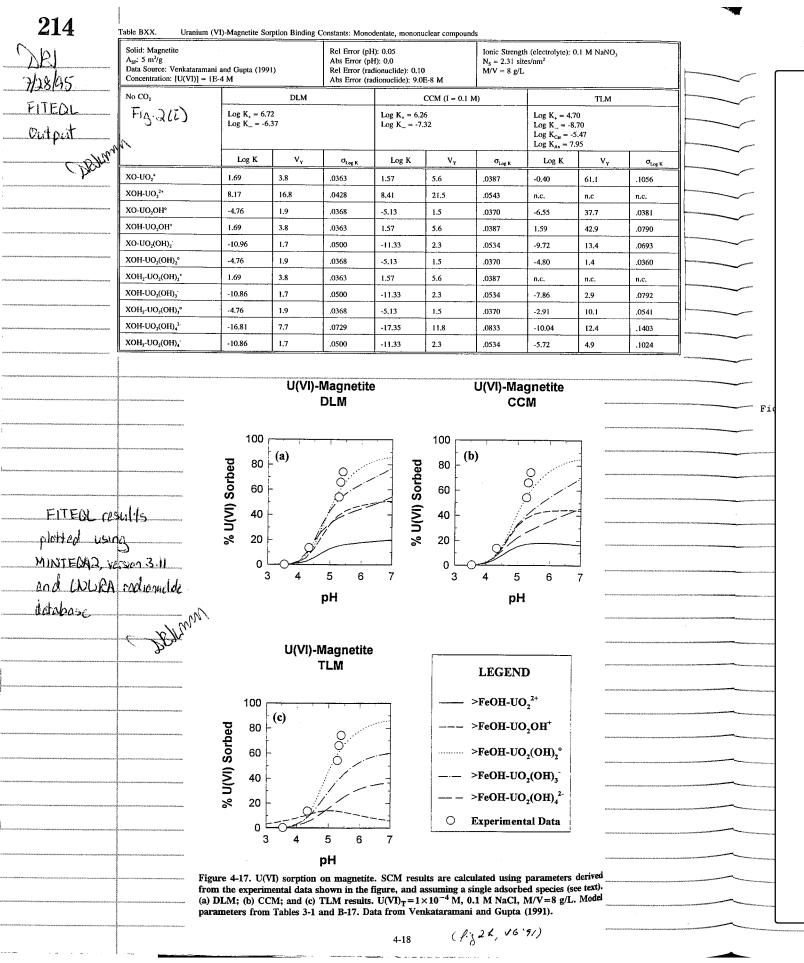
198				
33 0.10 1.0E-10 50 0.05 0.0E-00 474777777777777777777777777777777777	00004 011.0 4.0000 0.8 0.2 0.1 1.0 1 23301 9 1 1 0 33 1.3352-8 2.444-8 8.810E-8 1.804E-7 3.519E-7 9.6533E-7 9.081E-7 9.575E-7 50 -2.98 -3.49 -3.49 -3.49 -3.99 -4.47 -4.94 -5.47 -6.10 -6.63 -7.14 1 1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} & & & & & & \\ & & & & & \\ & & & & & \\ 0 & & & &$	
	00000174 00 00000175 00 00000180 0004 011.0 4.0000 0.8 0.2 00 00000185 0.1 1.0 01 00	Uranium 0 on 1 Kaclinit 0 00000050 1 00000050 1 00000050 1 00000050 1 00000050 1 00000050 1 00000050 1 00000050 1 00000050 1 00000050 0.002 00000050 0.002 00000050 0.002 00000050 0.010 00000050 0.010 00000050 0.010 00000050 0.010 00000050 0.002 00000100 00033 00000100 00033 00000100 00033 00000100 00033 00000100 0.00232 00000120 0000010 00000120 0000010 00000120 0000010 00000120 0000010 00000120 0000010 00000120 0020010 00000121 05200 0000012	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
	0000174 0 0000175 33 0000180 1.333E-8 0000180 1.333E-8 0000190 8.810E-8 0000190 8.810E-8 0000200 5.910E-7 0000240 6.533E-7 0000300 9.575E-7 0000300 9.575E-7 0000300 9.575E-7 0000300 9.575E-7 0000301 -3.49 0000302 -5.99 0000301 -4.71 0000302 -5.47 0000302 -5.47 0000700 -6.10 0000700 -6.10 0000700 -7.14 000720 1 000720 33 0.10 1.0E-10	0000110 0000120 0000120 0000120 0000120 0000120 0000127 0000127 0000127 0000127 0000128 0000128 0000128 0000128 0000128 0000129 00000129 00	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
	0000018: 00000190 00000190 00000230 00000230 00000240 00000260 00000320 00000320 00000320 00000370 00000370 00000370 00000720 00000710 00000750 00000751 00000751 00000751 00000751 00000751 00000751 00000751 00000751 00000751 00000751 00000751 00000751 00000751 00000751 00000751 00000751 00000751 00000751 00000751 000001190	0000012 0000012 0000012 0000012 0000012 0000013 0000013 0000013 0000013 0000013 0000013 0000013 0000013 0000013 0000014 0000014 0000015 0000015 0000017 0000017	Uranium on Kaolini 2.3si/r 000005 0000006 0000007 0000008 0000009 0000010 000010 000010 0000010	


De la constante de la constant	Uranium 0 Uranium Uranium on Kaolinit
$\begin{array}{c} & & & & & & & & & & & & & & & & & & &$	$D_{L}M$ $h^{2} + UC_{2}^{2+} = 2560 \cdot UC_{2}^{+} + H^{+}$ $\frac{2.1381701}{00000050} 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 $
00050 0.00 050 1 00001120 0000220 0.00 050 1 00032 0.00 032 1 00001124 00022 0.00 052 1 00032 0.00 032 1 00001124 00022 0.00 052 1 03201 -5.43 032 1 050 -1 00000126 03201 -5.43 032 1 050 -1 03202 -10.54 032 1 050 -3 00000126 03203 -10.54 032 1 050 -4 03204 -32.59 032 1 050 -4 00000129 03204 -32.59 032 1 050 -4 03204 -32.59 032 2 050 -1 00000130 03206 -5.42 032 2 050 -2 00000130 03206 -5.42 032 050 -5 03209 -31.49	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	00000175 00000175 00000185 0.1 00000185 00000185 0.1 00000185 00000190 1 00000190 00000190 1 00000190 00000190 1 00000195 00000230 9 1 0 00000240 33 00000220 00000260 1.333E-8 00000220 00000280 2.444E-8 00000220 00000320 1.804E-7 00000320 00000320 1.804E-7 00000320 00000320 1.84E-7 00000320 00000320 9.81E-7 00000370 00000370 9.81E-7 00000370 00000371 9.53E-7 00000370 00000371 9.53E-7 00000370 00000372 5.50 00000372 00000372 00000372 00000372 00000690 -2.98 00000680 00000690 -3.69 00000690
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$


200											White et al (1993	201
7/6/45 DRULMM		n (V)-Kaolinite Sorption Bin	ding Constants: Monoden	tate, mononuclear	compounds			$JO_{2}^{0} + 2$	$2H^{+} + H_{2}0$		$\Sigma U(VI) = 1e^{-G} P$ $C_s = 100 g IL$ $I = 0.1141 KNO_3$	
BRUM	Solid: Kaolinite $[Al_2Si_2O_5(OFA_{SP}: 11 m^2/g (Allard et al.,)]$	1983) Ab	el Error (pH): 0.05 os Error (pH): 0.0	$N_{s} = 2.31$ sit		20000000000000000000000000000000000000		and an	2		T = 0.1/4 K N 0	~=>/21/25
1 19 - 2014/02/00/2014/2014/2014/2014/2014/2014	Data Source: Payne et al. (19) Concentration: $[U(VI)] = 11$		el Error (radionuclide): 0.10 os Error (radionuclide): 1.2E-11	M/V = 4 g/L	<u></u>						<u> </u>	- Rimen
	Si:AI = 1:1 No CO ₂	DLM	C	CM	TLM (\alpha-Al2O3) (S	SiO ₂)						angen and a fair of the second s
 Destination of the second s Second second sec	2	$Log K_{,} = 8.33 (\alpha - \Lambda l_2 O_3)$	$Log K_{+} = 9.08 (\alpha$ -	Λl ₂ O ₃)	$Log K_+ = 6.90$ $Log K_+$	= 0.90		be-				
, espectador do alternativa en alterna	in in	$Log K_{-} = -9.73 (\alpha - Al_2O_3)$ $Log K_{-} = -7.20 (SiO_2)$	$Log K_{-} = -8.32 (\alpha K_{-} = -7.04 (Si)$	-Al ₂ O ₃) O ₂)	$Log K_{Cat} = -10.90 Log K_{Cat}$ $Log K_{Cat} = -7.73 Log K_{C}$	= -4.90 _{at} = -6.22		**				Man-managan kanada kanada kana mana mana mana saka kanada kanada kana kana kana kana ka
DEN		Log K V _Y	σ _{Log K} Log K	V _Y σ _{Log K}	$\begin{array}{c c} \text{Log } K_{An} = 10.12 \\ \hline \text{Log } K & V_{Y} \end{array}$	σ _{Log K}						and and and an all and an all and an all and all all all all all and an and an and an and an arrival and an arr
	XO-UO ₂ ⁴ SiOH AlOH	1.41 20.1 3.02 30.1	.0228 1.91	22.5 .0288 30.3 .0457		.0239						
	XOH-UO2 ²¹ SiOH	6.82 76.9	.0276 8.53	29.6 .0222	0.02 70.9	.0261	7					
FITEQL	AIOH XO-UO ₂ OH ^o SiOH	9.68 12.2 -5.16 28.8	.0238 10.90 .0409 -5.07	20.2 .0321 28.6 .0409				~~~				n conservations, most sections and an an an and in the second second second second second second second second
1	AIOH	-3.85 40.1	.0647 -3.14	36.7 .0572	-4.51 25.3	.0377					ection was redacted fron	
Results	XOH-UO ₂ OH ⁺ SiOH AIOH	1.41 20.1 3.02 30.1	.0228 1.91 .0453 3.87	22.5 .0288 30.3 .0457							dsorption of 10-6 U(VI)	ana manana manana manana manjara na manana manan
	XO-UO ₂ (OH) ₂ SiOH AIOH	-12.05 38.9 -10.70 45.3	.0608 -12.11 .0817 -10.10	35.1 .0534 40.7 .0675				to 100g/L) is f	rom the following	ng reference:		
	XOII-UO2(OII)2° SiOII	-5.16 28.8	.0409 -5.07	28.6 .0409	-4.92 28.4	.0404				ovic and K. Sak	no "Uranium Saration	
	AlOH XOH ₂ -UO ₂ (OH) ₂ ⁺ SiOH	-3.85 40.1 1.41 20.1	.0647 -3.14 .0228 1.91	36.7 .0572 22.5 .0288							ne. "Uranium Sorption H. von Maravic and	Salt million State Salt and State
y ang ang mang mang mang mang mang mang m	AlOH XOH-UO ₂ (OH) ₃ SiOH	3.02 30.1 -12.05 38.9	.0453 3.87 .0608 -12.11	30.3 .0457 35.1 .0534	2.01 32.5	.0492					an Communities Natural	
	AIOH	-10.70 45.3	.0817 -10.10	40.7 .0675	-6.20 44.4					•	River Analogue Project	
	XOH ₂ -UO ₂ (OH) ₃ ⁿ SiOH AlOH	-5.16 28.8 -3.85 40.1	.0409 -5.07 .0647 -3.14	28.6 .0409 36.7 .0572							n of the European	
	XOH-UO2(OH)42. SiOH	-18.90 44.5	.0782 -19.09	39.6 .0641	-11.53 46.4	.0878					. pp. 83-88. 1993.	
T	AlOH XOH ₂ -UO ₂ (OH) ₄ SiOH	-17.54 47.9 -12.16 38.9	.0970 -17.05 .0608 -12.11	43.4 .0779 35.1 .0534				an				
	AIOH	-10.81 45.3	.0817 -10.10	40.7 .0675	-4.58 47.5	.0931		**				
					80000000000000000000000000000000000000	Lannan mar 1972 (mar mar mar mar mar an		~~				
						aan ah						
	$\begin{array}{c} 0 \\ \hline \end{array} \\ \hline \begin{array}{c} 0 \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \begin{array}{c} 0 \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \begin{array}{c} 0 \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \begin{array}{c} 0 \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \begin{array}{c} 0 \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \begin{array}{c} 0 \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \begin{array}{c} 0 \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \begin{array}{c} 0 \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \begin{array}{c} 0 \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \begin{array}{c} 0 \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \begin{array}{c} 0 \\ \hline \end{array} \\ \hline \begin{array}{c} 0 \\ \hline \end{array} $ \\ \hline \rule \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \\ \hline \end{array} \\ \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \\ \end{array} \\ \end{array} \\ \hline \end{array} \\ \\ \end{array} \\ \hline \end{array} \\ \end{array} \\ \\ \end{array} \\ \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array}		Brown	0/ 11								
	s. U. Si:A	% U(VI) Sorbed	Br	% U	(VI) Sorbed	Enderfricht zu einer frie die sondernen einer einer Bereicht auf die Sondersteiner						
		100 80 80 80 80 80 80 80 80 80 80 80 80 8		0 0	100 80 40		and a second					no no si a névelana locator stajmente concelentar antista conceletação (speculação), se so sinte
	r ⊂ 2 – 2			N [(a)			~~				
Modelina	1:10 [°] ³ ³ ³ ³		U(VI)	β								· · · · · · · · · · · · · · · · · · ·
Results using	iction 6 M.	ð	j		-	Ę,		Complexatio	n Approach. 5th CEC Nat	ural Analogue Working Group	Sorption Modeling - A Surface Meeting and Alligator River Analogue	
MINTEQAQ	5 5 0,1 1,0.1 1,0.1)-Kaolinite TLM	2 5	O The second second)-Kaolinite		Project (ARA	AP) Final Workshop. H. vo mission of the European Co	on Maravic and J. Smellie, eds	Pre-print; to be published in the EUR	\$194739.ab.rol/038.ct-ab\$10.rc30970380098098098098099.ctable9380.rc302.ct024538099964989565
	Data 6].	o -	Γ b				-		Projektiva	
and CNLIRA	aNO 7		te	- -	18		An analysis and a second state of the second state of the second state of the state of the second s		Waite et. al. (1993)	U(VI) - quartz		
rodiosuclide	n Parti oo Lii			ωĹ					Figure 2, no fluoride pl	ot	400%	
database				% H	I(VI) Sorbed		AND CONTRACT OF A CONTRACT		Asp=0.03 m ² /g	1E-6 M		
(NEA detabase	t g/L	1 1 :			<u>د</u> _	- 000 0000000 000000 00000 00000			No CO ₂		N84	A. 1:
	Limite O				8 8 8 8 				0.1 M KNO3	M/V =100 g/L	Succession and Succes	Digitized
ter uranium)	2).		y y	ω	б			10 (10 · 1000 10 / 1000 10 / 100 · 100 /	pH	%sorbed	mol sorbed	
	& S Exper a) DLA	4100 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8		► Å	-	5		Marine MM	3.39	0.0544	5.44e-10	
	siOH		LEGEND AIOH-UO2 ²⁺ & SIOH-UO2 ²⁺ AIOH-UO20H ⁺			5 0 5		NOM.	4.04	6.23	6.23e-08	
· · ·	ntal)) C(2,((-UC -UC -UC -UC		βu	0	CM		/ DK	4.36	19.1 27.2	1.91e-07	
) 	siOH-UO ₂ (OH) ₄ , rimental Data 	& SIOH-UO,OH MOH-UO,(OH),° & SIOH-UO,(OH),° MOH-UO,(OH), & SIOH-UO,(OH),° MOH-UO,(OH),°	\mathbf{H}^{+}	<u>ດ</u>	ノ営	U(VI)-Kaolinite CCM			4.72	41.2	4.12e-07	
	and and		t l	7	/ /ð				4.86	54.9	5.49e-07	
, we consider the second structure of the second structure struct	3°C			<u></u> ω					5.04 5.18	71.8	7.18e-07 8.01e-07	
2010/20108-02810922-1600-2010-001-001-001-001-001-001-001-001-	TLM 1 and								5.43	91.4	9.14e-07	
1	• • • • •				• .			NU (San Maharanan Andrikanananananananan Andrikananananan) (L)	5.79	96.4	9.64e-07	
7. Annuaryan a Maan Malandi Mandalan sa sana a Mandalan an Annar sa mana sana an	а бол т т т ани амитикана т т с Денда с сон сон сон сон то с услуг (Марили Саламини). В	alan gaga gana manana mana mana dan dan dan dan dan dan dan dan dan					And the second	***********************************	6.22	98.2	9.82e-07	***************************************
1							internal land					



.....



The ST. The COMPARISANCE State S	2	7/28/45	(PB)							annancier anna an anna		7/0	18/95 KJ								2
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	r		I)-Magnetite S	orption Binding	<u>.</u>		iclear compoun	T				Table BXX. Uranium (/1)-Magnetite Sc	orption Binding	Constants: Mono	odentate, mononu	uclear compoun	ds			
No C0, TRA CCM (= -1) 30 TRA No C0, DIM CCM (= -1) 30 TRA No C0, Log K, - 4.57		A _{SP} : 5 m ² /g Data Source: Venkataramani	and Gupta (19 4 M	91)	Abs Error (p Rel Error (ra	H): 0.0 dionuclide): 0.1		$N_{s} = 2.31$ site	es/nm ²	0.1 M NaCl		A _{sp} : 5 m ² /g Data Source: Venkataraman	i and Gupta (199 E-4 M	91)	Abs Error (p. Rel Error (ra	H): 0.0 dionuclide): 0.10		$N_s = 2.31 si$	tes/nm ²	0.1 M NaClO₄	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		No CO ₂		DLM			CCM (I = 0.1)	M)		TLM				DIM	1	T		 M)	1	тім	
NUM2* 7.6 0.00 0.077 7.6 5.17 0.43 2.67 9.9 0.877 NOM UQ-1 4.69 1.2 0.99 5.12 0.81 0.77 8.5 0.81 0.877 NOM UQ-1* 1.50 0.51 0.52 0.57 0.77 8.5 0.81 0.97 NOM UQ-1* 1.50 0.57 0.77 8.5 0.87 0.97 0.51 0.50 0.57 <td>~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~</td> <td>Fig. 2(h)</td> <td></td> <td></td> <td>-<u>-</u></td> <td></td> <td></td> <td></td> <td>$Log K_{cw} = -8$ $Log K_{cw} = -8$</td> <td>3.70 •5.47</td> <td></td> <th>Fig-210</th> <td></td> <td>72</td> <td></td> <td>Log K₊ = 6.2</td> <td>26</td> <td></td> <td>Log K_ = -8 Log K_{CM} = -3</td> <td>70 1.70 5.47</td> <td></td>	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Fig. 2(h)			- <u>-</u>				$Log K_{cw} = -8$ $Log K_{cw} = -8$	3.70 •5.47		Fig-210		72		Log K ₊ = 6.2	26		Log K_ = -8 Log K _{CM} = -3	70 1.70 5.47	
NUM2* 7.6 0.00 0.077 7.6 5.17 0.43 2.67 9.9 0.877 NOM UQ-1 4.69 1.2 0.99 5.12 0.81 0.77 8.5 0.81 0.877 NOM UQ-1* 1.50 0.51 0.52 0.57 0.77 8.5 0.81 0.97 NOM UQ-1* 1.50 0.57 0.77 8.5 0.87 0.97 0.51 0.50 0.57 <th>_۲</th> <th></th> <th></th> <th></th> <th>1</th> <th>1</th> <th></th> <th></th> <th>Log K</th> <th>V_Y</th> <th>σ_{Log K}</th> <th>the second</th> <th>Log K</th> <th>Vy</th> <th>σ_{Log K}</th> <th>Log K</th> <th>V_Y</th> <th>σ_{i∞g K}</th> <th></th> <th>1</th> <th>σ_{Log K}</th>	_۲				1	1			Log K	V _Y	σ _{Log K}	the second	Log K	Vy	σ _{Log K}	Log K	V _Y	σ _{i∞g K}		1	σ _{Log K}
Kullopht 4.60 1.2 0.94 5.12 2.8 0.97 7.72 8.85 0.05 Kullopht 1.33 16.2 0.951 1.16 0.376 1.11 93.3 0.927 Kullopht 1.63 1.62 0.52 1.14 0.10 0.46 1.12 0.35 0.357 0.457 <		XO-UO ₂ *										XO-UO ₂ *	1.63	21.9	.0335	1.50	22.7	.0349	-4.05	98.1	.0518
X0H000ft 153 16.2 0361 1.40 17.6 0.076 1.11 9.3 0.027 X0H000ft) -10.71 2.5 0.022 -11.44 0.10 0.646 -11.24 0.600 0.677 X0H000ft) -1.07 2.5 0.022 -11.44 0.10 0.646 -11.24 0.600 0.677 X0H000ft) -1.07 2.5 0.072 1.144 0.10 0.646 1.50 0.656 -11.24 0.660 0.656 -11.24 0.55 0.656 -11.24 0.55 0.656 -11.24 0.55 0.656 -11.24 0.55 0.656 -11.24 0.55 0.656 -11.24 0.55 0.656 -11.24 0.55 0.656 -11.24 0.55 0.656 -11.24 0.55 0.656 -11.24 0.55 0.656 -11.24 0.55 0.656 -11.24 0.55 0.656 -11.24 0.55 0.656 -11.24 0.55 0.656 -11.24 0.55 0.656 -11.24 0.55 0.656 0.557 0.657 0.576 0.									-			XOH-UO22+	7.46	65.8	.0363	7.79	56.3	.0400	2.65	98.1	.0672
XOUQOID 40.71 2.5 0.522 -11.44 0.1 0.464 +11.24 68.0 0.567 XOULUQOID 4.69 1.2 0.334 5.12 2.8 0.75 4.72 3.5 0.66 XOULUQOID 1.53 1.62 0.561 1.40 0.76 1.84 0.16 0.560 XOULUQOID 1.53 1.62 0.561 1.40 0.76 0.84 71.6 0.560 XOULUQOID 4.69 1.2 0.354 1.40 0.464 8.14 0.560 0.560 XOULUQOID 4.669 1.9 0.574 0.522 0.14 0.10 0.664 8.11 0.650 XOULUQOID 4.669 1.9 0.574 0.52 0.52 0.561 4.52 0.366 4.132 1.58 0.425 4.52 0.563 4.51 0.56 0.57 0.56 0.57 0.564 0.51 0.56 0.56 0.56 0.56 0.56 0.56 0.56 0.56 0.56 0.56 0.56 0.56 0.56 0.57 0.56<										+		XO-UO2OH°	-4.54	5.2	.0361	-4.99	9.2	.0346	-7.71	88.2	.0419
X01L02(01); 4.69 1.2 0.394 5.12 2.8 0.375 4.72 3.5 0.66 X01L02(01); 1.53 1.62 0.361 1.40 17.6 0.376 1.98 71.6 0.56 X01L02(01); 1.51 1.62 0.361 1.40 1.72 0.376 1.98 0.425 0.56 0.338 X01L02(01); 1.51 1.62 0.361 1.40 0.44 8.14 0.56 0.65 X01L02(01); 4.69 1.2 0.394 5.12 2.8 0.375 4.31 0.65 0.65 0.55 0.66 1.52 0.66 4.59 9.2 0.364 4.60 1.32 1.80 0.425 8.17 2.56 0.57 X01L02(01); 4.69 1.2 0.374 0.53 0.65 3.5 0.66 1.12 0.36 1.12 0.45 1.12 0.45 4.17 0.10 0.51 X01L02(01); 1.03 0.57 0.53 0.54 1.12 0.45 0.45 0.51 0.55 0.56 0.56 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>- · · · · · · · · · · · · · · · · · · ·</td> <td></td> <th>XOH-UO2OH+</th> <td>1.63</td> <td>21.9</td> <td>.0335</td> <td>1.50</td> <td>22.7</td> <td>.0349</td> <td>1.17</td> <td>92.7</td> <td>.0511</td>										- · · · · · · · · · · · · · · · · · · ·		XOH-UO2OH+	1.63	21.9	.0335	1.50	22.7	.0349	1.17	92.7	.0511
X0H-UQ,Q0H)* 1.53 16.2 0.64 1.40 17.6 0.376 1.98 71.6 0.569 X0H-UQ,Q0H)* -1.071 2.5 0.522 -11.44 0.10 0.464 8.14 19.6 0.629 X0H-UQ,Q0H)* -4.69 1.2 0.934 5.12 2.8 0.375 2.32 13.1 0.633 X0H-UQ,Q0H)* -4.69 1.9 0.574 1.78 16.3 0.547 1.18 0.633 X0H-UQ,Q0H)* -1.669 1.9 0.574 2.17 0.53 0.547 1.18 0.533 0.547 0.540 0.543 0.550 <									h	-		XO-UO ₂ (OH) ₂	-10.56	3.5	.0468	-11.32	15.8	.0425	-11.25	69.9	.0540
X0H-UQ(OH); 1.07 2.5 0.522 1.1.4 10.1 0.644 8.14 19.6 0.652 X0H_UQ(OH); 4.69 1.2 0.394 5.12 2.8 0.375 2.32 1.31 0.633 X0H_UQ(OH); 1.669 1.9 0.674 -1.78 16.3 0.547 -1.160 47.1 0.944 X0H_UQ(OH); 1.01 0.674 -1.160 47.1 0.944 X0H_UQ(OH); 1.02 0.522 1.1.4 10.1 0.644 5.41 7.3 0.806	⊢									-		XOH-UO2(OH)2°	-4.54	5.2	.0361	-4.99	9.2	.0346	-4.68	10.1	.0338
$ \frac{1}{201} = \frac{1}{201} + 1$	-										-	XOH ₂ -UO ₂ (OH) ₂ ⁺	1.63	21.9	.0335	1.50	22.7	.0349	1.80	74.8	,0542
$ \frac{1}{2} XOLUQ_{4}(OH)_{*}^{2} - 16.69 & 11.9 & 0.674 & 17.78 & 16.3 & 0.547 & -11.60 & 47.1 & 0.944 \\ XOLUQ_{4}(OH)_{*}^{2} - 16.71 & 2.5 & 0.52 & -11.44 & 0.1 & 0.664 & -5.41 & 7.3 & 0.806 \\ \hline XOH_{*}UQ_{4}(OH)_{*}^{2} - 16.52 & 10.8 & 0.91 & -17.69 & 31.7 & 0.503 & -11.76 & 52.8 & 0.912 \\ \hline XOH_{*}UQ_{4}(OH)_{*}^{2} - 16.52 & 10.8 & 0.911 & -17.69 & 31.7 & 0.503 & -11.60 & 0.73 \\ \hline XOH_{*}UQ_{4}(OH)_{*}^{2} - 16.52 & 0.668 & -11.92 & 0.664 & -5.41 & 7.3 & 0.806 \\ \hline XOH_{*}UQ_{4}(OH)_{*}^{2} - 16.52 & 0.68 & -11.32 & 15.8 & 0.425 & 5.49 & 10.8 & 0.73 \\ \hline XOH_{*}UQ_{4}(OH)_{*}^{2} - 16.52 & 0.68 & -11.32 & 15.8 & 0.425 & 5.49 & 10.8 & 0.73 \\ \hline XOH_{*}UQ_{4}(OH)_{*} - 16.52 & 0.68 & -11.32 & -11.64 & 0.41 & 0.14$.0629	XOH-UO2(OH)3	-10.56	3.5	.0468	-11.32	15.8	.0425	-8.17	25.6	.0593
$\frac{1}{2} XOH_{2}UO_{2}(OH)_{1}$ (-10.71) 2.5 0.522 -11.44 10.1 0.464 -5.41 7.3 0.806 (-10.71) 2.5 0.62 3.5 0.468 -11.32 15.8 0.425 -5.49 10.8 0.734 2.73 (-1.76) 3.5 0.468 -11.32 15.8 0.425 -5.49 10.8 0.734 $0.$						-	+	***				XOH2-UO2(OH)3°	-4.54	5.2	.0361	-4.99	9.2	.0346	-2.31	7.1	.0511
XOH ₂ -UO ₂ (OH), -10.56 3.5 .0468 -11.32 15.8 .0425 -5.49 10.8 .0734 XOH ₂ -UO ₂ (OH), -10.56 3.5 .0468 -11.32 15.8 .0425 -5.49 10.8 .0734 Table BXX. Uranium (VI)-Magnetite Sorption Binding Constants: Monodentate, mononuclear compounds Table BXX. Uranium (VI)-Magnetite Sorption Binding Constants: Monodentate, mononuclear compounds Solid: Magnetite Ag: 5 m ² g Ionic Strength (electrolyte): 0.01 M NaCl Ng = 2.31 sites/m ² M/V = 8 g/L Ionic Strength (electrolyte): 0.01 M NaNO ₃ Data Source: Venkataramani and Gupta (1991) Rel Error (pH): 0.05 No CO. M/V = 8 g/L No CO. No CO. No CO. No CO. No CO. Table M Table M Table M Table M No CO. No CO. No CO. No CO. Table M Table M Table M No CO. No CO. No CO. No CO. Table M No CO. Table M No CO. Table M No CO. Table M No CO. No CO. No CO.	.	· · · · · · · · · · · · · · · · · · ·							·		+	XOH-UO2(OH)42-	-16.52	10.8	.0591	-17.69	31.7	.0503	-11.76	52.8	.0912
Table BXX. Uranium (VI)-Magnetite Sorption Binding Constants: Monodentate, mononuclear compounds Table BXX. Uranium (VI)-Magnetite Sorption Binding Constants: Monodentate, mononuclear compounds Solid: Magnetite Agr 5 m ³ /g Data Source: Venkataramani and Gupta (1991) Concentration: [U(VI)] = IE-4 M Rel Error (pH): 0.05 Abs Error (radionuclide): 0.10 Abs Error (radionuclide): 0.00 Abs Error (radionuclide): 0.00	- [XOH ₂ -UO ₂ (OH) ₄	-10.71	2.5	.0522	-11.44	10.1	.0464	-5.41	7.3	.0806	XOH ₂ -UO ₂ (OH) ₄	-10.56	3.5	.0468	-11.32	15.8	.0425	-5.49	10.8	.0734
Solid: Magnetite Rel Error (pH): 0.05 Ionic Strength (electrolyte): 0.01 M NaCl $A_{sp}: 5 m^2/g$ Data Source: Venkataramani and Gupta (1991) Concentration: [U(VI)] = 1E-4 M Rel Error (pH): 0.05 Abs Error (pH): 0.0 Nois Strength (electrolyte): 0.01 M NaNO ₃ No CO ₂ DIM CCM (I = 0.01 M) TIM TIM Concentration: [U(VI)] = 1E-4 M CCM (I = 0.01 M) TIM		`able BXX. Uranium (Vi)-Magnetite S	orption Binding (Constants: Mono	dentate, mononi	clear compound					Table RXX I Iranium (V	D-Magnetite Sou	mtion Binding ('onstants' Monoc	dentate. mononuc					
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Solid: Magnetite A _{sp} : 5 m ² /g Data Source: Venkataramani	and Gupta (19		Rel Error (pl Abs Error (pl Rel Error (rad	I): 0.05 H): 0.0 dionuclide): 0.10)	Ionic Strength N _s = 2.31 site	(electrolyte): s/nm ²	0.01 M NaCl		Solid: Magnetite A _{sp} : 5 m ² /g Data Source: Venkataramani	and Gupta (199		Rel Error (pH Abs Error (pH Rel Error (rad	I): 0.05 I): 0.0 I): 0.0 Iionuclide): 0.10	I	Ionic Strengtl N _s = 2.31 site	es/nm²	.01 M NaNO ₃	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	***	No CO ₂		DLM			CCM (I = 0.01	M)		TLM		No CO ₂		DLM		c	CCM (I = 0.01	M)		TLM	
	- Ja	e Fig.26	$Log K_{+} = 6.$ $Log K_{-} = -6$	72 5.37					Log K_ = -8 Log K _{Cat} = -3	5.47			Log $K_{+} = 6.7$ Log $K_{-} = -6.$	72 37					$Log K_{-} = -8.$ $Log K_{Cat} = -5$	70 5.47	
	,		Log K	Vγ	σ _{Log K}	Log K	Vy	σ _{Log K}	Log K	V _Y	$\sigma_{Log K}$	M	Log K	V _Y	OLDE K	Log K	V _Y	σ _{Lor K}	Log K	V _Y	σ _{Log K}

							(M1)		I LIVI	A		No CO ₂		DLM		· · ·	CCM (I = 0.01)	M)		TLM		4
	r Fig.2th	$Log K_{+} \approx 6$ $Log K_{-} = -$.72 6.37		Log $K_{+} = 6.3$ Log $K_{-} = -7.$			Log K ₊ = 4.7 Log K ₋ = -8. Log K _{Cat} = -5 Log K _{Ap} = 7.9	70 .47			Fig. 2(1)	$Log K_{+} = 6.^{\circ}$ $Log K_{-} = -6^{\circ}$	72 ,37		$Log K_{+} = 6.3$ $Log K_{-} = -7.$			$Log K_{+} = 4.7$ $Log K_{-} = -8$ $Log K_{Cat} = -5$ $Log K_{Aa} = 7.$.70 5.47		
P/n		Log K	ν _γ	σ _{Log K}	Log K	V _Y	σιωακ	Log K	v _y	σ _{Log K}	I.g.	MAN .	Log K	V _Y	σ _{Log K}	Log K	V _Y	σ _{Log K}	Log K	V _Y	σ _{Log K}	
N 1	XO-UO ₂ *	1.99	3.5	.0450	1.73	4.0	.0446	-1.99	80,2	.1013	(pro-	XO-UO2 ⁺	2.13	13.5	.0394	1.87	14.1	.0393	-3.53	91.5	.0515	
//////////////////////////////////////	XOH-UO2 ²⁺	8.59	12.6	.0487	8.43	19.8	.0511	6.05	79.1	.1591		XOH-UO22+	8.57	23.2	.0376	8.43	26.9	.0394	3.22	92.5	.0790	Jacconstantine constantine
	XO-UO ₂ OH°	-4.63	5.9	.0423	-4.95	5.9	.0444	-6.82	35.9	.0425		XO-UO ₂ OH ^o	-4.42	18.8	.0440	-4.73	18.5	.0451	-7.08	50.4	.0337	210.00%++-W2007545454566666474-542
	XOH-UO2OH	1.99	3,5	.0450	1.73	4.0	.0446	0.40	58.6	.0806		XOH-UO2OH*	2.13	13.5	.0394	1.87	14.1	.0393	-0.61	75.7	.0488	
	XO-UO ₂ (OH) ₂	-10.79	4.1	.0556	-10.97	2.4	.0600	-10.43	16.3	.0675		XO-UO ₂ (OH) ₂	-10.57	18.9	.0510	-10.76	14.7	.0500	-10.59	26.1	.0491	*****
	XOH-UO2(OH)2°	-4.63	5.9	.0423	-4.95	5.9	.0444	-5.06	5.9	.0435		XOH-UO ₂ (OH) ₂ °	-4.42	18.8	.0440	-4.73	14.1	.0451	-4.84	18.2	.0443	
	XOH ₂ -UO ₂ (OH) ₂ *	1.99	3.5	.0450	1,73	4.0	.0446	2.77	20.4	.0692		XOH ₂ -UO ₂ (OH) ₂ *	2.13	13.5	.0394	1.87	14.1	.0393	2.38	35.9	.0492	
	XOH-UO ₂ (OH) ₃	-10.79	4.1	.0556	-10.97	2.4	.0600	-8.31	4.1	.0799		XOH-UO ₂ (OH) ₃	-10.57	18.9	.0510	-10.76	14.7	.0500	-8.05	12.4	.0605	
******	XOH ₂ -UO ₂ (OH) ₃ °	-4.63	5.9	.0423	-4.95	5.9	.0444	-3.08	14.4	.0722		XOH ₂ -UO ₂ (OH) ₃ °	-4.42	18.8	.0440	-4.73	14.1	.0451	-2.84	32.1	.0720	
248320000 00000000000000000000000000000000	XOH-UO2(OH)42	-16.85	8.6	.0668	-17.06	13.5	.0738	-11.06	20.5	.1336		XOH-UO ₂ (OH) ₄ ²	-16.57	21.2	.0560	-16.83	18.8	.0534	-11.12	26.2	.0887]
	XOH ₂ -UO ₂ (OH) ₄	-10.79	4.1	.0556	-10.97	2.4	.0600	-5.81	7.5	.1054		XOH ₂ -UO ₂ (OH) ₄	-10.57	18.9	.0510	-10.76	14.7	.0500	-5.30	17.6	.0767	
	receiver						_							- I	•							
	****								****								n, e 16 de desta de la casa donno nomen de casa de la c					-
				F17	EQL C	<i>litout</i>									ち)、	TEAL	Outpu	;+				
			*			7						************	and a start of the second start and the second start of the second start of the second start of the second star			الم الم الم			******			
****							0								*****		****	****	****			******

Information potentially subject to copyright protection was redacted from this location. The redacted material (Figure 11: Adsorption of uranium (VI) onto Amorphous ferric..... and Figure 28: Effect of carbonate complexing....) is from the following reference:

Hsi, C-K.D. "Sorption of Uranium(VI) by Iron Oxides." Ph.D. dissertation. Colorado School of Mines. Golden, Colorado. 1981.

215

8/3/95 2RJ

LI(VI) Familydaite Sorpethan

216

Hsi, C-K.D. 1981. Sorption of Uranium(VI) by Iron Oxides. Ph.D. Dissertation. Golden, CO: Colorado School of Mines

8/3/95 K

l.....

	Hsi (1981)	U(VI)-Ferrihydrite	Hsi and Langmuir (1985)
	Figures 11 & 28		Figure 2(a)
Alexan			
	Asp = 600 m2/g	M/V = 1 g/L	<u> </u>
WICOMIN	0.1 M NaNO3	1E-5 M	
089/08 ⁻	pH	%sorbed	mol sorbed
	No CO2		
andorozo -	3.29	2.96	2.96E-7
	3.12	11.20	1.12E-6
	3.58	19.60	1.96E-6
2000	3.46	29.40	2.94E-6
anara.	3.20	37.50	3.75E-6
	3.96	37.10	3.71E-6
anar	3.40	49.70	4.97E-6
	3.47	57.60	5.76E-6
	4.26	76.30	7.63E-6
	3.95	78.00	7.80E-6
	4.48	87.30	8.73E-6
sent	4.73	92.20	9.22E-6
S	4.93	98.40	9.84E-6
5	4.32	100.00	1.00E-5
	5.57	100.00	1.00E-5
	6.09	100.00	1.00E-5 1.00E-5
	6.18	100.00	1.00E-5
ware	6.24	100.00	1.00E-5
	6.50	100.00	1.00E-5
land.	6.95	100.00	1.00E-5
····.	8.72	100.00	1.00E-5
	9.43	100.00	1.00E-5
****	рН	%sorbed	mol sorbed
	C(t)=0.001 M		
	5.02	94.82	9.48E-06
	5.26	98.50	9.85E-06
	5.36	99.86	9.99E-06
	5.49	99.93	9.99E-06
	5.84	99.95	1.00E-05
000710000.0000000000000000000000	6.11	99.96	1.00E-05
	6.49	99.98	1.00E-05
	6.72	99.97	1.00E-05
· · · · · · · · · · · · · · · · · · ·	6.79	99.94	1.00E-05
	7.35	99.95	1.00E-05
	8.33	99.64	9.96E-06
	8.46	99.59	9.96E-06
	9.44	99.02	9.90E-06
*****	9.57	98.49	9.85E-06
	9.83	97.38	9.74E-06

......

No CO2 No CO2 No CO2 No CO2	
00001 3. 00001 3. 00003 5.0 00003 5.0 00003 5.0 00003 5.0 00003 5.0 00003 5.0 00005 1.0 0.00000 MA- 00005 1.0 0.00000 MA- 0.00000 MA- 0.0000 MA- 0.000 MA-	2,776.6 7,876.6 7,886.6 7,587.6 7,597.6 7,5
	5.75 00000130 5.77 00000130 5.77 00000130 5.78 00000130 5.78 00000320 0.287 00000320 0.287 00000320 0.287 00000320 0.287 00000320 0.287 0.287 0.287 0.287 0.278 0.0000320 0.278 0.0000320 0.278 0.0000320 0.278 0.0000320 0.278 0.0000320 0.278 0.0000320 0.278 0.0000320 0.278 0.0000320 0.2.88 0.00000320 0.2.88 0.00000320 0.2.88 0.00000320 0.2.88 0.00000320 0.2.88 0.00000320 0.2.88 0.00000320 0.2.88 0.00000320 0.2.88 0.00000320 0.2.88 0.0000007 0.2.88 0.0000007 0.2.88 0.00000770 0.2.88 0.00000770 0.2.88 0.00000770 0.2.88 0.00000770 0.2.88 0.00000770 0.2.88 0.00000770 0.2.88 0.00000770 0.2.88 0.00000770 0.2.88 0.00000770 0.2.88 0.00000770 0.2.88 0.00000770 0.2.88 0.00000770 0.2.88 0.00000770 0.2.88 0.00000770 0.2.88 0.00000770 0.2.88 0.00000770 0.2.88 0.00000770 0.2.88 0.00000770 0.2.88 0.00000770 0.2.88 0.0000070 0.2.88 0.0000070 0.2.88 0.0000070 0.2.88 0.00000000 0.2.88 0.00000000000000000000000
Ferring 1.567 1.5777 1.5777 1.5777 1.5777 1.5777 1.5777 1.5777 1.5777	0000115 0000115 0000115 0000115 000001230 000001230 000001240 000001240 000001250 0000001250 0000001250 0000001250 00000000 000001250 000000000 000000000 000000000 000000
$\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $	$\begin{array}{c} F_{x comple} \\ Toputs \\ S/3/95 \\$

			·····			
$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c}$	Hsi(81) 1.00E-5M 2.3si/nm 00000050	00000147 00000146 00000147 00000126 00000128 00000128 00000129 00000130 00000131 00000132 00000133	00000137 00000139 00000140 00000141 00000144 00000144 00000145 00000145 00000150 00000174 00000175	0000185 0000190 0000190 0000230 0000240 0000240 0000280 0000300 00000340 00000340 00000365 00000365 00000365 00000366 00000366 00000366 00000366 00000368 00000368 00000881	00000710 00000720 00000730 00000740 00000742 00000743 00000743 00000745 00000745 00000745 00000745 00000745	
	+) <u>+</u> †					
	1.0-U07	Μ		·		
	LM 2 ⁴⁻ =>F	10 -	1			
$ \begin{array}{c} 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 $		Ċ. ₇ ≈,	2 1 033	0		8/3/42
$ \begin{array}{c} $	3 > >FeOI		050-12 050 -3 050 1 050 -1		<u>ي</u>	nu edut
	XOH PSI0 U02+2 C03-2 U02ac H+ Na+ N03-	050 2 003 1 050 1 050 -1 050 -2 050 -3 050 -4 050 -2 050 -4 050 -2 050 -4 050 -5 050 -7	005 1 140 1 140 2 140 3 140 1 140 6 140 1 140 1 140 1 140 1 140 1 140 1 160 1 160 -1		0.0E-00	FITEOL
	0.00E00 <u>1.00E-5</u> 1.00E-2 0.00E00 0.00E00 0.00E00	140 1 050 -1 140 1 140 1 140 1 032 1 032 1 032 1 032 2 032 2 032 2 032 3 032 3 032 3 032 3 032 3 032 3	032 1 032 1 032 1 032 2 032 1 032 2 032 11 032 3 001 1 001 1 001 1		1 0.10 0.05	Example
$ \begin{array}{c} & & & & & & & & & & & & & & & & & & &$	1 90 4 -2.64 -1.0 -5.00 -2.00 -2.00 0.0 -1.0	0.00 -13.78 9.89 16.02 0.83 9.42 -5.43 -10.54 -19.22 -32.59 -2.49 -5.42 -12.37 -16.25 -31.49	-0.05 8.73 16.09 21.58 -1.78 30.51 -0.61 7.18 -8.82 0.00 -2.50	1.0 1 3301 13 33 -06 -06 -06 -06 -06 -06 -06 -06	1 33 50	
$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c}$	00160 0 0032 00140 00053 00050 00003	00032 00140 01401 01402 01403 01404 03201 03202 03203 03204 03205 03206 03207 03208 03209	03211 03212 03213 03214 03215 03216 03218 01050 01100 00001 03301	0.1 3 0.0000 7.7026E 9.17125 9.9707E 9.9726E 9.9725E 9.4738E 9.4738E 2.4266E 3.4102E 1.1215E 1.1215E 1.302 -3.02	-4.86 -5.94 -6.59 -6.85 -7.27 -7.33 -8.04 -8.69 -8.93	1419 - 1411 - 1411 - 1410 - 1410 - 1410 - 1410 - 1410 - 1410 - 1410 - 1410 - 1410 - 1410 - 1410 - 1410 - 1410 -
$\begin{array}{c} \begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 $	Hsi(81) 1.00E-5M 2.3si/nm	00000127 00000128 00000129 00000130 00000131 00000132 00000133 00000134	00000137 00000140 00000140 00000144 00000144 00000144 00000144 00000140 00000140 00000150 xouo2 00000175 00000175	00000185 00000190 00000195 00000230 00000240 00000240 00000300 00000300 00000320 00000361 00000363 00000363 00000365 00000365 00000365 00000360 00000360 00000360 00000360	00000690 00000710 00000710 00000720 00000740 00000740 00000743 00000743 00000743 00000743 00000743 00000743 00000743 00000710 00000710 00000710	
$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} $	402 ⁺ + H					Conversion and the class of persons at the state of the s
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	+=>F2C	³ M)			۰	
$\begin{array}{c} & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \begin{array}{c} & \end{array} \\ \\ & \end{array} \\ & \end{array} \\ & \end{array} \\ & \end{array} \\ \\ & \end{array} \\ \\ & \end{array} \\ \\ & \end{array} \\ \\ & \end{array} \\ & \end{array} \\ & \end{array} \\ \\ & \end{array} \\ \\ \\ & \end{array} \\ \\ & \end{array} \\ \\ \\ & \end{array} \\ \\ & \end{array} \\ \\ \\ \\$	DLN + Uoz	16				MAC
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Feor	2	-3 12 -3 1 -1	0	×	
$\begin{array}{c} & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \end{array} \\ \\ & \end{array} \\ & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \end{array} \\ \\ & \end{array} \\ & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \end{array} \\ & \end{array} \\ \\ & \end{array} \\ & \end{array} \\ \\ & \end{array} \\ \\ & \end{array} \\ \\ & \end{array} \\ \\ & \begin{array} \\ & \end{array} \\ & \end{array} \\ \\ & \end{array} \\ \\ & \end{array} \\ \\ & \begin{array} \\ & \end{array} \\ \\ & \end{array} \\ \\ & \end{array} \\ \\ & \end{array} \\ \\ & \begin{array} \\ & \end{array} \\ \\ & \end{array} \\ \\ \\ & \end{array} \\ \\ & \end{array} \\ \\ \\ & \end{array} \\ \\ & \end{array} \\ \\ \\ \\$	3 XOH PSI0 H0242 C03-2 H+ Na+ Na+) -2 -3 -4 -2 -2 -2 -2 -2 -7 -7	1 2 3 1 050 6 050 1 050 1 050 -1 050	1		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 .30E-3 .00E00 .00E-5 .00E-3 .00E00 .00E00 .00E00	132 1 0 132 1 0 132 1 0 132 2 0 132 2 0 132 2 0 132 3 0 132 3 0 132 3 0 132 3 0 132 3 0 132 4 0	32 1 1 32 1 1 32 1 14 32 2 14 32 2 14 32 3 14 32 3 14 32 3 14 32 3 14 32 3 14 31 1 16 32 1 1 33 14 1 34 1 1 35 1 1 36 1 1	1	10 1.	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 0 0	-10.54 -19.22 -32.59 -2.49 -5.42 -12.37 -16.25 -31.49 -22.83	8.73 16.09 21.58 -1.78 30.51 -0.61 7.18 -8.82 0.00 3.00	1 501 15 33 06 06 06 06 06 06 06 06 06 06		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$) 1 10 10	 00140 00100 01401 01402 01403 01404 03201 03202 03204 03205 03206 03207 03208 03209 03210 	03212 03213 03214 03215 03216 03218 01050 01100 00001 03301	3 9.4822E 9.8503E 9.9926E 9.9926E 9.9976E 9.9976E 9.9974E 9.9975E 9.9975E 9.9975E 9.9953E 9.9016E 9.8485E 9.7376E -5.02	-5.36 -5.49 -5.84 -6.10 -6.49 -6.72 -6.72 -7.35 -8.33 -8.46 -9.44 -9.57 -9.83	VECTOR AND
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Hsi(81 1e-05 2.3si/i 000000	0000012 0000012 0000013 0000013 0000013 0000013 0000013 0000013 0000013 0000013 00000145 00000145 0000015 xouo2 00000174	00000180 00000185 00000195 00000230 00000240 00000240 00000280 00000280 00000300 00000300 00000340 00000340	00000420 0000440 0000468 00000480 00000500 00000500 00000500 00000500 00000500 00000500 00000600 00000600 00000600 00000600 00000600 00000700 00000740 00000740	0000820 0000840 0000860 0000880 0000920 0000920 0000940 0000980 00001960 00001170 00001180 00001190 00001200	00001240 00001250 00001260
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	20·U02 [†] +					
$\begin{array}{c} 1 \\ 40 \\ 3 \\ 00001 & -2.64 & 2.30E-3 \\ 00032 & -5.0 & 1.00E-5 \\ 00032 & -5.0 & 1.00E-5 \\ 00005 & 0.0 & 0.00E00 \\ 00005 & -1.0 & 0.00E00 \\ 00050 & 0.00 & 050 & 1 \\ 00052 & 0.00 & 050 & 1 \\ 00052 & 0.00 & 050 & 1 \\ 00052 & 0.00 & 050 & 1 \\ 00052 & 0.00 & 052 & 1 \\ 00220 & -10.54 & 0322 & 1 050 & -2 \\ 03203 & -19.22 & 032 & 1 050 & -2 \\ 03203 & -19.22 & 032 & 1 050 & -2 \\ 03203 & -24.9 & 032 & 2 & 050 & -2 \\ 03203 & -16.25 & 032 & 2 & 050 & -2 \\ 03204 & -32.59 & 052 & 1 & 050 & -1 \\ 03208 & -16.25 & 032 & 2 & 050 & -1 \\ 03208 & -16.25 & 032 & 2 & 050 & -1 \\ 03208 & -16.25 & 032 & 2 & 050 & -1 \\ 03209 & -31.49 & 032 & 2 & 050 & -1 \\ 03209 & -31.49 & 032 & 2 & 050 & -1 \\ 00100 & -13.78 & 050 & -1 \\ 01000 & -13.78 & 050 & -1 \\ 01000 & -13.78 & 050 & -1 \\ 00001 & 0.00 & 011 & 160 & 1 & 050 & -1 \\ 00001 & 0.00 & 011 & 1 & 60 & 1 & 050 & -1 \\ 00002 & 600.0 & 1.000 \\ 0.1 & 1.0 \\ 1 \\ 0330 & 1 \\ 23 & 1 & 1 \\ 0 \\ 00002 & 600.0 & 1.000 \\ 0.1 & 1.0 \\ -33 \\ 2.96E-7 \\ 1.00E-5 $	1 2+=>F Ôz					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 DL1 H ² +U1 No (
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	>Fe6)) 1) -1	C		-	-
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3 XOH D PSIO U02+2 U02ads H+ NA+ N03-	050 -2 050 -3 050 -4 050 -1 050 -2 050 -4 050 -2 050 -4 050 -5 050 -7 050 -7 050 -7 160 1 05 160 -1 05	1		· ·	
1 40 00001 -2.64 00160 -1.0 00032 -5.0 00003 -0.0 00003 -0.0 00003 -1.0 00005 -0.0 03201 -5.4 03202 -10.5 03202 -10.5 03203 -10 03204 -32.5 03205 -12.3 03206 -5.4 03207 -12.3 03208 -16.2 03209 -31.4 03201 -10.00 03301 -10.00 03301 -10.00 03301 -10.00 000002 600.0 0.11 1 333 2.96E-7 1.000 -8.82 000010 -0.00 0.11 1.00 333 2.96E-7 1.00E-5 1.00E-5 1.00E-5 1.00E-5 1.00E-5	0.00E0 1.00E- 0.00E0 0.00E0 0.00E0 0.00E0	3 032 1 4 032 1 2 032 1 9 032 2 9 032 2 2 032 3 9 032 3 9 032 3 9 032 3 9 032 3 9 032 3 9 032 3 9 032 3 9 032 1 13 050 -1 14 001 1 1 001 1				
001 000 000 000 000 000 000 000 000 000	1 40 3 101 -2.6 60 -1.0 32 -5.0 33 0.0 50 0.0 03 -1.0 05 -1.0 55 0 0.0	01 -5.4 02 -10.5 03 -19.2 04 -32.5 05 -2.4 06 -5.4 07 -12.3 08 -16.2 09 -31.4 10 -22.8 11 -0.0 00 -8.8 01 0.0	1.0 1 3301 23 33 E-7 E-6 E-6 E-6 E-6 E-6 E-6 E-6 E-6	=-6 =-6 =-6 =-5 =-5 =-5 =-5 =-5 =-5 =-5 =-5 =-5 =-5		1 33
	001 000 000 000 000 000	0320 0320 0320 0320 0320 0320 0320 0321 0321	0.1 2.96 1.12 1.96 2.94 3.75 3.71 4.97	7.63 7.630 8.73 9.844 1.0000 1.0000 1.0000 1.00000000	-3.40 -3.47 -4.26 -3.95 -4.48 -4.73 -4.93 -5.32 * -5.57 -5.92 -6.09 -6.18	-9.43

		Image: Constraint of the state of	4
$\begin{array}{c} & & & & & & \\ & & & & & & \\ & & & & & $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
00100 -13.78 050 -1	00000125 00100 -13.78 050 -1	00000103 0000103 0000103 00000103 00000103 00000103 00000120 00000120 00000120 00000120 00000120 00000120 02201 -5.43 032 1 050 -1 00000123 00000120 00000120 02000120 02000120 02201 -5.43 032 1 050 -2 00000126 00000127 00000127 00000127 00000127 00000127 00000127 00000128 00000129 02204 -32.59 032 1 050 -4 00000128 000000128 000000128 0	
01401 9.89 140 1 050 1 01402 16.02 140 1 050 2 01403 0.83 140 1 050 2 01404 9.42 140 1 050 1 003 2 03201 -5.43 032 1 050 -1 03202 -10.54 032 1 050 -2 03203 -19.22 032 1 050 -3 07204 72 50 2 1 050 -3	00000146 01402 16.02 140 1050 1 00000147 01402 16.02 140 1050 2 00000147 01403 0.83 140 1003 1 00000147 01404 9.42 140 1050 1 00000126 03201 -5.43 032 1050 -1 00000126 03202 -10.54 032 1050 -2 00000128 03204 -32.59 032 1050 -3 00000128 03204 -32.59 032 1050 -3	00000146 03205 -2.49 032 2 050 -1 00000130 00000147 03206 -5.42 032 050 -2 00000131 00000147 03208 -16.25 032 050 -5 00000132 00000146 03207 -12.37 032 3 050 -5 00000132 00000146 03207 -14.9 032 3 050 -7 00000133 00000127 03210 -22.83 032 4 050 -7 00000135 00000128 03211 -0.05 032 1 005 1 00000137 00000129 03211 -10.57 032 1 005 1 00000137	
03204 -32.59 032 1 050 -4 03205 -2.69 032 2 050 -1 03206 -5.42 032 2 050 -2 03207 -12.37 032 3 050 -2 03208 -16.25 032 3 050 -5 03209 -31.49 032 3 050 -5 03209 -31.49 032 3 050 -7 03210 -22.83 032 4 050 -7 03211 -0.05 032 1 050 1	00000129 03205 -2.19 032 1 050 -4 00000130 03205 -2.49 032 2 050 -1 00000130 03206 -5.42 032 2 050 -1 00000131 03207 -12.37 032 3 050 -2 00000132 03208 -16.25 032 3 050 -5 00000133 03209 -31.49 032 3 050 -5 00000133 03210 -22.83 032 4 050 -7 00000135 03211 -0.05 032 1 055 1 00000135 03211 -20.57 032 1 055 1	00000129 00100 13.78 050 -1 00000139 00000130 01050 5.89 001 1 60 1 050 1 00000130 00000131 01100 -9.89 001 1 60 -1 050 -1 00000145 00000132 01103 -7.66 001 1 160 -1 050 -1 003 1 00000145 00000133 01055 8.21 001 1 160 1 161 -1 055 1 00000146 00000133 00301 0.00 001 1 160 1 055 1 005 1 00000146 00000133 03301 -7.60 001 1 160 1 61 2 050 1 033 1 x0u02 00000137 03301 -7.60 001 1 160 1 61 2 050 1 033 1 x0u02	
03212 8.73 032 1 140 1 03213 16.09 032 1 140 2 03214 21.58 032 1 140 3	0000013/ 0000013/ 0000013/ 00000140 03212 8.73 032 1 140 1 0000013/ 00000141 03214 21.58 032 1 140 2 00000141 03215 -1.78 032 2 140 1 050 -3 00000144 03215 -1.78 032 2 140 1 050 -3 00000144 03216 -0.61 032 11 400 1 050 -3 00000144 03218 -0.61 032 3 140 1 050 -3 00000144 01050 5.89 001 1 160 1 050 1	00000137 00000175 00000139 00000175 00000140 00000175 00000141 0.1 00000144 1 00000144 3301 00000144 23 00000142 33 00000142 2 00000142 2	
01100 -9.89 001 1 160 -1 050 -1 01055 8.21 001 1 160 1 161 -1 050 1 005 1 01103 -7.66 001 1 160 -1 161 1 050 -1 003 1 00001 0.00 001 1 03301 -2.50 001 1 160 -1 161 2 050 -1 032 1 033 1	00000140 01055 8.21 001 1 160 -1 050 1 005 1 0000140 0 0055 8.21 001 1 160 -1 050 1 0055 1 0000140 0 1003 8.21 001 1 160 -1 161 -1 003 1 0000150 00001 0.00 001 1 160 -1 161 1 003 1 00001 0.00 001 1 160 -1 161 1 003 1 00001 0.00 001 1 160 -1 161 1 032 1 033 1 0000174 00000174 00000174 00000174 0	00000145 2.96E-7 00000260 00000145 1.92E-6 00000280 00000150 2.94E-6 00000320 00000175 2.97E-6 00000320 00000175 3.77E-6 00000320 00000175 4.97E-6 00000360 00000175 5.77E-6 00000360	
0.1 1.0 1 3301 13 1 1 0 33 0.0000	00000195 5501 00002230 15 1 1 0 00000240 9.4822E-06 00000240 9.6822F-06	00000195 8.735-6 00000460 00000230 9.22E-6 00000480 00000240 9.84E-6 000000500 00000260 1.00E-5 00000500	
0.000 7.7026E-06 9.1712E-06 9.9707E-06 9.9725E-06 9.9125E-06 9.9125E-06 9.7138E-06	00000320 9.9856E-06 00000330 9.9926E-06 00000340 9.9954E-06 00000360 9.9954E-06 00000361 9.9976E-06 00000361 9.9976E-06	00000280 1.00E-5 00000540 00000300 1.00E-5 00000540 00000320 1.00E-5 00000580 00000340 1.00E-5 00000580 00000340 1.00E-5 00000600 00000361 1.00E-5 00000600 00000362 1.00E-5 00000680 00000363 1.00E-5 00000680 00000362 1.00E-5 00000680 00000362 1.00E-5 00000680	
9.3284E-06 6.4600E-06 2.4266E-06 3.4102E-06 1.1215E-06 50 -3.02	00000363 9.9951E-06 00000364 9.9643E-06 00000356 9.5953E-06 00000360 9.9016E-06 00000681 9.7376E-06 00000681 9.7376E-06	00000364 1.00E-5 00000710 00000365 50 00000720 00000366 -3.29 00000730 00000300 -3.12 00000740 00000300 -3.58 00000760 00000300 -3.46 00000780	
-3.27 -4.00 -4.86 -5.94 -6.59 -6.85 -7.27 -7.33	00000700 -5.26 00000710 -5.26 00000720 -5.36 00000730 -5.49 00000740 -5.84 00000741 -6.10 00000742 -6.49	00000681 -3.96 00000820 00000500 -3.47 00000840 00000710 -4.26 00000860 00000730 -4.48 00000900 00000730 -4.73 00000920	
-8.04 -8.69 -8.93 -9.70 1 1 33 0.10 1.0E-08 50 0.05 0.0E-00	00000743 ^{-0.72} 00000744 ^{-7.35} 00000700 ^{-8.46} 00001170 ^{-8.46} 0000110 ^{-9.44}	00000741 -4.95 0000980 00000743 -5.57 0000980 00000745 -6.09 0000110 00000745 -6.09 00001180 0000070 -6.18 00001190	
Example FITERAL Sel3495		00000720 -6.50 00001220 0000170 -6.95 00001220 00001190 -9.43 00001230 1 1 0.10 33 0.10 1.0E-08 00001250 0000120 00001250 00001250 0000120 0.0001250 00001250 1 1 0.0001250 00001250 00001250 00001250 00001250 00001250 00001250	

20	Crantani (11) Ferrinyarine S	Sorption Binding Con	istants. Mono	dentate: monon	uclear compound	is.					Uranium (VI)-Ferrihydrite So	rption Binding Con	stants. Monode	ntate: mononu	clear compounds.					-	001
1/15	Solid: Ferrihydrite A_{SP} : 600 m ² /g Data Source: Hsi and Lar Concentration: [U(VI)] =	ngmuir (1985); Hsi (= 1E-5 M	1981)	Rel Error (p Abs Error () Rel Error () Abs Error ()		0 DE-8	Ionic Stren $N_s = 2.31$ M/V = 1		0.1 M NaNO3		A _{sp} : 600 Data So		muir (1985); Hsi (1 1E-5 M					Ionic Strengt $N_s = 2.31 \text{ si}$ M/V = 1 g/I		M NaNO3		221
<u> </u>	No CO2		DLM			ССМ			TLM		C(t) =	0.01 M	DLM			ССМ			TLM			8345
S DEM	-m	$Log K_{+} = 7.29$ $Log K_{-} = -8.9$		1	$Log K_{+} = 7.$ $Log K_{-} = -8$			Log $K_{+} = 6$ Log $K_{-} = -1$ Log $K_{Cat} = -1$ Log $K_{An} = 8$	0.00 7.66				$Log K_{+} = 7.29$ $Log K_{-} = -8.9$	9 13		Log $K_{+} = 7.3$ Log $K_{-} = -8.4$			Log $K_{+} = 6.00$ Log $K_{-} = -10$. Log $K_{Cat} = -7.4$ Log $K_{An} = 8.4$	00 56		DRI
/ Se		Log K	Vy	σ _{Log K}	Log K	Vy	σ _{Log K}	Log K	V _Y	σLog K			Log K	V _Y	σ _{Log K}	Log K	Vy	σ _{Lag K}	Log K	Vy	σ _{Lag K}	
1	XO-UO2+	2.51	13.8	.0314	2.86	13.8	.0314	-4.59	80.2	.0239	XO-UO	2*	1.49	77.9	.0648	1.87	76.1	.0609	-7.29	87.8	2.110	2 M TO RECEIPTION OF THE RECEIPTION OF T
*******	XOH-UO22+	8.62	25.6	.0221	10.14	14.1	.0286	3.04	82.4	.0259	хон-и	0 ₂ ²⁺	6.85	87.4	.0217	8.99	81.2	.0696	0.23	87.8	2.688	
	XO-UO ₂ OH"	-3.65	17.1	.0423	-4.40	14.3	.0337	-8.21	25.4	.0234	XO-UO	2011°	-3.53	20.5	.0366	-5.17	66.6	.0506	-9.83	87.1	.0160	FITEO
	XOII-UO2OH+	2.51	13.8	.0314	2.86	13.8	.0314	-0.53	28.9	.0222	XOH-U	O2OH+	1.49	77.9	.0648	1.87	76.1	.0609	-2.32	87.4	.0211	£
I	XO-UO ₂ (OH) ₂	-9.67	21.4	.0521	-11.65	14.9	.0360	-12.14	14.2	.0345	<u>xo-uo</u>	2(OH)2	-11.44	12.8	.0300	-11.91	36.0	.0352	-12.80	6.0	.0456	Result
	XOH-UO ₂ (OH) ₂ "	-3.65	17.1	.0423	-4.40	14.3	.0337	-4.51	14.2	.0332	XOH-U	O ₂ (OH) ₂ "	-3.53	20.5	.0366	-5.17	66.6	.0506	-5.32	68.3	.0518	KNINWINGMINISTRATION
	XOH ₂ -UO ₂ (OH) ₂ +	2.51	13.8	.0314	2.86	13.8	.0314	3.17	13.7	.0322	XOII2-U	JO ₂ (OH) ₂ *	1.49	77.9	.0648	1.87	76.1	.0609	2.22	73.7	.0577	
	XOH-UO ₂ (OH) ₃ XOH ₂ -UO ₂ (OH) ₁ °	-9.67	21.4	.0521	-11.65	14.9	.0360	-8.43	17.8	.0448	хон-и	O ₂ (OH) ₃	-11.44	12.8	.0300	-11.91	36.0	.0352	-12.40	71.1	.0397	
	XOH-UO ₂ (OH) ₃	-3.65	17.1	.0423	-4.40	14.3	.0337	-0.90	17.8	.0436	XOH ₂ -U	JO ₂ (OH) ₃ °	-3.53	20.5	.0366	-5.17	66.6	.0506	-4.15	64.1	.0341	A REAL PROPERTY AND A REAL
	XOH ₂ -UO ₂ (OH) ₄ -	-15.56	23.5	.0575	-18.91	15.6	.0384	-12.21	21.0	.0555	XOH-U	O ₂ (OH) ₄ ²	-19.81	23.2	.0297	-19.60	22.7	.0282	-22.38	80.2	0739	
	(OI)4	-9.67	21.4	.0521	-11.65	14.9	.0360	-4.52	21.9	.0525	XOH ₂ -U	002(OH)4	-11.44	12.8	.0300	-11.91	36.0	.0352	-14.26	80.1	0706	
0000-00-0						***************					XOH-U		14.47	56.1	.0975	13.34	70.4	.0444	13.21	71.1	.0447	
******												JO ₂ (CO ₃) ₂	п.с.	n.c.	n.c.	24.79	68.1	.0465	30.52	9.7	.0290	
												UO ₂ (CO ₃) ₃ ³ UO ₂) ₂ CO ₃ (OH) ₃ "	n.c. 13.53	n.c. 42.7	n.c. .0577	29.05 11.90	62.7 56.3	.0503	34.48	27.2	.0242	
	Solid: Ferrihydrite A _{SP} : 600 m ² /g Data Source: Hsi and Langr Concentration: [U(VI)] = 1		81)				Ionic Strengt $N_s = 2.31 \text{ s}$ M/V = 1 g/		I M NaNO ₃			10)LM	, 07	، _ا 100	cc ۲۵۵					*****
EQL	C(t) = 0.001 M	DLM			ССМ	<u></u>		TLM	<u> </u>		**************************************	2 80	(a) 🖗	$\overline{}$, 80 (p) 2					****
(ts		$Log K_{+} = 7.29$			$Log K_{+} = 7.35$ $Log K_{-} = -8.4$			Log $K_{+} = 6.00$ Log $K_{-} = -10$. Log $K_{Cat} = -7$.	.00			8 Sorbed								Ther		-
	Ko, ,	Log K_ = -8.93									••••••••••••••••••••••••••••••••••••••			\		g 60 -	\otimes		1		GL RAGA	145
420			v		Lee K			$Log K_{An} = 8.4$	3			() () () () () () () () () () () () () (60 - 40 - C	8		<u> </u>		QL resu	145
-2070		Log K	V _Y	σ _{Log K}	Log K	V _Y	σ _{Log K}	Log K _{An} = 8.4 Log K	3 V _Y	σιοςκ		(I/) 40				40 - 0				plotted	using	lts Minte@A
- Hor	XO-UO2 ⁴	Log K 4.95	0.02	1.449	4.85	0.02	1.476	$Log K_{An} = 8.4$ $Log K$ 7.60	3 V _Y 0.02	1.394		(IN)n % 20	+ O			40 - C 20 - C	d J			plotted	using 3.11 A	lts MINTEGA nd
- An	XOH-UO2 ²⁺	Log K 4.95 13.43	0.02	1.449 1.413	4.85	0.02	1.476 1.456	Log K _{An} = 8.4 Log K 7.60 15.96	3 V _Y 0.02 0.02	1.394 1.412		(IN)n % 20	, 2			40 - 0						
- Por	XOH-UO ₂ ²⁺ XO-UO ₂ OH ^o	Log K 4.95 13.43 -3.52	0.02 0.02 0.02	1.449 1.413 1.414	4.85 13.14 -3.43	0.02 0.02 0.02	1.476 1.456 1.449	Log K _{An} = 8.4 Log K 7.60 15.96 -2.11	3 V _Y 0.02 0.02 0.01	1.394 1.412 1.398		(IN)n % 20	2345	678		40 - 0	d J	789		CNUR	A rodu	
	XOH-UO2 ²⁺	Log K 4.95 13.43 -3.52 4.95	0.02 0.02 0.02 0.02	1.449 1.413 1.414 1.449	4.85 13.14 -3.43 4.85	0.02 0.02 0.02 0.02	1.476 1.456 1.449 1.476	Log K _{An} = 8.4 Log K 7.60 15.96 -2.11 6.10	3 V _Y 0.02 0.02 0.01 0.02	1.394 1.412 1.398 1.397		(IN)n % 20	2345			40 - 0		789			A rodu	
	XOH-UO ₂ ²⁺ XO-UO ₂ OH ^a XOH-UO ₂ OH ⁺	Log K 4.95 13.43 -3.52	0.02 0.02 0.02 0.02 0.02 0.01	1.449 1.413 1.414 1.449 .8520	4.85 13.14 -3.43 4.85 -11.75	0.02 0.02 0.02 0.02 0.02 0.02	1.476 1.456 1.449 1.476 1.231	Log K _{An} = 8.4 Log K 7.60 15.96 -2.11 6.10 -11.56	3 V _Y 0.02 0.02 0.01 0.02 0.02 0.02	1.394 1.412 1.398 1.397 1.395		(IN)n % 20	2345	678		40 - 0	4 5 6	789		CNUR	A rodu	
	XOH-UO2 ²⁺ XO-UO2OH* XOH-UO2OH+ XO-UO2(OH)2	Log K 4.95 13.43 -3.52 4.95 -12.07	0.02 0.02 0.02 0.02	1.449 1.413 1.414 1.449	4.85 13.14 -3.43 4.85 -11.75 -3.43	0.02 0.02 0.02 0.02 0.02 0.02 0.02	1.476 1.456 1.449 1.476 1.231 1.449	Log K _{An} = 8.4 Log K 7.60 15.96 -2.11 6.10 -11.56 -3.49	3 V _Y 0.02 0.02 0.01 0.02 0.02 0.02	1.394 1.412 1.398 1.397 1.395 1.454		(IN)n % 20	2345	678 pH	9 10	40 - 0	4 5 6	789		CNUR	A rodu	
	XOH-UQ2 ²⁺ XO-UQ2OH* XOH-UQ2OH* XOH-UQ2OH+ XO-UQ2(OH)2* XOII-UQ2(OH)2*	Log K 4.95 13.43 -3.52 4.95 -12.07 -3.52	0.02 0.02 0.02 0.02 0.02 0.01 0.02	1.449 1.413 1.414 1.449 .8520 1.414	4.85 13.14 -3.43 4.85 -11.75	0.02 0.02 0.02 0.02 0.02 0.02	1.476 1.456 1.449 1.476 1.231	Log K _{An} = 8.4 Log K 7.60 15.96 -2.11 6.10 -11.56	3 V _Y 0.02 0.02 0.01 0.02 0.02 0.02	1.394 1.412 1.398 1.397 1.395		(IN)n % 20	2 3 4 5 U(VI)-Fe	678 pH errihydrit	9 10	40 - 0	4 5 6	789		CNUR	A rodu	
	XOH-UO2 ²⁺ XO-UO2OH* XOH-UO2OH* XOU-UO2(OH)2 XOH-UO2(OH)2* XOH-UO2(OH)2*	Log K 4.95 13.43 -3.52 4.95 -12.07 -3.52 4.95	0.02 0.02 0.02 0.02 0.01 0.02 0.02 0.02	1.449 1.413 1.414 1.449 .8520 1.414 1.449	4.85 13.14 -3.43 4.85 -11.75 -3.43 4.85	0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02	1.476 1.456 1.449 1.476 1.231 1.449 1.476	Log K _{An} = 8.4 Log K 7.60 15.96 -2.11 6.10 -11.56 -3.49 4.73	3 V _Y 0.02 0.01 0.02 0.02 0.02 0.02 0.02 0.02	1.394 1.412 1.398 1.397 1.395 1.454 1.481		(IN)n % 20	2 3 4 5 U(VI)-Fe	678 pH	9 10	40 - 0	4 5 6	789 		CNUR	A rodu	
	XOH-UO2 ²⁺ XO-UO2OH* XOH-UO2OH* XOU2(OH)2 XOII-UO2(OH)2* XOII-UO2(OH)2* XOII_UO2(OH)2* XOH-UO2(OH)2*	Log K 4.95 13.43 -3.52 4.95 -12.07 -3.52 4.95 -12.07	0.02 0.02 0.02 0.02 0.01 0.02 0.02 0.02	1.449 1.413 1.414 1.449 .8520 1.414 1.449 .8520	4.85 13.14 -3.43 4.85 -11.75 -3.43 4.85 -11.75	0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02	1.476 1.456 1.449 1.476 1.231 1.449 1.476 1.231	Log K _{An} = 8.4 Log K 7.60 15.96 -2.11 6.10 -11.56 -3.49 4.73 -10.57	3 V _Y 0.02 0.02 0.01 0.02 0.02 0.02 0.02 0.02 0.01	1.394 1.412 1.398 1.397 1.395 1.454 1.481 .8360		(IN)n % 20	2 3 4 5 U(VI)-Fe	678 pH errihydrit	9 10		4 5 6 pH	789 I D		CNUR	A rodu	
	XOH-UQ2 ²⁺ XO-UQ2OH* XOH-UQ2OH* XOH-UQ2OH}2 XOH-UQ2OH}2 XOH2-UQ2(OH)2* XOH2-UQ2(OH)3* XOH2-UQ2(OH)3*	Log K 4.95 13.43 -3.52 4.95 -12.07 -3.52 4.95 -12.07 -12.07 -3.52	0.02 0.02 0.02 0.02 0.01 0.02 0.02 0.02	1.449 1.413 1.414 1.449 .8520 1.414 1.449 .8520 1.414 1.449	4.85 13.14 -3.43 4.85 -11.75 -3.43 4.85 -11.75 -3.43	0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02	1.476 1.456 1.449 1.476 1.231 1.449 1.476 1.231 1.449	Log K _{An} = 8.4 Log K 7.60 15.96 -2.11 6.10 -11.56 -3.49 4.73 -10.57 -2.84	3 V _Y 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.01 0.01	1.394 1.412 1.398 1.397 1.395 1.454 1.481 .8360 .8346		(IN)n % 20	2 3 4 5 U(VI)-Fe	678 pH errihydrit	9 10		4 5 6 pH	789 I D		CNUR	A rodu	
	XOH-UQ ₂ ²⁺ XO-UQ ₂ OH ^a XOH-UQ ₂ OH ^a XOH-UQ ₂ (OH) ₂ ⁻ XOH ₂ -UQ ₂ (OH) ₂ ^a XOH ₂ -UQ ₂ (OH) ₃ ⁺ XOH-UQ ₂ (OH) ₃ ⁻ XOH ₂ -UQ ₂ (OH) ₃ ^a XOH ₂ -UQ ₂ (OH) ₃ ^a	Log K 4.95 13.43 -3.52 4.95 -12.07 -3.52 4.95 -12.07 -3.52 -12.07 -3.52 -12.07	0.02 0.02 0.02 0.02 0.01 0.02 0.02 0.02	1.449 1.413 1.414 1.449 .8520 1.414 1.449 .8520 1.414 1.449 .8520 1.414 .7971	4.85 13.14 -3.43 4.85 -11.75 -3.43 4.85 -11.75 -3.43 -3.43 -20.00	0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02	1.476 1.456 1.449 1.476 1.231 1.449 1.476 1.231 1.449 .8638	Log K _{An} = 8.4 Log K 7.60 15.96 -2.11 6.10 -11.56 -3.49 4.73 -10.57 -2.84 -15.76	3 V _Y 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.01 0.01	1.394 1.412 1.398 1.397 1.395 1.454 1.481 .8360 .8388		(N) 4(% 2((2 3 4 5 U(VI)-Fe	678 pH errihydrit LM	9 10		4 5 6 pH LEGEN >FeOH-U(7 8 9 1 D 2 ²⁺		CNUR	A rodu	
	XOH-UO2 ²⁺ XO-UO2OH* XOH-UO2OH* XOH-UO2OH* XOU2(OH)2 XOH2O2(OH)2* XOH2O2(OH)2* XOH2O2(OH)2* XOH2O2(OH)3* XOH2O2(OH)3* XOH2O2(OH)3* XOH2O2(OH)3* XOH2O2(OH)3* XOH2O2(OH)3* XOH2O2(OH)4* XOH2O2(OH)4* XOH2O2(OH)4* XOH2O2(OH)4* XOH2O2(OH)4* XOH2O2(OH)4*	Log K 4.95 13.43 -3.52 4.95 -12.07 -3.52 4.95 -12.07 -3.52 -19.55 -12.07	0.02 0.02 0.02 0.02 0.01 0.02 0.02 0.01 0.02 0.01 0.01	1.449 1.413 1.414 1.449 .8520 1.414 1.449 .8520 1.414 1.449 .8520 1.414 .8520 1.414 .8520 1.414 .8520 1.414	4.85 13.14 -3.43 4.85 -11.75 -3.43 4.85 -11.75 -3.43 -20.00 -11.75	0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02	1.476 1.456 1.449 1.476 1.231 1.449 1.476 1.231 1.449 8.638 1.231	Log K _{An} = 8.4 Log K 7.60 15.96 -2.11 6.10 -11.56 -3.49 4.73 -10.57 -2.84 -15.76 -8.17	3 V _Y 0.02 0.02 0.01 0.02 0.02 0.02 0.02 0.02 0.02 0.01 0.01 0.01	1.394 1.412 1.398 1.397 1.395 1.454 1.454 1.454 8360 .8346 8388 8216		(N) 4(% 2((2 3 4 5 U(VI)-Fe T	678 pH errihydrit LM	9 10		4 5 6 pH LEGEN >FeOH-UC	7 8 9 I D D ₂ ²⁺ D ₂ OH ⁺		CNUR	A rodu	
	XOH-UO2 ²⁺ XO-UO2OH* XOH-UO2OH* XOU-UO2OH* XOU2(OH)2 XOH-UO2(OH)2* XOH-UO2(OH)2* XOH_2UO2(OH)2* XOH_2UO2(OH)3* XOH_2UO2(OH)3* XOH_2UO2(OH)4* XOH-UO2(OH)4* XOH-UO2(OH)4* XOH-UO2(OH)4* XOH-UO2(OH)4* XOH-UO2(O)3* XOH-UO2(CO3)3*	Log K 4.95 13.43 -3.52 4.95 -12.07 -3.52 4.95 -12.07 -3.52 -12.07 -3.52 -12.07 -3.52 -19.55 -12.07 19.96	0.02 0.02 0.02 0.02 0.01 0.02 0.01 0.02 0.01 0.01	1.449 1.413 1.414 1.449 .8520 1.414 1.449 .8520 1.414 1.449 .8520 1.414 .8520 1.414 .9751 .9753	4.85 13.14 -3.43 4.85 -11.75 -3.43 4.85 -11.75 -3.43 -20.00 -11.75 20.04	0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02	1.476 1.456 1.449 1.476 1.231 1.449 1.476 1.231 1.449 8638 1.231 .231 .9745	Log K _{An} = 8.4 Log K 7.60 15.96 -2.11 6.10 -11.56 -3.49 4.73 -10.57 -2.84 -15.76 -8.17 19.98	3 V _Y 0.02 0.01 0.02 0.02 0.02 0.02 0.02 0.02 0.01 0.01 0.01 0.01 0.02	1.394 1.412 1.398 1.397 1.395 1.454 1.454 1.481 .8360 .8346 8388 8216 9745		20 20 20 20 20 20 20 20 20 20 20 20 20 2	2 3 4 5 U(VI)-Fe T	678 pH errihydrit LM	9 10		4 5 6 pH LEGEN >FeOH-U(7 8 9 I D D ₂ ²⁺ D ₂ OH ⁺		CNUR	A rodu	
	XOH-UO2 ²⁺ XO-UO2OH* XOH-UO2OH* XOH-UO2OH* XOU2(OH)2 XOH2O2(OH)2* XOH2O2(OH)2* XOH2O2(OH)2* XOH2O2(OH)3* XOH2O2(OH)3* XOH2O2(OH)3* XOH2O2(OH)3* XOH2O2(OH)3* XOH2O2(OH)3* XOH2O2(OH)4* XOH2O2(OH)4* XOH2O2(OH)3* XOH2O2(OH)4* XOH2O2(OH)4* XOH2O2(OH)4*	Log K 4.95 13.43 -3.52 4.95 -12.07 -3.52 4.95 -12.07 -3.52 -19.55 -12.07 -12.07 -12.07 -12.07 -3.52 -19.55 -12.07 -12.	0.02 0.02 0.02 0.02 0.01 0.02 0.01 0.02 0.01 0.01	1.449 1.413 1.414 1.449 .8520 1.414 1.449 .8520 1.414 1.449 .8520 1.414 1.414 .8520 1.414 .8520 971 .8520 .9753 1.034	4.85 13.14 -3.43 4.85 -11.75 -3.43 4.85 -11.75 -3.43 -20.00 -11.75 20.04 35.45	0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02	1.476 1.456 1.449 1.476 1.231 1.449 1.476 1.231 1.449 8638 1.231 9745 1.041	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	3 V _Y 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.01 0.01 0.01 0.01 0.02 0.02	1.394 1.412 1.398 1.397 1.395 1.454 1.454 1.481 .8360 .8346 8388 8216 .9745 .8383		20 20 20 20 20 20 20 20 20 20 20 20 20 2	2 3 4 5 U(VI)-Fe T	678 pH errihydrit LM	9 10		4 5 6 pH LEGEN >FeOH-UC	7 8 9 I D D ₂ ²⁺ D ₂ OH ⁺ D ₂ (OH) ₂ °		CNUR	A rodu	
	XOH-UO2 ²⁺ XO-UO2OH* XOH-UO2OH* XOU-UO2OH* XOU2(OH)2 XOH-UO2(OH)2* XOH-UO2(OH)2* XOH_2UO2(OH)2* XOH_2-UO2(OH)3* XOH_2-UO2(OH)3* XOH-UO2(OH)4* XOH-UO2(OH)4* XOH-UO2(OH)4* XOH-UO2(OH)3* XOH-UO2(OH)4* XOH-UO2(O)3* XOH-UO2(CO3)3*	Log K 4.95 13.43 -3.52 4.95 -12.07 -3.52 4.95 -12.07 -3.52 -12.07 -3.52 -19.55 -12.07 19.96 35.17 n.c.	0.02 0.02 0.02 0.02 0.01 0.02 0.02 0.02	1.449 1.413 1.414 1.449 .8520 1.414 1.449 .8520 1.414 1.449 .8520 1.414 1.449 .8520 1.414 .8520 1.414 .9771 .8520 .9753 1.034 n.c.	4.85 13.14 -3.43 4.85 -11.75 -3.43 4.85 -11.75 -3.43 -20.00 -11.75 20.04 35.45 n.c.	0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02	1.476 1.456 1.449 1.476 1.231 1.449 1.476 1.231 1.449 8.638 1.231 1.449 8.638 1.231 9.745 1.041 n.c.	Log K _{An} = 8.4 Log K 7.60 15.96 -2.11 6.10 -11.56 -3.49 4.73 -10.57 -2.84 -15.76 -8.17 19.98 32.47 n.c.	3 V _Y 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.01 0.01 0.01 0.01 0.02 0.01 0.01 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.01 0.02 0.02 0.02 0.01 0.02 0.02 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.0	1.394 1.412 1.398 1.397 1.395 1.454 1.454 1.481 .8360 .8346 8388 8216 9745 8383 n.c.		(IV) 30 % 20 100 80 60 40	U(VI)-Fe T	678 pH errihydrit LM	9 10		4 5 6 pl LEGEN >FeOH-UC >FeOH-UC >FeOH-UC	7 8 9 1 D D ₂ ²⁺ D ₂ OH ⁺ D ₂ (OH) ₂ ° D ₂ (OH) ₃ ⁻		CNUR	A rodu	
	XOH-UO2 ²⁺ XO-UO2OH* XOH-UO2OH* XOU-UO2OH* XOU2(OH)2 XOH-UO2(OH)2* XOH-UO2(OH)2* XOH_2UO2(OH)2* XOH_2-UO2(OH)3* XOH_2-UO2(OH)3* XOH-UO2(OH)4* XOH-UO2(OH)4* XOH-UO2(OH)4* XOH-UO2(OH)3* XOH-UO2(OH)4* XOH-UO2(O)3* XOH-UO2(CO3)3*	Log K 4.95 13.43 -3.52 4.95 -12.07 -3.52 4.95 -12.07 -3.52 -12.07 -3.52 -19.55 -12.07 19.96 35.17 n.c.	0.02 0.02 0.02 0.02 0.01 0.02 0.02 0.02	1.449 1.413 1.414 1.449 .8520 1.414 1.449 .8520 1.414 1.449 .8520 1.414 1.449 .8520 1.414 .8520 1.414 .9771 .8520 .9753 1.034 n.c.	4.85 13.14 -3.43 4.85 -11.75 -3.43 4.85 -11.75 -3.43 -20.00 -11.75 20.04 35.45 n.c.	0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02	1.476 1.456 1.449 1.476 1.231 1.449 1.476 1.231 1.449 8.638 1.231 1.449 8.638 1.231 9.745 1.041 n.c.	Log K _{An} = 8.4 Log K 7.60 15.96 -2.11 6.10 -11.56 -3.49 4.73 -10.57 -2.84 -15.76 -8.17 19.98 32.47 n.c.	3 V _Y 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.01 0.01 0.01 0.01 0.02 0.01 0.01 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.01 0.02 0.02 0.02 0.01 0.02 0.02 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.0	1.394 1.412 1.398 1.397 1.395 1.454 1.454 1.481 .8360 .8346 8388 8216 9745 8383 n.c.		20 20 20 20 20 20 20 20 20 20 20 20 20 2	U(VI)-Fe T	678 pH errihydrit LM	9 10		4 5 6 pl LEGEN >FeOH-U(>FeOH-U(>FeOH-U(>FeOH-U(>FeOH-U(7 8 9 1 D D ₂ ²⁺ D ₂ OH ⁺ D ₂ (OH) ₂ ° D ₂ (OH) ₃ ⁻ D ₂ (OH) ₄ ²⁻		CNUR	A rodu	
	XOH-UO2 ²⁺ XO-UO2OH* XOH-UO2OH* XOU-UO2OH* XOU2(OH)2 XOH-UO2(OH)2* XOH-UO2(OH)2* XOH_2UO2(OH)2* XOH_2-UO2(OH)3* XOH_2-UO2(OH)3* XOH-UO2(OH)4* XOH-UO2(OH)4* XOH-UO2(OH)4* XOH-UO2(OH)3* XOH-UO2(OH)4* XOH-UO2(O)3* XOH-UO2(CO3)3*	Log K 4.95 13.43 -3.52 4.95 -12.07 -3.52 4.95 -12.07 -3.52 -12.07 -3.52 -19.55 -12.07 19.96 35.17 n.c.	0.02 0.02 0.02 0.02 0.01 0.02 0.02 0.02	1.449 1.413 1.414 1.449 .8520 1.414 1.449 .8520 1.414 1.449 .8520 1.414 1.449 .8520 1.414 .8520 1.414 .9771 .8520 .9753 1.034 n.c.	4.85 13.14 -3.43 4.85 -11.75 -3.43 4.85 -11.75 -3.43 -20.00 -11.75 20.04 35.45 n.c.	0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02	1.476 1.456 1.449 1.476 1.231 1.449 1.476 1.231 1.449 8.638 1.231 1.449 8.638 1.231 9.745 1.041 n.c.	Log K _{An} = 8.4 Log K 7.60 15.96 -2.11 6.10 -11.56 -3.49 4.73 -10.57 -2.84 -15.76 -8.17 19.98 32.47 n.c.	3 V _Y 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.01 0.01 0.01 0.01 0.02 0.01 0.01 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.01 0.02 0.02 0.02 0.01 0.02 0.02 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.0	1.394 1.412 1.398 1.397 1.395 1.454 1.454 1.481 .8360 .8346 8388 8216 9745 8383 n.c.		(IV) N 20 100 100 100 100 100 100 0 0 0	2 3 4 5 U(VI)-Fe T	6 7 8 pH errihydrit LM	9 10 e		4 5 6 pl LEGEN >FeOH-UC >FeOH-UC >FeOH-UC	7 8 9 1 D D ₂ ²⁺ D ₂ OH ⁺ D ₂ (OH) ₂ ° D ₂ (OH) ₃ ⁻ D ₂ (OH) ₄ ²⁻		CNUR	A rodu	
	XOH-UO2 ²⁺ XO-UO2OH* XOH-UO2OH* XOU-UO2OH* XOU2(OH)2 XOH-UO2(OH)2* XOH-UO2(OH)2* XOH_2UO2(OH)2* XOH_2-UO2(OH)3* XOH_2-UO2(OH)3* XOH-UO2(OH)4* XOH-UO2(OH)4* XOH-UO2(OH)4* XOH-UO2(OH)3* XOH-UO2(OH)4* XOH-UO2(O)3* XOH-UO2(CO3)3*	Log K 4.95 13.43 -3.52 4.95 -12.07 -3.52 4.95 -12.07 -3.52 -12.07 -3.52 -19.55 -12.07 19.96 35.17 n.c.	0.02 0.02 0.02 0.02 0.01 0.02 0.02 0.02	1.449 1.413 1.414 1.449 .8520 1.414 1.449 .8520 1.414 1.449 .8520 1.414 1.449 .8520 1.414 .8520 1.414 .9771 .8520 .9753 1.034 n.c.	4.85 13.14 -3.43 4.85 -11.75 -3.43 4.85 -11.75 -3.43 -20.00 -11.75 20.04 35.45 n.c.	0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02	1.476 1.456 1.449 1.476 1.231 1.449 1.476 1.231 1.449 8.638 1.231 1.449 8.638 1.231 9.745 1.041 n.c.	Log K _{An} = 8.4 Log K 7.60 15.96 -2.11 6.10 -11.56 -3.49 4.73 -10.57 -2.84 -15.76 -8.17 19.98 32.47 n.c.	3 V _Y 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.01 0.01 0.01 0.01 0.02 0.01 0.01 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.01 0.01 0.02 0.02 0.02 0.02 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.0	1.394 1.412 1.398 1.397 1.395 1.454 1.454 1.481 .8360 .8346 8388 8216 9745 8383 n.c.		(IV) N 20 100 100 100 100 100 100 0 0 0	2 3 4 5 U(VI)-Fe T 2 3 4 5	6 7 8 pH TLM 6 7 8 9	9 10 e		4 5 6 pl LEGEN >FeOH-U(>FeOH-U(>FeOH-U(>FeOH-U(>FeOH-U(7 8 9 1 D D ₂ ²⁺ D ₂ OH ⁺ D ₂ (OH) ₂ ° D ₂ (OH) ₃ ⁻ D ₂ (OH) ₄ ²⁻		CNUR	A rodu	
	XOH-UO2 ²⁺ XO-UO2OH* XOH-UO2OH* XOU-UO2OH* XOU2(OH)2 XOH-UO2(OH)2* XOH-UO2(OH)2* XOH_2UO2(OH)2* XOH_2-UO2(OH)3* XOH_2-UO2(OH)3* XOH-UO2(OH)4* XOH-UO2(OH)4* XOH-UO2(OH)4* XOH-UO2(OH)3* XOH-UO2(OH)4* XOH-UO2(O)3* XOH-UO2(CO3)3*	Log K 4.95 13.43 -3.52 4.95 -12.07 -3.52 4.95 -12.07 -3.52 -12.07 -3.52 -19.55 -12.07 19.96 35.17 n.c.	0.02 0.02 0.02 0.02 0.01 0.02 0.02 0.02	1.449 1.413 1.414 1.449 .8520 1.414 1.449 .8520 1.414 1.449 .8520 1.414 1.449 .8520 1.414 .8520 1.414 .9771 .8520 .9753 1.034 n.c.	4.85 13.14 -3.43 4.85 -11.75 -3.43 4.85 -11.75 -3.43 -20.00 -11.75 20.04 35.45 n.c.	0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02	1.476 1.456 1.449 1.476 1.231 1.449 1.476 1.231 1.449 8.638 1.231 1.449 8.638 1.231 9.745 1.041 n.c.	Log K _{An} = 8.4 Log K 7.60 15.96 -2.11 6.10 -11.56 -3.49 4.73 -10.57 -2.84 -15.76 -8.17 19.98 32.47 n.c.	3 V _Y 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.01 0.01 0.01 0.01 0.02 0.01 0.01 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.01 0.01 0.02 0.02 0.02 0.02 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.0	1.394 1.412 1.398 1.397 1.395 1.454 1.454 1.481 .8360 .8346 8388 8216 9745 8383 n.c.		(IV) N 20 100 100 100 100 100 100 0 0 0	2 3 4 5 U(VI)-Fe T 2 3 4 5	6 7 8 pH errihydrit LM	9 10 e		4 5 6 pl LEGEN >FeOH-U(>FeOH-U(>FeOH-U(>FeOH-U(>FeOH-U(7 8 9 1 D D ₂ ²⁺ D ₂ OH ⁺ D ₂ (OH) ₂ ° D ₂ (OH) ₃ ⁻ D ₂ (OH) ₄ ²⁻		CNUR	A rodu	Its MINTEQAS ad anuclide
	XOH-UO2 ²⁺ XO-UO2OH* XOH-UO2OH* XOU-UO2OH* XOU2(OH)2 XOH-UO2(OH)2* XOH-UO2(OH)2* XOH_2UO2(OH)2* XOH_2-UO2(OH)3* XOH_2-UO2(OH)3* XOH-UO2(OH)4* XOH-UO2(OH)4* XOH-UO2(OH)4* XOH-UO2(OH)3* XOH-UO2(OH)4* XOH-UO2(O)3* XOH-UO2(CO3)3*	Log K 4.95 13.43 -3.52 4.95 -12.07 -3.52 4.95 -12.07 -3.52 -12.07 -3.52 -19.55 -12.07 19.96 35.17 n.c.	0.02 0.02 0.02 0.02 0.01 0.02 0.02 0.02	1.449 1.413 1.414 1.449 .8520 1.414 1.449 .8520 1.414 1.449 .8520 1.414 1.449 .8520 1.414 .8520 1.414 .9771 .8520 .9753 1.034 n.c.	4.85 13.14 -3.43 4.85 -11.75 -3.43 4.85 -11.75 -3.43 -20.00 -11.75 20.04 35.45 n.c.	0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02	1.476 1.456 1.449 1.476 1.231 1.449 1.476 1.231 1.449 8.638 1.231 1.449 8.638 1.231 9.745 1.041 n.c.	Log K _{An} = 8.4 Log K 7.60 15.96 -2.11 6.10 -11.56 -3.49 4.73 -10.57 -2.84 -15.76 -8.17 19.98 32.47 n.c.	3 V _Y 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.01 0.01 0.01 0.01 0.02 0.01 0.01 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.01 0.01 0.02 0.02 0.02 0.02 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.0	1.394 1.412 1.398 1.397 1.395 1.454 1.454 1.481 .8360 .8346 8388 8216 9745 8383 n.c.		(IV) 4(% 2((IV) % 2((IV) % 2(% % % % % % % % % % % % % % % % % % %	2 3 4 5 U(VI)-Fe T 2 3 4 5	6 7 8 pH errihydrit LM 6 7 8 9 pH m ferrihydri	9 10 e 9 10 te. SCM re	40 - 0 20 - 0 2 3	4 5 6 pl LEGEN >FeOH-UC >FeOH-UC >FeOH-UC >FeOH-UC Experimen	7 8 9 1 D $D_2^{2^+}$ $D_2(OH)_2^{\circ}$ $D_2(OH)_3^{-}$ $D_2(OH)_4^{2^-}$ tal Data		CNUR	A rodu	

3/11/95

XPI

Lightized Results

8/11/95

Della Mea, G., J.C. Dran, V. Moulin, J.C. Petit, J.D.F. Ramsay, and M. Theyssier. 1992. Scavenging properties of inorganic particles toward heavy elements. Radiochimica Acta 58/59:219-223. Della Mea et al. (1992) U(VI)-SiO2 Figure 1 (page 220) atm CO2 (?) Asp = 50 m2/gU(VI)=5E-06 M/V=250 ppm=0.25 g/L 0.1 M NaClO4 pН %sorbed mol sorbed 4.70848 16.88736 8.444E-07 5.49578 43.80982 2.190E-06 6.05272 58.09594 2.905E-06 6.43351 57.25198 2.863E-06 6.90823 67.87060 3.394E-06 7.46014 77.38157 3.869E-06 7.99832 83.01599 4.151E-06 0.001 M NaClO4 %sorbed mol sorbed pН 4.19846 43.69988 2.185E-06 4.45498 44.29351 2.215E-06 5.21773 55.62592 2.781E-06 5.26561 57.54081 2.877E-06 6.07645 52.01259 2.601E-06 6.25076 45.75504 2.288E-06 7.05559 29.41093 1.471E-06 7.11124 27.81505 1.391E-06 7.97127 15.05877 7.529E-07 Della Mea, G., J.C. Dran, V. Moulin, J.C. Petit, J.D.F. Ramsay, and M. Theyssier. 1992. Scavenging properties of inorganic particles toward heavy elements. Radiochimica Acta 58/59:219-223. Della Mea et al. (1992) U(VI)-Muscovite Figure 1 (page 220) Asp=3 m2/g atm CO2 (?) U(VI)=5E-06 M/V=250 ppm=0.25 g/L 0.1 M NaClO4 Si:Al = 3:1 (tetra. site) Depression pH %sorbed mol sorbed 4.33883 4.54684 2.273E-07 5.24792 9.99108 4.996E-07 5.95506 32.71527 1.636E-06 6.49187 37.61510 1.881E-06 6.94439 52.27614 2.614E-06 7.19866 39.97197 1.999E-06 7.80117 23.72417 1.186E-06 NO FITEOL Results. Not modeled yet

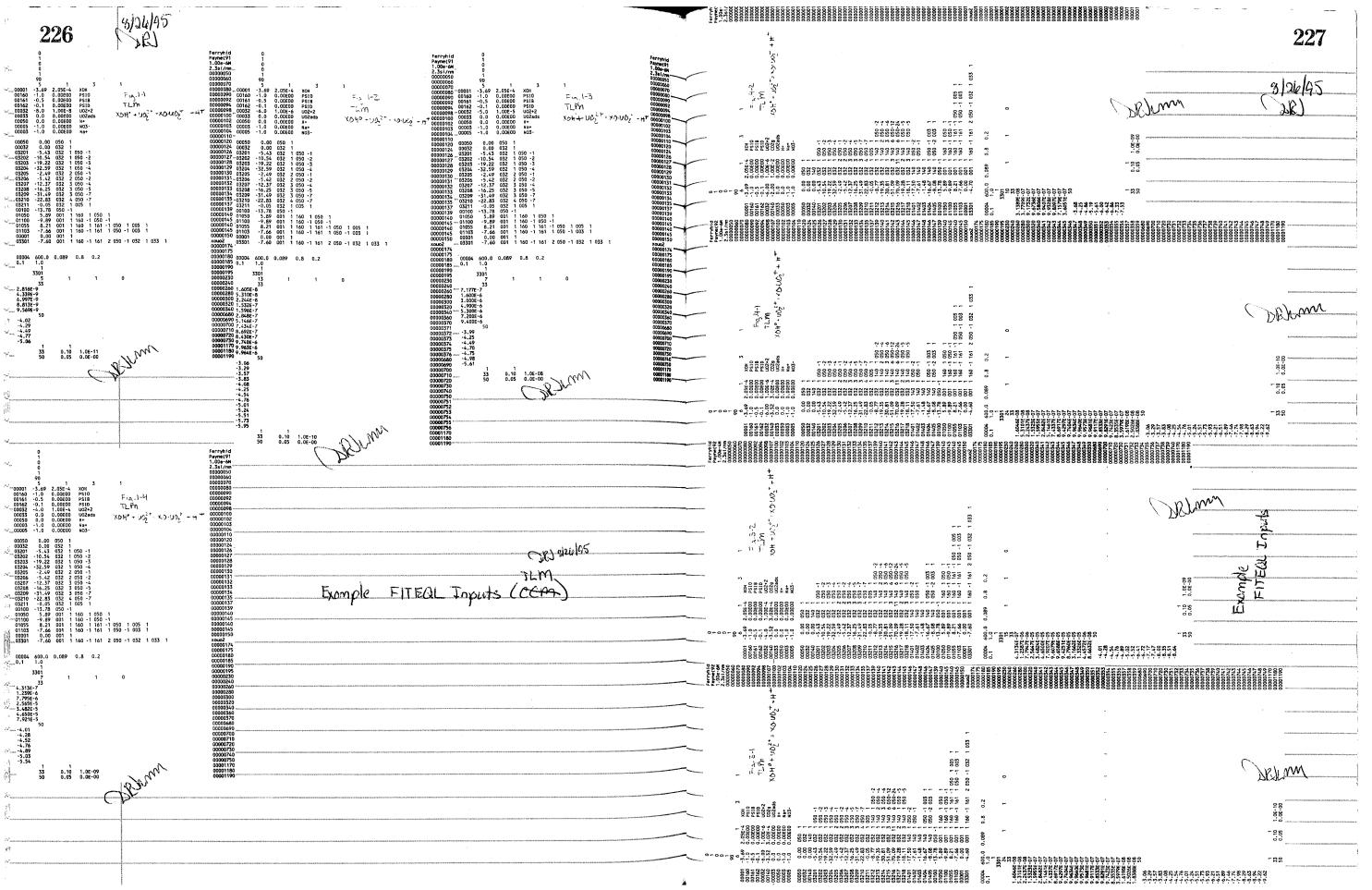
Information potentially subject to copyright protection was redacted from this location. The redacted material (Figure 1: Retention of U(VI) onto silica and muscovite mica... and Figure 2: Log Kd in ml/g...) is from the following reference:

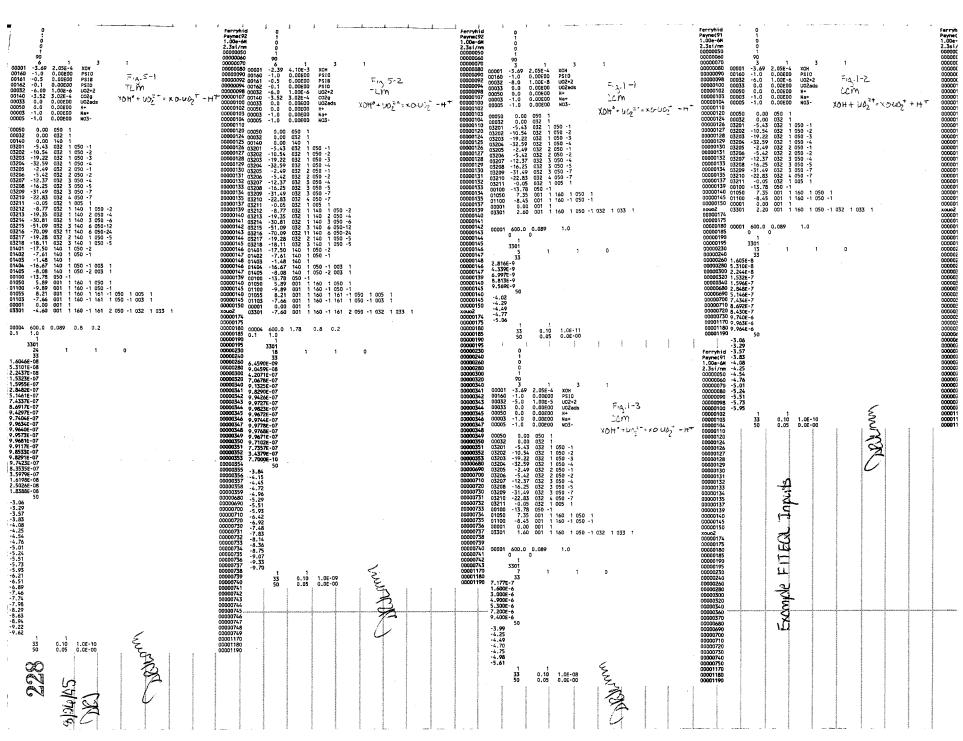
Della Mea, G. J.C. Dran, V. Moulin, J.C. Petit, J.D.F. Ramsay, and M. Theyssier. "Scavenging Properties of Inorganic Particles Toward Heavy Elements." Radiochimica Acta. Vols. 58 and 59. pp. 219-223. 1992.

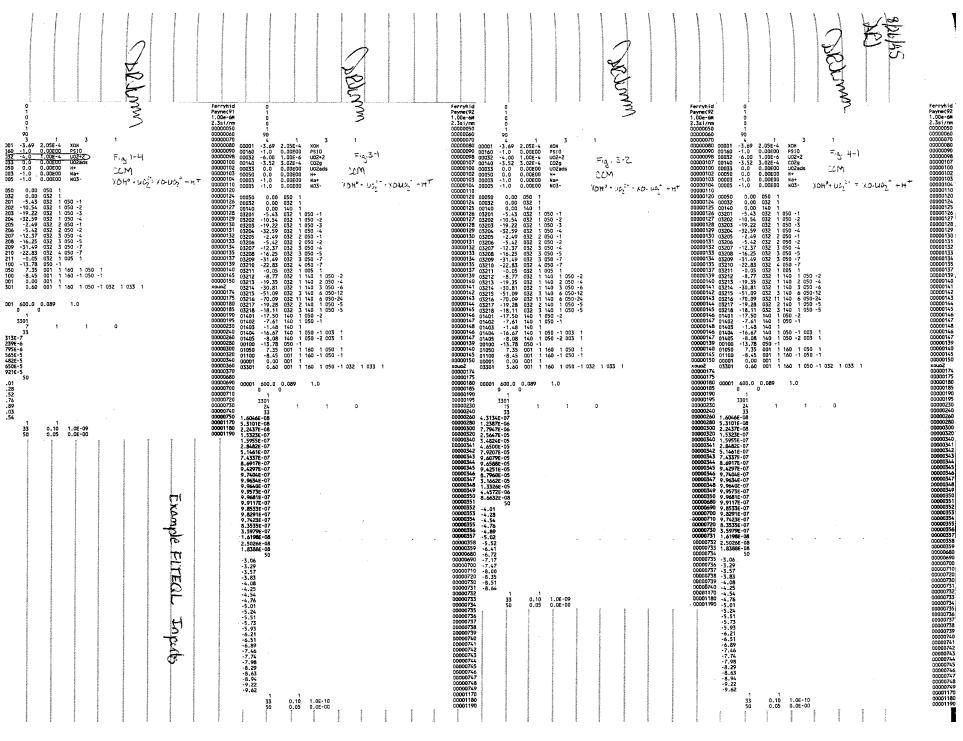
224	8/26/45
	U(v)-Fernhyhte
n an	Poune et al. (1992)

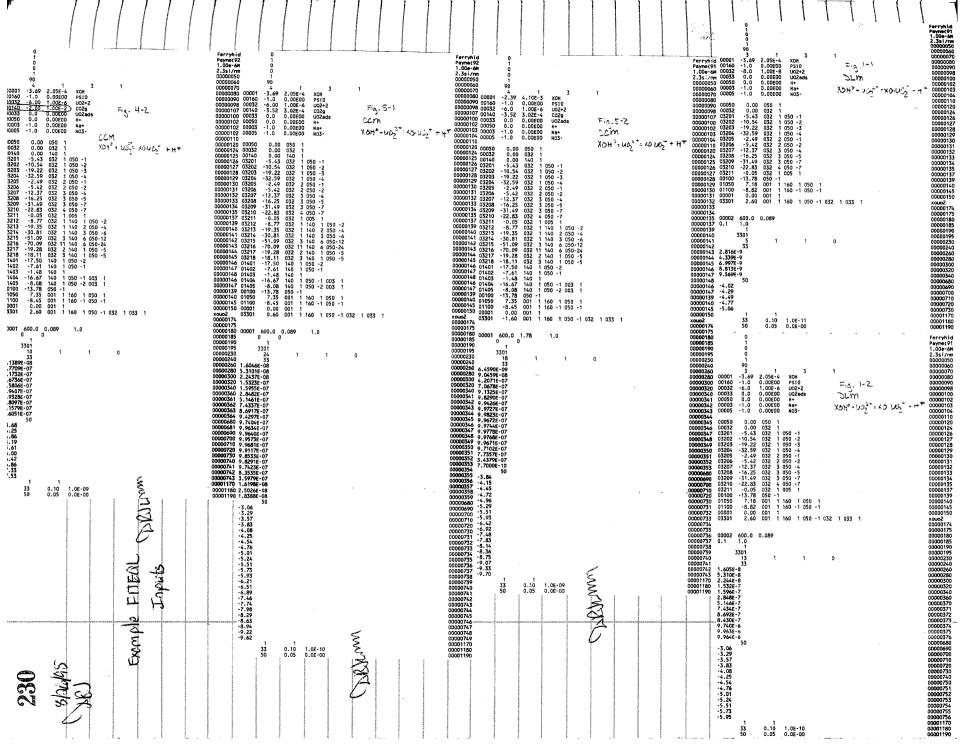
D D

Journousen von.


1


Information potentially subject to copyright protection was redacted from


Payne, T.E., K. Sekine, J.A. Davis, and T.D. Waite. "Modeling of Radionuclide Sorption Processes in the Weathered Zone of the Koongarra Ore Body." Alligator Rivers Analogue Project Annual Report, 1990-1991. P. Duerden, ed. Australian Nuclear Science and Technology Organization. pp. 57-85. 1992.


weathered zo	one of the Koongarra ore body. I alian Nuclear Science and Techne	ology Organization (ANSTC	3):57-85.	manne e	Payne et al. (1992)	U(VI)-Ferrihydrite	STO):57-85.	Annual Report, 1990. 3/26/9
	Payne et al. (1992) Figure 1 (page 72)	U(VI)-Ferribydrite			Figure 3 (page 73) Asp=600 m2/g (assumed	b) ====================================		
	Asp=600 m2/g (assumed)	No CO2		distinction	0.1M NaNO3			
warman and	0.1M NaNO3			B.0000.0000	U(VI) = 1E-06			
	U(VI)=1E-08				pli	2 sorbed	mol sorbed	
	pH 4.02	%sorbed 28.16	moi sorbed 2.816e-09	*********	3.06	1.6046	1.605e-08 5.310e-08	
	4.02	43.39	4.339e-09		3.57	2.2437	2.244e-08	
	4.49	69.97	6.997e-09		3.83	15.323	1.532e-07	
	4.77	88.13	8.813e-09	Sector row on	4.08	15.955 28.482	1.596e-07 2.848e-07	
	5.06	95.69	9.569e-09		4.54	51.461	5.146e-07	
	U(VT)=1E-06 pH	%sorbed	mol sorbed	2010/20120-0020	4.76	74.337	7.434e-07	
	3.06	1.6046	1.605e-08		5.01	86.917 94.297	8.692e-07	
24-20-34 0-3 4-34-34-34-34	3.29	5.3101	5.310e-08	an university of the second second	5.51	97.404	9.430e-07 9.740e-07	
	3.57	2.2437	2.244e-08		5.73	99.634	9.963e-07	
N. NO. WARRANT CO.	3.83 4.08	15.323 15.955	1.532e-07 1.596e-07	P-000040000-201	5.93	99.64	9.964e-07	
	4.25	28.482	2.848e-07		6.51	99.573 99.681	9.957e-07 9.968e-07	
	4.54	51.461	5.146e-07	to contanues.	6.89	99.117	9.912e-07	
	4.76	74.337	7.434e-07		7.46	98.533	9.853e-07	ß
Run	5.01 5.24	86.917 94.297	8.692e+07 9.430e-07	\$3.68.04.00.000	7.74 7.98	98.291 97.423	9.829e-07 9.742e-07	Dinitizant
. 6	5.51	97.404	9.740e-07		8.29	83.535	8.354c-07	
R	5.73	99.634	9.963e-07		8.63	35.979	3.598e-07	Digitized Data
,	5.95 UCD-10 of	99.64	9.964e-07	Physics wards	8.94 9.22	1.6198	1.620e-08 2.503e-08	
	U(VI)=1E-05 pH	%sorbed	mol sorbedi		9.62	1.8388	2.5036-08	
Acres (1979) 1979	3.99	7.177	7.177e-07	(1000-andre and a	U(VI) = 1E-04			
	4.25	16	1.600e-06		pH 4.01	"sorbed	mol sorbed	
a	4.49	30	3.000e-06	(Wilson any ange	4.01	0.43134	4.313e-07 1.239e-06	
	4.7 4.75	49 53	4.900e-06 5.300e-06		4.54	7.7947	7.795e-06	
	4.75	72	7.200e-06	biotechnology	4.76	25.647	2.565e-05	
	5.61	94	9.400e-06		5.02	34.824 46.5	3.482e-05 4.650e-05	
01.0.000.0000	U(VT)=1E-04	A. 1. /		hereitean	5.52	79.207	7.921c-05	
	pH 4.01	%sorbed 0.4313	mol sorbed 4.313e-07		6.41	96.079	9.608e-05	PENM
	4.28	1.2387	1.239e-06	\$1000.000.0	6.72	96.588 94.251	9.659e-05 9.425e-05	
	4.54	7.7947	7.795e-06		7.47	87.96	8.796e-05	
		26.647	2.565e-05		8.00	31.662	3.166e-05	
anencourseou	4.76	25.647						
	4.89	33.824	3.482e-05	Webban sound	8.35	13.326	1.333e-05	
Payne, T. E	4.89 5.02 5.52	33.824 46.500 78.207 D. Waite, 1992, Modeling	3.482e-05 4.650e-05 7.921e-05	199 I s in the	8.51 8.64 ne, T.E., K. Sekine, J.A. Davis, and T utbered zone of the Koongarta ore body. N. Australian Nuclear Science and Tech	4.4572 0.086632 D. Waite. 1992. Modeling of P. Duerden. ed. Alligator Ri- bology Organization (ANSTO	4.457e.06 8.663e-08 radionuclide sorption pro	cesses in the nal Report, 1990.
weathered a	4.89 5.02 5.52	33.824 46.500 78.207 D. Waite. 1992. Modeling P. Duerden, ed. Alligator	3.482e-05 4.650e-05 7.921e-05 of radionuclide sorption processe Rivers Analogue Project Annual R	199 I s in the	8.51 8.64 There T.E., K. Sekine, J.A. Davis, and T thered zone of the Koongarra are hody. 7. Australian Nuclear Science and Tech Payne et al. (1992) Figure 5 (page 74)	4.4572 0.086632 D. Waite. 1992. Modeling or P. Duerden. ed. Alligator Ri- sulogy Organization (ANSTO U(VD-Fercibydrite	4.457e.06 8.663e-08 radionuclide sorption pro	cesses in the tuci Report, 1990.
weathered a	4.89 5.02 5.52 5. K. Sekine, J.A. Davis, and T. Zine of the Koongarra over bady. Talian Nuclear Science and Tech Payne et al. (1992)	33.824 46.500 78.207 D. Waite. 1992. Modeling P. Duerden, ed. Alligator	3.482e-05 4.650e-05 7.921e-05 of radionuclide sorption processe Rivers Analogue Project Annual R	199 I s in the	8.51 8.64 1.04 1.04 1.04 1.04 1.04 1.04 1.04 1.0	4.4572 0.086632 D. Waite. 1992. Modeling of P. Duerden, ed. Alligator Riv alogy Organization (ANSTO U(VD)-Ferrihydrite U(VD)-Ferrihydrite	4.457e.06 8.663e-08 radionuclide sorption pro	cesses in the call Report, 1990.
weathered a	4.89 5.02 5.53 5.4 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5	33.824 46.500 78.207 D. Waite. 1992. Modeling P. Duerden, ed. Alligator. nology Organization (ANST U(VI)-Ferrihydrite	3.482e-05 4.650e-05 7.921e-05 of radionuclide sorption processe Rivers Analogue Project Annual R	199 I s in the	8.51 8.64 9.64 1. Australian Neuera Science and Tech Payne et al. (1992) Figure 5 (page 74) Asp=600 m2/g (assumed) 0.1M NaNO3	4.4572 0.086632 D. Waite. 1992. Modeling or P. Duerden. ed. Alligator Ri- sulogy Organization (ANSTO U(VD-Fercibydrite	4.457e.06 8.663e-08 radionuclide sorption pro	cesses in the call Report, 1990.
weathered a	4.89 5.02 5.52 5. K. Sekine, J.A. Davis, and T. Zine of the Koongarra over bady. Talian Nuclear Science and Tech Payne et al. (1992)	33.824 46.500 78.207 D. Waite. 1992. Modeling P. Duerden, ed. Alligator. nology Organization (ANST U(VI)-Ferrihydrite	3.482e-05 4.650e-05 7.921e-05 of radionuclide sorption processe Rivers Analogue Project Annual R	199 I s in the	8.51 8.64 1.04 1.04 1.04 1.04 1.04 1.04 1.04 1.0	4.4372 0.086632 D. Waite. 1992. Modeling of P. Duerden, ed. Alfiguore Ri- ology Organization (ANSTO UVID-Fer-Thydrite UVID-1E-06 pCO2=.035(=1e-3.5 atm)	4.4572-06 8.6632-08 radionuclide sorption pro err Analogue Project Ann. 157-85.	cesses in the null Report, 1990.
weathered a	4.89 5.02 5.52 5.52 5.52 5.52 5.52 5.52 5.52	33.824 46.500 78.207 D. Waite. 1992. Modeling P. Duerden, ed. Alligator. nology Organization (ANST U(VI)-Ferrihydrite U(VI)-F1E-06	3.482e-05 4.650e-05 7.921e-05 of radionuclide sorption processe Rivers Analogue Project Annual R	199 I s in the	8.51 8.64 9.64 1. Australian Neuera Science and Tech Payne et al. (1992) Figure 5 (page 74) Asp=600 m2/g (assumed) 0.1M NaNO3	4.4572 0.086632 D. Waite. 1992. Modeling of P. Duerden, ed. Alligator Riv alogy Organization (ANSTO U(VD)-Ferrihydrite U(VD)-Ferrihydrite	4.457:06 8.663e-08 radionuclide sorption pro ers Analogue Project Ann. 57-85.	Cetses in the and Report, 1990. • • • • • • • • • • • • • • • • • • •
weathered a	4.89 5.02 5.52 5.53 5.54 5.55 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5	33.824 46.500 78.207 D. Waite. 1992. Modeling P. Duerden. ed. <i>Altigator</i> Didgo Organization (ANST U(VI)-Ferrihydrite	3.482e-05 4.650e-05 7.921e-05 of radionuclide surption processos Rivers Anniogue Project Annual R CD:57-85	199 I s in the	8.51 8.64 B.64 1.0.1.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0	4.4572 0.086632 D. Waite. 1992. Modeling of P. Duerden, ed. Alliquor Rin alogy Organization (ANSTO UVVD-Ferrihydrite UVVD-1E.66 pCO2 = 0.3% = 1e-3.5 atm Sanhed 1.0046 5.3101	4.457:06 8.663e-08 radionuclide sorption pro err Analogue Project Ann 57-85. mol sorbed 1.605e-08 5.310e-08	CESSEs in the Last Report, 1990. It is a straight and the
weathered a	4.89 5.02 5.52 5.52	33.824 46.500 78.207 D. Waite. 1992. Modeling P. Duerden, ed. <i>Alligator</i> Diologo Organization (ANST U(VI)-Ferrihydrite U(VI)-Ferrihydrite U(VI)-1E:06	3.482e-05 4.650e-05 7.921e-05 of radionuclide sorption processes Rivers Analogue Project Annual R (0):57-85.	199 I s in the	8.51 8.64 1000 1100	4.4572 4.4572 0.086632 Waite. 1992. Modeling of P. Duerden, ed, Alligator Rights (VI) - Forthydrite U(VI) - 1E-06 PCO2=-035; = 1e-3.5 atm Sorhed 1.6046 5.3101 2.2437	4.4572-016 8.6632-018 radionuclide sorption pro- <i>ers</i> Analogue Project Ann. 57-85. mol sorbed 1.6050-018 5.3100-018 2.2342-018	Cesses in the last of the second seco
weathered a	4.89 5.02 5.52 5.53 5.54 5.55 5.52 5.52 5.52 5.52 5.52 5.52	33.824 46.500 78.207 D. Waite. 1992. Modeling P. Duerden, ed. Alligator mology Organization (ANST U(VI)=Ferrihydrite U(VI)=1E-06 5 sorthed 1.6046 5.3101	3.482e-05 4.650e-05 7.921e-05 of radiomuclide sorption processes River: Anningste Project Annual R (D):57-85. mol sorbed 1.605e-08 5.310e-08	199 I s in the	8.51 8.64 and the Koongara are hody, 1. A statistic field of the Koongara are hody, 1. Australian Nuclear Science and Technic Figure 5 (page 74) Asp esdo may et al. (1992) Figure 5 (page 74) Asp esdo may result and the figure 6 (page 74) Asp esdo may result and the figure 6 (page 74) Asp esdo may result and the figure 6 (page 74) Asp esdo may result and the figure 6 (page 74) Asp esdo may result and the figure 6 (page 74) Asp esdo may result and the figure 6 (page 74) Asp esdo may result and the figure 6 (page 74) Asp esdo may result and the figure 6 (page 74) Asp esdo may result and the figure 6 (page 74) Asp esdo may result and the figure 6 (page 74) Asp esdo may result and the figure 6 (page 74) Asp esdo may result and the figure 6 (page 74) Asp esdo may result and the figure 6 (page 74) Asp esdo may result and the figure 6 (page 74) Asp esdo may result and the figure 6 (page 74) Asp esdo may result and the figure 6 (page 74) Asp esdo may result and the figure 6 (page 74) Asp esdo may result and the figure 6 (page 74) Asp esdo may result and the figure 6 (page 74) Asp esdo may result and the figure 6 (page 74) Asp esdo may result and the figure 6 (page 74) Asp esdo may result and the figure 6 (page 74) As	4.4572 0.086632 D. Waite. 1992. Modeling of P. Duerden, ed. Alliquor Rin alogy Organization (ANSTO UVVD-Ferrihydrite UVVD-1E.66 pCO2 = 0.3% = 1e-3.5 atm Sanhed 1.0046 5.3101	4.457:06 8.663e-08 radionuclide sorption pro err Analogue Project Ann 57-85. mol sorbed 1.605e-08 5.310e-08	cesses in the case of the control of
weathered a	4.89 5.02 5.53 5.54 5.55 5.5 7.50 7.50 7.50 7.50 7.50 7.50	33.824 46.500 78.207 D. Waite. 1992. Modeling P. Duerden, ed. Alligator nology Organization (ANST U/VI)-Ferzihydrite U(VI)=1E:06 U(VI)=1E:06 5.3101 5.3101	3.482e-05 4.650e-05 7.921e-05 of radionuclide sorption processes Rivers Anningue Project Annual R TOJ-57-85. unel sorbed 1.665e-08 5.310e-08 5.310e-08	199 I s in the	8.51 8.64 8.64	4.4572 0.086632 D. Waite, 1992, Modeling of P. Duerden, ed. Alfiegator Riv obugo Verganazion (ANSTO U(VI)-Ferrihydrite U(VI)-1E-06 pCO2=-03% = 1e-3.5 atm % sorbed 1.6446 5.3101 1.5323 15.935 28.482	4.457:06 8.663e-08 radionuclide sorption pro <i>err Analogue Project Ann.</i> 57:85. 	Cesses in the case of the case
weathered a	4.89 5.02 5.52	33.824 46.500 78.207 D. Waite. 1992. Modeling P. Duerden. ed. Alligator mology Organization (ANST U(VI)=Eterrity.drife U(VI)=1E-06 	3.482e-05 4.650e-05 7.921e-05	199 I s in the	8.51 8.64 and the Koongara are hody, 1. A statistic field of the Koongara are hody, 1. Australian Nuclear Science and Technic Figure 5 (page 74) Asp esdo may et al. (1992) Figure 5 (page 74) Asp esdo may result and the figure 6 (page 74) Asp esdo may result and the figure 6 (page 74) Asp esdo may result and the figure 6 (page 74) Asp esdo may result and the figure 6 (page 74) Asp esdo may result and the figure 6 (page 74) Asp esdo may result and the figure 6 (page 74) Asp esdo may result and the figure 6 (page 74) Asp esdo may result and the figure 6 (page 74) Asp esdo may result and the figure 6 (page 74) Asp esdo may result and the figure 6 (page 74) Asp esdo may result and the figure 6 (page 74) Asp esdo may result and the figure 6 (page 74) Asp esdo may result and the figure 6 (page 74) Asp esdo may result and the figure 6 (page 74) Asp esdo may result and the figure 6 (page 74) Asp esdo may result and the figure 6 (page 74) Asp esdo may result and the figure 6 (page 74) Asp esdo may result and the figure 6 (page 74) Asp esdo may result and the figure 6 (page 74) Asp esdo may result and the figure 6 (page 74) Asp esdo may result and the figure 6 (page 74) Asp esdo may result and the figure 6 (page 74) As	4.4572 0.086632 D. Waite, 1992, Molding of P. Doerden, ed. Alliquor Bi- nology Organization (ANSTO UVVD-Ferrihydrite UVVD-1E.06 pCO2 = 03% = 1e-3.5 atm % sorthed 1.6046 5.3101 1.2.3437 15.935 28.482 31.461	4.457:06 8.663e-08 radionuclide sorption pro err Analogue Project Ann. 57-85. mol sorbed 1.605e-08 5.30ce-08 2.244-08 1.522e-07 1.596e-07 2.848e-07 5.146e-07	Cesses in the Land Report, 1990.
weathered a	4.89 5.02 5.52 5.52 5.52 5.52 5.52 5.52 5.52	33.824 46.500 78.207 D. Waite. 1992. Modeling P. Duerden, ed. Alligator. Diologo Organization (ANST U(VI)-Ferrihydrite U(VI)-Ferrihydrite U(VI)-1E:06 5.3101 5.323 15.935 28.482	3.482e-05 4.650e-05 7.921e-05	199 I s in the	8.51 8.64 8.64	4.4572 0.086632 D. Waite, 1992, Modeling of P. Duerten, ed. Alfiegore Ris ulwey Organization (ANSTO U(VI) -FerCityLarkte U(VI) = 1E-06 pCO2 = .0351 = 1e-3.5 atm 	4.457:06 8.663e-08 radionuclide soppion pro err Analogue Project Ann. 57:85 mol sorhed 1.605e-08 5.310e-08 5.310e-08 5.310e-08 5.310e-08 5.310e-07 5.146e-07 7.334e-07 5.146e-07	Cesses in the Land Report, 1990. The land report of
weathered a	4.89 5.02 5.52 5.53 5.54 5.55 5.52 5.52 5.52 5.52 5.52 5.52	33.824 46.500 78.207 D. Waite. 1992. Modeling P. Duerden, ed. Alligator U(VI)-Ferrihydrite U(VI)=1E-06 5sorthed 1.60146 5.3101 2.2437 15.925 28.482 51.461	3.482e-05 4.650e-05 7.921e-05 of fadiomuclide sorption processes River: Aunitogue Project Annual R (D):57-85. unol sorbed 1.605e-08 5.310e-08 2.2344-08 1.532e-07 1.596e-07 1.596e-07	199 I s in the	8.51 8.64	4 4372 0.086632 D. Waite. 1992. Modeling of P. Duerden, ed. Alliegator Riv ology Organization (ANSTO U(VI)=Fertihydrite U(VI)=1E-06 PCO2=033 = 1e-3.5 atm 	4 4572-06 8.6632-08 radionuclide sorption pro <i>ers</i> Analogue Project Ann. 57.85. mol sorbed 1.6056-08 5.3106-08 5.3106-08 1.5326-07 2.4842-07 5.1466-07 7.4342-07 5.1466-07 7.4342-07	
weathered a	4.89 5.02 5.52 5.52 5.53 5.54 5.55 5.54 5.55 5.55 5.55 5.55	33.824 46.500 78.207 D. Waite. 1992. Modeling P. Duerden, ed. <i>Alligator</i> . Diologo Organizziani (ANST U(VI)-Ferrihydrike U(VI)-Ferrihydrike U(VI)-E:06 5.3101 2.2437 15.023 15.025 38.482 51.461 74.337 36.017	3.482e-05 4.650e-05 7.921e-05	199 I s in the	8.51 8.64 8.64	4.4572 0.086632 D. Waite, 1992, Modeling of P. Doerden, ed., Alliquor BO onlogy Organization (ANSTO UVV)-Foreribydrite UVV)-18-66 pCO2 = 03% = 1e-3.5 atm 	4.457:06 8.663e-08 radionuclide soppion pro err Analogue Project Ann. 57:85 mol sorhed 1.605e-08 5.310e-08 5.310e-08 5.310e-08 5.310e-08 5.310e-07 5.146e-07 7.334e-07 5.146e-07	
weathered a	4.89 5.02 5.52 5.53 5.54 5.55 5.52 5.52 5.52 5.52 5.52 5.52	33.824 46.500 78.207 D. Waite. 1992. Modeling P. Duerden, ed. Alligator MCVID-Firihydrife U(VI)=Firihydrife U(VI)=1E-06 5.3101 1.6046 5.3301 1.6046 5.331 15.933 15.933 15.935 14.431 74.337 86.917 94.297	3.482e-05 4.650e-05 7.921e-05	199 I s in the	8.51 8.64 18.64 19.64 19.64 19.65 19.67 19.67 19.67 19.67 19.67 19.67 19.67 19.67 10.18 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 11.19 <td>4.4572 0.086632 D. Waite. 1992. Modeling of P. Duerden, ed. Alficator Riv olicy Organization (ANSTO U(VI)-Ferrihydrite U(VI)-1E-06 pCO2=03% =1e-3.5 arm </td> <td>4 4572-06 8.6632-08 radionuclide sorption pro <i>err Analogue Project Ann.</i> 57-85. mol sorbed 1.6652-08 5.3102-08 2.2442-08 1.5322-07 2.2442-08 1.5322-07 2.2442-08 1.5322-07 2.2482-07 5.1462-07 9.4302-07 9.4302-07 9.7402-07 9.7532-07</td> <td></td>	4.4572 0.086632 D. Waite. 1992. Modeling of P. Duerden, ed. Alficator Riv olicy Organization (ANSTO U(VI)-Ferrihydrite U(VI)-1E-06 pCO2=03% =1e-3.5 arm 	4 4572-06 8.6632-08 radionuclide sorption pro <i>err Analogue Project Ann.</i> 57-85. mol sorbed 1.6652-08 5.3102-08 2.2442-08 1.5322-07 2.2442-08 1.5322-07 2.2442-08 1.5322-07 2.2482-07 5.1462-07 9.4302-07 9.4302-07 9.7402-07 9.7532-07	
weathered a	4.89 5.02 5.52 5.52 5.52 5.52 5.52 5.52 5.52	33.824 46.500 78.207 D. Waite. 1992. Modeling P. Duerden, ed. Alligator. Didgo Organization (ANST U(VI)-Ferrihydrite U(VI)-Ferrihydrite U(VI)-Ferrihydrite 2.2437 15.935 28.482 51.461 74.337 86.917 94.297 97.404	3.482e-05 4.650e-05 7.921e-05 of radionuclide sorption processes <i>Rivers Analogue Project Annual R</i> 0.57-8.5. mol sorhed 1.605c-08 5.310c-08 2.244c-08 1.532c-07 1.596c-07 2.244c-08 1.532c-07 1.596c-07 2.244c-08 1.532c-07 1.596c-07 2.244c-08 1.532c-07 1.596c-07 2.44kc-07 8.602c-07 7.43kc-07 8.602c-07 9.740c-07	199 I s in the	8.51 8.64 8.64	4.4572 0.086632 D. Waite. 1992. Modeling of P. Duerden, ed. Alfiegore Ri- bueyo Organization (ANSTO UCVI)-Fercifyderite UCVI)-Fercifyderite UCVI)-Fercifyderite UCVI)-Fercifyderite 1.5323 1.5323 1.5355 2.3442 3.4461 7.4.337 36.6917 94.397 97.404 99.654 99.573	4.457:06 8.663e-08 radionuclide sorption pro <i>etr Analogue Project Ann.</i> 57:85. mol sorbed 1.605e-08 5.310e-08 5.310e-08 5.310e-08 5.310e-08 5.310e-08 5.310e-08 5.310e-08 5.310e-08 5.310e-08 5.310e-07 5.446e-07 5.446e-07 5.446e-07 5.446e-07 9.930e-07 9.950e-07 9.957e-07	
weathered a	4.89 5.02 5.52 5.52 5.52 5.52 5.52 5.52 5.52 5.52 5.52 5.53	33.824 46.500 78.207 D. Waite. 1992. Modeling P. Duerden, ed. Alligator mology Organization (ANST U(VI)=EE-06 U(VI)=EE-06 5 sorthed 1.6046 5.3101 2.2437 15.925 15.925 15.925 14.61 74.137 36.017 94.137 97.404 99.64	3.482e-05 4.650e-05 7.921e-05 of radiumclife surption processes Rivers Analogue Project Annual R (D):57-85. mol sorbed 1.605-09 5.310-08 2.244e-08 1.532e-07 1.532e-07 7.434e-07 7.434e-07 7.434e-07 9.430e-07 9.740e-07 9.740e-07 9.965e-07	199 I s in the	8.51 8.64	4.4572 4.4572 4.086632 D. Waite. 1992. Modeling of Durelen. ed. Alliguers Ris divey Organization (ANSTO U(VI)-Ferrihydrite U(VI)=1E-06 pCO2=.035 = 1e-3.5 atm 5.5101 2.437 1.5055 2.8.482 51.461 7.4337 36.917 94.597 97.434 99.641 99.61	4 4572-06 8.6632-08 radionuclide sorption pro <i>err Analogue Project Ann.</i> 57-85. mol sorbed 1.6652-08 5.3102-08 2.2442-08 1.5322-07 2.2442-08 1.5322-07 2.2442-08 1.5322-07 2.2482-07 5.1462-07 9.4302-07 9.4302-07 9.7402-07 9.7532-07	
weathered a	4.89 5.02 5.52 5.52 5.52 5.52 5.52 5.52 5.53 5.75 5.75 5.73 5.93 6.21	33.824 46.500 78.207 D. Waite. 1992. Modeling P. Duerden, ed. Alligator. Didgo Organization (ANST U(VI)-Ferrity drite U(VI)-Ferrity drite U(VI)-Ferrity drite U(VI)-Ferrity drite U(VI)-Ferrity drite 1.6046 5.3101 2.2437 15.053 38.482 51.361 74.137 38.482 51.461 74.137 38.497 97.404 99.633 99.64	3.482e-05 4.650e-05 7.921e-05	199 I s in the	8.51 8.64 9.64 9.64 9.64 9.64 9.64 9.64 9.64 9.74 10.15 10.16 10.17 10.18 10.18 10.18 10.18 10.18 10.18 10.18 10.18 10.18 10.18 10.18 10.18 10.18 10.18 10.18 10.18 11.19 10.18 10.18 10.18 10.18 10.19 11.19 10.19 11.19 10.19 11.19 10.19 11.19 10.19 11.19 11.19 11.19 11.19 11.19 11.19 </td <td>4.4572 0.086632 D. Waite. 1992. Modeling of P. Duerden, ed. Alligator Riv loogy Organization (ANSTO U(VI)=Fertihydrite U(VI)=Fertihydrite U(VI)=Fertihydrite U(VI)=Fertihydrite U(VI)=Fertihydrite U(VI)=Fertihydrite U(VI)=1E-06 PCO2=035[=1e-3.5 atm 2:3407 1:3016 2:3437 1:5325 2:8:482 3:1:461 1:5325 2:8:482 3:1:461 1:7:4337 3:6:317 9:7:414 99:573 99:681 99:177 98:533</td> <td>4.457:-06 8.663e-08 radionuclide sorption pro- err Analogue Project Ann. 57-85. mol sorbed 1.605e-08 5.310e-08 2.244e-08 1.52e-07 1.596e-07 2.848e-07 5.146e-07 7.334e-07 9.740e-07 9.740e-07 9.740e-07 9.957e-07 9.957e-07 9.957e-07 9.957e-07 9.957e-07 9.957e-07 9.835e-07</td> <td></td>	4.4572 0.086632 D. Waite. 1992. Modeling of P. Duerden, ed. Alligator Riv loogy Organization (ANSTO U(VI)=Fertihydrite U(VI)=Fertihydrite U(VI)=Fertihydrite U(VI)=Fertihydrite U(VI)=Fertihydrite U(VI)=Fertihydrite U(VI)=1E-06 PCO2=035[=1e-3.5 atm 2:3407 1:3016 2:3437 1:5325 2:8:482 3:1:461 1:5325 2:8:482 3:1:461 1:7:4337 3:6:317 9:7:414 99:573 99:681 99:177 98:533	4.457:-06 8.663e-08 radionuclide sorption pro- err Analogue Project Ann. 57-85. mol sorbed 1.605e-08 5.310e-08 2.244e-08 1.52e-07 1.596e-07 2.848e-07 5.146e-07 7.334e-07 9.740e-07 9.740e-07 9.740e-07 9.957e-07 9.957e-07 9.957e-07 9.957e-07 9.957e-07 9.957e-07 9.835e-07	
	4.89 5.02 5.53 5.53	33.824 46.500 78.207 D. Waite. 1992. Modeling P. Duerden, ed. Alligator U(VT)=Ferrihydrife U(VT)=1E-06 5.001 5.3101 5.3101 5.3101 5.323 15.955 28.482 51.461 74.337 86.917 99.631 99.64 99.581	3.482e-05 4.650e-05 7.921e-05	199 I s in the	8.51 8.64	4.4572 0.086632 D. Waite, 1992, Modeling or P. Duerden, ed. Alfiegtor Ris Outpoy Organization (ANSTO U(VI)-Ferrihyddite U(VI)-1E-06 pCO2=-03% =1e-3.5 arm % sorthed 1.6046 5.3101 1.6046 5.3101 1.5955 2.8.482 5.442 5.4437 7.4.337 97.404 99.64 99.64 99.61 99.17 98.591 98.291	4 4572-06 8.6632-08 radionuclide sorption pro <i>err Analogue Project Ann.</i> 57-85. mol sorbed 1.6652-08 5.3102-08 2.244-08 1.5322-07 2.244-08 1.5322-07 2.244-08 1.5322-07 2.244-08 1.5322-07 9.4302-07 9.4302-07 9.9562-07 9.9562-07 9.9562-07 9.9562-07 9.9582-07 9.9582-07 9.9582-07 9.9582-07 9.9582-07 9.8352-07 9.8352-07	
	4.89 5.02 5.52 5.52 5.52 5.52 5.52 5.52 5.53 5.54 5.54 5.54 5.54 5.54 5.54 5.54 5.57 5.57 5.53 5.51 5.73 5.53 5.51 5.73 5.53 5.51 5.73 5.53 5.51 5.73 5.53 5.51 5.73 5.53 5.51 5.73 5.53 5.51 5.73 5.53 5.51 5.73 5.53 5.51 5.73 5.53 5.51 5.73 5.53 5.73 5.53 5.73 5.53 5.73 5.53 5.73	33.824 46.500 78.207 D. Waite. 1992. Modeling P. Duerden, ed. Altigator Oligo Organization (ANST U(VI)-Flerrihydrite U(VI)-FlE-06 5.001 2.2437 15.925 15.92	3.482e-05 4.650e-05 7.921e-05	199 I s in the	8.51 8.64 9.64 9.64 9.64 9.64 9.64 9.65 9.66 9.67 9.68 9.68 9.69 9.69 9.60 9.60 9.61 9.62 9.62 9.62 9.62 9.62 9.62 9.62 9.62 9.62 9.62 9.62 9.62 9.62 9.62 9.62 9.62 9.62 9.62 9.73 9.74 7.74 7.74 7.74 7.74	4.4572 4.4572 0.086632 D. Waite. 1992. Modeling of P. Ducrehen, ed, Allicator & Riv 0000000 (Vegnatazioni (ANSTO U(VI)-Fortihydrite U(VI)-Fortihydrite U(VI)-Fortihydrite 1.0046 1.0046 3.3101 1.2.3437 1.5.333 1.5.33 1.5.33 1.5.33 1.5.33 1.5.33 1.5.33 1.5.33 1.5.3	4 457:-06 8.663e-08 radionuclide sorption pro- err Analogue Project Ann. 57:-85. 	
	4.89 5.02 5.53 5.73 5.93 6.21 6.59 7.46 7.74	33.824 46.500 78.207 D. Waite. 1992. Modeling P. Duerden, ed. Alligator U(VT)=Ferrihydrite U(VT)=1E-06 5 sorthed 1.6046 5.3101 2.2437 15.935 28.482 51.461 14.337 36.917 94.297 97.404 99.64 99.533 99.64 99.541 99.551	3.482e-05 4.650e-05 7.921e-05 7.921e-05 of fallomuclife sorption processes River: Anningue Project Annual R (D):57-85. mol sorbed 1.605e-08 5.310e-08 5.310e-08 5.310e-08 5.310e-08 2.244e-08 1.532e-07 1.532e-07 1.532e-07 7.434e-07 7.434e-07 7.434e-07 7.434e-07 9.430e-07 9.9430e-07 9.963e-07 9.963e-07 9.958e-07 9.958e-07 9.958e-07 9.958e-07	199 I s in the	8.51 8.64 8.64	4.4572 4.4572 0.086632 D. Waite, 1992, Modeling of November 1992, Modeling of November 2000 Vigual 2000 Vig	4 457:-06 8.663e-08 radionuclide sorption pro err Analogue Project Ann. 57:85. 	
	4.89 5.02 5.53 5.53 5.57 5.53 5.57 5.53 5.57 5.53 5.57 5.53 5.57 5.53 5.57 5.53 5.57 5.53 5.57 5.53 5.73 5.55 5.73 5.55 5.73 5.55 5.73 5.55 5.73 5.55 5.73 5.55 5.73 5.55 5.73 5.55 5.73 5.55 5.73 5.57 5.73 5.55 5.73 5.74 7.74	33.824 46.500 78.207 2. Waite. 1992. Modeling P. Duerden, ed. Alligator. Didy Organization (ANST U(VI)-Ferrity drite U(VI)-Ferrity drite U(VI)-Ferrity drite U(VI)-Ferrity drite U(VI)-Ferrity drite 2.437 15.053 28.482 51.361 74.337 54.437 54.437 54.437 54.437 54.437 59.535 28.482 51.461 74.337 59.541 99.543 99.533 99.533 98.391 97.743 57.435 57.455	3.482e-05 4.650e-05 7.921e-05	199 I s in the	8.51 8.64 9.6 1 8.64 1 8.64 1	4.4572 4.4572 0.086632 D. Waite. 1992. Modeling of P. Ducrehen, ed, Allicator & Riv 0000000 (Vegnatazioni (ANSTO U(VI)-Fortihydrite U(VI)-Fortihydrite U(VI)-Fortihydrite 1.0046 1.0046 3.3101 1.2.3437 1.5.333 1.5.33 1.5.33 1.5.33 1.5.33 1.5.33 1.5.33 1.5.33 1.5.3	4 457:-06 8.663e-08 radionuclide sorption pro- err Analogue Project Ann. 57:-85. 	
	4.89 5.02 5.52 5.52 5.52 5.52 5.52 5.52 5.52 5.52 5.52 5.52 5.52 5.52 5.52 5.52 5.52 5.52 5.52 5.53 5.51 5.53 5.53 5.53 5.51 5.53 5.55 5.55	33.824 46.500 78.207 D. Waite. 1992. Modeling P. Duerden, ed. Alligator (U(V))-Ferrihydrite U(V))-Ferrihydrite U(V))- 1E-06 	3.482e-05 4.650e-05 7.921e-05 7.921e-05 of fallomuclife sorption processes River: Anningue Project Annual R (D):57-85. mol sorbed 1.605e-08 5.310e-08 5.310e-08 5.310e-08 5.310e-08 2.244e-08 1.532e-07 1.532e-07 1.532e-07 7.434e-07 7.434e-07 7.434e-07 7.434e-07 9.430e-07 9.9430e-07 9.963e-07 9.963e-07 9.958e-07 9.958e-07 9.958e-07 9.958e-07	199 I s in the	8.51 8.64 9.64 9.64 9.64 9.64 9.64 9.64 9.64 9.65 9.66 9.67 9.62 9.62	4.4572 0.086632 D. Waite. 1992. Modeling of P. Duerden, ed. Alliegtor Risology Organization (ANSTO Diegy Organization (ANSTO U(VI)=Ferdhydrite U(VI)=Ferdhydrite U(VI)=Ferdhydrite U(VI)=Ferdhydrite U(VI)=Ferdhydrite U(VI)=52:035 1.6046 5.3101 2.3437 15.323 15.323 15.4317 74.337 36.917 94.597 99.634 99.641 99.635 98.353 98.353 98.353 97.433 82.355 15.379 16.418	4 457:-06 8.663e-08 radionuclide sorption pro- ers Analogue Project Ann. 57.85. 	
weathered a	4.89 5.02 5.52 5.52 5.52 5.52 5.52 5.52 5.52 5.52 5.52 5.52 5.73 5.75 5.75 5.73 5.75 5.73 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75	33.824 46.500 78.207 D. Waite. 1992. Modeling P. Duerden, ed. Alfigator. Diego Organization (ANST U(VI)-Ferrihydrite U(VI)-Ferrihydrite U(VI)-Ferrihydrite 1.6046 5.3101 2.2437 15.923 15.925 28.482 51.461 74.437 15.925 28.482 51.461 74.437 99.573 39.573 99.573 15.925 15.927 15.925 15.927 15.925 15.927 15.925 15.925 15.927 15.925 15.927 15.925 15.927 15.925 15.927 15.927 15.925 15.927 15	3.482e-05 4.650e-05 7.921e-05 of radionuclide sorption processos <i>Rever Analogue Project Annual R</i> 0.057-85. 	199 I s in the	8.51 8.64 9.64 9.64 9.64 9.65 9.64 9.64 9.65 9.65 9.66 9.67 9.67 9.68 9.67 9.67 9.67 9.67 9.67 9.67 9.67 9.62 10.00000000000000000000000000000000000	4.4572 0.08632 D. Waite. 1992. Modeling of P. Duerden, ed. Alligator Riv Duerden, ed. Alligator Riv Duerden, ed. Alligator Riv U/VIn-Ferrihydrite U/VIn-Ferrihydrite U/VIn-Ferrihydrite U/VIn-Ferrihydrite U/VIn-Ferrihydrite U/VIn-Ferrihydrite U/VIn-Ferrihydrite U/VIn-Ferrihydrite 10/VIN-Ferrihydrite 110/VIN-Ferrihydrite 110/VIN-Ferrihydr	4 457:-06 8.663e-08 radionuclide sorption pro <i>ert Analogue Project Ann.</i> 57-85. 1.605e-08 2.244e-08 1.530e-08 2.244e-08 1.532e-07 2.448e-07 5.146e-07 2.448e-07 5.146e-07 9.430e-07 9.430e-07 9.430e-07 9.958e-07 9.958e-07 9.958e-07 9.958e-07 9.958e-07 9.958e-07 9.958e-07 9.958e-07 9.958e-07 9.958e-07 1.625e-08 8.554e-07 1.625e-08 8.554e-07 1.625e-08 8.554e-07 1.625e-08 8.554e-07 1.625e-08 8.554e-07 1.625e-08 8.554e-07 1.625e-08 8.554e-07 1.625e-08 8.554e-07 1.625e-08 8.554e-07 1.625e-08 1.625e-08 1.635e-08 1.	
	4.89 5.02 5.52 5.52 5.52 5.52 5.52 5.52 5.52 5.52 5.52 5.52 5.52 5.52 5.52 5.52 5.51 5.53 5.51 5.53 5.51 5.53 5.51 5.53 5.51 5.53 5.51 5.53 5.51 5.53 5.51 5.53 5.51 5.53 5.51 5.53 5.51 5.53 5.51 5.53 5.51 5.53 5.51 5.53 5.51 5.53 5.51 5.53 5.51 5.53 5.54 5.51 5.53 5.53 5.54 5.51 5.53 5.54 5.51 5.53 5.53 5.54 5.51 5.53 5.53 5.54 5.54 5.53 5.54	33.824 46.500 78.207 D. Waite. 1992. Modeling P. Duerden, ed. Alligator U(VT)=Ferrihydrife U(VT)=Ferrihydrife 1.0VA6 5.3101 2.2437 15.323 15.955 28.482 51.461 14.337 86.917 99.631 99.64 99.543 99.541 99.541 99.543 99.541 99.541 99.543 99.541 99.543 99.541 99.543 99.543 99.543 99.541 99.543 99.543 99.541 99.543 99.543 99.543 99.543 99.543 99.543 99.543 99.543 99.543 99.543 99.543 99.545 99.553 5.579 9.535 5.579 1.6198 2.5025 5.5799 1.6198 2.5025 4.500 7.5000 7.50000 7.50000 7.5	3.482e-05 4.650e-05 7.921e-05 of radiomuclide swption processes River Analogue Project Annual R (D):57-85 	199 I s in the	8.51 8.64 9.64 9.64 9.64 9.65 9.64 100 110 110 110 110 1111 1111 1111 1111 1111 1111 1111	4.4572 4.4572 0.086632 0.086632 Vaile. 1992. Modeling of P. Durchen, ed, Allegator & Modeling of Vi/Vi-Fereihydrite U(VI) = 1E-06 PC2=-035(=1e-3.5 am	4 457:-06 8.663e-08 radionuclide sorption pro <i>ert Analogue Project Ann.</i> 57:-55. 	
	4.89 5.02 5.52 5.52 5.52 5.52 5.52 5.52 5.52 5.52 5.52 5.52 5.73 5.75 5.75 5.73 5.74 5.74 7.74	33.824 46.500 78.207 D. Waite. 1992. Modeling P. Duerden, ed. Alfigator. Diego Organization (ANST U(VI)-Ferrihydrite U(VI)-Ferrihydrite U(VI)-Ferrihydrite 1.6046 5.3101 2.2437 15.923 15.925 28.482 51.461 74.437 15.925 28.482 51.461 74.437 99.573 39.573 99.573 15.925 15.927 15.925 15.927 15.925 15.927 15.925 15.925 15.927 15.925 15.927 15.925 15.927 15.925 15.927 15.927 15.925 15.927 15	3.482e-05 4.650e-05 7.921e-05 of radionuclide sorption processos <i>Rever Analogue Project Annual R</i> 0.057-85. 	199 I s in the	8.51 8.64 9.6 1 8.64 1 8.64 1	4.4572 0.086632 D. Waite. 1992. Modeling of P. Duerden, ed. Alficiator Riv obusy Organization (ANSTO U(VI)-Ferrihydrite U(VI)-Ferrihydrite Sasta 51.410 74.337 96.51 99.61 99.631 99.61 99.631 99.631 99.64 99.651 99.617 99.618 <td>4 457:-06 8.663e-08 radionuclide sorption pro err Analogue Project Ann. 57:55. </td> <td></td>	4 457:-06 8.663e-08 radionuclide sorption pro err Analogue Project Ann. 57:55. 	
	4.89 5.02 5.52 5.52 5.52 5.52 5.52 5.52 5.52 5.52 5.52 5.52 5.52 5.52 5.52 5.52 5.52 5.52 5.51 5.73 5.51 5.52 6.88 7.46 7.74 7.98 8.63 8.94 9.22 9.62 p.CO2=1%=1e-2 atm pl(33.824 46.500 78.207 78.207 D. Waite. 1992. Modeling P. Duerden, ed. Alligator. Diego Organizzini (ANST U(VI)-Ferrihydrite U(VI)-Ferrihydrite U(VI)-Ferrihydrite U(VI)-Ferrihydrite 2.2437 15.935 2.84.82 2.2437 15.935 2.84.82 2.4337 15.935 2.84.82 51.461 74.337 86.917 94.297 99.64 99.573 99.64 99.573 99.64 99.573 99.64 99.573 99.64 99.573 99.64 99.573 99.64 99.573 99.64 99.573 99.64 99.573 99.64 99.573 99.64 99.573 99.64 99.573 99.64 99.573 99.64 99.573 99.64 99.573 93.507 94.297 95.291 97.423 83.535 55.579 1.6198 2.5026 1.8388 95.5070 1.6198	3.482e-05 4.650e-05 7.921e-05 of radionuclide sorption processes <i>Rivers Analogue Project Annual R</i> 0.057-85. 	199 I s in the	8.51 8.64 9.64 9.64 9.64 9.65 9.64 100 110 110 110 110 1111 1111 1111 1111 1111 1111 1111	4.4572 4.4572 0.086632 0.086632 Vaile. 1992. Modeling of P. Durchen, ed, Allegator & Modeling of Vi/Vi-Fereihydrite U(VI) = 1E-06 PC2=-035(=1e-3.5 am	4 457:-06 8.663e-08 radionuclide sorption pro <i>ers</i> Analogue Project Ann. 57: 85. 	
	4.89 5.02 5.52 5.52 5.52 5.52 5.52 5.52 5.52 5.52 5.73 5.75 5.73 5.75 5.73 5.75 5.73 5.75 5.73 5.72 5.73 5.75 5.73 5.75 5.73 5.75	33.824 46.500 78.207 D. Waite. 1992. Modeling P. Duerden, ed. Alligator. Ologo Organization (ANST U(VI)-Ferrihydrike U(VI)-Ferrihydrike U(VI)-Ferrihydrike 5.3101 2.2437 15.053 28.482 51.461 74.337 55.353 28.482 51.461 74.337 55.353 28.482 51.461 74.337 59.573 39.482 51.461 74.337 59.573 39.479 99.573 39.573 99.573 35.979 1.6198 2.5026 1.8388 8.1889	3.482e-05 4.650e-05 7.921e-05 of radionuclide sorption processo <i>Revert Analogue Project Annual R</i> 0.057-85. 	199 I s in the	8.51 8.64 8.64 9.7 9.8 9.8 9.9 9.9 9.9 9.9 9.9 9.9 9.9 9.9 9.9 9.9 9.9 9.9 9.9 9.9 9.1 9.22 9.6 9.17 9.8 9.22 9.4 9.4 9.4 1.5 1.6 9.22 9.22 9.22 9.22 9.22 9.22 9.22 9.22 9.22 9.22 9.22 9.22 9.22 9.22 9.22 9.22 9.22 9.22 9.22 9.22	4.372 0.086632 D. Waite. 1992. Modeling of P. Duerden. ed. Alliquor RN book on the state of	4.457:-06 8.663e-08 radionuclide sorption pro <i>err Analogue Project Ann.</i> 57:85. 	
	4.89 5.02 5.52 5.52 5.52 5.52 5.52 5.52 5.52 5.52 5.52 5.52 5.52 5.52 5.52 5.52 5.52 5.52 5.51 5.73 5.51 5.52 6.88 7.46 7.74 7.98 8.63 8.94 9.22 9.62 p.CO2=1%=1e-2 atm pl(33.824 46.500 78.207 78.207 D. Waite. 1992. Modeling P. Duerden, ed. Alligator. Diego Organizzini (ANST U(VI)-Ferrihydrite U(VI)-Ferrihydrite U(VI)-Ferrihydrite U(VI)-Ferrihydrite 2.2437 15.935 2.84.82 2.2437 15.935 2.84.82 2.4337 15.935 2.84.82 51.461 74.337 86.917 94.297 99.64 99.573 99.64 99.573 99.64 99.573 99.64 99.573 99.64 99.573 99.64 99.573 99.64 99.573 99.64 99.573 99.64 99.573 99.64 99.573 99.64 99.573 99.64 99.573 99.64 99.573 99.64 99.573 99.64 99.573 93.507 94.297 95.291 97.423 83.535 55.579 1.6198 2.5026 1.8388 95.5070 1.6198	3.482e-05 4.650e-05 7.921e-05 of radionuclide sorption processes <i>Rivers Analogue Project Annual R</i> 0.057-85. 	199 I s in the	8.51 8.64 9.6 18.64 19.6 19.6 19.6 19.7 19.8 19.8 10.1 10.2 10.1 10.2 10.2 10.3 10.3 10.3 10.3 10.3 10.3 10.3 10.3 10.3 10.3 10.3 10.3	4.4572 0.086632 D. Waite. 1992. Modeling of P. Duerden, ed. Allicator Riv Duelogy Organization (ANSTO U(VI)-Ferrihydrite U(VI)-Ferrihydrite U(VI)-Ferrihydrite U(VI)-Ferrihydrite U(VI)-Ferrihydrite U(VI)-Ferrihydrite U(VI)-Ferrihydrite 1000 23.33 1.6046 3.3101 2.3437 15.323 31.461 7.4.337 36.917 99.651 99.651 99.651 99.651 99.651 99.651 9.9.553 35.979 1.6198 2.9026 1.8388 %swrbed 0.6459 0.0459 2.071 70.678 98.291	4 457:-06 8.663e-08 radionuclide sorption pro <i>ert Analogue Project Ann.</i> 57:-85. 	
	4.89 5.02 5.52 5.52 5.52 5.52 5.52 5.52 5.52 5.53 5.54 5.54 5.75	33.824 46.500 78.207 78.207 D. Waite. 1992. Modeling P. Duerden, ed. Altigator Oligo Organization (ANST U(VI)=EE-06 U(VI)=EE-06 5.001 2.2437 15.925 15.925 15.925 15.925 15.925 15.925 15.925 15.461 74.337 90.631 99.573 99.573 99.573 99.573 99.573 99.573 99.573 15.925	3.482e-05 4.650e-05 7.921e-05 7.921e-05 0f radiomuclisk surption processes Rever Analogue Project Annual R CO-57-85. 	199 I s in the	8.51 8.64 8.64 9.7 9.8 9.8 9.9 9.9 9.9 9.9 9.9 9.9 9.9 9.9 9.9 9.9 9.9 9.9 9.9 9.9 9.1 9.22 9.6 9.17 9.8 9.22 9.4 9.4 9.4 1.5 1.6 9.22 9.22 9.22 9.22 9.22 9.22 9.22 9.22 9.22 9.22 9.22 9.22 9.22 9.22 9.22 9.22 9.22 9.22 9.22 9.22	4.372 0.086632 D. Waite. 1992. Modeling of P. Duerden. ed. Alliquor RN book of the state of	4 457:-06 8.663e-08 radionuclide sorption pro err Analogue Project Ann. 57:85. 	
	4.89 5.02 5.52 5.52 5.52 5.52 5.52 5.52 5.52 5.52 5.52 5.52 5.52 5.52 5.52 5.52 5.52 5.52 5.51 5.57 5.57 5.57 5.57 5.57 5.51 5.57 5.51 5.52 6.88 7.46 7.74 7.99 8.63 8.94 9.22 9.62 pC02=1%=1e-2 atm pli 3.68 4.25 4.25 4.25 5.51 5.51 5.51 5.51 5.51 5.51 5.51 5.51 5.51 5.51 5.52 5.52 5.52 5.52 5.52 5.53 5.53 5.51 5.51 5.51 5.51 5.51 5.51 5.52 5.52 5.52 5.52 5.52 5.52 5.53 5	33.824 46.500 78.207 78.207 78.207 D. Waite. 1992. Modeling P. Duerden, ed. Alligator. U(VI)=Ferrihydrite U(VI)=Ferrihydrite U(VI)=Ferrihydrite 2.2437 15.023 15.035 28.482 2.2437 15.323 15.053 28.482 51.461 74.337 86.917 94.297 99.64 99.543 99.64 99.543 99.64 99.573 99.65 95.60	3.482e-05 4.650e-05 7.921e-05 of radionuclide sorption processes <i>Rivers Analogue Project Annual</i> R 0.057-85. 2.0057-85. 2.0057-85. 2.244e-08 1.532e-07 1.596e-07 2.244e-08 1.532e-07 2.244e-08 1.532e-07 2.244e-08 1.532e-07 2.244e-08 1.532e-07 2.244e-08 1.532e-07 2.244e-07 2.244e-07 2.244e-07 2.244e-07 2.444e-07 2.444e-07 2.444e-07 2.444e-07 2.444e-07 2.444e-07 2.444e-07 2.444e-07 2.444e-07 2.444e-07 2.444e-07 2.444e-07 2.444e-07 2.444e-07 2.444e-07 2.444e-07 2.444e-07 2.444e-07 2.444e-07 2.545e-07 2.545e-07 2.545e-07 2.545e-07 2.545e-07 2.545e-07 2.545e-07	199 I s in the	8.51 8.64 9.64 9.64 9.64 9.65 9.64 9.65 9.67 9.68 9.69 9.69 9.60 9.72 9.60 9.74 9.75 9.77 3.83 9.77 3.83 4.08 4.25 4.76 5.01 5.31 5.73 5.73 5.73 5.73 5.73 5.74 5.75 5.73 5.74 5.74 5.74 5.74 5.74 5.74 5.74 5.74 5.74 5.74 5.74 6.74 7.74 7.78 8.27 8.63	4.4572 0.08632 D. Waite. 1992. Modeling of P. Duerden, ed. Alficator Riv obey Organization (ANSTO U(VI)-Ferrihydrite U(VI)-Ferrihydrite U(VI)-Ferrihydrite U(VI)-Ferrihydrite U(VI)-Ferrihydrite U(VI)-Ferrihydrite U(VI)-Ferrihydrite U(VI)-Ferrihydrite U(VI)-Ferrihydrite 1.046 5.3101 2.3437 15.955 23.482 31.461 7.4.337 96.517 99.681 99.733 99.681 99.611 99.633 1.8388 31.502 1.8388 90.6459 90.426 90.829 90.829 90.829 90.829 90.829 90.829 90.829 90.829 90.829 90.829 90.829 90.829 90.829 90.829	4 457:-06 8.663e-08 radionuclide sorption pro <i>err Analogue Project Ann.</i> 57:85. 1.655e-08 2.244e-08 1.530e-08 2.244e-08 1.530e-08 2.244e-08 1.532e-07 2.448e-07 2.448e-07 2.448e-07 2.448e-07 2.448e-07 9.450e-07 9.450e-07 9.450e-07 9.450e-07 9.958e-07 9.959e-08 1.339e-08 1.339e-08 1.339e-08 9.839e-07 9.839e-07 9.839e-07 9.839e-07 9.839e-07 9.839e-07 9.839e-07 9.839e-07 9.839e-07 9.839e-07 9.839e-07 9.839e-07 9.839e-07 9.839e-07 9.9582e-07	
	4.89 5.02 5.52 5.52 5.52 5.52 5.52 5.52 5.52 5.53 5.54 5.54 5.75	33.824 46.500 78.207 78.207 D. Waite. 1992. Modeling P. Duerden, ed. Altigator Oligo Organization (ANST U(VI)=EE-06 U(VI)=EE-06 5.001 2.2437 15.925 15.925 15.925 15.925 15.925 15.925 15.925 15.461 74.337 90.631 99.573 99.573 99.573 99.573 99.573 99.573 99.573 15.925	3.482e-05 4.650e-05 7.921e-05 7.921e-05 0f radiomuclisk surption processes Rever Analogue Project Annual R CO-57-85. 	199 I s in the	8.51 8.64 9.64 9.64 9.64 9.64 10 11 12 12 13 14 15 16 17 18 18 19 19 10 10 10 10 10 10 10 10 11 12 13 14 15 15 15 15 15 15 15 15 15 15 15 16 16 16 16 16 16 17 18 18 18	4.4572 0.086632 D. Waite. 1992. Modeling of P. Duerden, ed. Alliegtor Riv loogy Organization (ANSTO U(VI)=Fertihydrite U(VI)=Fertihydrite U(VI)=Fertihydrite U(VI)=Fertihydrite U(VI)=Fertihydrite U(VI)=52:035 1 6046 5.3101 2.3437 15.323 3.442 3.1461 7.4.337 36.317 94.537 99.631 99.573 99.631 99.535 3.5.979 1.6188 2.5026 1.3388 99.453 99.453 99.353 99.353 99.459 91.335 99.459 99.459 99.459 99.459 99.459 99.459 99.459 99.459 99.459 99.426 99.426 99.427 99.426	4 457:-06 8.663e-08 radionuclide sorption pro <i>err Analogue Project Ann.</i> 57:85. 	
	4.89 5.02 5.53 5.55 5.53 5.54	33.824 46.500 78.207 78.207 2.502 2.502 4.6500 78.207 2.502 4.6500 4.6500 78.207 2.502 4.6046 5.3101 2.2437 15.923 15.955 28.482 51.461 74.337 75.923 15.955 28.482 51.461 74.337 75.955 28.482 51.461 74.337 75.955 28.482 51.461 74.337 75.955 28.482 51.461 74.337 75.955 28.482 51.461 74.337 75.955 28.482 51.461 74.337 75.955 28.482 51.461 74.337 75.955 28.482 51.461 74.337 75.955 75.955 75.955 75.9577 75.9577 75.9577 75.9577 75.9577 75.9577 75.9577 75.95777 75.95777 75.95777 75.95	3.482e-05 4.650e-05 7.921e-05	199 I s in the	8.51 8.64 8.64 9.6 9.7 Aspressor of the Keonspara ore holy. Payne et al. (1992) Figure 5 (apge 74) Aspressor of 200 m2/g (assumed) 0.1M NaNO3 0.1M NaNO3 MV = 1E-3 M Fe pH 3.06 3.27 3.83 4.08 4.03 4.25 4.34 4.76 5.01 5.24 5.51 5.73 5.93 6.21 6.51 6.89 7.44 7.74 7.98 8.29 8.63 8.94 9.62 MV = 2.1E-2 M Fe pH 3.84 4.15 4.45 4.472 9.62 MV = 2.1E-2 M Fe pH 3.84 4.15	4.4572 0.08632 D. Waite. 1992. Modeling of P. Duerden, ed. Alficator Riv obey Organization (ANSTO U(VI)-Ferrihydrite U(VI)-Ferrihydrite U(VI)-Ferrihydrite U(VI)-Ferrihydrite U(VI)-Ferrihydrite U(VI)-Ferrihydrite U(VI)-Ferrihydrite U(VI)-Ferrihydrite U(VI)-Ferrihydrite 1.046 5.3101 2.3437 15.955 23.482 31.461 7.4.337 96.517 99.681 99.733 99.681 99.611 99.633 1.8388 31.502 1.8388 90.6459 90.426 90.829 90.829 90.829 90.829 90.829 90.829 90.829 90.829 90.829 90.829 90.829 90.829 90.829 90.829	4 457:-06 8.663e-08 radionuclide sorption pro err Analogue Project Ann. 57:-85. 	
	4.89 5.02 5.52 5.52 5.52 5.52 5.52 5.52 5.52 5.52 5.52 5.52 5.52 5.51 5.57 5.51 5.51 5.51 5.51 5.51 5.51 5.51 5.73 5.53 6.21 6.51 6.89 7.36 7.37 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7	33.824 46.500 78.207 78.207 D. Waite. 1992. Modeling P. Duerden, ed. Altigator, Oligo Organization (ANST U(VI)=EE-06 5.001 U(VI)=E-06 5.001 1.6046 5.301 2.2437 15.523 15.525 28.482 51.461 74.437 15.525 28.482 51.461 74.437 99.634 99.573 30.977 99.633 99.573 15.955 28.482 51.461 74.437 99.634 99.573 30.977 99.533 35.979 1.6198 2.5026 1.8388 97.423 3.1389 91.732 99.674 99.674 99.407 99.407 99.407 99.407 99.407 99.407 99.407 99.407 99.407 99.407 99.407 99.407 99.407 99.407 99.407 99.407 99.407 99.407 99.407 1.799 99.407 1.579 1	3.482e-05 4.650e-05 7.921e-05 7.921e-05 7.921e-05 7.921e-05 7.921e-05 7.921e-05 7.921e-05 7.921e-05 7.921e-05 7.921e-05 7.921e-05 7.921e-07 7.921e-07 7.921e-07 7.921e-07 9.921e-07 9.921e-07 9.921e-07 9.921e-07 9.921e-07 9.9257e-07	199 I s in the	8.51 8.64 9.64 9.64 9.64 9.64 9.64 9.64 9.64 9.65 9.67 9.67 9.67 9.67 9.67 9.67 9.67 9.67 9.67 9.67 9.67 9.62 9.64 9.78 9.62 9.748 9.748 9.748 9.748 9.749 9.740 9.740 9.740 9.740 9.740 9.740 9.740 9.740 9.740 9.740 9.740 9.740 9.740 9.740 9.740 9.740 9.740 9.740 9.740	4.4572 0.086632 D. Waite. 1992. Modeling of P. Duerden, ed. Allicator Riv Duelogy Organization (ANSTO U(VI)=Fertihydrite U(VI)=1E-06 U(VI)=1E-06 U(VI)=1E-06 1.0046 3.3101 2.3437 15.323 15.323 15.323 15.323 15.323 15.461 7.4.337 36.4917 99.634 99.64 99.635 98.535 35.5797 1.8388 35.355 35.079 1.8388 2.4071 0.6459 9.0459 9.0459 9.0459 9.0459 9.0459 9.0459 9.0459 9.0459 9.0459 9.0459 9.0459 9.0459 9.0459 9.0459 9.0459 9.0459 9.0459	4 457:-06 8.663e-08 radionuclide sorption pro <i>ert Analogue Project Ann.</i> 57.85. 	
	4.89 5.02 5.53 5.57 5.53 5.55 5.53 5.54	33.824 46.500 78.207 78.207 2.502 2.502 4.6500 78.207 2.502 4.6500 4.6500 78.207 2.502 4.6046 5.3101 2.2437 15.923 15.955 28.482 51.461 74.337 75.923 15.955 28.482 51.461 74.337 75.955 28.482 51.461 74.337 75.955 28.482 51.461 74.337 75.955 28.482 51.461 74.337 75.955 28.482 51.461 74.337 75.955 28.482 51.461 74.337 75.955 28.482 51.461 74.337 75.955 28.482 51.461 74.337 75.955 75.955 75.955 75.9577 75.9577 75.9577 75.9577 75.9577 75.9577 75.9577 75.95777 75.95777 75.95777 75.95	3.482e-05 4.650e-05 7.921e-05	199 I s in the	8.51 8.64 8.64 9.6 9.7 Aspressor of the Keonspara ore holy. Payne et al. (1992) Figure 5 (apge 74) Aspressor of 200 m2/g (assumed) 0.1M NaNO3 0.1M NaNO3 MV = 1E-3 M Fe pH 3.06 3.27 3.83 4.08 4.03 4.25 4.34 4.76 5.01 5.24 5.51 5.73 5.93 6.21 6.51 6.89 7.44 7.74 7.98 8.29 8.63 8.94 9.62 MV = 2.1E-2 M Fe pH 3.84 4.15 4.45 4.472 9.62 MV = 2.1E-2 M Fe pH 3.84 4.15	4.4572 0.08632 D. Waite. 1992. Modeling or P. Duerden, ed. Alficator Rivology Organization (ANSTO) U/VI) = 1E-06 D/CO2 = JJ33 = 1e-3.5 arm -1.6446 5.3101 2.3437 15.935 23.442 5.1461 74.337 46.917 99.641 99.7444 99.753 99.651 99.611 1.6198 2.5026 1.8388 99.642 99.773 99.833 99.642 99.77 99.783 99.79 99.77 99.78 99.77 99.78 99.77 99.78 99.77 99.78 99.77 99.78 99.77 99.78 99.78 99.78 99.78 99.741 99.78 <td>4 457:-06 8.663e-08 radionuclide sorption pro <i>err Analogue Project Ann.</i> 57:85. </td> <td></td>	4 457:-06 8.663e-08 radionuclide sorption pro <i>err Analogue Project Ann.</i> 57:85. 	
	4.89 5.02 5.52 5.52 5.52 5.52 5.52 5.52 5.52 5.52 5.52 5.52 5.51 5.73 5.57 5.51 5.57 5.51	33.824 46.500 78.207 78.207 2. Waite. 1992. Modeling P. Duerden, ed. Alligator. U(VI)=Ferrihydrite U(VI)=Ferrihydrite U(VI)=Ferrihydrite 2.437 15.036 2.437 15.323 15.035 2.8.482 2.437 15.323 15.935 2.8.482 51.461 74.337 86.917 99.64 99.531 99.64 99.543 99.64 99.533 99.681 99.547 99.542 1.6198 2.5026 1.8388 7.5079 1.6198 2.5026 1.8388 7.5079 9.5806 99.407 99.5306 99.407 99.5306 99.407 99.5306 99.407 99.5306 99.407 99.5306 99.407 99.5306 99.407 99.5306 99.328 99.530 99.530 99.5306 99.407 99.5306 99.407 99.5306 99.407 99.5306 99.407 99.5306 99.427 95.506 94.47 95.506 94.47 95.506 94.47 95.506 94.47 95.506 94.47 95.506 94.47 95.506 94.47 95.506 94.47 95.506 94.47 95.506 94.47 95.506 94.47 95.506 94.47 95.506 94.47 95.506 94.47 95.506 95.506 95.506 94.57 95.506 94.57 95.506 94.57 95.506 94.57 95.506 94.57 95.506 94.57 95.506 94.57 95.506 94.57 95.506 94.57 95.506 94.57 95.506 95.506 94.57 95.506 95.50	3.482e-05 4.650e-05 7.921e-05	199 I s in the	8.51 8.64 9.64 9.64 9.65 9.64 9.65 9.67 9.68 9.69 9.69 9.60 9.72 9.72 9.74 9.75 9.77 9.77 9.77 9.77 9.77 9.77 9.77 9.77 9.77 9.77 9.77 9.77 9.77 9.77 9.77 9.77 9.83 9.77 9.77 9.77 9.78 9.74 9.74 9.74 9.74 9.74 9.74 9.74 9.74 9.74 9.74 9.74 9.74 9.74	4.4572 0.086632 D. Waite. 1992. Modeling of P. Duerden, ed. Allicator Riv Duelogy Organization (ANSTO U(VI)=Fertihydrite U(VI)=1E-06 U(VI)=1E-06 U(VI)=1E-06 1.0046 3.3101 2.3437 15.323 15.323 15.323 15.323 15.323 15.461 7.4.337 36.4917 99.634 99.64 99.635 98.535 35.5797 1.8388 35.355 35.079 1.8388 2.4071 0.6459 9.0459 9.0459 9.0459 9.0459 9.0459 9.0459 9.0459 9.0459 9.0459 9.0459 9.0459 9.0459 9.0459 9.0459 9.0459 9.0459 9.0459	4 457:-06 8.663e-08 radionuclide sorption pro <i>ert Analogue Project Ann.</i> 57.85. 	


this location. The redacted material (4 graphs) is from the following reference:

232		8 8833883333388888888888888888888888888	3 88888888											233
		B888338562838662838866388666465668868		Uranium (VI) Sorption Bindin	ng Constants	1974-1976 (1979) (1979) (1979) (1979) (1979) (1979) (1979) (1979) (1979) (1979) (1979) (1979) (1979) (1979) (19	na ana amin'ny sorana			0.000000000000000000000000000000000000				na a sense na mana na mana na mana a sense a sense na mana na m
3/26/45	່ ເຊິ່ງ ເຊິ່ງ		66666666	Monodentate, mononuclear con	mpounds									8/26/45
			NOT CONTRACT OF CO	Solid: Ferrihydrite A _{sp} : 600 m ² /g			Rel Error (p) Abs Error (p	H): 0.05		Ionic Strengt N _s = 2.31 sit	th (electrolyte): 0.	1 NaNO3		(32)
. –	Ś\$ _			Data Source: Payne et al. (1 Concentration: [U(VI)] = 1E	1992) E 8 M		Rel Error (ra	dionuclide): 0.10			0.089 g/L HFO			
Z NAROWSKI W W W W W W W W W W W W W W W W W W W		చ సం		Fig 1.1	E-8 M	DLM	Abs Error (r	adionuclide): 1.0E			Т —			janen maan kaan kaan kaan kaan kaan kaan kaa
	DBLMM	- 033	E ST		Log K. = 7.2			Log K, = 7.35	CCM		Log K. = 6.00	TLM		
		-	75. 4-2 75. 4-2	Bindut. 8	$\log K_{-} = -8.$.93		$Log K_{-} = -8.4$	5		Log K_ = -10	.00	CX	ward
			Y Y								$\begin{array}{l} \text{Log } \text{K}_{\text{Cat}} = -7.\\ \text{Log } \text{K}_{\text{An}} = 8.4 \end{array}$	3		3 - 90 - 90 - 90 - 90 - 90 - 90 - 90 - 9
					Log K	V _Y	σ _{Log K}	Log K	Vy	σ _{Log K}	Log K	Vy	б _{L08 К}	
				XO-UO ₂ *	2.80	0.75	.0533	3.15	0.81	.0541	-2.80	19.4	.0388	
An Algorithm and a stand as		20100001252 201000001252 201000001252 201000001252 201000001252 201000001252 201000001252 20100001252 20100001252 2010000000000		XOH-UO ₂ ²⁺ XO-UO ₂ OH ^o	9.52	2.1	.0449	10.54	0.61	.0517	4.92	22.4	.0387	
· · · · · · · · · · · · · · · · · · ·				• XOH-UO2OH*	-3.91	0.75	.0635	-4.25	0.81	.0566	-7.15	1.4 2.0	.0464	•
	1000 1000			XO-UO ₂ (OH) ₂	-10.63	5.9	.0752	-11.64	1.8	.0592	-0.38	1.8	.0434	
····································	88889999999999999999999999999999999999	8882328464553289894758464444488546688		XOH-UO2(OH)2°	-3.91	2.8	.0635	-4.25	1.2	.0566	-3.75	1.5	.0593	
				XOH ₂ -UO ₂ (OH) ₂ *	2.80	0.75	.0533	3.15	0.81	.0541	3.98	1.2	.0570	-
		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		XOH-UO2(OH)3.	-10.63	5.9	.0752	-11.64	1.8	.0592	-8.06	5.6	.0742	
2	-	8 888 888 888888888 	NC2-1 G	XOH ₂ -UO ₂ (OH) ₃ °	-3.91	2.8	.0635	-4.25	1.2	.0566	-0.33	5.1	.0726	
				XOH-UO ₂ (OH) ₄ ²⁻	-17.34	9.3	.0887	-19.03	2.4	.0620	-12.81	10.9	.0956	
Desam	· · · · · · · · · · · · · · · · · · ·			XOH ₂ -UO ₂ (OH) ₄	-10.63	5.9	.0752	-11.64	1.8	.0592	-4.64	9.9	.0916	
Landard Contraction		-			10000000000000000000000000000000000000				× 4000000000000000000000000000000000000				****	
			* *											
			w2.	Uranium (VI) Sorption Binding Monodentate, mononuclear con							******			
	,			Solid: Ferrihydrite			Rel Error (pl			Ionic Strength	h (electrolyte): 0.1	NaNO		
				A _{sp} : 600 m ² /g Data Source: Payne et al. (19	992)		Abs Error (pl			$N_s = 2.31$ site	es/nm ² 0.089 g/L HFO	1111103	ľ	
				Concentration: [U(VI)] = 1E-	-6 M			dionuclide): 1.0E	10	10 11 10				
*****	00 00 00 00 00 00 00 00 00 00	00050 00250 000 00	8000 8000 8000 8000 8000 8000 8000 800	fig 1.2		DLM			ССМ			TLM		X
	•	88888888888282828282828288888888888888		Bindut.4	Log K. = 7.29 Log K_ = -8.9			Log K ₊ = 7.35 Log K __ = -8.45	;		Log K. = 6.00 Log K_ = -10.0	00	(DR)	
			400-000								$Log K_{cm} = -7.6$	i6	/ DKn	
											LOG NA. ~ 8.42	,		
en a na fala da anticipada da 1990 da fala da anticipada na manana a seria da fala da fala da mandra da antici		6 8			Log K	Vy	σ _{Log K}	Log K	Vy	σ _{L∘g K}	$Log K_{An} = 8.43$ $Log K$	v _r		
				X0-U0 ₂ *	Log K 2.58	V _Y 33.6	σ _{Log K} .0304	Log K 2.94	V _Y 33.7	σ _{Log K} .0308	1 ·····		σ _{Log K} .0229	
		8 88 22 224844444		XOH-UO22+		4			V _Y 33.7 31.5		Log K	V _Y	$\sigma_{Log K}$	
		1	HAT THE COOK TO TH	XOH-UO2 ²⁺ XO-UO2OHe	2.58 9.06 -4.07	33.6 33.7 42.6	.0304 .0210 .0425	2.94		.0308	Log K -4.01	V _Y 73.1	σ _{Log K} .0229	
		1 1 <td></td> <td>XOH-UQ₂²⁺ XO-UQ₂OH[•] XOII-UQ₂OII[•]</td> <td>2.58 9.06 -4.07 2.58</td> <td>33.6 33.7 42.6 33.6</td> <td>.0304 .0210 .0425 .0304</td> <td>2.94 10.30 -4.44 2.94</td> <td>31.5 36.0 33.7</td> <td>.0308 .0281 .0336 .0308</td> <td>Log K -4.01 3.62 -7.49 0.21</td> <td>V_Y 73.1 75.7 31.4 35.2</td> <td>σ_{Log K} .0229 .0240</td> <td></td>		XOH-UQ ₂ ²⁺ XO-UQ ₂ OH [•] XOII-UQ ₂ OII [•]	2.58 9.06 -4.07 2.58	33.6 33.7 42.6 33.6	.0304 .0210 .0425 .0304	2.94 10.30 -4.44 2.94	31.5 36.0 33.7	.0308 .0281 .0336 .0308	Log K -4.01 3.62 -7.49 0.21	V _Y 73.1 75.7 31.4 35.2	σ _{Log K} .0229 .0240	
		1 1 <td>HAT THE COOK TO TH</td> <td>XOH-UO₂²⁺ XO-UO₂OH* XOII-UO₂OH* XO-UO₂(OH)₂.</td> <td>2.58 9.06 -4.07 2.58 -10.85</td> <td>33.6 33.7 42.6 33.6 50.4</td> <td>.0304 .0210 .0425 .0304 .0569</td> <td>2.94 10.30 -4.44 2.94 -11.81</td> <td>31.5 36.0 33.7 38.2</td> <td>.0308 .0281 .0336 .0308 .0366</td> <td>Log K -4.01 3.62 -7.49 0.21 -11.61</td> <td>V_Y 73.1 75.7 31.4 35.2 37.6</td> <td>σ_{Leg K} .0229 .0240 .0230 .0228 .0367</td> <td></td>	HAT THE COOK TO TH	XOH-UO ₂ ²⁺ XO-UO ₂ OH* XOII-UO ₂ OH* XO-UO ₂ (OH) ₂ .	2.58 9.06 -4.07 2.58 -10.85	33.6 33.7 42.6 33.6 50.4	.0304 .0210 .0425 .0304 .0569	2.94 10.30 -4.44 2.94 -11.81	31.5 36.0 33.7 38.2	.0308 .0281 .0336 .0308 .0366	Log K -4.01 3.62 -7.49 0.21 -11.61	V _Y 73.1 75.7 31.4 35.2 37.6	σ _{Leg K} .0229 .0240 .0230 .0228 .0367	
			HAT THE COOK TO TH	XOH-UO ₂ ³⁺ XO-UO ₂ OH [*] XOII-UO ₂ OH [*] XO-UO ₂ (OH) ₂ [*] XOH-UO ₂ (OH) ₂ [*]	2.58 9.06 -4.07 2.58 -10.85 -4.07	33.6 33.7 42.6 33.6 50.4 42.6	.0304 .0210 .0425 .0304 .0569 .0425	2.94 10.30 -4.44 2.94 -11.81 -4.44	31.5 36.0 33.7 38.2 36.0	.0308 .0281 .0336 .0308 .0366 .0336	Log K -4.01 3.62 -7.49 0.21 -11.61 -3.82	V _v 73.1 75.7 31.4 35.2 37.6 35.1	σ _{Leg K} .0229 .0240 .0230 .0228 .0367 .0355	
		222 222 222 222 222 222 222 222	H- 20102-14.	XOH-UO ₂ ²⁺ XO-UO ₂ OH* XOII-UO ₂ OH* XO-UO ₂ (OH) ₂ .	2.58 9.06 -4.07 2.58 -10.85	33.6 33.7 42.6 33.6 50.4	.0304 .0210 .0425 .0304 .0569	2.94 10.30 -4.44 2.94 -11.81 -4.44 2.94	31.5 36.0 33.7 38.2 36.0 33.7	.0308 .0281 .0336 .0308 .0366 .0336 .0336	Log K -4.01 3.62 -7.49 0.21 -11.61 -3.82 4.00	V _v 73.1 75.7 31.4 35.2 37.6 35.1 32.9	σ _{Leg K} .0229 .0240 .0230 .0228 .0367 .0355 .0346	
		222 222 222 222 222 222 222 222	H- 20102-14.	XOH-UO ₂ ²⁺ XO-UO ₂ OH [•] XOII-UO ₂ OH [•] XO-UO ₂ (OH) ₂ [•] XOH-UO ₂ (OH) ₂ [•]	2.58 9.06 -4.07 2.58 -10.85 -4.07 2.58	33.6 33.7 42.6 33.6 50.4 42.6 33.6	.0304 .0210 .0425 .0304 .0569 .0425 .0304	2.94 10.30 -4.44 2.94 -11.81 -4.44	31.5 36.0 33.7 38.2 36.0	.0308 .0281 .0336 .0308 .0366 .0336	Log K -4.01 3.62 -7.49 0.21 -11.61 -3.82	V _v 73.1 75.7 31.4 35.2 37.6 35.1	σ _{Leg K} .0229 .0240 .0230 .0228 .0367 .0355 .0346 .0556	
		222 222 222 222 222 222 222 222	H- 20102-14.	XOH-UO2 ³⁺ XO-UO2OH* XOII-UO2OH* XOU2(OH)2 XOH-UO2(OH)2* XOH-UO2(OH)2* XOH-UO2(OH)2* XOH-UO2(OH)2*	2.58 9.06 -4.07 2.58 -10.85 -4.07 2.58 -10.85	33.6 33.7 42.6 33.6 50.4 42.6 33.6 50.4	.0304 .0210 .0425 .0304 .0569 .0425 .0304 .0569	2.94 10.30 -4.44 2.94 -11.81 -4.44 2.94 -11.81	31.5 36.0 33.7 38.2 36.0 33.7 38.2 33.7 38.2	.0308 .0281 .0336 .0308 .0366 .0336 .0308 .0308 .0366	Log K -4.01 3.62 -7.49 0.21 -11.61 -3.82 4.00 -8.59	V _Y 73.1 75.7 31.4 35.2 37.6 35.1 32.9 48.3	σ _{Leg K} .0229 .0240 .0230 .0228 .0367 .0355 .0346	
		222 222 222 222 222 222 222 222	H- 20102-14.	XOH-UO ₂ ²⁺ XO-UO ₂ OH [*] XOII-UO ₂ OH [*] XO-UO ₂ (OH) ₂ ⁻ XOH-UO ₂ (OH) ₂ [*] XOH ₂ -UO ₂ (OH) ₃ [*] XOH-UO ₂ (OH) ₃ [*]	2.58 9.06 -4.07 2.58 -10.85 -4.07 2.58 -10.85 -10.85 -4.07	33.6 33.7 42.6 33.6 50.4 42.6 33.6 50.4 42.6 42.6	.0304 .0210 .0425 .0304 .0569 .0425 .0304 .0569 .0425	2.94 10.30 -4.44 2.94 -11.81 -4.44 2.94 -11.81 -4.44	31.5 36.0 33.7 38.2 36.0 33.7 38.2 36.0 36.0	.0308 .0281 .0336 .0308 .0366 .0336 .0308 .0366 .0336	Log K -4.01 3.62 -7.49 0.21 -11.61 -3.82 4.00 -8.59 -0.18	V _v 73.1 75.7 31.4 35.2 37.6 35.1 32.9 48.3 41.6	σ _{Leg K} .0229 .0240 .0230 .0228 .0367 .0355 .0346 .0556 .0505	
		222 222 222 222 222 222 222 222	H- 20102-14.	XOH-UO2 ²⁺ XO-UO2OH* XOII-UO2OH* XOH-UO2(OH)2 XOH-UO2(OH)2* XOH-UO2(OH)2* XOH-UO2(OH)3* XOH-UO2(OH)3* XOH-UO2(OH)3* XOH-UO2(OH)3* XOH-UO2(OH)3* XOH-UO2(OH)3* XOH-UO2(OH)3*	2.58 9.06 -4.07 2.58 -10.85 -4.07 2.58 -10.85 -4.07 -17.66	33.6 33.7 42.6 33.6 50.4 42.6 33.6 50.4 42.6 50.4 42.6 54.6	.0304 .0210 .0425 .0304 .0569 .0425 .0304 .0569 .0425 .0709	2.94 10.30 -4.44 2.94 -11.81 -4.44 2.94 -11.81 -11.81 -4.44 -19.18	31.5 36.0 33.7 38.2 36.0 33.7 38.2 36.0 40.4	.0308 .0281 .0336 .0308 .0366 .0336 .0308 .0366 .0336 .0336 .0397	Log K -4.01 3.62 -7.49 0.21 -11.61 -3.82 4.00 -8.59 -0.18 -13.06	V _v 73.1 75.7 31.4 35.2 37.6 35.1 32.9 48.3 41.6 55.0	σ _{Leg K} .0229 .0240 .0230 .0228 .0367 .0355 .0346 .0556 .0505 .0764	
		222 222 222 222 222 222 222 222	H- 20102-14.	XOH-UO2 ³⁺ XO-UO2OH* XOI-UO2OH* XOI-UO2(OH)2 XOH-UO2(OH)2* XOH-UO2(OH)2* XOH-UO2(OH)3* XOH-UO2(OH)3* XOH-UO2(OH)3* XOH-UO2(OH)3* XOH-UO2(OH)3* XOH-UO2(OH)3* XOH-UO2(OH)3*	2.58 9.06 -4.07 2.58 -10.85 -4.07 2.58 -10.85 -4.07 -17.66	33.6 33.7 42.6 33.6 50.4 42.6 33.6 50.4 42.6 50.4 42.6 54.6	.0304 .0210 .0425 .0304 .0569 .0425 .0304 .0569 .0425 .0709	2.94 10.30 -4.44 2.94 -11.81 -4.44 2.94 -11.81 -11.81 -4.44 -19.18	31.5 36.0 33.7 38.2 36.0 33.7 38.2 36.0 40.4	.0308 .0281 .0336 .0308 .0366 .0336 .0308 .0366 .0336 .0336 .0397	Log K -4.01 3.62 -7.49 0.21 -11.61 -3.82 4.00 -8.59 -0.18 -13.06	V _v 73.1 75.7 31.4 35.2 37.6 35.1 32.9 48.3 41.6 55.0	σ _{Leg K} .0229 .0240 .0230 .0228 .0367 .0355 .0346 .0556 .0505 .0764	
		222 222 222 222 222 222 222 222	H- 20102-14.	XOH-UO2 ³⁺ XO-UO2OH* XOI-UO2OH* XOI-UO2(OH)2 XOH-UO2(OH)2* XOH-UO2(OH)2* XOH-UO2(OH)3* XOH-UO2(OH)3* XOH-UO2(OH)3* XOH-UO2(OH)3* XOH-UO2(OH)3* XOH-UO2(OH)3* XOH-UO2(OH)3*	2.58 9.06 -4.07 2.58 -10.85 -4.07 2.58 -10.85 -4.07 -17.66	33.6 33.7 42.6 33.6 50.4 42.6 33.6 50.4 42.6 50.4 42.6 54.6	.0304 .0210 .0425 .0304 .0569 .0425 .0304 .0569 .0425 .0709	2.94 10.30 -4.44 2.94 -11.81 -4.44 2.94 -11.81 -11.81 -4.44 -19.18	31.5 36.0 33.7 38.2 36.0 33.7 38.2 36.0 40.4	.0308 .0281 .0336 .0308 .0366 .0336 .0308 .0366 .0336 .0336 .0397	Log K -4.01 3.62 -7.49 0.21 -11.61 -3.82 4.00 -8.59 -0.18 -13.06	V _v 73.1 75.7 31.4 35.2 37.6 35.1 32.9 48.3 41.6 55.0	σ _{Leg K} .0229 .0240 .0230 .0228 .0367 .0355 .0346 .0556 .0505 .0764	
		222 222 222 222 222 222 222 222	H- 20102-14.	XOH-UO2 ³⁺ XO-UO2OH* XOI-UO2OH* XOI-UO2(OH)2 XOH-UO2(OH)2* XOH-UO2(OH)2* XOH-UO2(OH)3* XOH-UO2(OH)3* XOH-UO2(OH)3* XOH-UO2(OH)3* XOH-UO2(OH)3* XOH-UO2(OH)3* XOH-UO2(OH)3*	2.58 9.06 -4.07 2.58 -10.85 -4.07 2.58 -10.85 -4.07 -17.66	33.6 33.7 42.6 33.6 50.4 42.6 33.6 50.4 42.6 50.4 42.6 54.6	.0304 .0210 .0425 .0304 .0569 .0425 .0304 .0569 .0425 .0709	2.94 10.30 -4.44 2.94 -11.81 -4.44 2.94 -11.81 -11.81 -4.44 -19.18	31.5 36.0 33.7 38.2 36.0 33.7 38.2 36.0 40.4	.0308 .0281 .0336 .0308 .0366 .0336 .0308 .0366 .0336 .0336 .0397	Log K -4.01 3.62 -7.49 0.21 -11.61 -3.82 4.00 -8.59 -0.18 -13.06	V _v 73.1 75.7 31.4 35.2 37.6 35.1 32.9 48.3 41.6 55.0	σ _{Leg K} .0229 .0240 .0230 .0228 .0367 .0355 .0346 .0556 .0505 .0764	
		222 222 222 222 222 222 222 222	H- 20102-14.	XOH-UO2 ³⁺ XO-UO2OH* XOI-UO2OH* XOI-UO2(OH)2 XOH-UO2(OH)2* XOH-UO2(OH)2* XOH-UO2(OH)3* XOH-UO2(OH)3* XOH-UO2(OH)3* XOH-UO2(OH)3* XOH-UO2(OH)3* XOH-UO2(OH)3* XOH-UO2(OH)3*	2.58 9.06 -4.07 2.58 -10.85 -4.07 2.58 -10.85 -4.07 -17.66	33.6 33.7 42.6 33.6 50.4 42.6 33.6 50.4 42.6 50.4 42.6 54.6	.0304 .0210 .0425 .0304 .0569 .0425 .0304 .0569 .0425 .0709	2.94 10.30 -4.44 2.94 -11.81 -4.44 2.94 -11.81 -11.81 -4.44 -19.18	31.5 36.0 33.7 38.2 36.0 33.7 38.2 36.0 40.4	.0308 .0281 .0336 .0308 .0366 .0336 .0308 .0366 .0336 .0336 .0397	Log K -4.01 3.62 -7.49 0.21 -11.61 -3.82 4.00 -8.59 -0.18 -13.06	V _v 73.1 75.7 31.4 35.2 37.6 35.1 32.9 48.3 41.6 55.0	σ _{Leg K} .0229 .0240 .0230 .0228 .0367 .0355 .0346 .0556 .0505 .0764	
		222 222 222 222 222 222 222 222	H- 20102-14.	XOH-UO2 ³⁺ XO-UO2OH* XOI-UO2OH* XOI-UO2(OH)2 XOH-UO2(OH)2* XOH-UO2(OH)2* XOH-UO2(OH)3* XOH-UO2(OH)3* XOH-UO2(OH)3* XOH-UO2(OH)3* XOH-UO2(OH)3* XOH-UO2(OH)3* XOH-UO2(OH)3*	2.58 9.06 -4.07 2.58 -10.85 -4.07 2.58 -10.85 -4.07 -17.66	33.6 33.7 42.6 33.6 50.4 42.6 33.6 50.4 42.6 50.4 42.6 54.6	.0304 .0210 .0425 .0304 .0569 .0425 .0304 .0569 .0425 .0709	2.94 10.30 -4.44 2.94 -11.81 -4.44 2.94 -11.81 -11.81 -4.44 -19.18	31.5 36.0 33.7 38.2 36.0 33.7 38.2 36.0 40.4	.0308 .0281 .0336 .0308 .0366 .0336 .0308 .0366 .0336 .0336 .0397	Log K -4.01 3.62 -7.49 0.21 -11.61 -3.82 4.00 -8.59 -0.18 -13.06	V _v 73.1 75.7 31.4 35.2 37.6 35.1 32.9 48.3 41.6 55.0	σ _{Leg K} .0229 .0240 .0230 .0228 .0367 .0355 .0346 .0556 .0505 .0764	
		222 222 222 222 222 222 222 222	H- 20102-14.	XOH-UO2 ³⁺ XO-UO2OH* XOI-UO2OH* XOI-UO2(OH)2 XOH-UO2(OH)2* XOH-UO2(OH)2* XOH-UO2(OH)3* XOH-UO2(OH)3* XOH-UO2(OH)3* XOH-UO2(OH)3* XOH-UO2(OH)3* XOH-UO2(OH)3* XOH-UO2(OH)3*	2.58 9.06 -4.07 2.58 -10.85 -4.07 2.58 -10.85 -4.07 -17.66	33.6 33.7 42.6 33.6 50.4 42.6 33.6 50.4 42.6 50.4 42.6 54.6	.0304 .0210 .0425 .0304 .0569 .0425 .0304 .0569 .0425 .0709	2.94 10.30 -4.44 2.94 -11.81 -4.44 2.94 -11.81 -11.81 -4.44 -19.18	31.5 36.0 33.7 38.2 36.0 33.7 38.2 36.0 40.4	.0308 .0281 .0336 .0308 .0366 .0336 .0308 .0366 .0336 .0336 .0397	Log K -4.01 3.62 -7.49 0.21 -11.61 -3.82 4.00 -8.59 -0.18 -13.06	V _v 73.1 75.7 31.4 35.2 37.6 35.1 32.9 48.3 41.6 55.0	σ _{Leg K} .0229 .0240 .0230 .0228 .0367 .0355 .0346 .0556 .0505 .0764	
		222 222 222 222 222 222 222 222	H- 20102-14.	XOH-UO2 ³⁺ XO-UO2OH* XOI-UO2OH* XOI-UO2(OH)2 XOH-UO2(OH)2* XOH-UO2(OH)2* XOH-UO2(OH)3* XOH-UO2(OH)3* XOH-UO2(OH)3* XOH-UO2(OH)3* XOH-UO2(OH)3* XOH-UO2(OH)3* XOH-UO2(OH)3*	2.58 9.06 -4.07 2.58 -10.85 -4.07 2.58 -10.85 -4.07 -17.66	33.6 33.7 42.6 33.6 50.4 42.6 33.6 50.4 42.6 50.4 42.6 54.6	.0304 .0210 .0425 .0304 .0569 .0425 .0304 .0569 .0425 .0709	2.94 10.30 -4.44 2.94 -11.81 -4.44 2.94 -11.81 -11.81 -4.44 -19.18	31.5 36.0 33.7 38.2 36.0 33.7 38.2 36.0 40.4	.0308 .0281 .0336 .0308 .0366 .0336 .0308 .0366 .0336 .0336 .0397	Log K -4.01 3.62 -7.49 0.21 -11.61 -3.82 4.00 -8.59 -0.18 -13.06	V _v 73.1 75.7 31.4 35.2 37.6 35.1 32.9 48.3 41.6 55.0	σ _{Leg K} .0229 .0240 .0230 .0228 .0367 .0355 .0346 .0556 .0505 .0764	
		222 222 222 222 222 222 222 222	H- 20102-14.	XOH-UO2 ³⁺ XO-UO2OH* XOI-UO2OH* XOI-UO2(OH)2 XOH-UO2(OH)2* XOH-UO2(OH)2* XOH-UO2(OH)3* XOH-UO2(OH)3* XOH-UO2(OH)3* XOH-UO2(OH)3* XOH-UO2(OH)3* XOH-UO2(OH)3* XOH-UO2(OH)3*	2.58 9.06 -4.07 2.58 -10.85 -4.07 2.58 -10.85 -4.07 -17.66	33.6 33.7 42.6 33.6 50.4 42.6 33.6 50.4 42.6 50.4 42.6 54.6	.0304 .0210 .0425 .0304 .0569 .0425 .0304 .0569 .0425 .0709	2.94 10.30 -4.44 2.94 -11.81 -4.44 2.94 -11.81 -11.81 -4.44 -19.18	31.5 36.0 33.7 38.2 36.0 33.7 38.2 36.0 40.4	.0308 .0281 .0336 .0308 .0366 .0336 .0308 .0366 .0336 .0336 .0397	Log K -4.01 3.62 -7.49 0.21 -11.61 -3.82 4.00 -8.59 -0.18 -13.06	V _v 73.1 75.7 31.4 35.2 37.6 35.1 32.9 48.3 41.6 55.0	σ _{Leg K} .0229 .0240 .0230 .0228 .0367 .0355 .0346 .0556 .0505 .0764	

റു	ത	A
4	Ð	4

- Mexa

	Uranium (VI) Sorption Binding Monodentate, mononuclear cor Solid: Ferrihydrite Ass: 600 m ² /g Data Source: Payne et al. (1	apounds		Rel Error (pF Abs Error (p Rel Error (ra	I): 0.05 I): 0.0E00 dionuclide): 0.10		$N_{s} = 2.31 \text{ si}$	th (electrolyte): 0. les/nm ² 0.089 g/L HFO	1 NaNO3		Solid: Ferrihydrite A _{ss} : 600 m ² /g Data Source: Payne et a Concentration: [U(VI)]	ıl. (1992) = 1E-6 M			H): 0.05 pH): 0.0E00 adionuclide): 0.10 radionuclide): 1.0		Ionic Streng $N_s = 2.31 \text{ s}$ $10^{-3} \text{ M Fe} =$	th (electrolyte): 0. ites/nm ² 0.089 g/L HFO	1 NaNO3	
	Concentration: [U(VI)] = 1E				idionuclide): 1.0E	08	10° W FC -	0.089 g/L HPO			fig. 3.1 $P(CO_2) = 0.03\%$		DLM			CCM			TLM	
	Rinduf. 14	$Log K_{+} = 7.29$ $Log K_{-} = -8.93$	DLM		Log K. = 7.35 Log K_ = -8.4	ССМ		$Log K_{\star} = 6.00$	TLM		Binduf.5	Log $K_{+} = 7.29$ Log $K_{-} = -8$.			$Log K_{+} = 7.35$ $Log K_{-} = -8.4$			Log K ₊ = 6.00 Log K __ = -10.0 Log K _{Cat} = -7.60 Log K _{An} = 8.43	5	CAR
Freum			,		Log K_ ~ *8.4.	•		Log K_ = -10 Log K _{Cat} = -7. Log K _{An} = 8.4	66			Log K	v _y	σ _{Log K}	Log K	Vy	σ _{Log K}	Log K	Vy	σ _{Log K}
Dr.		Log K	V _Y	σ _{Log K}	Log K	Vy	σ _{Log K}	Log K	V _Y		XO-UO ₂ +	0.97	70.0	.0202	0.86	77.0	.0215	-4.00	84.3	.0227
	X0-U0,⁺	2.17	0.38	.0337	2.50	0.54	.0347	-3.35		σ _{Log K}	XOH-UO ₂ ²⁺	9.11	29.8	.0159	9.20	54.7	.0193	3.63	85.8	.0239
	XOH-UO,2+	8.99	8.5	.0275	9.96	0.34	.0347	-3.33	53.2 55.8	.0359	XO-UO ₂ OH°	-7.56	86.6	.0253	-7.47	86.2	.0250	-7.35	33.1	.0192
	XO-UO2OH.	-4.71	5.7	.0424	-4.94	1.7	.0327	-7.50	15.3	.0562	XOH-UO ₂ OH ⁺	0.97	70.0	.0202	0.86	77.0	.0215	0.33	42.9	.0198
******	XOH-UO2OH+	2.17	0.38	.0337	2.50	0.54	.0347	-0.58	30.9	.0369	XO-UO ₂ (OH) ₂ .	-15.94	89.2	.0268	-15.72	88.9	.0267	-15.95	89.5	.0271
	XO-UO ₂ (OH)2	-11.61	12.9	.0529	12.34	2.6	.0400	-11.88	0.49	.0568	TTEG XOH-UO2(OH)2°	-7.56	86.6	.0253	-7.47	86.2	.0250	-7.84	89.1	.0272
	XOH-UO ₂ (OH)2°	-4.71	5.7	.0425	-4.94	1.7	.0370	-3.64	10.5	.0455	XOH-UO,(OH),	0.97	70.0	.0202	0.86	77.0	.0215	0.29	88.4	.0274
	XOH ₂ -UO ₂ (OH),*	2.17	0.38	.0337	2.50	0.54	.0347	4.76	24.3	.0611	Rosh Its XOH-UO3(OH)3.	-15.94	89.2	.0268	-15.72	88.9	.0267	-17.17	90.4	.0282
	XOH-UO2(OH)1	-11.61	12.9	.0529	-12.34	2.6	.0400	-8.82	1.1	.0903	XOH ₂ -UO ₂ (OH) ₃ °	-7.56	86.6	.0253	-7.47	86.2	.0250	-9.03	90.1	.0282
	XOH2-UO2(OH)3°	-4.71	5.7	.0425	-4.94	1.7	.0370	-0.53	10.9	.0932	XOH-UO2(OH)42-	-24.28	89.4	.0265	-23.94	89.6	.0270	-26.85	94.6	.0404
	XOH-UO2(OH)4218	-18.51	18.1	.0637	-19.70	2.7	.0435	-13.35	7.4	.0758	XOH ₂ -UO ₂ (OH) ₄ .	-15.94	89.2	.0268	-15.72	88.9	.0267	-18.69	94.3	.0395
	XOH₂-UO₂(OH) _{II} ⁴¹	-11.61	12.9	.0529	-12.34	2.6	.0400	-3.80	3.3	.0758	XOH-UO ₂ CO ₃ •	17.89	56.8	.0231	17.48	58.7	.0188	17.39	58.9	.0186
		<u> </u>			l.			11		.0700	XOH ₂ -UO ₂ (CO ₃) ₂ ·	32.97	70.5	.0278	31.83	71.3	.0200	37.95	60.8	.0322
							***************		*****		XOH ₂ -UO ₂ (CO ₃) ₃ ³ -	41.23	76.0	.0374	38.85	75.5	.0222	50.85	60.2	.0480
										1979 - N. J. J. Construction of the state of	XOH ₂ -(UO ₂) ₂ CO ₃ (OH) ₃ °	15.88	47.9	.0458	15.50	48.2	.0398	17.29	62.4	.0169
	Data Source: Payne et al. (19 Concentration: [U(VI)] = 1E fig 1.4	4 M			dionuclide): 0.10 dionuclide): 1.0E		10° M Fe =	0.089 g/L HFO		·	Data Source: Payne et a Concentration: [U(VI)]			Rel Error ((pH): 0.0E00 radionuclide): 0.1 (radionuclide): 1.0		N _s = 2.31 10 ⁻³ M Fe	= 0.089 g/L HFO		
2 B	Binduf.1	L K	DLM			CCM			TLM		fig. 3.2 $P(CO_2) = 0.03\%$		DLM			ССМ			TLM	
m	Smaut. I	Log K ₊ = 7.29 Log K ₋ = -8.93	3	I ******	Log K ₊ = 7.35 Log K ₋ = -8.4			Log K ₊ = 6.00 Log K __ = -10. Log K _{Cat} = -7.4 Log K _{An} = 8.4	.00 66	·······	Binduf.13	Log K. = 7.2 Log K_ = -1	8.93		Log K, = 7.3 Log K_ = -8			Log $K_{+} = 6.0$ Log $K_{-} = -10$ Log $K_{Cat} = -7$ Log $K_{An} = 8.2$	0.00 1.66	CPB
		Log K	V _Y	OLog K	Log K	V _Y	σ _{Log K}	Log K	V _Y	σ _{Log K}		Log K	Vy	σ _{Log K}	Log K	V _Y	σ _{Log K}	Log K	V _Y	σ _{Log K}
	XO-UO2*	1.23	45.0	.0277	1.59	40.5	.0277	-4.81	85.9	.0375	XO-UO ₂ *	-0.76	98.0	.0449	-0.88	98.5	.0461	-4.81	92.5	.0375
	XOH-UO ₂ ²⁺ XO-UO ₂ OH ^o	7.71	72.0	.0302	8.90	55.3	.0305	3.05	86.4	.0490	XOH-UO22+	7.60	81.4	.0261	7.39	96.8	.0423	3.05	92.7	.0490
	X0H-U0 ₂ OH*	-5.43	10.9	.0285	-5.75	27.2	.0270	-8.88	73.1	.0372	XO-UO ₂ OH ^o	-9.02	98.9	.0468	-8.94	98.9	.0467	-8.81	81.9	.0325
	XO-UO ₂ (OH) ₂	-12.20	45.0	.0277	1.59	40.5	.0277	-1.05	78.1	.0499	XOH-UO2OH+	-0.76	98.0	.0449	-0.88	98.5	.0461	-0.94	85.8	.0446
	XOH-UO ₂ (OH) ₂ °	-12.20	6.1	.0376	-13.16	29.1	.0314	-13.02	55.8	.0429	XO-UO ₂ (OH) ₂ -	-17.25	99.0	.0468	-16.91	99.0	.0468	-17.24	99.0	.0477
┈╞╟	XOH ₂ -UO ₂ (OH) ₂ [*]	-5.43	10.9	.0285	-5.75	27.2	.0270	-5.16	68.4	.0562	XOH-UO ₂ (OH) ₂ *	-9.02	98.9	.0468	-8.94	98.9	.0467	-9.14	99.0	.0500
	XOH-UO ₂ (OH) ₂	-12.20	45.0	.0277	-13.16	40.5 29.1	.0277	2.80	74.8	.0754	XOH ₂ -UO ₂ (OH) ₂ ⁺	-0.76	98.0	.0449	-0.88	98.5	.0461	-1.03	99.0	.0540
╞	XOH ₂ -UO ₂ (OH) ₃ °	-5.43					.0314	-9.84	48.5	.0578	XOH-UO ₂ (OH) ₃ .	-17.25	99.0	.0468	-16.91	99.0	.0468	-17.90	99.2	.0534
	XOH-UO ₂ (OH) ₄ ²	-5.43	10.9	.0285	-5.75	27.2 35.8	.0270	-1.31	68.6	.0834	XOH ₂ -UO ₂ (OH) ₃ °	-9.02	98.9	.0468	-8.94	98.9	.0467	-9.79	99.2	.0567
	XOH ₂ -UO ₂ (OH) ₄	-18.88	6.1	.0496	-20.55	35.8 29.1	.0370	-13.44	48.7	.0747	XOH-UO ₂ (OH) ₄ ² ·	-25.48	99.1	.0471	-25.20	99.0	.0469	-26.65	99.3	.0639
		-12.20	0.1	.0370	-13.10	27.1	.0314	-5.42	62.0	.0927	XOH ₂ -UO ₂ (OH) ₄	-17.25	99.0	.0468	-16.91	99.0	.0468	-18.54	99.3	.0662
					******		****				XOH-UO2CO3°	16.30	77.6	.0229	15.85	81.8	.0230	15.76	82.0	.0229
												1	80.3	.0271	20.00					
											XOH ₂ -UO ₂ (CO ₃) ₂	31.37	00.5	.02/1	30.20	84.9	.0252	36.33	77.7	.0345
	999 899 - 1999 - 1999 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 199 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -	-	1W.M.M.M.M.M.							1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 -	XOH ₂ -UO ₂ (CO ₃) ₂ · XOH ₂ -UO ₂ (CO ₃) ₃ ·	31.37	79.1	.0370	30.20	84.9 85.8	.0252	36.33 49.60	77.7	.0345 .0657

റ	റ	r
Li	3	n

237

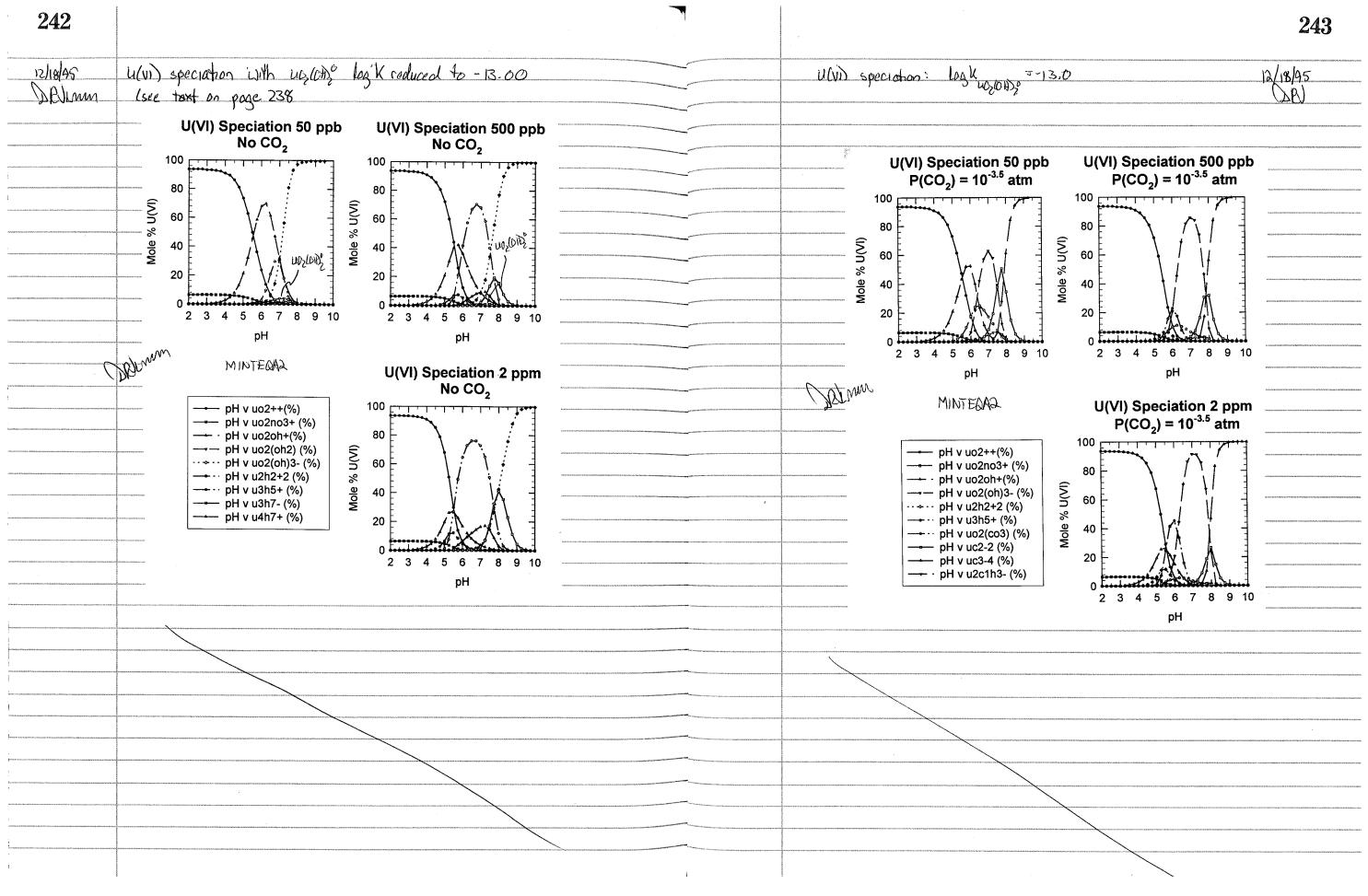
•

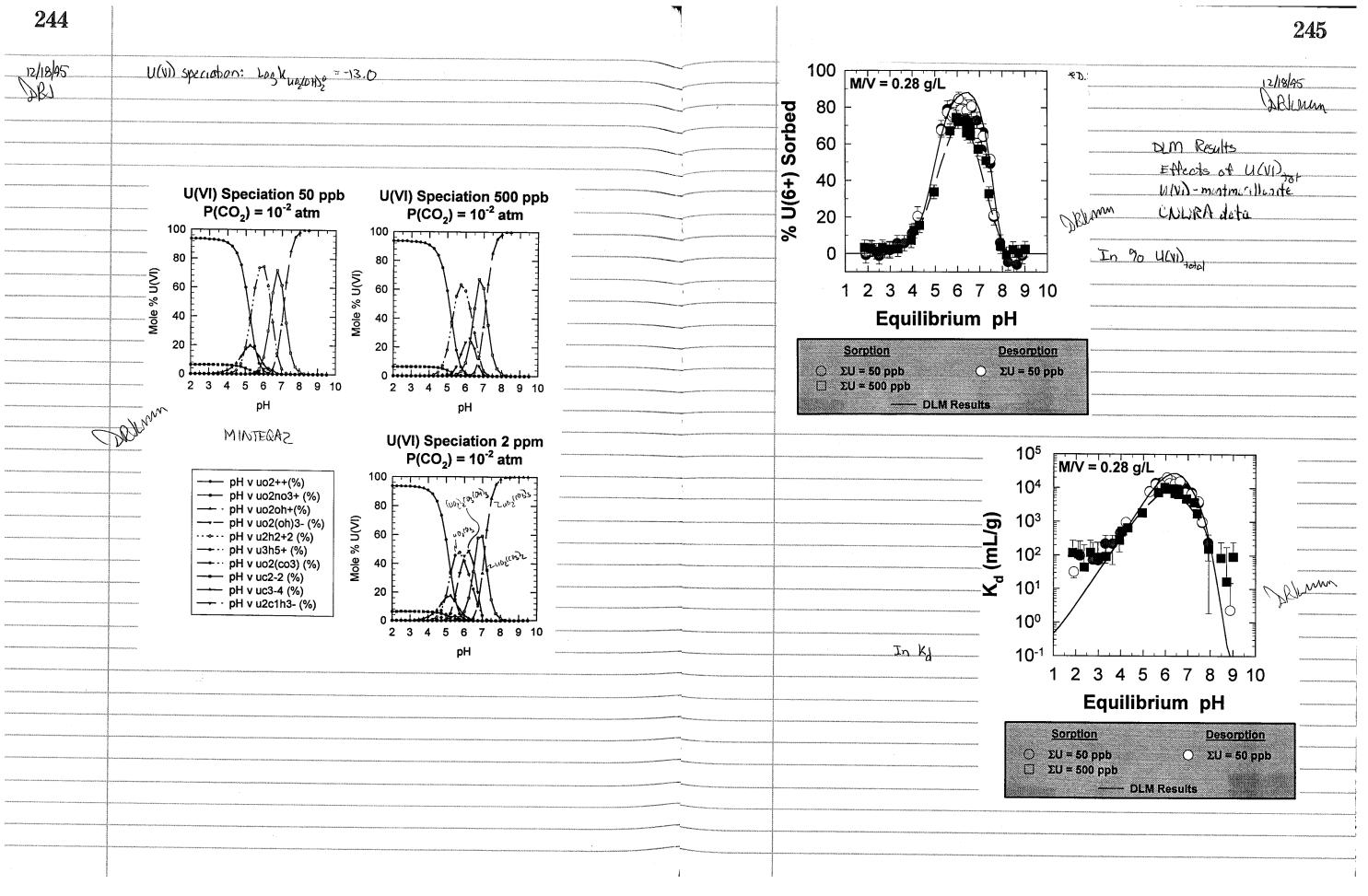
126/45	Solid: Ferrihydrite A _{sp} : 600 m ² /g			Rel Error (pl Abs Error (pl	H): 0.0E00		$N_{s} = 2.31 \text{ sit}$	h (electrolyte): 0.1 es/nm²	NaNO3			Uranium (VI) Sorption Bindin Solid: Ferrihydrite	ig Constants; Mor	iodentale, mono	Rel Error (pl			Iopic Strepst	h (electrolyte): 0.1	NaNO.	
<u>ЭК)</u>	Data Source: Payne et al. (19 Concentration: [U(VI)] = 1E	992) -6 M		Rel Error (ra	idionuclide): 0.10 adionuclide): 1.0E-		10 ⁻³ M Fe =	0.089 g/L HFO				A_{sp} : 600 m ² /g Data Source: Payne et al. (Concentration: [U(VI)] = 1	1992) E-6 M		Abs Error (p Rel Error (ra	H): 0.05 H): 0.0E00 Idionuclide): 0.10 adionuclide): 1.0H) E-10	$N_s = 2.31 \text{ sit}$	n (electrolyte): 0.1 es/nm ² 0.089 g/L HFO	ι εταιτίΟ ₃	
	fig 4.1 $P(CO_2) = 0.03\%$	Log K, = 7.29	DLM		Log K, = 7.35			Log K ₊ = 6.00	TLM			fig. 5.1		DLM			ССМ			TLM	
	Discut 1	Log K_ = -8.93		· · · · ·	Log K_ = -8.45			Log K_ = -10.00 Log K _{Cat} = -7.66 Log K _{An} = 8.43	; 	-		P(CO) = 0.03% Bindut 10	Log K. = 7.29 Log K_ = -8.9	3		Log K. = 7.35 Log K_ = -8.45	5		Log $K_{+} = 6.00$ Log $K_{-} = -10.00$ Log $K_{Cat} = -7.66$)	
Calify		Log K	V _Y	σ _{Log K}	Log K	Vy	σ _{Log K}	Log K	V _Y	σ _{Log K}	- Day	ma	Log K	V _v	σ _{Log K}	Log K	V _v	T	$Log K_{An} = 8.43$ $Log K$	Vv	
	XO-UO ₂ *	0.97	70.0	.0202	0.86	77.0	.0215	-4.00	84.3	.0227		X0-U0,⁺	0.97	70.0	.0202	0.86	•• ₉	σ _{Log K} .0215	-4.00	• v v 84.3	σ _{Log K} .0227
	XOII-UO22+	9.11 -7.56	29.8	.0159	9.20 -7.47	54.7	.0193	-7.35	85.8	.0239	and an	XOH-UO ₂ ²⁺	9.11	29.8	.0202	9.20	54.7	.0213	3.63	85.8	.0227
	XO-UO₂OH° XOH-UO₂OH⁺	-7.56	86.6 70.0	.0253	-7.47	86.2 77.0	.0250	-7.35	33.1 42.9	.0192	FITTEGL	XO-UO2OH°	-7.56	86.6	.0253	-7.47	86.2	.0250	-7.35	33.1	.0192
FITEQL	XO-UO ₃ (OH) ₂ .	-15.94	89.2	.0202	-15.72	88.9	.0213	-15.95	89.5	.0198	Results	XOH-UO ₂ OH*	0.97	70.0	.0202	0.86	77.0	.0215	0.33	42.9	.0198
Results	XOH-UO ₂ (OH) ₂ °	-7.56	86.6	.0253	-7.47	86.2	.0250	-7.84	89.1	.0271		XO-UO ₂ (OH) ₂ .	-15.94	89.2	.0268	-15.72	88.9	.0267	-15.95	89.5	.0271
	XOH ₂ -UO ₂ (OH) ₂ ⁺	0.97	70.0	.0202	0.86	77.0	.0215	0.29	88.4	.0272		XOH-UO2(OH)2°	-7.56	86.6	.0253	-7.47	86.2	.0250	-7.84	89.1	.0272
	XOH-UO ₂ (OH) ₃ .	-15.94	89.2	.0268	-15.72	88.9	.0267	-17.17	90.4	.0282		XOH ₂ -UO ₂ (OH) ₂ ⁺	0.97	70.0	.0202	0.86	77.0	.0215	0.29	88.4	.0274
	XOH ₂ -UO ₂ (OH) ₃ °	-7.56	86.6	.0253	-7.47	86.2	.0250	-9.03	90.1	.0282		XOH-UO2(OH)2.	-15.94	89.2	.0268	-15.72	88.9	.0267	-17 .17	90.4	.0282
	XOH-UO2(OH)42-	-24.28	89.4	.0265	-23.94	89.6	.0270	-26.85	94.6	.0404		XOH ₂ -UO ₂ (OH) ₃ °	-7.56	86.6	.0253	-7.47	86.2	.0250	-9.03	90.1	.0282
	XOH ₂ -UO ₂ (OH) ₄ ⁻	-15.94	89.2	.0268	-15.72	88.9	.0267	-18.69	94.3	.0395		XOH-UO ₂ (OH) ₄ ²⁻	-24.28	89.4	.0265	-23.94	89.6	.0270	-26.85	94.6	.0404
	XOH-UO2CO3°	17.89	56.8	.0231	17.48	58.7	.0188	17.39	58.9	.0186		XOH ₂ -UO ₂ (OH) ₄ ·	-15.94	89.2	.0268	-15.72	88.9	.0267	-18.69	94.3	.0395
	XOH ₂ -UO ₂ (CO ₃) ₂ .	32.97	70.5	.0278	31.83	71.3	.0200	37.95	60.8	.0322		XOH-UO ₂ CO ₃ °	17.89	56.8	.0231	17.48	58.7	.0188	17.39	58.9	.0186
	XOH ₂ -UO ₂ (CO ₃) ₃ ^{3.}	41.23	76.0	.0374	38.85	75.5	.0222	50.85	60.2	.0480	M 2752 00010400014000000000000000000000000000	XOH ₂ -UO ₂ (CO ₃) ₂ · XOH ₂ -UO ₂ (CO ₃) ₃ ·	32.97	70.5	.0278	31.83	71.3	.0200	37.95	60.8	.0322
	XOH ₂ -(UO ₂) ₂ CO ₃ (OH) ₃ °	15.88	47.9	.0458	15.50	48.2	.0398	17.29	62.4	.0169 /			41.23	76.0	.0374 .0458	38.85	75.5	.0222	50.85	60.2	.0480
	Uranium (VI) Sorption Bindin Solid: Ferrihydrite A _{sp} : 600 m ² /g Data Source: Payne et al. (1	992)	odentate, monc	Rel Error (p Abs Error (Rel Error (pH): 0.05 (pH): 0.0E00 radionuclide): 0.10		$N_s = 2.31$	gth (electrolyte): 0 ites/nm ² = 0.089 g/L HFO	-			XOH ₂ -(UO ₂) ₂ CO ₃ (OH) ₃ ° Uranium (VI) Sorption Bindin Monodentate, mononuclear cor Solid: Ferrihydrite		47.9	Rel Error (pl	<u>15.50</u> H): 0.05	48.2	.0398	17.29	62.4	.0169
	Solid: Ferrihydrite A_{sp} : 600 m ² /g Data Source: Payne et al. (1 Concentration: [U(VI)] = 1H	992)		Rel Error (p Abs Error (Rel Error (pH): 0.05 (pH): 0.0E00	E-09	$N_s = 2.31$	ites/nm ²	-			Uranium (VI) Sorption Bindin Monodentate, mononuclear con Solid: Ferrihydrite A _{sp} : 600 m ⁷ /g Data Source: Payne et al. (1	g Constants npounds	4/.9	Rel Error (pl Abs Error (p Rel Error (ra	H): 0.05 H): 0.0E00 dionuclide): 0.10		Ionic Streng N _s = 2.31 si	th (electrolyte): 0.1	I NaNO ₃	
	Solid: Ferrihydrite A_{sy} : 600 m²/g Data Source: Payne et al. (1 Concentration: [U(VI)] = 1H fig. 4.2 P(CO ₂) = 1%	992) -6 M	DLM	Rel Error (p Abs Error (Rel Error (pH): 0.05 (pH): 0.0E00 radionuclide): 0.10 (radionuclide): 1.01	E-09 CCM	$N_s = 2.31$	ites/nm ² = 0.089 g/L HFO	TLM			Uranium (VI) Sorption Bindin Monodentate, mononuclear con Solid: Ferrihydrite A ₃ : 600 m ⁷ /g Data Source: Payne et al. (1 Concentration: [U(VI)] = 1F fig. 5.2	g Constants npounds		Rel Error (pl Abs Error (p Rel Error (ra	H): 0.05 H): 0.0E00	E-09	Ionic Streng N _s = 2.31 si	th (electrolyte): 0.1 tes/nm ²	l NaNO3	
	Solid: Ferrihydrite $A_{sp}: 600 \text{ m}^2/\text{g}$ Data Source: Payne et al. (1 Concentration: $[U(VI)] = 1H$ fig. 4.2 $P(CO_2) = 1\%$ Bioclutf.	992)	DLM)	Rel Error (p Abs Error (Rel Error (pH): 0.05 (pH): 0.0E00 radionuclide): 0.10	E-09 CCM 5	$N_s = 2.31$	Log K ₊ = 6.0 Log K ₋ = -10 Log K ₋ = -7	TLM 0 0.00 .66			Jranium (VI) Sorption Bindin Monodentate, monoauclear con Solid: Ferrihydrite A ₃ : 600 m ³ /g Data Source: Payne et al. (1 Concentration: $[U(VI)] = 11$ fig. 5.2 $P(CO_2) = 0.03\%$	g Constants npounds	DLM	Rel Error (pl Abs Error (p Rel Error (ra	H): 0.05 H): 0.0E00 dionuclide): 0.10 dionuclide): 1.0E Log K., = 7.33	E-09 CCM 5	Ionic Streng N _s = 2.31 si	th (electrolyte): 0.1 tes/nm ² Fe = 1.78 g/L HFO	l NaNO3) TLM	
	Solid: Ferrihydrite $A_{sp}: 600 \text{ m}^2/\text{g}$ Data Source: Payne et al. (1 Concentration: $[U(VI)] = 1H$ fig. 4.2 $P(CO_2) = 1\%$ Bioclutf.	992) -6 M Log K. = 7.29	DLM)	Rel Error (p Abs Error (Rel Error (pH): 0.05 (pH): 0.0E00 radionuclide): 0.10 (radionuclide): 1.01 Log K. = 7.32	E-09 CCM 5	$N_s = 2.31$	Log K. = -10 Log K. = -10	TLM 0 0.00 .66	σ _{Lsg K}		Uranium (VI) Sorption Bindin Monodentate, mononuclear con Solid: Ferrihydrite As: 600 m ⁷ /g Data Source: Payne et al. (1 Concentration: $[U(VI)] = 1F$ fig. 5.2 $P(CO_2) = 0.03\%$ Binduff. G	g Constants npounds 992) -6 M	DLM	Rel Error (pl Abs Error (p Rel Error (ra	H): 0.05 H): 0.0500 dionuclide): 0.10 adionuclide): 1.01	E-09 CCM 5	Ionic Streng N _s = 2.31 si	th (electrolyte): 0.1 tes/nm ² c = 1.78 g/L HFO Log K, = 6.00 Log K_ = -10.0 Log K _{cat} = -7.6	I NaNO3) TLM 00 66	
SEM	Solid: Ferrihydrite $A_{sp}: 600 \text{ m}^2/\text{g}$ Data Source: Payne et al. (1 Concentration: $[U(VI)] = 1H$ fig. 4.2 $P(CO_2) = 1\%$ Bioclutf.	992) -6 M Log K. = 7.29 Log K_ = -8.	DLM) ,93	Rel Error (Abs Error (Rel Error (Abs Error (pH): 0.05 (pH): 0.0E00 radionuclide): 0.10 (radionuclide): 1.01 Log K_ = 7.3: Log K_ = -8.4	E-09 CCM 5 45	N _s = 2.31 s 10 ³ M Fe =	ites/nm ² = 0.089 g/L HFO Log K ₊ = 6.0 Log K ₋ = -10 Log K _{Cat} = -7 Log K _{An} = 8.4	TLM 0 3.00 2.66 43	<u>σ_{Log K}</u> .0446		Jranium (VI) Sorption Bindin Monodentate, monoauclear con Solid: Ferrihydrite A ₃ : 600 m ³ /g Data Source: Payne et al. (1 Concentration: $[U(VI)] = 11$ fig. 5.2 $P(CO_2) = 0.03\%$	g Constants npounds 992) -6 M	DLM	Rel Error (pl Abs Error (p Rel Error (ra Abs Error (ra	H): 0.05 H): 0.0500 dionuclide): 0.10 adionuclide): 1.0E Log K_ = -8.4	E-09 CCM 5 15	Ionic Streng N _s = 2.31 si 2 x 10 ² M F	th (electrolyte): 0.1 tes/nm ² is = 1.78 g/L HFO Log K ₊ = 6.00 Log K ₋ = -10.0 Log K _{cat} = -7.6 Log K _{An} = 8.43	1 NaNO3) TLM 00 66 3	
	Solid: Ferrihydrite A ₃₀ : 600 m ² /g Data Source: Payne et al. (I Concentration: $[U(VI)] = II$ fig. 4.2 $P(CO_2) = 1\%$ Binduf.	992) -6 M Log K. = 7.29 Log K_ = -8.	DLM 9.93 V _Y	Rel Error (Abs Error (Rel Error (Abs Error (Abs Error (pH): 0.05 (pH): 0.0E00 radionuclide): 0.10 (radionuclide): 1.01 Log K. = -7.3: Log K_ = -8.4	E-09 CCM 5 45 V _Y	N _s = 2.31 s 10 ⁻³ M Fe =	tes/nm ² = 0.089 g/L HFO Log K ₊ = 6.0 Log K ₋ = -1 Log K _{An} = 8.4 Log K	TLM 0 0.00 .66 43 V _Y			Uranium (VI) Sorption Bindin Monodentate, mononuclear con Solid: Ferrihydrite As: 600 m ⁷ /g Data Source: Payne et al. (1 Concentration: $[U(VI)] = 1F$ fig. 5.2 $P(CO_2) = 0.03\%$ Binduff. G	3 Constants npounds 992) -6 M Log K. = 7.29 Log K = -8:	DLM 93	Rel Error (pl Abs Error (p Rel Error (ra	H): 0.05 H): 0.0E00 dionuclide): 0.10 dionuclide): 1.0E Log K., = 7.33	E-09 CCM 5	Ionic Streng N _s = 2.31 si	th (electrolyte): 0.1 tes/nm ² Fe = 1.78 g/L HFO Log K, = 6.00 Log K_c = -10.0 Log K _{cat} = -7.6 Log K _{Am} = 8.43 Log K	1 NaNO3) TLM 00 56 3 Vy	σιαχ
	Solid: Ferrihydrite A ₃₀ : 600 m ² /g Data Source: Payne et al. (1 Concentration: $[U(VI)] = 11$ fig. 4.2 $P(CO_2) = 1\%$ Bind Uf.]]	992) -6 M Log K. = 7.29 Log K_ = -8. Log K	DLM 9-93 V _Y 21.8	Rel Error (Abs Error (Rel Error (Abs Error (GLog K .0528	pH): 0.05 (pH): 0.0E00 radionuclide): 0.10 (radionuclide): 1.01 Log K. = 7.3: Log K_ = -8.4 Log K 2.64	E-09 CCM 5 45 V _Y 29.6	N _s = 2.31 s 10 ⁻³ M Fe = 	ites/nm ² = 0.089 g/L HFO Log K _* = 6.0 Log K _c = -1 Log K _{ca} = 7. Log K -3.90	TLM 0 0.00 2.66 43 V _Y 91.6	.0446		Jranium (VI) Sorption Bindin Monodentate, monouuclear con Solid: Ferrihydrite A ₃ : 600 m ³ /g Data Source: Payne et al. (1 Concentration: [U(VI)] = 11 fig. 5.2 $P(CO_2) = 0.03\%$ Bindut. G	g Constants npounds 992) -6 M Log K. = 7.29 Log K_ = -8: Log K	DLM 93 V _Y	Rel Error (pl Abs Error (p Rel Error (ra Abs Error (ra ^G Log K	H): 0.05 H): 0.0E00 dionuclide): 0.10 adionuclide): 1.0E Log K, = 7.35 Log K_ = -8.4	E-09 CCM 5 15 V _Y	Ionic Streng N _s = 2.31 si 2 x 10 ² M I $\sigma_{L_{28} K}$	th (electrolyte): 0.1 tes/nm ² c = 1.78 g/L HFO Log K, = 6.00 Log K_cat = -10.0 Log K _{cat} = -7.6 Log K _{An} = 8.43	1 NaNO3) TLM 00 66 3	
	Solid: Ferrihydrite $A_{sp}: 600 \text{ m}^2/\text{g}$ Data Source: Payne et al. (1 Concentration: $[U(VI)] = 1H$ fig. 4.2 P(CO ₂) = 1% TBinduf. M XO-UO ₂ * XOH-UO ₂ ^{2*}	992) -6 M Log K. = 7.29 Log K_ = -8. Log K 1.96 9.14	DLM 993 Vy 21.8 22.3	Rei Error (1 Abs Error (1 Rei Error (1 Abs Error (1 GLog K .0528 .0277	pH): 0.05 (pH): 0.0E00 radionuclide): 0.10 (radionuclide): 1.01 Log K. = 7.3: Log K. = -8.4 Log K 2.64 9.86	E-09 CCM 5 45 V _Y 29.6 16.2	N _g = 2.31 s 10 ⁻³ M Fe = σ _{Log K} .0627 .0475	$\begin{array}{c} \text{ites/nm}^2 \\ = 0.089 \text{ g/L HFO} \\ \hline \\ \text{Log } \text{K}_{-} = 6.0 \\ \text{Log } \text{K}_{-} = -10 \\ \text{Log } \text{K}_{-a} = -1 \\ \text{Log } \text{K}_{-a} = 8. \\ \hline \\ \text{Log } \text{K}_{-a} = 8. \\ \hline \\ \text{Log } \text{K} \\ \hline \\ \hline \\ -3.90 \\ \hline \\ 3.76 \end{array}$	TLM 0.00 .66 43 V _Y 91.6 92.8	.0446		Jranium (VI) Sorption Bindin Monodentate, monoauclear con Solid: Ferrihydrite A ₃ ; 600 m ³ /g Data Source: Payme et al. (1 Concentration: $[U(VI)] = 1F$ fig. 5.2 $P(CO_2) = 0.03\%$ Bi AUL. G M XO-UO ₂ :	g Constants npounds 992) -6 M Log K. = 7.29 Log K. = -8: Log K n.c.	DLM 93 	Rel Error (pl Abs Error (p Rel Error (ra Abs Error (ra G _{Log K} n.c.	H): 0.05 H): 0.0E00 dionuclide): 0.10 dionuclide): 1.0F Log K. = -8.4 Log K. 0.07	E-09 CCM 5 15 V _Y 59.6	Ionic Streng N ₅ = 2.31 si 2 x 10 ² М H с _{Log K} .0270	th (electrolyte): 0.1 tes/nm ² c = 1.78 g/L HFO Log K, = 6.00 Log K_c = -10.0 Log K _{cat} = -7.6 Log K _{An} = 8.43 Log K -5.85	I NaNO ₃) TLM 00 66 3 V _Y 88.9	<u> </u>
	Solid: Ferrihydrite A ₃₂ : 600 m ² /g Data Source: Payne et al. (I Concentration: $[U(VI)] = II$ fig. 4.2 $P(CO_2) = 1\%$ Binduf. II M XO-UO ₂ : XO-UO ₂ : XOH-UO ₂ ²⁺ XO-UO ₂ OH ^o	992) -6 M Log K, = 7.29 Log K_ = -8. Log K 1.96 9.14 -4.00	DLM 9.93 V _Y 21.8 22.3 34.8	Rel Error (r Abs Error (Rel Error (r Abs Error (GLog K .0528 .0277 .0650	pH): 0.05 (pH): 0.0E00 radionuclide): 0.10 (radionuclide): 1.01 Log K. = -8.4 Log K. = -8.4 Log K. 2.64 9.86 -4.49	E-09 CCM 5 45 V _Y 29.6 16.2 33.6	N _g = 2.31 s 10 ⁻³ M Fe = С _{Log K} .0627 .0475 .0560	ites/nm ² = 0.089 g/L HFO Log K ₊ = 6.0 Log K ₋ = -1 Log K _{cat} = -7 Log K _{An} = 8. Log K -3.90 3.76 -7.41	TLM 0 0.00 .66 43 V _Y 91.6 92.8 22.8	.0446 .0475 .0304 .0317		Jranium (VI) Sorption Bindin, Monodentate, mononuclear con Solid: Ferrihydrite A ₃₅ : 600 m ³ /g Data Source: Payne et al. (1 Concentration: $[U(VI)] = 1F$ fig. 5.2 $P(CO_2) = 0.03\%$ Binduf. G M XO-UO ₂ : XOH-UO ₂ ² :	2 Constants npounds 992) -6 M Log K. = 7.29 Log K_ = -8. Log K n.c. 7.04	DLM 93 V _Y <u>n.c.</u> 75.9	Rel Error (pl Abs Error (p Rel Error (ra Abs Error (ra Abs Error (ra Dece K n.c. .0265	H): 0.05 H): 0.0500 dionuclide): 0.10 adionuclide): 1.0F Log K. = 7.35 Log K. = -8.4 Log K 0.07 8.26	E-09 CCM 5 5 5 5 5 7 7 8 9.6 36.7	Ionic Streng N _s = 2.31 si 2 x 10 ² M H σ _{Log K} .0270 .0252	th (electrolyte): 0.1 tes/nm ² e = 1.78 g/L HFO Log K, = 6.00 Log K_cat = -10.0 Log K _{Cat} = -7.6 Log K _{Aa} = 8.43 Log K -5.85 1.83	I NaNO ₃ TLM 00 66 3 V _Y 88.9 89.2	σ _{Lsg K} .0636 .0667
	Solid: Ferrihydrite $A_{ss}: 600 \text{ m}^2 g$ Data Source: Payne et al. (I Concentration: [U(VI)] = 11 fig. 4.2 P(CO ₂) = 1% $B_1 \cap A \cup A$. [] XO-UO ₂ : XO-UO ₂ : XO-UO ₂ : XO-UO ₂ OH* XO-UO ₂ (OH) ₂ : XOH-UO ₂ (OH) ₂ :	992) -6 M Log K. = 7.29 Log K_ = -8. Log K 1.96 9.14 -4.00 1.96	DLM 9.93 V _y 21.8 22.3 34.8 21.8	Rel Error (r Abs Error (Rel Error (Abs Error (GLeg K .0528 .0277 .0650 .0528	pH): 0.05 (pH): 0.0E00 radionuclide): 0.10 (radionuclide): 1.01 Log K. = -3.4 Log K_ = -8.4 Log K 2.64 9.86 -4.49 2.64	E-09 CCM 5 45 V _Y 29.6 16.2 33.6 29.6	Ng = 2.31 s 10 ⁻³ M Fe σ _{Log K} .0627 .0475 .0560 .0627	ites/nm ² = 0.089 g/L HFO Log K ₊ = 6.0 Log K ₋ = -1 Log K _{cat} = -7 Log K _{An} = 8.4 Log K -3.90 3.76 -7.41 0.30	TLM 0 0.00 .66 43 V _Y 91.6 92.8 22.8 37.7	.0446 .0475 .0304 .0317 .0583 .0583	DEM	Jranium (VI) Sorption Bindin Monodentate, mononuclear cor Solid: Ferrihydrite A ₃₄ : 600 m ³ /g Data Source: Payne et al. (1 Concentration: $[U(VI)] = 1F$ fig. 5.2 P(CO ₂) = 0.03% Bi Δ U.F. \mathcal{L}_{2} MN XO-UO ₂ : XOH-UO ₂ ²¹ XO-UO ₂ OH ^o	g Constants npounds 992) -6 M Log K. = 7.29 Log K. = -8. Log K n.c. 7.04 -9.68	DLM 93 V _Y n.c. 75.9 97.1	Rel Error (pl Abs Error (p Rel Error (ra Abs Error (ra dbs Error (ra G _{Log K} n.c. .0265 .0725	H): 0.05 H): 0.0E00 dionuclide): 0.10 adionuclide): 1.0E Log K. = 7.35 Log K _ = -8.4 Log K 0.07 8.26 -7.43	E-09 CCM 5 15 V _Y 59.6 36.7 29.9	Ionic Streng N _s = 2.31 si 2 x 10 ² M F σ _{Lag K} .0270 .0252 .0319	th (electrolyte): 0.1 tes/nm ² c = 1.78 g/L HFO Log K, = 6.00 Log K_= -10.0 Log K _{cat} = -7.6 Log K _{An} = 8.43 Log K -5.85 1.83 -9.30	I NaNO3 TLM 00 66 3 Vy 88.9 89.2 62.7	σ _{Leg K} .0636 .0276
	Solid: Ferrihydrite A_{32} : 600 m²/g Data Source: Payne et al. (I Concentration: [U(VI)] = 1B fig. 4.2 P(CO ₂) = 1% B) $\cap O$ U f.]] M XO-UO ₂ ' XOH-UO ₂ ²⁺ XO-UO ₂ OH* XOH-UO ₂ (OH) ₂ : XOH-UO ₂ (OH) ₂ *	992) -6 M Log K, = 7.29 Log K_ = -8. Log K 1.96 9.14 -4.00 1.96 -10.60 -4.00 1.96	DLM 9.93 V _Y 21.8 22.3 34.8 21.8 37.4 34.8 21.8	Rei Error (Abs Error (Abs Error (GLog K .0528 .0277 .0650 .0528 .0836 .0528	pH): 0.05 (pH): 0.050 (radionuclide): 0.10 (radionuclide): 1.01 Log K. = -8.4 Log K = -8.4 2.64 9.86 -4.49 2.64 -11.80 -4.49	E-09 CCM 5 45 Vy 29.6 16.2 33.6 29.6 34.5 33.6 29.6 34.5 33.6	N _s = 2.31 s 10 ⁻³ M Fe = .0627 .0475 .0560 .0578 .0560 .0560 .0560	$\begin{array}{c c} \text{ites/nm}^2 \\ = 0.089 \ \text{g/L} \ \text{HFO} \\ \hline \\ & \text{Log } \ \text{K}_{-} = 6.0 \\ \text{Log } \ \text{K}_{-} = -10 \\ \text{Log } \ \text{K}_{-} = -10 \\ \text{Log } \ \text{K}_{-} = -7 \\ \text{Log } \ \text{K}_{-} = -7 \\ \text{Log } \ \text{K}_{-} = -8 \\ \hline \\ & \text{Log } \ \text{K}_{-} = -3 \\ \text{Log } \ \text{K}_{-} = -7 \\ \text{Log } \ \text{K}_{-} = -7 \\ \text{Log } \ \text{K}_{-} = -7 \\ \hline \\ & -3.89 \\ \hline \\ & -3.89 \\ \hline \\ & 3.78 \\ \hline \end{array}$	TLM 0.00 .66 43 V _Y 91.6 92.8 22.8 37.7 34.6 34.4 33.2	.0446 .0475 .0304 .0317 .0583 .0583 .0610	DEM	Uranium (VI) Sorption Bindin Monodentate, monoouuclear cor Solid: Ferrihydrite A ₃ : 600 m ³ /g Data Source: Payne et al. (1 Concentration: [U(VI)] = 1F fig. 5.2 $P(CO_2) = 0.03\%$ Bi AUH . G M XO-UO ₂ : XO-UO ₂ : XO-UO ₂ : XOI-UO ₂ OH [*]	g Constants npounds 992) -6 M Log K. = 7.29 Log K. = -8. Log K n.c. 7.04 -9.68 n.c.	DLM 93 V _y n.c. 75.9 97.1 n.c.	Rel Error (pl Abs Error (p Rel Error (ra Abs Error (ra Δbs Error (ra δLog κ σLog κ n.c. .0725 n.c.	E): 0.05 H): 0.0E00 dionuclide): 0.10 dionuclide): 1.0E Log K, = -8.4 Log K 0.07 8.26 -7.43 0.07	E-09 CCM 5 15 V _Y 59.6 36.7 29.9 59.6	Ionic Streng N _s = 2.31 si 2 x 10 ⁻² М F 2 x 10 ⁻² М F 0270 .0252 .0319 .0270	th (electrolyte): 0.1 tes/nm ² e = 1.78 g/L HFO Log K. = 6.00 Log K_c = -10.0 Log K_c = -7.6 Log K_{An} = 8.43 Log K -5.85 1.83 -9.30 -1.65	TLM TLM 00 66 3 V _Y 88.9 89.2 62.7 69.0	σ _{Leg K} .0636 .0667 .0276 .0288
	Solid: Ferrihydrite A_{32} : 600 m ² /g Data Source: Payne et al. (I Concentration: [U(VI)] = 11 fig. 4.2 P(CO ₂) = 1% B) $\cap A$ U f . M XO-UO ₂ * XOH-UO ₂ OH* XOH-UO ₂ OH* XOH-UO ₂ (OH) ₂ * XOH-UO ₂ (OH) ₂ * XOH-UO ₂ (OH) ₂ *	992) -6 M Log K_ = 7.29 Log K_ = -8. Log K 1.96 9.14 -4.00 1.96 -10.60 4.00 1.96 -10.60	DLM 9.93 V _Y 21.8 22.3 34.8 21.8 37.4 34.8 21.8 37.4 34.8 21.8 37.4	Rel Error (Abs Error (Rel Error (Abs Error (Description (Abs Error (Clog K GLog K 0.528 .0277 .0650 .0528 .0836 .0836	pH): 0.05 (pH): 0.0E00 radionuclide): 0.10 (radionuclide): 1.01 Log K, = 7.3: Log K_ = -8.4 2.64 9.86 -4.49 2.64 -11.80 2.64 -11.80	E-09 CCM 5 45 Vy 29.6 16.2 33.6 29.6 34.5 33.6 29.6 34.5 33.6 29.6 34.5	N _s = 2.31 s 10 ⁻³ M Fe = 	ites/nm ² = 0.089 g/L HFO Log K ₊ = 6.0 Log K ₋ = -1(Log K ₋ = -7 Log K _{An} = 8. Log K -3.90 3.76 -7.41 0.30 -11.62 -3.89 3.78 -13.70	TLM 0	.0446 .0475 .0304 .0317 .0583 .0583 .0583 .0610 .0701	DEM	Jranium (VI) Sorption Bindin Monodentate, mononuclear cor Solid: Ferrihydrite A ₃ ; 600 m ³ /g Data Source: Payne et al. (1 Concentration: $[U(VI)] = 11$ fig. 5.2 $P(CO_2) = 0.03\%$ Bi AUI . G M XO-UO ₂ : XOH-UO ₂ ²¹ XO-UO ₂ OH ² XO-UO ₂ OH ² XO-UO ₂ OH ³	g Constants npounds 992) -6 M Log K. = 7.29 Log K_ = -8. Log K n.c. 7.04 -9.68 n.c. -18.27	DLM 93 V _Y n.c. 75.9 97.1 n.c. 97.8	Rel Error (pl Abs Error (p Rel Error (ra Abs Error (ra Deg K n.c. .0265 .0725 n.c. .0886	 H): 0.05 H): 0.0E00 dionuclide): 0.10 adionuclide): 1.0E Log K, = 7.35 Log K Log K 0.07 8.26 -7.43 0.07 -15.73 	E-09 CCM 5 5 5 5 5 9.6 36.7 29.9 5 9.6 45.9	Ionic Streng Ng = 2.31 si 2 x 10 ² M I 2 x 10 ² M I 0270 .0252 .0319 .0270 .0323	th (electrolyte): 0.1 tes/nm ² Fe = 1.78 g/L HFO Log K, = 6.00 Log K_ca = -7.6 Log K _{AR} = 8.43 Log K -5.85 1.83 -9.30 -1.65 -17.59	L NaNO3 TLM 00 66 3 Vy 88.9 89.2 62.7 69.0 90.8	σ _{Lsg K} .0636 .0667 .0276 .0288 .1106
	Solid: Ferrihydrite A ₃₉ : 600 m ² /g Data Source: Payne et al. (I Concentration: [U(VI)] = 11 fig. 4.2 P(CO ₂) = 1% Bind uf. 1] M/ XO-UO ₂ ⁺ XOH-UO ₂ ⁺ XOH-UO ₂ ⁺ XOH-UO ₂ ⁺ XOH-UO ₂ OH ⁺ XOH-UO ₂ OH) ₂ ⁺ XOH-UO ₂ (OH) ₂ ⁺ XOH-UO ₂ (OH) ₂ ⁺ XOH-UO ₂ (OH) ₂ ⁺ XOH-UO ₂ (OH) ₂ ⁺	992) -6 M Log K. = 7.29 Log K_ = -8. Log K 1.96 9.14 -4.00 1.96 -10.60 -10.60 1.96 -10.60	DLM 9.93 V _y 21.8 22.3 34.8 21.8 37.4 34.8 21.8 37.4 34.8 21.8 37.4 34.8	Rel Error (r Abs Error (Abs Error (Abs Error (Abs Error (pH): 0.05 (pH): 0.0E00 radionuclide): 0.10 (radionuclide): 1.01 Log K, = 7.3: Log K_ = -8.4 2.64 9.86 -4.49 2.64 -11.80 -4.49	E-09 CCM 5 45 V _Y 29.6 16.2 33.6 29.6 34.5 33.6 29.6 34.5 33.6 29.6 34.5 33.6 29.6 34.5	Ng = 2.31 m 10 ⁻³ M Fe σLog K .0627 .0475 .0560 .0560 .0578 .0578 .0578 .0578 .0578 .0578 .0560	$\begin{array}{c c} \text{ites/nm}^2 \\ = 0.089 \ \text{g/L} \ \text{HFO} \\ \hline \\ & \text{Log } K_* = 6.0 \\ & \text{Log } K_{-} = -1 \\ & \text{Log } K_{-} = -7 \\ & \text{Log } K_{$	TLM 0 0.00 266 43 V _Y 91.6 92.8 22.8 37.7 34.6 34.4 33.2 79.8 83.1	.0446 .0475 .0304 .0317 .0583 .0583 .0610 .0701 .0794	DEM	Jranium (VI) Sorption Bindin Monodentate, monouuclear cor Solid: Ferrihydrite A ₃ : 600 m ³ /g Data Source: Payne et al. (1 Concentration: [U(VI)] = 11 fig. 5.2 P(CO ₂) = 0.03% B ₁ \land U.F. \checkmark RO-UO ₂ = 0.03% CO-UO ₂ = 0.03% XO-UO ₂ = 0.03%	g Constants npounds 992) -6 M Log K. = 7.29 Log K. = -8. Log K n.c. 7.04 -9.68 n.c. -18.27 -9.68 n.c. -18.27	DLM 93 V _Y n.c. 75.9 97.1 n.c. 97.8 97.1	Rel Error (pl Abs Error (p Rel Error (ra Abs Error (ra Abs Error (ra Description (ra Abs Error (ra Description	 H): 0.05 H): 0.0E00 dionuclide): 0.10 adionuclide): 1.0F Log K, = 7.35 Log K, = -8.4 Log K 0.07 8.26 -7.43 0.07 -15.73 -7.43 	E-09 CCM 5 5 5 5 5 5 5 5 5 5 5 5 5	Ionic Streng Ns = 2.31 si 2 x 10 ² M I 0270 .0252 .0319 .0270	th (electrolyte): 0.1 tes/nm ² c = 1.78 g/L HFO Log K, = 6.00 Log K_cat = -7.6 Log K _{An} = 8.43 Log K -5.85 1.83 -9.30 -1.65 -7.86	TLM TLM 00 66 3 V _Y 88.9 89.2 62.7 69.0 90.8 48.1	σ _{Leg K} .0636 .0667 .0276 .0288 .1106 .0329
	Solid: Ferrihydrite A_{35} : 600 m ² /g Data Source: Payne et al. (I Concentration: [U(VI)] = II fig. 4.2 P(CO ₂) = 1% $B_1 \cap A \cup A^*$. M^ XO-UO ₂ * XOH-UO ₂ ^{2*} XO-UO ₂ OH* XO-UO ₂ (OH) ₂ : XOH-UO ₂ (OH) ₂ * XOH-UO ₂ (OH) ₂ * XOH-UO ₂ (OH) ₂ * XOH-UO ₂ (OH) ₃ XOH-UO ₂ (OH) ₃ XOH-UO ₂ (OH) ₃ *	992) -6 M Log K. = 7.29 Log K_ = -8. Log K 1.96 9.14 -4.00 1.96 -10.60 -10.60 -4.00 1.96 -10.60 -22.17	DLM 9,93 V _Y 21.8 22.3 34.8 21.8 37.4 34.8 21.8 37.4 34.8 37.4 34.8 68.9	Rel Error (r Abs Error (Rel Error (Abs Error (Abs Error (Abs Error () σ _{Log K} 0.528 .0277 .0650 .0528 .0836 .0650 .0528 .0650 .0528 .0650 .0528 .0650	pH): 0.05 (pH): 0.0500 radionuclide): 0.10 (radionuclide): 1.01 Log K, = -7.3: Log K_ = -8.4 2.64 9.86 -4.49 2.64 -11.80 -4.49 2.64 -11.80 -4.49	E-09 CCM 5 45 V _Y 29.6 16.2 33.6 29.6 34.5 33.6 29.6 34.5 33.6 29.6 34.5 33.6 29.6 34.5 33.6 29.6 34.5	Ng = 2.31 m 10 ⁻³ M Fe 3 M Fe - 0.627 .0475 .0560 .0578 .0560 .0560 .0560 .0578 .0560 .0560 .0560 .0560	ites/nm ² = 0.089 g/L HFO Log K. = 6.0 Log K. = -11 Log K = -7 Log K = -7 Log K = -7 Log K -3.90 3.76 -7.41 0.30 -11.62 -3.89 3.78 -13.70 -5.33 -21.49	TLM 0.00 566 43 V _Y 91.6 92.8 22.8 37.7 34.6 34.4 33.2 79.8 83.1 85.5	.0446 .0475 .0304 .0317 .0583 .0583 .0610 .0701 .0794 .0800	DEM	Jranium (VI) Sorption Bindin Monodentate, monouuclear cor Solid: Ferrihydrite A ₃ ; 600 m ¹ /g Data Source: Payne et al. (1 Concentration: [U(VI)] = 11 fig. 5.2 $P(CO_3) = 0.03\%$ Bi AUH . Co M XO-UO ₂ : XO-UO ₂ : XO-UO ₂ : XO-UO ₂ : XO-UO ₂ : XO-UO ₂ OH [*] XO-UO ₂ OH [*] XOH-UO ₂ (OH) ₂ : XOH-UO ₂ (OH) ₂ : XOH-UO ₂ (OH) ₂ : XOH-UO ₂ (OH) ₂ : XOH-UO ₂ (OH) ₂ :	992) -6 M Log K. = 7.29 Log K. = -8. Log K n.c. 7.04 -9.68 n.c. -18.27 -9.68 n.c. -18.27 -9.68	DLM 93 V _Y n.c. 75.9 97.1 n.c. 97.8 97.1 n.c. 97.8 97.1	Rel Error (pl Abs Error (p Rel Error (ra Abs Error (ra Deg K n.c. .0265 .0725 n.c. .0886 .0725 n.c. .0886 .0725	E): 0.05 H): 0.0E00 dionuclide): 0.10 dionuclide): 1.0E Log K, = -8.4 Log K 0.07 8.26 -7.43 0.07 -15.73 -7.43 0.07 -15.73 -7.43	E-09 CCM 545 Vy 59.6 36.7 29.9 59.6 45.9 29.9 29.9 59.6	Ionic Streng N ₅ = 2.31 si 2 x 10 ² M I σ _{Log K} .0270 .0252 .0319 .0270 .0323 .0319 .0270	th (electrolyte): 0.1 tes/nm ² is = 1.78 g/L HFO Log K, = 6.00 Log K_{cst} = -10.0 Log K_{cst} = -7.6 Log K_{An} = 8.43 Log K -5.85 1.83 -9.30 -1.65 -17.59 -7.86 -1.07	TLM TLM 00 56 V _Y 88.9 89.2 62.7 69.0 90.8 48.1 89.1	σLog K .0636 .0667 .0276 .0288 .1106 .0329 .0669
	Solid: Ferrihydrite $A_{sc}: 600 \text{ m}^2/g$ Data Source: Payne et al. (I Concentration: [U(VI)] = 11 fig. 4.2 P(CO ₂) = 1% TB ₁ $\cap A$ $\cup A$.) \ NO XO-UO ₂ : XO-UO ₂ : XOH-UO ₂ : XOH-UO ₂ : XOH-UO ₂ : XOH-UO ₂ : XOH-UO ₂ : XOH-UO ₂ OH [*] XOH-UO ₂ (OH) ₂ : XOH-UO ₂ (OH) ₂ : XOH-UO ₂ (OH) ₂ : XOH-UO ₂ (OH) ₃ : XOH-UO ₂ (OH) ₄ : XOH-UO ₂ (OH) ₄ : XOH ₂ -UO ₂ (OH) ₄ :	992) -6 M Log K. = 7.29 Log K_ = -8. Log K 1.96 9.14 -4.00 1.96 -10.60 -4.00 1.96 -10.60 -22.17 -10.60	DLM 9.93 V _Y 21.8 22.3 34.8 21.8 37.4 34.8 21.8 37.4 34.8 68.9 37.4	Rel Error (η Abs Error (Abs Error (Rel Error (Abs Error (Abs Error (C _{Log K} .0528 .0277 .0650 .0528 .0836 .0650 .0528 .0836 .0650 .0528	pH): 0.05 (pH): 0.0E00 radionuclide): 0.10 (radionuclide): 1.01 Log K, = -7.3: Log K_ = -8.4 2.64 9.86 -4.49 2.64 -11.80 -4.49 2.64 -11.80 -4.49 2.64 -11.80	E-09 CCM 5 45 Vy 29.6 16.2 33.6 29.6 34.5 33.6 29.6 34.5 33.6 29.6 34.5 33.6 29.6 34.5 33.6 29.6 34.5 33.6 29.6 34.5 33.6 29.6 34.5 33.6 29.6 34.5 34	Ng = 2.31 н 10 ⁻³ M Fe 10 ⁻³ M Fe .0627 .0475 .0560 .0627 .0578 .0560 .0627 .0578 .0560 .0627 .0578 .0560 .0627 .0578 .0560 .0578 .0560 .0560 .0560	ites/nm ² = 0.089 g/L HFO Log K ₊ = 6.0 Log K ₋ = -1(Log K _{cat} = -7 Log K _{An} = 8. Log K -3.90 3.76 -7.41 0.30 -11.62 -3.89 3.78 -13.70 -5.33 -21.49 -13.25	TLM 0.00 .56 43 Vy 91.6 92.8 22.8 37.7 34.6 34.4 33.2 79.8 83.1 85.5 84.4	.0446 .0475 .0304 .0317 .0583 .0583 .0583 .0610 .0701 .0794 .0800 .0900	DEM	Jranium (VI) Sorption Bindin Monodentate, mononuclear cor Solid: Ferrihydrite A ₃ ; 600 m ³ /g Data Source: Payne et al. (1 Concentration: [U(VI)] = 11 fig. 5.2 $P(CO_2) = 0.03\%$ Bi $_{1}$ $_{2}$ $_{4}$ $_{4}$ $_{6}$ $_{7}$ Bi $_{1}$ $_{2}$ $_{4}$ $_{4}$ $_{6}$ $_{7}$ XO-UO ₂ : XO-UO ₂ : XO-UO ₂ OH ² XO-UO ₂ OH ² XOH-UO ₂ (OH) ₂ : XOH-UO ₂ (OH) ₂ : XOH ₂ -UO ₂ (OH) ₂ : XOH ₂ -UO ₂ (OH) ₂ : XOH ₂ -UO ₂ (OH) ₂ :	992) -6 M Log K. = 7.29 Log K. = -8. Log K n.c. 7.04 -9.68 n.c. -18.27 -9.68 n.c. -18.27 -9.68 0.26.80	DLM 93 Vr n.c. 75.9 97.1 n.c. 97.8 97.1 n.c. 97.8 97.1 97.1 98.0	Rel Error (pl Abs Error (p Rel Error (ra Abs Error (ra Abs Error (ra 0265 .0725 n.c. .0886 .0725 n.c. .0886 .0725 .0725 .0942	 H): 0.05 H): 0.0E00 dionuclide): 0.10 adionuclide): 1.0F Log K, = 7.35 Log K, = -8.4 Log K 0.07 8.26 -7.43 0.07 -15.73 -7.43 0.07 -15.73 -7.43 -7.43 -7.43 -7.43 	E-09 CCM 5 5 5 5 5 5 5 5 5 5 5 5 5	Ionic Streng Ng = 2.31 si 2 x 10 ² M I 2 x 10 ² M I 0.0270 .0252 .0319 .0270 .0323 .0319 .0270 .0323 .0319 .0270 .0323 .0319 .0270 .0323 .0319 .0270 .0323 .0319	th (electrolyte): 0.1 tes/nm ² Ce = 1.78 g/L HPO Log K ₊ = 6.00 Log K ₋ = -10.0 Log K ₋ = -7.6 Log K _{An} = 8.43 Log K -5.85 1.83 -9.30 -1.65 -17.59 -7.86 -1.07 -19.80	TLM TLM 00 56 3 V _Y 88.9 89.2 62.7 69.0 90.8 48.1 89.1 91.7	с _{Leg к} .0636 .0667 .0276 .0288 .1106 .0329 .0669 .3863
	Solid: Ferrihydrite A_{32} : 600 m ² /g Data Source: Payne et al. (I Concentration: [U(VI)] = 11 fig. 4.2 P(CO ₂) = 1% B) $\cap Cl U(I)$ B) $\cap Cl U(I)$ XO-UO ₂ XO-UO ₂ ⁺ XOH-UO ₂ ²⁺ XOH-UO ₂ OH° XOH-UO ₂ OH° XOH-UO ₂ (OH) ₂ : XOH-UO ₂ (OH) ₂ XOH-UO ₂ (OH) ₂ XOH-UO ₂ (OH) ₁	992) -6 M Log K_ = 7.29 Log K_ = -8. Log K 1.96 9.14 -4.00 1.96 -10.60 -4.00 1.96 -10.60 -22.17 -10.60 16.48	DLM 9.93 V _Y 21.8 22.3 34.8 21.8 37.4 34.8 21.8 37.4 34.8 68.9 37.4 34.8 68.9 37.4	Ref Error (Abs Error (Rel Error (Abs Error (Abs Error (Description (Rel Error (Abs Error (Description (Rel Error (Abs Error (Description	pH): 0.05 (pH): 0.0E00 radionuclide): 0.10 (radionuclide): 1.01 Log K, = -7.3: Log K_ = -8.4 2.64 9.86 -4.49 2.64 -11.80 -4.49 2.64 -11.80 -4.49 2.64 -11.80 -4.49 2.64 -11.80	E-09 CCM 5 45 Vy 29.6 16.2 33.6 29.6 34.5 33.6 34.5 33.6 34.5 33.6 34.5 33.6 34.5 33.6 34.5 33.6 34.5 33.6 34.5 34	Ng = 2.31 н 10 ⁻³ M Fe .0627 .0475 .0560 .0560 .0560 .0560 .0560 .0560 .0560 .0578 .0560 .0578 .0578 .0578 .0578 .0578 .0578 .0578 .0578 .0578 .0578 .0578 .0578 .0290	$\begin{array}{c c} \text{ites/nm}^2 \\ = 0.089 \ \text{g/L} \ \text{HFO} \\ \hline \\ & \text{Log } \ \text{K}_{-} = 6.0 \\ \text{Log } \ \text{K}_{-} = .10 \\ \text{Log } \ \text{K}_{-} = .7 \\ \text{Log } \ \text{Log } \ \text{K}_{-} = .7 \\ \text{Log } \ \text{K}_{-} = .7 \\ \text{Log } \ \text{Log } \ \text{Log } \ \text{Log } \ \text{K}_{-} = .7 \\ \text{Log } \ $	TLM 0.00 .66 43 Vr 91.6 92.8 22.8 37.7 34.6 34.4 33.2 79.8 83.1 85.5 84.4 76.5	.0446 .0475 .0304 .0317 .0583 .0583 .0583 .0510 .0701 .0794 .0800 .0900 .0407	DEM	Jranium (VI) Sorption Bindin Monodentate, monouuclear con Solid: Ferrihydrite A ₃₄ : 600 m ¹ /g Data Source: Payme et al. (1 Concentration: $[U(VI)] = 1F$ fig. 5.2 $P(CO_2) = 0.03\%$ B) $\Delta^2 UA^2$. (2) $DA^2 UA^2$. (2) $NOI-UO_2^{(2)}$ XOI-UO ₂ (OH) ₂ : XOI-UO ₂ (OH) ₂ : XOII-UO ₂ (OH) ₂ :	992) -6 M Log K. = 7.29 Log K. = -8. Log K n.c. 7.04 -9.68 n.c. -18.27 -9.68 n.c. -18.27 -9.68 n.c. -18.27 -9.68 -26.80 -18.27	DLM 93 Vy n.c. 75.9 97.1 n.c. 97.8 97.1 0.c. 97.8 97.1 98.0 97.8	Rel Error (pl Abs Error (p Rel Error (r Abs Error (r Abs Error (r 0.0265 .0725 n.c. .0886 .0725 n.c. .0886 .0725 .0942 .0886	H): 0.05 H): 0.0E00 dionuclide): 0.10 dionuclide): 1.0E Log K, = 7.35 Log K_ = -8.4 Log K 0.07 8.26 -7.43 0.07 -15.73 -7.43 0.07 -15.73 -7.43 -7.43 -25.70 -15.73	E-09 CCM 5 5 5 5 5 5 5 5 5 5 5 5 5	Ionic Streng Ns = 2.31 si 2 x 10 ² M I 2 x 10 ² M I 0.270 .0252 .0319 .0270 .0323 .0319 .0270 .0323 .0319 .0223 .0319 .0323 .0319	th (electrolyte): 0.1 tes/nm ² Fe = 1.78 g/L HFO Log K, = 6.00 Log K_= -10.0 Log K_{cat} = -7.6 Log K_{Aa} = 8.43 Log K -5.85 1.83 -9.30 -1.65 -17.59 -7.86 -10.7 -19.80 -11.64	TLM TLM 00 66 3 V _Y 88.9 89.2 62.7 69.0 90.8 48.1 89.1 91.7 91.7	σ _{Leg K} .0636 .0667 .0276 .0288 .1106 .0329 .0669 .3863 .3707 .5170 .5112
	Solid: Ferrihydrite A_{32} : 600 m ² /g Data Source: Payne et al. (1 Concentration: [U(VI)] = 11 fig. 4.2 P(CO ₂) = 1% TB) $\cap Cl U(L, 1)$ W(XO-UO ₂ XO-UO ₂ XO-UO ₂ XOH-UO ₂ OH° XOH-UO ₂ OH° XOH-UO ₂ OH) ₂ XOH-UO ₂ (OH) ₂ XOH-UO ₂ (OH) ₂ XOH-UO ₂ (OH) ₁ XOH-UO ₂ (OH) ₂ XOH-UO ₂ (OH) ₂ XOH-UO ₂ (OH) ₂ XOH-UO ₂ (OH) ₄ XOH-UO ₂ (OH) ₄ XOH-UO ₂ (OH) ₄	992) -6 M Log K, = 7.29 Log K = -8. Log K 1.96 9.14 -4.00 1.96 -10.60 -4.00 1.96 -10.60 -22.17 -10.60 16.48 30.12	DLM 993 V _Y 21.8 22.3 34.8 21.8 37.4 34.8 21.8 37.4 34.8 21.8 37.4 34.8 68.9 37.4 45.0 62.1	Rel Error (Abs Error (Rel Error (Abs Ero	pH): 0.05 (pH): 0.0E00 radionuclide): 0.10 (radionuclide): 1.01 Log K, = 7.3: Log K_ = -8.4 2.64 9.86 -4.49 2.64 -11.80 -4.49 2.64 -11.80 -4.49 2.64 -11.80 -4.49 2.64 -11.80 -4.59 2.64	E-09 CCM 5 45 Vy 29.6 16.2 33.6 29.6 34.5 34.5 34	Ng = 2.31 н 10 ⁻³ M Fe 0.3 M Fe 0.627 .0627 .0560 .0560 .0560 .0578 .0560 .0578 .0560 .0578 .0578 .0578 .0578 .0578 .0578 .0578 .0578 .0520	ites/nm ² = 0.089 g/L HFO Log K ₊ = 6.0 Log K ₋ = -10 Log K ₋ = -1 Log K ₋ = -7 Log K _{An} = 8. Log K -3.90 3.76 -7.41 0.30 -11.62 -3.89 3.78 -13.70 -5.33 -21.49 -13.25 15.88 3.5.14	TLM 0.000 .66 43 Vr 91.6 92.8 22.8 37.7 34.6 34.4 33.2 79.8 83.1 85.5 84.4 76.5 71.8	.0446 .0475 .0304 .0317 .0583 .0583 .0583 .0583 .0583 .0583 .0583 .0583 .0583 .0583 .0583 .0583 .0590 .0794 .0800 .0900 .0407 .0666	DEM	Jranium (VI) Sorption Bindin, Monodentate, monouuclear con Solid: Ferrihydrite A ₃₄ : 600 m ³ /g Data Source: Payne et al. (I Concentration: $[U(VI)] = 1F$ fig. 5.2 P(CO ₂) = 0.03% Bi $\sqrt{2}$ UF. U WN XO-UO ₂ = 0.03% Bi $\sqrt{2}$ UF. U WN XO-UO ₂ = 0.03% Content of the second secon	992) -6 M 992) -6 M Log K. = -8. Log K. = -8. Log K. -18.27 -9.68 n.c. -18.27 -9.68 n.c. -18.27 -9.68 1.c. -18.27 -9.68 1.c. -18.27 -9.68 1.c. -18.27 -9.68 1.c. -18.27 -9.68 -26.80 -18.27 -18.27 -9.68	DLM 93 V _Y n.c. 75.9 97.1 n.c. 97.8 97.1 n.c. 97.8 97.1 98.0 97.8 62.9	Rel Error (pl Abs Error (p Rel Error (ra Abs Error (ra Abs Error (ra 0265 .0725 n.c. .0886 .0725 n.c. .0886 .0725 .0942 .0886 .0237	E): 0.05 F): 0.05000 dionuclide): 0.10 dionuclide): 1.01 Log K_ = 7.35 Log K_ = -8.4 Log K 0.07 8.26 -7.43 0.07 -15.73 -7.43 0.07 -15.73 -7.43 0.07 -15.73 15.53	2-09 CCM 5 45 V _Y 59.6 36.7 29.9 59.6 45.9 29.9 59.6 45.9 29.9 59.6 45.9 29.9 91.1 45.9 72.3	Ionic Streng N ₅ = 2.31 si 2 x 10 ² M F σ _{Lag K} .0270 .0252 .0319 .0270 .0323 .0319 .0270 .0323 .0319 .0270 .0323 .0319 .0220 .0323 .0319 .0220	th (electrolyte): 0.1 tes/nm ² Fe = 1.78 g/L HFO $Log K_{,} = 6.00$ $Log K_{,} = -10.0$ $Log K_{,} = -10.0$ $Log K_{,} = -7.6$ $Log K_{,} = 8.43$ Log K -5.85 1.83 -9.30 -1.65 -17.59 -7.86 -10.07 -19.80 -11.64 -29.74 -21.59 15.43	TLM TLM 00 56 3 V _Y 88.9 89.2 62.7 69.0 90.8 48.1 89.1 91.7 91.7 91.7 91.7 91.7 73.1	σLeg κ .0636 .0667 .0276 .0288 .1106 .0329 .0669 .3863 .3707 .5112 .0224
	Solid: Ferrihydrite A ₃₂ : 600 m ² /g Data Source: Payne et al. (I Concentration: $[U(VI)] = II$ fig. 4.2 P(CO ₂) = 1% TB} $\cap O U + . 1$ W XO-UO ₂ XO-UO ₂ ⁻¹ XOH-UO ₂ OH ^o XOH-UO ₂ OH ^o XOH-UO ₂ OH) ₂ ⁻¹ XOH-UO ₂ (OH) ₂ ⁻¹ XOH ₂ -UO ₂ (OH) ₂ ⁻¹ XOH ₂ -UO ₂ (OH) ₄ ⁻¹ XOH ₂ -UO ₂ (OH) ₄ ⁻¹ XOH ₂ -UO ₂ (OH) ₄ ⁻¹ XOH ₂ -UO ₂ (CO ₃) ₂ ⁻¹ XOH ₂ -UO ₂ (CO ₃) ₂ ⁻¹	992) →6 M Log K. = 7.29 Log K_ = -8. Log K 1.96 9.14 -4.00 1.96 -10.60 -4.00 1.96 -10.60 -4.00 1.96 -10.60 1.96 -10.60 1.96 -10.60 1.96 -10.60 1.96 -10.60 1.96 -10.60 1.96 -10.60 -10.60 1.96 -10.60 -22.17 -10.60 16.48 30.12 37.01	DLM 9.93 V _v 21.8 22.3 34.8 21.8 37.4 34.8 21.8 37.4 34.8 68.9 37.4 34.8 68.9 37.4 45.0 62.1 67.9	Rel Error (Abs Error (Rel Error (Abs Er	pH): 0.05 (pH): 0.050 (radionuclide): 0.10 (radionuclide): 1.01 Log K, = 7.3: Log K_ = -8.4 2.64 9.86 -4.49 2.64 -11.80 -4.49 2.64 -11.80 -4.49 2.64 -11.80 -11.80 -4.49 2.64 -11.80 -5.8 28.80 34.31	E-09 CCM 5 45 Vy 29.6 16.2 33.6 29.6 34.5 33.6 29.6 34.5 33.6 29.6 34.5 33.6 29.6 34.5 33.6 29.6 34.5 33.6 29.6 34.5 34.5 33.6 29.6 34.5 34.5 33.6 29.6 34.5 34.7 34.5 34.7 34.5 34.7 34.5 34.7 34.5 34.7 34.5 34.7 34.5 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.5 34.1 77.6 77.1	Ng = 2.31 m 10 ⁻³ M Fe 2.0627 .0627 .0475 .0560 .0578 .0560 .0578 .0560 .0578 .0578 .0560 .0578 .0578 .0560 .0627 .0578 .0560 .0610 .0578 .0290 .0320	ites/nm ² = 0.089 g/L HFO Log K ₊ = 6.0 Log K ₋ = -1 Log K ₀ = -7 Log K ₀ = 8.4 Log K -3.90 3.76 -7.41 0.30 -11.62 -3.89 3.78 3.78 -13.70 -5.33 -21.49 -13.25 15.88 35.14 47.06	TLM 0 0.00 566 43 V _Y 91.6 92.8 22.8 37.7 34.6 34.4 33.2 79.8 83.1 85.5 84.4 76.5 71.8 69.3	.0446 .0475 .0304 .0317 .0583 .0583 .0610 .0701 .0794 .0800 .0900 .0407 .0666 .0973	Sev.	Jranium (VI) Sorption Bindin Monodentate, monouuclear cor Solid: Ferrihydrite A ₃ : 600 m ³ /g Data Source: Payne et al. (1 Concentration: [U(VI)] = 11 fig. 5.2 P(CO ₂) = 0.03% B ₁ \land U.H. \checkmark M XO-UO ₂ : XOH-UO ₂ : XOH-UO ₂ : XOH-UO ₂ : XOH-UO ₂ : XOH-UO ₂ OH [*] XOH-UO ₂ OH [*] XOH-UO ₂ OH [*] XOH-UO ₂ (OH) ₂ : XOH-UO ₂ (OH) ₂ :	992) -6 M 992) -6 M Log K. = 7.29 Log K. = -8. Log K n.c. 7.04 -9.68 n.c. -18.27 -9.68 n.c. -18.27 -9.68 n.c. -18.27 16.02 31.14	DLM 93 V _y n.c. 75.9 97.1 n.c. 97.8 97.1 n.c. 97.8 97.1 97.8 97.1 98.0 97.8 97.1 98.0 97.8 97.3	Rel Error (pl Abs Error (p Rel Error (ra Abs Error (ra Abs Error (ra 0265 .0725 n.c. .0886 .0725 n.c. .0886 .0725 .0942 .0886 .0237 .0273	E): 0.05 F): 0.0500 dionuclide): 0.10 dionuclide): 1.0E Log K, = 7.35 Log K = -8.4 Log K 0.07 8.26 -7.43 0.07 -15.73 -7.43 0.07 -15.73 -7.43 0.07 -15.73 15.53 29.74	E-09 CCM 5 5 5 5 5 5 5 5 5 5 5 5 5	Ionic Streng N ₅ = 2.31 si 2 x 10 ⁻² М F 2 x 10 ⁻² М F 0.270 .0252 .0319 .0270 .0323 .0319 .0270 .0323 .0319 .0270 .0323 .0319 .0270 .0323 .0319 .0270 .0323 .0323 .0323 .0323 .0323 .0323 .0271	th (electrolyte): 0.1 tes/nm ² e = 1.78 g/L HPO Log K, = 6.00 Log K_= -10.0 Log K_m = 8.43 Log K -5.85 1.83 -9.30 -1.65 -17.59 -7.86 -10.7 -19.80 -11.64 -29.74 -21.59 15.43 35.97	TLM TLM TLM TLM TLM TLM TLM TLM TLM TLM	σLeg κ .0636 .0667 .0276 .0288 .1106 .0329 .0669 .3863 .3707 .5170 .5112 .0224 .0295
	Solid: Ferrihydrite A_{32} : 600 m ² /g Data Source: Payne et al. (1 Concentration: [U(VI)] = 11 fig. 4.2 P(CO ₂) = 1% TB) $\cap Cl U(L, 1)$ M(XO-UO ₂ XO-UO ₂ XO-UO ₂ XOH-UO ₂ OH° XOH-UO ₂ OH° XOH-UO ₂ OH) ₂ XOH-UO ₂ (OH) ₂ XOH-UO ₂ (OH) ₂ XOH-UO ₂ (OH) ₁ XOH-UO ₂ (OH) ₂ XOH-UO ₂ (OH) ₂ XOH-UO ₂ (OH) ₂ XOH-UO ₂ (OH) ₄ XOH-UO ₂ (OH) ₄ XOH-UO ₂ (OH) ₄	992) -6 M Log K, = 7.29 Log K = -8. Log K 1.96 9.14 -4.00 1.96 -10.60 -4.00 1.96 -10.60 -22.17 -10.60 16.48 30.12	DLM 993 V _Y 21.8 22.3 34.8 21.8 37.4 34.8 21.8 37.4 34.8 21.8 37.4 34.8 68.9 37.4 45.0 62.1	Rel Error (Abs Error (Rel Error (Abs Err	pH): 0.05 (pH): 0.0E00 radionuclide): 0.10 (radionuclide): 1.01 Log K, = 7.3: Log K_ = -8.4 2.64 9.86 -4.49 2.64 -11.80 -4.49 2.64 -11.80 -4.49 2.64 -11.80 -4.49 2.64 -11.80 -4.59 2.64	E-09 CCM 5 45 Vy 29.6 16.2 33.6 29.6 34.5 34.5 34	Ng = 2.31 н 10 ⁻³ M Fe 0.3 M Fe 0.627 .0627 .0560 .0560 .0560 .0578 .0560 .0578 .0560 .0578 .0578 .0578 .0578 .0578 .0578 .0578 .0578 .0520	$\begin{array}{c c} \text{ites/nm}^2 \\ \hline = 0.089 \ \text{g/L} \ \text{HFO} \\ \hline \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	TLM 0.000 .66 43 Vr 91.6 92.8 22.8 37.7 34.6 34.4 33.2 79.8 83.1 85.5 84.4 76.5 71.8	.0446 .0475 .0304 .0317 .0583 .0583 .0610 .0701 .0794 .0800 .0900 .0407 .0666 .0973	SEM	Jranium (VI) Sorption Bindin Monodentate, mononuclear cor Solid: Ferrihydrite A ₃ ; 600 m ³ /g Data Source: Payne et al. (1 Concentration: [U(VI)] = 11 fig. 5.2 $P(CO_3) = 0.03\%$ Bi $_{1}$ $_{2}$ $_{4}$ $_{4}$ $_{6}$ $_{7}$ Bi $_{1}$ $_{2}$ $_{4}$ $_{4}$ $_{6}$ $_{7}$ XO-UO ₂ : XO-UO ₂ : XOH-UO ₂ : XOH-UO ₂ OH ³ XOH-UO ₂ (OH) ₂ : XOH-UO ₂ (OH) ₂ : XOH ₂ -UO ₂ (O) ₂ : XOH ₂ -UO ₂ (CO ₂) ₂ :	992) -6 M Log K, = 7.29 Log K, = -8. Log K n.c. 7.04 -9.68 n.c. -18.27 -9.68 n.c. -18.27 -9.68 n.c. -18.27 -9.68 1.02 31.14 39.55	DLM 93 V _Y n.c. 75.9 97.1 n.c. 97.8 97.1 n.c. 97.8 97.1 n.c. 97.8 97.1 8.0 97.8 97.1 97.3 62.9 70.3 69.4	Rel Error (pl Abs Error (p Rel Error (r Abs Error (r Abs Error (r 0.0265 .0725 n.c. .0886 .0725 n.c. .0886 .0725 .0942 .0886 .0237 .0273 .0340	E): 0.05 H): 0.0E00 dionuclide): 0.10 dionuclide): 1.0E Log K, = 7.35 Log K = -8.4 Log K 0.07 8.26 -7.43 0.07 -15.73 -7.43 0.07 -15.73 -7.43 0.07 -15.73 15.53 29.74 36.78	E-09 CCM 5 5 5 5 5 5 5 5 5 5 5 5 5	Ionic Streng N _s = 2.31 si 2 x 10 ² M F 2 x 10 ² M F 0.270 .0252 .0319 .0270 .0323 .0319 .0270 .0323 .0319 .0270 .0323 .0319 .0220 .0323 .0323 .0323 .0323 .0323 .0221 .0221 .0223 .0221	th (electrolyte): 0.1 tes/nm ² Fe = 1.78 g/L HFO $Log K_{-} = 6.00$ $Log K_{-} = -10.0$ $Log K_{-} = -7.6$ $Log K_{-} = -7.6$ $Log K_{-} = -7.6$ $Log K_{-} = -7.6$ 1.83 -9.30 -1.65 -17.59 -7.86 -10.7 -19.80 -11.64 -29.74 -21.59 15.43 35.97 48.59	TLM TLM TLM TLM TLM TLM TLM TLM TLM TLM	σLeg κ .0636 .0667 .0276 .0288 .1106 .0329 .0669 .3863 .3707 .5170 .5112 .0224 .0295 .0437
	Solid: Ferrihydrite A ₃₂ : 600 m ² /g Data Source: Payne et al. (I Concentration: $[U(VI)] = II$ fig. 4.2 P(CO ₂) = 1% TB} $\cap O U + . 1$ W XO-UO ₂ XO-UO ₂ ⁻¹ XOH-UO ₂ OH ^o XOH-UO ₂ OH ^o XOH-UO ₂ OH) ₂ ⁻¹ XOH-UO ₂ (OH) ₂ ⁻¹ XOH ₂ -UO ₂ (OH) ₂ ⁻¹ XOH ₂ -UO ₂ (OH) ₄ ⁻¹ XOH ₂ -UO ₂ (OH) ₄ ⁻¹ XOH ₂ -UO ₂ (OH) ₄ ⁻¹ XOH ₂ -UO ₂ (CO ₃) ₂ ⁻¹ XOH ₂ -UO ₂ (CO ₃) ₂ ⁻¹	992) →6 M Log K. = 7.29 Log K_ = -8. Log K 1.96 9.14 -4.00 1.96 -10.60 -4.00 1.96 -10.60 -4.00 1.96 -10.60 1.96 -10.60 1.96 -10.60 1.96 -10.60 1.96 -10.60 1.96 -10.60 1.96 -10.60 -10.60 1.96 -10.60 -22.17 -10.60 16.48 30.12 37.01	DLM 9.93 V _v 21.8 22.3 34.8 21.8 37.4 34.8 21.8 37.4 34.8 68.9 37.4 34.8 68.9 37.4 45.0 62.1 67.9	Rel Error (Abs Error (Rel Error (Abs Er	pH): 0.05 (pH): 0.050 (radionuclide): 0.10 (radionuclide): 1.01 Log K, = 7.3: Log K_ = -8.4 2.64 9.86 -4.49 2.64 -11.80 -4.49 2.64 -11.80 -4.49 2.64 -11.80 -11.80 -4.49 2.64 -11.80 -5.8 28.80 34.31	E-09 CCM 5 45 Vy 29.6 16.2 33.6 29.6 34.5 33.6 29.6 34.5 33.6 29.6 34.5 33.6 29.6 34.5 33.6 29.6 34.5 33.6 29.6 34.5 34.5 33.6 29.6 34.5 34.5 33.6 29.6 34.5 34.7 34.5 34.7 34.5 34.7 34.5 34.7 34.5 34.7 34.5 34.7 34.5 34.7 34.7 34.5 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.5 34.1 77.6 77.1	Ng = 2.31 m 10 ⁻³ M Fe 2.0627 .0627 .0475 .0560 .0578 .0560 .0578 .0560 .0578 .0578 .0560 .0578 .0578 .0560 .0627 .0578 .0560 .0610 .0578 .0290 .0320	ites/nm ² = 0.089 g/L HFO Log K ₊ = 6.0 Log K ₋ = -1 Log K ₀ = -7 Log K ₀ = 8.4 Log K -3.90 3.76 -7.41 0.30 -11.62 -3.89 3.78 3.78 -13.70 -5.33 -21.49 -13.25 15.88 35.14 47.06	TLM 0 0.00 566 43 V _Y 91.6 92.8 22.8 37.7 34.6 34.4 33.2 79.8 83.1 85.5 84.4 76.5 71.8 69.3	.0446 .0475 .0304 .0317 .0583 .0583 .0610 .0701 .0794 .0800 .0900 .0407 .0666 .0973	SEM	Jranium (VI) Sorption Bindin Monodentate, monouuclear cor Solid: Ferrihydrite A ₃ : 600 m ³ /g Data Source: Payne et al. (1 Concentration: [U(VI)] = 11 fig. 5.2 P(CO ₂) = 0.03% B ₁ \land U.H. \checkmark M XO-UO ₂ : XOH-UO ₂ : XOH-UO ₂ : XOH-UO ₂ : XOH-UO ₂ : XOH-UO ₂ OH [*] XOH-UO ₂ OH [*] XOH-UO ₂ OH [*] XOH-UO ₂ (OH) ₂ : XOH-UO ₂ (OH) ₂ :	992) -6 M 992) -6 M Log K. = 7.29 Log K. = -8. Log K n.c. 7.04 -9.68 n.c. -18.27 -9.68 n.c. -18.27 -9.68 n.c. -18.27 16.02 31.14	DLM 93 V _y n.c. 75.9 97.1 n.c. 97.8 97.1 n.c. 97.8 97.1 97.8 97.1 98.0 97.8 97.1 98.0 97.8 97.3	Rel Error (pl Abs Error (p Rel Error (ra Abs Error (ra Abs Error (ra 0265 .0725 n.c. .0886 .0725 n.c. .0886 .0725 .0942 .0886 .0237 .0273	E): 0.05 F): 0.0500 dionuclide): 0.10 dionuclide): 1.0E Log K, = 7.35 Log K = -8.4 Log K 0.07 8.26 -7.43 0.07 -15.73 -7.43 0.07 -15.73 -7.43 0.07 -15.73 15.53 29.74	E-09 CCM 5 5 5 5 5 5 5 5 5 5 5 5 5	Ionic Streng N ₅ = 2.31 si 2 x 10 ⁻² М F 2 x 10 ⁻² М F 0.270 .0252 .0319 .0270 .0323 .0319 .0270 .0323 .0319 .0270 .0323 .0319 .0270 .0323 .0319 .0270 .0323 .0323 .0323 .0323 .0323 .0323 .0271	th (electrolyte): 0.1 tes/nm ² e = 1.78 g/L HPO Log K, = 6.00 Log K_= -10.0 Log K_m = 8.43 Log K -5.85 1.83 -9.30 -1.65 -17.59 -7.86 -10.7 -19.80 -11.64 -29.74 -21.59 15.43 35.97	TLM TLM TLM TLM TLM TLM TLM TLM TLM TLM	σLeg κ .0636 .0667 .0276 .0288 .1106 .0329 .0669 .3863 .3707 .5170 .5112 .0224 .0295

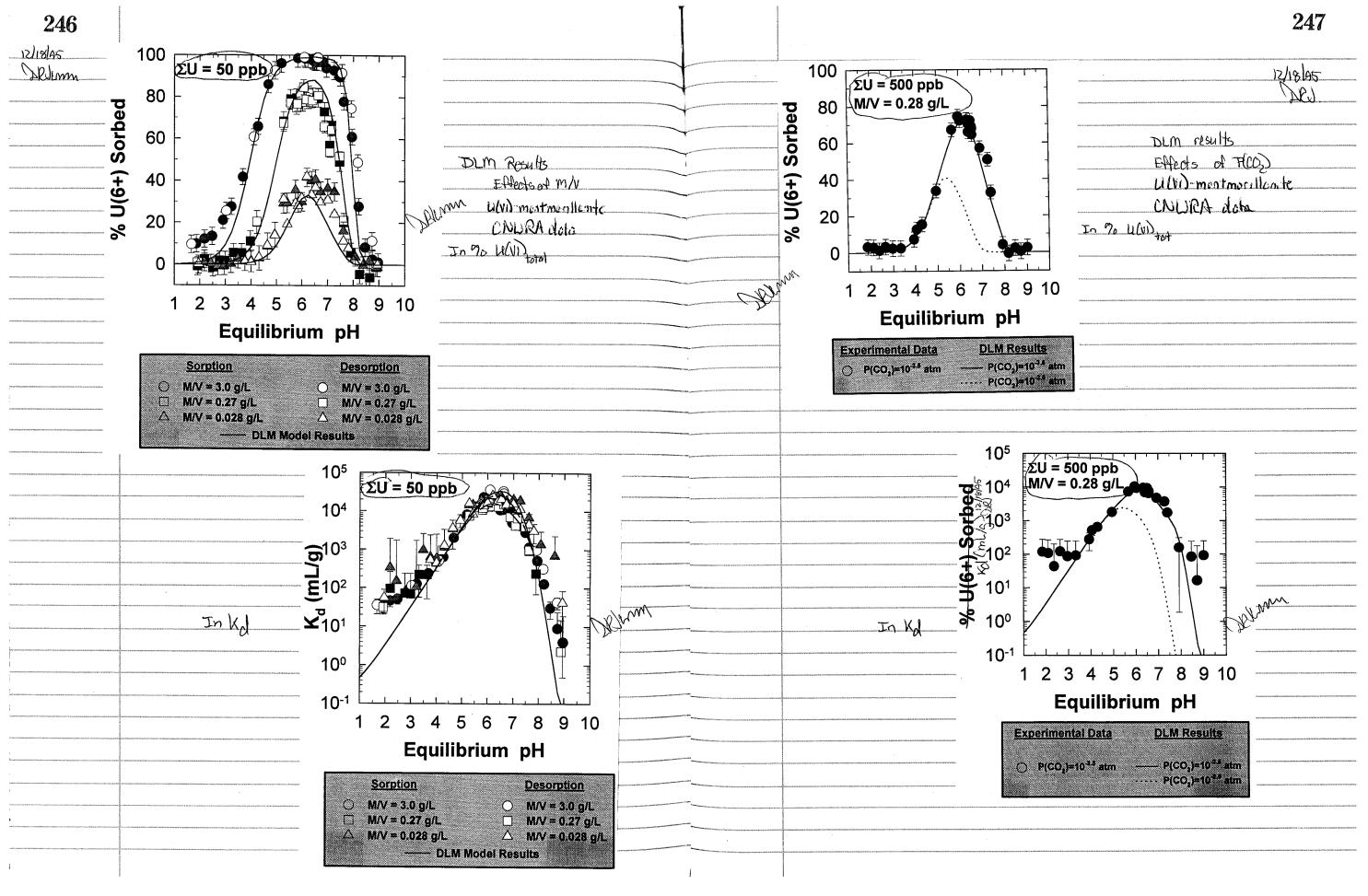
,			
238			239
			ムリン
			i. I. h
		equilibrium constant for UO ₂ (OH) ₂ °(aq) also provides for a much better fit to the available sorption data.	12/18/95
12/4/95		There is typically a lack of independent analytical data supporting the formation of a particular	BELLIN
DRUMM	Corrections to CNWRA Radionuclide Database (12/4/95)	surface complex. In the absence of these data, the exact form of the surface reaction is selected by the	
	Several entry errors were identified with the Database:	modeler based on analogous speciation reactions in the aqueous phase. If the postulated reaction does not contribute significantly to the sorption behavior, FITEQL will iterate towards a large negative binding	
	1. ID number 3086400 was used for both NaTcO ₄ (s) and KTcO ₄ (s). The new ID number 3086401	constant and fail to converge. In this way, the modeler can identify those reactions that dominate sorption	
	was assigned to NaTcO4(s) in both THERMO.DBS and TYPE6.DBS	in the conceptual model.	
1	2. The sign was wrong for the equilibrium constant (log K) for the formation of Th2Se3(s). The	Based on FITEQL optimization runs, the following four inner-sphere complex reactions proved	*************
	3. The stoichimometric factor and the component ID number for H ₂ O are entered one space too far	to be most capable of reproducing the M4 experiment data:	
	1200° 3. The stoichimometric factor and the component ID number for H ₂ O are entered one space too far	>SiOH" + UO ₂ ²⁺ = >SiO-UO ₂ ⁺ + H ⁺	
	to the right for $Th_{6}(OH)_{15}^{9+}$. These were corrected in THERMO.DBS.		
	All other radionuclide data remain as before. With the exception of the species mentioned here, these	$>SiOH^{\circ} + 3UO_2^{2+} + 5H_2O = >SiO-(UO_2)_3(OH)_5^{\circ} + 6H^{\circ}$	······
******	corrections should have no affect on earlier runs using MINTEQA2. After correcting these mistakes, the		en en neuer an en
******	UNFRMT.EXE program was run to create the binary files THERMO.UNF and TYPE6.UNF. The corrected files and the new binary files were copied onto the disk enclosed in the envelope at the back	>ALOH° + UO ₂ ² * = >ALO-UO ₂ * + H*	
	of this scientific notebook.		********
		>AlOH° + $3UO_2^{2*}$ + $5H_2O$ = >AlO- $(UO_2)_3(OH)_5^\circ$ + $6H^+$	
12/18/45		Initial values for the binding constants were adjusted in MINTEQA2 runs to give the best visual fit to	Non-sector of a sector of a
NI DI	U(VI)-Montmorillonite Sorption	the U(VI) sorption data presented here, and the U(VI)-montmorillonite sorption data of McKinley et al	
DElimin	U(VI)-Montmorillonite sorption was revisited to use the DLM to investigate the effect of using the Al:Si	(in submission). The binding constants determined for these reactions using FITEQL are given below. Only data in the pH range of U(6+) sorption were used in the optimization. These surface species are	
l l	fallo of 0.83 proposed for edge sites by White and Zelazny (1988) as used by Zoohara and McKintan	the same as those used by McKinley et al (in submission) in applying the Triple-Layer SCM to $U(6+)$ -	
	(1993) and Zachara and Smith (1994) in their U(VI)- and Cd-montmorillonite sorption modeling. In this study, an approach has been adopted such that the simplest model that can describe the observed sorption	montmorillonite sorption.	
	behavior is used.		
	The U(VI)-montmorillonite sorption data for the conditions:		
		REFERENCES	
	U _{total} = 504.24 ppb=2.164e-6 M M/V=0.28 g/L		•
	$M/V = 0.28 \text{ g/L}$ $P(CO_2) = 10^{-3.5} \text{ atm}$ were modeled for the DLM using FITEOL, version 2.0. Only the data from pH = 2.5 to 7.5 mm	Choppin G.R and Mathur J.N. (1991) Hydrolysis of actinyl(VI) cations. <i>Radiochimica Acta</i> . 52/53, 25-28.	
(were modeled for the DLM using FITEQL, version 2.0. Only the data from pH ~3.5 to 7.5 was		
	modeled because this is where most of the sorrition occurred including the data at higher and lower all	Davis J.A. and Kent D.B. (1990) Surface complexation modeling in aqueous geochemistry. Reviews in Mineralogy: Volume 23. Mineral-Water Interface Geochemistry. (eds. M.F. Hochella, Jr., and	
	values where sorption is essentially zero tends to bias the data, resulting in an underprediction of the	A.F. White), pp. 177-260. Mineralogical Society of America, Washington, D.C.	
		Dzombak D.A. and Morel F.M.M. (1990) Surface Complexation Modeling: Hydrous Ferric Oxide. John	
	Experiments conducted in this study were at relatively high ionic strength (0.1 M NaNO ₃), which suppressed ion-exchange of $UO_2^{2^+}$ with interlayer cations. Therefore, in modeling U(6+) sorption on	Wiley and Sons, New York.	
	inonimorinonite, it was assumed in this study that the edge sites dominate the sorption behavior, and ion	Fuger, J. 1992. Thermodynamic properties of actinide species relevant to geochemical problems.	
	exchange was not explicitly incorporated in the model construction.	Radiochimica Acta 58/59: 81-91.	
	In order to develop a DLM for the U(6+)-montmorillonite system, it is necessary to calculate	McKinley J.P, Zachara J.M., Smith S.C. and Turner G.D. (in submission to Clays and Clay Minerals)	
	the total number of sorption sites ($T_{\rm NOV}$). In this study, the decrease in K, observed for M/V = 0.28 g/L	The influence of hydrolysis and multiple site-binding reactions on adsorption of U(VI) to	
	with an order of magnitude increase in ZU suggested approaching saturation of available sorption sites (Dzombak and Morel, 1990). It unlikely that such behavior would be observed if the measured (N ₂ /BET)	montmorillonite.	MM.
	external surface area of 97 m ² /g were entirely attributed to pH-dependent edge sites given the potentially	Turner, D.R. and S.A. Sassman. 1994. Approaches to sorption modeling for high-level waste	
	large number of sites ($\sim 10^4$ moles sites/L) relative to the uranium concentration (EU = 2.16×10^4 M) to 2.16×10^4 M). The crystallite edges were therefore assumed to comprise 10 percent of the N ₂ -BET	performance assessment. Radiochimica Acta 66/67:745-756.	
	specific surface area, consistent with observations of Wanner et al. (1994) This effective surface area	Wanner H. and Forest I., eds. (1992) Chemical Thermodynamics of Uranium. North-Holland,	
	of 9.7 m ² /g, together with a "standard" site density of 2.3 sites/nm ² recommended for all minerals by Davis and Kent (1990) based on the ferrihydrite work of Dzombak and Morel (1990), was used to	Amsterdam.	
	calculate the total number of available edge sites. In the absence of more quantitative information, it was	Wanner H., Albinsson Y., Karnl O., Wieland E., Wersin P. and Charlet L. (1994) The acid/base	
	also assumed that the ratio of >AlOH ^o to >SiOH ^o sites is 0.83 as proposed for montmorillonite by White and Zelazny (1988). The acidity constants used for the protonation and deprotonation of the	chemistry of montmorillonite. Radiochimica Acta 66/67, 733-738.	
	$>$ SIOH° and $>$ AIOH° edge sites were derived based on potentiometric titration data for SiO ₁ and α_{-}	White G.N. and Zelazny L.W. (1988) Analysis and implications of the edge structure of dioctahedral	
	Al ₂ O ₃ , as described in Turner and Sassman (1994).	phyllosilicates. Clays and Clay Minerals 36, 141-146.	
	FITEQL requires the input of an equilibrium aqueous speciation model. For this reason, the	Zachara J.M., and McKinley J.P. (1993) Influence of hydrolysis on the sorption of metal cations by	
	resultant binding constants are dependent on the quality and extend of the thermodynamic data available for the system of interest. For U(6+), the equilibrium constants used in the chemical equilibrium models	smectites: Importance of edge coordination reactions. Aquatic Sciences 55, 250-261.	
	submitted to FITEQL are listed below. These values were taken from the NFA thermodynamic database	Zachara J.M. and Smith S.C. (1994) Edge complexation reactions of cadmium on specimen and soil-	
	(Wanner and Forrest, 1992) with the exception of the value for the neutral hydroxy complex	derived smectite. Soil Science Society of America Journal 58, 762-769.	6/10/00/01/10/01/00/00/00/00/00/00/00/00/
	$UO_2(OH)_2^{\circ}(aq)$. Due to experimental uncertainties, Wanner and Forrest (1992) could only recommend an upper limit to the stability constant of $UO_2(OH)_2^{\circ}(aq)$. The equilibrium constant for $UO_2(OH)_2^{\circ}(aq)$		
	used with FITEOL and listed in the table below was taken from Fuger (1992). This value is 2.7 log units		
	lower than the upper limit recommended by Wanner and Forrest (1922). This value is 2.7 fog units (1992), a lower value is consistent with the work of Choppin and Mathur (1991). Assuming a lower		
	3	3	

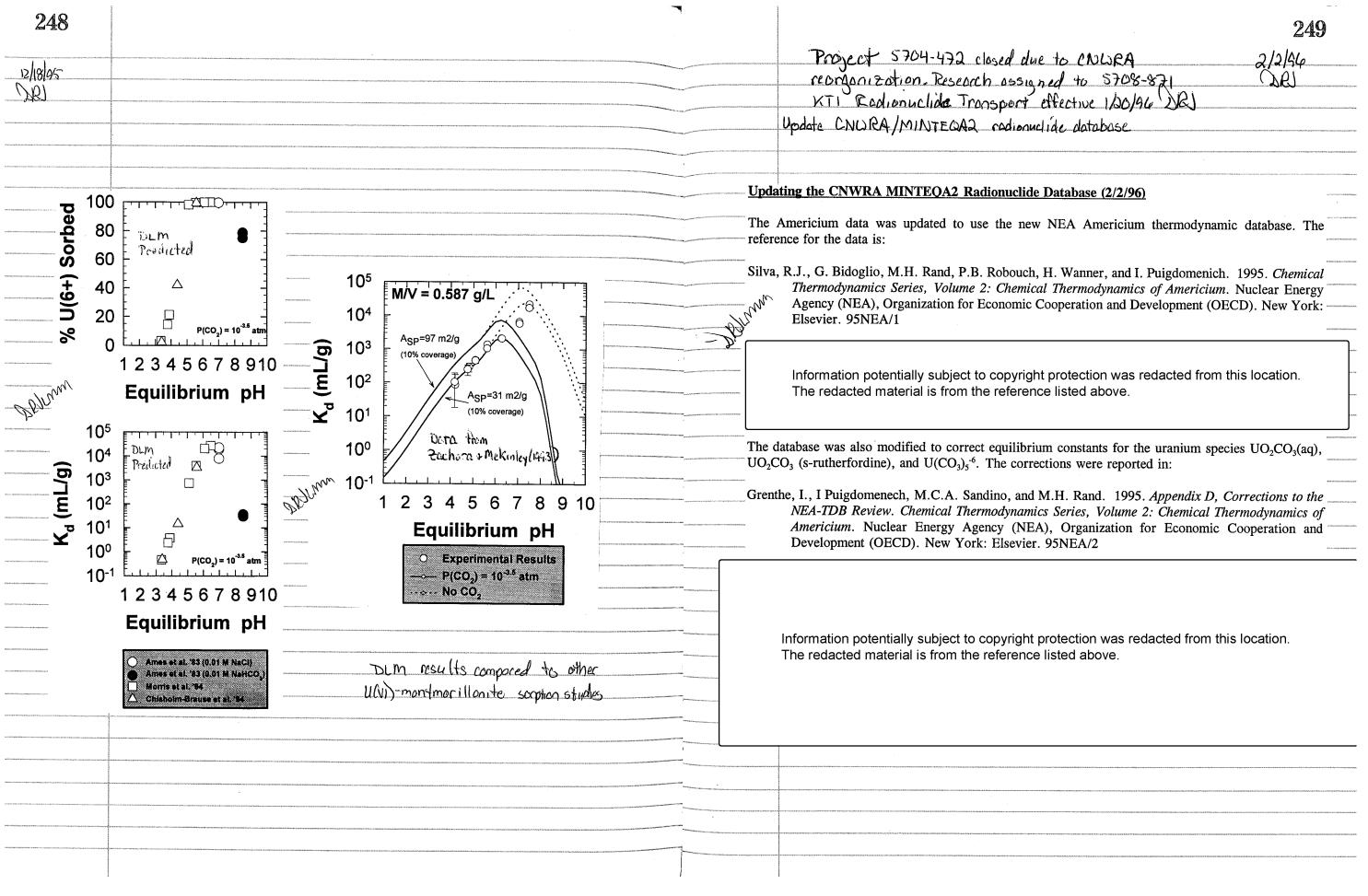
						1 30		
12/18/45	Chemical equilibrium model used in FITEQL optimization.						1 4.73E-6 5.69E-6	
			D.(00160	-1.0	0.00E00	PSI0 NI.5, =0.85
Bellenna	Reaction	Log K	Ref.		00140	-3.5	2.16E-6 3.16E-4	CO2g
	Aqueous Speciation:				00033	0.0 0.0	0.00E00 0.00E00	
	$UO_2^{2+} + H_2O \Leftrightarrow UO_2OH^+ + H^+$	-5.20				-1.0 -1.0	0.00E00 0.00E00	
	$UO_2^{2+} + 2H_2O \Leftrightarrow UO_2(OH)_2^{\circ} + 2H^+$	-13.0	2		00050		050 1	
	$UO_2^{2+} + 3H_2O \Leftrightarrow UO_2(OH)_3^{-} + 3H^+$	-19.20	1		00032	0.00	032 1	
*****	$2UO_2^{2^+} + 2H_2O \Leftrightarrow (UO_2)_2(OH)_2^{2^+} + 2H^+$	-5.62			00140	0.00	140 1 001 1	
ter se a se	$3UO_2^{2+} + 5H_2O \Leftrightarrow (UO_2)_3(OH)_5^+ + 5H^+$	-15.55	1		00002		002 1 032 1	
	$UO_2^{2+} + CO_3^{2-} \Leftrightarrow UO_2CO_3^{\circ}$	9.68	1		03202	-13.22	032 1 032 1	050 -2
	$UO_2^{2+} + 2CO_3^{2+} \Leftrightarrow UO_2(CO_3)_2^{2-}$	16.94			03206	-5.42	032 2	050 -2
*****	$UO_2^{2+} + 3CO_3^{2-} \Leftrightarrow UO_2(CO_3)_3^4$	21.60			03208	-16.25 -8.77	032 3 032 1	050 -5 140 1 050 -2
	$2UO_2^{2^+} + CO_3^{2^-} + 3H_2O \Leftrightarrow (UO_2)_2CO_3(OH)_3^- + 3H^+$	-0.86	1 .		03212	-18.91	032 1	140 2 050 -4 140 3 050 -6
	$UO_2^{2+} + NO_3^{-} \Leftrightarrow UO_2NO_3^{+}$	0.30			03216	-19.28	032 2	140 1 050 -5
		<u> </u>			01401	-17.50	032 1 140 1	050 -2
	Surface Reactions (DLM):				01403	-1.48	140 1 140 1	
	$>$ SiOH ^o \Leftrightarrow $>$ SiO ^o + H ⁺	7.20	3		01404	-16.67	140 1 140 1	003 1 050 -2 003 1 050 -1
	$>$ SiOH° + UO ₂ ²⁺ \Leftrightarrow $>$ SiO-UO ₂ ⁺ + H ⁺	2.60	this study			-13.78	050 -1	
	$>$ SiOH° + 3UO ₂ ²⁺ \Leftrightarrow $>$ SiO-(UO ₂) ₃ (OH) ₅ ° + 6H ⁺	-15.29	this study		01100	-9.62	001 1	160 -1 050 -1
		<u> </u>		nan darah dari baran dari kana dari dari dari kana d	02100	-7.09 2.27	002 1 002 1	160 -1 050 -1 160 1 050 -1 032 1 033 1
	$>$ AlOH ^o + H+ \Leftrightarrow >AlOH ₂ ⁺	8.33	3		03307	2.37	001 1	160 1 050 -1 032 1 033 1 160 0 050 -6 032 3 033 3
*****	$>$ AlOH ^o \Leftrightarrow $>$ AlO [·] + H ⁺	-9.73	3		03309	-15.37	001 1	160 0 050 -6 032 3 033 3
	$>$ AlOH° + UO ₂ ²⁺ \Leftrightarrow > AlO-UO ₂ ⁺ + H ⁺	2.70	this study					
***************************************	$> \text{AlOH}^{\circ} + 3UO_2^{2+} \Leftrightarrow > \text{AlO-}(UO_2)_3(\text{OH})_5^{\circ} + 6\text{H}^+$	-14.95	this study			9.70 1.0	0.28	
	 Fuger (1992) Turner and Sassman (1994) After determining the binding constants for the U(VI) sorption r was used to predict sorption behavior over a wide range in CNWRA database was used, with the exception of the log assigned a value of -13.00 as given in the table. 	pH. M/V, and P(CO	2) conditions. The		1.568E 2.738E 3.336E 7.297E 1.452E 1.563E	-07 -07 -07 -06	1	1 0
- 2011 2011 2011 2011 2011 2012 2012 201	Results presented here were plotted using Sigma Plot for Win	dows, version 2.0			1.611E 1.522E	06		ann
******	аналанын каларын калан кала Калан калан кал				- 1.563E 1.572E	06		- P
****			, ,		- 1.493E-	06		< v
					1.493E 1.427E	-06		
	X				1.470E- 1.396E-			
******			an site and a fair and a second a second a second second site of the second second second second second second	₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩	- 1.236E- 1.100E-	-06		
		*****	an a fan an were en de fan en de en an de en de fan de fan de fan de en de		- 7.100E	07		,
					-3.83	50		
					-3.96	50		
					-3.96 -4.20 -4.84	50		
					-3.96 -4.20 -4.84 -5.56 -5.93	50		
					-3.96 -4.20 -4.84 -5.56 -5.93 -5.85 -6.31	50		
					-3.96 -4.20 -4.84 -5.56 -5.93 -5.85	50		
					-3.96 -4.20 -4.84 -5.56 -5.93 -5.85 -6.31 -6.40 -6.24 -6.39	50		
					-3.96 -4.20 -4.84 -5.56 -5.93 -5.85 -6.31 -6.40 -6.24 -6.39 -6.45 -6.31	50		
					-3.96 -4.20 -4.84 -5.56 -5.93 -5.85 -6.31 -6.40 -6.24 -6.39 -6.45 -6.31 -6.47 -6.47	50		
					-3.96 -4.20 -4.84 -5.56 -5.93 -5.85 -6.31 -6.40 -6.24 -6.39 -6.45 -6.45 -6.47	50		
					-3.96 -4.20 -4.84 -5.56 -5.93 -5.85 -6.31 -6.40 -6.24 -6.39 -6.45 -6.31 -6.47 -6.47 -6.82	1	1	

montmori'	· · · · · · · · · · · · · · · · · · ·
CNWRA 2.16e-6M	G 4 1
dlm	241
00000050	
0000060	t alor
00000070	p/18/95
0000085	Selmin
00000080	ALILAM
00000090 00000097	``
00000098	
00000100	
00000102	
00000104	
00000106	FITEGL Japant File:
00000110	
00000120	FILEAL Input strategy.
00000122 00000124	FITERL input strategy: solve for >5,0:402+>Alauo2+1
00000124	solve tos >5, D.UC, + >ALCUC, +
00000168	
	then add (UU2)2(04)5
00000126 Nor 00000128	
00000130	surface complexes.
00000136	•
00000146	
00000146	
00000150	Non-second second s
00000156	
00000159	NV-VV-VV-VV-VV-VV-VV-VV-VV-VV-VV-VV-VV-V
00000161	
00000162	Pan
00000163	
00000164	
00000160	
00000166	· · · · · · · · · · · · · · · · · · ·
00000170	
00000170	рож
siouo2	
alouo2	
alou3oh5	
alou3oh5 00000180	
00000180	
00000184	NORM
00000185	
00000190	
00000230	Prives
00000240	
	powe
Accumulation of the second	
	powers
Building water and a second	
	pound
Profile and a second	
	lenser
Nation we destruct a second seco	
konstant of the second second	prover
	powne
Sector and a construction of the sector of t	
	anaver
No with Automatic and a second	
	phone:
~	
2	
Burn	
- 07	lucas.
Ar	
v	Revolutions.
Notification and the contract of the contract	
Bernard Resources and a second second second	
	1
Manufacture and a second second second	
	1
Notificities and the second	
	i Hwana

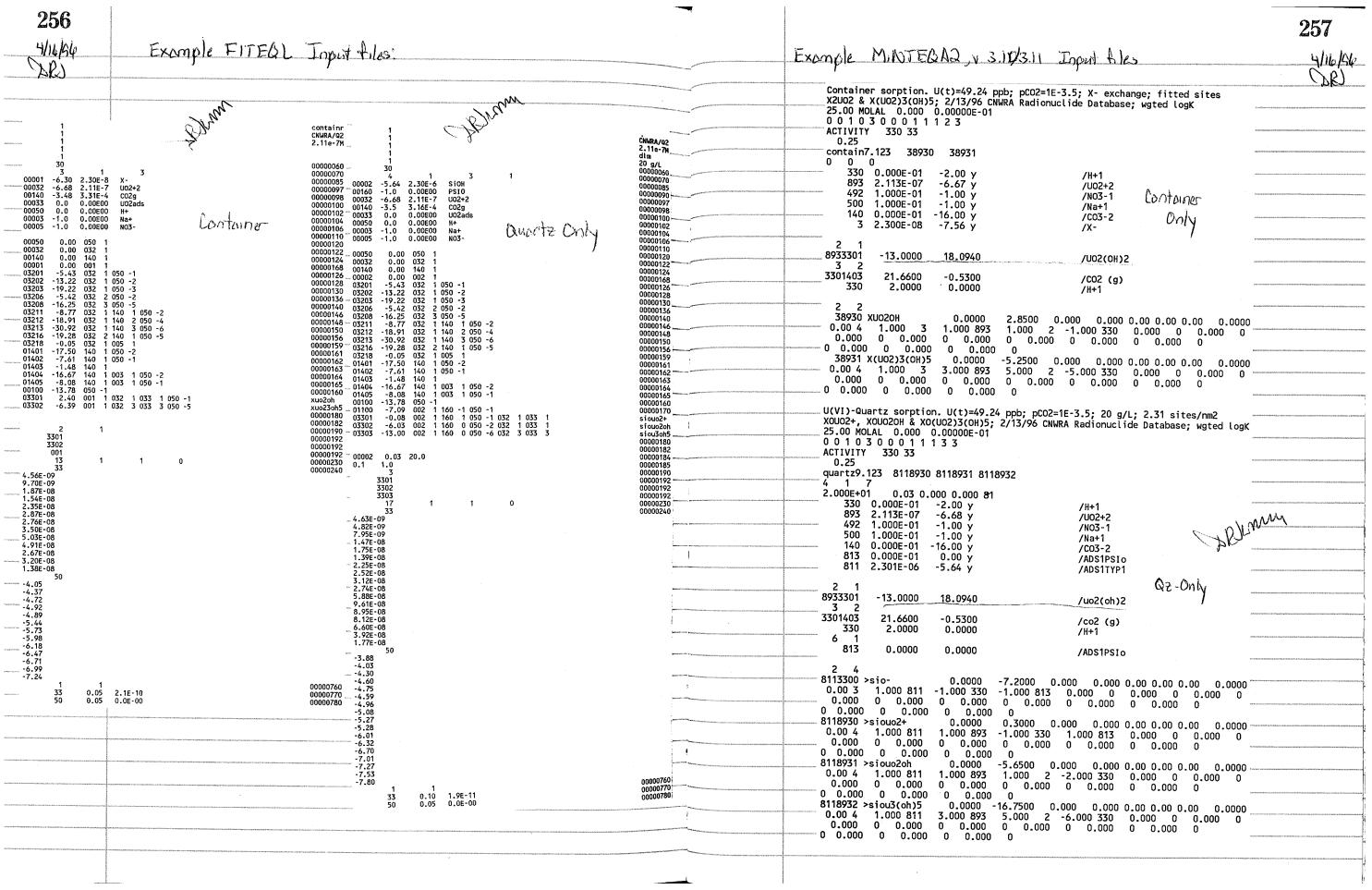

known here


÷.


00000760 00000770 00000790


ī

1 1 1



250 2/2/44	o Jum			
39.3108 -224.3740 ########## 543.1084	Det G(f) Det H(f) Miner#/Specier • (kJ/md) (kJ/md) 0 0 (kJ/md) (kJ/md) 0 0 799.3070 -844,8000 AmOH+ + 0 1 -992,4950 -116,0000 AmOH+ + 1 -1153,4220 -1160,4000 AmOH+ + 2 -1180,4000 AmOH+ + - 3 -1180,4000 AmOH+ + - 4 -1180,4000 AmOH+ + - 3 -1180,4000 AmOH+ + - 4 -1184,4501 - - 0 -1380,4000 Am2+ + - 1 -1380,4000 Am2+ + - 0 -1386,4760 -1289,6000 Am2+ + 0 -1386,4760 -1289,6000 Am2+ + 1 -1289,47000 Am30+ + - 1 -1780,270,080 Am2+ + - 1 -1789,270,080 Am2+ + - 1<	Action State CO3- SO4- PO4-3 N+ Ct- F. CO3- SO4- PO4-3 1.0076 35.4530 19.994 80.0016 90.8016 <th>N03. B- N03. B- 10049 (78-004) 128,0144 18,0153 243,0814 243,0414 275,08 103,9500 132,8540 237,1400 398,6960 346,3550 738,75 103,9500 128,9500 316,7000 466,0000 804,25 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1</th> <th>1 Am02++ COMMENTS 2 275,0602 All Amilling Data from NEADS (50% et al., 1995) 2 355,0602 All Amilling Data from NEADS (50% et al., 1995) 2 355,0700 </th>	N03. B- N03. B- 10049 (78-004) 128,0144 18,0153 243,0814 243,0414 275,08 103,9500 132,8540 237,1400 398,6960 346,3550 738,75 103,9500 128,9500 316,7000 466,0000 804,25 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 Am02++ COMMENTS 2 275,0602 All Amilling Data from NEADS (50% et al., 1995) 2 355,0602 All Amilling Data from NEADS (50% et al., 1995) 2 355,0700
7.1992 41.0910 42.7600 320.0781 -104.8932 598.6980 616.7000 243.0614	Am02+(Am++++ 1)			did G1; NEA95'' did H1; NEA95'' did G1; NEA95'' did H1; PH89-Yohy (dentified as Am(OH)3 (s) did G1; NEA95'' did H1; PH89-Yohy (dentified as Am(OH)3 (s) did G1; NEA95'' did H1; REA95'' did G1; NEA95'' did H1; NEA95'' did G1; NEA95'' did H1; NEA95''
2 607	mportson: for spreadsheet Log KA	mFz = 5.8004 vs. 5.800		
AmN02+	AmF_{2}^{\dagger} $AmF_{3}(g)$ $AmCl^{2+}$ $AmSO_{4}^{\dagger}$ $Am(SO_{4})_{2}^{-}$	Species Am(OH) ₃ (aq) Am(OH) ₃ (cr) AmF ²⁺	42 Table III.2 (continued)	
$Am^{3+} + N_{3}^{-} \rightleftharpoons AmN_{3}^{2+}$ $1.670 -9.532$ $\pm 0.100 \pm 0.571$ $Am^{3+} + NO_{2}^{-} \rightleftharpoons AmNO_{2}^{2+}$ $2.100 -11.987$ $\pm 0.200 \pm 1.142$ $Am^{3+} + NO_{3}^{-} \rightleftharpoons AmNO_{3}^{2+}$ $1.330 -7.592$ $\pm 0.200 \pm 1.142$	$\begin{array}{c} \mathrm{Am^{3+}+2} \underbrace{\mathrm{F}_{-} \rightleftharpoons \mathrm{AmF_{3}^{+}}}_{\pm 0.200} \underbrace{\mathrm{AmF_{3}^{+}(z)}}_{-3.107} \\ \mathrm{AmF_{3}(zr)} \rightleftharpoons \mathrm{AmF_{3}(g)} \\ \mathrm{AmF_{3}(zr)} \rightleftharpoons \mathrm{AmF_{3}(g)} \\ \mathrm{Am^{3+}+Cl^{-} \rightleftharpoons \mathrm{AmF_{3}^{-}(g)}}_{\pm 1.333} \underbrace{\pm 7.609}_{\pm 1.333} \\ \mathrm{Am^{3+}+Cl^{-} \rightleftharpoons \mathrm{AmCl^{2+}}}_{1.050} \\ \mathrm{Am^{3+}+SO_{4}^{2-} \rightleftharpoons \mathrm{AmSO_{4}^{+}}}_{10.360} \\ \mathrm{Am^{3+}+SO_{4}^{2-} \rightleftharpoons \mathrm{AmSO_{4}^{+}}}_{10.30} \\ \mathrm{Am^{3+}+SO_{4}^{2-} \rightleftharpoons \mathrm{AmSO_{4}^{+}}}_{10.171} \\ \mathrm{Am^{3+}+2} \\ \mathrm{SO_{4}^{2-} \rightleftharpoons \mathrm{Am}(\mathrm{SO_{4}})_{2}^{-}}_{5.400} \\ \mathrm{Am}(\mathrm{SO_{4}})_{2}^{-} \\ \mathrm{5.400} \\ \mathrm{4.3996} \\ \end{array}$	Reaction $\log_{10} K^{\circ}$ $\Delta_r G^{\circ}_m$ $\Delta_r I^{-1}$ $Am^{3+} + 3 H_2 O(1) \rightleftharpoons Am(OH)_3 (aq) + 3 H^+$ $-25,700$ 146.697 ± 0.500 ± 2.854 $Am^{3+} + 3 H_2 O(1) \rightleftharpoons Am(OH)_3 (cr) + 3 H^+$ -15.200 ± 0.762 ± 0.600 ± 3.425 $Am^{3+} + F^- \rightleftharpoons AmF^{2+}$ 3.400 -19.407 ± 0.400 ± 2.283	l l l l l l l l l l l l l l l l l l l	
	4 21.100 ±7.000 ±			
	±10.000	$(\mathbf{J}\cdot\mathbf{K}^{-1}\cdot\mathbf{mol}^{-1})$		

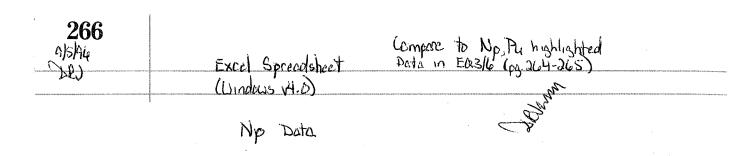
2512/13/94 NP.1 Correct error in THERMO.DBS and TYPEG.DBS Bpecies ID # 3089300 - Uconinite # components should be '2' not '3' 40, + + 2e = 40, co Change made in both THERMOUNE and TYPEG. DBS. Recompiled using UNFRMT.EXE. Copies of the 4 affected files in covelope at the back of this notebook - THERMO. DRS THERMO, UNF TYPEG. DBS TYPEL.UNF


252	0				253
HALLOL	Ke l				
4/16/94 DB)	U(VI The I The I I				4/12/96
	U(V) U(V) U(V) U U U U U U U U U U U U U U U U U U U	$U(VI)$ -Container Sorption To develop the necessary pH dependence for $U(VI)$ postulated that bind the positively charge species UO_2OH^+ and (harged site represented as X: X ⁻ + $UO_2^{2^+}$ + $H_2O = XUO_2OH^0 + H^+$ X ⁻ + $3UO_2^{2^+}$ + $5H_2O = X(UO_2)_3OH_0^0 + 5H^+$ X ⁻ + $3UO_2^{2^+}$ + $5H_2O = X(UO_2)_3OH_0^0 + 5H^+$ Vsing FITEQL to interpret the $U(6+)$ loss to the concentration for $U_{const} = 50$ ppb, and simultaneously determine the sorption reactions resulted in binding constants (log K) of the concentration (T_X) of about 2.3 wetted container surface area of ~ 60 cm ² , an assumed site optimization of T_X . using FITEQL. No electrostatic terms spininization enduce the best fit to the observed container surface area of produce the best fit to the observed container of assumptions made, the model	U(VI)-Quartz Sorption U(VI)-Quartz sorption was re the effect of mineral-contain areas (fewer sorption sites).1 can describe the observed so	Table 1. FITEQL model conditions used to determine DLM binding c	
nale de la constant d -	ion. $\frac{1}{10000000000000000000000000000000000$	ntainer Sorption o develop the necessary pH depende that bind the positively charge species ite represented as X: $10_2^{2^*} + H_2O = XUO_2OH^0 + H^*$ $10_2^{2^*} + 5H_2O = X(UO_2)_3OH_5^0 + 5H^*$ $UO_2^{2^*} + 5H_2O = X(UO_2)_3OH_5^0 + 5H^*$ $UO_2^{2^*} + 5H_2O = X(UO_2)_3OH_5^0 + 5H^*$ ising FITEQL to interpret the U(6+) its for U _{local} = 50 ppb, and simultane on reactions resulted in binding constation on reactions resulted in binding constation ity and a total site concentration (T _x , nutainer surface area of ~60 cm ² , an intainer surface area of ~60 cm ² , an intainer surface area of slightly by tri- onstants were adjusted slightly by tri- be large number of assumptions max	orption orption si prion si pr	DLM Parameters and Chemical Model Reactions:	Quartz
	pb=2. pb=2. atm DLM DDLM DDLM DDLM Precop Precop Precop Precop Precop Precop Precop Precop Precop Precop Precop Precop	$\frac{\log n}{\log 1} + \frac{\log n}{\log 1}$	was re ntaine tes). I	Site density _a	2.3 sites/nm ²
	data for 2.11e-7 2.1stration 2.11e-7 2.11e-7 2.11e-7 4 using I 4 using I t sorption t so	<u>n</u> necessary pl as X: as X: XUO ₂ OH ^e + XUO ₂ OH ^e + X(UO ₂) ₃ Ol = X(UO ₂) ₃ Ol = X(U) ₃ Ol = X	rption	Surface area	$0.03 \text{ m}^2/\text{g}$
annar 1 an tar tar tarthaigte german substitution ann ann an ann an tarthairt a ruan an tarthaigtean	M M FITE FITE M C M C M M C M M C M M C M M C M M C M M C M	<u>n</u> necessary pH (as X: as X: XUO ₂ OH ^{0} + H [*] XUO ₂ OH ^{0} + H [*] XUO ₂ OH ^{0} + H [*] XUO ₂ OH ^{0} + H [*] a X(UO ₂) ₃ OH ^{1} 0 1 1 1 1 1 1 1 1 1 1	d usin, study	Ionic strength	0.1 M NaNO3
	2,7BET the Unred. 2,7BET the Unred. the Unred. the Unred. the Unred. the Unred. the Unred.	species species + 5H + 5H + 0 ontra g const g const o elect o elect o elect o elect o by tr the obs	g the I on in ap	PCO ₂	10 ^{-3.5} atm
alan an a	ttions (E trions (E trions) (E t	s UO ₂ () s UO ₂ () s s UO ₂ () s s s uO ₂ () s uO ₂ (Is revisited using the DLM and a simplified container sorption model to evaluate ainer competition in U(VI) sorption experiments for minerals with low surface s). In this study, an approach has been adopted such that the simplest model that 1 sorption behavior is used.	Sorption Reactions:	Log K
ada yang sa sa kana kana kana sa sa kana kana ka	(Experime on 2.0. Or huding dat huding dat i an under i	OH+a DH+a conta conta	nd a si	$>$ SiOH° \Leftrightarrow $>$ SiO ⁻ + H ⁺	-7.20
	ment Q2): Daly the d Daly the d Spredictio Spredictio System, i a of 0.03 n a of 0.03 n the > Si late the to the > Si the > Si the > Si the > Si the in Tu	nd (U)-c (V)-c (U) (U) (U) (U) (U) (U) (U) (U) (U) (U)	oren av	$>$ SiOH° + UO ₂ ²⁺ \Leftrightarrow >SiO-UO ₂ ⁺ + H ⁺	0.30
	It Q2): The data find the da	$JO_{2}J_{3}(OH)_{3}$ $JO_{2}J_{3}(OH)_{3}$ $(K_{XUO_{3}OH_{3}})$ $(K_{XUO_{3}OH_{3}OH_{3}})$ $(K_{XUO_{3}OH_{3}OH_{3}OH_{3})$ $(K_{XUO_{3}OH_{$	dopted	$>$ SiOH° + UO ₂ ²⁺ + H ₂ O \Leftrightarrow >SiO-UO ₂ OH° + 2H ⁺	-5.65
	a from r and 1 of the is necessary f_2 , $\log f_2$ H^{2} sit necessary H^{2} state f_2 and f_2 and f_2 H^{2} state f_2 and f_3 and f_4 and f_2 and f_3 and f_4 and	ence for U(VI)-container sorpti UO ₂ OH ⁺ and (UO ₂) ₃ (OH) ₅ ⁺ to a ($K_{xtuo,ott}$) ($K_{xtuo,y,ott}$) ($K_{xtuo,y,ott}$) loss to the container from an <i>z</i> ously determining site density at anus (log K) of 2.73 and -5.62 fc assumed site density of 0.1 site rostatic terms were included in al-and-error [log K = 2.85 and erved container sorption at U _{rea} de, the model was successful it	I such	$>$ SiOH° + 3UO ₂ ²⁺ + 5H ₂ O \Leftrightarrow >SiO-(UO ₂) ₃ (OH) ₅ ° + 6H ⁺	-16.75 _c
nan di Martin se per per an mana mengger menana an dikar per per per per ana andre kabitet	lower : sorpt - sorpt - sether : sether : d Sass d Sass		that th	Aqueous Speciation Reactions:	Log K
	-4 to pH with a to cal to cal to cal the cal the cal the cal the cal the cal t	two pother bindin djuatic 5.25 1 5.525 1 5.525 5 5.525 1	e simp	$UO_2^{2+} + H_2O \Leftrightarrow UO_2OH^+ + H^+$	-5.20
en fan gener ferste fan	to 8 was mo where sorpti maximum. calculate the calculate the fa "standard on the ferrihy railable sites. derived base n (1994).	ical, n ical, n i i i i i i i i i i i i i i i i i i i	odel to plest n	$UO_2^{2+} + 2H_2O \iff UO_2(OH)_2^{\circ} (aq) + 2H^+$	-13.0 _d
	node orption m. dard" dard" titles.	n, two reactions were hypothetical, negatively (5) (6) requestions (5) and (6), on a rough estimate of s/nm ² , with subsequent the mass action. These -5.25 for (5) and (6), = 5, 50, and 500 ppb.	v evalu nodel t	$UO_2^{2+} + 3H_2O \iff UO_2(OH)_3^- + 3H^+$	-19.20
an na she an	deled on is on rotal d on d on	were trively (5) (6) (6) (6) (6) (6) (6) (7) (6) (7) (6) (7) (7) (7) (7) (7) (7) (7) (7) (7) (7	hace hat	$2UO_2^{2^+} + 2H_2O \iff (UO_2)_2(OH)_2^{2^+} + 2H^+$	-5.62
				$3UO_2^{2^+} + 5H_2O \Leftrightarrow (UO_2)_3(OH)_5^+ + 5H^+$	-15.55
nga mangang mangang mangang mangang kang pangang mangang mangang mangang mangang mangang mangang mangang mangan	Typically, FITEQL wou The approach taken was geochemical equilibrium reactions dominated the geo- experimental runs differ MINTEQA2 runs to the presented here for a vari- for these reactions are gri- for these reactions are gri-	quilibr quilibr or codeler onstann onstann the c	sed wi	$UO_2^{2^+} + CO_3^{2^-} \Leftrightarrow UO_2CO_3^{\circ}$	9.68
	y, FI inical e s dom QA2 : react	than the upper] , a lower value rium constant ft There is typic: complex. In ti r based on anal tribute significa tr and fail to con conceptual mode conceptual mode conceptual mode to FITE Based on FITE	sultant binding const the system of interest britted to FITEQL and Anner and Forrest, 2,00Hy (aq). Due to upper limit to the st ad with FITEQL and	$UO_2^{2^+} + 2CO_3^{2^-} \Leftrightarrow UO_2(CO_3)_2^{2^-}$	16.94
an a	TEQL we taken we apuilibriu inated the runs difference of the runs to the runs to the runs to the runs are in	ee upp ver va onstar i si sy i don z i all to fail to pable	requ	$UO_2^{2^+} + 3CO_3^{2^-} \Leftrightarrow UO_2(CO_3)_3^{4^-}$	21.60
	would would the state of the st	er lin lue is pically pically in the conve conve conve of rep of rep	onstar Underest Provide to The staff	$2\mathrm{UO}_{2}^{2^{+}} + \mathrm{CO}_{3}^{2^{-}} + 3\mathrm{H}_{2}\mathrm{O} \Leftrightarrow (\mathrm{UO}_{2})_{2}\mathrm{CO}_{3}(\mathrm{OH})_{3}^{-} + 3\mathrm{H}^{+}$	-0.86
	is to fit a l m model a souption riety of pb given belon given belon	<pre>iii recomm consistent UO₂(OH)₂ absence of absence of absence and absence of absence of absence of the soin ge. In this tge. In this tge. In this tge. In this tge. SiOH° SiOH° + 3</pre>	For Elisted in Experimental Elisted in Experimental Elisted in Experimental Elisted in E	$UO_2^{2+} + NO_3^- \Leftrightarrow UO_2NO_3^+$	0.30
	onverge if the three binding constants were simultaneously optimized. binding constant to one reaction first, fix this binding constant in the and optimize the remaining reaction(s). In most cases, the first two behavior. The FITEQL results (binding constants) for each of the five ' slightly. Initial values for the binding constants) for each of the five ' slightly. Initial values for the binding constants were adjusted in in Table 1 to provide the best visual fit to the U(VI) sorption data HI, M/V, and U _{lowal} conditions. The final binding constants determined ww.	ower than the upper limit recommended by Wanner and Forrest (1992), but as pointed out by Fugure 1992), a lower value is consistent with the work of Choppin and Mathur (1991). Assuming a lower quilibrium constant for UO ₂ (OH) ₂ °(aq) also provides for a much better fit to the available sorption data. There is typically a lack of independent analytical data supporting the formation of a particular urface complex. In the absence of these data, the exact form of the surface reaction is selected by the nodeler based on analogous speciation reactions in the aqueous phase. If the postulated reaction does of contribute significantly to the sorption behavior, FITEQL will iterate towards a large negative binding onstant and fail to converge. In this way, the modeler can identify those reactions that dominate sorption 1 the conceptual model. Based on FITEQL optimization runs, the following three inner-sphere complex reactions proved > SiOH° + UO ₂ ²⁺ + H ₂ O = > SiO-UO ₂ + H ⁺ > SiOH° + 3UO ₂ ²⁺ + SH ₂ O = > SiO-UO ₂ OH° + 2H ⁺	nstants are dependent on the quality and extent of the thermodynamic data available rest. For U(6+), the equilibrium constants used in the chemical equilibrium models L are listed below. These values were taken from the NEA thermodynamic database est, 1992) with the exception of the value for the neural hydroxy complex, te to experimental uncertainties, Wanner and Forrest (1992) could only recommend e stability constant of UO ₂ (OH) ₂ (aq). The equilibrium constant for UO ₂ (OH) ₂ (aq) ind listed in the table below was taken from Fuger (1992). This value is 2.7 log units	 a. Site density recommended for all minerals by Davis and Kee Dzombak and Morel (1990). b. Acidity constants for am-SiO₂ from Turner and Sassman (1990). c. This study. Binding constants determined using FITEQL, Vers d. All aqueous speciation Log K values from NEA Uranium Therr 1992), except for UO₂(OH)₂° (aq) which is taken from Fuger (5). ion 2.0 (Westall, 1982a,b). nodynamic Database (Wanner and Forrest.

254	4/16/96 DBJ	4/14/46 255
1 Cuartz send so 2 equit constraints 3 initial constraints 6 final constraints 6 final constraints 7 to 8 equit constraints 9 cont d 10 to 11 cont d 12 equit voit 13 cont d 14 equit voit 13 constraints 14 equit soit 15 equit soit 16 equit soit 17 Opti2 18 opti2 20 opti2 21 opti3 22 opti3 23 opti3 24 opti3 23 opti3 24 opti3 23 opti5 33 opti5 33 opti6 34 opti5 32 opti6 33	B C. D E F Q H J K L M N O P Q R S T U td PI / PI and failer for container offic	Ad. Ad.
	Page 1 of 3 Bertetti	
1 2 3 3 4 6 5 6 7 7 8 9 10 10 11 5.02E-07 µmL 12 5.02E-07 µmL 13 14 14 15 18 0.22 19 0.20 21 1.00 22 1.63 21 1.00 22 1.63 23 3.04 24 1.63 30 33.21 33.34 11.49 23 41.07 33 3.65 34 37.25 35 36.57 36 37.55 38 33.67 38 33.67 38 33.67 38 33.67 38 36.67 39 28.13.36	N X Y Z AA AB AC AD AE AF AC AH AL AH AU AD AF I	CNURA-generated U(vi)-02-Container sorption Data.
	Page 2 of 3 Bertetti	

258259Example MINTERAD (V. 3.10/3.1) input files 16/40 7/110/94 (a) U(VI)-Container U(VI)-Qz-Cont sorption. U(t)=49.24 ppb; pCO2=1E-3.5; 20 g/L; 2.31 sites/nm2 XOUO2+, XOUO2OH & XO(UO2)3(OH)5; 2/13/96 CNWRA Radionuclide Database; wgted logK 100 25.00 MOLAL 0.000 0.00000E-01 ○ ΣU₁=2.0x10⁻⁸ M 0010300011153 ΣU₁=2.1x10⁻⁷ M 80 ACTIVITY 330 33 sorbed 0.25 △ ΣU_i=2.2x10⁻⁶ M qzcont8.123 8118930 8118931 8118932 38930 38931 4 1 7 QZ + Container 60 2.000E+01 00E+01 0.03 0.000 0.000 81 330 0.000E-01 -2.00 y (IV) /H+1 /U02+2 40 893 -6.68 y 2.113E-07 492 1.000E-01 -1.00 y /NO3-1 % 500 1.000E-01 -1.00 y /Na+1 20 140 0.000E-01 -16.00 y /CO3-2 DETRANN 3 2.300E-08 -7.64 y /X-813 0.000E-01 0.00 ý /ADS1PSIo 0 🕮 811 2.301E-06 -5.64 y /ADS1TYP1 2 3 8 -5 6 7 9 10 4 2 рН_{еquil} 8933301 -13.0000 18.0940 /uo2(oh)2 32 3301403 21.6600 -0.5300 /co2 (g) 330 (b) U(VI)-Quartz 2.0000 0.0000 /H+1 6 1 100 813 0.0000 0.0000 /ADS1PSIo ○ M/V=2 g/L □ M/V=20 g/L 80 2 6 8113300 >sio-U(VI) sorbed △ M/V=50 g/L -7.2000 0.000 0.000 0.00 0.00 0.00 0.000 -1.000 813 0.000 0 0.000 0 0.000 0 0.0000 0.00 3 1.000 811 -1.000 330 60 $-\Sigma U = 2.1 \times 10^{-7} M$ $4 \Delta \Delta^{\Delta}$ 0.000 0 0.000 0 0.000 0 0.000 0 0.000 0 0.000 0 0 0.000 0 0.000 0 0.000 0 Ċ Q 8118930 >siouo2+ 0.3000 0.000 0.000 0.00 0.00 0.00 0.000 -1.000 330 1.000 813 0.000 0 0.000 0 40 0.00 4 1.000 811 1.000 893 0.000 0 0.000 0 0.000 0 0.000 0 0.000 0 0.000 0 0 0.000 0 0.000 % 20 8118931 >siouo2oh 0.00 4 1.000 811 0.000 0 0.000 0 0.000 0 0.000 0 0 0.000 0 0.000 0 0.000 0 0.000 0 0.000 0.00 0.0000 -16.7500 0.000 0.000 0.00 0.00 0.00 0.000 3.000 893 5.000 2 -6.000 330 0.000 0 0.000 0 0 0.000 0 0.000 0 0.000 0 0.000 0 2 3 5 6 7 8118932 >siou3(oh)5 0.00 4 1.000 811 4 8 9 10 DEJum 0.000 0 0.000 pH_{equil} 0 0.000 0 0.000 0 0.000 0 38930 xuo2oh 2.8500 0.000 0.000 0.00 0.00 0.00 0.000 1.000 2 -1.000 330 0.000 0 0.000 0 0.0000 (c) U(VI)-(Quartz+Container) 0.00 4 1.000 3 1.000 893 100 0.000 0 0.000 0 0.000 0 0.000 0 0.000 0 0.000 0 0 0.000 0 0.000 0 0.000 0 _M/V≈2 g/L 38931 x(uo2)3(oh)5 0.0000 -5.2500 0.000 0.000 0.00 0.00 0.00 0.000 3.000 893 5.000 2 -5.000 330 0.000 0 0.000 0 incorrect. This is 80 M74≡20 g/L U(VI) sorbed 0.00 4 1.000 3 3.000 893 same as (b). Δ M/V=50 g/L 0.000 0 0.000 0 0.000 0 0.000 0 0.000 0 0.000 Δ_{λ} 0 Correct figure, 0 0.000 0 0.000 0 0.000 0 60 Δ ΄ ΣU,=2.1x10⁻⁷ M Ŕ on pg. 262 7/25/44 40 Δ (JR) % 20 0 2 3 6 7 4 5 8 9 [~]10 pH_{equil} DLM Model Results

260		₹123/44 261
FX16/44		References Cited
<u>SB</u>	U(VI)-Quartz	Allison, J. D., Brown, D. S., and Novo-Gradac, K. J. 1991. MINTEQA2/PRODEFA2, A geochemical assessment model for environmental systems: Version 3.0 user's manual, EPA/600/3-91/021. Environmental Protection Agency, Athens, Georgia.
	Predicted Effects of M/V, pH $ \begin{array}{c} - & U(v_i) \leq 50 \text{ ppic} \geq 2.15 \text{ e} = 7 \\ - & p(0_i) \geq 10^{-3.5} \text{ otm} \\ - & Qi \geq 10^{-3.5$	Bertetti, F. P., Pabalan, R. T., Turner, D. T., and Almendarez, M. G. (in prep.) Experimental and modeling
	$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array}{}\\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\$	Lieser, K. H., and Thybusch, B. 1988. Sorption of uranyl ions on hydrous titanium dioxide. <u>Fresenius Z.</u> <u>Anal. Chem.</u> 332: 351–357.
	U(VI)-Montmorillonite Predicted Effects of M/V, pH	Lieser, K. H., Quandt-Klenk, S., and Thybusch, B. 1992. Sorption of uranyl ions on hydrous silicon dioxide. <u>Radiochim. Acta</u> 57: 45–50.
	$ \begin{array}{c} $	 Pabalan, R. T., and Turner, D. T. Uranium(6+) sorption on montmorillonite: Experimental and surface complexation modeling study. <u>Aquatic Geochem</u>. (submitted). Pabalan, R. T., Prikryl, J. D., Muller, P. M., and Dietrich, T. B. 1993. Experimental study of uranium(6+) sorption on the zeolite mineral clinoptilolite. <u>Materials Research Society Symposium Proceedings</u> 294: Scientific Basis for Nuclear Waste Management XVI, (C. G. Interrante and R. T. Pabalan, eds.), Materials Research Society, Boston, Massachusetts, pp. 777–782. Rogers, P. S. Z., and Meijer, A. 1993. Dependence of radionuclide sorption on sample grinding, surface area, and water composition. <u>Proceedings of the Fourth Annual International Conference on High Level Radioactive Waste Management</u>, American Nuclear Society, La Grange Park, Illinois, pp. 1509-1516.
	DLM Model Predictions on U(vi)-Guartz U(vi)-Montmerillenste	 Turner, D. 1995. A Uniform Approach to Surface Complexation Modeling of Radionuclide Sorption, CNWRA 95-001. Center for Nuclear Waste Regulatory Analyses, San Antonio, Texas. Turner, D. R., and Sassman, S. A. 1996. Approaches to sorption modeling for high-level waste performance assessment. Jour. Contam. Hydrol. 21: 311–332.
		Wanner, H., and Forest, I., eds. 1992. "Chemical Thermodynamics of Uranium." Elsevier, New York, New York.
		Westall, J. C. 1982. FITEQL: A Computer Program for Determination of Chemical Equilibrium Constants From Experimental Data, Version 2.0. Rpt. 82-02. Department of Chemistry, Oregon State University, Corvallis, Oregon.
		Wolery, T. J. 1992. EQ3NR, A Computer Program for Geochemical Aqueous Speciation-Solubility Calculations: Theoretical Manual, User's Guide, and Related Documentation (Version 7.0). UCRL-MA-110662- Pt.3. Lawrence Livermore National Laboratory, Livermore, California.



٩ delGOf = -148.749 kcal/mot delHOf = N/A SOPrTr = N/A +------[calculated] -1.0000 Nn02-NOHPO4++ N/A N/A 1.094 cal/(mol*K) [source: 72kes ref-state data: v04++ sp.type = aqueous E03/6 = alt revised = 23-nov-1988 mol.wt. = 333.027 g/mol DHazero = 4.5 charge = 2.0 gflag = 3 [reported logK data used] logK = 8.550 delGOf = -608.928 kcal/mol [source: 92pal/sil] [calculated] reference reaction: 1.0000 NpO2(NO3)2(eq) -1.0000 NpO2++ ref-state data: Selec -2.0000 NO3delHOf = SOPrTr = N/A Np02(003)2-sp.type = aqueous EQ3/6 ≈ alt logk = 0.010 [source: 92pal/sii] delG0f = -243.228 kcal/mol [calculated] delH0f = N/A SOPTr = N/A Selec = 1.043 cal/(mol*K) [source: 72kes revised = 14-dec-1993 mol.wt. = 389.065 g/mo Np02(C03)3----N/A 0.851 cal/(mol*K) [source: 72kes 4 element(s): ECG5/5-----Sp.type = aqueous ECG5/6 = alt revised = 13-dec-1993 mol.wt. = 449.074 g/mol DHazero = 4.0 charge = -4.0 1.0000 H 1.0000 P 1.0000 Np 4.0000 0 DHazero = 4.0 charge = -2.0 Selec = Np02(N03)2-3 species in aqueous dissociation reaction: -1.0000 NpNPO4++ EQ3/L dc1.0000 HPO4--3 element(s): 2,0000 C 2(NO3)2-sp.type = aqueous EQ3/6 = alt revised = 06-dec-1993 mol.wt. = 393.057 g/mol Deserve = 4.0 1.0000 Np 8.0000 a **** 4 species in aqueous dissociation reaction: LogK grid (0-25-60-000 @1.0132bar; 150-200-250-3000 3 element(s): **** -1.0000 Np02(C03)2--1.0000 Np02++ -2.0000 HC03-) 3.0000 C 1.0000 Np 11.0000 0 DHazero = 4.0 charge = -1.0 aPsat-H201: 500.0000 -16.0000 500.0000 500.0000 500.0000 500.0000 500.0000 500.0000 **** logk grid 10-25-60-100€ 31.0132bar; 150-200-250-300€ S00.0000 3.6976 500.0000 500.0000 at the 2-2 T -3.0000 H+ 3.0000 HC03-3 element(s): 2.0000 N 1.0000 Np 8,0000 0 gfiag = 3 [reported logK data used] afferent reference reaction: 1.0000 NPHP04++ -1.0000 NP++++ -1.0000 NP++++ **** logK grid [0-25-60-100C @1.0132bar; 150-200-250-300C 3 species in aqueous dissociation reaction: -1.0000 NpO2(NO3)2- 1.0000 NpO2+ 2.0000 NO3remponents aPsat-#201 gflag = 3 [teported logK data used] 500.0000 9.4064 500.0000 500.0000 500.0000 500.0000 500.0000 500.0000 olata ref-state data: state data: Logk = 16.000 [source: 92pal/sil de[GDf = -402.333 kcal/mol [Calculated] delN0f = N/A SDPTr = N/A SDPTr = N/A Selec = 1.094 cal/(mol*K) [source: 72kes] reference re ict (on: [source: 92pal/sil] -2.0000 CO3-1.0000 Np02 C03)2--1.0000 Np024-**** LogK grid [0-25-60-100C @1.0132bar; 150-200-250-300C @Psat-H20]; gflag = 3 [reported logK data used] ref-state data reference reaction: 1.0000 Np02(C03)3-----1.0000 Np02++ 500.0000 2.1200 500.0000 500.0000 500.0000 500.0000 500.0000 500.0000 16.960 465.720 k logK = delGOf = [source: 92pal/sil] [calculated] -3.0000 CO3-delHDf = SOPrTr = Selec = *----ref-state data: logK = 21.580 [source: 92pal/sil] delGOf = -598.214 kcal/mol [calculated] gflag = 3 [reported logK data used] NpND3++ J3++ sp.type = aqueous EG3/6 = alt revised = 06-dec-1993 moi.wt. = 299.053 g/moi DHazero = 4.5 charge = 2.0 reference reaction: 0.851 cal/(mol*K) [source: 72kes 1.0000 NpO2(NO3)2-1.0000 NpO2+ -2.0000 NO3-N/A N/A 0.851 cal/(mol*K) [source: 72kes del80f = Np02(C03)2---SOPrTr = Selec = 2003)2---\$p.type = aqueous E03/6 = alt revised = 13-dec-1993 mol.wt. = 389.065 g/mol DHazero = 4.0 ref-state data: logK = -2.120 [source: 92pal/sil] delGOf = -268.812 kcai/mol [calculated] delWOf = SOPrTr = Np02(H2P04)2(aq) N/A N/A **** sp.type = aqueous EQ3/6 = alt revised = 07-dec-1993 3 element(s): 1.0000 N DHazero = 4.0 charge = -3.0 Seler : 0.851 cal/(mol*K) [source: 72kes 1.0000 Np 3,0000 0 revised = 07-dec-1993 mol.wt. = 463.021 g/mol DHazero = 3.0 charge = 0.0 m Np02(0X)2(aq) 3 species in aqueous dissociation reaction: -1.0000 NpNO3++ 1.0000 NO3-1.0000 Np+++ 3 element(s): 2.0000 C Tevised = aqueous E03/6 = alt revised = 08-dec-1993 mol.wt. = 303.061 g/mol DHazero = 3.0 charge = 0.0 1.0000 Np 8,0000 0 *6*7 4 species in aqueous dissociation reaction: -1.0000 NpO2(CO3)2--- -2.0000 1.0000 NpO2+ 2.0000 4 element(s): 4.0000 H 2.0000 P -D. **** LogK grid [0-25-60-100c @1.0132bar; 150-200-250-300c -2.0000 H+ 2.0000 HC03-1.0000 Np 10.0000 o aPsat-#201: 500.0000 -1.4100 500.0000 500.0000 500.0000 500.0000 500.0000 500.0000 **** **** **** logK grid [0-25-60-100C @1.0132bar; 150-200-250-300C 4 species in aqueous dissociation reaction: -1.0000 NpO2(H2PO4)2(aq) 1.0000 NpO2++ 2.0000 H+ 2.0000 HPO4--3 element(s): 2.0000 H aPsat-#201: 500.0000 14.0376 500.0000 500.0000 500.0000 500.0000 500.0000 500.0000 1.0000 No 4 0000 0 gflag = 3 [reported logK data used] **** reference reaction: 1.0000 NpN03++ -1.0000 Np+++ 4 species in aqueous dissociation reaction: -1.0000 NO3-**** logK grid [0-25-60-100C @1.0132bar; 150-200-250-300C gflag = 3 [reported logK data used] -1.0000 Np02(0H)2(sq) 1.0000 Np02++ -2.0000 2.0000 aPsat-H201: -1.0000 NP++ ref-state date: 1.410 [source: 92pal/sil] de(B07 = -152.020 kcsl/mol [calculated] de(H07 = N/A SUPFT = N/A 820 reference reaction: 1.0000 Np02(C03)2----1.0000 Np02+ 500.0000 -21.9609 500.0000 500.0000 500.0000 500.0000 500.0000 500.0000 -2,0000 CO3--**** logK grid [0-25-60-100C @1.0132bar; 150-200-250-300C aPsat+H201: 500.0000 12.0202 500.0000 500.0000 500.0000 500.0000 500.0000 500.0000 ref-state data: gflag = 3 [reported logK data used] state bata: logK = 6.620 delGOf = -480.104 kcal/mol delHOf = N/A SOPrTr = N/A [source: 92pal/sil] Selec = 1.094 cal/(mol*K) [source: 72kes] [calculated] 1.0000 Np02(H2P04)2(aq) -1.0000 Np02++ -2.0000 H2P04gflag = 3 [reported logK data used] NON03+++ reference reaction: 1.0000 Np02(0H)2(aq) 1.0000 Np02++ sp.type = aqueous E03/6 = alt revised = 06-dec-1993 mol.wt. = 299.053 g/mol DHazero = 5.0 charge = 3.0 ref-state data: Selec = 1.043 cal/(moi*K) [source: 72kes logK = 7.550 delGDf = -740.781 kcal/mol delHOf = N/A [source: 92pai/sil] [calculated] -2.0000 OH-NpO2(CO3)3(5-) sp.type = aqueous * E03/6 = alt revised = 13-dec-1993 mol.wt. = 449.074 g/mol * DHazero = 4.0 refstate data: logK = 15.970 · [source: 92pal/sil] de[80f = -287.178 kcal/mol [calculated] de[40f = N/A SOPrTr = N/A Selec = 0.851 cal/(mol*K) [source: 72kes Np02(N03)2(aq) SOPETE = N/A 3 element(s): RND3/2(ad) sp.type = aqueous E03/6 = alt revised = 06-dec-1993 mol.wt. = 393.057 g/mol Selec = 0.851 cal/(mol*K) [source: 72kes 1.0000 N 1.0000 Np 3.0000 п charge = -5.0 3 species in aqueous dissociation reaction: 1.0000 N03-Np02(0H)3-3 element(s): 3.0000 C E03/6 = alt E03/6 = alt revised = 08-dec-1993 mol.wt. = 320.069 g/mol -1.0000 NpN03+++ 1.0000 Np++++ 1.0000 No 11 0000 0 DHazero = 3.0 charge = 0.0 4 species in aqueous dissociation reaction: -1.0000 Np02(C03)3(5-) -3.0000 1.0000 Np02+ 3.0000 **** LogK grid [0-25-60-100C @1.0132bar; 150-200-250-300C @Psat-H20]: -3.0000 H+ 3.0000 HC03-3 element(s): DHazero = charge = -1.0 2.0000 N 1.0000 No 8.0000 0 1201: 500.0000 -1.5000 500.0000 500.0000 500.0000 500.0000 500.0000 500.0000 **** **** logK grid [0-25-60-100C @1.0132bar; 150-200-250-300C 3 species in aqueous dissociation reaction: -1 0000 Np02↔ 1.0000 Np02↔ 3 element(s): @Psat-H2O]: -1.0000 Np02(N03)2(Bq) 2.0000 N03-500.0000 22.4364 500.0000 500.0000 500.0000 500.0000 500.0000 500.0000 3.0000 H 1.0000 Np 5 0000 n gflag = 3 [reported logK data used] reference reaction: 1.0000 NpN03+++ -1.0000 Np++++ 4 species in aqueous dissociation reaction: -1.0000 NpO2(0H)3- -3.0000 1.0000 NpO2++ 3.0000 -1.0000 NO3-**** logK grid [0-25-60-100C a1.0132bar; 150-200-250-300C aPsat-H20]: 500.0000 -0.0100 500.0000 500.0000 -3.0000 H+ 3.0000 H20 gflag = 3 [reported logK data used] reference reaction: ref-state data: logK = 1.500 [source: 92pal/sil] 1.0000 Np02(C03)3(5-) -3.0000 003--500.0000 500.0000 500.0000 500.0000 **** logK grid [0-25-60-100C @1.0132bar; 150-200-250-300C EQ3/6 (Data 0. alt-F2) Highlighted numbers are Lack values EQ3/16 unites reactions as dissassociation as opposed to formation reactions in MINIFER so Lock signs will be apposite. Msc, EG3/6 uses different components in some cases Note (03) leg HCO3 instead ch instead of PO13-, HP0 2-) and los Ks are ditterent.

3 aPsat-H20]: 500.0000 20.2652 500.0000 500.0000 500.0000 500.0000 500.0000 500.0000 (FF) charge = -1.0 1.0000 Pu02++ 2.0000 HC03-4 species in aqueous dissociation reaction: -1.0000 PuO2(CD3)3---- -3.0000 H+ 1.0000 PuO2++ 3.0000 KCO3logK grid [0-25-60-100C a1.0132bar; 150-200-250-300c 3 element(s): 2.0000 N aPsat-H201 8,0000 0 gflag = 3 [reported logK data used] 1.0000 Pu 201: 500.0000 6.5576 500.0000 500.0000 500.0000 500.0000 500.0000 500.0000 **** reference reaction: 1.0000 NpO2(OH)3+ 1.0000 NpO2++ ref-state data: **** logK grid (0-25-60-100C a1.0132bar; 150-200-250-300C @Psat-H20): 500,0000 12.6364 500.0000 500.0000 500.0000 500.0000 500.0000 ----3 species in aqueous dissociation reaction: -1.0000 Pu02(N03)2- 1,0000 2.0000 N03--3.0000 OHgflag = 3 [reported logK data used] reference reaction: 1.0000 Pu02(C03)2---1.0000 Pu02++ 1.0000 Pu02+ logK = 21.720 [source: 92pal/sil] delGOf = -332.617 kcal/mol [calculated] delHOf = N/A -2.0000 003--***** logK grid [0-25-60-100C @1.0132bar; 150-200-250-300C @Psat-H20]: gflag = 3 freported logK data used) ref-state data: 500.0000 2.1200 500.0000 500.0000 500.0000 500.0000 500.0000 500.0000 reference ceartion: SOReTe = 11/8 logK = 14.10D [source: 92p delGOf = -452.521 kcsl/mol [calculated] delHOf = N/A SOPTT = N/A 14.100 [source: 92pal/sil] 1.0000 Pu02(C03)3-----3.0000 CO3--* Selec = 0.851 cal/(mol*K) [source: 72kes gflag = 3 [reported logK data used] reference reaction: 1.0000 PuD2(NO3)2--1.0000 PuD2+ NDC2(OH)4-ref-state data: logK = 18.350 [source: 92pal/sil] delGOf = -584.510 kcal/mol [calculated] 2(01)4--sp.type = aqueous E03/6 = alt revised = 08-dec-1993 mol.wt. = 337.076 g/mol DHazero = 4.0 charge = -2.0 * Selec = 1. 1.043 cal/(mol*K) [source: 72kes -2.0000 NO3-. N/A N/A 1.043 cal/(mol*K) [source: 72kes delHOf = Pu02(003)2--ref-state data: SOPETE = (CUS)2---sp.type ∝ aqueous E03/6 = ait revised = 09-dec-1993 mol.wt. = 396.017 g/mol Starc water logK = -2.120 [source: y2pa1/ delGDf = -255.277 kcal/mol [calculated] delHDf = N/A SDPrfr = N/A Selec = 1.043 cal/(mol*K) [source: 72ks Pu02(H2P04)2(aq) [source: 92pal/sil] 2(N2/04)2(3q) sp.type = aqueous E03/6 = alt revised = 09-dec-1993 mol.wt. = 469.973 g/mol DHazero = 3.0 charge = 0.0 3 element(s): 4.0000 H DHazero = 4.0 charge = -3.0 ٠ 1.0000 Np * Selec = 1.043 6,0000 0 **** Pu02(OH)2(eq) sp.type = aquecus * E03/6 = alt revised = 09-dec-1993 * mol.wt. = 310.013 g/mol * DNazero = 3.0 charge = 0.0 **** : DEstrom 4 species in aqueous dissociation reaction: -1.0000 MpO2(OH)4-- -4.0000 1.0000 NpO2++ 4.0000 3 element(s): -4.0000 H+ 4.0000 H20 2.0000 C 8.0000 Q 1.0000 Pu **** **** 4 species in aqueous dissociation reaction: -1.0000 Pu02(C03)2--- -2.0000 1.0000 Pu02+ 2.0000 4 element(s): 4.0000 H **** logK grid [0-25-60-100C @1.0132bar: 150-200-250-300C -2.0000 H+ 2.0000 Hco3-10.0000 o 2.0000 P aPeat-H201 . H20): 500.0000 33.0503 500.0000 500.0000 500.0000 500.0000 500.0000 500.0000 1.0000 Pu **** **** logK grid [0-25-60-1000 @1.0132bar; 150-200-250-3000 4 species in aqueous dissociation reaction: -1.0000 Pu02(H2P04)2(aq) 1.0000 2.0000 H+ 2.0000 3 element(s): 2.0000 H @Psat-H20]: 1.0000 Pu02++ 2.0000 HP04-gflag = 3 (reported logK data used) reference reaction: 1.0000 Np02(0H)4---1.0000 Np02++ 4.0000 O 1.0000 Pu 201: 500.0000 14.0376 500.0000 500.0000 500.0000 500.0000 500.0000 500.0000 ****
 4 species in aqueous dissociation reaction:

 -1.0000 Pu02(0H)2(aq)
 -2.0000

 1.0000 Pu02++
 2.0000
 -4.0000 08+ **** logK grid (0-25-60-100c @1.0132bar; 150-200-250-300c -2.0000 H+ 2.0000 H20 -1.000 kjp2++ ref-state data: deGC0f = -371.863 kcs/mol [cslurce: 92psi/sfl] deGC0f = -371.863 kcs/mol [cslculsted] deHOf = N/A SUPFT = N/A Seter = 0.651 csl/(mol%) [source: 72kes] gflag = 3 [reported logK data used] SPsat-H201 reference reaction: 500.0000 -21.9609 500.0000 500.0000 500.0000 500.0000 500.0000 500.0000 ***** logK grid [0-25-60-100C @1.0132bar; 150-200-250-300C 2Psat-H201: 500.0000 12.4502 500.0000 500.0000 500.0000 500.0000 500.0000 500.0000 [source: 92pal/sil] 1.0000 Pu02(C03)2---1.0000 Pu02+ -2.0000 co3--Burn ref-state data: gflag = 3 [reported logK data used] logK = 6.620 delGOf = -464.568 kcal/mol delHOf = N/A SOPrTr = N/A [source: 92pal/sil] [calculated] reference reaction: 1.0000 Pu02(#2PO4)2(aq) -2.0000 H2P04-*----1.0000 Pu02+4 gflag = 3 [reported logK data used] PuN03+++ 33+++ sp.type = aqueous E03/6 = alt revised = 09-dec-1993 mol.wt. = 306.005 g/mol DHazero = 5.0 charge = 3.0 ref-state data: reference reaction: 1.0000 Pu02(OH)2(aq) 1.0000 Pu02++ Selec = 1.043 cal/(mol*K) [source: 72kes ret-state data: 7.550 [source:92ml/ Ueffoff = .751.435 scal/mol [cstculated] delM0f = M/A [cstculated] solerr = M/A selec = 1.043 csl/(mol*K) [source:72kes [source: 92pat/sil] * -2.0000 OH-Pu02(C03)3(5-) ((CO3)3(5-)
sp.type = aqueous
EO3/6 = alt
revised = 09-dec-1993
mol.wt. = 456.026 g/mol
DHazero = 4.0
charge = -5.0 ref-state data: logK = 15.540 delGOf = -277.294 kcal/moi delHOf = N/A SOPrTr = N/A [source: 92pal/sil] [calculated] **** Pu02(N03)2(aq) 3 element(s): 1,0000 N sp.type = aqueous E0376 = alt revised = 09-dec-1993 mol.wt. = 400.009 g/mol Selec = 1.043 cal/(moi*K) [source: 72kes 3.0000 0 1.0000 Pu **** **** 3 species in aqueous dissociation reaction: -1.0000 PuNO3+++ 1.0000 1.0000 Pu++++ Pu02(0H)3-3 element(s): 3.0000 C 20035-sp.type = aqueous E03/6 = alt revised = 09-dec-1993 mol.wt. = 327.021 g/mol DHazero = 4.0 1.0000 003-11.0000 o 1.0000 PH * DHazero = 3.0 charge = 0.0 4 species in aqueous dissociation reaction: 1.0000 Pu02(C03)3(5-) -3.0000 1.0000 Pu02+ 3.0000 **** -3.0000 H+ 3.0000 HC03-3 element(s): 2.0000 N 8.0000 0 1.0000 Pu charge = -1.0 **** **** logK grid [0-25-60-100C @1.0132bar; 150-200-250-300C 3 species in aqueous dissociation reaction: -1.0000 Pu02(N03)2(aq) 1.0000 Pu02++ 2.0000 N03-3 element(s): 3.0000 H SPsat-H201+ gflag = 3 [reported logK data used] 5.0000 o 1.0000 Pu 500.0000 23.6264 500.0000 500.0000 500.0000 500.0000 500.0000 500.0000 **** reference reaction: 4 species in aqueous dissociation reaction: -1.0000 Pu02(0H)3- -3.0000 1.0000 Pu02++ 3.0000 1.0000 PuNO3+++ -1.0000 Pu++++ -1.0000 NO3-**** logK grid [0-25-60-100C @1.0132bar; 150-200-250-300C -3.0000 H+ 3.0000 H20 gflag = 3 [reported logK data used] reference reaction; 1.0000 Pu02(c03)3(5-) -1.0000 Pu02+ aPsat-H201: 500.0000 -0.0100 500.0000 500.0000 500.0000 500.0000 500.0000 500.0000 ref-state data: logK = 1.870 delG0f = -144.163 kcal/mol delH0f = N/A SOPrTr = N/A [source: 92pal/sil] [calculated] -3 0000 CO3--.... logK grid (0-25-60-100C @1.0132bar; 150-200-250-300C @Psat-H2O1: N/A N/A 1.043 cal/(mol*K) [source: 72kes ref-state data: logk = 7.360 delGOf = -591.769 kcal/mol H201; 500.0000 20.2652 500.0000 500.0000 500.0000 500.0000 500.0000 500.0000 gflag = 3 [reported logK data used] SOPrTr = N/A Selec = 1.043 cal/(mol* [source: 92pal/sil] reference reaction: 1.0000 Pu02(N03)2(aq) -1.0000 Pu02++ [calculated] -2.0000 NO3-N/A 1.043 cal/(mol*K) [source: 72kes delHOf = SOPrTr = -1.0000 Pu02++ ref-state data: logt = 0.010 [source: xcu-delGDf = -233.931 kcal/mol [catculated] relHDf = N/A gflag = 3 [reported logK data used] reference reaction: 1.0000 Pu02(08)3--1.0000 Pu02++ Pu02(C03)2--(CO3)2--sp.type = aqueous EO3/6 = alt revised = 15-dec-1993 mol.wt. = 396.017 g/mol DHazero = 4.0 charge = -2.0 * Selec = 1.043 [source: 92pal/sil] -3.0000 OH-* Pu02(C03)3-----1.0000 Pu02++ -1.5000 Pu02+ delG0f = -223.320 kcmi/mol [source: 92pal/sil] delG0f = -323.320 kcmi/mol (calculated) delG0f = N/A SPIFT = N/A Selec = 1.043 cal/(mol*K) [source: 72kes] 2(C03)3----sp.type = aqueous E03/6 = alt revised = 09-dec-1993 mol.wt. = 456.026 g/mol DHazero = 4.0 charge = -4.0 N/A 1.043 cal/(moi*K) [source: 72kes * **** Pu02(103)2-3 element(s): sp.type = aqueous E03/6 = alt 2.0000 C 41.00 8.0000 o 1.0000 Pu E03/6 = alt revised = 09-dec-1993 ***** **** **** Pu02(0H)4--4 species in aqueous dissociation reaction: -1.0000 Pu02(CO3)2-- -2.0000 H+ 3 element(s): 3.0000 C mol.wt. = 400.009 g/mol DHazero = 4.0 sp.type = aqueous * EQ3/6 = alt 11.0000 0 1.0000 Pu

Np Data

Calculating Log K Values from	m Free Energies	T				Del C/M/Line D		Heaction Stor	chiomatries										<u> </u>			- 1					1		
Log K Del G(n)	Del G(r) Del H(r)	CALINA NW	- Del 60	Cel H(t)	Mineral/Species	Del G(f)(kJ/mol) Del H(f)(kJ/mol)	0	0.0000	-131.2170	-291.5230 -335.3500	-527,9831 -676,2300 CO3-	-744.0040 -909.3400				-51.7240	-237.1400	-517,1000	-502,9000	-915.0000	-795.8000	-261.9530 -240.3400				NEA Basis/Auxi	liery species deta ary species data		
(kJ/ma)	(kcal/mol) (kJ/mol)	Del H(r) M.W. (kz.el/mal) (g/mal)	Del G() (U/mal)	(kJ/mol)	initia avopecies	M.W. Del G(t)(kJ/mol)	0	1.0079	36.4630	18.9960	50,0094	90.0616 -744.4691	Q1 0712	62 0040	Br- 79.9040	126.9044	H2O() 18.0163	Np+++ 237.0482	Np++++ 237.0482	NpO2+ 269.0470	NpO2++ 269.0470	22,9696	Charge	dbha(zero		Data from EGG/t	database (Dat0 alt.r2	telezse, O2aug95)	
Np(1k) AQUEOUS:						Del H(t)(kJ/mat)	0	0.0000		-281.7606 -335.3476	-676 2348	-744.4691 -909.5015	-1018.6040	-110.9062	-101.0661 -121.6034	-61,9234 -56,9024	-237.1825 -285.8383	-517.1000	-502,9000 -556,1000	-916.0000	-795.9000	-261.8807 -240.2997					rce is from draft NEA Np++++ NpO2+ NpO		62)
7.90 -46.0916	6 -10.7771 SECENCERCER	**************	76 -1090.174	17 ####################################	NpCC3+						1							1					1.0000	4.1	ao	del GI: Palsz			
12.70 -72.4925	5 -17.3261 ###########	8 -11.8605 334.00	64 -2173.542	20 3414444444 32 -1854,2000	Np(C03)3-3						3							1					-1.0000	4,1	0.00	del GI: Pal92 del GI: Pal92			
42.78 -244.2123 64.22 3756.6778	3 -58 3581 -113 349							4					1					1					2.0000	4,0	0.0	del GI: Pal92	dei HI: PHI86 dei HI: PHI86		
83.66 -477.6247	7 -114.1311 ##############	4 45.4787 628.07	73 -5059.840	15 - 4549.5000 17 1411111111	Np(H2PC4)3(aq) Np(H2PC4)4-1	1		8					3			-		1					0.0000	3.1	0 00		der HI: PHIBS		
1.41 -8.0466	6 -2.6192 ####################################	* *********** 361.00	-749 850	7 2222222222222	No(NCa)2+									1				1					2.0000	4.1	00	del GI: Pal92 del GI: Pal92			
2.62 -14.3854 -0.80 38.8437	7 9.2839 60.138	3 11.9833 254.00	29 -854.201 55 -715.438	0 ####################################	Np(NO3)3(aq) NpOH++	· · · · · · · ·		4						3			1	1					0.0000	3.0	00	del GI: Pal92 del GI: Pal92	del HI: PHiles'		
-15.01 91.3954 -23.91 135.4554	4 32.6139 ####################################	* ************ 288.07	02 -1092,191	4 Likterstettt	Np(OH)3(ag)			-2							-		2					-	1.0000	4.0	00 00	dal GI: Pal92 dal GI: Pal92			
3.93 -22.4310 5.45 -31.1065	6 ·7.4361 #############	# ####################################	98 -1283.990		NpSO4+							1		•									1.0000	4.0	0.0	del GI: Pelsz del GI: Pelsz			
1.07 -6.0940 0.82 -4.6825	5 -1,1191 #############	# ####################################	12 -551.483	8 **************	NoCl++				-1									1					2,0000	4.1	0.0	del GI: Pal92 del GI: Pal92 del GI: Pal92			
3.73 -21.2888 7.83 -44.6940	8 -5.0881 ###################################	A 84844444444	62 620 120		Net					1													2000	4.0	0.0	dal GI: Palsz			
11.06 -63.2469		8 AAAAAAAAAAA 294.04	22 -1426.597	2 11111111111111 6 11111111111	NpF3(ac)					3								1					0.0000	4.0		del GI: Pelsz del GI: Pelsz			
Np(V) AQUEOUS: 12.30 70.2075	5 -16 7600 #################################		76	77 ********	Machine																								
23.36 -133.2614 30.00 -171.2385	4 -31,8560 ####################################	# ALEXANDERED 357.00	70 -1692 147	77 ###################################	No CONZani						2								1				2.0000	4.1	00	del G1: Pal92 del G1: Pal92			
30.00 -171,2380 33.00 -188,3537 34.00 -194,0707	7 46 0200 *******	* *************************************	58 2803,198	I PERFERENCE	No(CO3)4-4						3		-						1				-2.0000	4.0	00	del GI: Pal92 del GI: Pal92	-		
24.45 -139.5448	6 -33.3520 ####################################			3912.3100 8 ############				2			6		1						1				-6.0000	4.0	0.0	del Gf: Pal92 del Gf: Pal92	del Hf: PHI88		
47.36 -270.2990 91.96 -524.9038	B -125.4550 ###################################	######################################	28 -2810.607 73 -6103.019	0 222222222222222 20 22222222222222	Np(H2PO4)2++ Np(H2PO4)4(aq)			4					2						1		-		2 0000	4.5	0.0	del Gf: Pal92' del Gf: Pal92'		-	
28.32 -161.6615 62.77 -301.2313	3 -71.9950 -55.049	8 -1.7748 333.00 6 -16.5472 429.00	75 -1563.366 69 -2841.739	6 -1840.9000 3 -3176.9000	NpHPO4++ Np(HPO4)2(aq)			1	_				1										2.0000	4.0	0.0	del Gf: Pal92 del Gf: Pal92	del HI: PHI88 del HI: PHI88		
74.86 -427.3329 94.93 -641.9034	4 -129.5180 -125.799	4 -21.6044 624.94 2 -30.3057 620.96	62 - 3966.644 56 - 5120.019	4478.2000 4 -5792.4000	Np(H2PC4)2++ Np(H2PC4)4(a) Np(HPC4++ Np(HPC4)3(a) Np(HPC4)3(a) Np(HPC4)4(-4) Np(HPC4)4(-4) Np(HPC4)4(-4) Np(HPC4)5(-5) Np(NC2+++			3															-2,0000	4.0	0.0	del Gi: Pal92 del Gi: Pal92 del Gi: Pal92	del HI: PHI88'		
110.21 -629.0728 1.60 -8.6606	8 -160.3520 -167.524 6 -2.0460 ###########	0 -37.5491 716.94	49 -6226.992 31 -622.365	28 -7100.5000 58 ###########	Np(HPO4)5(-6) NpNO3+++			6					6						1				-8.0000	4.0	- <u>ao</u>	del GI: Pal92 del GI: Pal92 del GI: Pal92	dal Hi: PHI68		
2.31 -13.1640 3.61 -20.0333	D -3.1811 ##################################	A	20 .855.649	Q ***********	Noticalat									2						.			2000	4,0	0.0	del G1: Pal92 del G1: Pal92 del G1: Pal92			
2.75 -15.8988	6 3.7621 ####################################	12 2045 264 D	78 962.219	20 422222222222	Np(NC3)4(aq)				-											-			0.0000	4.0	0.0	del GI: Pa/92	di la compositione de la composi		
0.21 -1.1967	7 -0.2860 77.376	7 184936 271 0	29 .978 451	9 -1080.4000 7 -1313.7060	No(CH)2++			2	-								1		<u> </u>				3.0000	4.0	0.0	del GI: Pal92' del GI: Pal92'	del HI: PHI88		7
4.63 25.8554	4 6.1620 -0.445	57 -0.1058 306.07	76 -1425.764	9 -1699.9000	Np(OH)4(aq)												3]		1.0000	4.0	0.0	del GI: Palsz' del GI: Palsz'	del HI: PHI66 del HI: PHI66		
-16,18 92,3368 6,68 -37,5598 9,79 -55,6815	8 -8.9770 20.9111	6 4,9960 333,10	98 1284 919	3 -1863.3600 0 -1444.7900 8 -2334.6000	INoSO4++			-6									5						-1.0000 2.0000	- 4.0	αο 0.0	del GI: Pal92 del GI: Pal92	del HI: PHI88		
8.30 -47.3755	6 -11.3230 ###################################	* *************************************	2761 662	a berennennen	No/SO43.2							2											-2.0000	3.0	0.0	d a / l Dalor	del HI: PHIBS'		
1.15 -5.5548 1.55 -9.5898	8 -2.2920 94.464	7 4.7095 272.60 3 22.6775 307.90	12 -540.754	16 -703.4760 21 -796.7960 33 22222242	NpCl+++ NpCl2++				1														3.0000	60	00	del GI: Palso	del HI: PHS85' del HI: PH185'		
2.41 -13.7671 8.68 -49.6470	11 8420 -3 352	4 .09012 255.04	62 .834 197	A01 8000	News				3										1				1.0000	4.0	0.0	del GI: Paloz del GI: Paloz			
15.70 -89.6172 21.35 -121.9216	2 -21.4190 ####################################	* *************	22 -1470.073	53 ####################################	NpF2++ NpF3+					2									1				2,0000	40	0.0	del GI: Pal92 del GI: Pal92	00 11. 1100	-	
25.25 -144.1253 -25.83 -153.1470	3 34.4470 ############	# ####################################	02 -1774.028	6 *************	NpF4(aq) NoF61					4									1				0.0000	3.0	0.0	del G1: Pal92 del G1: Pal92			
28.86 -164.7325	5 39.3720 ######### ##	* *************************************	62 -2358.135	59 ******** ****	NpF6-2					6									;				-1.0000	-11		del G1: Palsz del G1: Palsz			
Np(V) AQUEOUS: -9.11 62.0291	1 12.4352 43.938	3 10.6015 286.05	1100183	5 -1220.1000	NoC2OH(wa)																								
6.07 28.9397 6.62 37,7888	7 -8.9168 63.6341	8 12,7951 329,06	54 1471.922	3 1699,9000	NpO2CO3-1						1						· · · · ·			1			0.0000	3.0	0.0	de GI: Pal92	del HI: PHISS del HI: PHISS		
6.65 48.8063 1.42 8.1054	3 -11.6648 26.204	5 52530 449.00	52 -2547.754	8 -2977.7000	NpO2(CO3)3-5						3									1			-3.0000 -6.0000	4.0	0.0	del GI: Pal92 del GI: Pal92	del HI: PHI86 del HI: PHI86		
-212 121010	2 8922 ********	1 111111111111111 393.D	58 -1124,709	***********	NpO2(NO3)2-1									1						1			0.0000	3.0	0.0	dal GI; Pa/92			
3.00 17.1220	4.0922 *******	* *************************************	11/50 457	X AND DESCRIPTION	No02012.1				1											1			1,0000	3.0	0.0	del GI: Pelsz del GI: Pelsz			
0.82 -4.6809 6.78 -38.7010	9 2498 ####################################	* *************************************	BI 1972.605	4 -1284.7000 21284.800	NoO2PO4-2					1			1							1			-2.0000	3.0	0.0	del GI: Palez	del Hf: PHiss'		
16.66 -80.3985 20.67 -117.3976	-28.0588 -37.124	2 8.2159 355.02 8 -8.8730 355.02	61 -2023.202 43 -2061.201	6 -2221.2000 8 -2292.7000 3 -1856.4000	NpO2HPO4-1 NpO2H2PO4(sq)			1					1										-1.0000	4.0	0.0	de GI: P J 92	de Hr PHIAS		
1.63 -8.7352	2 -2.0878 31.401	6 7.5052 355.10	85 -1558.194	3 -1856.4000	NpO2SO4-1							1				-				1			-1.0000	4.0	0.0	dal GI: Pal92	del Hr: PHI88' del Hr: PHI88'		
Np(VI) AQUEOUS: -6.09 29.0620	0 6.9508 43.44%	3 10.3844 286.06	43 -1003.900	6 -1102.9900	NpO2OH+																1		1.0000			A IN Paloy	del HI: PHI89'		
-12.02 58.5124 -20.27 116.5782	27.5478 ####################################	* *************************************	17 -1201.552 90 -1391.669		NpO2(OH)2(sq) NpO2(OH)3-1			-2									2						0.0000	3.0	0.0	del GI: Palez			
-33.06 168.6556 -2.82 16.0588	5 45.0898 ###################################	* *************																			1		2,0000	4.0	0.0	lei GI: Pal92 lei GI: Pal92 lei GI: Pal92			
-5.67 32.3596 -11.95 58.2172	2 16.3043 ###################################	* *************************************	87 - 2033.695 04 - 3267.913	8 \$111111111111111111111111111111111111	(NpO2)2(CH)2++ (NpO2)2(CH)4++			-2									2				2		2,000	4.6	0.01	1a (9 Page -	del HI: PHIES'		
-16.63 89.1957 -31.09 177,4447	7 21.3183 113.4411	6 27.1132 892.17						-5									. 6						1.0000	4.6	00 00	del G1: Pal92 del G1: Pal92 del G1: Pal92	del Hr: PHtee		
-21.99 126.5035 9.66 -66.2549	-13.2062 -4.165	2 -0.9955 329.05	54 ·1379.038	6 ####################################	NpO2CO3(a)			-7									7						1.0000	4.0	0.0	del Gf: Palsz del Gf: Palsz del Gf: Palsz	dar Hi: Phise		
18.96 -96.6062 21.66 -123.1779	2 -23.1372 -10.6303	3 2.6407 389.00	58 1948.672	5 2221,7000	NoCO2(CO3)2-2						2												-2.0000	3.0 4.0 4.0	<u>40</u>	a Gi Palez	del HI: PHI88 del HI: PHI88 del HI: PHI88		
63.76 300.8031 20.86 -119.0776	-73.3277 ###################################			4 -2927,9000 0 ############# 6 -2169,0000																	3		-6.0000	4.0					
21.56 126.3327 46.60 266.0197	29.9552 -46.9246	B -11.2153 355.03	1939.935	7 -2184.9000	NpO2H2PO4+1 NpO2(H2PO4)2(aq)			2					1										1.0000	3.0	0.0	an GI: Pal92 Ini GI: Pal92	del HI: PHI88' del HI: PHI88'		
-0.30 1.7144	0.4097 ####################################	* ####################################	9 - 904,990		NoO2NO3+		·						2	1									0.0000	3.0	0.0	lei Gf: Pal92 Jei Gf: Pal92			
2.00 -11.4149 4.54 -25.4857	-2.7282 16.7016	5 3.9918 365.10	1661.674	1 -1753.5000 9 -2553.6000	NoO2SO4(ao)							1		5							1		0.0000	3.0 3.0	0.0	la Gf: Palsz la Gf: Palsz	del Hr: PHI88' del Hr: PHI88'		
0.20 -1.1432	-0.2732 12.1397	7 2,9016 304,60	0 928,233	0 1016,6400	NpO2CI+			<u> </u>	1			2									1		2,0000	4.0					
0.10 -0.6700 6.10 -29.1091	6.9572 1.6476	1 4.6609 339.96 6 0.3599 288.04	0 1068.949 0 1108.869	6 -1176.3000 6 -1194.4000	NpO2CI2(m) NpO2F+				2	1													1.0000	3.0	0.0	lei GI: Palaz lei GI: Palaz	del HI: PHI86		
7.66 -43.1606 9.67 -56.1963	413 1922 ##################################	2 0.8509 307.04 ####################################	0 -1402.461 0 -1698.246	6 -1194.4000 7 -1627.7360 0 ###################################	NpO2F2(sq) NpO2F3-1					2													0.0000	3.0	0.014	el GI: Pa/92 el GI: Pa/92	de Hr: PHibs'		
11.54 -66.8697		# ####################################	-1968.6711	5 ******	NpO2F4-2									-	-				- 1				-2,0000	4.0	0.0	ei G1: Pal92 ei G1: Pal92			
Np(IV) SOLIDS: -88.10 502,9000		0 132.9111 237.04	2 0.000	0 0.0000	Np(metii)													·					· .			el Gf: Lem84'			
65.62 -317.4920 -0.81 4.6304	-75.8824 ################	3 18,6536 305,07	-1447.000	0 -1621.3650	No/CH34			2					2													el GI: LemB4'	uel Ha: MHI88'		
7.50 -44.6348	-10.5441 63.7767	7 12.8529 259.04	1021.600	0 -1074.0000	NpO2			4									2									ial GI: Lem84' Ial GI: Lem84'	del HI: PHI66' del HI: PHI66'		
Np(V) SOLIDS: -9.50 54.2278	12,9607 94.8773	3 22.6762 554.09	-		1-007															T]
-4.24 24.1826	6.7796 39.9383	3 9.6465 296.05	2012.955 3 -1128.000	-2147.3610 0 -1224.1000	Np2O5 NpO2OH(am) NaNpCO3:3.6H2O			-2									1			2						a Git: Lem84	del HI: PHIBS' del HI: PHIBS'		
	-10.7/3/ ###################################	416.09	-2601.000		MaNpCC03:3.6H2O						- 1						3.5			- 1		1				el Gl: Lem84'	ļ		
Np(VI) SOLIDS: -5.99 34.1652	B. 1657 ####################################		7 -1236.000	Ö ******	NpO2(OH)2			-2									2									el Gf: Lemis4'			
REDOX REACTIONS:																											ļ		
2.49 -14.2000			0		Np+++/Np++++ NpO2+/Np++++		-1											- 7	!							el Gf:Lem84	der Hr: PHISS"		
31.79 181.4562	43.3712 257.1767	7 63.6568 0.00	0 0		NpO2++/Np++++		-2	. 4									2		1	-1	- 4					el GI: Lem84	del HI: PHI88' del HI: PHI88' del HI: PHI88'		
		1																				-							
																						_							

		AND AND	-	Rhannalina an ann an ann an an aird an san aird	*****										ecimeer.co.ta.048495													
	<i>C</i>	La la						0	DEJ 9 Nyp	15/44 F	ч·Т	ata					Ç	<u>38</u>	10/30	44							•	
ling Log K Values from) Del G(n) (kJ/mot)	Del G(i) Del H(i)	Del H() M.W. (tc sl/mol) (g/mol)	Del G() (t.J/mo)	Del H(i) Mineral (CJ/mol)	/Species	(G()(L)/ma) 0 (H()(L)/ma) 0 e- W. 0 (G()(L)/ma) 0 (H()(L)/ma) 0	P	saction Stoich 0.0000 H+ 1.0079 0.0000 0.0000	iometries -131.2170 -157.0800 Ct- 35.4530 -131.2897 -167.0797	-281.6230 335.3800 F- 18.9960 -281.7605 335.3478	-527.9831 -675.2300 -C03 -60.0094 -527.9831 -676.2348	-744.0040 -909.3400 SC4 96.0616 -744.4591 -909.6016	-1025.4910 -1284.4000 PO4.3 94.9714 -1018.8040 -1277.3752	-110.7940 -206.8500 NCo- 62.0049 -110.9052 -206.8109	-103.8600 -121.4100 Br- 79.9040 -104.0561 -121.6034	-51.7240 -56.7600 [- 125.9044 -51.9234 -56.9024	-237.1400				-795.8000 	Charge	e dbha/ze	ro) db	INEA Basis/At hb COMMENTS	uxiliary species data uxiliary species data 20/5 database (Dato al source is from draft N ***, Pu****, PuO2*, F	M.12 reinase. 02aug	96) 21. (1992) 8
AQUEOUS: 7.90 445.092 12.20 -69.635 12.70 72.493 22.21 126.769 43.13 -246.212	5 -15.6133 ########## 2 -17.3263 ########### 6 -30.2963 ####################################	**************************************	364.0188 -1704.2 424.0282 -2235.0 340.9873 -1724.1	26 ARABARARAR PUCCO	1)2-1 1)3-3 04++			2			1 2 3		1									1.000 -1.000 -3.000 2.000 1.000	0	4.0 0 4.0 0 4.6 0	10 del G1: Pal92 10 del G1: Pal92			#
53.62 -363.151 53.75 -478.096 1.09 -6.222 2.22 -12.670 2.52 -14.365	5 -86.7953 ########## 5 -114.2983 ########## 9 -1.4873 ####################################	ABARARARARARARARARARARARARARARARARARARA	534.9618 3998.1 531.9491 -5131.9 305.0049 -595.7	335 ARAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	204)3(aq) 204)4-1			6					3	1								0.000 -1.000 2.000 1.000 0.000	0	4.0 0 4.6 0 4.0 0	10 del Gf: Pal92 10 del Gf: Pal92			
-5.49 31.311 -15.01 91.389 -23.91 135.455 3.78 -21.676 5.32 -35.078	8 32.6137 ####################################	12.7243 EXERCICAL STREET	265.0073 -784.4 278.0147 -965.6 295.0220 -1163.6 340.0616 -1344.6 436.1232 -2103.6	107 -824.6000 PuCH+ 52 ############ Pu[CH, 72 ####################################	2+ 3(siq) ()2-			4				1					3		-			2.000 1.000 1.000 1.000 -1.000 2.000	0	4.0 0 3.0 0 4.0 0	10 del Gf: Pal92 10 del Gf: Pal92	del Hi; PHI88'		
0.98 -5.598 0.62 -4.673 3.73 -21.289 7.83 -44.694 11.08 -63.246	4 -5.0863 ####################################								2	1												2000 1.000 2.000 0.000	0 0 0	4.0 C	10 del GI: Palez 10 del GI: Palez 10 del GI: Palez 10 del GI: Palez 10 del GI: Palez			
AQUEOUS: 12.30 -70.205 23.35 -133.280 30.00 -171.227 33.00 -164.363	6 31.8648 ARARATERE										1											2,000 0,000 -2,000 -4,000	0	3.0 C	10 del GI: Pul92 10 del GI: Pul92 10 del GI: Pul92 10 del GI: Pul92	2		
34.00 -194.070 24.45 -139.644 47.35 -270.298 91.95 -524.900	0 46.3838 ##################################	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	44.0470 -3316.5 544.0470 -3316.5 340.9873 -1539.9 437.9748 -2789.5 531.5491 -5081.7 330.9763 -11692.0	Bit Statestate Pu(CC) 181 Statestatestate Pu(I2P) 183 Statestatestate Pu(I2P) 184 Statestatestate Pu(I2P) 184 Statestatestate Pu(I2P)	2)50 C4+++ C4)2++ C4)2(=2) C4)4(=2)			2 4 8					1 2 4						1			-8.000 3.000 2.000 0.000 2.000	0	4.0 C 6.0 C 4.6 C 3.0 C	10 del GI Pals2 10 del GI Pals2 10 del GI Pals2 10 del GI Pals2 10 del GI Pals2			
28.32 +161.660 62.77 -301.230 74.65 -427.332 94.03 -541.900 110.21 -529.072 1.87 -10.672	6 -71,9956 ########### 2 -102,1346 ########## 9 -129,5176 ####################################	\$12222222222222 \$222222222222222 \$222222222222222222222222222222222222	435 9587 - 2820 4 531 9380 - 3955 3 527 91 74 - 5098 7 723 6967 - 5204 6	88 AAXAAXAAXAA Pu(HP) 142 AAXAAXAAXAA Pu(HP) 36 AXAAXAAXAAXA Pu(HP) 121 AXXAAXAAXAA Pu(HP) 121 AXXAAXAAXAA Pu(HP)	C4)2(a) C4)3(2) C4)4(4) C4)8(-5)			2 3 4 6					2 3 4 5	· · · · ·					1			0.000 -2.000 -4.000 -8.000 3.000	0	3.0 C 4.0 C 4.0 C	10 del Gf: Pal92 10 del Gf: Pal92			
3.36 -19.176 3.16 -17.982 -0.33 1.866 0.21 -1.198 3.14 17.895	0 2 000 14442444444444444444444444444444	ANAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	358.0098 -722 6 430.0147 -832 2 261.0073 -718.9 278.0147 -957.1 296.0220 4175 2	Bit Statistics Purchase Bit Statistics	3)2++ 3)3+ ++)2++			न २ २						2			1					2.000 1.000 3.000 2.000 1.000	0	4.0 0	0 del GI: Pal92 10 del GI: Pal92	7		
-5.78 38.700 -16.18 92.333 E.76 38.59 10.36 -59.130 8.30 -47.374	50 0.2812 100.1633 12 22.0682 126.0910 12 -9.2216 12.6091 10 -14.1336 ####################################	26.0883 30.0410 3 2.9880 ###################################	312.0294 -1391.6 329.0357 -1575.1 340.0516 -1254.6 436.1232 -2029.6 532.1846 -2752.3	235 1570,5000 Pu(OH 796 1839,5000 Pu(OH 133 1433,5000 Pu(OH 133 1433,5000 PuSO 542 ####################################	4(aq) 6-1 4+ 4)2(aq) 4)3-2			4				1					4		1			0.000 -1.000 2.000 0.000 -2.000	0	3.0 0 4.0 0 4.6 0 3.0 0 4.0 0	10 del GI: Pel92 10 del GI: Pel92	2 dei Hr: PHI68 2 dei Hr: PHI68 2 dei Hr: PHI68 2 dei Hr: PHI68 2		
1.16 4.622 2.16 -12.32 0.09 -0.614 8.45 -48.23 16.82 -90.30	6 -1,6828 17.179 7 29466 ######### 0 -0.1226 ######### 25 -11.6276 21.827	4.1050 ###################################	279.4630 -519.8 314.9050 -766.8 350.3590 -876.9	Additional Pu(3) 390 ####################################					1 2 3	1	2											3.000 2.000 1.000 3.000 2.000	0 0 0	60 0 4.5 0 4.0 0 60 0 4.5 0	10 del GI: Pal92 10 del GI: Pal92	2 dei Hr. Phi88 2 2 2 dei Hr. Phi88 2 dei Hr. Phi88		
20.70 -118.164 25.00 -142.594 25.63 -153.140 28.65 -154.731	56 -28,2396 ######### 58 -34,1056 ######### -30,5028 ####################################	· ************************************	319.9920 -1751.3 338.9900 -2043.4	072 ####################################	9					3 4 5 6	5											1.000 0.000 -1.000 -2.000	0	30 0	10 dal Gf: Pal92 10 dal Gf: Pal92 10 dal Gf: Pal92 10 dal Gf: Pal92	2		
ACUE CUS: 9.64 54.423 5.07 -28.94 6.62 -37.772 7.36 -42.012	2 - 6 9171 ##################################	· ***********	335.0062 -1406.9 396.0175 -1943.7 456.0270 -2476.9	536 -1131.5040 PuO20 244 ###################################	203-1 203)2-3 203)3-5			1			1 2						1			1 1 1 1 1 1		0.000 -1.000 -3.000 -6.000 0.000	0	4.0 0 4.0 0	10 del Gf: Pals2 10 del Gf: Pals2	2		
-1.42 8.102 -2.12 12.090 -1.51 8.510 -3.00 17.12 0.89 -5.07	A 2 6518 2 2 6518 A 2 6518 2 0450 5 2 0450 2 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	*********	400.0086 -1059.7 311.4618 -972.6	114 SELECTION PUOZ 110 BEREINE PUOZ 110 BEREINE PUOZ 110 BEREINE PUOZ 111 BEREINE PUOZ 112 BEREINE PUOZ 113 BEREINE PUOZ 113 BEREINE PUOZ	NC3)2-1 X(aq)				1 2					2						1		4.000 4.000 4.000 4.000 2.000	0	4.0 0 3.0 0 4.0 0	10 del G1: Pal92 10 del G1: Pal92	2		=
6.78 38.69 15.13 -86.37 20.67 -117.39 1.63 -8.73 ACUEOUS:	20 -20 5431 24 24 -26 0591 25 -22 0871 25 -22 0871 25 -22 0871 25 25 -22 0871 25 25 -22 0871 25 25 -22 0871 25 25 -22 0871 25 25 -22 0871 25 -22 0871 25 -22 0871 25 -22 0871 25 -22 0871 25 -22 0871 25 -22 0871 25 -22 0871 25 -22 0871 25 -22 0871 25 25 -22 0871 25 26 27<	· ************************************	371.9781 -1965.1 372.9861 -1985.2 372.0804 -1903.1	748 ####################################	PO4-1 12PO4(sq) 104-1	· · · · · ·		1 2				1	1		-			-		1		4.000	iol io	4.0 0	10 del Gf: Pal92 10 del Gf: Pal92 10 del Gf: Pal92 10 del Gf: Pal92	2		
-6.38 30.082 -1246 71.06 -20.27 115.67 -33.05 188.65 -2.82 16.07	71 16.9854 \$\$\$\$\$\$\$\$\$\$ 77 27.6476 \$\$\$\$\$\$\$\$\$ 12 45.0894 \$\$\$\$\$\$\$\$		327.0208 -1352.7 344.0282 -1516.5	2005 -1062.6000 PUC20 201 ####################################	OH)31			1 -2 -3 -4				· · ·					1 2 3 4				1	1.000 0.000 -1.000 -2.000 3.000	0	3.0 0 4.0 0	0.0 del GI: Pal92 0.0 del GI: Pal92	Ş		
-7.81 44.68 -11.95 68.21 -20.23 116.46 -31.09 177.44 -21.99 126.50	12 10.6559 58.176 73 16.3043 ######### 17 27.5943 139.491	7 13.9045 ############ 33.33%0	585.0123 -1943.5 895.0258 -3151.2 913.0331 -3341.1	810 2167.9000 (PuO2 131 ########### (PuO2	2(OH)2++ 3(OH)4++ 3(OH)5+ 31(OH)5+												2				2 3 3 3	2,000 2,000 1,000 -1,000 1,000	0	4.6 0 4.6 0 4.0 0 4.0 0 4.0 0	10 del GI: Pal92 10 del GI: Pal92 10 del GI: Pal92 10 del GI: Pal92 10 del GI: Pal92	2 del HI: PHI68 2 2 del HI: PHI68 2		
9.31 -53.14 14.10 -80.46 18.35 -104.74 53.75 -305.60 20.86 -119.07	12 7016 ####################################	22222222222222222222222222222222222222	336.0082 -1338.0 396.0176 -1893.3 456.0270 -2446.6 189.0528 -5745.4	286 ####################################	203(a) 203)2-2 203)3-4 3(C03)3-4 3(C03)676-)			1			1		1								1 5 5 3	0.000 -2.000 -4.000 -6.000 0.000	0	3.0 0 4.0 0 4.0 0	10 del GI: Pal92	2 2 dei Hr: PH168 2 dei Hr: PH168 2		
24.02 -137.09 46.60 -266.01 0.24 -1.37 0.01 -0.05 3.38 -19.29	11 32,7666 ########### 59 63,6796 ########### 50 0.3276 ########## 50 0.0136 ########### 60 16.1010 18.1011		372,9661 -1912,7 469,9734 -3060,6 338,0007 -869,1 400,0086 -978,7 372,0604 -1620,6	B61 ####################################	12P04+1 H2P04)2(aq) (03+ N03)2(aq) 504(aq)			2				1	1	1							1	1.000 0.000 1.000 0.000 0.000		3.0 0 4.0 0 3.0 0	0.0 del Gf: Pal92 0.0 del Gf: Pal92	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		-
3.99 -22.77 0.60 -2.85 -0.18 1.02 -4.66 -28.71 8.37 -47.77	56 -5.4436 43.003 56 -0.6625 11.179 50 0.2454 ########## 50 -6.3846 -5.262 -11.4185 -41.704	2 10.2760 7 2.6720 6 44444444444 6 -1.2554 3 -9.9577	468.1220 -2268.8 311.4518 -851.0 346.9048 -1018.4 254.9968 -1065.3 313.9948 -1368.1	941 -2598.4000 PuO2 455 -978.1000 PuO2 525 ####################################	SO4)2-2 X+ X2(mg) 2(mg)				1		2	2									1	-2.000 1.000 0.000 1.000 0.000	0 0 0	3.0 0 4.0 0 3.0 0	10 del GI: Pal92 10 del GI: Pal92 10 del GI: Pal92	dai Hr: Philes dai Hr: Philes dai Hr: Philes		
10.78 -61.65 11,54 -66.87 SOLIDS: -22.46 128.14	10 -16,7436 -40,009 78 30,6281 162,916	3 -9.6625	361.9908 -1949.7 295.0220 -1162.0	000 -1298.6000 Pu(OH	4-2 J3			3		4						,	3	1			1	-1.000 -2.000		4.0 0	10 del GI: Pelsz	2 der HT: PHI68 2 der HT: PHI68 2 der HT: PHI68 2 der HT: PHI66		
-48.13 274.74 10.19 -58.14 SOLIDS: -84.37 481.60	78 65.6653 385.616 33 -13.8978 12.342 	921400 8 29500 128.2027	535.9982 -1594.0 300.9940 -1482.0 244.0000 0.0	000 -1655.0000 Pu203 000 -1655.7000 PuF3	al)		4	6		3	8						3	2	1						del GI: Paloz	2 del HI: PHI66 7 del HI: PHI66 7 del HI: PHI66 7 del HI: PHI66 7 del HI: PHI66		
52.34 -296.78 -0.75 4.33 7.35 42.03 13.21 -75.39	20 -71.4130 6.960 D4 1.0350 64.633 18 -10.0456 51.884	1.4248 1 16.4477 7 12.4007	435.9587 -2818.0	000 -1615.1200 Pu(OR 000 -1055.1920 PuO2				2		4	8		2				4		1						del GI: Pel92 del GI: Pel92 del GI: Pel92 del GI: Pel92	del HI: PHIBS		
SOLIDS: -6.45 31.18 SOLIDS:	26 7.4528 42.276 52 4.8436 36.976		293.0061 -1056.0 310.0135 -1211.0					-1									1			1			-			2' dei Hr: PHI88' 2' dei Hr: PHI88'		

1/3/97

Np(V)-Montmorillonite Sorption

Np(V)-Montmorillonite sorption was revisited to use the DLM to investigate the effect of using the Al:Si ratio of 0.83 proposed for edge sites by White and Zelazny (1988) as used by Zachara and McKinley (1993) and Zachara and Smith (1994) in their Np(V)- and Cd-montmorillonite sorption modeling. In this Welmun study, an approach has been adopted such that the simplest model that can describe the observed sorption behavior is used.

The Np(V)-montmorillonite sorption data for experiment NpM1, the conditions were:

 $Np_{total} = 8.785e-7 M$ M/V=3.97 g/L I=0.1 m NaNO,

Capped vials (25 mL headspace, $C_T = 3.3 \times 10^{-7}$ M based on ideal gas law PV=nRT)

were modeled for the DLM using FITEQL, version 2.0. All data were used in the FITEQL regression, and because carbon was so low, Np(V)-carbonate species were neglected in the thermodynamic model. Experiments conducted in this study were at relatively high ionic strength (0.1 M NaNO₃), which suppressed ion-exchange of NpO₂⁺ with interlayer cations. Therefore, in modeling Np(V) sorption on montmorillonite, it was assumed that the edge sites dominate the sorption behavior, and ion-exchange was not explicitly incorporated in the model construction.

In order to develop a DLM for the Np(V)-montmorillonite system, it is necessary to calculate the total number of sorption sites (T>XOH). The crystallite edges were assumed to comprise 10 percent of the N₂-BET specific surface area, consistent with observations of Wanner et al. (1994). This effective surface area of 9.7 m²/g, together with a "standard" site density of 2.3 sites/nm² recommended for all minerals by Davis and Kent (1990) based on the ferrihydrite work of Dzombak and Morel (1990), was used to calculate the total number of available edge sites. In the absence of more quantitative information, it was also assumed that the ratio of >A1OH° to >SiOH° sites is 0.83 as proposed for montmorillonite by White and Zelazny (1988). The acidity constants used for the protonation and deprotonation of the >SiOH° and >AlOH° edge sites were derived based on potentiometric titration data for SiO₂ and α -Al₂O₃, as described in Turner and Sassman (1996).

FITEQL requires the input of an equilibrium aqueous speciation model. For this reason, the resultant binding constants are dependent on the quality and extent of the thermodynamic data available for the system of interest. For Np(V), the equilibrium constants used in the chemical equilibrium models submitted to FITEQL are listed below in Table 1. These constants are different from the thermodynamic data in the 9/5/96 modification of the MINTEQA2 database, but are consistent with earlier versions of the EQ3/6 database. There is typically a lack of independent analytical data supporting the formation of a particular surface complex.

In the absence of these data, the exact form of the surface reaction is selected by the modeler based on analogous speciation reactions in the aqueous phase. Based on the goodness-of-fit results from the FITEQL regression to the NpM1 experimental dataset, two surface complexation reactions in the DLM conceptual model best describe observed Np(V)-montmorillonite sorption behavior:

Tran >SiOH° + NpO₂⁺ = >SiOH - NpO₂⁺

>AlOH[°] + NpO₂⁺ + H₂O = >AlO-NpO₂(OH)⁻ + 2H⁺

The binding constants for these reactions are given below in Table 1. These binding constants were then used to predict sorption under the experimental conditions of Experiments NpM2(forward), NpM2(reverse), and NpM3 (See Table 2).

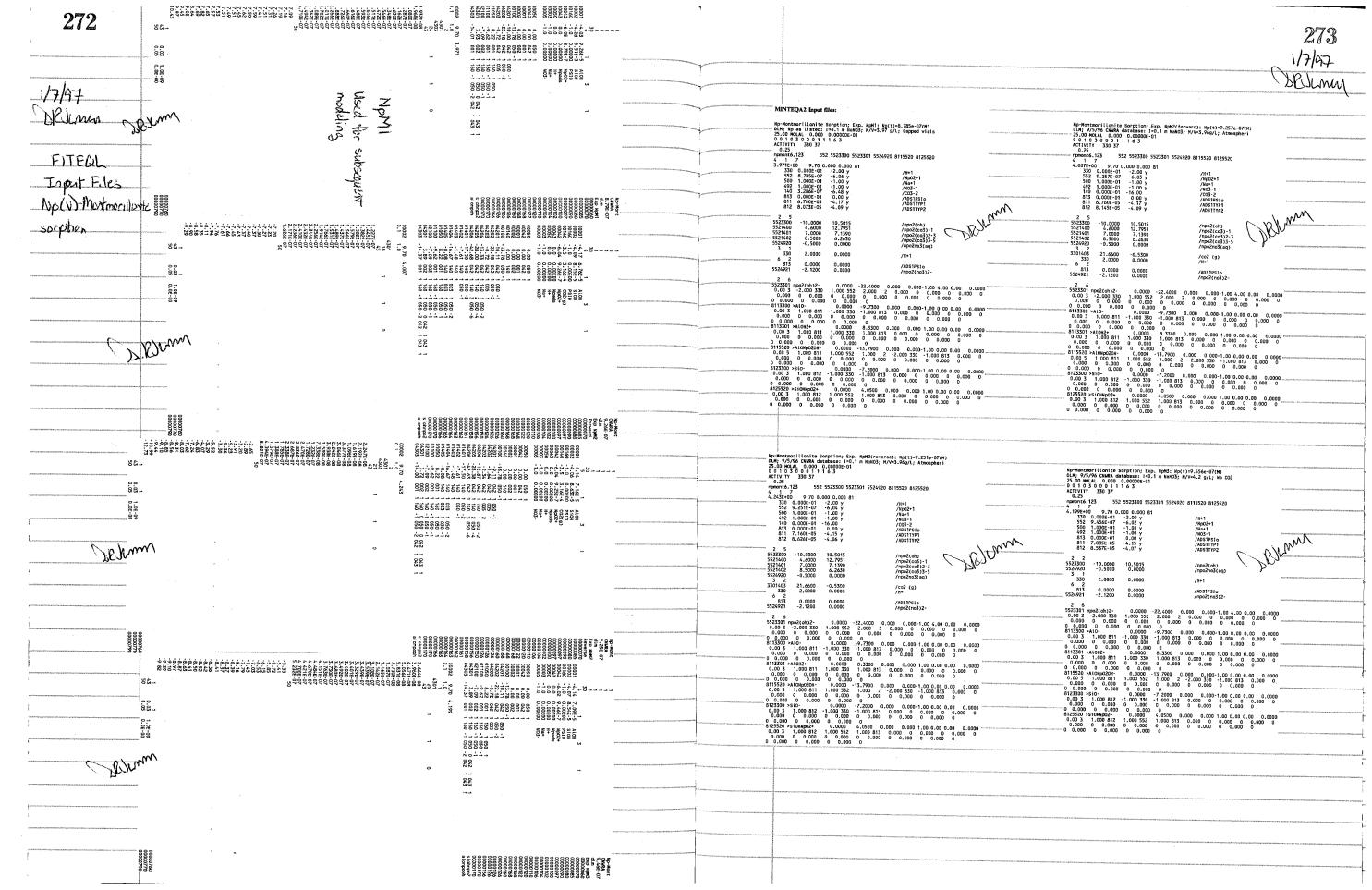
Table 1. FITEQL model conditions used to determine DLM binding constants for Np(V sorption on montmorillonite.

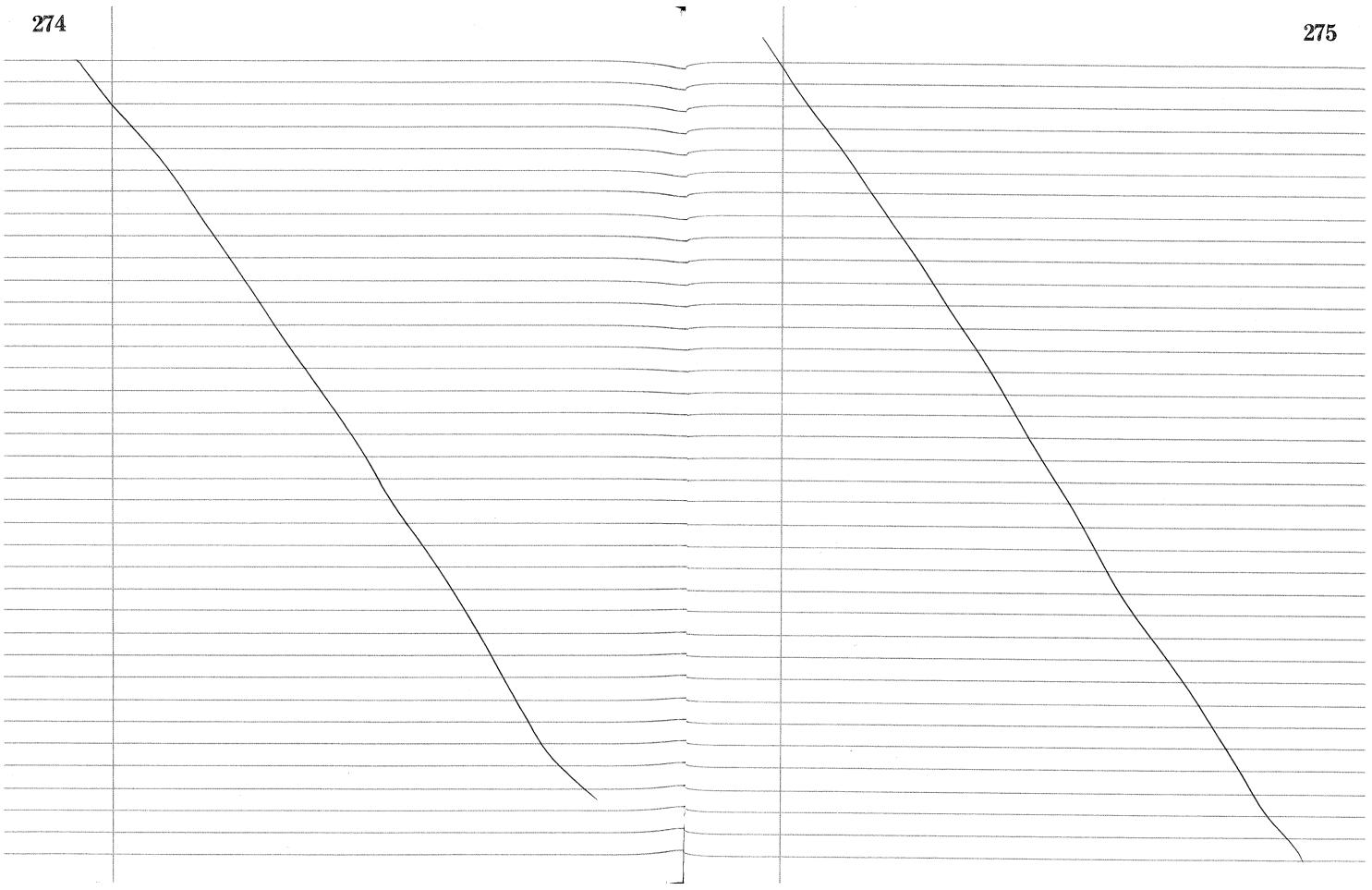
olid concentration (M/V)	3.97 g/L
Site density	2.3 sites/nm ²
Surface area _a	9.7 m ² /g
onic strength	0.1 M NaNO ₃
Σ^{237} Np(V)	8.79×10 ^{−7} M
Edge-Site Reactions:	Log K
$>AlOH^{\circ} + H^{+} \Rightarrow >AlOH_{2}^{+}$	8.33 _b
>AlOH° ↔ >AlO ⁻ + H ⁺	-9.73 _b
$AlOH^{\circ} + NpO_2^{+} + H_2O \Leftrightarrow AlO-NpO_2(OH)^{-} + 2H^{+}$	-13.79 _c
$>$ SiOH° \Rightarrow $>$ SiO ⁻ + H ⁺	-7.20 _b
$>$ SiOH° + NpO ₂ ⁺ \Leftrightarrow $>$ SiOH-NpO ₂ ⁺ +	4.05 _c
Aqueous Speciation Reactions:	Log K
$NpO_2^+ + H_2O \Leftrightarrow NpO_2OH^\circ + H^+$	-10.0 _d
$NpO_2^+ + 2H_2O \Leftrightarrow NpO_2(OH)_2^- + 2H^+$	-22.4 _{d,e}
$NpO_2^+ + CO_3^{2-} \Leftrightarrow NpO_2CO_3^-$	4.6 _{e,f,g}
$NpO_2^+ + 2CO_3^{2-} \Leftrightarrow NpO_2(CO_3)_2^{3-}$	7.0 _{e,f,g}
$NpO_2^+ + 3CO_3^{2-} \Leftrightarrow NpO_2(CO_3)_3^{5-}$	8.5 _{f,g}
$NpO_2^+ + NO_3^- \Leftrightarrow NpO_2NO_3^\circ$ (aq)	-0.5 _h

L .	Effective edge site surface area assumed to be 10 percent of total N_2 -BET surface area (97 m ² /g). See text f	for detailed discuss
).	Acidity constants for am-SiO ₂ and α -Al ₂ O ₃ from Turner and Sassman (1996).	
	This study. Binding constants determined using FITEQL, Version 2.0 (Westall, 1982a,b).	DR.
I.	Lemire and Garisto (1989)) DV
	Fuger (1992)	•
:	Lemire (1984)	
<u>.</u>	Lemire et al. (1993)	
.	Danesi et al. (1971)	

270 Table 2.

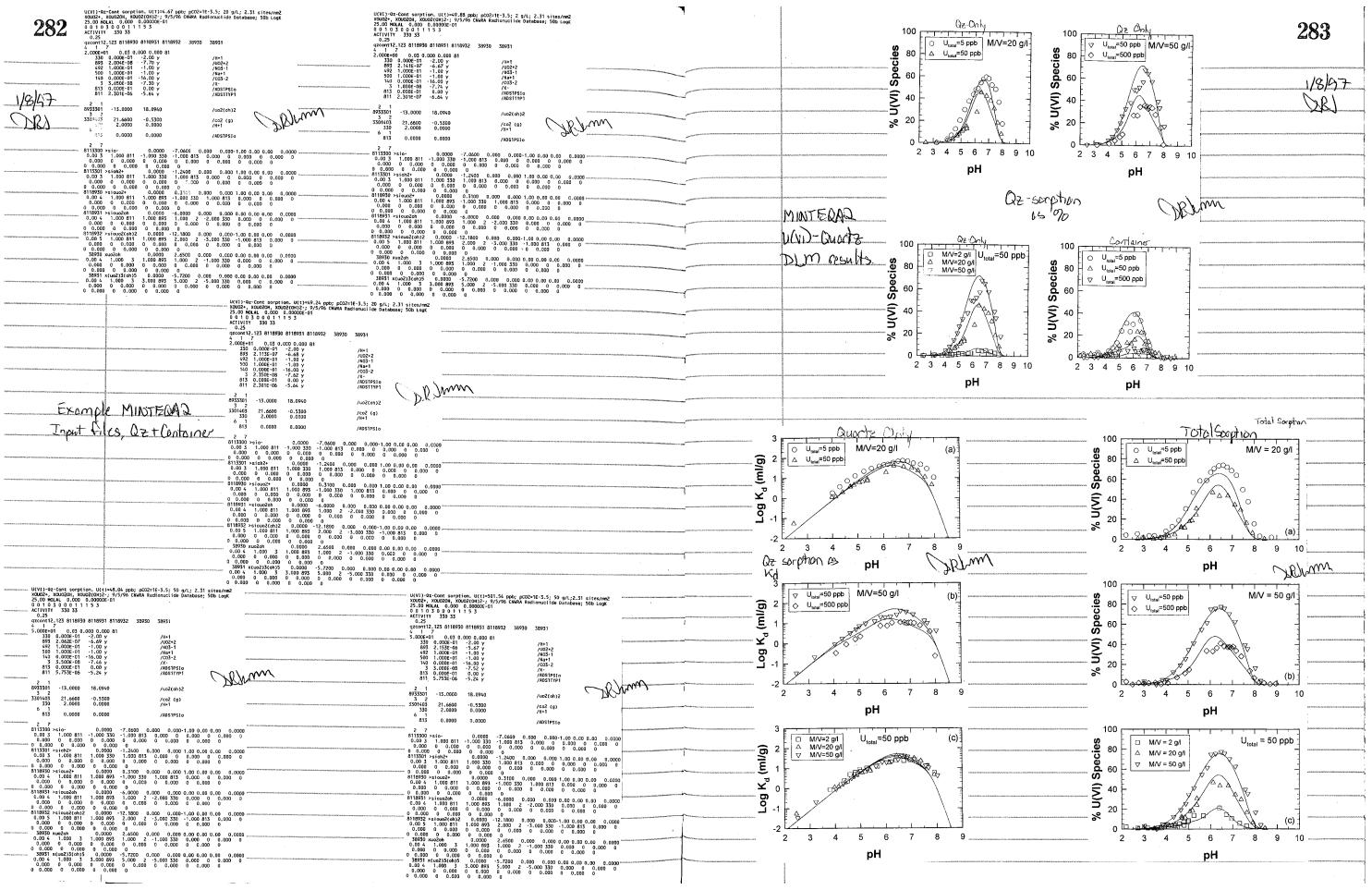
CNWRA Np(V)-montmorillonite experimental conditions.


CNURA Experimental Data


271


			-					
NZIMA	Experiment	Atmosphere	Initial Np(V) conc. (M)	Mass of solid $(g, \pm 1\sigma)$	Volume of solution (mL, ± 1 o)	Approx. M/V (g/L, $\pm 1\sigma$)		M1 Kd całculatione capped valos Image: Constraint of the second
	NpM1	capped vial (Trace CO ₂)	8.79×10 ⁻⁷	0.0999±0.0005	25.2±0.1	3.97±0.02		solution volume of pH solution mass of solution V/V mass of Np Np solin mass Np Np or solid Valuet exp solin pH solution solution solid (g) (g)L in solin (M) Mp(total) Kd uncert in more than the solution pH solution 7.08 25.08028 0.1007 4.0141 4.823:e06 7.778E-07 0.0000 7.778E-07 0.0007 7.778E-07 0.0007 7.778E-07 0.0016 8.748E-07 8.932E-07
Bopen	NpM2 (forward)	open vial ($PCO_2=10^{-3.5}$ atm)	9.25×10 ⁻⁷	0.0996±0.0004	24.9±0.1	4.01±0.02		pH-6.75 7.30 28.2722 0.1004 3.9727 4.656E-06 7.774E-07 6.469E-07 1.00E-07 6.854E-07 3.437 2.03 pH-6 7.27 25.1301 0.00944 3.9822 4.465E-06 7.774E-07 1.00E-07 1.00E-07 3.497 2.03 pH-6.25 7.42 25.222 0.00944 3.9821 4.447E-06 7.40E-07 7.60E-07 1.00E-07 8.59E-07 4.3.61 2.52 pH-6.25 7.42 25.222 0.00984 3.9621 4.447E-06 7.40E-07 7.85E-07 8.59E-07 4.3.61 2.52 pH-6.76 7.622 25.1173 0.09984 3.9744 4.26E-06 7.00E-07 9.702E-07 8.59E-07 5.79 3.29 pH-6.76 7.52 24.9552 0.09954 3.974 4.26E-06 7.00E-07 3.802E-07 8.295E-07 57.79 3.29 pH-6.75 7.52 24.9552 0.09954 3.9874 4.248E-06 7.00E-07 7.826E-07 57.79 3.29
	NpM2 (reverse)	open vial ($PCO_2=10^{-3.5}$ atm)	9.25×10 ⁻⁷	0.0996±0.0004	23.5±0.3	4.24±0.07		pH-7 7.70 25.2167 0.0996 3.4948 4.267E-66 7.140E-07 9.237E-07 1.546E-07 8.886E-07 5.4.80 3.10 pH-7.25 7.61 24.9669 0.0997 3.9933 4.266E-66 7.210E-07 8.70E-07 1.546E-07 5.4.80 3.10 pH-7.5 7.73 25.1191 0.1008 4.0128 4.307E-06 7.216E-07 8.70E-07 5.147E-07 5.206 2.96 pH-7.75 7.73 25.1191 0.1008 3.9620 4.151E-66 7.308E-07 9.845E-07 55.106 2.96 pH-7.75 7.56 25.2385 0.1000 3.9820 4.181E-66 7.308E-07 9.842E-07 55.16 3.11
	NpM3	glove box (No CO ₂)	9.46×10 ⁻⁷	0.1001±0.0006	23.8±0.2	4.20±0.05		pm-5.2 7.60 25.9733 0.1006 3.9848 4.4362-66 7.387E-07 8.985E-07 1.488E-07 50.96 3.05 pm-8.2 7.64 25.008 0.1007 4.0267 4.264E-08 7.194E-07 9.576E-07 1.616E-07 59.96 3.05 pm-8.25 7.64 25.0582 0.0398 3.9830 4.196E-06 7.096-07 160E-07 58.77 3.33 pm-9.9 7.66 25.1260 0.0098 3.9830 4.196E-06 7.096-07 68.09 3.54 pm-9.9 7.66 25.1260 0.0094 4.0033 4.194E-06 7.026E-07 6.751E-07 6.135 3.49
								pH-9.75 7.80 25.2360 0.0997 3.9507 4.088E-06 6.396E-07 1.030E-06 2.01E-07 8.04E-07 7.45 4.42 pH-10 8.75 5.1031 0.09994 3.9672 3.086E-06 5.192E-07 2.202E-06 2.01E-07 8.44E-07 7.445 4.44 pH-10.25 9.13 25.0457 0.1000 3.9927 2.802E-06 3.702E-07 8.839E-07 179.70 9.72 pH-10.25 9.13 25.0457 0.1000 3.9927 2.802E-06 4.302E-07 2.15.60 11.88 pH-10.5 9.56 25.2823 0.0994 3.9016 2.822E-06 4.374E-07 8.839E-07 215.60 11.88 pH-10.5 9.86 25.2823 0.0994 3.9016 2.822E-06 4.374E-07 8.839E-07 215.60 11.88 pH-10.5 9.86 25.2823 0.0994 3.9016 2.822E-06 4.374E-07 8.176E-07 2.8256 13.86
	Allison		-Gradac K I 1991 MI	NTEQA2/PRODEFA2, A ge	a hard a h			PH-10/r.5 9.88 25.1857 0.1003 3.98241 2.0252e-06 3.437E-07 9.531E-07 401.35 21.57 PH-11 10.64 25.3360 0.1001 3.9399 1.203E-06 2.003E-07 40.785-07 407.35 21.57 PH-11 10.64 25.3360 0.1001 3.9399 1.203E-06 2.003E-07 4.029E-07 8.478-07
	9.999999999999999999999999999999999999	environmental system Protection Agency.	ns: Version 3.0 user'	s manual. EPA/600/3-91/02	1. Athens, GA: Envi	ronmental		
	Danesi	PR, Chiarizia R, Scibo of Np(IV), Np(V) and	na G, D'Alessandro G. 1 Np(VI) ions. Inorg N	J. 1971. Stability constants o Jucl Chem 33: 3,503–3,510.	f nitrate and chloride	complexes		MT Ef calculation Space Bit 26 calculation Space <
	Davis J	IA, Kent DB. 1990. Sur A, editors. Reviews in Miner Soc Amer. 177	1 Mineralogy: Volume	deling in aqueous geochemist 23. Mineral-Water Interface	ry. In:Hochella M Jr. Geochemistry. Washin	and White gton, DC:		Mm 4.87 Lipson July Lipson July <thlipson jul<="" td=""></thlipson>
-22120400-046-042-0714-040-0414-040-040-040-040-040-040-040-	Dzomb	ak DA, Morel FMM. 1 Wiley and Sons.	990. Surface Complexa	ation Modeling: Hydrous Fer	ric Oxide. New York,	NY: John		Product Product <t< td=""></t<>
		59: 81-91.		e species relevant to geocher				P41 141 2402 1010 1
		from 25 to 150°C. AE	CL-7817. Pinawa, Ma	nic behavior of neptunium in unitoba: Atomic Energy of C	anada Limited.			
	Lemire	RJ, Garisto F. 1989. Th fuel. AECL-10009. Pi	ne solubility of U, Np, nawa, Manitoba: Aton	Pu, Th, and Tc in a geologic nic Energy of Canada Limite	disposal vault for use d.	d nuclear		M3 Kd calculations No CO2
	Lemire	RJ, Boyer GD, Campbe hydrates at 30, 50 and	ll AB. 1993. The solub l 75°C. Radiochim Ac	ilities of sodium and potassiu ta 61: 57–63.	m dioxoneptunium(V)	carbonate	namen an	MV# 4 200 AtSi=0 83 AtSi=6 88 S(a)= 97.00 T(aloh)= 6.5375-05 5.5305-05
		Contamin Hydrol 21:	311–332.	on modeling for high-level v				Image: Not equil Image: Not equil<
	***	montmorillonite. Radi	ochim Acta 66/67: 733					pH-6.5 5.84 23.9445 0.010 4.2181 4.976E-06 8.772E-07 2.637E-071 4.471E-08 9.219E-07 12.08 1.64 pH-6.75 5.966 24.1386 0.0099 4.1386 4.996E-06 8.60E-07 2.852E-07 5.056E-08 9.166E-07 14.07 1.41 pH-6 6.266 23.9666 0.00999 4.1863 4.993E-06 8.200E-07 5.052E-08 9.375E-07 15.91 1.45 pH-6.25 6.64 24.1002 0.0999 4.1200 4.801E-07 4.242E-07 5.31E-08 9.375E-07 15.91 1.45 pH-6.25 7.14 24.0871 0.1001 4.1558 4.703E-08 9.326E-07 3.176 2.37 pH-6.57 7.146 24.0871 0.1001 4.1558 4.703E-08 8.208E-07 1.057E-07 9.326E-07 3.178 2.37 pH-6.57 7.56 2.3621 0.0999 4.2322 4.468E-067 7.94E-07 9.428E-07 9.428E-07 3.202E-07 3.178
		JC. 1982a. FITEQL: A Experimental Data, V University.	A Computer Program f ersion 1.2, Rpt. 82-0	for Determination of Chemic 1. Corvallis, OR. Departme	al Equilibrium Constant at of Chemistry, Ore	nts From gon State		pH-7 7.90 24.0749 0.0992 4.1054 0.0982-66 7.156E-07 1.222E-66 2.142E-07 9.298E-07 7.265 4.46 pH-7.25 6.27 2.37020 0.0990 4.1759 3.588E-06 6.928E-07 1.422E-06 2.142E-07 9.298E-07 1.681 pH-7.5 8.50 23.3603 0.1005 4.3022 3.307E-06 5.972E-07 1.958E-06 3.539E-07 1.9512E-07 137.74 7.80 pH-7.75 8.48 23.6690 0.1002 4.2344 3.304E-06 5.972E-07 1.958E-06 3.539E-07 9.512E-07 137.74 7.80 pH-7.75 8.48 23.6490 0.1002 4.2445 3.304E-06 5.972E-06 3.439E-06 3.439E-07 1.9512E-07 134.18 7.83
		Experimental Data, V	Computer Program f ersion 2.0. Rpt. 82-0	for Determination of Chemic 2. Corvallis, OR. Department	al Equilibrium Consta at of Chemistry, Oreg	nts From zon State		pH-8.25 8.52 23.9541 0.0999 4.1698 3.3284-06 5.871E-07 1.931E-061 3.401E-07 9.273E-07 1.38.84 7.83 pH-8.5 8.47 23.5128 0.1001 4.2573 3.238E-06 5.910E-07 1.836E-06 3.402E-07 9.311E-07 133.81 7.62 pH-8.75 5.53 23.6325 0.1009 4.2695 3.208E-06 5.910E-07 9.302E-07 139.31 7.70 pH-9 6.63 23.8268 0.1009 4.2423 3.208E-06 5.825E-07 2.078E-07 139.31 7.70 pH-9 8.61 23.8268 0.1009 4.2423 3.208E-06 5.825E-07 2.078E-07 149.65 8.31 pH-9.25 8.51 2.3679 0.1009 4.2423 3.208E-06 5.807E-07 9.505E-07 149.85 8.31 pH-9.25 8.512 2.368E-06 5.807E-07 2.102E-06 3.730E-07 9.824E-07 149.85 8.49
	White G	University. N, Zelazny LW. 1988. A Clay Miner 36: 141-1	Analysis and implicatio	ons of the edge structure of dia	octahedral phyllosilicat	es. Clays		pH-9.75 8.74 23.9161 0.0111 4.2273 3.090E-661 5.452E-07 2.353E-661 4.151E-07 9.600E-07 180.14 10.12 pH-10 8.96 23.6136 0.0999 4.2002 2.907E-661 5.195E-07 2.850E-661 4.447E-07 2.8242 11.32 pH-10.25 9.06 23.7056 0.09996 4.2015 2.862E-666 5.694E-07 9.764E-07 2.16.21 1.224 pH-10.25 9.21 2.231866 0.09996 4.1816 2.896E-06 1.39E-07 9.56E-07 2.062E-07 11.40 pH-10.75 9.50 2.231866 0.09996 4.1816 2.898E-06 5.39E-07 9.56E-07 2.062E-07 11.40 pH-10.75 9.50 2.37626 0.09996 4.1816 2.898E-06 5.39E-07 1.002E-06 21.021 11.24 pH-10.75 9.50 2.37626 0.09996 4.1816 2.898E-06 5.39E-07 1.002E-06 21.091 11.40
	Zachara	•	3. Influence of hydroly	sis on the sorption of metal c nces 55: 250–261.	ations by smectites: In	portance		pH-11 9.93 23.8917 0.1001 4.1897 2.608E-06 4.606E-07 2.933E-07 2.71.10 14.83 Mean Values 23.8347 0.1001 4.1896 9.456E-07 2.1167E-08 9.456E-07 S.D. 0.2101 6.3399E-04 5.0969F-02 9.456E-07 2.1167E-08 9.456E-07

7.0


278	T	279
U(VI)-Quartz Sorption		
U(VI)-Quartz sorption was revisited yet again using the DLM, a simplified container sorption model, and the DLM acidity coefficients of Sverjensky and Sahai (1996). With these exceptions, the approach 3/3 is similar to that outlined on pages 252 to 262 of this notebook.		1/8/37 DE
Acidity constants from Sverjensky and Sahai (1996)		
Sverjensky and Sahai (1996) developed a method to determine DLM acidity constants using Born solvation theory. The details are provided in Sverjensky (1993, 1994) and Sverjensky and Sahai (1996). For quartz, assuming a site density of 2.3 sites/nm ² , equations (146), Figure 7b, and data from Table 1 were used to determine Log K ₊ and Log K ₋ .		
From equation (146):		
pH _{ZPC} = (log K ₊ - log K_)/2 pH _{ZPC} = 21.1158(1/ ϵ_k) - 42.9148(s/r _{M-OH}) + 14.6866		Information potentially subject to copyright protection was redacted from this
From Table 1, for quartz:	I	Iocation. The redacted material (Figure 7: Values for the diffuse double layer model and Table 1: Dielectric constants) is from the following reference:
$\epsilon_k = 4.578$ Pauling Bond Strength s/r _{M-OH} = 0.3818		Sverjensky, D.A. and N. Sahai. "Theoretical Prediction of Single-Site Surface- Protonation Equilibrium Constants for Oxides and Silicates in Water." Geochimica
From Figure 7b (DLM with site density = 2.3 sites/nm^2):		et Cosmochimica Acta. Vol. 60. pp. 3,773-3,797. 1996.
$K_{n} = \log K_{+} + \log K_{-}$ $K_{n} = 30.143 (s/r_{M-OH}) - 3.214$	-	
Therefore, for quartz:		
$pH_{ZPC} = 2.91$ $K_{n} = 8.29$ $K_{+} = -1.24$ $K_{-} = -7.06$		
These acidity constants were used in the FITEQL runs in the same manner described in pages 252-262 of this notebook. Three surface complexes $>$ SiO-UO ₂ ⁺ , $>$ SiO-UO ₂ OH°, and $>$ SiO-UO ₂ (OH) ₂ ⁻ provided the best fit the observed data. The resulting binding constants are given below.		
		from Sverjensky + Schar(1996)

280 Table 1. FITEQL model conditions used to determine DLM binding constants for U(6+) sorption on quartz.

....

Surface area Ionic strength	Quartz 2.3 sites/nm^2 $0.03 \text{ m}^2/\text{g}$ 0.1 M NaNO_3 $10^{-3.5} \text{ atm}$ Log K -1.24_b -7.06_b $0.31c$ -6.0_c -12.18_c Log K	0.000 0 0.000 0 0.000 0.000 0 0.000 0 0.000 0.000 0 0.000 0 0.000 8118931 >siou2oh 0.000	81 //1-1 //02-2 //03-1 //03-1 //03-1 //03-1 //03-1 //03-1 //03-1 //03-1 //03-1 //03-1 //03-1 //03-1 //03-1 //03-1 //03-1 //03-1 //03-1 //03-1 //03-1 //03-1 //03-1 //03-1 //03-1 //03-1 //03-1 //03-1 //03-1 //03-1 0.000-0 0.000-0 00-0 0.000-0 0.000-0 01-1.2cc0 0.000-0 0.000-0 01-1.000-0.000-0 0.000-0 0.000-0 01-1.000-0.000-0 0.000-0 0.000	ACTIVITY 330 33 0.212,212 8118930 8118932 8118932 2.0000+00 0.03 0.000 0.000 811 330 0.000+01 -2.00 y 833 933 4.000+00 0.03 0.000 6.00 94 933 2.414-07 6.67 y 4.000+00 1.000+01 -1.00 y 4593 2.414-07 6.67 y 4.000+01 -1.00 y 4593 2.414-07 6.67 y 4.000 1.000+01 -1.00 y 813 0.000+01 -1.00 y 813 0.0000+01 -0.000 -0.000 -0.0000 -0.0000 -7.0600 813 0.0000 0 0.0000 -0.0000 -7.0600 0 0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 0.0000 0.0000 -0.0000	/us2(ch12 //t+1 //t+2 (s) //t51PS10 0.000 0.000-1.00 0.000 0.000 813 0.000 0.000 0.000 0 0.000 0.000 10.000 0 813 0.000 0.000 10.000 0.000 0 813 0.000 0.000 0.000 0 813 0.000 0.000 0.000 0 813 0 810	
Surface areaIonic strength PCO_2 Sorption Reactions:>SiOH° + H ⁺ \Leftrightarrow >SiOH2 ⁺ >SiOH° \Leftrightarrow >SiO ⁻ + H ⁺ >SiOH° \Leftrightarrow >SiO ⁻ + H ⁺ >SiOH° + UO2 ⁺ \Leftrightarrow >SiO-UO2 ⁺ + H ⁺ >SiOH° + UO2 ⁺ \Leftrightarrow >SiO-UO2OH° + 2H ⁺ >SiOH° + UO2 ⁺ \Rightarrow + 2H2O \Leftrightarrow >SiO-UO2OH° + 2H ⁺ >SiOH° + UO2 ⁺ \Rightarrow + 2H2O \Leftrightarrow >SiO-UO2OH° + 2H ⁺ UO2 ⁺ \Rightarrow + H2O \Leftrightarrow UO2OH ⁺ \Rightarrow + H ⁺ UO2 ⁺ \Rightarrow + 2H2O \Leftrightarrow UO2OH ⁺ \Rightarrow + H ⁺ UO2 ⁺ \Rightarrow + 2H2O \Leftrightarrow UO2OH ⁺ \Rightarrow + H ⁺ UO2 ⁺ \Rightarrow + 2H2O \Leftrightarrow UO2OH3 ⁻ \Rightarrow + 3H ⁺ 2UO2 ⁺ \Rightarrow + 2H2O \Leftrightarrow (UO2)2(OH)2 ⁺ \Rightarrow + 2H ⁺ 3UO2 ⁺ \Rightarrow + 5H2O \Leftrightarrow (UO2)3(OH)5 ⁺ \Rightarrow + 5H ⁺	$ \begin{array}{c} 0.03 \text{ m}^{2}/\text{g} \\ 0.1 \text{ M NaNO}_{3} \\ 10^{-3.5} \text{ atm} \\ \hline Log K \\ -1.24_{b} \\ -7.06_{b} \\ 0.31c \\ -6.0_{c} \\ -12.18_{c} \\ \hline Log K \\ \hline \end{array} $	4.92 1.0002-01 -1.00	/ A051P910 / A051P910 / A051P910 / Co2 (g) / K1 1 / A051P510 0 0.7060 0.000 0.000-1.00 0.000 0.000 0 0 0.000 0 0.000 0 0.000 0 0 0.000 0 0.000 0 0.000 0 0 0.1260 0.000 0 0.000 0 0.000 0 0 0.000 0 0.000 0 0.000 0 0.000 0 0 0.000 0 0.000 0 0.000 0 0.000 0 0 0 0.000 0 0.000 0 0.000 0 0.000 0 0 0 0.000 0 0 0.000 0 0.000 0 0 0 0.000 0 0 0.000 0 0.000 0 0 0 0 0.000 0 0 0.000 0 0.000 0	a13 0.0002-01 0.000 811 2.301E-07 -6.64 8933301 -13.0000 18.0940 33 2.301E-07 -6.64 33 2.0000 -0.5300 310145 21.6600 -0.5300 61 0.0000 0.0000 61 0.0000 0.0000 61 0.0000 0.0000 613 0.0000 0.0000 0.003 1.000 811 1.000 0.003 1.000 0.000 0.200 0.003 1.000 0.000 0.200 0.003 1.000 0.000 0.200 0.003 1.000 0.000 0.200 0.003 1.000 0.000 0.000 0.003 1.000 0.000 0.000	ADSTP910 ADSTP9	
Ionic strength PCO_2 Sorption Reactions:>SiOH° + H ⁺ \Leftrightarrow >SiOH2 ⁺ >SiOH° + H ⁺ \Leftrightarrow >SiOH2 ⁺ >SiOH° + UO2 ²⁺ \Leftrightarrow >SiO-UO2 ⁺ + H ⁺ >SiOH° + UO2 ²⁺ \Leftrightarrow >SiO-UO2OH° + 2H ⁺ >SiOH° + UO2 ²⁺ + H2O \Leftrightarrow >SiO-UO2OH° + 2H ⁺ >SiOH° + UO2 ²⁺ + 2H2O \Leftrightarrow >SiO-UO2OH° + 2H ⁺ >SiOH° + UO2 ²⁺ + 2H2O \Leftrightarrow >SiO-UO2OH° + 2H ⁺ UO2 ²⁺ + H2O \Leftrightarrow UO2OH ⁺ + H ⁺ UO2 ²⁺ + 2H2O \Leftrightarrow UO2OH ⁺ + H ⁺ UO2 ²⁺ + 2H2O \Leftrightarrow UO2OH [*] + 3H ⁺ UO2 ²⁺ + 2H2O \Leftrightarrow UO2OH3 ⁻ + 3H ⁺ 2UO2 ²⁺ + 2H2O \Leftrightarrow (UO2)2OH2 ⁺ + 2H ⁺ 3UO2 ²⁺ + 5H2O \Leftrightarrow (UO2)3OH3 ⁺ + 5H ⁺	0.1 M NaNO ₃ 10 ^{-3.5} atm Log K -1.24 _b -7.06 _b 0.31c -6.0 _c -12.18 _c Log K	813 0.000e-01 0.00y 811 2.010E-06 5.64 y 2 1 6033301 13.0000 33 2 1.000 33 2 1.000 331 2.16600 0.0000 331 2.16600 0.0000 613 0.0000 0.001 0.00 3.1000 11.000 0.00 3.1000 11.000 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 <tr< td=""><td>/ A051P910 / A051P910 / A051P910 / Co2 (g) / K1 1 / A051P510 0 0.7060 0.000 0.000-1.00 0.000 0.000 0 0 0.000 0 0.000 0 0.000 0 0 0.000 0 0.000 0 0.000 0 0 0.1260 0.000 0 0.000 0 0.000 0 0 0.000 0 0.000 0 0.000 0 0.000 0 0 0.000 0 0.000 0 0.000 0 0.000 0 0 0 0.000 0 0.000 0 0.000 0 0.000 0 0 0 0.000 0 0 0.000 0 0.000 0 0 0 0.000 0 0 0.000 0 0.000 0 0 0 0 0.000 0 0 0.000 0 0.000 0</td><td>a13 0.0002-01 0.000 811 2.301E-07 -6.64 8933301 -13.0000 18.0940 33 2.301E-07 -6.64 33 2.0000 -0.5300 310145 21.6600 -0.5300 61 0.0000 0.0000 61 0.0000 0.0000 61 0.0000 0.0000 613 0.0000 0.0000 0.003 1.000 811 1.000 0.003 1.000 0.000 0.200 0.003 1.000 0.000 0.200 0.003 1.000 0.000 0.200 0.003 1.000 0.000 0.200 0.003 1.000 0.000 0.000 0.003 1.000 0.000 0.000</td><td>ADSTP910 ADSTP9</td><td></td></tr<>	/ A051P910 / A051P910 / A051P910 / Co2 (g) / K1 1 / A051P510 0 0.7060 0.000 0.000-1.00 0.000 0.000 0 0 0.000 0 0.000 0 0.000 0 0 0.000 0 0.000 0 0.000 0 0 0.1260 0.000 0 0.000 0 0.000 0 0 0.000 0 0.000 0 0.000 0 0.000 0 0 0.000 0 0.000 0 0.000 0 0.000 0 0 0 0.000 0 0.000 0 0.000 0 0.000 0 0 0 0.000 0 0 0.000 0 0.000 0 0 0 0.000 0 0 0.000 0 0.000 0 0 0 0 0.000 0 0 0.000 0 0.000 0	a13 0.0002-01 0.000 811 2.301E-07 -6.64 8933301 -13.0000 18.0940 33 2.301E-07 -6.64 33 2.0000 -0.5300 310145 21.6600 -0.5300 61 0.0000 0.0000 61 0.0000 0.0000 61 0.0000 0.0000 613 0.0000 0.0000 0.003 1.000 811 1.000 0.003 1.000 0.000 0.200 0.003 1.000 0.000 0.200 0.003 1.000 0.000 0.200 0.003 1.000 0.000 0.200 0.003 1.000 0.000 0.000 0.003 1.000 0.000 0.000	ADSTP910 ADSTP9	
PCO_2 Sorption Reactions:>SiOH° + H ⁺ \Leftrightarrow >SiOH2 ⁺ >SiOH° \Leftrightarrow >SiO ⁻ + H ⁺ >SiOH° \leftrightarrow >O2 ⁺ \Leftrightarrow >SiO-UO2 ⁺ + H ⁺ >SiOH° + UO2 ⁺ \Leftrightarrow >SiO-UO2OH° + 2H ⁺ >SiOH° + UO2 ⁺ + H2O \Leftrightarrow >SiO-UO2OH° + 2H ⁺ >SiOH° + UO2 ⁺ + 2H2O \Leftrightarrow >SiO-UO2(OH)2 ⁻ + 3H ⁺ Aqueous Speciation Reactions:UO2 ⁺ + H2O \Leftrightarrow UO2OH ⁺ + H ⁺ UO2 ⁺ + 2H2O \Leftrightarrow UO2OH ⁺ + H ⁺ UO2 ⁺ + 2H2O \Leftrightarrow UO2(OH)2° (aq) + 2H ⁺ UO2 ⁺ + 3H2O \Leftrightarrow UO2(OH)3 ⁻ + 3H ⁺ 2UO2 ⁺ + 2H2O \Leftrightarrow (UO2)2(OH)2 ⁺ + 2H ⁺ 3UO2 ⁺ + 5H2O \Leftrightarrow (UO2)3(OH)5 ⁺ + 5H ⁺	10 ^{-3.5} atm Log K -1.24 _b -7.06 _b 0.31c -6.0 _c -12.18 _c Log K	3 2 21.6600 -0.5300 3301 2.0000 0.0000 6 013 0.0000 0.13 0.0000 0.0000 2 5 -0.000 0.00 1.000 0.1000 0.00 1.000 0.00 0.00 3 1.000 0.00 0.000 0.000 0.00 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 <t< td=""><td>/cc2 (9) /Ho1 /A051P510 0 -7.0660 0.000 0.000-1.00 0.00 0.000 0.000 30 -1.000 813 0.000 0 0.000 0 0.000 0 0 -1.2200 0.000 0 0.000 0 0.000 0 0 -1.2200 0.000 0 0.000 0 0.000 0 0 -1.2200 0 0.000 0 0.000 0 0.000 0 0 -0.5100 0.000 0.000 0 0.000 0 0 -0.5000 0 0.000 0 0.000 0 0.000 0 0 -0.000 0 0 0.000 0 0.000 0 0.000 0 0 -0.000 0 0 0.000 0 0.000 0 0.000 0 0 -0.000 0 0 0.000 0 0.000 0 0.000 0 0 -0.000 0 0 0.000 0 0.000 0 0.000 0 0 -0.000 0 0 0.000 0 0.000 0 0.000 0 0 -0.000 0 0 0.000 0 0.000 0 0.000 0 0 -0.000 0 0 0.000 0 0 0.000 0 0.000 0 0.000 0 0 -0.000 0 0 0.000 0 0 0.000 0 0.000 0 0.000 0 0 -0.000 0 0 0.000 0 0.000 0 0.000 0 0.000 0 0.000 0 0 -0.000 0 0 0.000 0 0.000 0 0.000 0 0.000 0 0 0 -0.000 0 0 0.000 0 0 0.000 0 0.000 0 0.000 0 0.000 0 0 0 -0.000 0 0 0.000 0 0 0.000 0 0.000 0 0.000 0 0.000 0 0 0 -0.000 0 0 0 0.000 0 0 0.000 0 0.000 0 0.000 0 0.000 0 0 0 -0.000 0 0 0 0.000 0 0 0.000 0 0.000 0 0.000 0 0.000 0 0 0 -0.000 0 0 0.000 0 0 0.000 0 0.000 0 0.000 0 0.000 0 0.000 0 0 0 -0.000 0 0 0.000 0 0 0.000 0 0.000 0 0.000 0 0.0000 0 0.</td><td>3 12 21.6600 -0.5300 330 2.0000 0.0000 6 0.330 2.0000 0.0000 2 5 0.0000 0.0000 2 5 0.0000 0.0000 2.003 1.000 81 1.000 30 -1.000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00330 1.000 0.0000 0.0000 1.2000 0.003 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000</td><td>/us2(ch12 //t+1 //t+2 (s) //t51PS10 0.000 0.000-1.00 0.000 0.000 813 0.000 0.000 0.000 0 0.000 0.000 10.000 0 813 0.000 0.000 10.000 0.000 0 813 0.000 0.000 0.000 0 813 0.000 0.000 0.000 0 813 0 810</td><td></td></t<>	/cc2 (9) /Ho1 /A051P510 0 -7.0660 0.000 0.000-1.00 0.00 0.000 0.000 30 -1.000 813 0.000 0 0.000 0 0.000 0 0 -1.2200 0.000 0 0.000 0 0.000 0 0 -1.2200 0.000 0 0.000 0 0.000 0 0 -1.2200 0 0.000 0 0.000 0 0.000 0 0 -0.5100 0.000 0.000 0 0.000 0 0 -0.5000 0 0.000 0 0.000 0 0.000 0 0 -0.000 0 0 0.000 0 0.000 0 0.000 0 0 -0.000 0 0 0.000 0 0.000 0 0.000 0 0 -0.000 0 0 0.000 0 0.000 0 0.000 0 0 -0.000 0 0 0.000 0 0.000 0 0.000 0 0 -0.000 0 0 0.000 0 0.000 0 0.000 0 0 -0.000 0 0 0.000 0 0.000 0 0.000 0 0 -0.000 0 0 0.000 0 0 0.000 0 0.000 0 0.000 0 0 -0.000 0 0 0.000 0 0 0.000 0 0.000 0 0.000 0 0 -0.000 0 0 0.000 0 0.000 0 0.000 0 0.000 0 0.000 0 0 -0.000 0 0 0.000 0 0.000 0 0.000 0 0.000 0 0 0 -0.000 0 0 0.000 0 0 0.000 0 0.000 0 0.000 0 0.000 0 0 0 -0.000 0 0 0.000 0 0 0.000 0 0.000 0 0.000 0 0.000 0 0 0 -0.000 0 0 0 0.000 0 0 0.000 0 0.000 0 0.000 0 0.000 0 0 0 -0.000 0 0 0 0.000 0 0 0.000 0 0.000 0 0.000 0 0.000 0 0 0 -0.000 0 0 0.000 0 0 0.000 0 0.000 0 0.000 0 0.000 0 0.000 0 0 0 -0.000 0 0 0.000 0 0 0.000 0 0.000 0 0.000 0 0.0000 0 0.	3 12 21.6600 -0.5300 330 2.0000 0.0000 6 0.330 2.0000 0.0000 2 5 0.0000 0.0000 2 5 0.0000 0.0000 2.003 1.000 81 1.000 30 -1.000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00330 1.000 0.0000 0.0000 1.2000 0.003 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	/us2(ch12 //t+1 //t+2 (s) //t51PS10 0.000 0.000-1.00 0.000 0.000 813 0.000 0.000 0.000 0 0.000 0.000 10.000 0 813 0.000 0.000 10.000 0.000 0 813 0.000 0.000 0.000 0 813 0.000 0.000 0.000 0 813 0 810	
$\begin{array}{l} > \text{SiOH}^{\circ} + \text{H}^{+} \Leftrightarrow > \text{SiOH}_{2}^{+} \\ > \text{SiOH}^{\circ} \Leftrightarrow > \text{SiO}^{-} + \text{H}^{+} \\ > \text{SiOH}^{\circ} + \text{UO}_{2}^{2+} \Leftrightarrow > \text{SiO-UO}_{2}^{+} + \text{H}^{+} \\ > \text{SiOH}^{\circ} + \text{UO}_{2}^{2+} + \text{H}_{2}\text{O} \Leftrightarrow > \text{SiO-UO}_{2}\text{OH}^{\circ} + 2\text{H}^{+} \\ > \text{SiOH}^{\circ} + \text{UO}_{2}^{2+} + 2\text{H}_{2}\text{O} \Leftrightarrow > \text{SiO-UO}_{2}(\text{OH})_{2}^{-} + 3\text{H}^{+} \\ \hline \\ \hline \mathbf{Aqueous Speciation Reactions:} \\ \text{UO}_{2}^{2+} + \text{H}_{2}\text{O} \Leftrightarrow \text{UO}_{2}\text{OH}^{+} + \text{H}^{+} \\ \hline \\ \text{UO}_{2}^{2+} + 2\text{H}_{2}\text{O} \Leftrightarrow \text{UO}_{2}(\text{OH})_{2}^{\circ} (\text{aq}) + 2\text{H}^{+} \\ \hline \\ \text{UO}_{2}^{2+} + 3\text{H}_{2}\text{O} \Leftrightarrow \text{UO}_{2}(\text{OH})_{3}^{-} + 3\text{H}^{+} \\ \hline \\ 2\text{UO}_{2}^{2+} + 2\text{H}_{2}\text{O} \Leftrightarrow (\text{UO}_{2})_{2}(\text{OH})_{2}^{2+} + 2\text{H}^{+} \\ \hline \\ 3\text{UO}_{2}^{2+} + 5\text{H}_{2}\text{O} \Leftrightarrow (\text{UO}_{2})_{3}(\text{OH})_{5}^{+} + 5\text{H}^{+} \end{array}$	-1.24 _b -7.06 _b 0.31c -6.0 _c -12.18 _c Log K	1 2 5 5 2 5 5 0.0003 1.000 81 0.000 2 5 5 0.003 1.000 81 0.000 0.003 1.000 81 0.000 0.003 1.000 81 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 81 1.000 0.000 4.1000 811 1.000 0.000 4.1000 811 1.000 0.000 4.1000 811 1.000 0.000 4.1000 811 1.000 0.000 4.0000 0.000 0.000 4.1000 811 1.000 0.000 4.1000 811 1.000 0.000 0.000 0.000 0.000 4.1000 811 1.000 0.0000 0.0000 0.000 0.000 0.000 0.0000 0.000 0.000 0.000 0.000	0 7.0600 0.000 0.000 1.000 0.	2 5 8113300 >sio- 0.000 1.000 811 -1.000 330 -1.000 0.000 0.000 0.000 0.000 8113301 >sion2 0.000 0.1200 8113301 >sion2 0.000 0.1200 0.000 1.000 811 1.000 330 1.000 0.000 0.000 0.000 0.000	/ADS1PS10 0 0.000 0.000-1.00 0.00 0.000 0 813 0.000 0 0.000 0 0.000 0 0.000 0 0.000 0 0.000 0 10 0.000 0.000 1.00 0.00 0.000 0 813 0.000 0 0.000 0 0.000 0 10 0.000 0 0.000 0 0 0.000 0	
$ \begin{array}{l} > \text{SiOH}^{\circ} \Leftrightarrow > \text{SiO}^{-} + \text{H}^{+} \\ > \text{SiOH}^{\circ} + \text{UO}_{2}^{2+} \Leftrightarrow > \text{SiO-UO}_{2}^{+} + \text{H}^{+} \\ > \text{SiOH}^{\circ} + \text{UO}_{2}^{2+} + \text{H}_{2}\text{O} \Leftrightarrow > \text{SiO-UO}_{2}\text{OH}^{\circ} + 2\text{H}^{+} \\ > \text{SiOH}^{\circ} + \text{UO}_{2}^{2+} + 2\text{H}_{2}\text{O} \Leftrightarrow > \text{SiO-UO}_{2}(\text{OH})_{2}^{-} + 3\text{H}^{+} \\ \hline \\ \hline \textbf{Aqueous Speciation Reactions:} \\ \text{UO}_{2}^{2+} + \text{H}_{2}\text{O} \Leftrightarrow \text{UO}_{2}\text{OH}^{+} + \text{H}^{+} \\ \hline \text{UO}_{2}^{2+} + 2\text{H}_{2}\text{O} \Leftrightarrow \text{UO}_{2}(\text{OH})_{2}^{\circ} (\text{aq}) + 2\text{H}^{+} \\ \hline \\ \text{UO}_{2}^{2+} + 3\text{H}_{2}\text{O} \Leftrightarrow \text{UO}_{2}(\text{OH})_{3}^{-} + 3\text{H}^{+} \\ \hline \\ 2\text{UO}_{2}^{2+} + 3\text{H}_{2}\text{O} \Leftrightarrow \text{UO}_{2}(\text{OH})_{3}^{-} + 3\text{H}^{+} \\ \hline \\ 3\text{UO}_{2}^{2+} + 5\text{H}_{2}\text{O} \Leftrightarrow (\text{UO}_{2})_{3}(\text{OH})_{5}^{+} + 5\text{H}^{+} \\ \hline \end{array} $	-7.06 _b 0.31c -6.0 _c -12.18 _c Log K	0.003 1.000 811 0.000 0 0.000 0 0.000 0 0.000 0 0.000 0 0.000 0 0.000 0 0 0	UND U2400 0.000 0.000 1.00 0.00 0.00 0.000 0.0000 00 1.000 1.00 0.000 0.000 0.000 0.000 00 0.000 0 0 0.1000 0.000 0.000 1.00 0.00 0.00 0.0	0.003 1.000 811 -1.000 330 -1.000 0.000 0 0.000 0 0.000 0 0.000 0 0 0.000 0 0.000 0 0.000 0 0 0.000 0 0.000 0 0.000 0 0.003 1.000 811 1.000 330 1.000 0.003 0.000 0 0.000 0 0.000 0 0.000	0 0.000 0.000 1.00 0.00 0.00 0.000 813 0.000 0 0.000 0 0.000 0	
$\begin{array}{l} > \text{SiOH}^{\circ} + \text{UO}_{2}^{2^{+}} \Leftrightarrow > \text{SiO-UO}_{2}^{+} + \text{H}^{+} \\ > \text{SiOH}^{\circ} + \text{UO}_{2}^{2^{+}} + \text{H}_{2}\text{O} \Leftrightarrow > \text{SiO-UO}_{2}\text{OH}^{\circ} + 2\text{H}^{+} \\ > \text{SiOH}^{\circ} + \text{UO}_{2}^{2^{+}} + 2\text{H}_{2}\text{O} \Leftrightarrow > \text{SiO-UO}_{2}(\text{OH})_{2}^{-} + 3\text{H}^{+} \\ \hline \\ \hline \textbf{Aqueous Speciation Reactions:} \\ \text{UO}_{2}^{2^{+}} + \text{H}_{2}\text{O} \Leftrightarrow \text{UO}_{2}\text{OH}^{+} + \text{H}^{+} \\ \hline \\ \text{UO}_{2}^{2^{+}} + 2\text{H}_{2}\text{O} \Leftrightarrow \text{UO}_{2}(\text{OH})_{2}^{\circ} (\text{aq}) + 2\text{H}^{+} \\ \hline \\ \text{UO}_{2}^{2^{+}} + 3\text{H}_{2}\text{O} \Leftrightarrow \text{UO}_{2}(\text{OH})_{3}^{-} + 3\text{H}^{+} \\ \hline \\ 2\text{UO}_{2}^{2^{+}} + 2\text{H}_{2}\text{O} \Leftrightarrow (\text{UO}_{2})_{2}(\text{OH})_{2}^{2^{+}} + 2\text{H}^{+} \\ \hline \\ 3\text{UO}_{2}^{2^{+}} + 5\text{H}_{2}\text{O} \Leftrightarrow (\text{UO}_{2})_{3}(\text{OH})_{5}^{+} + 5\text{H}^{+} \end{array}$	-7.06 _b 0.31c -6.0 _c -12.18 _c Log K	I Unoco 1.000,000 10000 0 0.000 0 0.000 0 0 0.000 0 0.000 0 0 0.000 1.000 811 1.000 81 0.000 0 0.000 0 0.00 0.000 0 0.000 0 0.00 8118932 selundorini 2 0.000 0.000 0 0.000 0 0 0.00	26 1 0 000 00 0 0.000 0 0.000 0 0.000 0 0.000 0 00 0 0 0 0 0 0.000 0 0.000 0 0.000 0 0 0.000 0 0 0.0000 0 0 0.0000 0 0 0.0000 0 0 0.0000 0 0 0.0000 0 0 0.0000 0 0 0.000 0 0 0.000 0 0 0.000 0 0 0.000 0 0 0.000 0 0 0.000 0 0 0.000 0 0 0.000 0 0 0.0000 0 0 0.0000 0 0 0 0 0.0000 0 0 0 0.000 0 0 0.0000 0 0 0	0.00 3 1.000 811 1.000 530 1.000 0.000 0 0.000 0 0.000 0 0.000 0.000 0 0.000 0 0.000 0 0.000 0 0.000 0.000 0 0.000 0 0.000 0 0.000 0 0.000 0.000 1 1.000 0 0.0000 0 0.000 0 0.000 0 0.000 0 0.000 0 0.0	*813 -00 *00 1.00 0.000	
$\begin{array}{l} > \text{SiOH}^{\circ} + \text{UO}_{2}^{2^{+}} + \text{H}_{2}\text{O} \Leftrightarrow > \text{SiO-UO}_{2}\text{OH}^{\circ} + 2\text{H}^{+} \\ > \text{SiOH}^{\circ} + \text{UO}_{2}^{2^{+}} + 2\text{H}_{2}\text{O} \Leftrightarrow > \text{SiO-UO}_{2}(\text{OH})_{2}^{-} + 3\text{H}^{+} \\ \hline \textbf{Aqueous Speciation Reactions:} \\ \text{UO}_{2}^{2^{+}} + \text{H}_{2}\text{O} \Leftrightarrow \text{UO}_{2}\text{OH}^{+} + \text{H}^{+} \\ \hline \text{UO}_{2}^{2^{+}} + 2\text{H}_{2}\text{O} \Leftrightarrow \text{UO}_{2}(\text{OH})_{2}^{\circ} (\text{aq}) + 2\text{H}^{+} \\ \hline \text{UO}_{2}^{2^{+}} + 3\text{H}_{2}\text{O} \Leftrightarrow \text{UO}_{2}(\text{OH})_{3}^{-} + 3\text{H}^{+} \\ \hline 2\text{UO}_{2}^{2^{+}} + 3\text{H}_{2}\text{O} \Leftrightarrow \text{UO}_{2}(\text{OH})_{3}^{-} + 3\text{H}^{+} \\ \hline 3\text{UO}_{2}^{2^{+}} + 5\text{H}_{2}\text{O} \Leftrightarrow (\text{UO}_{2})_{3}(\text{OH})_{5}^{+} + 5\text{H}^{+} \end{array}$	0.31c -6.0 _c -12.18 _c Log K	I Unoco 1.000,000 10000 0 0.000 0 0.000 0 0 0.000 0 0.000 0 0 0.000 1.000 811 1.000 81 0.000 0 0.000 0 0.00 0.000 0 0.000 0 0.00 8118932 selundorini 2 0.000 0.000 0 0.000 0 0 0.00	26 1 0 000 00 0 0.000 0 0.000 0 0.000 0 0.000 0 00 0 0 0 0 0 0.000 0 0.000 0 0.000 0 0 0.000 0 0 0.0000 0 0 0.0000 0 0 0.0000 0 0 0.0000 0 0 0.0000 0 0 0.0000 0 0 0.000 0 0 0.000 0 0 0.000 0 0 0.000 0 0 0.000 0 0 0.000 0 0 0.000 0 0 0.000 0 0 0.0000 0 0 0.0000 0 0 0 0 0.0000 0 0 0 0.000 0 0 0.0000 0 0 0	0.00 4 1.000 811 1.000 853 -1.000 0.000 0 0.000 0 0.000 0.000 0 0.000 0 0.000 0.000 1 1.000 0 0.000 0.000 4 1.000 0 0.000 0 0.000 0.000 0 0.000 0 0.000 0 0.000 0 0.000 0 0.000 8118752 stouz2(ch)2 0.000 1.2.1800 0.000 1 1.000 82 2.000	320 1.000 83 0.000 0 0.000 0 0.000 0 0.000 0 0.000 0 0.000 0 0.000 0 0.000 0 0.000 0 0.000 0 0.000 0	cm.v. v controlabilitation internet and and interface internet.
$\begin{array}{c} > \text{SiOH}^{\circ} + \text{UO}_{2}^{2^{+}} + 2\text{H}_{2}\text{O} \Leftrightarrow > \text{SiO-UO}_{2}(\text{OH})_{2}^{-} + 3\text{H}^{+} \\ \hline \textbf{Aqueous Speciation Reactions:} \\ UO_{2}^{2^{+}} + H_{2}\text{O} \Leftrightarrow \text{UO}_{2}\text{OH}^{+} + \text{H}^{+} \\ UO_{2}^{2^{+}} + 2\text{H}_{2}\text{O} \Leftrightarrow \text{UO}_{2}(\text{OH})_{2}^{\circ} (aq) + 2\text{H}^{+} \\ UO_{2}^{2^{+}} + 3\text{H}_{2}\text{O} \Leftrightarrow \text{UO}_{2}(\text{OH})_{3}^{-} + 3\text{H}^{+} \\ 2\text{UO}_{2}^{2^{+}} + 2\text{H}_{2}\text{O} \Leftrightarrow (\text{UO}_{2})_{2}(\text{OH})_{2}^{2^{+}} + 2\text{H}^{+} \\ 3\text{UO}_{2}^{2^{+}} + 5\text{H}_{2}\text{O} \Leftrightarrow (\text{UO}_{2})_{3}(\text{OH})_{5}^{+} + 5\text{H}^{+} \end{array}$	-6.0 _c -12.18 _c Log K	0.000 0 0.000 0 0.0	00 0 0.000 0 0.000 0 0.000 0	0.00 4 1.000 811 1.000 893 1.000 0.000 0 0.000 0 0.000 0 0.00 0 0.000 0 0.000 0 0.000 0 8118932 >50002(0h)2 0.000 - 12.1800 0.00 5 1.000 811 1.000 - 12.1800 0.00 5 2.000	2 -2.000 330 0.000 3 0.000 0 000 0 0.000 0 0.000 0	
Aqueous Speciation Reactions: $UO_2^{2^+} + H_2O \Leftrightarrow UO_2OH^+ + H^+$ $UO_2^{2^+} + 2H_2O \Leftrightarrow UO_2(OH)_2^{\circ} (aq) + 2H^+$ $UO_2^{2^+} + 3H_2O \Leftrightarrow UO_2(OH)_3^- + 3H^+$ $2UO_2^{2^+} + 2H_2O \Leftrightarrow (UO_2)_2(OH)_2^{2^+} + 2H^+$ $3UO_2^{2^+} + 5H_2O \Leftrightarrow (UO_2)_3(OH)_5^+ + 5H^+$	-12.18 _c	0.000 0 0.000 0 0.0	00 0 0.000 0 0.000 0 0.000 0	0.00 5 1.000 811 1.000 893 2.000	J 0.000 0.000-1.00 0.00 0.00 0.0000	
$\begin{array}{c} UO_2^{2+} + H_2O \iff UO_2OH^+ + H^+ \\ UO_2^{2+} + 2H_2O \iff UO_2(OH)_2^{\circ} (aq) + 2H^+ \\ UO_2^{2+} + 3H_2O \iff UO_2(OH)_3^- + 3H^+ \\ 2UO_2^{2+} + 2H_2O \iff (UO_2)_2(OH)_2^{2+} + 2H^+ \\ 3UO_2^{2+} + 5H_2O \iff (UO_2)_3(OH)_5^+ + 5H^+ \end{array}$	Log K	C		0.000 0 0.000 0 0.000 0 0.000 0 0.000 0 0.000 0 0.000 0 0.000 0 0.000 0 0.000 0 0.000 0 0.000 0 0.000 0 0.000 0	2 3.000 330 -1.000 813 0.000 0 000 0 0.000 0 0.000 0	
$\begin{array}{c} UO_{2}^{2+} + 2H_{2}O \iff UO_{2}(OH)_{2}^{\circ} (aq) + 2H^{+} \\ UO_{2}^{2+} + 3H_{2}O \iff UO_{2}(OH)_{3}^{-} + 3H^{+} \\ 2UO_{2}^{2+} + 2H_{2}O \iff (UO_{2})_{2}(OH)_{2}^{2+} + 2H^{+} \\ 3UO_{2}^{2+} + 5H_{2}O \iff (UO_{2})_{3}(OH)_{5}^{+} + 5H^{+} \end{array}$		······································			•	
$UO_{2}^{2+} + 3H_{2}O \Leftrightarrow UO_{2}(OH)_{3}^{-} + 3H^{+}$ $2UO_{2}^{2+} + 2H_{2}O \Leftrightarrow (UO_{2})_{2}(OH)_{2}^{2+} + 2H^{+}$ $3UO_{2}^{2+} + 5H_{2}O \Leftrightarrow (UO_{2})_{3}(OH)_{5}^{+} + 5H^{+}$		U(VI)-Quartz sorption. U(t)=4 XQUQ2+, XQUQ20H, XQUQ2(0H)2-;	7.24 ppb; pC02=1E-3.5; 20 g/L; 2.31 sites/nm2 7/5/96 CNWRA Radionuclide Database;5%5(96)acid	U(VI)-Quartz sorption. U(t)=48.04 ppb; xOUO2+, XOUO20H, XOUO2(0H)2-;9/5/96 CNW# 25.06 MOLAL 0.000 0.000000-01	pCO2=1E-3.5; 50 g/L; 2.31 sites/nm2 WRA Radionuclide Database;5&S(96)acid	
$2UO_{2}^{2+} + 2H_{2}O \iff (UO_{2})_{2}(OH)_{2}^{2+} + 2H^{+}$ $3UO_{2}^{2+} + 5H_{2}O \iff (UO_{2})_{3}(OH)_{5}^{+} + 5H^{+}$	-13.0 _d	ACTIVITY 330 33 0.25		0 0 1 0 3 0 0 0 1 1 1 3 3 ACTIVITY 330 33 0.25	· . 1996	ar 15 % 1000 °C
$3\mathrm{UO}_2^{2^+} + 5\mathrm{H}_2\mathrm{O} \iff (\mathrm{UO}_2)_3(\mathrm{OH})_5^+ + 5\mathrm{H}^+$	-19.20	quartz12.123 8118930 8118931 4 7 2.000E+01 0.03 0.000 0.000 330 0.000E-01 -2.00 y 893 2.113E-07 -6.68 y	81 (84)	quartz12,123 8118930 8118931 8118932 4 1 7 5,000E+01 0,03 0,000 0,000 81 330 0,000E+01 -2,00 y 895 2,002E+07 -6,69 y	/#+1	
	-5.62	492 1.000E-01 -1.00 y 500 1.000E-01 -1.00 y 140 0.000E-01 -16.00 y 813 0.000E-01 -0.00 y 811 2.301E-06 -5.64 y	/ 1022-2 /103-1 /103-1 /203-2 /A0STFPIO /ADSTFPIO	492 2.002-01 -1.00 y 500 1.000E-01 -1.00 y 140 0.000E-01 -16.00 y 813 0.000E-01 0.00 y	/UD2+2	
$UO_{*}^{2+} + CO_{*}^{2-} \Leftrightarrow UO_{*}CO_{*}^{0}$	-15.55	811 2.301E-06 -5.64 ý 2 1 -13.0000 18.0940	/ADS1TYP1 //U02(oh)2	811 5.753E-06 -5.24 y 2 1 8933301 -13.0000 18.0940	/ADSIPSIO /ADSITYPI /uo2(oh)2	m
	9.68	3 2 3301403 21.6600 -0.5300 330 2.0000 0.0000	/co2 (g) /H+1	3 2 3301403 21.6600 -0.5300 330 2.0000 0.0000	/co2 (g) /H+1	
$UO_2^{2^+} + 2CO_3^{2^-} \Leftrightarrow UO_2(CO_3)_2^{2^-}$	16.94	813 0.0000 0.0000 2 5 8113300 >sio- 0.000	/ADS1PS1o	813 0.0000 0.0000 2 5 8113300 >sio- 0.0000 -7.0600 0.00 3 1.000 811 -1.000 330 -1.000	/ADS1PS10 00 0.000 0.000-1.00 0.00 0.00 0.0000 0 813 0.000 0 0.000 0 0.000 0	
$UO_2^{2^+} + 3CO_3^{2^-} \Leftrightarrow UO_2(CO_3)_3^{4^-}$	21.60	0,00 3 1,000 811 -1.000 3 0,000 0 0.000 0 0.0 0 0,000 0 0,000 0 0.0 8113301 >sich2+ 0.000	00 0 0.000 0 0.000 0 0,000 0 000 0 	0.000 0 0.000 0 0.000 0 0.	0.000 0 0.000 0 0.000 0 00 0.000 0.000 1.00 0.00 0	
$2\mathrm{UO}_{2}^{2^{+}} + \mathrm{CO}_{3}^{2^{-}} + 3\mathrm{H}_{2}\mathrm{O} \Leftrightarrow (\mathrm{UO}_{2})_{2}\mathrm{CO}_{3}(\mathrm{OH})_{3}^{-} + 3\mathrm{H}^{+}$	-0.86	8113301 > 5koia2 + 0.000 0.00 3 10.000 811 0.000 1 0.00 0 0.000 0 0.00 0.00 0 0.000 0 0.00 8118930 >sicu22 + 0.000 0.00 4 1.0008 811 1.0000 0.000 0 0.000 0 0.00 0.000 0 0.000 0 0.000 0 0.000	90 1.000 813 0.000 0 0.000 0 0.000 0 0 0 0 0 0 0 0		0 813 0.000 0 0.000 0 0.000 0 0.000 0 0.000 0 0.000 0 0.000 0 0.000 0 0.000 0 0.000 0 0.000 0 0.000 0 0.000 0 0 0 0.000 0 0 0.000 0 0 0.000 0 0 0.000 0 0 0 0.000 0 0 0 0.000 0 0 0 0.000 0 0 0 0.000 0 0 0 0.000 0 0 0.000 0 0 0.000 0 0 0.000 0 0 0 0.000 0 0 0 0.000 0 0 0 0.000 0 0 0 0.000 0 0 0 0.000 0 0 0 0.000 0 0 0 0 0.000 0 0 0 0 0.000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
$UO_2^{2^+} + NO_3^- \Leftrightarrow UO_2NO_3^+$	0.30	0 0.000 0 0.000 0 0.000 0 0.000	22 -1.000 222 -1.000 212 2.0000 2.000 2.000 2.000 2.00	0.00 4 1.000 811 1.000 893 -1.000 0.000 0 0.000 0 0.000 0 0.00 0 0.000 0 0.000 0 0.000 0 0.000 8118931 >sigue2oh 0.0000 -6.0000	0 330 1.000 813 0.000 0 0.000 0 0.000 0 0.000 0 0.000 0 00 0.000 0.000 0.00 0.	
 a. Site density recommended for all minerals by Davis and Kent (1990), Dzombak and Morel (1990). b. Acidity constants for am-SiO₂ from Sverjensky and Sahai (1996). 	- -	8118932 >siouo2(oh)2 0.000	00 0 0.000 0 0.000 0 0.000 0 01 0100 0.000 0.000 1.00 0.00 0.000 91 -12.000 2 -3.000 330 -1.000 815 0.000 0 00 0 0 0.000 0 0.0000 0 0.000 0	0.000 0 0.000 0 0.000 0 0.000 0 0.000 0 0.000 0 0.000 0 0.005 1.000 0 11 1.000 95 2.000 0.005 1.000 0 11 1.000 95 2.000 0.000 0 0.000 0 0.000 0 0.000 0 0 0 0.000 0 0.000 0 0.000 0 0.000	0.000 0 0.000 0	
 c. This study. Binding constants determined using FITEQL, Version 2.0 (d. All aqueous speciation Log K values from NEA Uranium Thermodyna Forrest, 1992), except for UO₂(OH)₂° (aq) which is taken from Fuger (amic Database (Wanner and		 U(U1)-Quartz seption, U(t)=501.54 ppb; 00 x0002+, NOU020H, X0002(0H):-9/5796 ENHAR & 25.00 MOLAL 0.000 0.00000E-01 0 0 30 0 0 1 1 1 3 3 			
Additional References (see page 261 for other references)		• • • • • • • • • • • • • • • • • • •	ACTIVITY 330 33 0.25 quart12:23 8118930 0118931 0118932 2 3 5.000E-01 0.000E-01 -2.00 y 803 2.1532-06 -5.67 y 402 1.000E-01 -1.00 y 500 1.000E-01 -1.00 y 100 -100 -1 -1.00 y 813 0.000E-01 -0.00 y 813 5.732-06 -5.24 y	/#+1 /U02+2 /W03-1 /W04-1 /C03-2 /A0519510	MINTE Files.	QAZ Ing
verjensky, D.A. 1993. Physical surface-complexation models for sorption at the	e mineral-water interface. Nature		8933301 - 13.0000 18.0940	/uo2(oh)2		
364: 776-780.	DRIVIM		3301403 21.6600 -0.5300 330 2.000 0.0000 6 1 0.0000 0.0000 813 0.0000 0.0000 2 5 8113300 >≤10- 0.0000 -7.0600	/co2 (g) //+1 /ADSIPSIO 0.000 0.000-1.00 0.00 0.00 0.0000	Quartz Di	oly
verjensky, D.A. 1994. Zero-point-of-charge prediction from crystal chemistry an et Cosmochimica A cta 58: 3123-3129.	nd solvation theory. <i>Geochimica</i>	·	0.00 3 1.000 811 -1.000 330 -1.000 813 0.000 0 0.000 0 0.000 0 0.000 0 0.000 0 0.000 0 0.000 0 0.000 8113301 >sioh2+ 0.0000 -1.2400			
verjensky, D.A., and N. Sahai. 1996. Theoretical prediction of single-site surfac constants for oxides and silicates in water. <i>Geochimica et Cosmochimica</i>		-	0,00 4 1,000 811 1,; 893 -1.000 33 0,000 0 0,000 0 0,000 0 0,000 0 0,000 0 0,000 0 0,000 0 0,000 0 0,000 0 8119931>≤iou2250 0,0000 -6.0000			restriction of the contract of

U(VI)-a-Al₂O₃ Sorption

 $U(VI)-\alpha-Al_2O_3$ sorption was revisited yet again using the DLM, a simplified container sorption model, and the DLM acidity coefficients of Sverjensky and Sahai (1996).

Acidity constants from Sverjensky and Sahai (1996)

Sverjensky and Sahai (1996) developed a method to determine DLM acidity constants using Born solvation theory. The details are provided in Sverjensky (1993, 1994) and Sverjensky and Sahai (1996). For quartz, assuming a site density of 2.3 sites/nm², equations (146), Figure 7b, and data from Table 1 were used to determine Log K_+ and Log K_- .

Vim

c.

d.

From equation (146):

 $\begin{array}{l} pH_{\rm ZPC} = (\log K_{+} - \log K_{-})/2 \\ pH_{\rm ZPC} = 21.1158(1/\epsilon_{k}) - 42.9148(s/r_{\rm M-OH}) + 14.6866 \end{array}$

From Table 1, for α -Al₂O₃(corundum):

 $\epsilon_k = 10.43$ Pauling Bond Strength s/r_{M-OH} = 0.1711

From Figure 7b (DLM with site density = 2.3 sites/nm²):

 $K_n = \log K_+ + \log K_ K_n = 30.143 (s/r_{M-OH}) - 3.214$

Therefore, for α -Al₂O₃:

$pH_{ZPC} = 9.37$
$K_n = 1.94$
$K_{+} = 10.34$
$K_{-} = -8.40$

Like U(VI)-Quartz, three surface complexes >AlO-UO₂⁺, >AlO-UO₂OH°, and >AlO-UO₂(OH)₂⁻ provided the best fit the observed data. The resulting binding constants are given below.

	\$															www.cocurence.co	representation and the second	owned and have been about
		Exp 8006	· · · · ·			· · · · ·	1									_		
	***	Ultotali +	4.838E-07								Exp 8007							
annon-breaken mar an	5 5	Asp - 0.229	m2/g						····· · · · · · · · · ·		U(total) = Asp = 0.083 r	5.003E-07						
		M/V = 2.79 g							·									
		1=0.1 m Nat	103					· · · · · · · ·			M/V = 2.88 g							
	ł.	Avg. pH,	Avg log[H+]	U sorbed(%)	Error(%)	U sorbed(Kd)	EntortKdD	U sorbed(M)	ErrorIM									
		1.98	-1.87	2.118	4,153	7.755		1.024E-08	2.0096.08		AVG. PH.1	Avg log[H+]			U sorbed[Kd]			
Construction of the constr		2.35	-2.24	-1.369	4,301	4.840		6.6228-09	2.081E-08		2.34	2.23	0.843	4.207	2.953	14.732	4.219E-09	
• • • •	•	2.69	-2.58	1.000	4.200	3.620		4.837E-09	2 032E-08	· ******	2.34	-2.23	-0.225	4.252	-0.779	14.731	1.1245-09	
	/ \	2.97	-2.85	0.135	4.237	0.484		6.524E-10	2.050E-08	••••••	3.00	-2.89		4.318	6.093		8.935E-09	
	AL-	3.07	-2.96	0.055	4,240	0.197	15.207	2.661E-10	2.0516-08		3.00	-2.89	2.160	4.151	7.666	14.735	1.081E-08	
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~		3.30		0.392	4.226	1.411	15.207	1.897E-09			3.51	-3.40	0.316	4.229	1.100	14,231	1.579E-09	
l		3.46	-3.35	-0.405	4.260	1.450		1.956E-09			3.25	-3.64	1.787	4.190	4.337	14.733	6.172E-09	
1 I N		3.68		1.399	4.183	5.086	15.208	6.768E-09			4 05	3.94	4.219	4.064	6.317	14.734	8.940E-03	
JANA JA		3.68		0.823	4.278	2.927	15.207	3.983E-09	2.053E 08		4.25	4.14	2.190	4.150	15.294	14.746	2.111E-08	2.035E-08
	KINTIMONTC.	4.14		-0.287	4.255	1.024	15.207	1.3866-09	2.058E 08		4.50	4 39	1.092	4.195	3.834		1.096E-08 5.463E-09	2.077E-08
lota the constant m 8006t	AVA INCLU	4.34		2.872	4.121	10.598	15.213	1.389E-08	1.994E-08		4.68	4,77	5.373	4.015	19,714	14.732		2.100E-08
		4.61		2.703	4.128	9.958	15.212	1.308E 08	1.998E-08		4.99	4.88	4.262	4.062	15.456	14,746		2.012E-08
DAA DAALC	n a range	4.95		28.662	3.027	144.007	16.388	1.3B7E-07	1.578E-08		5.30	-5.19	9.284	3.849	35.537	14.745	4.645E-08	2.034E-08
IN XIN DA	FNXN-	5.55		18.371	3 463	80.664	15.587	8.887E-08	1.7178-08		5.70	-5.59	12.227	3.724	48.367	14.874	6.117E-08	1.881E-08
	NUM	5.78		20.717	3 364	93.660	15.717	1.002E-07	1.682E-08		5.99	-5.88	14.641	3.621	59.559	14,947	7.325E-08	
	and the second second second second	6.04		26.555	3.116	129.593	16.170	1.285E-07	1.603E-08		6.04	-5.93	12.737	3.702	50.681	14.947	6.372E-08	1.838E-08 1.872E-08
		6.19	6.08	28.755	3.023	144.664	16.398	1.391E-07	1.577E 08		6.18	6.07	13.779	3.658	55.491	14.918	6.8948-08	1.853E-08
		6.73	-6.62	28.289	3.042	141.396	16.347	1.369E 07	1.582E 08		5.92	5.81	17.399	3.504	73,141	15.055	8.705E-08	1.792E-08
		6.85		24.697	3.195	117.491	16.003	1.194E 07	1.6278-08		6.39	6.28	17.301	3.509	72.639	15.050	8.656E 08	1.793E-08
		6.92		24.727	3.194	117.744	16.006	1.196E-07	1.6265-08		6.73	6.62	17.099	3.517	71.618	15.041	8.555E-08	1.797E 08
		7.04	-6.86	26.431	3.121	128.759	16.158	1.279E-07	1.604E-08		7.02	6.91	13.887	3.653	55.993	14,922	6.947E-08	1.851E-08
		7.04	-6.93	22.013	3.309	101.168	15.801	1.065E-07	1.663E-08		7.38	-7.27	12.784	3.700	50.897	14.889	6.396E-08	1.8715-08
1			-7.08	19.067	3.434	84.442	15.623	9.2246-08	1.707E-08		7.54	-7.43	11.356	3.761	44.482	14.852	5.681E 08	1.8976-08
1		7.26	-7.15	16.849	3.528	72.629	15.516	8.151E-08	1.741E 08		7.69	-7.58	7,105	3.941	26.559	14,774	3.5555-08	
	and a second sec	7.73	-7.62	11.154 6.476	3.769	44.996	15.326	5.3965 08	1 P38E 08		7.98	7.87	2.319	4,144	8.242	14.736	1.160E-08	
1			-7.82	6.476	3 968	24.828	15.243	3.1345 02	1245 08		8.24	8.13	0.118	4.238	0.412	14,731	5.923E-10	
		8 22	-7.86	1.369	4.185	4.906	15.208	6.532E (9	25E 08		8.63	8.52	0.899	4.204	3.150	14.732	4.498E-09	
		8.56	-8.11	-1.369	4.301	-4.840	15.208	-6.622E C9	2 081E-08		8.94	-8.83	-0.834	4.278	-2.871	14.732		
menner value and a star a		8.98	-8.45	-3.840		-13.253	15.217	1.858E-08	2.133E 08									
	and a second second second second	8.98	8.87	-0.2821	4.255	-1.008	15.207	-1.3655-09	2.058E-05									

Table 1. FITEQL model conditions used to determine DLM binding constants for U(6+) sorption on α -Al₂O₃:

285

1/8/97

JB1

DLM Parameters and Chemical Model Reactions:	a-Al ₂ O ₃
Site density _a	2.3 sites/nm ²
Surface area	0.229 and 0.083 m ² /g
Ionic strength	0.1 M NaNO ₃
PCO ₂	10 ^{-3.5} atm
Sorption Reactions:	Log K
$>AlOH^{\circ} + H^{+} \Leftrightarrow >AlOH_{2}^{+}$	10.34
$AlOH^{\circ} \Leftrightarrow AlO^{-} + H^{+}$	-8.40
$>$ AlOH° + UO ₂ ²⁺ \Leftrightarrow $>$ AlO-UO ₂ ⁺ + H ⁺	4.60,
$>$ AlOH° + UO ₂ ²⁺ + H ₂ O \Leftrightarrow $>$ AlO-UO ₂ OH° + 2H ⁺	-4.39
$>$ AlOH° + UO ₂ ²⁺ + 2H ₂ O $\Leftrightarrow >$ AlO-UO ₂ (OH) ₂ ⁻ + 3H ⁺	-13.60
Aqueous Speciation Reactions:	Log K
$UO_2^{2+} + H_2O \Leftrightarrow UO_2OH^+ + H^+$	-5.20
$UO_2^{2^+} + 2H_2O \iff UO_2(OH)_2^{\circ} (aq) + 2H^+$	-13.0
$UO_2^{2+} + 3H_2O \Leftrightarrow UO_2(OH)_3^- + 3H^+$	-19.20
$2\mathrm{UO}_2^{2^+} + 2\mathrm{H}_2\mathrm{O} \iff (\mathrm{UO}_2)_2(\mathrm{OH})_2^{2^+} + 2\mathrm{H}^+$	-5.62
$3UO_2^{2^+} + 5H_2O \iff (UO_2)_3(OH)_5^+ + 5H^+$	-15.55
$UO_2^{2^+} + CO_3^{2^-} \Leftrightarrow UO_2CO_3^{\circ}$	9.68
$UO_2^{2+} + 2CO_3^{2-} \Leftrightarrow UO_2(CO_3)_2^{2-}$	16.94
$UO_2^{2^+} + 3CO_3^{2^-} \Leftrightarrow UO_2(CO_3)_3^{4^-}$	21.60
$2\mathrm{UO}_2^{2^+} + \mathrm{CO}_3^{2^-} + 3\mathrm{H}_2\mathrm{O} \Leftrightarrow (\mathrm{UO}_2)_2\mathrm{CO}_3(\mathrm{OH})_3^- + 3\mathrm{H}^+$	-0.86

Site density recommended for all minerals by Davis and Kent (1990), based on ferrihydrite work of Dzombak and Morel (1990).

Acidity constants for $am-SiO_2$ from Sverjensky and Sahai (1996).

This study. Binding constants determined using FITEQL, Version 2.0 (Westall, 1982a,b).

All aqueous speciation Log K values from NEA Uranium Thermodynamic Database (Wanner and Forrest, 1992), except for $UO_2(OH)_2^{\circ}$ (aq) which is taken from Fuger (1992).

U(V1)-A1203 (aipha); Atmospheric CO2; 116.57 ppb; RH 8007 (0.083 m2/g) DLH; XU002+; XU02004 & XU02C0012-; 5/5/96 CHWHA Database 25:00 MOLA. 0,000 0,00008-01 0 0 1 0 3 0 0 0 1 1 3 3 A1203c.123 6118930 8118931 8118932 4 2.880E-00 0.08310 0,000 0.000 81 33:0 0.0008-01 -2.00 y /H+1 893 5.003E-07 -6.30 y /H+1 893 5.003E-07 -6.30 y /He1 893 5.003E-01 -1.00 y /Nes1 400 0.0008-01 -1.00 y /Nes1 410 0.000E-01 -1.00 y /Nes1 410 0.000E-01 -0.00 y /Nes1 813 0.000E-01 -0.00 y /No51 813 9.168E-07 -6.04 y /N051TP1 286U(V1)-A1203 (alpha); Almospheric CD2; 112.72 ppb: BN 8006 (0.229 m2/g) DLH; XMUG2+; XMUG20H & XGU02(01)2-; 9/5/96 CHAMA Database 25.00 MOLAL 0.000 0.000008+01 4.01 V17 330 33 a12036.123 8118930 8118931 8118932 4.1 7.7906=00 0.209 0.000 0.000 81 330 0.0006=01 -2.00 y /H+1 8033 4.8386=07 -6.32 y /U02+2 500 1.0006=01 -1.00 y /Na+1 400 0.0006=01 -16.00 y /U03+1 813 0.0006=10 -16.00 y /U03+1 813 0.2005=10 0.00 y /U03+1 813 0.2005=10 0.00000 y /U0 287 1/8/27 NR) Notebook closed due to closing of Radionuclicle Transport KTI (20-5708-871). Final deliverables transmitted to NRC. 1/9/97 DRJ mut 2 1 8933301 3 2 3301403 330 6 1 813 2 1 8933301 3 2 3301403 330 6 1 813 -13.0000 18.0940 -13.0000 18.0940 /U02(0H)2 /UO2(OH)2 21.6600 -0.5300 2.0000 0.0000 /CO2 (g) /H+1 21.6600 2.0000 -0.5300 0.0000 /CO2 (g) /H+1 0.0000 0.0000
 813
 0.0000
 0.0000
 /ADS1PS10
 /ADS1PS10

 2
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 /ADS1PSI0 0.0000 0.0000 /ADS1PSIo 100 \odot RM 8006 (A_{sp} = 0.229 m²/g) 80 % U(6+) Sorbed □ RM 8007 (A_{sp} = 0.083 m²/g) 60 40 20 MINTEGAR Ŷ ੦ <u>ਙ ਰੁਕੁਰੁ</u>ਕੂ DIM Results 2 3 4 5 9 6 7 8 10 Deturn W(VI)- 2 Al_63 Equilibrium pH O RM 8006 (A_{sp} = 0.229 m²/g)
 □ RM 8007 (A_{sp} ≈ 0.083 m²/g) 3 -og K_d (ml/g) 2 0 -1 -2 .7 2 3 5 6 4 8 9 10 Equilibrium pH

288

	I have rement this poterook at find it a general concluence with QAP-OOL More is sufficient information full person Quilified person Oto Conduct the activities. P.C. Par 1/13/27
1 	

ADDITIONAL INFORMATION FOR SCIENTIFIC NOTEBOOK #: 046

Document Date:	06/02/1992
Availability:	Southwest Research Institute® Center for Nuclear Waste Regulatory Analyses 6220 Culebra Road San Antonio, Texas 78228
Contact:	Southwest Research Institute® Center for Nuclear Waste Regulatory Analyses 6220 Culebra Road San Antonio, TX 78228-5166 Attn.: Director of Administration 210.522.5054
Data Sensitivity:	 ■"Non-Sensitive" □ Sensitive □ Sensitive - Copyright" □ Sensitive - Copyright
Date Generated:	1992
Operating System: (including version number)	NA
Application Used: (including version number)	MINTEQA2, Version 3.11; FITEQL, Version 2.0
Media Type: (CDs, 3 1/2, 5 1/4 disks, etc.)	4 - 3 ½ disks
File Types: (.exe, .bat, .zip, etc.)	Various
Remarks: (computer runs, etc.)	Media contains: MINTEQA2 database dated 1991; analog master lists files; sorption modeling for high-level waste performance assessment.

Original MINTERAZ Data: GASES.DBS

1/67

3301404 CH4 (g) -61.0 40.1			16.0432
4 1.000 140 8.000 1	10.000 330	-3.000 2	
3301403 CO2 (g) -0.53 18.16			41.0100
3 1.000 140 2.000 330	-1.000 2		
3300021 02 (g) 133.83 -83.12 3 2.000 2 -4.000 330			31.9988
3 2.000 2 -4.000 330	-4.000 1		
3600001 Hg (g) -5.265 7.8708			200.5900
0.00 2 0.500 360 1.000 1			
3600002 Hg2 (g) -13.87 14.963			401.1800
0.00 2 1.000 360 2.000 1			10101000
3611400 Hg(CH3)2(g) -115.4 73.724			230.6594
0.00 5 1.000 361 2.000 140	16.000 1	20.000 330	-8 000 2
3601300 HgBr (g) 34.004 -16.79		201000 000	280.4940
0.00 2 0.500 360 1.000 130			200.1940
3601800 HgCl (g) 40.098 -20.50			236.0430
0.00 2 0.500 360 1.000 180			
3602700 HgF (g) 60.916 -32.72			219.5884
0.00 2 0.500 360 1.000 270			219.5004
3603800 HgI (g) 25.264 -11.15			327.4945
0.00 2 0.500 360 1.000 380			527.4945
3611300 HgBr2 (g) -14.35 18.47			360.3980
0.004 1.000361 2.000130	2.000 330	-2.000 2	500.5900
3612700 HgF2 (g) 0.0000 -0.38	2.000 550	2.000 2	238.5868
0.00 4 1.000 361 2.000 270	2.000 330	-2.000 2	230.3000
3613800 HgI2 (g) -28.63 27.28	2.000 330	2.000 2	454.3990
0.00 4 1.000 361 2.000 380	2.000 330	-2.000 2	404.0990
2.000 301 2.000 300	2.000 330	2.000 2	

Original MINTEQA2 Date: THERMO.DBS

3300020 01	H	13.345	-13.998			-1. 3.5	0.0	17.0074
3307700 H	1.000 3SiO4 -	2 -1. 8.9350	-9.9300			-1. 3.5 -1. 4.0	0.0	95.1070
2 3307701 H:	1.000	770 -1. 29.7140	000 330			-2. 5.4	0.0	94.0990
2 7702700 S	1.000	770 -2.	000 330			-2. 5.0	0.0	142.0760
4	1.000	770 6.	000 270	4.000	330	-4.000 2		
3300900 H: 2	1.000	3.2240 90 -1.				-1. 2.5	0.0	60.8250
0902700 BI 2	F(OH)3 - 1.000		-0.3990 000 270			-1. 2.5	0.0	80.8310
0902701 BI 4	F2(OH)2 - 1.000	- 1.63500 90 2.	7.63000	-1.000	2	-1.2.5 1.000330	0.0	82.8220
		-1.5800		-2.000	2	-1.2.5 2.000330	0.0	84.8130
0902703 BI	F4 -	-1.7950	20.27400		2	-1. 2.5	0.0	86.8040
4 3304900 NI		12.4800	000 270	-3.000	2	$3.000 330 \\ 0. 0.0$	0.0	17.0300
2 4907320 NI	1.000 H4SO4 -	490 -1. 0.0000	000 330 1.1100			-1. 5.0	0.0	114.1000
2 1603300 Ma	qOH +	490 1. 15.935	-11.79			1. 6.5	0.0	41.3190
3 4602700 Mg		460 1. 4.6740	000 2 1.8200	-1.000	330	1. 4.5	0.0	43.3100
2	1.000	460 1. 2.0220	000 270			0. 0.0	0.0	84.3210
2.00 2	1.000	460 1.	000 140 .					85.3290
1.00 3	1.000	-2.430 460 1.	000 140	1.000	330		0.0	
4607320 Mg 2	gSO4 AQ 1.000	1.3990 460 1.	2.2500 000 732			0. 0.0	0.0	120.3730
4605800 Mg 2	gPO4 - 1.000		6.5890 000 580			-1. 5.4	0.0	119.2830
	gH2PO4 +	-1.120 460 1.	21.066	2.000	330	1. 5.4	0.0	121.2990
4605802 Mg	gHPO4 AQ	-0.230 460 1.	15.220	1.000		0. 0.0	0.0	120.2910
	aOH +	14.535	-12.598			1. 6.0	0.0	57.0870
3 1501400 Ca		1.7900	000 2 11.330	-1.000		1. 6.0	0.0	101.0970
1.00 3 1501401 Ca		150 1. 4.0300	000 140 3.1500	1.000	330	0. 0.0	0.0	100.0890
2.00 2 1507320 Ca	1.000		000 140 2.3090			0.0.0	0.0	136.1410
2	1.000	150 1. -0.230	000 732			0. 0.0	0.0	136.0590
3	1.000	150 1.	000 580	1.000	330			
1505801 Ca 2	1.000	3.1000 150 1.	000 580			-1. 5.4	0.0	135.0510
1505802 Ca 3	1.000	-1.120 150 1.	20.960 000 580	2.000	330	1. 5.4	0.0	137.0670
1502700 Ca 2		3.7980 150 1.	0.9400			1. 5.0	0	59.0780
5001400 Na 2.00 2		8.9110	1.2680 000 140			-1. 5.4	0.0	82.9990
5001401 Na 1.00 3	aHCO3 AQ 1.000	0.0000		1.000	330	0. 0.0	0.0	84.0070
5007320 Na	aSO4 -	1.1200	0.7000	1.000	220	-1. 5.4	0.0	119.0510
2 5005800 Na		0.0000	000 732 12.636			-1. 5.4	0.0	118.9690
3 5002700 Na		0.0000		1.000	330	0. 0.0	0.0	41.9880
2 4107320 KS		500 1. 2.2500	000 270 0.8500			-1. 5.4	0.0	135.1630

2 1.000 410 1.000 732 4105800 KHPO4 - 0.0000 12.640 3 1.000 410 1.000 580 1.000 330	-1. 5.4	0.0	135.0810
0303300 AlOH +2 11.8990 -4.9900	2. 5.4	0.0	43.9880
3 1.000 30 1.000 2 -1.000 330 0303301 Al(OH)2 + 0.0000 -10.1000	1. 5.4	0.0	60.9960
3 1.000 30 2.000 2 -2.000 330 0303302 Al(OH)4 - 44.0600 -23.0000	-1. 4.5	0.0	95.0110
3 1.000 30 4.000 2 -4.000 330 0302700 AlF +2 0.0000 7.0100	2. 5.4	0.0	45.9790
2 1.000 30 1.000 270 0302701 AlF2 + 20.0000 12.7500	1. 5.4	0.0	64.9780
2 1.000 30 2.000 270 0302702 AlF3 AQ 2.5000 17.0200	0. 0.0	0.0	83.9760
2 1.000 30 3.000 270 0302703 AlF4 - 0.0000 19.7200	-1. 4.5	0.0	102.9750
2 1.000 30 4.000 270 0307320 Also4 + 2.1500 3.0200	1. 4.5	0.0	123.0430
2 1.000 30 1.000 732 0307321 Al(SO4)2 - 2.8400 4.9200	-1. 4.5	0.0	219.1040
2 1.000 30 2.000 732 0303303 Al(OH)3 AQ 0.0000 -16.0000	0. 0.0	0.0	78.0030
3 1.000 30 3.000 2 -3.000 330 2803300 FeOH + 13.1990 -9.5000	1. 5.0	0.0	72.8540
3 1.000 280 1.000 2 -1.000 330 2803301 FeOH3 -1 30.3000 -31.0000	-1. 5.0	0.0	106.8690
3 1.000 280 3.000 2 -3.000 330 2807320 FeSO4 AQ 3.2300 2.2500	0. 0.0	0.0	151.9080
2 1.000 280 1.000 732 2805800 FeH2PO4 + 0.0000 22.253	1. 5.4	0.0	152.8340
3 1.000 280 1.000 580 2.000 330 2803302 FeOH2 AQ 28.5650 -20.5700	0. 0.0	0.0	89.8610
3 1.000 280 2.000 2 -2.000 330 2805801 FeHPO4 AQ 0.0000 15.950	0. 0.0	0.0	151.8260
3 1.000 280 1.000 580 1.000 330 2807300 Fe(HS)2 AQ 0.0000 8.9500	0.0.0	0.0	121.9900
2 1.000 280 2.000 730 2807301 Fe(HS)3 - 0.0000 10.9870	-1. 0.0	0.0	155.0620
2 1.000 280 3.000 730 2813300 FeOH +2 10.3990 -2.1900	2. 5.0	0.0	72.8540
3 1.000 281 1.000 2 -1.000 330 2815800 FeHPO4 + -7.300 17.780	1. 5.4	0.0	151.8260
3 1.000 281 1.000 580 1.000 330 2817320 FeSO4 + 3.9100 3.9200	1. 5.0	0.0	151.9080
2 1.000 281 1.000 732 2811800 FeCl +2 5.6000 1.4800	2. 5.0	0.0	91.3000
2 1.000 281 1.000 180 2811801 FeCl2 + 0.0000 2.1300	1. 5.0	0.0	126.7530
2 1.000 281 2.000 180 2811802 FeCl3 AQ 0.0000 1.1300	0. 0.0	0.0	162.2060
2 1.000 281 3.000 180 2813301 FeOH2 + 0.0000 -5.6700	1. 5.4	0.0	89.8610
3 1.000 281 2.000 2 -2.000 330 2813302 FeOH3 AQ 0.0000 -13.6000	0. 0.0	0.0	106.8690
3 1.000 281 3.000 2 -3.000 330 2813303 FeOH4 - 0.0000 -21.6000 3 1.000 281 4.000 2 -4.000 330	-1. 5.4	0.0	123.8760
2815801 FeH2PO4 +2 0.0000 24.980	2. 5.4	0.0	152.8340
3 1.000 281 1.000 580 2.000 330 2812700 FeF +2 2.6990 6.1990 2 1.000 281 1.000 270	2. 5.0	0.0	74.8450
2 1.000 281 1.000 270 2812701 FeF2 + 4.8000 10.8000 2 1.000 281 2.000 270	1. 5.0	0.0	93.8430
2 1.000 281 2.000 270 2812702 FeF3 AQ 5.3990 14.000	0. 0.0	0.0	112.8420
2 1.000 281 3.000 270 2817321 Fe(SO4)2 - 4.6000 5.4200	-1. 0.0	0.0	247.9700

	1 000	0.01	0 000 700						
	Fe FULVAI		0 9.3990			1. 0	.0 0.0	705.8470	
2819910	Fe HUMATE	0.000				1. 0	.0 0.0	2055.8460	
	Fe2(OH)2+	4 13.50	1.000 991 00 -2.9500			4. 0	.0 0.0	145.7080	
2813305	Fe3(OH)4+	5 14.300		-2.000		5.0	.0 0.0	235.5700	
3 4407320	3.000 LiSO4 -		4.000 2 0 0.6400	-4.000	330	-1.5	.0 0.0) 103.0000	
2 8003300		440 14.49	1.000 732 5			1.5	.0 0.0) 104.6270	
		800 800 15.095	1.000 2 5 -13.358	-1.000		1. 5	.0 0.0) 154.3470	
3 4701800	1.000 MnCl +		1.000 2 0 0.6070	-1.000	330	1.5	.0 0.0	90.3910	
2 4701801	1.000 MnCl2 AQ	470 0.0000	1.000 180 0 0.0410			0.0	.0 0.0) 125.8440	
2 4701802	1.000 MnCl3 -	470 0.0000				-1.5) 161.2970	
2 4703300	1.000	470	3.000 180 90 -10.5900			1.5			
. 3	1.000	470		-1.000	330	-1.5			
3	1.000	470	3.000 2 200 -127.8240	-3.000	330	-1.3			
4	1.000	470	4.000 2	-8.000	330	-5.000	1		
4	1.000	470			330	-4.000	1		
2		470	1.000 270			1.5			
2		470	1.000 732			0.0			
2		470	2.000 492			0.0			
1.00 3		470	1.000 140	1.000	330	1.5			
2		230	2.000 180			-1.4			
2301801 2	CuCl3 -2 1.000		5.70 3.000 180			-2.5	.0 0.0	169.905	
	Cu(S4)2 - 1.000	3 0.0 230	3.39 2.000 730	6.000	731		3.0 0.0 0	320.058	
2307301 4	CuS4S5 -3 1.000	0.0 230	2.66 2.000 730	7.000		-3. 25	5.0 0.0 0	352.122	
2319921 2	Cu ACETAT 1.000	E 0.0 231	2.22 1.000 992				.0 0.0	122.5900	
	Cu GLYCIN	E 0.0	8.62 1.000 994			1. 0	.0 0.0	137.6100	
	Cu2GLYCIN	E 0.0	15.64 1.000 994			3.0	.0 0.0	201.1500	
2319951	Cu SALICY	L 0.0	10.640 1.000 995			0.0	.0 0.0	199.6600	
2319952 2	Cu2SALICY	L 0.0 231	16.940 1.000 995			2. 0	.0 0.0	263.20	
	Cu GLUTAM	A 0.0	8.33 1.000 996			0.0	.0 0.0	208.6700	
2319962	Cu2GLUTAM	A 0.0	14.84 1.000 996			2.0	.0 0.0	272.2100	
	Cu2PHTHAL	A 0.0	5.3			2.0	.0 0.0	291.2100	
2311400	2.000 CuCO3 AQ	0.0000	1.000 997			0.0	.0 0.0	123.5550	
	Cu(CO3)2-	2 0.0000				-2.0	.0 0.0	183.5640	
	1.000 CuCl +		2.000 140) 0.4300			1.4.	.0 0.0	98.9990	

.

2 1.000 231 1.000 180 2311801 CuCl2 AQ 10.5600 0.1600	0. 0.0	0.0	134.4520
2 1.000 231 2.000 180 2311802 CuCl3 - 13.6900 -2.2900	-1. 4.0	0.0	169.9050
2 1.000 231 3.000 180 2311803 CuCl4 -2 17.7800 -4.5900	-2. 5.0	0.0	205.3580
2 1.000 231 4.000 180 2312700 CuF + 1.6200 1.2600	1. 0.0	0.0	82.5440
2 1.000 231 1.000 270 2313300 CuOH + 0.0000 -8.0000	1. 4.0	0.0	80.5530
3 1.000 231 1.000 2 -1.000 330 2313301 Cu(OH)2 AQ 0.0000 -13.6800	0. 0.0	0.0	97.5600
3 1.000 231 2.000 2 -2.000 330 2313302 Cu(OH)3 - 0.0000 -26.8990	-1. 0.0	0.0	114.5680
3 1.000 231 3.000 2 -3.000 330 2313303 Cu(OH)4 -2 0.0000 -39.6000	-2. 0.0	0.0	131.5750
3 1.000 231 4.000 2 -4.000 330 2313304 Cu2(OH)2+2 17.5390 -10.3590	2. 0.0	0.0	161.1060
3 2.000 231 2.000 2 -2.000 330 2317320 CuSO4 AQ 1.2200 2.3100	0. 0.0	0.0	159.6070
2 1.000 231 1.000 732 2317300 Cu(HS)3 - 0.0000 25.8990	-1. 0.0	0.0	162.7610
2 1.000 231 3.000 730 2311402 CuHCO3 + 0.0000 13.000	1. 0.0	0.0	124.5630
1.00 3 1.000 231 1.000 140 1.000 330 2319900 Cu FULVATE 0.0000 0.0000	0. 0.0	0.0	713.5460
2 1.000 231 1.000 990 2319910 Cu HUMATE 0.0000 0.0000	0. 0.0	0.0	2063.5450
2 1.000 231 1.000 991 9501800 ZnCl + 7.7900 0.4300	1. 4.0	0.0	100.8230
2 1.000 950 1.000 180 9501801 ZnCl2 AQ 8.5000 0.4500 2 1.000 950 2.000 180	0. 0.0	0.0	136.2760
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	-1. 4.0	0.0	171.7290
9501803 ZnCl4 -2 10.9600 0.1990 2 1.000 950 4.000 180	-2. 5.0	0.0	207.1820
9502700 ZnF + 2.2200 1.1500 2 1.000 950 1.000 270	1. 0.0	0.0	84.3680
9503300 ZnOH + 13.3990 -8.9600 3 1.000 950 1.000 2 -1.000 330	1. 0.0	0.0	82.3770
9503301 Zn(OH)2 AQ 0.0000 -16.8990 3 1.000 950 2.000 2 -2.000 330	0. 0.0	0.0	99.3840
9503302 Zn(OH)3 - 0.0000 -28.3990 3 1.000 950 3.000 2 -3.000 330	-1. 0.0	0.0	116.3920
9503303 Zn(OH)4 -2 0.0000 -41.1990 3 1.000 950 4.000 2 -4.000 330	-2. 0.0	0.0	133.3990
9501804 ZnOHCL AQ 0.0000 -7.4800 4 1.000 950 1.000 2 -1.000 330	0. 0.0 1.000 180	0.0	117.8300
9507300 Zn(HS)2 AQ 0.0000 14.9400 2 1.000 950 2.000 730		0.0	131.5130
9507301 Zn(HS)3 - 0.0000 16.1000 2 1.000 950 3.000 730	-1. 0.0	0.0	164.5850
9507320 ZnSO4 AQ 1.3600 2.3700 2 1.000 950 1.000 732	0.0.0	0.0	161.4310
9507321 Zn(SO4)2-2 0.0000 3.2800 2 1.000 950 2.000 732	-2. 0.0	0.0	257.4930
9501300 ZnBr + 0.0000 -0.5800 2 1.000 950 1.000 130	1. 0.0	0.0	145.2740
9501301 ZnBr2 AQ 0.0000 -0.9800 2 1.000 950 2.000 130	0. 0.0	0.0	225.1780
9503800 ZnI + 0.0000 -2.9100 2 1.000 950 1.000 380	1. 0.0	0.0	192.2740
9503801 ZnI2 AQ 0.0000 -1.6900 2 1.000 950 2.000 380	0. 0.0	0.0	319.1780
9501400 ZnHCO3 + 0.0000 12.400	1. 0.0	0.0	126.3570

	1.00 3 9501401	1.000 950 1.000 140 ZnCO3 AQ 0.0000 5.3000	1.000 330	0.00	0 0	125.3790	
	2.00 2	1.000 950 1.000 140					
	4.00 2	Zn(CO3)2-2 0.0000 9.6300 1.000 950 2.000 140		-2. 0.0		185.3580	
	1601800 2	CdCl + 0.5900 1.9800 1.000 160 1.000 180		1. 0.0	0.0	147.8530	
	1601801 2	CdCl2 AQ 1.2400 2.6000 1.000 160 2.000 180		0. 0.0	0.0	183.3060	
	1601802	CdCl3 - 3.9000 2.3990		-1. 0.0	0.0	218.7590	
	2 1602700	CdF + 0.0000 1.1000		1. 0.0	0.0	131.3980	
		CdF2 AQ 0.0000 1.5000		0. 0.0	0.0	150.3960	
	2 1601400	1.000 160 2.000 270 Cd(CO3)3-4 0.0000 6.2200		-4. 0.0	0.0	292.4280	
	6.00 2 1603300	1.000 160 3.000 140 CdOH + 13.1000 -10.0800		1. 0.0	0.0	129.4070	
	3		-1.000 330	0. 0.0	0.0	146.4140	
	3	1.000 160 2.000 2	-2.000 330				
	3		-3.000 330	-1. 0.0	0.0	163.4220	
• .	1603303	Cd(OH)4 -2 0.0000 -47.3500 1.000 160 4.000 2	-4.000 330	-2. 0.0	0.0	180.4290	
	1603304 3	Cd2OH +3 10.8990 -9.3900 2.000 160 1.000 2	-1.000 330	3. 0.0	0.0	241.8074	
	1601803 4	CdOHCL AQ 4.3550 -7.4040 1.000 160 1.000 2	-1.000 330	$\begin{array}{c} 0. & 0.0\\ 1.000 & 180 \end{array}$	0.0	164.8600	
		CdNO3 + -5.2000 0.3990	20000 000	1. 0.0	0.0	174.4040	
	1607320	CdSO4 AQ 1.0800 2.4600 1.000 160 1.000 732		0. 0.0	0.0	208.4610	
	1607300	CdHS + 0.0000 10.1700		1. 0.0	0.0	145.4720	
		1.000 160 1.000 730 Cd(HS)2 AQ 0.0000 16.5300		0. 0.0	0.0	178.5430	
	1607302			-1. 0.0	0.0	211.6150	
		1.000 160 3.000 730 Cd(HS)4 -2 0.0000 20.9000		-2. 0.0	0.0	244.6870	
	2 1601300			1. 0.0	0.0	192.3040	
	2	1.000 160 1.000 130 CdBr2 AQ 0.0000 2.8990		0. 0.0	0.0	272.2080	
	2 1603800	1.000 160 2.000 130					
	2	1.000 160 1.000 380		1. 0.0	0.0	239.3040	
	1603801	CdI2 AQ 0.0000 3.5900 1.000 160 2.000 380		0. 0.0	0.0	366.2080	
	1601400 1.00 3	CdHCO3 + 0.0000 12.400 1.000 160 1.000 140	1.000 330	1. 0.0	0.0	173.4170	
		CdCO3 AQ 0.0000 5.3990 1.000 160 1.000 140		0. 0.0	0.0	172.4090	
	1607321	Cd(SO4)2-2 0.0000 3.5000 1.000 160 2.000 732		-2. 0.0	0.0	208.4610	
	1609900	Cd FULVATE 0.0000 0.0000		0. 0.0	0.0	762.3990	
		1.000 160 1.000 990 Cd HUMATE 0.0000 0.0000		0. 0.0	0.0	2112.3990	
	2 6001800			1. 0.0	0.0	242.6430	
	2 6001801	1.000 600 1.000 180 PbCl2 AQ 1.0800 1.8000		0. 0.0	0.0	278.0960	
	2 6001802	1.000 600 2.000 180		-1. 0.0	0.0	313.5490	
	2					349.0020	
	2001000	1.5000		2. 0.0	0.0	515.0020	

2 1.000 600 4.000 180 6001400 Pb(CO3)2-2 0.0000 10.6400	-2. 0.0 0.0 327.2080
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1. 0.0 0.0 226.1880
2 1.000 600 1.000 270 6002701 PbF2 AQ 0.0000 2.5600	0. 0.0 0.0 245.1860
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-1. 0.0 0.0 264.1850
6002703 PbF4 -2 0.0000 3.1000	-2. 0.0 0.0 283.1830
6003300 PbOH + 0.0000 -7.7100	1. 0.0 0.0 224.1970
3 1.000 600 1.000 2 -1.000 330 6003301 Pb(OH)2 AQ 0.0000 -17.1200	0. 0.0 0.0 241.2040
3 1.000 600 2.000 2 -2.000 330 6003302 Pb(OH)3 - 0.0000 -28.0600	-1. 0.0 0.0 258.2120
3 1.000 600 3.000 2 -3.000 330 6003303 Pb20H +3 0.0000 -6.3600	3. 0.0 0.0 431.3870
3 2.000 600 1.000 2 -1.000 330 6004920 PbNO3 + 0.0000 1.1700	
2 1.000 600 1.000 492 6007320 PbSO4 AQ 0.0000 2.7500	0. 0.0 0.0 303.2510
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0. 0.0 0.0 273.3330
2 1.000 600 2.000 730 6007301 Pb(HS)3 - 0.0000 16.5700	-1. 0.0 0.0 306.4050
2 1.000 600 3.000 730 6003304 Pb3(OH)4+2 26.5000 -23.8800	2. 0.0 0.0 689.5990
6001300 PbBr + 2.8800 1.7700	1. 0.0 0.0 287.0940
2 1.000 600 1.000 130 6001301 PbBr2 AQ 0.0000 1.4400	0. 0.0 0.0 366.9980
2 1.000 600 2.000 130 6003800 PbI + 0.0000 1.9400 1.000 6000 1.9400	1. 0.0 0.0 334.0940
2 1.000 600 1.000 380 6003801 Pb12 AQ 0.0000 3.1990	0.0.00.0460.9980
2 1.000 600 2.000 380 6001401 PbC03 AQ 0.0000 7.2400 2.000 2 1.000 600 1.000	0. 0.0 0.0 267.1990
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-2. 0.0 0.0 375.2190
3 1.000 600 4.000 2 -4.000 330 6007321 Pb(SO4)2-2 0.0000 3.4700 2 1.000 600 2.000 732	-2. 0.0 0.0 399.3130
2 1.000 600 2.000 732 6001402 PbHCO3 + 0.0000 13.200 1.00 3 1.000 600 1.000 140 1.000 330	1. 0.0 0.0 268.2070
5401300 NiBr + 0.0000 0.5000	1. 0.0 0.0 138.6140
5401800 NiCl + 0.0000 0.3990	1. 0.0 0.0 94.1630
2 1.000 540 1.000 180 5402700 NiF + 0.0000 1.3000	1. 0.0 0.0 77.7080
2 1.000 540 1.000 270 5403300 NiOH + 12.4200 -9.8600	1. 0.0 0.0 75.7170
3 1.000 540 1.000 2 -1.000 330 5403301 Ni(OH)2 AQ 0.0000 -19.0000 3 1.000 540 2.000 2 -2.000 330	0. 0.0 0.0 92.7240
5403302 Ni(OH)3 - 0.0000 -30.0000	-1.0.00.0109.7320
3 1.000 540 3.000 2 -3.000 330 5407320 NiSO4 AQ 1.5200 2.2900 2 1.000 540 1.000 732	0. 0.0 0.0 154.7710
5401801 NiCl2 AQ 0.0000 0.9600	0. 0.0 0.0 129.6160
5401400 NiHCO3 + 0.0000 12.470	1. 0.0 0.0 119.7270
1.00 3 1.000 540 1.000 140 1.000 330 5401401 NiCO3 AQ 0.0000 6.8700 2.00 2 1.000 540 1.000 140	0. 0.0 0.0 118.7190
5401402 Ni(CO3)2-2 0.0000 10.1100	-2. 0.0 0.0 178.7280

•

,	
4.00 2 1.000 540 2.000 140 5407321 Ni(SO4)2-2 0.0000 1.0200	-2. 0.0 0.0 250.8330
2 1.000 540 2.000 732 5409921 NI ACETATE 0.0000 1.4300	1. 0.0 0.0 117.7600
2 1.000 540 1.000 992 5409941 Ni GLYCINE 0.000 6.1800	1. 0.0 0.0 132.7800
2 1.000 540 1.000 994 5409942 Ni GLYCINE 0.000 11.13	3. 0.0 0.0 191.4900
2 2.000 540 1.000 994 5409951 Ni SALICYL 0.000 6.95	0. 0.0 0.0 194.8300
2 1.000 540 1.000 995 5409952 Ni SALICYL 0.000 11.75	2. 0.0 0.0 253.5400
2 2.000 540 1.000 995 5409961 Ni GLUTAMA 0.000 5.90	0. 0.0 0.0 203.8400
2 1.000 540 1.000 996 5401572 Ni GLUTAMA 0.000 10.34	
2 2.000 540 1.000 996	2. 0.0 0.0 202.3300
5409971 NI PHTHALA 0.000 2.95 2 1.000 540 1.000 997	0. 0.0 0.0 222.8400
0201300 AGBr AQ 0.0000 4.2400 2 1.000 20 1.000 130	0. 0.0 0.0 187.7720
0201301 AgBr2 - 0.0000 7.2800 2 1.000 20 2.000 130	-1. 0.0 0.0 267.6760
)201800 AgCL AQ -2.6800 3.2700 2 1.000 20 1.000 180	0. 0.0 0.0 143.3210
0201801 AgCL23.9300 5.2700 2 1.000 20 2.000 180	-1.0.00178.7740
0201802 AgCL3 -2 0.0000 5.2900 2 1.000 20 3.000 180	-2. 0.0 0.0 214.2270
0201803 AgCL4 -3 0.0000 5.5100 2 1.000 20 4.000 180	-3. 0.0 0.0 249.6790
0202700 AgF AQ -2.8300 0.3600 2 1.000 20 1.000 270	0. 0.0 0.0 126.8660
0207300 AgHS AQ 0.0000 14.0500 2 1.000 20 1.000 730	0. 0.0 0.0 140.9390
0207301 Ag(HS)2 - 0.0000 18.4500 2 1.000 20 2.000 730	-1. 0.0 0.0 174.0110
0203800 AgI AQ 0.0000 6.6000 2 1.000 20 1.000 380	0. 0.0 0.0 234.7720
0203801 AgI2 - 0.0000 10.6800 2 1.000 20 2.000 380	-1. 0.0 0.0 361.6760
0203300 AgOH AQ 0.0000 -12.0000 3 1.000 20 1.000 2 -1.000 330	0. 0.0 0.0 124.8750
0203301 Ag(OH)2 - 0.0000 -24.0000	-1.0.00141.8820
0207320 AgSO4 - 1.4900 1.2900 2 1.000 20 1.000 732	-1. 0.0 0.0 203.9290
2 1.000 20 1.000 732 0204920 AgNO3 AQ 0.0000 -0.2900	0. 0.0 0.0 169.8720
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-1. 0.0 0.0 199.8790
0201302 AgBr3 -2 0.0000 8.7100	-2. 0.0 0.0 347.5800
2 1.000 20 3.000 130 0203802 AgI3 -2 -27.0300 13.3700	-2. 0.0 0.0 488.5810
2 1.000 20 3.000 380 0203803 AgI4 -3 0.0000 14.0800	-3. 0.0 0.0 615.4850
2 1.000 20 4.000 380 0207302 Ag(S4)2 -3 0.0000 0.9910	-3. 22.0 0.0 364.3800
4 1.000 20 2.000 730 -2.000 330 0207303 AgS4S5 -3 0.0000 0.6800	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
4 1.000 20 2.000 730 -2.000 330 0207304 Ag(HS)S4-2 0.0000 10.4310	7.000 731 -2.15.0 0.0 269.1960
4 1.000 20 2.000 730 -1.000 330 0209900 Ag FULVATE 0.0000 0.0000	3.000 731 -1. 0.0 0.0 757.8680
2 1.000 20 1.000 990 0209910 Ag HUMATE 0.0000 0.0000	-1. 0.0 0.0 2107.8670

1.000 991 2 1.000 20 3300600 H2AsO3 -6.5600 -9.2280 -1. 0.0 0.0 124.9350 2 1.000 60 -1.000 330 3300601 HAsO3 -2 14.1990 -21.33 -2.0.00.0123.92702 1.000 60 -2.000 330 3300602 AsO3 -3 20.2500 -34.7440 -3. 0.0 0.0 122.9190 2 1.000 60 -3.000 330 3300610 H4AsO3 + 0.0000 -0.3050 1. 0.0 0.0 126.9510 2 1.000 60 1.000 330 3300611 H2AsO4 --1.6900 -2.2430 -1.0.00.0140.93502 1.000 61 -1.000 330 3300612 HAsO4 -2 -0.9200 -9.0010 -2. 0.0 0.0 139.9270 2 1.000 61 -2.000 330 3300613 AsO4 -3 3.4300 -20.5970 -3. 0.0 0.0 138.9190 2 1.000 61 -3.000 330 7400021 HSbO2 -0.0150 -0.0073 0.00 0.00 0.00 154.7567 0.00 2 1.000 740 -1.000 2 7402700 SbOF (aq) 0.0000 6.1864 0.00 0.00 0.00 156.7478 0.00 4 1.000 740 1.000 270 1.000 330 -2.000 2 7402702 Sb(OH)2F aq 0.0000 6.1937 0.00 0.00 0.00 174.7631 0.00 4 1.000 740 1.000 270 1.000 330 -1.000 2 7403300 SbO+ 1.9700 0.9228 1.00 0.00 0.00 137.7494 0.00 3 1.000 740 1.000 330 -2.000 7403301 SbO2-**16.7750 -11.8011** -1.0 0.00 0.00 153.7488 0.00 3 1.000 740 -1.000 2 -1.000 330 7403302 Sb(OH)2+ 0.0000 1.3853 1.00 0.00 0.00 155.7647 0.00 3 1.000 740 1.000 330 -1.000 2 7407300 Sb2S4-2 -75.6800 49.3005 -2.0 0.00 0.00 371.7640 0.00 4 2.000 740 4.000 730 2.000 330 -6.000 2 7410021 Sb03-0.0000 2.9319 -1.0 0.00 0.00 169.7482 0.00 2 1.000 741 -3.000 2 7413300 SbO2+ 0.0000 2.3895 1.00 0.00 0.00 153.7488 1.000 741 0.00 3 2.000 330 -4.000 2 7400020 Sb(OH)4-1 16.6950 -12.0429 -1.0 0.00 0.00 189.7794 1.000 740 1.000 2 -1.000 330 0.00 3 3301400 HCO3 - -3.6170 10.3300 -1.5.40.061.01701.00 2 1.000 140 1.000 330 3301401 H2CO3 AQ -2.2470 16.681 0. 0.0 0.0 62.0250 2 1.000 140 2.000 330 3307320 HSO4 - 4.9100 1.9870 -1.4.50.097.0690 2 1.000 732 1.000 330 3302700 HF AQ 3.4600 3.1690 0. 0.0 0.0 20.0060 2 1.000 270 1.000 330 3302701 HF2 - 4.5500 3.7490 -1. 3.5 0.0 39.0040 2 2.000 270 1.000 330 3302702 H2F2 AQ 0.0000 6.7680 0. 0.0 0.0 40.0120 2 2.000 270 2.000 330 3305800 HPO4 -2 -3.5300 12.3460 -2.5.00.095.9790 2 1.000 580 1.000 330 3305801 H2PO4 - -4.5200 19.5530 -1. 5.4 0.0 96.9870 2 1.000 580 2.000 330 3305802 H3PO4 0.0000 21.7000 0. 0.0 0.0 97.9950 2 1.000 580 3.000 330 3307300 H2S AQ -5.300 6.9940 0. 0.0 0.0 34.0790 2 1.000 730 1.000 330 3307301 S -2 12.1000 -12.9180 -2.5.00.0 32.0640 2 1.000 730 -1.000 330 3309900 H FULVATE 0.0000 0.0000 -1.0.00.0 651.0080 2 1.000 990 1.000 330 3309910 H HUMATE 0.0000 0.0000 -1.0.02001.0070 0.0 2 1.000 991 1.000 330 8913300 UOH +3 11.715 -0.656 3. 0.0 0.0 255.0364 3 1.000 891 1.000 2 -1.000 330 8913301 U(OH)2 +2 17.730 -2.270 2. 0.0 0.0 272.0437 3 -2.000 330 1.000 891 2.000 2 8913302 U(OH)3 +1 22.645 -4.935 1. 0.0 0.0 289.0511

2 1 000 801 2 000 2	2 000 220			
3 1.000 891 3.000 2 8913303 U(OH)4 AQ 24.760 -8.498 3 1.000 891 4.000 2	-3.000 330 -4.000 330	0. 0.0	0.0	306.0586
8913304 U(OH)5 -1 27.575 -13.120 3 1.000 891 5.000 2		-1. 0.0	0.0	323.0659
8913305 U6(OH)15+9 -17.229 3 6.000 891 15.000 2		9. 0.0	0.0	1683.2846
8912700 UF +3 5.050 8.659	-15.000 330	3. 0.0	0.0	257.0274
8912701 UF2 +2 7.200 14.457		2. 0.0	0.0	276.0258
8912702 UF3 +1 7.150 19.115		1. 0.0	0.0	295.0242
8912703 UF4 AQ 4.600 23.640		0. 0.0	0.0	314.0226
8912704 UF5 -1 4.850 25.238		-1. 0.0	0.0	333.0210
8912705 UF6 -2 3.300 27.718		-2. 0.0	0.0	352.0194
8911800 UCL +3 9.933 1.338		3. 0.0	0.0	273.4820
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		2. 0.0	0.0	334.0906
2 1.000 891 1.000 732 3917321 U(SO4)2 AQ 7.600 9.749 2 1.000 891 2.000 732		0.0.0	0.0	430.1522
8915800 UHPO4 +2 7.500 24.443		2. 0.0	0.0	334.0084
3 1.000 891 1.000 580 8915801 U(HPO4)2AQ 1.700 46.833 3 1.000 891 2.000 580	1.000 330 2.000 330	0. 0.0	0.0	429.9877
8915802 U(HPO4)3-2 -7.800 67.564 3 1.000 891 3.000 580	3.000 330	-2. 0.0	0.0	525.9671
8915803 U(HPO4)4-4 -26.500 88.483 3 1.000 891 4.000 580	4.000 330	-4. 0.0	0.0	621.9465
8933300 UO20H +1 10.216 -5.090 3 1.000 893 1.000 2	-1.000 330	1. 0.0	0.0	287.0352
8933301 U02)20H2+2 10.230 -5.645 3 2.000 893 2.000 2	-2.000 330	2. 0.0	0.0	574.0703
8933302 UO2)30H5+1 25.075 -15.593 3 3.000 893 5.000 2	-5.000 330	1. 0.0	0.0	895.1203
8931400 UO2CO3 AQ 0.840 10.071 2.00 2 1.000 893 1.000 140	5.000 550	0. 0.0	0.0	330.0372
8931401 U02C03)2-2 3.480 17.008 4.00 2 1.000 893 2.000 140		-2. 0.0	0.0	390.0465
8931402 UO2CO3)3-4 -8.780 21.384 6.00 2 1.000 893 3.000 140		-4. 0.0	0.0	450.0559
8932700 UO2F +1 -0.450 5.105 2 1.000 893 1.000 270		1. 0.0	0.0	289.0262
3932701 UO2F2 AQ -0.900 8.920 2 1.000 893 2.000 270		0. 0.0	0.0	308.0246
8932702 UO2F3 -1 -0.850 11.364 2 1.000 893 3.000 270		-1. 0.0	0.0	327.0230
8932703 UO2F4 -2 -1.100 12.607 2 1.000 893 4.000 270		-2. 0.0	0.0	346.0214
8931800 UO2C1 +1 1.233 0.220 2 1.000 893 1.000 180		1. 0.0	0.0	305.4808
8937320 U02504 AQ 5.100 2.709 2 1.000 893 1.000 732		0. 0.0	0.0	366.0894
8937321 U02S04)2-2 6.100 4.183 2 1.000 893 2.000 732		-2. 0.0	0.0	462.1510
8935800 UO2HPO4 AQ -2.100 20.814 3 1.000 893 1.000 580	1.000 330	0. 0.0	0.0	366.0072
8935801 U02HPO4)2 -11.399 42.988 3 1.000 893 2.000 580	2.000 330	-2. 0.0	0.0	461.9865
8935802 U02H2PO4+1 -3.700 22.643 3 1.000 893 1.000 580	2.000 330	1. 0.0	0.0	367.0151
8935803 UO2H2PO4)2 -16.5 44.70	2.000 550	0.0	0	464.002

. .

3 1.000 893 8935804 UO2H2PO4)3 -28.0	2.000 580 5 66.245	4.000 330	-1.00	560.989
3 1.000 893 8937700 UO2H3SIO4	3.000 580 -2.4	6.000 330	1.0 0	365.135
3 1.000 893 7317300 S2 -2 11.4	1.000 770	-1.000 330	-2. 0.0 0.	
3 1.000 730 7317301 S3 -2 10.4	1.000 731	-1.000 330	-2. 0.0 0.	
3 1.000 730	2.000 731	-1.000 330		
3 1.000 730	-9.829 3.000 731	-1.000 330	-2. 0.0 0.	
7317303 S5 -2 9.3 3 1.000 730	-9.595 4.000 731	-1.000 330	-2.0.00.	
7317304 S6 -2 3 1.000 730	-9.881 5.000 731	-1.000 330	-2. 0.0 0.	0 192.384
9003300 VOH + 3 1.000 900	-5.64 1.000 2	-1.000 330	1.	67.947
9013300 VOH +2 9.35 3 1.000 901	-2.30 1.000 2	-1.000 330	2.	67.947
9013301 V(OH)2 +1 3 1.000 901	~5.83 2.000 2	-2.000 330	1.	84.955
9013302 V(OH)3 AQ	-11.02		0.	101.962
3017320 VSO4 +1	3.000 2 1.44	-3.000 330	1.	146.998
2 1.000 901 9013303 V2(OH)3 +3	1.000732 -7.50		3.	152.902
3 2.000 901 9013304 V2(OH)2 +4	-3.75	-3.000 330	4.	135.895
3 2.000 901 9023300 V(OH)3 +1	-5.67	-2.000 330	1.	101.962
3 1.000 902 9023301 H2V2O4 +2	$2.000 \ 2 \ -6.44$	-1.000 330	2.	167.894
3 2.000 902 9022700 VOF + 1.9	2.000 2 3.34	-2.000 330	1.	85.937
2 1.000 902 9022701 VOF2 AQ 3.50	1.000 270 5.74		0.	104.935
2 1.000 902 9022702 VOF3 -1 4.90	2.000 270 7.30		-1.	123.933
2 1.000 902 9022703 VOF4 -2 6.40	3.000 270 8.11			
2 1.000 902	4.000 270		-2.	142.931
9027320 VOSO4 AQ 3.72 2 1.000 902	2.45 1.000 732		0.	162.997
9021800 VOCL +1 2 1.000 902	0.02 1.000 180		1.	102.392
9033300 H3VO4 AQ 10.63 3 1.000 903	2.000 2	-1.000 330	0.	117.962
9033301 H2VO4 -1 11.33 3 1.000 903		-2.000 330	-1.	116.954
9033302 HVO4 -2 14.93 3 1.000 903		-3.000 330	-2.	115.946
9033303 VO4 -3 19.53 3 1.000 903	-28.40	-4.000 330	-3.	114.938
9030020 V207 -4 3 2.000 903	-29.08	-6.000 330	-4.	213.876
9030021 HV207 -3 3 2.000 903	-16.32	-5.000 330	-3.	214.884
9030022 H3V207 -1	-3.79		-1.	216.900
3 2.000 903 9030023 V309 -3	-15.88	-3.000 330	-3.	296.815
3 3.000 903 9030024 V4012 -4	-20.79	-6.000 330	-4.	395.753
3 4.000 903 9030025 V10028 -6	-17.53	-8.000 330	-6.	957.383
3 10.000 903 9030026 HV10028 -5 21.52		16.000 330	-5.	958.391

[]

3					-15.000	330				
	H2V10028			7.71			-4.			959.399
3	10.000 VO2F AQ	903		.12	-14.000	330	0.			101 007
2	1.000	903					0.			101.937
	VO2F2 -1	500		.67			-1.			120.935
2		903	2.000							
	VO2F3 -2			.97			-2.			139.933
2	1.000 VO2F4 -3	903					2			150 004
9032703	1.000	903		.07			-3.			158.931
	V02S04 -1			.71			-1.			178.996
2	1.000		1.000	732						1,0.550
	VO2NO3 AQ		_	0.43			0.			144.944
8702200	1.000 TIOH AQ	903	1.000 13.9350	492	-					
0.00 3		870	1.000		′_1.000		0.00	0.00	0.00	221.3773
8702700			0.0000	-0.425		550	0.00	0.00	0 00	223.3684
0.00 2	1.000	870	1.000		-		0.00	0.00	0.00	223.3001
	TICI AQ			0.682	4		0.00	0.00	0.00	239.8230
0.00 2		870								
0.00 2	TlCl2-1 1.000	870	0.0000 2.000	0.243	4		-1.0	0.00	0.00	275.2760
3701300				0.947	7		0.00	0.00	0.00	284.2740
0.00 2	1.000	870	1.000	130						
	TlBr2-1	070	2.9980	0.971	9		-1.0	0.00	0.00	364.1780
0.00 2		870		0.816	5		_1 0	0 00	0 00	210 2020
0.00 3					, 1.000	180		0.00	0.00	319.7270
8703800			0.0000	1.4279		TOO		0.00	0.00	331.2745
0.00 2			1.000							
8703801 0.00 2		970	0.0000	1.8588	3		-1.0	0.00	0.00	458.1790
8703802		070	2.000 0.0000	2.1850)		-1 0	ົດດດ	0 00	411.1785
0.00 3			1.000		1.000	130		0.00	0.00	111.1705
8707320			-0.2200	1.3853	3		-1.0	0.00	0.00	300.4276
0.00 2	1.000 TlNO3 AQ	870	1.000 -0.6500		-		0.00	0 00	0 00	0.00 0.740
0.00 2		870	1.000	0.3665)		0.00	0.00	0.00	266.3749
	TlNO2 AQ	0.0	0.0000)		0.00	0.00	0.00	250.3755
0.00 2		870	1.000							
8707300		070	0.0000	1.8178	3		0.00	0.00	0.00	237.4379
0.00 2 8707301		870	1.000 0.0000	7.6979	2		1 00	0 00	0 00	441.8079
0.00 2			1.000		·		1.00	0.00	0.00	441.0079
	T12OH(HS)3	3-	0.0000	1.0044	ł		-2.0	0.00	0.00	524.9510
0.00 4		870	3.000		1.000	2	-1.000			
0.00 4	Tl2(OH)2(H 2.000		0.0000 - 2.000		2.000	2			0.00	508.8904
8713300		070	0.0000			4	-2.000		0 00	204.3700
0.00 3	1.000	871	3.000	330	-3.000	2	5.00	0.00	0.00	201.5700
8713301			0.0000	3.5770			2.00	0.00	0.00	221.3773
0.00 3	1.000 Tl(OH)2+1	871	2.000		-2.000	2	1 00	0 00	0 00	220 2046
0.00 3	1.000	871	0.0000 1.000	2.1183	-1.000	2	1.00	0.00	0.00	238.3846
8711800		0,1	0.0000	12.2342		2	2.00	0.00	0.00	239.8230
0.00 4	1.000	871	1.000	180	3.000	330	-3.000	2		
$8711801 \\ 0.00 4$	T1C12+1 1.000	971	0.0000	18.0402		220		-	0.00	275.2760
	TICI3 AQ	011	2.000 0.0000	21.4273	3.000	330	-3.000	2	0.00	310.7290
0.00 4	1.000	871	3.000		3.000	330	-3.000	2		
8711803			0.0000	24.2281			-1.0		0.00	346.1820
0.00 4 8711300	1.000	871	4.000	180 14.2221	3.000	330	-3.000	2	0 00	204 2740
0.00 4	1.000	871	0.0000 1.000		3.000	330	-3.000	2	0.00	284.2740
8711301			0.0000	21.5761					0.00	364.1780

0.00 4 1.000 871 2.000 130 3.000 330 8711302 TlBr3 AQ 0.0000 27.0244 0.00 4 1.000 871 3.000 130 3.000 330 0.0000 31.1533 8711303 TlBr4-1 0.00 4 1.000 871 4.000 130 3.000 330 8713800 TlI4-1 0.0000 34.7596 0.00 4 1.000 871 4.000 380 3.000 330 8714920 TlNO3+2 0.0000 7.0073 0.00 4 1.000 871 1.000 492 3.000 330 8713303 T1(OH)4-1 0.0000 - 10.25450.00 3 1.000 871 1.000 2 -1.000 3308711804 TlOHCl+1 0.0000 10.6290 1.000 180 0.00 4 1.000 871 2.000 330 3307601 Se-2 11.5000 -14.9529 0.00 2 1.000 760 -1.000 330 3307600 H2Se 0.8000 3.8115 0.00 2 1.000 760 1.000 330 0.0000 -6.7435 4707600 MnSe 1.000 470 0.00 3 1.000 760 -1.000 330207600 Aq2Se 0.0000 34.0677 0.00 3 1.000 760 2.000 20 -1.000 3300.0000 -18.6237 207601 AgOH(Se)2-4 0.00 4 2.000 760 1.000 20 1.000 3307611 SeO3-2 1.2800 -7.3005 0.00 2 1.000 761 -1.000 3303307610 H2SeO3 1.6900 2.5728 1.000 330 0.00 2 1.000 761 2817610 FeHSeO3+2 0.0000 1.8618 0.00 2 1.000 761 1.000 281 207610 AgSeO3-1 0.0000 -5.5985 0.00 3 1.000 761 1.000 20 -1.000 330207611 Ag(SeO3)2-3 0.0000 - 10.99330.00 3 2.000 761 1.000 20 -2.000 3301607610 Cd(SeO3)2-2 0.0000 -11.1890 0.00 3 2.000 761 1.000 160 -2.000 330 3307620 HSeO4-1 4.2000 1.9058 0.00 2 1.000 762 1.000 330 4707620 MnSeO4 3.4600 2.4188 0.00 2 1.000 762 1.000 470 2007620 CoSeO4 2.9100 2.7120 0.00 2 1.000 762 1.000 200 5407620 NiSeO4 3.5000 2.6387 0.00 2 1.000 762 1.000 540 1607620 CdSeO4 0.0000 2.24150.00 2 1.000 762 1.000 160 9507620 ZnSeO4 0.0000 2.2019 0.00 2 1.000 762 1.000 950 9507621 Zn(SeO4)2-2 0.0000 -0.0704 0.00 2 2.000 762 1.000 950 3600000 Hg (aq) -16.60506.9316 0.00 2 0.500 360 1.000 1 3613300 Hg+2 -11.06006.0970 0.00 3 1.000 361 2.000 330 -2.0003611301 HgBr+ 0.0000 15.8347 0.00 4 1.000 130 2.000 330 1.000 361 3611302 HgBr2 (aq) -30.8320 23.6065 0.00 4 1.000 361 2.000 130 2.000 330 3611303 HgBr3-1 0.0000 25.7857 0.00 4 1.000 361 2.000 330 3.000 130 3611304 HgBr4-2 0.0000 27.0633 0.00 4 1.000 361 2.000 330 4.000 130 3611305 HgBrCl (aq) 0.0000 22.0145 0.00 5 1.000 361 1.000 130 1.000 180 27.1212 3611306 HgBrI (aq) 0.0000 0.00 5 1.000 361 1.000 130 1.000 380 3611307 HgBrI3-2 0.0000 34.2135

-3.000 2 0.00 0.00 0.00 444.0820 -3.000 2 -1.0 0.00 0.00 523.9860 -3.000 2 -1.0 0.00 0.00 711.9880 -3.000 2 2.00 0.00 0.00 266.3749 -3.000 - 2 -1.0 0.00 0.00 272.3992 1.00 0.00 0.00 256.8303 -2.0002 -2.0 0.00 0.00 78.9600 0.00 0.00 0.00 80.9758 0.00 0.00 0.00 133.8980 0.00 0.00 0.00 294.6960 $-4.0\ 0.00\ 0.00\ 282.7953$ -3.000 330-2.0 0.00 0.00 126.9582 0.00 0.00 0.00 128.9740 2.00 0.00 0.00 183.8131 -1.0 0.00 0.00 234.8262 -3.0 0.00 0.00 361.7844 $-2.0\ 0.00\ 0.00\ 366.3264$ -1.0 0.00 0.00 143.9655 0.00 0.00 0.00 197.8956 0.00 0.00 0.00 201.8908 0.00 0.00 0.00 201.6576 0.00 0.00 0.00 255.3676 0.00 0.00 0.00 208.3376 -2.0 0.00 0.00 351.2952 0.00 0.00 0.00 200.5900 2.00 0.00 0.00 200.5900 1.00 0.00 0.00 280.4940 -2.000 2 0.00 0.00 0.00 360.3980 -2.000 2 -1.0 0.00 0.00 440.3020 -2.000 2 $-2.0\ 0.00\ 0.00\ 520.2060$ -2.000 2 0.00 0.00 0.00 315.9470 2.000 330 -2.000 2 0.00 0.00 0.00 407.3985 2.000 330 -2.000 2 -2.0 0.00 0.00 661.2075

2

2

3.000 380 0.00 5 1.000 361 1.000 130 3611308 HgBr2I2-2 0.0000 32.3994 2.000 380 0.00 5 1.000 361 2.000 130 3611309 HgBr3I-2 0.0000 30.1528 3.000 130 0.00 5 1.000 361 1.000 380 3613301 HgBrOH (aq) 0.0000 11.5980 0.00 4 1.000 361 1.000 130 1.000 330 3611800 HgCl+1 0.0000 12.8500 0.00 4 1.000 361 1.000 180 2.000 330 0.0000 19.2203 3611801 HgCl2 (aq) 1.000 361 2.000 180 0.00 4 2.000 330 3811802 HgCl3-1 0.0000 20.1226 0.00 4 1.000 361 3.000 180 2.000 330 3611803 HgCl4-2 0.0000 20.5338 0.00 4 1.000 361 4.000 180 2.000 330 3611804 HgClI (aq) 0.0000 25.3532 1.000 361 1.000 180 1.000 380 0.00 5 3611805 HgClOH (aq) -12.4820 9.3170 1.000 330 0.00 4 1.000 361 1.000 180 3612701 HgF+1 0.0000 8.0848 0.00 4 1.000 361 1.000 270 2.000 330 3613801 HGI+1 0.0000 18.8949 1.000 361 1.000 380 -0.00 4 2.000 330 3613802 HgI2 (aq) -44.5220 30.1081 0.00 4 1.000 361 2.000 380 2.000 330 3613803 HgI3-1 -47.9430 33.7935 0.00 4 1.000 361 3.000 380 2.000 330 3613804 HgI4-2 0.0000 35.7858 1.000 361 4.000 380 0.00 4 2.000 330 3614900 HgNH3+2 0.0000 5.6139 1.000 361 1.000 490 1.000 330 0.00 4 3614901 Hg(NH3)2+2 0.0000 5.0341 0.00 3 1.000 361 2.000 490 -2.0000.0000 -3.2493 3614902 Hg(NH3)3+2 0.00 4 1.000 361 3.000 490 -1.000 3300.0000 -11.7307 3614903 Hg(NH3)4+2 0.00 4 1.000 361 4.000 490 -2.000 3303614920 HgNO3+1 0.0000 6.4503 0.00 4 1.000 361 1.000 492 2.000 330 3614921 Hg(NO3)2 (a 0.0000 4.7791 0.00 4 1.000 361 2.000 492 2.000 330 3613302 HqOH+1 0.0000 2.6974 1.000 361 0.00 3 1.000 330 -1.0002 3613303 Hg(OH)3-1 0.0000 -15.0042 0.00 3 1.000 361 1.000 2 -1.000 3303617300 HgS2-2 0.0000 31.2398 1.000 361 0.00 3 2.000 730 -2.0002 3617301 Hg(HS)2 (aq 0.0000 43.8178 0.00 4 1.000 361 2.000 730 2.000 330 3617320 HgSO4 (aq) 0.0000 7.4911 0.00 4 1.000 361 1.000 732 2.000 330 2113300 Cr+3 -20.14009.62 0.00 3 1.000 211 2.000 330 -2.0002 2113301 Cr(OH)+2 0.0000 5.6200 1.000 330 -1.000 2 0.00 3 1.000 211 2110020 Cr(OH)3 AQ 0.0000 -7.1300 1.000 2 -1.000 330 0.00 3 1.000 211 0.0000 -18.1500 2110021 Cr(OH)4-0.00 3 1.000 211 2.000 2 -2.000 330 2113304 CrO2-0.0000 - 17.74561.000 211 -2.000 330 0.00 2 2111300 CrBr+2 -11.2110 7.5519 1.000 130 2.000 330 0.00 4 1.000 211 2111800 CrCl+2 -13.84709.3683 1.000 211 1.000 180 2.000 330 0.00 4 2111801 CrCl2 + -9.37408.6580

2.000 330 -2.000-2 -2.0 0.00 0.00 614.2070 2.000 330 -2.0002 -2.0 0.00 0.00 567.2065 2.000 330 -2.000 2 0.00 0.00 0.00 297.5013 -1.000 2 1.00 0.00 0.00 236.0430 -2.000 2 0.00 0.00 0.00 271.4960 -2.0002 -1.0 0.00 0.00 306.9490 -2.000 2 -2.0 0.00 0.00 342.4020 -2.0002 0.00 0.00 0.00 362.9475 2.000 330 -2.000 2 0.00 0.00 0.00 253.0503 -1.0002 1.00 0.00 0.00 219.5884 -2.000- 2 1.00 0.00 0.00 327.4945 -2.0002 0.00 0.00 0.00 454.3990 -2.0002 -1.0 0.00 0.00 581.3035 -2.0002 -2.0 0.00 0.00 708.2080 -2.0002 2.00 0.00 0.00 217.6204 -2.0002 2.00 0.00 0.00 234.6508 2.00 0.00 0.00 251.6812 -2.000 2 2.00 0.00 0.00 268.7116 -2.000 2 1.00 0.00 0.00 262.5949 -2.000 2 0.00 0.00 0.00 324.5998 -2.000 2 1.00 0.00 0.00 217.5973 -1.0 0.00 0.00 251.6119 $-2.0\ 0.00\ 0.00\ 264.7100$ 0.00 0.00 0.00 266.7258 -2.0002 0.00 0.00 0.00 296.6476 -2.0002 3.00 0.00 0.00 51.9960 2.00 0.00 0.00 69.0033 0.00 0.00 0.00 103.0179 -1.0.000.000120.0252-1. 0.00 0.00 83.9948 2.00 0.00 0.00 131.9000 -2.000 2 2.00 0.00 0.00 87.4490 -2.000 2 1.00 0.00 0.00 122.9020

2.000 330 0.00 4 1.000 211 2.000 180 2111802 CrOHCl2 AQ 0.0000 2.9627 0.00 4 1.000 211 2.000 180 1.000 330 2112700 CrF+2 -16.7890 14.5424 1.000 211 1.000 270 2.000 330 0.00 4 0.0000 2113800 CrI+2 4.8289 1.000 380 0.00 4 1.000 211 2.000 330 2114900 Cr(NH3)6+3 0.0000 - 32.5709-4.000 330 0.00 4 1.000 211 6.000 490 0.0000 -30.2759 2114901 CrNH3)50H+2 0.00 4 1.000 211 5.000 490 -4.000 330 0.0000 -29.8574 2114902 CCrNH3)40H2 0.00 3 1.000 211 4.000 490 -4.000 3300.0000 -30.5537 2114903 TCrNH3)40H2 -4.000 3300.00 3 1.000 211 4.000 490 2114904 CrNH3)6CL+2 0.0000 - 31.79320.00 5 1.000 211 6.000 490 1.000 180 2114905 CrNH3)6BR+2 0.0000 -31.8870 0.00 5 1.000 211 6.000 490 1.000 130 2114906 CrNH3)6I +2 0.0000 -32.0080 0.00 5 1.000 211 6.000 490 1.000 380 2114920 CrNO3 +2 -15.64008.2094 2.000 330 0.00 4 1.000 211 1.000 492 2115800 CrH2PO4 +2 0.0000 31.9068 0.00 4 1.000 211 4.000 330 1.000 580 2117320 CrSO4 + -12.620010.9654 0.00 4 1.000 211 1.000 732 2.000 330 2117321 CrOHSO4 AQ 0.0000 8.2754 1.000 211 1.000 732 0.00 4 1.000 330 2117322 Cr20H2SO4)S 0.0000 14.5278 0.00 4 2.000 211 2.000 732 2.000 330 2117323 Cr20H2SO4+2 0.0000 16.1550 2.000 211 1.000 732 2.000 330 0.00 4 2117324 Cr20H2SO42 0.0000 17.9288 0.00 4 2.000 211 2.000 732 2.000 330 2123300 HCrO4 -0.9000 6.5089 0.00 2 1.000 212 1.000 330 0.0000 2123301 H2CrO4 AQ 5.6513 0.00 2 1.000 212 2.000 330 -2.9950 14.5571 2123302 Cr207 -2 0.00 3 2.000 330 2.000 212 -1.000 2 2121800 CrO3Cl -0.0000 7.3086 0.00 4 1.000 212 1.000 180 2.000 330 2125800 Cr03H2PO4-0.0000 29.3634 0.00 4 4.000 330 1.000 580 1.000 212 2125801 CrO3HPO4-2 0.0000 26.6806 0.00 4 3.000 330 1.000 580 1.000 212 2127320 Cr03S04-2 0.0000 8.9937 1.000 732 2.000 330 0.00 4 1.000 212 5002120 NaCrO4-0.0000 0.6963 0.00 2 1.000 212 1.000 500 4102120 KCrO4-0.0000 0.7990 0.00 2 1.000 212 1.000 410 1001431 BaFe(CN)6-1 -69.6800 55.4356 6.000 143 0.00 3 1.000 100 1.000 281 1501434 CaHFe(CN)6-2 -82.0000 52.7097 0.00 5 1.000 150 1.000 330 1.000 280 4101433 KFe(CN)6-3 -84.000048.1204 1.000 410 1.000 280 6.000 143 0.00 3 -77.3000 48.9780 4101434 K2Fe(CN)6-2 2.000 410 0.00 3 1.000 280 6.000 143 4101435 KHFe(CN)6-2 -78.1000 51.4702 1.000 280 0.00 4 1.000 410 1.000 330 4401432 Li2Fe(CN)6-2 -83.4980 48.5338 0.00 3 2.000 440 1.000 280 6.000 143 4401433 LiHFe(CN)6-2 -80.9990 51.2188

-2.000 2 0.00 0.00 0.00 139.9093 -1.000 2 2.00 0.00 0.00 70.9944 -2.0002 2.00 0.00 0.00 178.9005 -2.0002 3.00 0.00 0.00 154.1784 -2.000 2 2.00 0.00 0.00 154.1553 -1.000 2 1.00 0.00 0.00 154.1322 1.00 0.00 0.00 154.1322 2.00 0.00 0.00 189.6314 -2.000 2 -4.000 330 2.00 0.00 0.00 234.0824 -4.000 330-2.0002 2.00 0.00 0.00 281.0829 -4.000 330 -2.000 2 2.00 0.00 0.00 114.0009 -2.0002 2.00 0.00 0.00 148.9832 -2.0002 1.00 0.00 0.00 148.0536 -2.0002 0.00 0.00 0.00 165.0609 -1.0002 0.00 0.00 0.00 330.1218 -2.0002 2.00 0.00 0.00 234.0642 -2.000 2 0.00 0.00 0.00 330.1218 -2.000 2 -1.0 0.00 0.00 117.0015 0.00 0.00 0.00 118.0094 $-2.0\ 0.00\ 0.00\ 215.9878$ -1.0 0.00 0.00 135.4472 -1.000 2 -1.0 0.00 0.00 196.9814 -1.0002 -2.0 0.00 0.00 195.9735 -1.000 2 -2.0 0.00 0.00 196.0518 -1.000 2 -1.0 0.00 0.00 138.9834 -1.0 0.00 0.00 155.0919 $-1.00\ 0.00\ 0.00\ 349.2804$ $-2.00\ 0.00\ 0.00\ 253.0394$ 6.000 143 1.000 1 -3.00 0.00 0.00 251.0517 -2.00 0.00 0.00 290.1500 -2.00 0.00 0.00 252.0597 6.000 143 $-2.00\ 0.00\ 0.00\ 225.8354$ $-2.00\ 0.00\ 0.00\ 219.9024$

0.00 4 1.000 440 1.000 330 1.000 280 4901431 NH4Fe(CN)6-3 -84.5000 48.0684 0.00 3 1.000 490 6.000 143 1.000 280 4901433 NH5Fe(CN)6- -83.9000 51.4035 0.00 4 1.000 490 1.000 330 1.000 280 -84.9000 47.9885 5001431 NAFe(CN)6-3 0.00 3 1.000 500 1.000 280 6.000 143 5001432 Na2Fe(CN)6-2 -85.0000 48.7435 0.00 3 2.000 500 1.000 280 6.000 143 5001433 NaHFe(CN)6-2 -85.6000 51.4335 0.00 4 1.000 500 1.000 330 1.000 280 4901432 NH4)2FeCN6-2 -83.0000 48.8666 0.00 3 2.000 490 1.000 280 6.000 143 201431 Ag(CN)OH-0.0000 -0.5600 0.00 4 1.000 143 1.000 20 1.000 2 201432 Ag(CN)2--32.675020.3814 2.000 143 0.00 2 1.000 20 4101431 K2H2Fe(CN)6 -85.8600 52.3058 0.00 4 6.000 143 2.000 410 2.000 330 1501431 CaFe(CN)6--69.5000 55.4730 0.00 3 6.000 143 1.000 150 1.000 281 1501432 CaFe(CN)6-2 -83.1000 49.6898 0.00 3 6.000 143 1.000 150 1.000 280 1501433 Ca2Fe(CN)6 -83.700050.9952 0.00 3 6.000 143 2.000 150 1.000 280 1601431 CdCN+ 0.0000 5.3200 0.00 2 1.000 143 1.000 160 1601432 Cd(CN)2 (aq) -13.0000 10.3703 0.00 2 2.000 143 1.000 160 1601433 Cd(CN)3--21.6000 14.8341 0.00 2 3.000 143 1.000 160 1601434 Cd(CN)4-2 -23.5600 18.2938 4.000 143 0.00 2 1.000 160 2301431 Cu(CN)4-3 -51.4000 30.3456 0.00 2 4.000 143 1.000 230 2301432 Cu(CN)2--29.100024.0272 0.00 2 2.000 143 1.000 230 2301433 Cu(CN)3-2 -40.200028.6524 3.000 143 1.000 230 0.00 2 2801431 Fe(CN)6-4 -85.8000 45.6063 1.000 280 0.0026.000 143 2801432 HFe(CN)6-3 -84.160049.9969 0.00 3 6.000 143 1.000 280 1.000 330 2801433 H2Fe(CN)6-2 -83.1000 52.4450 0.00 3 6.000 143 2.000 330 1.000 280 2811431 Fe(CN)6-3 -70.100052.6283 6.000 143 0.00 2 1.000 281 3301431 HCN -10.40009.2356 1.000 330 0.00 2 1.000 143 -2.00003301441 HOCN 3.4450 0.00 2 1.000 144 1.000 330 3611431 HqCN+ -33.8300 24.1738 0.00 4 1.000 143 1.000 361 2.000 330 3611432 Hg(CN)2 -57.2400 40.6513 0.00 4 2.000 143 1.000 361 2.000 330 3611433 Hg(CN)3--64.8300 44.4042 3.000 143 0.00 4 1.000 361 2.000 330 3611434 Hg(CN)4-2 -69.9300 47.4094 0.00 4 4.000 143 1.000 361 2.000 330 3611435 Hg(CN)2Cl-0.0000 40.3735 0.00 5 2.000 143 1.000 180 1.000 361 3611436 Hg(CN)3Cl-2 0.0000 43.8332 0.00 5 3.000 143 1.000 180 1.000 361 3611437 Hq(CN)3Br-2 0.0000 44.9415 0.00 5 3.000 143 1.000 130 1.000 361 3801432 I2CN-0.0000 -11.8480

6.000 143 -3.00 0.00 0.00 314.0324 -2.00 0.00 0.00 315.0403 6.000 143 $-3.00\ 0.00\ 0.00\ 234.9432$ -2.00 0.00 0.00 257.9330 -2.00 0.00 0.00 235.9512 6.000 143 -2.00 0.00 0.00 332.0709 -1.00 0.00 0.00 150.8933 -1.000 330-1.00 0.00 0.00 159.9037 0.00 0.00 0.00 292.1659 1.000 280 -1.00 0.00 0.00 252.0314 $-2.00\ 0.00\ 0.00\ 252.0314$ 0.00 0.00 0.00 292.1094 1.00 0.00 0.00 138.4287 0.00 0.00 0.00 164.4465 $-1.00\ 0.00\ 0.00\ 190.4642$ $-2.00\ 0.00\ 0.00\ 216.4820$ -3.00 0.00 0.00 167.6170 -1.00 0.00 0.00 115.5815 -2.00 0.00 0.00 141.5992 $-4.00\ 0.00\ 0.00\ 211.9534$ -3.00 0.00 0.00 212.9614 $-2.00\ 0.00\ 0.00\ 213.9693$ -3.00 0.00 0.00 211.9534 0.00 0.00 0.00 27.0257 0.00 0.00 0.00 43.0251 1.00 0.00 0.00 226,6077 -2.000 2 0.00 0.00 0.00 252.6255 -2.000 2 -1.00 0.00 0.00 278.6432 -2.000 2 -2.00 0.00 0.00 304.6610 -2.000 2 -1.00 0.00 0.00 288.0782 2.000 330 -2.000 2 -2.00 0.00 0.00 314.0959 2.000 330 -2.000 2 -2.00 0.00 0.00 358.5472 $2.000 \ 330 \ -2.000 \ 2$ -1.00 0.00 0.00 279.8267

0.00 3 1.000 143 2.000 380 -2.0001 3801433 I(CN)2-0.0000 -11.4580 0.00 3 2.000 143 1.000 380 -2.0004101432 K3HFe(CN)6 -85.9900 50.2241 6.000 143 0.00 4 3.000 410 1.000 330 4401431 LiFe(CN)6-3 -80.1490 47.6858 0.00 3 6.000 143 1.000 440 1.000 280 4601431 MgFe(CN)6--69.3100 55.3916 0.00 3 6.000 143 1.000 460 1.000 281 4601432 MgFe(CN)6-2 0.0000 49.4251 0.00 3 6.000 143 1.000 460 1.000 280 5401431 Ni(CN)4-2 -43.1900 30.1257 4.000 143 0.00 2 1.000 540 8001431 SrFe(CN)6--69.8300 55.6181 0.00 3 1.000 800 1.000 281 6.000 143 8701431 Tl(CN)4-0.0000 -8.01890.00 3 4.000 143 1.000 870 -2.0008701432 TlFe(CN)6-3 48.7508 -84.88000.00 3 6.000 143 1.000 870 1.000 280 -25.5390 9501431 Zn(CN)4-2 16.7150 0.00 2 4.000 143 1.000 950 9501432 Zn(CN)3--20.199016.0480 0.00 2 3.000 143 1.000 950 9501430 Zn(CN)2(aq) -10.999011.0710 0.00 2 2.000 143 1.000 950 5401436 Ni(CN)3-0.0000 22.6346 0.00 2 3.000 143 1.000 540 5401432 NiH(CN)4-0.0000 36.7482 0.00 3 4.000 143 1.000 540 1.000 330 5401433 NiH2CN4(aq) 0.0000 41.4576 0.00 3 4.000 143 1.000 540 2.000 330 5401434 NiH3(CN)4+ 43.9498 0.0000 0.00 3 4.000 143 1.000 540 3.000 330 5401435 Ni(CN)2(aq) 0.0000 14.5864 0.00 2 2.000 143 1.000 540 2811432 Fe2(CN)6(aq) 0.0000 56.9822 6.000 143 0.00 2 2.000 281 201440 Ag(OCN)2-0.0000 5.0034 0.00 2 2.000 144 1.000 20 201433 Ag(CN)3-2 -33.495021.4002 0.00 2 3.000 143 1.000 20 1001430 BaFe(CN)6-2 0.0000 49.4032 0.00 3 6.000 143 1.000 280 1.000 100 3309921 H ACETATE 0.0000 4.7600 1.000 330 2 1.000 992 3309931 H TARTRAT 0.0000 4.1600 2 1.000 330 1.000 993 3309932 H TARTRAT 0.0000 6.6700 2 1.000 993 2.000 330 3309941 H GLYCINE 0.0000 9.7800 1.000 330 2 1.000 994 3309942 H GLYCINE 0.0000 12.1200 2 2.000 330 1.000 994 3309951 H SALICYL 0.0000 13.400 2 1.000 995 1.000 330 3309952 H SALICYL 0.0000 16.4 2 2.000 330 1.000 995 3309961 H GLUTAMA 0.0000 9.9500 2 1.000 996 1.000 330 3309962 H GLUTAMA 0.0000 14.37 2 1.000 996 2.000 330 3309971 H PHTHALA 0.0000 5.4000 2 1,000 997 1.000 330 3309972 H PHTHALA 0.0000 8.3500 2 1.000 997 2.000 330 1609921 CD ACETATE 0.0000 1.9300

 $-1.00\ 0.00\ 0.00\ 178.9399$ 0.00 0.00 0.00 330.2563 1.000 280 $-3.00\ 0.00\ 0.00\ 218.8944$ -1.00 0.00 0.00 236.2584 $-2.00\ 0.00\ 0.00\ 236.2584$ $-2.00\ 0.00\ 0.00\ 162.7610$ -1.00 0.00 0.00 299.5734 -1.00 0.00 0.00 308.4543 -3.00 0.00 0.00 416.3367 $-2.00\ 0.00\ 0.00\ 169.4610$ $-1.00\ 0.00\ 0.00\ 143.4432$ 0.00 0.00 0.00 117.4255 $-1.00\ 0.00\ 0.00\ 136.7432$ -1.00 0.00 0.00 163.7689 0.00 0.00 0.00 164.7768 1.00 0.00 0.00 165.7848 0.00 0.00 0.00 110.7255 0.00 0.00 0.00 267.8004 -1.00 0.00 0.00 191.9025 $-2.00\ 0.00\ 0.00\ 185.9214$ -2.00 0.00 0.00 349.2804 0. 0.0 0.0 60.0600 -1. 0.0 0.0 149.1000 0. 0.0 0.0 150.1100 0. 0.0 0.0 75.0800 1. 0.0 0.0 76.0900 -1. 0.0 0.0 137.1300 0. 0.0 0.0 138.1400 -1.0.00.0 146.1400 0. 0.0 0.0 147.1500 -1. 0.0 0.0 165.1400 0. 0.0 0.0 166.1500 1. 0.0 0.0 171.4600

_										
2 1609931		1.000 160 TARTRAT		3.9000			0.	0.0	0.0	260.5000
2 1609941		1.000 160 GLYCINE	1.000 0.0000	993 4.8000			1.	0.0	0.0	186.4800
2		1.000 160 GLYCINE	1.000 0.0000	994 8.4000				0.0	0.0	260.5500
2		1.000 160 GLUTAMA	2.000	994 4.7800				0.0	0.0	257.5400
2		1.000 160 GLUTAMA	1.000	996						
2		1.000 160	2.000					0.0	0.0	402.6700
2		PHTHALA 1.000 160	0.0000 1.000	2.5000 997				0.0	0.0	276.5400
6009931 2	РВ	TARTRAT 1.000 600	0.0000 1.000	3.7800 993			0.	0.0	0.0	355.3000
6009941 2		GLYCINE 1.000 600	0.0000 1.000	5.4700 994			1.	0.0	0.0	281.2800
_		GLYCINE 1.000 600	0.0000 2.000	8.3200			0.	0.0	0.0	355.3500
1009921	BA	ACETATE	0.0000	1.0700			1.	0.0	0.0	196.4100
	BA	1.000 100 TARTRATE	1.000 0.0000	2.5400			0.	0.0	0.0	285.4500
2 ⊥009941	BA	1.000 100 GLYCINE	1.000 0.0000	993 0.7700			1.	0.0	0.0	211.4300
2 1009951	BA	1.000 100 SALICYL	1.000 0.0000	994 0.2100			0.	0.0	0.0	273.4800
2 1009961	ва	1.000 100 GLUTAMA	1.000 0.0000	995 1.2800			0.	0.0	0.0	282.4900
2		1.000 100 PHTHALA	1.000					0.0	0.0	301.4900
2		1.000 100 ACETATE	1.000	997			0.			
2		1.000 20	0.0000				0.	0.0	0.0	166.9300
2		ACETATE2 1.000 20	0.0000 2.000				-1.	0.0	0.0	225.9800
0209941 2	AG	GLYCINE 1.000 20	0.0000 1.000	3.5100 994			0.	0.0	0.0	181.9500
0209942 2	AG	GLYCINE 1.000 20	0.0000 2.000	3.3800 994			-1.	0.0	0.0	256.0200
$2119921 \\ 0.00 4$		ACETATE 1.000 211	0.0000 1.000	14.2500	2.000	330	2.	0.0	0.0	111.0600
		ACETATE2 1.000 211	0.0000 2.000	16.6800		330	1.	0.0	0.0	170.1100
2119923	Cr	ACETATE3	0.0000	19.20			0.	0.0	0.0	229.0
0.004 2119941	CR		3.000	8.4000	2.000	330	-2.000 2.	0.0	0.0	126.0800
0.00 2 2119942	CR		$\begin{smallmatrix}&1.000\\0.0000\end{smallmatrix}$	6.4000			0.	0.0	0.0	200.1500
0.00 2 2119943	CR		2.000 0.0000	5.7000			-1.	0.0	0.0	274.2200
0.00 2 2119971	CR	1.000 211 PHTHALA	3.000 0.0000				1.	0.0	0.0	216.1400
		1.000 211	1.000	997	2.000	330	-2.000		0.0	380.2700
0.00 4 2119973		1.000 211	2.000		2.000	330	-2.000		0.0	544.4000
0.00 4		1.000 211	3.000	997	2.000	330	-2.000	2		
8719931 0.00 2		1.000 870	0.0000 1.000)			0.0	0.0	352.4800
3609941 0.00 2	5	1.000 360	0.0000 1.000				1.	0.0	0.0	274.6800
3609942 0.00 2	Hg	GLYCINE 1.000 360	0.0000 2.000	20.000			1.	0.0	0.0	348.7500
		UTANOATE 1.000 160	0.0000	1.25			1.	0.0	0.0	199.4
1609671			0.0000	5.30			-1.	0.0	0.0	301.4

(8

2 1.000 160 1609673 CdH2CITRATE	0.0000 2.05		1. 0.0	0.0	303.4
3 1.000 160 1609672 CdHCITRATE	1.000 967 0.0000 3.37	2.000 330	0. 0.0	0.0	302.4
3 1.000 160 1609674 CdCITRATE2	1.000 967 0.0000 5.34	1.000 330	-4. 0.0	0.0	490.4
2 1.000 160 1609692 CdHEDTA	2.000 967 0.0000 2.9		-1. 0.0	0.0	401.4
3 1.000 160 1609922 CdACETATE2	1.000 969 0.0000 3.15	1.000 330	0. 0.0	0.0	230.4
2 1.000 160 1609923 CdACETATE3	2.000 992 0.0000 2.17		-1. 0.0	0.0	289.4
2 1.000 160	3.000 992				
1609924 CdACETATE4 2 1.000 160	$\begin{array}{rrrr} 0.0000 & 2.04 \\ 4.000 & 992 \end{array}$		-2. 0.0	0.0	394.4
1609551 CdDIETHAM 2 1.000 160	$\begin{array}{rrr} 0.0000 & 2.62 \\ 1.000 & 955 \end{array}$		2. 0.0	0.0	185.40
1609552 CdDIETHAMIN2 2 1.000 160	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$		2. 0.0	0.0	258.41
1609553 CdDIETHAMIN3 2 1.000 160	0.0000 6.36 3.000 955		2. 0.0	0.0	331.42
1609554 CdDIETHAMIN4 2 1.000 160	0.0000 7.31 4.000 955		2. 0.0	0.0	404.43
1609711 CdPROPANOATE	0.0000 1.19		1. 0.0	0.0	185.4
2 1.000 160 1609712 CdPROPANOAT2	$1.000 \ 971$ $0.0000 \ 1.86$		0. 0.0	0.0	285.4
2 1.000 160 1609713 CdPROPANOAT3	2.000 971 0.0000 2.345		-1. 0.0	0.0	331.4
2 1.000 160 1609714 CdPROPANOAT4	3.000 971 0.0000 1.98		-2. 0.0	0.0	404.527
2 1.000 160 1609722 CdBUTANOAT2	4.000 971 0.0000 1.98		0. 0.0	0.0	286.4
2 1.000 160 1609723 CdBUTANOATE3	2.000 972 0.0000 2.34		-1. 0.0	0.0	373.4
2 1.000 160 1609724 CdBUTANOAT4	3.000 972 0.0000 1.98		-2. 0.0	0.0	460.4
2 1.000 160 1609641 CdPROPAM	4.000 972 0.0000 2.62		2. 0.0	0.0	171.41
2 1.000 160 1609642 CdPROPAM2	1.000 964				
2 1.000 160	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$		2. 0.0	0.0	230.41
1609643 CdPROPAM3 2 1.000 160	0.0000 6.03 3.000 964		2. 0.0	0.0	289.42
1609651 CdISOPROPAM 2 1.000 160	$\begin{array}{rrrr} 0.0000 & 2.55 \ 1.000 & 965 \end{array}$		2. 0.0	0.0	171.41
1609652 CdISOPROPAM2 2 1.000 160	$\begin{array}{rrrr} 0.0000 & 4.57 \\ & 2.000 & 965 \end{array}$		2. 0.0	0.0	230.41
1609653 CdISOPROPAM3 2 1.000 160	0.0000 6.07 3.000 965		2. 0.0	0.0	289.40
1609654 CdISOPROPAM4 2 1.000 160	0.0000 6.90 4.000 965		2. 0.0	0.0	348.41
3309171 H Benzoat	0.0000 4.2000)	0. 0.0	0.0	122.1300
2 1.000 917 3309181 H PAcetat	0.0000 4.3100)	0. 0.0	0.0	136.1600
2 1.000 918 3309201 H IPhthal	2.000 330 0.0000 3.5000)	-1. 0.0	0.0	165.1400
2 1.000 920 3309202 H IPhthal	1.000 330 0.0000 8.0000)	0. 0.0	0.0	166.1500
2 1.000 920 2819711 FePrpanot	2.000 330 0.0000 3.4000		0. 0.0	0.0	128.8700
2 1.000 971 2819731 FeIsobuty	1.000 281 0.0000 3.6000		2. 0.0	0.0	142.8800
2 1.000 973 2819721 FeButanot	1.000 281 0.0000 5.5600		2. 0.0	0.0	142.8800
2 1.000 972 2819841 Felsvaler	1.000 281 0.0000 5.580				
ZOIDOHT LEISVALEL	0.0000 0.080		2. 0.0	0.0	156.9700

2 1 000 004	1 000 001				
2 1.000 984 2819851 FeValerat	1.000 281 0.0000 5.58		2. 0.0	0.0	156.9700
2 1.000 985 2319171 CuBenzoat	0.0000 5.58 1.000 281 0.0000 2.100 1.000 231	0			
2 1.000 917	1.000 231	0	1. 0.0	0.0	184.6600
2319181 CuPAcetat 2 1.000 918	0.0000 1.970 1.000 231	00	1. 0.0	0.0	198.6900
1009731 Balsobuty	0.0000 0.640	00	1. 0.0	0.0	224.3700
1009841 BaIsvaler	0.0000 0.680)	1. 0.0	0.0	238.4600
2 1.000 984 1009851 BaValerat	$\begin{array}{ccc} 1.000 & 100 \\ 0.0000 & 0.66 \end{array}$		1. 0.0	0.0	238.4600
2 1.000 985 1009201 BaIPhthal	1.000 100 0.0000 1.550	00	0. 0.0	0.0	301.4700
1609731 CdIsobuty				0.0	199.4300
2 1.000 973 1609851 CdValerat	1.000 160 0.0000 1.19	00	1. 0.0	0.0	199.4300
2 1.000 985 1609171 CdBenzoat	1.000 160 0.0000 1.900	0	1 0 0		
2 1.000 917	1.000 160	10	1. 0.0	0.0	233.5200
1609172 CdBenzoat 2 2.000 917	0.0000 1.650 1.000 160	00	0. 0.0	0.0	354.6400
9509181 ZnPAcetat	0.0000 1.670 1.000 950	00 00 00	1. 0.0	0.0	200.5200
1609181 CdPAcetat 2 1.000 918	0.0000 1.150 1.000 160	0	1. 0.0	0.0	247.5500
1609182 CdPAcetat2	0.0000 1.920	0	0. 0.0	0.0	382.7000
1609201 CdIPhthal	0.0000 1.330	0	0. 0.0	0.0	276.5300
2 1.000 920 1609202 CdIPhthal2	0.0000 2.170	0	-2. 0.0	0.0	440.6700
1609203 CdIPhthalH	0.0000 5.320	0	1. 0.0 2. 0.0 1.000 211 2. 0.0	0.0	277.5400
2119731 CrIsobuty	1.000 160 0.0000 12.730	1.000 330	2. 0.0	0.0	139.0300
4 2.000 330 2119721 CrButanot		1.000 973 0	$1.000 \ 211 \ 2. \ 0.0$	0.0	139.030
	-2.000 2	1.000 972	1.000 211		153.1200
4 2.000 330	-2.000 2	1.000 984	1.000 211		
2119851 CrValerat 4 2.000 330	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	1.000 985	2. 0.0 1.000 211	0.0	153.1200
6009731 PbIsobuty 2 1.000 973	0.0000 2.670 1.000 600	0	$2. 0.0 \\ 1.000 211 \\ 1. 0.0$	0.0	308.3100
6009841 PbIsvaler 2 1.000 984	0.0000 2.050 1.000 600		1. 0.0	0.0	308.3100
6009851 PbValerat	$\begin{array}{rrrr} 0.0000 & 2.06 \\ 1.000 & 600 \end{array}$		1. 0.0	0.0	308.3100
6009171 PbBenzoat	0.0000 2.500 1.000 600	0	1. 0.0	0.0	328.3100
4609171 MgBenzoat 2 1.000 917	0.0000 0.100	0	1. 0.0	0.0	145.4300
1509171 CaBenzoat	0.0000 0.200	0	1. 0.0	0.0	161.2000
2 1.000 917 9509171 ZnBenzoat	1.000 150 0.0000 1.400	0	1. 0.0	0.0	186.4900
2 1.000 917 6009201 PbIPhthal	$\begin{array}{ccc} 1.000 & 950 \\ 0.0000 & 2.170 \end{array}$	0	0. 0.0	0.0	371.3200
2 1.000 920 6009202 PbIPhthal2	1.000 600 0.0000 3.360	0	-2. 0.0	0.0	535.4600
2 2.000 920 6009203 PbIPhthalH	1.000 600 0.0000 6.280	0	1. 0.0	0.0	372.3300
3 1.000 920 3619731 HqIsobuty	1.000 600 0.0000 10.687	1.000 330	1. 0.0	0.0	
4 2.000 330 3619721 HgButanot	-2.000 2 0.0000 10.0970	1.000 973	1.000 361 1.0.0	0.0	
correr ingeneration	J. J	•	1. 0.0	0.0	201.0200

•

4 2.000 3300 -72.000 2 1.000 361 361994 Hg.2003 0.000 10.717 1.000 984 1.000 301.7100 361984 Hg.2.000 30 1.000 984 1.000 361 0.000 361984 Hg.2.000 30 -72.000 2 1.000 984 1.000 361 0.000 361987 HgThthala 0.0000 1.277 1.000 981 1.000 364 7200 540913 Nirsalerater 0.0000 1.270 1.000 0.000 1.59.8300 54091271 Nissenzet 0.0000 1.400 1.000 301.7100 301.7100 5409121 Nissenzet 0.0000 1.400 1.000 301.7100 301.7100 5409121 Nissenzet 0.0000 1.400 1.00.0 301.7100 301.7100 5409121 Nissenzet 0.0000 1.400 1.000 301.7100 301.7100 301.7100	36		2.000 330	-2.000	2	1.000	972	1,000,361				
4 2.000 330 -2.000 1.000 361 5619951 Hyphchal 0.000 1.027 1.000 965 1.000 361 0.0 540971 Hyphchal 0.000 1.2300 1.000 965 1.000 361 0.0 1.6 0.0 1.6 0.0 1.6 1.000 361 1.000	50	10211	Halevaler	0 0000					0 0	301 7100		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-	4	2.000 330	-2.000	2	1.000	984	1.000 361				
361971 HgPhthala 0.0000 10.9970 0.0003 361 364 540971 Nilsebuty 0.0000 1.2200 1.00097 1.0003 361 540981 Nilsebuty 0.0000 1.2200 1.000981 1.0003 159.8300 540981 Nilsebuty 0.0000 1.260 1.00 0.0 159.8300 540981 Nilsebuty 0.0000 1.260 1.00 540 1.00 540 540917 Nilsebuty 0.0000 1.400 1.00 540 1.000 540 540917 Nilsebuty 0.0000 0.65000 1.00.0 0.0 133.6600 540917 Nilsebuty 0.0000 6.5000 1.00.0 341.0 341.0 540917 Nilsebuty 0.0000 6.1 0.00 30 -2.00 341.0 540977 Nilsebuty 0.0000 6.1 0.00 30 -2.00 341.0 211971 CreptoPANA7 0.0000 1.000 330 -2.000 2 0.000 2119712 Crepto	36					1.000	985		0.0	301.7100		
540971 Nilsebuty 0.000 1.2300 1.0.0 90. 1.500 7400 5409841 Nilsevaler 0.0000 1.270 1.00. 0.0 159.8300 5409853 Nilabenzot 0.0000 1.400 1.00. 940 1.00. 740 540917 Nilabenzot 0.0000 1.400 1.00. 0.0 179.8300 740918 Nikabetz 0.0000 6.5500 1.0.0 0.0 193.8600 540918 Nikabetz 0.0000 6.1000 1.00.0 342.3400 540917 Nikabetz 0.0000 6.1000 1.00.0 341.0 3 1.000 540 1.000 30 0.00 1.000 3 1.000 50 1.000 30 -2.000 2.0 121.850 2119711 CFROFANAT 0.0000 6.100 30 -2.000 2.0 100.0 10.00 2119712 CFROFANAT 0.0000 1.200 30 -2.000 2.0 10.00 11.00 2119713 CFROFANAT 0	36	519971	HgPhthala	0.0000	10.9970			0. 0.0	0.0	364.7200		
5409841 N118valer 1.000 0.000 1.270 1.00 0.0 05.8300 5409351 N1valerat 1.000 0.000 1.26 1.00. 0.0 179.8300 540917 N1PActat 1.000 0.000 540 1.000 540 0.000 0.000 1.000 540918 N1PActat 2.000 0.000 0.65000 1.0.0 0.0 0.33.8600 540918 N1PActat 2.000 0.000 6.1000 0.000 0.0 0.0 342.3400 540918 N1PActat 2.000 0.000 6.1000 330 0.00 0.0 0.0 321.8500 540918 N1PActat 1.000 0.000 6.1 0.000 330 0.00 0.0 0.0 1.25.0 210952 CHEENAT 0.0000 1.600 330 -2.000 2 0.0 1.00 1.00 1.00 1.200 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 <	54	109731	Nilsobuty	0.0000	1.2300	1.000	991		0.0	145.7400		
2 1.000 944 1.000 540 5409851 NYALERAL 0.000 1.26 1.0.0 0.01 179.8300 540981 NIEMAGNAL 0.000 0.400 1.000 0.0 179.8300 540917 NIEMAGNAL 0.000 0.4500 1.000 0.0 123.8600 1.000 1.000 0.000 0.000 0.000 1.000 323.8500 5409182 NIEACELAL 0.0000 6.1 0.000 341.00 341.0 540930 CHBDLA 0.0000 6.1 0.000 300 2.000 30.0 2.000 31.0 2109712 CHBDLA 0.000 6.6 1.000 30.0 2.000 30.0 1.000		2	1.000 973					1. 0.0	0.0	159.8300		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		2	1.000 984	1.000	540							
5409171 NiBenzoat 0.0000 1.400 1.000 91 5409181 NIPAccetat 0.0000 0.65000 1.000 0.00 0.342.3400 5409181 NIPAccetat 0.0000 6.65000 1.000 0.0		2	1.000 985	1.000				1. 0.0	0.0			
5409161 NIPAcetat 0.0000 0.65000 1. 0.0 0.0 193.8600 5409182 NIPAcetat 0.0000 0.99000 0.0 0.0 23.8500 5409972 NIPAtchalak 0.0000 540 1.000 300 0.0 0.0 23.8500 2109652 CHEDTA 0.0000 6.6 0.000 30 0.000 341.0 2119712 CHOCONNO 1.000 30 2.000 2 10.0 341.0 2119712 CHOCONNO 1.000 912 2.000 30 -2.000 2 10.0 12.00 2119712 CHOCONNO 1.000 912 2.000 30 -2.000 2 1.0.0 18.0 2119713 CHOCONNO 1.000 912 2.000 30 -2.000 2 1.0.0 10.00 11.05 2109922 CHACetate 0.0000 1.807 -2.0.0 0.0 11.05 219923 CHACETARE2 0.0000 3.63 0.0.0 0.0 18.763 21.000 21 0.00	54								0.0	179.8300		
5409182 NiPAcetat 0.0000 0.99000 0.000 0.000 342.3400 5409972 NiPhthalaH 0.0000 6.1000 1.000 30 23.8500 2109622 CHEDTA 0.0000 6.1 0.000 341.0 2119713 CFROPANAT 0.0000 14.32 2.000 0.000 125.0 2119713 CFROPANAT 0.0000 19.32 2.000 0.000 125.0 2119713 CFROPANAT 0.0000 19.32 2.000 0.0 0.0 128.0 2119713 CFROPANAT 0.0000 19.32 2.000 2.0 0.0 0.0 188.0 2119713 CFROPANAT 0.0000 19.32 2.000 2.0 0.000 11.005 210932 Chactate 0.0000 18.0 2.000 3.0 -2.000 2 1.00 39.54 219092 Chactate 0.0000 3.63 0.000 0.0 181.562 219092 CHACTATE2 0.0000 3.10 -1.0.0 0.0 340.54 219932 <td>54</td> <td>109181</td> <td>NiPAcetat</td> <td>0.0000</td> <td>0.65000</td> <td>)</td> <td></td> <td>1. 0.0</td> <td>0.0</td> <td>193.8600</td> <td></td> <td></td>	54	109181	NiPAcetat	0.0000	0.65000)		1. 0.0	0.0	193.8600		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	54)		0. 0.0	0.0	342.3400		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		2	2.000 918	1.000	540							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		3	1.000 997	1.000	540	1.000	330					
2119711 C:PROPANAT 0.0000 0.000 1.32 2.000 2.000 2 2119712 C:PROPANAT2 0.0000 16.66 1.000 2 1.000 2 2119713 C:PROPANAT3 0.0000 1.300 -2.000 2 0.00 0.0 188.0 2119713 C:PROPANAT3 0.0000 1.80 -2.000 2 0.00 0.0 270.996 2109921 C:Accetate 0.0000 1.80 -2.000 0.0 0.0 111.05 2 1.000 200 2.000 92 1.00 0.0 111.05 210922 C:Accetate 0.0000 18.785 -2.00 0.0 39.54 2 1.000 210 1.000 363 -1.0.0 0.0 181.582 2 1.000 3.100 992 -1.0.0 0.0 181.582 2 1.000 2.000 92 -1.0.0 0.0 186.57 2 1.000 2.000 92.624 -1.000 2.000 1.0002 2	21					1.000	330	0. 0.0	0.0	341.0		
2119712 C:PEROPANAT2 0.0000 16.66 1.00 0.0 0.0 198.0 2119713 C:PEROPANAT3 0.0000 19.32 0.0 300 -2.000 2 2109921 C:Accetate 0.0000 1.80 -2.000 2 0.0 0.0 111.05 2109922 C:Accetate2 0.0000 2.92 1.00.0 0.0 170.10 2119921 C:Accetate2 0.0000 18.785 -2.0.0 0.0 339.54 211992 CuleEDTA 0.0000 16.785 -1.0.0 0.0 340.54 211992 CuleEDTA 0.0000 3.63 0.00.0 0.0 181.582 211922 CuleETTA 0.0000 3.10 -1.00.0 0.0 299.624 211922 CuleETTA 0.0000 2.90 -2.0.0 0.0 299.624 211922 CuleETTA 0.0000 2.90 -2.0.0 0.0 299.624 21923 CuleETTA 0.0000 2.90 -2.0.0 0.0 299.624 2191712 CUPROPANAT2 <	21	19711	Crpropanat	0.0000 1	14.32				0.0	125.0		
2119713 CPPCPANAT3 0.0000 19.32 0.00 0.00 270.996 4 1.000 1.000 1.80 -2.000 2 0.0 111.05 210921 CrAcetate 2 0.0000 2.92 1.00 0.0 170.10 219922 CrAcetate 2 0.0000 18.785 -2.00 0.0 339.54 219922 CuACETATE2 0.0000 16.795 -1.00 0.0 340.54 219922 CuACETATE2 0.0000 3.63 0.00 0.0 181.582 219922 CuACETATE3 0.000 3.10 -1.0.0 0.0 240.603 219922 CuACETATE3 0.000 3.10 -1.0.0 0.0 299.624 21923 1.000 231 3.000 92 -2.0.0 0.0 209.60 21924 1.000 231 1.000 92 -2.0.0 0.0 299.624 219214 CuACETATE4 0.0000 2.22 1.00 0.0 209.60 219214 CuPROPANAT3 0.0000 2.10 -2.0.0 0.0 209.60 </td <td>21</td> <td></td> <td></td> <td>0.0000 1</td> <td>L6.66</td> <td></td> <td></td> <td></td> <td>0.0</td> <td>198.0</td> <td></td> <td></td>	21			0.0000 1	L6.66				0.0	198.0		
4 1.000 2109921 CrAcetate 2 0.000 1.80 2.00. 0.0 111.05 2109922 CrAcetate2 0.0000 2.92 1.00. 0.0 170.10 2119921 CuBDTA 0.0000 18.785 -2.00. 0.0 339.54 2119021 CuBDTA 0.0000 11.195 -1.00. 0.0 340.54 211922 CuAcetate2 0.0000 3.63 0.00. 0.0 340.54 211000 21.000 0.000 3.63 0.00. 0.0 240.603 211000 21.000 0.000 3.63 0.00. 0.0 240.603 219922 CuACETATE3 0.0000 2.90 -2.0.0 0.0 240.603 219924 CuACETATE4 0.0000 2.90 -2.0.0 0.0 299.624 21000 1.000 2.00 92 1.00.0 0.0 209.604 2191712 CUPROPANAT 0.0000 2.20 1.00.0 0.0 209.604 2191712 CUPROPANAT3 0.0000 2.70 -2.0.0	21	-				2.000	330		0.0	270 996		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		4	1.000 211	3.000	971	2.000	330	-2.000 2				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	21							2. 0.0	0.0	111.05		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	21	.09922	CrAcetate2	0.0000	2.92			1. 0.0	0.0	170.10		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	23	19691	CuEDTA	0.0000	18.785			-2. 0.0	0.0	339.54		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	23							-1. 0.0	0.0	340.54		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		3	1.000 231	1.000	969	1.000	330					
2 1.000 231 4.000 992 2319711 CUPROPANOAT 0.0000 2.22 1.000 0.00 136.57 2 1.000 231 1.000 971 0.0000 2.62 0.0.0 0.00 209.60 2 1.000 231 2.000 971 0.000 2.62 0.0.0 0.0 209.60 2 1.000 231 2.000 971 0.000 2.82.64 2 1.000 231 4.000 971 0.0.0 355.67 2 1.000 231 4.000 971 2.0.0 0.0 94.558 2 1.000 231 2.000 958 2.0.0 0.0 108.57 2 1.000 231 2.000 959 2.0.0 0.0 153.598 2319593 CUDIMETHAM3 0.0000 7.26 2.0.0 0.0 198.628 2 1.000 231 3.000 959 2.0.0 0.0 150.583 2319721 CUBUTANOAT 0.0000 2.6 <td></td> <td>2</td> <td>1.000 231</td> <td>2.000</td> <td>992</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>		2	1.000 231	2.000	992							
2 1.000 231 4.000 992 2319711 CUPROPANOAT 0.0000 2.22 1.000 0.00 136.57 2 1.000 231 1.000 971 0.0000 2.62 0.0.0 0.00 209.60 2 1.000 231 2.000 971 0.000 2.62 0.0.0 0.0 209.60 2 1.000 231 2.000 971 0.000 2.82.64 2 1.000 231 4.000 971 0.0.0 355.67 2 1.000 231 4.000 971 2.0.0 0.0 94.558 2 1.000 231 2.000 958 2.0.0 0.0 108.57 2 1.000 231 2.000 959 2.0.0 0.0 153.598 2319593 CUDIMETHAM3 0.0000 7.26 2.0.0 0.0 198.628 2 1.000 231 3.000 959 2.0.0 0.0 150.583 2319721 CUBUTANOAT 0.0000 2.6 <td>23</td> <td></td> <td></td> <td>0.0000 3.000</td> <td>3.10 992</td> <td></td> <td></td> <td>-1. 0.0</td> <td>0.0</td> <td>240.603</td> <td></td> <td></td>	23			0.0000 3.000	3.10 992			-1. 0.0	0.0	240.603		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	23	19924	CuACETATE4	0.0000	2.90			-2. 0.0	0.0	299.624		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	23			0.0000	2.22			1. 0.0	0.0	136.57		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	23							0. 0.0	0.0	209.60		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		2	1.000 231	2.000	971							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	23			3.000				-1. 0.0	0.0	202.04		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	23		CuPROPANAT4	0.0000	2.70			-2. 0.0	0.0	355.67		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	23	19582	CuMETHAM2	0.0000	7.51			2. 0.0	0.0	94.558		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	23							2. 0.0	0.0	108.57		
2 1.000 231 2.000 959 2319593 CuDIMETHAM3 0.0000 7.26 2.0.0 0.0 198.628 2 1.000 231 3.000 959 1.0.0 0.0 150.583 2 1.000 231 1.000 972 1.000 231 2.000 972 2319722 CuBUTANOAT2 0.0000 2.6 0.0.0 0.0 237.626 2 1.000 231 2.000 972 1.000 2.6 0.0.0 0.0		2	1.000 231	1.000	959							
2319393 Cubline Thans 0.0000 7.26 2.0.0 198.628 2 1.000 231 3.000 959 2319721 CuBUTANOAT 0.0000 2.14 1.0.0 0.0 150.583 2 1.000 231 1.000 972 0.0000 2.6 0.000 0.0 237.626 2 1.000 231 2.000 972 0.000 0.0 0.0 0.0 237.626		2	1.000 231	2.000	959							
2319721 CUBUTANOAT 0.0000 2.14 1.0.0 0.0 150.583 2 1.000 231 1.000 972 2319722 CUBUTANOAT2 0.0000 2.6 0.0.0 0.0 237.626 2 1.000 231 2.000 972 0.000 0.0 0.0								2. 0.0	0.0	198.628		
2319722 CuBUTANOAT2 0.0000 2.6 0.0.0 0.0 237.626 2 1.000 231 2.000 972		19721	CUBUTANOAT	0.0000	2.14			1. 0.0	0.0	150.583		
	23			0.0000	2.6			0. 0.0	0.0	237.626		
	22				972 2.30			-1 0 0	0.0	342.67		
2 1.000 231 3.000 972		2	1.000 231	3.000	972							
	23	19724	CuBUTANOAT4	0.0000	2.95			-2. 0.0	0.0	411.712		

0 1 000 001	4 000 070				
2 1.000 231 2319731 CuISBUTRAT	4.000 972 0.0000 2.170		1. 0.0	0.0	150.583
2 1.000 231 2319732 CuISOBUTYRT2	1.000 973 0.0000 2.7		0. 0.0	0.0	237.626
2 1.000 231 6009671 PB CITRATE	2.000 973 0.0000 4.34		-1. 0.0	0.0	396.252
2 1.000 600 6009672 PBCITRATE2	1.000 967 0.0000 6.08		-4. 0.0	0.0	585.315
2 1.000 600 6009673 PBCITRATE3	2.000 967 0.0000 6.97		-7. 0.0	0.0	774.378
2 1.000 600 6009681 PBNTA	3.000 967 0.0000 11.6233	3	-1. 0.0	0.0	395.254
2 1.000 600 6009682 PBHNTA	1.000 968 0.0000 3.795	• •	0. 0.0		
3 1.000 600	1.000 968	1.000 330		0.0	396.254
6009692 PBHEDTA 3 1.000 600	0.0000 9.68 1.000 969	1.000 330	-1. 0.0	0.0	497.4
6009693 PBH2EDTA 3 1.000 600	$\begin{array}{ccc} 0.0000 & 6.22 \\ 1.000 & 969 \end{array}$	2.000 330	0. 0.0	0.0	498.4
6009921 PBACETATE 2 1.000 600	0.0000 2.87 1.000 992		1. 0.0	0.0	266.24
6009922 PBACETATE2 2 1.000 600	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$		0. 0.0	0.0	325.232
6009923 PBACETATE3 2 1.000 600	0.0000 3.59 3.000 992		-1. 0.0	0.0	384.25
6009711 PBPROPANAT 2 1.000 600	0.0000 2.64 1.000 971		1. 0.0	0.0	280.222
6009712 PBPROPANOAT2 2 1.000 600	0.0000 4.15 2.000 971		0. 0.0	0.0	353.25
6009713 PBPROPANOAT3	0 0000 2 99		-1 0 0	0.0	426.286
2 1.000 600 6009714 PBPROPANOAT4	3.000 971 0.0000 4.18		-2. 0.0	0.0	499.318
2 1.000 600 6009721 PB BUTANOAT	4.000 971 0.0000 2.125		1. 0.0	0.0	294.23
2 1.000 600 6009722 PBBUTANOATE2	$\begin{array}{rrrr} 1.000 & 972 \\ 0.0000 & 3.735 \\ 2.000 & 972 \end{array}$		0. 0.0	0.0	381.28
2 1.000 600 6009723 PBBUTANOAT3	2.000 972 0.0000 4.125 3.000 972		-1. 0.0	0.0	468.32
2 1.000 600 6009724 PBBUTANOAT4	3.000 972 0.0000 4.43		-2. 0.0	0.0	555.36
2 1.000 600 5409671 NICITRATE	4.000 972 0.0000 6.62		-1. 0.0	0.0	247.77
2 1.000 540 5409672 NICITRATEH	1.000 967 0.0000 4.09		0. 0.0	0.0	248.77
3 1.000 540 5409673 NICITRATEH2	1.000 967 0.0000 2.13	1.000 330		0.0	
3 1.000 540	1.000 967	2.000 330	1. 0.0		249.77
5409691 NIEDTA 2 1.000 540	0.0000 20.33 1.000 969		-2. 0.0	0.0	347.92
5409692 NIHEDTA 3 1.000 540	0.0000 11.56 1.000 969	1.000 330	-1. 0.0	0.0	348.92
5409711 NIPROPANOAT 2 1.000 540			1. 0.0	0.0	131.73
5409712 NIPROPANOAT2 2 1.000 540	0.0000 0.8000 2.000 971		0. 0.0	0.0	204.76
5409713 NIPROPANOAT3 2 1.000 540	0.0000 .97 3.000 971		-1. 0.0	0.0	277.795
5409721 NI BUTANOAT 2 1.000 540	0.0000 .77 1.000 972		1. 0.0	0.0	145.75
5409722 NIBUTANOAT2 2 1.000 540	0.0000 .85 2.000 972		0. 0.0	0.0	218.785
5409723 NIBUTAOAT3 2 1.000 540	0.0000 1.34 3.000 972		-1. 0.0	0.0	291.82
5409641 NINPROPYLAM	0.0000 2.81 1.000 964		2.0.0	0.0	117.75
2 1.000 540 5409642 NINPROPYLAM2	0.0000 5.02		2. 0.0	0.0	176.79

2 1.000 540 5409643 NINPROPYLAM3 2 1.000 540	0.0000 6.79		2. 0.0	0.0	235.83
2 1.000 540 5409644 NINPROPYLAM4 2 1.000 540	$3.000 964 \\ 0.0000 8.31 \\ 4.000 964$		2. 0.0	0.0	294.87
5409651 NIIPROYLAM 2 1.000 540	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		2. 0.0	0.0	117.75
5409652 NIIPROPYLAM2 2 1.000 540	0.0000 4.86 2.000 965		2. 0.0	0.0	176.79
5409653 NIIPROPYLAM3 2 1.000 540	0.0000 6.57 3.000 965		2. 0.0	0.0	235.83
5409654 NIIPROPYLAM4 2 1.000 540	0.0000 7.83 4.000 965		2. 0.0	0.0	294.87
5409655 NIIPROPYLAM5 2 1.000 540	0.0000 8.43 5.000 965		2. 0.0	0.0	353.91
0209551 AGDIETHAM 2 1.000 020	0.0000 3.965		1. 0.0	0.0	152.897
0209552 AGDIETHAM2 2 1.000 020	0.0000 7.02 2.000 955		1. 0.0	0.0	197.926
0209581 AGMETHAM 2 1.000 020	0.0000 3.18 1.000 958		1. 0.0	0.0	138.928
0209582 AGMETHAM2 2 1.000 020	0.0000 7.14 2.000 958		1. 0.0	0.0	169.99
J209611 AGHEXYLAM 2 1.000 020	0.0000 3.66		1. 0.0	0.0	208.868
0209612 AGHEXYLAM2 2 1.000 020	0.0000 7.35 2.000 961		1. 0.0	0.0	309.868
0209651 AGIPROPAM 2 1.000 020	0.0000 3.19 1.000 965		1. 0.0	0.0	166.91
0209652 AGIPROPYLAM2 2 1.000 020	0.0000 6.85 2.000 965		1. 0.0	0.0	225.948
0209561 AGNBUTYLAM 2 1.000 020	0.0000 3.55 1.000 956		1. 0.0	0.0	181.01
0209562 AGNBUTYLAM2 2 1.000 020	0.0000 7.77 2.000 956		1. 0.0	0.0	254.148
0209961 AGGLUTAM 2 1.000 020	0.0000 3.79 1.000 996		0. 0.0	0.0	252.998
0209962 AGGLUTAM2 2 1.000 020	0.0000 6.55 2.000 996		-1. 0.0	0.0	398.128
0209681 AGNTA 2 1.000 020	0.0000 5.36 1.000 968		-2. 0.0	0.0	295.928
0209691 AGEDTA 2 1.000 020	0.0000 7.355 1.000 969		-3. 0.0	0.0	383.868
0209692 AGEDTA2 2 1.000 020	$ \begin{array}{r} 0.0000 & 11.355 \\ 2.000 & 969 \end{array} $		-7. 0.0	0.0	659.868
0209693 AGHEDTA 3 1.000 020	0.0000 3.36 1.000 969	1.000 330	-2. 0.0	0.0	384.868
0209801 AG2METPYR 2 1.000 020	0.0000 2.32 1.000 980		1. 0.0	0.0	201.868
0209802 AG2METPYR2 2 1.000 020	0.0000 4.68 2.000 980		1. 0.0	0.0	295.868
0209811 AG3METPYR 2 1.000 020	$\begin{array}{rrr} 0.0000 & 2.20 \ 1.000 & 981 \end{array}$		1. 0.0	0.0	201.868
0209812 AG3METPYR2 2 1.000 020	$\begin{array}{rrrr} 0.0000 & 4.46 \\ & 2.000 & 981 \end{array}$		1. 0.0	0.0	295.868
0209821 AG4METPYR 2 1.000 020	0.0000 2.21 1.000 982		1. 0.0	0.0	201.868
0209822 AG4METPYR2 2 1.000 020	0.0000 4.67 2.000 982		1. 0.0	0.0	295.868
0209641 AGNPROPYLAM 2 1.000 020	0.0000 3.47 1.000 964		1. 0.0	0.0	166.908
0209642 AGNPROPYLAM2 2 1.000 020	0.0000 7.51 2.000 964		1. 0.0	0.0	225.948
9509961 ZNGLUTAM 2 1.000 950	0.0000 3.79 1.000 996		0. 0.0	0.0	210.5
9509962 ZNGLUTAM2	0.0000 8.25		-2. 0.0	0.0	355.63

0 1 000 0E	0 0 0 0 0 0 0 0				
2 1.000 95 9509963 ZNGLUTAM3	0.0000 9.8		-4. 0.0	0.0	500.76
2 1.000 95 9509811 ZN3METPYR	0 3.000 996 0.0000 1.00		2. 0.0	0.0	159.37
2 1.000 95 9509812 ZN3METPYR2	$\begin{array}{cccc} 0 & 1.000 & 981 \\ 0.0000 & 2.1 \end{array}$		2. 0.0	0.0	224.74
2 1.000 95	0 2.000 981		2. 0.0		
9509813 ZN3METPYR3 2 1.000 95	0.0000 2.6 0 3.000 981		2. 0.0	0.0	290.11
9509814 ZN3METPYR4 2 1.000 95	0.0000 3.7 0 4.000 981		2. 0.0	0.0	355.48
9509941 ZNGLYCERIN 2 1.000 95	0.0000 5.38		1. 0.0	0.0	139.44
9509942 ZNGLYCERIN2 2 1.000 95	0.0000 9.81		0. 0.0	0.0	213.51
9509943 ZNGLYCERN3	0.0000 12.3		-1. 0.0	0.0	287.58
2 1.000 950 9509671 ZNCITRATE	0.0000 6.10		-1. 0.0	0.0	254.43
2 1.000 950 9509672 ZNCITRATE2	0 1.000 967 0.0000 6.70		-4. 0.0	0.0	443.49
2 1.000 950 9509673 ZNCITRATEH	0 2.000 967 0.0000 3.78		0. 0.0	0.0	255.43
3 1.000 950 9509674 ZNCITRATEH2	0 1.000 967 0.0000 1.68	1.000 330	1. 0.0	0.0	256.43
3 1.000 950 9509971 ZNPHTHLATE		2.000 330	0. 0.0	0.0	229.50
2 1.000 950 9509972 ZNPHTHALATE2	1.000 997		-2. 0.0		
2 1.000 950	2.000 997			0.0	393.64
6009961 PBGLUTAM 2 1.000 600	0.0000 4.70 0 1.000 996		0. 0.0	0.0	352.32
6009962 PBGLUTAM2 2 1.000 600	0.0000 7.55 2.000 996		-2. 0.0	0.0	497.45
6009691 PBEDTA 2 1.000 600	0.0000 17.88		-2. 0.0	0.0	483.19
6009971 PBPHTHALAT 2 1.000 600	0.0000 2.78		0. 0.0	0.0	371.32
6009972 PBPHTHALA2	0.0000 4.01		-2. 0.0	0.0	535.45
6009973 PBPHTHALAH	0.0000 6.56	1 000 000	1. 0.0	0.0	536.46
3 1.000 600 6009924 PBACETATE4	0.0000 3.4	1.000 330	-2. 0.0	0.0	443.39
2 1.000 600 2319681 CUNTA) 4.000 992 0.0000 13.1		-1. 0.0	0.0	251.61
2 1.000 231 2319682 CUNTA2	1.000 968 0.0000 17.5		-4. 0.0	0.0	439.67
2 1.000 231 2319581 CUMETHAM	2.000 968 0.0000 4.11		2. 0.0	0.0	94.474
2 1.000 231 2319583 CUMETHAM3			2. 0.0		
2 1.000 231	3.000 958		2. 0.0	0.0	156.51
2319584 CUMETHAM4 2 1.000 231			2. 0.0	0.0	187.528
2319811 CU3METPYR 2 1.000 231	0.0000 2.74 1.000 981		2. 0.0	0.0	157.546
2319812 CU3METPYR2 2 1.000 231	0.0000 4.8 2.000 981		2. 0.0	0.0	251.546
2319813 CU3METPYR3 2 1.000 231	0.0000 6.3		2. 0.0	0.0	345.546
2319814 CU3METPYR4 2 1.000 231	0.0000 7.2		2. 0.0	0.0	439.546
2319821 CU4METPYR 2 1.000 231	0.0000 2.88		2. 0.0	0.0	157.546
2319822 CU4METPYR2	0.0000 5.16		2. 0.0	0.0	251.546
	2.000 982 0.0000 6.77		2. 0.0	0.0	345.546

2 2319824	1.000 231 CU4METPYR4	3.000 982 0.0000 8.08		2. 0.0	0.0	439.546		
	1.000 231 CU4METPYR5	4.000 982 0.0000 8.3		2. 0.0	0.0	533.546		
2 2319961	1.000 231 CUGLUTAM	5.000 982 0.0000 8.33		0. 0.0	0.0	208.676		
2 2319671	1.000 231 CUCITRATE	1.000 996 0.0000 7.26		-1. 0.0	0.0	252.606		
2 2319672	1.000 231 CUCITRATE2	1.000 967 0.0000 8.72		-4. 0.0		441.666		
2 2319673	1.000 231 CUHCITRATE	2.000 967 0.0000 4.27		0. 0.0		253.60		
3		1.000 967 0.0000 2.2	1.000 330	1. 0.0		254.60		
3		1.000 967 0.0000 2.08	2.000 330	1. 0.0		164.676		
2				0. 0.0		227.676		
2		1.000 997 0.0000 6.74		1. 4.0		228.68		
3		1.000 997 0.0000 2.12	1.000 330	1. 0.0		164.676		
2		1.000 985 0.0000 3.0		0. 0.0	0.0	265.806		
2019032 2 1009691	1.000 231	2.000 985 0.0000 8.00		-2. 0.0		413.34		
2		1.000 969		-1. 0.0		326.4		
2		1.000 967 0.0000 2.70						
3		1.000 967	1.000 330	0. 0.0		327.4		
3		$\begin{array}{ccc} 0.0000 & 1.27 \\ 1.000 & 967 \\ 0.0000 & 24 \end{array}$	2.000 330	1. 0.0		328.4		
2	1.000 100 BABUTANOAT	0.0000 .34 1.000 971		1. 0.0		210.372		
2		$\begin{array}{ccc} 0.0000 & .94 \\ 1.000 & 972 \\ 0.000 & 12 \\ 0.000 & 12 \\ 0.000 & 0.000 $		1. 0.0				
2	1.000 210	$\begin{array}{cccc} 0.0000 & 13.61 \\ 1.000 & 969 \\ 0.0000 \end{array}$		-2. 0.0		327.996		
2		0.0000 .4 1.000 980		2. 0.0				
2		0.0000 2.02 1.000 981		2. 0.0				
2	NI3METPYR2 1.000 540	0.0000 3.3 2.000 981		2. 0.0		246.71		
2	NI3METPYR3 0.000 540	0.0000 4.1 3.000 981		2. 0.0				
2	NI3METPYR4 1.000 540	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$		2. 0.0		434.71		
2		$\begin{array}{ccc} 0.0000 & 2.11 \\ 1.000 & 982 \end{array}$		2. 0.0	0.0	152.71		
2	NI4METPYR2 1.000 540			2. 0.0	0.0	246.71		
	NI4METPYR3 1.000 540	0.0000 4.34 3.000 982		2. 0.0	0.0	340.71		
5409824 2	NI4METPYR4 1.000 540	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$		2. 0.0	0.0 4	434.71		
5409551 2	NIDIETHAM1 1.000 540	0.0000 2.78 1.000 955		2. 0.0	0.0	152.71		
2		0.0000 4.97 2.000 955		2. 0.0	0.0	246.71		
5409553 2	NIDIEHTAM3 1.000 540	0.0000 6.72 3.000 955		2. 0.0	0.0	340.71		
2	NIDIETHAM4 1.000 540	0.0000 7.93 4.000 955		2. 0.0	0.0	434.71		
5409555	NIDIETHAM5	0.0000 8.87		2. 0.0	0.0	529		

•

2 1.000 540 5409943 NIGLYCINE3	0.0000 14.2		-1. 0.0	0.0	280.92
2 1.000 540 1609811 CD3METPYR	3.000 994 0.0000 1.62		2. 0.0	0.0	206.4
2 1.000 160 1609812 CD3METPYR2	1.000 981 0.0000 2.8		2. 0.0	0.0	300.4
2 1.000 160 1609813 CD3METPYR3			2. 0.0	0.0	394.4
2 1.000 160 1609814 CD3METPYR4			2. 0.0	0.0	488.4
2 1.000 160 1609821 CD4METPYR				0.0	206.4
2 1.000 160	1.000 982		2. 0.0		
1609822 CD4METPYR2 2 1.000 160	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		2. 0.0	0.0	300.4
1609823 CD4METPYR3 2 1.000 160	$\begin{array}{ccc} 0.0000 & 2.9 \\ 3.000 & 982 \end{array}$		2. 0.0	0.0	394.4
1609824 CD4METPYR4 2 1.000 160	$\begin{array}{rrrr} 0.0000 & 4.0 \\ & 4.000 & 982 \end{array}$		2. 0.0	0.0	488.4
1609943 CDGLYCINE 2 1.000 160	$\begin{array}{rrr} 0.0000 & 10.7 \\ 3.000 & 994 \end{array}$		1. 0.0	0.0	186.47
1609972 CDPHTHALA2 2 1.000 160	0.0000 2.88 2.000 997		-2. 0.0	0.0	440.67
1609973 CDPHTHALAH	0.0000 5.88		1. 0.0	0.0	277.54
3 1.000 160 1609841 CDISVALERAT	$\begin{array}{rrrr} 1.000 & 997 \\ 0.0000 & 1.34 \end{array}$	1.000 330	1. 0.0	0.0	215.53
2 1.000 160 1609842 CDISVALERAT2	1.000 984 0.0000 2.30		0. 0.0	0.0	314.6
2 1.000 160 1609843 CDISVALERAT3	2.000 984 0.0000 2.50		-1. 0.0	0.0	415.79
2 1.000 160 1609844 CDISVALERAT4	3.000 984 0.0000 2.0		-2. 0.0	0.0	516.92
2 1.000 160 3609831 HGFORMATE	4.000 984 0.0000 2.94		0. 0.0	0.0	245.61
2 .500 360 3609832 HGFORMATE2	1.000 983 0.0000 5.45		-1. 0.0	0.0	290.63
2 .500 360 3609921 HgAcetate	2.000 983 0.0000 7.14		0. 0.0	0.0	259.64
2 .500 360	1.000 992		0. 0.0		
3609922 HgAcetate2 2 .500 360	$ \begin{array}{r} 0.0000 & 13.26 \\ 2.000 & 992 \end{array} $		-1. 0.0	0.0	318.69
3609711 HGPROPANOAT 2.500 360	$\begin{array}{rrr} 0.0000 & 3.72 \\ & 1.000 & 971 \end{array}$		0. 0.0	0.0	273.62
3609712 HGPROPANOT2 2 .500 360	0.0000 6.99 2.000 971			0.0	346.654
3619711 HGPROPANOAT 4 .500 361	0.0000 9.417 1.000 971	2.000 330	0.0.0 -2.000 002	0.0	273.62
3619712 HGPROPANOT2	0.0000 13.107 2.000 971		-1.0.0 -2.000002	0.0	346.654
8709671 TL CITRATE	0.0000 1.61 1.000 967	2.000 550		0.0	393.43
8709681 TL NTA	0.0000 4.71		-2. 0.0	0.0	392.434
8709691 TL EDTA	$\begin{array}{rrr} 1.000 & 968 \\ 0.0000 & 6.41 \end{array}$		-3. 0.0	0.0	480.37
2 1.000 870 8709921 TL ACETATE	1.000 969 0.000011		0. 0.0	0.0	263.42
2 1.000 870 9509691 ZN EDTA	1.000 992 0.0000 16.44		-2. 0.0	0.0	354.58
2 1.000 950 9509692 ZN HEDTA	1.000 969 0.0000 9.00		-1. 0.0	0.0	355.58
3 1.000 950 9509921 ZN ACETATE	1.000 969 0.0000 1.57	1.000 330	1. 0.0	0.0	124.392
2 1.000 950 9509922 ZN ACETATE2	1.000 992 0.0000 1.90		0. 0.0		183.412
2 1.000 950	2.000 992				
9509923 ZNACETATE3	0.0000 1.57		-1. 0.0	0.0	242.433

2 1.000 950 9509924 ZN ACETATE4	3.000 992 0.0000 1.36		-2. 0.0	0.0	301.454
2 1.000 950 9509551 ZN DIETHYLAM	4.000 992 0.0000 2.51		2. 0.0	0.0	110.399
2 1.000 950 9509552 ZN DIETHYLAM2	1.000 955 0.0000 4.96		2. 0.0	0.0	155.428
2 1.000 950 9509553 ZN DIETHAM3	2.000 955 0.0000 7.49		2. 0.0	0.0	
2 1.000 950	3.000 955		2. 0.0		200.457
9509554 ZN DIETHAM4 2 1.000 950	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$		2. 0.0	0.0	245.486
9509711 ZNPROPANOT 2 1.000 950	0.0000 .72 1.000 971		1. 0.0	0.0	138.399
9509712 ZNPROPANOT2 2 1.000 950	0.0000 1.230 2.000 971		0. 0.0	0.0	211.434
9509713 ZNPROPANOT3 2 1.000 950	0.0000 1.82 3.000 971		-1. 0.0	0.0	284.47
9509714 ZNPROPANOT4	0.0000 1.36		-2. 0.0	0.0	357.5
9509721 ZNBUTANOAT	4.000 971 0.0000 .983		1. 0.0	0.0	152.413
2 1.000 950 9509722 ZNBUTANOT2	$1.000 \ 972$ $0.0000 \ 1.65$		0. 0.0	0.0	239.46
2 1.000 950 9509723 ZNBUTANOT3	2.000 972 0.0000 1.69		-1. 0.0	0.0	326.5
2 1.000 950 9509724 ZNBUTANOAT4	$3.000 \ 972 \\ 0.0000 \ 2.05 \\ 4.000 \ 972 $		-2. 0.0	0.0	413.54
2 1.000 950 9509641 ZNNPRPYLAM	4.000 972 0.0000 2.42		2. 0.0	0.0	124.41
2 1.000 950 9509642 ZNNPRPYLAM2	1.000 964 0.0000 4.85		2. 0.0	0.0	183.45
2 1.000 950 9509643 ZNNPRPYLAM3					
2 1.000 950 9509644 ZNNPRPYLAM4	3.000 964		2. 0.0	0.0	242.29
2 1.000 950	$\begin{array}{rrrr} 0.0000 & 9.49 \\ & 4.000 & 964 \end{array}$		2. 0.0	0.0	301.53
9509651 ZNIPRPYLAM1 2 1.000 950	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$		2. 0.0	0.0	124.41
9509652 ZNIPRPYLAM2 2 1.000 950	$\begin{array}{rrrr} 0.0000 & 4.67 \\ & 2.000 & 965 \end{array}$		2. 0.0	0.0	183.45
9509653 ZNIPRPYLAM3 2 1.000 950	0.0000 7.14 3.000 965		2. 0.0	0.0	242.49
9509654 ZNIPRPYLAM4 2 1.000 950	$\begin{array}{rrr} 0.0000 & 9.44 \\ 4.000 & 965 \end{array}$		2. 0.0	0.0	301.53
3309671 CITRATEH 2 1.000 330	0.0000 6.33 1.000 967		-2. 0.0	0.0	190.062
3309672 CITRATEH2			-1. 0.0	0.0	191.062
2 2.000 330 3309673 CITRATEH3	$\begin{array}{c} 1.000 \ 967 \\ 0.0000 \ 14.18 \end{array}$		0. 0.0	0.0	192.062
2 3.000 330 1509671 CACITRATE	$\begin{array}{rrr} 1.000 & 967 \\ 0.0000 & 4.73 \end{array}$		-1. 0.0	0.0	229.143
2 1.000 150 1509672 CACITRATEH	1.000 967 0.0000 3.02		0. 0.0	0.0	230.143
3 1.000 150 1509673 CACITRATEH2	$1.000 967 \\ 0.0000 1.29$	1.000 330	1. 0.0	0.0	231.143
3 1.000 150 4709671 MNCITRATE	1.000 967 0.0000 5.28	2.000 330	-1. 0.0	0.0	244.001
2 1.000 470 4709672 MNCITRATEH	1.000 967 0.0000 3.02		0. 0.0	0.0	245.001
3 1.000 470 2809671 FECITRATE	1.000 967	1.000 330			
2 1.000 280	0.0000 5.7 1.000 967		-1. 0.0	0.0	244.910
2809672 FECITRATEH 3 1.000 280	0.0000 3.5 1.000 967	1.000 330	0. 0.0	0.0	245.910
2819671 FECITRATE 2 1.000 281	0.0000 12.55 1.000 967			0.0	244.910
2819672 FECITRATEH	0.0000 19.8		1. 0.0	0.0	245.910

3 1.000 281	1 000 067	1 000 220			
3309631 HEN	0.0000 9.96	1.000 330	1. 0.0	0.0	61.12
2 1.000 330 3309632 H2EN	0.0000 16.85		2. 0.0	0.0	62.12
2 2.000 330 2319631 CUEN	1.000 963 0.0000 10.49		2. 0.0	0.0	123.666
2 1.000 231 2319632 CUEN2	1.000 963 0.0000 19.62		2. 0.0	0.0	183.786
2 1.000 231 1609631 CDEN	2.000 963 0.0000 5.61		2. 0.0	0.0	172.591
2 1.000 160 1609632 CDEN2	1.000 963 0.0000 10.34		2. 0.0	0.0	232.639
2 1.000 160 1609633 CDEN3	2.000 963 0.0000 12.26		2. 0.0	0.0	292.759
2 1.000 160 0209631 AGEN	3.000 963 0.0000 4.7		1. 0.0	0.0	167.988
2 1.000 020 0209632 AGEN2	1.000 963 0.0000 7.70				
2 1.000 020	2.000 963		1. 0.0	0.0	228.108
0209633 AGENH 3 1.000 020	0.0000 7.31 1.000 963	1.000 330	2. 0.0	0.0	168.988
0209634 AG2EN 2 2.000 020	0.0000 1.43 1.000 963		2. 0.0	0.0	275.856
0209635 AG2EN2 2 2.000 020	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$		2. 0.0	00	335.976
5409631 NIEN 2 1.000 540	0.0000 7.24 1.000 963		2. 0.0	0.0	118.83
5409632 NIEN2 2 1.000 540	0.0000 13.36 2.000 963		2. 0.0	0.0	178.95
5409633 NIEN3	0.0000 17.54		2. 0.0	0.0	239.07
6009631 PBEN	3.000 963 0.0000 7.00		2. 0.0	0.0	267.31
2 1.000 600 6009632 PBEN2	$\begin{array}{rrr} 1.000 & 963 \\ 0.0000 & 8.45 \end{array}$		2. 0.0	0.0	326.43
2 1.000 600 9509631 ZNEN	2.000 963 0.0000 5.65		2. 0.0	0.0	125.49
2 1.000 950 9509632 ZNEN2	1.000 963 0.0000 10.62		2. 0.0	0.0	185.61
2 1.000 950 9509633 ZNEN3	2.000 963 0.0000 13.83		2. 0.0	0.0	245.73
2 1.000 950 4709631 MNEN	3.000 963 0.0000 2.67		2. 0.0	0.0	115.058
2 1.000 470 4709632 MNEN2	1.000 963 0.0000 4.2		2. 0.0	0.0	175.178
2 1.000 470 2809631 FEEN	2.000 963 0.0000 4.36		2. 0.0		
2 1.000 280	1.000 963			0.0	115.967
2809632 FEEN2 2 1.000 280	0.0000 7.65 2.000 963		2. 0.0	0.0	176.087
2809633 FEEN3 2 1.000 280	0.0000 9.68 3.000 963		2. 0.0	0.0	236.207
3309681 NTAH 2 1.000 330	0.0000 10.334 1.000 968		-2. 0.0	0.0	189.06
3309682 NTAH2 2 2.000 330	0.0000 13.27 1.000 968		-1. 0.0	0.0	190.06
3309683 NTAH3 2 3.000 330	0.0000 14.12 1.000 968		0. 0.0	0.0	191.06
3309691 EDTAH 2 1.000 330	0.0000 9.96 1.000 969		-3. 0.0	0.0	290.21
3309692 EDTAH2 2 2.000 330	$\begin{array}{r}1.000 & 909\\0.0000 & 16.21\\1.000 & 969\end{array}$		-2. 0.0	0.0	291.21
3309693 EDTAH3	0.0000 18.86		-1. 0.0	0.0	292.21
2 3.000 330 3309694 EDTAH4	1.000 969 0.0000 20.93		0. 0.0	0.0	293.21
2 4.000 330 3309711 PROPANOTH	1.000 969 0.0000 4.874		0.0.0	0.0	74.03

330958	1 METHYLAM H	1.000 971 0.0000 10.72		1. 0.0	0.0	32.06	
	2 1.000 330 1 HEXYLAM H	1.000 958 0.0000 10.63		1. 0.0	0.0	101.17	
	2 1.000 330 1 BUTANOAT H	0.0000 4.73		0. 0.0	0.0	88.04	
	2 1.000 330 4 NTAH4			1. 0.0		192.06	
	2 4.000 330 5 EDTA H5	1.000 968 0.0000 23.464				297.24	
	2 5.000 330 1 DIETHYLAM H					74.14	
	2 1.000 330 1 TMETHAM H	1.000 955 0.0000 9 80		1. 0.0	0.0	60.04	
	2 1.000 330 1 2METPYR H	1.000 966				94.12	
		1.000 980 0.0000 5.70		1. 0.0			
	2 1.000 330 1 4METPYR H	1.000 981				94.12	
	2 1.000 330				0.0		
	1 NPROPYLAMH 2 1.000 330	1 000 964		1. 0.0	0.0	60.44	
	3 GLUTAM H3 2 3.000 330	0.0000 16.60 1.000 996		1. 0.0	0.0	148.13	
	1 FORMATE H 2 1.000 330	0.0000 3.745 1.000 983		0. 0.0	0.0	46.02	
330984	1 ISOVALERIC H 2 1.000 330	$\begin{array}{c} 0.0000 & 16.60 \\ 1.000 & 996 \\ 0.0000 & 3.745 \\ 1.000 & 983 \\ 0.0000 & 4.781 \\ 1.000 & 984 \end{array}$		0.0.0	0.0	102.13	
330973	I ISOBUTRYIC H 2 1.000 330			0. 0.0	0.0	88.043	
330985	VALERIC H 2 1.000 330	0.0000 4.843		0. 0.0	0.0	102.13	
160969	CDEDTA	0.0000 16.275		-2. 0.0	0.0	401.61	
1609683	L CDNTA	$\begin{array}{ccc} 1.000 & 969 \\ 0.0000 & 9.4 \\ 1.000 & 0.000 \\ \end{array}$		-1. 0.0	0.0	300.46	
1609682	2 1.000 160 2 CDNTA2	1.000968 0.000014.3		-4. 0.0	0.0	488.52	
4609631	2 1.000 160 MGEN			2. 0.0	0.0	84.43	
1509631	2 1.000 460 CAEN	1.000 963 0.0000 .1		2. 0.0	0.0	100.20	
4609671	MGCITRATE	0.0000 3.37		-1. 0.0	0.0	223.37	
4609672	2 1.000 460 2 MGCITRATEH	0.0000 8.17		0. 0.0	0.0	224.37	
4609673	MGCITRATEH2	0.0000 11.59	1.000 330	1. 0.0	0.0	225.37	
	NaACETATE		2.000 330	0. 0.0	0.0	82.0398	
5009970	2 1.000 500 NaPhthala	0.0000 0.70		-1. 0.0	0.0	187.12	
2 4609920	1.000 500 MgACETATE	1.000 997 0.0000 1.27		1. 0.0	0.0	83.3620	
2 4609710	1.000 460 MgPropana	1.000 992 0.0000 0.54		1. 0.0	0.0	97.330	
2	1.000 460 MgButyrat	1.000 971 0.0000 0.53				111.340	
2	1.000 460 CaACETATE	1.000 972 0.0000 1.18		1. 0.0		99.13	
2	1.000 150 CaIPhthal	1.000 992 0.0000 2.00		0. 0.0		99.13	
2	1.000 150 CaPropana	1.000 920 0.0000 0.50		1. 0.0			
2	1.000 150 CaButyrat	1.000 971 0.0000 0.51		1. 0.0			
				1. 0.0	0.0		

2 1509970	1.000 150 CaPhthala	$1.000 \ 972$ $0.0000 \ 2.42$		0.	0.0	0.0	204.21		
2		1.000 997 0.0000 1.40			0.0				
2	1.000 470	1.000 992					93.312		
2		$\begin{array}{rrrr} 0.0000 & 1.40 \ 1.000 & 992 \end{array}$		1.	0.0	0.0	114.8970		
3619920 4	HgACETATE 1.000 361	$\begin{array}{rrr} 0.0000 & 9.417 \\ & 1.000 & 992 \end{array}$	2.000 330	$^{ extsf{1.}}_{ extsf{-2.000}}$	$0.0 \\ 2$	0.0	259.66		
	HgACETATE2 1.000 361	$\begin{array}{rrr} 0.0000 & 13.11 \\ 2.000 & 992 \end{array}$	2.000 330		0.0	0.0	318.71		
3619922	HgACETATE3 1.000 361	0.0000 19.38		-1.	0.0	0.0	377.76		
3619923	HgACETATE4	3.000 992 0.0000 23.16	2.000 330		$2 \\ 0.0$	0.0	436.81		
2819920	1.000 361 Feacetate	4.000 992 0.0000 3.21	2.000 330	-2.000 2.	2 0.0	0.0	114.897		
2 2819921	1.000 281 FeACETATE2	1.000 992 0.0000 6.50		1.	0.0	0.0	174.3971		
2		2.000 <u>9</u> 92 0.0000 8.30			0.0		233.447		
2		3.000 992							
2	1.000 150	1.000 969					316.1000		
3		0.0000 16.0 1.000 969	1.000 330				317.0000		
2	Mg EDTA 1.000 460	0.0000 10.6 1.000 969		-2.	0.0	0.0	300.3000		
4609691 3	MgHEDTA 1.000 460	0.0000 15.1 1.000 969	1.000 330	-1.	0.0	0.0	301.3000		
4109690 2	K EDTA	0.0000 1.7 1.000 969	2.000 550	-3.	0.0	0.0	315.1000		
	Na EDTA	0.0000 2.5		-3.	0.0	0.0	299.0000		
4	1.000 000	1.000 969							
0									
0 0									
0									
0 2089100 3			00 .000 2.000 2	.000			270.0278		
0 2089100 3 2089101	-4.000 330 UO2 (AM)	1.000 891 26.23093	2.000 2 34 .000	.000 .000			270.0278 270.0278		
0 2089100 3 2089101 3 3089100	-4.000 330 UO2 (AM) -4.000 330 U409 (C)	1.000 891 26.23093 1.000 891 101.235 3.38	$\begin{array}{r} 2.000 & 2 \\ 34 & .000 \\ 2.000 & 2 \\ 34 & .000 \end{array}$.000 -3.080					
0 2089100 3 2089101 3 3089100 4 3089101	-4.000 330 UO2 (AM) -4.000 330 U409 (C) -18.000 330 U308 (C)	$\begin{array}{rrrr} 1.000 & 891 \\ 26.230 &93 \\ 1.000 & 891 \\ 101.235 & 3.38 \\ -2.000 & 1 \\ 116.020 & -21.10 \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$.000 -3.080 9.000 34.589	2		270.0278		
0 2089100 3 2089101 3 3089100 4 3089100 4 8089100	-4.000 330 UO2 (AM) -4.000 330 U409 (C) -18.000 330 U308 (C) -16.000 330 USIO4 (C)	$\begin{array}{rrrr} 1.000 & 891 \\ 26.230 &93 \\ 1.000 & 891 \\ 101.235 & 3.38 \\ -2.000 & 1 \\ 116.020 & -21.10 \\ -4.000 & 1 \\ 14.548 & 7.62 \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$.000 -3.080 9.000	2 2		270.0278 1096.1106		
0 2089100 3 2089101 3 3089100 4 3089100 4 8089100 3	-4.000 330 UO2 (AM) -4.000 330 U409 (C) -18.000 330 U308 (C) -16.000 330 USIO4 (C) -4.000 330	$\begin{array}{rrrr} 1.000 & 891 \\ 26.230 &93 \\ 1.000 & 891 \\ 101.235 & 3.38 \\ -2.000 & 1 \\ 116.020 & -21.10 \\ -4.000 & 1 \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$.000 -3.080 9.000 34.589 8.000			270.0278 1096.1106 842.0822 330.1121		
0 2089100 3 2089101 3 3089100 4 3089101 4 8089100 3 4289100 2	-4.000 330 UO2 (AM) -4.000 330 U409 (C) -18.000 330 U308 (C) -16.000 330 USIO4 (C) -4.000 330 UF4 (C) 1.000 891	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$.000 -3.080 9.000 34.589 8.000 .000			270.0278 1096.1106 842.0822 330.1121 314.0226		
0 2089100 3 2089101 3 3089101 4 3089100 4 8089100 3 4289100 2 4289101 3	-4.000 330 U02 (AM) -4.000 330 U409 (C) -18.000 330 U308 (C) -16.000 330 USIO4 (C) -4.000 330 UF4 (C) 1.000 891 UF4.2.5H20 1.000 891	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$.000 -3.080 9.000 34.589 8.000 .000 .000			270.0278 1096.1106 842.0822 330.1121 314.0226 359.0606		
0 2089100 3 2089101 3 3089100 4 3089100 4 8089100 2 4289100 2 4289100 3 7089100 4	-4.000 330 UO2 (AM) -4.000 330 U409 (C) -18.000 330 U308 (C) -16.000 330 USIO4 (C) -4.000 330 UF4 (C) 1.000 891 UF4.2.5H2O 1.000 891 UHPO4)2,4H2O 1.000 891	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$.000 -3.080 9.000 34.589 8.000 .000 .000 .000 .000 4.000			270.0278 1096.1106 842.0822 330.1121 314.0226 359.0606 502.0486		
0 2089100 3 2089101 3 3089101 4 3089101 4 8089100 3 4289100 2 4289101 3 7089100 4 7015000 4	-4.000 330 UO2 (AM) -4.000 330 U409 (C) -18.000 330 U308 (C) -16.000 330 USIO4 (C) -4.000 330 UF4 (C) 1.000 891 UF4.2.5H20 1.000 891 UHPO4)2,4H20 1.000 891 NINGYOITE 1.000 891	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$.000 -3.080 9.000 34.589 8.000 .000 .000 .000 4.000 .000 2.000	2		270.0278 1096.1106 842.0822 330.1121 314.0226 359.0606 502.0486 504.0822		
0 2089100 3 2089101 3 3089100 4 3089100 4 8089100 2 4289100 2 4289100 3 7089100 4 7015000	-4.000 330 UO2 (AM) -4.000 330 U409 (C) -18.000 330 U308 (C) -16.000 330 USIO4 (C) -4.000 330 UF4 (C) 1.000 891 UF4.2.5H20 1.000 891 UHPO4)2,4H20 1.000 891 NINGYOITE 1.000 891	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2.000 2 4.000 2 4.000 891 3.000 891 0.000 1.000 770 1.000 770 2.500 2 4.000 2.500 2 4.000 2.000 330 2.000 580 9.000 2	.000 -3.080 9.000 34.589 8.000 .000 .000 .000 .000 4.000 .000	2		270.0278 1096.1106 842.0822 330.1121 314.0226 359.0606 502.0486		
0 2089100 3 2089101 3 3089101 4 3089101 4 8089100 2 4289100 2 4289101 3 7089100 4 7015000 4 2089300	-4.000 330 UO2 (AM) -4.000 330 U409 (C) -18.000 330 U308 (C) -16.000 330 USIO4 (C) -4.000 330 UF4 (C) 1.000 891 UF4.2.5H2O 1.000 891 UHPO4)2,4H2O 1.000 891 NINGYOITE 1.000 891 UO3 (C) -2.000 330 GUMMITE	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2.000 2 4.000 2 4.000 891 3.000 891 0.000 1.000 770 1.000 770 2.500 2 4.000 2.500 2 4.000 2.000 330 2.000 580 9.000 1.000 2 3.000 2	.000 -3.080 9.000 34.589 8.000 .000 .000 .000 4.000 .000 2.000	2		270.0278 1096.1106 842.0822 330.1121 314.0226 359.0606 502.0486 504.0822		
0 2089100 3 2089101 3 3089101 4 3089101 4 8089100 3 4289100 2 4289101 3 7089100 4 2089300 3 2089301 3 2089302	-4.000 330 UO2 (AM) -4.000 330 U409 (C) -18.000 330 U308 (C) -16.000 330 USIO4 (C) -4.000 330 UF4 (C) 1.000 891 UF4.2.5H20 1.000 891 UHP04)2,4H20 1.000 891 NINGYOITE 1.000 891 NINGYOITE 1.000 891 UHO4)2,4H20 0.000 891 B-2.000 330 GUMMITE -2.000 330 B-UO2(OH)2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2.000 2 4.000 2.000 2 4.000 3.000 891 0.000 1.000 770 0.000 2.500 2 4.000 2.500 2 4.000 2.000 330 6.000 2.000 580 9.000 1.000 2 3.000 1.000 2 4.000	.000 -3.080 9.000 34.589 8.000 .000 .000 .000 4.000 2.000 .000	2		270.0278 1096.1106 842.0822 330.1121 314.0226 359.0606 502.0486 504.0822 286.0272		
0 2089100 3 2089101 3 3089101 4 3089100 4 8089100 2 4289100 2 4289101 3 7089100 4 7015000 4 2089300 3 2089301 3 2089302 3 2089303	-4.000 330 UO2 (AM) -4.000 330 U409 (C) -18.000 330 U308 (C) -16.000 330 USIO4 (C) -4.000 330 UF4 (C) 1.000 891 UF4.2.5H20 1.000 891 UHPO4)2,4H20 1.000 891 UHPO4)2,4H20 1.000 891 UHPO4)2,4H20 1.000 891 UHPO4)2,4H20 1.000 891 UMPO4)2,4H20 1.000 891 UMITE -2.000 330 B-UO2(OH)2 -2.000 330 SCHOEPITE	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2.000 2 4.000 2 4.000 891 0.000 4.000 891 0.000 1.000 770 1.000 770 2.500 2 4.000 2.000 330 6.000 2.000 580 9.000 1.000 2 3.000 1.000 2 4.000 2 4.000 2 4.000 2 4.000 2	.000 -3.080 9.000 34.589 8.000 .000 .000 .000 .000 2.000 .000 .0	2		270.0278 1096.1106 842.0822 330.1121 314.0226 359.0606 502.0486 504.0822 286.0272 286.0272		
0 2089100 3 2089101 3 3089100 4 3089100 4 8089100 2 4289100 2 4289101 3 7089100 4 2089300 3 2089301 3 2089302 3 2089303 3 2089303 3 2089303 3 2089303 3 2089303 3 3 2089303 3 3 3 3 3 3 3 3 3 3 3 3 3	-4.000 330 UO2 (AM) -4.000 330 U409 (C) -18.000 330 U308 (C) -16.000 330 USIO4 (C) -4.000 330 UF4 (C) 1.000 891 UF4.2.5H20 1.000 891 UF4.2.5H20 1.000 891 NINGYOITE 1.000 891 UO3 (C) -2.000 330 GUMMITE -2.000 330	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2.000 2 4.000 2 4.000 891 3.000 891 0.000 1 1.000 770 1.000 770 2.500 2 4.000 2 2.000 330 2.000 580 1.000 2 3.000 2 4.000 2 3.000 2 4.000 2 3.000 2 4.000 2 3.000 2 3.000 2	.000 -3.080 9.000 34.589 8.000 .000 .000 .000 4.000 .000 2.000 .000 .000 .000	2		270.0278 1096.1106 842.0822 330.1121 314.0226 359.0606 502.0486 504.0822 286.0272 286.0272 304.0424		

	1.000 140			
7089300 (UO2)3(PO4)2 2 3.000 893		.000	1000.0262	
7089301 H-AUTUNITE		.000	732.0144	
3 2.000 330	2.000 893 2.000 580		752.0111	
7050000 NA-AUTUNITE	.460 47.409 .000	.000	775.9780	
3 2.000 500		000	000.0004	
7041000 K-AUTUNITE 3 2.000 410	-5.860 48.244 .000 2.000 893 2.000 580	.000	808.2024	
7049000 URAMPHITE		.000	766.0756	
3 2.000 893	2.000 490 2.000 580		100.0150	
7046000 SALEEITE	101010 1000	.000	754.3104	
3 2.000 893 7015001 AUTUNITE	1.000 460 2.000 580 14.340 43.927 .000	000	770 0704	
3 2.000 893	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$.000	770.0784	
7080000 SR-AUTUNITE	13.050 44.457 .000	.000	817.6184	
3 2.000 893	1.000 800 2.000 580			
7010000 URANOCIRCITE	10.100 44.631 .000	.000	867.3384	
3 2.000 893 7028000 BASSETITE	1.000 100 2.000 580 19.900 44.485 .000	.000	705 0454	
3 2.000 893	1.000 280 2.000 580	.000	785.8454	
7023102 TORBERNITE	15.900 45.279 .000	.000	793.5444	
3 2.000 893	1.000 231 2.000 580			
7060000 PRZHEVALSKIT		.000	937.1883	
3 2.000 893 8015000 URANOPHANE	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$.000	766 5176	
4 -6.000 330	2.000 893 1.000 150	2.000 770	766.5176	
5189300 UO2NO3)2	20.140 -12.369 .000	.000	394.0380	
2 1.000 893	2.000 492			
5189301 UO2NO3.2H2O	6.060 - 4.851 .000	.000	430.0690	
3 1.000 893 5189302 UO2NO3.3H2O	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$.000	448.0840	
3 1.000 893	2.000 492 3.000 2	.000	110.0040	
5189303 UO2NO3.6H2O	-4.770 -2.300 .000	.000	502.1300	
3 1.000 893	2.000 492 6.000 2	000	20.0020	
2003000 ALOH3(A) 3 1.000 30	27.045 -10.380 -9.690 3.000 2 -3.000 330	.000	78.0073	
6003000 ALOHSO4	000 3 230 3 390	3.070	140.0505	
4 -1.000 330	1.000 30 1.000 732	1.000 2		
6003001 AL4(OH)10SO4	.000 -22.700 .000	.000	374.0616	
4 -10.000 330 6041000 ALUM K	4.000 30 1.000 732 -7.220 5.170 .000	10.000 2	420 2507	
4 1.000 410	1.000 30 2.000 732	$.000 \\ 12.000 2$	438.3597	
6041001 ALUNITE		.000	414.2141	
5 1.000 410	3.000 30 2.000 732	6.000 2	-6.000 330	
6015000 ANHYDRITE 2 1.000 150	3.769 4.637 .000	.000	136.1416	
2 1.000 150 5015000 ARAGONITE	1.000 732 2.615 8.360 .000	.000	100.0894	
2 1.000 150	1.000 140	.000	100.0094	
5046000 ARTINITE	28.742 -9.600 .000	.000	196.6941	
4 -2.000 330	2.000 460 1.000 140	5.000 2	196.6941 175.3368	
4210000 BAF2 2 1.000 100	-1.000 5.760 6.740	4.650	175.3368	
6010000 BARITE	-6.280 9.976 .000	9.773	233.4016	
2 1.000 100	1.000 732	51175	200.1010	
2003001 BOEHMITE	28.130 -8.578 -8.065	.000	59.9884	
3 -3.000 330	1.000 30 2.000 2	000	50.0000	
2046000 BRUCITE 3 1.000 460	25.840 -16.792 .000 2.000 2 -2.000 330	.000	58.3268	
5015001 CALCITE	2.585 8.475 8.560	.000	100.0894	
2 1.000 150	1.000 140		20010091	
6080000 CELESTITE	.470 6.465 .000	6.349	183.6816	
2 1.000 800 2077000 CHALCEDONY	1.000 732 -4.615 3.523 .000	000	60.0949	
2 -2.000 2	-4.615 3.523 .000 1.000 770	.000	60.0848	
8646000 CHRYSOTILE	52.485 -32.188 .000	.000	277.1349	

•

	-6 000 220	2 000	460 2 000 770	1 000 2	
8246000	CLINOENSTITE	20.015	460 2.000 770 -11.338 -10.972	-11.632	100.3964
4	-1.000 2 CRISTOBALITE	1.000	460 1.000 770 3.587 .000	-2.000 330	60.0848
	-2.000 2 DIASPORE	1.000 24.630	770 -6.873 .000	.000	59.9884
	-3.000 330 DIOPSIDE		30 2.000 2 -19.886 .000		
5 5015002	-2.000 2 DOLOMITE	1.000	150 1.000 460	2.000 770	-4.000 330 184.4108
3	1.000 150 EPSOMITE	1.000	460 2.000 140 2.140 .000		
3 8646003	1.000 460 SEPIOLITE(C)	1.000	732 7.000 2 -15.913 .000	.000	323.9313
2028100	500 2	2.000	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-4.000 330	104.8692
2028101	-3.000 330	1.000	281 3.000 2	-24 105	297.6002
4120100	-8.000 330	2.000	281 1.000 280	8.000 2	110,4000
4128100	-2.700 330	1.000	281 2.700 2	.300 180	110.4029
1028000	FES PPT -1.000 330	.000	3.915.0002801.000730	.000	85.9110
6028100 2	FE2(SO4)3 2.000 281	59.120 3.000	-3.580 .650 732	.000	395.8788
4	5.000 150	3.000	580 1.000 002	-1.000 330	502.3200
7015002 6	FCO3APATITE 9.496 150	-39.390 .360	114.400 .000 500 .144 460		967.3670 1.200 140
2.480 4215000	270 FLUORI TE	-4.710	10.960 .000		78.0768
	1.000 150 FORSTERITE	2.000 48.510	270 -28.298 .000	.000	236.8234
	-4.000 330 GIBBSITE (C)	2.000	460 1.000 770 -8.770 -8.487		78.0037
3	-3.000 330 Al203	1.000	30 3.000 2 -22.980 0.000	0.000 0.00 0.00	
0.00 3	2.000 30	3.000	2 ~6.000 330	000	86.8536
3	-3.000 330	1.000	$\begin{array}{cccccccccccccccccccccccccccccccccccc$.000	365.7393
4	-6.000 330	3.000	280 2.000 770	1.000 2	
1028001	GREIGITE -4.000 330	2.000	45.035 .000 281 1.000 280	.000 4.000 730	289.1910
6015001 3	GYPSUM 1.000 150	$^{261}_{1.000}$	4.848 .000 732 2.000 2	.000	172.1722
4150000	1.000 500	918 1.000	-I.JOZ .000	.000	
	HEMATITE -6.000 330	30.845	4.008 .000 281 3.000 2	.000	
5015003	HUNTITE 3.000 460	25.760	29.968 .000 150 4.000 140	.000	353,0536
5046001	HYDRMAGNESIT 5.000 460	52.210	8.766 .000 140 -2.000 330	.000 6.000 2	467.6736
6050000	JAROSITE NA -6.000 330	36.180 1.000	11.200 .000	.000 2.000 732	478.6978 6.000 2
6041002	JAROSITE K -6.000 330	31.280 1.000	14.800 .000	.000 732	494.8100 6.000 2
	JAROSITE H		12.100 .000	.000 7.000 2	480.7320
1028002	MACKINAWITE	.000		.000 2	87.9110
8450000	-1.000 330 MAGADIITE	.000	14.300 .000	.000	532.6521
	MAGHEMITE	-9.000		7.000 770 .000	159.6922
3	-6.000 330	2.000	281 3.000 2		

•

5046002	MAGNESITE	6.169	8.029	8.279	7.779		84.3214
2 3028000	2 MAGNESITE 2 1.000 460 MAGNETITE 8.000 330 MELANTERITE 3 1.000 280 MID DI JET	$1.000 \\ 50.460$	140 -3.737	-3.367	-6.595		231.5386
6028000	-8.000 330	2.000	281 1	.000 280	4.000	2	070 0157
302000	1.000 280	1.000	732 7	.000 2	.000		278.0157
0020001	. MIRABILITE	-18.987 1.000	1.114	.000	.000		322.1942
205000		15 745	1 211	000	000		286.1420
5046003	NESQUEHONITE	5.789	5.621	5.133	4.546		286.1420 138.3673 417.2863 3.000 770
38646001	1.000 460 PHLOCOPITE	1.000	140 3	.000 2	000		417 2863
5010004	-10.000 330	1.000	410 3	.000 460	1.000	30	3.000 770
1028003	-2.000 330	-11.300 -2.000	18.479 1 1	.000	2.000	730	119.9750
2077002	QUARTZ	-6.220	4.006	.000	.000		60.0848
8646004	SEPIOLITE(A)	.000	-18.780	.000	.000		323.9308
5028000	500 2	2.000	460 3	.000 770	-4.000	330	115 9564
20000	1.000 280	1.000	140	12.104	.000		115.6564
3077003 2	SIO2(A,GL) -2.000 2	-4.440 1.000	3.018	.000	.000		3.000 770 119.9750 60.0848 323.9308 115.8564 60.0848 60.0848 125.6168
2077004	SIO2(A,PT)	-3.910	2.710	.000	.000		60.0848
4280000	SRF2	-1.250	8.540	9.120	.000		125.6168
2028100	1.000 800 STRENGTTE	2.000	270	20 122	26 225		196 9400
3	1.000 281	1.000	580 2	.000 2	20.255		100.0490
5080000	STRONTIANITE 1.000 800	.690 1.000	9.250 140	11.789	.000		147.6294
8646002	TALC	35.005	-23.055	-18.988 -	-23.088	220	379.2888
6050002	THENARDITE	.572	.179	.000 770	-0.000	330	142.0412
2 5050001	2.000 500 THERMONATE	1.000	732	000	000		124 0043
3	2.000 500	1.000	140 1	.000 2	.000		121.0013
8215001	TREMOLITE	96.615	-56.546	.000	.000	770	
7028001	-0.000 Z	2.000	36 000	.000 460	000	770	-14.000 330
3	3.000 280	2.000	580 8	.000 2	.000		501.0002
5010000	WITHER ITE	360	8.585	13.335	.000		125.6168 186.8490 147.6294 379.2888 142.0412 124.0043 812.4096 -14.000_{330} 501.6062 197.3494 86.9368 86.9368 86.9368 86.9368 157.8742 228.8116
2047000		29 180	140 -15 861	000 -	-16 038		96 0369
2017000	-4.000330	-1.000	1 1	.000 471	2.000	2	00.9500
3047001	BIRNESSITE	.000	-18.091	.000	.000	~	86.9368
4	-4.000 330	-1.000	1 1.	.000 471	2.000	2	
2047002	NSUTITE	.000	-17.504	.000	.000		86.9368
4 3047100	-4.000 330 BIXBYITE	-1.000	1 1.	.000 471	2.000 430	2	157 8742
3	-6.000 330	2.000	471 3	.000 2	. 100		13710712
	HAUSMANNITE -8.000 330		-61.540 1 3.			2	228.8116
2047003	PYROCROITE	22.590	-15.088	.000 -		2	88.9528
	-2.000 330 MANGANITE	1.000	470 2. .238	.000 2	.000		87.9448
	-3.000 330 RHODOCHROSIT	$1.000 \\ 2.079$.000 2	0 002		114 0474
2	1.000 470	1.000	140		9.993		114.9474
	MNCL2, 4H2O 1.000 470	-17.380 2.000	-2.710 180 4.		.000		197.9052
1047000	MNS GREEN	5.790	-3.800	.000	.000		87.0020
3 6047000		15 480	470 1. -2.669	.000 730	.000		150.9996
2		1.000		.000	.000		TJ0.2220

6047100	MN2(SO4)3	39.060	5.711	.000	.000		398.0608 354.7568 775.7382 -7.400 470 817.4214 16.000 2
7047000	MN3 (PO4) 2	-2.120	23.827	.000	.000		354.7568
3041000	A-CRYPTOMELN	.000	.000	.000	.000	-	775.7382
5 3010000	-34.000 330 HOLLANDITE	16.000	4/1 .000	.800 410	17.000	2	-7.400 470 817.4214
6 -6.410	-32.000 330 470	14.000	471	.820 100	.570	280	16.000 2
3015000	TODOROKITE	.000	.000	.000	.000	471	592.4641 14.000 2
-3.866	470		100	.175 400	10.000	111	1052 2024
5044000	-70.000 330	2.000	440 8	3.000 30	20.000	471	1953.3934 49.000 2
3015001	RANCIETTE	000	000	000	000		466 1020
5 0023000	-18.000 330 CU METAL I	.440	150 8 8,760	3.000 471	12.000 8.800	2	49.000 2 466.1930 -3.440 470 63.5460
2	1.000 230	1.000	1	000	6 620		98.9990
2	1.000 230	1.000	180	.000	0.030		98,9990
4223000	1.000 230	12.370	-7.080 270	.000	.000		82.5444
_2023000 _3	CUPRITE -2.000 330	-6.245	1.550	1.870	.700		143.0914
1023000	CHALCOCITE	-49.350	34.619	34.920	30.900		159.1560
1023001	DJURLEITE	-47.881	33.920	.000	.000		154.9620
1023002	ANILITE	-43.535	31.878	.000	.000	/30	143.2695
4 1023003	-1.000 330 BLAUBLEI II	.250	231 1 27.279	.500 230	1.000	730	143.2695 121.0284 101.9646 95.6100
4 1023100	-1.000 330 BLAUBLET T	.600	231	.800 230	1.000	730	101 9646
4	-1.000 330	.900	231	.200 230	1.000	730	DE 6100
3	-1.000 330	1.000	231 1	.000 730	22.170		93.0100
6023000 2	2.000 230	4.560 1.000	1.950 732	.000	.000		223.1536
3023000 4	CUPROUSFERIT -4.000 330	3.800 1.000	8.920 230 1	.000	6.880 2.000	2	151.3918
4123100	MELANOTHALLI 1 000 231	12.320	-3.730	.000	-4.450		134.4520
5023100	CUCO3	.000	9.630	9.650	9.610		123.5552
4223100	CUF2	13.320	.620	.000	.000		101.5428
4223101	1.000 231 CUF2, 2H2O	2.000 3.650	270 4.550	.000	.000		137.5732
3 2023100	-18.000 330 CU METAL I 1.000 230 NANTOKITE 1.000 230 CUF 1.000 230 CUPRITE -2.000 330 CHALCOCITE -1.000 330 DJURLEITE -1.000 330 BLAUBLEI II -1.000 330 BLAUBLEI I -1.000 330 COVELLITE -1.000 330 CUPROUSFERIT -4.000 330 CUPROUSFERIT -4.000 231 CUF2 1.000 231 CUF2 1.000 231 CUF2 2.000 231 CUF2 -2.000 330 ATACAMITE -3.000 330 CU2(OH)2 -2.000 330 CU2(OH)3NO3 -2.000 330 CU2(OH)3NO3 -2.000 330 CU2(OH)3NO3 -2.000 330 CU2(OH)3NO3 -2.000 330 CU2(OH)3NO3 -2.000 330 CU2(OH)3NO3 -2.000 330 CU2(OH)3NO3 -2.000 330 CU2(OH)3NO3 -2.000 330 -2.000 330 CU2(OH)3NO3 -2.000 330 -2.000 330 CU2(OH)3NO3 -2.000 330 -2.000 330 CU2(OH)3NO3 -2.000 330 -2.000 231 CU(-2.2) -2.000 330 -2.000 -2.000 -2.000 -2.000 -2.000 -2.000 -2.000 -2.000 -2.000 -2.000 -2.000 -2.000 -2.000 -2.000 -2.00	$2.000 \\ 15.250$	270 2 -8.640	.000 2	-9.200		97.5606
3 4123101	-2.000 330 ATACAMITE	$1.000 \\ 18.690$	231 2	-7.240	-7.490		213.5669
4	-3.000 330 CU2(OH)3NO3	2.000 17.350	231 3 -9.240	.000 2	1.000	180	240.1188
4	-3.000 330 ANTLERITE	2.000	231 3	.000 2	1.000	492	
4	-4.000 330	.000 3.000	231 4	.000 2	1.000	732	354.7248
4	BROCHANTITE -6.000 330	.000 4.000	231 6	-15.150 - 2	1.000	732	452.2854
6023102 4		39.610 4.000	-16.790 231 7	.000 - .000 2	-17.400 1.000	732	470.3006
	TENORITE -2.000 330	15.240 1.000	-7.620	-7.350.000 2	-7.890		79.5454
6023103	CUOCUSO4 -2.000 330	35.575	-11.530	.000 .000 2	.000 1.000	732	239.1490
	CU3(PO4)2	.000	36.850	.000		152	380.5808

2 2 000 021	0.000 500	
7023101 CU3(PO4)2,3W	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	434.6264
3 3.000 231 6023104 CUSO4	2.000 580 3.000 2 18.140 -3.010 -2.630 -3.420	159.6036
2 1.000 231 6023105 CHALCANTHITE	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	249.6796
3 1.000 231 2023102 DIOPTASE	1.000 732 5.000 2 8.960 -6.500 .000 .000	157.6449
3 -2.000 330 3023100 CUPRICFERIT	1.000 231 1.000 770 38.690 -5.880 -5.350 .000	239.2376
4 -8.000 330 1023102 CHALCOPYRITE	1.000 231 2.000 281 4.000 2 -35.480 35.270 .000 30.790	
4 -2.000 330	1.000 231 1.000 280 2.000 730	183.5130
4023000 CUBR 2 1.000 230	-13.080 8.210 .000 .000 1.000 130	143.4500
4323000 CUI 2 1.000 230	-20.140 11.890 .000 .000 1.000 380	190.4505
0095000 ZN METAL 2 1.000 950	1.000 380 36.780 -25.757 .000 -25.790 2.000 1	65.3800
4195000 ZNCL2	2.000 1 17.480 -7.030 .000 -7.060	136.2860
2 1.000 950 5095000 SMITHSONITE 2 1.000 950	4.360 10.000 10.810 9.820	125.3892
2 1.000 950 095001 ZNCO3, 1H2O	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	143.4044
3 1.000 950 4295000 ZNF2	1.000 140 .000 10.260 .000 .000 1.000 140 1.000 2 13.080 1.520 .000 1.080 2.000 270 .000 $-12.450 -12.260 -12.480$ 1.000 950 2.000 2 .000 -12.200 .000 .000 1.000 950 2.000 2 .000 $-11.750 -11.320 -11.890$ 1.000 950 2.000 2 .000 $-11.710 -11.190 -11.840$ 1.000 950 2.000 2 .000 -15.200 .000 .000 2.000 950 3.000 2 1.000 180 .000 -38.500 .000 .000 5.000 950 8.000 2 2.000 180 .000 -7.500 .000 .000 2.000 950 2.000 2 1.000 732 .000 -28.400 .000 .000 2.000 950 1.000 2 1.000 732 .000 $-11.310 -11.570 -11.860$ 1.000 950 1.000 2 21.860 $-11.140 -10.990 -11.540$ 1.000 950 2.000 2 21.860 $-11.140 -10.990 -11.540$ 1.000 950 2.000 2 .000 -19.020 .000 .000 3.000 950 2.000 2	103.3768
2 1.000 950 2095000 ZN(OH)2 (A)	$2.000 \ 270$ $000 \ -12 \ 450 \ -12 \ 260 \ -12 \ 480$	99.3946
3 -2.000 330	1.000 950 2.000 2	99.3946
3 -2.000 330	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	99.3946
3 -2.000 330	1.000 -11.750 -11.320 -11.890 1.000 950 2.000 2	99.3946
2095003 ZN(OH)2 (G) 3 -2.000 330	.000 -11.710 -11.190 -11.840 1.000 950 2.000 2	99.3946
2095004 ZN(OH)2 (E) 3 -2,000 330	.000 -11.500 -10.950 -11.620 1.000 950 2.000 2	99.3946
4195001 ZN2(OH)3CL	.000 -15.200 .000 .000 2.000 950 3.000 2 1.000 180	217.2349
4195002 ZN5(OH)8CL2	.000 -38.500 .000 .000	533.8644
4 -8.000 330 6095000 ZN2(OH)2SO4	.000 -7.500 .000 .000	260.8322
4 -2.000 330 6095001 ZN4(OH)6SO4	$2.000 \ 950 \ 2.000 \ 2 \ 1.000 \ 732$.000 $-28.400 \ .000 \ .000$	459.6214
4 -6.000 330 5195000 ZNNO3)2,6H2O	4.000 950 6.000 2 1.000 732 -5.510 -3.440 .000 .000	297.4810
3 1.000 950 2095005 ZNO(ACTIVE)	2.000 492 6.000 2 000 -11 310 -11 570 -11 860	81.3794
3 -2.000 330	1.000 950 1.000 2	81.3794
3 -2.000 330	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	81.3794
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	3.000 950 2.000 732 1.000 2	404.2546
3 3.000 950	2.000 580 4.000 2	458.1436
1095000 ZNS (A) 3 -1.000 330	-3.670 9.052 .000 .000 1.000 950 1.000 730	97.4400
1095001 SPHALERITE 3 -1.000 330	-8.250 11.618 13.212 5.952 1.000 950 1.000 730	97.4400
1095002 WURTZITE 3 -1.000 330	-5.060 9.682 10.182 8.552 1.000 950 1.000 730	97.4400
8295000 ZNSIO3	18.270 -2.930 .000 .000	141.4637
4 -2.000 330 8095000 WILLEMITE	-1.000 2 1.000 950 1.000 770 33.370 -15.330 -13.350 .000	220.8431
3 -4.000 330 6095003 ZINCOSITE	2.000 950 1.000 770 19.200 -3.010 .000 -3.930	161.4376

2 6095004	1.000 950 ZNSO4, 1H2O	1.000 732 10.640 .570 .000 .500	179.4528
3 6095005	1.000 950 BIANCHITE	1.000732 $1.0002.160 1.765 .000 1.020$	269.5288
	GOSLARITE	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	287.5440
4095000	1.000 950 ZNBR2, 2H2O	7.510 -5.210 .000 .000	261.2184
4395000		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	319.1890
	CD METAL	2.000 380 18.000 -13.490 .000 -13.640	112.4100
2 0016001 2	GAMMA CD	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	112.4100
	OTAVITE	.580 13.740 13.810 11.210	172.4192
4116000		4.470 .680 .000 .470 2.000 180	183.3160
4116001	CDCL2, 1H20 1.000 160	1.820 1.710 .000 .000	201.3312
4116002	CDCL2,2.5H2O 1.000 160		228.3536
1216000	CDF2	9.720 2.980 .000 .000	150.4068
2016000 3	CD(OH)2 (A) -2.000 330	20.770 -13.730 -13.610 -14.300 1.000 160 2.000 2	146.4246
2010001	-2 000 330		146.4246
4116003 4	CDOHCL -1.000 330	7.407 -3.520 -3.300 .000 1.000 160 1.000 2 1.000 180	164.8703
6016000 4	CD3(OH)4SO4 -4.000 330	.000 -22.560 .000 .000 3.000 160 4.000 2 1.000 732	501.3168
6016001 4	CD3OH2(SO4)2 -2.000 330	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	563.3598
6016002 4	CD4(OH)6SO4 -6.000 330	.000 -28.400 .000 .000 4.000 160 6.000 2 1.000 732	647.7414
2016002 3	MONTEPONITE -2.000 330	24.760 -15.120 .000 -15.740 1.000 160 1.000 2	128.4094
7016000 2	CD3(PO4)2 3.000 160	.000 32.600 .000 .000 2.000 580	527.1728
8216000 4		16.630 -9.060 -7.960 .000 1.000 160 1.000 770 -2.000 330	188.4937
6016003 2	CDSO4 1.000 160	14.740 .100 .130 .050 1.000 732	208.4676
6016004 3	1.000 160 CDSO4, 1H2O 1.000 160	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	
3	1.000 160	4.300 1.073 1.090 1.000	256.3879
3	GREENOCKITE -1.000 330	1.000 160 1.000 730	144.4700
3	CDBR2, 4H2O 1.000 160	2.000 130 4.000 2	344.2788
4316000	1.000 160	-4.080 3.610 .000 .000 2.000 380	366.2190
2	PB METAL 1.000 600	400 -4.270 -4.070 -4.310 2.000 1	207.2000
2	COTUNNITE 1.000 600	-5.600 4.770 4.976 4.670 2.000 180	278.1060
3	MATLOCKITE 1.000 600	-7.950 9.430 .000 8.600 1.000 180 1.000 270	261.6514
3		.000 19.810 19.940 .000 2.000 180 1.000 140	545.3152
2	CERRUSITE 1.000 600	-4.860 13.130 13.440 12.830 1.000 140 700 7 440 7 570 000	267.2092
4260000	rdf'Z	.700 7.440 7.570 .000	245.1968

·

2060000	1.000 600 MASSICOT	16.780	-12.910 -12.790			223.1994
2060001	-2.000 330 LITHARGE	16.380	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-13.070		223.1994
2060002	-2.000 330 PBO, .3H2O		$\begin{array}{cccccccccccccccccccccccccccccccccccc$			229.1444
5060001	-2.000 330 PB20C03					490.4086
	LARNAKITE		.280 6.300	.000		526.4570
6060001	-2.000 330 PB302S04	20.750	$\begin{array}{cccccccccccccccccccccccccccccccccccc$.000		749.6564
6060002	-4.000 330 PB403S04		-22.100 .000	.000	2	972.8558
7060001	-6.000 330 CLPYROMORPH		600 1.000 732 84.430 .000 580 1.000 180		2	1356.3672
-	5.000 600 HXYPYROMORPH	.000	62,790 .000	.000		1337.9215
5060002	-1.000 330 PB302C03	26 430	600 3.000 580 -11.020 .000	000	2	713.6080
4 7060003	-4.000 330 PLUMBGUMMITE	3.000 .000	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2.000 .000	2	581.1391
5 7060004	-5.000 330 HINSDALITE	1.000 .000	600 3.000 30 2.500 .000	2.000	580	6.000 2 581.2174
6.000	002					1.000 732
7060005 5	TSUMEBITE -3.000 330	.000 2.000	$\begin{array}{cccc} 9.790 & .000 \\ 600 & 1.000 & 231 \\ -7.320 & -6.120 \\ 330 & 1.000 & 600 \end{array}$.000 1.000	580	677.9849 6.000 2
8260000 4	PBSI03 -1.000 2	9.260 -2.000	-7.320 $-6.120330 1.000 600$	-7.640 1.000	770	283.2837
8060000	PB2SIO4 -4.000 330	26.000	-19.760 -19.220 600 1.000 770	-20.050		506.4831
6060003 2	ANGLESITE 1.000 600	-2.150 1.000	7.790 7.870	.000		303.2576
1060001 3		-19.400	15.132 16.452 600 1.000 730			239.2600
	PLATTNERITE -4.000 330	70.730	-49.300 -49.000	.000	2	239.1988
3060000 4	PB2O3	.000	-61.040 .000	.000	2	462.3982
	MINIUM -8.000 330	$102.760 \\ -2.000$	-73.690 -70.800	.000 4.000	2	685.5976
2060004	PB(OH)2 (C)	13,990	-8.150 .000 -	-13 630	2	241.2146
4160003	LAURIONITE -1.000 330	.000	$\begin{array}{cccccccccccccccccccccccccccccccccccc$.000	2	259.6603
4160004	PB2(OH)3CL	.000	$\begin{array}{cccccccccccccccccccccccccccccccccccc$.000		500.8749
5060003	HYDCERRUSITE	.000	$\begin{array}{cccccccccccccccccccccccccccccccccccc$.000	2	775.6330
	PB20(OH)2 -4.000 330		-26.200 .000 - 600 3.000 2		4	464.4140
4060000	PBBR2 1.000 600		5.180 5.340			367.0080
4060001 3	PBBRF	.000	8.490 .000 130 1.000 270	.000		306.1024
4360000 2		-15.160 2.000	8.070 .000	.000		461.0090
	PB4(OH)6SO4	.000 4.000	-21.100 .000	.000 6.000	2	1026.9014
5054000 2	NICO3	9.940 1.000	6.840 .000	.000	2	118.7092
2054000 3	NI(OH)2 -2.000 330	-30.450	-10.800 -10.590 -	-13.300		92.7146
	NI4(OH)6SO4	.000	-32.000 .000	.000 6.000	2	432.9014
*			1000		-	

2054001	BUNSENITE	23,920	-12.450 .000	-12.390	74.6994
3 7054000	-2.000 330 NI3(PO4)2	1.000	$\begin{array}{cccc} -12.450 & .000 \\ 540 & 1.000 & 2 \\ 31.300 & .000 \\ 580 \\ & 8.042 & 8.132 \\ 540 & 1.000 & 730 \\ & 2.040 & .000 \\ \end{array}$.000	366.0428
2 1054000	3.000 540 MILLERITE	2.000 -2.500	580 8.042 8.132	.000	90.7600
3 6054001	-1.000 330 RETGERSITE	$1.000 \\ -1.100$	540 1.000 730 2.040 .000	.000	262.8488
3 6054002	1.000 540 MORENOSITE	$1.000 \\ -2.940$	732 6.000 2 2.360 .000 732 7.000 2	.000	280.8640
3 8054000	1.000 540 NI2SIO4	1.000	$\begin{array}{cccccccccccccccccccccccccccccccccccc$.000	209.4831
3	-4.000 330	2.000	540 1.000 770		
2	AG METAL 1.000 20	1.000	13.510 .000 1	.000	107.8680
	BROMYRITE 1.000 20	1.000		.000	187.7720
	CERARGYRITE 1.000 20	-15.652 1.000	9.750 .000	.000	143.3210
5002000	AG2CO3 2.000 20	-9.530 1.000	11.070 .000	.000	275.7452
4202000	AGF.4H2O	-4.270	550 .000	.000	198.9272
4302000	1.000 20 IODYRITE	-26.820	270 4.000 2 16.070 .000	.000	234.7725
2 2002000	1.000 20 AG2O	1.000 10.430	380 -12.580 .000	.000	231.7354
	-2.000 330 AG3PO4	2.000	20 1.000 2 17.550 .000 580	.000	418,5754
2	3.000 20 ACANTHITE	1.000	580 36.050 .000	.000	247.7960
3	-1.000 330	2.000	20 1.000 730		
2	AG2SO4 2.000 20	1.000	4.920 .000 732	.000	311.7936
5	ANALCIME 1.000 500	22.840 1.000		.000 -1.000 2	220.1550 -4.000_330
	HALLOYSITE 2.000 30		-8.994 .000 770 1.000 2	.000 -6.000 330	258.1620
8603001	KAOLINITE 2.000 30	35.280	-5.726 .000 770 1.000 2	.000	258.1620
8415000	LEONHARDITE	85.360	-16.490 .000	-6.000 330	
5 8450002	-1.000 2 LOW ALBITE		$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	8.000 770 .000	$\begin{array}{r}922.8670\\4.000&30\\262.2250\\-4.000&2\\-4.000&2\end{array}$
	1.000 500 ANALBITE	$\begin{smallmatrix}&1.000\\20.000\end{smallmatrix}$	30 3.000 770 -3.506 .000	-4.000 330 .000	-4.000 2 262.2250
5	1.000 500 MUSCOVITE	1.000 59.340	30 3.000 770	-4.000 330	-4.000 2
4 8641001	1.000 410	3.000	30 3.000 770	-10.000 330	398.3110 511.8900
	1 000 110	65.720 3.000		3.000 770	-10.000 330
8415001 4	ANORTHITE 1.000 150	70.660 2.000	$\begin{array}{cccccccccccccccccccccccccccccccccccc$.000 -8.000 330	278.2110
0000002	PYROPHYLLITE 2.000 30	.000 4.000	30 2.000 770 1.598 .000 770 -4.000 2	.000 -6.000 330	360.3138
8415002	LAUMONTITE 1.000 150	50.450 2.000	-14.460 .000 30 4.000 770	.000 -8.000 330	470.4410
8415003	WAIRAKITE	63.150	-18.870 .000	.000	434.4110
	MALACHITE	2.000 15.610	30 4.000 770 5.180 .000	-8.000 330 3.940	-2.000 2 221.1162
4 5023102		2.000 23.770	2 1.000 140 16.920 .000	-2.000 330 .000	344.6716
4 3006000	3.000 231 ARSENOLITE	2.000 -14.330	2 2.000 140 2.801 2.859	-2.000 330 2.728	395.6824
2 3006001	4.000 60 CLAUDETITE	-6.000 -13.290	2 3.065 .000	3.021	395.6824
2 4306000	4.000 60	-6.000 -1.875	2 -4.155 .000	.000	455.6347
4300000		3.000		-3.000 2	122.021

1006000	ORIPMENT	_	82.890	60.97	1	000	46.004		246.0350
4	2.000	60	3.000	730	3.000	330	-6.000	2	•
	REALGAR 1.000	- 60	30.545 1.000	19.74 730	2.000	574 330	.000	1	106.9855 -3.000 2
3006100			5.405	-0.09	. 9	000	-9.478		229.8400
2 74001			-3.000 .0450	2 11.7058					121.7500
	1.000 Sb2S3 Stil		3.000	330 60.1560	3.000	1	-3.000	2	339.6980
4	2.000	740	3.000	730	3.000	330	-6.000	2	
1274000 4			.9900 3.000	67.7571 760	3.000	330	-6.000	2	480.3800
	NiSb Breit	tha -22	.9450	18.5225				_	180.4400
د 1474002	1.000 ZnSb			-11.0138	3.000	330	1.000	540	-3.000 2 187.1400
	1.000 AlSb					950	3.000	330	-3.000 2
5	1.000	740	6.000	1	1.000	30	3.000	330	148.7315 -3.000 2
1474004 5		-5		0.3943_ 1		330	1.000	160	234.1610 -3.000 2
1474005	Mg2Sb3	0	.0000	-74.6838					413.8600
	2.000 Aq4Sb		3.000		9.000	330	13.000	1	-9.000 2 445.3546
5	1.000	740	6.000	· 1	3.000	20	3.000	330	-3.000 2
1474007	Na3Sb 3.000					330	6.000	1	190.7193 -3.000 2
	NaSb	22	.3850 ·	-23.1770					144.7398
	1.000 Mn2Sb			740 -61.0796		330	4.000	1	-3.000 2 231.6261
1474010	2.000 Ca3Sb2		1.000			1	3.000	330	-3.000 2 363.7340
5	3.000	150	2.000	740	6.000	330	12.000	1	-6.000 2
1474011 5	USb2 1.000	24	.6800 ·	-29.5246	12.000	1	10.000	330	481.5289 -8.000 2
1474012	Cu2Sb	-55	.7450	34.8827					248.8420
-	1.000 MnSb	740.	6.000	1 2,9099	3.000	330	1.000	230	1.000 231 176.6881
5	1.000	471	1.000	740	6.000	1	3.000	330	-3.000 2
1474014 5		-73 740		42.5937 1		330	3.000	230	$312.3880 \\ -3.000 2$
1474015	U3Sb4	235	.7200 -2	152.3288					1201.0867
2074001				740 -3.4597		1	12.000	330	-12.000 2 307.4976
	2.000					330	-2.000	1	500 0064
2074002	Sb406 II,0 4.000		-6.000						582.9964
	Sb406 I,OR 4.000								582.9964
	Sb(OH)3 (s	s) -7.							172.7719
	1.000 Cu(SbO3)2	740	0000 -	-45.2105					403.0424
4	2.000	740	1.000	231		330	-4.000	1	
2074006	Sb2O3 SENA 2.000		-3.000	12.3654					291.4982
	Sb203 VALE	INT -4.	5450	8.4806					291.4982
2 2074100	2.000 Sb2O5		-3.000	2 12.4827					323.4970
3 2074102	2.000 Sb02		2.000	330 27.8241	-7.000	2			153.7488
4	1.000	741	1.000	1	2.000	330	-4.000	2	
4074000 4	SbBr3 1.000		.0720 3.000	-1.0562 130	3.000	330	-3.000	2	361.4620
4174000	SbC13	8.	4140	-0.5915					228.1081
4 4274000	1.000 SbF3	• = •	3.000	10.2251	3.000	330	-3.000	2	178.7452
4	1.000	740	3.000	330	3.000	270	-3.000	2	

4374000 SI	hT 2	-3 2480	0 5280			F00 4604	
4	1.000 740		0.5380 330 3.000 380	-3.000	2	502.4634	
5295000 ZM 4	N(BO2)2 -2.000 2	.000 -2.000	-8.290 .000 330 1.000 950	.000 2.000	90	150.9893	
5216000 CI 4	D(BO2)2 -2.000 2	.000	-9.840 .000	.000		198.0188	
5260000 PH	B(BO2)2	-2.000 5.800	-7.610 .000	2.000	90	292.8093	
4 7047001 M		-2.000 .000	330 1.000 600 25.400 .000	2.000 .000	90	150.9174	
3 7060006 PH	1.000 470 3HPO4			.000		303.1693	
3 7060007 PE	1.000 600		580 1.000 330 44.500 .000	.000			
2	3.000 600	2.000	580			811.5125	
0073100 SU 3	1.000 730	$4.200 \\ -1.000$	$\begin{array}{rrrr} 2.110 & .000 \\ 330 & -2.000 & 1 \end{array}$.000		32.0640	
7203000 AI 4	LASO4.2W 1.000 30	.000 1.000	-4.800 .000 61 2.000 2	.000 -3.000	330	165.9006	
7215000 CA 4	A3(ASO4)26W 3.000 150	1.000 .000 2.000	-22.300 .000	.000 -6.000		506.1700	
7223100 CU	J3 (ASO4)26W	.000	-6.100 .000	.000		576.5680	
4 7228100 FE		2.000	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-6.000 .000		230.7967	
4 7247000 MN	1.000 281 N3ASO428W		61 2.000 2 -12.500 .000	-3.000 .000	330	586.7746	
4 7254000 NI	3.000 470 [3(ASO4)28W	2.000 .000	61 8.000 2 -15.700 .000	-6.000 .000	330	459.1707	
4 7260000 PE	3.000 540		61 8.000 2 -5.800 .000	-6.000	330	899.4079	
3	3.000 600	2.000	61 -6.000 330				
4	I3ASO422.5W 3.000 950	.000 2.000	-13.650 .000 61 2.500 2	.000 -6.000	330	518.9862	
7210000 BA 3	3.000 100	-2.640 2.000	8.910 .000 61 -6.000 330	.000		689.8582	
0090000 V 2	METAL 1.000 901	62.900 3.000	- 42.350 .000 1	.000		50.9400	
2090000 VC 4		28.020 1.000	-13.080 .000	.000 1.000	1	66.9390	
4190000 VC	L2	35.800	-17.970 .000	.000	1	121.8460	
3 3090100 V2		2.000 19.720	-4.900 .000	.000		149.8780	
3 2090100 V(-3.000 330 OH)3	$1.000 \\ .000$	901 1.500 2 -7.650 .000	.000		101.9620	
3 4190100 VC	-3.000 330 L3	1.000 43.960	901 3.000 2 -21.730 .000	.000		157.2990	
2 4190101 VO	1.000 901	3.000 26.170		.000			
4	1.000 901	1.000	180 1.000 2	-2.000	330	137.8450	
3090200 V2 3	-2.000 330	$\substack{14.070\\1.000}$.000		165.8780	
2090200 VO 3	(OH)2 -2.000 330	1.000	-5.850 .000 902 2.000 2	.000		100.9540	
4290200 VF 4	4 -1.000 2	47.590 1.000	-14.930 .000 902 4.000 270	.000	330	126.9320	
6090200 VO 2	SO4 (C) 1.000 902	20.720	-3.570 .000	.000	000	162.9970	
7090200 (V	0)3(PO4)2	.000	8.370 .000	.000		390.7530	
4190200 VO	CL2	.667 28.200	-12.790 .000	.000		137.8450	
2 3090300 V2	1.000 902 05	2.000 1 4.160	.720 .000	.000		181.8770	
3 7315000 TY	-1.000 330 UYAMUNITE	1.000 ± 18.300		.000		810.0130	
5 7315001 CA	-4.000 330	.500		1.000 9	903	2.000 2 237.9560	
7515001 CA 4	-2.000 330	.500		1.000	2	251.5500	

73100	02 CA3(VO4)2		-19.480 .000	.000		350.1150
73150	4 -4.000 330 03 CA2V207	19 060	-8 750 000	2.000	2	294.0360
	4 -3.000 330	1.000	150 1.000 903	1.500	2	294.0300
73280	00 FE-VANADATE	1.370	1.860 .000	.000		508.4310
73460	4 -2.000 330 00 MG-VANADATE	.500	280 1.000 903 -5.640 .000	1.000	2	222.1860
70100	4 -2.000 330		460 1.000 903	1.000	2	222.1000
73460	01 MG2V207	30,500	-13.180 .000	.000	~	262.4960
73470	4 -3.000 330 00 MN-VANADATE	1.000 11.050	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	1.500 .000	2	252.8160
	4 -2.000 330	.500	470 1.000 903	1.000	2	252.0100
73490	00 NH4VO3 4 -2.000 330	3.770	-2.690 .000 490 1.000 903	.000		116.9770
73500	00 NA-VANADATE	7.010	-3.710 .000	1.000	2	121.9280
	4 -2.000 330	1.000	500 1.000 903	1.000	2	
73500	01 NA3VO4 4 -4.000 330	44.420 3.000	-36.940 .000 500 1.000 903	.000 2.000	2	183.9080
73500	4.000 350 02 NA4V207	24.030	-18.700 .000	.000	4	305.8360
	4 -3.000 330		500 1.000 903	1.500	2	
/3600	00 PB3(VO4)2 4 -4.000 330	8.680 1.500	-3.070 .000 600 1.000 903	.000 2.000	2	851.4750
73600	01 PB2V207	3.220	.950 .000	.000	4	628.2760
72460	4 -3.000 330		600 1.000 903	1.500	2	
/3460	02 CARNOTITE 5 -4.000 330	8.700 1.000	230 .000 410 1.000 893	.000 1.000	903	848.1330 2.000 2
73020	00 AG-VANADATE	.000	770 .000	.000	505	206.8080
72020	4 -2.000 330			1.000	2	221 6262
73020	01 AG2HVO4 4 -3.000 330	.000 2.000		.000 2.000	2	331.6860
73020	02 AG3H2VO5	.000	-5.180 .000	.000	5	456.5630
41903	4 -4.000 330 00 YO2CL	3.000 9.650		3.000	2	110 2020
41903	2 1.000 903	1.000		.000		118.3920
30901	01 ¥305	23.530	-1.870 .000	.000		232.8170
30902	4 -4.000 330 01 V407	3.000 39.150	902 2.000 2 -7.140 .000	2.000	1	315.7560
	4 -6.000 330	4.000	902 3.000 2	2.000	1	515.7500
30902	02 V6013 4 -2.000 330	-64.890 6.000	60.860 .000 903 1.000 2	.000	1	513.6320
20150	4 -2.000 330 00 LIME	46.265	903 1.000 2 -32.797 0	$4.000 \\ 0$	1	56.0800
	3 -2.000 330	1.000	150 1.000 002			
20150	01 PORTLANDITE 3 -2.000 330	30.690 1.000	-22.675 0 150 2.000 002	0		73.0880
20280	00 WUSTITE	24.846	-11.687 0	0		71.8500
20460	3 -2.000 330	0.947				
20460	01 PERICLASE 3 -2.000 330	36.135 1.000		0		40.3200
30280	01 HERCYNITE	78.360	-27.162 0	0		173.8100
30460	4 -8.000 330 00 SPINEL	1.000 89.089	280 2.000 030 -36.333 0	$4.000 \\ 0$	002	142.2800
	4 -8.000 330	1.000	460 2.000 030	4.000	002	
30460	01 MAG-FERRITE		-16.765 0	0	000	200.0200
42500	4 -8.000 330 00 CRYOLITE	1.000 -10.904	460 2.000 281 31.490 0	$4.000 \\ 0$	002	209.9530
	3 1.000 030	3.000	500 6.000 270			
82150	02 WOLLASTONITE 4 -1.000 002	$19.498 \\ -2.000$	-12.996 0 330 1.000 770	0 1.000	150	116.1700
82150	03 P-WOLLSTANIT	21.068	-13.846 0	0	100	116.1700
00150	4 -1.000 002	-2.000		1.000	150	170 0500
80T200	01 CA-OLIVINE 3 -4.000 330	$54.695 \\ 1.000$	-37.649 0 770 2.000 150	0		172.2500
801500	D2 LARNITE	57.238	-39.141 0	0		172.2500
801500	3 -4.000 330 07 CA3SIO5	1.000 106.335		0		228.3300
00100	4 -6.000 330	1.000		1.000	002	220.3300

8015003	MONTICELLITE	49.421	-30.272	0	0	156.4900
4 8015005	-4.000 330 AKERMINITE	1.000	-47.472	150	1.000 460	272.6600
5 8015004	-1.000 002 MERWINITE	-6.000 107.111	330 2.000	770 0	$\begin{array}{c} 0\\ 1.000 \ 460\\ 0\\ 2.000 \ 150\\ 0\\ 3.000 \ 150\\ 0\end{array}$	$1.000 460 \\ 328.7400$
4	-8.000 330	2.000	770 1.000	460	3.000 150 0	158.1700
4	-4 000 330	1 000	770 1 000	030	1 000 410	
8441001 5	LEUCITE -2.000 002 MICROCLINE	-4.000	-6.423 330 2.000	0 770	0 1.000 030	278.2600 1.000 410
8441002 5	-4 000 002	-4 000	330 3.000	770	1 000 030	378.3500 1.000 410
8441003	H SANIDINE	14.252	-1.062	0	0	378.3500
8450004	NEPHELINE	33.204	-14.218	0	1.000 030	$\begin{array}{r} 1.000 \ 410 \\ 142.0610 \end{array}$
4 8015006	-4.000 330 GEHLENITE	1.000 116.125	770 1.000	030	$ \begin{array}{c} 1.000 & 030 \\ 0 \\ 1.000 & 500 \\ 0 \\ 2.000 & 150 \\ 0 \\ 16.886 \\ 2.000 & 281 \\ \end{array} $	374.2100
5 3028102	-10.000 330	2.000	030 1.000	770	2.000 150	3.000 002 72.8600
3	-3.000 330	1.000	281 2.000	002	16 006	125.0000
8650000 6	-7.320 330	-2.680	002 0.330	030	2.000 281	425.2690 0.330 500
3.670 8641002	770 K-NONTRONITE	0	15.549 12.3	763	18.334	430.5850
6 3.670	-7.320 330	-2.680	002 0.330	030	18.334 2.000 281	0.330 410
8615000	CA-NONTRONIT	0	20.889 19.0)57	22.722 2.000 281	424.3750
2 670	770					
8646005 6	MG-NONTRONIT -7.320 330	0 -2.680	20.589 19.0 002 0.330)13 030	22.165 2.000 281	408.6150 0.167 460
3.670	770					
8646006 0.00 6	Montmorillon 3.810 770	0.0000 0.490	-2.6700 0.0 460 -6.760)00 330	$\begin{array}{rrrr} 0.000 & 0.00 & 0.00 \\ -3.240 & 2 \end{array}$	0.00 371.3490 0.220 281
1 710	30 Tl metal -					0.00 204.3700
• • • • • • • • • • • • • • • • • • • •	1.000 870 T120 2	1 000				0.00 424.7394
3	2.000 870	1.000	2 -2.000	330		
3	TlOH 1.000 870	1.000	2 -1.000	330	0.00 0.00	0.00 221.3773
4187000	TlCl -1 1.000 870 TlBr -1	0.1370	3.7243 180		0.00 0.00	0.00 239.8230
4087000	TlBr -1 1.000 870	3.6410	5.4190		0.00 0.00	0.00 284.2740
4387000	T1I -1	7.2810	7.1964		0.00 0.00	0.00 331.2745
1087000	1.000 870 Tl2S -2	1.5600	7.1832		0.00 0.00	0.00 440.8000
3 6087000	2.000 870 Tl2SO4 -	1.000	730 -1.000 3.6942	330	0.00 0.00	0.00 504.7976
2 1287000	2.000 870 Tl2Se -2	1.000	732			0.00 487.7000
3	2.000 870	1.000	760 -1.000	330		
2	T12SeO4 - 2.000 870	1.000				0.00 551.6976
5187000 2		0.0200 1.000	1.5319 492			0.00 266.3749
5087000 2		8.0200 1.000	3.8482 140		0.00 0.00	0.00 468.7492
	Tl(OH)3	0.0000	6.4503		0.00 0.00	0.00 255.3919
2087100	Avicennite		16.3236		0.00 0.00	0.00 456.7382
0076000	Se hex,blac -	-3.000 3.8000	2 7.6963		0.00 0.00	0.00 78.9600
3 0076001		-1.000 2.6000	330 -2.000 7.1099	1	0.00 0.00	0.00 78.9600
	· ·					

3 1.000 760 -1.000 330-2.000 1 1228001 Ferroselite -11.3000 18.5959 -2.000 330 1.000 280 4 2.000 760 1260000 Clausthalit -28.0000 21.21623 1.000 760 1.000 600 -1.000 3301202000 Ag2Se -64.9500 43.6448 3 1.000 760 2.000 20 -1.000 3301216000 CdSe -18.1600 18.0739 3 1.000 760 1.000 160 -1.000 3301223100 CuSe -28.9500 26.5121 3 1.000 760 1.000 231 -1.000 330 1223000 Cu2Se alpha -51.2100 36.0922 3 1.000 760 2.000 230 -1.000 3301223101 CuSe2 -33.6000 33.3655 -2.000 330 2.000 760 1.000 231 4 1223001 Cu3Se2 -81.3400 63.4911 1.000 231 4 2.000 760 2.000 230 1228000 FeSe -0.5000 7.1466 3 1.000 760 1.000 280 -1.000 3301247000 MnSe 13.4600 -5.3508 1.000 760 1.000 470 3 -1.000 3301295000 ZnSe -6.4390 11.3642 3 1.000 760 1.000 950 -1.000 3301220000 CoSe 0.0000 16.2723 1.000 760 3 1.000 200 -1.000 3301254000 NiSe 0.0000 17.7382 3 1.000 760 1.000 540 -1.000 3302076100 SeO2 -0.3350-0.12463 1.000 761 1.000 330 -1.0006110000 BaSeO3 6.2800 -4.1634 3 1.000 761 1.000 100 -1.000 3306115000 CaSeO3:2H2O 4.6500 -2.8139 2.000 4 1.000 761 1.000 150 2 6123100 CuSeO3:2H2O 8.8100 -0.4838 2.000 2 4 1.000 761 1.000 231 6128100 Fe2(SeO3)3: 0.0000 20.6262 2.000 2 4 3.000 761 2.000 281 6128101 Fe2(OH)4SeO 0.0000 -1.5539 4.000 2.000 281 2 4 1.000 761 6146000 MgSeO3:6H2O -1.2500 -4.03141.000 460 6.000 2 4 1.000 761 6147001 MnSEO3:2H2O -2.0300 -0.9822 1.000 761 1.000 470 2.000 2 4 6154000 NiSeO3:2H2O 7.4100 -2.8147 2.000 4 1.000 761 1.000 540 2 0.0000 6180000 SrSeO3 -0.10341.000 800 -1.000 3303 1.000 761 6147000 MnSeO3 0.0000 -0.04403 1.000 761 1.000 470 -1.000 3306120000 CoSeO3 0.0000 -0.19063 1.000 761 1.000 200 -1.000 3306102000 Ag2SeO3 -9.47008.1977 2.000 20 -1.000 330 3 1.000 761 2076200 SeO3 34.9850 -21.0440 3 1.000 762 2.000 330 -1.0002 6102001 Ag2SeO4 -10.45008.9014 2 1.000 762 2.000 20 6110001 BaSeO4 -2.00005.1895 2 1.000 762 1.000 100 6115001 CaSeO4:2H2O -0.88002.9473 2.000 3 1.000 762 1.000 150 2 6.8387 6160000 PbSeO4 -3.80002 1.000 762 1.000 600 6180001 SrSeO4 -2.6900 6.8747 1.000 762 1.000 800 2 0036000 Hg metal (l -19.9350 13.4552

0.00 0.00 0.00 213.7670 -2.000 1 0.00 0.00 0.00 286.1600 0.00 0.00 0.00 294.6960 0.00 0.00 0.00 191.3700 0.00 0.00 0.00 142.5060 0.00 0.00 0.00 206.0520 0.00 0.00 0.00 221.4660 -2.000 1 0.00 0.00 0.00 348.5580 -2.0003300.00 0.00 0.00 134.8070 0.00 0.00 0.00 133.8980 0.00 0.00 0.00 144.3400 0.00 0.00 0.00 137.8932 0.00 0.00 0.00 137.6600 0.00 0.00 0.00 110.9588 0.00 0.00 0.00 264.2882 0.00 0.00 0.00 203.0686 -1.000 330 0.00 0.00 0.00 226.5346 -1.000 330 0.00 0.00 0.00 528.5990 -3.000 330 0.00 0.00 0.00 306.6814 -5.000 330 0.00 0.00 0.00 259.3544 -1.000 3300.00 0.00 0.00 217.9266 -1.000 3300.00 0.00 0.00 221.6886 -1.000 3300.00 0.00 0.00 214.5782 0.00 0.00 0.00 181.8962 0.00 0.00 0.00 185.8914 0.00 0.00 0.00 342.6942 0.00 0.00 0.00 126.9582 0.00 0.00 0.00 358.6936 0.00 0.00 0.00 280.2876 0.00 0.00 0.00 219.0680 0.00 0.00 0.00 350.1576 0.00 0.00 0.00 230.5776 0.00 0.00 0.00 200.5900

* · · · · ·

0.500 360 2 1.000 1 4036000 Hg2Br2 -31.2520 22.2091 1.000 360 2.000 130 2 5036000 Hg2CO3 0.0000 13.9586 2 1.000 360 1.000 140 4136000 Calomel -23.444017.8427 2 1.000 360 2.000 180 4236000 Hq2F2 4.4320 3.0811 2 1.000 360 2.000 270 4336000 Hg2I2 0.0000 28.2782 2 1.000 360 2.000 380 0.0000 -5.2603 2036000 Hg2(OH)2 3 1.000 360 2.000 2 -2.000 3300.0000 25.9795 7036000 Hg2HPO4 1.000 330 1.000 580 3 1.000 360 1036000 Hg2S -16.6700 11.6765 1.000 360 3 1.000 730 -1.000 3306036000 Hq2SO4 -0.23006.1593 2 1.000 360 1.000 732 0.0000 6136000 Hg2SeO3 4.6570 3 1.000 360 1.000 761 -1.000 3304036100 HgBr2 -34.4520 25.3730 4 1.000 361 2.000 130 2.000 330 5036100 HgCO3 -22.1300 28.6817 4 1.000 361 1.000 140 2.000 330 4136100 HgCl2 -27.2640 21.7858 2.000 330 4 1.000 361 2.000 180 4336100 Coccinite -49.7320 34.6599 1.000 361 2.000 380 2.000 330 4 2036100 Montroydite -5.1150 3.6503 2 1.000 361 -1.0002 3.4963 2036101 Hg(OH)2 0.0000 1.000 361 1 1036100 Cinnabar -60.430045.1885 1.000 361 1.000 730 1.000 330 4 1036101 Metacinnaba -59.5300 44.8220 1.000 330 4 1.000 361 1.000 730 -3.5100 6036100 HgSO4 9.4189 4 1.000 361 1.000 732 2.000 330 0.0000 12.6953 6136100 HqSeO3 1.000 361 1.000 330 1.000 761 4 4336102 HgI2:2NH3 -32.6320 16.1066 2.000 490 4 1.000 361 2.000 380 4336103 HgI2:6NH3 20.5680 -33.8566 2.000 380 6.000 490 5 1.000 361 2021100 CR(OH)2 8.5100 -10.8189 3 1.000 210 2.000 2 -2.00033033.7770 -19.9086 4021100 CRBR3 4 1.000 211 3.000 130 2.000 330 4121100 CRCL3 27.5090 -13.5067 4 1.000 211 3.000 180 2.000 330 4221100 CRF3 4.3630 13.2597 2.000 330 4 1.000 211 3.000 270 32.1270 -20.4767 4321100 CRI3 2.000 330 4 1.000 211 3.000 380 3021100 FECR204 24.8600 0.9016 -4.000 330 1.000 280 3 2.000 211 3021101 MGCR204 39.8600 -12.0796 -4.000 330 3 2.000 211 1.000 460 34.3000 -32.2440 0021000 CR METAL 1.000 210 2.000 1 2 3021102 CR2O3 12.1250 3.3937 3 2.000 211 -2.000 330 -1.000 2 0.7500 2021102 CR(OH)3 (A) 0.0000 1.000 2 -1.000 330 3 1.000 211 2021101 CR(OH)3 (C) 7.1150 -1.7005

0.00 0.00 0.00 560.9880 0.00 0.00 0.00 461.1892 0.00 0.00 0.00 472.0860 0.00 0.00 0.00 439.1768 0.00 0.00 0.00 654.9890 0.00 0.00 0.00 435.1946 0.00 0.00 0.00 497.1593 0.00 0.00 0.00 433.2400 0.00 0.00 0.00 497.2376 0.00 0.00 0.00 528.1382 0.00 0.00 0.00 360.3980 -2.000 2 0.00 0.00 0.00 260.5992 -2.0002 0.00 0.00 0.00 271.4960 -2.000 2 0.00 0.00 0.00 454.3990 -2.000 2 0.00 0.00 0.00 216.5894 0.00 0.00 0.00 234.6046 0.00 0.00 0.00 232.6500 -2.0002 0.00 0.00 0.00 232.6500 -2.0002 0.00 0.00 0.00 296.6476 -2.0002 0.00 0.00 0.00 327.5482 -2.0002 0.00 0.00 0.00 488.4598 -2.000 2 0.00 0.00 0.00 556.5814 -2.000 2 -4.000 330 0.00 0.00 0.00 86.0106 0.00 0.00 0.00 291.7080 -2.0002 0.00 0.00 0.00 158.3550 -2.0002 0.00 0.00 0.00 108.9912 -2.000 2 0.00 0.00 0.00 432.7095 -2.000 2 0.00 0.00 0.00 223.8366 0.00 0.00 0.00 192.2946 0.00 0.00 0.00 51.9960 0.00 0.00 0.00 151.9902 0.00 0.00 0.00 103.0179 $0.00 \ 0.00 \ 0.00 \ 103.0179$

-1.000 330 1.000 2 3 1.000 211 0.00 0.00 0.00 122.9020 4121000 CRCL2 19.6660 -15.8676 1.000 210 2.000 180 2 0.00 0.00 0.00 331.7296 -14.0400 11.5548 3021200 AG2CRO4 2 1.000 212 2.000 20 0.00 0.00 0.00 253.3236 3021201 BACRO4 -6.3900 9.6681 1.000 212 1.000 100 2 -7.5040 0.00 0.00 0.00 381.8044 0.5541 3021202 CS2CR04 2.000 220 1.000 212 2 0.00 0.00 0.00 481.7986 -22.8990 17.7793 3021203 CS2CR207 2.000 330 2.000 212 2.000 220 -1.000 2 4 0.00 0.00 0.00 179.5396 0.0000 5.4754 3021204 CUCRO4 2 1.000 212 1.000 231 0.00 0.00 0.00 194.1902 3021205 K2CRO4 -4.2500 -0.0073 2 1.000 212 2.000 410 3021206 K2CR207 -18.1250 15.6712 0.00 0.00 0.00 294.1844 2.000 330 2.000 410 -1.000 2 2.000 212 4 0.00 0.00 0.00 129.8756 10.8220 -4.8568 3021207 LI2CRO4 2 1.000 212 2.000 440 0.00 0.00 0.00 140.2986 21.2600 -5.3801 3021208 MGCRO4 2 1.000 212 1.000 460 0.00 0.00 0.00 152.0702 -2.1900 -0.4046 3021209 (NH4)2CRO4 2.000 490 2 1.000 212 0.00 0.00 0.00 161.9731 4.6100 -3.2618 3021210 NA2CRO4 2.000 500 1.000 212 2 0.00 0.00 0.00 261.9673 -5.3050 9.8953 3021211 NA2CR207 2.000 330 -1.000 2 2.000 500 2.000 212 4 0.00 0.00 0.00 323.1936 -10.2300 13.6848 3021212 PBCRO4 1.000 212 1.000 600 2 0.00 0.00 0.00 286.9292 -5.89200.0968 3021213 RB2CRO4 1.000 212 2 2.000 680 0.00 0.00 0.00 203.6136 3021214 SRCRO4 2.4200 4.8443 2 1.000 212 1.000 800 0.00 0.00 0.00 99.9942 1.2450 2021200 CrO3 3.2105 3 1.000 212 2.000 330 -1.000 2 0.00 0.00 0.00 156.0736 6.4400 2.2657 3015000 CaCrO4 2 1.000 150 1.000 212 0.00 0.00 0.00 517.1736 0.0000 8.7031 3036000 Hq2CrO4 1.000 212 2 1.000 360 0.00 0.00 0.00 524.7336 3087000 Tl2CrO4 -25.3100 12.0136 1.000 212 2 2.000 870 661.4415 1102001 Ag5FeCN)6.H2 0.0000 89.6909 4.000 20 1.000 280 1.000 2 4 -6.000 143 133.8859 1102002 AgCN -26.385016.2180 2 1.000 143 1.000 20 562.8824 0.0000 62.9824 1116001 Cd2FeCN)6.7H 1.000 280 7.000 2 2.000 160 4 6.000 143 78.0138 1121001 CrCN 0.0000 -23.8880 3 1.000 143 1.000 210 1.000 1 130.0099 0.0000 -56.6450 1121002 Cr2CN 3 1.000 143 2.000 210 3.000 1 89.5637 -30.2000 19.4974 1123001 CuCN 1.000 230 1.000 143 2 339.0454 0.0000 61.4168 1123102 Cu2FeCN)6 1.000 280 2.000 231 3 6.000 143 152.9222 1138001 CNI 17.3090 -11.3114 1.000 143 1.000 380 -2.000 1 3 2422.3737 0.0000 431.0902 1141001 K12Ni8FeCN67 12.000 410 8.000 540 7.000 280 42.000 143 4 65.1160 1141002 KCN i, cub -2.7400 -1.4403 1.000 410 1.000 143 2 402.5610 0.0000 63.0279 1141003 K2CdFeCN)6 1.000 160 1.000 280 6.000 143 2.000 410 4 1027.0135 0.0000 183.5467 1141004 K4Ni4FeCN63 3.000 280 4.000 410 4.000 540 4 18.000 143 368.3466 -95.6200 48.8241 1141005 K4FeCN)6

	C 000 110								
3 1141006	6.000 143 K2Mn3FeCN62	4.000 0.0000						66	56.9176
4	12.000 143 K2Ni3FeCN62		410 123.12	3.000 267	470	2.000	280	67	78.1735
4	12.000 143	2.000		3.000	540	2.000	280		
4	6.000 143		410	1.000	280	3.000	2		22.3925
	K12Cd8FeCN67 42.000 143			353 8.000	160	7.000	280	285	52.1417
	KZn1.5FeCN)6 6.000 143	0.0000	66.80			1.000		34	9.1367
1141011	K3Fe(CN)6	-83.2900	54.64	440		1.000	200	32	29.2483
3 1141012	6.000 143 K8Mn6FeCN65	3.000 0.0000		1.000 349	281			170	2.1819
	30.000 143 K2Cu2FeCN)6	8.000 0.0000	410 72.51	6.000	470	5.000	280	41	7.2420
4	6.000 143	2.000	410	2.000	230	1.000	280		
3	Mn2Fe(CN)6 6.000 143	0.0000 2.000		1.000	280				21.8295
1150001 2	NaCN cri,cub 1.000 143		-2.28	369				4	9.0075
1160001	Pb2FeCN6.3H	0.0000	63.60		200	2 000	2	68	80.3993
1187001	Tl4FeCN6.2H	0.0000	56.91				2	106	5.5172
	6.000 143 Zn2FeCN6.2H		870 61.23	1.000	280	2.000	2	37	8.7640
	6.000 143			1.000	280	2.000	2		9.8853
2	1.000 144	1.000	20						
	Ag5Fe(CN)6 6.000 143	-260.9100 4.000		1.000	280				3.8859
1116002 3	Cd2Fe(CN)6 6,000 143	0.0000 2.000		243 1.000	280			43	6.7754
1136100	Ha(CN)2	-60 7300	45 37	791		0 000	•	25	2.6255
1160002	1.000 361 Pb2Fe(CN)6 6.000 143 Zn2Fe(CN)6	0.0000	27.58	2.000 95		-2.000	2	62	6.3534
3 1195002	6.000 143 Zn2Fe(CN)6	2.000	600 29.92	1.000	280			34	2.7334
3	6.000 143	2.000	950	1.000	280				
0									
2812800 3	FE+3/FE+2 -	10.0 13 -1.000	3.032 280	1.000	1				
4914920	NO2/NO3 -	43.76 28	3.57		_	0 000		1 000	•
5 4904920		-1.000 187.055 11		2.000	330	2.000	1	-1.000	2
5 0600610	-1.000 490 ASO3/ASO4 -			-3.000	2	10.000	330	8.000	1
5	1.000 61	2.000	1	2.000	330	-1.000	60	-1.000	2
0.00 5	SbOH6-/SbOH3 -1.000 740	1.000	25.7791 741	2.000	001	3.000	330	-3.000	002
8908930 5	U+3/UO2+2 -: 1.000 893	10.03 0. 3.000	420	4,000	330	-1.000	890	-2.000	2
	U+4/UO2+2 -	34.43 9.	216	4.000					
8928930	UO2+/UO2+2 -:	3.30 2.	785			-1.000	091	-2.000	2
3 4714700	1.000 893 MN+3/MN+2 2		1 25.507	-1.000	892				
3	1.000 470	-1.000		-1.000	471				
3	1.000 231	1.000	1	-1.000	230				
5	1.000 903	3.000	1.38 1	4.000	330	-1.000	900	-2.000	2
9019030 5	V+3/VO2+1 -4 1.000 903		1.61 1.	4.000	330	-1.000	901	-2.000	2
-	VO+2/VO2+1 -:		. 93						_

. IP

5 1.000 903 1.000 1	2.000 330	-1.000 902	-1.000 2	
7307320 HS-/SO4-2 -60.14 33.66	2.000 550	1.000 902	1.000 2	
5 1.000 732 9.000 330	8.000 1	-1.000 730	-4.000 2	
8718700 T1(OH)3/T1+ 48.0178		1 000 070	2 000 0	
5 1.000 871 2.000 1 7617600 HSeO3-/HSe78.17 44.866	3.000 330	-1.000 870	-3.000 2	
5 1.000 761 6.000 1	6.000 330	-1.000 760	-3.000 2	
7627600 SeO4-2/HSe126.3 81.185				
5 1.000 762 8.000 1	9.000 330	-1.000 760	-4.000 2	
7627610 SeO4/HSeO348.095 36.319	2 000 220	1 000 701	1 000 0	
5 1.000 762 2.000 1 3613600 Hg(OH)2/Hg3 -63.59 42.987	3.000 330	-1.000 761	-1.000 2	
5 2.000 361 4.000 330	2.000 1	-1.000 360	-4.000 2	
2102110 CR+2/CR(OH)2-6.360 -2.947				
5 1.000 210 2.000 2	-1.000 211	-2.000 330	-1.000 1	
2122110 CRO4/CR(OH)2-103.0 67.376	2 000 1	1 000 011	2 000 2	
5 1.000 212 6.000 330 3301404 CH4 (g) -61.0 40.1	3.000 1	-1.000 211	-2.000 2 16.0432	
4 1.000 140 8.000 1	10.000 330	-3.000 2	10.0452	
3301403 CO2 (g) -0.53 18.16			41.0100	
3 1.000 140 2.000 330	-1.000 2		24 2222	
3300021 02 (g) 133.83 -83.12 3 2.000 2 -4.000 330	-4.000 1		31.9988	
3 2.000 2 -4.000 330 3600001 Hg (g) -5.265 7.8708	-4.000 1		200.5900	
0.00 2 0.500 360 1.000 1				
3600002 Hg3 (g) -13.87 14.963			401.1800	
0.00 2 1.000 360 2.000 1			220 6504	
3611400 Hg(CH3)2(g) -115.4 73.724 0.00 5 1.000 361 2.000 140	16.000 1	20.000 330	230.6594 -8.000 2	
$3601300 \text{ HgBr}(q) \qquad 34.004 \qquad -16.79$	10.000 1	20.000 550	280.4940	
0.00 2 0.500 360 1.000 130				
3601800 HgCl (g) 40.098 -20.50			236.0430	
0.00 2 0.500 360 1.000 180 3602700 HqF (q) 60.916 -32.72			219.5884	
3602700 HgF (g) 60.916 -32.72 0.00 2 0.500 360 1.000 270			219:0004	
3603800 HgI (g) 25.264 -11.15			327.4945	·
0.00 2 0.500 360 1.000 380				
3611300 HgBr2 (g) -14.35 18.47	2.000 330	-2.000 2	360.3980	
0.00 4 1.000 361 2.000 130 3612700 HgF2 (g) 0.0000 -0.38	2.000 330	-2.000 2	238.5868	
0.00 4 1.000 361 2.000 270	2.000 330	-2.000 2	20010000	
3613800 HgI2 (g) -28.63 27.28			454.3990	
0.00 4 1.000 361 2.000 380	2.000 330	-2.000 2		

2089100 URANII	NITE 18.63	0 4.700	.000	.000		270.0278
2089101 UO2	(AM) 26.23		.000	.000		270.0278
3 -4 3089100 U409	.000 330 1.0 (C) 101.23	00 891 2 5 3.384	.000 2	-3.080		1096.1106
	.000 330 -2.0	00 1 4	.000 891	9.000	2	842.0822
4 -16	.000 330 -4.0	00 1 3	.000 891	8.000	2	
8089100 USIO4 3 -4	(C) 14.54 .000 330 1.0	8 7.620 00 891 1	.000	.000		330.1121
4289100 UF4 2 1	.000 330 1.0 (C) 18.90 .000 891 4.0	0 18.606	.000	.000		314.0226
4289101 UF4.2	.5H2O .58	27.570	.000	.000		359.0606
7089100 UHPO4)2,4H2O -3.84	00 270 2 0 51.584	.000	.000		502.0486
4 1. 7015000 NINGYO	.000 891 2.0 עדרידי 2.27	005802 053.906	.000 330	4.000 .000	2	504.0822
	000 891 1.0		.000 580	2.000	2	504.0822
2089300 UO3 (0	2) 19.31	5 -7.719	.000	.000		286.0272
3 -2. 2089301 GUMMI		00 893 1 5 -10.403	.000 2	.000		286.0272
3 -2.	.000 330 1.0	0 893 1	000 2			200.0272
2089302 B-UO2) -5.544)0 893 2		.000		304.0424
2089303 SCHOEF	PITE 12.04	5 -5.404	.000	.000		322.0576
3 -2. 5089300 RUTHEF	000 330 1.0	0 893 3	.000 2	.000		330.0370
2 1. 7089300 (UO2)3	000 893 1.0	0 140	100 104			
2 3.	000 893 2.00	0 580	129.134	.000		1000.0262
7089301 H-AUTU 3 2.	ואדידיד א החו) 47.931)0 893 2	.000	.000		732.0144
7050000 NA-AU1	UNLTE .46) 47.409	.000	.000		775.9780
3 2. 7041000 K-AUTU)0 893 2) 48.244		.000		808.2024
3 2. 7049000 URAMPH	000 410 2.00 IITE -9.700		.000 580	.000		766.0756
3 2.	000 893 2.00	0 490 2	.000 580			
7046000 SALEEI 3 2.			.000 .000 580	.000		754.3104
7015001 AUTUNI 3 2.		43.927		.000		770.0784
7080000 SR-AUI	UNITE 13.050	44.457	.000	.000		817.6184
3 2. 7010000 URANOC	000 893 1.00 IRCITE 10.100	0 800 2 44.631		.000		867.3384
	000 893 1.00	0 100 2	.000 580			
7028000 BASSET 3 2.			.000	.000		785.8454
7023102 TORBER	NITE 15.900	45.279	.000	.000		793.5444
3 2. 7060000 PRZHEV	000 893 1.00 ALSKIT 11.000	0 231 2 44.365	.000 580 .000	.000		937.1883
3 2. 8015000 URANOP		0 600 2 -17.490		.000		766.5176
4 -6.	000 330 2.00	0 893 1	.000 150	2.000	770	
5189300 UO2NO3 2 1.	000 893 2.00	-12.369 0 492	.000	.000		394.0380
5189301 UO2NO3 3 1.	.2H2O 6.060	-4.851	.000 .000 2	.000		430.0690
5189302 UO2NO3	.3H2O 2.405	-3.642	.000	.000		448.0840
5189303 UO2NO3	.6H2O -4.770	-2.300		.000		502.1300
3 1. 2003000 ALOH3(.000 2	.000		78.0073
3 1.	000 30 3.00	0 2 -3.	000 330			
6003000 ALOHSO	4 .000	3.230	3.390	3.070		140.0505

Original MINTEGAZ Data: TYPE6.DBS

600300	4 -1.000 330 1 AL4(OH)10SO4 4 -10.000 330 0 ALUM K	1.000	30 1 -22.700			2	274 0616
000500.	4 -10.000 330	4,000	30 1			2	374.0616
6041000	ALUM K	-7.220	5.170			4	438.3597
	4 1.000 410		30 2			2	
	1 ALUNITE 5 1.000 410	-3.918	1.346			~	414.2141
	5 1.000 410 D ANHYDRITE		30 2 4.637			2	-6.000 330 136.1416
	1.000 150	1.000		.000	.000		130.1410
) ARAGONITE	2.615	8.360	.000	.000		100.0894
	2 1.000 150	1.000					
	0 ARTINITE 4 -2.000 330	28.742	-9.600 460 1	.000	.000	2	196.6941
421000		-1.000	5.760	6.740	5.000 4.650	2	175.3368
	1.000 100	2.000		0.,10	1.050		1/3.3300
) BARITE	-6.280	9.976	.000	9.773		233.4016
	2 1.000 100	1.000					_
	L BOEHMITE 3 -3.000 330		-8.578 30 2.		.000		59.9884
2046000) BRUCITE	25.840			.000		58.3268
	1.000 460	2.000	2 -2				50.5200
	CALCITE	2.000 2.585 1.000	8.475	8.560	.000		100.0894
	1.000 150	1.000	140				
	CELESTITE 2 1.000 800	.470 1.000	6.465	.000	6.349		183.6816
	CHALCEDONY	-4.615	3.523	. 000	000		60.0848
2	2.000 2	1.000					00.0040
	CHRYSOTILE		-32.188				277.1349
	-6.000 330	3.000		.000 770		2	
	CLINOENSTITE		-11.338 -		-11.632 -2.000	220	100.3964
	CRISTOBALITE		3.587			330	60.0848
2	-2.000 2	1.000					
	DIASPORE		-6.873		.000		59.9884
	-3.000 330 DIOPSIDE		30 2.		000		
	-2.000 2	32.280	-19.886 150 1.	.000	.000	770	216.5608 -4.000 330
	DOLOMITE	8.290	17.000	.000	.000	110	184.4108
	1.000 150	1.000	460 2.	000 140			20101200
	EPSOMITE	-2.820		.000	.000		246.4807
	1.000 460 SEPIOLITE(C)	1.000	732 7. -15.913	000 2	000		102 0212
	500 2	27.200	460 3.	000 770	-4.000	330	323.9313
2028100	FERRIHYDRITE	.000	-4.891	-1.557	-4.996	550	104.8692
3	FERRIHYDRITE -3.000 330	1.000	281 3.	000 2			
2028101	FE3(OH)8	.000	-20.222 -	17.112 -	24.105		297.6002
4128100	-8.000 330 FFOHN2 7CT. 3	2.000	3 040 78T T.	000 280	8.000	2	110.4029
4120100	-2.700 330	1.000	281 2.	700 2	.000	180	110.4029
1028000	FE3(OH)8 -8.000 330 FEOH)2.7CL.3 -2.700 330 FES PPT -1.000 330	.000	3.915	.000	.000	100	85.9110
3	-1.000 330	1.000	280 1.	000 730			
0078700	FEZ(SO4)3	59.120	-3.580	.650	.000		395.8788
	2.000 281 HYDRAPATITE		44.199	000	.000		502 2200
4	5.000 150	3.000		000 002	-1.000	330	502.3200
7015002	FCO3APATITE	-39.390		.000	.000		967.3670
6		.360	500 .	144 460	4.800	580	1.200 140
2.480	270 FLUORITE	-4.710	9.772	.000	.000		70 0760
215000		2.000		.000	.000		78.0768
	FORSTERITE	48.510		.000	.000		236.8234
3		2.000		000 770			
	GIBBSITE (C)	22.800	-8.770		-9.440		78.0037
3 3003000		$1.000 \\ 0.0000$	30 3. -22.980	000 2	0 000 0 0	0 0 00	0.00 101.9504
0.00 3		3.000		000 330	0.000 0.0	0.00	0.00 101.9304
_				•			

	GOETHITE		500 .000	.000		86.8536	
3							
	GREENALITE	.000	-20.810 .000	.000	-	365.7393	
1000001		3.000	280 2.000 770	1.000	2		
	GREIGITE		45.035 .000	.000	72.0	289.7970	
6015001				4.000	730	170 1700	
8015001	· · · · · · · · ·	261	4.848 .000	.000		172.1722	
	1.000 150 HALITE	918	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	000		59 4400	
4130000		1.000		.000		58.4428	
	HEMATITE	30.845	4.008 .000	.000		155 6010	
3020100			281 3.000 2	.000		155.6919	
	HUNTITE	25.760	29.968 .000	.000		353.0536	
	3.000 460	1.000				555.0550	
	HYDRMAGNESIT	52.210	8.766 .000	.000		467.6736	
4		4.000		6.000	2	10110150	
6050000	JAROSITE NA	36.180	11.200 .000	.000	_	478.6978	
5		1.000		2.000	732	6.000 2	
6041002	JAROSITE K	31.280	14.800 .000	.000		494.8100	
5		1.000		2.000	732	6.000 2	
6028101	JAROSITE H	55.150	12.100 .000	.000		480.7320	
4		3.000		7.000	2		
	MACKINAWITE	.000	4.648 .000	.000		87.9110	
3		1.000					
	MAGADIITE	.000	14.300 .000	.000		532.6521	
4		-9.000		7.000	770		
	MAGHEMITE	.000	-6.386 .000	.000		159.6922	
3			281 3.000 2				
	MAGNESITE	6.169	8.029 8.279	7.779		84.3214	
200000		1.000		6 505		004 5045	
	MAGNETITE	50.460		-6.595	~	231.5386	
6028000	-8.000 330 MELANTERITE		281 1.000 280 2.470 .000	4.000	2	970 A1E7	
	1.000 280	-2.860 1.000		.000		278.0157	
	MIRABILITE	-18.987	732 7.000 2 1.114 .000	.000		222 1042	
3		1.000		.000		322.1942	
3050000		-15.745	1.311 .000	.000		286.1420	
3050000		1.000				200.1420	
	NESQUEHONITE	5,789	5.621 5.133	4.546		138.3673	
3	1.000 460	1.000	140 3.000 2			100.0010	
	PHLOGOPITE	5.789 1.000 86.360	-66.300 .000	.000		417.2863	
5		1.000		1.000	30	417.2863 3.000 770	
1028003			18.479 .000	.000		119.9750	
4		-2.000	1 1.000 280	2.000	730	0	
2077002		-6.220	4.006 .000	.000	-	60.0848	
2	-2.000 2	1.000		-			
3646004	SEPIOLITE(A)	.000	-18.780 .000	.000		323.9308	
4	500 2	2.000	460 3.000 770	-4.000	330		
	SIDERITE	5.328 1.000	10.550 12.104	.000			
2		1.000	140				
	SIO2(A,GL)	-4.440	3.018 .000	.000		60.0848	
2	-2.000 2	1.000	770				
	SIO2(A,PT)		2.710 .000	.000		60.0848	
	-2.000 2	1.000					
4280000		-1.250	8.540 9.120	.000		125.6168	
	1.000 800	2.000		~~ ~~ ~			
	STRENGITE	2.030	26.400 29.123	26.235		186.8490	
500000		1.000		000		1.8	
	STRONTIANITE	.690	9.250 11.789	.000		147.6294	
	1.000 800	1.000		22 000	*	270 0000	
8646002			-23.055 -18.988 -		220	379.2888	
6050002	-4.000 2 THENARDITE	.572	460 4.000 770 .179 .000	-6.000 / .000	550	140 0410	
6050002 2		1.000		.000		142.0412	
	THERMONATR		125 .000	.000		124.0043	
3050001		1.000				121.0013	
5	2.000 500	1.000	1.000 2				

8215001	TREMOLITE	96.615	-56.546 .0	00 .	000		812.4096	6
5		2.000	150 5.000		8.000	770		U U
	VIVIANITE	.000	36.000 .0		000	110	501.6062	S
	3.000 280		580 8.000		500		501.0002	4
	WITHERITE	360	8.585 13.3		200		107 2404	
				55 .	500		197.3494	4
2		1.000	140					_
	PYROLUSITE	29.180		00 - 16.0			86.9368	8
4			1 1.000	471	2.000	2		
2047001	BIRNESSITE	.000	-18.091 .0	. 00	000		86.9368	8
4	-4.000 330	-1.000	1 1.000	471	2.000	2		
2047002	NSUTITE	.000	-17.504 .0	00 .0	000		86.9368	8
4	-4.000 330	-1.000			2.000	2		•
	BIXBYITE			26	130		157.8742	2
3							157.0742	6
	HAUSMANNITE		-61.540 .0		000		220 0116	c
4		-2.000				2	228.8116	0
-					4.000	2		~
	PYROCROITE		-15.088 .0		881		88.9528	8
3		1.000	470 2.000					
	MANGANITE		.238 .0		000		87.9448	8
3			471 2.000					
5047000	RHODOCHROSIT	2.079	10.410 11.0	19 9.9	993		114.9474	4
2	1.000 470	1.000	140					
4147000	MNCL2, 4H2O		-2.710 .0	00 .0	000		197.9052	2
	1.000 470		180 4.000				237.5352	-
	MNS GREEN	5,790			000		87.0020	0
3	-1.000 330	1.000					01.0020	5
6047000			-2.669 .0		000		150.9996	6
2		1.000					T20.2330	5
	MN2(SO4)3	39.060	5.711 .0	<u>, , , , , , , , , , , , , , , , , , , </u>	000		209 0609	0
	2.000 471	39.000			100		398.0608	3
				<u> </u>			254 7560	~
			23.827 .0	JU .(000		354.7568	5
2041000		2.000	580					_
	A-CRYPTOMELN		.000 .00		000	-	775.7382	2
	-34.000 330		471 .800		7.000		-7.400 470	
	HOLLANDITE	.000	.000 .00	.00	000		817.4214	4
6								-
	-32.000 330	14.000	471 .820	100	.570	280	16.000 2	-
-6 410	470					280	16.000 2	-
-6.410 3015000	470 TODOROKITE	.000	.000 .00	. 00	.570	280	16.000 2 592.4641	
-6.410 3015000 6	470 TODOROKITE -24.000 330	.000	.000 .00	. 00				
-6.410 3015000 6	470 TODOROKITE -24.000 330	.000 .393	.000 .00 150 .473)0 .0 160 1	00		592.4641	
-6.410 3015000 6	470 TODOROKITE -24.000 330	.000 .393	.000 .00 150 .473)0 .0 160 1	000.000	471	592.4641 14.000 2	1
-6.410 3015000 6	470 TODOROKITE -24.000 330	.000 .393	.000 .00 150 .473)0 .0 160 1	00	471	592.4641 14.000 2 1953.3934	1
-6.410 3015000 -3.866 3044000 6	470 TODOROKITE -24.000 330 470 LITHIOPHORIT -70.000 330	.000 .393	.000 .00)0 .0 160 1	000.000	471	592.4641 14.000 2	1
-6.410 3015000 -3.866 3044000 -8.000	470 TODOROKITE -24.000 330 470 LITHIOPHORIT -70.000 330 470	.000 .393 .000 2.000	.000 .00 150 .473 4 .000 .00 440 8.000	00 .0 460 1 00 .0 30 2	000000000000000000000000000000000000000	471	592.4641 14.000 2 1953.3934 49.000 2	1
$ \begin{array}{r} -6.410\\3015000\\6\\-3.866\\3044000\\6\\-8.000\\3015001\end{array} $	470 TODOROKITE -24.000 330 470 LITHIOPHORIT -70.000 330 470 RANCIEITE	.000 .393 .000 2.000	.000 .00 150 .473 4 .000 .00 440 8.000	00 .0 460 1 00 .0 30 2	00	471 471	592.4641 14.000 2 1953.3934 49.000 2 466.1930	1
-6.410 3015000 -3.866 3044000 6 -8.000 3015001 5	470 TODOROKITE -24.000 330 470 LITHIOPHORIT -70.000 330 470 RANCIEITE -18.000 330	.000 .393 .000 2.000 .000 .440	150 .000 .00 150 .473 4 .000 .00 440 8.000 .000 .00 150 8.000 4	00 .0 460 1 00 .0 30 2 00 .0 471 1	00 0.000 0.000 0.000 2.000	471 471	592.4641 $14.000 2$ 1953.3934 $49.000 2$ 466.1930 $-3.440 470$	1 4 0
-6.410 3015000 -3.866 3044000 6 -8.000 3015001 5 0023000	470 TODOROKITE -24.000 330 470 LITHIOPHORIT -70.000 330 470 RANCIEITE -18.000 330 CU METAL I	.000 .393 .000 2.000 .000 .440 -17.130	.000 .00 150 .473 4 440 .000 .00 440 8.000 150 8.000 4 8.760 .00	00 .0 460 1 00 .0 30 2 00 .0 471 1	00 0.000 0.000 0.000 2.000	471 471	592.4641 14.000 2 1953.3934 49.000 2 466.1930	1 4 0
$\begin{array}{c} -6.410\\ 3015000\\ 6\\ -3.866\\ 3044000\\ 6\\ -8.000\\ 3015001\\ 5\\ 0023000\\ 2\end{array}$	470 TODOROKITE -24.000 330 470 LITHIOPHORIT -70.000 330 470 RANCIEITE -18.000 330 CU METAL I 1.000 230	.000 .393 .000 2.000 .000 .440 -17.130 1.000	$\begin{array}{c} 000 \\ 150 \\ 000 \\ 440 \\ 000 \\ 000 \\ 000 \\ 000 \\ 150 \\ 8.760 \\ 000$	$\begin{array}{cccc} 00 & .0 \\ 100 & .0 \\ 30 & .2 \\ 00 & .0 \\ 171 & 1 \\ 00 & 8.8 \\ \end{array}$	00 0.000 0.000 0.000 0.000 2.000 00	471 471	592.4641 $14.000 2$ 1953.3934 $49.000 2$ 466.1930 $-3.440 470$ 63.5460	1 4 0
$\begin{array}{r} -6.410\\ 3015000\\ 6\\ -3.866\\ 3044000\\ 6\\ -8.000\\ 3015001\\ 5\\ 0023000\\ 2\\ 4123000 \end{array}$	470 TODOROKITE -24.000 330 470 LITHIOPHORIT -70.000 330 470 RANCIEITE -18.000 330 CU METAL I 1.000 230 NANTOKITE	.000 .393 .000 2.000 .000 .440 -17.130 1.000 -9.980	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccc} 00 & .0 \\ 100 & .0 \\ 30 & .2 \\ 00 & .0 \\ 171 & 1 \\ 00 & 8.8 \\ \end{array}$	00 0.000 0.000 0.000 0.000 2.000 00	471 471	592.4641 $14.000 2$ 1953.3934 $49.000 2$ 466.1930 $-3.440 470$	1 4 0
$\begin{array}{c} -6.410\\ 3015000\\ 6\\ -3.866\\ 3044000\\ 6\\ -8.000\\ 3015001\\ 5\\ 0023000\\ 2\\ 4123000\\ 2\end{array}$	470 TODOROKITE -24.000 330 470 LITHIOPHORIT -70.000 330 470 RANCIEITE -18.000 330 CU METAL I 1.000 230 NANTOKITE 1.000 230	.000 .393 .000 2.000 .440 -17.130 1.000 -9.980 1.000	$\begin{array}{c} .000 \\ 150 \\ .473 \\ .000 \\ .00$	00 .0 1460 1 00 .0 30 2 00 .0 471 1 00 8.8 00 6.6	00 0.000 0.000 0.000 0.000 2.000 00	471 471	592.4641 $14.000 2$ 1953.3934 $49.000 2$ 466.1930 $-3.440 470$ 63.5460	1 4 0
$\begin{array}{r} -6.410\\ 3015000\\ 6\\ -3.866\\ 3044000\\ 6\\ -8.000\\ 3015001\\ 5\\ 0023000\\ 2\\ 4123000\\ 2\\ 4123000\\ 2\end{array}$	470 TODOROKITE -24.000 330 470 LITHIOPHORIT -70.000 330 470 RANCIEITE -18.000 330 CU METAL I 1.000 230 NANTOKITE 1.000 230 CUF	.000 .393 .000 2.000 .000 .440 -17.130 1.000 -9.980	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	00 .0 1460 1 00 .0 30 2 00 .0 471 1 00 8.8 00 6.6	00 0.000 0.000 0.000 2.000 00 30	471 471	592.4641 $14.000 2$ 1953.3934 $49.000 2$ 466.1930 $-3.440 470$ 63.5460	1 4 0 0 0
$\begin{array}{c} -6.410\\ 3015000\\ 6\\ -3.866\\ 3044000\\ 6\\ -8.000\\ 3015001\\ 5\\ 0023000\\ 2\\ 4123000\\ 2\\ 4123000\\ 2\\ 4223000\\ 2\end{array}$	470 TODOROKITE -24.000 330 470 LITHIOPHORIT -70.000 330 470 RANCIEITE -18.000 330 CU METAL I 1.000 230 CUF 1.000 230	.000 .393 .000 2.000 .440 -17.130 1.000 -9.980 1.000	150 .000 .00 150 .473 4 440 8.000 150 8.000 150 8.760 .00 16.760 .00 180 -7.080 .00	00 .0 1460 1 00 .0 30 2 00 .0 471 1 00 8.8 00 6.6	00 0.000 0.000 0.000 2.000 00 30	471 471	592.4641 $14.000 2$ 1953.3934 $49.000 2$ 466.1930 $-3.440 470$ 63.5460 98.9990	1 4 0 0 0
$\begin{array}{r} -6.410\\ 3015000\\ 6\\ -3.866\\ 3044000\\ 6\\ -8.000\\ 3015001\\ 5\\ 0023000\\ 2\\ 4123000\\ 2\\ 4123000\\ 2\\ 2023000\end{array}$	470 TODOROKITE -24.000 330 470 LITHIOPHORIT -70.000 330 470 RANCIEITE -18.000 330 CU METAL I 1.000 230 CUF 1.000 230 CUPRITE	.000 .393 .000 2.000 .440 -17.130 1.000 -9.980 1.000 12.370 1.000 -6.245	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	00 0.000 0.000 0.000 2.000 00 30	471 471	592.4641 $14.000 2$ 1953.3934 $49.000 2$ 466.1930 $-3.440 470$ 63.5460 98.9990 82.5444	1 4 0 0 0 2
$\begin{array}{r} -6.410\\ 3015000\\ 6\\ -3.866\\ 3044000\\ 6\\ -8.000\\ 3015001\\ 5\\ 0023000\\ 2\\ 4123000\\ 2\\ 4123000\\ 2\\ 2023000\end{array}$	470 TODOROKITE -24.000 330 470 LITHIOPHORIT -70.000 330 470 RANCIEITE -18.000 330 CU METAL I 1.000 230 CUF 1.000 230 CUPRITE	.000 .393 .000 2.000 .440 -17.130 1.000 -9.980 1.000 12.370 1.000 -6.245	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	00 0.000 0.000 0.000 2.000 00 30 00	471 471	592.4641 $14.000 2$ 1953.3934 $49.000 2$ 466.1930 $-3.440 470$ 63.5460 98.9990	1 4 0 0 0 2
$\begin{array}{r} -6.410\\ 3015000\\ 6\\ -3.866\\ 3044000\\ 6\\ -8.000\\ 3015001\\ 5\\ 5\\ 0023000\\ 2\\ 4123000\\ 2\\ 4223000\\ 2\\ 2023000\\ 3\end{array}$	470 TODOROKITE -24.000 330 470 LITHIOPHORIT -70.000 330 470 RANCIEITE -18.000 330 CU METAL I 1.000 230 CUF 1.000 230 CUPRITE -2.000 330	$\begin{array}{r} .000\\ .393\\ .000\\ 2.000\\ .000\\ .440\\ -17.130\\ 1.000\\ -9.980\\ 1.000\\ 12.370\\ 1.000\\ -6.245\\ 2.000\end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	00 0.000 0.000 00 2.000 00 30 00	471 471	592.4641 14.000 2 1953.3934 49.000 2 466.1930 -3.440 470 63.5460 98.9990 82.5444 143.0914	1 4 0 0 0 0 4
$\begin{array}{r} -6.410\\ 3015000\\ 6\\ -3.866\\ 3044000\\ 6\\ -8.000\\ 3015001\\ 5\\ 0023000\\ 2\\ 4123000\\ 2\\ 4223000\\ 2\\ 2023000\\ 3\\ 1023000 \end{array}$	470 TODOROKITE -24.000 330 470 LITHIOPHORIT -70.000 330 470 RANCIEITE -18.000 330 CU METAL I 1.000 230 CUF 1.000 230 CUF 1.000 230 CUPRITE -2.000 330 CHALCOCITE	.000 .393 .000 2.000 .440 -17.130 1.000 -9.980 1.000 12.370 1.000 -6.245 2.000 -49.350	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	00 0.000 0.000 00 2.000 00 30 00	471 471	592.4641 $14.000 2$ 1953.3934 $49.000 2$ 466.1930 $-3.440 470$ 63.5460 98.9990 82.5444	1 4 0 0 0 0 4
$\begin{array}{c} -6.410\\ 3015000\\ 6\\ -3.866\\ 3044000\\ 6\\ -8.000\\ 3015001\\ 5\\ 0023000\\ 2\\ 4123000\\ 2\\ 4223000\\ 2\\ 2023000\\ 3\\ 1023000\\ 3\end{array}$	470 TODOROKITE -24.000 330 470 LITHIOPHORIT -70.000 330 470 RANCIEITE -18.000 330 CU METAL I 1.000 230 NANTOKITE 1.000 230 CUF 1.000 230 CUF 1.000 330 CUPRITE -2.000 330 CHALCOCITE -1.000 330	$\begin{array}{r} .000\\ .393\\ .000\\ 2.000\\ .440\\ -17.130\\ 1.000\\ -9.980\\ 1.000\\ 12.370\\ 1.000\\ 12.370\\ 1.000\\ -6.245\\ 2.000\\ -49.350\\ 2.000\end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	00 0.000 0.000 02.000 00 30 00 00	471 471	592.4641 $14.000 2$ 1953.3934 $49.000 2$ 466.1930 $-3.440 470$ 63.5460 98.9990 82.5444 143.0914 159.1560	1 4 0 0 0 1 4 4
$\begin{array}{c} -6.410\\ 3015000\\ 6\\ -3.866\\ 3044000\\ 6\\ -8.000\\ 3015001\\ 5\\ 0023000\\ 2\\ 4123000\\ 2\\ 4223000\\ 2\\ 2023000\\ 3\\ 1023000\\ 3\\ 1023001 \end{array}$	470 TODOROKITE -24.000 330 470 LITHIOPHORIT -70.000 330 470 RANCIEITE -18.000 330 CU METAL I 1.000 230 NANTOKITE 1.000 230 CUF 1.000 230 CUF 1.000 330 CUPRITE -2.000 330 CHALCOCITE -1.000 330 DJURLEITE	.000 .393 .000 2.000 .440 -17.130 1.000 -9.980 1.000 12.370 1.000 -6.245 2.000 -49.350 2.000 -47.881	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	00 0.000 0.000 0.000 2.000 00 30 00 00 00 00	471 471 2	592.4641 $14.000 2$ 1953.3934 $49.000 2$ 466.1930 $-3.440 470$ 63.5460 98.9990 82.5444 143.0914	1 4 0 0 0 1 4 4
$\begin{array}{c} -6.410\\ 3015000\\ 6\\ -3.866\\ 3044000\\ 6\\ -8.000\\ 3015001\\ 5\\ 0023000\\ 2\\ 4123000\\ 2\\ 4123000\\ 2\\ 2023000\\ 3\\ 1023000\\ 3\\ 1023001\\ 4\end{array}$	470 TODOROKITE -24.000 330 470 LITHIOPHORIT -70.000 330 470 RANCIEITE -18.000 330 CU METAL I 1.000 230 CUF 1.000 230 CUPRITE -2.000 330 CUPRITE -1.000 330 DJURLEITE -1.000 330	.000 .393 .000 2.000 .440 -17.130 1.000 -9.980 1.000 12.370 1.000 -6.245 2.000 -49.350 2.000 -47.881 .066	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	00 0.000 0.000 00 2.000 00 30 00 00 00 00 00 00 1.000	471 471 2	592.4641 14.000 2 1953.3934 49.000 2 466.1930 -3.440 470 63.5460 98.9990 82.5444 143.0914 159.1560 154.9620	1 4 0 0 0 1 4 4 0 0
$\begin{array}{c} -6.410\\ 3015000\\ -3.866\\ 3044000\\ 6\\ -8.000\\ 3015001\\ 5\\ 0023000\\ 2\\ 4123000\\ 2\\ 4123000\\ 2\\ 2023000\\ 3\\ 1023000\\ 3\\ 1023001\\ 4\\ 1023002 \end{array}$	470 TODOROKITE -24.000 330 470 LITHIOPHORIT -70.000 330 470 RANCIEITE -18.000 330 CU METAL I 1.000 230 CUF 1.000 230 CUPRITE -2.000 330 CUPRITE -1.000 330 DJURLEITE -1.000 330 ANILITE	.000 .393 .000 2.000 .440 -17.130 1.000 -9.980 1.000 12.370 1.000 -6.245 2.000 -49.350 2.000 -47.881 .066 -43.535	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	00 0.000 00 2.000 00 30 00 00 00 00 00 00 00	471 471 2 730	592.4641 $14.000 2$ 1953.3934 $49.000 2$ 466.1930 $-3.440 470$ 63.5460 98.9990 82.5444 143.0914 159.1560	1 4 0 0 0 1 4 4 0 0
$\begin{array}{c} -6.410\\ 3015000\\ 6\\ -3.866\\ 3044000\\ 6\\ -8.000\\ 3015001\\ 5\\ 0023000\\ 2\\ 4123000\\ 2\\ 4223000\\ 2\\ 2023000\\ 3\\ 1023000\\ 3\\ 1023001\\ 4\\ 1023002\\ 4\end{array}$	470 TODOROKITE -24.000 330 470 LITHIOPHORIT -70.000 330 470 RANCIEITE -18.000 330 CU METAL I 1.000 230 CUF 1.000 230 CUF 1.000 230 CUF -2.000 330 CHALCOCITE -1.000 330 DJURLEITE -1.000 330 ANILITE -1.000 330	$\begin{array}{r} .000\\ .393\\ .000\\ 2.000\\ .40\\ -17.130\\ 1.000\\ -9.980\\ 1.000\\ 12.370\\ 1.000\\ -6.245\\ 2.000\\ -49.350\\ 2.000\\ -47.881\\ .066\\ -43.535\\ .250\end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	00 0.000 00 2.000 00 30 00 00 00 00 1.000 00 1.000	471 471 2 730	592.4641 $14.000 2$ 1953.3934 $49.000 2$ 466.1930 $-3.440 470$ 63.5460 98.9990 82.5444 143.0914 159.1560 154.9620 143.2695	1 4 0 0 0 1 1 1 0 0 5
$\begin{array}{c} -6.410\\ 3015000\\ 6\\ -3.866\\ 3044000\\ 6\\ -8.000\\ 3015001\\ 5\\ 0023000\\ 2\\ 4123000\\ 2\\ 4223000\\ 2\\ 2023000\\ 3\\ 1023000\\ 3\\ 1023000\\ 4\\ 1023003\\ 4\\ 1023003\\ 3\end{array}$	470 TODOROKITE -24.000 330 470 LITHIOPHORIT -70.000 330 470 RANCIEITE -18.000 330 CU METAL I 1.000 230 CUF 1.000 230 CUF 1.000 230 CUPRITE -2.000 330 CHALCOCITE -1.000 330 DJURLEITE -1.000 330 ANILITE -1.000 330 BLAUBLEI II	$\begin{array}{r} .000\\ .393\\ .000\\ 2.000\\ .40\\ -17.130\\ 1.000\\ -9.980\\ 1.000\\ 12.370\\ 1.000\\ -6.245\\ 2.000\\ -49.350\\ 2.000\\ -47.881\\ .066\\ -43.535\\ .250\\ .000\end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	00 0.000 0.000 00 2.000 00 30 00 00 00 00 1.000 00	471 2 730 730	592.4641 14.000 2 1953.3934 49.000 2 466.1930 -3.440 470 63.5460 98.9990 82.5444 143.0914 159.1560 154.9620	1 4 0 0 0 1 1 1 0 0 5
$\begin{array}{c} -6.410\\ 3015000\\ 6\\ -3.866\\ 3044000\\ 6\\ -8.000\\ 3015001\\ 5\\ 0023000\\ 2\\ 4123000\\ 2\\ 4223000\\ 2\\ 2023000\\ 3\\ 1023000\\ 3\\ 1023001\\ 4\\ 1023003\\ 4\\ 1023003\\ 4\end{array}$	470 TODOROKITE -24.000 330 470 LITHIOPHORIT -70.000 330 470 RANCIEITE -18.000 330 CU METAL I 1.000 230 CUF 1.000 230 CUPRITE -2.000 330 CUPRITE -1.000 330 DJURLEITE -1.000 330 BLAUBLEI II -1.000 330	$\begin{array}{r} .000\\ .393\\ .000\\ 2.000\\ .40\\ -17.130\\ 1.000\\ -9.980\\ 1.000\\ 12.370\\ 1.000\\ 12.370\\ 1.000\\ -6.245\\ 2.000\\ -49.350\\ 2.000\\ -47.881\\ .066\\ -43.535\\ .250\\ .000\\ .600\\ \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	00 0.000 0.000 00 2.000 00 30 00 00 00 00 1.000 00 1.000 00	471 2 730 730	592.4641 14.000 2 1953.3934 49.000 2 466.1930 -3.440 470 63.5460 98.9990 82.5444 143.0914 159.1560 154.9620 143.2695 121.0284	1 4 0 0 0 1 1 1 1 0 0 5
$\begin{array}{c} -6.410\\ 3015000\\ 6\\ -3.866\\ 3044000\\ 6\\ -8.000\\ 3015001\\ 5\\ 0023000\\ 2\\ 4123000\\ 2\\ 4123000\\ 2\\ 2023000\\ 3\\ 1023000\\ 3\\ 1023001\\ 4\\ 1023002\\ 4\\ 1023003\\ 4\\ 1023100\end{array}$	470 TODOROKITE -24.000 330 470 LITHIOPHORIT -70.000 330 470 RANCIEITE -18.000 330 CU METAL I 1.000 230 CUF 1.000 230 CUPRITE -2.000 330 CUPRITE -1.000 330 DJURLEITE -1.000 330 BLAUBLEI II -1.000 330 BLAUBLEI I	$\begin{array}{r} .000\\ .393\\ .000\\ 2.000\\ .000\\ .40\\ -17.130\\ 1.000\\ -9.980\\ 1.000\\ 12.370\\ 1.000\\ -6.245\\ 2.000\\ -49.350\\ 2.000\\ -47.881\\ .066\\ -43.535\\ .250\\ .000\\ .600\\ .000\\ \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	00 0.000 0.000 00 2.000 00 30 00 00 00 00 1.000 00 1.000 00	471 2 730 730 730	592.4641 $14.000 2$ 1953.3934 $49.000 2$ 466.1930 $-3.440 470$ 63.5460 98.9990 82.5444 143.0914 159.1560 154.9620 143.2695	1 4 0 0 0 1 1 1 1 0 0 5
$\begin{array}{c} -6.410\\ 3015000\\ -3.866\\ 3044000\\ 6\\ -8.000\\ 3015001\\ 5\\ 0023000\\ 2\\ 4123000\\ 2\\ 4123000\\ 2\\ 2023000\\ 3\\ 1023000\\ 3\\ 1023001\\ 4\\ 1023002\\ 4\\ 1023003\\ 4\\ 1023100\\ 4\end{array}$	470 TODOROKITE -24.000 330 470 LITHIOPHORIT -70.000 330 470 RANCIEITE -18.000 330 CU METAL I 1.000 230 CUF 1.000 230 CUPRITE -2.000 330 CUPRITE -1.000 330 BLAUBLEI II -1.000 330 BLAUBLEI I -1.000 330	$\begin{array}{r} .000\\ .393\\ .000\\ 2.000\\ .000\\ .40\\ -17.130\\ 1.000\\ -9.980\\ 1.000\\ 12.370\\ 1.000\\ -6.245\\ 2.000\\ -49.350\\ 2.000\\ -49.350\\ 2.000\\ -43.535\\ .250\\ .000\\ .600\\ .000\\ .900\end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	00 0.000 0.000 00 2.000 00 30 00 00 00 00 1.000 00 1.000 00	471 2 730 730 730	592.4641 14.000 2 1953.3934 49.000 2 466.1930 -3.440 470 63.5460 98.9990 82.5444 143.0914 159.1560 154.9620 143.2695 121.0284	1 4 0 0 0 1 1 1 1 0 0 5
$\begin{array}{c} -6.410\\ 3015000\\ -3.866\\ 3044000\\ 6\\ -8.000\\ 3015001\\ 5\\ 0023000\\ 2\\ 4123000\\ 2\\ 4123000\\ 2\\ 2023000\\ 3\\ 1023000\\ 3\\ 1023001\\ 4\\ 1023002\\ 4\\ 1023003\\ 4\\ 1023100\\ 4\end{array}$	470 TODOROKITE -24.000 330 470 LITHIOPHORIT -70.000 330 470 RANCIEITE -18.000 330 CU METAL I 1.000 230 CUF 1.000 230 CUPRITE -2.000 330 CUPRITE -1.000 330 DJURLEITE -1.000 330 BLAUBLEI II -1.000 330 BLAUBLEI I -1.000 330 COVELLITE	$\begin{array}{r} .000\\ .393\\ .000\\ 2.000\\ .000\\ .440\\ -17.130\\ 1.000\\ -9.980\\ 1.000\\ 12.370\\ 1.000\\ -6.245\\ 2.000\\ -49.350\\ 2.000\\ -49.350\\ 2.000\\ -43.535\\ .250\\ .000\\ .600\\ .600\\ .000\\ .900\\ -24.010\end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	00 0.000 00 2.000 00 30 00 00 00 00 00 1.000 00 1.000 00 1.000	471 2 730 730 730	592.4641 14.000 2 1953.3934 49.000 2 466.1930 -3.440 470 63.5460 98.9990 82.5444 143.0914 159.1560 154.9620 143.2695 121.0284	1 4 0 0 0 1 1 1 1 0 0 5 1 1 5
$\begin{array}{c} -6.410\\ 3015000\\ -3.866\\ 3044000\\ 6\\ -8.000\\ 3015001\\ 5\\ 0023000\\ 2\\ 4123000\\ 2\\ 4123000\\ 2\\ 2023000\\ 3\\ 1023000\\ 3\\ 1023001\\ 4\\ 1023002\\ 4\\ 1023003\\ 4\\ 1023100\\ 4\end{array}$	470 TODOROKITE -24.000 330 470 LITHIOPHORIT -70.000 330 470 RANCIEITE -18.000 330 CU METAL I 1.000 230 CUF 1.000 230 CUF 1.000 230 CUPRITE -2.000 330 CUPRITE -1.000 330 DJURLEITE -1.000 330 BLAUBLEI II -1.000 330 BLAUBLEI I -1.000 330 COVELLITE	$\begin{array}{r} .000\\ .393\\ .000\\ 2.000\\ .000\\ .40\\ -17.130\\ 1.000\\ -9.980\\ 1.000\\ 12.370\\ 1.000\\ -6.245\\ 2.000\\ -49.350\\ 2.000\\ -49.350\\ 2.000\\ -43.535\\ .250\\ .000\\ .600\\ .000\\ .900\end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	00 0.000 00 2.000 00 30 00 00 00 00 00 1.000 00 1.000 00 1.000	471 2 730 730 730	592.4641 14.000 2 1953.3934 49.000 2 466.1930 -3.440 470 63.5460 98.9990 82.5444 143.0914 159.1560 154.9620 143.2695 121.0284 101.9646	1 4 0 0 0 1 1 1 1 0 0 5 1 1 5
$\begin{array}{c} -6.410\\ 3015000\\ -3.866\\ 3044000\\ 6\\ -8.000\\ 3015001\\ 5\\ 0023000\\ 2\\ 4123000\\ 2\\ 4123000\\ 2\\ 2023000\\ 3\\ 1023000\\ 3\\ 1023000\\ 4\\ 1023002\\ 4\\ 1023100\\ 4\\ 1023100\\ 4\\ 1023101\end{array}$	470 TODOROKITE -24.000 330 470 LITHIOPHORIT -70.000 330 470 RANCIEITE -18.000 330 CU METAL I 1.000 230 CUP 1.000 230 CUP 1.000 230 CUP 1.000 230 CUP 1.000 330 CHALCOCITE -1.000 330 DJURLEITE -1.000 330 BLAUBLEI I -1.000 330 BLAUBLEI I -1.000 330 COVELLITE -1.000 330	$\begin{array}{r} .000\\ .393\\ .000\\ 2.000\\ .000\\ .440\\ -17.130\\ 1.000\\ -9.980\\ 1.000\\ 12.370\\ 1.000\\ -6.245\\ 2.000\\ -49.350\\ 2.000\\ -49.350\\ 2.000\\ -43.535\\ .250\\ .000\\ .600\\ .600\\ .000\\ .900\\ -24.010\end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	00 0.000 00 2.000 00 30 00 00 00 00 00 1.000 00 1.000 00 1.000	471 2 730 730 730	592.4641 14.000 2 1953.3934 49.000 2 466.1930 -3.440 470 63.5460 98.9990 82.5444 143.0914 159.1560 154.9620 143.2695 121.0284 101.9646	1 4 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7

		4 444 744	
3023000	2.000 230 CUPROUSFERIT	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	151.3918
4 4123100	-4.000 330 MELANOTHALLI	1.000 230 1.000 281 2.000 2 12.320 -3.730 .000 -4.450	134.4520
			123.5552
4223100		1.000 140 13,320 .620 .000 .000	101.5428
4223101	1.000 231 CUF2, 2H2O	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	137.5732
2023100	1.000 231 CU(OH)2	$2.000 \ 270 \ 2.000 \ 2$ $15.250 \ -8.640 \ .000 \ -9.200$	97.5606
1200202			213.5669
4 5123100	-3.000 330 CU2(OH)3NO3	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	240.1188
4 6023100	-3.000 330 ANTLERITE	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	354.7248
6023101	-4.000 330 BROCHANTITE	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	452.2854
4 6023102	-6.000 330 LANGITE	4.000 231 6.000 2 1.000 732 39.610 -16.790 .000 -17.400	470.3006
2022101	-6.000 330 TENORITE	4.000 231 7.000 2 1.000 732 15.240 -7.620 -7.350 -7.890	79.5454
3 6023103	-2.000 330 CUOCUSO4	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	239.1490
4 7023100	-2.000 330 CU3(PO4)2	2.000 231 1.000 2 1.000 732 .000 36.850 .000 36.900	380.5808
2 7023101	3.000 231 CU3(PO4)2,3W	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	434.6264
6023104	CUSO4	18.140 -3.010 -2.630 -3.420	159.6036
			249.6796
3 2023102	1.000 231	1.000 732 5.000 2 8.960 -6.500 .000 .000 1.000 231 1.000 770	157.6449
3023100	CUPRICFERIT	38.690 -5.880 -5.350 .000	239.2376
1023102	-8.000 330 CHALCOPYRITE	-35.480 35.270 .000 30.790	183.5130
4023000		1.000 231 1.000 280 2.000 730 -13.080 8.210 .000 .000	143.4500
2 4323000	OUT	1.000 130 -20.140 11.890 .000 .000	190.4505
2 0095000	1.000 230 ZN METAL	1.000 380 36.780 -25.757 .000 -25.790	65.3800
4195000	1.000 950 ZNCL2	2.000 1 17.480 -7.030 .000 -7.060	136.2860
5095000	1.000 950 SMITHSONITE	2.000 180 4.360 10.000 10.810 9.820	125.3892
5095001	ZNCO3, 1H2O	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	143.4044
4295000	ZNF2	13.080 1.520 .000 1.080	103.3768
2095000	1.000 950 ZN(OH)2 (A)	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	99.3946
3 2095001	ZN(OH)2 (C)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	99.3946
2095002	-2.000 330 ZN(OH)2 (B)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	99.3946
	ZN(OH)2 (G)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	99.3946
2095004	-2.000 330 ZN(OH)2 (E) -2.000 330		99.3946
	ZN2(OH)3CL	1.000 950 2.000 2 .000 —15.200 .000 .000	217.2349

	• • • • • • • • • • • • • • • • • • •	
4 -3.000 330 4195002 ZN5(OH)8CL2	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	533.8644
4 - 8.000 330	5.000 950 8.000 2 2.000 180	
4 -2.000 330	.000 -7.500 .000 .000 2.000 950 2.000 2 1.000 732	260.8322
6095001 ZN4(OH)6SO4 4 -6.000 330	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	459.6214
5195000 ZNNO3)2,6H2O 3 1.000 950	-5.510 -3.440 .000 .000	297.4810
2095005 ZNO(ACTIVE)	2.000 492 6.000 2 .000 -11.310 -11.570 -11.860	81.3794
3 -2.000 330 2095006 ZINCITE	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	81.3794
3 -2.000 330 6095002 ZN30(SO4)2	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	404.2546
4 -2.000 330	3.000 950 2.000 732 1.000 2	
7095000 ZN3(PO4),4W 3 3.000 950	.000 32.040 $.000$ $.0002.000$ 580 4.000 2	458.1436
1095000 ZNS (A)	-3.670 9.052 .000 .000	97.4400
1095001 SPHALERITE	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	97.4400
3 -1.000 330 1095002 WURTZITE	1.000 950 1.000 730 -5.060 9.682 10.182 8.552	97.4400
3 -1.000 330 3295000 ZNSIO3	1.000 950 1.000 730 18.270 -2.930 .000 .000	
4 -2.000 330	-1.000 2 1.000 950 1.000 770	141.4637
8095000 WILLEMITE 3 -4.000 330	33.370 -15.330 -13.350 .000 2.000 950 1.000 770	220.8431
6095003 ZINCOSITE	19.200 -3.010 .000 -3.930	161.4376
2 1.000 950 6095004 ZNSO4, 1H2O	1.000 732 10.640 .570 .000 .500	179.4528
3 1.000 950 6095005 BIANCHITE	1.000732 $1.0002.160 1.765 .000 1.020$	269.5288
3 1.000 950 6095006 GOSLARITE	1.000 732 6.000 2	
3 1.000 950	1.000 732 7.000 2	
4095000 ZNBR2, 2H2O 3 1.000 950	7.510 -5.210 .000 .000 2.000 130 2.000 2	261.2184
4395000 ZNI2 2 1.000 950	13.440 -7.230 .000 .000 2.000 380	319.1890
0016000 CD METAL	18.000 -13.490 .000 -13.640	112.4100
2 1.000 160 0016001 GAMMA CD	2.000 1 18.140 -13.590 .000 .000	112.4100
2 1.000 160 5016000 OTAVITE	2.000 1 .580 13.740 13.810 11.210	172.4192
2 1.000 160	1.000 140	
4116000 CDCL2 2 1.000 160	4.470 .680 .000 .470 2.000 180	183.3160
4116001 CDCL2, 1H20	2.000 180 1.820 1.710 .000 .000 2.000 180 1.000 2	201.3312
4116002 CDCL2,2.5H2O	-1.710 1.940 .000 .000	228.3536
4216000 CDF2	2.000 180 2.500 2 9.720 2.980 .000 .000	150.4068
2 1.000 160 2016000 CD(OH)2 (A)	2.000 270 20.770 -13.730 -13.610 -14.300	146.4246
3 -2.000 330 2016001 CD(OH)2 (C)	$1.000 \ 160 \ 2.000 \ 2$.000 $-13.650 \ .000 \ .000$	146.4246
3 -2.000 330	1.000 160 2.000 2	
4116003 CDOHCL 4 -1.000 330	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	164.8703
6016000 CD3(OH)4SO4 4 -4.000 330	.000 -22.560 .000 .000 3.000 160 4.000 2 1.000 732	501.3168
6016001 CD3OH2(SO4)2	.000 -6.710 .000 .000	563.3598
4 -2.000 330 6016002 CD4(OH)6SO4	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	647.7414
4 -6.000 330 2016002 MONTEPONITE	4.000 160 6.000 2 1.000 732 24.760 -15.120 .000 -15.740	128.4094
		22001021

3 7016000	-2.000 330 CD3(PO4)2 3.000 160 CDSIO3	1.000		.000 2	000		507 1700
2	3.000 160	2.000	580	.000	.000		527.1728
8216000	CDSI03	16,630	-9.060	-7.960	.000		188.4937
4 6016003	-1.000 2 CDSO4	1.000	160 1	.000 770	.000 -2.000 .050 1.630	330	208.4676
2	1.000 160	1.000	732	.130	.050		200.4070
	CDSO4, 1H20	7,520	1.657	1.680	1.630		226.4828
	1.000 160 CDSO4,2.7H2O	4.300	1.873	1.890	1.860		256.3879
3	1.000 160	1.000	732 2	.670 2			
	GREENOCKITE -1.000 330		15.930 160 1		13.112		144.4700
	CDBR2, 4H2O		2.420				344.2788
3	1.000 160	2 000	130 4	000 2			
4316000	1.000 160	-4.080 2.000	3.610 380	.000	.000		366.2190
	PB METAL	400	-4.270	-4.070	-4.310		207.2000
	1.000 600	2.000	1	4 076			
	COTUNNITE 1.000 600		4.//0	4.976	4.670		278.1060
4160001	MATLOCKITE	-7.950	9.430	.000	8.600		261.6514
	1.000 600 PHOSGENITE	1.000	180 1	.000 270			
	2.000 600	2.000	180 1 19.810 180 1	19.940	.000		545.3152
	CERRUSITE	-4.860	13.130	13.440	12.830		267.2092
2 4260000	1.000 600		140 7.440	7 570	000		D45 1000
	1.000 600	2.000	270	1.570	.000		245.1968
	MASSICOT	16 700	10 010	-12.790	.000		223.1994
	-2.000 330 LITHARGE	1.000	-12.910 600 1 -12.720	.000 2 -12 640 -	-13 070		223.1994
3	-2.000 330	1.000	600 1	.000 2			223.1994
	PBO, .3H2O -2.000 330	.000	-12.980 600 1	.000	.000		229.1444
	-2.000 330 PB2OCO3	11.460	.500				490.4086
4	-2.000 330	2.000	600 1	.000 2	1.000	140	15001000
	Lanarkite -2.000 330	6.440	.280 600 1	6.300	.000	2	526.4570
-	PB302S04	20.750	-10.400	.000 7.32	1.000 .000	2	749.6564
	-4.000 330	3.000	600 1	.000 732	2,000	2	
	PB403S04 -6.000 330		-22.100 600 1			2	972.8558
7060001	CLPYROMORPH	.000	84.430	.000	34.510	2	1356.3672
3	-6.000 330 CLPYROMORPH 5.000 600 HXYPYROMORPH -1.000 330 PB302C03 -4.000 330 PLUMBGUMMITE -5.000 330 HINSDALITE -6.000 330	3.000	580 1	.000 180			
7060002	HXYPYROMORPH -1 000 330	.000	62.790 600 3	.000	.000	2	1337.9215
5060002	PB302C03	26.430	-11.020	.000	.000	2	713.6080
4	-4.000 330	3.000	600 1	.000 140	2.000	2	
7060003	PLUMBGUMMITE	.000	32.790	.000	.000	580	581.1391
7060004	HINSDALITE	.000	2.500	.000	.000	500	581.2174
•	0.000 000	1.000	600 3	.000 30	1.000	580	1.000 732
6.000 7060005	TSUMEBITE	.000	9.790	.000	.000		677.9849
5	-3.000 330	2.000	600 1	.000 231	1.000	580	6.000 2
8260000		9.260	-7.320	-6.120		770	283.2837
4 8060000	PB2SIO4	-2.000 26.000	-19.760		1.000 -20.050	110	506.4831
3	-4.000 330	2.000	600 1	.000 770			
	ANGLESITE 1.000 600	-2.150 1.000		7.870	.000		303.2576
1060001	GALENA	-19.400	15.132	16.452	13.682		239.2600
3				.000 730	000		000 1000
	PLATTNERITE -4.000 330	70.730 -2.000	-49.300 - 1 1.	-49.000	.000 2.000	2	239.1988
•		2.000	~ _		2.000	~	

3060000	PB203	.000	-61.040	.000	.000		462.3982
3060001	PB2O3 -6.000 330 MINIUM	-2.000102.760	1 2 -73.690	.000 600 -70.800	3.000	2	685.5976
4 2060004	-8.000 330	-2.000	1 3	.000 600	4.000	2	241.2146
3	-2.000 330	1.000	600 2	.000 2	13.030		
4160003 4	LAURIONITE -1.000 330	.000 1.000	623 600 1	175.000 180	.000 1.000	2	259.6603
4160004	PB2(OH)3CL	.000	-8.793	.000	.000	100	500.8749
5060003	PB(OH)2 (C) -2.000 330 LAURIONITE -1.000 330 PB2(OH)3CL -3.000 330 HYDCERRUSITE -2.000 330 PB2O(OH)2 -4.000 330 PBBR2 1.000 600 PBBRF	.000	17.460	.000	.000	100	775.6330
4 2060005	-2.000 330 PB2O(OH)2	3.000	$ \frac{600}{-26.200} $.000 140	2.000 -27.100	2	464.4140
3 4060000	-4.000 330	2.000	600 3 5 180	.000 2	A A10		367.0080
2	1.000 600	2.000	130	3.340	1.110		
4060001 3	PBBRF 1.000 600	.000 1.000	8.490 130 1	.000	.000		306.1024
4360000 2		-15.160	8.070	.000	.000		461.0090
6060004	PB4(OH)6SO4 -6.000 330	.000	-21.100	.000	.000		1026.9014
4 5054000	-6.000 330 NICO3	4.000	600 1 6.840	.000 732	6.000 .000	2	118.7092
2054000	1.000 540	1.000	140				
2054000	NI(OH)2 -2.000 330 NI4(OH)6SO4	-30.450	540 2	-10.590 - .000 2	-13.300		92.7146
6054000 4	NI4(OH)6SO4 -6.000 330	.000	-32.000 540 1	.000	.000	2	432.9014
	BUNSENITE -2.000 330	23.920	540 1 -12.450 540 1	.000 -	-12.390	2	74.6994
7054000	NI3(P04)Z	.000	31.300	.000 2	.000		366.0428
1054000	3.000 540 MILLERITE	-2 500	580 8.042	8.132			90,7600
3 6054001	-1.000 330 RETGERSITE	1.000	540 1.	000 730	.000		
3	1.000 540	1.000	732 6.	000 2			262.8488
	MORENOSITE 1.000 540	1.000	2.360 732 7.	000 2	.000		280.8640
8054000 3	NI2SIO4 -4.000 330		-14.540 540 1.		.000		209.4831
0002000	AG METAL	-25.234	13.510		.000		107.8680
2 4002000	1.000 20 BROMYRITE	$1.000 \\ -20.170$	$1 \\ 12.270$.000	.000		187.7720
	1.000 20 CERARGYRITE	1.000			.000		143.3210
2	1.000 20	1.000	180				
5002000 2	2.000 20	-9.530 1.000	11.070 140		.000		275.7452
	AGF.4H2O 1.000 20	-4.270	550 270 4.	.000	.000		198.9272
4302000	IODYRITE	-26.820	16.070		.000		234.7725
2002000	1.000 20 AG2O	$1.000 \\ 10.430$	380 -12.580	.000	.000		231.7354
3 7002000		2.000		000 2	.000		418.5754
2	3.000 20	1.000	580				
3	ACANTHITE -1.000 330	-53.300 2.000		.000 000 730	.000		247.7960
6002000 2	AG2SO4 2.000 20	-4.250 1.000	4.920 732	.000	.000		311.7936
8450001	ANALCIME	22.840	-6.719	.000	.000	~	220.1550
	1.000 500 HALLOYSITE	1.000 39.730	-8.994	000 770	$^{-1.000}_{.000}$	2	-4.000 330 258.1620
4 8603001	2.000 30 KAOLINITE	2.000 35.280	770 1.	000 2	-6.000 .000	330	258.1620
4	2.000 30	2.000		000 2	-6.000	330	20011080

8415000	LEONHARDITE		-16.49	. 00	000	.000		922.8670
	-1.000 2		330			8.000	770	4.000 30
	LOW ALBITE	17.400	-2.59			.000		262.2250
	1.000 500			3.000			330	
	ANALBITE	20.000	-3.50					262.2250
5				3.000			330	-4.000 2
	MUSCOVITE	59.340		. 00		.000		398.3110
	1.000 410			3.000			330	
	ANNITE	65.720		. 00		.000		511.8900
5							770	-10.000 330
	ANORTHITE	70.660	-25.43			.000		278.2110
	1.000 150			2.000		-8.000	330	
	PYROPHYLLITE		1.59			.000		360.3138
-	2.000 30		770				330	
8415002	LAUMONTITE	50.450		io .				470.4410
-	1,000 150			4.000		-8.000	330	
	WAIRAKITE	63.150		0.		.000		434.4110
	1.000 150		30	4.000	770	-8.000	330	-2.000 2
5023101	MALACHITE	15.610		i0 .	000	3.940		221.1162
	2.000 231	2.000	2	1.000	140	-2 000	330	
5023102	AZURITE	23.770	16.92	. 0	000	.000		344.6716
-	3.000 231	2.000	2	2.000	140	-2.000	330	
3006000	ARSENOLITE	23.770 2.000 -14.330	2.80	1 2.	859	2.728		395.6824
· –	4.000 60	-6.000	2					
3006001	CLAUDETITE	-13.290	3.06	5.	000	3.021		395.6824
2		-6.000						
4306000	ASI3	-1.875	-4.15	5.	000	.000		455.6347
4	1.000 60	3.000					2	
1006000	ORIPMENT		60.97	1.	000	46.004		246.0350
4	2.000 60	3.000	730 19.74 730	3.000	330	-6.000	2	
1006001	REALGAR	-30.545	19.74	7 26.	574	.000		106.9855
5	1.000 60	1.000	730	2.000	330	1.000	1	-3.000 2
3006100	AS205	5.405	-6.69	9.	000	-9.478		229.8400
		-3.000	2					
74001	Sb	-20.0450	11.7058					121.7500
4	1.000 740	3.000	330	3.000	1	-3.000	2	
1074000	Sb2S3 Stib	-69.2900	60.1560					339.6980
4	2.000 740	3.000	730	3.000	330	-6.000	2	
1274000	Sb2Se3	-81.9900	67.7571					480.3800
4	2.000 740	3.000	760	3.000	330	-6.000	2	
1474001	NiSb Breitha	-22.9450	18.5225				-	180.4400
	1.000 740			3.000	330	1.000	540	-3.000 2
1474002	ZnSb	13.1160 -						187.1400
		5.000		1.000	950	3.000	330	-3.000 2
1474003								148.7315
	1.000 740		1	1.000	30	3.000	330	-3.000 2
1474004		-5.3450				0.000	000	234.1610
		5.000		3.000	330	1.000	160	-3.000 2
1474005	Mg2Sb3		-74.6838					413.8600
	2.000 460	3.000	740	9.000	330	13.000	1	-9.000 /
	2.000 460	3.000	740 56,1818	9.000	330	13.000	1	-9.000 2
1474006	2.000 460 Ag3Sb	0.0000	56.1818	9.000				445.3546
1474006 5	2.000 460 Ag3Sb 1.000 740	0.0000 6.000	56.1818 1	9.000 3.000	330 20	13.000 3.000		445.3546 -3.000 2
1474006 5 1474007	2.000 460 Ag3Sb 1.000 740 Na3Sb	0.0000 6.000 103.2450 -	56.1818 1 -94.4084	9.000 3.000	20	3.000	330	445.3546 -3.000 2 190.7193
1474006 5 1474007 5	2.000 460 Ag3Sb 1.000 740 Na3Sb 3.000 500	0.0000 6.000 103.2450 - 1.000	56.1818 1 -94.4084 740	9.000 3.000 3.000	20			445.3546 -3.000 2 190.7193 -3.000 2
1474006 5 1474007 5 1474008	2.000 460 Ag3Sb 1.000 740 Na3Sb 3.000 500 NaSb	0.0000 6.000 103.2450 - 1.000 22.3850 -	56.1818 1 -94.4084 740 -23.1770	9.000 3.000 3.000	20 330	3.000	330	445.3546 -3.000 2 190.7193 -3.000 2 144.7398
1474006 5 1474007 5 1474008 5	2.000 460 Ag3Sb 1.000 740 Na3Sb 3.000 500 NaSb 1.000 500	0.0000 6.000 103.2450 - 1.000 22.3850 - 1.000	56.1818 1 -94.4084 740 -23.1770 740	9.000 3.000 3.000	20 330	3.000	330 1	$\begin{array}{r} 445.3546 \\ -3.000 & 2 \\ 190.7193 \\ -3.000 & 2 \\ 144.7398 \\ -3.000 & 2 \end{array}$
1474006 5 1474007 5 1474008 5 1474009	2.000 460 Ag3Sb 1.000 740 Na3Sb 3.000 500 NaSb 1.000 500 Mn2Sb	0.0000 6.000 103.2450 - 1.000 22.3850 - 1.000 0.0000 -	56.1818 1 94.4084 740 -23.1770 740 -61.0796	9.000 3.000 3.000 3.000	20 330	3.000 6.000 4.000	330 1 1	$\begin{array}{r} 445.3546 \\ -3.000 & 2 \\ 190.7193 \\ -3.000 & 2 \\ 144.7398 \\ -3.000 & 2 \\ 231.6261 \end{array}$
1474006 5 1474007 5 1474008 5 1474009 5	2.000 460 Ag3Sb 1.000 740 Na3Sb 3.000 500 NaSb 1.000 500 Mn2Sb 2.000 470	$\begin{array}{r} 0.0000 \\ 6.000 \\ 103.2450 \\ 1.000 \\ 22.3850 \\ 1.000 \\ 0.0000 \\ 1.000 \end{array}$	56.1818 1 -94.4084 740 -23.1770 740 -61.0796 740	9.000 3.000 3.000	20 330 330	3.000	330 1 1	$\begin{array}{r} 445.3546 \\ -3.000 & 2 \\ 190.7193 \\ -3.000 & 2 \\ 144.7398 \\ -3.000 & 2 \\ 231.6261 \\ -3.000 & 2 \end{array}$
$ \begin{array}{r} 1474006 \\ 5 \\ 1474007 \\ 5 \\ 1474008 \\ 5 \\ 1474009 \\ 5 \\ 1474009 \\ 5 \\ 1474010 \\ \end{array} $	2.000 460 Ag3Sb 1.000 740 NaSb 1.000 500 Mn2Sb 2.000 470 Ca3Sb2	$\begin{array}{r} 0.0000 \\ 6.000 \\ 103.2450 \\ -1.000 \\ 22.3850 \\ -1.000 \\ 0.0000 \\ -1.000 \\ 175.1300 \\ -1\end{array}$	56.1818 1 94.4084 740 23.1770 740 61.0796 740 42.9738	9.000 3.000 3.000 3.000 7.000	20 330 330 1	3.000 6.000 4.000 3.000	330 1 1 330	$\begin{array}{r} 445.3546 \\ -3.000 & 2 \\ 190.7193 \\ -3.000 & 2 \\ 144.7398 \\ -3.000 & 2 \\ 231.6261 \\ -3.000 & 2 \\ 363.7340 \end{array}$
147400651474007514740085147400851474009514740105	2.000 460 Ag3Sb 1.000 740 Na3Sb 3.000 500 NaSb 1.000 500 Mn2Sb 2.000 470 Ca3Sb2 3.000 150	$\begin{array}{r} 0.0000 \\ 6.000 \\ 103.2450 \\ -1.000 \\ 22.3850 \\ -1.000 \\ 0.0000 \\ -1.000 \\ 175.1300 \\ -1 \\ 2.000 \end{array}$	56.1818 1 94.4084 740 23.1770 740 61.0796 740 42.9738 740	9.000 3.000 3.000 3.000	20 330 330 1	3.000 6.000 4.000	330 1 1	$\begin{array}{r} 445.3546 \\ -3.000 & 2 \\ 190.7193 \\ -3.000 & 2 \\ 144.7398 \\ -3.000 & 2 \\ 231.6261 \\ -3.000 & 2 \\ 363.7340 \\ -6.000 & 2 \end{array}$
14740065147400751474009514740095147401051474011	2.000 460 Ag3Sb 1.000 740 Na3Sb 1.000 500 Mn2Sb 2.000 470 Ca3Sb2 3.000 150 USb2	$\begin{array}{r} 0.0000 \\ 6.000 \\ 103.2450 \\ -1.000 \\ 22.3850 \\ -1.000 \\ 0.0000 \\ -1.000 \\ 1.000 \\ 175.1300 \\ -1 \\ 2.000 \\ 24.6800 \\ -\end{array}$	56.1818 1 94.4084 740 -23.1770 740 -61.0796 740 42.9738 740 -29.5246	9.000 3.000 3.000 3.000 7.000 6.000	20 330 330 1 330	3.000 6.000 4.000 3.000 12.000	330 1 1 330 1	$\begin{array}{r} 445.3546\\ -3.000 & 2\\ & 190.7193\\ -3.000 & 2\\ & 144.7398\\ -3.000 & 2\\ & 231.6261\\ -3.000 & 2\\ & 363.7340\\ -6.000 & 2\\ & 481.5289\end{array}$
147400651474007514740095147400951474010514740115	2.000 460 Ag3Sb 1.000 740 Na3Sb 1.000 500 Mn2Sb 2.000 470 Ca3Sb2 3.000 150 USb2 1.000 893	$\begin{array}{r} 0.0000\\ 6.000\\ 103.2450\\ -1.000\\ 22.3850\\ -1.000\\ 0.0000\\ -1.000\\ 175.1300\\ -1\\ 2.000\\ 24.6800\\ -2.000\end{array}$	56.1818 1 -94.4084 740 -23.1770 740 -61.0796 740 -42.9738 740 -29.5246 740	9.000 3.000 3.000 3.000 7.000	20 330 330 1	3.000 6.000 4.000 3.000	330 1 1 330 1	$\begin{array}{r} 445.3546\\ -3.000 & 2\\ 190.7193\\ -3.000 & 2\\ 144.7398\\ -3.000 & 2\\ 231.6261\\ -3.000 & 2\\ 363.7340\\ -6.000 & 2\\ 481.5289\\ -8.000 & 2\end{array}$
1474006514740075147400851474009514740105147401151474012	2.000 460 Ag3Sb 1.000 740 Na3Sb 1.000 500 Mn2Sb 2.000 470 Ca3Sb2 3.000 150 USb2 1.000 893 Cu2Sb	0.0000 6.000 103.2450 - 1.000 22.3850 - 1.000 0.0000 - 1.000 175.1300 -1 2.000 24.6800 - 2.000 -55.7450	56.1818 1 94.4084 740 23.1770 740 61.0796 740 42.9738 740 29.5246 740 29.5246 740 23.4.8827	9.000 3.000 3.000 3.000 7.000 6.000 12.000	20 330 330 1 330 1	3.000 6.000 4.000 3.000 12.000 10.000	330 1 1 330 1 330	$\begin{array}{r} 445.3546\\ -3.000 & 2\\ & 190.7193\\ -3.000 & 2\\ & 144.7398\\ -3.000 & 2\\ & 231.6261\\ -3.000 & 2\\ & 363.7340\\ -6.000 & 2\\ & 481.5289\\ -8.000 & 2\\ & 248.8420\end{array}$
14740065147400751474009514740095147401051474011514740125	2.000 460 Ag3Sb 1.000 740 NaSb 1.000 500 Mn2Sb 2.000 470 Ca3Sb2 3.000 150 USb2 1.000 893 Cu2Sb 1.000 740	0.0000 6.000 103.2450 - 1.000 22.3850 - 1.000 0.0000 - 1.000 175.1300 -1 2.000 24.6800 - 2.000 -55.7450 6.000	56.1818 1 94.4084 740 23.1770 740 61.0796 740 42.9738 740 29.5246 740 23.5246 740 1 34.8827 1	9.000 3.000 3.000 3.000 7.000 6.000	20 330 330 1 330 1	3.000 6.000 4.000 3.000 12.000	330 1 1 330 1 330	$\begin{array}{r} 445.3546\\ -3.000 & 2\\ 190.7193\\ -3.000 & 2\\ 144.7398\\ -3.000 & 2\\ 231.6261\\ -3.000 & 2\\ 363.7340\\ -6.000 & 2\\ 481.5289\\ -8.000 & 2\\ 248.8420\\ 1.000 & 231\end{array}$
1474006514740075147400951474009514740105147401151474013	2.000 460 Ag3Sb 1.000 740 NaSb 1.000 500 Mn2Sb 2.000 470 Ca3Sb2 3.000 150 USb2 1.000 893 Cu2Sb 1.000 740	0.0000 6.000 103.2450 - 1.000 22.3850 - 1.000 0.0000 - 1.000 175.1300 -1 2.000 24.6800 - 2.000 -55.7450 6.000 -5.0450	56.1818 1 94.4084 740 23.1770 740 61.0796 740 42.9738 740 29.5246 740 23.5246 740 23.5246 740 23.5246 740 1 2.9099	9.000 3.000 3.000 3.000 7.000 6.000 12.000	20 330 330 1 330 1	3.000 6.000 4.000 3.000 12.000 10.000	330 1 330 1 330 230	$\begin{array}{r} 445.3546\\ -3.000 & 2\\ & 190.7193\\ -3.000 & 2\\ & 144.7398\\ -3.000 & 2\\ & 231.6261\\ -3.000 & 2\\ & 363.7340\\ -6.000 & 2\\ & 481.5289\\ -8.000 & 2\\ & 248.8420\end{array}$

1474014			73.6450					312.3880
5 1474015			6.000 5.7200 -:	1 3.000 152.3288	330	3.000	230	-3.000 2 1201.0867
5	3.000	891	4.000	740 24.000	1	12.000	330	-12.000 2
2074001 4				-3.4597 2 -2.000	330	-2 000	1	307.4976
2074002	Sb406 II,0	CUB -1	4.6000	19.6586	550	2.000	T	582.9964
2 2074003	4.000 Sb406 I,OF		-6.000	2 17.0346			2	582.9964
2			-6.000					
2074004	Sb(OH)3 (s 1.000		7.2000	7.1099				172.7719
2074005 4	Cu(SbO3)2		0.0000	-45.2105 231 -6.000	220	-4 000	1	403.0424
-	Sb203 SENA	ARM -	7.3250	12.3654	330	-4.000	Т	291.4982
2074007	2.000 Sb2O3 VAL		-3.000	2 8.4806				291.4982
2	2.000		-3.000	2				
2074100 3		741	0.0000 2.000	12.4827 330 -7.000	2			323.4970
2074102	SbO2		0.0000	27.8241			_	153.7488
4 4074000			1.000 5.0720	1 2.000 -1.0562	330	-4.000	2	361.4620
4174000		740	3.000	130 3.000	330	-3.000	2	
4174000 4			8.4140 3.000	-0.5915 180 3.000	330	-3.000	2	228.1081
4274000			1.6080	10.2251	070	2 000	2	178.7452
4 4374000	SbI3	_	3.000	330 3.000 0.5380	270	-3.000	2	502.4634
5295000	1.000 ZN(BO2)2		000	330 3.000 -8.290 .		-3.000 .000	2	150 0000
4	-2.000	2	-2.000	330 1.000		2.000	90	150.9893
5216000 4	CD(BO2)2 -2.000	2	.000	-9.840 . 330 1.000	000	.000 2.000	90	198.0188
5260000	PB(BO2)2		5.800	-7.610 .	000	.000		292.8093
4 7047001	-2.000 MNHPO4(C)	2	-2.000 .000	330 1.000 25.400 .	600 000	2.000	90	150.9174
3	1.000	470	1.000	580 1.000	330			
7060006	PBHPO4 1.000	600	$.000 \\ 1.000$	23.900 . 580 1.000	000 330	.000		303.1693
7060007	PB3(PO4)2		.000	44.500 .		.000		811.5125
2 0073100	3.000 SULFUR	600	$2.000 \\ 4.200$		000	.000		32.0640
3	1.000	730	-1.000	330 -2.000	1			
1203000	ALASO4.2W 1.000	30	$.000 \\ 1.000$	-4.800. 61 2.000		.000 -3.000	330	165.9006
	CA3(ASO4)2		.000	-22.300		.000		506.1700
	3.000 CU3(ASO4)2		2.000.000	61 4.000 -6.100 .	2 000	-6.000 .000	330	576.5680
4	3.000 FEASO4.2W	231	2.000 .000	61 2.000 400 .		-6.000 .000	330	230.7967
4	1.000		1.000	61 2.000	2	-3.000	330	
7247000 4	MN3ASO428W 3.000		$.000 \\ 2.000$	-12.500 . 61 8.000		.000 -6.000	330	586.7746
7254000	NI3 (ASO4) 2	8W	.000	-15.700 .	000	.000		459.1707
4 7260000	3.000 PB3(ASO4)2	540	2.000	61 8.000 -5.800 .	2 000	-6.000 .000	330	899.4079
3	3.000	600	2.000	61 -6.000	330			
7295000	ZN3ASO422. 3.000		$.000 \\ 2.000$	-13.650. 61 2.500		.000 -6.000	330	518.9862
7210000	BA(ASO4)2		-2.640	8.910 .	000	.000		689.8582
3 0090000	3.000 V METAL	T00	2.000 62.900	61 -6.000 -42.350 .	330 000	.000		50.9400
2 2090000	1.000	901	3.000	1 -13.080 .				
2090000	-2.000	330	28.020 1.000			.000 1.000	1	66.9390

4190000			-17.970 .000	.000	121.8460
3090100		19 720	$\begin{array}{rrrr} 180 & 1.000 & 1 \\ -4.900 & .000 \end{array}$.000	149.8780
	-3.000 330 V(OH)3	1.000 .000	901 1.500 2 -7.650 .000	.000	101.9620
3 4190100		1.000 43.960	901 3.000 2 -21.730 .000	.000	157.2990
2 4190101	1.000 901	3.000 26.170		.000	137.8450
	1.000 901	1.000	180 1.000 2	-2.000 330	
3	-2.000 330	14.070 1.000	902 1.000 2	.000	165.8780
	VO(OH)2 -2.000 330	.000 1.000	-5.850 .000 902 2.000 2	.000	100.9540
4290200 4		47.590	-14.930 .000 902 4.000 270	.000 2.000 330	126.9320
6090200	VOSO4 (C) 1.000 902	20.720	-3.570 .000	.000	162.9970
7090200			8.370 .000	.000	390.7530
4190200				.000	137.8450
3090300			.720 .000	.000	181.8770
	-1.000 330 TYUYAMUNITE		903 .500 2 -2.040 .000	.000	810.0130
5			150 1.000 893		2.000 2
	CA-VANADATE -2.000 330		-2.830 .000 150 1.000 903	.000	237.9560
7315002	CA3(VO4)2	35.070	-19.480 .000	1.000 2 .000	350.1150
7315003	-4.000 330 CA2V207	19.060	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	2.000 2	294.0360
	FE-VANADATE		1.860 .000	1.500 2 .000	508.4310
4 7346000	MG-VANADATE	16.330	280 1.000 903 -5.640 .000	1.000 2.000	222.1860
4 7346001	-2.000 330 MG2V2O7	.500 30.500		1.000 2 .000	262.4960
	-3.000 330 MN-VANADATE	1.000 11.050	460 1.000 903 -2.450 .000	1.500 2 .000	252.8160
	-2.000 330	.500	470 1.000 903 -2.690 .000	1.000 2 .000	116.9770
4	-2.000 330	1.000	490 1.000 903	1.000 2	
4	NA-VANADATE -2.000 330		-3.710 .000 500 1.000 903	$.000 \\ 1.000 2$	121.9280
7350001 4		44.420 3.000	-36.940 .000 500 1.000 903	.000 2.000 2	183.9080
7350002	NA4V207		-18.700 .000	.000 1.500 2	305.8360
7360000			-3.070 .000 600 1.000 903	.000	851.4750
	PBZYZO7	3.220	.950 .000	2.000 2 .000	628.2760
	-3.000 330 CARNOTITE		600 1.000 903 230 .000	1.500 2 .000	848.1330
	-4.000 330 AG-VANADATE	1.000 .000	410 1.000 893 770 .000	1.000 903 .000	2.000 2 206.8080
4 7302001	-2.000 330	1.000	20 1.000 903 -1.480 .000	1.000 2 .000	331.6860
4		2.000	20 1.000 903	2.000 2	
4	-4.000 330	.000 3.000	20 1.000 903	.000 3.000 2	456.5630
4190300 2	1.000 903	9.650 1.000		.000	118.3920
3090101 4		23.530 3.000	-1.870 .000 902 2.000 2	$.000 \\ 2.000 1$	232.8170
3090201 4		39.150 4.000	-7.140 .000	.000 2.000 1	315.7560
1	0.000 000	1.000	5.000 2	2.000 I	

3090202 V6013		60.860 .000		513.6320	
4 −2 2015000 LIME	.000 330 6.00 46.265	0 903 1.000 -32.797 0		1 56.0800	
3 -2 2015001 PORTL	.000 330 1.00 ANDITE 30.690				
3 -2	.000 330 1.00	0 150 2.000 00	2	73.0880	
2028000 WUSTI 3 -2	FE 24.846 .000 330 0.94			71.8500	
2046001 PERIC 3 -2		-21.510 0 0 460 1.000 00	-	40.3200	
3028001 HERCY	NITE 78.360	-27.162 0	0	173.8100	
4 -8 3046000 SPINE		0 280 2.000 03 -36.333 0		002 142.2800	
4 -8 3046001 MAG-F		0 460 2.000 03 -16.765 0		200.0200	
4 -8	.000 330 1.00	0 460 2.000 28	1 4.000	002	
4250000 CRYOL 3 1	ITE -10.904 .000 030 3.00		•	209.9530	
8215002 WOLLA: 4 -1	STONITE 19.498 .000 002 -2.00		•	116.1700	
8215003 P-WOL	LSTANIT 21.068	-13.846 0	0	116.1700	
4 -1 8015001 CA-OL	.000 002 -2.00 LVINE 54.695	0 330 1.000 77 -37.649 0		150 172.2500	
3 -4 8015002 LARNI	.000 330 1.00 FE 57.238	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			
3 -4	.000 330 1.00	0 770 2.000 15	D	172.2500	
8015007 CA3SIC 4 -6		-73.867 0 0 770 3.000 15	•	228.3300 002	
8015003 MONTIC 4 -4	CELLITE 49.421		0	156.4900	
8015005 AKERM	INITE 76.445	-47.472 0	0	272.6600	
5 -1 8015004 MERWIN	.000 002 -6.00 NITE 107.111			150 1.000 460 328.7400	
	000 330 2.00	0 770 1.000 46	3.000 1	150	
4 -4.	000 330 1.00	0 770 1.000 03	0 1.000 4		
8441001 LEUCI 5 -2	E 22.085		-	278.2600 030 1.000 410	
8441002 MICROO		-0.616 0	0	378.3500	
8441003 H SANI	DINE 14.252	-1.062 0	0	378.3500	
5 -4. 8450004 NEPHEI	000 002 -4.000 INE 33.204) 330		030 1.000 410 142.0610	
	000 330 1.000) 770 1.000 030) 1.000 5	500	
5 -10.	000 330 2.000	-56.822 0 030 1.000 770		374.2100 150 3.000 002	
3028102 LEPIDO 3 -3.				72.8600	
8650000 NA-NON	TRONIT 0	14.504 12.122	16.886	425.2690	
3.670 770	320 330 -2.680			0.330 500	
8641002 K-NONT 6 -7.		15.549 12.763 002 0.330 030		430.5850 881 0.330 410	
3,670,770					
6 -7.	320 330 -2.680	002 0.330 030	22.722 2.000 2	424.3750 281 0.167 150	
3 670 770					
6 -7. 3.670 770	320 330 -2.680	0.330 030	2.000 2	408.6150 881 0.167 460	
	rillon 0.0000	-2.6700 0.000	0.000 0.00	0.00 0.00 371.3490	
0.00 6 3. 1.710 30	810 770 0.490	-2.6700 0.000 460 -6.760 330	-3.240	2 0.220 281	
0087000 Tl met	al -1.2800	-5.6733	0.00	0.00 0.00 204.3700	
2087000 T120	000 870 1.000 23.0550	-27.0984	0.00	0.00 0.00 424.7394	

59

•

3 2.000 870 1.000 2 -2.000 330 2087001 TlOH 9.9350 -12.9225 3 1.000 870 1.000 2 -1.000 330 4187000 TlCl -10.13703.7243 2 1.000 870 1.000 180 4087000 TlBr -13.64105.4190 2 1.000 870 1.000 130 4387000 Tll -17.28107.1964 1.000 870 2 1.000 380 1087000 Tl2S -21.56007.1832 3 2.000 870 1.000 730 -1.000 330 6087000 Tl2SO4 -7.94003.6942 2 2.000 870 1.000 732 -20.3600 1287000 Tl2Se 6.6848 2 2.000 870 1.000 760 -1.000 330 6187000 Tl2SeO4 -9.7600 4.0168 2 2.000 870 1.000 762 5187000 TlNO3 -10.02001.5319 2 1.000 870 1.000 492 5087000 T12CO3 -8.0200 3.8482 2.000 870 2 1.000 1402087101 Tl(OH)3 0.0000 6.4503 1 1.000 871 2087100 Avicennite 0.0000 16.3236 2 -3.000 2.000 871 2 7.6963 0076000 Se hex,blac -3.8000 3 1.000 760 -1.000 330 -2.000 1 0076001 Se (A) 7.1099 -2.60003 1.000 760 -1.000 330 -2.0001228001 Ferroselite -11.3000 18.5959 4 2.000 760 1.000 280 -2.000 3301260000 Clausthalit -28.0000 21.2162 -1.000 330 3 1.000 760 1.000 600 1202000 Ag2Se -64.9500 43.6448 3 1.000 760 2.000 20 -1.000 330 1216000 CdSe -18.1600 18.0739 3 1.000 760 1.000 160 -1.000 3301223100 CuSe -28.9500 26.5121 3 1.000 760 1.000 231 -1.000 330 1223000 Cu2Se alpha -51.2100 36.0922 3 1.000 760 2.000 230 -1.000 330 1223101 CuSe2 -33.6000 33.3655 4 2.000 760 1.000 231 -2.000 3301223001 Cu3Se2 -81.340063.4911 4 2.000 760 2.000 230 1.000 231 1228000 FeSe -0.5000 7.1466 3 1.000 760 1.000 280 -1.000 3301247000 MnSe 13.4600 -5.3508 3 1.000 760 1.000 470 -1.000 3301295000 ZnSe -6.4390 11.3642 3 1.000 760 1.000 950 -1.000 3301220000 CoSe 0.0000 16.2723 3 1.000 760 1.000 200 -1.000 3301254000 NiSe 0.0000 17.7382 3 1.000 760 1.000 540 -1.000 3302076100 SeO2 -0.3350 -0.1246 3 1.000 761 1.000 330 -1.0002 6110000 BaSeO3 6.2800 -4.1634 3 1.000 761 1.000 100 -1.000 3306115000 CaSeO3:2H2O 4.6500 -2.8139 4 1.000 761 1.000 150 2.000 2 6123100 CuSeO3:2H2O 8.8100 -0.4838 1.000 761 1.000 231 2.000 2 4 6128100 Fe2(SeO3)3: 0.0000 20.6262 3.000 761 2.000 281 2.000 2 4 6128101 Fe2(OH)4SeO 0.0000 - 1.5539

0.00 0.00 0.00 221.3773 0.00 0.00 0.00 239.8230 0.00 0.00 0.00 284.2740 0.00 0.00 0.00 331.2745 0.00 0.00 0.00 440.8000 0.00 0.00 0.00 504.7976 0.00 0.00 0.00 487.7000 0.00 0.00 0.00 551.6976 0.00 0.00 0.00 266.3749 0.00 0.00 0.00 468.7492 0.00 0.00 0.00 255.3919 0.00 0.00 0.00 456.7382 0.00 0.00 0.00 78.9600 0.00 0.00 0.00 78,9600 0.00 0.00 0.00 213.7670 -2.000 1 0.00 0.00 0.00 286.1600 0.00 0.00 0.00 294.6960 0.00 0.00 0.00 191.3700 0.00 0.00 0.00 142.5060 0.00 0.00 0.00 206.0520 0.00 0.00 0.00 221.4660 -2.000 1 0.00 0.00 0.00 348.5580 -2.0003300.00 0.00 0.00 134.8070 0.00 0.00 0.00 133.8980 0.00 0.00 0.00 144.3400 0.00 0.00 0.00 137.8932 0.00 0.00 0.00 137,6600 0.00 0.00 0.00 110.9588 0.00 0.00 0.00 264.2882 0.00 0.00 0.00 203.0686 -1.000 330 0.00 0.00 0.00 226.5346 -1.000 3300.00 0.00 0.00 528.5990 -3.000 330 0.00 0.00 0.00 306.6814

1.000 761 4 2.000 281 4.000 2 6146000 MgSeO3:6H2O -1.2500 -4.0314 4 1.000 761 1.000 460 6.000 2 6147001 MnSEO3:2H2O -2.0300 -0.9822 4 1.000 761 1.000 470 2.000 2 6154000 NiSeO3:2H2O 7.4100 -2.8147 4 1.000 761 1.000 540 2.000 2 6180000 SrSeO3 0.0000 -0.1034 3 1.000 761 1.000 800 -1.000 3306147000 MnSeO3 0.0000 -0.04403 1.000 761 1.000 470 -1.000 330 6120000 CoSeO3 0.0000 -0.1906 3 1.000 761 1.000 200 -1.000 330 6102000 Ag2SeO3 -9.47008.1977 3 1.000 761 2.000 20 -1.000 330 2076200 SeO3 34.9850 -21.0440 3 1.000 762 $2.000\ 330\ -1.000\ 2$ 6102001 Ag2SeO4 -10.45008.9014 2 1.000 762 2.000 20 6110001 BaSeO4 -2.00005.1895 2 1.000 762 1.000 100 6115001 CaSeO4:2H2O -0.8800 2.9473 3 1.000 762 1.000 150 2.000 2 6160000 PbSeO4 -3.80006.8387 1.000 762 2 1.000 600 6180001 SrSeO4 -2.6900 6.8747 2 1.000 762 1.000 800 0036000 Hg metal (1 -19.9350 13.4552 2 0.500 360 1.000 1 4036000 Hg2Br2 -31.2520 22.2091 2 1.000 360 2.000 130 5036000 Hg2CO3 0.0000 13.9586 2 1.000 360 1.000 140 4136000 Calomel -23.4440 17.8427 2 1.000 360 2.000 180 4236000 Hg2F2 4.4320 3.0811 2 1.000 360 2.000 270 4336000 Hg2I2 0.0000 28.2782 2 1.000 360 2.000 380 2036000 Hg2(OH)2 0.0000 -5.2603 3 1.000 360 2.000 2 -2.000 330 7036000 Hg2HPO4 0.0000 25.9795 3 1.000 360 1.000 330 1.000 580 1036000 Hg2S -16.6700 11.6765 3 1.000 360 1.000 730 -1.000 330 6036000 Hg2SO4 -0.2300 6.1593 2 1.000 360 1.000 732 6136000 Hq2SeO3 0.0000 4.6570 3 1.000 360 1.000 761 -1.000 3304036100 HgBr2 -34.4520 25.3730 4 1.000 361 2.000 130 2.000 330 5036100 HgCO3 -22.1300 28.6817 4 1.000 361 1.000 140 2.000 330 4136100 HgCl2 -27.2640 21.7858 4 1.000 361 2.000 180 2.000 330 4336100 Coccinite -49.7320 34.6599 4 1.000 361 2.000 380 2.000 330 2036100 Montroydite -5.1150 3.6503 2 1.000 361 -1.000 2 2036101 Hg(OH)2 0.0000 3.4963 1 1.000 361 1036100 Cinnabar -60.4300 45.1885 4 1.000 361 1.000 730 1.000 330 1036101 Metacinnaba -59.5300 44.8220 4 1.000 361 1.000 730 1.000 330 6036100 HqSO4 -3.51009.4189

-5.000 3300.00 0.00 0.00 259.3544 -1.000 330 0.00 0.00 0.00 217.9266 -1.000 330 0.00 0.00 0.00 221.6886 -1.000 3300.00 0.00 0.00 214.5782 0.00 0.00 0.00 181.8962 0.00 0.00 0.00 185.8914 0.00 0.00 0.00 342.6942 0.00 0.00 0.00 126.9582 0.00 0.00 0.00 358.6936 0.00 0.00 0.00 280.2876 0.00 0.00 0.00 219.0680 0.00 0.00 0.00 350.1576 0.00 0.00 0.00 230.5776 0.00 0.00 0.00 200.5900 0.00 0.00 0.00 560.9880 0.00 0.00 0.00 461.1892 0.00 0.00 0.00 472.0860 0.00 0.00 0.00 439.1768 0.00 0.00 0.00 654.9890 0.00 0.00 0.00 435.1946 0.00 0.00 0.00 497.1593 0.00 0.00 0.00 433.2400 0.00 0.00 0.00 497.2376 0.00 0.00 0.00 528.1382 0.00 0.00 0.00 360.3980 -2.000 2 0.00 0.00 0.00 260.5992 -2.000 2 0.00 0.00 0.00 271.4960 -2.000 2 0.00 0.00 0.00 454.3990 -2.000 2 0.00 0.00 0.00 216.5894 0.00 0.00 0.00 234.6046 0.00 0.00 0.00 232.6500 -2.000 2 0.00 0.00 0.00 232.6500 -2.000 2 0.00 0.00 0.00 296.6476

4 1.000 361 1.000 732 2.000 330 -2.000 2 6136100 HgSeO3 0.0000 12.6953 0.00 0.00 0.00 327.5482 1.000 761 4 1.000 361 1.000 330 -2.000 2 -32.6320 16.1066 4336102 HgI2:2NH3 0.00 0.00 0.00 488.4598 4 1.000 361 2.000 380 2.000 490 -2.000 2 20.5680 -33.8566 4336103 HgI2:6NH3 0.00 0.00 0.00 556.5814 5 1.000 361 2.000 380 6.000 490 -2.000 2 2021100 CR(OH)2 8.5100 -10.8189 0.00 0.00 0.00 86.0106 3 1.000 210 2.000 2 -2.000 3304021100 CRBR3 33.7770 -19.9086 0.00 0.00 0.00 291.7080 4 1.000 211 3.000 130 2.000 330 -2.000 2 27.5090 -13.5067 4121100 CRCL3 0.00 0.00 0.00 158.3550 4 1.000 211 3.000 180 2.000 330 -2.000 2 4.3630 13.2597 4221100 CRF3 0.00 0.00 0.00 108.9912 4 1.000 211 3.000 270 2.000 330 -2.0002 4321100 CRI3 32.1270 -20.4767 0.00 0.00 0.00 432.7095 4 1.000 211 3.000 380 2.000 330 -2.000 2 24.8600 0.9016 3021100 FECR204 0.00 0.00 0.00 223.8366 3 2.000 211 1.000 280 -4.000 330 3021101 MGCR204 39.8600 -12.0796 0.00 0.00 0.00 192.2946 3 2.000 211 1.000 460 -4.000 3300021000 CR METAL 34.3000 -32.2440 0.00 0.00 0.00 51.9960 2 1.000 210 2.000 1 3021102 CR2O3 12.1250 3.3937 0.00 0.00 0.00 151.9902 3 2.000 211 $-2.000\ 330\ -1.000\ 2$ 2021102 CR(OH)3 (A) 0.0000 0.7500 0.00 0.00 0.00 103.0179 3 1.000 211 1.000 2 -1.000 330 2021101 CR(OH)3 (C) 7.1150 -1.7005 0.00 0.00 0.00 103.0179 3 1.000 211 1.000 2 -1.000 330 4121000 CRCL2 19.6660 -15.8676 0.00 0.00 0.00 122.9020 2 1.000 210 2.000 180 3021200 AG2CRO4 -14.0400 11.5548 0.00 0.00 0.00 331.7296 2 1.000 212 2.000 20 3021201 BACRO4 -6.3900 9.6681 0.00 0.00 0.00 253.3236 2 1.000 212 1.000 100 3021202 CS2CR04 -7.5040 0.5541 0.00 0.00 0.00 381.8044 2 1.000 212 2.000 220 3021203 CS2CR207 -22.8990 17.7793 0.00 0.00 0.00 481.7986 2.000 212 2.000 220 2.000 330 4 -1.000 2 3021204 CUCRO4 0.0000 5.4754 0.00 0.00 0.00 179.5396 2 1.000 212 1.000 231 3021205 K2CRO4 -4.2500 -0.0073 0.00 0.00 0.00 194.1902 2 1.000 212 2.000 410 3021206 K2CR207 -18.1250 15.6712 0.00 0.00 0.00 294.1844 4 2.000 212 2.000 330 2.000 410 -1.000 2 3021207 LI2CRO4 10.8220 -4.8568 0.00 0.00 0.00 129.8756 2 1.000 212 2.000 440 3021208 MGCRO4 21.2600 -5.3801 0.00 0.00 0.00 140.2986 2 1.000 212 1.000 460 3021209 (NH4)2CRO4 -2.1900 -0.4046 0.00 0.00 0.00 152.0702 2 1.000 212 2.000 490 3021210 NA2CRO4 4.6100 -3.2618 0.00 0.00 0.00 161.9731 2 1.000 212 2.000 500 3021211 NA2CR207 -5.3050 9.8953 0.00 0.00 0.00 261.9673 4 2.000 212 2.000 500 2.000 330 -1.000 2 3021212 PBCR04 -10.2300 13.6848 0.00 0.00 0.00 323.1936 2 1.000 2121.000 600 3021213 RB2CR04 -5.8920 0.0968 0.00 0.00 0.00 286.9292 2 1.000 212 2.000 680 3021214 SRCR04 2.4200 4.8443 0.00 0.00 0.00 203.6136 2 1.000 212 1.000 800 2021200 CrO3 1.2450 3.2105 0.00 0.00 0.00 99.9942 3 1.000 212 2.000 330 -1.000 2 3015000 CaCrO4 6.4400 2.2657 0.00 0.00 0.00 156.0736 2 1.000 150 1.000 212 3036000 Hg2CrO4 0.0000 8.7031 0.00 0.00 0.00 517.1736

-4.000 330

					· · · · · · · · · · · · · · · · · · ·				
	2 3087000	Tl2CrO4		-25.3100	212 12.0136		0.0	0 0.00	0.00 524.7336
	2 1102001	2.000 Ag4FeCN)6		1.000 0.0000	212 89.6909				661.4415
	4 1102002	6.000		4.000 -26.3850	20 1.000 16.2180	280	1.000	2	133.8859
	2		143 7H	1.000					562.8824
	4 1121001	6.000			160 1.000	280	7.000	2	
	3	1.000	143	1.000	210 1.000	1			78.0138
	1121002 3	1.000	143			1			130.0099
	1123001 2	CuCN 1.000	143	-30.2000 1.000					89.5637
	1123102 3	Cu2FeCN)6 6.000	143	0.0000 2.000	61.4168 231 1.000	280			339.0454
	1138001 3			17.3090	-11.3114				152.9222
	1141001	K12Ni8FeCN	167	0.0000	431.0902		7 000	000	2422.3737
		42.000 KCN i, cub	c	12.000 -2.7400	-1.4403	540	7.000	280	65.1160
•	2 1141003	1.000 K2CdFeCN)6			410 63.0279				402.5610
	4 1141004	6.000 K4Ni4FeCN6		2.000 0.0000	410 1.000 183.5467	160	1.000	280	1027.0135
	4 1141005	18.000 K4FeCN)6	143	4.000 -95.6200	410 4.000 48.8241	540	3.000	280	368.3466
	3	6.000 K2Mn3FeCN6		4.000		280			
	4	12.000	143	2.000	410 3.000	470	2.000	280	666.9176
	4	K2Ni3FeCN6 12.000	143	0.0000 2.000	410 3.000	540	2.000	280	678.1735
	1141008 4	K4FeCN6.3F 6.000		-99.1750 4.000	49.5424 410 1.000	280	3.000	2	422.3925
-	1141009 4	K12Cd8FeCN 42.000		$0.0000 \\ 12.000$	441.9853 410 8.000	160	7.000	280	2852.1417
	1141010 4	KZn1.5FeCN 6.000		0.0000 1.000	66.8086 410 1.500	950	1.000	280	349.1367
-		K3Fe(CN)6 6.000		-83.2900 3.000	54.6440		1.000	200	329.2483
-	141012	K8Mn6FeCN6	55	0.0000	293.6849		E 000		1702.1819
1	4 L141013	30.000 K2Cu2FeCN)	6	8.000 0.0000	72.5142		5.000		417.2420
1	4 147014	6.000 Mn2Fe(CN)6		2.000 0.0000	410 2.000 59.0272	230	1.000	280	321.8295
1	3 150001	6.000 NaCN cri,c		2.000 0.5200	470 1.000 -2.2869	280			49.0075
	2	1.000 Pb2FeCN6.3	143	$1.000 \\ 0.0000$					680.3993
	4	6.000 Tl4FeCN6.2	143	2.000		280	3.000	2	
	4	6.000	143	4.000	870 1.000	280	2.000	2	1065.5172
	4		143	2.000	950 1.000	280	2.000	2	378.7640
	714401 2	1.000	144	-13.1750 1.000	6.6159 20				149.8853
	3		143	-260.9100 4.000	193.9140 20 1.000	280			133.8859
1	.116002 3	Cd2Fe(CN)6 6.000		0.0000 2.000	28.2243				436.7754
1		Hg(CN)2 1.000		-60.7300 2.000	45.3791		-2.000	2	252.6255
1	-	Pb2Fe(CN)6		0.0000 2.000	27.5895		2.000	4	626.3534
1		6.000 Zn2Fe(CN)6	143	0.0000	600 1.000 29.9263	∠ 0U			342.7334

.

.

.

Original MINTEQA2 Data: COMP.DBS

393 UO2+11.00.00.0 270.0278 900 V+22.00.00.050.94901 V+33.00.00.066.939903 VO2+11.00.00.0121.12 303 VO2+11.00.00.0134.14920 IPhthal-1.00.00.0164.12955 Dietham0.00.00.073.000955 Dietham0.00.00.073.000956 Nbutyam0.00.00.0101.00957 Dimetham0.00.00.0101.00958 Metham0.00.00.0101.00959 Dimetham0.00.00.0101.00963 EN0.00.00.059.04965 Ipropam0.00.00.0189.06966 Trebutph0.00.00.0189.06967 Citrate-3.00.00.0188.06969 EDTA-4-4.00.00.073.032972 Butanot-1.00.00.087.043973 Isobuty-1.00.00.094.0981 3Metpyr0.00.0101.13985 Valerat-1.00.00.0101.13996 Fulvate-2.00.00.0101.13997 Phthala-2.00.00.0148.09994 Gipcine-1.00.00.0148.09997 Phthala-2.00.00.0146.13	900 V+2 2.0 901 V+3 3.0 902 V0+2 2.0 903 V02+1 1.0 901 Benzoat -1.0 901 PAcetat -1.0 902 VP+2 2.0 903 VO2+1 1.0 901 Benzoat -1.0 902 IPhthal -1.0 905 Dietham 0.0 905 Dietham 0.0 905 Nbutyam 0.0 905 Dimetham 0.0 906 Trbutph 0.0 906 Trbutph 0.0 906 Trbopam 0.0 906 Tmetham 0.0 907 Butanot 1.0 907 Butanot 1.0 907 Butanot </th <th>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</th> <th>50.94 50.94 66.939 82.939 121.12 134.14 164.12 65.3699 73.000 73.000 73.000 73.000 73.000 73.000 73.000 73.000 73.000 73.000 73.000 59.04 59.04 59.04 59.04 59.04 59.04 59.04 59.04 189.06 188.06 276.00 73.032 87.043 87.043 87.043 94.0 97.0 9</th> <th></th>	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	50.94 50.94 66.939 82.939 121.12 134.14 164.12 65.3699 73.000 73.000 73.000 73.000 73.000 73.000 73.000 73.000 73.000 73.000 73.000 59.04 59.04 59.04 59.04 59.04 59.04 59.04 59.04 189.06 188.06 276.00 73.032 87.043 87.043 87.043 94.0 97.0 9	
--	--	--	--	--

Original	MINTEGAD	Data:
----------	----------	-------

1.000	1					
2.000	330	2.000	1	-1.000	2	
-3.000	2	10.000	330	8.000	1	
	330	-1.000	60	-1.000	2	
2.000	001	3.000	330	-3.000	002	
4.000	330	-1.000	890	-2.000	2	
4.000	330	-1.000	891	-2.000	2	
1 000						
-1.000	892					
1 000						
-1.000	4/1					
1 000	220					
-1.000	230					
4 000	220	1 000	000	0 000	~	
4.000	330	-1.000	900	-2.000	2	
4 000	220	_1 000	0.01	2 000	2	
4.000	330	-1.000	901	-2.000	2	
2 000	330	-1 000	002	_1 000	2	
2.000	550	1.000	902	-1.000	4	
8 000	1	-1 000	730	-4 000	2	
0.000	-	1.000	150	4.000	2	
3,000	330	-1.000	870	-3 000	2	
0.000		1.000	0,0	5.000	2	
6.000	330	-1.000	760	-3.000	2	
					-	
9.000	330	-1.000	760	-4.000	2	
					_	
3.000	330	-1.000	761	-1.000	2	
2.000	1	-1.000	360	-4.000	2	
-1.000	211	-2.000	330	-1.000	1	
3.000	1	-1.000	211	-2.000	2	
	2.000 -3.000 2.000 4.000 4.000 -1.000 -1.000 4.000 4.000 3.000 3.000 3.000 2.000 3.000 -1.000	2.000 330 -3.000 2 2.000 330 2.000 001 4.000 330 4.000 330 -1.000 892 -1.000 471 -1.000 230 4.000 330 2.000 330 8.000 1 3.000 330 9.000 330 9.000 330 2.000 1 -1.000 211	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2.000 330 $2.000 1$ $-3.000 2$ $10.000 330$ $2.000 330$ $-1.000 60$ $2.000 001$ $3.000 330$ $4.000 330$ $-1.000 890$ $4.000 330$ $-1.000 891$ $-1.000 892$ $-1.000 892$ $-1.000 471$ $-1.000 230$ $4.000 330$ $-1.000 900$ $4.000 330$ $-1.000 901$ $2.000 330$ $-1.000 901$ $2.000 330$ $-1.000 902$ $8.000 1$ $-1.000 730$ $3.000 330$ $-1.000 760$ $9.000 330$ $-1.000 760$ $3.000 330$ $-1.000 761$ $2.000 1$ $-1.000 360$ $-1.000 211$ $-2.000 330$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Redox. Dbs

SUPPLEMENTARY INFORMATION FOR SCIENTIFIC NOTEBOOK #: 046

Document Date:	06/02/1992				
Availability:	Southwest Research Institute® Center for Nuclear Waste Regulatory Analyses 6220 Culebra Road San Antonio, Texas 78228				
Contact:	Southwest Research Institute® Center for Nuclear Waste Regulatory Analyses 6220 Culebra Road San Antonio, TX 78228-5166 Attn.: Director of Administration 210.522.5054				
Data Sensitivity:	■"Non-Sensitive" □ Sensitive □"Non-Sensitive - Copyright" □ Sensitive - Copyright				
Date Generated:	1992				
Operating System: (including version number)	NA				
Application Used: (including version number)	MINTEQA2, Version 3.0				
Media Type: (CDs, 3 1/2, 5 1/4 disks, etc.)	1 - 3 ½ disk				
File Types: (.exe, .bat, .zip, etc.)	Various				
Remarks: (computer runs, etc.)	Media contains: Database from EPA November 1990.				

.