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2 Objectives and Summary

Within the Amargosa Desert and Fortymile Wash regions adjacent to Yucca Mountain, Nevada, vast
areas exist along the projected radionuclide flow path for which little hydrogeologic and geologic data
are available. As aresult, groundwater flow and mass transport models are poorly constrained within
this region. The conjunctive use of temperature and hydrogeological data for site characterization
has the potential to reduce the concerns that have been raised. This potential is evident from
published works relating thermal-energy transport to the aquifer’s hydrogeological features, and
from studies that attempted using temperature data for site characterization. Note that the thermal
and hydraulic head fields are linked by the fluid specific discharge.

It is the hypothesis of this report that the full-Bayesian techniques mentioned in the above latter
references can be successfully adapted to the inverse problem of coupled groundwater flow and heat
transport. In the following sections the basic concepts of heat and fluid transfer in porous media, are
reviewed, followed by an adaptation of a “full-Bayesian” approach for coupled-nonlinear inversion
of hydraulic head and thermal data.

A program was developed to illustrate the Bayesian solution to the regression of z against y for
a linear relationship. The correspondence to least squares is near perfect and shows verification of
the technique.

The procedure is also applied to a series of test cases in which the actual values of temperature
and hydraulic head are generated, based on known aquifer characteristics. The test aquifer is
identical to that described by Woodbury and Ulrych (2000). It is square, with 300 km sides and
constant hydraulic head boundaries. The aquifer transmissivity is homogeneous and for this prob-
lem it is theoretically impossible to determine a aquifer value of transmissivity based on hydraulic
head data alone. The use of the hydraulic head data is shown to resolve the log-transmissivity
estimate, in comparison to hydraulic head data alone.

This notebook documents aspects of the work performed by C. Lanczos & Associates Limited
(Dr. A. Woodbury) and CNWRA staff on this project.

2.1 Computers, Computer Codes, and Data Files

The computer codes used in this study are based on a suite of FORTRAN 77 codes developed or
acquired by Dr. Allan Woodbury. The data analyses were carried out using computer versions of
Windows NT 4.0. Processed data files, FORTRAN code and output will be included on floppy disk
with the hard copy of this report.

3 Introduction

Difficulties associated with direct measurement of the hydrologic parameters needed for physically-
based mathematical models are well known. Equally well known are the difficulties in the calibration
procedure when trying to adjust parameters within preconceived limits until model output at se-
lected points matches observed values. Quite often questions are raised as to the uniqueness and
optimality of these models. A major focus of research over the last decade has been directed to-
wards inversion techniques and parameter estimation as a way of both automatic calibration and
as a statistical procedure to quantify the reliability of parameter estimates (see reviews by Ginn
and Cushman, 1990; and McLaughlin and Townley, 1996, 1997; Kitanidis, 1997). These references
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are by no means exhaustive and serve only to indicate the importance of the overall problem of
site characterization. The understanding of the problem has improved, and while it is generally
considered as yet unsolved ( in the sense that no panacea has yet been developed) there are clear
ideas of what the weak points are and what might be the remedies. In the inverse approach mea-
surements of hydraulic head, hydraulic conductivity (or transmissivity), seepage flux, and the like
are inputs to an inverse algorithm, and fitted hydraulic conductivity (or other parameters) become
the output, along with the parameter covariance structure. Throughout this paper the term ‘model’
is defined as a configuration of material properties. Mathematically, the model takes the form of a
vector m which consists of all unknown parameters (for instance, hydraulic conductivities, boundary
conditions, etc. ).

Traditionally, inverse techniques in hydrogeology rely on measurements of hydraulic conductivity
and hydraulic heads, and they employ the groundwater flow equation for interpretation. Relatively
few works have gone beyond this approach and introduced additional information such as tracer
data (cf., Carrera et al., 1993), or geophysical measurements (Woodbury and Smith, 1988; Rubin
et al., 1992; Hyndman et al., 1994; Copty and Rubin, 1995; Hubbard et al., 1997). The quest for
diversifying the types of information stems from the recognition that sophistication of inverse algo-
rithms cannot replace information and data. Along these lines, Abriola et al (1992) noted that “for
most specialties, it was generally felt that the state-of-the-art has surpassed the ability to utilize the
results in a practical scenario” and that “.applications of [mathematical models] is hindered by the
lack of data required to implement or verify them”. This recognition is well demonstrated in Carrera
and Neuman (1986) where it is shown that the instability and non-uniqueness of solutions to the
inverse problems can only be eliminated by introducing additional measurements and information.
The challenge of course, is to find inexpensive and reliable sources of information.

The conjunctive use of temperature and hydrogeological data for site characterization has the
potential to reduce the concerns that have been raised. This potential is evident from published
works relating thermal-energy transport to the aquifer’s hydrogeological features, and from studies
that attempted using temperature data for site characterization (e.g. Woodbury et al., 1991). Note
that the thermal and hydraulic head fields are linked by the fluid specific discharge. This linkage is
discussed further below.

The idea of examining thermal fields to gain a better understanding of the hydrologic regime is
best illustrated with a simple example. Figure 1 shows the thermal regime in a hypothetical basin
for three different values of homogeneous, isotropic permeability: 1.0 x 1078 m2, 2.0 x 10~16 m?,
and 5.0 x 107'% m?, The basin is 40 km wide and 5 km deep, with a linear water table having a total
relief of 500 m. Heat flow within the earth is predominantly vertical in conductive environments.
However, because of a coupling between the groundwater and heat flow equations, the thermal
field will show increased advective disturbance with increased fluid velocities. The upper plot in
Figure 1 illustrates one end member in which the specific discharge is too low to have an effect on
the conductive heat flow regime. The temperature within the basin in this simulation is governed
entirely by the geometry of the basin, the thermal conductivity of the saturated porous medium, and
the basal heat flux. As permeability is increased, fluid velocities become sufficient to redistribute
heat in the system. Isotherms in the recharge area are depressed because of the downward flow of
cooler water from the water table. In the middle of the basin, isotherms are tilted with respect to
their conductive configuration, but for a broad region they remain subparallel to the surface. In
this region, equipotentials are near vertical and have little sensitivity to variations in permeability.
Isotherms in the discharge area are elevated because of the upward flow of warmer water at depth
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Information potentially subject to copyright protection was
redacted from this location. The redacted material, Figure 1,
is from Smith and Chapman. The complete citation appears
on page 21 of this scientific notebook.

Figure 1: From Smith and Chapman, J. Geop. Res., V. 88, p. 593-608, 1983. Copyright by Amer.
Geophys. Union.

in the basin.

As mentioned, a number of studies have demonstrated the sensitivity of the thermal field to
variations in the magnitude of hydraulic conductivity and anisotropic ratios, length/depth ratios
of the flow system, thermal conductivity changes, varying basal heat flux, and the existence and
location of aquifers (for example, Smith and Chapman, 1983). Three dimensional effects of fluid
flow on the thermal regime have also been examined (Woodbury and Smith, 1985). Smith and
Chapman (1983) describe an advective threshold, which is a relatively abrupt transition from a
conductive to advectively-dominated system as fluid velocity increases with permeability. This
transition occurs over approximately one order of magnitude in permeability for typical large-scale
sedimentary basins. At high fluid velocities the thermal regime of a basin can be dominated by
advective effects, with a near isothermal temperature field.

The basic idea behind a joint-hydrological /thermal inversion scheme is to exploit the sensitivity
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of the thermal field to hydrogeologic parameters. Temperature measurements can be made in
piezometers or boreholes along with hydraulic head measurements. Normally only a limited number
of hydraulic head measurements can be taken in an individual piezometer. Temperatures, in
contrast, can be profiled continuously along the length of a borehole or piezometer standpipe. This
feature greatly increases the amount of temperature data compared to hydraulic heads that can
be gathered at most sites. In addition, miniature digital temperature measuring equipment is now
available and allows for easy use in the field (Woodbury et al., 1991; Woodbury, 1999).

The first works in joint thermal and groundwater inversion were carried out by Woodbury
et al. (1987) and Woodbury and Smith (1988). Their joint inversion scheme found solutions
by minimizing various multi-objective criteria. Additional unknown parameters such as thermal
conductivity and thermal boundary conditions were also identified in the scheme. It is shown that
for certain ranges of fluid flow, limitations in hydraulic head data sets, such as incompleteness or
inaccuracy, can be overcome with the joint inverse scheme. Wang et al. (1987) advanced the joint
inversion methodology by using Bayesian maximum aposteriori (MAP) techniques for a non-linear
solution.

In recent publications (cf. Woodbury and Sudicky, 1992; Woodbury and Rubin, 2000) a full-
Bayesian approach was used to obtain parameter estimates and variances. The “full-Bayesian”
approach signifies that both parameter and hyperparameter determination is involved. It is the
hypothesis of this report that the full-Bayesian techniques mentioned in the above latter references
can be successfully adapted to the inverse problem of coupled groundwater and heat flow. In the
following sections the basic concepts of heat and fluid transfer in porous media are reviewed, followed
by an adaptation of a “full-Bayesian” approach for coupled-nonlinear inversion of hydraulic head
and thermal data. Specifically, the following are dealt with in this report:

1. Solution to the non-linear thermal/groundwater inverse problem by a full-Bayesian approach.

2. The noise values in the data are assumed unknown a priori and their effects are removed from
the problem by marginalization.

3. The prior pdfs for the model parameters, and noise values, are represented by priors developed
from Minimum Relative Entropy considerations and are not assumed “ad-hoc”.

4 Functional Relationships and Governing Equations

Stallman (1960) presented the governing equations for heat transfer in a saturated porous medium.
Bear (1972) and Bear and Corapcioglu (1981) presented complete developments of fluid, momentum
and energy transfer in a thermo-elastic medium. The following equations are valid for a single-phase
Newtonian fluid in a saturated porous media. Solute concentrations are assumed to be negligible
and cross-coupling phenomena such as the Soret and Dufour effect (Bear, 1972) are also assumed
to be negligible. Normally, when considering deep regional flow systems, hydraulic conductivity
shows significant departure from isothermal behavior because of the dependence of fluid density and
viscosity on temperature. These dependencies need to be taken into account for deep groundwater
flow systems; however, for the purposes of this work, (and without any loss of generality) these
dependencies are neglected.

Only steady-state hydraulic head and temperature fields are considered in this study. This
approximation is appropriate where yearly fluctuations in water table are small compared to the
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depth of the flow system and where seasonal temperature variations effect only the near-surface
temperature field.

4.1 Fluid Flow

This study will focus on the two-dimensional form of the steady-state groundwater flow equa,tioﬁ‘.;
V-K-V¢=wi(z -2,y —y) (1)

subject to

~K-Vé-n=gs (2)
on I'y, and ¢ = gi(z,y) on 'y, V = (§/0z,8/8y), n is the unit outward normal, and V- =
(10/0x + jO/Oy). Here, ¢ is the hydraulic head, wi(z — 2,y — ¢/) is a fluid source/sink term of
strength w at location z', 3/, K is the hydraulic conductivity tensor, g; is a specified fluid flux term

on boundary I'y, and g;(z,y) is a function specifying Dirichlet boundary conditions on I'y. If a
numerical scheme is used to solve (1), a matrix equation results:

Ah=b, (3)

where h is the approximate value of ¢ due to the discretization, A is a global stiffness matrix
which is a function of K and grid design, and b; is a loading vector with the appropriate boundary
conditions.

The fluid specific discharge is given by:

q=-K- V¢ (4)

Heat Transfer
The appropriate heat transfer equation can be written as:

V'A'VT—prfq'VT=O (5)

subject to
—A - VT -n=gqp (6)

on I's, and
T = gy(z,y) (7)

on I'y. Here, T is the temperature, p; is the fluid density, C; is the fluid specific heat capacity, A is
the thermal conductivity tensor of the fluid/porous medium composite, gr is a specified heat fAux
on boundary I's, and g2(z,y) is a function specifying Dirichlet boundary conditions on ['y. If the
external domain to I is also a porous medium, and fluid flow occurs across the boundary, then a
component of thermal energy is carried with the moving groundwater. In this case, the appropriate
boundary condition is of the third type. If the temperature on both sides of the boundary is assumed
to be equal, then the boundary condition degenerates to VT - n = 0 (see Bear, 1972, p623).

For the cases under consideration in this study, thermal conductivity is considered to be homo-
geneous and isotropic. Therefore A is treated as a scalar, A and (7) becomes:

VT —-Dq-VT =0 (8)
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where D = p;Cy /) is a reciprocal-thermal diffusivity term. If a numerical scheme is used to solve
(8), a matrix equation results:
Asu =h, (9)

where u is the approximate value of T due to the discretization, A, is a global stiffness matrix which
is a function of ), grid design and q, and b, is a loading vector with the appropriate boundary
conditions.

Within the upper crust, heat is transferred primarily in the vertical direction. The equation for
the vertical component of heat flow in a conductive environment is:

oT
o= -Ag (10)

where J, is the component of heat flow in the vertical direction. Variations in geothermal gradient
(0T/0z) with depth are useful in interpreting and separating advective effects in thermal profiles.

4.2 Aquifer Equations

The basic methodology that will be followed with respect to groundwater inversion is through rel-
atively simple groundwater flow systems in which the hydraulic conductivity and transmissivity is
considered statistically isotropic and homogeneous. The hydraulic head ¢ and the aquifer trans-
missivity Kb satisfy the following partial differential equation in terms of the log-transmissivity,
Y = In(Kb).
oY 8¢ 0%  OY 8¢ 02¢_0 (11)
Ox dxr  08x2 Oy dy Oy
For the average specific discharge in the aquifer,

_ g9
Qe = — 8.’17
d
an o @
¥y 8y
In terms of transmissivity,
TOop 0p
O “por ¥ (Y)ax
and
_ Top 0¢
Qy - b 8y - anp(Y) ay

For thermal transport in the aquifer, equation (8) becomes

AVAT — p;Craexp(Y)Ve¢ - VT =0 (12)
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5 Bayesian Solution To Inverse Problems

As mentioned in the introduction, it is the goal of this work to reconstruct a vector of hydrogeologic
model parameters from observations of hydraulic heads and temperatures. This is a non-linear
inverse problem, and although for the cases presented in this report there are more data points than
unknown parameters, the problem may be ill-posed and potentially lead to non-unique solutions.
This is the case, say if one attempts an inversion to determine hydraulic gradients, hydraulic con-
ductivity, porosity and retardation factors from measurements of a tracer cloud. The reader will
note that the above parameters are all coupled and their unique determination is very difficult. To
so called ‘Bayesians’, inverse problems are problems of inference and this is the philosophy adopted
in this work to circumvent the aforementioned concern.

Much has been written on the subject of Bayesian inference and different points of view apply
(for review see Ulrych et al., 2000). The reader will note that we refer to a “Full-Bayesian ”
approach and this is to signify that the inference problem will consist of both primary parameter
and hyperparameter estimation (Mohammad-Djafari, 1996; Woodbury and Rubin, 2000; Woodbury
and Ulrych, 2000).

Bayesian inference supposes that an observer can define a prior probability-density function
(pdf) for some random variable m. This pdf, p(m), can in principle, be defined on the basis of
personal experience or judgment. However, applications of Bayesian probability theory have been
hampered by the precise meaning and interpretation of probabilities and controversy surrounding
the appropriate choice of prior pdfs. An orthodox view of probabilities dictates that frequencies
measured in an experiment are equated to probabilities and “prior’ information is not allowed. An
alternative viewpoint of probability, denoted as the Jaynes-Cox viewpoint (Jowits, 1979), is one in
which probabilities are equated with the degree of plausibility of a proposition and may have no
frequency interpretation whatsoever. This viewpoint is essentially Bayesian and is readily applicable
to the questions that scientists and engineers typically ask. A necessary component of the Jaynes-
Cox view is the ‘principle of maximum entropy’ (PME) which replaces the need for subjective prior
information in the Bayesian approach and forces all observers who possess common information to
produce consistent results (Woodbury and Ulrych, 1998).

Woodbury and Ulrych (1993), Woodbury et al. (1995) and Woodbury (1997) deal with the
estimation of appropriate prior pdf’s for hydrogeologic applications. As shown by Woodbury and
Ulrych (1993), p(m) may have the form of a multivariate-truncated exponential distribution. This
pdf preserves the statistical independence of the parameters. That is, if no correlation is known
beforehand the maximum entropy principle does not inject any correlation into the result. In this
manner p(m) has the most freedom in assigning realizations of the process. It is important to note
that the above approach (PME) of determining p(m) is the one which is the most uncommitted
with respect to unknown information.

Bayes’ rule (for example; Press, 1989) quantifies how the prior pdf can be changed on the basis
of measurements. Simply stated, Bayes’ rule is

Posterior  Likelihood x Prior

Consider a vector of observed data d*. If the conditional pdf of d* given m and some prior

information I, is given by p(d* | m, I), then Bayes’ rule states that
p(d* | m, I)p(m | I)

Jp(d* | m, I)p(m | I)dm

p(m|d*,I) = (13)
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In the above, p(m | I) is the prior probability density of the model parameters, given some form
of prior information, I, and p(d* | m, I) is the likelihood of observing d* given the model parameters
and the prior information. This latter term is often referred to as a ‘direct’ as opposed to a sub jective
pdf. The term on the left hand side is called the posterior probability (after measurements are
taken into account). Finally the term in the denominator is a constant that ensures the posterior. is
normalized, but is also the actual pdf of observing a set of data, with the uncertainty in the model
parameters taken into account.

In the sections below we will outline how the various conditional pdfs and the prior information
are defined and show how we can use Bayes’ rule to reconstruct a vector of model parameters from
heads and temperature data.

6 Inverse Problem Hydraulic Heads and Temperatures

Consider the finite element model for the hydraulic head predictions in an aquifer. Equation (3) is
written in terms of a general non-linear model of the type

di = fi(xs) (14)

fori=1... N where N is the number of predicted ‘data’ points and x = (z,y). Here, f1(z) depends
upon a series of parameters m which could consist of log-transmissivities, flux conditions and the
like.

In the case where head measurements are taken, the associated noise-corrupted case is

di = filx) + & (15)

Where the data dj consist of a collection of discrete values of hydraulic heads and ¢; is the noise.

The inverse problem consists of trying to reconstruct the parameter vector m, based on the
observed data. As mentioned, the inverse problem is viewed in a Bayesian context; that is the
inversion is viewed as a problem of inference. In order to solve the inference problem, we will use
a Bayesian framework to ‘update’ a prior probability based on consideration of measurements. To
apply Bayes’ Theorem we need to assign a noise probability density which is consistent with the
available information about the noise. If one could predict the ‘true’ data, the difference between
d; and d; is just €;, the noise. If it is assumed that the noise has a value € given prior information I,
and if the second moment of the noise is known, o, then an application of the maximum entropy
principle leads to a Gaussian distribution for e (Bretthorst, 1988; Kapur, 1989):

1 €2
plelor, I) = exp (———) (16)
\/2mo? 20%

Here 0y is taken as the root mean square (RMS) noise level and (16) is the least informative prior
probability density for the noise that is consistent with the given second moment. Even if the
second-moment of the noise is not known, the central limit theorem leads to the Gaussian form
(Jaynes, 1983). In this work (shown later), we treat the noise explicitly as an unknown in Bayes’
theorem and then proceed to integrate its effects out.
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Having a pdf for the noise and adopting the notation that ¢; is the noise at distance z;, one can
apply the product rule of probability theory (assuming independence) to derive the pdf that one
would obtain a set of noise values (e, €3, ... €n):

p(el,ez,...eNlol,I):HI: L 22)} (17)

i=1 27TO' 1

Kapur (1989) shows that (17) arises naturally in the multivariate case when entropy is maximized
with correlations unknown.
Consider another non-linear model for the temperatures (9) of the type

dj = fa(x;)
for an additional M points and the associated noise-corrupted case is
d; = fa(x;) + ¢ (18)

Here, the model f5(x;) describes the physics of thermal transport and also depends on the same
parameters m, as in f;(z); namely the log-transmissivity, boundary conditions and the like. In this
case the noise variance is different than the first N values and is equal to 3. The data in this case
are M observed values of temperature.
In a similar line of reasoning with (17), the noise pdf now becomes
_& )
202
M 2
1 €5
——L 1
II [ exp(—55 )} (19)

Again, if the ‘true’ model is known, the difference between the data and the model is described
by the noise. Taking into account (15) and (18) the pdf that one obtains a set of data d* =
(dt,d3,...dy,a), given a set of parameters and prior information, is proportional to the likelihood
function, L:

N 1
pe1, €2 €N, EN11, ENG2, - - - Ntml01,02,]) = ] \/2_?2 ex
oy

i=1

p(d|m,01,05,1) « L(m, 01,02)_1‘[01 exp(~ 21 2 — fu(z)]?)

HUz €‘XP(--—[ = fa(z)]?) (20)

or,
M

L(m,01,0) = o7V x exp { —%Z — fi()? - Z fa(=))] } (21)

1 =1 j=1
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7 Full-Bayesian Solution

A non-linear least-squares approach would proceed by minimizing the combined sums in the ar-
gument in the exponential of (21), and the equivalent maximum likelihood procedure finds the
parameter set that maximizes the logarithm of (21). Neither approach incorporates prior informa-
tion about the model parameters. On the other hand, the Bayesian methodology readily lends itself
to the problem of updating prior probabilities based on uncertain field measurements. For exam-
ple, Kitanidis (1986) and Woodbury and Sudicky (1992) outlined the Bayesian approach in which
relevant prior information about the model is incorporated. In the current work we adopt a similar
approach but following the suggestions of Jaynes and others (for example Kitanidis, 1986; Loredo,
1990; Rubin and Dagan, 1992; Woodbury and Rubin, 2000) we treat the two noise variances 02,02
as ‘nuisance’ parameters that are “removed” from further consideration by integration over these
parameters (marginalization). This point is discussed further below.

7.1 Hyperparameters Unknown

Consider again our set of observed data d* and Bayes’ Theorem. If the conditional pdf of d* given
m, 01,02 is given by p(d* | m, 01, 03), then Bayes’ rule states that

* p(d* | m, 01702)p(m: 01, 02)
d*) =
p(m, 01,02 | d7) Jp(d* | m, 01, 03)p(m, 01, 09)doydodm

(22)

In the above, the I dependence is dropped for convenience. p(m, oy, oy | d*) is the conditional pdf
of (m, 0y, 03), given d*, and p(d* | m, 01,02) represents the direct pdf from observations. d* is a
vector of N + M data points.

The prior distribution of the model parameters is given by either a multivariate truncated
exponential distribution (see Woodbury and Ulrych, 1993), or multivariate Gaussian. The prior pdf
for the standard deviation of the noise (o or o) is given by a Jeffrey’s prior p(o) x 1/o which has
been used by other researchers in Bayesian methods (see Bretthorst, 1988; Woodbury and Ulrych,
2000) to represent complete ignorance of a parameter restricted to zero and infinity. The combined
prior for the model and noise is given by

p(m, 01, 03) = p(m)p(o1)p(02)

Note that 07 and o3 is independent of m. Let the posterior pdf be written as:
1
p(m, 01,04 | &%) = — x p(m)p(01)p(02)L (1, 01,02) (23)

where

N M
£(m,01,05) = o7 Vo3 x exp {—5(1,— 210~ el = 57 3 - ﬁ(aa-)]z} (24
i=1 j=

is the likelihood function. This can be rewritten as:

20% 202

L(m,o1,02) = 07Nz ™ x exp {— (25)

H(m) T(m) }
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In order to remove the effects of uncertainty in the measurement noise, integration of (25) is neces-
sary. The marginalized form is:

£(m) = /0 /O £(m,01,02) -~ dordo (25)
After some manipulation, integration yields
L(m) = 272N2AM2D(N /(M /2) H (m) /2T () 4/ (27)

which is a multivariate t-distribution. The normalizing constant v in (23) then, is defined as

v= /m £(m)p(m)dm (28)
The first two moments of p(m | d*) (23) are the expected value
<m>= /mmp(m | d*)ddm (29)
and the posterior covariance
C, = /M mm”p(m | d*)dm— < m ><m >7T (30)

Unfortunately, when the forward model is nonlinear, then the integrations posed by (28, -
30) are intractable analytically and one cannot compute marginal densities and moments of the
posterior distribution in terms of closed form expressions. However, the integrals in (28 - 30) can
be evaluated using Monte-Carlo integration techniques, especially if the size of model space is small
and the forward relationship can be computed relatively easily. Note from (28) v is the expected
value of £(m). Therefore an unbiased estimator of v can be written as:

where the m; are generated out of a random population with pdf p(m). Note that the likelihood
function is evaluated for each model vector. The mean and covariance can then be calculated as

1 N
<mg >= ]—V—I/ ;mzkﬁ(mz) (32)
and
1 N

i=1

The above integrations can be accomplished using the method of Monte Carlo integration and the
concept of importance sampling (for example; Shreider, 1966, p100-102, or Woodbury and Sudicky,
1992). The integrals posed by (28-30) are evaluated by generating a series of greater than 1,000
random model vectors using a multivariate random number generator with p(m) or p(m, oy, 03) as
the pdf. The generation of random points can be terminated when a criterion of relative precision
of the integral (28) is satisfied (Tarantola, 1987).
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The maximum likelihood point can be determined by examining the set of randomly generated
models for that point which maximizes (23). The maximum likelihood point of a non-linear inverse
problem may not be the same as the expected value. Because Gaussian distributions are symmetric,
the maximum likelihood point coincides with the mean value. For an arbitrary non-linear surface
(e.g., multi-modal, skewed, platykurtic) the maximum likelihood point can be far from the mean
value.

The Bayesian technique used in this paper essentially samples the posterior pdf surface close
to its maximum to find an average value of the model parameters. These values may be more
appropriate than a single estimate. If the maximum likelihood point is reasonably close to < m >
then one can place a certain amount of confidence that the posterior pdf is not significantly skewed
or multimodal. Higher order statistics such as skew and kurtosis can also be generated by the
approach and various tests can be made to determine if the resulting pdf is near Gaussian in form.

The covariance of the parameter estimates is a useful end-product of an inverse scheme. How-
ever, because the distribution for m may be non-Gaussian, the covariance of the estimated model
parameters may be difficult to interpret, especially in terms of confidence intervals. In such cases
the covariance of the parameters can be interpreted as the covariance from an equivalent linear
problem, which may or may not be relevant. In these cases the best understanding may be achieved
by determining the probability of a model parameter lying within a certain range. For example

P@<m<b)= /a ® $(m | d*)dm (34)

which can be determined as part of the numerical integration of (28).

7.2 Hyperparameters Known

In the above section, the treatment of the Bayesian integrals was dealt with, considering that the
hyperparameters, o; and o5 were unknown, and the only information available was that each one has
limits of 0 to infinity. In this section it is assumed that some additional information is available for
these hyperparameters. This information could be accumulated by analysis of previous simulations
from the section above, or some other approach.

The normalizing constant v in (23) is defined as

V= /m /al /02 L(m, 01, 02)p(m)p(c1)p(0s)doydordm (35)

Here the analysis of Woodbury and Rubin (2000) can be used to deal with the nuisance parameters
by marginalization against all other parameters. Integrating (85), the first two moments of p(m | d*)
(23) are the expected value

<m >=/ m/ / p(m, 01,09 | d*)doydoydm (36)
m o1 JOg
and the posterior covariance
Cy= [ mm” [ [p(m, 01,0, | @) dosdordm— < m >< m >7 (37)

The numerical integrations proceed as before, with the exception that realizations out of p(m)p(o1)p(a2)
must be generated.
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Consider (21) in which both ¢; and o5 are also generated out of some random population. We
can rewrite (21) as

1
L(m,oy,03) = eXP{"i‘; [d; — fi(z:))?

1 =1
M
_ri% D ld; — fa(z)]? — N x In(oy) — M x ]n(a2)}
g=1

exp(G:) (38)

Then v becomes

Z

v= > exp(c) (39)

[

8 Computational Considerations

The recommended procedure is as follows:

1. If the analysis is in the initial phases, no information may be available on the hyperparameters.
In this case use £(m). Define which parameters are important and choose an appropriate prior
pdf, p(m). If information is available on the hyperparameters, choose L(m,01,07).

2. Generate realizations out of p(m), or p(m, 01, 0,), increase counter ic by one.

3. For each realization, store the values of m; and compute and store L(m); or £L(m,0y,05);.
For any realization, if the likelihood is below some threshold value, say 1 x 107290 store either
of the above. Increase counter, icount by one.

Terminate realizations when icount reaches preset value.
Compute relative precision in integral v.

Compute mean values, covariances, credibility intervals.

NS o s

Using the final mean value for the parameters, compute a final Tun in which data is predicted,
compare to observed values at the data points.

9 Verification Example I

A program was developed to illustrate the Bayesian solution to the regression of z against y for
a linear relationship. This is a very simple but easy example to understand and allows for the
comparison of the Bayesian solution against classical linear regression.

The first example consists of 50 values of z and y. The actual relationship is ¥ = az + b where
a = 1.0 and b = 0. Fifty values are sampled randomly from z = 300 to 500 and the corresponding
y values were corrupted with Gaussian, additive noise N [0,1]. The fifty values were input to the
program INVY to check if the Bayesian code could produce the same, or very similar, regression
coefficients for a,b. The priors for the first run are given in Table 1.
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The least squares estimates for the parameters can be computed with standard techniques. After
9,000 counting realizations, the Bayesian code with the Gaussian likelihood, produced the estimates
listed in Table 2.

This first example illustrates that the Bayes code faithfully reproduced the expected results
when compared to regression. Note that regression automatically assumes that there is no prior in-
formation, so one has to set very non-informative priors. The numerical accuracy of the integrations
was a relative precision of 0.14455.

The second example consists of (again) the same 50 values of  and y, chosen before. The
fifty values were input to the program INVY to check if the Bayesian code, with a t-likelihood
could produce the same results as the Gaussian likelihood. Recall, the “t” distribution assumes no
knowledge of the noise in the data. The priors for the second run are shown in Table 3:

The least squares estimates for the parameters can be computed with standard estimates. Af-
ter 5,000 counting realizations, the Bayesian code, with the “t” likelihood produced the following
estimates listed in Table 4.

This second example illustrates that the Bayes (t) code faithfully reproduced the expected
results compared to regression. The numerical accuracy of the integrations was a relative precision
of 0.15965. This result in interesting in that the correct solution was found without knowledge of
the noise level in the data.

10 Verification Example II

The two-dimensional numerical application of the full-Bayesian approach to the joint inverse prob-
lem is tested in this section through simulation. A homogeneous log-transmissivity field is first
generated along with its associated hydraulic head field. The hydraulic head values are solved by
using the finite element procedure, utilizing linear basis functions and triangular elements. The
groundwater specific discharges are first calculated and then used in a second phase (also finite
elements) in which the temperature field is calculated. Samples of the computed hydraulic head
and temperature fields are taken from the fictitious aquifer and corrupted with Gaussian additive
noise (N[0,0.1] in each case). The number of samples are nine for each head and temperature. There
is one unknown value of In(T") to be solved, along with the noise in each set of measurements. The
aquifer postulated as a test case is square, 33 rows by 33 columns, with each side being 300 km
long. This test case is identical to that described by Woodbury and Ulrych (2000). The heads are
prescribed on every boundary and there are 1089 nodal values of hydraulic head and temperature.

The first example used the Bayes (t) methodology and the results are shown in Tables 5 and 6.
There were 1000 realizations and the relative precision of the integration was 0.4419. The priors for
log-transmissivity in this case were a lower bound of -14.01, and expected value of -11.006 and an
upper bound of -9.00 (truncated exponential type). The results are very good and virtually match
the correct log-transmissivity value.

In a second run, the values determined above were used in a second computation (although
perhaps not necessary) to try the Bayes solution with Gaussian likelihood. The priors for log-
transmissivity in this case were an expected value of -10.9984, standard deviation 0.0816 (Gauss).
For o, the prior expected value is 0.0878, standard deviation of 0.0237 (Gauss) and for o, the
prior expected value is 0.0805, standard deviation of 0.0288 (Gauss). The is actually not much
improvement in the parameter estimates; just a corresponding reduction in the numerical precision
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Parameter Lower | Expected | Upper | PDF Type
a (slope) 0. 0.9965 2.0 TE

b (intercept) | -300. | 0.3939 300. | TE

o (noise) - 1.0 - none

16

Table 1: Parameters and ranges adopted for first verification example. TE refers to truncated
exponential distribution.

Parameter | Bayes | Variance Least Squares | Variance

a (slope) 0.99694 | 0.356 x10~5 | 0.99662 0.368 x1075
b (intercept) | 1.38147 | 0.777 1.52466 0.79226

o (noise) 1.02832 | - 1.01807 -

Table 2: Output from first verification example and comparison to linear regression

Parameter | Lower | Expected | Upper | PDF Type
a (slope) 0. 0.9964 10. TE
b (intercept) | -300. | 1.53510 | 300. TE

Table 3: Parameters and ranges adopted for second verification example
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Parameter | Bayes (t) | Variance Least Squares | Variance

a (slope) 0.99678 | 0.312 x10=° | 0.99662 0.368 x10~5
b (intercept) | 1.26778 | 0.845 1.52466 0.79226

o (noise) 1.01785 | - 1.01807 -

Table 4: Output from second verification example and comparison to linear regression

Parameter Bayes (t) | Variance True value
In(T) -10.9984 | 0.33 x1072 | -11.000

01 (head noise) | 0.0878 - 0.1

o2 (temp noise) | 0.0802 - 0.1

Table 5: Output from third verification example
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of the integrations.

The numerical accuracy of the integrations was a relative precision of 0.1289. These results
confirm that the method can be used to greater improve the resolution of the log-transmissivity of
the aquifer over that obtained by hydraulic head information alone.

11 Discussion

Some of the strengths and weaknesses of the proposed approach are highlighted here. The strengths
of the technique lie in its stability, being able to handle either over or underdetermined problems,
arbitrarily non-linear natures of the forward model(s), and a variety of prior pdfs for the parame-
ters. This leads to tremendous flexibility and being able to incorporate ‘soft’ geologic information.
However, the immediate drawback of the technique is in the computational effort required. If, for
example, we needed 10,000 forward model calculations and each one required 0.5 hr., this would in-
dicate that 208 days of simulation time would be required. Therefore advances in the basic approach
must be sought to make the full-Bayes technique a practical technique.

If one were to carry out the numerical integration of the Bayes integrals using a uniform prior
pdf for each of the parameters, this would lead to an error term in the Monte Carlo integration that
would decrease as 1/ V'N. However, we already have improved on this basic approach by using the
concept of importance sampling. Nevertheless, if more flexible-higher entropy prior pdfs are used,
it is possible the maximum likelihood point for any of the parameters my lie out in the tail region
of a prior distribution; an area that will only be sampled for a large number of total realizations.

One possibly that is certainly worth exploring is the “Latin Hypercube” sampling (Press et al.,
1982). It has been shown that it is possible to greatly reduce the total number of Monte Carlo
realizations in integration (McKay et al., 1979), and stochastic simulations (e.g. Labkim et al.,
1999). The idea is that each design parameter is actually tested in every one of its subranges (areas
of equal probability). If the response of the system is dominated by one of the design parameters
that parameter will be found with this sampling technique. It is recommended that this technique
be investigated with respect to the integrals presented herein.

Other possibilities exist to speed up the process. The current SWRI code MULTIFLOW, solves
a non-linear forward problem for fluid flow and thermal transport. It is suggested that during each
nonlinear forward iteration, the likelihood be calculated. If during these initial phases the likelihood
is extremely small, then this realization be immediately skipped over. This passing over is permitted
as a result of the numerical integration. Those parameter realizations that produced low likelihoods
do not contribute to the sums involved. This suggestion above could also greatly reduce the overall
number of computations by discarding runs prior to their overall forward convergence.

12 Summary and Conclusions

This paper presents a methodology for the spatial inversion of transmissivity and other parameters
from hydraulic head and thermal data for the two-dimensional steady state groundwater flow case.
The methodology used is based on a full-Bayesian approach (Woodbury and Rubin, 2000). The
approach deals with estimation of primary parameters and the hyperparameters governing noise in
the observations. The pdfs of these hyperparameters are in turn determined from maximum entropy
and consistency considerations. In other words, pdfs are chosen for each of the hyperparameters



Allan D. Woodbury SCIENTIFIC NOTEBOOK: Printed: May 1, 2001 #418 19

that are maximally uncommitted with respect to unknown information. In the algorithm provided,
the user selects a set of parameters and hyperparameters. Prior pdfs for these are chosen. Next,
a Monte-Carlo procedure is followed in which a series of parameter (and possibly) hyperparameter
values are generated. Each of the realizations and likelihoods of observing the ‘data’ are kept.
When a criterion of relative accuracy is achieved the iterations stop and then expected values of
the parameters and covariances are computed.

A program was developed to illustrate the Bayesian solution to the regression of z against y
for a linear relationship. This is a very simple but easy example to understand and allows for the
comparison of the Bayesian solution against classical linear regression. The first example consists
of 50 values of z and y. The actual relationship is y = az + b where @ = 1.0 and b = 0. Fifty
values are sampled randomly from z = 300 to 500 and the corresponding y values were corrupted
with Gaussian, additive noise N(0,1). The fifty values were input to the program INVY to check
if the Bayesian code could produce the same, or very similar, regression coefficients for a,b. The
correspondence to least squares is near perfect and shows verification of the technique.

The procedure is also applied to a series of test cases in which the actual values of temperature
and hydraulic head are generated, based on known aquifer characteristics. The test aquifer is
identical to that described by Woodbury and Ulrych (2000). It is square, with 300 km sides and
constant hydraulic head boundaries. The aquifer transmissivity is homogeneous and for this prob-
lem it is theoretically impossible to determine a aquifer value of transmissivity based on hydraulic
head data alone. In a first series of tests nine temperature and hydraulic head values are used
and are corrupted with N(0, 0.1) additive noise. In this series the hyperparameters are assumed
unknown and the full-Bayesian produced is used. The use of the hydraulic head data is shown to
resolve the log-transmissivity estimates, in comparison to hydraulic head data alone.
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14 Figure Captions

Figure 1 Thermal effects of groundwater flow. Adapted from Smith and Chapman, J. Geop. Res., V.
88, p. 593-608.
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Parameter Bayes (t) | Variance True value
In(T) -11.0050 | 0.36 x10=3 | -11.000

o1 (head noise) | 0.0904 0.262 x1073 | 0.1

02 (temp noise) | 0.0914 0.254 x1073 | 0.1

Table 6: Output from fourth verification example
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