

United States Nuclear Regulatory Commission

Fire Modeling: Current Status

N. Siu and M. Dey

Office of Nuclear Regulatory Research Division of Risk Analysis and Applications Probabilistic Risk Analysis Branch

3rd NRC-AERB Nuclear Safety Projects Meeting Mumbai, India February 22, 2004

Outline

- Background
- NRC fire modeling R&D overview
- Results from a benchmark exercise
- Concluding remarks

Fire Modeling

- Phenomenological models for consequences of specified fires
 - Environmental conditions
 - Impact on systems, structures, and components (SSCs)
- Multiple applications, e.g.,
 - Predict possibility of and time-to-damage of SSCs
 - Assess impact on safety margin associated with proposed change
- Varied levels in complexity
 - Separate elements
 - Few zone
 - Full mesh

Key Uncertainties

Initial/boundary conditions

- Characteristics of ignition scenario
- Fuel bed and room geometry
- Ventilation
- Target SSC characteristics
- Model applicability and performance
 - Validation data base
 - User knowledgeability
- Scenario-specific phenomena
 - Explosive faults
 - Effect of suppression activities

Fire Modeling R&D: Activities

- International Collaborative Project to Evaluate Fire Models for NPP Applications
- Collaborations with NIST and EPRI
- Fire model evaluation and guidance development

International Collaborative Project

- General Objectives
 - Evaluate capabilities and limitations of current state-ofthe-art fire models
 - Develop improved fire modeling methods and tools
- Key Elements of Approach
 - Benchmarking exercises
 - New experiments
 - Blind tests

International Collaborative Project Benchmark Exercises

- Benchmark Exercise #1
 - Cable tray fires
 - Results reported in NUREG-1758
- Benchmark Exercise #2
 - Pool fires in large halls
 - More challenging for zone models
 - Large volumes, e.g. turbine halls
 - Large fires
 - Preliminary results reported in NUREG/CP-0181
 - Final results report to be issued soon

Benchmark Exercise #2 – General Parameters

- Large turbine hall (100m x 50 m x 20 m)
- Large oil pool fire (grows to about 70 MW in 10 min)
- Open hatches between floors
- Beam and cable targets
- Cases for varying ventilation
 - Nearly sealed
 - Natural ventilation
 - Natural and mechanical ventilation

Benchmark Exercise

Benchmark Exercise #2 – NRC Analysis

Compares predictions of two NIST models

- CFAST (Zone model)
- FDS (100,000 cell CFD model)

Comparison of Heat Release Rates

Comparison of Hot Gas Layer Temperature

Target Surface Temperature (CFAST)

VG 11

Target Surface Temperature (FDS)

Target Surface Temperature Case 1 - FDS

Preliminary Observations

- Qualitative predictions for targets not always consistent
- Target survival conclusions are consistent
- FDS (including Smokeview) provides a comprehensive tool to examine scenario phenomena
- Modeling of vertical flow through horizontal vents is complex
 - CFAST is limited in directly modeling vertical flows for fire scenarios in multi-level compartments
 - CFD models need to be exercised to obtain accurate representation of vent flows

Concluding Remarks

- Benchmark Exercise #2: report to be issued shortly
- Benchmark Exercise #3
 - NIST test data
 - FDT, CFAST, FDS
 - Report under preparation
- Other benchmark exercises
 - Pool fires
 - Cable flame spread
- Draft fire model verification and validation report
 - FDT, FIVE Rev 1, CFAST, FDS
 - Report under preparation