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Volume 1: Flow in Unsaturated Fractured Porous Media - Hydraulic
Conductivity of Rough Surfaces

panior 110999 | Dhee (B

Thermal Effects - Key Technical Issue

Account Number: 20-1402-661
Collaborators: Markus Tuller (USU), Randall Fedors, Ron Green (CNWRA)
Directories: C:\SC|_NOTE_FRACTURE\

Objectives: Documentation of theoretical model development for flow on rough
surfaces of unsaturated fractures based on hydrostatic liquid configuration governed by
adsorptive and capillary forces, and model comparisons with available measurements.
The documentation includes: (1) development of a unit roughness element to represent
fracture surface geometry; (2) basic considerations for calculating equilibrium liquid-
vapor interfaces in the proposed unit element dependent on chemical potential (water
potential); (3) introduction of flow phenomena in thin adsorbed films and in liquid filled
corners/grooves bounded by liquid-vapor interface; (4) development of different
averaging procedures for surface hydraulic conductivity of a unit roughness element; (5)
introduction of a statistical scheme representing rough fracture surfaces by a statistical
distribution of geometric attributes of roughness elements and derivation of ensemble
surface hydraulic conductivity; (6) tests of model performance by matching the resulting
expressions for single and distribution of roughness elements to measurements.

1/09/99 | Dani G

Initial entry

New insights into modeling of equilibrium liquid-vapor interfaces in angular pore
systems of porous media [Tuller et al., 1999; Or and Tuller, 1999], the underestimation
or ignorance of flow phenomena in adsorbed liquid films in most models, and recent
observations of the importance of water film flow along fracture surfaces of porous rock
[Tokunaga and Wan, 1997] provide the motivation for the study. A physically-based
model for flow on rough surfaces of unsaturated fractures is proposed based on
hydrostatic liquid configuration due to adsorptive and capillary forces. The model is
considered as a first step towards developing a comprehensive framework for liquid
retention and hydraulic conductivity in partially saturated fractured porous media that
combines realistic models for matrix and fracture pore space geometry and explicitly
consider the roles of adsorption, capillarity, and hydrodynamic processes in such dual
porosity system.
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To ensure the practical applicability of the model, surface geometrical features are kept
simple enough to obtain closed-form expressions for hydraulic conductivity
programmable into conventional spreadsheet software (e.g., Excel, Quattro Pro).

The proposed model is to be based on appropriate thermodynamically and physically
considerations. Simplifications should be kept at a minimum and are highlighted and
explained at the appropriate level of the development process.

Representation of fracture surface geometry

A single unit element (roughness element) with cross-sectional geometry as depicted in
Figure 1 is chosen to represent the cross-sectional profile of a rough fracture surface
with relatively wide aperture. Each roughness element contains a groove or an isolated
pit attached to a flat surface segment. Pit geometry is defined by its depth L, an angle v,
and by pit spacing BL. The nondimensional parameter  defines the pit/groove density
per unit fracture surface - assumed to be proportional to pit depth L.

BL 2L tan(y/2)

1w

| 1 Lc | 2
Le=1+]2

Fig.1 Definition sketch for a unit element representing unsaturated fracture surface with a single pit of

depth L and angle y. Liquid-vapor interfaces are functions of the chemical potential u, which

determines the radius of curvature in the pit r(u), and film thickness h(u). The inset represents the

partially saturated porous rock matrix forming the fracture; water in the rock matrix pore space is in
equilibrium with water on the fracture surface.

2r cos(y/2

The fracture aperture is assumed to be sufficiently wide to preclude fracture snap-off
(spontaneous filling of the gap or the entire aperture) at all chemical potentials and flow
rates under consideration. The extension of the analysis to fully saturated fractures is
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simple for a known aperture size (or a distribution of aperture sizes). In assembling the
unsaturated hydraulic conductivity for the rough surface, we consider the individual
contributions of film and groove (corner) flows to the total flow on the fracture surface.
This enables clear separation and identification of flow regimes for different scenarios
(fracture surface properties and chemical potentials). If fracture surface roughness is
primarily in the form of isolated pits, the dominating hydraulic regime is expected to be
in the form of liquid film flow. In the presence of an appreciable number of continuous
grooves, most of the flow is expected to be conducted as “corner” flow [Ransohoff and
Radke, 1988; Dullien et al., 1986]. Under most realistic conditions, flow on unsaturated
fracture surfaces is likely to be a result of these two processes.

1/16/99 D""[ OL

Chemical potential dependent equilibrium liquid-vapor interfaces in the proposed
unit element.

Two elements are considered to assemble the equilibrium liquid-vapor interfacial
configuration in the proposed unit element: (1) adsorbed liquid films covering the flat
section and dependent on chemical potential part of the groove surface (Fig.1); (2) the
liquid held due to capillary forces in the groove (pit). These equilibrium interfaces should
be used for subsequent calculations of hydraulic conductivity.

The thickness (h) of a liquid film adsorbed on a planar surface and confined by a vapor
phase is calculated as a function of chemical potential (u) as [lwamatsu and Horii,

1996]:
h(w) =§/——6‘::;'u (1)

where A, is the Hamaker constant for solid-vapor interactions through the intervening
liquid, and p is the density of the liquid. The total amount of liquid associated with films
is determined not only by the area of the film of the flat segment: BL -h(u), but also by
films exposed on the pit/groove surfaces as the radius of curvature decreases and liquid
recedes deeper into the groove (Fig.1). To calculate these additional film surfaces, we
first need to know the interface of the liquid retained in the groove (pit) by capillary
forces.

The radius of liquid-vapor interface curvature (r) for unsaturated conditions is dependent
on chemical potential (u) according to the Young-Laplace relationship:
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c
= 2
r(n) > (2)

where o is the surface tension of the liquid. An interesting feature of this uniform
capillary radius of curvature is that all grooves with an angle vy retain the same amount
of liquid-filled cross-sectional area regardless of the groove’s depth (L). The amount of
liquid retained in a corner Ac (expressed in this analysis as cross-sectional area) is
given by (Fig.2):

Ac(p) = r(w)®F(y) (3)

where F(y) is pit angularity factor defined as [Tuller et al., 1999]:

_ 1 N n(1 80 - y)
P = anty72) ~ 360 ()

Fig.2 Liquid vapor interfacial configuration and liquid-
filled cross sectional area in a corner.

With the liquid cross-sectional area associated with capillarity defined, we may now
calculate the cross-sectional film area Ar as (see Fig.1):

) L
AF(u)—h(u)[BL+2[COS(v/2) tan(y/ 2’” K

where h(p) is the thickness of the adsorbed film (Eq.1).

When the curved liquid-vapor interface reaches the pit edge, the pit is considered
completely filled and no further increase of interface curvature is possible (i.e., we
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assume “jump” to a flat liquid-vapor interface). The relationships between pit geometry
and the critical chemical potential . at this point is defined by:

~ c L ___ocos(y/2)
opotany2) cosw/2) e T pltan(y/2) (6)

The interface curvature r(u) expressed as -of/(pp) (Eq.2) at the pit edge (left hand term)
is linked with pit geometry (right hand term) (see also Fig.1).

The critical radius of curvature is simply: re(ie) =——YL<:228;§) .

Remarks:

(1) Chemical potential is chosen as the measure for the potential energy status of liquid in
fractured porous media. The chemical potential is expressed in terms of energy per unit
mass [J/kg] and may be converted to pressure (energy/volume) [Pa] by multiplication with

water density (p).

(2) The spontaneous filling of the pit at the chemical potential where the interface reaches
the pit edge (nc) may be explained in analogy to processes in (rhombic) pores. In pores the
formation of an inscribed circle by the liquid vapor interface marks an unstable configuration
leading to snap-off (spontaneous pore fill-up). The reason is the diminishing influence of
surface forces that “anchor” the interface. A similar process is likely to occur in the pit when
the interface reaches the pit edge. The presence of residual “depressions” on the otherwise
flat surface of the fracture is highly unlikely (from energetic considerations), hence
conceptually we treat these pits/grooves as completely full with flat interfaces (matching the
film interface).

2/06/99
Average liquid velocity in thin adsorbed films D""[ 0"

The flow velocity distribution normal to film cross-section is obtained from a solution of
the following Navier-Stokes equation [Spurk, 1997]:

dP d?v 7
dz dy? @

where v is the velocity, y is the distance taken normal to the solid surface, dP/dz is the
pressure gradient in flow direction z, and mo is the viscosity of bulk liquid. Double
integration of Eq.7 yields the velocity profile normal to the solid surface:

2
_y“-2hy _dP
=L (8)
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The velocity profile (Eq.8) may be integrated again and divided by film thickness (h) to
yield an average liquid velocity for a given chemical potential:

- h? () [_QE] )

This expression relates the film thickness h (Eq.1) as a function of the chemical
potential p. and the mean velocity, and is valid only when the liquid viscosity is constant
throughout the film. Experimental and theoretical evidence shows a presence of a thin
layer with modified viscosity close to the solid surface. Liquid viscosity is elevated
relative to bulk liquid due to short- and long-range interfacial forces [Low, 1976, 1979;
Derjaguin et al., 1987; McBride and Baveye, 1995]. Expressions derived by Low [1979]
for viscosity profiles of water altered by interfacial forces were recently modified by Or
and Wraith [1999] to represent viscosity in terms of distance from the solid surface:

n(y, T) =g exp[;"—‘T—J (10)

where y is the distance from the solid surface (A), T is temperature (K), and a = 1621 (A
K) is a constant modified from Low [1979]. Substituting Eq.10 into Eq.7, and performing

the integration yields an expression for average velocity considering effects of modified
liquid viscosity near solid surfaces:

oA (9P
' " T2mg h(u)[ dzJ (")
with the constant A for a given film thickness h(p):
_[2 2 3 a ). [3 2 -2
A—(a h(w) + 5ah(u)” — 4h(p) )exp[ h(u)J+(a +6a h(p))El[ h(u)}

X ot
where Ei[x]= J ert is the exponential integral [Abramowitz and Stegun, 1964).

—00

The resulting average velocities for constant (Eq.9) and variable viscosity (Eq.11)
become indistinguishable for liquid films greater than about 10 nm. We therefore use
the simpler expression in Eq.9 for flow in films thicker than 10nm, and the more complex
Eq.11 for flow in very thin films.

Remark: Mathematica Version 3.0 was used to perform and check the integrations yielding
Egs.8, 9, and 11.
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2/15/99 ch (n

Average liquid velocity in corners bounded by a vapor phase

Mathematical expressions for average liquid velocity in corners bounded by liquid-vapor
interfaces were derived by Ransohoff and Radke [1988]. They used a detailed
numerical scheme to solve the Navier-Stokes equations for the assumed geometry and
boundary conditions. Their results were reduced to the general form:

__rw?( dP
V= £Mo ( dz] (12)

where ¢ is a dimensionless flow resistance parameter dependent on the corner
angle v [Ransohoff and Radke, 1988]. The tabulated values of Ransohoff and Radke
[1988] for ¢ for different corner angles and for zero surface shear stress (i.e., liquid-
vapor interface) were fitted with the following parametric expression (Fig.3):

e(y) = exp[b+dYJ (1 3)

1+cy

with b=2.124, ¢c=-0.00415, and d=0.00783 (r* =0.995) for vy values in the range of
10%y<150° (Fig. 3).

10 e T
o |
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. . . . 2 |
Fig.3 Nondimensional corner resistance to K= I G
flow as a function of corner angle y calculated u
from tabulated values of Ransohoff and 10° : N T
Radke, [1988]. 0 40 80 120 160

Corner Angle [°]

Remark: MS-Excel 97 was used to fit a parametric expression (Eqg.13) to the tabulated
values of Ransohoff and Radke [1988].
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Unsaturated hydraulic conductivity for films and corners

Analogy between average velocity calculated from the Navier-Stokes solutions (Egs.9,
11, and 12) and Darcy’s law representation of the liquid flux was used to obtain the
hydraulic conductivity for films and corners. Darcy’s law is given as:

V=%=£(_£] (14)

where Q is the volumetric discharge rate, A is the cross-sectional area occupied by the
liquid, K is the hydraulic conductivity, and g is the acceleration of gravity. Assuming a
unit pressure gradient, rearranging Eq.14, and inserting the solution in Egs.9, 11, and
12, yield the following expressions for K(u):

Flow in films with constant liquid viscosity

K (W) = 3"—;’;# (W) (15)

Flow in films with variable liquid viscosity

P9 A
KF) = 30 4h() (18)

Corner flow [Ransohoff and Radke, 1988]

2
Ke () =%i’eﬂ | (17

Remarks:

(1) In the derivation of Egs. 15 to 17 we implicitly assume that fracture surfaces are vertical.
The results may be extended to tilted fracture surfaces by simply multiplying the terms on the
RHS of Egs.15 to17 by the cosine of the tilt angle.

(2) Effects of gravity on the liquid vapor interfaces are neglected.

(3) The definition of unsaturated hydraulic conductivity in the derivations above (and
subsequently) is slightly different than the commonly accepted definition requiring knowledge
of a cross-sectional area of the porous medium. For known fracture aperture size and
average spacing between adjacent fractures these two definitions could be reconciled by
redefinition of A in Eq. 14. For lack of a better term, for simplicity, and to maintain the usual
form of Darcy’s law, we use “surface hydraulic conductivity” to describe and characterize the
inverse of “surface hydraulic resistivity”.
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2/22/99 D’“[ OL

Development of different averaging procedures to obtain surface hydraulic
conductivity for a unit element

Two averaging methods are applied to derive the effective, unsaturated, hydraulic
conductivity for fracture surface roughness elements from their respective film (Egs.15
and 16) and corner (Eq.17) conductivities. One method involves averaging over liquid
cross-sectional area in the films and occupying the corner. The other approach
averages over the projected lengths of film and partially-filled corner segments
transverse to flow direction as depicted in Fig.1. The latter method appears
advantageous from a practical point of view because quantities can be measured
directly. In other words, experimental information on the average hydraulic conductivity
per fracture length (transverse to flow) is likely to be more observable than total liquid
cross sectional area. However, for the sake of completeness and to facilitate
comparisons, both methods will be developed and discussed.

Liquid Area Averaged Hydraulic Conductivity — Ka(u)

To obtain expressions for individual roughness element liquid area averaged hydraulic
conductivity as a function of chemical potential we must distinguish between two stages
of pit filling (completely full and partially filled pits). These two states are separated by
the critical chemical potential p. (EQ.6). The average hydraulic conductivity for chemical
potentials, which are more negative than the critical chemical potential (u < pe; where
pits are partially filled), is given as:

_ KeAp +Ke(w)Acy 8
Ka1ln) = Ari+ A, (18)

where Ag; and A, are the liquid-filled cross-sectional areas of the film and the corner/pit
(prior to pit filling), respectively, and 3 is a connectivity factor (0.0<6<1.0). The factor &
accounts for partial connectivity among neighboring pits or grooves in the direction of
flow (i.e., the fraction of pits and grooves in the cross-section that participate in corner
flow). When observing adjacent cross-sections, not all pits on the fracture wall are likely
to be connected to form continuous grooves (see Fig.4). These “isolated” pits are not
contributing to corner flow, and thus are not considered as part of the K¢ contribution
(see Eq.18). This spatial connectivity factor is required even at the individual roughness
element level for: (1) proper introduction of connectivity issues operating at the fracture
surface scale; and (2) ‘to facilitate the use of a single roughness element for
representation of the entire fracture surface roughness behavior. The individual
contributions of film Kar1(n) and corner flows Kaci(p) from Eq.18 are given as:
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Ke(WAE K acr(i) = Kc(wAct 8 (19)

Kari(p) =
Ar1+Acy Apy +Acy

For chemical potentials greater than or equal to p, the liquid-area averaged hydraulic
conductivity is given as:

Ke(w)Ap2 + Ko (wAco 8 (20)
Apz +Ac2

Kaz2(w) =

where A, and Ac are the liquid filled cross-sectional areas after a complete filling of
the pit. The individual contributions of film and corner flows for this case are derived in
the same fashion as for partially filled pits:

A
Kar2(W) _ Ke@Aep Kac2(w _KcWAhcp (21)

Af2 +Ac Arz +Ac2

The liquid-filled cross-sectional areas associated with films and corners Ar1, Aci, Ara,
and Ac: are derived as follows:

The derivations for liquid filled cross-sectional areas prior to pit filling (u<pc) were
already introduced previously. The liquid filled cross-sectional area in corners Aci is
calculated according to Eq.3, and the film Area A, according to EQ.5.

The cross-sectional area of liquid retained in the corner after pit filling (u<uc) is given as:

Aco =12 tan(y/2) (22)

The cross-sectional area of the liquid film aftér pit filling (1 > ) is defined as:

Ara(n) = h(u)(LB +2(1-8)Ltan(y/2)) (23)

Remark:

It seems reasonable to ignore the contribution of the film forming over a flowing groove area
due to surface perturbations introduced by the hydrodynamic regime within the groove
below. The situation must be rectified for non-flowing pits where local depressions in the
liquid-vapor interface (after pit filling) are not likely to be sustainable (from surface energy
considerations). Thus, we propose to base the correction on the fraction of connected and

flowing pits (1-8) where 3 is a “pit connectivity” factor.
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Length Averaged Hydraulic Conductivity — Ki(u)

Expressions for averaging hydraulic conductivity by the roughness element projected
length transverse to flow are derived in the same fashion considering two pit-filling
stages. The fracture length-averaged hydraulic conductivity as a function of chemical
potential prior to pit filling (u<uc) is given as:

Ke(Wler + Kol (24)
Lr1 + Loy

Kpi(w) =

and the average hydraulic conductivity after pit-filling is defined as:

Ke(wleo + Ko(wlco 25
Lr2 +Lc2 )

Kra(w) =

with film and corner contributions calculated in the same fashion as for area averaged
conductivity, and with L1, Lct, Lr2, and Lz as the projected lengths derived as follows:

The average surface conductivity K. (Eqs.24 and 25) is related to the projected lengths
(transverse to flow direction) of the regions with film and corner flow as shown in Fig.1.
The projected length of film and corner covered surface area prior to pit filling (u<pc) is
given as:

Le1(w) =L (B+2tan(y/2))-23r(n)cos(y/2) (26)
Loi(u) =28r(u)cos(y/2)) (27)

The projected lengths after pit filling (1 > pc) are defined as:
Leo =L(B+2(1-8)tan(y/2)) (28)

Lco =2L8tan(y/2)) (29)
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3/1/99 D’M' 0"

Statistical scheme to represent the fracture surface as a distribution of geometric
attributes of the unit element

A more realistic representation of natural fracture surfaces requires a distribution of
roughness element geometric attributes (pit sizes, angles, and associated “flat”
segments). A conceptual sketch for a distribution of surface roughness elements on a
fracture surface is depicted in Fig. 4.

Isolated Pit Surface
Groove

Fig.4 A conceptual sketch for a distribution of roughness elements forming a rough fracture
surface, and illustration of pit/groove connectivity between two adjacent cross sections transverse

to flow direction.

Statistical Distribution of Pit/Groove Depths

Fracture surface roughness is represented by a statistical Gamma distribution of pit
depths (L). The pit angle (y) is kept constant in subsequent derivations to retain
mathematical tractability. The Gamma distribution [Rice, 1995] facilitates derivation of
closed-form expressions for the expected value of the fracture surface unsaturated
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hydraulic conductivity. The Gamma density function for the pit depth, (L), is dependent
on two parametere, £ and w:

(0 =—5—exf L L>0 (30)
E!(&)E+1 -

The parameter E is limited to integer values only. The cumulative Gamma distribution is
expressed as:

L 2
F(L) = t—3exp(—i]dt t=0 (31)
20 @

The range of admissible L values for the assumed gamma distribution was limited to
values between Lmnin and Lmax, representing the smallest and largest pit depths. To
ensure that the integration of £q.30 within the limits Lmin and Lmax is as close to unity as
possible, or to truncate the distribution tail effect at Lmax, we minimize the expression

Lmax
minimize [ j f(L)dL—1] (32)

Lmin

(i.e., the deviation between the cumulative Gamma distribution and unity) by adjusting
for a given Lmax-

The Expected Value of Unsaturated Surface Hydraulic Conductivity

Analogous to hydraulic conductivity calculations for individual elements, both averaging
methods, projected lengths average and liquid cross-sectional area average are derived
to determine unsaturated hydraulic conductivity for an assemblage of elements. In the
following we first focus on developing expressions for length-averaged hydraulic
conductivity because of the more realistic application to observable quantities.

Length-averaged hydraulic conductivity

The average hydraulic conductivity Ky is related to the projected lengths of film and
corner flow regions as shown in Fig.1. Closed-form expressions for projected length
conductivity K, as a function of chemical potential p are derived considering two filling
stages — partially liquid-filled pits, and completely filled pits.

Pits are considered completely full when the curved liquid-vapor interface reaches the
pit edge (contact point with the flat segment). The critical pit depth L, separating full and
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partially filled pits varies with the chemical potential p, and is calculated from the radius
of liquid-vapor interface curvature r(n), and pit depth L by rearranging Eq.6:

o L ___ocos(y/2)
putan(y/2)  cos(y/2) = b= putan(y/2) (33)

The expected value of averaged surface hydraulic conductivity as a function of chemical
potential < K (u) > is thus expressed as the sum of two terms related to the pit filling
stages:

<Kp(w) > =<Kpy{p) >+ <Kpa(p) > (34)
with:
L X
<Kpy(p) >= T KF‘")t: :E;(u)l‘c‘f(L)dL (34a)
r K L K L
< KL2 (0 >= Jl F(“’) LF2 ':LC(”) Cc2 f(L)dL (34b)
o F2 tLc2

The first term in Eq.34 is the expected value of surface conductivity for partially filled
pits obtained by integrating from L, (EQ.33) to the maximum pit depth Lynax. Equations
15, 16, and 17 are used to calculate corner and film conductivities.

The second term Ky 1(p) covers all full pits/grooves. The lower limit of integration is the
smallest pit depth Lmin (Lmin Was set to an arbitrary value of 10 um in this study), and the
upper integration limit is calculated according to Eq.33. To observe the limiting condition
for pit filling (the radius of curvature used in the estimation of K¢ (EQ.17) touches pit
edge), we relate the curvature to pit geometry by solving Eq.33 for r(w) (r = o/pp) and
substitute the resulting expression into Eq.17. The resuiting equation for corner
hydraulic conductivity Kc(u) for full pits is given as:

Substitution of r(u) = -o/ppu into EQ.33 and solving for r(y)

cos(y/2) _, tan(y/2)
iz M)

L=r(w)

Substitution of r(uw) into Eq.17

Kd;ﬁ:ﬂi@ Ko(p) =12 _tan®(y/2)pg.
Mo € cos2(y/2)sn0

(35)
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The film conductivity Ke(n)is independent of fracture geometry and is calculated
according to Eqs.15 and 16, taking into consideration variable liquid viscosity for films
thinner than 10 nm. The projected lengths Lg1, Lc1, Lr2, and Lco were defined previously
for single unit elements.

Detailed closed-form expressions for the integrals in Eq.34 are derived using
Mathematica Version 3.0.

Remark:

o and E are shape parameters of the Gamma distribution. The parameter & is limited to
integer values by definition of the Gamma distribution. A value of E=2 was chosen in this
study to obtain closed form expressions for hydraulic conductivity (higher values prevent
closed form expressions for Eq.34 and Eq.36). By increasing Ethe skewness of the
distribution changes from right to left.

The solution for fracture elements with partially filled pits (Eq.34a) is given as:

<Kyy(p) >= (V) (V200) (K ) ~ K () (Ly ) + @)+ K () 2C4 + B) (Ly(w)? + 2Lyt 0+ 2602 ) -

1
2(2C; +PB)w?

G (V2 (W) (KC(IJ) - KF(H)) (Lmax + (0)'*' Kr () (2 Cy+ B)(Lmax2 +2Lmax 0+ 20° ))
with the constants:

Cq =tan(y/2)

C, = Exp[_L_ma_x_)
w

and the variables:

Vi) = Exp[—ﬂ(f;”—)J

Va(n) =23 r(n)cos(y/2)

The contribution of the films in fracture elements with partially filled pits is calculated as:

L,
" Ke ()Lfy
<Kpg(w) >= T Pl
Lri+Lcy

1
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<K ) 5= —E B (v (= Vo) (Lo + 0)+ Gy +B) Lyw? + 2L, 0+ 267 -
2(2C, + B

Co (_ Va(u) (Lmax + w)+(2Cy+ B)( Lmax2 +2Lmax 0+2 o’ )))

The contribution of corners is given as:

L
"Ke(m)Lc

<Kpiclw) >= T ————={(L)dL
Let +Lc

1

V.
<Kol >= 5(—22‘(‘;‘1%"‘3% (Va() (Ly(1) + @)~ Cz (Lmax + )

The solution for the second term (Eqg. 34b) is given as:

<Kio) >= (2(Ca +C5)0?) " (V40 (CaKe () {Li1)2 + 2L 1w+ 207+ G Co (Lyt)* + AL 20+
12L,(n)%w? + 24L,0° + 24 0% ))+ Cs (04 Ke(u) (|_mi,,2 + 2L min 0+ 200 )+ C3Cs (Lmin4 +4Lmindw+
12Lpin 202 +24Lmin 0° +240% )))

with the constants:

\ = Clpg
cosz(y/ 2)emng

C4 =B+2(1-3)C,
Cs5 =28C;4

Ce = Exp (—Limm-J

The contribution of the films in fracture elements with full pits is calculated as:

L
K L
<Ko >= j CEBILE2 )01
 Lr2+lea

min

C4sK
<Kuor () = —SHEB (0 (102 + 2L, (00 + 202+ s (Lpin? + 2Lin 0+ 207
2(C4 + Cs)(.l)

The contribution of corners is given as:

L
K L
<Kpac(n) >= J‘ _Q_ﬂgc‘_f(L)dL
Lrz +Lc2

min

CyC
Koo >=—8%5 (- vy Ly + L0 + 12040202 + 24 Ly o + 240%) +
2 (C4 + Cs)(x)

Cs (me“ + AL 30 + 12 Ligin2@? + 24L i 3 + 24 @° ))
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Liquid area-averaged hydraulic conductivity

Analytical expressions for the expected value of liquid area averaged hydraulic
conductivity < Ka(u) > are derived in the same fashion as for length-averaged
conductivity, and are subjected to identical limits of integration:

<Ka () >=<Ka1(p) >+ <Kaz(p)> (36)
with:
L
K A +K Ac o
< KA1 (u) >= J? F (H) /::1 " AC (“’) C1 f(L)dL (363)
L, F1 C1
Ly
K Ap, +K Aco d
<K A2 (u) >= I F (ll) :2 " AC (ll) C2 f(L)dL (36b)
Loin F2 Cc2

Closed-form expressions for liquid cross-sectional area averaged hydraulic conductivity
are somewhat more complicated involving exponential integrals. The analytical solution
for Eq. 36a is given as:

<Ka1>= W( Vy (1) (Vg (1) (Vs (1) 8K o (1) — Vi (1) K (1)) +V5 () 8K g (1) (= Vi (1) + Va () (Ly () + )+
3

e () (Vi (012 = Vi (1) Vs () Ly )+ ) Vi 0% L4 )2 + 2L 00+ 260 ) Ci (Vi ) (Vs 1) BK 6 ) -
Vi (1) Kg (1)) + Vi (1) 8K ¢ (1) (= Vs (1) + V3 (1) Lnax + @)+ Ke (1) (vsm)2 ~ V3 (1) Vs (1) (Linax + ©)+

(Vi (1) = Vis (1) Vg (1) (= V5 (1) SK ¢ (1) + Vi (1) Kie () )= EqlU1 )]+ E4 U ()]
2V, ()% w®

V3 (w)? (Lm,(2 +2L gy 0+ 2007 ))))+

with the variables:

Va () = () B+—2—Y—
cos(EJ
2h()r()

Va(u) = cy

Vs(p) =r(w)?F

V() = Exp[— Va (1) + Vs (1) ]

Vi(p)w
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and the arguments of the exponential integrals E4[U]:

_ V4 () + Vs () + Va(p)Lq(p)
Ug(p) = AT

=V4(w) + Vs (1) + V3 (1) Limax

Up(p) = Va)o

Remark:
The exponential integral E4[U] is defined as:

% ot
U

and is evaluated numerically using Mathematica 3.0 (Wolfram Res., Inc.). For arguments in
the range O<U<15 the following series expansion may be applied for the evaluation:

150

Eylul=—y-nfu]- 3 £
n=1

nn!

The contribution of films is given as:

L
" Ke (W) Ay
<Kar(u) >= T —————f(L)dL
A1 +Aci

1

Ke (W)

<Kpf >=——7—
2V ()® °

(V3 () @(Cg (Va (1) Vi (1) -V ()2 + V3 (1) Vs (1) Limax ~ V3 ()2 Lmax” +

Va () (Vs (1) — 2 Va (1) Liax ) - 2 V3 (1)? 0 )+ V(1) Vi () Vis (1) + Vi ()2 = Vi (1) Vi (1) (L () + 0) +

Vi ()2 [y )2 + 2Ls )0+ 2652 - (Vi 10) Vi ()7 Vs (1) Vi 1) Bl ) Ex U 1)
The contribution of corners is given as:

L
"Ke(m)Act
<Karc(w) >= T ———=—f(L)dL
Ar1+Act

1

V K
<Karg >= %ﬂ—fﬁ—’( Va ) Va () (Vs (1) Vi (1) + V() (L1(1) + ) Co (Vi () Vi ) +
3

Va (1) (Lynax +©))— (Va (1) - V5 (W) Ve (1) (—E1[U1(u)]+E1[Uz(u)]))
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The analytical solution for Eq. 36b representing full pits is given as:

<Kaa () >= —2?11%—3(C1 m[— V1(u)[C13V7 (9K )V 1)+ Co (L) + @)+ G SV () -G Vi
(L1 + )+ G2V (242 + 2Ly )0+ 262 )~ G2V ()L 117 +3Ly(w2 0+ 6Ly w2 +66°

ot {Lyw)* + 4Ly ()3 0+ 12L4 (1) 0? +24L4 (0 0° + 240* D+ s (C13V7 (WK 0= V7 () + C1 (Lin + @)+
Co ‘02—4(V7 (W) =Cy V7 (1) Linin + )+ C2V7 ()2 (Lminz +2L i @+ 2002 )— C3vy (p.)(me3 +3Lpin2 0+
BL i @° +60° )+ c, (Lmi,,“ + 4L 3 0+ 12Lin? 02 +24L i 0° +240° ))))- Vo ()3 Vg (1)

[Cz V7 (w)? %4— -C;3 KF(H)J(— E4lUs(w]+E4[U, (u)])}

with the variables:
V7 (1) =h(p)Cs

V() = Exp[—‘—’gT‘”o}]

and the arguments of the exponential integrals E;[U]:

V7(n)+CqLy(n)
C1 w

Us(w) =

V7 (1) +C1 Lmin

Us(u) = Cro

The contribution of films to Eq.36b is given as:

Ap2 +Ac2

min

L
<Kpzr () >= f KelWRez g )1
L

<Kpge o= LLBIER 6,y 0y V)~ (L1 + ) G O 0( =V )+ Cs (L o)
1 @

V7 ()2 Vg () (-Eq[Ug (0 +Eq[Us ()]])
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The corner contribution is given as:

L,
Ke()Ap, §
<Kpgo(u) >= [ KeWAcaBsyy
Ar2 +Ac2

min

284 (G, o - vy (Vo (0)* €y Vo ) Ly + 0)+ €2 Vo (w2 (L) + 2La(w)o+ 202 )
4C16(1)3

< KA2C >=

CAVr )Ly +3Ly(w)2 0+ 6Ly(w)0? +60% )+ Co* Ly + 4Ly (0 0+ 12L4(w)% 02 +

24L3(w)0” +240% ) )+ Cs (V7 (1)* ~ Cy V7 (1% Lin + 0)+ C12 Vg (07 (Lyin? + 2Lin 0+ 202 )-
&2 V7(u)(Lman3 +3Lpin2 © + 6L yin 2 +6u)3)+ 014(me4 +4L i © +12L i 2 02 +

24L i 0% + 240 ) )= V7 (1)° Vg (1) (- Eq[Us )]+ E1[U4 ()

3/14/99 D""‘ OL

Test of model performance by fitting the resulting closed-form expressions for a

unit element and a distribution of elements to measurements.

The resulting closed-form expressions for individual roughness elements and the
statistical distribution of a population of roughness elements are programmed in
Microsoft Excel and fitted to the measurements reported by Tokunaga and Wan [1997]
(measurements were digitized from their published figures).

Data digitized from Tokunaga and Wan [1997]
File: C:\SCI_NOTE_FRACTURE\Tetsu_02-02-99.xls
Film Thickness
Tokunaga and Wan - data
Pa micron Jikg m
15 70 0.015 0.00007
30 30 0.03 0.00003
45 20 0.045 0.00002
68 8 0.068 0.000008
92 7 0.092 0.000007
117 5 0.117 0.000005
160 3 0.16 0.000003
215 2 0218 0.000002
320 0.5 0.32 0.0000005
Pa Transmissivity [m?/s] Pa vbar [m/d] Jikg m/s
30 1.00E-08 0.03 0.000333333 20 700 0.02 0.008102
50 3.80E-09 0.05 0.00019 50 76 0.05 0.00088
70 1.80E-09 0.07 0.000225 100 7 0.1 8.1E-05
100 8.00E-10 0.1 0.000114286 150 1.8 0.15 2.08E-05
150 3.70E-10 0.15 0.000123333 200 0.8 0.2 9.26E-06
180 2.40E-10 0.18 0.00008 250 04 0.25 4.63E-06
200 1.80E-10 0.2 0.00009
250 8.00E-11 0.25 0.00004
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We proceed with illustrative examples first for an individual surface roughness element,
and then we discuss ensemble of elements forming rough fracture surfaces. Both the
projected surface length (transverse to flow) and the liquid-area-averaging methods are
presented. We consider the effects of different groove angles (y), spacing (BL), and
connectivity factors (5) on calculated surface hydraulic conductivity. These model
calculations are compared with experimental results reported by Tokunaga and Wan
[1997]. All physical constants used in the calculations are listed in Table 1.

Table 1. Physical constants and dimensions used in the sample calculations

Property Symbol Unit
Acceleration of Gravity g 9.81 [ms?
Density of Water (20°C) p 998.23 (kg m3)
Hamaker Constant (solid-vapor through liquid) Ag -1.9E-19 [J]
Surface Tension Water-vapor (20°C) o 0.07275 [Nm’]
Viscosity Constant T 5.53E-10 [m]
Viscosity of Water (20°C) Mo 0.001002 kgm's]
Remarks:

(1) The Hamaker constant represents interactions between macro-objects such as mineral
surfaces and liquid due to short-range (<100A) van der Waals forces [Ackler et al., 1996;
Bergstrom, 1997].

(2) The potential range for the Gamma distributed pith depth (L) was constrained to observed
values reported by Tokunaga and Wan [1997] where most of the variations in surface
“glevation” were between 0.5 and 2 mm.
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Sample worksheet of calculations for a single roughness element

File: C\SCI_NOTE_FRACTURE\Tetsu_02-02-99.xls

FLOW ON A ROUGH FRACTURE SURFACE - SINGLE ELEMENT

1.E-03
CONSTANTS
1.E-04
Liquid viscosity n 0.001002 [kg/m s] T
Liquid density p 998.23 [kg/m3] %”5
Liquid surface tension o 0.07275 [N/m] L=10*m
Acceleration of gravity o 9.81 [mis2] Eioe p=t
Hamaker constant Asvl A9E-19 [J] - . 1=80°
Viscosity constant a 5.5324E-10 [m] E
Gas constant R 461.5 [J/kg K] 1608
Temperature T 293 [K]
Flow resistance triangle By 443.965704 1.E09 4 =
Flow resistance square Bs 93.93 1.E-02 1E01  LEH0 Potnnh;l‘[?l]kg] 1.E+02 1.E+03
0.89399666
PIT DIMENSIONS 1.E+01
0.0005
Pit depth L 0.001 [m}] )
Pit angle - degree v (deg) 120 HE-03
Pit angle - rad y (rad) 2.0944 F)
Roughness factor B 4 2
Number of segments o 5 9.E-07 4
Length of flat element pL 4.0000E-03 [m] g
Chem. pot. for pit filling Hp -0.0210 [J/kg) ¢
Radius of interface curvature at yp 0.0034641 [m] E‘E'“ bt . —
Angularity factor Fl) 005375149 & ol N,
Relative vapor pressure p/psat 0.01 0.02 1.E-15 s s 0.08
Chemical Potential n -622708.81 -528981.795 -47415¢ 1.E-02 1.E-01 1.E+0 1 1.E+02 1.E+03.1527.76
Chemical Potential *(-1) - 622708.81 528981795 474156.uve ~uwevmiv o SrsRi powttallhia 1T T oy e
Film thickness h 2.53E-10 2.67E-10 277E-10  2.85E-10  2.92E-10 298E-10  3.04E-10  3.09E-10
Radius interface curvature r 1.2E-10 1.4E-10 1.5E-10 1.7E-10 1.8E-10 1.9E-10 2.0E-10 2.1E-10
Resistance Parameters
a 0.96589232
b 0.051039418
[ 7.886603279
Film Conductivity FILMTHICKNESS < 10nm (variable viscosity) —>
a/h 2.19E+00 2.07E+00 2.00E+00] 1.94E+00 1.89E+00 1.85E+00] 1.82E+00| 1.79E+00
-E1[a/h] -3.79E-02] -4.44E-02 -4.92E-02| -5.32E-02 -5.67E-02 -5.99E-02| -6.29E-02| -6.57E-02
exp[-a/h] 0.11239192] 0.12617495] 0.1358854| 0.1437333] 0.15048476] 0.15650528] 0.1620008| 0.16709983
A -2.7E-30 -3.7E-30 4.5E-30] -5.3E-30 -6.0E-30 -6.8E-30] -7.5E-30]  -8.2E-30
Viscosil variable variable variable variable varlable variable variable  variable
Average velocity (-dP/dz = 1) 8.9E-19 1.1E-18 1.4E-18 1.5E-18 1.7E-18 1.9E-18 2.0E-18 2.2E-18
Film conductivity Ke [nV/s] 8.7E-15 1.1E-14 1.3E-14 1.5E-14 1.7E-14 1.8E-14 2.0E-14 2.2E-14
Area film A¢ [m'}] 2.025E-12 | 2.138E-12 | 2.217E-12 | 2.282E-12 | 2.337E-12 | 2.386E-12 | 2.432E-12 | 2.474E-12
Ke * Ae 1.77E-26 2.41E-26 2.95E-26 3.45E-26 3.93E-26 4.41E-26 4.87E-26 5.34E-26
Effective corner cc ivity - connectivity (closed pits vs. grooves) 1.00E-01
Corner Conductivity
Average velocity (-dP/dz = 1) 3.079E-20 | 4.267E-20 | 5.311E-20 | 6.302E-20 | 7.276E-20 | 8.250E-20 | 9.234E-20 | 1.024E-19
Corner conductivity Ke [nvs] 3.02E-16 4.18E-16 5.20E-16 6.17E-16 7.13E-16 8.08E-16 9.04E-16 1.00E-15
Area corner Ac m’] 7.36E-22 | 1.02E-21 127E-21 | 151E-21 | 1.74E-21 1.97E-21 | 2.21E-21 | 2.45E-21
Ke * Ac 2.22E-38 4.26E-38 6.60E-38 9.30E-38 1.24E-37 1.59E-37 2.00E-37 | 2.45E-37
Average Conductivity - Fracture Segment Area Average
Total liquid occupied area A;=Ag+A, [mz] 2.02E-12 2.14E-12 2.22E-12 2.28E-12 2.34E-12 2.39E-12 2.43E-12 | 247E-12
Average conductivity K 8.72E-15 1.13E-14 1.33E-14 1.51E-14 1.68E-14 1.85E-14 2.00E-14 | 2.16E-14
Film contribution 8.72E-15 1.13E-14 1.33E-14 1.51E-14 1.68E-14 1.85E-14 2.00E-14 | 2.16E-14
Corner contribution 1.10E-26 1.99E-26 2.98E-26 4.08E-26 5.30E-26 6.68E-26 8.21E-26 | 9.92E-26
Average Conductivity - Fracture Segment Surface Average
Projected length of the fracture segment M* [m] 7.46E-03
Projected length of the corner interface M¢ [m) 1.17E-10 1.38E-10 1.54E-10 | 1.67E-10 | 1.80E-10 1.92E-10 | 2.03E-10 | 2.13E-10
Projected length of the film interface M, [m] 7.46E-03 7.46E-03 7.46E-03 7.46E-03 7.46E-03 7.46E-03 7.46E-03 | 7.46E-03
Total length film L, [m] 8.00E-03 8.00E-03 8.00E-03| 8.00E-03 8.00E-03 8.00E-03] 8.00E-03] 8.00E-03
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Fit of unit element expressions to Tokunaga and Wan’s measurements

Liquid retention on the rock surface as a function of chemical potential was calculated
and compared with experimental results expressed as a uniform “effective” film
thickness. Representative geometrical parameters (L, B, and v) were fitted to yield the
best match fit between model calculations and measurements (Fig.5a). The modeled
“effective” film thickness as a function of p was calculated by dividing the liquid filled
cross-sectional area with the projected roughness element length (BL+2Ltan(y/2), see
Fig.1). The individual contributions of capillarity and adsorption to liquid storage are
illustrated and show a crossover for chemical potential values of p= -1 to -2 J/kg.

Fracture length-averaged unsaturated hydraulic conductivity K (n) (Eq.34) was
calculated for the same element geometry as used for “effective film” calculations (i.e.,
L=10" m; B=4; and 1=120°). The average film velocity reported by Tokunaga and Wan
[1997] (see their Fig. 8) were obtained by two methods: (1) by using the average film
thickness in smooth film equation (Eq.15, denoted as v-bar), and (2) by dividing their
estimated transmissivity by the effective film thickness (denoted as T). The connectivity
factor § is an additional parameter required for matching calculated and experimental
surface hydraulic conductivity. The results with 8=0.1 are depicted in Fig.5b showing a
reasonable agreement between calculated K. (n) and Tokunaga and Wan’s [1997]
average film velocities that were measured under unit pressure gradient conditions. The
contributions of corners (K.c) and films (K.f) to the overall value of Ki(u) are shown.
Similar to liquid storage behavior, a crossover from corner-domination to film-
domination is observed near chemical potential values of u<- 6 J/kg. The simultaneous
agreement with average film thickness and film velocity (which for a unit gradient equals
surface conductivity) is remarkable considering the use of only one surface roughness
element for both processes. These results illustrate the potential usefulness of the
proposed approach for modeling liquid retention and conductivity on rough rock
surfaces.
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Fig.5 Comparison of model calculations for an individual fracture element with experimental data of
Tokunaga and Wan [1997]. T denotes transmissivity divided by the average film thickness; v-bar
denotes average film velocity evaluated with the smooth film equation [Tokunaga and Wan, 1997].
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Additional sample calculations for unit roughness elements

We also investigated effects of surface roughness on liquid storage and surface
hydraulic conductivity for 8=1 (100% connectivity) by comparing two different groove
densities characterized by the spacing parameter B.The results for a surface
represented by an individual element are depicted in Fig.6a for =1 (small spacing =
rough surface), and in Fig. 6b for =100 (large spacing = smooth surface). As
expected, surface liquid retention (expressed as effective film thickness) for a given
chemical potential was larger for the rough surface relative to the smooth surface. The
storage difference diminishes with decreasing chemical potential (more negative), and
the amount of liquid storage for p<-100 J/kg is very similar (dominated by thin liquid
films). The crossover between capillary- and film-dominant storage occurs at lower
potential values for the rough surface.

Significant differences were found in the behavior of K () and Ka(n), especially for the
smooth surface (Fig.6b bottom). The Ky (i) value for a rough surface is approximately in
the same range as that of Ka(u) at high potentials, whereas for smooth surfaces a
difference of about two orders of magnitude exists [Ka(u),>Ki(n)]. These differences
diminish with decreasing chemical potential (as it becomes more negative), until they
practically vanish when film flow becomes dominant. These differences are attributed to
the large carrying capacity of corner flow over similar liquid cross-section in a film
configuration. The transition from corner to film dominated flow regimes for a smooth
surface occurs at higher potentials than for the rough surface (similar to the liquid
storage behavior).

An interesting transitional behavior in film contribution (Kaf) to Ka(u) as a function of nis
observed for the two surfaces (more pronounced in the rough surface). The increase
and later a decrease in film contribution represent an interplay between the reduction of
film thickness with decreasing potential, and the creation of new film surfaces with the
receding menisci into the grooves and pits. The total response is dependent on the
proportions of these two opposing processes as shown in Fig. 6.
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Fig. 6 Model calculations of individual element’s effective film thickness and unsaturated

hydraulic conductivity for (a) small B (rough surface) and (b) high B (smooth surface). Note the
increase in film contribution to hydraulic conductivity.

Matching a distribution of roughness elements to Tokunaga and Wan’s
measurements

. The statistical representation of pit depth (L) yields analytical expressions for the
expected values of “effective” film thickness, liquid-area averaged hydraulic conductivity
<Ka(w)> (where square brackets denote expected value operation), and fracture length-
weighted unsaturated hydraulic conductivity <K, (u)>. To test the analytical solutions, we
again used the experimental data of Tokunaga and Wan [1997] in the same fashion as
for the representative (individual) roughness element. The maximum pit depth for the
Gamma distributed L was set to 3 mm, and the pit angle was fixed at 120°. The other
parameters that provided the best fit to the data were B=8, and 6=0.1. Surprisingly there
was little difference in model performance between the individual representative
element and the statistical representation (Fig.7). The only difference was smoother
transitions in the hydraulic conductivity curve (and slightly different fitting parameters).
The results of this limited test reinforce our conclusion that a representative surface
roughness element is capable of modeling effective film thickness and unsaturated
conductivity of rough fracture surfaces.
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Fig.7 Comparison of model calculations for a statistical distribution of surface
roughness elements with experimental data of Tokunaga and Wan [1997].
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Additional sample calculations

103

The relationships between surface length-weighted hydraulic conductivity, <K (un)>, and
liquid-area averaged hydraulic conductivity <Ka(n)> for two different pit angles (y=30°
and 120% are depicted in Fig.8. Liquid area averaged hydraulic conductivity <Ka(u)>
was higher than the projected length averaged conductivity <KL(w)> (for the assumed
geometry) over the entire range of chemical potentials considered (-0.001 < p < -
400000 J/kg). While calculations for +=30° are reasonably close to the 1:1 line, large
differences at midrange of chemical potential values are observed for v=120°. These
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differences may be attributed to the relatively large carrying capacity of corner flow for
v=120° that tends to be underestimated by length averaging. Note that the cross-
sectional area of grooves with a larger angle (y=120°) tend to be larger than that for a
smaller angle (1=30°).

Fig.8 The relationships between the expected values (statistical representation)
of unsaturated hydraulic conductivity for liquid cross-sectional area average <Kn>
versus fracture length averaged <K > for groove angles of 30° and 120°.
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Sample worksheet for a statistical distribution of roughness elements
File: C:\SCI_NOTE_FRACTURE\Fracture_Flow_Stat._Consid. _02-19-99.xls

FLOW ON A ROUGH FRACTURE SURFACE - STATISTICAL CONSIDERATIONS

CONSTANTS
Liquid viscosity n 0.001002 [kg/m s] e 100
Liquid density p 998.21 [kg/m3) 0a 800.0
Liquid surface tension o 00728 [N/m] o Yo
Acceleration of gravity [*] 9.81 [mvs2] Lnex 5000
Hamaker constant Asvi -6E-20 [J] o ;:g'g
Viscosity constant a 5.5324E-10 [m] . 200.0
Gas constant R 461.5 [J/kg K] 103-3 =
I?omw = triangle ;T 443.9657532 L n:oeooo S0E04 10603 1.5E03 20603 23503 J.0ED3 ISED3 0.0E+00 1.0E-03 20E-03 3.0E-03
a 2.12370
Resistance Parameters b -0.00414
c 0.00784
-1.9E-19
E
Gamma distribition parameter w 3.00E-04 E 1E03
Maximum pit depth Lmax 3.0000E-03 [m] @ L
Minimum plit depth Lomin 1.0000E-05 [m) §
Roughness factor B 8 E 1.E051
Pit angle - degree vy (deg) 120 [
Pit angle - rad ¥ (rad) 2.0044 i
Pit connectivity factor 8 0.1000 2 1.E07 4
Angularity factor F(y) 0053751494 ki
Solutioncell ® 2.77E-03 [m] £
Mean L (B 0.0009 Y o9 ‘ . - . -
0 0 1 10 100 1000
- Chemical Potential [J/kg]
Variance 0.00000027
L 0.010317691
g
L [m] density cumulative 2
1 000E+00  000E+00  0.00E+00 g
2 3.03E-05 1.54E+01 1.59E-04 g
3 6.06E-05 5.56E+01 1.18E-03 o
4 9.09€E-05 1.13E+02 3.70E-03 2
5 1.21E-04 1.82E+02 8.14E-03 H
6 1.52E-04 2.57E+02 1.48E-02 3
7 1.82E-04 3.34E+02 2.37E-02 I
8 2.12E-04 4.11E+02 3.50E-02 &
9 2.42E-04 4.85E+02 4.86E-02 g
10 2.73E-04 5.55E+02 6.44E-02 z , . .
1 3.03E-04 6.19E+02 8.22E-02 0.001 0.01 0.1 1 10 100 1000
12 3.33E-04 6.77E+02 1.02E-01
13 3.64E-04 7.29E+02 1.23E-01 - Chemical Potential [J/kg]
14 3.94E-04 7.73E+02 1.46E-01
15 4.24E-04 8.10E+02 1.70E-01
16 4.55E-04 8.41E+02 1.95E-01
17 4.85E-04 8.65E+02 2.21E-01
18 5.15E-04 8.83E+02 2.47E-01
19 5.45E-04 8.94E+02 2.74E-01
20 5.76E-04 9.01E+02 3.01E-01
21 6.06E-04 9.02E+02 3.29€-01
22 6.36E-04 8.99E+02 3.56E-01
23 6.67E-04 8.92E+02 3.83E-01
24 6.97E-04 8.81E+02 4.10E-01
25 7.27E-04 8.67E+02 4.37€-01
26 7.58E-04 8.51E+02 4.63E-01
27 7.88E-04 8.32E+02 4.88E-01
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D Cr
03/24/99 — Status

A paper was written for journal submission (Water Resource Research) and started on
the CNWRA technical and programmatic process. Hence, it is a good idea to re-assess
at this point the status of the work and where it may be heading.

Open issues (pertaining to the TEF-KTI) for future model improvement

e The assumed roughness geometry does not consider asperities and similar
elements rising above mean fracture surface plane. Introduction of such elements
should add realism to the model and capture some of the intermittent flow behavior
observed. For inclusion of these elements we need to consider liquid build-up
around conical objects (see “edge” in Appendix B of Tuller et al., 1999).

e The developments in this portion of the work coupled with additional studies on liquid
configuration in porous media provide a sound basis for consistent representation of
liquid retention and hydraulic conductivity in fractured porous media. First, we will
expand the liquid retention model to include two pore space populations (rock matrix
pores, and fractures). The disparity in pore size distribution should not present a
problem for their joint modeling.

e The dynamics matrix-fracture interactions were not treated in this work — some of the
rates of such interactions would be useful to capture the essence of potential bypass
flow through these fracture surfaces (e.g., as liquid flux encounter low
porosity/permeability layer such as the PTN).
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Volume 1: Flow in Unsaturated Fractured Porous Media - Hydraulic
Conductivity of Rough Surfaces (Continuation)

Thermal Effects - Key Technical Issue

Account Number: 20-1402-661
Collaborators: Markus Tuller (USU), Randall Fedors, Ron Green (CNWRA)
Directories: C:\SCI_NOTE_FRACTURE\

Objectives: Documentation of theoretical model development for flow in unsaturated fractured porous
media based on dual-continuum modeling of matrix and fracture pore spaces unified by equilibrium
chemical potential. The documentation includes: (1) brief review of development of unsaturated hydraulic
conductivity relationships in the matrix based on the Tuller et al. (1999) and Or and Tuller (1999) models
of pore space and liquid configuration governed by adsorptive and capillary forces; (2) development of a
unit fracture element including roughness elements; (3) Flow phenomena in a unit fracture; (4) flow and a
sample of FPM consisting of Gamma distribution of matrix pore size and fracture apertures; (5)
comparison with measurements reported by Wang and Narasimhan (1993); (6) potential applications to
general porous media with large structural pore space (e.g., macropores in soils, etc.).

11/15/99 - Initial entry (notebook continuation) DN

Models for equilibrium liquid-vapor interfacial configurations in fractured porous media enable detailed
liquid retention modeling and provide approximate boundary conditions for introduction of hydrodynamic
considerations. In the following we will represent media pore space by a bimodal distribution of pores
reflecting the two disparate populations of matrix pores and fracture apertures (Fig.9).

Fracture

o
Q
o

Matrix Pore Size

s
8

()
c
[
2
T
@ 200
[T
ol
o 1 2 3
Matrix Pore Size / Aperture [mm) /

Fig.9: Conceptual sketch for dual continuum pore space representation of a fractured porous
medium. Fractures may be represented by unit elements as depicted in the right upper corner, and
matrix is represented by angular pores connected to slits. Note (1) the pore size disparity between
the two domains; and (2) large fractures empty first.
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Additionally, fracture surface roughness (previous notebook) is incorporated and represented by a
distribution of angular pits and grooves. Three flow regimes will be considered: (1) flow in completely
filed pore spaces (primarily near saturation); (2) corner flow in partially filled pores and grooves; and (3)
film flow on surfaces. The Navier-Stokes equation for plane flow is solved to obtain average cross-
sectional film velocities for different chemical (matric) potentials. The chemical potential and pore (and pit)
geometry determine liquid-vapor interfacial configuration and position thereby defining the shape of the
moving liquid in such geometries. The assumption that these interfaces are stable under slow laminar
flow conditions enables derivation of average “corner” flow equations for different pore and pit sizes and
angularities. Liquid saturation degree is calculated first according to Tuller et al. (1999) in the assumed
geometry, and then used to derive sample-scale unsaturated conductivity for various potentials by
combining the velocity expressions (for a unit gradient) over the appropriate liquid-occupied cross
sectional areas (neglecting 3-D network effects). Sample calculations of unsaturated constitutive relations
for different pore spaces and fracture characteristics will be shown and comparisons with available data
of Wang and Narasimhan (1993) will be discussed.

To ensure the practical applicability of the model, surface geometrical features are kept simple enough to
obtain closed-form expressions for hydraulic conductivity programmable into conventional spreadsheet
software (e.g., Excel, Quattro Pro).

The proposed model is to be based on appropriate thermodynamically and physically considerations.
Simplifications should be kept at a minimum and are highlighted and explained at the appropriate level of
the development process.

Remark:

e The assumed fracture element and its roughness geometry do not consider asperities and similar
elements rising above mean fracture surface plane. Introduction of such elements should add
realism to the model and capture some of the intermittent flow behavior observed. For inclusion of
these elements we need to consider liquid build-up around conical objects. These elements lead
to intermittent rivulet flows and are treated separately.

e The dynamics matrix-fracture interactions are not treated in this work. Rates of such interactions
would be usefu! to capture the role of fracture surfaces as potential bypass flow pathways at
boundaries of formations with two contrasting porosities (e.g., what happens when a large pulse of
matrix liquid flux encounters a low porosity/permeability layer such as the PTN?).

21/11/99 - Matrix unsaturated hydraulic conductivity relationships DM‘L

Hydrostatic Considerations — Review of the Tuller et al. (1999) and Or and Tuller (1999) model

Tuller et al. (1999) (see Appendix VI) developed a model for liquid configuration and liquid retention in
partially saturated porous media that serves as the basis for hydrodynamic considerations. This novel
framework includes two complementary elements: (1) a unitary approach for explicit consideration of the
individual contributions of adsorptive and capillary forces to the matric (chemical) potential; and (2) its
implementation within a new pore space geometry (unit cell) comprising an angular central pore for
capillary processes attached to slit-shaped spaces with surface area for adsorptive processes. Interface
science formalism and the concept of the disjoining pressure (Derjaguin et al., 1987) provided the
physicochemical basis for incorporation of adsorption phenomena into the augmented Young-Laplace
(AYL) equation (Derjaguin, 1957; Philip, 1977; Novy et al., 1989; Blunt et al., 1995). Simplifications of the
rigorous AYL equation have been instrumental in the development of practical closed-form expressions
for both saturation and interfacial area as a function of chemical potential at the pore scale.
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In a subsequent study, Or and Tuller (1999) (see Appendix VII) used the pore-scale model to develop a
statistical framework for upscaling from a pore to a sample of variably saturated porous medium. The
statistical distribution of pore sizes was modeled as a gamma distribution with the expected values of
liquid configuration in pores calculated (in a closed form) from geometrical and chemical potential
considerations. One of the advantages of Or and Tuller's (1999) framework is the use of measurable
media properties to estimate upscaling parameters. This is accomplished by matching predicted and
measured retention data subject to measured porosity and surface area constraints.

Unitary Approach to Adsorption and Capillary Condensation

The pioneering work of Edlefsen and Anderson (1943) on mechanisms of water distribution on soil
particles provided the qualitative basis for Philip’s (1977) development of a quantitative unitary approach
to capillary condensation and adsorption in porous media. The liquid-vapor interface is considered as a
surface of constant partial specific Gibbs free energy (or chemical potential p (Nitao and Bear, 1996))
made up of an adsorptive component (A) and a capillary component (C):

H = A(h) + C(x) (37)

with % as the mean curvature of the liquid-vapor interface, and h as the distance from the solid to the
liquid-vapor interface, taken normal to the solid surface (thickness of the adsorbed film). Tuller et al.
(1999) extended and updated Philip’s (1977a) unitary approach by (1) establishing a linkage with modern
interface science concepts (Derjaguin et al, 1987; Iwamatsu and Horii, 1996); and (2) applying the
updated theory to an entire pore space model rather than to individual geometrical features (e.g., corners,
wedges, etc.). An important component in the updated unitary approach is the application of more general
and versatile adsorption terms based on Derjaguin’s disjoining pressure concept (Derjaguin et al. 1987,
Iwamatsu and Horii 1996):

= _Asw__20K (38)
gnph® P

' ) . Information potentially subject to
where A, is the Hamaker constant in Joules for solid-vapor copyright protection was redacted
interactions through the intervening liquid. Such refinements are from this location. The redacted
important at very low water contents when films on adjacent surfaces material (Fig. 10, Devonian
are completely separated by a vapor phase. They also allow for Sandstone) is from the following
direct incorporation of various surface electrochemical properties reference:
that, in turn, affect flow in thin liquid films. Roberts and Schwartz, 1985 is the
Pore Sgace Geometry only information available.
Inspection of thin sections or micrographs of rocks and soils reveal

that natural pore spaces do not resemble cylindrical capillaries
(Fig.10). Because many types of porous media are formed by
aggregation of primary particles and various mineral surfaces, the
resulting pore space is more realistically described by angular or slit-
shaped pore cross sections rather than by cylindrical capillaries (Li
and Wardlaw, 1986; Mason and Morrow, 1991). Tuller et al. (1999)
proposed a pore space representation capable of accommodating
adsorptive processes in an internal surface area in addition to
capillarity. The proposed elementary unit cell (Fig.11 is comprised of
a polygon-shaped (e.g., triangle, square, other regular polygons)
large central pore for capillary processes connected to slit-shaped
spaces representing internal surface area.

Different soil textural and structural classes may be represented by
adjusting pore width (L) and the proportions of exposed surfaces
(determined by the slit-width ol and the slit-length pL), or even Fig.11: Unit cell for pore space
modifying the pore shape and angularity according to scanning representation comprising an

electron micrographs. angular central pore attached to
slit-shaped spaces.
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Pore-Scale Liquid-Vapor Interfacial Configurations

The complex augmented Young-Laplace (AYL) solutions for
interface configurations in the proposed pore geometrical Capillarity .

model were greatly simplified by calculating capillary O
(menisci) and adsorptive (films) contributions separately and e 3
superimposing the resulting liquid-vapor interfaces. This i
simplified treatment, termed shifted Young-Laplace equation )
(SYL) was shown to give nearly identical values for liquid N s
saturation and interfacial area as the rigorous AYL solution TS M
(Tuller et al., 1999).

Relatively simple closed-form expressions for pore-scale e o
liquid saturation and interfacial area were derived taking into = \
consideration two major snap-off mechanisms (spontaneous Cm
redistribution of liquid) within the unit cell. The transition from R L
capillary-dominated to adsorption-dominated drainage is PEEIY (  E Y
illustrated in Fig.12 for a triangular central pore. When we / ' .
start with a completely saturated unit cell and lower the
chemical potential gradually we reach a critical potential L

where liquid is spontaneously redistributed from the center of | Fig.12: llustrative sketch for liquid-
the pore (pore snap-off). The radius of interface curvature at | vapor interfacial configurations during
pore snap-off is dependent on geometrical aspects of the ghe tranflgcatn frgm caplllaéy- inated
central pore and is calculated according to Mason and ominated to adsorption dominate

Morrow (1991) and Tuller et al. (1999): ?é?l;ﬁ%?\;v;;tgf(f?) pore snap-off and

_ P
fa = 2[F, +n)+nF, +7)]

where P is the perimeter of the central pore and F, is a pore angularity factor dependent on pore shape
(Tuller et al. 1999). A further decrease in chemical potential results in recession of capillary menisci into
the corners of the central pore, and at a certain potential in spontaneous redistribution of liquid from the
slits. Slit snap-off occurs when the thickness of the adsorbed films is about one third of the slit spacing ol
(twamatsu and Horii, 1996). Pore and slit snap-off are hysteretic phenomena. Critical potentials and
related interface curvature and film thickness are discussed in Tuller et al. (1999).

Adsorpﬁoﬁ

(39)

Sample-Scale Liquid-Vapor Interfacial Confiqurations
The representation of liquid configuration in variably saturated porous media invariably involves

consideration of a range of pore sizes (unit cells). Or and Tuller (1999a) employed a statistical upscaling
scheme (Fig.4) based on gamma distributed pore sizes (L) to derive closed-form expressions for sample-

scale saturation and liquid-vapor interfacial area.

Remark:

® The upscaling scheme is similar to the scheme developed for fracture surface roughness (see
previous notebook vol.1 p.13). A detailed description is given in Or and Tuller (WRR 35(12):3591-

3605, 1999). Appendix VI

Or and Tuller's (1999) physical model was fitted to measured SWC data using the slit length parameter (3,
the shape parameter @ of the gamma distribution, the potential at the air entry point, and a parameter A
controlling the overlap between pore and slit spacing distributions, as free model parameters. Constraints
were imposed to ensure that the modeled pore space geometry preserved measured properties, namely,
porosity and specific surface area.

Remark:

e The Or and Tuller (1999) model was programmed in MS-Excel 2000. A sample work sheet is
archived under C:\SCI_NOTE_FRACTURE\Or-Tuller99.xls
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Model calculations were in excelient agreement with measured liquid retention data over a wide range of
soil textural classes. An important feature of the Or and Tuller (1999) pore scale model is the ability to
separate capillary (C) and adsorptive (A) contributions as depicted in Fig.13.

The best-fit parameters were also used to calculate liquid-vapor interfacial area at different potentials
(Fig.13b). Detailed information about liquid-filled spaces and liquid-vapor interface configurations in
partially saturated porous media may clarify relationships between chemical potential, microbial habitats,
and related interfacial exchange processes (e.g., oxygen transport).
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Fig 13: (a) Measured and fitted water retention curves for Millville silt loam. (b) Comparison of model
calculated capillary and adsorptive contributions to liquid-vapor interfacial area as a function of saturation
in an artificial sand mixture and measurements obtained by Kim et al. (1997)

Degree of Saturation

11/29/99 - Hydrodynamic Considerations — Rock Matrix D“’"‘ CZL

The underlying assumption for introduction of

hydrodynamic considerations is that equilibrium liquid
configurations and interfaces remain relatively stable (a) Parallel Plates

. et . AN

under slow laminar flow conditions. Ignoring network Ay °”°',,.,.‘m
effects and assuming flow direction perpendicular to the ey N
medium cross-section only we propose to use Lo N

equilibrium liquid-vapor interfaces as fixed boundaries
defining different laminar flow regimes. Based on cell
filing stage (determined by chemical potential and
geometrical attributes) we can identify average flow
velocities for four primary flow regimes (Fig.14a). For
complete saturation, liquid flows in full ducts (central
pore) and between parallel plates (slits). For partial
saturation, and after pore and slit snap-off, flow occurs
in thin adsorbed films lining all flat parts of the cell, and
in the corners of the central pore. The onset and
contribution of each flow regime is dependent on the
filing stage of the unit cell as determined by chemical
potential. Solutions of the Navier-Stokes equation for
different geometry and boundary conditions are used to
obtain the average velocities in films, corners, ducts, ) ‘

and parallel plates. Fig 14: (a) Conceptual picture of expected
flow regimes at various cell filing stages. (b)
3-D representation of corner and film flow
regimes in a partially saturated unit cell.
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Average Flow Velocities in Ducts and Between Parallel Plates

Analytical solutions for average flow velocities in ducts and between parallel plates are extensively
discussed in fluid mechanics literature (e.g., Spurk, 1997).

For laminar flow between parallel plates relationships between viscosity, geometry, pressure gradient and

mean flow velocity are given as:
2
V= %)__ - £ (40)
12mq dz
where 1, is the viscosity of bulk liquid, oL is the spacing between the plates (i.e., slit spacing), and -dP/dz
is the pressure gradient in flow direction z.

In this study we consider flow through ducts with triangular, square-shaped, and higher order polygonal
cross-sections. For simplicity we employ the circular duct solution to approximate average velocities in
higher order polygons (n > 4).

The average velocity in a full rectangular duct (of dimensions L X L, with Ly>L;) is given by:

2
V=L2&(_9£) (41)
4T]0 dZ

tann| L1 EEn=1)
21 ﬁﬁi Lo 2
3 L & (2n-1)°

with

For a square-shaped duct the solution simplifies as Lo/L1=1.
The solution for an equilateral triangular duct is given as (Spurk, 1997):

2
vt (-9 (42)
80ng\ dz

The circular duct solution related to a polygon with the same cross-sectional area is given as (Spurk,
1997):

2
7= An (-9’3) (43)
8ngr\ dz

where L is the side-length of the polygon, and A, is the area factor defined in Appendix .

Average Flow Velocities in Thin_Films

Analytical solutions for average flow velocities in thin films, considering modification of liquid viscosity
near solid surfaces are derived and extensively discussed in the previous notebook (p.6-7). The resulting
velocity functions are given as:

2
Film thickness > 10 nm V= AN (— 1'3) (44)
31’]0 dz
Film thickness < 10 nm V= AW (P (45)
12np h(u)|  dz
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with the function A(p) for a given film thickness h(p):

A() = 2h() + ah()? - 4n(u)? )exp(" E&)* (o + 6 h(u))E‘[_ ﬁ}

Averaqe Flow Velocities in Corners of Angular Pores

Average velocities for corner flow regimes are obtained from expressions derived by Ransohoff and
Radke (1988). They used a numerical scheme to solve the Navier-Stokes equations for corner flow
bounded by a liquid-vapor interface. Their results were reduced to the general form:

2
7= r_(“_)_(_ 1'3) (46)
€Ng dz

where ¢ is a dimensionless flow resistance parameter dependent on the corner angle y (Ransohoff and
Radke, 1988), and r is the radius of interface curvature (Eq.2) of the capillary meniscus at a given
chemical potential. For a detailed discussion see previous notebook page 8.

Average Hydraulic Conductivities of the Pore-Scale Flow Regimes

With average velocities for various flow regimes known we now seek analogy with Darcy’s law to obtain
the proportionality coefficient between flux and hydraulic gradient that represents the average hydraulic
conductivity. This approach was instrumental for prediction of unsaturated hydraulic conductivity in
studies by Childs and Collis-George (1950), Burdine (1953), Gardner (1958), Mualem (1976), and others.

Darcy's law is given as:
'\7=_Q_=_K_(__d_|3] (47)
A pgl dz
where Q is the volumetric discharge rate, A is the cross-sectional area occupied by the liquid, K is the
hydraulic conductivity, and g is the acceleration of gravity. Assuming a unit pressure gradient,
rearranging, and substituting the Navier-Stokes solutions for average flow velocity into £q.47 we obtain
expressions for average hydraulic conductivities of various flow regimes as demonstrated for corner flow:

2 2
K(_dPy_rw)(_dP) _, kcq) =28 ru) (48)
pgl dz ) enp | dz Mo €

2_pgo® 2
Parallel plates (slits) KS=Ks L* ==—=—-1L (49)
121’]0
: _ 2_ P9 2
Triangular duct KDy =Kdr L =—=—L (50)
80 no
Square-shaped duct KDg =Kdg 2= P_49_nB_s_ L2 (51)
0
Circular duct KDg =Kdg L2 = 29An 2 (52)
8 TNo
pg hw?’
Thick film (h > 10 nm) KF(u) == ——- (53)
no 3
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in fi pPg _AW)
Thin film (h < 10 nm) KF(u)=—~ ——— 54
M= e 12hw) (54
2
Corner KC(u) = P9 rw°” (55)
Mo €

The thickness of the adsorbed film h(u) and the radius of interface curvature r() are calculated according
to Egs.1and 2.

Unit Cell Hydraulic Conductivity

The hydraulic conductivity for the entire unit cell can be constructed by weighting conductivities of various
elements by their liquid occupied cross-sectional areas and divide by the total cross-sectional cell area
(pore + solid shell). The total cross-sectional area At is obtained by dividing pore cross-sectional area by
the porosity ¢ of the porous medium:

ap+A, L2
0

where A, is an area factor of the central pore (see Appendix [). Taking into consideration different cell
filing stages determined by chemical potential and cell snap-off mechanisms we can derive relatively
simple expressions for pore scale hydraulic conductivities for the unit cell:

Ay = (56)

2aBL2KS +A, L2 KD
At

20BL2KS + h(p)n(L —2—'@-}«(“) +1(n)? F, KC(1)

Complete Saturation Keat = (57)

" tan(y/2)
A7

After Pore Snap-off  K(p) = (58)

_2r(u) 2
h(u)( 4BL+n(L an(v/2) DKF(u)H(u) Fn KC()

At
with KF(u) and KC(u) as the hydraulic conductivities for films and KS and KD as the parallel plate and
duct hydraulic conductivities.

After Slit Snap-off K(u) = (59)

Results showed that even these simple algebraic expressions for a single cell were capable of predicting
unsaturated hydraulic conductivities for porous media with very narrow pore size distributions. For
example, the liquid retention model (Tuller et al., 1999) was fitted to measured retention data (Fig.15a) for
Hygiene sandstone (van Genuchten, 1980) by varying unit cell dimensions L, o, and B (Fig.11). The
resulting best-fit cell dimensions were used to predict unsaturated hydraulic conductivity (Fig.15b).
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Fig 15: (a) Calculated liquid saturation for Hygiene Sandstone using a single cell
with triangular central pore; (b) predicted relative hydraulic conductivity.

12/5/99 - Sample-Scale Hydraulic Conductivity

Dt (i

Before we proceed with a detailed discussion of the upscaling scheme we give a brief outline of the
parameter estimation scheme for sample-scale hydraulic conductivity (Fig.16)

Parameter Estimation
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Fig 16: A conceptual flow chart for the upscaling scheme employed by Or and Tuller (1999) to model
saturation and liquid-vapor interfacial area in partially saturated porous media.
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Measured liquid retention data and assumed pore geometry serve as input data to obtain a set of best-fit
parameters for the Or and Tuller (1999) sample-scale liquid retention model. Specific surface area and
porosity constraints (measured media specific surface area and porosity is preserved) are imposed when
fitting the analytical solutions for sample-scale liquid retention. The resulting fitting parameters (see Or
and Tuller (1999)) are then used to predict (1) liquid-vapor interfacial area as a function of chemical
potential, and (2) to predict sample-scale unsaturated hydraulic conductivity (red arrows).

Using the pore-scale relationships for unsaturated hydraulic conductivity and employing a similar
statistical upscaling scheme (Fig.17) as introduced on page 13 for rough fracture surfaces (instead of the
pit depth we now employ a gamma distribution for the central pore length L to represent a population of
unit cell elements) we obtain closed-form expressions for the sample scale hydraulic conductivity.

A population of gamma-distributed square pores (Fig.17a) is represented for illustrative purposes by
6 bins (L, to Lg). The fixed relationship between central pore length L and slit spacing oL results in adjoin
Gamma distributed slit spacing as depicted in Fig.17a. The physical model predicts the shapes of liquid-
vapor interfaces for each pore size and chemical potential y, leading to different stages of pore filling
according to chemical potential and pore geometry (Fig.17b) The fraction of pores at each of the several
filing stages is determined from the statistical distribution of pore length, f(L), and is expressed as the
expected value of a certain range of pore spaces to be completely or partially liquid filled. The total
sample scale saturation is calculated as the weighted sum of different pore filing stages.

Gamma Distribution for L

Shts (L) - LL' 1Exp( L) (a)

R
B > o

with £-2

f(L)

Figure 17: A definition sketch for the proposed upscaling scheme depicting: (a) gamma distribution of
central pore lengths with £=2, and hypothetical 6 bins (note the inverse relationships between B and L);
(b) three different filling stages in the population of unit cells (represented by L, to Ls) defined at three

chemical potential values p; to pq (wet to dry).

This statistical approach has been instrumental in representing the distribution for the pore radii in the
bundle of cylindrical capillaries model as illustrated in the studies of Laroussi and de Backer [1979] or
more recently by Kosugi [1994, 1996] who assumed log-normal distribution of pore radii. in the proposed
upscaling scheme outlined in this study we represent the statistical distribution of central pore length (L)
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by a gamma distribution [Rice, 1995]. The gamma distribution resembles the commonly used lognormal
distribution with its positive skewness, and also facilitates derivation of closed-form expressions for liquid
retention and interfacial area. Several other probability laws including the incomplete gamma distribution
[Brutsaert, 1966] or the Weibull distribution [Assouline et al., 1998] may also be considered in future
studies.

The gamma density function for the central pore length, f(L), is dependent on two parameters, § and w:

L8 L
f(L) = WGXD(— '0—)') L=0 (60)

The parameter & is limited to integer values. Calculations involving expectations of f(L) are greatly
simplified by the choice of £=2 which provides a balance between flexibility and tractability (§=2 was
used for this study). The moment-generating function of the gamma distribution [Rice, 1995] is used to
obtain expressions for the mean m(L) and variance v(L) of L given as:

m(L) = o +1) (61a)

v(L) = 02 +1) (61b)

We also limit the range of admissible L values for the assumed gamma distribution to values between L,
and Lmax representing the smallest and largest central pore lengths, respectively. The relationships
between slit length and central pore length distribution is expressed as B(Lmacl). Such inverse
relationships facilitate the representation of clayey soils by unit cells with relatively small central pores
and large slits (on average), whereas sandy soils would be represented by larger central pores attached
to shorter slits (i.e., less internal surface area). The relationships between pore length distribution and slit
spacing is expressed as aL. Constraints on the values of o, B, and f(L) are imposed based on
measurable medium properties such as porosity, and specific surface area (for details see Or and Tuller
(1999)).

Our calculations yield K(u) expressed as the sum of five terms representing expected hydraulic
conductivity values for different filing stages as determined by chemical potential, pore geometry, and
pore size distribution:

K(l) = Kq(1) + Ko (i) + K3 (i) + Ky (1) + Ks (k) (62)

The separation into five terms provides a means to distinguish between flow contributed by films and by
corners and full ducts. The integrals for all five terms can be cast in the same general form:

by 14 3
AL +BL°+CL+D
Kiw = | TR (63)
Lt

where f(L) is any pore size statistical distribution function (gamma density function with £=2 in this case),
L, and Ly are the lower and upper integration limits determined by snap-off mechanisms and A, B, C, D,
E, and F are constants and variables comprising geometrical cell attributes and average hydraulic
conductivities of the flow regimes involved. All constants for saturated and unsaturated conditions are
listed in Appendix II. The analytical solution for the integral in Eq.63 is derived in Appendix Ill.
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The first term K;(p) is the expected value of unsaturated hydraulic conductivity for completely filled central
pores integrated between the minimum pore dimension L, (L) and the upper limit L; (Ly), which is
determined from the radius of curvature at the onset of drainage in the central pore:

4= (64)

The particular value L=L, is obtained by the substitution ry =—o/pp (the standard Young-Laplace

equation) using the proper value of the coefficient C, which defines drainage curvature for different
shaped central pores (as listed in Appendix I) to yield for a given potential:

Y
Lq(n) =-—Cp (65)
pH
The limit of integration (L,) indicates that all unit cells with pore lengths L smaller than L, will remain
completely full at the given potential p.
The second term describes the fraction of unit cells having full slits with integration limits L, and L,. The
upper limit L, is determined from the chemical potential at slit snap-off. It is implicitly assumed that slits
remain full for all slit spacing smaller than oL, which defines slit spacing for the onset of spontaneous slit

snap-off at the chemical potential p. Spontaneous slit filing occurs when film thickness h(y) is
approximately one third of the slit-spacing al:

_ol
3
Rearranging Eq.64 and substituting Eq.1 for h(u) yields the required upper limit of integration L,

h(u) (66)

Lo =~ 3-Psu (67)
a \6rnpu

Although it is unclear whether slit snap-off during drainage occurs at the same chemical potential as for
imbibition, we have adopted a similar expression for simplicity. In any case, we expect effects of slits
emptying at lower chemical potentials to have a minor influence on the upscaling scheme due to the
presence of a distribution of slit spacing in a sample. The integration limits are illustrated in Fig.17.

Flow in films adsorbed on slit walls is accounted for in Ki(i) with the integration limits L, and the
maximum pore dimension L., The chemical potential at the onset of drainage pq (air entry value) is often
attributed to the largest pore size present in the porous medium, which we denote as L. Equation 2 is
used to obtain the appropriate pore dimension Ly(Hg). A small correction is introduced by calculating film
thickness h(ugq) lining the pore walls according to Eq.1. The resulting maximum pore size is given as:

Lmax = L1(kg) +2h(kg) (68)

The fourth term represents the contribution of films aligning the flat parts of the central pore (between the
curved corner menisci). The limits of integration are defined between Ly and Lynax. Finally Ks(u) calculates
the contribution of corner fiow within the central pore from pore snap-off (L1) to Lmax. The contribution of
film flow to the overall unsaturated hydraulic conductivity is represented by the sum of terms Ky(u), Ka(w),
and Ky(p).

The expected value of sample-scale saturated hydraulic conductivity K is obtained by integrating Eq.63
with variables and constants listed in Appendix Il between Ly, and Lmax (full saturation). The relative
hydraulic conductivity is simply the quotient of K(u) and Ksa.
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The upscaling scheme was tested for a variety of different textured soils. An example for Gilat loam data
(van Genuchten, 1980) is depicted in Fig.18. The predicted relative hydraulic conductivity curve (Fig.8b)
is in excellent agreement with measured data. The dash-dotted line represents film flow contribution to
the overall hydraulic conductivity. Figure 8b also ilustrates the important role of film flow, whose
contribution begins to dominate the contribution of corners and full ducts at relatively high chemical
potentials in the range of -70 J/kg. Such film contributions are often discounted in pore scale models
(e.g., Ransohoff and Radke, 1988; Dullien et al., 1986). Another interesting feature of the proposed model
is ability to reproduce the “tail’ of the K(u) curve as evidenced by measurements. Common parametric
models (e.g., Van Genuchten, 1980) rely entirely on capillarity and thus are incapable of capturing film
flow contribution which alters the slope of K(p) significantly.
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Fig 18: (a) Fitted sample-scale liquid saturation for Gilat Loam; (b) predicted relative hydraulic
conductivity (dash-dotted and dashed lines indicate the individual contributions of film and corner
flow).
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Remark:

® The closed-form expressions for sample-scale hydraulic conductivity were programmed in MS-
Excel 2000. A sample work sheet is archived under C:\SCI_NOTE_FRACTURE\Tuller-Or2000.xls

12/15/99 - Dual Continuum Approach (DCA) for Fractured Porous Media D“"“ al,

Fractured porous media pore geometry is represented by a bimodal distribution for pore lengths and
fracture apertures to account for the two disparate pore scales and porosity of matrix and fractures
(Fig.19).

Fig.19: Bimodal distribution of pore lengths
\ and apertures to represent fractured
medium pore space.

600 -

Frequency

3
Pore Size / Fracture Aperture [mm]

Matrix retention and unsaturated hydraulic conductivity is obtained by applying the model introduced in
the previous sections of this notebook. For retention and flow phenomena in the fracture pore space we
use a similar physically based approach starting with a single fracture element comprised of two facing
surfaces separated by a certain aperture (B). Each surface contains a single pit for surface roughness
representation, with all geometrical length attributes related to the aperture B (Fig.20).

vB

Fig.20: Geometry of a single
fracture element

2r cos(y/2)
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DCA- Hydrostatic Considerations

First we derive expressions for liquid saturation, considering different filling stages of the unit fracture
element (Fig.21).

N
SV
N

v c cos (v/2)

/\ M2 B tan(y/2)

L __2c

Fig.21: Unit element filing stages and critical
\/ potentials at the transitions

In the transition from complete saturation (high matric potential) to dry conditions (low matric potential)
and vice versa we have to distinguish between 3 filling stages of the unit fracture element as determined
by matric potential, element geometry, and mathematical considerations. Starting with a completely
saturated unit fracture element and lowering matric potential gradually will lead to a certain potential
threshold 4, where liquid is redistributed (drained) spontaneously from the center of unit element and
two separate liquid-vapor interfaces develop on the facing fracture surfaces. The critical potential p at
the point of separation is may be derived from the capillary force balance considerations:

20
h=-"8 (69)
where ¢ is the surface tension of the liquid, p is the density of the liquid, and B is the fracture aperture.
To facilitate mathematical tractability and to enable derivation of closed form expressions for liquid
retention we assume that the pits remain completely filled till a circle with the radius of interface
curvature obtained from the Young-Laplace equation (Eq.2) tangents the pit surfaces. This
simplification, necessary for mathematical tractability, leads to a minor overestimation of retained liquid
in the matric potential range from y to pp. The critical potential ., where the radius of interface
curvature starts touching the pit surfaces may be obtained from simple geometrical considerations. The
side-length of the triangular pit in Fig.20 can be derived from the radius of interface curvature and the pit
angle as well as from the pit depth 1B and the pit angle. Equating the two expressions leads to an

expression for p, separating completely and partially filled surface pits:

__ 1B _
x= cos(y/2) B tan(y/2) (70)

Substitution of r(u)=-o/py and rearranging Eq.70 gives:

_ —ocos(y/2)
M2 = tBptan(y/2) e
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When matric potentials is gradually lowered below u. liquid reseeds into the pit corners and the thickness
of films adsorbed on all flat parts of the unit fracture element decreases according to Eq.1.

A relative saturation curve for a given unit element geometry is obtained by first calculating the critical
potentials separating the filing stages of a unit element and applying the appropriate expressions for
relative liquid saturation for the matric potential value under consideration (relative saturation is obtained
by dividing the liquid occupied cross-sectional area by the total cross-sectional unit element area
(disregarding the associated solid shell):

Complete Saturation p >
_B?(v+2r*tan(y/2)) _ 1
B2 (v + 212 tan(y/2))

1 (72)

Seperated interfaces / full pits py = p> 2

_ 2h(y)B(v-2ttan(y/2)8)+ B2212 tan(y/2)
B2 (v + 212 tan(y/2))

S, (73)

Seperated interfaces / partially filled pits W =<y

2h(u)(uB—21Btan(y/2)+ 218 2r(W) )+2r(u)2( 1 _“(18°'Y)J
(74)

cos(y/2) tan(y/2) tan(y/2) 360
B2 (v + 212 tan(y/2))

S3=

With v and T as dimensionless scaling parameters for fracture element length and pit depth respectively
(Fig.20), y as the pit angle, B as the fracture aperture, 8 as the pit connectivity factor (see discussion on
page 10 of the previous notebook), h(u) as the thickness of adsorbed films (Eq.1), and r(u) as the radius
of interface curvature (Eq.2).

DCA - Hydrodynamic Considerations

Dependent on the filling stage of the unit element, as determined by matric potential and geometry, we
have to distinguish between four laminar flow regimes (similar to the matrix domain). For completely
saturated fracture elements we consider flow between paralle! plates, and flow in triangular ducts (at this
point we limit our calculations to equilateral triangles y= 60°, a solution for average liquid velocities in
isosceles triangular ducts is under investigation). For partially filed elements we consider flow in
equilateral triangular ducts, flow in adsorbed films lining all flat parts of the element, and flow in the pit
corner.

Solutions for average flow velocities of these flow regimes (defined by the equilibrium  liquid-vapor
interfaces) were already discussed under hydrodynamic considerations for matrix flow. For completeness
we list the average hydraulic conductivities for all flow regimes under consideration that were obtained by
equating the solutions of the Navier-Stokes equations with Darcy’s law assuming unit pressure gradient in
flow direction:
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Parailel plates KS=Ks B? = P9 g2 (75)
12m,
pgt’
Triangular duct (equilateral) KD=KdB2="2-_B? (76)
60mM,
2
Thick film (h = 10 nm) KF() = 29 N~ (77)
My 3
Thin film (h < 10 nm) KF() = 29 AR (78)
Mo 12h(u)
2
Corner KC(n) = pg riw” (79)
Mo ¢

With p as the liquid density, g as the acceleration of gravity, 1o as the viscosity of bulk liquid, B as the
fracture aperture, T as the dimensionless pit depth scaling parameter, A(i) as a function for thin films (see
page 39), h(u) as the thickness of the adsorbed film (Eq.1), r(n) as the radius of interface curvature
(Eq.2), and ¢ as a dimensionless flow resistance parameter (see discussion on page 39).

Average hydraulic conductivity for the entire unit fracture element is obtained by weighting the individual
contributions of each flow regime over the associated liquid occupied cross-sectional area, and dividing
the resulting expression by the total cross-sectional area including the matrix shell. The total cross-
sectional fracture area At is obtained by dividing the fracture area with the porosity of the fracture domain:

_B?(v+ 212 tan(y/2))

A (80)
OF
Where ¢ is the fracture porosity. For equilateral pits (y = 60°) Eq.80 simplifies to:
B2 (v+21%/43
A= (n+¢ T /x/_) (81)
F

Taking into consideration different filing stages of the unit fracture element, as determined by chemical
potential, average hydraulic conductivities for fracture elements with equilateral pits are given as:

Ksat 1L > M

vB?2 39_514. 212832 ﬂﬂi
12 V3 ne 60

K =
SAT B2(v+21%/43) b
. (82)

pal v ¢ 6 2

PRl ——= B

ﬂo(u 30«/5}%
Kgar = 2

0+21/J§
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K;(u) - seperated interfaces / full pits iy = pn >

218 2125 _,pg 12
2h -—BK Bt __B
! B2 (v +212/v3) F
. (83)
g 1% 3 21
== -0eB” +2h -—= K
e o 30ﬁ¢r + (u)(v JE] F (1) OF
! (v+21%/43)B
Ka(u) - seperated interfaces / partially filled pits u < w
2h(u)(1) + %]Kp(u)% B - 43 h(u)r()Ke (1) 0F +2(J§ - g)r(u)2 K (1) o
Ka(n) = (84)

(v+212/4/3)B?

With p as the liquid density, g as the acceleration of gravity, no as the viscosity of bulk liquid, B as the
fracture aperture, T and v as the dimensionless pit depth and fracture length scaling parameters, h(p) as
the thickness of the adsorbed film (Eg.1), r(n) as the radius of interface curvature (Eq.2), and Ke(u) and
Kc() as the average hydraulic conductivities for film and corner flow (Eqgs.77 to 79).

DCA - Upscaling Considerations

To represent liquid retention and hydraulic conductivities in the fracture domain of a sample of fractured
porous medium we consider a statistical aperture distribution. The gamma distribution with E=21is
instrumental to derive closed-form expressions for the sample scale (Fig.22).

BS -B
f(L) = Hab Exp[F]
f(L) 2 with
. o2

] jF'%._q_
B1 BZ B3 B4 Bs BG

Fig.22: Gamma distribution for fracture aperture
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When we choose 6 representative pins for fracture aperture from the gamma distribution in Fig.22 and
draw the associated unit fracture elements under “dry” (low matric potential) and under “wet” (high matric
potential) we may observe that at the dry end only elements with small aperture are completely saturated.
As we move to wetter conditions more and more elements are completely saturated (Fig.23a). The critical
fracture apertures B; and B, separating completely filled, partially filled with full pits, and partially filled
with partially filled pits for a certain matric potential are obtained by rearranging Egs.69 and 71 to solve for
B (Fig.23b). Note that all expressions are derived for equilateral pits (y=60°). Maximum Bpax and minimum
B, fracture apertures may be obtained from measured aperture distributions.

(a) DRY —- WET (b)

b% N

NS NS

NS AV
NN S

NV AL

\/ Y

Fig.23: (a) Fracture element filling stages under wet and dry conditions (b) Critical fracture apertures
separating filling stages at a certain matric potential

Expressions for sample scale fracture saturation and hydraulic conductivity are obtained by multiplying
expressions derived for a single unit fracture element (Egs.72, 73, and 74 for liquid saturation and
Eqgs.82, 83, and 84 for hydraulic conductivity) with the gamma distribution for fracture apertures and
integrating the resulting expressions over the range of apertures related to certain filing stages, as
determined by the matric potential. A sample calculation is shown for saturated hydraulic conductivity.

4
pglfv  1°3 4
==+ B
Bmaxn0 [12 30\/3‘)¢F B2 _B
5 3 Exp]— |dB (85)
(v+212/43)B 20 ®

Kgar =

Since all fractures are completely saturated with liquid we have to integrate between the smallest (Brin)
and largest (Bma) apertures under consideration. The integrals for liquid saturation and hydraulic
conductivity may be represented by one general integral given as:

By 4 2 2 _
j aB*+bB%?+cB+d | B Exp[—B] dB (86)
8. eB? 20° ®
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Where B, and By are the limits of integration (see Fig.23b), and a, b, ¢, d, e are constants containing
expressions for liquid occupied cross-sectional area and average hydraulic conductivities of the flow
regimes under consideration (Egs.75, 76, 77, 78, and 79). The analytical solution for Eq.86 is given in
Appendix IV, all constants for liquid saturation and hydraulic conductivity are listed in Appendix V.

Combining Matrix and Fracture Contributions

Liquid saturation and hydraulic conductivity of a fractured porous medium is obtained by weighing the
individual contributions of the matrix and fracture domain by their porosities as already included in the
derived equations.

Model Application — lllustrative Example

A preliminary test of the proposed model was performed using data for the Tiva Canyon Tuff section
reported by Wang and Narasimhan (1993). Available input data are listed in Tab.2; physical constants
used in the sample calculations are listed in Tab.1 (page 22, previous notebook).

Tab.2. Model input parameters and measured and calculated saturated permeabilities
(from Wang and Narasimhan, 1993)

Property Matrix Fracture

Porosity 0.114 0.00058
Effective Aperture NA 0.109 [mm]

o =8.21x10°[m7]
VG-Model Parameters n=1.558 NA

0, = 0.002 [m* m™]
Saturated Permeability measured 2.55x 107" [m?] 1.18 x 107 [m?]
Saturated Permeability calculated 2.45 x 10" [m? *1.19 x 10" [m?

* was preserved during model application

The model for matrix saturation was fitted to the VG-saturation curve to obtain a set of best-fit parameters
that was consecutively used to predict saturated und unsaturated matrix permeability. Fracture saturation
and unsaturated permeability was derived by matching the mean of the aperture distribution (gamma
distribution with {=2) to the effective aperture and preserving the measured saturated fracture
permeability. The maximum and minimum aperture was set to arbitrary values of 10° m and 10° m
respectively. The resulting saturation and K(y) curves are depicted in Fig.24; showing the typical double-
hump curve for permeability, with a fast (preferential) flow domain associated to the fractures. In lack of
measured saturation and unsaturated permeability data we preserved measured saturated fracture
permeability. Saturation and permeability curves for matrix are in good agreement with the VG-saturation
curves reported by Wang and Narasimhan (1993). The predicted matrix permeability of 2.45x10™ m? is
almost identical with the reported value of 2.55x10"® m2 This preliminary test shows the potential of the
proposed approach for modeling liquid configuration and transport in fractured porous media, however
refinements and tests with more complete datasets, including more detailed information for the fracture
domain are necessary.
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Tiva Canyon Welded Tuff Unit
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Fig.24: Calculated saturation and permeability curves for Tiva Canyon Tuff

12/21/99 — Status D'W 3

A paper on constitutive relationships for matrix-fracture hydraulic conductivity is in preparation for journal
submission (Water Resource Research) and started on the CNWRA technical and programmatic process.
Hence, it is a good idea to re-assess at this point the status of the work and where it may be heading.

Open issues (pertaining to the TEF-KTI) for future model improvement

e The assumed roughness geometry does not consider asperities and similar elements rising above
mean fracture surface plane. Introduction of such elements should add realism to the model and
capture some of the intermittent flow behavior observed. For inclusion of these elements we need to
consider liquid build-up around conical objects (see “edge” in Appendix B of Tuller et al., 1999).

® The dynamics matrix-fracture interactions were not treated in this work — some of the rates of such
interactions would be useful to capture the essence of potential bypass flow through these fracture
surfaces (e.g., as liquid flux encounter low porosity/permeability layer such as the PTN).
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APPENDIX |

Angularity factor, area factor, and drainage radius of curvature () coefficient C, (used to determine maximum pore length L1 for
completely fuil unit cells) for different polygon-shaped central pores.

Corners | Angle | Angularity Factor F, Area factor A, C:::':;ZT fd‘:i:hnri:g Pore Shapes
n
n v | Fom RO | Ao B | o= 2 (2 (R e m)e 2w (o)
- tan(ﬁ) 360 4 n n
3 60 3\/5_11; ﬁ J—Z 3+%ﬁ) 4&
4 s S5
4 90 4-1 1 24 \/'1? ﬂ
w
12 150 12 . 3(2-{-\/5) 6+\/3_V(2+\/§)1t ﬂ
2+43 3(2++/3) N\

™ The radius of curvature for imbibition, rims, is related to ry by: ., =r, [1+

T
F,+m
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APPENDIX I

Integration limits, constants, and variables used in the hydraulic conductivity calculations (Eq.56)

Conducﬁvity' TgrrTn Al Bt ct D* E F
(Integration Limits’)
Ksat (Lmin, Lmax) (A, Kd—20BKs) ¢ | 20 Lmax Kso 0 0 Ap-20aB | 20B Lmax
K()1 (Lmin, L1) A, Kdo 0 0 0 Ap-20B | 208 Lmax
K(u)2 (Lemin, L1) —20PKs¢ 20B Ljax Kso 0 0 An-2af | 20P Lpax
K(1)s (L2, Lmax) 0 0 —4Bh(WKF()O | 4BLmax NWKFe | An-2aB | 20 Lyax
2
K(1)a (L1, Lmax) 0 0 n h(W)KF(u)¢ “nh(“)f;%;l/)z—)KF(“m An-2aB | 20f Lyax
K(1)s (L1, Lmax) 0 0 0 ()2 F KC(1) 0 An—20B | 208 Lmax

L. =10 m: Lua, L1, and Lo are given in Eqs.31, 25, and 27.
Y Eor Ks, Kd, KF(i), and KC(p) see Eqs.44-50.
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APPENDIX Il - Analytical Solution for Sample-Scale Matrix Hydraulic
Conductivity (Eq.63)

The general integral in Eq.63 was solved using Mathematica Version 3.0.

Ly, 4 3
AL +BL° +CL+D _,
Kitw = | ; filydl
; EL* +FL
L
with the gamma distribution for L given as:

3
f(L)= —L—-exp L L>0 {&was set to 2 to facilitate a closed-form solution}

1
2E% 0

Ki(1) = {Ew[exp(—-‘i](DE“ _BEF3 + AF* +BE2F2L, ~AEF3L, -BE®F L ? +AE?F?L,?

®
+BEL® -AEFL® +AE‘L" +E(F2 (BE—AF)-2EF(BE-AF)L_+3E? BE-AF)L * +4AE’ LL3)0)
+2E2(BE(—F+3ELL)+A (F2 ~-3EFL, +6E? LLZ))(J)Z +6E3(BE - AF + 4AEL )o° +24AE*0*
+CE3(-F+E(, +co)))—exp(—%}DE4 _BEF® +AF* +BE2F2L, —AEF®L, -BE®F Ly? +AE?F2L°
+BE*L,} -AE*FL® +AEYL,* +E(F2 (BE - AF)-2EF(BE-AF)L, +3E? BE-AF)Ly” +4AE® LU3)00
+2E2(BE(—F+3ELU)+A (F2 -3EFL, +6E? LUZ))@2 +6E3(BE - AF + 4 AEL, )0’ + 24AE*0*

+CE3(-F +EL, +0)
+ exp(E%)F (DE*-CE®F+F®(-BE+ AF)){Ei(—_._._F ‘;Ew‘-t )- E-,(_ F +EEmLU n}

The exponential integral Ei[U] is solved using the series expansion [Abramowitz and
Stegun, 1964]:

e n
Eilu]= 74 +|nu+zgﬁ (0 <U<20)
n=1

where v is Euler's constant (y1=0.5772156649....). The series must be expanded at

least to n=100 to reach the required accuracy. For —20<U<0 Ei[-U] may be expressed
as —E4[U] and solved with [Abramowitz and Stegun, 1964]:

© NN
E1[U]=y1+ln[—U]+r§£—1)—n-%!—w— (20 <U<0)
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APPENDIX IV - Analytical Solution for Sample-Scale Fracture Liquid
Saturation and Hydraulic Conductivity (Eq.86)

The general integral in Eq.86 was solved using Mathematica Version 3.0.

BU 4 2 2 _
J‘ aB*+bB*+cB+d | B Exp[—B] 4B =
eB? 20° [

BL

1
2ew?

Exp[— B—L](BL c+d+co+bB? +2B, 0+20? )+aBf +4Bio+12B20? +24B}0® + 240 )))-
®

1
2e n?

Exp[_gi](su c+d+co+b(B? +2B, 0+20? J+aBf + 4Bj0+12BJ0? + 24B0° +24a)4)))
[6V]
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APPENDIX V - Constants for Eq.86
BJ"’(aB4+bBZ+cB+dIBZ [ B]}d
5 +Exp|-— B
8, eB 2w «
a b c d e
Degree of Saturation
(1) Full Fracture (S,=1) ® (g2 8
Integration of the gamma distribution | (E;S'EX"[_ 5] ]dB
from B to B4 Bimin
(2) Separated Interfaces - Full Grooves 0?5 - 5
Films and Grooves 0 j— 2h(u)[\>——1—] 0 ve 2l
Integration from B, to B, 3 3 3
(2a) Separated Interfaces - Full Grooves - 2
Films 0 0 2h(u)(u—i] 0 ve 2l
Integration from B, to B, 3 V3
(2b) Separated Interfaces - Full Grooves 9?5 92
Grooves 0 j_ 0 0 v+t
Integration from B4 to B, 3 3
(3) Separated Interfaces - Partially Filled ) . 92
Grooves Films and Grooves 0 0 2"‘“)(°+T;] Zr(”)z[‘/g"g]_4‘/§h(“)r(“) ‘”%
Integration from B, to Brax
(3a) Separated Interfaces - Partially . 272
Filled Grooves Films 0 0 2h(u>(°+f] - a3 h(u)r() R
Integration from B, to B«
(3b) Separated Interfaces - Partially , n 272
Filled Grooves Grooves 0 0 0 21w (‘/5‘3] Ry~
Integration from B, to B,
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a b c d e
Hydraulic Conductivity Ksat and K(u.)

(1) Ksat and Full Fracture )
Parallel Plates and Ducts pg[ i 0 0 0 u+—2%
Bunin 0 Bunax (Ksat) and Bu to By (K(W)) (12 3043 " 3
(1a) Ksat and Full Fracture pg v )
Parallel Plates o2 0 0 0 \)+2%
Bmin to Bmax (Ksat) and Bmin to B1 (K(ll)) 3
(1b) Ksat and Full Fracture 45 )
Ducts L 5% 0 0 0 u+2—j—-
Brin 10 Bay (KSat) and B to By (K(1)) o %0 3
(2) Separated Interfaces - Full Grooves ‘5 )
Films and Grooves kg TJ—¢F 0 2h(u)(u——}<F(u)¢F 0 vi 2
Integration from B, to B, Mo 3043 NE)
(2a) Separated Interfaces - Full Grooves 2
Films 0 0 2h(u)[u———}<F<u)¢F 0 v 2l
Integration from B, to B, g
(2b) Separated Interfaces - Full Grooves : 92
Grooves pg_* J_ 0 0 0 vl
Integration from B, to B, Mo 30 V3
(3) Separated Interfaces - Partially Filled 0e2
Grooves Films and Grooves 0 0 (U+——-}<F(u)¢F 2r(u)2(~/_ ——}< )0 —4RGOKFRI: | v
Integration from B, to Bpax

(3a) Separated Interfaces - Partially 02
Filled Grooves Films 0 0 2h(u) [v+-—}<F(u)¢F — 43 h(r(KF ()G v+—j§—
Integration from B, t0 Bax

(3b) Separated Interfaces - Partially 92
Filled Grooves Grooves 0 0 0 zr(“)z(‘/_‘g}@(“) Ky

Integration from B, to Bpax
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With:
Ouererrnnnnneennans Groove Connectivity Factor
)0 ceerererrenenens Liquid Viscosity [kg m™ s™]
D crerrreeanaens Liquid Density [kg m™]
Trerereanncsrenenns Dimensionless Groove Depth Scaling Parameter
V eeeeneercereneens Dimensionless Fracture Length Scaling Parameter
OF eremmenrennnnans Fracture Porosity
B4, Bo........... Integration Limits [m]
Brineeerreearees Minimum Aperture [m]
Bimax --eeeeenrrees Maximum Aperture [m]
s FOTT Acceleration of Gravity [m s?]
s T{T) D Film Thickness as a Function of Chemical Potential [m]
1(o1(T) PR Corner Conductivity [m s']
KF(L) coeeeeeene Viscosity dependent Film Conductivity [m s
(1) J Radius of Interface Curvature as a Function of Chemical Potential [m]
Thick film (h > 10 nm) KF() = 29 h° B, - 2%
n 3 pH

in i _P9 AW _ 3o
Thin film (h < 10 nm) KF(u)—EJ— 2he) By = eon
Corner Ko =28 W hu) = 32

Mo € 6rpu

A(w) = 2h() + 5ah(w)? - ah()°® )exp(— h—(‘L—)]+ (@2 + 622 h() Ei{— F(Tx_)] r(u) = _;;Lu
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Volume 1: Hydraulic Conductivity of Unsaturated Fractured Porous Media:
Flow in a Cross-Section (Continuation)

Thermal Effects/USFIC - Key Technical Issues

Account Number: 20-1402-661/861
Collaborators: Markus Tuller (USU) and Randall Fedors (CNWRA)
Directories: C:\SCI_NOTE_FRACTURE\

Objectives: Modifications and updates for the theoretical model for flow in unsaturated fractured porous
that was developed in the previous notebook. Primary modifications are related to the fracture domain. To
avoid duplication, for the matrix domain we refer to the previous notebook whenever appropriate and
repeat crucial derivations only. This documentation includes: (1) Change of dimensions for the unit
fracture element. (2) Derivation of pore scale expressions for liquid saturation and unsaturated hydraulic
conductivity taking into consideration of pore scale flow phenomena. (3) Upscaling of the pore-scale
hydraulic functions to represent sample-scale response of the fracture domain. (4) Derivation of a general
analytical solution for sample-scale hydraulic functions. (5) Combining matrix and fracture domain
calculations to calculate the total response of the fractured porous medium. (6) Model application to
measured data reported by Wang and Narasimhan [1993), and Fischer et al. [1998]. (7) Discussion of the
hydraulic conductivity function for non-equilibrium conditions. (8) Introduction of potential strategies to

approximate 3D nietwork effects.

03/10/01 — Initial entry (notebook continuation)

The preliminary results of the theoretical model for flow in unsaturated fractured porous media based on
dual-continuum modeling of matrix and fracture pore spaces unified by equilibrium chemical potential
developed in the previous notebook revealed great potential to calculate the continuous liquid saturation
curve and to predict the unsaturated hydraulic conductivity function for fractured rock. In this notebook we
will introduce some minor modifications to the fracture domain calculations, and develop potential

concepts for incorporation of 3D network effects. Furthermore we will introduce considerations of non-
equilibrium conditions and present comparison with measured datasets.

To ensure the practical applicability of the model, surface geometrical features are kept simple enough to
obtain closed-form expressions for hydraulic conductivity programmable into conventional spreadsheet
software (e.g., Excel, Quattro Pro).

The proposed model is to be based on appropriate thermodynamically and physically considerations.
Simplifications should be kept at a minimum and are highlighted and explained at the appropriate level of
the development process.

Remark:

® The assumed fracture element and its roughness geometry do not consider asperities and similar
elements rising above mean fracture surface plane. Introduction of such elements should add
realism to the model and capture some of the intermittent flow behavior observed. For inclusion of
these elements we need to consider liquid build-up around conical objects. These elements lead
to intermittent rivulet flows and are treated separately.
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04/15/01 — Unit Fracture Element Daw ab

The 2-D fracture network is represented as an assembly of basic fracture elements; each is comprised of
two parallel surfaces separated by a certain aperture size (B). Each surface contains a single groove (or
pit) representing surface roughness [Or and Tuller, 2000]. The fracture element length (vB), and groove
depth (tB), are assumed to be proportional to fracture aperture size (B), as depicted in Fig.25a. Although
such geometrical scaling imposes constraints on the nature of surface roughness, it simplifies the model
and facilitates derivation of closed-form expressions for FPM hydraulic conductivity. Nevertheless, the
proposed geometry shows reasonable versatility as illustrated in Figs.25b-e, using several combinations
of scale parameters for mated and unmated fracture surfaces. Moreover, scaling constraints can be
relaxed as more information on surface roughness becomes available (at the expense of requiring a
numerical scheme for evaluation of the hydraulic functions).

(a)

. Fracture 21B tan(y/2)

r(u)

.

2r cos(y/2)

(d) (e)
<<= NN
,\/\\/\/

Fig.25: Definition sketch for (a) a unit fracture element representing a partially saturated

fracture with liquid retained in crevices and adsorbed liquid films; (b)-(c) various combinations of
scale parameters and surface mating based on the same geometrical definitions as in (a).

Remark:

® The fracture element length was changed from vB to vb+2tBtan(y/2) to add more flexibility (see
also previous notebook figure 20 page 46).
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Equilibrium Liquid Configuration within a Unit Fracture Element

Both here and in subsequent derivations, we assume thermodynamic equilibrium between fracture and
matrix domains (an assumption that was verified experimentally in some systems [Wang and
Narasimhan, 1993]). Equilibrium liquid-vapor interfacial configurations evolve with changes in matric
potential and determine the liquid-occupied cross-sectional areas within a unit fracture element (i.e.,
saturation). The desaturation of an initially saturated fracture element by a gradual decrease of matric
potential is not a continuous process, but rather involves spontaneous liquid displacement (formation of
separated interfaces) at certain critical potentials as determined by liquid properties and geometry. Before
proceeding with identification of these critical potentials at the transition between various fracture filling
stages, we first address a few basic relationships between adsorbed liquid film thickness and liquid-vapor
interfacial curvature as functions of matric potential. As shown in Tuller et al. [1999] and Or and Tuller
[2000}, equilibrium liquid configuration can be determined by a superposition of adsorbed liquid films and
liquid retained in surface pits and grooves (Fig.25) due to capillary forces. The thickness h(u) of adsorbed

films at a given potential u is calculated as:
A
h(p) = ,3/ ot (87)
67 pu

where Ay, is the Hamaker constant (a parameter that combines solid-vapor interactions through
intervening liquid), and p is liquid density. The radius of interface curvature of a capillary meniscus r(p) is
calculated for a given potential according to the Young-Laplace equation:

r(p) = —— (88)
pu

where o is the liquid-vapor surface tension. Liquid films are assumed to cover all solid surfaces within the
unit fracture element; we thus shift the radius of curvature r(u) by film thickness h(u) to obtain the
composite liquid-filled cross-sectional area. In the transition from complete saturation (high matric
potential) to dry conditions (low matric potential), we distinguish between three filling stages as depicted
in Fig.26. We consider a completely saturated unit fracture element and lower the matric potential
gradually to a certain threshold value p,, where the fracture spontaneously empties and two separate
liquid-vapor interfaces are formed on the opposite faces of a fracture. The critical potential y, at the point
of separation is derived from capillarity considerations:

=—— (89)

where B is the fracture aperture. The presence of roughness on the fracture surface ensures that some
liquid is retained (by capillary forces) in pits and grooves. The radius of interface curvature of a meniscus
anchored at the edges of the pit is simply B/2 (or —o/pu,) at the separation potential. For certain pit depths
(parameterized by t) such as,

> cos(y/2) (90)
" 2tan(y/2)

the radius of interface curvature at fracture evacuation (r=B/2) results in menisci that are tangent to the
surfaces of the pit which greatly simplify subsequent calculations. In cases where the inequality in Eq.90
is not satisfied, we introduce a second potential threshold (u,) that marks the starting point for recession
of capillary menisci into the surface pit. The critical potential p, is obtained from simple geometrical
considerations:

o cos(y/2)

—_— (91)
T B ptan(y/2)

My =—
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where v is the pit angle (Fig.25). Hence, for a given geometry, we first evaluate Eq.90 and calculate the

ARG

relevant critical potentials.

ccos(y 2)
tBptan(y 2)

” rrnm(

Mﬂ'mv
Fig.26: A sketch illustrating liquid configurations and critical potentials during fracture drainage. (a)
Three step transition for geometries where the capillary meniscus is first anchored at the pit edges
after interface separation, and then recedes into the surface pit (note that the second transition was

introduced for mathematical tractability. (b) Two step transition for geometries where the capillary
meniscus immediately tangents the pit walls after interface separation (see text for further details).

If the geometry requires introduction of p, the relative saturation curve is obtained by employing the
following expressions. For all potentials u > py the unit element is compietely saturated and the relative
saturation is simply 1.

S, =1 (92)

Note that relative saturation is obtained by dividing the liquid occupied cross-sectional area at a certain
potential by the total cross-sectional unit element area disregarding the associated solid shell (i.e.,
calculating the fraction of liquid-filled pore space only). For all potentials p; = u > yu, where adsorbed films
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cover the flat parts of the element and the capillary menisci are anchored at the pit edges, relative
saturation is given as:

Bt tan 14 2
2| B A 2. 2 4 2 Y
W)V —r(u)’ arcsin + B7tan E BT+, |r(u)” ~| Brtan 5

r(u)

Bz{v +27(1+7) tan(%D

where v is a dimensionless fracture length scaling parameter. Note that the denominator in Eq.93 is the
cross-sectional area of the unit fracture element without solid shell. Finally, for all potentials u < p, where
menisci start receding into the pit corners and additional film covered area is exposed, relative saturation
is calculated as:

(93)

S,(uy=

2tB 2r(p) +2r (W) F
14

vy ()
COS(EJ mn[a) (94)
BZ(V +2¢(147) tan(g))

2h(w)] Bv +

S,(u) =

where F, is an angularity factor defined as:

g 1 mU80-p)
" tan(y/2) 360

(95)

For all cases where capillary menisci are tangent to the pit surfaces immediately after interface separation
(i.e., where [Eq.90] is satisfied), we use Eq.92 for u>py, and Eq.94 for all potentials w<p;. The
equilibrium liquid configurations in a unit element cross-section provide the basis for introduction of
hydrodynamic considerations within the unit element geometry.

04/20/01 — Hydrodynamic Considerations within a Unit Fracture Element D“"“ a"

A key assumption for introduction of hydrodynamic considerations for partially filled fractures is that
equilibrium liquid-vapor interfaces remain stable under slow laminar flow conditions. Hence, in view of the
various liquid filling stages of a unit fracture element discussed in the previous section, we consider four
laminar flow regimes. For a completely saturated fracture element, we consider parallel plate flow, and
flow in isosceles triangular ducts. For partially filled elements we invoke the interfacial stability assumption
and consider laminar flow in corners bounded by a liquid-vapor interface, and flow in adsorbed films lining
flat solid surfaces. For the derivation of macroscopic hydraulic conductivity it is not necessary to describe
details of the velocity fields; instead, we seek solutions for average flow velocities associated with these
flow regimes. Solutions of the relevant Navier-Stokes equations for all flow regimes (except flow in an
isosceles triangle) are discussed in Tuller and Or[2001].

A solution for average flow velocity in isosceles triangular ducts with a solid-liquid (no-slip) boundary at
the legs of the triangle and a liquid-liquid boundary at the triangle base was derived using a finite
difference-based numerical scheme. The results were generalized and expressed as:
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_ T Bz( dP)
v=_ -— (96)
o dz

where ( is a dimensionless flow resistance parameter dependent on the vertex angle (pit angle), n, is the
liquid viscosity, and dP/dz is the hydraulic head gradient in flow direction z. The relationship between flow

resistance parameter { and pit angle y may be parameterized as:

¢ =3.324x107 +6.057x107° y* = 1.963x 107 (97)

with v in degree (’=0.99998). The validity of Eq.97 and the solution for flow in corners bounded by a
liquid-vapor interface [Ransohoff and Radke, 1988; Or and Tuller, 2000; Tuller and Or, 2001] are limited
to a range of pit angles of 30° < y < 150° because of errors at very small and very large pit angles
emerging from the applied numerical evaluation schemes.

Remark:

® The Fortran code for numerical evaluation of the average flow velocity in isosceles triangular
ducts is stored in Notebook/Poisson3/Poisson3.f90

The parallel plate, film, and corner flow solutions are discussed in detail in the previous notebook. Further
information may be obtained from Tuller and Or [2001]. For completeness, we list the hydraulic
conductivities for all flow regimes under study derived by equating the average velocity obtained from
solution of the Navier-Stokes equations with Darcy’s law, assuming a unit pressure gradient along the
flow path (see also Eqs.47 and 48 page 39 of the previous notebook):

Parallel plates
KS=K, BZ.:'O—géB2 (98)
Mo
Isosceles triangular ducts
kD=K,B* =28 ;12 p? (99)
0
Thick film (h > 10 nm)
2
KF(u) = %5 h(/;) (100)
0
Thin film (h < 10 nm)
KF(y):ﬁM (101)
Mo 12h(u)
Corner
2
KC(1) =%% (102)
0

where { and € are dimensionless flow resistance parameters, p is the density of the liquid, g as the
acceleration of gravity, and A(u) is a function for thin films (previous notebook, page 39). Note that in
derivation of expressions for film hydraulic conductivities (Eqs.100 and 101) modification of liquid
viscosity close to solid surfaces was considered [Or and Tuller, 2000; Tuller and Or, 2001].

With known average hydraulic conductivity for each flow regime, we now proceed to derive expressions
for an entire unit fracture element by weighting the individual contributions by their associated liquid
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occupied cross-sectional areas, and dividing the resulting expression by the total cross-sectional area,
including the matrix shell. The total cross-sectional fracture area Ar is obtained by dividing the fracture

area by the porosity of the fracture domain ¢g:

B? [v+2r(1+r) tan{%D
A, = ; (103)
F

The resulting expressions for hydraulic conductivity corresponding to various unit element-filling stages
are given as:

Saturated hydraulic conductivity: >

B4(Ks(v+2rtan[—g—j]+ K27 5mn{g))
K, =Ky = (104)

A

Separated interfaces — capillary menisci anchored at pit edges: py = u> U

7 T Btan| —J:
KF( . [7){ \/ ?_ _1p2 (Z) ]_ 7. 2
W)2v Bh(u) + KC(u) 3| 2t Btanl — | 7B +,|r(p) 7° B* tan 2r(u)” asin
2 2 r(u)
K. (1) = (105)
2 (1) A
Separated interfaces — capillary menisci tangent pit surfaces: i < L,
2 KF () ()| By +—B5_ 2T | o ke(uy 8 r)*F,
Ky(u) = (106)
A,

where K, Ky, KF(1), and KC(u) are the average hydraulic conductivities given in Eqs.98 to102, and § is a
groove connectivity factor with values ranging from zero to one [Or and Tuller, 2000] that accounts for
partial connectivity among neighboring pits or grooves in the direction of flow. The parameter & ensures
that isolated pits are not considered as part of the Ky and KC(u) contributions in Egs.104 to 106. For
fracture geometry that satisfies the inequality in Eq. (90) we use Eq.104 for u>u,, and Eq.106 for all
matric potentials p < py.

Remark:

® Note that employing KC(u) (Eq.102) in Eq.105 leads to a slight underestimation of K;(u) within
the narrow matric potential range from p, to i, that may be neglected for all practical purposes.

A framework similar to the one described here was instrumental in deriving pore scale expressions for
liquid retention and hydraulic conductivity for matrix pore space comprising of angular central pores
connected to slit-shaped spaces [Tuller et al., 1999; Or and Tuller, 1999; and Tuller and Or, 2001]. See
also previous notebook.
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04/28/01 — Upscaling Considerations D“"‘L a’*

For representation of FPM hydraulic properties at the sample scale we employ a statistical upscaling
scheme, assuming a bimodal distribution for pore sizes and fracture apertures accounting for the two
disparate pore scales and porosity of matrix and fractures as depicted in Fig.27.

-2
(=
o

4 Matrix Pore Size

3
=1

Frequency
[
(=
o

Matrix Pore Size / Aperture [mm] 8

Fig 27: Conceptual sketch for dual continuum pore space representation of a fractured porous
medium. Matrix is represented by angular pores connected to slit-shaped spaces. Note (1) the pore
size disparity between the two domains; and (2) large fractures empty first.

The individual contributions of matrix pores and fractures to liquid saturation and unsaturated hydraulic
conductivity are calculated separately using the appropriate pore sizes and aperture distributions. The
resultant saturation curves are weighted by the porosities of the respective domains and summed up to
obtain the composite medium response. A similar approach was taken by Wang and Narasimhan [1993]
in their Egs.7.3.3 and 7.3.4 to represent the composite liquid retention and hydraulic conductivity
functions for the fracture and matrix domains.

Pore-scale expressions for liquid saturation and unsaturated conductivity and upscaling considerations for
the matrix domain are discussed in the previous notebook. Further information may be obtained from
Tuller et al. [1999), Or and Tuller (1999], and Tuller and Or [2001]. To avoid duplication we briefly explain
the upscaling scheme for the fracture domain, which is similar to the scheme applied for the matrix
domain, and refer to previous publications whenever appropriate. To facilitate mathematical tractability
and derivation of analytical solutions, and to match observable positive skewness of matrix pore length
and fracture aperture distributions, we employ a gamma distribution for their representation [see also
Wang and Narasimhan,1993). The gamma density function is dependent on two parameters & and o
[Rice, 1995]:
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¢
F(By=—2 exp(—ﬁj B20 (107)

Elw! w

where B is the fracture aperture, and the parameter & is limited to integer values. Calculations involving
expectations of f(B) are greatly simplified by the choice of £€=2, which provides a balance between
flexibility and tractability (=2 was used in this study).

Sample-scale expressions for liquid saturation and unsaturated hydraulic conductivity are obtained by
taking expectations or integrating pore scale expressions (Eqs.92 to 94 for liquid saturation, and Egs.104
to 106 for unsaturated hydraulic conductivity) with the gamma distribution (Eq.107) over portions of the
fracture population associated with the different filing stages discussed under “Equilibrium Liquid
Configurations Within a Unit Fracture Element”. The integration limits separating the fracture population
are obtained by rearranging Eqs.89 and 91 and solving for the fracture apertures Bi(u) and B, that
separate the fracture filling stages at a certain potential as depicted in Fig.28. Individual contributions of
all population groups are finally summed up for the entire matric potential range under consideration to
receive the sample-scale saturation and hydraulic conductivity curves.

Bmin

—ocos(y/2)
tputan(y/2)

Bzz

Bmax

Fig 28: Critical aperture sizes determining expected fracture-filling stages at different matric
potentials.
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For illustration purpose we derive the upscaled hydraulic conductivity for the completely saturated fraction
of the fracture population that ranges from the smallest aperture By, to B4(u) (see Fig.28):

K, for a single fracture element (Eq.104) Gamma distritll\nion with £=2
.| B* (K, (v+27tan(y/2))+2K,7° tan(y/2)) || B B
=[] e 2eimiy/2) 20, wnly)| [ 2 ool 2]Jas o0
T

with subscript u standing for “upscaled” and F for “fracture”. Note that the saturated hydraulic conductivity
(all fractures completely saturated) is readily calculated employing EQ.108 by changing the upper
integration limit to the maximum aperture Bnax. The same procedure is applied to Egs.105 and 106 with
integration limits B4(u) - B,, and B; - Bnax, respectively. The upscaled expressions are then added to yield
the composite response of the whole fracture population at a certain matric potential.

Eq.108 upscaled Eq.105  upscaled Eq.106

K, ,()=K, (@) + Ky s (1) + Ko p () (109)

For geometrical configurations with pit scaling parameters t>cos(y/2)/(tan(y/2)) (Eq.90), the upscaled

expressions can be solved analytically as shown in Appendix A. Note that these analytical solutions cover
a wide variety of different geometrical configurations. Only cases with t<cos(y/2)/(tan(y/2)) require

numerical evaluation of the upscaled expressions (Fig.29).

NUMERICAL SOLUTION

107"

Pit Depth Scaling Parameter T

1072
30 60 90 120 150

Pit Angle ¥ [°]
Fig 29: Relationship between pit angle and pit depth scaling parameter separating analytical and

numerical solutions for the proposed sample scale expressions for liquid saturation and hydraulic
conductivity.

The same scheme applies for liquid saturation (Eqs.92 to 94) with the composite response of the entire
population calculated as:

upscaled £q.92  upscaled Eq.93  upscaled Eq.94

S )= 8, p (1) + S, r (1) + Sy, (1) (110)
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Remark:

e Note that the contribution of completely saturated fractures Sy..r(u) is obtained by simply
integrating the gamma distribution (Eq.107) between B, and B(u), since the relative saturation
of a saturated fracture element is 1.

A similar upscaling scheme was applied for the matrix domain yielding S,.m(i) and Kym(y) [Or and Tuller,
1999; Tuller and Or, 2001]. See also previous notebooks. The individual contributions of the matrix and
fracture domains to liquid saturation are added and weighed by the porosities of the individual domains to
obtain the composite saturation curve for the FPM:

Su-st WPy +S,r (W) P
¢M +¢F

S epy (W) = (111

where ¢y and ¢r are the matrix and fracture porosities. The composite hydraulic conductivity curve is
obtained by simple addition of individual contributions:

K:FPM (;Ll) = Ku—-M (ltt)+ Ku—F (ﬂ) (112)

Note that the matrix and fracture conductivity functions are already weighted by their respective porosities
(i.e., the expressions are divided by total cross-sectional areas including associated solid shells).

05/07/01 — Model Application DN, Ch

Estimation of model parameters

The analytical sample-scale expressions for the matrix and fracture domains contain a number of free
model parameters that can be either obtained from direct measurements or via fitting to measured
properties (e.g., saturated hydraulic conductivity).

If the aperture distribution is known from measurements, we are left with four free model parameters for
the fracture domain saturation and hydraulic conductivity functions. These parameters, related to fracture
geometry, are the dimensionless fracture lengths and pit depth scaling parameters v and 7, the pit
connectivity factor §,and the pit angle y. For cases where information about fracture geometry is
available, the free parameters can be further reduced (e.g., average pit angle vy, pit depth 1B, and pit
spacing vB could be obtained from image analyses of fracture cross-sections).

The proposed sample-scale model for matrix liquid saturation and hydraulic conductivity [Tuller and Or,
2001] contains four free parameters; the dimensionless slit length parameter B, the gamma distribution
parameter o, the matric potential 4 at the onset of drainage (air entry value) to determine the largest
pore length Lna, and the distribution overlap parameter X that relates the dimensionless slit spacing
parameter a. to the largest Lm., and the mean pore length [Or and Tuller, 1999]. These model parameters
are estimated by fitting the sample scale expression for liquid saturation to measured liquid retention data
(drainage or imbibition branch), while imposing constraints on medium specific surface area and porosity
[Or and Tuller, 1999; Tuller and Or, 2001]. The resulting model parameters are used to calculate the
sample-scale saturation curve, to predict sample-scale liquid-vapor interfacial area [Or and Tuller, 1999],
and to predict sample-scale unsaturated and saturated hydraulic conductivities [Tuller and Or, 2001]. A
conceptual flow chart of the proposed parameter estimation scheme is depicted in Fig.30.
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Fig 30: A conceptual flow chart of the parameter estimation scheme. Assumed matrix pore geometry and
measured matrix liquid retention data are used as input parameters to estimate free matrix model
parameters while imposing surface area and porosity constraints, resulting in liquid saturation, and
hydraulic conductivity. Assumed fracture geometry and measured aperture size distribution in
combination with fracture porosity and saturated fracture permeability are used to determine fracture
model parameters for calculating the continuous liquid saturation curve and predicting fracture hydraulic
conductivity as a function of matric potential. Note that the individual contributions of the matrix and
fracture domains are superimposed and weighted by matrix and fracture porosities to receive the
composite response of the FPM.

Datasets

Datasets containing information on matrix and fracture liquid retention and unsaturated permeability, as
well as other physical properties of the two domains, are virtually non-existent. A comprehensive search
of relevant literature spanning the last few decades yielded only a few incomplete datasets suitable to test
the proposed model. in the following, we use data for Tiva Canyon welded tuff reported by Wang and
Narasimhan [1993] to illustrate the primary features of the proposed model, and a dataset for crystalline
rock reported by researchers at the Swiss Federal Institute of Technology (SFIT) [Fischer et al., 1998;
Gimmi et al., 1997] for model applications.

The Tiva Canyon welded tuff (TCwt) dataset [Wang and Narasimhan, 1993] contains information about
matrix porosity, saturated matrix and fracture permeabilities, van Genuchten [1980] parameters ayg and
nyg for the matrix liquid saturation — matric potential relationship (water characteristic curve), and fracture
spacing and effective aperture for vertical fractures. Fracture porosity for a unit volume is calculated by
dividing the effective aperture through aperture spacing. The shape of the aperture distribution is
approximated with the gamma distribution (Eq.107) with £&=2 and By and Brax set to values of 1x10°m
and 5x10™*m, respectively. The second gamma distribution shape parameter w is calculated, based on the
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assumption that the critical aperture size (discussed below) is equal to the mean of the distribution m(B) =
o(E+1). Reported and derived model input parameters for TCwt are listed in Table 3.

The SFIT dataset [Fischer et al., 1998; Gimmi et al., 1997] is for a sample from a fracture zone at Grimsel
Test Site (Switzerland) [Fischer et al., 1998] with granodiorite rock matrix. This dataset contains
measured water characteristic and gas permeability data, measured saturated matrix and fracture
permeabilities, matrix and fracture porosities, and aperture size distribution. Gas permeability
measurements obtained at various water saturations were converted to equivalent water permeability to
be useful for model evaluation. The first step was to fit gas permeability data to the following parametric
van Genuchten — Mualem relationship [Dury et al., 1999]

2m

K, S.)=01-5)(-5") (113)

where K., is the relative non-wetting phase (gas) permeability, S,, is the relative wetting phase (water)
saturation, and m is the empirical van Genuchten shape parameter. The shape parameter m obtained
from fitting Eq.113 to measured K,,, data was subsequently used to calculate the relative wetting phase
(water) permeability K,, as:

K.($)=5"-(1-sYm)"]’ (114)

The conversion from nonwetting phase to wetting phase permeability for the SFIT data is depicted in
Fig.31. Reported SFIT data are listed in Table 3. Physical constants used in the illustrative calculations
are listed in Table 4.

Table 3: Reported and derived model input parameters for the TCwt and SFIT datasets

Property TCwt* SFIT®
Matrix Porosity 1.14 x 10" 3.75x10*
Matrix oye [(J/kg)"] 8.40 x 10™ NA

Matrix Nvg 1.558 NA

Matrix Saturated Permeability [m?] 2.55x10"® 3.00x 10"
Effective Aperture [m] 1.09x10° NA
Aperture Spacing [m] 0.180 NA
Fracture Porosity 6.10x 10™ 8.50 x 10
Fracture Saturated Permeability [m?] 1.18 x 102 3.00x 10"
Aperture Distribution Parameter © (£=2) [m] 3.30x10° 2.10x 10"
Minimum Aperture B [M) 1.00 x 10° 6.00x 10°®
Maximum Aperture Buma: [M] 5.00 x 10° 4.00 x 10°

NA is not applicable
® Source is Wang and Narasimhan [1993]
® Source is Fischer et al. [1998] and Gimmi et al. [1997]

Table 4: Physical constants and dimensions used in the illustrative example calculations

Property Symbol Unit
Acceleration of gravity g 9.81 ms?
Density of Water (20°C) o 998.21 kgm®
Hamaker Constant (solid-vapor through liquid) Asu -6.0x10%°  J
Surface Tension of Water (20°C) o 0.0728 Nm'
Viscosity of Water (20°C) No 0.001002 kgm's”
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Results: Tiva Canyon Daia
Set [Wang and Narasimhan,

104. ®
1993] S SFIT

The lack of complete and definitive
data sets for model testing .
introduces undesired degrees of 0.8 1 i
freedom into the evaluation. We ’
thus view the use of the Tiva
Canyon welded tuff data [Wang
and Narasimhan, 1993] as an
illustrative example rather than a
test of the model in the strict
sense. Input parameters used in
the scheme illustrated in Fig.30 @ Measured Air Permeability
are given in Table 3. Figure 32a *+ - - Approx. Air Permeability (Eq.23)

. . Calculated Water Permeability [Eq.24]}
depicts the resulting water
characteristic curves for matrix 0.2 -
and the fracture domains (Note the
fracture domain is seen on the
bottom left corner of Fig.32a). As 0.0 ‘ ' , '
expected, the matrix domain 0.0 0.2 0.4 06 08 1
dominates the saturation-matric
potential relationships. In contrast,
the permeability function (Fig.32b)
is dominated by the fracture
domain at low matric potentials
(close to complete saturation).

Relative Permeability

=)

Water Saturation

Fig 31: Conversion of nonwetting to wetting phase
permeabilities for the SFIT dataset.

10
TCwt — Total
10 — — Fracture - Comer
: —  Fracture - Film
—— Matrix - Corner
104 A Matrix - Film
——e Matrix - VG
0.8 1
1077 1
&
£
: [ ]
8 06; 2
© = 20 |
é § 10
@ E
e
0.4
102
— Total
-— — Fracture - Corner
024 —" ;rac.ture-Fllm 1028 |
———— Matrix - Corner
Matrix - Film
—=— Matrix - VG
0.0 === T T T T 107 T T T T T
10 100 10" 102 10° 10 10° 10" 100 100 102 10° 10 10°
- Chemical Potential [J/kg] - Chemical Potential [J/kg]
Fig 32: Calculated saturation and predicted permeability curves for the Tiva Canyon welded tuff unit.
Note the corner and film flow contributions within the matrix and fracture domains.
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The transition between fracture to matrix permeability occurs at a potential of about 50 J/kg, and a second
transition occurs at potentials of 2000 J/Kg where matrix film flow provides the dominant contribution to
the medium permeability. The resulting unsaturated permeability curve contains three “humps” — one for
each of the processes. It is interesting to note that fracture film flow on separated surfaces provides only
a marginal contribution to transport processes, probably because of the presence of only a few and
mostly small aperture-size fractures. Finally, all model-fitting parameters are summarized in Table 4.

Remark:

® The Excel spreadsheets for calculation of matrix and fracture saturation and unsaturated
hydraulic conductivity and for total system response are stored in Notebook/Calculations. The
filenames are Matrix-Tiva-Canyon-Tuff,  Fracture-Tiva-Canyon-Tuff, and Combined-Tiva-
Canyon-Tuff.

Results: SFIT Data Set [Fischer et al., 1998; Gimmi et al., 1997]

The SFIT data set was even less complete than the previous data set. Following a similar path, we
present the model fit to water characteristic data (Fig.33a) for matrix and fracture domains. The resulting
fracture size distribution is then used to predict the unsaturated hydraulic conductivity function. The
resulting function manifests the influences of the various domains and mechanisms, namely the
dominance of the fracture domain near saturation, a transition to matrix corner and capillary flow, and
finally matrix film flow (u = 2000-3000 J/Kg) [Tuller and Or, 2001]. Model parameters for SFIT are given
in Table 4. Attempts to use the fracture aperture distribution reported by Fischer et al., [1998] failed to
reproduce either saturation or permeability values. One possibility for this discrepancy is the fact that the
fractures were filled with porous material [Fischer et al., 1998], hence, in terms of our model, a fracture
size distribution with a smaller mean was needed to reproduce measured hydraulic functions.
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Fig 33: Calculated saturation and predicted permeability curves for the Tiva Canyon welded tuff unit.
Note the corner and film flow contributions within the matrix and fracture domains.
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Remark:

® The Excel spreadsheets for calculation of matrix and fracture saturation and unsaturated
hydraulic conductivity and for total system response are stored in Notebook/Calculations. The
filenames are Matrix-Swiss-06, Fracture-Swiss-06, and Combined-Swiss-06.

Table 4: Fitted model parameters for the TCwt and SFIT datasets

Datasets TCwt SFIT
Matrix Model Parameters *
Slit Length Scaling Parameter 80000 10
Pore Size Distribution Parameter o [m] 6.1x107 2.8x107
Matric Potential uq at the Onset of Drainage [m] -35 -5.0
Distribution overlap parameter i 57 15
Fracture Model Parameters
Fracture Length Scaling Parameter v 5 10
Pit Depth Scaling Parameter 1° 8.0x 10" 3.5x10%
Pit Connectivity Factor 8 0.3 1.0
Pit Angle Y[] 60 150

* See Or and Tuller [1999].
® The pit depth scaling parameter was set to © 2 cos(y/2)/(tan(y/2)) to facilitate analytical solutions.

Deni G

05/14/01 — Hydraulic Conductivity Function for Non-Equilibrium Conditions

Thus far, the analyses and resulting hydraulic conductivity functions were based on the assumption of
hydraulic equilibrium between matrix and fracture domains. Obviously, there is great interest in hydraulic
functions for situations where matrix and fractures are not in equilibrium, such as arrival of a rapid wetting
front from a rainfall event via preferential pathways or ventilation of the fracture domain. It should be
emphasized that details regarding rates and amounts of liquid exchange between the domains are
beyond the scope of medium characterization. These questions are in the realm of solution of a particular
flow problem rather than medium characterization under standard steady state conditions. Nevertheless,
when exchange between the domains is ignored (e.g., due to relatively long time scales relative to
uncoupled downward flow), we assemble the unsaturated permeability function for different values of
potential differential (An). For the example depicted in Fig.34 we assume that the matrix domain is wetter
than the fracture domain (Au=UmaricHracue>0). Under these conditions, for each value of matrix
permeability at a given potential u, we calculate fracture domain permeability at u+Ap and combine the
contributions according to Eq.112. The resulting family of permeability curves (Fig.34) reflects the
dependency on the “distance” from equilibrium to the point where no flow through the fracture domain
occurs (e.g., for Au>20 J/kg). The situation where the fracture domain is wetter than the matrix is trivial,
due to the large disparity in permeability near saturation; the composite permeability function will not be
significantly different than the original equilibrium case.

Remark:

® The Excel spreadsheets for calculation of matrix and fracture saturation and unsaturated
hydraulic conductivity and for total system response are stored in Notebook/Calculations. The
filenames are Matrix-Tiva-Canyon-Tuff-Curve-Bundle, Fracture-Tiva-Canyon-Tuff-Curve-
Bundle, and Tiva-Canyon- Curve-Bundle.
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Fig 34: Permeability curves for TCwt under non-equilibrium conditions.

Dt O

An obvious limitation of the foregoing analysis is the description of hydraulic properties for a two-
dimensional (2-D) cross-section neglecting potentially important three-dimensional (3-D) network effects.
Two relatively simple approach-es are proposed for incorporation of 3-D influences into the 2-D model.
The first is to measure the saturated hydraulic conductivity or permeability of the fractured porous medium
and use it as input parameter for the model. Such a measurement, which presumably incorporates the 3-
D nature of the fracture network, will provide a constraint for estimation of geometrical distribution of
aperture sizes. We envision that the resulting fracture aperture distribution will be a 2-D equivalent that
faithfully preserves the 3-D hydrodynamics (for fully saturated conditions). In the absence of detailed
information regarding fracture size distribution, we have tested this approach for the Tiva Canyon data set
(TCwt).

Alternatively, a theoretical approach based on concepts of Critical Path Analysis (CPA) from percolation
theory [Ambegaokar et al., 1971; Friedman and Seaton, 1998, Banavar and Johnson, 1987] is proposed.
The implementation of CPA in this context is based on a the following argument; given a broad aperture
distribution forming a 3-D fracture network, we begin by removing all the fractures, and then replace the
fracture segments in order of decreasing size back to their original location. The aperture size that
completes a conductive pathway across the network is labeled as the “critical” aperture size. According to
CPA, all aperture sizes larger than the “critical” are essentially in series (all flow must pass through the
“critical” size), and all aperture sizes smaller than the “critical” size could be in parallel but are much less
conductive, thus providing a limited contribution to the overall hydraulic conductivity. Consequently, the
hydraulic conductivity of the fracture network can be represented by the hydraulic conductivity of the
“critical” unit fracture element. The critical fracture size is determined by finding the cumulative fraction of
fracture sizes larger than the critical size (B.,) that equals the percolation threshold of the network (pc):

05/16/01 — Approximations for Three-Dimensional Network Effects
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- [ rB)aB (115)

B,

cr

The percolation threshold is the minimal fraction of aperture sizes that span a conductive pathway, and its
value depends mainly on the dimensionality of the network (d=1, 2, or 3) and on the coordination number,
Z. For simple cubic lattices p.=0.2488 other values may be estimated as [Sahimi, 1995]:

d
Zp,=— 116
Pe =43 (116)

The value of the coordination number Z is difficult to determine a-priori, however, evidence suggests that
for diluted fracture networks (and soil macropore networks), Z values close to 3 are common [Doyen,
1988; Sahimi, 1995; Perret et al., 1999]. Hence, for Z=3 in a 3-D fracture network the value of p.=0.5, and
the critical aperture size is equal to the mean value of the aperture size distribution. The value of B, can
be used to estimate the saturated hydraulic conductivity of a unit fracture element (using Eq.104) to
represent the entire fracture domain and the FPM Performlng this calculatlon (3-D network, Z=3, p=0.5)
for the SFIT dataset yields a Kgar of 4. 6x10™"° m? compared to 6. 1x10™"® m? calculated with Eq.108. In
summary, we propose to constrain our estimates of fracture size distribution such that the calculated
planar (2-D) saturated hydraulic conductivity will match the 3-D estimated from the critical aperture
identified by CPA. This could be an iterative process constrained by other input parameters, such as
measured saturated hydraulic conductivity.

05/19/01 — Status Dw Ch

A paper on constitutive relationships for matrix-fracture hydraulic conductivity is in preparation for journal
submission (Water Resource Research) and started on the CNWRA technical and programmatic process.
Hence, it is a good idea to re-assess at this point the status of the work and where it may be heading.

Open issues (pertaining to the TEF/USFIC- KTI) for future model improvement

® |ssues of 3-D network effects will require evaluation using measurements and other models. We are
interested primarily in the independent evaluation of the Critical Path Analysis approximation.

® The scarcity of data of flow in unsaturated fractures present a challenge to progress and ability to
provide reliable predictions relevant to performance assessment of the YM proposed repository. We
believe that an initiative to gather definitive data on flow properties of unsaturated fractures is
imperative.

® The dynamics matrix-fracture interactions were not treated in this work — some of the rates of such
interactions would be useful to capture the essence of potential bypass flow through these fracture
surfaces (e.g., as liquid flux encounter low porosity/permeability layer such as the PTN).
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APPENDIX - A

Analytical Solution for Sample Scale Liquid Saturation and Hydraulic Conductivity for the
Fracture Domain

For all geometrical configurations with t>cos(y/2)/(tan(y/2)) (Eq.90), we are able to obtain closed-form

expressions for the sample-scale response of the fracture domain by muitiplying the single element
expressions for liquid saturation (Egs.92 and 94) and hydraulic conductivity (Eqs.104 and 106) with the
gamma distribution for aperture sizes, and integrating the resulting expressions over part of the fracture
population associated with the different filling stages. The resulting integral equations may be expressed
by the following general integral:

B,
H= (e B +c, B+, B+c4)Exp|:—£] dB (A1)
w

BI
where H represents the sample-scale hydraulic function, B, and By are the lower and upper integration

limits, and ¢, C», Cs, and c, are constants or variables listed in Table 5. The analytical solution of the
integral in EQq.A1 is given as:

H = F(BL)—F(Bu) (A2)
with

F(B)=w{e™*|B (B, +Bc, +c,)
+c4+a)(4B3c,+ZBcz+c3) (A3)
+20° (6B, +¢,)+240°Be, +240'c, |}

Tab.4: Integration limits, constants, and variables used to calculate sample scale liquid saturation, and saturated and unsaturated
hydraulic conductivities employing the general EqQ.A1.

Upper
Lower .
Integration Integration C [ Cs Cs
LimitBe  |imitg,
Degree of Saturation
Syur(p) 1
Complete Buuin Bi(k) 0 o 0 0
Saturation
) h(p)( 2T+ vcos[%)] F, r(m)? - 2n(u)r(u)cot %
Partially Biw) B 0 0 - y N _—
Saturated o’ vcos(;) +21(t+ t)sm(E] w® [v +21(1+ t)lar{%)}
Hydraulic Conductivity
Kyur(p) %[K,(v+2nnn[§))+ ZKdtJSInn(%}]
Saturated Buin Bi(w) 0 0 0
Conductivity 20" [v +2101+ t)(an(%)
(v KGO r(u)?E, & - 2KEGuh(u)r(u) cof T
Kour(l) o KF(M)h(uJ[ 2T+ \'costz ” oe| KC)r(u)°F, (win(ujruycoy >
Unsaturated By(w) B 0 0 7 ” «Y' —
Conductivity 5% [\'cos(— +2t(1+ T)“"l "]] w? [v v 2t1+ t)ta'{ Y ]i’
2 2 2!
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Volume 2: Dripping into Cavities from Unsaturated Fractures under
Evaporative Conditions

Thermal Effects - Key Technical Issue - Dani Or - 06/30/99 D""‘ a(,

Account Number: 20-1402-661
Collaborators: Teamrat A. Ghezzehei (USU), Randall Fedors, Ron Green (CNWRA)
Directories: C:/dripping_notebook

Objective: the objectives of this study are to develop analytical tools for predicting the
conditions and rates of liquid drop formation at intersection of vertical unsaturated
fractures with larger subterranean cavities. Drop size, dripping rates, and solute

concentration are sought under evaporative conditions.
Initial Entry — 2/17/99: D"""‘ a"

Dripping Flux Supplied by Unsaturated Flow on Rough Fracture Surfaces

A new model for flow on rough surfaces of unsaturated rock fractures, proposed by Or
and Tuller [1999] is used to calculate the flux required to generate dripping. The details
of the model are provided in the above mentioned paper and accompanying Volume 1
of this scientific notebook (#354). We have selected only the derivations, related to the
calculation of liquid flux contributing to drop formation.

The model considers a unit cross-sectional segment of a fracture with wide aperture,
and consists of flow regimes in thin films (film flow) and in partially filled grooves (corner
flow). For the purposes of this study, we will use a surface roughness element with
cross sectional view as depicted in Fig (1) comprising a vertical groove and adjacent
plane surface. Flow of water occurs in thin films over the plane surface element of width
(B L) and in the groove defined by the depth (L) and angle (y).

BL e 2L tan(y/2) ;

- —
T |

Figure 1. Definition sketch of a unit fracture element in a
horizontal cross-section. The groove is defined by its depth (L)
and angle (y). The plane over which film flow occurs is defined by
its relation to the groove depth ().
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A curved liquid-vapor interface in equilibrium with the matric potential at ambient
atmosphere (y) is maintained in the groove. The interface curvature follows the Young-
Laplace relationships untii a geometry-dependent critical matric potential (y.) is
reached, above which the groove is completely, liquid filled. The critical matric potential

(we) is given by,

o cos(y/2)
Ve = T—ros (1
L tan(y/2)
where
Yeeeeaememneneeennens Groove angle
| Groove depth [m]
Lo Surface tension at the liquid-vapor interface [0.0729 N m-1]
Weeererrarnmannaanans Critical matric potential separating partially filled and full pits [J m™®= Pa]

The radius of curvature of the liquid-vapor interface (r.y) in the groove, prior to complete
filling by liquid, is given by the Young-Laplace equation,

fiy == ()
W
where
TLV eevrrrnnnrnnnnnns Radius of liquid-vapor interface curvature [m]
117 Matric potential [J m-3]

When the matric potential is greater than the critical matric potential (v > y.) the groove
is filled-up completely with water.

The film thickness (h) over the plane area is related to the matric potential by [lwamatsu
and Horii, 1996],

h=3 Asw (3)
6my
where
Asicenriaannaan Hamaker constant (a thermodynamic adsorption parameter for solid-
vapor interactions through the intervening adsorbed liquid) [- 6.0x107° J]
3 I Film thickness [m]

The volumetric flux of liquid flow [m> sec”] across the cross-sectional area of the
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element (Fig 1) under a unit gravitational gradient was calculated by Or and Tuller
[1999]. The individual contributions of film- and groove flow to the total flux prior and
after groove fill-up are given below.

(a) Partially saturated pits/grooves (y<y)

Expressions for film flow are derived from standard Navier-Stokes equations with
appropriate boundary conditions, and from consideration of changes in the contributing
area to film flow with changes in the matric potential:

. _h’g L ny
Flm: oo i i) *

Expressions for average liquid velocity in corners/grooves bounded by a liquid-vapor
interface were derived by Ransohoff and Radke [1988] expressed as:

' Fpg
Groove/Corner: Qc=—"—"= (5)
€N
Where
E oiieeereeeeiiiann Flow resistance parameter [dimensionless], [Ransohoff and Radke, 1988;

Or and Tuller, 1999].

F is a dimensionless angularity factor, defined by groove geometry as,

1 180 -y
F= - 6
tan(y/2) 360 ©)
(b) Completely filled pits/grooves (y >y — close to saturation)
h’pg
Film: Qe = 3—(BL +2Ltan(y/2)) 7)
n
. 2 "va Pg
Groove/Corner: Q. =L?tan(y/2)L == (8)
en

The total flux due to film flow and corner flow is assumed to converge at the bottom tip
of the corner and result in drop formation. This flux is given by,

Q=QF +QC (9)

where

Fo Angularity factor [dimensionless]

Dripping from unsaturated fractures under evaporative conditions Volume 2 Page 3



Dani Or SCIENTIFIC NOTEBOOK # 354 — TEF KTI 06/30/99

[+ [P Acceleration due to gravity [m sec™]

Q.o Total volumetric liquid flux due to film and corner flow [m® sec™]
[ I Volumetric liquid flux due to film flow [m® sec™]

(@ PSR Volumetric liquid flux due to corner flow [m* sec™]

G J Parameter relating plane area to groove depth [dimensionless]
Berrrieriieeeneenaans Flow resistance parameter [dimensionless]

Moeerrrrmreeeeeeeenans Liquid viscosity [Pa s]

P ereeereeeresineeaens Density of the liquid [kg m™]

Note: Both h and r.y are given as functions of the matric potential y in Eq (2) and (3).

Hence, the fluxes Eq (4)-(9) are also functions of matric potential ().

2/24/99: One-Dimensional Axisymetric Dripping Model

Adaptation of Wilson's solution [1987] to dripping from fractures

We consider liquid emerging from the bottom of a vertical groove at a very slow flow
velocity that does not induce jetting, as shown in Fig (2). The liquid forms a drop that
grows slowly and stretches under its own weight until it raptures and detaches. During
drop growth, a force balance between viscosity, gravity, and surface tension determines
its evolution. The effect of inertia on drop formation and detachment is neglected. For
simplicity, we start by presenting the evolution of the first drop from the emergence of
the first liquid element at the groove tip to its detachment. Later, the periodicity and
evolution of all subsequent drops are considered.

At the base of a fracture, liquid leaves the groove at a volumetric flux Q given by Eq (9).
If the grooves are patrtially filled, the liquid cross-sectional area at the bottom tip feeding

the drop (Ao) is given by,
Ao =Fr,,? (10)
where

Ao Liquid cross-sectional area at groove bottom tip [m?]

If the grooves are completely filled with water, the liquid cross-sectional at the bottom-tip
is given by,

Ao =L?tan(y/2) (11)
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The liquid leaving the groove bottom-tip forms itself into an axisymmetrical drop. We
employ a Lagrangian coordinate system, as shown in Fig (2b), to track the growth and
detachment of the drop.

(a)

Evaporatio

(b)

Figure 2. Definition diagram showing (a0 a drop forming into a cavity from
face of a vertical fracture, and (b) elements of drop in horizontal plane are
marked by a moving (in time) Lagrangian coordinate system.
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The fluid elements are labeled by their time of emergence () from the groove, and the
actual time is denoted by (). The first element to leave the grove is labeled by © =0,
and the element just leaving at present time t is labeled by t=t, and 0 < 7 < t on all
other points. Let X . be the distance bellow the groove bottom of a typical element
labeled by t, at time t, and let A, be the cross-sectional area of the drop corresponding
to that element. Considering two neighboring elements 1 and t +dr, the conservation of
volume (assuming the liquid is incompressible) leads to,

Qdr=-A,, dX,, (12)

First, we consider a drop forming in the absence of the effect of surface tension. We
consider force balance between the two neighboring elements t and t +dt, where the
longitudinal stress on the horizontal section is denoted by S;.. Then,

(SA), - (SA),,n.=p9A, dX,, =pgQdr (13)

T+AT T

Thus,
P aX
J(sA)=pgAZ -pgQ 14
(,%( )=pg =P (14)

Then, Eq (14) can be integrated to give,
SA=pgQr (15)

The interpretation of Eq (15) is simply; the longitudinal force at any element t equals the
weight of the fluid underneath it. In terms of liquid volume suspended below any

element V;, Eq (15) can be written as,

(S A)t,t =p9 Vt,r (16)

where V is defined by,
Vi, =Qr (17)

, T

The effect of liquid surface tension acting against the gravity can be introduced into Eq
(15). The surface tension of the liquid acts along the perimeter Py . of the drop.

Qt-Po
g, _(p9¥T-Fo 18
t,l’ ( A )t . ( )
where
S TR Vertical stress acting in a horizontal cross-section of drop at element i

[Pa]

Dripping from unsaturated fractures under evaporative conditions Volume 2 Page 6



Dani Or SCIENTIFIC NOTEBOOK # 354 — TEF KTI 06/30/99

P Perimeter of drop cross-section at element i [m]
At Liquid cross-section of drop at element i [m]

The rate of extension of the drop is related to the stress by constitutive equation of
elongational flow assuming a Newtonian flow,

S=-31—22-_"¢ (19)

where 7 is the viscosity of water. The second term on the RHS of Eq (19) is a correction
accounting for resistance to extension of cross-sectional area due to surface tension.

Note: The first term on the RHS originates from equation of state for Newtonian liquid

under extension o, =\ &2, where o, =S is stress of extension, &, = aA/( X s

extensional strain rate, and A is Newtonian viscosity in extension. The latter is
related to viscosity in shearing (n) by A =2n(1+v). For incompressible liquid
v=0.5, hence, A=3n. The second term on the RHS denotes the effect of surface

tension on the cross-sectional plane. Surface tension acting on the perimeter of
the drop in the axial direction is given by F =Po. The lateral stress of surface

tension resisting the extension of drop area is related to the axial stress by the
Poisson ratio (v=0.5). 0.5 Pc/A.

Equations (18) and (19) are combined to give the following, first-order differential

equation,
aA(t)= -pgQr+noR(t) (20)
ot 3n
Equation (20) was integrated (using MATHEMATICA 3.0 — see appendix A) to give,
W(t-C)
2 - exp[— 1+ —jl
A(t) = (CleL RS VIS oductLog 6nUQx 21)
W uQr

Where

U=pg,
W=7t02,

ProductLog (z) = o is the solutionto z = © €, and
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C is constant of integration.

When t =t , the element is just emerging from the groove and we know that A = Ao
(Fig 2). This reduce Eq (21) to,

- exp|:_ 1+ M:l

2
Ao = M 1+ Pr oductlLog 6nUQx (22)
w UQr
By applying the definition of ProductLog to Eq (22), it can be rewritten as,

—exp| — 1+ M

JAo W JAo W 6n1UQ"
——1|exp| ———-1|= (23)

uQr UQr uQr

Now, Eq (23) can be solved for C (constant of integration), by inverse method,

uQ

C =—JV[W~6nUQ—-6nUQ In[—exp[—1+ VAOW}/AOW —uQ rD (24)
T

The drop is pinched and detaches in a finite time (t) when the cross sectional area A(t)
goes to zero. The time at which this occurs is obtained by substituting Eq (24) into Eq
(21) and solving it using similar method as in Eq (23) with A(t) set to zero,

t=r—6n‘/%l——3(1+éln{1—9—D (25)

Where

Q- ,/AoW

uQ

The drop element (plane) that vanishes first also satisfies an additional
condition: dt/dt = 0. Differentiating Eq (25) and setting it to zero leads to an implicit

solution for the critical time of breakage or detachment (t = 1),

0:1—-6n1}-A—o 1 +1In1——9— (26)
Wit.-Q Q Te

where
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L R Time to detachment [sec]

Values of 1. for different matric potentials and geometries are obtained by an iterative
(numerical) solution of Eq (26). The time at which the first drop detaches is obtained by

substituting 1. into Eq (25). The drop volume (Vy) is obtained simply by integrating the
volumetric flux over the duration of drop formation 1.

V,=1.Q (27)

where
AV Drop volume [m?]

At the time of detachment of the first drop (t'c), a portion of the extruded liquid at the tip
of the groove remains behind, whose volume (known in literature as the recoil volume)

is associated with the time difference (1, = t'- 7). Because all subsequent drops are
built on existing recoil volume, the period of detachment after the first drop pinches is

reduced by the time equivalent to the recoil volume (o),

t,=tle —1, =1, (28)
where
LD Time to detachment of first drop [sec]
b Time to detachment of all drops subsequent to the first [sec]
TG errrrnennneneennnns Lagrangian time for the detaching element [sec]
TO eeeeeaaaerenrennes Lagrangian time for the recoil volume [sec]

Note: In other words, Eq (28) states that the volume of liquid extruded from the outlet
during an interval between two successive drops is equal to the drop volume.

3/6/99: Evaporation from Drop Surface D""‘f OL

For the relatively slow rates of unsaturated surface flows in fractured porous media,
evaporation from drop surface can greatly increase the time required for drop
detachment, especially under drier conditions. Low matric potentials induce reduction in
influx (Q) and extension of detachment period (tc), thereby increasing the opportunity
time for evaporation. At the same time, evaporative demand by the surrounding
atmosphere increases with reduced vapor pressure.

A diffusion type equation of radial evaporation from a suspended drop was derived by
Ho [1997]. In this study, Ho's solution is incorporated to the situation of growing drop. It
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is used to combine the competing effects of evaporation on drop growth and
detachment period.

For this analysis, we assume that a drop has a hemispherical shape during most of the
drop formation period. This is evidenced from the time sequence photographs in Fig. (3)
for a water drop forming and detaching [Zhang and Basaran, 1995]. In Fig. S3a), it is
shown that the drop shape is approximately hemispherical for greater than “/s of the
entire period (denoted as drop formation period). Deviation from hemispherical shape
takes place for only short period before detachment (detachment period). The rapid
detachment period is less sensitive to variation in flux than the formation period. Figure
(3b) shows that detachment period from a fixed inlet area remains approximately
constant as flux decreases, while the drop formation period increases by a few orders of
magnitude. This further justifies the hemispherical assumption, because evaporation
starts to affect drop formation and detachment significantly only when the flux is very
low.

The instantaneous rate of evaporation from a droplet of radius (r,) can be assumed as
isothermal diffusion represented by Fick's law [Ho, 1997],

r=ry
where
dry/dt.............. rate of change in the drop radius [m s™]
Do binary diffusion coefficient of water vapor [m?s™]
dC/dr ............. the water vapor concentration gradient [kg m® m™].

The binary diffusion coefficient of water vapor at ambient temperature (T) is related to
binary diffusion coefficient at standard temperature and pressure (D°) by [Campbell,
1986],

5 1.8
D:poﬁ( T j (30)
P \273.15

P the total, gas-pressure [1.0x10° Pa at sea level]

Dripping from unsaturated fractures under evaporative conditions Volume 2 Page 10
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Figure 3. Time sequence photographs of water drop formation and detachment, (a) water

drops forming out of a tube of outer radius of 0.16 cm at liquid flow rate of 1 mL min™*. The drop
has approximately hemispherical shape for the first 4/5 time of the total formation period (drop
formation period), in the remaining % of the period the drop forms a neck and detaches (drop
detachment period), (b) Evolution of dimensionless drop length (L/R) vs. (td-t) countdown time to
detachment. As Q gets smaller the total dripping time becomes smailer, however, time of
necking and detachment remains almost unchanged. [Adapted from Zhang and Basaran, 1995]
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The concentration gradient of water vapor at the drop surface is obtained by solving for
radial diffusion from the drop surface [Ho, 1997],

dc| AP,

dr|_ R T (32)
r=ry
where
[ water vapor gas constant [R*=462 J kg"'K ™|
APy ...n difference in vapor pressure between the drop surface and the

surrounding environment.

The pressure difference (AP,) is related to the matric potential (y) and the saturated
vapor pressure at ambient temperature (Psa) by:

AP, =Psat|1-ex “”’) 33
ol .

The initial radius (ryo) for a hemispherical drop in the absence of evaporation is related

to the flux by,
Moo (T) = 3’—3Q T (34)
27

Integration of Eq (29) with the initial condition given by Eq (34) leads to an expression
for the instantaneous drop radius,

2D AP,

SR YT+ Mo (1) (35)

fp()? =

The corresponding drop volume after evaporation would be,

N

2n| 2DAP, 3Q )3
V(t)=<Z 3 36
(1) rb() 3 | oR*T +(2nrj (36)
The net flux would be derived from Eq (36) at any given t as,
Qo =Y _ i—“(Mr +No# J (37)
T T

where:
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M:_ZDAPV
pR* T
%
Nz(ég]
27

In the presence of evaporation, the flux (Q) in Eq (21) is replaced by Qret in Eq (37).
Following the same algebraic manipulations we arrive at a similar expression for time-
to-detachment,

; % M) '
t=1 _6n\/%.(1+f&_§“ﬂx|{1___&__ﬂ (38)

(Ne# + M)
Where

o 3/AoW

27U

Similarly, the first drop element to reach this pinching state satisfies the additional
condition dt/dt =0

0=1—3n\/%(2m;1/3+3m)[ A4 +Wln{1—%ﬂ (39)

Y3/2 —_O Q'
where

Y = N'cc% +Mr+,

Equation (39) is evaluated iteratively using a Newton-Raphson scheme. The argument
of the logarithm on the RHS of Eq (39) evolves from a large negative number to small
positive numbers in very short time period. The function has large negative results at
points immediately next to the singularity and levels off to value of one within short
distance in (1). The numerical scheme used approaches the solution only from the real
side, with a step size that is a very small fraction of the standard Newton-Raphson
scheme. Details of a FORTRAN 90 code that implement this scheme is given in the
Appendix B of this scientific notebook.
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3/10/99: Maximum Detachment Time Dam Co,

For liquid drops to be formed and eventually detach, the net liquid flux feeding them
needs to be positive at all stages. If, at any stage of drop formation, the net flux
becomes negative, the drop would decrease in size (due to evaporation rate greater
than influx) and never attain sufficient weight to break off. Any situation that results in
non-positive net flux (Qqet) leads to non-dripping situation. For any given matric potential
(vapor pressure), the time (t) which equates the term on RHS of Eq (37) to zero,
represents the maximum opportunity time (tmax) within which the drops should be
formed and detach (if they form at all),

3 2
R*Tp)(3Q

= 40

Fmax [ZDAPVJ (27:) (40)

Drop detachment time (z) is obtained as a solution to Eq (39), and is always less than

the maximum opportunity time (tmax). Equation (39) is mathematically undefined for
times greater than tmax.

The volume of the drops is obtained by integrating the net flux Eq (37) over the duration
of drop formation to its maximum volume using MATHEMATICA 3.0 (Appendix A).

a2 1V (a2 1 ) 2 2
8N*yNL.3 +|N+Mg3 | [8N2 —20MNg3 +35M2 ¢35 |yNg3 +My

3 (41)
315M3 13

Vd =4x

This analytical expression of drop volume Eq (41) becomes mathematically unstable at
high values of matric potential (i.e., very wet conditions). However, numerical integration
of Eq (37) reveals that the numerical and analytical integrals coincide for all values
roughly less than the critical potential of groove filling (yc). In the range where Eq (41) is
unstable there is little evaporation effect (dripping rate is very fast with detachment
times <<1 sec), hence drop volume is almost equal to the total influx to the cavity. The
total volume of water that leaves the groove is given by integrating the constant influx
over the duration of drop formation

Vi=Qr (42)

The difference between the total flux (Vi) and the drop volume (Vq4) being the volume of
water that evaporates during drop formation.
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3/18/99: Solute Concentration of Liquid Drops D«N 3

During evaporation, water is preferentially evaporated leaving behind non-volatile
solutes (salts) thereby changing solute concentration of a growing drop. The ratio of the
total liquid volume to drop volume can be interpreted as the relative increase in solute
concentration of a drop at the time of detachment.

C =%"f‘°—=$—; 43)
where
Carop-coveeeeerene solute concentrations of the drop water [ppm]
Co i solute concentrations of the bulk water feeding the drop [ppm]
Creleeeoeeeeerennnnn. relative solute concentration of drops [dimensionless]

Dryer conditions induce slow flow rates and longer detachment times, as well as higher
evaporative demand. When these processes are coupled they result in high solute
concentrations in drops formed under low matric potentials (dry conditions). The effect
of increasing solute potential on evaporation rates, potential gradients, and solute
diffusion are not considered in this analysis, and require further investigation.

3/21/99: Alternate Solution for Experimental Purposes D"" a‘*

Tests of the fracture-dripping mode! presented in the previous sections of this scientific
notebook require an experimental setup in which accurately controlled flux and vapor
pressure induce dripping. Such an experiment could be designed around accurate
control of vapor pressure in the experimental fracture and cavity. However, the fact that
liquid flux and evaporation are inseparable presents a formidable challenge to practical
experimental systems. To alleviate the above shortcomings we present a decoupled
solution in which the liquid influx and evaporation are controlled independently. This
approach can also be used in investigating real life problems where drop formation
under equilibrium state vapor pressure is not possible (e.g. actively vented cavities).

We consider a setup consisting of a sample of fractured media similar to Fig 2, in which
the plane width parameter is set as B=0 (considering flow in grooves only). A controlled
steady state volumetric flux is applied at the groove top (Qv). This influx of liquid
substitutes the chemical-potential-dependent flux (Q) of previous calculations.

The applied flux is not permitted to overflow out of the grooves (by keeping the flux
sufficiently small or using deep grooves). Thus, the flow mechanism is that of corner
flow in partially filled grooves given in Eq (5). Drop inlet area is approximated by the
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liquid-vapor interface curvature equivalent to the specified volumetric flux Eq. and the
corresponding inlet area formula Eq (10), leading to cross-sectional area dependent on

flux,

1

po=| Quenk 2 (44)
Pg

The maximum flux (Qumax) that can be applied is that which fills the grooves completely.
This can be calculated from Eq (1) and (5)

Ltan(y/2)) Fpg
cos(y/2)j en @)

The rate of evaporation is determined by the vapor pressure (matric potential) as
previously.

Qymax = (

4x10-¢ -
‘E
o
<
(4
et
< 2x10°€ |
°
= 4 30°  120°
[} a L=2.5mm
L) O L=2.0mm
0 T T T T T
0 2x10% 4x10-% 6x10° 8x10*°

Volumetric Flux Q [m3 sec'1]

Figure 4: Liquid Cross sectional area at the base of fracture (Ao) dependent on the
liquid influx (Qv), shown for two groove angles (y). The maximum flux for stable flow in
the grooves is indicated by symbols for two groove-depths (L ).
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In Fig (4), the inlet area (Ao liquid cross-sectional area — Eq. (44) is depicted as a
function of volumetric flux (Qv) for two groove angles. The curves define the increase in
cross sectional area with increase in volumetric flux for all groove depths. Maximum
values of stable flux (Qumax) as defined by Eq (45) for two groove-depths (L) are
indicated by symbols. The dependence of cross-sectional area (Ao) on the groove angle
(y) is overshadowed by the high sensitivity of the cross-sectional area to the influx (Qv).
However, the groove angle is the major factor in determining the maximum flux, and
hence maximum cross-sectional area.

The net flux (Qnet) given in Eq (37) is modified by substituting Q with Qy. The drop
detachment time is obtained by solving Eq (39) using the modified net flux Eq (45). The
numerical solution methods are identical to those discussed in previous sections. The

evaporation from drop surfaces is determined by the matric potential (y) in the cavity.

4/5/99 Dt G

lllustrative Examples of Coupled Dripping and Evaporation

The following illustrative example considers dripping in a phenomenon where the flux
inducing vapor pressure and evaporation inducing vapor pressure are in equilibrium and
numerically identical (y). It makes use of the set of equations given in the section of
dripping under evaporative conditions. The following parameters were considered to
define the fracture geometry:

Lo, 2 mm deep (equivalent to typical surface roughness observed by
Tokunaga and Wan [1997]).

[ RO 1

Yereeeunmnneneerinies 30, 60 and 120 degrees

Wt 10 - 3000 Pa. In the following examples matric potential is measured in
units of energy per unit volume [J m?} (1Jm?®=1Pa=10°Jkg"' =0.1
mm H,0).

llustrative calculations of drop detachment period, drop volume and relative
concentration at detachment as functions of matric potential (y) are presented in Figs.
(5) to (7). The water flow considered is induced by a unit gravitational gradient,
however, the solutions presented can be used for any gradient other than unity. It is
assumed that the matric potentials in the fracture and the cavity are at equilibrium.

Note: The implicit functions of detachment period for non-evaporative and evaporative
conditions, Eq(26) and (39) respectively, are ill posed. For 1 very close to the
actual solution, the functions have very steep slope, and standard Newton-
Raphson iterations fail to converge unless the initial guess is very close to the
actual solution. We used a FORTRAN 90 code that implements Newton-
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Raphson iterations with damping factor, and uses solution of preceding matric
potential as an initial guess for the current solution. As the matric potential
decreases (gets drier) the slope of the function increases, and we used smaller
steps in matric potential to overcome the difficulty in obtaining solution. The
FORTRAN solutions (Appendix B) were cross-checked with solutions obtained
using MATHEMATICA 3.0 for selected matric potential values and geometry, as
shown in Appendix C.

Detachment Time (Fig 5)

Out of the three geometric parameters (L, B and y) that define the fractured media, the
corner angle (y) results in much higher variations of drop size and detachment. The
effect of groove depth (L) is limited to determining the matric potential of complete filling
of the grooves. Hence, its effect is visible only near saturation matric potentials (near
zero). The parameter $ does not have significant effect on dripping rate and drop size,
since corner flow dominates film flow by several orders of magnitude in the range of
matric potential where drop formation is possible. Detachment period (tc) for non-
evaporating Eq (26) and evaporating Eq (39) conditions and the maximum opportunity
time (tmax) Eq for two groove angles are depicted in Fig (5).

N
o

— pBL T, evaporating
E I:V—LL _ _ 1, non-evaporating
';' 45 Tmax
E
o p=1.0
"qé; 30 L =2mm
£
L
Q
C
o 15
(@]
0 T T T
0 1000 2000 3000

- Matric Potential [Pa]

Figure 5: Drop detachment time () under evaporative and non-evaporative
conditions dependent on the equilibrium state matric potential (y) of cavities and
fractures, and maximum opportunity time (tmax) for detachment.
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As the matric potential decreases (becomes more negative), the total influx to the drop
decreases while evaporation increases. Dripping continues at progressively lower rates
until the influx equals the evaporation rate. The crossover of drop detachment time (tc)
with maximum opportunity time (Tmax - EQ (40)) denotes the minimum potential (driest
conditions) at which drop formation is possible for a given geometry. When critical drop-
forming potential is approached, the detachment time (duration of drop formation 1)
becomes very sensitive to slight variations in ambient conditions to the extent that even
small variations in barometric pressure or temperature could induce vastly different
dripping rates and drop chemistry. In contrast, under non-evaporating conditions (Eq.
(26), drop formation continues indefinitely with no bounds on minimum matric potential.

Drop Volume (Fig 6)

The volume of individual drops in evaporative conditions as a function of the matric
potential Eq (41) is shown in Fig (6a). The drop volume is determined by the inlet area
(liquid cross sectional area at the corner or lip), and time to detachment. The abrupt
change in inlet area (liquid cross-sectional area) at the critical matric potential of
complete groove filling () results in a large decrease in drop volume. In the remaining
range of matric potential changes (before and after complete groove filling) a further
decrease in matric potential (hence, inlet area) is accompanied by gradual decrease in
drop volume.

4x108
pL
D V)
o ) Full Gro¢;ve ,
E Partially Full Groove
N \
€ o ine
S
a
o
(]
B=1.0
L=2mm
0 T T T
101 102 103

- Matric Potential [Pa]

Figure 6: Drop volume at detachment for different groove angles (y)
under evaporative condition.
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The dependence of drop volume on the duration of drop formation is through the rate of
viscous extension. A faster extension process Eq (19) tends to add-up to drop weight
resulting in smaller drop volume than a drop emanating from the same cross sectional
area but at a slower flux. However, this dependency is overshadowed by the effect of
matric potential which induces several orders of magnitude variations in liquid flux and
liquid cross sectional area. Therefore, significant differences in drop size between
evaporating Eq (41) and non-evaporating Eq (27) conditions are observable only when
the matric potential is close to its critical minimum before cessation of dripping (under
evaporating conditions) as shown in Fig 6b. Differences are observable near this critical
potential due to the rapid increase in drop formation time where the slow extension rate
reduces the stress.

Solute Concentration of Drops (Fig 7)

Under evaporative conditions, both, the matric potential (or equilibrium vapor pressure),
and groove-geometry, determine the solute concentration of drops. Sample calculations
(using Eq (43)) of drop concentrations at time of detachment are shown in Fig (7) for the
three groove-angles (y) as functions of the matric potential (y).

The effect of lower matric potential on drop solute concentration is through the decrease
in dripping rate that allows more evaporation to take place. At potentials close to
minimum drop forming potential, the time required for drop formation increases rapidly
thereby allowing for extended evaporation opportunity times. Near this region (see Fig.
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©
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L =2mm
o - T T T
0 500 1000 1500 2000

- Matric Potential [Pa]

Figure 7. Relative solute concentration of drops (in relation to the bulk influx) at
detachment for different groove ar gles (y) under evaporative condition.
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5 for the fast rise in formation time), the concentration more than doubles by only a
slight decrease in potential (or vapor pressure). It is important to note that the minimum
drop forming potential (below which dripping stops) is completely determined by the
groove geometry. This sensitivity to groove geometry and matric potential variations
guarantees that even under similar ventilation conditions, variations in individual
dripping rates among grooves (on the same fracture lip) would produce drops with
different solute concentrations. In general, slow pathways would result in higher relative
solute concentration of drops by allowing longer evaporation duration. Even slight
variations in matric potential (e.g., at a range that could be induced even by barometric
pressure or temperature variations) near the minimum drop forming matric potential
(depends on the groove geometry) could substantially aiter solute concentration of
drops.

Comparison of Drop Volume with Alternative Solution of Scheele-Meister (Fig 8)

We compared our drop volume calculations with a widely used semi-empirical equation
of Scheele and Meister [1968]. The original equation was developed based on two-
stage process of formation of a liquid drop (growing and necking) into a different liquid.
For liquid drop forming in air the Scheele-Meister equation can be reduced to [Zhang
and Basaran, 1995]:

1
) 2 2pn2 \3
Vey = Fug 2ncRo  4Q +7.14(Q on O'J (46)
ap 3nRo2g ag’p
where
Ro....ooeei Radius of circular inlet area [m],

Harkins-Brown correction factor to account for the proportion of an ideal
(static) drop that detaches [dimensionless].

We compared our drop volume calculations of Eq (27) under non-evaporative condition,
with that of Scheele-Meister Eq (46). Using the Harkins-Brown factor as fitting
parameter (F=0.48) resulted in good agreement as shown in Fig (6), for most of the
matric potential range used in this study. For the wet end of matric potential, however,
the Scheele-Meister equation fails by resulting in decreasing drop volumes with
increasing flux. In extreme cases (very close to saturation), negative drop volumes are
predicted by Scheele-Meister equation.
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Figure 8. Comparison of Scheele-Meister drop volume [Zhang and Basaran,1995]
and Equation (28) for different groove angles (y) under evaporative condition.

Detachment Time using the Alternate Solution for Experimental Purposes (Fig 9)

Sample calculations of drop detachment times (tc) for a series of fluxes (Qy) and
different matric potentials () are shown in Fig (9).

The net flux decreases with decrease in the matric potential (or relative humidity) of the
cavity, leading to increase in detachment time. A singularity is encountered in Eq (39)
when Qnet < 0, indicating that the conditions are too dry or flux is too small. The
minimum volumetric fluxes (Qmin) associated with limiting ambient vapor pressures in
the experimental fracture cavity where singularity is likely to arise are depicted in Fig (9)
by arrows. When the vapor pressure of the cavity is close to saturation (e.g. y = 1kPa),
the effect of evaporation is negligible and drops can be formed even at infinitely small
volumetric fluxes.
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Figure 9. Detachment time of drops formed under different evaporative conditions
(chemical potentials) dependent on volumetric flux supplying the grooves. The
minimum fluxes that can lead to drop formation under the given evaporative conditions
are indicated by arrows. In terms of relative humidity: 1kPa = RH 0.9999, 500kPa = RH
0.9963, 800kPa = 0.9942, 1100kPa = 0.9920.

The drop volume is obtained by integrating the modified net flux equation Eq (37) over
the drop formation period (t¢). The calculated volume of liquid drops is shown in Fig (10)
as a function of the volumetric flux applied to two groove angles (y). The drop volume is
mainly dependent on the inlet area (liquid cross-sectional area, Ao). The drop volume is
less sensitive to the groove angle (y) because the inlet area is also less sensitive to y as
discussed above (Fig 8).
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4/15/99: Status Report DW (.

Limitations and future model improvements

® Several questions remain open regarding the convergence of film flows adjacent to a
groove. In other words, does the formation of a liquid drop (where liquid is at lower potential
energy per unit volume) attracts liquid to the “supply zone"?

e |t is unclear whether the assumed cross-sectional area feeding the drop (A,) is indeed
defined by the equilibrium liquid configuration in the groove.

e There is growing interest to expand this work to deal with drop formation on inclined
surfaces (cavity ceiling) and the potential migration downslope. The interest is motivated by the
likelihood of drops landing on canisters, but this is also important for flow-routing at fracture
intersections (to tie with Stu Stothoff work on discrete fractures).

® We believe that asperities and other geometrical “irregularities” cause liquid accumulation at
these “low energy traps” with subsequent discharge of critical liquid mass or volume (similar to
drop detachment process). There is a distinct possibility of using derivations from this study to
identify volumes and rates of liquid discharge in such systems which cause the high degree of
intermittent flows observed in many experiments.

e Experimental work in artificial fracture surfaces will focus first on evaluating flow in grooves
to assess model predictions of dripping rates and volumes in the absence of evaporation.
Subsequent work (with actual YM rock samples?) will attempt to highlight effects of evaporation
for very low fluxes (using chambers with controlled temperature and relative humidity).

® Note two appendices are attached: (1) Appendix A includes detailed mathematical
derivations using Mathematica 3.0 (the worksheet is also attached); and (2) the computer
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Appendix A:  4/15/99 Dt O

Drop Formation and Detachment under Non-
Evaporative and Evaporative Conditions

Note: Corresponding MATHEMATICA 3.0 file is attached as APPENDIXA.NB

Force balance and Cross-sectional Area of Axisymetric Drop

B Force Balance

At a given time t, the weight of material below an element represented by 7 and the surface tension over the
perimeter are balanced by an axial stress over the cross-section:

SA == -2nRy+pgQrz;

S -2nRy+pgQtT |
== A ;

W Stress Equation

Constitutive relations of elongational deformation of viscous body with a correction term for effect of surface
tension at a fixed T

o¢ A[t] - ——;

== —3
S 7 R[t]

B Evolution of Cross-Sectional Area

Force balnce and stress equations are solved simultaneously to yiled an ordinary differential equation. Combining
both equations yields,

27R t y+pgQt =-3p L aAt -—%

At At Rt ;
1 ¥y 2nRIt]ly pgQT
3 A = e T A
using the re]atimE[lT = 1—;—], we obtain the following ordinary differential equation,
t t
BOL - o Aft] - YV VAR - 299t

EQI is the basic differential equation for dripping. Wilson (1988) solved EQ1 by introducing non-dimensionalizing
transformations. In order to be able to intriduce effect of evaporation at latter stage (and added adavantage of
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MATHEMATICA to handle the orginal problem), we contnue solving the equation without introducing the non-
dimentional forms used by Wilson.

EQ2 = DSolve[EQLl, A[t], t]:

InverseFunction::ifun : Warning: Inverse functions are being used. Values

may be lost for multivalued inverses.

Solve::ifun :
Inverse functions are being used by Solve, so sare solutions may not be found.

EQ?2 is the solution to the differential equation. The simplified form of the solution is given by,

A[t] == Simplify[EQ2[[1, 1, 2]]]

{ W ayieen) ‘2
g Pp? ¥ |1+ ProductLog[—E——;bgs;’L-] |
\ )

Alt] == p—

By re-arranging the terms to separate the ProductLog function:

_______ 1. r¥? (t-c)
6gQnpr

EQ3 = Vo v VALE] - 1 == ProductlLog| - E
gQpert gQpor

To solve for the constant of integration C1 we use the initial condition A=Ao at t=7,

EQ4 = EQ3 /. {A[t] » Ao, t > t}

1 FxE Cren)

ey - 6gQ T
1 VROV Y poguetiogf- B T
gQort gQpoprt
———— — 2y2(=Cl+r)
VAO VK 04 E_.l+ ggQrmf
with w=-14+ ———— and z=-———————— we obtain w == ProductLog|z] .
gQpr gQpt
By definition we have z= w E*,
EQS5 =z == w EY;
Substituting @ and z into EQ5(definition of ProductLog),
. fx?(-civny e em
E 6gonprt A
EQ6:EQ5/.{2—>— ,w_>_1+\/0\/ﬂ3/};
gQpoprt gQpert

The constant of integration C1 is obtained by solving EQ6 for C1,

EQ7 = Solve[EQ6, C1];

Dripping into Cavities from Unsaturated Fractures under Evaporative Conditions Volume 2 Page A2



Dani Or SCIENTIFIC NOTE BOOK # 354 — TEF KTI 06/30/99

Solve::ifun :
Inverse functions are being used by Solve, so scme solutions may not be found.

CONST =EQ7[[1, 1, 2]]

[ odme iy e cedaeday )
_ny2t+6anpt+6gerptLog[ng |E e _ VBOE g;Zr Vroy | t]
i \ J
Ty2
We substitute C1 in EQ3. we repeat the above procedures to solve for A[t]
FQ8 = Sjmplify[
\/Ao \/ﬂY —_— —
rmr 2.69Qnp- 6anplog[ sacc (VBo N y-ngt)])
FEQ3/.Cl- 5
Y
_______ nty 246 VAo Vi v n- (n¥2+6g9Qnp)
6gonpt Ao
L VAYVRD o [ @ " (VAo V- GQW)]
gQpert gQpt
we use the definition of ProductLog again to solve for A[t]
1!71“5‘/_.;; ‘/; 71]-{!72463071}7)7 — —
- i E 6&Qnpr (VAOsz—ngﬂ
From EQ8 we have w = —1 M—‘Aﬂ- and z=
gQpr gQpr

Substituting w and z to the definition of ProductLog leads to,

BQ6 =

xty26Vho Vr 1n—(n*/2+ngnP) T _— - —
B 5gQnpt ('\/-Ao \/_n Y-9gQp t) '\/-71' X“/-A[t]
m5 /. {z- Jwo le e}
gQpt gRert

Now, EQ6 can be solved for A[t]
SOLN = Solve[EQ6, A[t]];

InverseFunction::ifun : Warning: Inverse functions are being used. Values
may be lost for multivalued inverses.

Solve::ifun :
Inverse functions are being used by Solve, so some solutions may not be found.

A simplified form of the above solution is separated from SOLN,

EQ10 = A[t] == Simplify[SOLN[[1, 1, 2}]]
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wtv2esVao Vi v n-(my2esqans) T 2
QZQZDZ‘[Z |(1+ PIOductlog[E — sg;:D(tY Pl ( \/_130(2\/—7(:{)])I
glot
At] == \ J
1y

Using substitution for the constant terms U=p g ; W = v’

tW+6VAo VW n-(W+6UQn) ¢
Q2 U2 2 [1+ProductLog[E 500 - ( */ll\JoQ‘t/W )]]
EQ11 = A[t] == .

2

ewss Vs Vi n-(sQnuem ¢ 5
Q2 U2 2 (1+ProductLog[E L F ( l"\/ﬁ&)]1

Alt] == =

Drop Formation Under Non-evaporative Condition

Drop detachment is induced by reduction of cross-sectional area and eventual pinching. At the drop element where
pinching occurs the cross-sectional area A[t]goes to zero in finite time. This reduces EQ11 to,

tW:6 VAo VW n-(W+6UQn) ¢ Ao VW
EQ12 =0==1+ Produc:tLog[E §0Qn ¢ |(— \/ ° \/ \ ]
\ UQ T
tw+6 VAo VW n-(6QnuUsw) €
0==1+ Product].og[E e |(—1 VAo VW H
\ Qur
tW+6y Ao VW n-(W+6UQn) 'A" W
From EQl12we have w= —1, andz=E 6UQur {—1 + ‘/—O—‘L\E—-]
\ uQr )
By the definition of ProductLog (EQS) we have,
tW+6VA0 VW n-(W.6UQn) ¢ Ao W
EQ13=EQ5/.{w—»—1,z—»E UG © |(-1 VU°V \}
\ er
tw+6 VA0 VW n-(60nU+H) T N o
E eQnut I(Al.f_M\l —:_l
\ QU< J E

The time of pinching is obtained by solving EQ13 for t,
EQ14 = Solve[EQ13, t]};

Solve::ifun :
Inverse functions are being used by Solve, so some solutions may not be found.

The simplified form of t is separated from EQ14

EQ15 = t == Simplify[EQ14[[1, 1, 2]]]
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—_— \/“' W
6Esn | 6OnUrleg[l- Y|

t== —
Vu W
Which can be simplified by dividing thefirst and third terms by 6://#2,
W
6vicn [ @Uelog[i- XA E ]
EQl6 =t == - — 11+ — —=
VW l\ V2o VW J
__ « Teq 126 Y
6ED n |14 20 TG )
\ YRV

t==1-

VW
The time of detachment also satisfy another additional condition @, t = 0 which leads to,

EQ16 = Simplify[D[EQ16, t]]

.. 6vVAcQuy _ 6QUnlog[l- TEw
VW (VAo VW -QU ) W
. . P Vaow
Which again can be simplified with Q = Xy
SRPPNLALL N NG SO RLR L |
Vw (-2 2 QU< J

The simplified form of EQ16 is an implicit solution for the time to detachment.

NOTE: In MATHEMATICA Log[ ] stands for Natural Logarithm.

m Drop Formation under Evaporative Condition

Evaporation from a Hemispherical Drop

When a drop is fed by a constant flux Q, at any given time 7 (in the Lagrangian coordinate)the volume of liquid
suspended below the T element in the absense of evaporation evolves as,

V=0Qrt

Assuming, the drop has a hemispherical shape (see the Scientifi Notebook for justification), the drop radius volves
as,
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The instantancous rate of evaporation from a droplet of radius rb can be given Fick's law (assuming isothermal
diffusion),

D
EQL17 = 8¢

8. C _ D APv
== P r r=xb = 5 TORT
Integrating EQ17,

APV
b RT

D
= — t+C
Jo)

the constant of integration C is obtained from the initial condition (initial radius in the absence of evaporation),

2
D APv 31,3
2—_
»= s HRT Y 27r)

The radius of a hemisphere evolves as it evaporates in accordance to:

D APv 3Qt %‘
R= — T+ )
p RT 2

And the volume of the hemisphere evolves as,

2 [2DaAP 3 ,2/3 372
ves 2 (2DARE (3 )P 0 yen)
3 RTpo 27

MW Dripping under Evaporative Conditions

The net flux can be back calculated from the volume evolution equation as

v
Qo= —
T

2/
B 25 (2DA§: . (73?) 3 (Qt)z/s)

3t

3/2

Using the following variable transformations a, and a the net flux can be written as

27 (Mz+N (2)¥/3)%?
®==
3z

This corrected flux is what forms the weight of the drop, substituting in EQ11 we obtain

27 (Mz+N (¢)2/3)%?
EQI8 =FQl1/.Q~ 3T

Alt] == —1—r47r2 W (NcZ3+M1)°
|
9w |

cuseVas Vw on-(sanus)t N 2
[1+ProductLog[E_“‘~:n=HvT(_L”' |f41+ 3VRo VW : m ]

\ \ 27TU(NK2/3+M[) /2) ) }

At the time of pinching the cross-sectional area goes to zero, A[t]=0, leading to

Dripping into Cavities from Unsaturated Fractures under Evaporative Conditions Volume 2 Page A6



Dani Or SCIENTIFIC NOTE BOOK # 354 — TEF KTI 06/30/99

. [Ecw.sﬁs -E{gg-(solu’wn ( L 3vVm VW \] 0
+P.|:':j]3ﬂ:g [ T -1+ ==
I\ 27rU(N't.'g-”:'3+M1:)3/2)I
1W46y Ao VW p<6QqU+W)r Ao VW

with w=-1 and z=E 6QsUr {“1"' 3V Ao VW 32 f

( 27 UNT23 +M1)? )

tWe6 Ao W - 6QqUsW ¢ 3 Ao W
EQ19-EQ5 . z-E 50U - s 0o -1

+
27U N2 3+ Mt

wis VAo VW - UsW) T A AW
g |(_1+ 3VRo V¥ ], 1
{ ZHU(NIZ/3+MI)3/2) E

EQI19 can be solved for the time of pinching t,
BP0 = Solve{BQ19, t] ;

Solve::ifun :
Inverse functions are being used by Solve, so same solutions may not be found.

Bl =BR0[[1, 1, 2]]

65 Vi 0+ 60n U We 600U Log[ - s B
W
Differentiating with respect to T
D[BER1, t]
1 27VES OV 0 (M4 521 )
-5 [-W+6QUn+ - 76 7 +
! 2/3 52 [ 1 3VE YW
" 2Ex (Ne2/34Mr)¥2 (1 i )
1 3yA0 V7 1
6QUnLog[—— 3/2]|
E 2EnxU(Nz%3+Mrt) )I

EQ 21 is a general solution for drop formation. The solution of non-evaporative condition can obtained as a special
cse solution where M is zero,

BR2=8)1/.M->0

-if-W+6QUn- 18V2A0 QU W n B
W 3V20 VW - 2NAUVN2/3 (23
6QUnN ,{1+Log[2] ~Log2- ﬂi\i"/—ﬁm
{ U (N t%3) /2 ))
. 3VAo VW
1. 18VAo QUp , 6QUn ogi2] _ 6QUn mg[z'——zmnumt 7
‘\/_TE (3\/-&; \/_ﬁ—27rU(Nt2/3)3/2) W W
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B Drop Volume under Evaporative Conditions
The drop volume under evaporative conditions is obtained by integrating the net flux equation,
tC
2rx 1

j 2~ (MT+Nc¥3)3 24,

0 3 T
General::spelll :

Possible spelling error: new symbol name "tC" is similar to existing symbol "t".
Integrate: :gener : Unable to check convergence

32 N3 (N c¥3HY? 4n (NeMTCU3)? (BN~ 20 MN cCY34 35 M2 cc?d) VN cCPI L M iC

315 M3 ¢C 315 M3 ¢Ccl/3
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Appendix B: 4/15/99 D Cr

This short fortran90 code was compiled using the Microsoft FORTRAN PowerStation 4.0
compiler, and run on a 200 MHz Pentium Pro personal computer running Windows NT
(4.00). This code is for this single use only, it will not be used by other researchers or for
other tasks. The code was validated in using MATHEMATICA 3.0 as described in Appendix
C. Input instructions are as follows: The parameters y, L, and B are specified in the input file,
whereas the vapor pressure, "P" in the code (used to calculate the diffusion coefficient for
the evaporation component) is hard-coded; the program must be re-compiled when it is
modified. Units for the inputs and constants are specified in the main text.

NOTE: Corresponding FORTRAN 90 source code file and executable file are attached
as DRIPPING.F90 and DRIPPING.EXE respectively. Example input and output
files are attached as INPUT.TXT and OUTPUT.TXT respectively

! A GENERAL PROGRAM TO CALCULATE THE CRITICAL TAU FOR DROP DETACHMENT FROM
! GROOVE DEFINED BY CORNER ANGLE (GAMA), GROOVE DEPTH (L) AND RATIO OF
! PLANEWIDTH: GROOVE DEPTH (BETA)

USE MSFLIB

USE PORTLIB

IMPLICIT NONE

1% ok sk ok sk ke ke ke ke sk ke sk ok ke ke sk ok ke ko ke ke ok ke ok ke ok ok ke ke ke ke ke ke ke ok gk sk ke ok ke ke ok ke ke ok

1 * *
U VARIABLE DECLARATION *
| * *

| H K ok ok ke ko ok ok ok ok ke ok ok ok ok ok ok ok Ak ok ok sk ok ok ok ke ke ok ke ke ke ke ke ok ok ke ok ok ok ok ok ok ok ok

REAL (8) , EXTERNAL: : FNC, DERIV

CHARACTER (30) ::FILEl, FILEZ, VERSION

REAL (8) : :REALTIME, RHO, G, SIGMA, ETA, DNOT, R, T, BETA, GAMA
REAL (8) : :BETAS, D, ¥, MUC, MO, U, W, PSAT, SING, SING1, SLOPE
REAL (8) : :DMU, MU, MU, DP, AO,Q,M, N, HAMAK, L, PAT,E, P

REAL (8) : :RAD, DEP, AOC, AOCC, AF1,AF2,KC,KF, QC, QF

WRITE (*, ' (1X,//,1A,)") ' CRTICAL TIME FOR DROP DROP DETACHMENT'
WRITE (*, "' (1X,1A,/)") ! UNDER EVAPORATIVE CONDITIONS'

WRITE(*, ' (1X,1R,/) ")  'om oo e '

REALTIME=TIMEF ()
PRINT*, 'ENTER OUTPUT FILE NAME'

READ (*,*) FILEL

PRINT*, 'ENTER INPUT FILE NAMZ'

READ (*,*) FILE2

OPEN (UNIT=10, FILE=FILE1, STATUS="UNKNOWN ')
OPEN (UNIT=20, FILE=FILE2, STATUS="'UNKNOWN ")

Phhhhhh ok ok ok hkkkkhkkkhhkhkhkhkdkhdh bbbk bk hkhkhhkhkhdhkhhhdrhkhkhkhkhhkhkhkhkhkhkkr

I * *
I CONSTANTS *
| * *

Phkkhkkkkhkkhkkhbhkkkkhhkhkh Ak hhdhhkhhhhkhhkhhbhbhhhk A hhhkkhkhdhkhkhkkrkk
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HAMAK = 1.9/10.0**19 HAMMAKER CONSTANT SOLID,LIQUID VAPOR
PSAT = 2337 ! SATURATED VAPOR PRESSURE
| = 9.0*%10**4 ! PRESSURE

P hhkhhhhhkhrkhhkhkhkhkhkhkhkhkhhhkhkhddrbhbhhbhhkhkrrhhkd bk brrrbhkhdhhkhkhhhkxhhhk

PATI = 3.14159265359 ! PAI
E = 2.71828182846 ! BASE OF NATURAL LOGARITHM
RHO = 998 ! DENSITY OF WATER
G = 9.8 ! GRAVITATIONAL ACCELERATION
SIGMA = 7.29/10.**2 ! SURFACE TENSION
ETA = 1./10.0**3 ! VISCOSITY
DNOT = 2.13/10.0**5 ! BINARY DIFFUSION COEFFICIENT
R = 462. ! GAS CONSTANT
T 293. ! TEMPERATURE

!

!

!* *
tx GEOMETRIC VARIABLES *
! * *

fhkdkhkhkkhkhkhkhkdhkhhkhhbhkhkhkhhkhbhkbbhkhkhrbhkhkdhbhdhhbhdrhkhbhkhhkhhhdhdkhkkhkkkhhkkhx

READ(20,*) GAMA ! CORNER ANGLE
READ(20,*) L ! GRROVE DEPTH
READ (20, *) BETA . ! WIDTH TO DEPTH RATIO

| % de ok ke ke ko dook sk ook ok o sk ko ek sk ok ok sk ok ok ke ke ok k ok ok ke ko k ok ok ok ke ok ok ok ko ok ko ke ke ke ke ke ok ok ke ok

I *
1 * DERIVED CONSTANTS *
1 * *

1 de g kok kokok ok ok ko sk ke ke ok ok ok ke ko ke ok ok Ak k ok ok ok ke ok ok ke ke ke ke ki ok ok ok ok ok ok ke ok ok ok h ok ok ke ok ok ok ok &

BETAS = 0.966*EXP(0.051*GAMA*180./PAI)+7.89

F = 1./TAN(GAMA/2.) - (PAI-GAMA)/2.

MuUC = SIGMA*COS (GAMA/2.) /(L*TAN(GAMA/2.))
D = —-DNOT* ((10.0**5)/P)*(T/273.15)**1.8

U = RHO*G

W = PAI*SIGMA**2

MO = RHO*R*T

| AhkkhkhkhkhkhkhkAhkd bk hkhbkhkhk Ak hkAdkhkhdhkdkhkbkhkdhd bbb drd kb dhhhdhhdkhhhkhdhhi

| * *
t* OUTPUT HEADERS *
| * *

!********************************************************

WRITE (10, ' (1X,4A20)"') 'MU', 'TAU', 'FUNCTION', 'SLOPE', 'ITERATIONS'
WRITE(*, ' (1X,/,1A,/)') ' THE FOLLOWING INPUT PARAMETERS ARE BEING USED'
WRITE(*, ' (1X,1A20,1F20.5,/)') 'ANGLE= ', GAMA*180./PAI
WRITE(*, ' (1X,1A20,1F20.5,/)') 'LENGTH= ', L
WRITE(*, ' (1X,1A20,1F20.5,//)') 'BETA= ', BETA

PAUSE 'PRESS ENTER TO CONTINUE, Ctrl+C TO STOP'

I Ak hkkhkhkhhddhhkhkhkhkdhkhkkhkhkkhkhkhkhdhdhhkkhkdkhdhhkhkhkhkhhkhkhhhkkhkdhkhkhkdkhhkhkhkhik

| * *
g INTITIALIZATION *
! * *

Phdkdhhkrhhkhbhkhdhhhhbhkhkhdhhkkhhkhhkhbkhkhkhkhbhkhkhhhkhk kb bk hhkrrhkhkhhkhhhhdhir

MU = 0. ! INITIAL CHEMICAL POTENTIAL
DMU =5 ! STEP SIZE

SING = 1./10.%*2 ! PAST TAU

SING1 = 5./10.**3 ! PAST PAST TAU
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PhkdkhkkhhkhkrhkhkhkhhkhhkhkhkhkhAhkhhhhkhkhkhod bk hkhkhkhkdkhkhkkhhdkhkhkdhkhkkdkhkkk

* *
t* MAIN LOOP *
L* *

| dkhkkkkhhhkkhkhkhkhkhkhkkdkhkhhkhhdkhdhhkhdhdkhkdkkkdkkkkkkkhkhdokkokkkkki

DO
MU1 = MU ! PAST TAU
MU = MU+DMU ! PAST PAST TAU
DP = PSAT* (1.~EXP(-MU*RHO/ (R*T))) ! PRESSURE GRADIENT

1 %k kK kok ok kK ok k ok ko ke ok ok ok

P CORNER *

!******************

RAD = SIGMA/MU ! LV INTERFACE CURVATURE
AOC = (L**2.)*TAN(GRMA/2.) ! AREA AFTER FILLING
AOCC = RAD**2.*F ! AREA BEFORE FILLING

KC = (RAD**2,)*RHO*G/ (BETAS*ETA) ! CONDUCTIVITY

(AR RS LSRR EEEEEERES]

P x FILM *
)k ke ke ok ok kK ok ok kK ok ok ok ok ok

DEP = (HAMAK/ (6.*PAI*MU))**(1./3.) ! FILM THICKNESS
AF1 = DEP* (L*BETA+2.* (L/COS(GAMA/2.)-RAD/TAN (GAMA/2.))) ! AFTER FILLING
AF2 = DEP* (L*BETA+2.*L*TAN(GAMA/2.)) ! BEFORE FILLING
KF = DEP**2,*RHO*G/ (3.*ETA) ! CONDUCTIVITY

IEEEE S EEE SRR R R R E RN

!* BEFORE FILLING *

IR EREEEESE SR ES RS E]

IF (MU.GT.MUC) THEN

QcC = AOCC*KC
QF = AF1*KF
AO = AOCC

IEEEEEEREERE SR E SRS

!* AFTER FILLING *

1ok deokeoke de ok ode k ok ke ok ok ok ok ok ok ok ok

ELSE
ole = AOC*KC
QF = AF2*KF
AOQ = AOC
END IF
Q = QC+QF
M = 2.*D*DP/MO
N = (3.*Q/(2.*PAI))**(2./3.)

CALL SOLV(AO, Q)

| * %k Kk k kk ok ok kkkkkkkkk

!*STEP ADAPTATION *

| %k &k Kk kk ok okkokk ok ok ok kk kK

IF (SLOPE.GE.0002.) DMU=0.500

IF (SLOPE.GE.0010.) DMU=0.200
IF (SLOPE.GE.0100.) DMU=0.010
IF (SLOPE.GE.0400.) DMU=0.005
IF (SLOPE.GE.0600.) DMU=0.0001
IF (SLOPE.GE.2000.) DMU=0.00001
IF (SLOPE.GE.2000.) EXIT
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END DO

REALTIME=TIMEF ()

WRITE(*,'(///,1X,A,F5.2)"') 'Real Time Elapsed :=',REALTIME
WRITE (10, '(///,1X,1A20,1F20.5)"') 'ANGLE= ', GAMA*180./PAI
WRITE (10, ' (1X,1A20,1F20.5)"') 'LENGTH= ', L

WRITE (10, ' (1X,1A20,1F20.5)"') 'BETA= ', BETA
WRITE(10,'(///,1%X,A, I3,A,F5.2)') 'Real Time Elapsed

:=',INT (REALTIME/60),':',REALTIME- (INT (REALTIME) /60) *60.

| kK sk ke ok ok ke ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ke ke ke ke ok ke ok sk ke ke ok ok ok ke ke ok ke ke ke ok ke ok ok ok ok ok ok ok ke ok ok ok

| *
I INTERNAL FUNCTIONS *
I * *

| * ok sk sk kkkdkk koksk ok k ok sk ok kdkek ok k ok ok ok ok ok ko sk ki kk ko ok ok k ok koo ko ok ok ok ok ok ok ok ok ok ok

CONTAINS

FUNCTION FCN(TAU, AO, Q)

REAL(8):: TAU,AO0,Q,FCN

FCN= - ((-W + 6.*Q*U*ETA -(9.*DSQRT (A0) *Q*U*DSQORT (W) *ETA* (2.*N + &
3*M*TAU**(1./3.)))/ ((N + M*TAU**(1./3.))* (3*DSQRT(Ao)* &
DSQRT (W) -2.*PAI*U* (N + M*TAU**(1./3.))* TAU**(2./3.)* &
DSQRT (N*TAU** (2./3.) + M*TAU))) -6.*Q*U*ETA* (1. + LOG(2.)-&
DLOG (2. - (3.*DSQRT (Ro) *DSQRT (W) )/ (PAI*U* (N*TAU** (2./3.) + &
M*TAU) **1.5)))) /W)

END FUNCTION FCN

SUBROUTINE SOLV (A0, Q)
INTEGER : : FLAG
REAL(8) ::TAU,TAU1,TR1,AO,Q,DS, TR, DELTA, BRAKE, STEP
|
! INITIAL TAU: SHOOT BY FIVE TIMES THE LAST DIFFERENCE IN TAU
| USE LARGER ESTIMATES TO ACCOUNT FOR THE INCREASING SLOPE
|
TAU=SING+DABS (SING-SING1)* (5.) !
DS= DABS (SING-SING1)/(MU*10.)  !5./((10.**4))

IF (GAMA.GE.PAI/1.8) THZN
TAU=SING+DABS (SING-SING1)*(10.) !
DS= DABS (SING-SING1)/(MU*30.) 15./((10.%*%4))
END IF
FLAG=0
TR=FCN (TAU, A0, Q)
TR1=0.
BRAKE =1./10.
STEP=1.
DO
TR=FCN (TAU, AO, Q)
SLOPE= (TAU-SING) / (MU-MU1)
IF((TR.LE.BRAKE) .OR. (ABS (TAU-TAUl) .LT.1./10.**6)) THEN

WRITE (10, ' (1X,1F20.4,3E20.10,1I20)") MU, TAU,TR,SLOPE, FLAG

WRITE (* ,'(1X,1F10.1,E22.16,3E12.5,11I8)"') MU, TAU, TR, TR1,SLOPE, FLAG
EXIT

END IF

IF (TR.LT.(MU-1.)/MU) THEN

DELTA= - (.1/MU)*TR* ( (TAU-TAU1)/(TR-TR1)) ! (TR-TRR)

ELSE
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DELTA=-DS*STEP
END IF
TAU1=TAU
TAU=TAU + DELTA
FLAG=FLAG+1
TR1=TR

END DO

SING1=SING

SING=TAU

END SUBROUTINE SOLV

END
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Appendix C (part 1) 4/15/99

Cross check of FORTRAN calculations with MATHEMATICA

D G

For a groove geometry given below, time to drop detachment were calculated using

MATHEMATICA. The results agree with the FORTRAN calculations.
Groove Geometry:

g 60°
L 0.002[m]
b 1
u [Pa] FORTRAN 90 MATHEMATICA 3.0 FOR/MATH
60 2.611827348E-02 2.597557246E-02 1.005493662
100 1.202271999E-01 1.200753637E-01 1.001264507

300 3.252505750E+00  3.252342701E+00 1.000050133

500 1.638334198E+01  1.538316504E+01 1.000011502

1000 1.826626636E+02  1.826622120E+02 1.000002472
1175.1000 8.846857637E+02  8.846660957E+02 1.000022232

1000 -
g
k3 100 -
-
§2 10
E<
&
8 g 0.1 1
(Y
E 0.01 -
[
0.001 . 1 \
0.001 0.1 10 1000
Time to Detachment [sec]
FORTRAN

FIG C1. Cross Check of FORTRAN results with MATHEMATICA
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Selected Output points from FORTRAN Program

MU TAU FUNCTION SLOPE ITERATIONS
5 1.828455693E-04 5.17E-01 -1.96E-03 358
10 5.759481878E-04 5.50E-01 7.86E-05 533
20 2.050545486E-03 6.09E-01 1.71E-04 625
30 4.463629278E-03 6.49E-01 2.65E-04 964
40 7.823564020E-03 6.79E-01 3.60E-04 1285
50

1.213384190E-02 7.03E-01 4.55E-04 1595

4.136056378E-02 7.89E-01 1.64E-03
6.164599685E-02 8.12E-01
. 5.769526061E-02

600 2.725886364E+01 9.72E-01 .
700 4.509712338E+01 9.75E-01 2.14E-01 28001
800 7.179550179E+01 9.77E-01 3.23E-01 31979
1 13E-01 35935

 9.78E-01 2.04E+00
9.78E-01 2.11E+00 53613

3.097691563E+02 9.78E-01 2.12E+00 43739
3.108375365E+02 9.78E-01 2.14E+00 43760
3.312752922E+02 9.78E-01 2.40E+00 44121
5.171751972E+02 9.76E-01 6.29E+00 46038
5.203698966E+02 9.76E-01 6.39E+00 46056
5.236164035E+02 9.76E-01 6.49E+00 46074
7.276163976E+02 9.72E-01 1.88E+01 46822

9.72E-01 1.92E+01 46824
9.72E-01 1.96E+01

7.314568938E+02

9.70E-01 6.20E+01

9.113253983E+02 9.70E-01 7.12E+01 45599

. 9.284185029E+02 9.69E-01 8.55E+01 45017

1175.9 9.507926544E+02 9.69E-01 1.12E+02 43748

1175.91 9.521517863E+02 9.69E-01 1.36E+02 58428

1175.92 9.535445983E+02 9.69E-01 1.39E+02 46985

1175.93 9.549735378E+02 9.69E-01 1.43E+02 46975

1175.94 9.564413667E+02 9.69E-01 1.47E+02 46963

1175.95 9.579512138E+02 9.69E-01 1.51E+02 46950

1176.1283 1.010196697E+03 9.68E-01 2.03E+03 46059
ANGLE= 60
LENGTH= 0.002
BETA= 1
Computation Time:= 11:23.0

! Shaded points are used for cross-checking with MATHEMATICA
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Appendix C (Part 2) 4/15/99 Dw Co

Hlustrative Example: Dripping Under Evaporative
Conditions

Note Corresponding MATHEMATICA 3.0 file is attached as APPENDIXC.NB

m Constants

B Physical Constants [MKS system]

p =998;

g=9.8;
0=7.2910"2;

n =10"3;
DO=2.131073;
R=462;

T=293;
Psat = 2337;
P=910%;
Aslv=1.910"19%;

B Fracture Geometry

_,r.
7—31
L=210"3;
B=1;

® Derived Constants

Bs = 0.966 e0-051 ¥ 180/7 . 7 gg.

U=pg;
W=mw 02;

105 T 18
=00 ()

F= 1 R
Tan[y /2] 2

AOCo = 12 Tan[y /2] ;

o Cos[y /2] .

L Tan[y /2]’

MO=p RT;

uc =
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B Flow Regimes at Matric Potential of . [Pa]

H Flow in Corner

Afl = h(LB+2(Cos[7/2] Tan[wz]))

Af2z=zh (LS8 + 2LTan[y/2]):
Pg 2.
Kf = 3'Ih

B Combined Flow

Note: Calculations of AO above as well as Qc and Qf below are done for all matric potentials less
than (drier than) the critical matric potential (guc)

Qc = A0 Kc;
Qf:Afle,‘
Q=Qc+Qf;

B Adjustments for Flow under Evaporative Conditions

AP = Psat (1- Exp[—ﬂ—p-]) :

RT
y o 2DDAE.
)
o %
v = ;
2 I{W . 27V oVwn M+ 2F) ©
Ex!]h"'l = |-W+ n+ oT *
w 5/2 3VR VW
2En (W34 M1) ('E" znnugur2;£+ur)3’2)
1 3\/35 ‘/-ﬁ
6QU7 Log[— - 77|
E 2EnU (MIt2/3+Mr1) )l
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W Test 1: 4=60 Pa
EQl1l = EQUATION ==0 /. {u -» 60} ;
tl = FindRoot[BQ1, {t, 0.026} , MaxIterations - 100000, DanpingFactar -» 0.001]
{t - 0.0259756}
FUNCTION = N[EQUATION /. {u » 60, Tt -» tl[[1, 2]]}]
9.99663x 1077
N[z1[[1, 2]], 16]
0.02597557246466978
B Test 2: p=100 Pa
P = BYRTION == 0 /. {i - 100} ;
t2 = FindRoot[EQ2, {t, 0.12023}, MaxIterations -» 200000, DampingFactor » 0.01]
{t » 0.120075}
FUNCTION = EQUATION /. {u » 100, t » t2[[1, 2]]}
9.93299x 1077
N[z2[[1, 2]], 16]
0.1200753637039623
B Test 3: u=300 Pa
EQ3 = EQUATION ==0 /. {u - 300} ;
T3 = FindRoot[EQ3, {t, 3.2525}, MaxIterations -» 200000, DampingFactor -+ 0.0001]

FindRoot: : frmp :
Machine precision is insufficient to achieve the accuracy 1.00000000000000066" *"-6.

{t > 3.25234})

FUNCTION = EQUATION /. {u -» 300, t » t3[[1, 2]1}
0.00314703

N[z3[[1, 2]], 16]

3.25234270089859
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B Test 4: u=500 Pa
EQ4 = EQUATION == 0 /. {u - 500} ;
74 = FindRoot[BQM, {t, 15.38334)} , MaxIterations - 20000, DampingFactor - 0.001)

FindRoot:: frmp :
Machine precision is insufficient to achieve the accuracy 1.00000000000000066  *"-6.

{t » 15.3832}
FUNCTION = EQUATION /. {u - 500, T -» t4[[1, 211}
0.00242057
N[z4[[1, 2]], 16]
15.38316503951751
W Test 5: 4=1000 Pa
EQ5 = EQUATION == 0 /. {u - 1000} ;

5 = FindRoot [EQ5, {t, 182.6626} , MaxIterations -» 40000, DanpingFactor -+ 0.001]

FindRoot: : frp :
Machine precision :s insufficient to achieve the accuracy 1.00000000000000066° *"-6.

{t > 182.662}

FUNCTION = EQUATICN /. {u -» 1000, = » 5[ [1, 2]]}
0.0361488

N[t5[[1, 2]], 16]

182.6622120196749
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M Test 6: u=1175.1 Pa
EQ6 = EQUATION == 0 /. {u -» 1175.1};

6 = FindRoot[EQ6, {t, 884.6857}, MaxIterations - 40000, DampingFactor - 0.001]

FindRoot::fmmp :
Machine precision is insufficient to achieve the accuracy 1.00000000000000066 *"-6.

{t - 884.666)

FUNCTION = EQUATICN /. {u - 1000, t » t5[[1, 2]]}
0.0361488

N[c6[[1, 2]], 16]

884.6600957447211

9 Lave PEDRE Y Do /LA/) Secx xc(,t("lﬁg ,,17 heew  amel ,g.,v\‘,k s )
) NP & I
o Lot (\C(,»(,\o. INTH LSS/} e |- T Aenk < "“f{‘[* kM‘(‘ uzf 7t

’b‘—’]‘u AINN (éwuafﬂ\ o b & fon '.,ﬂ(/éut{\mg teots . 6"‘”‘/“-“‘ Crry
()LJ.&J,Q oA ﬂ.(. ‘7 2t rJ\ [‘AZ}( N {Iw M(:‘ra/t [ﬁ( kL((‘ « f—( u‘\i,lh ! c(,c« ~-(

N

gud(dz /\»{Muji' Ite (_)\LI‘I‘VI{7

7//&, G

Dripping into Cavities from Unsaturated Fractures under Evaporative Conditions Volume 2 Page C7



Dani Or SCIENTIFIC NOTEBOOK # 354 — TEF KTI 11/23/99

Volume 2: Dripping into Cavities from Unsaturated Fracture under
Evaporative Conditions
Il. Experiments, Liquid Bridges and Liquid Fingers

Thermal Effects - Key Technical Issue - Dani Or - 11/23/1999 D“”‘ G
Account Number: 20-1402-661

Collaborators: Teamrat A. Ghezzehei (USU), Randall Fedors, Ron Green
(CNWRA)

Directories: C:/dripping_notebook

Objective: the objective of this study is to design an experimental setup to test the
analytical model of dripping into cavities from unsaturated fractures, presented in the
first part of the current volume of scientific notebook (Or and Ghezzehei, 1999).

Initial Entry — 5/17/99: Deni G

In the first part of this scientific notebook (#354) volume 2, an analytical model of
dripping from unsaturated fractures to wide subterranean cavities was presented. In the
present section, testing of the model with laboratory experiment is presented.

Dripping from Fracture Model: Experimental

25mm An experimental setup was designed to test
the analytical model of dripping from
fractured porous media  developed
previously.

A fracture model, similar to the one used to
develop the model, was constructed from
aluminum slab 6.9mm in thickness. Three
parallel grooves of 45° angle, and 5-mm
depth were made on one surface of the
aluminum block, as shown in Fig (10). The
surface of the aluminum was washed with
80% H20,, to oxidize greasing that has been
introduced during machining. Wettability of
the grooved surface was checked visually.
Upon exposure to air, the aluminum surface
is oxidized rapidly resulting in a wettable
surface that can mimic rock surface.

dmm A schematic diagram of the experimental
setup is depicted in Fig (11). The aluminum
slab was mounted inside a closed chamber
with the grooves vertically upright. The top
ends of the grooves were covered with fine,

S5mm

Figure 10. Model for fractured rock wall made
of grooved aluminum slab.
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Low Flow Rate ceramic filter papers to
distribute the water influx evenly

/@\ . to all the grooves. Water was

Flow N supplied to the top of the

— .. Integrator fracture model using a peristaltic
Peristaltic

Pump pump operated at several low

Filter P flow rates. When steady state

rer Faper dripping rate is attained, tarred

B essd glass beaker was placed under

a selected groove, and the
number of drops collected in the
beaker within 10 minutes were

ChamberT

S counted.
Beaker —4— o The volumetric flux in each run
was calculated from the mass of
Balance —f—» water accumulated in the
beaker as,
Figure 11. Schematic diagram of dripping experiment M

Q=— (47)
pt

where Q is volumetric flux (in m® sec™’), M is accumulated mass of water (gm), p is
density of water (1000 kg-m™®), and t is duration of test (sec). The time-averaged

dripping period of individual drops is calculated from the number of drops as,

t
P=— 48
v (48)
where P is drop-period (sec) and N is number of drops collected in the specified time
duration of test (t). The raw data collected from the experiment is given in Appendix (A).

Model predictions were calculated using Eq (39) and (44) of Vol. (2). For the relatively
rapid dripping rates tested,
evaporation was  assumed
negligible (matric potential of
cavity very close to saturation).
Comparison of the experimental
data with the model predictions
has shown one order of
magnitude difference in dripping
period as depicted in Fig (12).
g ‘ These observations led to closer
® Measured Data 1 examination of the dripping
— Predicted by Original Model process, especially liquid
: ' behavior near dripping plane.

190: T e

Dripping Period (sec)

0.01 1
0.01 0.1 1 10
Volumetric Flux (cm’/sec)

Figure 12. Comparison of measured dripping period with
prediction by original model
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5/20/99: Semi-Empirical Adjustment of Drop Anchoring Area D"’M 923

To provide better understanding of the dripping mechanism low-magnification video-
microscopic images of drop formation and detachment were examined closely (Fig 13).
At all stages of dripping, accumulation of water close to the dripping plane was
observed. The liquid profile near the dripping plane appears to be independent of the
flux and drop formation stage. Consequently, unlike the proposed model the drop
anchoring area is independent of flux. Generally, the observed area (Ao) is larger than
what is predicted by the model. The underestimation of the drop anchoring area (Ao) by
the model resulted in low dripping period and drop volume as depicted in Fig (12).

0 sec 3 sec 6 sec 9 sec 12 sec 15 sec

Figure 13. Sequence of drop formation stages from a fracture model. Insert: close-up of liquid
configuration at groove-tip. Arrows indicate relatively stable liquid configuration near dripping
plane. Ao, and Ao, refer to triangular and circular approximations of the observed drop anchoring
area Ao.

As a first step to test the model, it was proposed to introduce semi-empirical
adjustments to the model, which correct the drop anchoring area. The adjustments
involve replacing the flux-dependent drop anchoring area (Ao) Eq. (44), by geometry
dependent-formula that resembles the observed shapes (Fig 13). The first
approximation considers the drop base area to be equal to the triangular cross-sectional
area of the groove,

Ao, =12 tan(%] (49)

The second approximation that resembles more closely to the observed cross-sectional
area considers the area of a circle circumscribing the triangular cross-section of the
groove,
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L 2
AOC = E[W{] (50)

Note The area approximations presented in Eq (49) and (50) assume that the bottom
part of the groove is completely filled with liquid. This assumption is not
necessarily applicable to other groove geometries other than the one tested.

The geometry-dependent

® Measured Data approximations of Ao (Eq (49) and
- = = «Power (Trianguiar Approx. of Ao) (50)) are independent of the flux. The
Power (Circular Approx. of Ao) model with the proposed adjustments

was evaluated by substituting Eq (49)
and (50) in place of Eq (44).

The adjustments resulted in improved
prediction over the original model, as
shown in Fig (14). The circular
approximation was more close to the
observed drop anchoring area Ao
(insert in Fig 13), hence, Eq (50) had
better fit than the triangular
Volumetric Flux (cm¥/sec) approximation Eq (49). However,
these adjustments are not applicable
Figure 14. Sequence of drop formation stages from a for other geometries. Physically based
fracture model. Insert: close-up of liquid prediction methods are required to
configuration at groove-tip. eliminate this empirical component if
the model.

Dripping Period

0.1

7/25/99: Energy Transition and Liquid Profile near Dripping Plane D""‘ G

The flow domain in vertical grooves dripping into a wide cavity can be classified into
three distinct zones, as demarcated in Fig (15). The outlines in Fig (15) correspond to
drop- and transitional- profiles calculated using methods discussed in this entry.

In the uniform groove-flow zone, liquid profile and flux are entirely controlled by the
matric potential (vapor pressure) of the ambient rock-fracture environment, with little
boundary-effects emanating from dripping plane. The profile of pendant drop zone is a
result of interaction between capillary forces, surface tension and gravity. The
transitional region provides the necessary pressure adjustment between the pendant
drop (superatmospheric) and the capillary liquid of the grooves (subatmospheric) with
gravitational pressure gradient. The primary focus of this section is to present a
simplified approach for calculating the liquid profiles in (1) the pendant-drop zone and
(2) transitional zone that allows for the determination of drop anchoring area (Ao).
Detailed derivations and comparisons that consider wide range of conditions will be
reported in future work.
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Equilibrium Shape of Liquid Drop Pendant from Fractured Ceiling

Equilibrium-state weight (volume) and shape of pendant and sessile drops have been
studied extensively for over a century primarily because of their convenience and fair
accuracy for determination of surface tension of several liquids [Boucher, 1975]. The
drop weight method for surface tension determination is an old technique that uses a
simple expression for the drop weight given by,

mg=2nro (51)
Groove where
Capillary AP Drop mass [kg]
Zone
G Radius of drop
forming tube [m]

Transitional
Zoue The above expression Eq (51)

(commonly referred to as Tate's law)
assumes that the entire liquid
Zone emerging below the tube detaches. A
correction factor that accounts for the
portion of the pendant drop that
remains behind as the drop detaches
was introduced by Harkins and Brown
Width [mm] [1919]. The drop-weight method does

Figure 15. Classification of the dripping flow regime not ConSId.er the drop shape; and .”?ay
into capillary-, transitional- and drop- zones. Solid MOt be directly useful . for obtaining
outlines are theoretical profiles of transitional- and drop-base area required for our

Height [mm]

drop- profiles calculated according to simplified analysis.

methods discussed in appendix (A) (fixed variables: .

L=3.5 mm, y=60°, 6=0°, A=1.3; solved variables: The drop shape is a result of balance
$=0.02, 0=0.75, a=4.5mm, R=5.7mm). of forces due to surface tension,

pressure and gravity. The pressure
difference across the liquid-vapor interface of a pendant drop hanging from a solid
ceiling (Fig 16) at any vertical distance (z) below the supporting ceiling is given by the
Young-Laplace equation,

1 1
Ap(z) = + 52
Pz)=o [R1(z) R2(z)] (52)
where
7. A UUT Vertical distance from the supporting ceiling [m]
Ap(Z)............ Pressure difference across the drop surface at z,[Pa], will be

denoted by p(z) hereafter.

R1(z), R2(z). Principal radii of curvature at z [m]
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The pressure gradient along the vertical axis of symmetry is given by,

dp(z)
hal ud L? AP 53
dz PY (53)
An implicit expression for the drop profile is obtained by integrating Eq (53) and

equating it to Eq (52),

1 1
O|——+——1|=—-pgz+ 54
(Fﬁ(z) R2(z)) Pgz+P (54)
where
p= gr—c ........ Positive pressure at the bottom tip of the drop [Pa]
FO.ieeeeieenennnne Radius of curvature at the bottom tip of the drop [m]

Analytical solution to Eq (54) is not available. Standard methods of numerical integration

are not applicable because of singularity at the bottom boundary. However, liquid drop

Ay profiles have been calculated by

// introducing simplifying
expressions and choosing some
arbitrary parameters [Freud and
Harkins, 1929;  Nemchinsky,
1994).

By employing minimum energy
configuration, Pitts [1973; 1974]
calculated profiles of stable,
pendant liquid drops. This method
seeks the equilibrium drop shape
of a fixed drop volume, using
variational calculus to minimize
the total energy of the liquid drop.

Both of the above approaches for
R a determination of liquid drop profile
p . 0, provide satisfactory tools based
0a on first principles. However, due to
Vertical § the tremendous amount of
Drop Section 2 computations involved and
complexity to introduce the effect
of grooved iniet, we opted for a
simpler geometrical shape that

Figure 16. Schematic diagram of the simplified drop captures most of the physical
model used to calculate drop anchoring area and drop principles involved
profile. '

/,L

Dripping
Plane

¥¢

/ /‘ II/

We define the profile of pendant
drop by a semi-ellipsoid [Erbil and Meric, 1997] with the radius in the dripping plane
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given by a, and A is the aspect ratio, as shown in Fig (16). The negative liquid-pressure
beneath the dripping plane required to anchor the drop is created by an arc, with
negative curvature of aa, tangential to the ellipsoid and approaching the supporting
ceiling at an angle 6 (solid-liquid-vapor contact angle). The actual radius of the drop
anchoring area is denoted by R. Other geometrical dimensions of the proposed drop
shape required to calculate various areas and pressures are defined in Fig (16).

We consider vertical force balance equations at the cavity ceiling or dripping plane. At
z=0 the liquid pressure and surface tension are in balance with the weight of the drop
suspended beneath

P (AS+AS)+2(n-w)Rsin(6)=Vpg (55)
Where,
AS .. portion of the drop anchoring area in contact with solid(cavity ceiling)
AL ... portion of the drop anchoring area in contact with groove liquid
L+ BT Solid-liquid-vapor contact angle [radian]

Note: The contact angle (8) is not necessarily the actual contact angle of the liquid. It
may have different values if the ceiling is initially wet or dry.

Note: the ceiling is considered as a reference plane with zero gravitational potential
energy.

The first term on the LHS of Eq (55) is force due to mean liquid pressure (P ) acting

over the liquid anchoring area (AS+AL). The second term on the LHS of Eq (55)

corresponds to the upward component of the surface tension acting along the solid-

liquid-vapor contact line (perimeter of drop cross-section). The RHS of Eq (55) denotes

the weight of the pendent drop. The area-averaged mean liquid pressure is given by,

ﬁ=[0(1—_1—)AS+2—6 AL]/(AS+AL) (56)
R aa a

An additional constraint requires that the vertical pressure gradient given in Eq (53) be
satisfied. This may be stated as: the difference in capillary pressure between the top
and the bottom of the drop is due to the difference in gravitational potential energy,

= 20
P-=—=-—pga) (57)
ro
where
(o JTUUTUPRTR is the positive and uniform radius at the drop tip (ro = Aa)

The horizontal position of the pendant drop in relation to the groove is defined by the
relative wetted length of the groove face (¢) in Fig (16). Lateral force balance in the
direction of the axis of symmetry of the groove (passing through the apex) provides the
necessary conditions to determine the horizontal location of the drop. The forces acting
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in the horizontal direction are due to capillary pressure, and surface tension along the
solid-liquid-vapor contact line. The positive pressure in the liquid-liquid contact area and
negative pressure in the solid-liquid contact area tend to pull the drop towards the
groove (outwards). While surface tension, acting along the solid-liquid-vapor contact line
pulls the drop away from the groove (inwards).

20 _. 1T 1),
- sm(x)—o(ﬁ——ﬁ)sm(m) =20Ro (58)

The drop shape that satisfies the above three balance equations and constraints for
fixed contact angle (8) and aspect ratio (A) is obtained by solving Eq (55), (57) and, (58)
simultaneously for (a), (o) and (¢). The superposition of calculated drop profile over
drop image, shown in Fig (16), indicates good agreement (values of the variables
used/solved is given in the caption).

Table 1. Calculated Drop Anchoring Radius (R) for two The primary result of these

groove angles (y) and two contact angles (6). calculations is the drop anchoring
area (Ao =nR? that provides the

R [mm] =——— boundary condition necessary for

v =30° v=120° solving the one-dimensional axi-

symmetric dripping model. The drop
A 06=0° 06=30° 6=0° 6=30° base area obtained in this fashion
has been found to be weakly
1 573 499 573 489 dependent on the groove angle (y)
5.74 5.02 5.75 4.95 but significantly dependent on the
5.76 5.03 5.76 4.97 contact angle (8) as shown in
5.77 5.05 5.77 5.01 Tabie (1). it has also been shown
5.79 5.07 5.71 4.95 that the drop radius varies slightly
5.80 5.27 5.70 5.19 with the drop aspect ratio (A), or

indirectly with drop volume. The
results indicate that the value of drop anchoring radius (R) has a narrow range (4.9mm
to 5.9mm) and radius of the ellipsoid (a) is approximately 85 percent of R. Experimental
observations of pendant drops suspended from grooved aluminum slab further assert
the stability of drop anchoring radius (Fig 13). This is also supported by observations of
Curl [1972] on the existence of a minimum radius of stalactites (2.6 mm), which also
implies the existence of minimum drop anchoring area. Consequently, we used drop
base area (Ao) that corresponds to the mean drop volume (A=1.5) to approximate a
constant boundary condition for the drop detachment model. Constant drop-anchoring
areas (Ao) that can be used in calculating dripping are listed in Table (1).

[ U G |
b wWN =

Liquid Profile in the Groove's Transitional Zone

The pressure profile in the transition region is determined by integrating Eq (53) with
initial condition given by the pressure in the liquid-liquid cross section of the drop (AL),
20

Pz)=—--p9z (59)
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where P(z)> vy . Upper in the groove (in the capillary zone) where P(z) is less than the
ambient matric potential (P(z)<y), the liquid configuration in the grooves is in equilibrium
with the ambient matric potential. The liquid profile is obtained by substituting the
pressure profile of Eq (59) in Young-Laplace equation as,

v (2) = — = (60)

Comparison of the calculated liquid profile with observed liquid profile in the transitional
region (Fig 15) showed good agreement.

Model predictions of dripping period and drop volume using the revised physical
analysis of drop shape show excellent match with measured data as shown in Fig (17).
The current solution is fully based on physical principles and is expected to work for any
groove-geometry and flux combinations provided the flow regime satisfies the non-
jetting and low inertia conditions.

100 , ~ 0.12 ;
| |
| |
| |
- i | °
3 | T - 7
gL A N R —— Soos o & 1T
: | o I %6 |
® i . £ i I
& ! ! 3 ' !
[+ | 1
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& 1y i TN L i R
& ! ! a | !
—— Predicted | | ' J |
| i —— Predicted | |
© Measured ' | (a) O  Measured ! ! (b)
I ] | ]
01 b } 0.00 4 +
0.01 0.1 1 10 0.01 0.1 1 10
3 .
Volumetric Flux (¢m“/min) Volumetric Flux (cm*/min)

Figure 17. Results of laboratory experiment in non-evaporative conditions for the grooved
aluminum slab; (a) dripping rate and (b) drop volume at different volumetric fluxes.

The effect of groove geometry on dripping period is mainly due to dependence of flux on
groove angle (y) and depth (L). In these experiments, however, flux was controlled
independently. Hence, the dripping period was insensitive to groove angle. Drop volume
predictions were close to experimental measurements (Figure 17b). The drop volume
largely depends on the drop anchoring area (Ao), which is a result of local force balance
at the groove-drop interface. The effect of flux on drop volume becomes significant only
at low fluxes and high evaporation (more discussion in subsequent entry of 9/25/99 on
dripping in natural caves). The slight fluctuations of experimental drop volumes may be
due to measurement errors.

Further experimental work to validate the model is underway. Thick slabs of aluminum
and quartz, and several groove angles are used under a wide range of fluxes and
ventilation conditions. Preliminary experiments with natural rock specimens under
similar conditions have shown promising results; tests that are more elaborate are
currently going on.
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9/25/99 Model Testing on Dripping from Natural Caves @’*_Q”_

The dripping model predicts rate of dripping from grooves into cavities as a function of
matric potential (vapor pressure) of the fracture and the dripping cavity. The vapor
pressure of the fracture determines the flux in the grooves, while the cavity vapor
pressure determines rate of evaporation from drops. In addition, the flux in the grooves
at any given vapor pressure varies with the groove angle. The original model considers
equilibrium between the cavity- and fracture- matric potentials. This situation can be
realized in long term in the absence of ventilation of the cavity.

Dripping from stalactites and grooves are similar. Once the liquid leaves the feeding
solid (base of groove or stalactite), the physical principles that determine the mechanics
of drop formation and growth are identical. The model considers a constant wetted area
that supports drops. Method of approximating the drop anchoring area was presented in
previous entry; however, measured stalactite cross-sectional area can be used instead,
if available.

The separate influences of the vapor pressure on flux and evaporation varies depending
on (1) the ratio of fracture- to cavity- matric potential (vapor pressure), and (2) the
groove angle.

Model prediction for ventilated (evaporative) conditions covering a wide range of fluxes
was tested by comparison with data of dripping from stalactites (Fig 18), as reported by
Genty and Deflandre (1998). The drip
rate and seepage rate from one
stalactite (soda straw) in the Pére Noél
cave (Belgium) has been studied since
1991. The cave is located 70 m below
surface, and the overlying ground
surface consists of vegetation growing
in shallow soil (5 to 30 cm thick). The
reported data included dripping rate
(number of drops per unit time) and
drop volume measured by an automatic
station during five hydrological cycles
(1991/92 - 1995/96). A constant drop

Figure 18. Comparison of measured drop volumes anchoring area of 6 mm, and groove

. (o]
at different dripping rates (Genty and Deflander, angl? of 45" were _assumed to b,e
1998) with model predictions (Or and Ghezzehei, feedlng the drops. Finally, the matric
potential in the cavity was assumed to

be three times the matric potential of the rock to represent a mildly ventilated cavity (-
100 to -250 Pa in rock and -300 to =750 Pa in cavity).

The variation in drop volume with flux is associated to the viscous extension of the
drops. At low matric potentials (dry), the competitive effect of high evaporation rate and
low flux lead to slow net increase in drop volume especially just before it detaches. This

0.3

o
[N

Drop Volume (cm’)
o

—— Predicted
O Measured

0.0

1 10 100 1000
Dripping Rate (drops/10min)
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leads to low energy dissipation due to viscous flow and provide more force to carry
additional drop weight.

10/12/99 Numerical Evaluation of Analytical Solution D“"" Cr

The analytical solutions and FORTRAN programs designed to solve them, presented in
Vol. (2), involve tremendous computation. Further simplification of the solution that
unifies both evaporative and non-evaporative solutions was sought. The equations
describing the drop detachment period under non-evaporative and evaporative
conditions, given by Eq (26) and (39) respectively, can be rewritten in general form as,

Ao 1 1 Q 0
1-6 1/—— — +— In|1- —(@Q 1)=0 61
i W{Q‘EC—Q Q l: th]]ar( ) (1)
Where
Yo S Drop anchoring area given in Table (1)
Q:,/AoW
U
U=pgU=pg
W=n02

o~ {omo Eq(9)
cJnet (W’T) EQ(37)

The difference between the non-evaporative and evaporative conditions lies in the

dependence of the flux (Q) on the drop growth-stage (tr). For non-evaporative
conditions, the entire influx reaching the groove tip contributes to drop formation and is

independent of the stage of drop growth, hence, o0(Qt)/dt=Q. For evaporative
conditions, on the other hand, the net flux (Qne) is dependent on the drop growth stage
(due to dependence of evaporation rate on drop radius) and o (Qt)/dt has more
complicated form.

\ 1/2
%(Qnet () %)=2 (N % + Mz, ) * N7, " +3 M) (62)
The LHS of Eq (61) has real values only for Q1> Q, (for positive argument of the
logarithm). The function has a very steep slope in a narrow range near the solution
(t=7¢), and a very flat slope when 1>1.. Both these features make standard methods of
solving implicit equations (e.g. Newton-Raphson iteration) inapplicable. The revised
numerical scheme used in this notebook seeks the solution only in the region of real
values by method of bisection, starting at the point of singularity (t = Q/Q). This method
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of solution is more efficient than the one presented in Vol. (2), and can be implemented
easily in symbolic mathematical software. A MATHEMATICA program that implements
this solution is provided in Appendix C.

The illustrative examples of dripping characteristics (dripping, period, drop volume,
solute concentration) presented in the previous model were revised according to the
modifications presented in this volume. In Fig (19, 20 and 21) sample calculations of
dripping period, drop volume and solute concentration at 30- and 120-degree groove
angles are shown. Similarly, comparison of drop volume calculated using current model
with that of Scheele and Meister (1986) and decoupled solution of dripping under
varying degrees of ventilation were revised. The revised results are given in Fig (10)-
(13).

Dripping Period

The drop shape and anchoring-area are not significantly affected by the groove
geometry. However, groove geometry significantly affects the dripping by varying the
flux (Q) associated with any given matric potential (y). Of the three geometric
parameters (L, B and y) that define the fracture surface roughness, the groove angle (y)
results in the largest variations in dripping rates. Narrow groove angle can support
larger cross-sectional area of capillary water; hence, higher liquid flux at any given
matric potential. The effect of groove depth (L) is limited to determining the matric
potential of complete filling of the grooves. The parameter B does not have significant
effect on dripping rate and drop size, since corner flow dominates film flow by several
orders of magnitude in the range of matric potential where drop formation is possible
(near saturation).

Detachment period (1) for evaporating and non-evaporating conditions for two groove
angles are depicted in Fig (19). As the matric potential decreases (becomes more
negative), the total influx (Q) decreases
(a) resulting in longer dripping period of
individual liquid drops. When we
consider evaporative condition, as
matric  potential decreases, the
competition between the decreasing
influx and increasing evaporation rate
results in significant rise in dripping
period until a limiting minimum matric
—— Evaporative potential is reached. At ambient
— Non-evaporative condition drier than the limiting
100 200 w0 400 w0 e MiNimum matric potential, there would
- Matric Potential [Pa] not be .enough flux to exceed the
evaporative demand, and dripping

Figure 19. Theoretical Drop detachment time (z.) ceases. . In Co_n_traSt' under n(_)n'
under evaporative and non-evaporative conditions  €vaporating conditions, drop formation
dependent on coupled matric potentials (y) of continues indefinitely with no bounds on
cavities and fractures. minimum matric potential. At any given

matric potential, because narrow
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groove angles (y) result in higher flux (while evaporative demand is independent of the
groove geometry) they have lower, limiting-minimum matric potential.

Drop Volume

The volume of individual drops as a function of the matric potential is shown in Fig (20).
The drop volume is primarily determined by the drop-anchoring area (Ao), and time to
detachment (t.). The drop-anchoring area does not change with groove geometry and
matric potential; hence, there is no significant change in drop size (volume) associated
with the drop anchoring area (Ao).

The dependence of drop volume on the duration of drop formation is through the rate of
viscous extension Eq (19) Vol. (2). Under evaporative conditions, the net flux - Eq (37)
decreases during the growth period of individual drop, reaching a minimum just before
detachment (t=1;). As the ambient

0.21 ,/—E“;“o“'.“ (b) Ir'na'tr.ic p.ot'ential apprpaches the
rop Volume imiting-minimum  matric  potential

o181 (indicated by the vertical marker in
Fig 4a), the minimum net flux (Qnet)
approaches to zero due to increased
evaporative demand. Hence, the
downward stress component due to
viscous extension decreases as the
0.09 1 . drop grows. The additional upward
T Remevaporstive stress component allows more drop
o0 o0 o " w00 oo e weight to be suspended as indicated
by the rapid rise in drop detachment

Figure 20. Theoretical Drop volume at detachment pe.”.Od in Fig (1 9) as the I.Immng

under evaporative and non-evaporative conditions ~ nimum - matric potential is
dependent on coupled matric potentials (y) of cavities approached. The maximum drop
and fractures. volume corresponds to the maximum

equilibrium drop weight that can be
suspended in the absence of viscous energy dissipation, hence, is independent of flux
as shown in Fig (11).

y=120° y=30°

e
-
o

Drop Volume [104 m’]
e
~

- Matric Potential [Pa]

Solute Concentration

Solute concentration of individual drops is directly related to the volume of the
evaporated water (difference between the total influx and the net flux). Solute
concentration of drops at time of detachment (t=t;) are shown in Fig (21) for two
groove-angles (y) as functions of the matric potential (y).

The effect of lower matric potential on drop solute concentration is through the decrease
in dripping rate that allows more evaporation to take place. At potentials close to limiting
minimum matric potential, the time required for drop formation increases rapidly thereby
allowing for extended evaporation opportunity times. Near this region (see Fig. 19 for
the fast rise in formation time), the concentration more than doubles by only a slight
decrease in potential (or vapor pressure). It is important to note that the limiting
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30 .- minimum potential (below which
(c)| dripping  stops) is  completely
determined by the groove angle (y).
This sensitivity to groove angle and
matric potential variations guarantees
that even under similar ventilation
conditions, variations in individual
dripping rates among grooves of
different groove angles would produce
drops with different solute
concentrations. In general, slow
pathways would result in higher
relative solute concentration of drops

by allowing longer evaporation
Figure 21. Theoretical Relative solute concentration duration. Similarly even slight

of drops at detachment time dependent on coupled N . . .

matricppotentials (y) of cavitiespand fractures. P variations in matric pqtentlal (e.g., ata
range that could be induced even by

barometric pressure or temperature variations) near the minimum drop forming matric

potential could substantially alter solute concentration of drops.

There are nominal changes that do not take into consideration the effect of deposition

such as observed in Karst system where Pq_is lower in the cavity [White 1988].

k Maximum Relative
Solute Concentration

25

y=30°

2.0 1

1.5 1

Relative Solute Concentration

1.0

0 100 200 300 400 500 600
- Matric Potential [Pa]

Dripping Period under Decoupled Flux and Evaporation

We consider a setup consisting of a sample of fractured media similar to Fig 2, in which
the plane width parameter is set as =0 (considering flow in grooves only). A controlled
steady state volumetric flux is applied at the groove top (Qv). This influx of liquid
substitutes the chemical-potential-dependent flux (Q) of previous calculations.

The applied flux is not permitted to overflow out of the grooves (by keeping the flux
sufficiently small or using deep grooves). Thus, the flow mechanism is similar to that of
corner flow in partially filled grooves given in Eq (5) of Vol. (2).

The net flux (Qnet) given in Eq (37is modified by substituting Q with Qy. The drop
detachment time is obtained by solving Eq (61) using the modified net flux and methods
discussed in previous entry. The evaporation from drop surfaces is determined by the
matric potential in the cavity (ycav). Sample calculations of drop detachment times (tc)
for a series of fluxes (Qv) and different cavity matric potentials (ycay) are shown in Fig
(22a). For a given condition of cavity matric potential (ycav), the net flux decreases with
decrease in flux, leading to increase in detachment time. When the flux approaches a
critical minimum, the competition between influx and evaporation is intensified leading
to rapid rise in dripping period, and finally termination of dripping. The minimum
volumetric fluxes (Qmin) and maximum dripping periods associated with a wide range of
ambient vapor pressures of fracture cavity are depicted in Fig (22b). When the vapor
pressure of the cavity is close to saturation (e.g. v = -1Pa), the effect of evaporation is
negligible and drops can be formed from very small volumetric fluxes in very long
dripping period. More ventilated cavities (lower cavity matric potential - ycay), On the
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Figure 22. Theoretical dripping characteristics determined by decoupled (independent) liquid flux

and evaporative conditions (matric potential of cavity) for a groove angle y=30°. (a) dripping period
under different cavity ventilation conditions (matric potentials) dependent on volumetric flux. (b)
minimum volumetric flux required to generate dripping under different ventilation conditions
(matric potential of cavity) and the associated maximum dripping period.

other hand, require higher minimum-volumetric-flux to generate dripping and
consequently, have lower maximum dripping period.

10/25/99 Intermittent Flow in Fractures - Introduction D"’"‘ Cn

Intermittent flow of liquid in fractured porous media can occur in the form of moving
liquid bridges. This phenomenon is particularly important at near-saturation state. The
objective of this study is to develop a physical model for formation of liquid bridges in
fractures and subsequent intermittent rivulet and finger flow.

The modeling framework is
divided into two stages of
increasing complexity. The
first stage is to model
equilibrium  configuration of

Information potentially subject to copyright fixed-volume liquid-bridge
protection was redacted from this location. between inclined parallel
planes. This simplified

The redacted material (Fig. 23) is from the

: ) equilibrium-state model can
following reference:

be used to analyze growth
and stability of liquid-bridges

Nicholl, M.J., M.J. Glass, and S.W. Wheatcraft. for discrete range of liquid
“Gravity Driven Infiltration Instability in initially volumes (which presumably
Dry Nonhorizontal Fractures. Water Resources change due to interception of
Research. Vol. 30, No. 9. pp. 2,533-2,546. 1994. surface- or matrix- fluxes, or

due to vapor condensation).
The maximum liquid volume
for which equilibrium shape
exists determines the onset of
motion. Two forms of motion
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can be identified: (1) motion of the entire bridge (Fig 24), or (2) breakup of the bridge
into smaller stable pieces.

In the first condition, the liquid-bridge moves at constant velocity that generates enough
viscous (frictional) drag to carry the excess drop liquid weight. This type of motion is
likely to occur on smooth fracture walls that cannot provide enough viscous drag. In the
second condition, the smaller pieces form either stable liquid-bridges or liquid drops if

the geometry permits.

Information potentially subject

to copyright protection was redacted
from this location. The redacted
material (Fig. 24) is from the
following reference:

Nicholl, M.J., M.J. Glass, and
S.W. Wheatcraft. “Gravity Driven
Infiltration Instability in initially
Dry Nonhorizontal Fractures.
Water Resources Research.

Vol. 30, No. 9. pp. 2,533-2,546. 1994.

surface-roughness.

The second stage of the modeling framework
considers continuous growth or (decrease) of
bridge volume. This approach includes the rate-
dependent viscous effect on growth of stationary
liquid-bridge. This is in direct analogy with
growth and detachment of free liquid drops.

The following phenomena will be investigated
(or modeled) in-depth.

Attainment of steady liquid-bridge velocity
moving on smooth and rough surfaces by
matching viscous drag and body forces
either by reducing the mass (as it streaks
over the fracture surface) or increasing
the velocity.

Formation and motion of liquid-fingers by
flow of liquid bridges on rough and dry
surfaces. Develop characteristic finger
length and elongation velocity depending
on the fracture surface-roughness and
wetness condition.

Formation of rivulets from (1) drops near
inclined walls, (2) moving liquid bridge in
the presence of abrupt increase in
aperture size.

Inertial mechanism of dripping from liquid
bridges due to abrupt change in fracture

Equilibrium State Liquid Bridge Configuration

Geometric Considerations

Consider parallel plates of narrow spacing (2b) placed in Cartesian coordinate system
as shown in Figure (25). The plates are wide enough so that the size of liquid-bridges
formed in between them is not affected by the boundaries. The plates can be inclined at
angle (B) about the y-axis. The spacing is small enough that the effect of gravity on the
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shape of the liquid menisci is negligible. However, for $<90, there exists distortion in the
shape of the liquid bridge due to gravitational potential difference between the higher
and lower ends. The fracture geometry is determined by the inclination angle (B), and the
spacing (2b). The surface roughness of fracture walls (R) defines the ratio of the actual surface
area to that of a perfectly smooth surface. Other geometric variables are as defined in Fig (14).

The total surface area and perimeter of the liquid-solid interface on the z'y planes are given by,
A=4-C-D+n-C? (63)
P=4-D+n-C (64)

The volume of the liquid-bridge can be approximated by,

‘Z
ol b E
*\{/
F
]
e w
F \
bb'

Figure 25. Schematic diagram of liquid bridge formation between parallel plates
V=AD (65)

The liquid pressures at the top and bottom ends of the liquid bridge are given by Young-
Laplace equation as,
Pt= (l - 1] (66)

Cob
1 1

The pressure difference between the top and bottom ends of the liquid bridge is
attributed to difference gravitational potential energy,

Pt=Pb+2-(C+D)p-g (68)

If we assume the contact angle of the liquid vapor interface at top end is zero, the
curvature and contact angle at the bottom are obtained from Eq (66), (67) and (68) as,
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bo
bb = 69
b-2(C+D)gp cos(®) (69)
b
0= acos(EE) (70)

Forces Acting on Liquid Bridge

Two forms of static forces pulling the liquid-bridge upwards can be considered:

(1) Force due to surface tension acting on the top curved portion of the solid-liquid-
vapor contact line

F, =200(1—5%] (71)

(2) Vertical component of the negative liquid pressure acting on the wetted area
Pt+Pb(b-bb+bbsin(p)
2 b

If the condition permits, the liquid bridge is assumed to be in motion at constant velocity
(v). The force resulting from viscous drag can be given by,

F, =3—22RCnv (73)

F=A (72)

For a given fixed volume of liquid bridge, the configuration is obtained by equating the
resultant upward force to the weight
of the liquid drop,

* —:0 deg (Vertical)
—— 45 deg (nclinea) Fo +Fo +Fy)cos(B)=Vpg  (74)
The solution to Eq (74) can be

obtained by standard numerical
methods.

lllustrative example of solving Eq (74)
using MathCAD program is provided
in Appendix D. In Fig (14), the aspect
ratio of the solid-liquid contact area
(wetted region) is shown as a function
of volume of liquid bridge for two
inclinations. The spacing of the
parallel plates in these examples was

~—

Aspect Ratio of Liquid Bridge Profile

o L] LS L 1
0 0.1 0.2 03 0.4 1.5mm, and surface rough_ness
R=1000 was used. In all conditions,
Volume ofLiquid Bridge (mi) the velocity of the liquid bridges was
Figure 26. Aspect ratio of liquid bridge, formed calculated to be zero (v=0).

between parallel plates of 1.5mm spacing R=1000 . .
surface roughness, as function of bridge volume for 0° Addition of more constraints and
and 45° inclinations from the vertical axis.
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refinement of the solution methods are currently being pursued.
Elongation and Detachment of Liquid Fingers

Slow feeding of liquid bridges formed between rough fracture surfaces results in
lingering extension of the bridge, forming slender liquid fingers. The liquid finger extends
under its own weight until it raptures and detaches forming smaller liquid bridges. The
forces that determine its evolution are surface tension, gravity and viscous resistance to
extension.

Consider a liquid finger being fed by a continuous stream from above as shown in Fig.
(27). Initially, before the onset of elongation the bridge has circular outline. The
Cartesian coordinate system is centered at the origin of the circular outline of the liquid
bridge. The time scale is set to zero at the onset of elongation. Further extension is
tracked in Lagrangian coordinate system as in the case of free liquid drops. For
simplicity, we assume that the semi-circular bottom end of the liquid finger remains
unaltered. Extension of the liquid finger occurs in the region between the semi-circular
bottom and the origin.

The following force components operate in the vertical direction,
= Weight of liquid suspended below the element 1, including the bottom semi-

Az 4 l Q @

//., - % ol

1'! "X .y / \‘ ;y

T P o

N S L“ ’I‘

! i " ' y
t=0 t>0
. ) Lagrangian Force Components

Cartesian coordinate system coordinate system SL- Interfacial Stress

0]

@ LV- Interfacial Stress

@ Viscous drag (no-slip)
@ Resistance to shrinkage

Figure 27. Schematic diagram of elongation of liquid bridge to liquid finger. Evolution is tracked
in Lagrangian coordinate system, and involves balance between several force components.

circular portion

* |Interfacial stresses along the liquid-vapor (LV) and liquid-solid (LS) contact lines
supporting the weight (1 and 2 in Fig 27).

* Viscous drag along the liquid-solid contact area below the element t (3 in Fig 27)
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S = pg(2-b'n- ro? +Or)— [+ 2nboy +4yo g +H%%] (75)
T

Additional forces resist the lateral extension (or reduction) of the finger cross-section.
The vertical component of these stresses is related to the lateral stress by the Poisson
ratio (v=0 for incompressible fluid). These stresses include (4 in Fig 27),

* Pressure difference across the liquid-vapor interface resisting shrinkage of the
liquid cross section

* Interfacial stresses along the liquid-vapor and liquid-solid contact lines of the
liquid cross-section, resisting shrinkage of the liquid cross section

* Viscous resistance to reduction of the liquid cross section

1 1 3nd
The above stresses combined together describe the evolution of the liquid-finger.
d 2ndt (1 1
d—‘t’ = %{@g(z.b 102 +Qr)-3[2nbo,, +4yo g ]_TnE_(B +;]ow } (77)

By solving the differential equation (77), it is possible to obtain an expression for the
width of the liquid finger (y(t,t)). The element that goes to zero at the earliest time
represents the element that pinches. This analysis is currently under study.
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11/01/99: Status Report Deri Cr

e Wettability of the aluminum slab is not necessarily similar to that of rock walls. In some
instances there were visual indications non-uniform wetting and the contact angle between
the liquid-vapor interface and the solid (aluminum slab) surface was not known.
Furthermore, the experimental data reported reflect only rapid dripping rate. More
experimental work is underway using aluminum and quartz slabs of various geometries
(groove angle and slab thickness) under wider flux range and conditions that can induce
evaporation (using chambers with controlled temperature and relative humidity)

® Further experimental work will focus on dripping from rock samples (actual YM rock
samples?) with npatural and/or artificial roughness.

® Fundamental principles that govern formation and stability/motion of liquid bridges in
fractures are laid in the current volume. Further refinement of the current model and
inclusion of transient effects of flux are required. The models will be tested using laboratory
experiments. The experiments will provide quantitative and qualitative (possibly using
image analysis) data of liquid bridge formation and motion.

® Note that four appendices are attached. Appendix A includes raw experimental data and
calculations. The first part of appendix B contains MATHEMATICA program that implements
the modified numerical solution technique presented in entry of 8/15/99. In the second part
of appendix B, a MathCAD worksheet that calculates drop volume using the detachment
time obtained from the MATHEMATICA program is presented. Appendix C contains
MathCAD program that solves equilibrium state drop shape and liquid profile near the
dripping plane. Appendix D contains an illustrative example of solving equilibrium state
configurations of liquid-bridges formed between inclined fracture spaces.
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Appendix D: Dripping Experimental Data (5/17/1999)

Nominal Flux Groove Beakerwt Duration Beakc‘e&-;-Drop # of Drops Tot. Drop Wt Flux Period  Drop Wt (vol)
cc/min gm min gm gm gnc}/mmg sec gm (cc)
3 1 48.43 10 54.87 93 6.44 0.64 6.452 0.069
3 1 48.43 10 54.90 93 6.47 0.65 6.452 0.070
3 3 48.43 10 60.11 159 11.68 1.17 3.774 0.073
3 3 48.43 10 60.87 169 12.44 1.24 3.550 0.074
3 2 48.43 10 68.36 259 19.93 1.99 2.317 0.077
3 2 48.43 10 68.47 260 20.04 2.00 2.308 0.077
1 1 48.43 10 51.45 44 3.02 0.30 13.636 0.069
1 1 48.43 10 51.44 44 3.01 0.30 13.636 0.068
1 2 48.43 10 50.37 27 1.94 0.19 22222 0.072
1 2 48.43 10 50.36 27 1.93 0.19 22.222 0.071
1 3 48.43 10 55.89 104 7.46 0.75 5.769 0.072
1 3 48.43 10 55.86 103 7.43 0.74 5.825 0.072
5 1 48.43 10 52.43 51 4 0.40 11.765 0.078
5 1 48.43 10 52.9 55 4.47 0.45 10.909 0.081
5 2 48.43 10 68.81 213 20.38 2.04 2.817 0.096
5 3 48.43 10 74.05 316 25.62 2.56 1.899 0.081
8 3 48.43 5 70.95 260 22.52 4.50 1.154 0.087
10 3 48.43 5 83.23 405 34.8 6.96 0.741 0.086
0.75 2 48.43 10 52.03 41 3.6 0.36 14.634 0.088
0.5 1 48.43 9.5 49.24 10 0.81 0.09 57.000 0.081
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Appendix E: Drop Shape and Liquid Profile Near Dripping Plane

Constants and Initial Guesses

Numerical tolerance TOL := 102
Physical constants p 1=998 £:=9.81 0:=0.0792 9= o-% Y :=%
Variable parameters (unknowns) ai=4.544-10°  «:=04 B :=% 0:=1.8
Fixed parameter A :=1.05
Dimensions on vertical section
b(a,A):=ah Drop length
H2.8.0) = I az-b(a, A )2 Radius of elliptic cross-section in polar coordinates

az-sin(e )2+ b(a,k)2~cos(6)2
[ .2 )

E(BA) = = atan |
2 \tan(B)/

R(a,B, 1) =r(a,B,r)-cos(B)+ a-a-cos(§ (B,A))

{ \

R2(a,}) =a-12A - A7 1,

Dimensions on horizontal section

x(9) :=asin(sin(y )-¢)

¢9-a+(R(a,p,A)-a)

a(a,o,B,A,0) :=asin[sin(y )-
R(a,B,})

¢-a-sin(y - x(9))
sin(x(¢9))

c(a,9) =

a-¢:sin(y )
A(a, ) =2 \Wa'— x"-c(a,¢)/dx

0

Wetted radius at drop top

Radius of curvature at drop bottom

Liquid filled groove area

Dripping from unsaturated fracrture under
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Pressure at Top and bottom of drop profile

[ 1\

PT(a,a,B):=o-f - — Top
‘\R(astx) a'a/
2.
PB(a,1) =22 Bottom
fa
1A

Lateral Force Balance
Fout(a,B,A,0) ==2-g-(2-sin(x(¢))~a)'(r(a,Byl)sin(ﬁ))

1

Fin(a,a,B,1,9) :=0~R(a,B,X)-sin(a(a,a,B,l,q)))—-0’-[
(R(a,B,l))0+(r(a,B,l)cos(ﬁ))

Vertical Force Balance
xmin(a,B, ) :=r(a,B, L) cos(B)
xmax(a,B,%) :=R(a,B,r)

a

V3(a,B,2) :=2-1t-[ x-/J ‘(az— x2> A2dx
xmin(a,p, )

xmax(a,f,1)

Limits of volume integration

V2(a,B,A) i=(21) [
xmin(a,f,A)

Vi(a,hA) :=§~1t-33-7»
V(a,B,1) =VIi(a,A)+(V2(a,B, ) - V3(a,B,r))

W(a7ﬁvx) ::V(avﬁrl')'p ‘g

2.
F(a,a,B,A,9) :=(PT(a,a,B))-(n-R(a,B,X)z— A(a,¢)> +T°~A(a,¢)— (6:2)(n- w(a,o,B,A,0))(R(a,p,1))sin(6)

x-[ (a'a)z— (x— xmin{a,B,A) - a-a-cos(§ ([3,)»)))2 - a'a-cos(e)]dx

~ L | \(2sin(eqa, 0, B.X, 8))R(a,B,1))((a, B,1) sin(B))

IDripping from unsaturated fracrture under
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Linear Solver Block

Given

Geometric equation

Vertical force balance

Vertical pressure balance

Lateral force balance

Maximum groove wetting

:=Find(a, a,B, )

o ™ R

Graphic Drop Profile

¥i=0,0.01.. 2%

xst:=r(a,B,A)-cos(B)
yst:=-r(a,B,A)-sin(B)

xe(y) = | r(a,y,A)-cos(y+m) if ySn—B

xst otherwise

/ / 3
ys(y) = | o-a-sin!
! \
yst otherwise

a-a-cos(8)-r(a,B,A)sin(B)_

/

v 51 aacox) if S e (B
2] V2

\

sin(§ (B, 1))
a-a

W(a’ﬁ’x)+F(ara7B’}‘r¢)=0

(PB(a,A)-p-ga-r)=PT(a,a,B)

Fin(a,a,B,A,0)=Fout(a, B, A, )

0<2-cos(yY)

x:=0,0.1.10 y(x) !=tan1‘£— Y ‘=-x+ g‘w‘j-al&
2 sin(Y )
xin(y) :=a-cos( y) xout( y) :=R(a,B, L) -cos(y)
yin(y) :=a-sin(y) yout(y) :=R(a,B,A)-sin(y)

ye(y) = [(a,y,A) sin(y+n) if y<n—B
yst otherwise

\

/ \ /

xst otherwise

[oomh ol ‘
xs(y) = Jea-cosiy+— +(a,B, ) cos(B)+aacos(E(B,A)) if (yS—=E(B,A)
H 2’ i /

Dripping from unsaturated fracrture under
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OUTPUT ARRAY
i:=0..100 p =i 2t
! 100
Xei 3=xe<‘l‘i\} Xsi = xs<‘l’i>
Ye. i=ye/¥" Ys. i=ys{¥)
! ol ! Ay

Liguid Profile Near Dripping Plane

Length range z:=0.0001,0.0002 .. 0.1 Bottom Pressure Q:=PT(a,u,B) Groove width W =
Radius of LV o . RE
interfcae curvature ~ "(2) F——— I(z) = | W if [r(l)'sm[—- (8+y )”50
pgz=Q 2
Liquid Profile in n(z)-sin| Z— (8 +7)| otherwise
horizontal axis 2

L(z):=|(z) if (z)SW

W otherwise

OUTPUT ARRAY  i:=0.50  z:=i2%% 11 =170

50 C

Remarks: Output arrays are plotted in Sigma Plot 4.0

4107

2
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Appendix F
(i) Drop Detachment Period for Dripping from Unsaturated Grooves
under Evaporative Conditions

m | Constants

Physical Constants [MKS system]

The constants listed below denote; water density, acceleration of gravity, surface tension of water, viscosity of water,
binary diffusion coefficient of water vapor, gas constant, absolute temperature (20 0C), Hammaker constant, saturated
vapor pressure, atmospheric pressure, solid-liquid-vapor contact angle

p :=998;
g=9.8;
0=17.2910%;
n= 1073;
DO =2.13107%;
R = 462;
T =293;

Aslv=1.910""%;
Psat = 2337;

P=910%;
b
0= —;
6
Ycav = 250;

..4 Fracture Geometry

Groove angle, groove depth, groove depth:plane width, fracture angularity factor

Dripping from unsaturated fractures Printed by Mathematica for Studenis Volume 2 (1), Page F-il
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b
7-?r
L=5107%;
B=1;

1 -y
F r= - ;
glv_l Tan{y /2] 2

..{ Drop Base Area

AO=5.638210"°;

..{ Derived Constants [MKS system]|

U=pg;
W=no?%;
10° T \'®
DD = -DO —— ——) ;
P 273.15
Q 3 '\/AOW
T2 ru

B | Functions

...Flow Resistance Parameter (Ransohoffand Radke, 1988; Or and Tuller, 1999]

v 180
€[v_] :=0.966Exp[0.051 —

— ]+7.89

...Radius of Curvature of Capillary Meniscus

[«
ILV[Y ] := v

Dripping from unsaturated fractures Printed by Mathematica for Students

Volume 2 (I1), Page F-i2
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Appendix F
(ii) Drop Volume and Solute Concentration
Constants
TOL :=107"° DO :=2.13-10°°
p =998 R =462
g:=9.8 T =293
6:=7.29-10"2 Psat :=2337
n:=10"" P:=9.10°
5 1.8
D:=-pol0. T \‘
P \273.15/
Functions
[yp 1)
2-D-Psat~<l - exp!\ﬂﬁ | 3 \%
R-T :
M(y) i=- /] NQ) =122
p-RT \Z-R/
3
22
2n 3
Qnet(¥,Q,7) :=3—~\M(w>-r+N(Q>-r J
T
File Reading
i:=0..66 y:=READPRN("Y-30.prn") Q:=READPRN("Q-30.prn")  tc :=READPRN("T-30.prm")
Volumes and Concentration
‘CCI_
Volume of drop vd, = Qnet(\ui, Qi,t>d‘t
0
Total volume vt :'_'Qi'tc.'
Vi,

Solute Concentration G vd.
1

ripping from unsaturated fractures under Volume 2 (ll), Page F-ii-1
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Compiled Output for Graphing

Dataf”Oi,0 :=\yi Data30i‘] = TC. Da.taB()i‘2 = \/di Data3()l.'3 = CI
100 0.183 9.941-10 -8 1
107 0.24 9.924-10 -8 1
114 0.31 9.935-10 -8 1
121 0.393 9.937-10 -8 1
128 0.492 9.93310 -8 1
135 0.608 991710 -8 1
142 0.745 9.904:10 -8 1
149 0.903 9.929-10 -8 1
156 1.085 9.924.10 -8 1
163 1.293 9.928-10 -8 1
170 1.53 9.926-10 -8 1
177 1.798 9.921-10 -8 1
184 21 9.928-10 -8 1
191 2.439 9.919-10 -8 1.001
198 2.817 9.936:10 -8 1.001
205 3.237 9.929-10 -8 1.001

Data30

wlr

[99Y I

\\J 2
+35M(W 1 ANQ) T + M(w)T

2 02y
. 4.’ 3. 237 LBNOY  20-M( W) N(O)-
V(Q,w,t):=4-n~,:-8N(Q) N(Q)T™ + IN(Q)+ M)/ -18N(Q)" = 20-M(y) N(Q) 1

|
315M(y) 1>

ic.:=v/( \
Vanalytlcl. : V\Ql.,wi,tci/

6:10 T T T T
51077 —
40077 —
vd
=7
Vanalyti@ .10 -
000
i
21077 —
110”7 —

600
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Appendix G

DYNAMIC LIQUID BRIDGE BETWEEN INCLINED PARALLEL PLATES
Physical Constants

p:=998  TOL:=107*

g:=938 627291072 1:=0.1307-10°
Geometric Considerations

Fracture Geometry: Spacing (b), Inclination (B) and Roughness (R)

b:=0.75-10"
0
p:=2" R :=10° B30 0
2.4 s

Solid-Liquid Contact Area A, and Solid-Liquid-Vapor Contact Length
A(C,D) :=4-C-D+-7t-C2 P(C,D):=2-n-C+4D

Liquid Volume and Weight
V(C,D) =A(C,D)2b
W(C,D,v) =V(C,D)p-g

Liguid-vapor interface: top half defined by radii =C and b and zero contact angle; bottom
half defined by radii = C and bb and contact angle = 6

-6b
bb(C, D) := °
-6+ 2(C+ D)-bp-g-cos(p)
0(C,D) :=acosr/;\}
\bb(C,D)/
Forces
Force due to pressure
- f
Py =S (Lot Lo e
2 [lc b/ \C bNC,D)/

b—bb(C,D)(1-sin(8(C,D)))

FP p(C.D) 1= (FP 4(C, D) |-

b
Force due to surface tension
FS(C,D) =2-C-6:(1- cos(8(C,D)))
Force due to viscous drag
FV(C,D,v) :=§33-R-c-n-v
Total Upward force along the inclined plane
FV(C,D,v)

FUP(C,D,v) i=FP up(C,D)«}- FS(C,D)+

Total Downward forcealong the inclined plane

FDN(C,D,v) :=W(C,D,v)-cos(B)

IDripping from unsaturated fractures Volume 2 (Il), Page G 1
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Hllustrative Example

Guesses C :=B D:=0 vi=10~ TOL :=10"° q:=3010"
2

4

Solution I: Static
Given
FDN(C, D, v)=2-FUP(C,D,v) D20
WT=W(C,D,v) v=0
S(WT) :=Find(C,D,v)

Solution Il: Dynamic
Given
FDN(C, D, v)=2-FUP(C,D,v) D20
WT=W(C,D,v) v20
SI(WT) :=Find(C,D,v)

Solution llI: Dynamic, minimum Velocity

Given
FDN(C, D, v)=2-FUP(C,D,v) D20
&=W(C,D,v) v20
S2 :=Minimize(FV,C,D,v)
S(WT),+ S(WT),
6.836 6.831 6.836 AS(WT) =
3 3 3 S( WT)0
S(q)-107 =| 2.11 S1(qg)-10" =(2.119 S2:107 =| 2.11
0 0.325 0
wT:=110"%,1.5.10* . 30-107*
- Aspect Ratio
3
< 7
2 Fracture Geometry
c
(=1
Q
2 Inclination L
G 2-- n
(=2
2
E Spacing 2:b-10° = 1.5
% H Roughness R =110’
1 ]
1 1o 100

Drop Weight (1e4 N)
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Volume 2: Dripping into Cavities from Unsaturated Fracture under
Evaporative Conditions

lll. Liquid Bridges and Liquid Fingers, Dripping
Experiments under Evaporative Conditions

Unsaturated and Saturated Flow under Isothermal Conditions — D‘“i L)‘
Key Technical Issue - Dani Or - 9/22/2000

Account Number: 20-01402-861
Collaborators: Teamrat A. Ghezzehei (USU), Randall Fedors
Directories: C:/dripping_notebook

Objective: this study is a sequel to the second part of the current volume. The
objectives of the study are to present more detailed description of liquid-bridge
formation, fingering and intermittent flow in unsaturated fractures; and design an
experimental setup to test the analytical model of dripping into cavities from unsaturated
fractures, presented in the first part of the current volume of scientific notebook (Or and
Ghezzehei, 1999), with special emphasis on effects of evaporation.

Initial Entry — 02/10/2000; Dhni (i

In the second part of this scientific notebook (#354) introduction to intermittent flow in
unsaturated fractures was presented. Further developments to the model and illustrative
examples, and preliminary experimental results are presented in the current section.
Experimental testing of the analytical dripping model presented in first and second
section of the current volume (#354) with special emphasis to effect of evaporation is
also discussed.

02/15/2000 Suspended Stationary Liquid Bridge Du (4.

Model Development

Modeling of liquid configuration between two confining parallel surfaces has been a
topic of numerous theoretical studies. However, most analyses either ignored effects of
gravity [Carter, 1988] or considered liquid bridges in horizontal gaps only
[Meseguer,1983; Padday et al., 1997]. Modeling the behavior of a liquid bridge between
non-horizontal parallel plates in the presence of gravitational forces presents a
challenge as will be shown shortly. The starting point for the analysis is the
configuration and growth of a small (initially circular) liquid bridge. There are several
possible mechanisms by which a “seed” bridge can be formed, including: abrupt
narrowing of fracture aperture, the presence of asperity contact, and a residual
(trapped) liquid element too small to flow. Because the liquid in the “seed” bridge is
likely to be at a lower energy state than the liquid in films and matrix (due to lower
interfacial area per unit liquid volume), it attracts liquid flow causing a gradual increase
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in bridge volume with subsequent
changes in its configuration.
Assuming (as a first approxirnation)
that the flux feeding the bridge is
constant, two primary questions of
interest are: (1) the maximum
bridge size that could exist in the
fracture; and (2) the optimal
configuration of the bridge. Answers
to these two questions should
provide estimates for subsequent
finger size and length (as will be
shown next). Furthermore,
description of liquid-vapor
configurations for a growing bridge
facilitates investigation of dynamic
aspects of bridge breakup (and
motion) under its own weight.

Section X-X'
e - &b

-

jeguRjod
U [JRHAE 1)

A definition diagram for the
geometry of the problem is given in
Fig.28. A liquid bridge is suspended
between parallel solid surfaces
spaced at 2'b. The upper and lower  Figure 28: A definition sketch for a liquid bridge

portions of the liquid bridge are suspended in a gap between parallel solid surfaces
represented by circular ércs of representing a fracture with aperture size of 2b.

radius C; and Cy,, respectively. The
tangential lines connecting the arcs are off the vertical by an angle of 6. The centers of
the arcs are separated by D. The wetted area of one plane can be approximated by,

A=V/(2-b) (78)

The radius of the bottom arc (Cp) and the distance between the centers of the arcs (D)
can be expressed in terms of Ct, A, b and 6 as,

A = 1
c. ez 27 an(e)
f= b _ | (79)
C, n L
2 tan(0)
p=-S"% (80)
sin(6)

Assuming a perfectly wettable plate surface, the radius of equilibrium curvature at the
top of the liquid bridge is equal to the aperture size (2:b). The difference in capillary
pressure between the top and the bottom of the liquid-bridge is due to the difference in
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gravitational potential energy.

1 1 1 1
1Ll |-t -2 |=—pg(C +C, +D 81
(’[ct b] G(Cb er pg(C,+C,+D) (81)

Then, the bottom radius of curvature (rp) can be obtained by rearranging Eq (81),

T (1 C f1 (82)
—+ | ==1 PO [y —
b Ciif c sin(0)
Similarly, the radius of curvature at the midpoint of the side-walls (rc), is given by,
r.= 1 (83)

St 1 pgCif, f-1
b C, o sin(0)

The liquid wetting contact angle at the bottom (o) and the midpoint of the sidewalls (B)
are given by,

oL = acos| b (84)
rb

B=acos b (85)
rC

The liquid bridge is held in place by a balance between liquid-vapor surface tension and
gravitational forces. For vertical parallel plates the surface tension forces are those that
act on all the solid-liquid-vapor contact line. The vertical components acting on the top
arcs, sidewalls and bottom arc are given by, respectively,

Fep =2-0-C,-(cos(2-6)+1) (86)
F.. =4-0-D-cos(8)-sin(8)--sin(B) (87)
Fooiom =—2-0-C, -(cos(2-6)+1)- cos(a) (88)

The capillary force exerted by the liquid-vapor-solid interface is balanced by the liquid
weight (W).

W=V-p-g (89)

The configuration of a liquid bridge must satisfy the following force balance equation:
Fioo +Fuge + Footom = W (90)

top side bottom
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When the liquid volume is increased beyond the critical maximum, two processes can
follow. The first mechanism is marked by the onset of motion of the entire liquid bridge
as a unit. Viscous drag along the liquid-solid interface of the path provides the force
required to carry the excess weight, where the liquid bridge attains a constant velocity
proportional to the excess weight. More details on the calculation of velocity of the liquid
bridge traveling in this manner and reconfiguration of the liquid-bridge shape are
underway. The second potential mechanism is the elongation of the liquid bridge under
the excess weight, and eventual breakage of the bottom part of the bridge. The
occurrence of this mechanism is

more likely when the bridge is 14
initially formed around an asperity, :
or when the bridge is anchored to a 12 .
solid surface that prohibits motion
of the liquid bridge as a unit.
Determination of the largest liquid
bridge size that can develop under
an asperity is shown in the next
subsection, followed by analysis of

(a)
the elongation and breakage phase 06 | 08 mm® |
of the growth (see Appendix H for % :
t ,’ﬂ-’_'
0 10 20 % 0

10mm’

amm’ .

2mm’ |

Average Width {mm]
[-]
®

details). 04 | ;
| .

Results 02 . - B -

40 50

For illustration purposes, herein are o {deg]

provided sample calculations for the

configuration of stationary liquid % T

bridges of different volumes that ' (b)

form between parallel fracture 20
surfaces with various apertures. For -

any aperture size (2'b), and liquid ¥
volume (V), several combinations of 5 18 10 mm’
@ and C; can satisfy the force g
balance Eq. (90) as shown in Fig E 10 anm® -
29a. The configuration selected is 3
that results in minimum surface 2mm’ .

area (also representing minimum 8 0.8 mm’
free energy per unit volume of the :
liquid). Since the spacing restricts o S S
the |igui_d thickness, the length of 0 10 20 20 40 50
the liquid-solid-vapor contact line
o (deg)

can represent surface area. The
selected 0 value results in minimum  Figure 29: Sample calculations for stationary bridges formed in a
perimeter as shown in Fig 29b. 0.8 mm fracture aperture with: (a) average bridge width (Cy,) for

. . . different volumes as a function of bridge spanning angle () and
There exists a maximum limit of  (b) solid-liquid perimeter length (a measure of interfacial energy

liquid volume that can be supported  per unit volume) as a function of 6.
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by surface tension alone.
This maximum liquid volume
associated with particular
plate spacing could be
described by a maximum
permissible liquid-contact
angle (o) at the bottom of the
liquid bridge. The maximum
angle that can exist as a
contact angle is 0=90°.
However, smaller angles can
also be selected, e.g., if only
negative radius of curvature — e

is allowed then the maximum I :
limit is a=90°. wae; 10010

Width {mm)
Experimental results of Su

ot al.' [1999] depl(;tlng SI.OWIy Figure 30: Measured and predicted liquid bridges in artificial
moving water bridges in a fracture made of rough glass surfacs with aperture size of (.66
rough-glass fracture model  mm [Su et al., 1999]. The measured bridges/fingers are in motion
are shown in Fig. 30 (for atarate of about 0.5 cm/s. The calculated shape of the stationary
aperture size of 0.66 mm) bridges will likely be less elongated under the influence of a drag
along with calculated liquid for°®

bridge configurations. The same liquid volume of 200 mm3 was used for the
calculations with different bridge angle 6 (other conditions such as fracture inclination
angle, etc., were kept similar to the experimental vailues reported by Su et al., [1999] for
their experiment C. The calculated bridge size is within the range of measured bridge
sizes, however, because the measured bridges were in motion (at a rate of about 0.5
cm/s) their shape is expected to be less elongated than the calculated stationary
bridges due to the influence of a drag force. Additional experimental exampies of liquid
bridges provided by Glass et al. [1994] (not shown) are in reasonable agreement
(considering these were also slowly moving bridges/fingers). Work is underway to
introduce drag force to the force equations and calculate equilibrium liquid bridge
configuration under steady velocity (including consideration of surface roughness
effects on advance and mass-loss rates and the resulting “fingers”). Additional
experiments are required to verify the usefulness of the calculated liquid bridge
configurations.

02/20/2000: Liguid Bridge Suspended from Fracture

30

o

20

10

Length (mm)
285 883

-10 -

Discontinuity or Contact Asperity »D"f 0‘-?

A special type of asperity is considered in this we section. The lateral extent of a solid-
solid contact asperity (a solid spacer) forming between parallel fracture surfaces is
considerably wider than the largest stationary liquid bridge feasible, as shown in Fig 31.
A liquid bridge 2-r wide is suspended below the spacer. The liquid body consists of
rectangular shape (ar x 2:r) and semi-circular bottom of radius r. The radius of
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curvature just below the solid support is equal to the half-spacing (b).
The liquid-solid contact area under this support is given by,

Figure 31: Geometry and liquid-vapor interfacial curvatures for a liquid bridge suspended below an
asperity or fracture discontinuity.

A=4-b-r (91)
The radius of curvature and liquid contact angle at the bottom of the bridge are

determined using similar approaches as described in subsection (2.1),

SIS B < LAY W (92)
(¢ r

v=a cos(—) (93)

where o is aspect ratio of the rectangular liquid body. The major force supporting the
liquid bridge is capillary force acting on the solid spacer of area A (91).
Fc=§—(4-b-r—n-b2) (94)

In addition, surface tension acts along the solid-liquid-vapor contact lines at the spacer
and the bottom arc,

Fs=2-c-nlb-r-cos(y)) (95)

The shape of the liquid bridge satisfies balance between the capillary/surface tension
forces and weight of the liquid bridge,

Fc+Fs=2-b-p-g-r2~(2-a+gj (96)
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For a given aperture size (2'b) ,
several sets of a and r satisfy the _ cinm o
force balance equation (96). The QE :
relationship between the liquid H
bridge width (and volume) and §

— T WL T

aspect ratio parameter («) for
selected apertures (2-b) is shown in
Fig. 32. For a particular aperture
the liquid volume attains a
maximum value at a unique
combination of a and r (denoted by
symboils in Fig 32). It is assumed
that the liquid bridge grows until it
reaches the maximum volume and
proceeds to elongation and
breakage phase. Then follows a
similar line of reasoning as Or and
Ghezzehei [2000] for suspended Aspect Ratio - a
pendant drop in designating bridge
width (2-r) at the maximum volume
(that also satisfies the force
balance equation) as an initial
condition in subsequent analysis of
elongation and breakage of liquid

Figure 32: Suspended bridge volume (top) and bridge radius
(bottom) as a function of aspect ratio (o) and three aperture
sizes. (Symbols signify values of maximum bridge volume)

L [ %

—

bridges. The relationship between E" - §
the liquid bridge width (2-1) and . BN Z
aperture size (2:b) can be derived = A o B
from Fig 32, as depicted in Fig 33. § » \‘i\ §
The increase in curvature (hence, E \, % i
capillary pressure) with decreasing 2

b ) !
1. Y
aperture size (2-b) results in wider . WMC"\’

liquid-bridges. It is also interesting o . 75
to note that the bridge anchoring . ok i '8 zo
. . Aperturs - -b - [mee)
area is practically constant for
aperture sizes up to 1.5 mm (see Figure 33: The width of the largest bridge volume and the

Appendix | for details). associated liquid bridge anchoring area as a function of
fracture aperture size.

04/10/2000: Elongation and Breakage of Liquid bridges D"’l a"s

The analysis of bridge rupture (or internal dripping such as described by Kneafsy and
Pruess, 1998) follows a similar path as the analysis of liquid dripping from fractures into
subterranean cavities [Or and Ghezzehei, 2000]. As the liquid bridge elongates, the
interplay between capillary, gravity and viscous forces determines the conditions and
location of a potential rupture plane. The primary difference between “dripping” in
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fractures and in free air is the presence of
restraining forces for an elongating bridge
due to solid-liquid interacticns absent in
dripping in free air [Or and Ghezzehei,
2000]. Additionally, liquid-vapor interfacial
configurations and contribution to the
viscous elongation and rupture process
are slightly different. Consequently,
“dripping” rates within fractures for a given
flux are expected to be slower than
dripping in free air.

The growth and detachment of liquid
bridges between rough parallel-plates is
tracked in a Lagrangian coordinate system
(see Fig. 34). The process of elongation
occurs in the rectangular region of the
liquid bridge. At the beginning of the
process (t=0) only the semi-circular portion
of the liquid bridge is considered. A
constant flux (Q) contributes to buildup of

Lagrangian
coordinate system

Force Components
SL- Interfacial Stress

®©

© LV- Interfacial Stress

@ \Viscous drag (no-slip)
® Resistance to shrinkage

Figure 34: Force components, their origin and
direction in an elongating suspended liquid bridge
(stresses due to viscous extension rates are not
marked). Liquid elements are labeled by 1 (a one-
dimensional time-like element tracking Lagrangian
coordinate).

liquid mass below the anchoring plane

(and above the semi-circular region). Subsequently, viscous extension due to increased
liquid weight occurs in this portion of the liquid bridge. All fluid elements above the semi-
circle are labeled by Lagrangian time variable (1), representing the elapsed time since
an element joined the elongating bridge. Longitudinal and lateral forces acting at any
fluid element (1) are considered.

Longitudinal forces

The longitudinal forces represent a balance between gravitational (weight of the liquid
bridge) and surface tension. The weight of liquid supported by any fluid element (1)
consists of a constant weight of the semi-circular leading portion (note this also
represents a recoil volume), and a variable extending portion. The constant weight of
the semi-circular leading portion is function of the aperture only (see section 2.2). The
weight of the extending liquid portion is function of time and flux.

W:p~g-(1t-r2-b+Q.r) (97)
Surface tension of the liquid-vapor interface on both sides of a cross-section resists
axial extension of the interface according to,

Fv=2-m-b-o (98)
The solid-liquid contact line along the wetted portion of the plates resists extension in a
manner similar to the liquid-vapor interface. The actual solid-liquid contact line is longer
than the apparent length due to surface roughness. A roughness factor (ratio of actual
length to apparent length) is introduced to account for the increases length (and force).
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Fs=4-R-y-o. (99)

where os is liquid-solid surface tension, R is roughness coefficient (R>1), and vy is
wetted (solid) length.

Extension of the liquid bridge between parallel plates involves viscous shearing of liquid
molecules adjacent to the fracture walls. The resistance due to shearing is analogous to
settlement of zero-thickness discs in viscous fluid (bridge wetting area can be
represented as an equivalent disc in anticipation of reconfiguration of the detached
element). The force due to shearing can be written as,

24 A ‘p 2
F,=—.—¥% ".vy 100
VTRe 2 (100)
where Re is Reynolds’ number, A, is the wetted area below 1, and v is longitudinal
velocity of extension.
The net longitudinal stress acting across element 1, is obtained by summing up Egs
(97)-(100),

¢ W_(FLV+FLS+FV)

S= 101
> A (101)

where A =4-y-bis liquid cross-sectional area at element 1.

Lateral forces

The liquid-vapor and liquid-solid interfaces at element t, resist lateral shrinkage of the
liquid bridge according to,

Fo,=2-n-b-c+4-R-y-o4 (102)

The first term in (102) is due to liquid-vapor interface resistance, and the second term is
due to liquid-solid resistance.

Viscous dissipation of energy due to shrinkage of the liquid cross-section results in
resistive force proportional to the rate of extension. This term provides the rate
dependence of the liquid elongation and detachment process.
Fo=AAl. DY (103)
y dt

where A=4.y-bis liquid cross-sectional area at element t, and A =3-nis liquid
viscosity in compression (n is shearing viscosity) assuming liquid incompressibility (i.e.,
Poisson’s ratio of 0.5).

The resultant lateral stress at element 1, has a longitudinal component given by,

Fo +F
S= ”A LN (104)
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where v=0.5, is Poisson’s ratio for incompressible liquid.
Bridge detachment
With the cross-sectional stress at any element tis given by (101) and (104), we equate

these two expressions to derive a general expression for liquid bridge breakage,
W-(F, +Fs+F,)=F,+F,)v (105)

The problem can be simplified if we consider pre-wetted walls where pits and grooves
on the rough surfaces are “primed”, i.e., completely liquid-filled. We can then ignore
solid-liquid interactions and write (105) in its expanded form as,

gy—__n.p.g.b.rz_n.b.6+p.g.Q.T

106
dt 6-n-b (108)

Upon integration (106) gives,

_n.p~g-b-r2—1t~b~c+p-g-Q-r.t

+C (107)
6-n-b

y(t) =

where C is a constant of integration, that can be obtained from the boundary condition
at the top of the liquid bridge, y(t) =r (see also Fig 34).

__G.n.b.r._n.p.g.b.rz.—t_n.b.o-.t_p.g.Q.Tz

C=
6-n-b

(108)

Detachment of the liquid bridge occurs when the cross-section of the liquid bridge goes
to zero. The time of detachment can be obtained by setting Eq. (107) to zero,

__G.n.b.r_.n.p.g.b.rz.'t_'n.b.c.ﬁc_p.g.Q.Tz

t:
n-p-gbri-nbo+p-g-Q=1

(109)

The fluid element that detaches first satisfies additional constraint, dt/dt =0. This leads
to an explicit solution for the first element that ruptures,

T_6-11-b-r-p-g-Q+n-b~(—p-g-r2+cs)

(110)
p-g-Q

The time at which the first element detaches is obtained by substituting . into Eq (109).
The volume of the detached liquid bridge (V4) is obtained simply by integrating the
volumetric flux over the duration of bridge elongation cycle (fromt=0to 1t = 1.).

V,=1.Q (111)

At the time of detachment of the first bridge (t'c), a portion of the liquid suspended at the
tip of the spacer remains behind. The volume of the remaining liquid (analogous to the
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recoil volume in free dripping) is associated with the time difference (1, = t!-1e).
Because all subsequent bridges start their cycle with an existing recoil volume, the
period of detachment after the first bridge pinches is reduced by the time equivalent to
the recoil volume (1),

(112)

In other words, Eq (112) states that the volume of liquid extruded from the outlet during
an interval between two successive bridge breakup events is equal to the volume of the
detached bridge element (details of the above derivation are shown in Appendix J(a)).

Results

The first set of calculations of
liquid bridge detachment 35 .

focused on the role of aperture 04 me (a)
size and flux on detachment ‘
interval (period). Results shown
in Fig. 35a reveal that the
period between adjacent
detachment events increases
for narrower apertures (and
with  smaller fluxes). The
primary reason for the longer
period in fractures with smaller
apertures is the restraining 0
effects of solid-liquid
interactions that become more %0 - (b)
dominant (per unit liquid
volume) in smaller fractures.

The force that supports the
liquid weight is  mainly
contributed by the wetted solid
area. The specific force (per
unit volume) increases as the
aperture  size  decreases,
hence, narrow fracture
apertures generally support V8 mm |
larger liquid bridges. The effect 0 e . . - - oo
of volumetric flux on bridge 0 5 1o 15 20 2 W 35
volume is through rate of Volumetric Flux (mm’/sec)

viscous extension. However,

the effect of changes in Figure 35: Calculated detachment intervals (a) and
volumetric flux is very minimal volume qf detached liquid bridge (b) as functions of
compared to the effect of volumetric flux in three different fracture apertures.

change in aperture size, as

28

" 0.8 mm

18 1.8 mm

10 ¢

8ridge Detachment Period (sec)

0.4 mm

80 -

70 -

Voiume of Detached Bridge (me’)
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shown in Fig. 35b.

04/30/2000: Role of Bridge Detachment in Intermittent Flow D‘”“7 u‘-l

The primary motivation for modeling liquid bridge detachment is the potential effect of
such periodical events on the onset of intermittent flow in unsaturated FPM. Two
aspects of this cyclic process are of interest: (1) the detachment volume and the period
associated with a particular fracture aperture/asperity and a certain liquid flux; and (2)
the size and spatial distribution of geometrical attributes giving rise to bridge
detachment within a fracture section. For illustration purposes, we consider only non-
interacting bridges that contribute to flow from a fracture section (length). In real FPM,
one should consider interactions among detaching liquid elements such as modeled by
Cheng et al., [1989]. Such interactions are likely to involve avalanche-like processes
depending on the spatial distribution of bridges, detaching liquid mass, path length, and
surface characteristics (roughness, wetness, etc.). It will be shown that even with a
simple superposition such as employed in this study, the resulting flux behavior at the
bottom of a hypothetical

fracture becomes very 300 -
intermittent with chaotic- .__éﬁ
like patterns. 25 -

Sample calculations show
that even small variations
in aperture geometry and
roughness induce a
relatively rich temporal
behavior of the resultant { 1
flux.  For illustration i il

purposes, consider __ 50 |
Cone .
ot Fhux .
==
o AN
0

g

Flux (mm’isec)
2

g

]

!

i : l ‘ . 1 ; H

V:v AR LI IRAL { AR | ‘
J].] i:;!‘l ;“6! TR IR E‘SI? it DR

100 200 300 400 500

temporal variations in
liquid flux collected from a

fracture with five local

aperture variations that is Time {sec)

fed by a steady flux (30 e S
mm?®/sec) from the top. Aperture -b Perbed -¢ Vehame - V
The result depicted in Fig. (:;) Cetr i
36 reveals a flux pattern o e pagiid
that appears erratic (at % 200 2%
the 1 sec sampling 18 4988 Mo

interval). The average

input flux could be

recovered with larger  Figure 36: Volumetric flux fluctuations from a fracture with five
sampling window (>5 jdlfferent asperltylloca3I aperture sizes (;ee tab!e above) feq by a _
sec). The remarkable steady ﬂl..l).( of 30 mm /§QC. .Tw.o averaging ’p'e_rl'oqs (§ampllng periods)

result from only five local perturbations are quite similar to experimental data of Prazak
et al. [1992] shown in Fig. 37. Time averaging calculations are given in Appendix J(b).
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The processes giving rise to such a
complex flux pattern could be considered
as characteristic of chaotic behavior
[Pruess et al., 1999; Faybashinko et al., .|

1998]. Several points are of interest e

here: first, the resulting pattern is - 1’ Hﬁ ﬂﬁﬂ:\“\ﬂ“
repeatable over considerably long Toaomomow

periods of the order of the product of
individual  “dripping” periods in the
fracture. Second, there is a distinct
possibility of extracting aspects of -
fracture internal geometry from the 1
seemingly “chaotic” pattern, given the i 4‘ | 4
average flux (long time average should i ' ’ '
equal input flux) and fracture nominal 1 ’j
aperture size. Although the details of the w o —"l‘lm IL-“tﬁlﬁ l
proposed inversion procedure are -

beyond the scope of this review, it is a >

simple matter to visualize application of = ©
Fourier analysis for extraction of s
characteristic frequencies (periods) that Y ul
could then be associated with local {
aperture/roughness combinations. In o
short, the complex behavior produced by tom L | ‘J ¢ i

a few aperture perturbations is not T '““' e
chaotic in the classical sense, but rather .

represents  a ConYOIUted temporal Figure 37: Outflow from gravity-driven flow in
response due to interplay between  coarse porous medium (a) dry medium point inflow;

geometry, viscous, gravity and surface (b) wet medium point inflow; and (c) wet medium -
tension forces. inflow distributed over surface (Prazak et al., 1992)

no ot

[

".ni;ns«z

Fingering and liquid channeling

Following passage of a liquid bridge the finger-shaped wetted surface presents
considerably different conditions for flow than the surrounding dry surfaces. Surface
depressions become liquid-filled, hence contact angle and drag forces for subsequent
liquid bridges are likely to be considerably lower. These modifications also result in an
increase in the travel velocity of liquid bridges sliding down the fracture. Moreover,
these wet fingers represent preferential pathways with less resistance to flow than other
regions on the fracture surface (this does not mean that the resulting pathways were not
preferential in some sense from the outset of flow). Application of relatively high flux
could induce formation of continuous liquid threads [Su et al., 1999] with considerable
temporal variations but remarkably stable areal coverage [Pruess et al., 1999]. The
onset and location of a finger is probably associated with local geometrical perturbations
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such as abrupt changes in surface
roughness or aperture size, and the
presence of an asperity contact.
Additionally, liquid accumulation and
behavior at regions above the plane of
interest could also affect the position of a
finger, for example by introduction of A5
localized inertial perturbations (directly £ [T = 3595 howre e
below a bridge forming at a higher .20

position).

F vy
v
P

[ 11 4

Depth [m)

’.

b 10 15 20
Distance (m)
Invasion percolation studies [Glass et al.,
1998] attribute the formation of O T T i .
continuous liquid clusters (channels) to ,
networks of narrow apertures (and Sl o™ A .\.
asperity contacts) forming between two - -
rough-walls of a fracture. These types of 10 . 04
studies are primarily based on capillary e H 0.
behavior and are probably more AL
applicable for (1) near-horizontal T s b | Gl
fractures where gravitational forces are T
negligible; or (2) for fractures with very Distance (m)
small nominal aperture size. These
models also provide a means for Figure 38: Simulated fingering developing during
describing phase entrapment and quuid_flow inafraclzlt.urfa plane with (top) low fracture
dissolution behavior, including derivation ng;t‘;if;g?;igs'g’g;dgfbonom) higher
of constitutive hydraulic properties for
such systems [Pruess and Tsang, 1990; Glass and Nicholl, 1995]. They, however, do
not provide insights into intermittent flow behavior.

Depth (m)
1
1
]
)

In a recent study by Pruess [1999], synthetic permeability fields within rough-walled
(vertical) fractures were used to illustrate formation of fingering and channeling patterns
within the 2-D simulation space (Fig. 38). The fracture plane with the high permeability
(107 m?) shows more pronounced fingering than low in the top plane with higher
permeability (10° m?). This effect that resulted from application of a continuum
approach (Richards equation) could also be explained simply by the more dominant role
of gravity in the fracture with higher permeability. Although, the phenomenon of
fingering and liquid channeling was not investigated in this study, it is a natural outcome
of introduction of motion to stationary bridges (when a certain mass threshold is
exceeded). Expanding on the ideas of Glass et al. [1994] by treatment of formation and
dynamics of clusters or discrete liquid elements as basic units would lead to a better
understand fingering in fractures.
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05/10/2000: Preliminary experimental results — -
Bridge detachment dynamics 1)».: L)a.l

A limited number of " ;
experiments were e -t ' a
conducted in a fracture . 14 -

model made of two
parallel rough-walled
glass plates. Several
aspects of the proposed
theory were tested,
focusing here on results
pertaining to  bridge
detachment behavior.
The experimental system
(Fig. 39) consisted of a
calibrated peristaltic
pump with a regulator (to
reduce flow oscillations) Figure 39: (a) Experimental setup used for testing bridge detachment
supplying a steady flux to dynamics; and (b) A close-up of a finger (wet path) and a bridge

the top of a glass forming atthe top of the fracture glass model.

fracture model. Glass

spacers were used to determined fracture aperture (typical thickness of 0.4, 0.6, 0.8,
and 1.6 mm). A filter paper was placed at the top inlet to spread the liquid (tap water)
flux and to provide anchoring surface for formation of bridges. A sequence of images
depicting liquid bridge formation and subsequent elongation and detachment is shown
in Fig. 40.

Figure 40: A sequence of water bridge formation, elongation, and detachment in a 0.6 mm
fracture model (the time interval between images is not constant). Note the formation of a
liquid thread feeding the “detaching” bridge volume similar to observations by Su et al
[1999].
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An experiment was
conducted to determine 14

bridge detachment | e | A Moasured 0.88 mm
| @ Measured 1.6 mm

—— Model 0.8mm

\ —— - Model 1.6mm

intervals for two 12 4 \
different fracture
aperture sizes (0.8 and
16 mm) and five
different fluxes (fluxes
were determined from
the digital readout of the
calibrated pump and
were confirmed by
collecting and
measuring outflow
volumes). Model 0 5 10 15 2 25
predictions were based
on an assumed
anchoring radius of 2.5 Figure 41: Measurements (symbols) and model predictions (lines)
mm (as observed on of bridge detachment intervals as a function of input flux within
imagery from the  two aperture sizes.

experiment). Model

predictions (Fig. 41) were in excellent agreement with measured values. The details of
the model predictions are shown in Appendix J(c). The agreement with theoretical
anchoring radius was very close for the 0.8-mm fracture, but was underestimated for the
1.6-mm fracture. These results are of preliminary nature and offer only a limited support
for the proposed model. Additional experiments are needed to provide definitive tests
for the various aspects of the discrete liquid bridge model.

10 4

Detachment Interval (sec)

Volumetric Flux {mm /sec)

05/23/2000: Experiments on Dripping under

Controlled Vapor Pressure Du: (2.

Experiments reported in section two of the current volume (#354) have shown good
agreement with the proposed analytical model for dripping from unsaturated fractures
under relatively rapid flux and minimal effect of evaporation. The objective of the current
experiments is to verify the analytical model in the presence of evaporative effects.

The general design of the experiments is similar to those described in the second
section of the current volume (#354). Water was supplied to the dripping plane using
peristaltic pump at low flux. Dripping from grooved fracture surfaces (used in previous
experiments) during prolonged dripping period induces evaporation from the drop
surface as well as the fracture surface. Evaporation also occurs from receiving pan after
the drop detaches. The primary design of the current experiments was to minimize all
the unwanted sources of evaporation except from drop surface (see schematic diagram
in Fig. 42). To this end, the experiments were conducted using tube (0.d=7mm;
i.d.=0.1mm) for channeling influx and as a drop anchoring area; and the drops were
received by long stem funnel and collected in a flask with long and narrow neck. Water
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was pumped with  precision

peristaltic pump. The experiments @ Tygon Tube

were conducted in two different
fluxes. The vapor pressure of the
sealed chamber in which drops Peristaltic _
were formed was controlled by Pump ||
dew point generator. Humid !
condition was induced by setting o
the dew point temperature to
slightly higher than the room
temperature, and dry condition
was induced by setting very low
dew point temperature. Five or
more drops were collected and
weighed for each humidity
condition. To reduce evaporation
from the flasks, the dry condition
was replaced by experiment in
open chamber (room relative
humidity ~35%), and drops were
weighed individually, immediately
after detachment. Summary of the
experimental  conditions  and

results is shown in Table 1. Figure. 42: Experimental setup for dripping under
controlled humidity conditions.

Glass

Table 1. Summary of experimental parameters and main results

Flux Humid Dry
(cm3/sec) Temp Period Mass Temp Period Mass
RH(®)  ccy  (min)  (@m |7 ecy  (min)  (gm)
10 100 26.5 7.2 0.101 25 27.25 7.6 0.100
100 25.5 16.6 0.108 10 25.5 21.4 0.079
5

Room

(~35%) 25.5 19.1 0.093

The results in the Table 1 clearly show the increase (by up to 29%) in dripping period at
dry conditions, in agreement with the analytical model. However, the mean drop mass in
dry condition was either equal or slightly less than the humid condition, in contrast to the
model prediction of larger drop mass when evaporation and liquid influx approach
equality. Two major deficiencies of the experimental could contribute to the unexpected
results:

(1) Evaporation/condensation from the collecting flask in the controlled dry/humid
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conditions, respectively. The significant difference in drop mass between the
controlled dry and room conditions validates the above argument.

(2) The relatively short dripping period may not be adequate for manifestation of
evaporative effects.

06/06/2000: Experiments on Dripping Under Variable Fluxes _D_j_‘ (x

Two major modifications  were
introduced to the previous 10
experimental design.

10
(1) The relative humidity was fixed ¢ .
and flux was varied from rapid to very 2
slow, instead of comparing different % 1
relative  humidity values under % ..
constant flux. Graphical comparison § :
of the two approaches using model & *':

predictions is shown in Figure 43 (see !
Figure 22a and discussions in pages ‘
39-40 of section 1l). The advantages
of the modified design are: (a) it
provides several intermediate points
(instead of “dry” and “humid” only),  Figure. 43: Comparison of constant flux and constant
and (b) it does not require precise humidity experimental designs (for explanations of
control of relative humidity, and allows above figure see Fig 22a and discussion in page39-
N . ’ 40 of section ).

individual weighing of  drops

immediately after detachment.

(2) The dripping period was further
extended by providing larger drop
anchoring area (aluminum rod
0.D.=12.7mm with [.D.=2.0mm
borehole see Figure 44), hence, large
final drop mass. ‘

W00 :
we @Yo 10" je™ W et w0t e

Volumetric Flux [m’isec)

The calibration of the peristaltic pump

was conducted by continuously \
monitoring the mass of the source \
cup. To minimize calibration errors N

due to evaporation, the source cup At .4
was sealed and long and narrow e SETEPALT
tubing was provided for ventilation. o

For extra caution, the cup was sealed watermark
within the chamber of precision
analytical balance. The resulting
pump curve is shown in Figure 45.
For simplicity, subsequent results are

Figure. 44: Aluminum drop anchoring tip (0.D. =
12.7mm with |.D.=2.0mm borehole).
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reported as functions of pump rotor speed (in 0.05 |
RPM).

g 0.04 e
The volume and mass of drops from the /
above experiments are shown in Figure 46, x
each point representing an individual drop. ?é
The four fluxes used in the experiments are £
designated by different symbols. 3
Marked variability in mass of drops at the e 2 4 6 8 10 12 14 16 18
same flux was observed for all the fluxes. Pump Drive Speed (RPM)
There is no significant difference in drop mass
among all the fluxes except 15RPM. Figure. 45: Pump curve for TY-10 tubing.

There was noticeable difference in the width
of the anchoring area. In Figure 44, the 0.18 |
watermark on the drop anchoring area
indicates the size for low flux (1RPM), while
high flux experiments had drop-anchoring
area that covers nearly all the available area.

a4

<

0.12 4

Drop Mass (gm)
b

[ 15RP§}
2 RPM
1.5 RPM
1 1RPM
The foregoing suggests that the observed

differences in drop mass within and between 0.10 1

different fluxes could be attributed to liquid 008 ' , ' ' -
configuration around the anchoring area. "0 20 40 60 8 100 120 14C

Dripping Period {min)

Figure. 46: Dripping results under variable
fluxes.

06/11/2000: Experiments on Dripping from

Controlled Drop Anchoring Area

To minimize the variability of the anchoring-area
shown in the previous tests, the aluminum anchoring
area was replaced by a glass tube of 10.0mm O.D.
with beveled tip (see Figure 47). The underlying
assumption of the improved tip design is that the drop
anchoring area will be fixed, and resulting difference in
mass would be attributed to only dripping dynamics.

Experiments were conducted in flux range of 2-15
RPM as shown in Figure 48. In Figure 48a, each set of
tests for a given flux was started without any liquid
extruded from the glass tip. This allows configuration  Figure. 47: Beveled glass tip
of the drop anchoring area to be affected by liquid  (O.D.=10mm, L.D. =7mm).
dynamics under the given flux. These experiments
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showed that the drop mass generally decreases with decreasing flux. A closer look at
the replicates in 5- and 10-RPM shows that the drop mass was increasing progressively
from the first to the last replicate. This indicates that the configuration around the drop
anchoring area did not attain optimal state during the first few drippings. To further
check these phenomena, a different set of tests was conducted in which the flux was
reduced (begiuning at 10RPm and ending 2RPM) without interruption at a step of 1RPM
(replicates of 4 to 7 drops were collected before adavancing to next step). In figure 48b
the results of the even fluxes (10-8-6-4-2RPM) are shown. In a separate set the flux
was reduced from 10RPM to 2RPM without interruption (solid symbol in Figure 48b).
When the flux is reduced without interruption the reduction in mass with decreasing flux
is less steep compared to interrupted (independent) tests (Figure 48a). Moreover, the
drop at 2RPM (initiated under configuration of 10RPM) was larger in mass than the
independent 2RPM drops. If all the three drop masses (2- from 0- RPM, 2- from 3-
RPM, and 2- from 10- RPM) are compared the higher the preceding fluxes the larger
the drop mass. In conclusion, there appears to be initial condition (most likely
configuration of drop anchoring area) that dictates the drop mass more than the flux
itself.

To further examine the effects of initial-condition sharper and even glass-tip was used. It
was also tested if the drop mass increases at higher fluxes (as high as 40RPM). These
results are shown in Figure 49a. Each flux was started from zero flux to avoid with at
least 30 minutes gap to avoid any influence from the preceding flux (exception is
marked). These results show (1) the drop mass does not increase significantly for fluxes
above 20RPM, and (2) previous configuration at higher flux increases mass as shown
with 10 RPM drops.

0.10 - :
, (a) | | (b)
! i
! , & : 1
i i !
0.09 4 - : PR s BL§ I,
3 : 7
E - ! ; | . ! A
Y A . e e R i il
= i i o ; "
a [a] ; | { ;
£ g § : ‘
o (e} : O 15RPM
o . : O 10RPM | [
0.07 -~ T T T e T T T O gRPM I
i * ‘ O 6RPM
O 10RPM v 4RPM
O 5RPM | A 2RPM i
& 2RPM I A :
0.06 ; ; | 2RPM from' 10RPM ; ;
0 6 12 18 0 6 12 18
Dripping Period (min) Dripping Period (min)

Figure 48: Dripping data from beveled glass tip: (a) restarted from zero at each flux with minimum 30
minutes interval between two successive flux sets, and (b) flux was reduced at step of 1RPM from
10RPM to 2RPM.
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Figure 49: Dripping data from sharper glass tip: (a) restarted from zero at each flux with minimum 30
minutes interval between two successive flux sets except indicated, and (b) flux was reduced to 10- or
0.93 after the drop was formed for 20.25 minutes at 20RPM. The time shown indicates the remaining
detachment phase period.

According to the mode! being tested drop mass increases at low flux due to competing
effects of evaporation and low influx. The competition becomes more critical at the final
moments before detachment as evaporation increases due to high surface area and
reduced curvature. All other aspects of the dynamics are similar for high and low flux
drops. Therefore, it is logical to expect manifestation of evaporative effects even if it is
invoked only for the final moments of the drop. The advantage of this type of test (if the
underlying assumptions are true) is that it reduces the effect of initial configuration.

In Figure 49b, the drops shown were formed under 20RPM flux for 2.25 minutes
(dripping period of 20RPM is 2.5 minutes) and then the flux was reduced to the desired
flux (10 and 0.93 RPM in this case). The time shown in the figure is the time after the
flux was reduced near/during the “detachment” phase. The drop mass for 10RPM and
0.93 RPM was not significantly different from 20RPM. These resuits suggest that the
drop mass differences shown in these experiments could be entirely due to initial
conditions.

References

Carter, W.C., The forces and behavior of fluids constrained by solids. Acta. Metall. 36,
2283-2292,1988.

Cheng, Z., S. Render, P. Meakin, and F. Family. Avalanche dynamics in a deposition
model with “sliding”. Phys. Rev. A 40, 5922-5935, 1989.

Dexter, A.R., Heterogeneity of unsaturated, gravitational flow of water through beds of

Dripping from unsaturated fractures under evaporative conditions Volume 2 (llI), Page 68



Dani Or SCIENTIFIC NOTEBOOK # 354 — USFIC KTI 9/22/2000

large particles. Water Resour. Res., 29, 1859-1862, 1993.

Firoozabadi, A, and J. Hague. Capillary pressure in fractured porous media. J. Pet.
Technol., June 1990, 784-791, 1990.

Friedman, S. P., Dynamic contact angle explanation of flow rate-dependent saturation-
pressure relationships during transient liquid flow in unsaturated porous media. J.
Adhesion Sci. Technol., 13, 1495-1518, 1999.

Glass, R.J., and D.L. Norton. Wetted-region structure in horizontal unsaturated
fractures. in High Level Radioactive Waste Management, Proceedings of the
Third Annual International Conference, pp. 717-726, Am. Nucl. Soc., LaGrange
Park, Ill., 1992.

Glass, R.J., and M.J. Nicholl. Quantitative visualization of entrapped phase dissolution
within a horizontal flowing fracture, Geophys. Res. Letft. 22(11), 1413-1416.
1995.

Glass, R.J., M.J. Nicholl, and L. Yarrington. A modified invasion percolation model for
low-capillary number immiscible displacements in horizontal rough-walled
fracture: Influence of local in plane curvature. Water Resour. Res. 34, 3215-
3234, 1998.

Kneafsey, T.J., and K. Pruess. Laboratory experiments of heat-driven two phase flows
in natural and artificial rock fractures. Water Resour. Res. 34, 3349-3367, 1998.

Liu, H.H., C. Doughty, and G.S. Bodvarsson. An active fracture model for unsaturated
flow and transport in fractured rocks. Water Resour. Res. 34, 2633-2646, 1998.

Meseguer, J., The breaking of axisymmetric slender liquid bridges. J. Fluid Mech., 130,
123-151, 1983.

Moreno, L., Y. W. Tsang, C. F. Tsang, F. V. Hale and |. Neretnieks. Flow and tracer
transport in a single fracture: A stochastic model and its relation to some field
observations, Water Resour. Res., 24(12), 2033-2048, 1988.

Nicholl, M.J., and R.J. Glass. Wetting phase permeability in partially saturated
horizontal fracture. in High Level Radioactive Waste Management, Proceedings
of the Fifth Annual International Conference, pp. 2007-2019, Am. Nucl. Soc.,
LaGrange Park, Ili., 1994.

Nicholl, M.J., R.J., Glass, and S.W. Wheatcraft. Gravity-driven infiltration instability in
initially dry nonhorizontal fractures. Water Resour. Res. 30, 2533-2546, 1994.

Or, D., and T. A. Ghezzehei. Dripping into subterranean cavities from unsaturated
fractures under evaporative conditions. Water Resour. Res., 36, 381-393, 2000.

Or, D., and M. Tuller. Flow in unsaturated fractured porous media: Hydraulic
conductivity of rough surfaces. Water Resour. Res. 2000 (in press).

Padday, J.F., G. Petre, C.G. Rusu, J. Gamero, and G. Wozniak. The shape, stability
and breakage of pendant liquid bridges. J. Fluid Mech., 352, 177-204, 1997.

Prazak, J., M. Sir, F. Kubik, J. Tyoniak, and C. Zarcone. Oscillation phenomena in
gravity-driven drainage in coarse porous media. Water Resour. Res., 28, 1849-

Dripping from unsaturated fractures under evaporative conditions Volume 2 (1), Page 69



Dani Or SCIENTIFIC NOTEBOOK # 354 — USFIC KTI 9/22/2000

1855, 1992.

Pruess, K., A mechanistic model for water seepage through thick unsaturated zones in
fractured rocks of low matrix permeability. Water Resour. Res., 35, 1039-1051,
1999.

Pruess, K., and Y.W. Tsang. On two-phase relative permeability and capillary pressure
of rough-walled rock fractures. Water Resour. Res., 26, 1915-1926, 1990.

Pruess, K., B. Faybishenko, and G.S. Bodvarsson. Alternative concepts and
approaches for modeling flow and transport in thick unsaturated zones of
fractured rocks. J. Contam. Hydrol. 38, 281-322, 1999.

Su, G.W., J.T. Geller, K. Pruess, and F. Wen. Experimental studies of water seepage
and intermittent flow in unsaturated, rough-walled fractures. Water Resour. Res.,
35, 1019-1037, 1999.

Tokunaga, T. K., and J. Wan, Water film flow along fracture surfaces of porous rock,
Water Resour. Res., 33(6), 1287-1295, 1997.

Tsang, Y. W., and C. F. Tsang, Channel model of flow through fractured media, Water
Resour. Res., 23(3), 467-479, 1987.

Wang, J.S.Y., and T.N. Narasimhan, Hydrologic mechanisms governing fluid flow in
partially saturated, fractured, porous medium, Water Resour. Res., 21, 1861-
1874, 1985.

Zimmerman, RW., and G.S., Bodvarsson, Hydraulic conductivity of rock fractures,
Transp. Porous Media, 23, 1-30, 1996.

Dripping from unsaturated fractures under evaporative conditions Volume 2 (lll), Page 70



Dani Or

Appendix H

SCIENTIFIC NOTEBOOK #354 USFIC-KTI

Determination of Equilibrium Bridge Shape: | Stationary Bridge

Physical Constants

0:=0.0729  p:=998 g:=9.8-cos[(90_70)._1‘_] 1 :=0.1307-107
180

Geometric Functions
Area

Radius rati

Bottom Radius

Center to Center Length

B m Radi f r
Bottom Contact Anale
ide Radi r

Side Contact Angle
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TOL := 107’
A(V.b) =Y
20
A(V,b n
( ;)_5+9+1 ()
-tan
RV.b.Cte) = |

n

8+
2 [ tan(6)

Cb(V,b,Ct,8) :=Ct-fV,b,Ct,0)
Cb(V,b,Ct,8) - Ct
sin(8)

D(V,b,Ct,08) =

1

b(V,b,Ct,0) =
1 1 1

O —
b Cb(V,b,Ct,8) Ct

_ P8 Ct4 Cb(V,b,Ct0)+ D(V,b,Ct,8))
(s}

(x(V,b,Ct,e)I:acos___b__
(V,b,Ct,0)
re(V.b,Ct,0) 1= !
. D(V
l—_‘_—ﬁ. Ct+ ( ’
b Ct ]
b

B(V,b,Ct,8) i=acos —— ——
re(V,b,Ct,8)

b,Ct,0)
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Force Components due to Surface Tension

Top arc TOPARC(V,b,Ct,8) :=2(c-Ct(cos(2-0) + 1))
Side walls SIDEWALL(V,b,Ct,8) :=4-D(V,b,Ct,8)-cos(8)-sin(8)-cos(B(V,b,Ct,08))
Bottom Arc BOTTOMARC(V,b,Ct,8) :=-2-((cos(2-8) + 1)-cos(a( V,b,Ct,8))-Cb(V,b,Ct,8) )

Total Forces

Resultant Force FUP(V,b,Ct,8) :=TOPARC(V,b, Ct,8) + SIDEWALL(V,b,Ct,8)+ BOTTOMARC(V,b,Ct,8)
Weight W(V)i=Vpg

Solution Block
Initial Ct:=0.0001
Solver Block Given  FUP(V,b,Ct,8)=W(V) Ctop(V,b,8) :=Find(Ct)

Selection of o

Several combinations of the inclination angle of the side wall (8) and radius of top arc (Ct) result in equlibrium
cinfiguration of the liquid bridge. A unique solution is selected by considering 6 that results in minimum specific
surface energy. The length of the solid-liquid-vapor contact line is used here as a measure of surface energy.

09/22/2000

Perimeter P(V.b.8):=Ctop(V,b,8)-(1 — 2:8) + (Cb(V,b,Ctop(V,b,8),8))-(n+2:8) + 2-D(V,b,Ctop(V,b,8),0)
Ctop(V,b,8)(n-2- Cb(V,b,Ctop(V.b (T+28)+D(V,b,Ctop(V,b
A ¢ rati R(V.b.9):= op(V,b,8)-(n-2-8)+ (Cb(V,b,Ctop(V.b,6),8))(n+28)+D(V,b,Ctop(V,b,8),6)
Ctop(V,b,8)(m—2:8)+ (Cb(V,b,Ctop(V,b,6),68))-(n+26)
. b . b
9-Array N1:=75 ji=1.NI g = +(j-1) —
i 180 180
Geometrical Arrays
V1:=102:10°  b1:=033-10° N2:=100 i:=0. N2 1:=0.2:N2+ 1
ki=1.4 B i=S—— B =10— B =15 B =20 Ctq :=Ctop V1,bI,p.  Cbg, :=Cb V1,bl Ctop VI,bl,B B D €0, ~
=1 =5— =10— =15 =20— tq, :=Ctop V1,bl, q, = ,b1,Ctop V1,b1,§8 —_—
T 2 180 3 180 4 180 K k k k 7Tk £ sin B,
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-2
N2

k

ati,k'zﬁk-*—l'

xti,k :=thk-cosgatl_’k\ yti‘k ::thk-mm ati’
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D n+2p

e o .
k/ +7 abi,k o Bk'H

k

N2

=%y Rodn™n oo™ e Do ™ Toasie™

Xbi,k :=Cbq, -cos| abi’k‘;

110%2 = Ctq, + quk+ D, | 107 =

3.412

2.791

2.411

2.164

Ctq, +Cbq, +D, , [ D,| 2 D, 2
a=—— .10%1.1 t:=thq1+_j-1-10 -1.1 b :=3qu1+_;-1-10 1.1 A:=1 B:i=2 C:=3 d:=4
2 \ 2/ \ 2
180 [Cbq, +Ctq, |
Bo—= |———
44
5 0.449
10 0.525
: 15 0.584
¥i 0 20 0.626
2
-
-1
-2
-1 0 1
Width - cm

= trace |

g {face2

= trace 3

— trace 4
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0.07 0.08

0.1
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D

i . k
ybi,k :=Cbgq, -sin| abi,k s

Liquid Dimensions (degrees and cm)

Ctq,10>:2 = Cbq, 1072 =

0.19

0.707

0.131

0.918

0.111

1.057

0.101

1.152

1cm

Remarks:
Pictures
from Su are
bridges in
motion at an
average
velocity of
0.5 cm/sec
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Appendix |
Determination of Equilibrium Bridge Shape: || Stationary bridge attached to solid surface

Physical Constants
6:=0.0729  p:=998 g:=9.8 1 :=0.1307-10° TOL:=107*

Geometrical Functions

Top Area A= 4br-n-b
Top Pressure P:=c- -_l-_ L
b sb
1 1
Top Pressure Pp=-0 —-—
r R
Pressure Difference AP=P — P =p-gr(l+a)
1
R b (sb) o r
Bottom Contact angle g=acos L =acos|| L4+ - pLr(1 Fo) |
R b (sb) I r

Force Components

illary for F =P ARG o - 4br- b’
’ b sb
Surface tension up FU,,=2c1b
Surface tension down FD =26 n-r:cos(8)
ri igh Ws=p.g2-br 2.(“_;
Total Forces
fi)=F o+ FU},— FD |, +W =0
f{r)=A(a,b,s)F + B(a,b,s) ™ + C(a.b,s) -1+ D(a,b,s)
where
A(o,b,s):=2xpg(l+a) B(a,b,s) := —2'0'1t-l+ -2p-gb- 2-a+l-1t
b (sb) 2
-1 1 -1 1
C(o,b,s):=|-40|—~- b-20n1 D(a,b,s) :={6| —— 'K'b2+2'0’-1t'b
b (sb) b (sb)
then, fla,b,s,r):= A((x,b,s)~r3+B(a,b,s)-r2+C(ot,b,s)~r+ D(a,b,s)
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The real root of the above third order polynomial is given by the function rg,,

S(o,b.s) =-2B(a,b,s) +9-A(a, b, s)-B(a,b,s)-C,b,s) — 27-Aa, b,5)"D(a, b, )

1
3

3
P(a,b,s) :=[S(a,b,s)+ﬁ- “B(a,b,s)’ +3A(a,b,s)-C(a, b, ) +(S(a,b,s))2]

B(a,b,s) 23-—B(a,b,5)2+3-A(a,b,5)-C(a,b,S)+ P(a,b,s)

3-A(a,b,s) 3-A(a,b,s)-P(a,b,s) 1
3.2 A(a,b,s)

rsoln(ot,b,s) =-

The above solution is compared with numerical root in the following graph

Solver Block

r:=0.1 soln(o,b,s) :=root(f{a,b,s,r),r)

€:=02,05.10  bi:=02-10"  b2:=04.107 b3:=1.107 s:=1

30

Radius - r - (mm)

Aspect Ratio - alpha
Analytical
OOC Numerica;

Identification of Maximum Volume

s:=100 Nj:=18 j:=0.Nj Ni :=1500i :=0.. Ni

_4 - .95

b !=1-10'4+j~9.10 a, .—0.5+1~_ﬁ
J Nj
d =R b V. i=2b.rad 2 2a -2
rad, ;= € goln ;b8 ij=2 rad; .- ~ai—5
kj = | cmaxe 1

for ie 1..Ni

cmaxe- |i if V. >V

1.) cmax,j

cmax otherwise
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Remarks: The following figures are shown as Figure 32-33 in the main document

Bridge Width - 2°r - (mm)

Bridge width - 2:r - (mm)

50 T

\
1
1
[}
[}
\
[}
)
)

40

Aspect Ratio - alpha
""" 0.4 mm
— 0.8 mm
— - 1.8mm
OO0 Max Volume

50 T T T

40 —

30—

20

Aperture - 2°b - (mm)
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Bridge Volume (mm”3)

Bridge Anchoring Area (mm”2)

200 T T
150 -]
100 —
50 -
i 5 10
Aspect ratio - alpha
“““ 0.4 mm
— 0.8 mm
— - 1.8 mm
OO0 Max. Volume
I I I I
841 —
8.2 —
- -
78— =
76 -
| | ] I
745 0.5 1 15 2 2.5

Aperture Size - 2-b - (mm)
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Appendix J (a)
Growth and Detachment of Liquid Bridges

The growth and detachmentof liquid bridges forming between rough parallel-plates is tracked in a Lagrangian coordinate

system (similar to free drops).

m Longitudinal Forces

The following forces acting in the axial direction are considered:

s Liquid Weight

The weight of the liquid at any reference 7, consists of the weight of constant semi-circular leading portion (which may

porbably reprsent recoil volume), and an extending portion (a function of the flux).

W=pg (mro’b + Q1)

s Liquid-vapor surface tension
Surface tension of the liquid-vapor interface on both sides of a cross-section resists extension of the interface according to:

FLV = 2 b oLV

» Liquid-solid interfacial tension

The solid-liquid contact line along the wetted portion of the plates resists extension in a manner similar to the liquid-vapor
interface. The actual Solid-liquid contact line is likely to be longer than the apparent length. This is pronounced especially
when rough surfaces are considered. A roughness factor (ratio of actual length to apparent length) is introduced to account for
the increased resistance. Note that this portion of resistance to extension could vanish when the extension occurs on

pre-wetted path (more on this is provided later).

FLS=R4yoLS

= Viscous Drag

Extension of liquid bridge between parallel plates involves viscous shearing of liquid molecules adjacent to the plate walls.
The resistance due to shearing of water can be given by a simple analogy with settlement of zero-thickness discs in viscous
fluid (see Or, xxxx):

Dripping from Unsaturated Fractures... Appendix j(b), Page J-a-i
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where Re is Reynolds number, A is wetted area, and v is average flow velocity of the bridge. Consider the following

expressions for the Reynolds number, and disc-equivalent diameter of the bridge, respectively:

vDp
Re = ’

D=

the average flow velocity of the bridge is difficult to quantify, for simplicity we can relate it to the rate of lateral extension
(dy/dt) as:

v =F 0 y[t]

Then,
FD=12Fn VA 3: y[t]
®» Summary

In summary the last three upward forces opposse the weight acting downwards. The resultant force is given by

SA=pg (nro*b + Qt) - (27bolV+R4yoLS+12Fn VA 8. yit])

m Lateral Forces

The following forces acting in the lateral dircction at a cross-section in 7 are considered:

= Interfacial forces
The following forces due to liquid-vapor and liquid-solid intrfacial tensions act in a horizontal cross-section:

FH=2nbolV+R4yoLS

= Viscous resistance to shrinkage

The shrinkage/extension of the bridge laterally is resisted by the following forces:

1
vit]

m Summary

The resulting lateral forces have a vertical component

Dripping from Unsaturated Fractures... Appendix j(b), Page J-a-ii
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27bolV+R4yoLS+4yb3n ;;T]aty[t]
2

SA-=

m Bridge Detachment ODE

When bridge forming in a pre-wetted plates is considered the effect of solid liquid contact can be dropped:

SA=pg(rro’b + Q1) - (27 boLV)

2nbolVv+4yb3n y_(lc—]_ O Y[t]
2

SA-=

znbaLV+4yb3n§- dydt
Eql = - 3 ==pg (nro’b + Q1) - (2nboLV);

Eq2 = Solve[Eql, dydt];

Eq3 = Eq2[[1, 1, 2]]

B bgnrofp-bnrnolV+gQecr
6bn

bgnro*p-brolV+gQpt
6bn

O ¥[t] = -

m Solution to Bridge Detachment ODE

General solution to Eq3 is given by,

bgrnro*p-brolV+gQot

Eq4 = DSolve[d. y[t] == - cbr . Y[E], t]
gnrolp mOLV  gQpt
{{Y[t]3t(7 6n 6(r] ~ 6bn )+C[l]}}

Separate y(t) from Eq4
Y1=Eq4[(1,1,2]];
Introducing the initial condition y[7]=ro,

Eq5=ro==Y1l/.t-ot

7gnrozp . nolV  gQpt
6n 6n 6bn

I'O==t(

Solve EqS5 for constant C[1]

9/22/2000
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Eqg6=Solve [Eqg5,C[1]]

_6bron-bgnro*prt+bnolVt-gQp t?
e “ebn /)

Separate C[1] from Eq6
K=EQ@6[[1,1,2]];

Substitute K into Y1 and simplify
Y2=Simplify[Y1l/.C[1]-K];

Detachment occurs at the first element that vanishes, Y2=0. The time at which detachment occurs is obtained by setting Y2=0
and solving fort

Eq7=Simplify[Solve[Y2==0,t]]

gQptl+b(6ron+gnroipt- oLV
= 7 2BY
bgnrotp-brnolV+gQpoet

Separate t from Eq7
T1=Eq7[[1,1,2]];
The time of detachment also satisfies additional constraint of dt/dr=0. Now, differentiating T1,

Eq8 = Simplify[d, T1]

b? n? (—grozp+crLV)2+g2 'p?t?2+2bgQp (-3ron+grnro’pt-olVr)

(br (gro*p-oLV) +gQpt)’
Setting Eq6 to zero and solving for the crtical 7c,

Eq9=Simplify[Solve[Eq8==0,t]]

(e V& V3 V& VEo Vi Vb b7 (-gxetporotv) |,

gQp
(1 /6 B VB VB Vo vn B 1br Caroto o) )
gQpo

t1=Eq9[[1,1,2]]
t2=EqQ9[[2,1,2]]

/6 /B 3 V3 Vro Vi VB b (~grot o+ o)

gQo

V6 Vb Vg V@ vro Vn Vo + br (-gro? p + oLV)

gQp

The solution that provides positive detachment values is:

V6 Vb Vg Vo vro Vn Vo 1+ bn (-gro? p + oLV)

gQp
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Appendix J (b)

Intermittent Flux by summation of independent bridge
detachment periods

INPUTS

1. Time Averaging Parameters
Total Time of observation  Tf:=3600
Averaging period AT :=1

2. Independent Components
Number of different asperities present

NC:=5

The event period (A7) and event volume (v) of each component are entered as
arrays numbered 1 through NC.

At‘ 1=20.127 v = 14091

b t vol
At i=11.53 v, =80.71 [mm] [sec] [mm3]
At =711 v, i=53.97 02 20127 14091
3 3 0.4 11.53 80.71
at, '=6.28 v, :=43.96 06 771 £3 97
At 1=4985 v 1=349] 0.8 628 439

18 4985 34.91

3. Calculations

_Tf  mod(Tf,AT)

Time counter and array  NTi=—— — - 0:=1.NT T :=i-AT
AT AT i
Component counter ji=1.NC
. T mod Ti,At,
Cumulative events N, =0 N =_'— )
2 1.)
At, At
J
NC
Events per interval n =N =N . In = n
i,) 1,] i—1,j i i,]
j=1
' NC v
Volume per interval V. = Z n v Flux q i=—
1 1,) ) 1
: AT
j=1
Tabulated Results TABLE, =T, TABLE =V,

Dripping from Unsaturated Fractures... Volume 2 (1), Page J-b-1
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E 100
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Appendix J (c)

Growth and Detachment of Liquid Bridges

Physical Constants

p 1=998 n 201307107 6 g1=2-729-107 TOL =107

g:=98  ¢:=729-107 6Ly i=7.29107 bi=04.107  R:=1

« 1D Elongation and Detachment of Liquid Bridge from Appendix J (a),

61-brop-gQ+ -g-roz-p+0 Ly bm

(Q,ro,R,b) =
gQp

0.00290-10°° 5,688 ] 0.003627-107°

0.00632-107° 2.778 0.0075-10°¢

c1:=0.4-100° FLUXI :=|0.01122.10°¢ | PERIODI :=| 1.411 | ¢2 1=0.5-107" 0.012.10°®

6 LIl FLUX2:=

0.01506-10 : 0.015-10°¢

P 0.931 ]

[0.01958-107" | 0.02-107"

0.033.10°°

q:=2.5107°,2.6:10°.3.5.10°°

=)
I

Bridge Period (sec)

Flux (m3/sec)

00 0.8 mm Data
O O 1.6 mm Data
==== 0.8 mm Model
~—— 1.6 mm Model

PERIOD2 =

9/22/2000

12.84
5.5294
3.0742
2.2408

1.785856

1.112
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