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ABSTRACT

The Basalt Waste Isolation Project (BWIP) is one of the major research
projects being conducted under the National Waste Terminal Storage Program,
which was initiated to investigate the feasidility of storing high-level
nuclear waste In deep rock formations. The Basalt Waste Isolation Projuct
ls currently investigating the deep basalts beneath the U.S. Department of
Energy's Hanford Site for location of a high-~level nuclear waste repository.

A major part of BWIP's current effort Is di:ected at analyzing posc-
closure repository performance. These analyses 1'ill determine how well the
proposed repository system achieves its design ob_ 'actives, and, in turn, l~w
well the system complies with technical criteria &1 standards set by Federal
agencies.

Previous performance analyses conducted by BWIP generally have been
carried out in a deterministic framework, whercby 2 single model prediction
was made and nothing was known abcut the likelihood of that prediction. As
the size of the data base used for repository performance analyses increases.
BWIF will progressively move toward a2 stochastic approach to performance
studies. The main advantages of a stochastic approach are that: 1} the
likelihood of model pradictions can be gquantified, and 2) information can be
gained about how to reduce the uncertaintv in these predictions.

This report documents the development and initial testing of the computer
code PORSTAT. PORSTAT solves the stochastic groundwater flow equation coupled
with the deterministic heat transfer and mass transport equations. An inte-
grated finite-differencnr numerical scheme iIs used in PORSTAT to solve the
governing equations. The stochastic groundwater flow eqguation Is approximated
by means of a second-order uncertainty analysis technique. Stochastic vari-
ables input to PORSTAT may be hydraullc conductivity, specific storage, bound-
ary conditions, and initial conditions. The output froa PORSTAT consists of
the expected values and covariances of hydraulic heads and Darcian velocities.
PORSTAT will be used by BWIP to stochastically model gro'undwater flow in the
thermally influenced zone around the repository.

In order to make a preliminary evaluation of PORSTAT's ability to solve
the stochastic groundwater flow equation, the results from two test cases
run by PORSTAT and BWIP's Monte Carlo groundwater flow computer code
(XKAGNUN-MC) are compared. The initial comparison indicates that PORSTAT
ttends to overestimate the uncertainty in hydraulic head predictions, and
chus from a risk analysis viewpoint, produces conservative results. Additional
testing is being conducted to detemmine the limitations and capabilities of
PORSTAT.
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1.0 INTRODUCTION

The National Waste Terminal Storage (NWTS) Program was initiated in the
mid-1970's for the purpose of investigating the feasibility of storing nuclear
wastes in deep rock formations. A number of rock types (e.g., salt, granite,
tuff, and basalt) were initially studied on a generic basis to assess their
-general suitability for nuclear waste storage. As studies progress, the
NWTS Frogram is moving toward the identification and characterization of
candidate repository sites. The Nuclear Waste Policy. Act of 1982 provides
legislative guidelines for nuclear waste repository site selection, design,
licensing, construction, and operation.

1.1 BACKGROUND

The Basalt Waste Isolation Project (BWIP) is one of the major research
and development projects being conducted under the NWTS Program. Rockwell
Hanford Operations (Rockwell), a prime contractor to the U.S. Oepartment of
Energy (DOE), is currently responsible for the BWIP investigations. These
investigations will eventually determine if high-level nuclear waste can be
safely stored in the deep basalts beneath DOE's Hanford Site in south-central
Washington State (Fig. 1). In a broad sense, BWIP's mission is to identify
a potential repository site and develop the technology required for permanent
jsolation of radioactive wastes in the basalt formations (Deju, 1982).

Field investigations by BWIP are focusing on the geologic and hydrologic
characterization of the Columbia River Basait Group in the vicinity of the
Hanford Site. The Columbfa River Basalt Group is composed of a monotonous
sequence of basalt flows that are occasionally separated by sedimentary inter-
beds in the upper part of the sequence. Formations belonging to this basalt
group are known to have a cumulative thickness exceeding 3,000 m in some
Jocations beneath the Hanford Site. Individual basalt flows may be as thick
as 70 m and laterally continuous for many kilometers (Myers/Price et al.,
1979). Although basalt characteristically is a fractured rock, field studies
have shown that the dense interiors of deep basalt flows typically have rela-
tively low permeabilities (Gephart et al., 1979; Rockwell, 1982). These
relatively low permeabiiities are most likely due to the high 1ithostatic
load at depth and secondary mineralization of fractures (Spane, 1982).

A major part of BWIP's current effort is directed at analyzing post-
closure repository performance. These analyses will show how well a proposed
repository system achieves its design objectives, and, in turn, how well the
system complies with performance criteria set by Federal agencies. A per-
formance analysis usually §s conducted by applying a suite of mathematical
models to geologic, hydrologic, and geochemical data.

Previous performance analyses reported by Rockwell generally have been
carried out in & deterministic framework (Rockwell, 1982). Such analyses
use "best estimates” of model input parameters in order to obtain the corres-
ponding "best estimates” of the model outputs (or state variables). Oeter-
ministic models have &l1so been used to examine the impact of postulated dis-
ruptive events on repository performance (Arnett et al., 1980). One problem
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with deterministic analyses is that the 1ikelihood of the model output may
be difficult to quantify unless some statistically based method was used to
develop the mode 1input. This is especially true when deterministic models
are usced to exam: e the {impacts of postulated disruptive events.

In order to quantify the uncertainty in repository performance predic-
tions, & stochastic approach to performance studies must be adopted. With a
stochastic model, part or all of the input parameters and/or boundary condi-
tions are considered uncertain, and thus the output is also uncertain and
must be described by statistical measures such as means, variances, and covar-
fances. In general, {1t is desirable to use stochastic modeling when the
data base becomes large enough so that uncertainties in model inputs can be
quantified.

This report describes the development and {nitial testing of the com-
puter code PORSTAT. PORSTAT has been developed from PORFLO, which is the
computer code being currently used by BWIP to model coupled groundwater flow,
heat transfer, and mass transport in the near-field repository environment.
(PORFLO was developed by Analytic and Computational Research, Inc. for Rockweli.)
[n contrast to PORFLO, however, PORSTAT solves the stochastic groundwater
flow equation coupled with the 4Jeterministic heat transfer and mass transport
equations. [t was decided to stochastically treat only the groundwater flow
equation in this study because, in the case of data from the basalts beneath
the Hanford Site, uncertainties generally are largest in the parameters that
need to be specified in order to solve this equation. The development of
PORSTAT will give BWIP the capability of stochastically modeling groundwater
flow in the near-field environment of a repository in basalt.

1.2 STUDY ORGANIZATION

The study reported in this document was carried out as a joint effort
between the staffs of Analytic and Computational Research, Inc. and Rockwell,
Analytic and Computational Research, Inc. assumed the lead role in formulat-
fng the stochastic groundwater flow equation and suitably modifying PORFLO
to become PORSTAT. Rockwell developed the test cases used to provide a pre-
liminary evaluation of the ability of PORSTAT to solve the stochastic ground-
water flow equation.

2.0 TECHNICAL REVIEW

2.1 UNCERTAINTIES IN MODEL PREDICTIONS

Predictions made by complex modelr of the types used in repository per-
formance &nalyses will always have some associated uncertainty. By correctly
applying a stochastic model, however, the amount of uncertainty in predictions
can be quantified. Once this uncertainty is quantified, efforts can be made
to reduce the uncertainty, if desired, by collecting more data or refining
the model. Being able to quantify the uncertainty in predictions and indicate
how these uncertainties may be reduced are major attributes of stochastic
models.,
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In general, uncertainties ir repository performance predictions are a
consequence of the following:

¢ Limitations in the mathematical and numerical models (including
computer codes) used to simulate repository performance

¢ Random and/or systematic measurement errors in the geologic, hydro-
logic, and hydrochemical data used to make parameter estimates for
performance models

¢ Incomplete knowledge of the spatial or temporal structure of some
of the data used to make parameter estimates for performance models
(e.g., hydraulic conductivity)

¢ Heterogeneities within the hydrogeologic system that have not been
detected during field investigations.

The first source of uncertainty, which can be termed model uncertainty,
is examined when the computer codes used for performance predictions are
benchmarked against other codes and verified with experimental data. The
remaining three sources of uncertainty can be called data or parameter uncer-
tainty and, for practical purposes, will always exist in repositery perform-
ance studies. Theoretically, data uncertainties ¢an te substantially reduced
by densely sampling the model domain; however, some uncertainty will usually
remain in data that vary with time. By using statistical methods such as
those outlined by McLaughlin (1979), it is possible to quantify how data
uncertainties impact model parameter estimates. Stochastic models can then
be used to quantify the uncertainty in repository performance predictions.

2.2 REVIEW OF GROUNDWATER FLOW UNCERTAINTY ANALYSIS METHODS
At present, the methods being used in the state-of-the-art analysis of
uncertainty of flow and mass transport in porous media can be broadly grouped
into five categories:
1. Monte Carlo
2. Finite order
3. Perturbation
4. Analytic time or frequency domain
5. Stochastic Lagrangian.
Recently, the use of the Adjoint Method has been strongly sugqested for the
study of uncertainties associated with repository performance predictions

(Thomas, 1982). The characteristics of this method are discussed in the
next section.
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The Monte Carlo technique is based on repetitive solution of the deter-
ministic equations using parameter values derived by sampling the probability
density functions of these parameters. This method has been used by Warren
and Price (1961), Freeze (1975), Smith and Freeze (1979a, 1979b), and Clifton
and Neuman (1982) to analyze groundwater flow, and by Smith and Schwartz
(1980, 1981a, 1981b) to analyze mass transport in porous media. Monte Carlo
methods have the advantage of being conceptually simple, and they are appli-
cable to virtualily all stochastic modeling problems. However, Monte Carlo
methods have the disadvantage that the joint probability densities of all
uncertafn parameters must be specified. This may be impossible to do without
gross assumptions being made if there are a large number of correlated parame-
ters. In addition, the number of simulations required in order to assure
convergence of the statfistics of the model predictions depends on the number
of uncertain parameters, the amount of uncertainty in each parameter, and
the amount of correlation between parameters. By using sophisticated random
sampling schemes such as Latin Hypercube Sampling (Iman et al., 1980) or
stratified sampling (Ripley, 1981), it may be possible to reduce the number
of simulations required to produce reliable statistics. Monte Carlo methods
can, however, effectively result in an infinite-order uncertainty analysis.

The finite-order uncertainty analysis methods are based on the assump-
tion that the solution space in the neighborhood of the expected values of
the parameters is smooth and differentiable. The first-order method, which
{s the simplest of the finite-order methods, assumes that the solution space
1s 1inear in the neighborhood of the expected values of the parameters. Thus,
only first-order derivatives of the solution with respect to the parameters
need to be determined in a first-order uncertainty analysis. (In sensitivity
theory, these derivatives are called "sensitivity coefficients.") The first-
order derivatives are used together with the second statistical moment of
the parameters to determine the second moment of the model predictions. The
second-ordar uncertainty analysis method, which is to be used in this study,
assumes that the solution space is at least of second degree in the neighbor-
hood of the expected values of the parameters and that the first two deriva-
tives of the solution with respect to the parameters exist. These derivatives
together with the first two moments of the parameters are used to derive the
first two moments of the model predictions. An implicit assumption used in
applying a finite-order uncertainty analysis method is that any product con-
taining either moments or derivatives of higher order than the order of the
analysis is negligible. This assumption usually limits the application of
low-order analyses (i.e., first or second order) to problems where che param-
eter uncertainties are not large. The actual 1imit of applicability of these
methods has not as yet been defined in the literature. Finite-order uncer-
tainty analyses of groundwater flow problems have been documented by Sagar
(1978a2) and Dettinger and Wilson (1981).

The perturbation methods used by Tang and Pinder (1977, 1979), Oster
et al. (1981), and Kincaid et al. (1983) are conceptually close to the finite-
order uncertainty analysis methods. In the perturbation method, an array of
equations containing moments of tha parameters and model output {s obtained
by assuming that each uncertain variable can be represented by the sum of a
deterministic part and a small random perturbation that has specified statis-
tical moments. Generally, the set of equations obtained 1s open in the sense
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that the number of equations 1s one less than the number of unknowns. In
order to solve the set of equations,-an assumption (called the closure assump-
tion) is made whereby moments higher than a certain order are neglected.

Analytic time and frequency domain methods usually are applicable to
simple problems where the uncertainties can be described by anmalytic func-
tions. These methods have been used by Sagar (1978a, 1978b, 1979) in the
time domain, and by Gelhar (1976), Bakr et al. (1978), and Gutjahr et al.
(1978) in the frequency domain.

The stochastic Lagrangian methods of uncertainty analysis are based on
tracking the motion of individual particles or groups of particles and then
determining the statistics of the ensemble of particles &t a specified time.
These methods generally assume that the particles execute their motions inde-
pendently of each other and that a probabilistic description of their veloc-
ities can be made. The random walk model of Ahlstrom et al. (1977) is an
example of & stochastic Lagrangian model.

2.3 THE ADJOINT METHOD OF SENSITIVITY ANALYSIS

The application of the Adjoint Method (Oblow, 1978) to repository per-
formence &nalysis studies *x: been strongly recommended in recent reports
from the Office of Nuriear Waste fsolation (Thomas, 1982; Harper, 1983). It
{s instructive to remember that th: utility of the Adjoint Method lies in
evaluating, to a f'rst-degree approximation, the first-order derivatives
(sensitivity coefricients) of a syecified scalar response function with re-
spect to the mocel parameters. The Adjoint Method involves the solution of
two sets of equations: primal and adjoint. In the context of the ground-
water flow equation, the primal equations would be the set of simultaneous
1inear algebraic equations obtainei after numerically approximating the
governing partial differential equation. The adjoint set of equations is
derived from the primal equations and the nature of the response being
studied. In the case of the groundwater flow equation, the adjoint equa-
tions would also be a set of simultaneous linear algebraic equations. Exam-
ples of response functions that may be of interest {n groundwater flow prob-
lems are the hydraulic head at one point in the flow domain or the mean
hydraulic head in some region of the flow domain. While the primal set of
equations §s independent of the response function, & new set of adjoint equa-
tions is required each time the response function is redefined. Thus, if
the response functions were the hydraulic heads at n points in space, the
adjoint set of equations would have to be solved n times. In the case of &
transfent problem, these n equations would have to be solved at each time
set.

Once the sensitivity coefficients have been computed by the Adjoint
Method or any alternate method, they can be used in & first-order uncertainty
analysis. However, the Adjoint Method does not estimate second-or higher-
order- derivatives of a response function with respect to model parameters.
(These derivatives can be thought of as higher-order sensitivity coeffi-
cients.) At least second-order derivatives are required for the application
of a second-order uncertainty analysis. An alternative to the Adjoint Method
for computing sensitivity coefficients is described in this report. The
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alternative me~hod, which can compute both first- and second-order sensitiv-
ity coefficients, involves determining the explicit inverse of the matrix of
the coefficients of the primal equations. The advantage this method has
over the Adjoint Methud is that once the inverse of the coefficient matrix
is determined, the first- and second-order derivatives of all hydraulic
heads with respect to all parameters are obtained in a single step. The
disadvantage of this method is that both the coefficient matrix and its
inverse are needed during computation, which requires storing both matrices.
This may increase computer storage requirements significantly.

3.0 MATHEMATICAL BASIS OF PORSTAT

3.1 GOVERNING EQUATION FOR GROUNDWATER FLOW

The governing equation for groundwater flow in PORSTAT is based on the
application of the principle of mass conservation together with the assump-
tion that the flow dynamics under nonisothermal conditions are adecuately
described by the generalized form of Darcy's law. The equation so obtained
is written below:

3 d
B_X (er -5;) + ﬁ (l\y 3)'
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heBsy.y | (2)

p*g
fs the hydraulic head at a reference fluid density
B = (p/p*) -1 (3)

is the buoyancy gradient created by density variations due to nonisothermal
conditions in the flow field, and where

g = acceleration due to gravity (Lt'z)
h

1

K, = x-direction principle hydraulic conductivity (Lt

Ky = y-direction principle hydraulic canductivity (Lt™")

m, = fluid source/sink term (t'l)
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n = porosity (dimensionless)
p = thermodynamic pressure (ML'lt'z)

r = radial coordinate (L), r+= if cartesian coordinates are used
S¢ = specific storage (L'])

T = fluid-medium temperature

t = time
x,y = cartesian space coordinates (L)

y* = reference datum for y-coordinate (L)

BT = temperature compressibility of fluid (T'i)

p = actual flutd density (ML™3)

p* = reference fluid density (HL"3).
In addition to the governing equation (Eq. 1), initial and boundary

conditions are specified to provide a complete description of the hydraulic
head field. The initial condition is specified as

h(x,y,t') = f(x,y) (4)

where

t' <t = the time at which the head field i{s fully known. Generally t'
{s taken to be zero.

The general form of the boundary condition fis

K, (3h/3n) + a(x,y,t)h = b(x,y,t) (5)

where
n = g direction normal to the bouﬁdary.

When ¢ + = and b = a-hg, where hg is the specified head, Equation 5 repre-
sents the Dirichlet boundary; it represents the Neumann boundary, if a = 0
and b = Q where Q is the flux per unit area normal to the boundary. For
arbitrary a and b, Equation 5 represents a mixed (Fourier) boundary
cond.tion.
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3.2 GOVERNING EQUATIONS FOR TEMPERATURE AND MASS TRANSPORT
The governing equations for temperature and mass transport in PORSTAT
are exactly the same as in PORFLO. Their numerical treatment also remains

unchanged. The details of these equations are available elsewhere (Runchel,
1982; Runchel and Hocking, 1981) and will not be discussed in this report.

3.3 OISCRETIZATION OF THE GROUNDWATER FLOW EQUATION

3.3.1 The Grid: The Point Centered Grid System

A point-centered grid system (Peaceman, 1977, p. 39) as shown in Fig-
ure 2 1s used in PORSTAT for the numerical solution. In this system, the
nodes lie at the intersections of the grid lines, which may or may not be
uniformly spaced. Cell interfaces are drawn exactly midway between the grid
lines. Thus each node has a cell assocfated with it. Note, however, that
the nodes are not in the middle of the cells unless the grid lines are uni-
formly spaced. In the solution algorithm followed in PORSTAT, fluxes and
velocities are calculated at the cell faces and state variables such as
hydraulic head, temperatures, and concentrations are calculated at the
nodes. From here on, it is assumed that the vertical grid lines are
numbered as [ = 1,2,...,IMAX and the hor‘zontal as J = 1,2,...,JMAX.

3.3.2 Discretizaticn: Method of Nodal Point Integration

The method of nodal point integration {s used to discretize Equation 1.
A typical cell of the numerical grid assocfated with grid ncde labeled as
H%I.J) is shown in Figure 3. The nodes labeled as E(I+1,J), W(I-1,J),
N(I,J+1), and S(I,J-1) are located to the immediate east, west, north, and
south of H(I,J). Points e([+1/2,J), w(I-1/2,3), n([,J+1/2), and s([,J-1/2)
are on rell faces where velocities and fluxes are computed. The discretized
form of Equatfon 1 for node H(I,J) is obtained by integrating it over its
associated grid cell (from w to & and s to n) and over the time interval N
to N+1. For the groundwater flow equation, second-order profiles are
assumed between w and e as well as between s and n (for more details see
Patankar, 1981). The discretized equation so obtained is

A(L1+172,3,K) h(I+1,J,8+1) + A(1-1/2,3,K) h(I-1,J,N+1)
+ A(1,3+1/2,K) h(I,J+1,N+1)
+ A(1,3-1/2,8+1) h(1,3-1,8+1)
+ ACT,J,N) h(L,J,N+1) = R(I,J) (6)
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Note that &ll hydrau]ic heads are written at time N+l, and, hence, the equa-
tion is fully implicit. The coefficients A are given as follows:

ACI+1/2,0,R) = -r K (1+1/2,0,H) Llgz) - y (172 (7)
A(T-1/2,0,K) = -r K (1-1/2,d,K) L2 = y{d-1/2 (8)
MLI+/2K) = -k (1,3+172,8) 2EZ= x0o0/2) (9)
ALLI-172,K) = K (1,9-1/2,K) 2= (Lo /2] (10)

A(I,J,N) = Ss([,J) v([,J) 17[t(N+1)-t(N)] - A(I+1/2,J,N)

- A(1-1/2,J,K) - A(1,d+1/2,K) - A(I,J-1/2,N) (11)

The R(I,J) on the right of Equation 6 is given by

R(1,) = S¢(1,9) v(1,9) 1/[E(N+1)-£(M)] h(1,J.H)
+ B(I,J+1/2,K) - B(I,J-1/2,N) + m v(I,J)
+ mp(1,9) ¥(1,9) (12)
where
V(1) o (x(1+1/2)-%(1-1/2)] [ y(3+1/2) -y (3-1/2)] (13)

1s the volume of the cell and mT(I.J) {s the term obtained from the 3T/3t
term in Equation 1.

11
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3.3.3 Incorporation of Boundary Conditions

Dirichlet and Neumann boundary conditions are considered in PORSTAT.
These boundary conditions are incorporated into the numerical equations for
nodes located next to the boundary. For example, consider nodes (2,J).
These nodes are located next to the 1ine of western boundary nodes (1,J).
If the Dirichlet condition is given at (1,J), then

h(l,J N+l) = ha(l,J.N+1) (14)

where
hB = the specified boundary hydraulic head and is, therefore, a known
quantity in the equation for node (2,J).
L}
To account for this, the term A(1,J,N+l) hg(l,J,N+1) is transferred to the
right-hand side of Equation 6, leaving only four unknown heads in the
equation.

[f the hydraulic head is specified at the cell face, then

h(l,J,N+1) = 2h8(1+1/2,J.N+1) - h(2,3,N+1) (15)

and the coefficient A(2,J,N+1) and the right-hand side are both modified.
Finally for the Neumann condition

n(1,d,ke1) « LLodulid ; 2] 4 he2,9,801) (16)
x * i ]

where

Q(I,J,N+1) = the specified flux per unit cross-sectional area.
Again through the use of Equation 16, h(1,J,N+1) is eliminated from the equa-
tion pertaining to node (2,J).

3.3.4 Formation of Random Equations

In this study, some or all of the hydraulic conductivities, specific
storages, boundary conditions, and inftial conditions can be stochastic
quantities. Under such conditions, Equation 1 and its numerical approxima-
tion, Equations 6 to 16, become random equations. [t §s this set of random
algebraic aquations that is solved in PORSTAT by the second-order method,
the theory of which is described below.

12
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3.4 THEORY OF SECOND-ORDER AKNALYSIS

3.4.1 Concept of Solution of Random Alqebraic Equations

The set of random algebraic equations obtained by discretizing the ran-
dom differential Equation 1 may be written in a concise form as

(AJ{h) = (R} (17)

where

[A] = the matrix whose elements are the coefficients A(L,M) of
Equations 7 to 11

(h} = the vector of hydraulic heads to be evzluated
(R} = the vector of right-hand elements from Equation 12.

Since one equation {s obtained for each interior node, the size of [A] is
equal to NOE X NOE, where NOE = number of equations = (IMAX-2) X (JMAX-2).
Because of randomness in the parameters, all or some of the elements of [A]
‘and (R} are random variables so that the solution of Equation 17 (i.e., {h})
is also random. The complete solution of Equation 17 consists of determining
all the finite-dimensional joint probability distribution functions of the
random function (h}. I[f the joint probability distribution functions of all
the elements of [A] and (R} are specified, then it is theoretically possible
(e.g., Papoulis, 1965) to determine the joint probability distribution func-
tions of (h}. However, because of the very large number of the elements
fnvolved, it is not practicable to do so. For the purpose of this study,
estimates of the mean and covariance of (h} are deemed to constitute a solu-
tion of Equation 17.

3.4.2 Principal of Second-Order Analysis

The second-order method §s based on the principle of expanding the vec-
tor (h} by a Taylor series in terms of the parameters about their expected
values. The parameters that are considered to be uncertain in this study
are the hydraulic conductivities, K, and K the specific storage, Sg; the
boundary conditions on the west (HBS). eas EBC). south (SBC), and north
(NBC); and the initial condition, h The expected values and the covariance
matrices of all the stochastic quantities are to be specified at appropriate
locations on the grid defined in Section 3.3.1. For example, the moments of
Kx are specified at (I+1/2,J), those of K, at (I, 8+1/2). wBC at (1,J), EBC
at (IMAX,J), SBC at (I,1), NBC at (I,JMAX), and hU at all remaining nodes.
Note that each element hp of (h} 1s a function of all the uncertain param-
eters at all locations. For economy of writing the next few equations, denote

13
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the uncertain parameters by aj, i=1,2,...,M, where M is the total number of
random variables of which hy is a function, so that

hm = fm(ai) (18)
Expanding hy 1n a Taylor series, results in
h, = fm(a1) + :%: (ay - a;) (3f /da,)
D DIV ITAE LIPS
i
* :%: :%: fag - &;)(qy -,SJ)(azfm/aaiaaj) . (19)

i >

where a bar over a variable represents its expected value and the derivatives

are to be evaluated at the expected values. Note that these derivatives are
in fact the sensitivity coefficients.

The mean of hp can now be easily writ-
ten down as

- l 2 2
ﬁm 2 fm(a1) * 3 :g: Var a, - (2 fm/aai )

+ :;: :%: Cov ai.aj . (azfm/aaiaaj) (20)
LI

>

where Var and Cov are respectively the variance and covariance of the random
varfables.

[t is Interesting to note that in a first-order analysis, the
second-order derivatives ar2 neglected, in which case,

hoef (3] (21)

f.e., the expected value is the same as would be obtained if the deterministic
problem is solved using the expected values of the parameters.

In the second-
order analysis, however, due to the nonlinearity of f, extra terms appear.

14



L

RHO-BW-CR-140 P -~ DRAFT

The covariance of (hm,hn) can similarly be obtained as
Cov(h b ) = ; var (2,1(af /3a,) (af /3a,) -

+ 21 ; Covlay,a ](af /2, ) (af /a) (22)
f >
Note that the function fn or f is defined by Equation 17, Since in

Equations 20 and 22, the evaluation of the vector {f} and its derivatives is
at expected values of the random parameters, (f} {s simply

(fy = (a7 = (0] (23)

where

[AO] = the matrix (A] with its random elements assuming their expected
values.

As would be evident from the following section, explicit evaluation of (D]
would be required for the implementation of the second-order analysis.

3.5 EVALUATION OF FIRST- AND SECOND-ORDER DERIVATIVES

For the application of Equations 20 and 22, first- and second-order
derivatives of {f} with respect to aj are needed. In matrix theory (Faddeev
and Faddeeva, 1963, p. 123), it is known that

a0(M,K)/3A(K,L) = -D(M,K)D(L,N). ' (24)

In PORSTAT, the two-dimensional array of hydraulic heads h(l,J) is mapped
into 2 one-dimensional array by numbering the nodes sequentially in a columnar
fashion; i.e., h(2,2), h(2,3),..., h(3,2?, h(3,3),... are mapped into h(l),
h(2),... etc., such that h(1,J) may be written as

h(1,d) = h(M) = I%: D{M,L)R(H). (25)

Thus the Mth unknown hydraulic head is a function of the Mth row of [D] and
the entire vector (R}. The equations for the first- and second-order deriva-
tives of (h} with respect to the uncertain parameters can be derived based

15
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on Equations 24 and 25 and from knowledge of the structure of the matrix
(0]). A brief derivation of these equations s presented in Appendices A and
B, respectively.

[t should be noted that the first-order derivatives are alsc called the
sensitivity coefficients. Thus, the entire array of sensitivity
coefficients (1.e., the sensitivity of hydraulic head at each internal node
with respect to all the uncertain parameters at all the nodes) is explicitly
calculated as an intermediate step in PORSTAT.

3.6 EXPECTED VALUE AND COVARIANCE OF DARCIAN VELOCITY

The Darcian velocities, U in the x- and V in the y-coordinate
direction, are given by

h(1,d,N) - h(I+1,J,N)

u(r+1/2,J,N) = KX(I+1/2,J,N) X(1+172] = x(1-172) (26)
= hLINJaN) - h(I’J+11N)
v(l,J+1/2,N) Ky(I.J+1(2,N) y(J+172) - y(J-172) (27)

While developing equations for the expected value and covariance of U
and V, it should be noted that not only are the hydraulic head h and the
hydraulic conductivity Ky and Ky stochastic variables, but they are also
correlated with each other. [n"addition, since U and V are functions of h,
and sirce h at each node is a function of all the uncertain parameters at
all nodes, U and V are in effect, functions of all the uncertain parameters.
Keeping this in mind, equations similar to Equation 17 may be written for U
and V and their expected values and variances obtained. The derivation of
these equations is provided in Appendix C.

3.7 SUMMARY AND DISCUSSION

The basic assumption in computing the expected value of the hydraulic
head {s that the Taylor expansion containing terms of up to second order is
an adequate representation of the head in the parameter space. Note that
the expansion .is in terms of the parameters and not in terms of the space
coordinates. This expansion would be exact if derivatives of hydraulic head
with respect to parameters of order higher than two were zero. Although
Equation 1 itself has not been solved analytically, a number of analytic
solutions of its simpler analogues are available in literature. From these
solutfons, it is apparent that the solution is of the exponential type with
the parameters occurring in the exponent. The exponent is, in general, of
the type -Sx¢/4Kt. Thus derivatives of all orders with respect to hydraulic
conductivity and storativity exist and can be nonzero. However, it is also
apparent that as the order of the derivatives increases, their magnitude
decreases. Neglecting derivatives of order higher than two, therefore, is
not inconsistent with the physical nature of the problem.

16
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It should be noted that the solution of Equation 1 is a linear function
of the fnitial and boundary conditions. The effect of uncertainties in these
two parameters, therefore, is represented exactly in the second-order analysis.

Additional terms are neglected in writing Equation 22 for the covariance
of pressure. [n arriving at this equation, not only the terms that contain
derivatives of third or higher order but also terms containing statistical
moments of order greater than two are neglected. Inclusion of higher-order
terms would require specification of higher-order moments, which are often
not available in the fleld and even if available, their inclusion would in-
crease the computational burden considerably.

4,0 APPLICATION OF PORSTAT TO TEST CASES

This section describes the application of PORSTAT to two simple test
cases. These test cases were designed to provide initial evaluation of the
ability of PORSTAT to solve the stochastic groundwater flow equation. I[n
order to make this confirmation, the results from PORSTAT are compared with
Monte Carlo analyses of the same two test cases. The Monte Carlo analyses
were carried out by Rockwell using the deterministic computer code MAGNUM
(Baca et al., 1983). For convenience, the Monte Carlo version of MAGNUM is
called MAGNUM-MC. The mechanics of the Monte Carlo analysis method are des-
cribed in Appendix 0.

4.1 TEST CASE |

4,1.1 Physical Description and Grid System

This test case involved solving for the steady-state hydraulic head
field in a retangular domain 9,000 by 5,000 m. The hydraulic conductivity
field in this domain was homogenous and isotropic, and also stochastic.
Boundary conditions were deterministically set. The hydraulic gradient in
the x-direction was -0.01, and in the y-direction was zero.

The grid system and boundary conditions used by PORSTAT to solve the
first test case {s shown in Figure 4. For brevity, only the interna) nodes
of the grid are numbered because these will be the only nodes used to compare
results from PORSTAT and MAGNUM-MC. The grid and boundary conditions used
by MAGNUM-MC to solve the same test case by means of the Monte Carlo tech-
nique are the same as shown in Figure 4. MAGNUM uses a finite-element numer-
ical scheme and requires isoparametric rectangular or triangular elements
(Baca et al., 1983). In this case, eight-noded rectangular elements were
used. The grid systems for PORSTAT and MAGNUM-MC were designed so that there
would be a direct correspondence between the nodes of each grid.

17
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FIGURE 4. Grid System and Boundary Conditions Input to PORSTAT,
Test Case 1.

4,1.2 Stochastic Hydraulic Conductivity Data

The stochastic input required by PORSTAT consisted of the expected values
and the composite covariance matrix of the x- and y-direction hydraulic con-
ductivities. The expected values of hydraulic conductivity were uniformly
set at 38.1 m/yr. The composite covariance matriv of hydraulic conductivity
and the method used to generate this matrix are described in Appendix E.

The diagonal elemen%s of this matrix (i.e., the variances) were uniformly
set at 671.4 (m/yr)¢. The covariances between hydraulic conductivities were
determined from a smoothly decreasing correlation function that had twice
the range of correlation in the x-direction than in the y-direction.

The stochastic input required by MAGNUM-MC consisted of a suite of random
hydraulic conductivity fields having the same covariance structure as the
hydraulic conductivity field used by PORSTAT. Appendix £ describes the method
of developing the suite of random hydraulic conductivity fields.
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4,1.3 Results

The deterministic hydraulic head field within the modeled domain uni-
formly decreases between the two constant head boundaries decause of the
homogeneous hydraulic conductivity field. However, the expected values of
hydraulic head computed by PORSTAT differ slightly from the deterministic
heads because of the formulation of the second-order uncertainty analysis
method (see Eq. 20). The deterministic hydraulic head solution and the ex-
pected values of hydraulic head calculated by PORSTAT and MAGNUM-MC are com-
pared in Table 1. As can be seen from this table, the absolute difference
between the deterministic solution and both stochastic solutions, and between
the stochastic solutions, is negligible in comparison with the total head
drop across the modeled domain.

The standard deviations of hydraulic head determined by PORSTAT are
contoured in Figure 5. These standard deviations tend to increase toward
the center of the domain away from the two constant head boundaries. The
marked effect the constant head boundaries have on the magnitude cf the
standard deviations is readily apparent. The symmetry of the standard devi-
ation field 1s a consequence of the symmetric nature of the correlation
structure of the hydraulic conductivity field. Curiously, the hydraulic
head standard deviation tends to be larger near the two zero flux boundaries.
It 1s not as yet clear what causes this magnification of the uncertainty in
hydraulic head near these boundaries.

1)) CTTITIT

| u

STANCARD DEVIATIONS OF MYDRALRIC MEAD ARE IN METERS

il

FIGURE 5. Standard Deviation of Hydraulic Head Computed by PORSTAT,
Test Case 1.
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TABLE 1. Oeterministic Solution and Expected Values of
Hydraulic Head, Test Case 1.
Expected value Differences
Node | Deterministic PORSTAT- MAGNUM-MC- | MAGNUM-
S PORSTAT | MAGNUM- | deterministic | deterministic| MC-

MC solution solution PURSTAT

l 140.000 140.007 | 140.010 0.007 0.010 0.003
2 140.000 140.001 | 139.990 0.001 -0.010 -0.011
3 140.000 140.001 { 139.810 0.001 -0.190 .+ =0.191
4 140.000 140.007 ! 139.770 0.007 -0.230 . -0.237
5 130.000 130.067 | 130.130 0.067 ] 0.130 0.063
6 130.000 130.042 | 130.070 0.042 ' 0.070 0.028
7 130.000 130.042 | 130.000 0.042 0.00G -0.042
8 130.000 130.067 | 130.070 0.067 0.070 0.003
9 120.000 120.062 | 120.360 0.062 ! 0.360 0.298
10 120.000 120.044 | 120.300 0.044 0.360 0.316
11 120.000 120.044 | 120.500 0.044 0.500 0.456
12 120.000 120.062 | 120.710 0.062 0.710 0.648
13 110.000 110.023 | 110.490 0.023 0.490 N.467
14 110.000 110.018 | 110.540 0.018 0.540 0.522
15 110.000 110.018 | 110.610 0.018 ' 0.610 0.592
16 110.000 110.023 | 110.490 0.023 ! 0.490 0.467
17 100.000 99.978 | 100.610 -0.022 0.610 0.632
18 100.000 99.983 | 100.630 -0.017 0.630 0.647
19 100.000 99.983 | 100.590 -0.017 0.590 0.607
20 100.000 99.978 | 100.360 -0.022 0.360 0.382
21 90.000 89.939 | 90.580 -0.061 0.580 0.641
22 90.000 89.956 | 90.430 -0.044 0.430 0.474
23 90.900 89.956 | 90.410 -0.044 0.410 0.454
24 90.000 89.939 | 90.320 -0.061 0.320 0.381
25 80.000 79.933 | 80.520 -0.067 0.520 0.587
26 80.000 79.959 | 80.200 -0.041 0.200 0.241
27 80.000 79.959 | 80.190 -0.041 0.190 0.231
28 80.000 79.933 | 80.290 -0.067 0.290 0.357
29 70.000 69.993 70.220 -0.007 0.220 0.227
30 70.000 62.999 ' 70.080 -0.001 0.080 0.081
31 70.000 69.999 | 70.090 -0.001 0.090 0.091
32 70.000 69.993| 70.190 -0.007 0.190 0.197
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The hydraulic head standard deviations computed by PORSTAT and those
computed by MAGNUM-MC are compared in Table 2. It {s apparent that the
standard deviations computed by PORSTAT are consistently higher than the
standard deviations computed by MAGNUM-MC. The maximum difference between
the two sets of standard. deviations is +22%. Assuming that the Monte Carlo
analysis by MAGNUM-MC {1s more accurate because effectively moments of all
orders were considered, it is apparent that PORSTAT in this test case pro-
duced conservative results from the view of risk analysis.

TABLE 2. Standard Deviation of Hydraulic Head,

Test Case 1.
Standard deviation Percent difference
Node 100 (PORSTAT-MAGNUM-
PORSTAT MAGNUM-MC MC) /MAGNUM-MC
1 4,326 3.659 17.08
2 4,098 3.548 15.53
3 4.099 3.680 11.39
4 3.326 3.800 13.84
5 6.988 5.994 16.58
6 6.795 6.051 12.30
7 6.795 6.069 11.96
8 6.988 6.153 13.57
9 8.526 7.384 15.47
10 8.392 7.497 11.94
11 8.392 7.632 9.96
12 8.526 7.663 11.26
13 - 9.211 8.060 14.28
14 9.103 8.075 12.73
15 9.103 8.212 10.85
16 9.211 8.481 8.61
17 9.211 8.074 14.08
18 9.103 7.928 14.82
19 9.103 7.748 17.49
20 9.211 7.897 16.64
21 8.826 7.547 16.95
22 8.392 7.203 16.51
23 8.392 7.078 18.56
24 8.826 7.220 22.24
25 . 6.988 6.069 15.14
26 6.795 5.768 ' 17.81
27 6.795 5.694 19.34
28 65.988 5.966 17.13
29 4.326 3.659 18.23
30 4.099 3.456 18.61
31 4.099 3.499 17.15
32 5.326 3.712 16.54
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Figures 6 and 7 f1lustrate the correlation structure of hydraulic head
along four cross sections through the modeled domain. Results from both
PORSTAT and MAGNUM-MC are presented. It is apparent that the hydraulic head
correlation structures predicted by PORSTAT and MAGNUM-MC are very similar.
Also evident is the slightly stronger correlation in the y-direction in Fig-
ure 7. This {s most likely caused by the boundary conditions assigned to
the model domain, which prevents groundwater flow in the y-direction.

4,2 TEST CASE 2

4.2.1 Physical Dessription and Grid System

The same model domain and boundary conditions used in Test Case 1
(Fig. 4) were also used in the second test case. However, the hydraulic
conductivity field in Test Case 2 was specified to be heterogeneous and iso-
tropic, with a nonuniform covariance structure,.

4.2.2 Stochastic Hydraulic Conductivity Data

Figure 8 is a contour map of the expected values of the hydraulic con-
ductivity field input to PORSTAT in Test Case 2. Appendix F describes the
method used to generate this distribution of hydraulic conductivities. The
method used to generate the composite covariance matrix of the x- and
y-direction hydraulic conductivities is also explained in Appendix F. Fig-
ure 9 i1s & plot of the standard deviations of hydraulic conductivity input
to PORSTAT. (The standard deviations are the square roots of the elements
on the main diagonal of the composite covariance matrix.)

As In Test Case 1, the stochastic input required by MAGNUM-MC in the
second test case consisted of a suite of random hydraulic conductivity
fields having the same covariance structure as the hydraulic conductivity
field input to PORSTAT. The method used to generate these fields is
explained in Appendix F.

4,2.3 Results

In contrast to Test Case |, the deterministic hydraulic head field is
nonuniform within the model domain because of the heterogeneous hydraulic
conductivity fleld. Figure 10 is a contour map of the deterministic head
field. This head field was computed by arbitrarily setting to zero all the
covariances between hydraulic conductivities input to PORSTAT. Slight dif-
ferences exist between the deterministic solutions of PORSTAT and MAGNUM-MC.
These differences are most likely due to the different numerical schemes
used by each computer code and the slight differences between t:e hydraulic
conductivity fields input to each code because of mesh geometry tonstraints.
Appendix F explains these latter differences in more detafl. On:y the deter-
ministic solution by PORSTAT is presented here so that a meaningrul compar-
ison can be made between this solution and the second-order solition calcu-
lated by PORSTAT using a nonzero hydraulic conductivity covariance matrix.
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FIGURE 6. Hydraulic Head Correlation Structure From Node 1,
Test Case 1.
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FIGURE 7, Hydraulic Head Correlation
Structure From Node 17, Test Case 2.
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FIGURE 8. Expected Values of Hydraulic Conductivity Input
to PORSTAT, Test Case 2.
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FIGURE 10. Deterministic Hydraulic Head Field Computed by
PORSTAT, Test Case 2.

The deterministic hydraulic head field calculated by PORSTAT and the
expected value of hydraulic head calculated by PORSTAT and MAGNUM-MC are
compared in Table 3. The difference between the expected head field calcu-
lated by PORSTAT and the deterministic head field is significantly greater
than the corresponding difference in Test Case 1. This indicates that the
contribution from the second-order terms in Equation 20 {s much greater in
the second test case. The difference between the expected head flelds cal-
culated by PORSTAT and MAGNUM-MC are also greater than the corresponding
difference in Test Case 1. A1l these differences are small, however, in
comparison with the total head drop across the modeled domain.

Figure 11 {s a contour map of the standard deviations of hydraulic head
computed by PORSTAT. The nonuniformity of this standard deviation map is
due to the heterogeneous nature and nonuniform covariance structure of the
input hydraulic conductivity field. The standard deviations of hydraulic
head computed by PORSTAT and MAGNUM-MC are compared in Table 4. At all but
one node, the standard deviations computed by PORSTAT are greater than those
computed by MAGNUM-MC. The maximum difference between standard deviations
1s »54%, and the average of the absolute values of the differences is 18%X.

The correlation structures of hydraulic head determined by PORSTAT and
MAGNUM-MC along four cross sections through the modeled domain are {llustrated
in Figures 12 and 13. The agreement between the correlation structures pre-
dicted by PORSTAT and MAGNUM-MC in this test case 1is not as close as the
agreement 1n Test Case 1. Stronger correlation {s apparent in the y-direction,
%nd an explanation for this is given in the discussion of the results of

est Case 1.
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TABLE 3. Deterministic Solution and Expected Values of
‘Hydraulic Head, Test Case 2.
Expected value Otfferences
Noge | Deterministic PORSTAT- MAGNUM-MC- | MAGNUM-
PORSTAT MAGNUM- | deterministic | deterministic MC-

MC solution solution PORSTAT

1 135.258 137.562 | 139.540 2.304 4.282 1.978
2 135.521 136.780 | 138.350 1.259 2.829 1.570
3 137.858 137.909 | 139.470 0.051 1.612 1.561
4 139.780 141.492 | 142.450 1.712 2.670 0.958
5 126.738 126.440 | 129.440 -0.298 2.702 3.000
6 126.258 126.034 | 128.220 -0.224 1.962 2.186
7 127.241 126.139 | 128.770 -1.102 1.529 2.631
8 129.994 129.260 | 131.950 -0.734 1.956 2.690
9 117.560 116.240 | 118.680 -1.320 1.120 2.440
10 116.939 116.560 | 118.250 -0.379 1.311 1.690
11 115.000 115.391 | 117.410 0.391 2.410 2.019
12 113.331 115.633 | 118.010 2.302 4,679 2.377
13 104.013 104.189 | 105.840 0.176 1.827 1.651
14 104.654 105.227 | 106.060 0.573 1.406 0.833
15 102.997 104.710 | 105.400 1.713 2.403 0.690
16 101.572 107.008 | 105.880 5.436 4.308 -1.128
17 95.996 95.892 | 97.100 -0.104 1.104 1.208
18 96.385 95,926 | 97.290 -0.459 0.905 1.364
19 96.214 95.187 | 96.900 -1.027 0.686 1.713
20 95.936 95.552 | 97.740 -0.384 1.804 2.188
21 90.692 90.273 | 91.120 -0.419 0.428 0.847
22 90.745 90.107 { 91.450 -0.638 0.705 1.343
23 90.721 89.020 | 91.440 -1.701 0.719 2.420
24 91.367 87.658 | 91.510 -3.709 0.143 3.852
25 84.376 84.824 | 84.440 0.448 0.064 -0.384
26 83.983 83.625 | 84.440 -0.358 0.457 0.815
27 83.658 82.870 | 84.550 -0.788 0.892 1.680
28 84.305 82.403 | 84.570 -1,902 0.265 2.167
29 75.136 73.097 | 73.490 -2.039 -1.646 0.393
30 73.469 72.325 | 73.090 -1.144 -0.379 0.765
31 72.080 71.057 | 71.630 -1.023 -0.450 0.573
32 70.444 70.656 | 70.790 0.212 0.346 0.134
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TABLE 4. Standard Deviation of Hydraulic Head,

Test Case 2.

Standard deviation Percent difference
Node 100(PORSTAT-MAGNUM-
PORSTAT MAGNUM-MC MC) /MAGNUM-MC

1 4.267 3.179 34.22
2 4,376 3.685 18.75
3 5.571 3.628 53.56
4 3.971 3.373 17.73
5 6.482 5.810 11.57
6 6.241 5.521 13.04
7 6.991 5.496 27.20
8 7.082 8.976 18.01
9 7.764 6.219 24.84
10 7.097 5.864 21.03
11 7.764 6.087 27.55
12 8.243 7.414 11.18
13 6.980 5.780 20.76
14 6.781 5.608 20.98
1§ 6.856 5.728 19.69
16 8.235 6.946 18.56
17 6.880 5.829 18.03
18 6.654 g.787 14.98
19 6.594 8.717 15.34
20 6.689 6.181 8.22
21 6.930 5.928 16.90
22 6.804 5.931 14,72
23 6.517 §.807 12.23
24 6.829 6.213 9.91
25 6.897 6.064 13.74
26 §5.970 £.127 16.44
27 5.922 8.135 15.33
28 6.228 8.925 5.11
29 4.784 3.619 32.19
30 4,961 4,286 15,78
31 40064 40“80 -9029
32 - 5.253 4.833 8.69
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5.0 SUMMARY AND CONCLUSIONS

This report documents the development and fnitfal testing of the com-
puter code PORSTAT. PORSTAT solves the stochastic Groundwater flow equatfon
coupled with the deterministic heat transfer and mass transport equations.-
Initial testing of PORSTAT was accomplished by cross checking the results of
two simple test problems run by PORSTAT with the results of Monte Carlo
analyses of these same two problems. The Monte Carlo analyses were
completed by Rockwell vsing the computer code MAGNUM-MC.

PORSTAT. solves the stochastic groundwater flow equation by means of the
second-order uncertainty analysis technique. This technique {s based on a
second-order Taylor serfes expansion of hydraulic head about the expected
values of the uncertain parameters after the governing equation has been
numerically approximated by 2 series of linear algebraic equatfons. A major
assumption fn second-order uncertainty analysis is that the sum of third-and
higher-order terms is negligible in comparison with the sum of the first-and
second-order terms. The validity of this assumption is dependent on the
type of groundwater flow problem being analyzed. For problems where the
hydraulfc head 1s 2 highly nonlinear tunction of hydraulic conductivity,
this assumption may not be reasonable.

The major incentive for adopting the second-order uncertainty analysis
technique is reduction in the computation time required to complete an
uncertainty analysis. I[deally, Monte Carlo techniques provide the most
reliable uncertainty analyses for complex problems involving a large number
of uncertair parameters. This 1s because statistical moments of all orders
are effectively considered in Monte Carlo analyses. However, a prohibitive
amount of computer time would be needed 1f Monte Carlo techniques were used .
to analyze the coupled groundwater flow and heat transport prodlems
currently being studied by Rockwell. For these problems, second-order
uncertainty analysis offers a viable alternative to Monte Carlo techniques
in terms of computation time.

The test cases analyzed in Section 4.0 were relatively simple steady-
state groundwater flow problems. A1l inputs to both test cases were the
same except for the hydraulic conductivity fields. In the {irst test case,
the hydraulic conductivity field was homogeneous and {sotropic and had a
uniform covariance structure. In the second test case, the hydraulic con-
ductivity field was heterogeneous and isotropic, with a nonuniform covari-
ance structure.

The results from the test cases indicate that PORSTAT consistently pre-
dicted a higher standard deviaticn of hydraulic head than MAGNUM-MC except
at one point in the model domain of the second test problem. The maximum
differences between the standard deviations predicted by PORSTAT and
MAGNUM-MC were 22% and 54X in the first and second test cases, respectively,
Thus, from the point of view of risk analysis, PORSTAT, for the most part,
produced conservative results in these test cases.
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The results from the initial testing of PORSTAT indicate that the second-
order uncertainty analysis method tends to overpredict the magnitude of the
standard deviations of hydraulic head. The amount of overprediction is a
function of the magnitude of the covariances of-the uncertain parameters.

As the covariances of the uncertain parameters becomes larger, the second-
order method produces & poorer estimate of the uncertainties of the state
variables of interest. Thus, prior to usfng PORSTAT for extensive estimation
of uncertaintfes, it will be necessary to determine how much uncertainty can
be tolerated in the parameters before the second-order method produces unac-
ceptable results. These studies are being pursuad by Rockwall.
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APPENDIX A
EQUATIONS FOR SENSITIVITY COEFFICIENTS

A.1 STRUCTURE OF COEFFICIENT MATRIX

The derivation of equations for the sensitivity coefficients (first-
order derivatives) as well as for the second-order derivatives depends on
the method of discretization used. In other words, an understanding of the
structure of the coefficient matrix is necessary. '

The matrix [A], which is obtained after discretization of the governing
equation, 1s banded, the bandwidth being dependent on the way the nodes are
numbered. As pointed out in Section 3.5, the nodes are numbered in columnar
manner in PORSTAT (1.e., nodes 1,2,... 2re respectively nodes (2,2),
(2,3),+.. in the (I,J) system). tA] is also symmetric and on each row,
there are only five or less nonzero elements. It needs to be noted that
each Ky and Ky of the internal nodes appear in two elements on one row of
the matrix. gor example, Ky(1+1/2,J,N) appears in A(I+1,J,N) and A(I,J,N).
Since the matrix is symmetric, in all, each Kx and Ky of internal nodes
appear in a total of four elements of the matrix. None of these Ky and Ky
appear on the right-hand side. For the nodes on the boundary, their Ky and
Ky appear only in one--the main diagonal of the matrix, but they may appear
on the right-hand side vector (R}.

Similarly, it is to be noted that, the specific storage appears only on
the elements on the main diagonal of the matrix and on the right-hand side.
The boundary conditions appear only on the right-hand side and only in
equations for nodes adjacent to the boundaries. The initial condition (or
t?g conditions at the previous time step) &ppear only on the right-hand
side.

Knowing the structure of the matrix as above, helps in the computation
of the sensitivity coefficients as explained below. In the following, it

should be noted that, for notational convenience, Ky(L,M) is written in
place of Ky(L-1/2,M,K). Simflarly, the time index N is omitted from h also.

A.2 SENSITIVITY COEFFICIENT WITH RESPECT TO Ky

Consider "the hydraulic head h at node (I,J), I=2,..., IMAX]l and
J=2,..., JMAX1, where IMAXls IMAX-1 and JMAX1l= JMAX-1. The first-order
derivative 3h(1,J)/3Kx(L,M) may be written symbolically as

an(I,Jd dh(N aD(N,k
ﬁé‘(ﬁ%'ﬁﬂﬁﬂ'%w&tﬁ?“‘"’

dR(M
+ D "'k W A‘l

A-1
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where
h(1,Jd) or h(N) = the hydraulic head at node (I,J) or N, assuming nodes
are numbered by column (see Fig. 4),
N = (I-2)xNOJ + J-1 where NOJ = JMAX-2
Kx(L,M) = the x-direction hydraulic conductivity at node (L,M)
D(N,k) = an element of the matrix D, which is inverse of the
matrix [AO], formed by using expected values of the
parameters: . :

R(M) = an element of the right-hand vector of the equation
[A] (h} = (R}

NOE = the number of equations = number of internal nodes
= (IMAX-2) x (JMAX-2).

The first term on the right-hand side of Equation A-1 is

Term [ = 2D,k R(M)
x 1
.S aD(Nk) 3A(1',4" i
:/-:m%r'a*r k(G M- (r-2)

As explained in Section A.1, Ky(L,M) is contained only in a limited
number of A(I',J'). To recapitulate, the numerical scheme employed fin
PORSTAT has the following characteristics:

e For (L,M) not in the immediate vicinity of a boundary, Ky(L,M)
appears in four A(I',J')s. There are A{NL,NL), A(NL,NK),
A(NK,NL), and A(NK,NK), where, NL=(L-3) x NOJ + M-1 and KK = (L-2)
x NOJ + M=1. Thus, the right-hand side of Equation A-2 is

. M ' il
+ Z aogu,kg aAgm.,mq R(M)
M ’ x\-*
aD(N, k) BA(NK,NL
+ 2 Sl Bt mon
m NK,NL) @ ML
dD(N,k) 23A(NK,NK
* 2 sty SR A (a-3)

A-2
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.

o For (L,M) in the immediate vicinity of a Dirichlet boundary on the
east, Kx(L,M) appears only in A(NK,NK), therefore, the right side
of Equation A-2 for such Ky(L,M) is

- aD(N, k) 23A(NK,NK -
Term 1 % -ar(-’(‘-’?:-ﬁ%)- Eri-(r:ﬂ-,l R(M). (A-4)

For (L,M) representing location in the immediate vicinity of a
Dirichlet boundary on the west .

Term 1 = a0(N,k) _ 3A(NL,NL) o -5
erm ZM:WI:'NU JCHy RO (A-5)

In case the boundaries are of the Neumann type, Ky(L,M) does not
appear in any of the elements of [A] and

Term [ = 0. (A-6)

The elements of matrix [A] are described in Equations 7 to 11. From
these, 1t s apparent that for off-diagonal elements A(NL,NK) = A(NK,NL)

2A(NL,NK) _ M+1/2)-y(M-1/2) . _ )
ggir[fnyl T XL;Tté-%-f{rjtg-l ADIFX(L,M) . (A-7)

For the diagonal element, on the other hand,

aA‘NLzNLl = + ADIFX(L,M) (A-8)
x

Using Fyuations 24, A-7, and A-8, Equations A-4 to A-6 can be
simplified to, respectively,

Term I = [H(NK) - H(NL)J+[O{N,NL)=-D(N,NK)] « ADIFX(L M) (A-9)
Term I = -D(N,NK)<H(NK)sARIFX(L,M) (A-10)
Term I = -D(N,NL)<H(NL)«ADIFX(L,M). (A-11)

A-3
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In Equations A-9 to A-11, H s obtained by multiplying matrix [D] with
vector (RO}, where (RO} {s formed by using expected values of the parameters.

Term Il in Equations A-l is

Term 11 = 2 O(N.k) iiiil A-12

Again, we note the following. characteristics of the discretized equations
of PORSTAT.

e For (L,M) not in the immedfate vicinity of the boundaries, Kx(L,M)
does not appear in any R(M). Therefore, for such (L,M)

[ ]
Term 11 = 0. . (A-13)

s For (L,M) in the immediate vicinity of the boundaries, the way
Kx(L.Hj appear in R(M) depends on the kind of boundary condition.

For Dirfchlet boundaries on the east, Ky(L,M) appear in R(NX) and
for Dirichlet boundarfies on the west in R(NL) only and for these
cases Term Il can be found to be, respectively,

Term II = D(N,NK) *ADIFX{L,M) *WBC(M) (A-14)
Term II = D(N,NL) *ADIFX(L,M) *EBC(M) (A-15)
The expected boundary values on the west and east boundaries are
WBC and EBC, respectively.

For the Heumann boundaries, the boundary hydraulic conductivities

Kx(L,M) do not appear {n any R(M), therefore,

Term II = 0. (A-16)

A-4




‘RHO-BW-CR=140 P == DRAFT -

In summary, the following equations for computing ah(I,J)/aKx(L,M) are
obtained:

o For Kx(L,M) representing hydraulic conductivities at locations
that are not in the inmedfate vicinity of any of the boundaries,

Al « [HONK) = HONL)]o[O(RNL) = DN,NK)] +ADIFK(L,M). (A-L7)
x-t ]

o For Kg(L,M) representing hydraulic conductivities at locations
that are in the immediate vicinity of the boundary on the west,

h(N

S tLpy = [WBC(M) = H(NK)] «D(N,NK) «ADIFX(L,H) (A-18)
X 4

for Dirichlet boundarfies, and

oty = 0 (a-19)
b Ainkd

for Neumann boundaries.

e For Kx(L,M) representing hydraulic conductivities at locations
that are in the immediate vicinity of the east boundary,

w’“—}%lm- « [EBC(M) = H(NL)] +D(N,NL) *ADIFX(L.N) (A-20)
X ’

for Dirichlet boundaries, and

ﬂt"ﬂ)’x Lny = 0 (A-21)

for Neumann boundaries.

A5
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A.3 SENSITIVITY COEFFICIENTS WITH RESPECT TO Ky

The derfvation of equations for 3h(1,J)/3Ky(L,M) 1s similar to the ones
for ah(I,d)/3Kx(L,M) given above. Using new definitions of NL and NK and of
ADIFY as given below,

NL e (L-2) x IMAXL + -2 (A-22)
N = (L-2) x IHAXL # M-l - (A-23)
ADIFY = [x(1+1/2)-x(1-1/2)1/Cy(9)-y(3-1)] . (A-24)

the following equations for 3h(I,J)/8Ky(L,M) are obtained.
‘e For (L,M] not immediately adjacent to the boundaries,

igh{ggny = [H(NK) - H(NL)]+[O(N,NL) = D(N,NK)] <ADIFY(L,M) (A-25)
y .
e For (L,M) in the immedfate vicinity of the south boundary,

5% = [SBC(L) - H({RX)] «D(N,NK)+ADIFY(L,M) (A-26)
y* .

for Dirichlet boundaries, and
hiN) _ (A-27)
e gl

for Neumann-type boundaries.

e For (L,M) in the immediate vicinity of the north boundary,

h ". = [KBC(L) = H(NL)]<D(N,KL)«ADIFY(L,M) (A-28)

Py
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for Dirichlet boundaries, and

F%EP[QFT s ° (A-Zg‘)
y\bs

for Neumann boundaries.
SBC and NBC fs Equatfons A-28 and A-29 are the expected values of

the Dirichlet conditions on the south and north boundaries,
respectively.

A.4 SENSITIVITY COEFFICIENTS WITH RESPECT TO SPECIFIC STORAGE

An examination of the discretized equations of PORSTAT would reveal
that the specific storage Sg(L,M) occurs only in the element A(NK,NK) and
the right-hand vector element R(NK), where BX = (L-2) x NOJ + M-l.

Therefore, following the development in Section A.l

sty = 28 00x) - n()) (A-30)
s | ]

where
At = the time step
ho s the value of the hydraulic head at the previous time step.

When a numerical procedure is followed, {n which the steady state {s obtained
in a single step, Atew, and 3h(N)/aSs(L,M) 1s zero.

A.5. SENSITIVITIY COEFFICIENTS WITH RESPECT TO BOUNDARY YALUES
In PORSTAT, boundary conditfons are included in an implicit manner;
f.e., the known boundary conditions are substituted in the discretized equa-

tions and transferred to the right-hand side (see Sec. 3.3.3). Thus, the
boundary conditions appear only in the right-hand vector (R}, so that,

oh(N) . S aR(M) _ -
st 2:4: JORG QLIS (A-31)

A-7
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If WBC(K) 1s of Dirichlet type, then

LBl « DN, MK <K, (2,K)+ADIFX(2,K) - (A-32)

where
m = K‘lo ]
If ﬁBC(K) is of Neumann typé. then

sy = [y(ke1/2) - y(k-1/2)] (A-33)

The equations for first-order derivatives with respect to the other
boundary conditions are very similar and are not written here.

A.6 SENSITIVITY COEFFICIENTS WITH RESPECT TO INITIAL CONDITIONS

In this discussion, by fnitial condition {s meant the hydraulic head at
the beginning of the new time step and is represented by HOLD (K,M). This
variable, 1ike the boundary conditions, appears only in the right-hand vector

so that
ah(N) .S aR(M i
SO EHT ; D(N.H) SERSCHRT (A-38)

s D(N,0K)e S(L,M)/at (A-39)
where
N = (L-2) x NOJ + M-1
4t = the time step.

A-8
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APPENDIX B
EQUATIONS FOR SECOND-ORDER DERIVATIVES

8.1 INTROOUCTION

Second-order derivatives of the hydraulic head with respect to the uncer-
tain parameters are required for the computation of the expected value of
the hydraulic head. The equations for these derivatives are obtained by
further differentiating the equations of sensitivity coefficients obtained .
fn Appendix A. It should be noted that since {h} depends linearly on the
init{al and boundary conditions, therefore, the second-order derivatives of
{h} with respect to these varfiables are zero. There are three second-
order derivatives with respect to the hydraulic conductivity: with respect
to Kx, with respect to Ky, and the mixed partial. There is one second-order
derivative with respect to specific storage. Equations for these four
second derivatives are summarized below.

B.2 SECOND-ORDER DERIVATIVES WITH RESPECT TO
HYDRAULIC CORDUCTIVITY

The second-order derivative with respect to Kx can be written as

) .
h(N . 3 aD(N,M)
alixll.‘.ﬁ's'ak‘("x GHT * SILRT [% mx oy R
2 o, 24N ] B-1
« 20 ot it (8-1)

The quantity within the braces on the right-hand side of Equation B-1
fs the first-order derivative, which was evaluated in Appendix A. It was
noted there that this quantity depends on whether the location (L,M)
represented a boundary or not. In the same manner, the final equations for
the second-order derivatives shall also depend on location. To simplify
Equation B-1, define

NL = (L-2) x NOJ + M-1 (B=2)
KM = (L-3) x NOJ + M-1 (B-3)
NL' = (L'-2) x NOJ + M'-1 (B-4)
NM* = (L'-3) x KOJ + M'-1 (8-5)

B-1
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. For (L',M') not on the boundary, the varfable szL'.M‘) occurs in four
elements of [A]. These are A(NL',NM'), A(NL',NL'), A(NM',NL'), and A(NM',NM').
For such Kx, Equatfon B-1 reduces to

32h N ] [] ]
Wﬁg&—rm' = {[O(KM*,NM)-D(NM® ,NL)+D(NL*,NL)
b Sl b Al

= D(HL® ,#M)] < (H(NM) -H(NL) ] {O(N,NM* )-D(N,KL*)]

+ [O(NM* ,NM)-D(NM* ,RL)+D(NL",NL)

= D(NL®,NM)]< CH(NM" )-H(NL*)] * [O(N, NMH)

= D(N,NL)J}={ADIFX(L,M)ADIFX(L",M')}. (8-6)

The formulas for other locations are as follows.

For both (L,M) and (L',M') representing locations near the west
boundary, the equation is

mrfgéh's‘%[‘m' = {D(NL',NL)*[H(NL)D(N,NL")
X s x\os

+ H(NL')D(N,NL)-D{N,NL' )WBC(M)
- D(N,NL)WBC(M*)]}*{ADIFX(L,M)ADIFX(L'M')}. (B-7)

For (L,M) representing a location near the west boundary and (L',M') repre-
senting a location near the east boundary, the equation is

2
HZTE‘%T% = {D(NM*,NL) *[H(NL)D(N,NM')
X s x\ =

+ H(NM*JO(N,NL)-D(N,NM' )WBC(M)
« D(N,NL)EBC(M*)] }«{ADIFX(L,M)ADIFX(L",M*)}. (B-8)

B-2
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For both (L,M) and (L',M') representing locations near the east boundary,
the equation becomes

4
m‘rr"a'n%ﬂ—rrm = {D(NM* ,NM) < [H(NM)D(N,KM")
4 ' X\~

+ H(NM' )D(N,NM)-D(N,NM* )EBC(M)
- D(N,NL)EBC(M*)]}*{ADIFX(L,M)ADIFX(L',M*)}. (B-9)

For (L,M) representing locations near the east boundary and (L',M*) repre-
senting one near the west boundary, the equation is

2
SK'TIT'&FT%‘FFU = {D(NL',NM)* (H(NM)D(N,NL)
X 4 X\

+ H(NL*)O(N,KM)-D(N,NL"' )EBC(M)
- D(N,NM)WBC(M* )1} (ADIFX(L,M)ADIFX(L' ,M*)}. (B-10)

For (L,M) representing locations near the east boundary and (L*,M') repre-

senting locations away from both the east and west boundaries, the equation
becomes

22h(N
mﬁ‘m = {[D(NM*,NM)-D(NL" ,NM)T *H(NM)* [D(N,NM)
X 4 b 4

= D(N,NL"*)]+D(N,NM)*[H(NM* )-H(NL")]
+ EBC(M)*[D(N,NM")
- D(N,NL*)]}*{ADIFX(L,M)ADIFX(L",M*)}. (B-11)

B-3
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For (L,M) representing locatfons near the west boundary and (L',M') repre-
senting location which are not in the immediate vicinity of either east or west
boundary, the equation takes the form

W'_a;h%g%—(m . [[o(m.ouL)'D("L',NL)J OH(NL).[D(N'M.)
b Sl } Qi .

- D(N.HL’)]+D(N.HL)-£H(NH')-H(NL')] |

+ WBC(M) «[O(N,NL)

- D(N,NM')]}«{ADIFX(L,M)ADIFX(L",N')}. (B-12)
For (L',M') representing locations near the west boundary and (L,M) repre-

senting locations not in the immediate vicinity of either the east and west
boundary, the equation becomes

EK‘TE73;¥§g%'TE’ﬂT = ([O(NL*,NM)-D(NL"*,NL)] «H(NL") «[D(N,NM)
B Al b S

- D(N."L)]"‘D(".NL' ) O[H(NM)-“(NL)]

+ WBC(M*)«LO(N,NL)

- D(N,KM)]}+(AOIFX(L,M)ADIFX(L',M')}.  (B-13)
Finally, for (L',M') representing locations near the east boundary and

(L,M) representing any location, which is neither in the immediate vicinity of
the east or the west boundary, the equation is

sz'rr"m'f“&'(mz" 2 = ([O(NH" KM)-D(NM" ,KL)] H(HH*) - [O(N, M)
$ Qb X't

= D(N,NL)]+O(N,NM" ) e [H(NM)-H(NL)]
+ EBC(M*)«[D(N,NL)
- D{N,KM)]}«(ADIFX(L,M)ADIFX(L',M')}. (8-14)
Equations B-6 to B-14 can aiso be applied to finding the second-order deri-
vative with respect to Kﬁ' as well as to the mixed partial derivative, provided
an

that the KL, NM, KL*, MM’ are appropristely defined and the appropriate
boundary conditions (f.e., SBC and NBC) are considered.

B-4
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B.2 SECOND-ORDER DERIVATIVE WITH RESPECT TO SPECIFIC STORAGE
The equation for the second-order derivative with respect to specific storage

is obtained by differentfating Equation A-30 once again with respect to Sg. The
equation so obtained is

1E71175§%§!%t7'nfy * D(NL*,NL) (D(N,NL" JH(NL)
s'! g\ . |

¢ DINNLJH(HL") Jat2 (-15)

e
NL = (L-2) x NOJ + M-l (B-16)
KL' = (L'~2) x NOJ ¢ M*-1, (8-17)

It should again be noted that in case a steady-state problem {s to be solved
gn a single step, this second derivative with respect to specific storage would
e zero.

B8-5
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APPENDIX €
EQUATIONS FOR COVARIANCE OF OARCIAN VELOCITIES

C.l COVARIANCE OF U AND V

It was suggested in Sectfon 3.6 that the Darcian velocities are functions
of all of the uncertafin varfables. In view of this, we can expand the U and V
functions of Equations 26 and 27 in a Taylor series and obtain an equation anal-

us to.19. In the following, only the equation for-U 1s discussed. The equa--
tion of ¥ 1s similar.

U(K,3) = U(k,d) + [Kx(K.J)'-R‘(K,J)] au(K,d)

+ h(1-1,0)-R(1-1,0)] gii3ksd

+ (b1, 9)-R(1,9)] FRF (c-1)

where

U = the value of U obtained by substituting the .xpected values of Ky
and h in Equation 26.

A bar over a variable in Equation C-1 denotes its expected value. Taking expected
value of both sides of Equation C-1, we get

u(k,d) = U(k,Jd). (c-2)

To obtain covariance, we write an expression for {U(K,Jd) U(K',J')}, take
its expected value and subtract {U(K,J)U(K',Jd')}. Thus,

CovU(K,J),U(K*,J')] = COV[Q;(K'J)'Kx(K"J.)] %gf%ig%T'ggi%é4%5;T

+ COV[Kx(K.J),h(I'-l.J')] %g_(% au(k*,J*
. X ]

+ Cov[K, (X.J),h(1',3")] au(K,Jd) au(k*',d')

C-1
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* Covlh(1-1,3) Ky (K',0')] LTy TR

+ Cov[h(I-1,d),h(I'-1,3")] ma”(f'f) WBU(K:.:")T

+ Cov[h(1-1,0),h(1*,3+)] dulKad) KL

.+ GovE(L A k0] S Rty

+ Cov[n(I,d),h(K'-1,3')] %%%%%%%’sﬁ%éEEigﬁlT

+ Cov[h(1,d),h{1',3")] %g%ﬁfg%-g%%§;f§;} (C-3)

where, a1l the derivatives are evaluated at the expected values of the parameters
favolved. That is,

WKsd) -« (h(1-1,3)-h(1,d)]/0XM(1) = DKL (C-4)
A |

AUy = K (K, )/0XM(1) = 0P1 (C-5)

P = K, (K,0)/0M(1) = -0PL (c-6)

where
DXM(I) = x(I+1/2)-x(1-1/2).
OK2 and DP2, the derivatives of U(K',d'), can similarly be defined.

To evaluate Equatfon C-3, we need an equation for Cov[Kx(M,N),h(I,J)] that
can again be obtained up to second-order as follows.

C-2
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The product [Kx(M,N) h(I,J)] may be written as

K (M,R) h(1,3) = K (M,K) h(1,d)

2
0.5(K_ (M,N)-E_ (M,K)] k. (M,N) 2n{L:d)
+ 20 20 050K ()R, (MK K, ) T
s 2 P L D020 ouss (mh)
L :;: :%: (5 (4,10

2
= S (M,N)]eK (M, n) ERLED) , An(T) (C-7)
L) SR

Note that the second-order derivatives {h} with respect to boundary condi-
tions and init{ial condition are zero and these terms, therefore, are not shown
in Equation C-7. Similarly, all the first-order terms are omitted since these
become zero on taking their expectation. Taking the expected value of both sides
of Equation C-7, the covariance of [Kx(M,N), h(I,J)] can be obtained as

2
Cov[K, (M,N),h(1,)] = 1/2 Var[Kx(M,u)].[kx(M,N) :KNS:;JA)
X $

2
ah(1,d . a®h(1,d)
.2 ikiTﬁTaT] +1/2 Var[ss(M.N)]-[kx(M.N) Ll
S
+ ahitﬁ?) ] (C-8)

Equations for the first- and second-order derivatives of {h} with respect
to Kx and S have already been developed in Appendices A and B. Using Equation C-8,
the covariance function of U can be evaluated from Equation C-3.

C-3
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APPENDIX O
MONTE CARLO TECHNIQUE FOR ANALYZING UNCERTAINTIES IN HYDRAULIC HEADS

-

The Monte Carlo method used by MAGNUM-MC to analyze uncertainties in hydrau-
11c heed predictions 1s the same method described by Clifton and Neuman (1982).
With this method, the hydraulic conductfvity field within the modeled domain {s
assumed to be governed by a log-normal probabiifty distributfon. Following dis-
cretization of the conductivity field, which {s required by the finite-element
numerical scheme used by MAGNUM-MC, a mean vector and covarfance matrix must be
determined for the field. A multivariate normal random number generator is then
used to generate a large number of random conductivity fields having the same
covarfance structure. The number of random fields needed to assure convergence
of the statistics of the ensemble is determined by the two norms defined in Equa-
tions 58 and 59 of Clifton and Neuman (1982). In Test Cases 1 and 2 of this
study, 400 simulations were determined to be sufficient to obtain reliable sta-
tistics of the ensemble of random hydraulic conductivity flelds. The ensemble

of conductivity flelds is then input to MAGNUM-MC to generate the corresponding
ensemble of random hydraulic head fields. Statistics of these head fields at
each node of the finite-element mesh can readily be determined.

REFERENCE

Clifton, P. M. and Neuman, S. P., 1982, "Effects of Kriging and Inverse
Modeling on Conditional Simulation of the Avra Valley Aquifer in Southern
Arizona," Water Resources Research, Vol. 18, No. 4, pp. 1215-1234.
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APPENDIX E

HYDRAULIC CONDUCTIVITY FIELD MEAN VECTOR AND COVARIANCE
MATRIX GENERATION, TEST CASE 1

The hydraulic conductivity (K) fields fnput to PORSTAT and MAGNUM-MC
{n Test Case 1 were 1sotropic and homogeneous, and were assumed to be
governed by & log-normal probability distribution. The geometric mean of
K and the varfance of log-hydraulic conductivity (log-K) were set at
1 x 10-° m/sec (= 31.5 m/yr) and 0.1, respectively. L

The complement of the spherical semfvarfogram model (Journel and
Huljbregts, 1978) was used to describe the covarfance structure of log-K
in the model domains used by PORSTAT and MAGNUM-MC. Relevant parameters
of this model were: 111 0.1, and x-uirectfon range 3,500 m. [n addition,
the covariance structure was assumed to be anisotropic, with the ratfo of
the ranges in the x- and y-directions being 2.

The grid used to define the log-K covarfance matrix for PORSTAT was a
modified version of the grid in Figure 4. Modification of this grid was
required because of the way K's are input to PORSTAT. As explained in
Section 3.0 (Eq. 7 to 11) PORSTAT requires the K's to be defined between
adjacent nodes of the mesh rather than at the nodes. The result is two
separate meshes for the x- and y-direction K's. These meshes, together
with the Internal grid nodes, are shown in Figure E-1. €Each cell of the
meshes is a finite subregion where K is defined. The x- and y-direction
log-K covariance matrices were obtained by integrating the log-K covariance
function around each mesh. In addition, the x- and y-direction log-K's
were assumed to be uncorrelated.

PORSTAT requires the expected value and covariance matrix of K rather
than log-K. The transformation described in Appendix G was used to derive
the expected value vector and covariance matrice of K.

In order to use the multivariate normal random number generator
(Appendix 0) to develop the suite of random K fields for MAGNUM-MC, 2 mean
vector and covariance matrix of log-K are required. The mean vector used
in this test case had every element equal to the lograthim of the geometric
mean of K (1.e., lo?lo (31.5)). The log-K covariance matrix was developed
by integrating the log-K covariance function around the mesh in Figure 4.
As explained 4n the test, this mesh has the same geometry as the mesh used
by MAGNUM-MC,

REFERENCE

Journel, A. G. and Huijbregts, Ch. J., 1978, Kining Geostatistics, Academic
Press, New York, New York.
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APPENDIX F

HYORAULIC CONDUCTIVITY FIELD MEAN VECTOR AND COVARIANCE
MATRIX GENERATION, TEST CASE 2

The hydraulic conductivity (K) fields input to PORSTAT and MAGNUM-MC {n
‘Test Case 2 were isotropic, heterogeneous, and had a nonuniform covariance
structure. These fields were assumed to be governed by a log-normal probabfl-
ity distribution. The same mesh geometries that were used in Test Case 1
were a1so used in Test Case 2. In order to generate the desfred K fields,
60 synthetic, randomly-distributed log-hydraulic conductivity (log-K) data
with a specified covariance structure were first generated in the 5,000-m by
9,000-m domain containing the PORSTAT and MAGNUM-MC meshes. These data were
generated by means of the multivariate normal random number generator
described by Clifton and Neuman (1982). The covariance structure of the
synthetic log-K data was defined by the spherical semivariogram model
(Journel and Huijbregts, 1978) with parameters: si11 0.65, and x-direction
range 3,500 m. In addition, the covariance structure was assumed to be aniso-
tropic, with the ratio of the ranges in the x- and y-directions being 2.
The geostatical interpolation technique of kriging was then used to make
estimates of 1o0g-K in each of the cells of the meshes, and also to determine
the log-K covariance matrix for each mesh (Ciifton and Neuman, 1982). By
using kriging to conditfon the estimates of log-K in each cell, a heteroge-
neous log-K field with a nonuniform covariance structure as generated. The
transformation described in Appendix G was used to obtain the expected value
vector and covariance matrix for K required by PORSTAT.

REFERENCES

Clifton, P. M. and Neuman, S. P., 1982, "Effects of Kriging -and Inverse
Modeling on Conditional Simulatfon of the Avra Valley Aquifer in
Southern Arizona," Water Resources Research, Vol. 18, No. 4,
pp. 1215-1234,

Journel, A. G. and Huijbregts, Ch. J., 1978, Mining Geostatistics, Academic
Press, New York, Hew York.

F-1



'RHO-BW-CR-=140 P -~ DRAFT

APPENDIX G

OERIVATION OF THE MEAN VECTOR AND COVARIANCE MATRIX OF A LOG-NORMALLY
DISTRIBUTED RANDOM VARIABLE GIVEN THE MEAN VECTOR AND COVARIANCE
MATRIX OF THE CORRESPONDING NORMALLY ODISTRIBUTED RANDOM VARIABLE

Let Y be a vector of normally distributed random variables with mean EE[]
and covariance matrix ¥y; f.e., Y is N(ECY].Yy) -

Let
Y = log,(K)

then K is a vector of log-normally distributed random variables, and
K = exp(cY)

where
¢ = In(a).

Ih; ?ean and variance of K are given by, respectively (Benjamin and Cornell,
970),

E(K,] = exp(cELY,] + 0.5c%Vy, )

Vers = CEL& D Lexp(cBuyy ) - 1.

The co&ariance matrix of K 1s given by (Benjamin and Cornell, 1970)
Covfxi.KJ] - E[Kile - E[K,]E[KJ].

Expanding the first term on the right of the above equation yfelds:

E[KiKJ] = E[exp(ch)-exp(cYJ)]

= E[exp(cv1 + ch)].



.. . RHO-BW-CR-140 P == DRAFT .

Since cYy and cYJ are two normal random variables, their sum is also normal,
Thus .

€K K, = exp{c(EDY] + ELY,]) + 0.5cVar(¥y + Y))}
= exp{e(EDY,] + EDY,) + c2(0.5Vyyy + 0.5V,

+ Cov[vi,yJJ)}.

Hence the covariance matrix of K is given by

CovikyKy] = expie(EDY,] + ELY,D) + cP(0.5Vy,; + 0.5Vy
+ Covl¥,,¥,1)} = exp(cELY,] + o.Sczvvii)-exp(cE[vJ]

‘ o.ScszJj)

= exp{c(ECY,] + ELY,]) + 0.5c (vy,,
+ VYJJ)}-{exp(czCov[Yi.YJ]) -1}

= E[K1]E[KJ].{exp(cZCov[Yi,YJ]) - 1}.

REFERENCE

Benjamin, J. R. and Cornell, C. A., 1970, Probability, Statistics, and Deci-
sion for Civil Engineers, McGraw-Hi11 Book Company, New York, New York.
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