NRC PO	nu 402		U.S. NUCLEAR REGULATORY COMMISSION
()-8 11		EPC	DRT ·
TO:	Robert L. Johnson, Project Manager Repository Projects Branch	r R	John C. Voglewede
_	Division of Waste Management	ĥ	Engineering Branch, WM
PLACES	A. Pacific Northwest Laboratory B. Office of Nuclear Waste Isolation	DATE	A. 8/12/86 - 8/13/86 B. 8/15/86
runsowi	See attached list of attendees (A &	В).	
MAPOSE	 A. Examination of Metal Barriers Testin Studies sponsored by the Salt Reposi Pacific Northwest Laboratory. B. Examination of draft program documen waste package at the Office of Nucle 	g P tor ts ar	rogram and Waste Package Environmental y Project and conducted by Battelle and plans related to the salt repository Waste Isolation (Battelle Memorial Institute
ACCOMPL	A. NRC and contractor staff reviewed te and methodologies, experimental tech Barriers Testing Program. The Staff indicated by the Waste Package Envir B. NRC and contractor staff reviewed dr planning and strategy. The Staff al related to the salt waste package.	st niqu als onm aft so	data, test procedures, testing approaches ues and test apparatus used in the Metal so reviewed experimental conditions as ental Program. documents related to waste package program reviewed several draft technical positions
PROBLEM			
)	hone		
	-		
ENDING A	One document (R.E. Westerman et al., <u>Con</u> <u>Characterization of Iron-Base Nuclear Wa</u> PNL-5426, March 1986) was retained by th guidelines, a copy of that report is at The NRC salt repository team was briefed	rros iste ie s tach	<u>sion and Environmental-Mechanical</u> <u>Package Structural Barrier Materials</u> , staff. In accordance with the Appendix 7 ned. pon completion of the visit.
			· · · · · · · · · · · · · · · · · · ·
	A greater amount of time should be alloc Part B of the trip above.	ate:	ed to document review indicated in
	8610220375 860902 PDR WASTE WM-16 PDR	Ľ	-lask R Merme
	<u>Al</u> and	Ti	lak R. Verma 9/02/86
HGNATUR	E-TRAVELER John C. Coglewede	Jo	hn C. Voglewede 8/22/85

•

DOE/NRC/PNL MEETING (Appendix 7 Meeting)

August 12-13, 1986

Name

Organization

Larry G. Morgan V. J. Rutkauskas K. K. (Roger) Wu John C. Voglewede Richard E. Westerman Paul J. Turner John A. Carr Karl H. Pool Tilak R. (Teek) Verma Stan G. Pitman Monty R. Telander John H. Haberman Michael B. McNeil Anna C. Fraker Larry R. Pederson PNL BPMD/ONWI DOE/SRPO NRC/NMSS/DWM PNL PNL Battelle/ONWI PNL NRC/Columbus PNL PNL PNL PNL NRC/RES NBS (National Bureau of Standards) PNL SRPO/ONWI/NRC MEETING (Appendix 7 Meeting)

August 15, 1986

John Carr Harold Cleary Matt Golis Chuck Interrante Jim Kilgore Chuck Peterson Teek Verma John Voglewede K. K. (Roger) Wu BMI/ONWI (SRPO Contractor) BMI/ONWI NBS (NRC Contractor) BMI/ONWI NRC/NMSS/DWM NRC/NMSS/DWM NRC/NMSS/DWM DOE/SRPO

SEF 1986

WMEG/JCV/APPENDIX 7 COVER 2

<u>__</u>. ~

- 2 -

Distribution: WM File 202.2 WMEG NMSS REBrowning MJBell JTGreeves TCJohnson MNataraja MTokar Materials Section JOBunting PJustus JJLinehan RLJohnson TVerma MBMcNeil CInterrante, NBS (c/o EAWick)

0FC	:NMSS/WME	G	NMSS/WM	EG	NMSS/DWM	:			::	
NAME	:JCVoglew	vede	TCJohns	on	:TRVerma			•		
DATE	:09/ /	/86	:09/	/86	:09/	/86	:	:		

encl. to 9/2/86 Memo tu RJohnson from Vollewede Appendix 7 5: tc <u>PNH5426</u> UC-70 P-13

PNL-5426

Annual Report – FY 1984

Corrosion and Environmental-Mechanical Characterization of Iron-Base Nuclear Waste Package Structural Barrier Materials

R. E. Westerman J. H. Haberman S. G. Pitman

B. A. Pulsipher L. A. Sigalia

March 1986

Prepared for the Salt Repository Project U.S. Department of Energy under Contract DE-AC06-76RLO 1830

Pacific Northwest Laboratory Operated for the U.S. Department of Energy by Battelle Memorial Institute

C Battelle

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information; apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

PACIFIC NORTHWEST LABORATORY operated by BATTELLE for the UNITED STATES DEPARTMENT OF ENERGY under Contract DE-AC06-76RLO 1830

Printed in the United States of America Available from National Technical Information Service United States Department of Commerce 5285 Port Royal Road Springfield, Virginia 22161

> NTIS Price Codes Microfiche A01

> > Printed Copy

	Price
Pages	Codes
001-025	A02
026-050	A03
051-075	A04
076-100	A05
101-125	A06
126-150	A07
151-175	. A08
176-200	A09
201-225	A010
226-250	A011
251-275	A012
276-300	A013

PNL-5426 UC-70

ANNUAL REPORT--FY 1984

CORROSION AND ENVIRONMENTAL-MECHANICAL CHARACTERIZATION OF IRON-BASE NUCLEAR WASTE PACKAGE STRUCTURAL BARRIER MATERIALS

R. E. Westerman J. H. Haberman S. G. Pitman B. A. Pulsipher L. A. Sigalla

March 1986

Prepared for the Salt Repository Project U.S. Department of Energy under Contract DE-AC06-76RL0 1830

Pacific Northwest Laboratory Richland, Washington 99352

ACKNOWLEDGMENTS

The authors wish to acknowledge the technical assistance of H. E. Kissinger, L. R. Pederson, K. H. Pool, D. M. Squier, and M. R. Telander, PNL; the programmatic assistance offered by D. J. Bradley, PNL, and D. E. Clark and J. S. Perrin, ONWI; the editorial assistance of P. L. Whiting, PNL; and the programmatic support provided by the Office of Nuclear Waste Isolation under the U.S. Department of Energy Contract DE-AC06-76RL0 1830.

ABSTRACT

The disposal of high-level nuclear waste in deep underground repositories may require the development of waste packages that will keep the radioisotopes contained for time periods up to 1000 years. The primary geologic media currently being considered in the United States for repository siting are salt, basalt, tuff, and granite. A number of iron-base materials are being considered for the structrual barrier members of waste packages. Their uniform and nonuniform (pitting and intergranular) corrosion behavior and their resistance to stress-corrosion cracking in aqueous environments relevant to salt media are under study at Pacific Northwest Laboratory (PNL). The purpose of the work is to provide data for a materials degradation model that can ultimately be used to predict the effective lifetime of a waste package overpack in the actual repository environment. This report summarizes the results of the studies conducted at PNL during the FY 1983-FY 1984 time period in support of the Salt Repository Project of the Department of Energy.

The corrosion behavior of the candidate materials was investigated in simulated intrusion brine (essentially NaCl) in flowing autoclave tests at 150°C, and in combinations of intrusion/inclusion (high-Mg) brine environments in moist salt tests, also at 150°C. Studies utilizing a 60 Co irradiation facility were performed to determine the corrosion resistance of the candidate materials to products of brine radiolysis at dose rates of 2 x 10^3 and 1 x 10^5 rad/h and a temperature of 150°C. These irradiation-corrosion tests were "overtests," as the irradiation intensities employed were 10 to 1000 times as high as those expected at the surface of a thick-walled waste package.

Slow-strain-rate (SSR) tests and corrosion fatigue tests conducted in intrusion brine environments at 150° C and, in the case of some SSR tests, with a superimposed radiation field of 3 x 10^5 rad/h, were used to determine the resistance of the candidate alloys to environmentally enhanced crack propagation.

With the exception of the high general corrosion rates found in the tests using moist salt containing high-Mg brines, the ferrous materials exhibited a degree of corrosion resistance that indicates a potentially satisfactory application to waste package structural barrier members in a salt repository environment.

CONTENTS

-

.

ACKNOWLEDGMENTS	iii
ABSTRACT	v
INTRODUCTION	1
OBJECTIVE	3
APPROACH	5
MATERIALS	9
EXPERIMENTAL	13
GENERAL CORROSION TESTINGINTRUSION BRINE	13
GENERAL CORROSION TESTINGMOIST SALT	15
IRRADIATION-CORROSION TESTINGINTRUSION BRINE	15
ENVIRONMENTAL-MECHANICAL TESTINGSLOW-STRAIN-RATE TESTS AND CORROSION FATIGUE TESTS	18
RESULTS AND DISCUSSION	25
GENERAL CORROSIONINTRUSION BRINE	25
GENERAL CORROSIONMOIST SALT TESTS	29
IRRADIATION-CORROSIONINTRUSION BRINE	35
ENVIRONMENTAL-MECHANICAL TESTING	50
Slow-Strain-Rate Tests	50
Corrosion Fatigue Tests	63
CONCLUSIONS	73
REFERENCES	77
APPENDIX ACOMPILATION OF DATA FROM GENERAL CORROSION TESTS	A.1
APPENDIX BCOMPILATION OF DATA FROM MOIST SALT STUDIES	B.1
APPENDIX CCOMPILATION OF DATA FROM IRRADIATION-CORROSION STUDIES	C.1

APPENDIX	DSUMMARY O	IF SL	.OW-STRAIN-RATE	DATA	•••••	D.1
APPENDIX	ECOMPILATI	ON ()	F STATISTICAL	DATA		Ε.1

. .____.

FIGURES

1	Schematic of Typical Flowing Autoclave System Used in General Corrosion Study	14
2	Moist Salt Test Configuration	16
3	Schematic of Irradiation-Corrosion Test Facility	17
4	Slow-Strain-Rate Testing System, Unirradiated	21
5	Slow-Strain-Rate Testing System, Irradiated	22
6	Corrosion Fatigue Test Facility	23
7	Estimated Means of Metal Penetration Rates and 95% Confidence Intervals About the MeansA216 Steel, 150°C, Brine PBB2, Unirradiated	30
8	Corrosion Rates of Ferrous Materials in Dried Synthetic PRB1 Salt Moistened with PRR3 Brine; 1 Month Exposure at 150°C	32
9	Corrosion Rates of Ferrous Materials in Dried Synthetic PBB1 Salt Moistened with PBB3 Brine; 3 Months Exposure at 150°C	32
10	Dependence of Corrosion Rate on Mg Concentration	36
11	Microstructure at Surface of As-Cast A216 Steel Specimen, 3 Months Exposure, 150°C, PBB1/PBB3 Environment, 30% H ₂ 0, 300X	37
12	Penetration Rates of Ferrous Materials Obtained in 150°C PBB2 Irradiated at 1 x 10 ⁵ rad/h Compared with Data from Unirradiated System	38
13	Penetration Rates of Ferrous Materials Obtained in 150°C PBB2 Irradiated at 1 x 10^5 rad/h and 2 x 10^3 rad/h	39
14	Estimated Means of Metal Penetration Rates and 95% Confidence Intervals About the MeansA216 Steel, 150°C, Brine PBB2, Irradiated at 2 x 10 ³ rad/h and 1 x 10 ⁵ rad/h	46
15	Specimen of A27 Steel Exposed to 150°C PBB2 at an Irradiation Intensity of 1 x 10 ⁵ rad/h for 11 Months	47
16	Scanning Electron Micrographs of Surface Film on a Specimen of ASTM A27 Cast Steel After 6 Months Exposure to PBB2 at 150°C and 2 x 10 ³ rad/h	48

17	Pitting Corrosion Specimen	49
18	Artificially Pitted Specimen, Exposed 4 Months to 150°C PBB2 1 x 10 ⁵ rad/h	49
19	SSR Test Results for Wrought 1025 Steel in 150°C PBB2 and Air; Reduction of Area and Elongation Versus Strain Rate	52
20	SSR Test Results for A27 Cast Steel in PBB2 and Air at 150°C; Reduction of Area Versus Strain Rate	53
21	SSR Test Results for A27 Cast Steel in PBB2 at 150°C; Energy Absorbed During Deformation and Fracture Versus Strain Rate	54
22	SSR Test Results for A27 Cast Steel in 150°C PBB2 Sparged with Ar, Ar-20% $\mathrm{O_2}$, and $\mathrm{O_2}$	55
23	SSR Test Results for A27 Cast Steel in 150°C PBB2	56
24	SEM Micrographs of SSR Fracture Surface; Specimen Tested at 1 x 10 ⁻⁴ /s in 150°C Air	58
25	SEM Micrographs of SSR Fracture Surface; Specimen Tested in 150°C Brine Sparged with Argon	59
26	Metallographs and SEM Micrographs of a SSR Specimen	60
27	SSR Test Results for A216 Cast Steel in Air at 150°C; Reduction of Area and Elongation Versus Strain Rate	61
28	SSR Test Results for A216 Cast Steel in 150°C PBB2; Reduction of Area and Elongation Versus Strain Rate	62
29	Corrosion Fatigue Test Results for 1025 Steel in Deionized Water, Air, and PBB2 at 150°C	64
30	Corrosion Fatigue Test Results for A216 Cast Steel in Deionized Water and in Air at 150°C	65
31	Corrosion Fatigue Test Results for A216 Cast Steel in 150°C Deionized Water at 0.1 Hz and 1 Hz	66
32	Corrosion Fatigue Test Results for A216 Cast Steel in PBB2 and in Air at 150°C	67
33a	Low-Magnification Photographs of the Machined Notch and Fatigue Crack of an A216 Cast Steel Corrosion Fatigue Specimen After Some Cleaning in Inhibited Acid Solution	68
33h	Low-Magnification Photographs of the Machined Notch and Precrack After Through Cleaning	69

TABLES

1	Compositions of Metallic Materials	10
2	Brine Compositions	11
3	Materials Exposed in General Corrosion/Intrusion Brine Corrosion Studies	26
4	Comparison of Estimated Material Corrosion Rate Averages for General Corrosion in Anoxic Simulated Intrusion Brine PBB2 at 150°C	27
5	Comparison of Estimated Material Corrosion Rate Averages for General Corrosion in Oxic Simulated Intrusion Brine PBB2 at 150°C	28
6	Corrosion Rates of Reference A216 Grade WCA Steel in Moist Salt Environments 150°C, 1 Month, 20% H ₂ O	34
7	Materials Exposed in Irradiation-Corrosion Studies	38
8	Comparison of Material Corrosion Rate Estimated Means at Various Combinations of Hours and Location in the 150°C, PBB2, 2 x 10 ³ rad/h Test	41
9	Comparison of Material Corrosion Rate Estimated Means at Various Time/Location Combinations in the PBR2, 1 x 10 ⁵ rad/h Test	45
10	Slow-Strain-Rate Test Results and Statistical Analyses	51
11	Results of Slow-Strain-Rate Tests of A216 Steel at 30°C and 90°C and Associated Statistical Analyses	57

-

INTRODUCTION

The Geologic Repository Deployment (GRD) program of the U.S. Department of Energy (DOE) is responsible for developing technology and providing facilities for the safe, environmentally acceptable, permanent disposal of high-level nuclear waste. The current program focuses on waste disposal in repositories located in deep geologic formations of salt, tuff, basalt, and granite. In each repository, the waste form, currently considered to be spent fuel, would be enclosed in a waste package incorporating a primary corrosion barrier, or overpack (a) The overpack is expected to perform the principal waste containment function of the waste package and, as such, it could be required to remain intact for time periods up to 1000 years.^(b) The overpack must therefore be designed to resist a number of corrosion-associated failure modes that could compromise its effectiveness in its containment role. Some of the potentially important degradation phenomena are uniform corrosion; nonuniform corrosion (pitting, crevice corrosion); irradiation-enhanced corrosion; stress-corrosion cracking (SCC); hydrogen embrittlement; aging reactions; bacterial corrosion; and mechanical overload.

The Waste Package Program (WPP) sponsored by the Salt Repository Project (SRP) of the DOE at Pacific Northwest Laboratory $(PNL)^{(c)}$ has as one of its objectives the corrosion/environmental-mechanical characterization of candidate iron-base waste package overpack materials in salt-repository-relevant environments. This report summarizes the results of the work performed toward these objectives under the auspices of the WPP in the time period FY 1983 through FY 1984. The testing addressed the characterization and quantification of metal degradation that would occur under two conditions of brine formation and subsequent contact of the brine with the waste package: the intrusion brine scenario and the inclusion brine scenario. In the former, brine is assumed to

⁽a) The outer metallic engineered barrier of the waste package.

⁽b) "Containment of the high-level waste within the waste package must be substantially complete during the period when radiation and thermal conditions within the waste package are dominated by fission products decay. Such time period would be between 300 and 1000 years..." (Nuclear Regulatory Commission Regulation 10 CFR Part 60).

⁽c) Operated for the DOE by Battelle Memorial Institute.

form through dissolution of salt resulting from the intrusion of large amounts of water into the repository horizon from some outside source; for example, an aquifer lying just above the repository horizon. Intrusion brines reflect the gross salt composition of the repository horizon, and so are primarily halitesaturated sodium chloride brines.

If the waste package is to be contacted by brine at all, however, it is considered much more likely that the source of the brine will be brine-filled inclusions present in the salt that migrate to the waste package under the influence of the thermal gradient existing in the vicinity of the waste package. These "inclusion brines" can effectively concentrate certain more-soluble species present in the normal repository horizon, such as magnesium, and therefore exhibit compositions very different from those of intrusion brines.

Both the intrusion brine and inclusion brine scenarios were taken into account in developing the testing approach utilized in the present study. It is obviously impossible to simulate anticipated repository conditions in the laboratory when the repository conditions are not known exactly. For this reason, recourse is being made to testing over a wide range of each test variable, in order to develop a model to be used to predict material behavior when the repository conditions can be better defined.

The iron-base materials investigated consisted of two cast mild steels (a cast mild steel corresponding to ASTM Casting Specification A216 Grade WCA is currently considered to be the reference overpack material); a low-alloy Cr-Mo steel, nominally 2-1/2% Cr, 1% Mo; a wrought mild steel; a ductile (nodular) cast iron; and a high-purity iron. Testing was not extended to weldments of the ferrous materials. Statistical treatments of the data are included to provide insights into data trends, comparison of materials performance, and data variability; and a compilation of all of the relevant data obtained under the Structural Barrier Task of the WPP in the time period FY 1983 through FY 1984 can be found in the appendices to the report.

OBJECTIVE

The ultimate objective of the work presented here was to provide initial data for a material degradation model that can ultimately be used to predict, with the appropriate degree of confidence, the effective lifetime of a given waste package overpack in the actual repository environment. The reported work constitutes only a part of the data required for such a model, however, because the ranges of important test parameters (e.g., temperature, radiation intensity, flow rate, material processing parameters, and composition of the test environment) have been too narrow to permit specific, quantitative assessment of even individually operative causalities. (Tests planned for FY 1985 and beyond are directed toward providing data for development of the required predictive model.)

The specific experimental objectives of the reported work consisted of quantifying, to the degree possible, the susceptibilities of a number of ironbase alloys to uniform corrosion, nonuniform corrosion (e.g., pitting) and stress-corrosion cracking. These are the degradation modes judged potentially most deleterious to an iron-base alloy exposed to a salt repository environment.

APPROACH

The experimental approach used in the present study to determine the susceptibility of candidate iron-base alloys to uniform corrosion, nonuniform corrosion, and stress-corrosion cracking involved first estimating the environmental conditions that would exist in an actual repository constructed in a salt medium, then simulating these environmental conditions in laboratory test systems. In general, tests were done under what were considered to be conservative conditions, i.e., in an "overtest" mode, when anticipated repository conditions (for example, brine flow rates) were considered to be difficult to either predict or simulate. Overtests were also used when the intent was to enhance the effect of a test variable on corrosion, in order to demonstrate whether or not it was a significant corrosion-inducing factor (for example, irradiation intensity).

A possible exception to the generality of conservative testing is the temperature factor, which was held at 150°C throughout essentially all of the test program. This was done in order to explore the numerous other factors involved in materials degradation.

The uniform and nonuniform corrosion tests were performed in both refreshed autoclaves, where testing was intended to simulate intrusion-brine conditions, and sealed gas-tight cans, where testing was primarily to simulate inclusion-brine scenarios.

Stress-corrosion cracking was addressed by means of slow-strain-rate tests and corrosion fatigue tests. The slow-strain-rate tests were done in both static and refreshed autoclaves. The corrosion fatigue studies were done under refreshed autoclave conditions only.

The specific type of laboratory test used to investigate the susceptibility of the candidate barrier materials to the three principal corrosion modes addressed in the present study, with the test variable controlled in each test, is presented in the following table.

Degradation Mode	Controlled Test Variable	Range		
Uniform and non-	Temperature	150°C		
	Brine composition	Pure NaCl to simulated high-Mg "inclusion" brine		
	Dissolved oxygen	0 to 1.5 wppm		
	Radiation intensity	0, 2 x 10^3 , and 1 x 10^5 rad/h		
	Pressure(b)	12 MPa (1500 psig)		
	Flow rate	0 and 35 mL/h		
Stress-corrosion cracking				
• Slow-strain-rate	Temperature	150°C		
tests	Environments	Simulated intrusion brine; air deionized water		
	Radiation intensity	0 and 3 x 10 ⁵ rad/h		
	Pressure	Ambient to 1.7 MPa gage (250 psig)		
	Brine flow rate	0 to 35 mL/h		
	Strain rate	2×10^{-7} to 1×10^{-4} /s		
• Corrosion fatigue	Temperature	150°C		
tests	Environment Simulated in deionized wa			
	Radiation intensity	0		
	Pressure	0 to 2.1 MPa gage (200 psig)		

⁽a) All tests for uniform corrosion were considered to be tests for some

<sup>aspect(s) (e.g., pitting) of nonuniform corrosion as well.
(b) Controlled only in autoclave tests. Pressure was not controlled in tests</sup> utilizing seal-welded, gas-tight cans ("moist salt" tests).

Degradation Mode	Controlled Test Variable	Range
 Corrosion fatigue tests (cont'd) 	e Brine flow rate	35 mL/h
	Cyclic frequency	0.1 to 10 Hz
	R value <u>(min. load)</u> (max. load)	0.1
	∆K (stress intensity)	20 to 57 MPa \sqrt{m}

MATERIALS

Prior investigations (1,2) using intrusion brine test environments, a controlled dissolved-oxygen ingress, and irradiation-intensity levels near those expected under actual repository conditions revealed the possibility of using relatively inexpensive and abundant iron-base alloys in salt brines. Accordingly, recent testing has continued to emphasize ferrous materials. The six materials investigated, and their chemical compositions, are listed in Table 1.

The ASTM A216 Grade WCA material is currently considered to be the reference waste package overpack material by the Salt Repository Project (SRP). The ASTM specification technically calls for this material to be supplied in the annealed, normalized, or normalized and tempered condition. However, in the present study, the as-cast material was emphasized, as it is not certain that the improvement in mechanical properties brought about by heat treatment would be required in the final overpack design.

As in the case of the ASTM A216 material, the other cast ferrous materials were generally tested in the as-cast condition. All cast-steel specimens were obtained from castings weighing ~ 160 kg (352 lb), with a minimum dimension of ~ 120 mm (4.7 in.). All of the test specimens used in the present study were obtained from one casting, hence one heat of steel.

Before corrosion testing, the cast steel specimens were ground with an aluminum oxide wheel to produce a surface finish of 32 to 63 μ m rms. The same wheel produced a surface finish of 8 μ m rms on the ductile cast iron specimens. The wrought steel sheet was surface ground with a 50-grit disc. The high-purity iron specimens were cut from a forging, and tested in the surface-ground condition. The surface pretreatments are of course arbitrary, without some knowledge of how the actual overpack will be treated. The main concern is to provide a surface on each specimen that is easy to duplicate, while not deviating too far from anticipated waste package surface treatments consistent with a casting operation followed by some form of surface cleanup. The most likely cleanup is considered to be some mechanical operation, such as grinding, machining, or grit-blasting.

TABLE 1. Compositions of Metallic Materials

	Element, wt%								
Material	C	Mn	Si	P	Ś	Mo	Cr	Ni	Fe
Cast mild steel,(a) ASTM A216 Grade WCA	0.225	0.71	0.45	0.018	0.018	0.05	0.41	0.23	bal.
Cast mild steel, ^(b) ASTM A27, Grade 60-30	0.245	0.69	0.59	0.016	0.018	0.04	0.43	0.20	bal.
Wrought steel sheet, AISI 1025	0.07(c)	0.40	0.03	0.015	0.021				bal.
2-1/2% Cr, 1% Mo cast steel	0.116	0.57	0.57	0.020	0.004	1.02	2.46		bal.
Ductile cast iron, ASTM A536-77, Grade 60-40-18	3.53	0.31	2.51	0.05	0.004				bal.
High-purity iron	0.018	0.05	0.01	0.002	0.003	0.01	0.01	0.01	99.87
		.	3	1					L.

 (a) Used in the as-cast condition; in the normalized condition (930°C, 1 h, air cool); and in the "homogenized" condition (930°C, 24 h, air cool).

(b) Used in the as-cast condition and in the normalized condition (927°C,

5 h, air cool).

(c) Spectrographic analysis. Low apparent carbon due to surface decarburization.

Three brine compositions, designated Permian Basin Brine No. 1 (PBB1), No. 2 (PBB2), and No. 3 (PBB3), have been used throughout the studies. The recipe for PBB1, a simulated intrusion brine, was derived from dissolution of salt cores from a Permian Basin salt horizon considered to be representative of a bedded-salt-site repository.^(a) The recipe for PBB2 was obtained by holding PBB1 at 150°C in an autoclave for several days, then performing an analysis of the supernatant fluid existing with the precipitated solids. PBB2 is expected

⁽a) Cores were selected from the Texas Bureau of Economic Geology Core Library on May 25, 1982. The cores were derived from the G. Friemel Hole No. 1 at depths in the range of 2440.2 to 2575.5 ft (Cycle 4). Six-in.-long cores were obtained at 15-ft intervals. One-eighth of each core was blended for experimental use, and the remainder was archived.

to be representative of the brine composition that results when water intrudes into the repository horizon, dissolves salt to saturation, then attains a temperature of 150°C as it approaches the surface of the overpack. Additionally, use of PBB2 mitigated precipitation of solids (primarily carbonates) due to inverse solubility effects in the inlet lines of the refreshed autoclave systems. As mentioned in the introduction of this report, the more likely overpack corrosion situation will be caused by migration of brine inclusions up the thermal gradient toward the waste package. Such brines are expected to contain higher levels of magnesium and calcium than the intrusion brines previously described. PBB3 is a simulated inclusion brine being used as an approximation to the inclusion brine expected to exist in a Permian Basin salt horizon. The compositions of the brines are detailed in Table 2. All salts and brines used in the studies were synthetic. The most significant difference among the three brine formulations, from the standpoint of corrosion of ferrous materials, is the high concentration of magnesium in PBB3.

In addition, a moist salt test was conducted that utilized an environment consisting of high-purity (reagent grade) NaCl and deionized water.

	Conc	entration, m	g/L
Ion	PBB1	PBB2	PBB3
Na ⁺	123,000	123,000	23,200
Ca ²⁺	1,560	1,110	14,700
Mg ²⁺	134	122	53,200
к+	39	39	10,500
Sr ²⁺	35	35	
Zn ²⁺	7.8	7.9	8
C1-	191,000	191,000	210,000
s04 ²⁻	3,200	1,910	160
HCO3	30	23	
Br -	32	24	2,400
F -	1.1	1.0	
I 2			
B02 ³⁻			~ ~ ~

TABLE 2. Brine Compositions

EXPERIMENTAL

The investigation of uniform and nonuniform corrosion of the candidate ferrous materials is addressed under the headings of General Corrosion Testing and Irradiation-Corrosion Testing in the remainder of the report, and the investigation of stress-corrosion cracking susceptibility is described in the section entitled Environmental-Mechanical Testing.

GENERAL CORROSION TESTING--INTRUSION BRINE

General corrosion tests performed under unirradiated conditions are used first as an initial material selection/rejection tool, and secondly, if radiation effects are not pronounced, as a preliminary basis for the prediction of longevity. In addition to providing data on uniform corrosion, the tests are expected to provide information on the susceptibility of materials to pitting and intergranular corrosion.

A schematic of a typical flowing autoclave corrosion test facility is shown in Figure 1. A reservoir contained simulated intrusion brine, made up to a specific composition. A positive displacement pump delivered brine to the autoclave at \sim 35 mL/h, the lowest flow rate easy to maintain with existing highpressure pumps. The autoclaves were operated at a pressure higher than the vapor pressure of water at the given test temperature, e.g., a total pressure of 7 MPa (1000 psi) for a test temperature of 150°C.

The dissolved oxygen concentration in the feed water was controlled by an argon gas purge containing either 0% or 20% oxygen. The former yielded a feed water termed "anoxic," which typically contained ~50 ppb oxygen. The latter yielded a brine feed containing ~1.5 ppm oxygen. $^{(a)}$ This solution was termed "oxic" in the present study, though the amount of dissolved oxygen actually being delivered to the test system was small in terms of observed corrosion, and, in fact, was routinely found to be much less than the oxygen stoichiometrically present in the corrosion product films on the specimens in the

⁽a) Oxygen concentrations were determined colorimetrically by means of reagent-filled ampoules produced by CHEMetrics, Inc., Calverton, Virginia.

FIGURE 1. Schematic of Typical Flowing Autoclave System Used in General Corrosion Study

autoclave. This finding indicates that the major source of oxygen in the corrosion product films is the reaction of iron with water in the test environment.

Once the desired test duration had been achieved, the specimens were removed and visually examined. Selected specimens of the iron-base alloys, generally duplicates, were stripped of their corrosion product films by a combination of gentle abrasion and immersion in formaldehyde-inhibited HCl. The specimens were then weighed, and the weight loss exhibited was converted to a metal penetration.^(b) The data in this report were generally derived from specimens that had been stripped only once, i.e., for one reported weight change (or metal penetration). On the few occasions where stripped specimens were reinserted in the test environment, the subsequent corrosion rates were found to be consistent with specimens used only once. This suggests that the method of surface preparation does not strongly influence the corrosion kinetics subsequently observed in these metal/environment systems.

GENERAL CORROSION TESTING--MOIST SALT

In the moist salt test, specimens of the ferrous materials were embedded in simulated, predried (90°C, 18 h) PBB1 or reagent-grade NaCl salt in welded Inconel 600 cans. Sufficient liquid, either in the form of PBB1, PBB3, or saturated NaCl brine, was added through the liquid inlet tube to bring the total moist salt environment to a predetermined level of H_20 . A total of 12 specimens, with 4 specimens in each of 3 tiers, was exposed in each can. Each specimen was square, 15.2 mm (0.60 in.) on a side. After the brine addition was made, the inlet tube was welded shut and the can leak-checked. The welding of the lid and inlet tube was done in an inert-atmosphere glove box. The atmosphere in each can before testing consisted of a mixture of Ar, He, and water vapor. The general test arrangement is shown in Figure 2.

The cans were held at 150° C in an oven during the exposure period. At the prescribed time, selected cans were removed from the oven, cooled, vented to relieve the pressure (and determine the volume) of corrosion-product H₂, and cut open on a lathe. The specimens were removed from the salt mass, examined, washed, stripped of any oxide film using formaldehyde-inhibited HCl, and re-examined for signs of nonuniform attack. Corrosion rates were then determined by weight loss determination.

IRRADIATION-CORROSION TESTING--INTRUSION BRINE

Irradiation-corrosion tests have the same objectives as the unirradiated general corrosion tests, i.e., to characterize candidate waste package materials

⁽b) A typical specimen of reference steel will lose only about 2% of its weight to corrosion during a six-month test under the test conditions described, necessitating a careful approach to all specimen measurement, preparation, and weighing.

FIGURE 2. Moist Salt Test Configuration (not to scale)

for initial material selection/rejection and finally as a basis for longevity prediction. Irradiation-corrosion investigations are necessary because, unless special precautions are taken, the surface of the outermost structural barrier will be exposed at some time to brine modified by gamma irradiation emanating from the waste form. Predicting the effects of radiolysis on metal corrosion rates is difficult <u>a priori</u>. For example, in pure water, radiolysis produces strong oxidizing agents such as peroxides, which can increase the corrosion rate of metals by facilitating the cathodic process (i.e., by acting as cathodic depolarizers). This process could enhance the corrosion rates of iron-based alloys, for example. On the other hand, peroxides can, under other circumstances, lead to anodic passivation, which could decrease the corrosion rate relative to the unirradiated environment. Such uncertainties make experimental determination of irradiation-corrosion essential. As in the general corrosion tests, it was anticipated that a tendency of a material to exhibit nonuniform attack, such as pitting, might be evidenced in the course of a test of reasonable duration; and examining specimens for such phenomena constituted a routine part of the post-test specimen examination.

In order to study potential irradiation effects on the corrosion of candidate structural barrier materials in brine, an existing 60 Co irradiation facility (administered by Westinghouse Hanford Company) was modified to accept three high-pressure, high-temperature flowing autoclaves. Figure 3 is a schematic of the facility. The electrically heated autoclaves lie within dry access tubes in the water pool. Each autoclave has an independent water inlet, sampling, and effluent system. The system is capable of exposing specimens to flowing simulated ground-water environments at a maximum temperature of 250°C and a maximum 60 Co gamma radiation dose rate to the brine test environment of ~1 x 10^6 rad/h. In the tests described in this report, the temperature was maintained at 150°C, and the environment used was anoxic PBB2. Irradiation intensities of 1 x 10^5 rad/h and 2 x 10^3 rad/h were imposed on the tests. Both radiation levels are considered to be overtests, in that the expected irradiation intensity at the surface of a waste package is expected to be much less

FIGURE 3. Schematic of Irradiation-Corrosion Test Facility

than 2 x 10^3 rad/h.⁽³⁾ The primary reason for the tests was to determine whether a corrosion-enhancement effect existed, and what degree of importance should be ascribed to it if it did. As in the unirradiated test procedure described earlier, the usual autoclave flow rate (refreshment rate) was set at 35 mL/h, a flow rate easy to maintain with existing high-pressure pumps. In these tests, the system pressure was maintained at ~3 MPa (400 psi). Post-test specimen examination procedures were the same as those used in the nonirradiated general corrosion studies.

ENVIRONMENTAL-MECHANICAL TESTING--SLOW-STRAIN-RATE TESTS AND CORROSION FATIGUE TESTS

Stress-corrosion cracking is a form of degradation in which residual or applied tensile stresses, in conjunction with a corrosive environment, assist in the initiation of cracks and their propagation through the structure. It is an extremely important mode of failure, as cracking can occur in ordinarily corrosion-resistant materials in a very short time under the proper circumstances of tensile stress, temperature, environmental chemistry, and surface flaws, which provide the appropriate stress state and local chemical environment to promote cracking. Because all engineered structures have flaws (flaws associated with weldments are a good example), and because all nondestructive testing techniques have some limit on their abilities to detect flaws, it is essential to ensure that the candidate overpack material is not SCC-susceptible under the combination of material, mechanical stress, environment, temperature, and chemistry present in the repository system.

It is clear that any conservative testing program for SCC in overpack materials must eliminate the initiation time for SCC and measure the resistance of the materials to environmentally enhanced crack propagation alone. The approach taken to date has emphasized two test methods: the slow-strain-rate (SSR) test and the corrosion fatigue test. Both methods use active straining of the specimen surface to eliminate the initiation time for SCC, and are considered conservative methods for determining susceptibility to SCC.

The SSR test, in which a specimen is loaded in tension and strained to failure at low displacement rates, has been found to be a severe test for

SCC.⁽⁴⁾ The straining of any material in tension increases the surface area so that unoxidized material is continuously exposed; at the same time, deformation mechanisms take place in the material. Slip planes emerging at the surface provide sites for environment-metal interaction. At high strain rates, the failure occurs so quickly that reactions between the environment and the metal are limited; at sufficiently low strain rates, the metal typically repassivates as the oxide film is broken and damage from the environment is again limited. At intermediate loading rates, interaction between the environment and the metal occurs as the film is broken and SCC occurs.⁽⁴⁾ Susceptibility to SCC is usually expressed as loss of ductility at a particular strain rate. The SSR test is an accelerated test relative to statically loaded tests, but it is qualitative in nature. That is, data from these tests can show susceptibility to a certain environment, but the data may not be useful in a quantitative sense to a designer. One factor that is missing in tests using ordinary tension specimens is the presence of a crack. This factor may be allowed for by using precracked specimens of suitably thick material or by using corrosion fatigue tests.

The corrosion fatigue test is a powerful tool for evaluating the susceptibility of metals to SCC. It is primarily used to determine whether existing flaws will propagate under the stresses and environmental conditions that are present. The test provides a combination of three factors that cannot be duplicated in any other available test method: a quantified triaxial stress state, cyclic loading, and a localized crevice chemistry. The quantitative stress intensity factor determination that accompanies the test method is useful in determining flaw lengths when the design stresses are known and in determining the likely rates of crack propagation when allowable flaw lengths and design stresses are known. Another potential use of corrosion fatigue tests is to determine a "threshold" stress intensity for a metal/environment system, i.e., a stress intensity below which existing cracks will not propagate. Although there is some controversy concerning the use and existence of such thresholds, this approach could prove to be extremely useful in designing overpacks to preclude crack growth if it could be shown that such a threshold exists in the brine systems under study. Briefly, because the stress intensity is a function of stress and flow size and shape, it is possible to define the flow size/shape compatible with a given level of stress, e.g., yield, if the

permissible "threshold" stress intensity is known. With this knowledge, a designer can apply nondestructive testing techniques that will locate all defects that could give rise to eventual cracking failure.

The cyclic loading causes the protective film on the specimen surface to rupture, exposing unprotected material to the environment. Cyclic loading is not anticipated in repositories; however, there are many possible mechanisms for removal of the protective film or destruction of its protective nature. For example, slowly increasing geologic or pressure stresses could rupture the corrosion product film the same way cyclic stresses break the film during corrosion fatigue tests. Similarly, long-term chemical effects may destroy the protective nature of the film, in effect exposing unprotected metal to the environment. Such long-term chemical effects could include migration of brine containing corrosive elements, such as magnesium, to the area around the waste package. These chemical changes may have profound effects, as has been demonstrated by the moist salt corrosion tests.

It is important that the cracking takes place under conditions of localized crevice chemistry, because the environmental conditions in a crevice can differ vastly from the general environment surrounding the crevice, or the general environment on the surface of a smooth specimen, such as a U-bend specimen. These environmental conditions can be expected to occur whenever oxygen is depleted locally--in flaws or fabrication defects that are exposed in the environment, in cracks that are present due to environmentally assisted crack-ing, and in areas where the overpack is in contact with salt or other structural components.

A diagram of an unirradiated SSR test facility is shown in Figure 4. An SSR test device specially designed for use in an irradiated environment is shown in Figure 5. The long motor drive/pull rod assembly permits placement of the test autoclave in the bottom of an access tube of the irradiation facility (Figure 3).

A corrosion fatigue facility is shown in Figure 6. Only tests in unirradiated environments have been performed in the corrosion fatigue systems.

FIGURE 4. Slow-Strain-Rate Testing System, Unirradiated

For additional information on the use and applicability of SSR and corrosion fatigue tests, the reader is referred to the work of Payer et al, $^{(5)}$ Parkins, $^{(6)}$ Wei and Shim, $^{(7)}$ and Bamford. $^{(8)}$

Corrosion Fatigue Test Facility

RESULTS AND DISCUSSION

A summary of all of the relevant corrosion and environmental-mechanical property data obtained under the Structural Barrier Task of the WPP and relating to brine-environment investigations over the fiscal years 1983-1984 is contained in this section. The raw data are summarized in Appendices A through D. Statistical treatments of the data are included where such insights prove helpful to data interpretation or to a determination of statistical significance; a compilation of the statistical summaries of the data is presented in Appendix E. The test results and discussions thereof are presented in the following order:

- general corrosion--intrusion brine
- general corrosion--moist salt tests
- irradiation corrosion--intrusion brine
- environmental-mechanical properties
 - slow-strain-rate tests
 - corrosion fatigue tests.

GENERAL CORROSION--INTRUSION BRINE

The general corrosion studies have been performed using flowing oxic $(\sim 1.5 \text{ ppm } 0_2)$ and anoxic $(\sim 50 \text{ ppb } 0_2)$ PBB2 feed brines at 150° C as the test media. The data obtained in these studies, expressed as linear metal corrosion rates, are tabulated in Appendix A. The maximum test duration attained was 21 months. The longest test duration attained for A216 steel was 8 months, as this material entered the test program later than any of the other materials. The materials exposed in these tests, and their maximum test duration, are presented in Table 3.

In general, the corrosion attack was found to be reasonably uniform, with little evidence of pitting attack; that is, there was no evidence of nonuniform attack progressing into the metal more than a tenth of a millimeter or so beyond the surface of the specimen. Pitting, or other nonuniform attack, obviously becomes a problem (relative to uniform attack) only when it proceeds

Tost Type	Material	Maximum Exposure Time mo	Total Number ^(a)
Anoxic		8	15
		21	13
	AZ/ Cast steel	21	11
	A27 cast steel, normalized	17	10
	1025 wrought steel	20	11
	Ductile cast iron	21	7
	2-1/2% Cr, 1% Mo steel	21	8
	High-purity iron	17	6
Oxic	A216 steel	7	13
	A27 cast steel	21	10
	A27 cast steel, normalized	16	10
	1025 wrought steel	20	9
	Ductile cast iron	21	10
	2-1/2% Cr, 1% Mo steel	21	10
	High-purity iron	16	5

TABLE 3. Materials Exposed in General Corrosion/Intrusion Brine Corrosion Studies

(a) Specimens yielding useful metal penetration data. Additional specimens, designated NA in the corrosion rate data columns of appendices A and B, were used for surface analysis investigations.

into the metal at a rate faster than uniform attack, and when such a rate is maintained for long time periods. This has not been observed in the present tests. The corrosion product film was always found to be magnetite (Fe_3O_4) by x-ray diffraction analysis. Anhydrite ($CaSO_4$) was frequently deposited on the specimen surfaces. The effect of this deposit on corrosion rates was not determined.

The corrosion data of Appendix A were statistically analyzed in order to test hypotheses concerning material differences, to examine trends in the data with respect to other variables, and to quantify random variabilities. In all
such statistical analyses presented in this report, significant differences are interpreted as statistically significantly different with 95% confidence, unless otherwise noted.

An analysis of covariance was performed on the anoxic test data using $\log_{10}(hours)$ as the covariate. The analysis revealed significant differences among the corrosion rates of different materials. The estimated average for each material is reported in Table 4. The A216 material has a significantly higher corrosion rate than all other materials (with 95% confidence). The high-purity iron corrosion rate is significantly higher than those of the A27 cast steel or 2-1/2% Cr, 1% Mo steel. The rates for the other materials are only significantly different from the A216 rate.

There was a significant log-linear trend across time; i.e., the corrosion rate decreased linearly with the logarithm of time. This trend was not significantly different for each material. Thus, the estimated rates as reported in Table 4 would change depending upon the number of hours tested but the comparisons would remain the same. The standard deviation, assumed to be the same for

Material	Estimated Rate, µm/yr(a)	Standard Error	<u>Comparison(b)</u>
A216 steel	14.6	0.71	Α
High-purity iron	9.8	1.11	В
1025 wrought steel	8.6	0.83	BC
Normalized cast A27	7.1	0.88	BC
Ductile cast iron	6.9	0.98	BC
A27 cast steel	5.3	0.82	С
2-1/2% Cr, 1% Mo steel	4.8	0.98	C
	$\hat{\sigma} = 2.73$		

TABLE 4. Comparison of Estimated Material Corrosion Rate Averages for General Corrosion in Anoxic Simulated Intrusion Brine PBB2 at 150°C

(a) Rates are estimated at the average time period (4480 hours).

⁽b) Materials that share the same letter (A, B, or C) are not significantly different with respect to corrosion rate at the 95% confidence level.

each material, is $2.73 \ \mu$ m/yr. The standard deviation reflects any unexplained variability, including specimen replication variability and deviations from the general log-linear time trend. The assumptions relating to the statistical analysis are presented in Appendix E.

A statistical analysis similar to that conducted on the anoxic data was performed on the oxic data. The estimated material corrosion rate averages and comparisons are reported in Table 5. The high-purity iron and A216 steel average corrosion rates are significantly higher than all other material rates. There is no significant difference between the A216 and high-purity iron average rates. Corrosion rates on 2-1/2% Cr, 1% Mo steel are significantly lower than all other materials except A27 cast steel.

There was a significant log-linear time trend such that the corrosion rate decreased linearly with an increase in \log_{10} (hours). This trend was not significantly different for each material. Therefore, the estimated rates

TABLE 5.	Comparison of Estimated Material Corrosion Rate
	Averages for General Corrosion in Oxic Simulated Intrusion Brine PBB2 at 150°C

Material	Estimated Rate, μm/yr(a)	Standard <u>Error</u>	Comparison ^(b)
A216 steel	25.2	0.68	А
High-purity iron	24.5	1.06	A
Normalized cast A27	17.1	0.76	В
1025 wrought steel	14.7	0.90	BC
Ductile cast iron	14.5	0.84	BC
A27 cast steel	12.2	0.84	CD
2-1/2% Cr, 1% Mo steel	10.1	0.84	D
	$\hat{\sigma} = 2.36$		

(a) Rates are estimated at the average time period (4100 hours).

(b) Materials that share the same letter (A, B, C, or D) are not significantly different with respect to corrosion rate at the 95% confidence level. reported in Table 5 would change depending upon the number of hours tested but the comparisons would remain the same. The estimated standard deviation of all of the oxic data is 2.36 μ m/yr.

One outlying data value was detected using information from an analysis of the residuals and deleted from all statistical analyses. The deleted sample was P552 of the A216 material, which showed an unusually low corrosion rate. The coating on the sample was very adherent and could not be completely removed. This may have resulted in a misleadingly low rate.

The data of Tables 4 and 5 suggest that, given a repository environment of intrusion brine similar to that used in the present tests, controlled oxygen in the environment, a temperature of 150° C, and no significant effect of irradiation or processing parameters (such as welding), and no (currently unforeseen) initiation of significant nonuniform attack, A216 steel could be used in realistic thicknesses as a waste package overpack material. The average corrosion rates of A216 steel determined in the present tests are plotted with associated 95% confidence intervals in Figure 7. (The data from which these figures were derived are tabulated in Table E.1, Appendix E.) The highest corrosion rates found in this study were in the oxic brine test. The highest point of the upper 95% confidence limit lies at a (linearized) metal penetration rate of 32.3 μ m/yr (1.27 mil/yr).

GENERAL CORROSION--MOIST SALT TESTS

Moist salt tests were performed to simulate the conditions eventually expected in a well sealed repository, i.e., an elevated-temperature waste package moistened by inclusion brine in an environment devoid of air-derived oxygen. The moist salt tests emphasized the A216 Grade WCA reference steel, but in some of the tests 1025 wrought steel and ductile cast iron were included to provide additional levels of comparison with intrusion-brine autoclave studies. In the moist salt tests two synthetic brine formulations were used as a basis for defining the corrosive environment: PBB1, representing an intrusion brine

FIGURE 7. Estimated Means of Metal Penetration Rates and 95% Confidence Intervals About the Means--A216 Steel, 150°C, Brine PBB2, Unirradiated

composition; and PBB3, representing an inclusion brine composition. In one test, reagent-grade NaCl with water formed the test environment.

In the first series of tests, PBB3 in varying amounts was added to canisters containing specimens packed in dried PBB1. The dry PBB1 salt was made by thoroughly blending reagent-grade chemicals and drying the mixture for 18 h at 90°C before use. Sufficient PBB3 was added to the canisters to bring the water concentration of the salt masses to 5, 10, 20, 25, and 30% water. The sealed cans were placed in an oven at 150°C. Canisters were removed after one, two, and three months for specimen examination. (At a water concentration of 5%, the salt did not significantly differ in appearance or consistency from the dried salt; at 10% water some change in consistency was observed; at 20% water the salt was moist and "packable"; at 30% water the presence of a liquid phase was obvious by visual inspection, and the salt mass had a "slushy" consistency.)

The corrosion rates found after a 1-month exposure in canisters containing 20% and 30% water are shown in Figure 8. The corrosion rates found after a 3-month exposure are shown in Figure 9.(a)

The one-canister (30% water), 2-month test was performed primarily to obtain corrosion-product samples from the test specimens for x-ray diffraction and wet chemical analysis.

The corrosion-product hydrogen generated in the cans was routinely collected. An analysis of the gas revealed fairly pure hydrogen (89%), contaminated with N_2 , He, Ar (from the welding glove box), CO_2 , and hydrocarbon gases. Hydrogen pressure in the cans has been estimated to be as high as 20 atm at the end of a 3-month test.

The data that were used to generate the curves of Figures 8 and 9 were simply the averages of the corrosion rates of the four specimens contained in

⁽a) The raw data used as a basis for Figures 8 and 9 are given in Appendices B.1 and B.2; these tests are designated Moist Salt Test No. 2 and Moist Salt Test No. 3.

FIGURE 8. Corrosion Rates of Ferrous Materials in Dried Synthetic PBB1 Salt Moistened with PBB3 Rrine; 1 Month Exposure at 150°C. Range of values for four specimens of each material represented by vertical bar at each data point. Data point is average of specimen values.

FIGURE 9. Corrosion Rates of Ferrous Materials in Dried Synthetic PBB1 Salt Moistened with PBB3 Brine; 3 Months Exposure at 150°C. Range of values for four specimens of each material represented by vertical bar at each data point. Data point is average of specimen values.

each can, with the range of values obtained from the four replicate specimens of each material shown at each point by a vertical bar. The estimated average rate, standard error, and 95% confidence limits on the corrosion rates of A216 steel in the 1-, 2-, and 3-month tests are presented in Table E.2, Appendix E. These data show, with 95% confidence, that under all conditions the A216 steel corrosion rate was significantly greater than those of the other two materials, and that the ductile cast iron rate was significantly higher than that of the 1025 wrought steel. The specimen-to-specimen corrosion rate variability was considerably higher for the A216 steel than for the other materials.

The penetration rates found after the 1- and 3-month exposures agreed well, suggesting constant linear corrosion rates over the test durations of the study. The rates found for penetration of all of the materials were far higher than those found in past autoclave tests, up to 30 times greater in the case of the A216 steel. On removal from the cans, specimens of both the A216 steel and the ductile cast iron were encased in soft layers of bluish-gray material, having a claylike texture, about 2 mm (0.08 in.) thick. After standing in air, the bluish-gray material rapidly showed evidence of the red-brown ferric ion. The wrought steel specimens, on the other hand, showed the magnetite (Fe₃0₄) film characteristic of specimens from the autoclave studies.

Further testing was undertaken to determine the reason for the high corrosion rates of A216 steel observed in the moist salt tests. The moist salt tests differed from autoclave tests in the following ways:

- a solid phase was present
- the tests were static
- the tests were highly anoxic
- the tests contained significant quantities of ${\rm Mg}^{2+}$.

An additional observation was the low corrosion rates of 1025 wrought steel relative to the A216 steel. This finding initiated a question as to the importance of the microstructure, hence heat treatment, of the reference steel material, as the wrought (hot-rolled) material would be expected to be more homogeneous than the as-cast material given its thermal-mechanical history.

It was decided that tests would be initiated that would address primarily the questions of heat treatment and Mg^{2+} concentration.

A series of moist salt tests was therefore initiated in which specimens of as-cast, homogenized, and normalized A216 Grade WCA reference steel were exposed for 1 month at 150°C to three different environments, each with water added to the 20% by weight level by brine addition:

- dried NaCl with NaCl brine addition (0% Mg)
- dried PBB1 with PBB1 brine addition (0.042% Mg)
- dried PBB1 with PBB3 brine addition (1.7% Mg).

The results of these tests are presented in Table 6. The raw data may be found in Appendix B.3.

The effect of heat treatment on the reference steel is shown to be minimal, but the effect of environment is extremely large. The NaCl/NaCl and PBB1/ PBB1 environments yield corrosion rates similar to those found in the autoclave studies. The PBB3 addition results in very high corrosion rates, similar to those found previously (Figures 8 and 9). The statistical treatment of the data shown in Table 6 is presented in Table E.3, Appendix E.

While it is not clear at present why the PBB1/PBB3 environment is so much more aggressive toward the steel than the NaCl/NaCl and PBB1/PBB1 environments, Mg^{2+} is strongly implicated in the formation of the claylike layer found on all specimens that exhibit rapid corrosion; that is, all but the 1025 wrought steel specimens in Figures 8 and 9, and all specimens in the PBB1/PBB3 test reported in Table 6. (All specimens in the two low-Mg²⁺ tests of Table 6 formed thin,

TABLE 6. Corrosion Rates of Reference A216 Grade WCA Steel in Moist Salt Environments 150°C, 1 month, 20% H₂O

	Average Corrosion Rates, ^(a) mm/yr (mil/yr)						
Steel Treatment	NaCl/NaCl	PBB1/PBB1	PBB1/PBB3				
As-cast Homogenized Normalized	0.0046 (0.18) 0.0043 (0.17) 0.0048 (0.19)	0.011 (0.43) 0.010 (0.41) 0.010 (0.40)	0.58 (23) 0.91 (36) 0.76 (30)				

(a) Average of 4 specimens per heat treatment in each environment.

smooth Fe_30_4 corrosion product films.) A specimen of the claylike layer scraped from a specimen from a 30% H₂O, PBB1/PBB3, 2-month exposure test showed a magnesium concentration of 5% to 7%, whereas the bulk salt mass showed a concentration of only 1.5%. A specimen of this claylike layer showed no crystallinity upon being dried and subjected to an XRD analysis. However, a steel specimen taken from the 20% H₂O, PBB1/PBB3 test (Table 6) showed evidence of a complex magnesium-containing ferrous hydroxide on its washed and dried surface, with no evidence of Fe_3O_4 . It appears that Mg^{2+} may concentrate on or near the corroding steel surface, substitute in the ferrous hydroxide layer for Fe^{2+} , and interfere with the normally expected conversion of $Fe(OH)_2$ to magnetite. The $Fe(OH)_2$ layer appears to have little or no ability to protect the metal surface from corrosion.

Further evidence of the importance of Mg^{2+} in the environment is the general observation that corrosion rates increase with Mg^{2+} concentration. This observation is illustrated in Figure 10, which summarizes all of the as-cast A216 steel moist salt corrosion data contained in the present report. Attributing the corrosion observed to be strongly dependent on Mg^{2+} concentration assumes that the water concentration in the system over the range studied (5% to 30%) is not an overriding consideration. This appears to be a reasonable conclusion, as the lowest corrosion rates shown in Figure 10 (the NaCl/NaCl and PBB1/PBB1 tests) were both associated with relatively large amounts of water (20%).

The microstructure at the surface of a severely corroded specimen of as-cast A216 steel after 3 months exposure to a PBB1/PBB3 environment at 150°C is shown in Figure 11. The selective attack of the alpha phase, presumed to be anodic to the pearlite grains, which remain relatively unaffected, is clearly shown in the micrograph.

IRRADIATION-CORROSION--INTRUSION BRINE

All of the irradiation-corrosion studies described in this report are considered accelerated, in the sense that the irradiation intensity levels used in

FIGURE 10. Dependence of Corrosion Rate on Mg Concentration (Mg concentration based on dry weight). Bands associated with data points (specimen groups) represent 95% confidence limits.

the tests were a factor of 10 to 1000 higher than those expected at the surface of a waste package containing spent fuel and having a thick steel overpack, i.e., <100 rad/h maximum.⁽³⁾

The corrosion rates of a variety of candidate ferrous materials were determined in 150°C PBB2 intrusion brine irradiated at both 1 x 10^5 rad/h and 2 x 10^3 rad/h. The brine was argon-sparged to reduce the dissolved 0_2 level to ~50 ppb before it entered the autoclave systems. A summary of the materials exposed in these tests, and the maximum test durations, is presented in Table 7.

The corrosion rates observed at an irradiation intensity of 1×10^5 rad/h are shown in Figure 12, compared with data obtained from the unirradiated system. All of the available data are grouped within the scatter bands shown in

FIGURE 11. Microstructure at Surface of As-Cast A216 Steel Specimen, 3 Months Exposure, 150°C, PBB1/PBB3 Environment, 30% H₂O, 300X

Test Type	Material	Maximum Exposure Time, mo	Total Number of Specimens Tested(a)
1 x 10 ⁵ rad/h	A216 steel	5	14
	A27 steel, normalized	15	7
	A27 steel	18	9
	1025 wrought steel	18	13
	Ductile cast iron	17	9
	2-1/2% Cr, 1% Mo steel	11	10
	High-purity iron	15	8
2 x 10 ³ rad/h	A216 steel	7	14
	A27 steel, normalized	13	9
	1025 wrought steel	13	9
	Ductile cast iron	13	13
	High-purity iron	12	10

TABLE 7. Materials Exposed in Irradiation-Corrosion Studies

(a) Specimens yielding useful metal penetration data. Additional specimens, designated NA in the corrosion rate data columns of Appendix C, were used for surface analysis investigations.

FIGURE 12. Penetration Rates of Ferrous Materials Obtained in 150°C PBB2 Irradiated at 1 x 10^5 rad/h Compared with Data from Unirradiated System

the figure. The irradiated-system corrosion rates are decreasing with time; but at the end of the test (18 months) an acceleration of a factor of \sim 4 is still present. The data obtained under the same test circumstances, but at an irradiation intensity of 2 x 10^3 rad/h, are presented in Figure 13, once again simply grouped within scatter bands. At this lower and more realistic level of irradiation intensity, the corrosion rates reverted to essentially the same level as those observed in the nonirradiated studies. All of the raw data associated with Figures 12 and 13 are presented in Appendix C.

The corrosion data of Appendix C were statistically analyzed in order to test hypotheses concerning the differences in behavior among materials, to examine trends in the data, and to quantify random variabilities. As before, significant differences were interpreted as being significantly different at the 95% confidence level.

FIGURE 13. Penetration Rates of Ferrous Materials Obtained in 150°C PBB2 Irradiated at 1 x 10^5 rad/h and 2 x 10^3 rad/h

The test specimens in the irradiation-corrosion test autoclaves were arranged so that they lay horizontally and varied vertically in position. There appeared to be a location effect on the corrosion rates observed, in both the 2 x 10^3 rad/h test and the 1 x 10^5 rad/h test.

A statistical model^(a) of the following form was used to test for material differences, time effects, and location effects in the 2 x 10^3 rad/h test:

Rate =
$$\mu + M_i + L + H + H^2 + H^3 + L_i + H_i + H_i^2 + \epsilon$$

where μ = overall corrosion rate mean

- M_i = effect of the ith material
- L = overall linear location effect
- H = overall linear time effect in hours
- H^2 = overall quadratic time effect
- L_i = linear location effect for the ith material in addition to the overall location effect indicating a different location slope for each material
- H_1^2 = linear time effect for the ith material in addition to the overall linear time effect indicating a different time slope for each material
- H_i = quadratic time effect for the ith material in addition to the overall quadratic time effect
- H^3 = cubic time effect
 - ε = random error.

Using this model, 97% of the total variability was explained in the 2×10^3 rad/h test. This model is not an attempt to provide a general corrosion model, but is only an approximation to the true model describing these data and is intended to be used only for the present statistical analysis. The underlying true model may be better characterized by some nonlinear mechanistic model. However, because this is an exercise in determining the significance of

 ⁽a) Statistical modeling of effects is a general technique widely used by statisticians to determine which experimental factors significantly affect experimental response variables.

the effects of time, location, and materials and not an exercise in model development, the polynomial approximation was used. These statistical models should not be used to predict data values outside the range of these experimental data. Each of the terms in the above model was statistically significant. This means that the corrosion curves across time and location were different for some of the materials.

Material differences can be examined at various time and location combinations. Table 8 presents the estimated corrosion rate averages and comparisons of the materials for specimens located near the top, center, and bottom of the autoclave for 1300, 4360, and 9000 hours in the autoclave. At 1300 hours, the high-purity iron rate is significantly higher than that for other materials. The ductile cast iron corrosion rate is significantly lower than that of highpurity iron but significantly greater than 1025 wrought steel, A216, and normalized A27. Also, normalized A27 rates appear to be lower than the A216 and 1025 wrought steel rates except near the bottom of the autoclave.

At 4360 hours, the high-purity iron rate is significantly higher than other material rates. There are no significant differences among the rates of the other materials except near the bottom of the autoclave where the A216 steel rate is significantly lower than the normalized A27 rate.

At 9000 hours there are no significant differences among any of the material rates near the center and bottom of the autoclave. This is due to the fact that the corrosion rate for high-purity iron decreased over time at a much greater rate (slope) than for the other materials. The estimated rate for ductile cast iron is significantly higher than those for the high-purity iron and 1025 wrought steel near the top of the autoclave. Averages for A216 steel were not available in the 9000-hour range and estimates are not reported in Table 8. By examining Table 8, it can be seen that the high-purity iron rate is not affected by the location in the autoclave. On the other hand, A216 steel corrosion rates are greatly affected by location differences. It should be noted that the estimated averages at each time/location combination are in fact estimates. The uncertainty about each estimate is related to the number of

				Loc	ation			
Material		Тор			Center		Bottom	
	Hours	Rate ^(b)	Comparison	Rate	Comparison	<u>Rate</u>	Comparison	
High-purity iron	1300	48.4	А	48.4	A	48.4	А	
Ductile cast iron		27.8	B	25.7	В	23.5	В	
1025 wrought steel		17.9	CD	17.3	С	16.7	С	
A216 steel		20.7	С	17.1	С	13.5	С	
Normalized A27 steel		13.1	D	12.4	D	11.8	С	
High-purity iron	4360	23.8	А	23.8	A	23.8	Ą	
Ductile cast iron		16.5	R	14.3	R	12.2	BC	
1025 wrought steel		12.9	R	12.3	B	11.7	BC	
A216 steel		15.6	В	12.0	В	8.4	С	
Normalized A27 steel		16.2	В	15.5	В	14.9	В	
High-purity iron	9000	12.4	В	12.4	A	12.4	A	
Ductile cast iron		21.3	Ą	19.2	A	17.1	A	
1025 wrought steel		15.6	В	14.9	A	14.3	A	
Normalized A27 steel		17.7	AB	17.1	A	16.4	A	

TABLE 8. Comparison^(a) of Material Corrosion Rate Estimated Means at Various Combinations of Hours and Location in the 150°C, PBB2, 2 x 10³ rad/h Test

(a) Materials that share the same letter (A, B, C, or D) within each time/location combination are not significantly different with respect to corrosion rate at the 95% confidence level.

(b) Rates are given in terms of μ m/yr penetration.

actual data values of that material near that particular time/location combination. The estimates provide an understanding of how material comparisons change from time to time and location to location.

The 1 x 10^5 rad/h tests were performed in the same manner as the one irradiated at 2 x 10^3 rad/h, and a similar location effect was observed. The

statistical model was similar, except that allowance was made for the observation that the time effect seemed to be linear across $\log_{10}(\text{hours})$ within the experimental time period. Again, this model is only an approximation to the true model. It may well be that the underlying true model is very similar to the true model for the data irradiated at 2 x 10^3 rad/h. The model^(a) used was

Rate = μ + M_i + L + H' + L_i + H'_i + ϵ

where μ = overall corrosion rate mean

 M_i = effect of the ith material

- L = overall linear location effect or slope
- H' = overall log-linear time effect or slope
- L_i = linear location effect for the ith material in addition to the overall location effect indicating a different location slope for each material
- H_i = log-linear time effect for the ith material in addition to the overall time effect indicating a different time slope for each material
 - ε = random error.

Using this model, 90% of the total variability of corrosion rates was explained. All effects represented by each of the terms in the above model were statistically significant. Thus, the corrosion curves across time and location are different for some of the materials. Material differences can be examined at various time and location combinations (Table 9).

Generally speaking, corrosion rates near the top of the autoclave were greater than rates near the bottom, as in the 2×10^3 rad/h test. The high-purity iron rates decreased more rapidly over time than the rates of the other materials. For shorter time periods, high-purity iron rates are higher than rates of other materials, but for longer time periods the high-purity iron

⁽a) Statistical modeling of effects is a general technique widely used by statisticians to determine which experimental factors significantly affect experimental response variables.⁽⁹⁾

rates are either not statistically different or lower than other material rates. The 2-1/2% Cr, 1% Mo steel was usually lowest except near the bottom of the autoclave at longer time periods.

The reason for the effect of sample location on corrosion rate in the irradiated autoclave tests is not known. Because the specimens near the top of the autoclave corroded, in general, at the highest rate, one might postulate that products of radiolysis have an effect on the corrosion rate, and that they are either swept away from the bottom of the autoclave by the ingress of fresh brine, or that they concentrate near the top of the autoclave because of gravitational segregation.

Two normalized cast A27 steel values were deleted from the statistical analyses. The deleted samples were P149 and P156. These two samples were replicate values run under the same test conditions. The difference between the two values was extremely large, significantly larger than the differences between other replicate values. Although the P156 corrosion rate is comparable to other rates from that material, the model that fit all other materials resulted in higher corrosion rates for shorter time periods, which suggests that the P156 rate should be much higher. The P149 specimen indeed resulted in a higher corrosion rate but it was much higher than would be expected. Rather than bias the results by eliminating only one of the two values or overestimating the variability by including both values, both were deleted.

The corrosion rates of A216 steel determined in the present irradiationcorrosion tests are plotted with the associated 95% confidence intervals in Figure 14. Comparison of the data of Figure 14 with those of Figure 7 shows essentially no difference between the rates found in unirradiated anoxic PBB2 and anoxic PBB2 irradiated at 2 x 10^3 rad/h. The statistical data on which Figure 14 is based are presented in Table E.4, Appendix E.

As in the case of unirradiated test coupons exposed to 150° C brine, the specimens exposed to irradiated brine formed a corrosion product layer consisting primarily of Fe₃O₄. The film is not tenacious; spallation is evident after exposures of 3 months in any 150°C brine environment. A specimen of A27 cast

				Loc	ation		
		Тор		Ce	nter	Bottom	
Material	Hours	Rate ^(b)	Comparison	Rate	<u>Comparison</u>	Rate	Comparison
Pure iron	2000	185.0	А	148.3	Α	111.6	A
A27 steel		147.7	В	120.4	В	93.0	AB
Ductile cast steel		141.7	В	118.9	AB	96.1	AB
A216 steel		141.5	В	108.2,	В	74.9/	В
Normalized A27 steel		140.7 ^(c)	ABC	114.8 ^(c)	ABC	89.2 ^(c)	AB
1025 wrought steel		131.5	В	109.5	В	87.4	AB
2-1/2% Cr, 1% Mo		91.5	С	79.8	С	68.0	В
Pure iron	5000	137.1	А	100.4	AB	63.7	AB
A27 steel		132.5	AB	105.1	AB	77.7	AB
Ductile cast iron		128.5	AB	105.7	A	82.9	A
A216 steel		120.1	AB	86.8	BC	53.4	В
Normalized A27 steel		120.3	AB	94.6	ABC	69.0	AB
1025 wrought steel		114.1	В	92.1	AB	70.0	AB
2-1/2% Cr, 1% Mo		80.7	С	68.9	С	57.2	AB
Pure iron	10000	101.2	AB	64.5	в	27.8	С
A27 steel		121.0	А	93.7	А	66.3	ÂB
Ductile cast iron		118.7	А	95.8,	А	73.0,	А
A216 steel		104.0 ^(c)	AB	70.7 ^(c)	AB	37.4 ^(C)	BC
Normalized A27 steel		105.2	AB	79.5	AB	53.9	ABC
1025 wrought steel		101.1	AB	79.0	AB	57.0	ABC
2-1/2% Cr, 1% Mo		72.5	В	60.8	В	49.0	ABC

TABLE 9. Comparison^(a) of Material Corrosion Rate Estimated Means at Various Time/Location Combinations in the PBB2, 1×10^5 rad/h Test

(a) Materials that share the same letter (A, B, or C) within each time/location combination are not significantly different with respect to corrosion rate at the 95% confidence level.

(b) Rates are given in terms of μ m/yr penetration.

(c) These averages are purely estimates. No data were available near this time period. Extrapolation of results to a time region unrepresented by data may produce erroneous results.

FIGURE 14. Estimated Means of Metal Penetration Rates and 95% Confidence Intervals About the Means--A216 Steel, 150° C, Brine PBB2, Irradiated at 2 x 10^{3} rad/h and 1 x 10^{5} rad/h

steel, removed from the autoclave after 11 months exposure to 150° C PBB2 at 1×10^5 rad/h is shown in Figure 15. This specimen exhibited a typical tendency, shown by specimens from both irradiated and nonirradiated corrosion tests, to "shed" its oxide film upon removal from test. The surfaces of the steel corrosion specimens seldom showed signs of significant nonuniform attack in these studies, in spite of the unprepossessing appearance of the specimens before stripping. And although the oxide is not strongly adherent, it obviously offers a certain amount of corrosion protection, as the corrosion rates observed generally decrease somewhat with time. A 45° taper-section view of a typical oxide film is provided in Figure 16. This film is much thinner than the one shown in Figure 15; it was formed in 150°C PBB2 at 2 x 10^3 rad/h during an exposure time of 6 months. The cracked, semi-adherent nature of the oxide is obvious from these micrographs.

FIGURE 15. Specimen of A27 Steel Exposed to 150° C PBB2 at an Irradiation Intensity of 1 x 10^{5} rad/h for 11 Months. Note ready spallation of Fe₃0₄ corrosion product.

FIGURE 16. Scanning Electron Micrographs of Surface Film on a Specimen of ASTM A27 Cast Steel After 6 Months Exposure to PBB2 at 150°C and 2 x 10³ rad/h

Evidence of nonuniform corrosion attack, especially the formation of deep pits that propagate into the metal at a rate faster than the more-or-less uniform regression of the metal surface, would pose serious problems to a waste package overpack, and, of course, to any candidate overpack material that evidenced such attack. A specimen of A216 steel was designed (Figure 17) to test whether, in an irradiation brine environment, the irradiated solutions residing within deep pits would exhibit a degree of aggression toward the steel different from that on or near the sample's free surface. The artificial pits were created by drilling. After an exposure of 4 months to 150°C PBR2 irradiated at 1 x 10^5 rad/h, the specimen was removed from test and carefully ground to its half-thickness (Figure 18). When the oxide was removed from the "pits," it was found that no unusual corrosion had occurred, i.e., the pits had not increased in diameter to any greater extent than would have been expected by the normal corrosion process, and there was no evidence of any localized corrosion within the pits.

Dimensions in mm

FIGURE 18. Artificially Pitted Specimen, Exposed 4 Months to 150° C PBB2 1 x 10⁵ rad/h. After exposure, specimen was ground to half-thickness for pit examination.

This limited test, of course, does not necessarily preclude the possibility of self-propagating pits forming in A216 steel in a repository environment, but it offers some preliminary assurance that there is no such overt tendency.

ENVIRONMENTAL-MECHANICAL TESTING

Environmental-mechanical tests (i.e., SSR tests and corrosion fatigue tests) were performed to determine the resistance of candidate overpack materials to environmentally assisted crack propagation, the important rate-limiting aspect of SCC if a flaw is (conservatively) expected to pre-exist. In the SSR test, flaws are produced during the straining and plastic deformation of the material; in the corrosion fatigue test, the flaw is of known geometry, permitting an estimate of the stress concentration existing at a crack tip.

Slow-Strain-Rate (SSR) Tests

SSR tests of wrought 1025 steel, A27 steel, and reference A216 Grade WCA cast steel have been performed in flowing (\sim 35 mL/h) PBB2 and in air at 150°C. The results of these tests are summarized in Table 10. Limited tests of the reference cast steel have also been performed under irradiated conditions at 30°C and 90°C; these results are given in Table 11. A statistical evaluation of the data is included in Tables 10 and 11, with a more complete presentation in Appendix D.

The results of SSR tests on wrought 1025 steel are shown in Figure 19. These results are representative of those obtained from testing the other ferrous materials in slowly flowing (\sim 35 mL/h) PBB2 at 150°C. The following observations can be made from an examination of the figure, and are supported by the statistical evaluation presented in Appendices D and E.

- Reduction of area was significantly reduced at the lower strain rate $(2 \times 10^{-7}/\text{s})$ when tests were done in brine.
- Neither reduction of area nor elongation was affected by the brine when tests were done at a relatively high strain rate $(1 \times 10^{-4}/s)$.
- Reduction of area and elongation were about the same at 2 x 10^{-7} /s as at 1 x 10^{-4} /s when tests were done in air.

		Reduction of	Area (average	values), 🖇	Elongatio	n (average valu	es), 🖇 🔤
Material	Strain Rate	Air (std. error)	PBB2 Brine (std. error)	Diff ^{•(a)}	Alr (std. error)	PBB2 Brine (std. error)	Diff ^{*(a)}
Wrought 1025 steel (TL) ^(b)	$1 \times 10^{-4}/s$	69.5 (3.12)	71.5 (3.12)	No	30,5 (1,14)	32,5 (1,14)	No
Wrought 1025 steel (LT) ^(b)		55,5 (3,12)	51.0 (2.55)	No	22.0 (1.14)	21.7 (0.93)	No
Cast A27 steel		53.0 (4.42)	49.0 (3.12)	No	22.0 (1.61)	24.5 (1.14)	No
2.5% Cr, 1% Mo steel		63.5 (3.12)	51.5 (3.12)	No	19.5 (1.40)	19.5 (1.40)	No
A216 cast steel		28.7 (2.55)	20.3 (2.21)	No	17.7 (0.93)	14.5 (0.80)	No
Wrought 1025 steel (TL)	$2 \times 10^{-7}/s$	61,5 (3,12)	21.0 (3.12)	Yes	29.0 (1.14)	36,5 (1,14)	Yes
Wrought 1025 steel (LT)		52.0 (4.41)	28,5 (3,12)	Yes	24.0 (1.61)	17.5 (1.14)	Yes
Cast A27 steel		47.0 (3.12)	14.8 (1.97)	Yes	21.5 (1.14)	13.8 (0.72)	Yes
2.5% Cr, 1% Mo steel		60.0 (4.42)	32,5 (3,12)	Yes	19.0 (1.60)	15.5 (1.14)	No
A216 cast steel		25.7 (2.55)	16,5 (3,12)	Yes	19.0 (1.61)	12.7 (0.93)	Yes

TABLE 10. Slow-Strain-Rate Test Results and Statistical Analyses. All tests performed at 150°C.

(a) Refers to whether or not a significant difference exists between the average values, in air and brine environments, at the 95% confidence level.

(b) Specimens perpendicular to the rolling direction of the plate are designated "TL"; those parallel to the rolling direction are designated "LT."

Results of testing the ASTM A27 cast steel in brine and in air are given in Figures 20 through 23. The reduction of area was severely diminished at the lower strain rate, as shown in Figure 20. The degree of ductility decrease was similar to that of the 1025 steel. Reduction of area in air was not dependent on strain rate.

FIGURE 20. SSR Test Results for A27 Cast Steel in PBB2 and Air at 150°C; Reduction of Area Versus Strain Rate

The areas under the load-elongation plots were measured to determine the energy absorbed during deformation and fracture, as another means of determining susceptibility to environmentally assisted fracture. The total energy absorbed was significantly lower at the lower strain rate (Figure 21). The largest relative change was in the energy absorbed after maximum load.

Tests were conducted in PBB2 at different levels of dissolved oxygen to determine the environmental conditions under which the decrease in ductility occurred. As shown in Figure 22, the energy absorbed during deformation was

not affected by changes in dissolved oxygen in tests in argon-sparged brine (approximately 0.1 ppm dissolved oxygen at inlet to autoclave), Ar-20% O_2 -sparged brine (approximately 1 ppm dissolved oxygen at inlet), and oxygen-sparged brine (approximately 2 to 3 ppm dissolved oxygen at inlet). This indicates either that the mechanism responsible for the diminished ductility and corresponding low energy absorption is not affected by dissolved oxygen content, or that the dissolved oxygen levels used in the tests were not low enough to preclude operation of the mechanism.

A series of tests were made to determine whether ductility was diminished by straining the metal at a low strain rate in the presence of the brine or as a result of the longer exposure times when tests were done at the low strain rate. In this series of tests, two specimens were exposed to the PBB2 at 150° C for the normal duration of a test at 2 x 10^{-7} /s (approximately two weeks). The

specimens were then strained to failure at 1 x 10^{-4} /s. Results of these tests and of two tests performed in PBB2 at 1 x 10^{-4} /s in the usual manner are given in Figure 23.

It is clear from Figure 23 that the ductility was reduced by exposing the specimens to brine; however, the ductility was affected less than would be expected if the specimens were strained to failure at 2×10^{-7} /s (Figure 20).

TADLE III.	90°C and Associa was 2 x 10^{-7} /s.	ted Statistical Ana In the irradiated 10 ⁵ rad/h was used	lyses. The strain rate test an irradiation
Temperature,	Red	uction of Area (ave	rage values), %
<u>0°</u>	Air (std. error)	PBB2 (std. error)	Irradiated PBB2 (std. error)
30	25 (2.5)	16 (2.5)	15 (1.5)
90	39 (1.8)	23 (2.5)	15 (1.3)
		Elongation (average	values), %
	Air (std. error)	PBB2 (std. error)	Irradiated PBB2 (std. error)
30	20 (0.52)	16 (0.52)	14 (0.30)
90	22 (0.37)	16 (0.52)	14 (0.30)

of Clay Charin Data Tests of A016 Charl at 2000 and

As shown in Figure 23, the potential of the steel to absorb energy during deformation and fracture was reduced by exposing the specimens to brine, even in the absence of applied mechanical stresses. This indicates that SCC is probably not responsible for the observed changes in ductility, and suggests another mechanism, such as hydrogen embrittlement or dynamic strain aging, that may not depend on concurrent imposition of mechanical stress and exposure to an aggressive environment.

Scanning electron micrographs of typical A27 steel specimens strained to failure in air and in brine are given in Figures 24 through 26. It is not clear from examining these figures that there has been a change in fracture mode to correspond with the decreases in ductility. Severe pitting corrosion was observed on some specimens, especially in tests with high dissolved oxygen content (Figure 26). Minor surface cracks and secondary cracking were observed on some specimens (Figures 25 and 26). Crack-like defects occurred in some cases when porosity defects from the original casting opened as stress was applied. A good example of this phenomenon is shown in Figure 26.

SSR test results of the reference A216 cast steel are given in Figures 27 and 28. The reduction of area in air appears to decrease slightly with decreasing strain rate (Figure 27); however, this effect was found to be not statistically significant (Table 10). Reduction of area and elongation were lower in brine than in air at a strain rate of 2 x 10^{-7} /s, but not at a strain rate of 1 x 10^{-4} /s.

(a)

(5)

FIGURE 24. SEM Micrographs of SSR Fracture Surface; Specimen Tested at 1×10^{-4} /s in 150°C Air. The Fracture Surface was typical of ductile fracture. (a) 15X; (b) 250X.

(b)

(a)

<image>

(c)

FIGURE 25. SEM Micrographs of SSR Fracture Surface; Specimen Tested in 150°C Brine Sparged with Argon. The strain rate was 2×10^{-7} /s. (a) 15X; (b) 150X; (c) 250X, center of fracture surface; (d) 200X, gage area near fracture surface.

(a)

(b)

(c)

(d)

FIGURE 26. Metallographs and SEM Micrographs of a SSR Specimen. The specimen was tested in 150° C brine that was sparged with oxygen. The strain rate was 2 x 10^{-7} /s. (a) Metallograph, 100X, unetched; (b) metallograph, 250X, etched; (c) SEM micrograph, center of fracture surface, 250X; (d) edge of fracture surface, 80X.

FIGURE 27. SSR Test Results for A216 Cast Steel in Air at 150°C; Reduction of Area and Elongation Versus Strain Rate

Some concluding statements are in order regarding the results of SSR tests on the A216 cast steel given in Table 11. If the effect of irradiation is considered to be independent of temperature, the reduction of area is higher in brine than in irradiated brine, at the 90% confidence level. Elongation is higher in brine than in irradiated brine at the 95% confidence level. Both reduction of area and elongation are higher in air than in brine or irradiated brine at the 95% confidence level.

FIGURE 28. SSR Test Results for A216 Cast Steel in 150°C PBB2; Reduction of Area and Elongation versus Strain Rate

The effect of irradiation on reduction of area and elongation at 90°C is significant at the 95% confidence level, but reduction of area was not affected by irradiation at 30°C. The reasons for this temperature dependence are not known.

Data from these tests cannot be directly compared to the 150°C data because the brine in the lower-temperature tests was static and exposed to air.
Corrosion Fatigue Tests

Results of corrosion fatigue tests of 1025 wrought steel are given in Figure 29. Crack growth rates were clearly higher in deionized water than in air, and lower in brine than in air.

The decreased crack growth rates observed in brine were unexpected, but can be explained by buildup of material (salts and/or corrosion products) on the fracture faces and subsequent crack closure effects. If the crack cannot close completely on the low-load portion of the loading cycle, the repeated breaking of the corrosion-product film at the crack tip, obviously an imortant part of a corrosion fatigue test, cannot be properly effected and the test then approximates a statically loaded test.

Results of corrosion fatigue tests of the reference cast steel are given in Figures 30 through 32. As can be seen in Figure 30, the crack growth rate in deionized water is higher than in air. The crack growth rate was slightly increased by testing at a frequency of 0.1 Hz rather than 1 Hz (Figure 31).

The crack growth rate of the reference cast steel in PBB2 and in air is shown in Figure 32. The crack growth rate was clearly lower in the presence of the brine. This is in agreement with the results found for 1025 steel. Two tests were run for extended times (e.g., 2×10^6 cycles and 4×10^6 cycles at 0.1 Hz frequency) without measurable crack growth; these tests were done at stress intensities of 22 MPa \sqrt{m} (20 ksi \sqrt{in} .), where crack growth was expected to be greater than 10^{-8} m/cycle.

The specimen that was cycled for over 4×10^6 cycles was subjected to a detailed metallographic examination, part of which is shown in Figures 33a and 33b. The following observations were made:

- The specimen was heavily oxidized, and heavy salt buildup occurred around the notch and pin areas.
- The precrack region appeared to be full of salt.
- Some areas of the specimen were pitted; particularly the plastic zone ahead of the crack tip.

Stress Intensity, MPaVm

FIGURE 29. Corrosion Fatigue Test Results for 1025 Steel in Deionized Water, Air, and PBB2 at 150°C. The air test was done at 10 Hz; the others were done at 1 Hz. The solid lines represent 95% confidence bands about the regression line.

Stress Intensity, MPavm

FIGURE 30. Corrosion Fatigue Test Results for A216 Cast Steel in Deionized Water and in Air at 150°C. The air test was done at 5 Hz; the deionized water test was done at 0.1 Hz. The solid lines represent 95% confidence bands about the regression line.

FIGURE 31. Corrosion Fatigue Test Results for A216 Cast Steel in 150°C Deionized Water at 0.1 Hz and 1 Hz. The solid lines represent 95% confidence bands about the regression line.

Stress Intensity, MPaVm

FIGURE 32. Corrosion Fatigue Test Results for A216 Cast Steel in PBB2 and in Air at 150°C. The solid lines represent 95% confidence bands about the regression line.

FIGURE 33a. Low-Magnification Photographs of the Machined Notch and Fatigue Crack of an A216 Cast Steel Corrosion Fatigue Specimen After Some Cleaning in Inhibited Acid Solution. This specimen was cycled for over 4 x 10⁶ cycles with only a small amount of crack growth.

FIGURE 33b. Low-Magnification Photographs of the Machined Notch and Precrack After Thorough Cleaning. The top photos (A) and bottom photos (B) show the two sides of the same specimen. Note the presence of corrosion pits in the plastic zone.

- The crack (excluding the precrack) propagated along several grain boundaries, but not to such an extent that the cracking would be termed intergranular.
- A limited amount of crack branching occurred. It is also apparent from Figure 33 that corrosion products (gray areas) formed irregularly along the fracture surfaces, often extending into areas where the main crack did not propagate.

The specimen that was cycled for over 2×10^6 cycles without appreciable crack growth was cleaned, and a sample of the salt was removed from the fracture surface. X-ray diffraction analysis identified this sample as anhydrite, CaSO₄. It is possible that the fresh fracture surfaces provided preferred sites for nucleation of anhydrite crystals. A similar situation occurred on an irradiated SSR specimen. Crystals formed on the lower fracture surface and did not form elsewhere in the autoclave.

Corrosion fatigue testing performed to date has been conducted at low R ratios (i.e., ratio of minimum to maximum load). It is possible that higher crack growth rates will be obtained at higher R ratios, as higher R ratios tend to mitigate crack-wedging effects. Higher crack growth rates would permit the extrapolation of the environmental contribution to crack growth rate to long time periods, a conservative extrapolation that would be useful in design and lifetime predictions.

The corrosion fatigue data graphically presented in this section of the report may be found in tabular form in Appendix D.2.

The implications of the environmental-mechanical tests performed so far to the continued candidacy of mild steels to waste package barrier element applications are not clear. No severe problems have been uncovered in the tests. The SSR data show some effect of a brine environment on mechanical properties, but the effect does not appear to be serious. The corrosion fatigue tests have been complicated by anhydrite deposition in the region of the crack, frustrating the search for a stress-intensity threshold. Further testing, combined with a definition of the barrier material performance specifications, will be required before a judgment of material adequacy can be made on the basis of environmental-mechanical properties.

CONCLUSIONS

The principal technical conclusions derived from the corrosion and environmental-mechanical performance of iron-base alloys presented in the results and discussion section of this report are summarized below.

- The reference cast steel, ASTM A216 grade WCA, was found to corrode at a maximum rate of 3.2 cm (1.3 in.) per 1000 years in unirradiated 150°C PBB2 (Permian Basin intrusion brine), refreshed, and containing 1.5 ppm 0_2 . It, along with high-purity iron, corroded at a higher rate than any of the iron-base materials tested. The 2-1/2% Cr, 1% Mo steel showed the lowest corrosion rates.
- The imposition of a 1 x 10^5 rad/h 60 Co radiation field on the 150° C PBB2 environment increased the corrosion rates of all the ferrous materials studied by a factor of ~4. An irradiation intensity of 2 x 10^3 rad/h, on the other hand, caused no increase in corrosion rate over those found in the unirradiated study. Even the 2 x 10^3 rad/h test is considered to be an overtest, as the irradiation intensity is expected to be no higher than 100 rad/h with a spent fuel waste form.
- In both the 2 x 10^3 and the 1 x 10^5 rad/h irradiation-corrosion studies, the specimens located in the upper regions of the test autoclaves generally showed the highest corrosion rates. The reason for this is not known; it could be related to the direction of flow of incoming brine, bottom to top, or gravitational segregation of radiolysis products.
- In general, pitting attack was not a serious problem in the intrusion-brine autoclave corrosion tests, irradiated or unirradiated, or in the moist salt tests; but severe pitting attack was sometimes observed on environmental-mechanical property test specimens, especially in brine environments containing relatively high concentrations of oxygen (this observation is consistent with the generally accepted theories of pit formation under conditions in which

dissolved oxygen is available to the surface of corroding steel). The corrosion product was always found to be Fe_30_4 on specimens tested in low-Mg intrusion brine.

- Ferrous materials exposed to moist salt environments that contained significant quantities of Mg^{2+} exhibited corrosion rates much higher (for A216 cast steel, a factor of ~30) than those found in simulated intrusion brine autoclave studies or low- Mg^{2+} moist salt test studies. It is inferred from the limited evidence available that Mg^{2+} , when present at concentrations above some undefined critical level, appears to inhibit the normal formation of semiprotective magnetite films from a ferrous hydroxide precursor, and thereby permits high corrosion rates.
- In slow-strain-rate studies, the ductility of 1025 wrought steel, A27 cast steel, and A216 cast steel was significantly lower in PBB2 than in air at 150°C. This effect was not observed at the highest strain rate used (1 x 10^{-4} /s).
- The reduction of area and elongation of as-cast A216 steel were lower in irradiated PBB2 at 30°C and 90°C than in unirradiated PBB2 at the same temperatures, except for the reduction of area at 30°C.
- There was no fractographic evidence found to indicate that stresscorrosion cracking was associated with the reduced ductility in the SSR tests.
- Fatigue crack growth rates of as-cast A27 steel and A216 steel were up to ten times higher in deionized water at 150°C than in air at the same temperature.
- Fatigue crack growth rates of A27 and A216 steels in PBB2 were less than a tenth of those in air or deionized water at 150°C. The reduced crack growth rates were probably caused by crack "wedging," resulting from the crystallization of anhydrite, or the formation of corrosion products, on the fracture surfaces.

• Of all the tests performed to date that simulate expected repository environments, only the moist salt general corrosion tests conducted using environments containing significant amounts of Mg^{2+} are cause for concern regarding the continuing consideration of mild steel for waste package overpack applications. If mild steels are to continue to be considered for waste package applications, the magnesium-rich, moist salt environment must be shown to be nonrepresentative of conditions expected in the repository; that is, it must be shown that 1) the concentration of water (or the reactant) expected in the salt at the waste package surface is far lower than the water (or other reactant) concentrations found to result in rapid corrosion rates in the present tests, and/or 2) the amount of reactant diffusing to the surface of the overpack is far smaller than that required to react with and perforate the overpack, or 3) either or both of these considerations is amenable to a practical engineering solution, such as use of impermeable, or highly absorbent, backfill materials. An assessment of these considerations was beyond the scope of the present study.

REFERENCES

- 1. R. E. Westerman. 1980. <u>Investigation of Metallic, Ceramic, and Polymeric</u> <u>Materials for Engineered Barrier Applications in Nuclear Waste Packages</u>. PNL-3484, Pacific Northwest Laboratory, Richland, Washington.
- R. E. Westerman, J. L. Nelson, S. G. Pitman, W. L. Kuhn, S. J. Basham, and D. P. Moak. 1984. "Evaluation of Iron-Base Materials for Waste Package Containers in a Salt Repository." Presented at the International Symposium on the Scientific Basis for Nuclear Waste Management VII, November 1983, Boston, Massachusetts. <u>Materials Research Society Symposia</u> Proceedings, Volume 26, pp. 427-436.
- 3. U.S. Department of Energy. 1984. <u>Draft Environmental Assessment, Deaf</u> <u>Smith County Site, Texas</u>. DOE/RW0014, Office of Civilian Radioactive Waste Management, Washington, D.C., pp. 6-191.
- 4. J. H. Payer, W. E. Berry, and W. K. Boyd. 1976. "Constant Strain Rate Technique for Assessing Stress-Corrosion Susceptibility." In <u>Stress</u> <u>Corrosion--New Approaches</u>. ASTM STP 610, American Society for Testing and Materials, Philadelphia, Pennsylvania, pp. 82-93.
- 5. J. H. Payer, W. E. Berry, and W. K. Boyd. 1979. "Evaluation of Slow-Strain-Rate Stress Corrosion Test Results." <u>Stress Corrosion Cracking--</u> <u>The Slow-Strain-Rate Technique</u>. ASTM STP 665, American Society for Testing and Materials, Philadelphia, Pennsylvania, pp. 61-77.
- R. N. Parkins. 1979. "Development of Strain-Rate Testing and Its Implications." <u>Stress Corrosion Cracking--The Slow-Strain-Rate</u> <u>Technique</u>. ASTM STP 665, American Society for Testing and Materials, Philadelphia, Pennsylvania, pp. 5-25.
- 7. R. P. Wei and G. Shim. 1983. "Fracture Mechanics and Corrosion Fatigue." <u>Corrosion Fatigue: Mechanics, Metallurgy, Electrochemistry,</u> <u>and Engineering</u>. ASTM STP 801, American Society for Testing and Materials, Philadelphia, Pennsylvania, pp. 5-25.
- W. H. Bamford. 1983. "Implementing Corrosion-Fatigue Crack Growth Rate Data for Engineering Application." <u>Corrosion Fatigue: Mechanics,</u> <u>Metallurgy, Electrochemistry, and Engineering</u>. ASTM STP 801, American Society for Testing and Materials, Philadelphia, Pennsylvania, pp. 405-422.
- 9. J. Neter and W. Wasserman. 1974. <u>Applied Linear Statistical Models</u>. Irwin, Incorporated, pp. 685-720.

APPENDIX A

•

COMPILATION OF DATA FROM GENERAL CORROSION TESTS

APPENDIX A.1

COMPILATION OF DATA FROM GENERAL CORROSION TESTS

Anoxic Intrusion Brine Environment

Brine: PBB2 Oxygen Concentration: 0.05 ppm Temperature: 150°C Flow Rate: 35 mL/h

CALCULATION PROCEDURE

Penetration rate $(\mu m/yr) = \frac{KW}{ATD}$ where K = 8.76 x 10⁷ W = mass loss, g A = specimen area T = exposure time, hr D = density of metal, g/cm³

	SAMPLE *****		TIME	1			DIMENS	EONS LATT		WEIG ****	HTS ***	CORROSION RATE
		START	END	TOTAL	LENGTH	VIDTH	HEIGHT	HOLE DI	AREA	INITIAL	FINAL	********
NUMBER	MATERIAL	DATE	DATE	HR	M	XDK	MM	MM	NDI * NDI	GM	GM	MICROM/YR
*****	********	*********	********	*****	******	*****	******	*******		********	*******	
N 71	A27 CAST STEEL	21-Sep-82	29-Oct-82	720	35.61	36.75	2.41	7.78	2890	23.4247	23.5924	17
N 76	A27 CAST STEEL	21-Sep-82	29-Oct-82	720	35.59	36.20	2.39	9.70	2840	22.9534	22.9251	15
N 74	A27 CAST STEEL	21-Sep-82	29-Oct-82	720	35.66	35.59	2.41	1.75	2810	22.6352	NA	NA
N 96	A27 CAST STEEL	16-Nov-82	22-Feb-83	2334	35.64	36.65	2.44	9.58	2899	23.3824	23.3516	5.1
N 78	A27 CAST STEEL	16-Nov-82	22-Feb-83	2334	35.64	35.76	2.46	9.70	2830	22.7324	22.7087	4.0
N 97	A27 CAST STEEL	16-Nov-82	10-Jul-03	4348	36.55	35.44	2.46	9.63	2890	23.3606	23.3261	3.1
N 72	A27 CAST STEEL	21-5ep-82	18-Jul-83	5358	35.59	35.71	2.51	9.86	2830	22.8421	22.4222	2.9
N 75	A27 CAST STEEL	21-5ep-82	18-Jul-83	5358	36.32	35.59	2.41	9.78	2860	23.0660	23.0371	2.1
N 99	A27 CAST STEEL	16-Nov-82	25-Sep-84	14426	36.58	35.64	2.46	9.60	2870	23.4734	23.3452	3.4
N 73	A27 CAST STEEL	21-Sep-82	25-Sep-84	15416	36.58	35.59	2.41	9.68	2880	23.3148	23.2610	1.4
N 106	A27 CAST STEEL	21-5ep-82	25-Sep-84	15416	35.33	35.64	6.35	9.60	3470	58.5858	58.5146	15
N 105	A27 CAST STEEL	21-Sep-82	25-Sep-84	15416	35 33	35.41	6.32	9.63	3460	58,7890	58.7432	0.96
N 195	1025 WROUGHT STEEL	16-Nov-82	22-Feb-83	2334	50.70	50.98	1.35	6.48	5400	28.4201	28.2534	15
N 194	1025 WROUGHT STEEL	16-Nov-82	22-Feb-83	2334	50.70	50.90	1.40	6.50	5410	28 2435	28.8930	13
N 199	1015 WROUGHT STEEL	16-Nov-82	22-Feb-83	2334	50.65	50.93	1.40	6.50	5410	28.5030	NA	XA
N 203	1025 WROUGHT STEEL	16-Nov-82	22-Feb-83	2334	50.75	50.83	1.42	6.43	5410	28.4749	28.4041	6.1
N 196	1025 WROUGHT STEEL	16-Nov-82	18-Jul-83	4368	50.57	50.90	1.35	6.46	5380	28.3440	28.1342	9.9
N 205	1025 WROUGHT STEEL	16-Nov-82	18-Jul-83	4368	50.60	51.03	1.40	6.45	5410	28.2503	28.1576	4.4
N 204	1025 WROUGHT STEEL	16-Nov-82	23-Oct-83	6744	50.75	50.93	1.45	6.45	5430	28.5232	18.3957	3.9
N 197	1025 WROUGHT STEEL	16-Nov-82	23-Oct-83	6744	50.60	50.88	1.35	6.50	5380	28.3483	28.0798	7.6
N 201	1025 WROUGHT STEEL	16-Nov-82	25-5ep-84	14426	50.70	50.90	1.40	6.43	5410	28.4289	28.0122	6.0
N 200	1025 WROUGHT STEEL	16-Nov-82	25-Sep-84	14426	50.85	50.45	1.45	6.43	5410	28.5272	28.1248	5.8
N 198	1025 WROUGHT STEEL	16-Nov-82	25-Sep-84	14426	50.75	50.75	1.40	6.45	5400	28.3617	27.9821	5.4
N 202	1025 WROUGHT STEEL	16-Nov-82	25-Sep-84	14426	50.60	50.95	1 42	6 43	5410	28.3310	18.0737	3.7
P 530	A216 CAST STEEL	29-Jan-84	27-Feb-84	696	35.56	35.53	1.47	7.80	2630	14.1605	14.1246	21
P 540	A216 CAST STEEL	29-Jan-84	29-Eeb-84	696	35 56	35,56	1.45	9.83	2630	14.1427	14.1116	19
P 543	A214 CAST STEEL	29-Jan-84	01-Jun-84	2897	35.56	35.56	1.45	7.83	2630	13,9079	13.8190	13
P 536	A216 CAST STEEL	29-Jan-84	01-Jun-84	2817	35.56	35.53	1.52	9.83	2640	14.1525	14.0479	15
P 541	A216 CAST STEEL	27-Jan-84	25-Sep-84	5321	35.59	35.56	1.50	9.80	2640	14.2126	13.7803	14
P 544	A216 CAST STEEL	29-Jan-84	25-Sep-84	5321	35.56	35.56	1.47	9.83	2630	14.1028	13.8657	19
P 542	A216 CAST STEEL	27-Jan-84	25-5ep-84	5321	35.54	35.53	1.50	7.83	2640	14.2077	14.0452	13
P 537	A214 CAST STEEL	29-Jan-84	23-5ep-84	5321	33.36	32.23	1.50	7.80	2649	14.1792	13.7671	17
P 537	A216 CAST STEEL	27-Jan-84	23-5ep-84	5321	33.36	33.36	1.47	Y.80	7630	14.2037	13.9944	17
P 538	A214 CAST STEEL	27-Jan-84	23-Sep-84	5371	33.36	35.33	1.30	9.83	2640	14.2216	14.0176	14
P 331 B 533	ATTA CAST STELL	47-J21-84	43-58p-84	2033	33.36 45 57	33.36 96 67	1.43	7.60	2430	14 1958	19 8479	11
F 334 B 534	ATIS LASI SILLL	47-J22-89	13-52p-84	2832	32.38 36 57	33.28 45 57	1.47	7.8U	44J9 7/18	14.1530	13.78/8	13
P 034 P 636	AILS GASE SILL	27-J28-84	10-58p-84	2002	33.36 95 59	39.96	1.9/	7.00	2630	14 1360	13.7744	14
F 333 B 533	AIIO LADI DILLL 1914 FLCT ETTT	47-Jan-84	10-5ep-64	2032	32.37	33.30	1.20	7.84	2445	14.6137	13 8888	13
E 333 N 199	SALO LASI SILLL	21 Can #2	19 044 81	1001 778	33.30 58 75	56 83	2.30	7.90	5218	56 6455	40 0078	10
N 179	7 SULP INNO STEEL	11-30p-04	29-0ct-82	730	54.75	56 85	2 57	7.00	5418	50.0433	50 1178	13
N 134	2 SUCE INO STEEL	21_San_87	79-0-1-87	778	58 75	50 47	2 54	9 43	5598	50 8711	50 8745	17
N 145	2 SHCH. 15NO STEFT	21_San_#2	27_Fab.83	1054	58 75	50 27	6 30	1 48	4478	122 3742	122 3075	
N 131	2 SSCR. 1SHO STEEL	21-500-82	22-Fab-83	3054	58 75	58 45	2 57	9 4 0	5598	50 2814	50 2145	4.4
N 130	2.5%CR.1MO STEEL	21-Sep-#2	18-Jul-13	5358	50 75	50 85	2.54	9.4R	5418	49.7153	49 4394	2 1
N 133	2 SSCR. ISHO STEEL	21-5+0-82	25-Sep-14	15414	50 72	50 77	2 49	RA 9	55.8.0	49 4924	49 4694	1 1
N 144	2. SSCR. 1900 STEEL	21-5ep-82	25-Sep-14	15414	50 75	50.04	6.36	9.51	4398	121.9414	121 8445	1 1
N 4	DUCTILE CAST IRON	21-Sep-82	29-Oct-82	720	35 59	35 51	2.49	9.43	2410	21,3343	21.3862	18
N L	DUCTILE CAST IRON	21-Sep-82	29-Oct-#2	720	35.54	35.48	2.49	10 01	2800	21.1742	21.1432	15
N 1	DUCTILE CAST IRON	21-Sep-82	29-Oct-82	720	35.48	35.41	2.57	10.03	2820	21.2905	21.2542	19
N 2	DUCTILE CAST IRON	21-Sep-82	22-Feb-83	3054	35.48	35.79	2.47	10.03	2820	21.3013	21.2603	5.3

•

	SAMPLE	TIME DIMENSIONS					WEIG	HTS	CORROSION			
	*****		*********	ı –			******	***		****	***	RATE
		START	END	TOTAL	LENGTH	VIDTH	HEIGHT	HOLE DI	AREA	INITIAL	FINAL	******
NUMB	ER MATERIAL	DATE	DATE	HR	HTH	MM	MM	MM	MM * MM	GM	GM	MICROM/YR
****	****************	*********	*******		******				*******	********	*******	************
N	DUCTILE CAST IRON	21-Sep-82	22-Feb-83	3054	35 69	35 48	2 51	10.08	2810	21.2090	21 1800	3.8
N	3 DUCTILE CAST IRON	21-Sep-82	18-Jul-83	5358	35.56	35 48	2.49	10 01	2800	21.1864	21.1519	2.6
X 3	7 DUCTILE CAST IRON	21-Sep-82	25-Sep-84	15416	35.51	35 61	6.27	10.08	3460	53 1663	53.0795	1.8
N 3	B DUCTILE CAST IRON	21-Sep-82	25-Sep-84	15416	35 53	35 51	6.27	10.06	3450	52.8825	52.7506	2.8
P 15	AZ7 NORM. CAST	13-Apr-83	27-Jul-83	2472	35 36	35 59	1 52	8.99	2650	13 9877	13.9409	8.0
P 16	0 A27 NORM CAST	13-Apr-83	27-Jul-83	2472	35 59	35.36	1 52	9.37	2640	13 9602	13 9096	8.6
P 14	A27 NORM. CAST	13-Apr-83	27-Jul-83	2472	35 69	35.31	1 52	9 04	2650	13.1458	NA	NA
P 17	0 A27 NORM. CAST	13-Apr-83	23-Oct-83	4632	35 56	35 26	1 52	9 09	2640	13.8680	NA	NA
P 16	A 27 NORM CAST	13-Apr-83	23-Oct-83	4632	35.36	35 51	1.52	9 30	2640	13.8299	13.7532	7.0
P 16	A 27 NORM CAST	13-Apr-83	23-0ct-83	4632	35 66	35 41	1 52	9.07	2660	14.2361	14 1807	50
P 16	3 A17 NORM. CAST	13-Apr-83	25-Sep-84	12314	35 66	35 31	1 52	9 09	2650	14 0403	13.8945	5.0
P 16	7 A27 NORM CAST	13-Apr-83	25-Sep-84	12314	35 26	35 64	1 55	9 0 9	2650	13 9798	13.8472	4.5
P 16	A27 NORM. CAST	13-Apr-83	25-Sep-84	12314	35.59	35 38	1 55	9.30	2650	14.1967	14.1114	2.9
P 16	4 A27 NORM. CAST	13-Apr-83	25-Sep-84	12314	35 36	35 71	1 52	9 02	2660	14 0388	13 8902	51
P 16	5 A27 NORM CAST	13-Apr-83	25-Sep-84	12314	35 48	35 31	1 55	9 04	2640	13,9119	13 8320	2.7
P 16	6 A27 NORM CAST	13-Apr-83	25-Sep-84	12314	35 48	35 28	1 52	9 07	2630	13 9304	13 8534	2.6
FE 1	B PURE IRON	13-Apr-83	27-Jul-83	2472	31 72	31 80	1 52	9 50	2120	11 1006	11.0617	8.3
FE 1	7 PURE IRON	13-Apr-83	27-Jul-83	2472	31 67	31 78	1 45	9.50	2100	10.3843	NA	NA
FE 1	5 PURE IRON	13-Apr-83	27-Jal-83	2472	31 72	31 75	1.35	9 53	2080	9.9142	9.8372	17
FE 2	9 PURE IRON	13-Apr-83	23-Oct-83	4632	31 80	31 75	1 60	9 50	2130	11.7145	11 6385	8 6
FE 1	PURE IRON	13-Apr-83	23-Oct-83	4632	31 72	31 78	1 55	9.50	2120	11.2522	NA	NA
FE 1	8 PURE IRON	13-Apr-83	23-Oct-83	4632	31 75	31 75	1 63	9 50	2130	11 6657	11 6133	5.9
FE Z	2 PURE IRON	13-Apr-83	25-Sep-84	12314	31 72	31 72	1 60	9 53	2120	11 3481	11.1618	8 0
FE 2	I PURE IRON	13- Xpr-8 3	25-Sep-84	12314	31 83	31 72	1 57	950	2130	10 8926	10 7027	8 1

APPENDIX A.2

COMPILATION OF DATA FROM GENERAL CORROSION STUDIES

Oxic Intrusion Brine Environment

Brine: PBB2 Oxygen Concentration: 1.5 ppm Temperature: 150°C Flow Rate: 35 ml/h

SAMPI	E		TIME				DIMENS	IONS		VEIG	HTS	CORROSION
****	t#		*******	t				1111		1111	***	RATE
		START	END	TOTAL	LENGTH	VIDTH	HEIGHT	HOLE DI	AREA	INITIAL	FINAL	********
NUMBER	MATERIAL	DATE	DATE	HR	MM	MM	MK	MM	NN+NN	GMS	GMS	MICRON/YR
******		*********		******			******		******	********	*******	**************
N 86	A17 CAST STEEL	27-Nov-82	04-Jan-83	833	35.64	36.45	2.44	9.63	2880	23.3066	23.2698	17
N 84	A27 CAST STEEL	29-Nov-82	04-Jan-83	833	36.50	35.44	2.46	9.65	2870	23.4355	23.4004	16
N 102	A27 CAST STEEL	27-Nov-82	04-Jan-83	833	35.44	35.84	2.46	9.73	2840	22.7667	22.7334	16
N 85	A27 CAST STEEL	29-Nov-82	11-Apr-83	2993	35.66	36.30	2.46	9.63	2870	23.2413	23.1524	14
N 85A	A27 CAST STEEL	11-Apr-83	25-Sep-84	12597	35.66	36.30	2.46	9.63	2870	23.1524	22.8182	10
N 100	A27 CAST STEEL	29-Nov-82	11-Apr-83	2993	36.02	35.44	2.46	9.73	2850	22.9329	22.8394	12
N 100Å	A27 CAST STEEL	11-Apr-83	25-Sep-84	12597	36.02	35.64	2.46	9.73	2850	22.8396	22.4572	12
N 101	A27 CAST STEEL	29-Nov-82	27-Ju1-83	5273	35.64	36 45	2.44	9.63	2880	22.9511	22.7870	12
N 109	A27 CAST STEEL	27-Nov-82	25-Sep-84	15168	35.64	36.58	6.35	9.58	3570	60.4843	40.0833	8.3
N 110	A27 CAST STEEL	29-Nov-82	25-Sep-84	15148	35.46	35.64	6.35	9.63	3480	58.9604	58.5144	9.4
N 233	1025 WROUGHT STEEL	11-Jan-83	11-Apr-83	2160	50 70	50.75	1.42	6.40	5400	28,4219	NA	NA
N 231	1025 WROUGHT STEEL	11-Jan-83	11-Apr-83	2160	50.83	50.67	1.42	6.38	5400	28.3906	28 1752	21
N 231A	1025 WROUGHT STEEL	11-Apr-83	25-Sep-84	12597	50.83	50.67	1.42	6.38	5480	28.1752	27.2444	15
N 232	1025 WROUGHT STEEL	11-Jan-83	11-Apr-83	2140	50.77	50.75	1.45	6.38	5410	28.4652	28.2806	18
N 232A	1025 WROUGHT STEEL	11-Apr-83	25-Sep-84	12597	50.77	50.75	1.45	6.38	5410	28.2804	27.5422	12
N 236	1025 WROUGHT STEEL	11-Jan-83	27-Jul-83	4440	50.47	50.80	1.45	6.38	5410	28.3038	28.0103	14
N 235	1025 WROUGHT STEEL	11-Jan-83	27-Jul-83	4440	50.70	50.62	1.42	6.38	5370	28.3431	NA	NA
N 234	1025 WROUGHT STEEL	11-Jan-83	27-Jai-83	4440	50.65	50.75	1.45	6.40	5400	28.2699	28.0165	12
N 239	1025 WROUGHT STEEL	11-Jan-83	25-Sep-84	14167	50.75	50.67	1.42	4.43	5400	28.5170	27.8805	9.3
N 237	1025 WROUGHT STEEL	11-Jan-83	25-Sep-84	14167	50,90	50.65	1.40	6.45	5400	28.0328	27 2562	11
N 238	1025 WROUGHT STEEL	11-Jan-83	25-Sep-84	14167	50.57	50.77	1.40	4.40	5390	28.3417	27.4231	11
P 554	A216 CAST STEEL	10-Feb-84	12-Mar-84	736	35.53	35.53	1.45	9.83	2620	14.1613	14.1157	26
P 548	A216 CAST STEEL	10-Eeb-84	12-Mar-84	736	35.56	35.54	1.47	9.80	2630	14.0767	14.0477	28
P 547	A216 CAST STEEL	10-Feb-84	12-Jan-84	2908	35.54	35.56	1.42	9.80	2620	13.9013	13.7125	28
P 552	AZI6 CAST STEEL	10-Eeb-84	12-Jun-84	2908	35.56	35.53	1.45	9.80	2630	14.2178	14.1155	15 *
P 553	A216 CAST STEEL	10-Eeb-84	25-Sep-84	5384	35.56	35.53	1.45	7.80	2630	14.0262	13.7562	21
P 549	A216 CAST STEEL	10-Feb-84	25-Sep-84	5384	35.56	35 56	1.47	9.80	2630	14.1001	13.7626	27
P 555	A216 CAST STEEL	10-Eeb-84	25-Sep-84	5384	35.56	35.53	1.45	9.83	2630	14.2015	13.9046	23
P 556	A216 CAST STEEL	10-Feb-84	25-5ep-84	5384	35.53	35.53	1.47	9.83	2630	14.1787	13.9224	22
P 550	A214 CAST STEEL	10-Feb-84	25-Sep-84	5384	35.56	35.56	1.45	9.80	2439	14.1494	13.7644	30
P 546	A216 CAST STEEL	10-Eeb-84	25-Sep-84	5384	35.56	35.56	1.47	9.78	2630	14.1911	13.9147	22
P 545	ATIA CAST STEEL	10-feb-84	25-Sep-84	5384	35.59	35.56	1.47	9.78	2649	14.1928	13.8553	27
P 557	A216 CAST STEEL	10-Feb-84	25-Sep-84	5384	35.56	35 54	1.45	7.83	2630	14.0682	13.7042	29
P 551	AZI6 CAST STEEL	10-Feb-84	25-Sep-84	5384	35.56	35.56	1.47	9.83	2630	14.2304	13.9240	24
N 135	2.5%CR,1%MO_STEEL	29-Nov-82	04-Jan-83	633	50.80	50.80	2.57	9.58	5620	50.3722	50.3063	16
N 124	2 SWCR, 19MO STEEL	29-Nov-82	04-Jan-83	833	50.65	50.80	2.57	9.60	5600	49.9923	47.7261	16
N 125	2. SHCR, 19MO STEEL	29-Nov-82	04-Jan-83	833	50.70	50.75	2.59	9.60	5610	50,1093	50.0407	16
N 126	2 SWCR, 1WHO STEEL	29-Nov-82	11-Apr-83	2993	50.24	50.77	2.57	9.55	5550	47.7404	49.7779	11
N 126A	2.5%CR,1%MO STEEL	11-Apr-83	25-Sep-84	12597	50.24	50.77	2.57	9.55	5550	49.7779	47.4045	6.0
N 123	2.5%CR,1%MO STEEL	29-Nov-82	11-Apr-83	2993	50.80	50.75	2.57	9.60	5610	50.2894	50 1253	11
N 123A	2.5%CR,1%MO STEEL	11-Apr-83	25-Sep-84	12597	50.80	50.75	2.57	9.60	5410	50.1253	49.7606	5.8
N 127	2.5%CR,1%MO STEEL	29-Nov-82	27-Jul-83	5273	50.62	50.80	2.59	9.58	5600	50.0822	49.8797	7.6
N 144	2.5%CR,1%MO STEEL	29-Nov-82	25-5ep-84	15168	50.04	50.77	6.35	9.65	6410	121.8027	121.3478	5.2
N 143	2.5%CR,1%MO STEEL	29-Nov-82	25-Sep-84	15148	50.17	50.75	6.35	9.65	6420	122.0594	121.5350	6.0
N 7	DUCTILE CAST IRON	29-Nov-82	04-Jan-83	833	35.56	35.51	2.49	10.08	2808	21.0249	20.9762	23
K 997	DUCTILE CAST IRON	29-Nov-82	04-Jan-83	833	38.02	38.02	2.51	10.13	3190	21.1087	21.9642	19
M 995	DUCTILE CAST IRON	29-Nov-82	04-Jan-83	833	37,90	38.85	2.54	10.03	3190	21.1834	21.1359	20
M 998	DUCTILE CAST IRON	29-Nov-82	11-Apr-83	2993	35.54	35.51	2.49	10.11	2800	21.1549	21.0359	16
M 998A	DUCTILE CAST IRON	11-Apr-83	25-Sep-84	12597	35.54	35.51	2.49	10.11	2800	21.0359	20.6702	12
H 996	DUCTILE CAST IRON	29-Nov-82	11-Apr-83	2993	35.89	38.05	2.54	10.03	3030	21.5231	21.3810	17
M 996A	DUCTILE CAST IRON	11-Apr-83	25-Sep-84	12597	35.89	38.05	2.54	10.03	3030	21.3810	21.0319	10

*Considered to be an outlier in statistical analysis.

5AMP	LE **	1	TIME				DIMENSI	IONS		WEIG ****	HTS ***	CORROSION RATE
		START	END	TOTAL	LENGTH	WIDTH	HEIGHT	HOLE DI	AREA	INITIAL	FINAL	*****
NUMBER	MATERIAL	DATE	DATE	HR	MDM.	MM • • • • • • • • •	MM 	нн • • • • • • • •	MH*MM	GMS	GMS	MICROM/YR
M 0 0 0	DUCTUE CAST IRON	29-Nov-87	77ln1_\$1	5273	35 51	35 76	2 54	10 04	2420	71 3357	21 2015	14
N 34	DUCTILE CAST INON	29-Not-82	25-Sep-84	15165	35 94	35 48	6 27	10 03	3490	53 4249	53 0232	8 5
N 35	DUCTILE CAST IRON	29-Nov-82	25-Sep-84	15168	35 53	35 48	6 27	9.53	3460	53 0016	52.5538	95
P 173	A27 NORM CAST	22-Apr-83	27-Jul-83	2280	35 38	35 69	1 55	9.04	2660	14 2520	NA	NA
P 172	A27 NORM CAST	22-Apr-83	27-Jul-83	2280	35 26	35 56	1 52	9 02	2640	13 9371	13.8577	15
P 171	A27 NORM CAST	22-Apr-83	27-Jul-83	2280	35 59	35 28	1 52	9 07	2640	13 9654	13 8864	15
P 174	A27 NORM CAST	22-Apr-83	27-Oct-83	4488	35 38	35 64	1 52	9 04	2650	14 0405	13 8468	18
P 176	A27 NORM. CAST	12-Apr-83	27-Oct-83	4488	35 28	35 53	1 50	935	2030	13 8020	NA	NA
P 175	A27 NORM CAST	22-Apr-83	27-Oct-83	4488	35 59	35 28	1 50	9 58	2620	13 7546	13 5306	21
P 179	A27 NORM CAST	22-Apr-83	25-Sep-84	11739	35 69	35 30	1 52	9 32	2650	13 9721	13 5475	15
P 178	A27 NORM CAST	22-Apr-83	25-Sep-84	11739	35 26	35 53	: 52	9 07	2640	13 9045	13 5162	14
P 180	A27 NORM CAST	22-Apr-83	25-Sep-84	11739	35 29	35 53	1 50	9 0 9	2630	13 7664	13 3039	17
P 181	A27 NORM CAST	22-Apr-83	25-5ep-84	11739	35 53	35 26	1 52	9 0 9	2640	13 9206	13 5532	13
P 177	A27 NORM CAST	22-Apr-83	25-Sep-84	11739	15 33	35 69	1 52	9 0 9	2650	13 8904	13 5287	13
P 182	A27 NORM CAST	22-Apr-83	25-Sep-84	11730	35 26	15 56	1 52	932	2630	13 8774	13 4983	14
FE 24	PURE IRON	22-Apr-83	27-Jul-83	2280	31 80	31 80	1 57	950	2130	11 2362	11 1323	24
FE 25	PURE IRON	22-Apr-83	27-Jul-83	2280	31 70	31 75	150	9 53	2110	10 7699	NA	NA
FE 23	PURE IRON	22-Apr-83	27-Jul-83	2280	31 72	31 78	1 52	9 50	2110	10.8128	10 6957	27
FE 27	PURE IRON	22-Apr-83	27-Oct-83	4488	31 70	31 65	1 45	9 50	2090	10 5162	NÅ	NA
FE 26	PURE IRON	22-Apr-83	27-Oct-83	4488	31 60	31 72	1 50	950	2100	10 5406	10 3081	28
FE 30	PURE IRON	22-Apr-83	25-Sep-84	11739	31 67	31 55	1 52	9 53	2090	11 2723	10 8069	21
FE 28	PURE IRON	22-Apr-83	25-Sep-84	11739	31 65	31 70	1 37	9 50	2080	9 8976	9 4655	20

APPENDIX B

-

.

- - ----

COMPILATION OF DATA FROM MOIST SALT STUDIES

APPENDIX B.1

COMPILATION OF DATA FROM MOIST SALT STUDIES

Moist Salt Test Number 2

Temperature: 150°C Salt/brine combination: PBB1/PBB3 Magnesium concentrations reported on dry weight basis Test start date: 3-5-84 Test end date: 6-4-84 Total time: 2178 hours

	Sample Number	Material Type	Salt/Brine Combination	Water Concentration (wt%)	Magnesium Concentration (wt%)	Total Time (hr)	Coupon Length (mm)	Coupon Width (mm)	Coupon Thickness (mm)	Coupon Area (mm ²)	Initial Weight (gms)	Final Weight (gms)	Corrosion Rate (mm/yr)
	CANISTE	RA											
	N552 N561 N566	AISI 1025 "	PBB1/PBB3	5	0.42	2178	15.494 15.494 15.469	15.367 15.469 15.443	1.397 1.422 1.397	562.42 567.41 564.14	2.5885 2.6227 2.5408	2.5220 2.5453 2.4656	0.0605 0.0699 0.0682
	N645 N646 N664	Ductile Cast Iron "					15.545 15.291 15.265	15.342 15.392 15.316	1.499 1.575 1.524	569.58 567.37 560.81	2.4474 2.4594 2.4567	2.0973 2.1198 2.1548	0.315 0.307 0.276
	P650 P652 P653 P665 P670 P674	A216 WCA (as cast) " "	Ļ				15.342 15.215 15.240 15.265 15.316 15.316	15.342 15.316 15.316 15.240 15.342 15.316	1.016 1.016 1.016 1.016 1.016 1.016	533.10 528.10 528.92 527.26 532.25 531.40	1.8408 1.8566 1.8463 1.8459 1.8493 1.8539	1.3374 1.4141 1.3422 1.3323 1.3614 1.3952	0.484 0.429 0.488 0.499 0.470 0.470
ω.	CANISTE	RB											
	N547 N548 N554	AISI 1025 "	PBB1/PB83	10	0.81	2178	15.494 15.367 15.519	15.443 15.392 15.265	1.422 1.422 1.397	566.53 560.54 559.81	2.5947 2.5656 2.5737	2.5084 2.4973 2.4704	0.0782 0.0625 0.0945
	N639 N650 N663	Ductile Cast Iron "					15.342 15.240 15.342	15.265 15.443 15.418	1.524 1.524 1.524	561.68 564.22 566.84	2.4548 2.4527 2.4563	2.1163 2.1322 2.1644	0.309 0.291 0.264
	P639 P646 P656 P660 P673 P687	A216 WCA (as cast) " "					15.367 15.265 15.265 15.367 15.265 15.291	15.265 15.367 15.392 15.316 15.392 15.418	1.016 1.041 1.016 1.016 1.016 1.016	531.40 532.93 532.21 533.07 532.21 533.91	1.8626 1.8357 1.8634 1.8634 1.8427 1.8419	1.3472 1.2472 1.3047 1.2503 1.3411 1.2853	0.497 0.566 0.538 0.589 0.483 0.534

.

Sample Number	Material Type	Salt/Brine Combination	Niter Lonistration CutXi	Magneshum Concentration (wi%i	lotil Lime (hr)	f, Ligenti Keristik Taan (Couper k∶dth (mr.	Coupon Drukness _(mm)	terapor Area imm⊄)	lnitia' Weight (gms)	Election Weindrit (gms)	Corresion Pate (mm/yr)
CANISTE	<u>R</u> C											
N544 N550 N570	AIS1_1025 "	PBB1/PBB3	20	1.7	2178	15.41a 15.418 15.418	15.342 15.316 15.469	1.397 1.422 1.422	559.03 559.69 564.84	2.5742 2.5861 0.6024	2.4625 1.4975 2.5049	0.102 0.0810 0.0885
N637 N643 N651	Ductile Cast Iron					15.367 15.443 15.291	15.316 15.265 15.367	1.524 1.575 1.575	564.24 568.20 556.53	2.4537 2.4557 2.4557	2.0997 2.1098 2.1042	0.321 0.312 0.318
P635 P644 P662 P666 P667 P672	A216 WCA (as cast) " "					15.265 15.291 15.316 15.368 15.367 15.255	15,391 15,418 15,316 15,418 15,341 15,341 15,291	1.016 1.016 1.016 1.016 1.016 1.016	530,21 533,91 531,40 531,24 533,92 578,92	1.8378 1.8620 1.8590 1.8065 1.8512 1.8493	1237 1.1883 1.1781 1.1781 1.1632 1.1355	0.687 0.646 0.656 0.656 0.661 0.661 0.691
CANISTE	R D											
N551 N553 N568	AIS1_1025	PBB1/PBB3	25	2.2	2170	15.444 15.519 15.519	15.418 15.443 15.469	1.397 1.422 1.422	564.14 567.38 568.26	2.6000 2.5874 2.6309	2.5201 2.4931 2.5393	0.0725 0.0851 0.0826
N640 N644 N654	Ductile Cast Iron "					15.392 15.342 15.265	15.291 15.316 15.392	1.499 1.549 1.524	562.71 564.93 563.36	2.4414 2.4493 2.4426	2.0861 2.0833 1.0742	0.323 0.332 0.335
P642 P645 P651 P659 P669 P686	A 216 WCA (as cast) " "					15.215 15.392 15.316 15.240 15.291 15.418	15.265 15.443 15.469 15.367 15.240 15.291	1.016 0.991 1.016 1.016 1.016 1.016	526.45 536.51 536.40 530.58 528.11 533.91	1.8205 1.8477 1.8650 1.8508 1.8218 1.8450	i.1375 1.0735 1.2208 1.3128 1.1757 1.1965	0.665 0.739 0.615 0.519 0.627 0.622

Sample Number	Material 	Salt/Brine Combination	Water Concentration (wt%)	Magnesium Concentration (wt%)	Total Time (hr)	Coupon Length (mm)	Coupon Width (mm)	Coupon Thickness (mm)	Coupon Area (mm ²)	Initial Weight (gms)	Final Weight (gms)	Corrosion Rate (mm/yr)
CANISTE	<u>R</u> E											
N545 N563 N573	AISI 1025	PBB1/PBB3	30 	2.78		15.443 15.443 15.316	15.469 15.367 15.291	1.422 1.397 1.422	565.69 560.71 555.44	2.6155 2.6049 2.5695	2.5268 2.5271 2.4734	0.0803 0.0711 0.0887
N649 N662 N666	Ductile Cast Iron "					15.342 15.367 15.215	15.367 15.392 15.342	1.549 1.524 1.524	566.66 566.81 559.99	2.4543 2.4606 2.4327	2.0793 2.0782 2.0702	0.339 0.346 0.332
P643 P658 P661 P668 P679 P685	A216 WCA (as cast) " "					15.316 15.291 15.265 15.291 15.342 15.265	15.418 15.367 15.342 15.392 15.316 15.316	0.911 1.016 1.016 1.016 1.016 1.016	533.20 532.25 530.58 533.07 532.25 529.74	1.8563 1.8460 1.8466 1.8372 1.8585 1.8405	1.2095 1.0694 1.2289 1.2244 1.2186 1.0064	0.621 0.747 0.596 0.589 0.616 0.806

.

APPENDIX B.2

COMPILATION OF DATA FROM MOIST SALT STUDIES

Moist Salt Test Number 3

Temperature: 150°C Salt/brine combination: PBB1/PBB3 Magnesium concentrations reported on dry weight basis. Test start date: 5-10-84 (Canister EE is an ongoing test.)

Sample Number	Material Type	Salt/Brine Combination	Water Concentration (wt%)	Magnesium Concentration (wt%)	Total Time (hr)	Coupon Length (mm)	Coupon Width (mm)	Coupon Thickness (mm)	Coupon Area (mm²)	Initial Weight (gms)	Final Weight (gms)	Corrosion Rate (mm/yr)
CANISTE	REE											
N558 N560 N565	AISI 1025 "	PBB1/PBB3	20	1.7		15.392 15.392 15.392	15.519 15.494 15.443	1.397 1.397 1.397	564.10 563.26 561.55	2.6004 2.5732 2.5967		- -
N636 N638 N668	Ductile Cast Iron				 	15.342 15.316 15.469	15.291 15.265 15.291	1.499 1.499 1.473	561.03 559.28 563.69	2.4535 2.4473 2.4490		-
P637 P641 P654 P655 P671 P678	A216 WCA (as cast) " "				 	15.215 15.265 15.265 15.291 15.316 15.265	15.316 15.392 15.392 15.342 15.291 15.342	1.016 1.016 1.016 0.991 1.016 1.016	528.10 532.21 532.21 529.90 530.59 530.58	1.8429 1.8510 1.8374 1.8325 1.8584 1.8359		
CANISTE	<u>R F</u>									110000		
N543 N562 N574	AISI 1025 "	PBB1/PBB3	30	2.7	1659	15.443 15.443 15.392	15.443 15.519 15.494	1.397 1.397 1.397	563.27 562.46 563.26	2.5855 2.6187 2.5732	2,5242 2,5598 2,5029	0.0731 0.0699 0.0839
N647 N648 N665	Ductile Cast _u ron					15.342 15.443 15.291	15.519 15.342 15.316	1.473 1.499 1.499	567.10 566.15 560.15	2.4417 2.4540 2.4573	2.1564 2.1680 2.1698	0.338 0.339 0.345
P638 P647 P648 P676 P688 P690	A216 WCA (as cast) "					15.240 15.342 15.291 15.265 15.265 15.291	15.342 15.342 15.392 15.342 15.342 15.342 15.291	0.991 1.016 0.991 0.889 1.016 1.016	528.24 533.10 531.53 522.81 530.58 529.77	1.8424 1.8320 1.8376 1.6211 1.8453 1.8410	1.2318 1.2029 1.2844 1.1346 1.4064 1.2955	0.777 0.793 0.700 0.626 0.556 0.692

Sample Number	Material Type	Salt/Brine Combination	Water Concentration (wt%)	Magnesium Concentration (wt%)	Total Time (hr)	Coupon Length (mm)	Coupon Width (mm)	Coupon Thickness (mm)	Coupon Area (mm²)	Initial Weight (gms)	Final Weight (gms)	Corrosion Rate (mm/yr)
CANISTE	RG											
N546 N559 N571	AISI 1025 "	PBB1/PBB3	20	1.7	767	15.418 15.392 15.494	15.570 15.570 15. 494	1.397 1.397 1.397	566.70 565.81 566.71	2.5992 2.5867 2.5991	2.5138 2.5249 2.5286	0.219 0.159 0.181
N653 N656 N661	Ductile Cast Iron "					15.291 15.392 15.443	15.342 15.494 15.291	1.499 1.499 1.499	561.03 569.56 564.42	2.4572 2.4545 2.4587	2.3282 2.3043 2.3136	0.334 0.383 0.374
P636 P640 P663 P664 P680 P682	A216 WCA (as cast) "		2			15.265 15.291 15.265 15.316 15.265 15.342	15.342 15.240 15.342 15.418 15.316 15.316	1.016 0.991 1.016 1.016 1.016 0.838	530.58 526.58 530.58 534.74 529.74 521.34	1.8414 1.8275 1.8473 1.8558 1.8615 1.5017	1.6437 1.5854 1.6399 1.5904 1.6232 1.3088	0.542 0.668 0.568 0.722 0.654 0.538
CANISTE	<u>R H</u>											
N564 N567 N569	AISI 1025 "	PBB1/PBB3	30 	2.7	767	15.418 15.469 15.469	15.443 15.443 15.392	1.397 1.346 1.397	562.43 560.99 562.42	2.6088 2.5092 2.5855	2.5736 2.4716 2.5371	0.0911 0.0974 0.125
N641 N657 N667	Ductile Cast Iron "					15.291 15.265 15.342	15.418 15.443 15.367	1.499 1.499 1.473	563.58 563.54 561.99	2.4503 2.4525 2.4468	2.3133 2.3297 2.3226	0.353 0.317 0.321
P649 P675 P677 P683	A216 WCA (as cast) "					15.291 15.342 15.265 15.291	15.291 15.392 15.367 15.316	0.991 0.991 1.016 1.016	528.24 533.20 531.40 530.59	1.8414 1.8330 1.8574 1.8268	1.5430 1.5932 1.6643 1.5319	0.821 0.654 0.528 0.808
P684 P689		ļ	ļ	ļ	ţ	15.316 15.316	15.316 15.392	0.991 0.914	529.87 527.62	1.8340	1.6174 1.4546	0.594 0.588

APPENDIX B.3

COMPILATION OF DATA FROM MOIST SALT STUDIES

Moist Salt Test Number 4

Temperature: 150°C Material: A216 Grade WCA (various heat treatments) Magnesium concentrations reported on dry weight basis. Test start date: 8-16-84 (Canisters F and G are ongoing tests.)

Sample Number	Material Type	Salt/Brine Combination	Water Concentration (wt%)	Magnesium Concentration (wt%)	Total Time (hr)	Coupon Length (mm)	Coupon Width (mm)	Coupon Thickness (mm)	Coupon Area (mm ²)	Initial Weight (gms)	Final Weight (gms)	Corrosion Rate (mm/yr)
CANISTE	R D											
Q366 Q367 Q428 Q570	As Cast "	NaC1/NaC1	20	o	759.5	15.469 15.469 15.570 15.392	15.443 15.519 15.418 15.570	1.499 1.499 1.499 1.499	570.45 573.03 573.02 572.13	2.7287 2.7439 2.7015 2.7282	2.7270 2.7422 2.6994 2.7263	0.00425 0.00423 0.00538 0.00488
Q621 Q623 Q625 Q627	Normalized "					15.494 15.418 15.392 15.469	15.291 15.342 15.418 15.316	1.524 1.524 1.524 1.524	567.67 566.84 568.54 567.68	2.7603 2.7615 2.7960 2.7803	2.7585 2.7590 2.7944 2.7787	0.00466 0.00661 0.00400 0.00401
Q754 Q760 Q762 Q767	Homogenized "		ļ			15.469 15.392 15.392 15.418	15.265 15.291 15.291 15.316	1.499 1.499 1.499 1.499	564.41 562.71 562.71 564.42	2.7407 2.7389 2.7002 2.7012	2.7395 2.7376 2.6977 2.6997	0.00312 0.00352 0.00652 0.00390
CANISTE	<u>R E</u>											
Q433 Q489 Q493 Q505	As Cast " "	PBB1/PBB1	20	0.042	759.5	15.469 15.545 15.418 15.443	15.443 15.443 15.519 15.494	1.524 1.499 1.499 1.499	572.00 573.02 571.29 571.30	2.7670 2.7360 2.7411 2.7458	2.7623 2.7311 2.7369 2.7425	0.0121 0.0126 0.0108 0.00835
Q611 Q617 Q618 Q622	Normalized " "					15.418 15.392 15.418 15.418	15.316 15.316 15.291 15.316	1.524 1.524 1.524 1.524	565.96 565.09 565.11 565.96	2.795{ 2.7620 2.7920 2.7978	2.7922 2.7584 2.7868 2.7948	0.00934 0.00949 0.0135 0.00791
Q752 Q756 Q758 Q763	Komogenized " "			ļ		15.469 15.469 15.418 15.367	15.291 15.291 15.342 15.342	1.499 1.499 1.499 1.499 1.499	565.29 565.29 565.30 563.59	2.7185 2.7140 2.7345 2.7302	2.7147 2.7106 2.7303 2.7257	0.00987 0.00896 0.0109 0.0117

Sample <u>Number</u>	Material Type	Salt/Brine Combination	Water Concentration (wt%)	Magnesium Concentration (wt%)	Total Time (hr)	Coupon Length (mm)	Coupon Width (mm)	Coupon Thickness (mm)	Coupon Area (mm ²)	Initial Weight (gms)	Final Weight (gms)	Corrosion Rate (mm/yr)
CANISTE	RF											
Q419	As Cast	PBB1/PBB3	20	1.7		15.519	15.494	1.499	573.88	2.7285		
Q549	н	1	1	1		15.443	15.494	1.499	571.30	2.7413		
Q553	"					15.418	15.519	1.499	571.29	2.7410		
Q579	"					15.519	15.418	1.524	572.84	2.7535		
Q610	Normalized					15.342	15.494	1.499	567.86	2.7490		
0612	۳.					15.418	15.291	1.524	565.11	2.7658		
0614	н					15.342	15.342	1.524	564.28	2.7836		
Q620	u		1			15.418	15.367	1.524	567.69	2.7874		
0759	Homogenized					15.570	15.291	1.524	570.23	2.7463		
0764						15.392	15.316	1.499	563.55	2.7172		
0768						15.443	15.291	1.499	564.42	2.7305		
Q769	п	ŧ	ł	Ļ		15.443	15.316	1.499	565.27	2.7254		
CANISTE	RG											
0401	As Cast	P681/P881	20	0.042		15.519	15.469	1,499	573.03	2,7508		
0424			. 1	1		15.469	15.494	1.499	572.18	2.7455		
0477	"					15.519	15.570	1.499	576.47	2.7400		
Q569	"		1			15.494	15.418	1.499	570.45	2.7417		
0616	Normalized					15.367	15.367	1.524	565.97	2.7974		
0619	"		ļ			15.392	15.342	1.524	565.97	2.7979		
0624						15.418	15.316	1.524	565.96	2.7533		
Q628	n	ļ				15.443	15.367	1.524	568.53	2.7925		
0750	Homogenized					15.469	15.291	1.499	565.29	2.7369		
0755	"			1		15.443	15.291	1.499	564.42	2.7240		
0761	"					15.392	15.316	1.499	563.55	2.7192		
0766	"	+	ł	+		15.469	15.265	1.499	564.41	2.7301		

Sample Number	Material Type	Salt/Brine Combination	Water Concentration (wt%)	Magnesium Concentration (wt%)	Total Time (hr)	Coupon Length (mm)	Coupon Width (mm)	Coupon Thickness (mm)	Coupon Area (mm ²)	lnitia! Weight <u>(gms)</u>	Final Weight (gms)	Corrosion Rate (mm/yr)
CANISTE	RH											
Q369 Q526 Q598 Q609	As Cast " "	PBB1/PBB3	20	1.7	759.5	15.570 15.469 15.469 15.469	15.469 15.545 15.443 15.545	1.499 1.499 1.499 1.499	574.76 573.91 570.45 573.91	2.7446 2.7407 2.7538 2.7606	2.4599 2.5243 2.5630 2.5510	0.728 0.554 0.491 0.536
Q613 Q615 Q626 Q629	Normalized " "					15.418 15.418 15.494 15.443	15.291 15.316 15.291 15.316	1.524 1.524 1.524 1.524	565.11 565.96 567.67 566.80	2.7870 2.7928 2.7907 2.7543	2.5413 2.5217 2.5133 2.3666	0.638 0.703 0.717 1.004
Q751 Q753 Q757 Q765	Homogenized					15.469 15.469 15.494 15.443	15.316 15.291 15.316 15.291	1.499 1.499 1.499 1.499 1.499	566.14 565.29 566.98 564.42	2.7380 2.7248 2.7253 2.7408	2.3095 2.3899 2.4467 2.3673	1.111 0.870 0.722 0.972

4

APPENDIX C

COMPILATION OF DATA FROM IRRADIATION-CORROSION STUDIES

••

APPENDIX C

COMPILATION OF DATA FROM IRRADIATION-CORROSION STUDIES

Irradiation intensities: 2×10^3 rad/h and 1×10^5 rad/h Brine: PBB2 Oxygen concentration: 0.05 ppm Temperature: 150°C Flow rate: 35 mL/h

1

.

SAMPLE	TIME	IRRAD	IATION		DIMENSION	5	VEIG	HTS	CORROSION
*****	********		******	***** ********		t	******		RATE
S	START END	TOTAL RAT	TE LENGTH	VIDTH	HEIGHT HO	LE DI AREA	INITIAL	FINAL	*******
NUMBER MATERIAL D	DATE DATE	HR KR	/H MM	MM	19H - 3	IN NN×NN	CM	GM	MICRON/YR
***********************	***********	*******	********	******	*******			*******	
N 703 1025 WROUGHT STEEL 19-	-May-83 NA	NÀ	2 35 51	35 59	1 42 9	9 48 2430	12 9402	NA	NA
N 700 1025 WROUGHT STEEL 19-	-Nav-83 27-Jun-83	840	2 35 43	35 44	1 42	9 93 2400	12 9943	NA	NA NA
N 711 1025 VROUCHT STEEL 19	-Nax-43 77-Inn-43	240	2 25 44	35 43	1 48 9		12 5151	17 4498	7 2
N 705 1075 UROUGHT STEEL 17-	-Ney-00 27-000-00 -Ney-83 27-Jun-83	145	2 25 42	35.40	1 4 7	9 88 941A	13 8943	17 6974	26
N 71A 1A35 UBOUGHT STEEL 19	-//Ly-05 1/-/02-05	914A	1 JU. TJ 7 55 51	35 51	1 45 1	7.00 1914 88 9/9A	15 6815	13 4155	13
N 76' IDIE UROUGHT STEEL 17-	-ney-os 11-Aug-os Non 03 13 1-0 03	410V 9128	1 10.01	33.31		7.90 4040 5.87 9798	19.0013	13.4133	13
N 701 1025 WROUGHT SILL IV-	-nay-83 11-Aug-83	2160	1 JJ.37	59.97 AF FA	1.46	7.88 2839 .88 2738	13.4184	13.1483	13
N 708 1023 WROUGHI SILL 17-	-May-83 22-Aug-83	4140	4 33 36	33.33	1.44 1	7.88 484U 8.87 8788	13.17/0	13.1367	14
R /07 IC25 WRUUGHI SIEEL IY-	-nay-83 14-Dec-83	4344	4 33.43	32.43	1.37	7.66 2890	14.0101	14.488/	13
N /01 1015 WROUGHT STEEL 19-	-May-83 12-Dec-83	4344	2 35,58	35.61	1.42	75 2630	13.2193	NA	NA
N 707 1025 WROUGHT STEEL 19-	-May-83 19-5ep-84	9443	2 35.56	35.59	1.42	9.63 2630	13.2114	12.9599	11
N 704 1025 WROUGHT STEEL 19-	-May-83 17-Sep-84	7443	2 35.46	35.48	1.42 1	9.91 2610	13.0634	12.7771	13
N 706 1025 WROUGHT STEEL 19-	-May-83 19-5ep-84	9443	2 35.43	35.46	1.42	9.91 2610	12.9912	12.7142	13
P 518 A216 CAST STEEL 23-	-Dec-83 NA	NA	2 35.56	35.56	1.55	78 2650	14.0877	NA	NA
P 529 A216 CAST STEEL 23-	-Dec-83 14-Jan-84	768	2 35.56	35.56	1.60	9.78 2660	14.1837	14.1587	14
P 515 A216 CAST STEEL 23-	-Dec-83 24-Jan-84	768	2 35.56	35.56	1.55	78 2650	14.1927	14.1391	29
P 527 A216 CAST STEEL 23-	-Dec-83 13-Apr-84	2180	2 35 56	35.56	1.55	9.78 2650	14.0262	13.9605	13
P 516 A216 CAST STEEL 23-	-Dec-83 13-Apr-84	2180	2 35.56	35.56	1.55	7.6 2650	14.1614	14.0771	16
Q 118 A216 CAST STEEL 20-	-Apr-84 19-Sep-84	2919	2 35.59	35.56	12.73	9.27 NA	117.9610	117.6411	NA
Q 117 A216 CAST STEEL 20-	-Apr-84 19-Sep-84	2919	2 35.53	35.53	12.75	9.37 NA	117.9316	117.5986	NA
P 517 A216 CAST STEEL 23-	-Dec-83 06-Jul-84	3974	2 35.56	35.56	1.57	9.78 2650	14.0504	13.9148	14
P 522 A216 CAST STEEL 23-	-Dec-83 06-Jul-84	3974	2 35.56	35.56	1.55	7.78 2650	14.1328	14.0363	10
P 528 A214 CAST STEEL 23-	-Dec-83 06-Jul-84	3974	2 35.56	35.56	1.60	9.78 2460	14.2335	14.1522	8.6
P 525 A216 CAST STEEL 23-	-Dec-83 06-Jul-84	3974	2 35.56	35.56	1.57	9.78 2650	14.1888	14.0916	10
P 520 A214 CAST STEEL 23-	-Dec-83 04-Jul-84	3974	2 35.56	35.56	1.55	9.78 2650	14.1655	14.0562	12
P 523 A216 CAST STEEL 23-	-Dec-83 19-Sep-84	5099	2 35 53	35.56	1.55	9 78 2650	14.1345	13.7814	13
P 521 A216 CAST STEEL 23-	-Dec-83 19-5ep-84	5099	2 35 56	35 56	1 55	9 78 2450	14 1310	13 9794	13
P S19 A714 FAST STEEL 73	-Dec-83 19-Sen-84	5099	2 35 54	35 54	1 52	78 2440	14 1548	13 9475	15
P 574 1714 CAST STEEL 13-	-Dec-03 19-5ep-04	5899	2 25 53	15 54	1 40	0 78 245A	14 1513	13 9995	13
D 514 1314 CLET ETTEL 33	-Dec-03 17-3ep-04	5869	2 25.23	34.34	1 55	4.24 6444 9 75 7458	14 8498	13 8854	14
P 313 133 WORM CASE 13-	-Dec-03 17-Sep-04	J 977	4 JJ.JU 1 35 57	34.20	1.49	7.13 BUJU 8 EE 9/AR	13 7/15	13.00J4 Ni	14
P 312 AZ/ NUKR, CASI 17-	-nay-oj na		1 32.28	33.33	1.17	7.32 2049 8 59 9/46	13./813 (9.8145	NA 13 3474	1.5
P 313 AZ/ NURM. CASI 17-	-May~83 27~JUN-83	010	4 33.33	33.30	1.97	7.33 104V 8 FF 3/38	13.0193	13.7070	13
P 3V3 AZ7 RUKH. LASI 17-	-May-83 4/-Jun-83	840	1 33.43	33.48	1.30	7.33 4434 	13.8484	13.0444	13
P 317 A17 NURP. CAST 19-	-May-83 27-Jun-83	840	2 33.33	33.46	1.20	7.33 1630	13.7334	RA NI	RA NA
P JUY AZ/ NORM. LASI 19-	-May-83 2/-Jun-83	840	4 33.36	35.53	1.30	7.33 644U	13.8738	NA	NA ()
P 316 A27 NORE CAST 17-	-May-83 22-Aug-83	2160	2 35.53	32.26	1.30	A'33 TO46	13.7960	13./343	12
P 306 AZ7 NORM. CAST 19-	-May-83 22-Aug-83	2160	2 35.43	35.53	1.50	9.53 2630	13.7144	13.4407	11
P 311 A27 NORM CAST 19-	-May-83 22-Aug-83	2160	2 35 51	35.56	1.47	Y.55 Z640	13.8500	13.7830	13
P 315 A27 NORM. CAST 19-	-May-83 12-Dec-83	4344	2 35.53	35.53	1.50	9.55 2640	13.8815	13.7335	14
P 307 A27 NORM. CAST 19-	-May-83 12-Dec-83	4344	2 35.51	35.43	1.50	9.53 2630	13.8120	NA	NA
P 310 A27 NORM. CAST 19-	-Hay-83 19-Sep-84	9443	2 35.56	35.53	1.47	9.58 2640	13.7044	13.4135	13
P 314 A27 NORM. CAST 19-	-May-83 19-Sep-84	9443	2 35.53	35.51	1.50	9.55 2640	13.8350	13.4758	15
P 308 A27 NORM. CAST 19-	-May-83 19-Sep-84	9443	2 35 53	35,43	1.47	9.53 2630	13.5507	13.2847	12
N 23 DUCTILE CAST IRON 19-	-May-83 NA	NA NA	2 35.69	35.48	2.51	9.53 2820	21.4427	NA	NA
N 34 DUCTILE CAST IRON 19-	-May-83 27-Jun-83	840	2 35.46	35.46	2.51 1	0.13 2790	21.0555	20.9805	36
N 20 DUCTILE CAST IRON 19-	-May-83 27-Jun-83	840	2 35.89	35.48	2.51 1	0.06 2830	21.4476	NA	NA
N 24 DUCTILE CAST IRON 19-	-May-83 27-Jun-83	840	2 35.48	35.71	2.51	9.96 2820	21.4492	21.3735	31
N 30 DUCTILE CAST IRON 19-	-May-83 27-Jun-83	840	2 35.81	35.48	2.49 1	0.21 2810	21.2209	21.1481	34
N 26 DUCTILE CAST IRON 19-	-May-83 27-Jun-83	840	2 35.51	35.79	2.51 1	0.03 2820	21.4703	21.4101	28
N 21 DUCTILE CAST IRON 19-	-May-83 22-Aug-83	2160	2 35 46	35.51	2.51 1	0.06 2800	21.2250	21.1442	15
N 33 DUCTILE CAST IRON 19-	-May-83 22-Aug-83	2160	2 35.61	35.48	2.51 1	0.06 2810	21.2272	21.1261	19
N 27 DUCTILE CAST IRON 19-	-May-83 22-Aug-83	2140	2 35.48	35.56	2.51 1	0.03 2800	21.2906	21.1910	18

SAMPLE	TIME	IRRADIATION		DIMENS	IONS	WEIG	HTS	CORROSION	
*****	********	1 111	*******	*******		******		RATE	
START	END	TOTAL	RATE LENGTH	VIDTH	HEIGHT	HOLE DI AREA	INITIAL	FINAL	********
NUMBER MATERIAL DATE	DATE	HR	KR/H MM	HPI	XIM	nde hoe*hoe	GH	GM	MICRON/YR
*******************************	*******	******	*********	******	******	**********	*******	*******	*************
N 22 DUCTILE CAST IRON 19-May-83	12-Dec-83	4344	2 35.53	35.31	2.47	9.53 2790	21.1462	21.0014	13
N 32 DUCTILE CAST IRON 19-May-83	12-Dec-83	4344	2 35.48	35.48	2.51	10.04 2800	21.1250	20.9304	18
N 25 DUCTILE CAST IRON 19-May-83	17-Sep-84	7443	2 35.48	35.74	2.51	10.01 2820	21.3277	20.9377	16
N 28 DUCTILE CAST IRON 19-May-83	17-Sep-84	9443	2 35.48	35.56	2.51	10.04 2800	21.1163	20.6844	18
N 31 DUCTILE CAST IRON 17-May-83	17-Sep-84	9443	2 35.59	35.48	2.51	10.11 2800	21.1073	20.6382	20
N 19 DUCTILE CAST IRON 19-May-83	17-Sep-84	9443	2 35.48	35.76	2.51	10.03 2820	21.4648	21.0114	19
P 350 PURE IRON 27-Jun-83	NA	NA	2 32.08	31.42	1.83	7.45 2160	13.8374	NA	NA
P 347 PURE IRON 29-Jun-83	23-Aug-83	1320	2 31 72	31.90	1.75	9.45 2140	13.8277	NA	NA
P 352 PURE IRON 29-Jun-83	23-Aug-83	1320	2 31.78	31.72	1.91	9.45 2170	13.7406	13.6162	48
P 341 PURE IRON 27-Jun-83	23-Aug-83	1325	2 31.55	31.88	1.96	9.45 2180	14.0704	13.9677	48
P 351 PURE IRON 27-Jun-83	12-Dec-83	3504	2 31.85	31 67	1.45	9.42 2140	11.7003	11.5112	28
P 342 PURE IRON 29-Jun-83	12-Dec-83	3504	2 31.45	31.75	1.96	9.35 2160	14.0242	13.8434	27
P 348 PURE IRON 27-Jun-83	06-Jul-84	7478	2 31.70	32.18	1.55	9.55 2140	11.3819	11.1057	19
P 345 PURE IRON 29-Jun-83	06-Jul-84	7478	2 31.70	32.18	1.91	9.47 2200	13.8486	13.5960	17
P 349 PURE IRON 27-Jun-83	06-Jul-84	7478	2 31.88	31.75	1.91	9.35 2190	13.9183	13 4544	18
P 346 PURE IRON 29-Jun-83	04-Jul-84	7478	2 32 88	31.88	1.85	9.30 2200	13.3129	13 0438	15
P 343 PURE IRON 27-Jun-83	06-Jul-84	7478	2 31.60	31.95	1 78	9.40 2160	12.9896	12.6974	20
P 344 PURE IRON 27-Jun-83	19-Sep-84	8461	2 31.90	31 95	1.91	9.40 2200	13.9446	13.6825	16
N 253 1025 WROUGHT STEEL 26-Oct-82	NA	NA	100 35 38	35.66	1.47	9.60 2630	13.3240	NA	NA
N 250 1025 WROUGHT STEEL 26-Oct-82	30-Nov-82	784	100 35 43	35 66	1.45	9.58 2630	13.0148	12.8319	99
N 251 1025 WROUGHT STEEL 26-Oct-82	30-Nov-82	784	100 35.74	35.51	1 45	9.63 2640	13.2756	13.0136	140
N 256 1025 WROUGHT STEEL 26-Oct-82	30-Nov-82	784	100 35.49	35.46	1 45	9.70 2630	13.2662	12.9739	160
N 261 1025 WROUGHT STEEL 01-Dec-82	03-Nat-83	2160	100 35.41	35.56	1.45	9.65 2620	13.2239	12.5706	130
N 262 1025 VROUGHT STEEL 01-Dec-82	03-Mar-83	2160	100 35.43	35.56	1.40	9.60 2620	13.0250	12.3606	130
N 240 1025 WROUGHT STEEL 01-Dec-82	03-Mar-83	2160	100 35.46	35.59	1.42	9.63 2620	13.2804	12.6105	130
N 252 1025 WROUGHT STEEL 26-Oct-82	03-Har-83	2744	100 35.53	35.64	1.50	9.60 2650	13.3769	12.8114	81
N 257 1025 WROUGHT STEEL 26-Oct-82	20-Jul-83	5296	100 35.53	35.69	1.47	9.63 2650	13.2404	11.8354	120
N 259 1025 WROUGHT STEEL 26-Oct-82	20-Jui-83	5296	100 35.69	35.56	1.45	9.58 2440	13.2583	12.3356	74
N 255 1025 WROUGHT STEEL 26-Oct-82	22-Nov-83	7576	100 35.69	35.51	1.45	9.65 2640	13.2741	12.2153	59
N 248 1825 WROUGHT STEEL 26-Oct-82	22-Nov-83	7576	100 35.56	35.74	1.47	9.65 2650	13.2516	11.3232	110
N 254 1025 WROUGHT STEEL 26-Oct-82	22-Nov-83	7576	100 35 66	35.59	1.45	9.58 2640	13 2803	NA	NA
N 249 1025 WROUGHT STEEL 26-Oct-82	27-Feb-84	9298	100 35.44	35.59	1.45	9 65 2640	13.2324	11.9401	59
N 258 1025 WROUGHT STEEL 26-Oct-82	17-Sep-84	13245	100 35.61	35.48	1.47	9.63 2640	13.2607	10 9057	75
N 175 2.5%CR,1%MO STEEL 26-Oct-82	30-Nov-82	784	100 35.53	35.53	6.35	9.60 3480	58.5172	58.2838	96
N 174 2.5%CR,1%NO STEEL 26-Oct-82	30-Nov-82	784	100 35.59	35 56	4 35	9.58 3480	58.4257	58.4449	74
N 176 2.5%CR,1%NO STEEL 26-Oct-82	30-Nov-82	784	100 35 53	35.53	6.35	9.63 3478	58.5346	58.2339	120
N 148 2.5%CR,1%NO STEEL 01-Dec-82	03-Mar-83	2160	100 35.56	34.67	2.57	9.58 2760	23 3026	22.8631	82
N 149 2.5%CR,1%HO STEEL 01-Dec-82	03-Mar-63	2160	100 35 43	35.51	2.59	9.60 2820	23.8301	23.3444	89
N 150 2.5%CR,1%HO STEEL 01-Dec-82	03-Mar-83	2160	100 35.46	35.51	2.59	9.58 2820	23.8226	23.3641	84
N 155 2.5%CR,1%HO STEEL 26-Oct-82	03-Mar-83	2944	100 35.74	35.53	2.59	9.58 2840	24.0379	23.5718	62
N 153 2.5%CR,1%ND STEEL 26-Oct-82	20-Jul-83	5296	100 35.53	35.15	2.59	9.55 2800	23.4058	22.4341	58
N 156 2.5%CR, 1%HO STEEL 26-Oct-82	20-Jul-83	5296	100 35.53	35.46	2.54	9.55 2820	23.4895	22.5041	74
N 154 2.5%CR,1%HD STEEL 26-Oct-82	22-Nov-83	7574	100 35.53	35.48	2.57	9.55 2820	23.4738	22.1677	69
P 724 A216 CAST STEEL 06-Mar-84	NA	NA	100 35.41	35.56	1.60	9.45 2670	14.7218	NA	XA
F 920 A216 CAST STEEL 06-Mar-84	07-Apr-84	815	100 35.66	35.53	1.55	9.73 2650	14.4975	14.1343	190
P 732 A216 CAST STEEL 06-Mar-84	07-Apr-84	815	100 35.44	35.51	1.50	9.58 2650	14.4731	14.2863	97
P 923 A216 CAST STEEL 06-Har-84	25-Jun-84	2393	100 35.64	35.53	1.55	9.53 2660	14.3426	13.4209	130
P 730 A216 CAST STEEL 06-Mar-84	15-Jun-84	2373	100 35.56	35.64	1.57	9.55 2640	14.5399	13,9650	100
P 926 A216 CAST STEEL 06-Har-84	25-Jun-84	2393	100 35.61	35.53	1.55	9.58 2650	14.4754	13.8164	120
P 721 A216 CAST STEEL 06-Har-84	25-Jun-84	2393	100 35.53	35.64	1.55	9.75 2450	14.4789	13.6616	140
Q 121 A216 CAST STEEL 20-Apr-84	17-Sep-84	3132	100 35.61	35.56	12.75	7.40 NA	117.9500	116.6844	NA

_
-

SAMPLE		TIME	IR	RADIAT	ION		DIMENS	IONS		VE I (HTS	CORROSION
*****		********	1 11		***		******	****		***1		RATE
	START	END	TOTAL	RATE	LENGTH	VIDTH	HEIGHT	HOLE	DI AREA	INITIAL	FINAL	*******
NUMBER MATERIAL	DATE	DATE	HR	KR/H	MM	HH	HPI	ЖH	NH * NH	GM	GN	MICRON/YR
********	*******	********		*****	1111111	******	******	*****	******	********	*******	**************
Q 119 A216 CAST STEEL	20-kpr-84	17-5ep-84	3132	100	35.61	35.59	12.73	9.5	O NA	117.9537	116.2482	NA
P 933 A214 CAST STEEL	06-Nar-84	17-Sep-84	3947	1 22	35.56	35.64	1.52	9.5	0 2660	14.4312	13.7865	69
P 928 A216 CAST STEEL	06-Mar-84	17-Sep-84	3947	100	35.56	35.64	1.57	9.5	8 2660	14.6320	13.7130	98
P 927 A216 CAST STEEL	06-Mar-84	17-Sep-84	3947	1 าก	35.56	35.64	1.52	9.6	8 2650	14.6920	13.6941	110
P 922 A216 CAST STEEL	06-Mar-84	17-Sep-84	3947	100	35.66	35.53	1.55	9.5	8 2660	14.7769	13.7572	110
P 919 A216 CAST STEEL	06-Har-84	17-Sep-84	3947	177	35.54	35.53	1.52	9.5	8 2650	14.4251	13.1022	140
P 925 A216 CAST STEEL	06-Mar-84	17-Sep-84	3947	1 10	35 61	35.56	1.52	9.8	0 2650	14.2010	13.3098	100
P 931 A216 CAST STEEL	06-Mar-84	17-Sep-84	3947	1 20	35.66	35.53	1.52	9.6	3 2650	14.5640	13.7429	67
P 929 A216 CAST STEEL	06-Mar-84	17-Sep-84	3947	100	35.56	35.64	1.55	9.5	3 2660	14.5015	13.5816	98
N 104 A27 CAST STEEL	26-Oct-82	NA	NA	1.00	36.04	35.44	6 35	9.6	5 3530	59.8908	NA	NA
N 83 A27 CAST STEEL	26-0ct-82	30-Nov-82	784	110	35.61	36.83	2.44	9.6	8 2900	23.6034	NA	NA
N 82 A27 CAST STEEL	24-0ct-82	30-Nov-82	784	100	35.61	35.86	2.44	9.6	0 2830	23.0058	22.8021	100
N 103 A27 CAST STEEL	26-0ct-82	30-Nov-82	784	100	35.66	35.41	6 35	9.5	5 3480	58.8981	58 4599	180
N 66 A27 CAST STEEL	24-0ct-82	03-Mar-83	2944	1 ^ ^	35.64	35.79	2 44	9.6	3 2830	22.9468	21.9903	130
N 108 A27 CAST STEEL	26-Oct-82	03-Mar-83	2944	100	35.51	35.61	6.35	9.6	8 3480	59.0103	\$7.7520	140
N 69 A27 CAST STEEL	26-Oct-82	03-Mar-83	2944	100	35.61	36 65	2.46	9.6	8 2890	23.3693	22 6845	90
N 70 A27 CAST STEEL	26-0ct-82	20-Jul-83	5296	1 1.1	36.02	35.61	2.44	9.6	3 2840	22 9934	NA	NA
N 81 A27 CAST STEEL	26-Oct-82	20-Jul-83	5296	100	35.41	35.41	2.46	98	6 2800	22.2327	21.0285	91
N 67 A27 CAST STEEL	26-0ct-82	22-Nov-83	7576	100	35.64	36.40	2.44	96	8 2870	23.2754	21.0709	110
N 48 A27 CAST STEEL	26-Oct-82	22-Nov-83	7576	j n n	36.60	35.61	2.46	97	0 2890	23.5309	21.6939	94
N 107 A27 CAST STEEL	26-0ct-82	17-Sep-84	13245	1 10	35.66	35.43	6.35	9.6	5 3480	58.9214	55.1143	92
P 157 A27 NORM. CAST	25-Mar-83	NA	NA	1.10	35.64	35.36	1.52	9.2	7 2650	14.1034	NA	NA
P 149 A27 NORM. CAST	25-Mar-83	20-Jul-83	2352	100	35.53	35.20	1.52	92	5 2630	13.7566	11.9167	330
P 156 A27 NORM CAST	25-Mar-83	20-Jul-83	2352	1 ~ ~	35.64	35.38	1.50	8.9	9 2650	13.9246	13.4967	77
P 152 A27 NORM CAST	25-Mar-83	22-Nov-83	4632	1 1 1 1	35.56	35.33	1.50	8.9	7 2640	13.9311	12.4093	140
P 150 A27 NORM. CAST	25-Nar-83	22-Nov-83	4632	1.0	35 74	35 33	1.52	8.9	7 2660	14.1475	NA	XA
P 154 A27 NORM. CAST	25-Mar-83	22-Nov-83	4632	111	35.56	35.26	1.52	7 1	4 2640	13.8398	12.9780	79
P 151 A27 NORM. CAST	25-Mar-83	27-Feb-84	7080	100	35.56	35.33	1.50	9.1	4 2640	13.8938	11 9438	120
P 148 A27 NORM CAST	25-Mar-83	84-19K-90	7895	111	35.38	35.56	1.52	9.2	5 2640	14.1464	NA	NA
P 153 A27 NORM. CAST	25-Mar-83	17-Sep-84	11027	100	35.39	35.41	1 52	8.8	6 2660	14.1829	12.0673	81
P 155 A27 NORM. CAST	25-Mar-83	17-Sep-84	11027	100	35.56	35.31	1.52	9.2	7 2640	13.8457	11.8347	77
N 11 DUCTILE CAST IRON	01-Dec-82	NA	NA	100	35.74	3\$.53	2.51	10.0	3 2820	21.4442	NA	NA
N 9 DUCTILE CAST IRON	01-Dec-82	03-Mar-83	2160	120	35 53	35.51	2.51	10.0	3 2800	21.2246	20.5698	120
N 19 DUCTILE CAST IRON	01-Dec-82	03-Mar-83	2160	101	35 48	35.44	2.51	10.0	6 2810	21.1342	20.4070	130
N 18 DUCTILE CAST IRON	01-Dec-82	03-Mar-83	2160	י י	35.48	35.31	2.49	10.0	6 2780	20.9734	20.4902	90
N 12 DUCTILE CAST IRON	01-Dec-82	20-Jul-83	4512	100	35.76	35.48	2.51	10.0	1 2820	21.3417	19 6662	150
N 14 DUCTILE CAST IRON	01-Dec-82	20-Jul-83	4512	1 11	35.76	35.51	2.51	10 1	1 2820	21.2602	NA	XX
N 10 DUCTILE CAST IRON	01-Dec-82	22-Nov-83	6792	100	35.46	35.59	2.49	10.0	6 2800	21.1626	NA	NA
N 13 DUCTILE CAST IRON	01-Dec-82	22-Nov-83	6792	100	35.48	35.43	2.51	10.0	3 2790	21.3153	17.9927	78
N 15 DUCTILE CAST IRON	01-Dec-82	22-Nov-83	6792	100	35.48	35.86	2.51	10.0	3 2830	21.3401	19.3174	120
N 8 DUCTILE CAST IRON	01-Dec-82	27-Eeb-84	\$514	iuu	35.43	35.51	2.46	9.9	8 2790	21.0341	17.0180	95
N 17 DUCTILE CAST IRON	01-Dec-82	17-5ep-84	12461	100	35.51	35.79	2.51	9.9	4 2820	21.3775	19.1147	72
N 16 DUCTILE CAST IRON	01-Dec-82	17-Sep-84	12461	100	35.48	35.71	2.51	9.5	8 2820	21.3861	18.5826	89
FE 12 PURE IRON	25-Mar-83	NA	KA	100	31.70	31.75	1 60	9.4	0 2130	11.6403	NA	NA
FE 6 PURE IRON	25-Mar-83	20-Jul-83	2352	100	31.78	31.70	1.57	9.5	0 2120	11.6323	11.2103	74
FE 10 PURE IRON	25-Mar-83	20-Jul-83	2352	100	31.47	31.65	1.63	9.4	2 2120	11.6375	10.7409	200
FE 11 PURE IRON	25-Mar-83	22-Nov-83	4632	100	31.72	31.67	1.55	9.4	7 2118	11.4532	NA	NA
FE 9 PURE IRON	25-Mar-83	12-Nov-83	4632	100	31.78	31.75	1.50	9.4	0 2110	11.5239	10.9212	69
FE 13 PURE IRON	25-Mar-83	22-Nov-83	4632	1 ገባ	31.72	31.70	1.40	1.3	7 2120	11.4046	10.3023	130
FE 5 PURE IRON	25-Mar-83	27-Eeb-84	7080	1 า า	31.70	31.67	1.37	9.4	2 2080	10.1409	8.8721	97
FE 7 PURE IRON	25-Har-83	17-Sep-84	11027	1 วา	31.83	31.67	1.52	9.4	5 2120	11.3945	9.2420	100

IRRADIATION CORROSION

	SAMPLE	TIT	E []	RADIA	TION		DIMENSI	IONS		VEIG	ITS	CORROSION	
	******	111111								11111	111	RATE	
		START ENI	TOTAL	L RATE	LENGTH	VIDTH	HEIGHT	HOLE D	I AREA	INITIAL	FINAL	*******	
NUMBER	R MATERIAL	DATE DAT	E HR	KR/H	MM	MM	MM	HM	MM * MM	GM	GM	MICROM/YR	
*****	****************	***************	********	******	*******	******	******	******	******	********	*******	***************	ł
FE 8	PURE IRON	25-Mar-83 17-Sep	-84 11023	1100	31.70	31.75	1.50	7.32	2110	10.7087	8.7958	100	
FE 14	PURE IRON	25-Mar-83 17-Sep	-\$4 1102	1.11	31.78	31.67	1.42	9.37	7 2100	10.9622	9.6477	63	

- -- · -----

·· ___ ·

APPENDIX D

SLOW-STRAIN-RATE AND CORROSION FATIGUE TEST RESULTS

APPENDIX D.1

SUMMARY OF SLOW-STRAIN-RATE DATA

<u>Specimen</u> Reference	Strain Rate, <u>s-I</u> Cast Stee	<u>r, °c</u>	Salution	Sparge	Reduction of Area,	Elon- gation,%	Yield Strength. MPa	Ultimate Strength, <u>MPa</u>	Yield Load, kg	Ultimate Load, kg	Initial Width. 	Initial Thickness, mm	Initial Gage Length, m	Final Width, mm	Final Thickness mm	Final Gage Length, mm	Energy To Max. Load, kg-m	Total Energy Absorbed, kg-m
Ų249	1 x 10 ⁻⁶	 90	PBB 2	Air exposed	18	15	-	-	-	-	5.10	4.98	25.4	4.65	4.50	29.2	-	-
Q250	1 x 10 ⁻⁴	150	PBB 2	Ar	20	16	251	446	630	1122	5.03	4,90	25.4	4.50	4.39	29.5	614	678
Q253	1 x 10 ⁻⁶	Amo	рня 5	Air exposed	19	13	-	327	-	839	4.95	4.83	-	4.32	4.42		-	-
452	1 x 10 ⁻⁴	150	PBB5	Ar	19	14	260	436	653	1095	5.08	4.85	25.4	4.70	4.26	28.9	455	491
0258	2 x 10 ⁻⁷	150	P862	Ar	16	11	237	460	594	1149	4.98	4.93	25.4	4.44	4.62	28.2	349	383
Q259	2 x 10 ⁻⁷	90	PBB2	Air exposed	15	14	-	-	-	-	4,95	4.90	See Log	4,60	4.47	See Log	-	-
)26 0	1 x 10 ⁻⁶	150	PBB 2	20% 0 ₂ 80% Ar	26	16	242	457	594	1124	5,00	4.83	25.4	4,24	4.2?	-	518	614
-)261	1×10^{-4}	150	RBB2	20% 0 ₂ 80% Ar	17	14	237	442	567	1052	4.93	4.75	25.4	4.52	4.32	28.9	-	-
U262	1×10^{-4}	150	Air	-	23	16	236	440	571	1067	4.98	4.77	25.4	4.42	4.14	-	502	564
Ų264	1 x 10 ⁻⁵	150	PBR2	20% 0 ₂ 80% Ar	25	18	270	449	648	1078	4.88	4.83	25.4	4.32	4.14	30.N	-	-
2265	2 x 10 ⁻⁷	150	Air		25	19	232	502	567	1228	5,00	4.80	25.4	4.42	4.11	30.2	-	-
U266	1 x 10 ⁻⁶	150	Air		33	17	282	474	708	1192	5.03	4.90	25.4	4.06	4.04	29.7	642	755
ų267	1 x 10 ⁻⁴	150	P882	20% 0 ₂ 80% Ar	25	14	278	424	571	1061	5.00	4,90	25.4	4.32	4.27	28.9	421	521
Q268	1 x 10 ⁻⁷	150	Air		15	17	257	496	653	1260	5.00	4,98	25.4	4.50	4.70	29.7	660	703

.

Spectmen	Strain Rate, s ⁻¹	⊺ , °C	Solution	Sparye	Reduction of Area, %	Elon- gation,	Yield Strength, MPa	Ultimate Strength, MPa	Yield Load, kg	Ultimate Load, kg	Initial Width, m	Initial Thickness, mm	Initial Gage Length, m	Final Width, mm	Final Thickness mm	Final Gage Length, mm	Energy To Max. Load, kg-m	Total Energy Absorhed, kg-m
4594	1 x 10 ⁻⁵	150	PBB2	20% 0 ₂ 80% Ar	14	13	241	440	612	1118	5.00	4,98	25.4	4.70	4.57	-	518	543
Ų270	l x 10 ⁺⁶	150	PBB2	201 U2 801 Ar	18	12	244	437	635	1139	5.80	4.90	25.4	4,72	4.44	-	397	431
Q271	1 x 10 ⁻⁴	150	Air	-	53	17	247	448	616	1120	5.00	4.90	25.4	4.26	4.16	-	597	700
P558	2 x 10 ⁻⁷	30	РВВ2	Air exposed	13	14	-	-	-	-	5.03	5.03	-	4.67	4.72	-	-	-
P561	1 × 10-4	υe	РВВ 2	Air exposed	24	15	458	-	-	-	4.93	5.03	25.4	4.26	4.44	-	-	-
P562	1 × 10 ⁻⁴	90	Air	-	40	22	-	482	-	~	4,90	5.03	25.4	-	-		-	-
P563	2 x 10 ⁻⁷	40	P882	Air	15	-	-	355	-	-	4.98	5,03	-	4.65	4.57	-	-	-
P564	2 x 10 ⁻⁷	90	PB32	Air exposed	13	14	-	444	-	1116	4.93	5.00	-	4.65	4.62	-	-	
P565	1×10^{-4}	30	Air	-	25	20	-	504		•	4,90	5,00	25.4	-	-			-
P566	0.005	90	Air	-	38	22	-	465		-	4.85	5.03	-	-	-	-	-	-
P567	2 x 10 ⁻⁷	30	PBB2	Air exposed	13	14	-	426	-	-	4,98	5.03	-	-	-	-	-	-
P569	2 x 10 ⁻⁷	150	Air	-	22	-	256	513	-	-	5.03	5.05	68.05	4.57	4.32	73.23	687	/44
P5/0	2 x 10 ⁻⁷	30	рвя5	Air exposed	16	16	245	465	63 0	1198	5.00	5.05	25.4	4.75	4.44	-	554	614
4212	2 x 10 ⁻¹	150	РВВ2	20% 0 ₂ 80% Ar	-	12	301	502	776	1295	5,00	5,05	25.4	4,67	4.83	-	500	549

Specimen	Strain Kate, s ⁻¹	<u>T, °C</u>	Solution	Sparge	Reduction of Area,	Elon- gation,	Yield Strength, <u>MPa</u>	Ultimate Strength, <u>MPa</u>	Yield Load, kg	Ultimate Load, kg	lnitial Width, 	Initial Thickness, 	Initial Gage Length,	Final Width,	Final Thickness 	Final Gage Length, 	Energy To Max. Load, kg-m	Total Energy Absorbed, kg-m 910
P5/3	1 x 10 ·	150	Alr	-	40	20	223	453	5/1	11/9	5.00	5.03	25.4	3.93	3.01	•	001	010
P574	2 x 10-7	150	PBB2	20% 0 ₂ 80% Ar	17	15	292	506	744	1292	4.95	5.05	25.4	4.54	4.54	-	511	646
P575	2 × 10 ⁻⁷	150	Air	-	30	-	-	489	-	-	4.90	5,05	-	4.11	4.22	-	597	720
4216	2 × 10 ⁻⁷	90	PBB2	20% 0 ₂ 80% Ar	23	16	223	445	562	-	4.90	5.05	25.4	4.19	4,5?	-	539	577
1025 Cast	Steel, No	rmalize	d															
P289	1×10^{-4}	150	PBB2(a)	-	13	44	275	486	-	-	4.83	5.03	-	-	-		629	919
P291	1×10^{-4}	150	PBB2	-	48	27	-	-	-	-	5.00	5.05	68,28	-	-	75,18	710	1122
P292	2 x 10 ⁻⁷	150	PB82	Ar	12	15	130	519	-	-	4,93	5.03	-	-	-		441	508
P293	1 x 10 ⁻⁴	150	Air	-	53	22	255	491	-	-	4.88	5.08	25.4	-	-	31,2	578	473
P294	2 x 10 ⁻⁷	150	Air	-	40	21	293	553	-	-	4.93	5.08	25.4	-	-	30.7	772	1084
P295	1×10^{-4}	150	Air	-	24	19	263	489	-	-	4.95	5.08	25.4	-	-	30,2	642	797
P296	2 x 10 ⁻⁷	150	Air	-	54	22	250	553	-	-	4,98	5.05	25,4	-	-	31.0	642	797
4297	7 x 10 ⁻⁷	150	PBH2	02	-	-	-	-	-	-	4.62	5.03	-	-	-	-	-	
P298	2 × 10 ⁻⁷	150	PB8 2	Ar	18	15	249	528	-	-	4.80	5.08	-	-	-	-	435	501
h544	2 x 10 ⁻⁷	150	PBR2	¹⁾ 2	20	15	249	532	-	-	4.72	5.09	-	-	-	-	521	607
P300	2 x 10 ⁻⁷	150	PBB2	-	14	12	239	506	-	-	4.93	4.98	-	-	-	-	493	573
1301	2 x 10 ⁻⁷	150	PBB2	-	10	12	228	508	-	-	4,90	5.10	-	-	-	30,2	456	498
P302	1 x 10 ⁻⁴	150	PBB2(a)	-	19	5	275	462	-	-	4.88	5.05	-	-	-	-	425	529
P304	1×10^{-4}	150	P882	-	50	22	275	499		-	4.98	5.05	-	-	~	31.0	724	1065

(a) Exposed to PBB2 for +2 weeks before straining.

Specimen 1025 Wron	Strain Rate, s ⁻¹	<u>ľ, °C</u> Iransy	Solution	<u>Sparge</u>	Reduction of Area, 1	Elon- gation,	Yield Strength, MPa	Ultimate Strength, <u>MPa</u>	Yield Load, kg	Bltimate Load, kg	Initia) Width, 	Initial Thickness,	Initial Gage Length, mm	Final Width, mm	Final Thickness m	Final Gage Length, mm	Energy To Max. Load, kg-m	Total Energy Absorbed, kg-m
N356	2 x 10 ⁻⁷	150	Air	-	63	28	-	-	-	_	4.93	6.32	25.4		-	32.3	-	
N358	1×10^{-4}	150	P882	_	12	33	243	386	785	1247	4,98	6.35	25.4	2.12	3.33	33.3	-	-
N359	1 × 10 ⁻⁴	150	Air	-	69	31	267	377	853	1202	4.93	6.35	25.4	2.11	3.48	33.0	-	
N362	1×10^{-4}	150	Air	-	70	30	251	383	810	1234	4.98	6.35	25.4	2.11	3.45	33.0	-	-
N365	2 x 10 ⁻⁷	150	P882	-	21	35	248	422	-	-	4.95	6.35	25.4	-	-	30.7		-
N369	1 × 10 ⁻⁴	150	PBB2	-	71	35	263	408	844	1311	4.98	6.35	25.4	2.12	2.38	33.5	-	-
N370	2 x 10 ⁻⁷	150	Air	-	60	30	-	-	-	-	4.95	6.35	25.4	-	-	32.8	-	-
N3/1	2 x 10 ⁻⁷	150	PBB2	-	21	38	274	430	-	-	4.88	6,35	25.4	-	-	28.2	-	-
1025 Wrou	ight Steel,	Longit	udinal Uri	ent at ion														
N372	2 × 10 ⁻⁷	150	PB82	-	29	18	304	499	-	-	4.90	5.30	25.4	-	-	29.7	-	-
N374	1 x 10 ⁻⁵	150	Air	-	53	22	-	439	-	-	4.93	6,32	25.4	-	-	30.7	-	-
N377	1×10^{-4}	150	PB82	-	53	23	295	424	-	-	4.85	6,35	25.4	-	-	31.0	-	-
N378	1×10^{-4}	150	PBB2	-	50	20	292	441	-	-	4.93	6.30	25.4	-	•	30.2	-	-
N381	2 × 10 ⁻⁷	150	PBB 2	-	28	17	301	487	-	-	4,95	6.27	25.4	-	-	29.5	-	-
N382	1×10^{-4}	150	P882	-	50	22	-	-	-	-	4.93	6,30	25.4	-	-	31.0	-	-
N384	1×10^{-4}	150	Air	-	56	22	298	43()	955	1370	4.95	6,30	25.4	3.30	4.19	31.0	-	-
N 389	2 × 10 ⁻⁷	150	Air	-	52	24	291	480	-	-	4.95	6.32	25.4	-	-	31.2	-	-
IVEN	1 x 10 ⁻⁴	150	Air	-	55	22	292	426	928	1354	4.93	6.32	25.4	3.30	4,22	31.0	-	-

i

	Specimen	Strain Rate, s ⁻¹	<u>r, °c</u>	Solution	Sparge	Reduction of Area,	Elon- gation,	Yield Strength, MPa	Ultimate Strength, MPa	Yield Load, kg	Ultimate Load, kg	Initial Width, 	Initial Thickness,	Initial Gage Length, 	Final Width,	Final Thickness mm	Final Gage Length, mm	Energy To Max. Load, kg-m	Total Energy Absorbed, <u>kg-m</u>
	2 1/2% Cr	, 1% Mo St	eel																
	M877	1×10^{-4}	150	Air	-	63	21	-	-	-	-	4.98	5.08	25.4	-	-	30.7	-	-
	M878	2 x 10 ⁻⁷	150	PBB2	-	37	16	•	•	-	-	4.93	5.10	25.4	-	-	29.2	-	-
	M879	l x 10 ⁻⁴	150	Air	-	64	18		-	-	-	4.98	5.13	25.4	-	-	30.0	-	-
	MSAN	2 x 10 ⁻⁷	150	PBB2	-	28	15	-	-	-	-	4.88	5.10	25.4	-	-	29.2	-	
	M891	2 x 10 ⁻⁷	150	Air	-	60	19	-	-	-	-	4,93	5.10	25.4	-	-	30.0	-	-
D	M892	1×10^{-4}	150	PBB2	-	50	19	-	-	-	-	4.95	5,10	25.4	-	-	30,2	-	-
•7	M893	1×10^{-4}	150	PBB 2	-	53	20	-	-	-	-	4.88	5,08	25.4	-	-	30.5	-	-
	Ductile C	ast Iron																	
	M894	1×10^{-4}	150	PBB2	-	3.8	5.0	-	-	-	-	4.93	5,08	25.4	-	-	26.7	-	
	M895	1×10^{-4}	150	PB82	-	3.3	5.5	-	-	-		4.88	5,08	25.4	-	-	26.4	-	-
	M896	2 x 10 ⁻⁷	150	PB82	~	3.0	4.4	-	-	-	-	4.93	5.08	25.4	-	-	26.4		-
	M897	2 x 10 ⁻⁷	150	PBB2	-	3.3	4.8	-	-	-	-	4.88	5.08	25.4	-	-	25.9	-	-
	M898	1×10^{-4}	150	Air	-	4.5	7.5	-	-	-	-	4,95	5.08	25.4	-		26.7	-	-
	M899	2 x 10 ⁻⁷	150	PBB2	-	4.4	4.2	-	-	-	-	4.90	5.05	25.4	4.83	4.98	26.4	-	-
	M900	2 x 10 ⁻⁷	150	Air	-	3.0	6.0	-	-	-	-	4.83	5,08	25.4	-	-	29.5	-	-

. 4

APPENDIX D.2

CORROSION FATIGUE TEST RESULTS

-

Specimen No. <u>N426</u>	Material <u>1025 steel</u>	W 5.1 cm B 1.3 cm
Load <u>635/63.5 kg</u>	Frequency <u>10 Hz</u>	Environment <u>Air</u>
Temperature <u>150°C</u>		
∆K, MPa√π	da/dn,	m/cycle
20.03	3.6 x	$10^{-8(a)}$
20.55	6.9 x	10-8
21.34	8.1 x	10 ⁻⁸
22.61	7.1 x	10-8
23.93	7.6 x	10 ⁻⁸
25.33	1.3 x	10-7
27.87	9.7 x	10 ⁻⁸
30.49	8.9 x	10-8
32.72	1.2 x	10 ⁻⁷
35.76	1.2 x	10 ⁻⁷
39.64	1.3 x	10-7
47.25	2.7 x	10-7
(a) This	 observation was delete	ed from

TABLE D.2.	Corrosion	Fatigue	Test	Results
		-		

 (a) This observation was deleted from determination of the regression line.

Specimen No. <u>N438</u>	Material <u>1025 steel</u>	W <u>5.1 cm</u> B <u>1.3 cm</u>
Load <u>635/63.5 kg</u>	Frequency <u>1 Hz</u>	Environment PBB2
Temperature <u>150°C</u>		

∆K, MPa√m	da/dn, m/cycle
27.6	2.8×10^{-8}
30.7	8.1 x 10^{-9}
32.5	1.2×10^{-8}
36.0	2.5×10^{-8}
40.0	1.0×10^{-8}
42.1	7.4 x 10^{-9}

.

Specimen No. <u>N440</u>	Material <u>1025 steel</u>	W <u>5.1 cm</u> B <u>1.3 cm</u>
Load <u>635/63.5 kg</u>	Frequency <u>1 Hz</u>	Environment <u>DI water</u>
Temperature <u>150°C</u>		

∆K, MPa√m	da/dn, m/cycle
24.06	$3.8 \times 10^{-8(a)}$
25.60	2.1 × 10^{-7}
26.39	2.4 x 10^{-7}
27.82	2.7 x 10 ⁻⁷
30.18	1.2×10^{-6}
31.53	6.5×10^{-7}
33.48	1.4 x 10 ⁻⁶
36.45	1.3 x 10 ⁻⁶
39.55	1.1×10^{-6}
44.44	2.4 x 10 ⁻⁶
49.62	2.0 x 10^{-6}
57.04	8.3 x 10 ⁻⁶

(a) Observation deleted from determination of the regression line.

Specimen No. <u>P623</u>	Material <u>A216 steel</u>	W <u>5.1 cm</u> B <u>1.3 cm</u>
Load <u>635/63.5 kg</u>	Frequency <u>5 Hz</u>	Environment <u>Air</u>
Temperature <u>150°C</u>		

da/dn, m/cycle
3.1×1^{-7}
3.6×10^{-7}
4.2 x 10^{-7}
4.9 x 10^{-7}
6.2 x 10 ⁻⁷
1.1 x 10 ⁻⁶

D.12

Specimen No. <u>P630</u>	Material <u>A216 steel</u>	W <u>5.1 cm</u> B <u>1.3 cm</u>
Load <u>635/63.5 kg</u>	Frequency 0.1 Hz	Environment <u>DI water</u>
Temperature <u>150°C</u>		

∆K, MPa√m	<u>da/dn, m/cycle</u>
34.6	3.0×10^{-6}
35.9	3.5×10^{-6}
37.0	3.9×10^{-6}
38.5	3.9 x 10-6
40.0	8.2 x 10^{-6}
41.8	8.6 x 10^{-6}
43.5	1.3 x 10 ⁻⁵
45.9	2.4 x 10^{-5}

Specimen No. <u>P626</u> Load <u>635/63.5 kg</u>

.

Temperature 150°C

Material <u>A216 steel</u> Frequency <u>1 Hz</u> W <u>5.1 cm</u> B <u>1.3 cm</u> Environment <u>DI water</u>

∆K, MPa√m	da/dn, m/cycle
31.5	6.4 x 10^{-7}
33.5	8.2×10^{-7}
34.5	1.6×10^{-6} (a)
36.0	1.2×10^{-7}
39.2	6.5×10^{-6}
41.8	4.0 x 10^{-6}
43.7	6.5×10^{-6}
46.8	4.9×10^{-6}
52.0	3.9×10^{-5}
57.3	3.1×10^{-5}

(a) Inadvertent overload. Deleted from the determination of the regression line.

Specimen No. <u>P625</u>	Material <u>A216 steel</u>	W <u>5.1 cm</u> B <u>1.3 cm</u>
Load 635/63.5 kg	Frequency <u>0.1 Hz</u>	Environment PBB2
Temperature <u>150°C</u>		

da/dn, m/cycle
1.4×10^{-7}
2.8×10^{-8}
4.6 x 10^{-7}
1.2×10^{-8}
8.6 x 10^{-8}
2.0 x 10^{-7}
1.2×10^{-6}
7.1 x 10 ⁻⁶
6.9×10^{-6}

 (a) Inadvertent overload. Data not used in determination of the regression line. APPENDIX E

COMPILATION OF STATISTICAL DATA

APPENDIX E

COMPILATION OF STATISTICAL DATA

Statistical Assumptions, Cautions, and Minor Conclusions:

- Most of the statistical analyses relied on the assumption of normally distributed error structures. This assumption was checked by performing the Shapiro-Wilk W test or the Kolomogorov D test for normality. Departures from normality were handled by data transformation; either taking the logarithm or ranking.
- Homogeneity of variance was also assumed for most analyses. This
 assumption implies that the underlying replicate variance is the same
 for each treatment combination. Data transformations applied to correct normality departures also corrected homogeneity problems.
- Some of the material differences in the experiments were somewhat confounded with specimen dimension differences and beginning date or ending date differences. Therefore, to conclude that differences among materials are due only to material differences, one must assume no significant dimension or date effect. In the case of the corrosion rate calculation, correction is made for the specimen dimension, which makes the assumption of no significant dimension effect very reasonable.
- All confidence limits are limits on the population mean, not on the individual values.
- Confidence intervals plotted in Figure 7 were derived from an analysis of A216 data only without assuming any log-linear trend over time. These confidence intervals and averages were obtained independently of the statistical analysis, including all materials for which a log-linear trend over time was assumed.

- In the statistical analysis of the moist salt tests, the true replicate error term that should be used to test material and water content differences is the container-to-container variability; not the within-container specimen variability. In order to obtain a statistical test for these differences one must assume no significant container-to-container variability. This assumption was examined by assuming a linear and quadratic trend only across water content and pooling the lack of fit into a container-to-container term. This term was not significant, which supports the assumption of no significant container effect.
- No statistical analysis was performed on the energy-absorbed data of the SSR tests.
- For completeness and possible future experimental design use, Table E.5 is included. The standard deviations and relative standard deviations are reported. The relative standard deviation is the standard deviation divided by the overall average represented as a percent.

TABLE E.1.	Estimated Mean Rate (at time shown) and 95% Confidence
	Intervals About the Mean for A216 Steel in Intrusion
	Brine PBB2 at 150°C, Unirradiated

Experiment	Hours	Estimated Mean Rate, µm/yr	Standard Error	Upper 95% Conf. Limit	Lower 95% Conf. Limit
A216-Anoxic test	696	19.8	1.18	22.4	17.2
	2897	14.1	1.18	16.7	11.5
	5321	16.7	0.68	18.2	15.2
	5635	11.9	0.75	13.6	10.3
A216-Oxic test	736	27.2	2.19	32.2	22.2
	2908	27.6	2.10	32.3	22.8
	5384	24.9	1.03	27.3	22.6

TABLE E.2.	Statistical Treatment of Data from PBB1/PBB3 Moist Salt	
	TestA216 Steel, 150°C	

Test Duration, h	H ₂ 0,	Mg, % ^(a)	Estimated Mean Rate, mm/yr	Standard _Error	Upper 95% Conf. Limit	Lower 95% Conf. Limit
767	20	1.7	0.615	0.031	0.696	0.535
767	30	2.7	0.665	0.050	0.794	0.537
1659	30	2.7	0.691	0.037	0.785	0.596
2178	5	0.42	0.469	0.011	0.497	0.440
2178	10	0.81	0.534	0.016	0.576	0.492
2178	20	1.7	0.669	0.007	0.687	0.626
2178	25	2.2	0.631	0.029	0.706	0.556
2178	30	2.7	0.663	0.037	0.758	0.567

(a) Calculated on a dry-weight basis.

TABLE E.3. Statistical Treatment of Corrosion Rate Data from Moist Salt Test of A216 Steel Having Various Heat Treatments

Environment	Material	Estimated Mean Rate, μm/yr	Standard Error	Upper 95% Conf. Limit	Lower 95% Conf. Limit
NaC1/NaC1	A216 (all treatments) ^(a)	4.59	0.32	5.29	3.89
PBB1/PBB1	A216 (all treatments) ^(a)	10.5	0.51	11.6	9.34
PBB1/PBB3	A216-C (as-cast)	577	73.2	743	412
PBB1/PBB3	A216-H (homogenized)	919	73.2	1080	753
PBB1/PBB3	A216-N (normalized)	766	73.2	932	600

(a) There was no significant difference among the rates of the three treatments of A216 in this environment; thus the data were combined to estimate an overall mean rate.

			Envir	onment			
	Ň	aC1/NaC1	PB	B1/PBB1	PBB1/PBB3		
Material	Rate, µm/yr	Comparison ^(a)	Rate, µm/yr	Comparison	Rate, µm/yr	Comparison	
A216-C	4.68	A	10.94	A	577.2	В	
A216-H	4.27	А	10.37	А	918.9	А	
A216-N	4.82	А	10.06	А	766.0	AB	
Standard							
Deviation:	1.18		1.90		146.4		

	TABLE	E.3.	(contd)
--	-------	------	---------

(a) Shared letters indicate no significant difference at 95% confidence level with respect to corrosion rates.

A statistical analysis of the data indicates that 1) the corrosion rates are significantly different depending on environment; 2) there are no significant differences among corrosion rates of the three types of A216 steel in the NaCl and PBB1/PBB1 environments; and 3) the A216-homogenized corrosion rate was significantly higher than the A216 as-cast corrosion rate in the PBB1/PBB3 environment.

<u>TABLE E.4</u>. Estimated Mean Rate (at time shown) and 95% Confidence Intervals About the Mean for A216 Steel in Intrusion Brine BB2 at 150°C Irradiated at 2 x 10³ rad/h and 1 x 10⁵ rad/h

	Hours	Estimated Mean Rate, µm/yr	Standard Error	Upper 95% Conf. Limit	Lower 95% Conf. Limit
A216, 2 x 10 ³ rad/h	768	21.1	1.55	24.6	17.6
	2180	13.9	1.56	17.4	10.4
	3974	11.1	0.98	13.3	8.9
	5099	13.7	0.98	15.9	11.4
A216, 1 x 10 ⁵ rad/h	815	141	7.0	156	125
	2393	116	5.0	127	105
	3947	105	3.5	112	97

Experiment	Random Standard Deviation	Relative Standard Deviation,%
General CorrosionAnoxic	2.73	31 7
General CorrosionOxic	2.36	13.8
Irradiated at 2.3 kr/h	1,78	9 9
Irradiated at 50 kr/h	11.47	11.0
Moist Salt:		
A216 at 767 h	101.9	15.0
A216 at 1659 h	89 9	13.0
A216 at 2178 h	57.9	0 Q
Ductile iron at 767 h	23.1	67
Ductile iron at 1659 h	3.69	1 1
Ductile iron at 2178 h	14.6	4 6
W1025 at 676 h	25.0	17 2
W1025 at 1659 h	7.32	9 7
W1025 at 2178 h	9.82	12.4
A216 in NaCl/NaCl	1.18	25.7
A216 in PBB1/PBB1	1.90	18.1
A216 in PBB1/PBB3	146.4	19.4
Slow Strain Rate:		
Reduction of area at 150°	4,42	11 2
Elongation at 150°	1.61	7.8
Reduction of area on	4.83	21.8
A2163 temps.		
Elongation on A2163 temps.	1.76	11.2

TABLE E.5.	Variability	Estimates	for	Each	Experiment
	, and the second s		. 01	Luch	cyber uneur

.-

.-

Summary of Statistical Data from Corrosion Fatigue Tests

The predicted values are points on the regression line. The lower 95% means and upper 95% means are the lower and upper confidence bands about the regression line. The values are Log(Rate) values.

_ ____

Summary of Statistical Data from Corrosion Fatigue Tests, Specimen Number N426

Observation Number	Log of Lower Mean, m/cycle(a)	Log of Upper Mean, m/cycle ^(a)
1	-7.265	-7.0628
2	-7.2373	-7.049
3	-7.1955	-7.0272
4	-7.1557	-7.0046
5	-7.1174	-6.9804
6	-7.0582	-6.9345
7	-7.0099	-6.884
8	-6.9768	-6.8395
9	-6.9396	-6.7789
10	-6.9007	-6.7045
11	-6.8394	-6.5726

(a) Lower and upper confidence values about the regression line, 95% confidence.

Observation Number	Log of Lower Mean, m/cycle(a)	Log of Upper Mean, m/cycle(a)
1	-6.7691	-6.3324
2	-6.7054	-6.2938
3	-6.5962	-6.2254
4	-6.4324	-6.1152
5	-6.3477	-6.0527
6	-6.2366	-5.9619
7	-6.0913	-5.8211
8	-5.9656	-5.6722
9	-5.8038	-5.4417
10	-5.662	-5.2126
11	-5.4905	-4.9151

Summary of Statistical Data from Corrosion Fatigue Tests, Specimen Number N440

(a) Lower and upper confidence values about the regression line, 95% confidence.

Summary	of	Statistical	Data	from	Corrosion	Fatigue	Tests,	Specimen	Number	P623
---------	----	-------------	------	------	-----------	---------	--------	----------	--------	------

Observation Number	Log of Lower Mean, m/cycle(a)	Log of Upper Mean, m/cycle(a)
1	-6.5974	-6.4857
2	-6.4881	-6.4025
3	-6.3911	-6.3214
4	-6.3172	-6.2503
5	-6.2284	-6.1499
6	-6.0561	-5.9222

(a) Lower and upper confidence values about the regression line, 95% confidence.

Observation Number	Log of Lower Mean, m/cycle(a)	Log of Upper Mean, m/cycle(a)
1	-5.7313	-5.4731
2	-5.5908	-5.3787
3	-5.4788	-5,2985
4	-5.3383	-5.1859
5	-5.2146	-5.0662
6	-5.0869	-4.9137
7	-4.9804	-4.7663
8	-4.8439	-4.5608

Summary of Statistical Data from Corrosion Fatigue Tests, Specimen Number P630

(a) Lower and upper confidence values about the regression line, 95% confidence.

	Sι	Immary	of	Statistical	Data	from	Corrosion	Fatique	Tests	Specimen	Number	P626
--	----	--------	----	-------------	------	------	-----------	---------	-------	----------	--------	------

Observation Number	Log of Lower Mean, m/cycle(a)	Log of Upper Mean, m/cycle(a)
1	-6.4344	-5.8437
2	-6.2135	-5.7079
3	-6.1096	-5,6413
4	-5.6816	-5.3294
5	-5.4885	-5.1504
6	-5.3657	-5.0156
7	-5.1916	-4.7926
8	-4.9478	-4.4259
9	-4.7364	-4.0749

(a) Lower and upper confidence values about the regression line, 95% confidence.

DISTRIBUTION

No. of Copies

OFFSITE

30 DOE Technical Information Center

D. H. Alexander Office of Geosciences and Technology Office of Civilian Radioactive Waste Management Washington, DC 20545

Allied Chemical Corporation File Copy 505 2nd Street Idaho Falls, ID 83401

Argonne National Laboratory Reference Library 9800 South Cass Avenue Argonne, IL 60439

R. G. Ballinger
Bldg. 24, Rm 215
Massachusetts Institute of Technology
77 Massachusetts Avenue
Cambridge, MA 02139

A. Bauer Office of Crystalline Repository Development P.O. Box 16595 Columbus, OH 43216-6595

Ernest Bondietti Environmental Sciences Division Oak Ridge National Laboratory Bldg. 1505 Oak Ridge, TN 37830

No. of Copies

J. W. Braithwaite Division 6312 Sandia National Laboratory P.O. Box 5800 Albuquerque, NM 87185

A. Brandstetter Office of Crystalline Repository Development 9800 South Cass Avenue Argonne, IL 60439

Brookhaven National Laboratory Reference Section Information Division Upton, Long Island, NY 11973

R. B. Chitwood DOE Division of Nuclear Power Development Washington, DC 20545

H. Clyde Claiborne Oak Ridge National Laboratory P.O. Box X Oak Ridge, TN 37830

C. R. Cooley Program Integration Division Office of Policy, Integration, and Outreach Office of Civilian Radioactive Waste Management Washington, DC 20585

DOE, Office of Terminal Waste Disposal and Remedial Action Washington, DC 20545

P. Colombo Brookhaven National Laboratory Nuclear Waste Mgt. Group Upton, Long Island, NY 11973

No. of Copies J. L. Crandall E. I. du Pont de Nemours & Co. Savannah River Laboratory Aiken, SC 29801 J. Davis U.S. Nuclear Regulatory Commission Washington, DC 20555 Environmental Protection Agency Office of Radiation Programs Technical Assessment Division AW559 Washington, DC 20460 A. Ogard Los Alamos Scientific Laboratory CNC-11, MS-514 Los Alamos, NM 87545 K. Flynn Argonne National Laboratory 9700 South Cass Avenue Argonne, IL 60439 R. G. Garvin E. I. du Pont de Nemours & Co. Savannah River Laboratory Aiken, SC 29801 L. L. Hench Dept. of Materials Science and Engineering University of Florida Gainesville, FL 32611 J. Holloway Dept. of Chemistry Arizona State University Tempe, AZ 85281 D. Isherwood, L-205 Lawrence Livermore National Laboratories P.O. Box 808, L-205 Livermore, CA 94550

No. of <u>Copies</u>

> L. H. Johnson Fuel Waste Technology Branch Atomic Energy of Canada, Ltd. W.N.R.E. Pinawa, Manitoba Canada ROE 1LO D. A. Knecht Exxon Nuclear P.O. Box 2800 Idaho Falls, ID 83401 Lawrence Berkeley Laboratory Reference Library University of California Berkeley, CA 94720 Lawrence Livermore National Laboratory Reference Library P.O. Box 808 Livermore, CA 94550 A. Lerman Dept. of Geological Sciences Northwestern University Evanston, IL 60201 D. Langmuir Department of Chemistry/ Geochemistry Colorado School of Mines Golden, CO 80401 W. L. Lindsay Centennial Professor Colorado State University Fort Collins, CO 80523 T. Longo Siting Division Office of Geologic Repositories Office of Civilian Radioactive Waste Management Washington, DC 20545 Los Alamos Scientific Laboratory Reference Library P.O. Box 1663 Los Alamos, NM 85744

No. of Copies R. Y. Lowrey DOE Albuquerque Operations Office Albuquerque, NM 87115 R. W. Lynch Manager, Department 4530 Sandia Laboratories P.O. Box 5800 Albuquerque, NM 87185 S. A. Mann DOE Chicago Operations and Regional Office Argonne, IL 60439 M. A. Molecke Nuclear Waste Experimental Programs Division 4512 Sandia Laboratories Albuquerque, NM 87185 J. P. Murray Harvard University Pierce Hall Cambridge, MA 02138 K. Nuttall Head, Fuel Waste Technology Branch Whiteshell Nuclear Research Establishment Pinawa, Manitoba, Canada ROE 1LO Oak Ridge National Laboratory Central Research Library Document Reference Section Oak Ridge, TN 37830 D. LeClaire Defense Waste and Byproducts Management Washington, DC 20545 J. D. Osnes **RE/SPEC** P.O. Box 725 One Concourse Drive Rapid City, SD 57709

Copies V. M. Oversby Lawrence Livermore National Laboratory P.O. Box 808 Livermore, CA 94550 W. M. Pardue Office of Crystalline Repository Development 9800 South Cass Avenue Argonne, IL 69439 F. L. Parker Dept. of Environmental Engineering Vanderbilt University Nashville, TN 37235 G. A. Parks Stanford University Department of Applied Earth Sciences Stanford, CA 94305 T. H. Pigford University of California Berkeley, CA 94720 G. F. Pinder Dept. of Civil Engineering Princeton University Princeton, NJ 08540 M. S. Plodinec E. I. du Pont de Nemours & Co. Savannah River Laboratory Aiken, SC 29801 J. Pomeroy National Academy of Sciences Committee of Radioactive Waste Management National Research Council 2101 Constitution Avenue Washington, DC 20418 R. G. Post College of Engineering University of Arizona Tucson, AZ 85721

No. of

No. of Copies L. D. Ramspott, L-204 Lawrence Livermore National Laboratory P.O. Box 808 Livermore, CA 94550 D. W. Readey Department of Ceramic Engineering Ohio State University 2041 College Road Columbus, OH 43210-1178 Savannah River Laboratory Reference Library Aiken, SC 29801 M. Seitz Argonne National Laboratory 9700 South Cass Avenue Argonne, IL 60439 R. Silva Lawrence Livermore National Laboratory P.O. Box 808 Livermore, CA 94550 M. J. Steindler Chemical Engineering Division Argonne National Laboratory 9700 South Cass Avenue Argonne, IL 60439 T. T. Vandergraaf Atomic Energy of Canada, LTD, W.N.R.E., Pinawa, Manitoba Canada ROE 1LO R. D. Walton Division of Waste Products MSB-107 P.O. Box A Aiken, SC 29801 Lars Werme SKBF-Swedish Nuclear Fuel Supply Co. Division KBS Box 5864 S-102 48 Stockholm, Sweden

No. of Copies

W. B. White Materials Research Laboratory Pennsylvania State University University Park, PA 16802 J. B. Whitsett DOE Operations Office 550 2nd Street Idaho Falls, ID 83401 R. E. Wilems INTERA, Environmental Consultants, Inc. 11999 Caty Freeway, Suite 610 Houston, TX 77079 R. F. Williams Electric Power Research Institute 3412 Hillview Avenue P.O. Box 104112 Palo Alto, CA 94303 Wilste Library U.S. Nuclear Regulatory Commission Washington, DC 20555 T. J. Wolery, L-202 Lawrence Livermore National Laboratory P.O. Box 808 Livermore, CA 94550 20 Office of Nuclear Waste Isolation 505 King Street Columbus, OH 43201 ATTN: S. J. Basham G. K. Beall W. A. Carbiener J. A. Carr D. E. Clark J. C. Cunnane P. L. Hofmann J. F. Kircher V. S. McCauley D. P. Moak

No. of Copies

- J. B. Moody
- J. S. Perrin
- G. E. Raines
- B. A. Rawles (5)
- R. A. Robinson
- J. R. Schornhorst
- 2 Salt Repository Project Office 505 King Avenue Columbus, OH 43201 ATTN: J. O. Neff K. K. Wu

ONSITE

- 2 DOE Richland Operations Office
 - J. J. Sutey P. A. Craig
- 3 Rockwell Hanford Operations
 - P. A. Salter
 - W. W. Schulz
 - M. J. Smith
 - Exxon Nuclear Company
 - S. J. Beard

Joint Center for Graduate Study

J. Cooper

UNC Nuclear Industries, Inc.

- F. H. Bouse
- 3 Westinghouse Hanford Company
 - W. F. Brehm
 - L. A. James
 - J. M. Lutton

No. of

Copies

- 62 Pacific Northwest Laboratory
 - L. L. Ames
 - M. J. Apted
 - W. F. Bonner
 - D. J. Bradley
 - H. C. Burkholder
 - T. D. Chikalla
 - D. G. Coles F. H. Dove
 - J. S. Fruchter
 - J. H. Jarrett
 - E. A. Jenne
 - J. H. Haberman
 - C. O. Harvey
 - F. N. Hodges
 - M. R. Kreiter
 - K. M. Krupka
 - W. L. Kuhn
 - J. L. McElroy
 - G. L. McVay
 - J. E. Mendel
 - D. M. Merz
 - L. G. Morgan
 - L. R. Pederson
 - R. D. Peters
 - S. G. Pitman
 - B. A. Pulsipher
 - D. Rai
 - P. W. Reimus
 - W. A. Ross
 - J. T. A. Roberts
 - W. A. Ross
 - R. J. Serne
 - J. W. Shade
 - D. W. Shannon
 - L. A. Sigalla R. P. Turcotte
 - R. E. Westerman (20) J. H. Westsik, Jr.
 - P. L. Whiting
 - Technical Information (5)
 - Publishing Coordination (2)