W11-10 G.J

10

(E?

Department of Energy

Washington, DC 20585

. . . .

101.2

WM BOCKET CONTROL CENTE

187 MA 20 P7 20

Mr. John Linehan Repository Projects Branch Division of Waste Management U.S. Nuclear Regulatory Commission Mail Stop 623-SS Washington, D.C. 20555

Dear Mr. Linehan:

On December 9 and 10 1985, the Basalt Waste Isolation Project (BWIP) held a workshop with the Nuclear Regulatory Commission (NRC) staff to discuss the proposed Rocky Coulee Large-scale Hydraulic Stress (LHS) test at the Hanford site. Subsequent to the workshop, NRC provided BWIP with comments on the LHS test plan by letter, dated April 10, 1986.

After the meeting of December 1985, the NRC staff commented that the test plan presented by BWIP was inconsistent with NRC's Site Technical Position (STP) 1.1. In particular, the staff was concerned that a hydrologic baseline had not been reached and the proposed LHS test would not satisfy all the testing objectives of STP 1.1. Since that time, the Department has reevaluated its approach to LHS testing, taking into account the staff's comments. We have adopted a strategy based on the Department's issues hierarchy (DDE/RW-0101) to plan our hydrologic testing program. Although this strategy has produced a testing program somewhat different from the one outlined in STP 1.1, we believe the program is responsive to the intent of STP 1.1, and should supercede it. We further believe that the planned testing program adequately addresses the concerns expressed by the NRC staff on hydraulic-head baseline, scale and related issues.

In the near term, we propose a series of two workshops to inform you of the geohydrologic testing program we have developed for the Hanford site. During the first workshop the discussions will be focused on two topics: (1) the pre-exploratory shaft (pre-ES) geohydrologic test plan and (2) the Department's response to your letter of April 10, 1986, with special emphasis on the pre-ES time period. A tentative agenda is enclosed (Enclosure A): the suggested dates of the workshop are April 7-9, 1987, in Richland, Washington. A second workshop will be held after the Site Characterization Plan (SCP) and associated study plans are released. The second workshop will address the full geohydrologic testing program and its operational details (QA plans, procedures, etc.) to the extent they have been developed.

In arriving at a preferred plan for pre-ES geohydrologic testing, the Department considered a number of options. Those options and their perceived advantages and disadvantages are presented in the enclosed paper (Enclosure B). The option we chose served as the basis for the pre-ES testing program. This program consists of: (1) expansion of the hydraulic-head baseline monitoring network with two new multi-level monitoring wells, (2) additional multi-level observation wells at intermediate distances between the RRL-2 wells and existing monitoring

Н

PDR WASTE B70320 PDR WASTE WM-10 PDR

81040146

2362

wells, (3) testing of four separate horizons at the RRL-2 location at the largest scale achievable, (4) hydrochemical sampling and analysis in conjunction with each LHS test, (5) radial convergence tracer tests in conjunction with each LHS test, and (6) reconfiguration of existing facilities to provide additional observation points. The program is further explained in Enclosure B and will be discussed at some length during the first workshop.

The NRC staff has requested to be consulted during plan development and in pre-test readiness reviews. These workshops constitute a part of that consultation. The NRC staff will be appraised of readiness review status through their Onsite Representative. In addition, NRC staff are invited to observe the geohydrologic testing.

As for specific issues raised in your letter of April 1986, our responses may be found in Enclosure C. The NRC staff stated that resolution of their comments is necessary prior to the initiation of testing and exploratory shaft construction. By this letter and the two workshops, we expect to make you fully informed of our revised geohydrology testing program. Should you have any questions about the enclosures or the upcoming workshop, please feel free to contact Dr. Allan Jelacic (586-9362).

I look forward to working with the NRC staff on this most important planning effort.

Sincerely,

James Knight, Director Sting, Licensing and Quality Assurance Division Office of Geologic Repositories Office of Civilian Radioactive Waste Management

Enclosures

Encl. to 102, 3; Ltr. John Linehan

ENCLOSURE A

DOE-NRC MEETING ON THE GEOHYDROLOGY TESTING PROGRAM FOR THE HANFORD SITE BEFORE CONSTRUCTION OF THE EXPLORATORY SHAFT Richland, Washington April 7-9, 1987

∸AGENDA-

The purpose of this meeting is: (1) for the DOE to present the planned program of geohydrologic testing at the Hanford site that would precede construction of the exploratory shaft; (2) for the DOE to respond to concerns raised by the NRC staff, States and Tribes at the December, 1985, meeting on BWIP's geohydrology program and in the staff's letter dated April 10, 1986; (3) for all interested parties to discuss the planned testing program; (4) for all interested parties to reach agreement on the planned testing program or to reach agreement on how to resolve any major concerns with the planned program.

<u>April 7, 1987</u>

8:30 - 9:00	<u>Introduction</u> - Welcome - Identification of participants - Scope and Objectives of meeting - Procedures to be followed - Review of agenda	DOE/NRC
9:00 - 9:30	<u>Geohydrologic Testing Strategy</u> – Issue resolution strategy – Geohydrologic issues in Site Characterization Plan (SCP) – SCP organization	DOE
9:30 - 10:15	Overview of Geohydrology Program - Planning Logic - Components of pre-exploratory shaft (pre-ES) program - Components of post-ES program - Program integration - Implementation procedures	DOE
10:15 - 10:30	Break	
10:30 - 11:15	Options Paper for Pre-ES Testing Program - Background - Approach - Identification of options - Recommendation	DOE

11:15 - 12:15	 <u>Planned Pre-ES Testing Program</u> Baseline monitoring Large-scale hydrologic testing and associated data collection Implementation procedures (Readiness reviews, test criteria, QA plans, interactions) Schedule 	DOE
12:15 - 1:30	Lunch	
1:30 - 2:30	NRC Caucus	All parties
2:30 - 3:30	Presentation of Preliminary Comments on Pre-ES Testing Program	NRC/States/ Tribes
3:30 - 5:00	Discussion of Preliminary Comments on Pre-ES Testing Program	All parties
5:00 - 6:00	Identification of Concerns for Further Discussion	All parties
	<u>April 8, 1987</u>	
8:30 - 9:00	Initial Response to Concerns Raised During First Day	DOE
9:00 - 12:00	Response to Previous NRC Concerns - Meeting of December 1985 - Letter of April 10, 1986	DOE
12:00 -1:30	Lunch	
1:30 - 2:30	NRC Caucus	All parties
2:30 - 3:30	Presentation of Preliminary Comments on Response to NRC Concerns	NRC
3:30 - 4:30	Discussion of Preliminary Comments on Response to NRC Concerns	All parties
4:30 - 6:00	<u>Identification of Preliminary</u> <u>Observations, Agreements, and</u> <u>Open Items</u>	All parties
6:00 - 8:00	Dinner	
8:00 - 11:00	NRC Caucus Identify and Draft Observations, Agreements, and Open Items	All parties

÷

-

<u>April 9, 1987</u>

8:30 - 10:00	Exchange and Discussion of Observations, Agreements, and Open Items	All parties
10:00 - 10:30	Break	
10:30 - 12:00	Preparation and Signing of Summary Meeting Minutes	All parties

• •

.

,

·

. , .

.

ENCLOSURE_B

2

OPTION PAPER

GEOHYDROLOGIC TESTING PROGRAM FOR THE HANFORD SITE BEFORE CONSTRUCTION OF THE FIRST EXPLORATORY SHAFT

EXECUTIVE SUMMARY

<u>Purpose</u>: To define the geohydrologic testing program to be conducted at the Hanford site before construction of the first exploratory shaft (ES).

<u>Objectives of testing program</u>: The principal objectives of the pre-ES geohydrologic testing program are as follows:

- To collect data on geohydrologic conditions that will be changed by site characterization activities.
- To collect data having the potential for providing an early indication of the presence of disqualifying conditions.
- To collect data on geohydrologic conditions in order to identify the effects of the ESF on the geohydrologic system and on subsequent geohydrologic tests.
- To collect data on geohydrologic conditions that may affect the design of the ESF or the repository.

<u>Types of tests that are needed</u>: Four types of tests are needed before shaft construction:

- Baseline hydraulic-head monitoring.
- Large-scale hydraulic stress (LHS) tests.
- Hydrochemical sampling in conjunction with LHS tests.
- Tracer tests in conjunction with LHS tests.

<u>Options evaluated</u>: Five options for the pre-ES geohydrology testing program were evaluated. As shown below, each has a different degree of risk of not attaining the objectives of the pre-ES testing program:

a.	Option Baseline hydraulic-head only	<u>Risk</u> Very high
b.	Baseline hydraulic-head and LHS testing of one flow top (Rocky Coulee) with hydrochemical sampling and tracer tests	High
с.	Baseline hydraulic-head and LHS testing of one flow top (Birkett) with hydrochemical sampling and tracer tests	High
d.	Baseline hydraulic-head and LHS testing in multiple horizons at the RRL-2 location with hydrochemical sampling and tracer tests	Low

Very low

e. Baseline hydraulic-head and LHS testing in multiple horizons at multiple locations with hydrochemical sampling and tracer tests

<u>Recommendation</u>: Option d, consisting of baseline hydraulic-head monitoring, LHS tests, hydrochemical sampling and tracer tests at the RRL-2 location in multiple horizons (Rocky Coulee, Cohassett, and Birkett flow tops and the Cohassett vesicular zone).

<u>Principal strengths of recommended option:</u> The principle strengths of the recommended option can be summarized as follows:

- Provides predisturbance hydraulic-head baseline;
- Documents geohydrologic conditions at the RRL-2 site before changes by ES construction;
- Has potential to indicate the presence of disqualifying conditions;
- Provides engineering design data for ESF before the start of construction;
- Provides hydraulic-stress data base to identify the effects of the ESF on the geohydrologic system and later geohydrologic tests.

<u>Proposed pre-ES testing program</u>: The principal activities of the pre-ES testing program include:

- Drill and install multilevel piezometers in DC-24 and DC-25 and allow system equilibration;
- Drill and install multilevel piezometers in DC-32 and DC-33 and allow system equilibration;
- Modify existing monitoring wells DC 4/5, RRL-2A, RRL-6, RRL-14, RRL-17, DC-16, and McGee;
- Use well RRL-2B to perform LHS tests, hydrochemical sampling, and tracer tests in the Rocky Coulee, Cohassett, and Birkett flows.

Expected schedule impact: The proposed pre-ES geohydrologic testing program will require approximately 22 months from the start of drilling.

United States Government

memorandum

DATE: REPLY TO

DOE F 1325.8

ATTN OF: RW-23.3

SUBJECT: Geohydrologic Testing Program for the Hanford Site Before Construction of the First Exploratory Shaft

TO: Stephen Kale, Associate Director Office of Geologic Repositories

FROM: Geohydrology Working Group Allan Jelacic (Chairman), DOE/HQ Glen Faulkner, DOE/USGS David Dahlem, DOE/RL Michael Thompson, DOE/RL

David Siefken, Weston John Robertson, Weston Sam Panno, Weston Phil Rogers, RHO Peter Clifton, RHO

A. ISSUE

The construction and operation of an exploratory shaft facility (ESF) at the Hanford site will significantly alter the existing geohydrologic system. These changes could compromise the results of some key geohydrologic tests if performed after ESF construction starts. Given this circumstance, a problem exists to define a pre-ES geohydrologic testing program which provides necessary data before the disruptive events caused by the ESF and provides reliable information for resolving licensing issues.

B. BACKGROUND

1. Current Understanding of the Geohydrology at Hanford Site

The candidate site for a geologic repository at Hanford is in the Cold Creek valley, a topographic and structural basin that slopes southeastward and opens toward the Columbia River. The Hanford site is underlain by at least 50 basalt flows with a cumulative thickness greater than 3,000 m (Exhibit I). The candidate repository horizon (dense interior of the Cohassett flow) lies between 807 and 1,100 m below ground surface in the Grande Ronde Basalt. Basalt flows generally consist of an upper vesicular and/or brecciated flow top overlying a dense, jointed interior. Flow tops typically account for about 15-percent of the total flow thickness.

The main ground-water occurrence and horizontal movement in the basalt formations is within the flow tops and the sedimentary interbeds that separate some flows. Vertical ground-water movement between flow tops is constrained by the basalt flow interiors, which appear to act as aquitards. Current geohydrologic understanding allows more than one conceptual flow model. One model being considered has hydraulic boundaries coincident with the anticlines that bound the Cold Creek syncline. The model has both horizontal and vertical components of flow, with a horizontal pattern of flow that tends to reflect the shape of the Cold Creek syncline. Although not controlled by the structural dip, the direction of horizontal flow tends to be similar to the direction of dip of the basalt, with flow paths that trend southwest beneath the candidate repository and may turn southeastward in the vicinity of the synclinal axis (see the conceptualized potentiometric map in Exhibit II). Some upward movement of ground water through fractures in the Grande Ronde Basalt is thought to occur at least up through the lower part of the overlying Wanapum Basalt. Above the Wanapum, vertical flow is thought to be mostly downward through the Saddle Mountains Basalt into the upper part of the Wanapum. In addition to available hydraulic-head data, hydrochemical data support the concept of vertical ground-water movement.

l l l

Horizontal hydraulic conductivities in flow tops and interbeds have been estimated from more than 200 single-hole, small-scale hydraulic stress tests in some 35 boreholes across the Hanford site. About 40 of these tests are from flow tops in the Grande Ronde Basalt. The radius of influence of each of these tests is probably small and representative of very local conditions around the borehole.

Measured flow top conductivities have ranged over 10 orders of magnitude. A more well-defined hydraulic conductivity field is necessary for improved confidence in calculations of radionuclide transport and ground-water travel time.

For the dense flow interiors, horizontal hydraulic conductivities estimated from field tests have a range of 6 orders of magnitude, the highest value being about 7 orders of magnitude lower than the highest value estimated for the flow tops. No measurements of vertical hydraulic conductivity in the dense interiors have been made, and thus a low level of confidence exists over what constitutes a representative range for purposes of calculating flux, travel time across flow interiors, and inflow to the ESF and repository. The ratio of vertical to horizontal hydraulic conductivity for flow interiors is unknown but is currently estimated to be approximately 3 to 1.

Two small-scale tracer tests have been conducted in the McCoy Canyon flow top of the Grande Ronde Basalt. From these tests, longitudinal dispersivity values have been calculated and effective-thickness estimates have been made. Dispersivity and effective thickness are important variables in calculating ground-water travel time and radionuclide transport. However, because of the limited data base, a large uncertainty is associated with what constitutes representative ranges of values for these variables.

A more detailed discussion of current knowledge about the geohydrology at Hanford, including numerical ranges of hydraulic parameters, is given in Appendix A.

2. Concerns_Raised by the Nuclear_Regulatory Commission

The geohydrologic testing program at Hanford has been the subject of criticism by various organizations outside the Department. The concerns expressed by the staff of the Nuclear Regulatory Commission (NRC) typify many of the criticisms. In December 1985, DOE/RL held a workshop to inform the NRC staff about plans for the first large-scale hydraulic stress (LHS) tests; summary meeting minutes and a subsequent letter (Appendix B) document the staff's concerns. Some of the concerns that have affected the pre-ES testing program are briefly summarized below.

Limitations of current monitoring facilities need to be assessed; if necessary, facilities should be upgraded. Numerical modeling of the monitoring network's adequacy would be desirable before testing.

Monitoring facilities were considered inadequate for the LHS tests due to the lack of wells at intermediate distances (150 to 2250 m) from the pumping well and the small number of observation wells in the Birkett flow.

The NRC staff agreed that the DOE had demonstrated the ability to predict water-level trends well enough to support LHS testing. However, those trends would have to be reestablished after drilling new monitoring wells. They recommended sequential activities in order to minimize mutual interference (e.g., establish hydraulic-head baseline before LHS testing). The NRC staff called on DOE to establish conservative baseline acceptance criteria.

As for LHS testing, the NRC staff favored tests of the Cohassett flow top and vesicular zone. They also recommended a very large pump test of a highly transmissive unit in order to investigate the boundaries of the geohydrologic system. Further details about NRC's concerns may be found in Appendix B. Those concerns were considered in defining the recommended pre-ES geohydrologic testing program in this option paper.

C. DISCUSSION

1. Objectives of the Pre-ES Testing Program

The overall objective of the geohydrologic testing program is to provide sufficient data to determine whether the site is qualified for licensing in terms of the governing regulations (10 CFR 60, 10 CFR 960, and 40 CFR 191). The pre-ES testing program will satisfy some of the information needs derived from the above regulations. Initially the program focuses on collecting information about conditions that may be significantly changed or rendered unobtainable (i.e., conditions that are "perishable") after shaft construction. In addition, the pre-ES testing program is structured to provide an early indication of whether disqualifying conditions (as defined in 10 CFR 960) are present before proceeding with construction of the ES, to provide data on geohydrologic conditions that may affect the design of the ESF or the repository, and to collect data on geohydrologic conditions in order to identify the effects of the ESF on the geohydrologic system and on subsequent geohydrologic tests.

2. Identification of Pre-ES Tests

The geohydrologic testing needs for the Hanford site were determined by examining the Department's <u>Issues Hierarchy for a Mined Geologic</u> <u>Disposal System</u> (DOE/RW-0101, September 1986) for issues whose resolution require geohydrologic tests. Those issues having geohydrologic test requirements are listed in Exhibit III. For each issue, the geohydrologic information needs that comprise the issue, the types of geohydrologic parameters that comprise the information need, the kind(s) of test(s) needed to obtain the parameter values, and the timing or sequencing of each test are identified. The timing of each test--that is, before or after ES construction--was determined by consideration of the following factors: a) potential for monitoring "perishable" conditions, b) potential for obtaining an early estimate of important design parameters, c) potential for early recognition of disqualifying conditions, and d) potential for unacceptable interference from the ESF.

Only two issues contain disqualifying conditions which can be evaluated solely with geohydrologic information. These are postclosure geohydrology (Issue 1.9.1 with respect pre-waste emplacement ground-water travel time) and preclosure hydrology (Issue 4.1.4 with respect to engineering measures beyond reasonably available technology). Criteria for evaluating the presence of disqualifying conditions are given in Exhibit IV; tests needed to provide data to evaluate the site against these criteria are also identified. Should the testing program provide data that exceed the evaluation criteria and thereby indicate the potential presence of a disqualifying condition, all available data related to that criterion will be evaluated and/or additional testing will be performed to confirm whether the data are representative of the site and the condition is pervasive across the site.

The approach described herein led to the identification of four types of tests that will be conducted before ES construction: (1) baseline hydraulic-head monitoring, (2) large-scale hydraulic stress (LHS) tests, (3) hydrochemical sampling in conjunction with the LHS tests, and 4) tracer tests in conjunction with the LHS tests.

<u>Baseline hydraulic-head monitoring</u> establishes the horizontal and vertical hydraulic-head distribution in and near the site. This test will provide the potentiometric surfaces of key hydrostratigraphic horizons before disturbances of the ground-water flow system by other site-characterization activities. Such activities include LHS testing, shaft sinking, construction of the ESF, and subsequent dewatering for underground testing in the ESF. Establishment of the hydraulic-head baseline for undisturbed conditions is necessary to evaluate the postclosure performance of the repository. Baseline monitoring should also enable test-induced perturbations to the geohydrologic system to be distinguished from background changes from other causes (e.g., seasonal fluctuations).

Large-scale hydraulic stress (LHS) tests will yield hydraulic parameter values that contribute to the evaluation of ground-water flux, ground-water travel time, and solute transport characteristics of hydrostratigraphic units at, above, and below the proposed repository horizon. Such tests must be performed at the repository location prior to ESF construction because these construction activities will disrupt the site geohydrologic system. The disruption could be such that subsequent LHS tests in the area of the ESF cannot be analyzed to an acceptable level of confidence.

<u>Hydrochemical sampling</u> would be conducted in conjunction with ground-water withdrawal during LHS tests. Such sampling and analysis will aid in defining the hydrochemical baseline for interpreting ground-water flow conditions. In addition, radioisotope analyses of samples taken for age-dating purposes will be used along with existing data to evaluate the presence of a disqualifying condition.

<u>Tracer tests</u> in conjunction with LHS tests would yield values for the effective porosity of selected flow tops. Effective porosity is necessary in order to calculate travel times along ground-water flow paths. Effective porosity in the vicinity of ESF construction may be considered a perishable condition due to the potential effects of dewatering and grouting. The tracer tests would also provide dispersivity values needed for solute-transport modeling.

3. Impacts of the ESF on the Local Ground-Water System

As already mentioned, the pre-ES geohydrology testing program should be designed, in part, to collect data on geohydrologic conditions needed to predict and interpret the effects of the ESF on the geohydrologic system and on subsequent geohydrologic tests.

Possibly the most significant change in the local ground-water flow system that could result from drilling the exploratory shafts is an increase of several orders of magnitude in the vertical hydraulic conductivity within the zone of damaged rock adjacent to the shafts. If the pressure grouting of the shaft liner does not effectively seal the annular space or penetrate the damaged-rock zone, the increased vertical hydraulic conductivity could cause individual heads in successive flow tops to reach a common hydraulic head or could lead to an overestimation of the natural system's vertical leakage across the intervening dense flow interior during subsequent LHS tests. The most effective solution is to avoid any problem resulting from drilling the ES by completing the necessary geohydrologic testing before shaft construction. Post-ES geohydrologic tests, especially in regard to the ability to demonstrate effective sealing of shafts, are planned in order to quantify these potential effects.

Construction, operation, and testing of the underground testing facility could also have significant effects on geohydrologic conditions (e.g., hydraulic head) and hydraulic properties (e.g., vertical hydraulic conductivity of the Cohassett flow interior). These effects may include:

• Creation of a damaged rock zone around the drifts induced by drilling and blasting. The vertical hydraulic conductivity in the damaged-rock zone may be significantly increased as the

-5-

apertures of existing fractures are increased or as new fractures are opened. This damaged rock zone may extend several drift diameters in any direction, potentially intersecting both the Cohassett vesicular zone and the Birkett flow top.

- Fracturing around the underground workings induced by stress redistribution over a period of several months. Such fracturing may also significantly increase the vertical hydraulic conductivity in the Cohassett dense interior, potentially intersecting both the Cohassett vesicular zone and the Birkett flow top.
 - Hydraulic-head changes. The ESF workings will be at atmospheric pressure, whereas the ground water within fractures in the Cohassett dense interior and in adjacent flow tops is confined at 1300 to 1500 psi. A very large head differential towards the underground workings will result in inflow to the underground workings and an attendant reduction in hydraulic head in the Cohassett and other flows to distances as great as several kilometers (Exhibit V). In essence, the dewatering of the underground testing facility will have the effect of a long, horizontal well, with the volume of water withdraw (estimated to range from less than 1 gpm to more than 1000 gpm) potentially much greater than the pumping rates of the small-diameter wells used for post-ES LHS testing. This is especially true if any discrete, through-going, highly transmissive, vertical features are encountered in the excavation for the underground testing facility.

D. OPTIONS

Several options have been considered for the pre-ES geohydrologic testing program, ranging from establishing only the site hydraulic-head baseline to performing virtually the entire surface-based geohydrology testing program for the Hanford site. For purposes of this analysis, five options are considered:

- Option (a) Establish the site hydraulic-head baseline only. This option would provide information on hydraulic-head conditions that may be significantly changed by subsequent site-characterization activities.
- Option (b) Establish the baseline, conduct one LHS test in the Rocky Coulee flow top (the basalt flow immediately above the proposed repository flow), collect hydrochemical data and perform tracer tests in the Rocky Coulee flow top at the RRL-2 location. This option would test what is presently considered the first transmissive flow top above the repository horizon.
- Option (c) Establish the baseline, conduct one LHS test in the Birkett flow top (the basalt flow immediately below the repository horizon), collect hydrochemical data and perform tracer tests in the Birkett flow top at the RRL-2 location. This option would provide for the investigation of the most transmissive unit in proximity to the repository horizon.

Option (d)

Establish the baseline, conduct LHS tests, collect hydrochemical data and perform tracer tests in multiple horizons at the RRL-2 location. This option would allow direct testing of transmissive intervals in the Grande Ronde Basalts above, below, and including the repository horizon at the ESF site.

Option (e)

Establish the baseline, conduct LHS tests, collect hydrochemical data and perform tracer tests in multiple horizons at several different locations around the candidate site. This option would provide areallydistributed information on the geohydrologic properties of basalt flows around and including the repository horizon.

These options and their apparent advantages and disadvantages are compared below and summarized in Exhibit VI.

1. Option (a)

<u>Description</u>. This option assumes that all hydraulic testing can be performed and adequately interpreted after the exploratory shafts and the underground testing facility are completed. Measurements of water levels would be taken in about 35 existing facilities. Two new nested piezometers, DC-24 and DC-25, would be added to this network in order to meet minimal needs for the hydraulic-head baseline. The establishment of a baseline would provide information on three-dimensional flow direction, which is important in calculating the pre-waste emplacement ground-water travel time and, hence, in performance assessment.

<u>Advantages</u>. This option would have the least effect on the ESF schedule and would yield data on conditions that may be changed by shaft construction.

<u>Disadvantages</u>. Option (a) would provide insufficient information for identifying disqualifying conditions and no information for the design of the exploratory shaft facility or the repository. Furthermore, this option would provide no geohydrologic testing data on which to base interpretations of post-ES geohydrologic test results or to predict the effects of ESF construction. Such a limited program would draw little support from the technical community.

Option (b)

<u>Description</u>. This option would consist of option (a) plus one LHS test, collection of hydrochemical data and tracer tests in the Rocky Coulee flow top. The Rocky Coulee flow top (Exhibit I) is currently considered the first unit above the Cohassett flow having sufficiently high hydraulic conductivity to provide an important lateral flow path to the accessible environment.

Site facilities are presently configured for the LHS test in the Rocky Coulee flow top and include RRL-2 (A, B, C), DC-19, DC-20, DC-22, DC-23, RRL-14, and RRL-17. However, two new nested piezometers, DC-32 and DC-33, would be installed about 1000 meters southwest and southeast of the RRL-2B location, respectively, before the Rocky Coulee LHS test. In addition, several monitoring points will be established in the Birkett flow top. The test would be conducted by pumping from the Rocky Coulee flow top (at RRL-2B) and measuring drawdowns and pressures in the monitoring facilities listed above. Responses to pumping would be monitored in the Ginkgo flow top, the Rocky Coulee flow top, flow tops above and below the pumped zone, and in the Cohassett dense interior.

<u>Advantages</u>. Option (b) requires no major reprogramming of site activities, because the Rocky Coulee test conforms to the current test plan and existing or planned facilities, except for wells DC-32 and-33; thus, disruption of the ES schedule would be minimal. Tests conducted under this option would yield data on geohydrologic conditions in the Rocky Coulee flow top that may changed by shaft construction and would produce some of the information needed to identify the presence of disqualifying conditions.

<u>Disadvantages</u>. The tests would provide little information for engineering design, little information on the repository horizon and adjacent horizons, and limited information on the effects of the shafts and the underground testing facility on future geohydrologic tests. In addition, there are reasons to believe that a pre-ES test program of such limited scope would not be acceptable to much of the technical community.

3. Option (c)

<u>Description</u>. Option (c) consists of option (a) plus a single LHS test, the collection of hydrochemical data, and tracer tests in the Birkett flow top. There are indications that the Birkett flow top (Exhibit I) (immediately below the Cohassett dense interior) is more transmissive than the Cohassett and Rocky Coulee flow tops and could yield a more a really-extensive LHS test. Limited data indicate that the Birkett flow top could be the major contributor to water inflow to the underground testing facility. Because of the proximity of the flow top to the repository horizon, it is important to characterize the Birkett in order to assess site performance and to obtain data for ESF and repository design.

Site facilities are presently not set up for an LHS test in the Birkett flow top; a pumping well would have to be provided by deepening RRL-2B. In addition, several monitoring boreholes (i.e., RRL-2A, RRL-6, RRL-17, RRL-14, DC 4/5, and DC-16) would need to be reconfigured and two new nested piezometers, DC-32 and DC-33, would be installed about 1000 meters southwest and southeast of RRL-2B, respectively. The Birkett could probably be pumped at a greater rate than that expected for the Rocky Coulee test of option (b). The effects of the test on hydraulic heads would be monitored in the Birkett flow top, the Cohassett dense interior and flow top, the Rocky Coulee flow top, and the Umtanum flow top.

<u>Advantages</u>. Because the Birkett flow top may be the most transmissive of the flow tops in the upper part of the Grande Ronde Basalt at the candidate site, and because it is immediately adjacent to the base of the Cohassett flow, an LHS test in the Birkett flow

-8-

top has the best potential for assessing the hydraulic characteristics of the Cohassett dense interior, particularly the vertical hydraulic conductivity. This test has some potential for indicating the presence of disqualifying conditions and would provide engineering information.

<u>Disadvantages</u>. Option (c) would require a significant effort to drill and reconfigure boreholes for pumping or monitoring. Some delay in the ES schedule may occur. Because of the limited scope of LHS testing in the vicinity of the exploratory shafts before the start of shaft construction, option (c) would not be acceptable to some of the technical community.

4. Option (d)

<u>Description</u>. This option consists of option (a) plus LHS tests, the collection of hydrochemical data, and tracer tests in the Rocky Coulee, Cohassett and Birkett flow tops and the Cohassett vesicular zone. It is based on the assumption that the drilling and construction of the exploratory shafts and the underground testing facilities will result in a significant disruption of the geohydrologic system.

Existing boreholes and planned piezometer nests DC-24 and DC-25 would provide the necessary hydraulic-head baseline data. As in option (c), several existing boreholes would need to be reconfigured to optimize monitoring locations in the horizon being tested. Furthermore, it will be necessary to install new nested piezometers DC-32 and DC-33 about 1000 meters southwest and southeast of RRL-2, respectively. The sequence of testing would be the Rocky Coulee flow top, the Cohassett flow top, the Cohassett dense interior (vesicular zone), and the Birkett flow top, unless further and more detailed planning identifies a technically more advantageous approach. LHS tests would be performed in each unit capable of adequate sustained yield for an appropriate duration. Small-scale injection tests would be performed in those units not sufficiently transmissive for an LHS test.

Advantages. Option (d) would establish the necessary hydrologic baseline and provide for "perishable" geohydrologic conditions in key basalt flow tops and dense interiors (especially the proposed repository horizon, the Cohassett dense interior) prior to sinking the exploratory shafts. The tests would provide information on whether disqualifying conditions are present near the ESF and would yield a substantial amount of information important to ESF and repository design. In addition, the tests would provide information useful in evaluating the effects of ESF construction on the hydraulic characteristics of the geohydrologic system. The tests would establish a data base that could be essential for interpreting subsequent LHS tests conducted during underground testing activities. This option is considered more technically defensible and one that would receive appreciable acceptance from the technical community.

<u>Disadvantages</u>. Option (d) would result in delays in the ES schedule, largely because of the time needed to prepare for and carry out the full series of LHS tests at the RRL-2 location.

-9-

5. Option (e)

<u>Description</u>. This option differs from option (d) only in that it incorporates LHS tests at other pumping centers in addition to RRL-2. These other pumping centers would serve to better define potential heterogeneities in the basalt flows tested at RRL-2. Whereas all of the facilities outlined in option (d) would be needed, the number of additional pumping and monitoring wells necessary for option (e) has not been determined.

<u>Advantages</u>. Option (e) would yield definitive data on perishable geohydrologic conditions, information needed for ESF and repository design, and information on whether disqualifying conditions are present at the site. In addition, the tests would cover much of the candidate-area study zone and help define geohydrologic boundaries. Option (e) would have the greatest support of the technical community.

<u>Disadvantages</u>. Option (e) would cause major delays in the ES schedule and expenditure of substantial funds before the start of ES construction.

E. RECOMMENDATION

The five options described in the preceeding section are associated with various degrees of risk of not attaining the objectives of the pre-ES geohydrology testing program.

Option (a) has very high risk because it satisfies only one of the several objectives of the pre-ES geohydrology testing program -- establishing the hydraulic-head baseline. Under this option, definitive testing results necessary to resolve some licensing issues would be subject to the uncertainty caused by interference from the ESF. This uncertainty may be sufficiently large to cast doubt on all subsequent test results and prevent issue resolution. Such an outcome may compromise the site's licensability.

Option (b) is deemed to have a high risk. Whereas the results of a single test of the Rocky Coulee flow top could provide some data indicative of the presence of disqualifying conditions, the test would have limited value in meeting other objectives. The single test will not define the hydraulic properties sufficiently to discriminate subsequent test results from the disruptive effects of the ESF. At best, the hydraulic characteristics of the Rocky Coulee flow top will be well defined while the potential for a good estimate of the hydraulic characteristics of adjacent flows may be very limited.

Option (c) is also considered to have a high risk for much the same reasons as option (b). However, this option does have the potential for yielding more useful information over a broader areal extent if the Birkett flow top proves to be as transmissive as expected. The Birkett test should also allow better inferences as to the properties of the Cohassett interior than option (b).

Option (d) is a low risk option because values of many of the hydraulic properties of the Grande Ronde Basalt in the vicinity of the ESF would be obtained before shaft construction. It would provide information about disqualifying conditions near the RRL-2 location and useful design information on the expected behavior of the Cohassett dense interior. This option would yield a data base from which to evaluate the results of post-ES tests.

Option (e) has a very low risk because it would give a three-dimensional perspective on a substantial portion of the site before the start of other site characterization activities. Testing from several pumping centers should establish, with a high degree of confidence, the ability of the Cohassett dense interior to host a repository. Any subsequent geohydrologic testing would be largely confirmatory.

Given these considerations, including the many past criticisms leveled by NRC and others, it is recommended that the prudent, low-risk approach represented by <u>option (d)</u> be adopted. This option would give the best opportunity for satisfying pre-ES geohydrologic testing program objectives without major delays in other components of site characterization.

The basis for the logic of the program and activities required to implement the program, including construction of new facilities, are explained in Appendix C.

F. APPROVALS

The recommended option is approved and the activities required to implement the option may proceed as proposed.

Approve: _ Disapprove:	<u> </u>	Ralph Stein Director Engineering and
Comments:	· · · · · · · · · · · · · · · · · · ·	Geotechnology Division
Date:	3/10/87	
Approve: _		John Anttonnen Assistant Manager for Commercial
Disapprove:		Nuclear Waste Richland Operations Office
Comments:		•
Date:		

Approve:	A. H.	Kale	
•			

Stephen Kale Associate Director Office of Geologic Repositories

3/16/87 Date:

G. NEXT STEPS

Disapprove:

Comments:

Subsequent activities related to the implementation of the recommended approach are presented in a diagram (Exhibit VII) and include the development of: (a) a strategy for the total geohydrology program; (b) a revised issue resolution strategy; (c) Section 8.3.1.3 of the Site Characterization Plan (SCP); (d) geohydrology-related study plans; (e) approved drilling plans for wells DC-24, -25, -32, and -33; (f) numerical analyses required to support planning decisions; and (g) responses to NRC concerns. The goal is to conduct an NRC workshop on the pre-ES geohydrology program in April, 1987 and to start drilling of DC-24 and DC-25 by September, 1987.

At least two workshops with the NRC staff, States and affected Indian Tribes will be necessary before the start of testing. The objective of the first workshop will be to obtain closure on the pre-ES geohydrologic testing program and the resolution of earlier NRC comments. Preparation for this workshop will require the completion of the pre-ES geohydrology testing strategy and a comment-response document. Materials needed for a second workshop include the issue resolution strategy, Section 8.3.1.3 of the SCP, the hydrology-related study plans and documentation supporting the first test, such as test plans with specifications, QA plans and procedures, baseline acceptance and test-decision criteria, and numerical analyses supporting planning decisions. The second workshop would occur soon after issuance of the SCP.

Stratigraphy of the Columbia River Basalt Group, from within the Grande Ronde to the surface, and sediments within the RRL.

EXHIBIT JI

CONCEPTUALIZED POTENTIOMETRIC SURFACE NEAR TOP OF GRANDE RONDE BASALT, COLD CREEK SYNCLINE, FALL 1986 WATER LEVELS

SUMMARY OF HYDROLOGIC TESTS TO RESOLVE ISSUES HAVING GROUND WATER INFORMATION NEEDS

•

I	ssue	Information Needs	Parameters	<u>Tests</u>	<u>Timing_Need</u>	Comments
1.1 Rel acc env	ease to essible ironment	Diffusion in dead-end pore (matrix diffusion)	Diffusion coefficients	Multiple well tracer tests; Lab tests on rock samples	Post ES, should be incidental with other tracer tests	•
		Flow & mass trans- port through fractures versus continuum	Kh (horizontal hydraulic conductivity) of flow tops or T(transmissivi- ties); Kv (vertical hydraulic conductivities) and Kh of flow interiors; response shapes of hydrographs	LHS tests; borehole cluster tests in ESF	Pre ES at RRL2 Post ES for others	Pre ES for: perishable condi- tions; identify disqualifying conditions
			Effective thickness of flow tops; Dispersivities; Storativity of flow tops and specific storage of flow interiors	Multiple well tracer tests; borehole cluster tracer tests in ESF; core analyses	Pre ES at RRL-2; Post ES, coordinate with other tracer tests	Pre ES for: same as above for 1.1
		Hydraulic properties and thickness of damaged rock	K(hydraulic conductivity) effective porosity	Borehole tests in ESF	Post ES	
		Spatial distribution of hydraulic properties including directionality of hydraulic conductivity	3-D head distribution; Ky flow interiors; T and Kh of flow tops; effective thickness; dispersivity effective pososity	Baseline monitoring; LHS tests and tracer test (for T, Kv effective thickness, effective porosity, Kh, dispersivities);	Pre ES; At least RRL2 Pre ES	Results of RRL-2 tests would determine need to do others pre ES
		or T of flow tops and interiors, Umtanum to Ringold		single-well tests for T Dual well test (T, effective thickness, dispersivity) Drill & test piezo-	Post ES Post ES Concurrent with	Pre ES for: same as above for 1.1
				meters, T	ES	
		Hydraulic boundary conditions	3-D distribution of hydraulic head	Baseline head monitoring	Pre ES	Pre ES for: Same as 1.1
			Spatial distribution of Kh or T of flow tops and K_V of flow interior	LHS tests at RRL2 Other LHS tests	Pre ES Some may be Pre ES, Others Post ES	Depends on XH results of RRL-2 Pre ES for: B same as above H for 1.1.
Symbols	ES - Con ES - Exp ESF - Exp Kh - Hor	trolled Area Study Zone Doratory Shaft Doratory Shaft Facility Doratal Hydraulic Conductivity	Kv - Vertical Hydraulic Cor LHS - Large-Scale Hydraulic T - Transmissivity	nductivity Stress		· · · · · · · · · · · · · · · · · · ·
			. S •			

÷

Issue	Information Needs	Parameters	. <u>Tests</u>	.Timing_Need	<u>Comments</u> .
1.2 Individual Protection	Ground-water travel time	e Same as 1.6	Same as 1.6	Same as 1.6	Pre ES for: same as above for 1.1
	Ground-water flux rates past waste package and at accessible environment	Same as 1.1, 1.4, 1.6	Same as 1.1, 1.4, 1.6	Same as 1.1, 1.4, 1.6	•
1.4 Waste Package Life	Ground-water flux past waste package	Hydraulic head in Cohassett and Birkett flow tops	Baseline monitoring	Pre ES	Pre ES for: perishable condition
		Kv Cohassett flow interior Kh Cohassett flow interior	LHS tests, borehole cluster tests in ES, ESF tests (borehole and/or chamber)	Pre ES RRL-2 Post ES for others Post ES	Decision to run other LHS tests pre- or post-ES will be made after evaluating results of RRL-2 tests
1.5 Release Rates	Ground-water flux	Same as 1.4	Same as 1.4	Same as 1.4	Pre ES for: same as 1.4
1.6 Groundwater Travel Time	Disturbed zone outer boundary	Kv, Kh Cohassett interior	LHS tests Borehole tests in ESF	RRL-2 Pre ES Others Post ES Post ES test results	Need for other LHS tests pre ES would be decided after RRL-2 Pre ES for: same as 1.1
		Effective porosity and Kh, Birkett, Rocky Coulee, Cohassett flow tops	Porthole tests in ES LHS tests Tracer tests	Post ES RRL-2 Pre ES, others Post ES	
		Ky Birkett, Rocky Coulee flow interiors	Porthole tests in ES LHS tests	Post ES RRL-2, Pre ES	
	Accessible environment boundary	 3-D distribution of hydraulic properties over CASZ and surrounding area Hydraulic head in flow tops T of flow tops 	Baseline head monitoring		
		 Effective thickness, porosity of flow tops Ky flow interiors of Birkett, Cobassett. 	LHS tests Tracer tests	RRL-2 Pre ES, others after ES	Pre ES for: same as 1.1
		Rocky Coulee	Ky Cohassett flow interior will also be measured in ESF tests	Post ES	
			1		

•

.

HIBIT III (Cont'd)

.

Issue	Information Needs	Parameters	<u>Tests</u>	<u>Timing_Need</u>	Comments
	Hydraulic parameters and boundary conditions within and surrounding CASZ	Same as previous infor- mation need plus hydraulic properties or other evidence of hydraulic boundaries and leakance in hydrographs of LHS tests and as indicated by regional flow system modeling	Same as previous	Same as previous	
	Hydrochemistry of upper Grande Ronde water in vicinity of CASZ	Concentration of carbon isotopes (C-12, C-13, C-14), C1-36, H-3, I-129, deuterium, O-18 major dissolved	Samples from drill and test wells	Pre ES for some Post ES for others	Pre ES for: identifying disqualifying condition
		and suspended solids and gases, pH, temp., in flow tops of Birkett, Cohassett, Rocky Coulee.	RRL-2 Others	Pre ES Post ES	Depends on results of RRL-2 tests
		Umtanum, and perhaps others	Samples from other available wells	As many pre ES as possible from available wells	Pre ES for: identifying disqualifying condition
1.7 Performance Confirmation	Hydraulic properties of Cohassett interior and flow top and Birkett flow top immediately adjacent to repository excava- tion	Same as 1.6	Various in situ tests in repository excava- tion during and after construction (to be designed later)	Post ES (during and after repository con- struction)	
1.8 Favorable and Adverse Conditions	Ground-water flow rates to ESF and repository during construction and operation	Specific storage and K_V of Cohassett flow interior and K_H and storativity of Birkett and Cohassett flow tops	Same as 1.4	Same as 1.4	Pre ES for: identifying disqualifying condition; engineering design data
	Combustible gas inflow to ESF and repository during construction and operation	Concentration of major dissolved gases in Birkett, Cohassett and Rocky Coulee flow tops	Same as 1.6 plus hydrochemistry tests	Same as 1.6 plus hydrochemistry tests	
		•			· ·

۰.

EXHIBIT III (Cont'd)

;

Issue	Information Needs	Parameters	Tests	<u>Timing_Need</u>	Comments
1.9 Postclosure Guidelines	Boundary Conditions and distribution of hydraulic properties of flow tops-Umtanum, McCoy Canyon, Birkett, Cohassett to Ginko	Same as 1.6	Same as 1.6 and 1.4	Same as 1.6 and 1.4	Pre ES for: Perishable condition, identify disqualifying condition
	Hydraulic properties of flow interiors-Birkett, Cohassett, Rocky Coulee	Same as 1.6	Same as 1.6 and 1.4	Same as 1.6 and 1.4	
	Hydrochemistry of groundwater in flow tops	Same as 1.6	Same as 1.6 and 1.4	Same as 1.6 and 1.4	
1.11 Repository Design	Inflow rates of water and combustible or toxic gases to repository	Same as related information need in 1.8 and 4.1.4	Same as 1.8 and 4.1.4	Same as 1.8 and 4.1.4	Pre ES for: same as 1.8
	Hydraulic properties of Cohassett flow interior and adjacent flow tops surrounding the repository	Same as 1.6, 1.7, and 1.8	Same as 1.6 and 1.7	Same as 1.6 and 1.7	
1.12 Seals Postclosure	Hydraulic conductivities of seals and zone be- tween seals and rock or casing	Same as information need	Hydraulic and tracer tests in borehole and shafts plus lab tests	Post ES	
2.6 Waste Package Design Preclosure	Ground-water flux past package	Same as 1.4	Same as 1.4	Same as 1.4	
2.7 Repository Design Preclosure	Same as 1.1, 1.2, 1.6, 1.8, 1.9	Same as 1.1, 1.2, 1.4, 1.6	Same as 1.1, 1.2, 1.4, 1.6	Same as 1.1, 1.2, 1.4 1.6	Pre ES for: same as 1.8
4.1.1 Ease and Cost of Construction	Water and gas inflow to repository	Same as 1.8	Same as 1.8	Same as 1.8	
4.1.3 Rock Characteristics	Distribution of hydraulic properties of Cohassett flow interior and adjacent flow tops	Same as 1.1, 1.2, 1.6	Same as 1.1, 1.2, 1.6	Same as 1.1, 1.2, 1.6	
4.1.4 Preclosure Hydrology	Ground water and gas inflow to ESF and repository	Same as 1.8	Same as 1.8	Same as 1.8	Pre ES for: same as 1.8

.

EXHIBIT III (Cont'd)

.

	Issue	Information Needs	Parameters	Iests	Timing_Need	Comments
. 4.2	Repository design: nonradiological worker safety	Same as 1.8 and 1.11	Same as 1.8	Same as 1.8	Same as 1.8	Pre ES for: same as 1.8
4.4	Repository design; adequate technology for repository construction, operation, closure, decommissioning	Same as 1.8 and 1.11	Same as 1.8	Same as 1.8	Same as 1.8	Pre ES for: same as 1.8
4.5	Repository design: cost of waste packages and repository	Same as 1.11	Same as 1.8	Same as 1.8	Same as 1.8	Pre ES for: engineering design data
						•
				·		,
				• • • •		
			、 ・			
					•	۲

•

EXHIBIT III (Cont'd) 1

8.

.

APPENDIX A

Geohydrology of the Hanford Site

Within the northern half of the Columbia Plateau, composite potentiometric surfaces have been mapped and data limitations described. One surface is drawn for each hydrostratigraphic unit: Saddle Mountains, Wanapum, and Grande Ronde Basalts. These data suggest that the Pasco Basin is an area of regional ground-water flow convergence. This is expected since the basin occupies the lowest topographic point in the plateau. Knowledge of vertical hydraulic head distributions across the plateau (outside of the Hanford site) is limited to about 12 piezometers established by the Washington Department of Ecology and numerous composite wells (within a single formation) developed for agricultural use. Generally, these data show a trend of decreasing head with increasing depth. This means ground-water recharge is taking place at the monitored locations. Comparison of the above-mentioned potentiometric surfaces also suggests recharge is taking place across large portions of the plateau.

Hydraulic heads are monitored in 35 wells on the Hanford site in support of the basalt studies. Most head measurements are within single basalt flow tops or interbeds rather than composite measurements of several hydrostratigraphic units. Within the central part of the controlled area study zone, the observed horizontal head gradients in the basalts appear to range between 10^{-5} and 10^{-4} . Vertically, head gradients are directed downward across the Saddle Mountains Basalt and upward across the lower Wanapum and Grande Ronde Basalts, convergency in the upper Wanapum.

Within the area bounded by multilevel piezometer wells DC-19, 20, and 22, ground-water movement in the Wanapum and Grande Ronde Basalts appears to be south to southwest. The local hydraulic influence of geologic structures (Umtanum Ridge-Gable Mountain anticline, Yakima Ridge anticline, and the Cold Creek flow impediment) bordering the proposed repository site requires further investigation.

Horizontal hydraulic conductivities estimated from field tests within flow interiors range between 10^{-15} and 10^{-9} m/s. No definitive estimates of vertical hydraulic conductivity within flow interiors presently exist. The ratio of vertical to horizontal hydraulic conductivity for flow interiors is estimated to be approximately three to one.

More than 200 single-hole, small-scale hydraulic tests have been completed in flow tops and interbeds in some 35 boreholes across the Hanford site. These data have identified the stratigraphic locations of several significant sources of ground water and have provided information about the spatial variability of conductivities within individual flow tops and interbeds. Values as large as 10^{-2} m/s or as small as 10^{-12} m/s are reported. The geometric mean for the flow tops and interbeds of the Saddle Mountains and Wanapum Basalts is 10^{-5} to 10^{-4} m/s. The geometric mean for Grande Ronde Basalt flow tops is between 10^{-8} and 10^{-7} m/s.

Some hydraulic testing of tectonic features has occurred. This includes the few faults or shear zones penetrated in boreholes or the large-scale testing of major geologic structures. The tectonic features tested have equivalent hydraulic conductivities that are either high $(10^{-3} \text{ to } 10^{-4} \text{ m/s})$ or low (less than 10^{-11} m/s). Two small-scale tracer tests have been conducted in the flow tops of the McCoy Canyon flow of the Grande Ronde Basalt. Longitudinal dispersivity values reported were 0.46 and 0.84 m and effective thickness estimates were 2×10^{-3} and 3×10^{-3} m. Estimates of large-scale transverse dispersivities for Wanapum and Grande Ronde Basalts were also calculated by modeling changes in chloride concentrations. Transverse dispersivities ranging from 20 to 370 m were reported. Values of about 45 m are interpreted as most reliable.

Specific storage values reported from field tests of basalt flow tops range between 10^{-4} and 10^{-5} 1/m. By assuming reasonable ranges for compressibility of fractured and solid rocks, specific storage values for basalt flow interiors are estimated to be about 10^{-6} to 10^{-7} 1/m.

Ground waters in basalt aquifers across the Columbia Plateau are relatively dilute, bicarbonate waters with cation ratios (Na+K)/(Na+K+Ca+Mg) varying between 12 and 99 percent. Low values correspond to recently recharged waters and high values exist in older, more evolved waters. Ground-water ages vary from approximately 5,000 to over 30,000 years, as estimated from the percentage of modern carbon-14 present in water samples. Chlorine-36 analyses indicate that ground-water ages in the Grande Ronde Basalts at the controlled area study zone are greater than 100,000 years. Data on ground-water ages are sparsely distributed in the Columbia Plateau; therefore, it is not possible to rigorously evaluate ground-water travel times from expected recharge to discharge areas using age-dating techniques.

Beneath the Hanford site, shallow basalt water is of a sodium-bicarbonate chemical type; deep basalt water is of a sodium-chloride chemical type. On a location-by-location basis, chemical and isotopic shifts can be pronounced and are believed to delineate flow system boundaries, chemical evolution taking place along flow paths, and ground-water mixing. Most ground waters sampled from across the Columbia Plateau appear to be compositionally similar to shallow ground water from the Hanford site as represented by water samples from springs, the unconfined aquifer, and the Saddle Mountains Basalt. These similarities exist for major cations, anions, pH, and the stable isotopes of hydrogen, carbon, and oxygen. There are no reported ground-water analyses from the regional data base that manifest the same degree of enrichment in sodium, chloride, and fluoride as do most Wanapum and Grande Ronde ground waters underlying the Hanford site.

An analysis of hydrochemical data suggests that a geochemical evolutionary trend exists that developed as a result of rock and water interaction. It appears that dissolution-precipitation reactions involving volcanic glass, plagioclase feldspar, calcite, clays, and zeolites are important components in this process. Evidence also suggests that the deep Grande Ronde Basalt waters form an evolutionary trend distinct from shallower waters. This deep ground water is thought to move upward in the stratigraphic section and mix with shallower ground water. The best evidence for such mixing exists in the Wanapum Basalt beneath the central portion of the controlled area study zone. Several preliminary conceptual flow models have been developed and data needs have been identified. On a regional basis, the Pasco Basin appears to be an area of regional ground-water flow convergence. Although specifics are sometimes unavailable, it is proposed that the shallow basalts are locally recharged

A-2

and discharged within sub-basins of the Columbia Plateau, while deeper basalts are part of a larger, regional flow system. The topographic and hydraulic effects of major anticlines trending generally east-west across the plateau likely contribute to the development of local flow systems and complicate (i.e., impede, redirect, or vertically mix) interbasin ground-water movement.

The layered geology at the controlled area study zone consists of alternating basalt flows containing high to low-conductivity intraflow units. Such heterogeneity causes rectilinear, three-dimensional ground-water movement to occur with lateral movement in flow tops and interbeds and vertical movement across flow interiors. Hydrochemical data suggest two possible conceptual models for ground-water movement within the controlled area study zone. One model proposes that upward ground-water movement is largely restricted in the central portion of the controlled area study zone. Subsequent lateral flow to the east within the Wanapum Basalt creates a plume of mineralized waters that traces the direction of ground-water movement. In the second model, a stagnant or near-stagnant flow system is proposed in the upper Cold Creek syncline. This condition is created by the presence of the Cold Creek flow impediment, Umtanum Ridge-Gable Mountain anticline, and the Yakima Ridge anticline. In this model, the degree of lateral flushing increases to the east and southeast where the syncline opens and the anticlines die out.

7-3

APPENDIX B

UNITED STATES NUCLEAR REGULATORY COMMISSION WASHINGTON, D. C. 20555

APR 10 555

Mr. O. L. Olson Director Basalt Waste Isolation Division U. S. Department of Energy Richland Operations Office P. O. Box 550 Richland, WA 99352

Dear Mr. Olson:

By this letter, the U. S. Nuclear Regulatory Commission (NRC) is transmitting the staff's review of the document entitled "Test Plan for Multiple-Well Hydraulic Testing of Selected Hydrogeologic Units at the RRL-2 Site, Basalt Waste Isolation Project (BWIP), Reference Repository Location" (SD-BWI-TP-040). The staff's observations resulting from the December 9-10, 1985 meeting have been integrated into these comments.

Based on the staff's review of the document prior to the December 1985 meeting, it was initially determined that the proposed testing strategy was consistent with that presented in the NRC's BWIP Site Technical Position (STP) 1.1. The test plan indicated that testing would begin with a repository scale, multiple-well pump test of the Rocky Coulee flow top. Additionally, testing would occur only after baseline hydraulic heads had been established and would continue until sufficient data were collected to allow identification and evaluation of hydrologic boundaries and hydraulic continuity of the hydrogeologic units surrounding the RRL.

Discussions during the meeting, however, indicated that the BWIP's present strategy deviates significantly from the strategy presented in STP 1.1 in two key areas. First, initial testing will not be on a repository scale, and thus, will not adequately evaluate the hydrologic and hydraulic properties of the Columbia River Basalts within the Cold Creek Syncline. This reduced scale of testing will not support development and calibration of repository performance models. Although the test plan indicated that repository scale testing would be performed, the BWIP refused; during the December meeting, to commit to performing such a test. Second, BWIP indicated during the meeting that baseline hydraulic heads, with respect to characterization of the pre-emplacement ground water flow system, will not be established prior to initiating the testing. Stage 1 of the strategy presented in STP 1.1 calls for a technical consensus that piezometric baseline, which is adequate for use in . developing defensible assessments with respect to 10 CFR 60, has been established prior to initiating testing. The primary NRC concern is that perturbations on the system may be of such a magnitude that baseline determination may be delayed for a long period of time or be impossible to

obtain within DOE's schedule for repository development. As the BWIP has stated in the past, other site activities, such as exploratory shaft construction and testing, may also significantly perturb hydraulic heads around the RRL further delaying establishment of baseline. This premise is substantiated by the hydraulic head perturbations evidenced in wells DC-19, 20, and 22 caused by removal of bridge plugs from RRL-14 and the drilling of DC-23, thus delaying the establishment of an LHS test baseline by several months. If such small-scale activities can create significant perturbations, it is conceivable that perturbations caused by exploratory shaft construction could delay the establishment of hydrologic baseline, with respect to characterization of the pre-emplacement groundwater flow system, for a period of several years. Such perturbations, should they occur while LHS testing is being performed, could also limit, the DOE's ability to interpret LHS test data. The DOE's hydrologic testing strategy should allow for sequencing of site activities so that effects of one activity will not compromise the ability to perform others. Hydrologic baseline should be established to the extent possible with existing wells prior to performing any hydrologic testing. DOE should be conservative with respect to baseline establishment, as this may be the only opportunity to collect necessary information in this area. Should the DOE determine that a testing program that significantly deviates from the agreed to strategy in STP 1.1 is more appropriate for characterizing the hydrologic regime at the BWIP, the DOE should provide to the NRC their rationale for deviating from STP 1.1 and explain how the proposed plan will provide a better hydrologic characterization of the site.

It became apparent during the December 1985 meeting that the BWIP's proposed plans for hydrologic site characterization were not sufficiently developed to allow commencement of testing in February 1986, as proposed. A sound technical rationale for the purpose and timing of the proposed testing was not presented nor was documentation provided to the NRC at the meeting. In addition, testing procedures and quality assurance plans had not yet been finalized, and the BWIP could not satisfactorily demonstrate how the testing strategy was being integrated with other site characterization activities.

It is our understanding, based on several telephone conversations between our staffs, that the BWIP is currently reevaluating their strategy and plan for hydrologic testing. In accordance with NRC/DOE agreements on pre-licensing consultations, it is requested that NRC/DOE consultations take place during the development of any new testing strategy so that the NRC can provide timely guidance that can be considered during your planning stages and thereby avoid unnecessary schedule delays. Additionally, the staff also requests early involvement in the readiness review process to provide the DOE guidance in this area prior to issuance of the Draft Readiness Review Plan. Prior to initiating any hydrologic test work, the DOE should also develop a comprehensive quality assurance plan that is consistent with the criteria of Appendix B of 10 CFR 50. Backfitting of QA procedures after the fact is not acceptable.

Although most of the attached comments were discussed during the December 1985 meeting, few were resolved to the satisfaction of the NRC staff. Many of our comments required analyses that the BWIP had either not performed or was not prepared to present at the meeting. When revising the test plan document, the DOE should reincorporate the consultation review steps as agreed at the May 1985 Hydrology meeting. Additionally, the attached detailed comments together with the observations and agreements in the signed meeting minutes resulting from the December 1985 meeting should be addressed. The NRC considers resolution of these comments necessary prior to initiating hydrologic testing or exploratory shaft construction. The next appropriate forum for resolving these comments is the NRC/DOE workshop tentatively planned for July or August of this year.

Should you have any questions, please contact Paul Hildenbrand of my staff at , FTS 427-4672 or Michael Weber at FTS 427-4746.

Sincerely,

Non- 12 Boyle for

John J. Linehan, Section Leader Repository Projects Branch Division of Waste Management Office of Nuclear Material Safety and Safeguards

Enclosure: NRC Review Comments

. cc: R. Stein, DOE-HQ

- 3 -

NRC'S DETAILED COMMENTS ON "TEST PLAN FOR MULTIPLE-WELL HYDRAULIC TESTING OF SELECTED HYDROGEOLOGIC UNITS AT THE RRL-2 SITE, BWIP, RRL" SD-BWI-TP-040

The following comments have been classified into several categories as they pertain to BWIP's proposed large-scale hydraulic stress (LHS) testing at RRL-2.

Monitoring Facilities

1. Monitoring Locations and Frequencies

Because of the uneven distribution of monitoring facilities around the pumping well (RRL-2B), BWIP's ability to characterize and interpret hydraulic responses to pumping stress in three dimensions is limited. As planned, water levels will not be monitored between radial distances of 152 m (RRL-2A) and 2250 m (RRL-14). Without water level information at intermediate scales between RRL-2A and RRL-14, results from LHS testing of the Grande Ronde Rasalts at RRL-2 may yield considerable uncertainty in interpretations drawn from the test results. For example, deviations from expected drawdown responses may be caused by distributed leakage through flow interiors or discrete features, or by interference by hydrogeologic boundaries. It appears that current monitoring facilities at the Hanford Site are inadequate to achieve the objectives of LHS testing because of their locations and limited number.

The inadequacy of present monitoring facilities is especially acute for the third planned LHS test, which will stress the Grande Ronde 5 flow too. Of the three proposed tests, the LHS test of the Grande Ronde 5 flow too has the greatest potential to be a repository-scale test because of the unit's apparent high transmissivity in the vicinity of the RRL-2 cluster. However, only two facilities presently monitor the Grande Ronde 5 flow top: PPL-2C at 76 m from RRL-2B and RRL-14 at 2250 m. The limited number and locations of these facilities appear to be inadequate to characterize hydrologic boundaries and hydraulic continuity, and the spatial distribution of hydraulic properties. BWIP should install additional monitoring facilities or substantially modify existing facilities prior to conducting the proposed LHS test in the Grande Ronde Number 5 flow top.

Prior to conducting LHS testing, BWIP needs to demonstrate how proposed monitoring facilities will provide necessary hydraulic head and response data for site characterization. BWIP should assess the limitations of the present monitoring network at the Hanford Site and improve the network to accomplish the objectives of LHS testing and site characterization. Potential improvements to the network range from increasing the frequency and location of head measurements at existing facilities to installing new monitoring

101/MFW/86/01/06/ATT

facilities. A more comprehensive piezometer network (both in frequency of measurement and location) would support characterization of the groundwater flow system in the Pasco Basin and provide a potentiometric baseline against which BWIP could compare effects of drilling, well development, testing, and other activities (e.g., exploratory shaft construction, off-site perturbations, wastewater disposal activities).

- 2 -

2. Cement Effects

During the drilling of RRL-2A and -6, the Rocky Coulee flow ton was cemented to reduce mud loss. This cementing may adversely complicate the interpretation of water level responses and tracer breakthrough during the first LHS test. Such complications in RRL-2A could be especially important because of the sensitivity of test interpretations to water level responses at this location and because cement may inhibit tracer injection into the Rocky Coulee flow top.

During the meeting, BWIP asserted that cement does not significantly interfere with hydraulic communication between RRL-2A and the Rocky Coulee flow ton. This position was based on evaluation of dynamic temperature logs and comparisons of hydraulic test data. Dynamic temperature logging indicated that the Rocky Coulee flow top still contributes flow to the well. BWIP also compared the transmissivity value determined from a hydraulic test of the combined Grande Ronde 2 flow and the Rocky Coulee flow top in RRL-2A with the transmissivity value determined from a pulse test in RRL-2B. BWIP concluded that the two transmissivity values compared favorably, thus indicating that cement does not inhibit hydraulic communication between the borehole and the Rocky Coulee flow top.

Although BWIP provided a verbal basis for its assertion that cement in RRL-2A and -6 does not significantly inhibit hydraulic communication with the Rocky Coulee flow top, BWIP did not provide any documentation of the conclusions nor supporting assessments. BWIP should document the basis for its assertion and then provide it to NRC for review and comment.

3. Borehole Interflow

Subsequent to the first LHS test in the Rocky Coulee flow top and removal of bridgeplugs, interformational flow via open boreholes between flow tops and other producing zones may occur within observation wells RRL-2A, DC-4, RRL-6, and the McGee Well. The bridgeplugs were originally installed to minimize borehole interflow, which could interfere with interpretations of LHS test results by perturbing water levels. BWIP indicated during the meeting that borehole interflow would not significantly perturb water levels, yet did not provide any rationale for this conclusion. BWIP should carefully analyze whether borehole interflow subsequent to bridgeplug removal will significantly

101/MFW/86/01/06/ATT

affect interpretations of LHS test results. This analysis should then be presented to NRC for review.

- 3 -

4. Monitoring Facilities for the Ratio Test

BWIP proposes to analyze LHS test results using the Neuman-Witherspoon ratio method to derive estimates of vertical hydraulic conductivity of the flow interiors near RRL-2B. The utility of the first ratio test in the Rocky Coulee flow top is limited, however, because limitations of present monitoring facilities preclude determination of diffusivity for the flow interior above the Rocky Coulee flow. In addition, ratio testing could result in low, nonconservative estimates of hydraulic diffusivity for the Rocky Coulee flow interior because of piezometer compliance, which is the non-ideal response of piezometers caused by small-scale deformation of piezometer components.

The Neuman-Witherspoon (1972) ratio method requires head response data from within confining beds adjacent to the pumped aquifer (e.g., Rocky Coulee flow top in the first planned LHS test). These data are interpreted along with response data from within the pumped aquifer to estimate the hydraulic diffusivity of the confining units, where diffusivity equals the ratio of the confining unit's vertical hydraulic conductivity and its specific storage. Although response data can be collected from the piezometer completed within the Rocky Coulee flow interior at RRL-2C, response data cannot be collected within the flow interior above the Rocky Coulee flow top because BWIP has not completed a piezometer within the interior of Grande Ronde flow number 2. Thus, the first LHS test will not estimate the diffusivity of the flow interior above the Rocky Coulee flow top. Recause of this limitation, the first LHS test will not serve as a good example of applying the ratio test to characterize vertical hydraulic conductivities of the Columbia River Basalts. In comparison, testing the Cohassett flow top may provide a better demonstration of ratio testing since flow interiors above and below the flow top will be monitored.

In addition, the utility of the first ratio test may also be limited because piezometer compliance could delay head responses in piezometers completed in the flow interiors. This delay could bias analyses of test results by underestimating the hydraulic diffusivity of the interiors, thus underestimating values of vertical hydraulic conductivity which would be nonconservative with respect to repository performance. BWIP should assess the significance of time-lag due to compliance of piezometers in the RRL-2C cluster that will be used for the ratio test. For example, BWIP could measure piezometer compliance prior to LHS testing by conducting pulse tests in appropriate piezometers. After the LHS test is completed and the results needed for the ratio test have been collected, BWIP could then compare the lag time determined in pulse tests with the time difference between the start of the test and initial response detected in the piezometers completed in the flow
interiors. If the piezometer lag time is comparable with the initial response time, then BWIP may need to correct the response data to characterize hydraulic diffusivities.

5. Grout Permeabilities

During the meeting, BWIP indicated that the permeabilities of grouts used in the clustered piezometer installations (i.e. DC-19/20/22) had recently been estimated using permeameter testing. The contrast between the grout permeability in the cluster installations and that of the basalts is important to reliable performance of the piezometers. In addition, the effectiveness of the bond between the grout and basalt also affects the reliability of piezometer responses. Isolation of monitoring intervals using grout is especially important to reliable performance of piezometers completed within flow interiors because of the similarity of hydraulic conductivities between the grout and basalt. RWIP should present its analyses of grout permeability and integrity to NRC to demonstrate reliable performance of the piezometers.

6. Westbay Installation

Based on discussions during the meeting and the subsequent site visit by NRC consultants (12/11/85), the trial installation of a Westbay device in PRL-14 appears to be providing useful information about the device's utility within the Hanford site monitoring network. BWIP indicated during the meeting that the travelling pressure probe in the Westbay device will be used to monitor several horizons at RRL-14 during the LHS test. This does not appear feasible, however, because approximately 8 hours are required to complete a profile of all ports. The probe cannot be moved back and forth from one portal to another, thus it may not be useful to monitor several horizons during the LHS test because of the time consumed in moving the probe. BWIP should evaluate whether the configuration of the Westbay device can be effectively modified to monitor several flow horizons during LHS testing.

Despite their apparent limitations for near-field multi-level monitoring of LHS tests, Westbay devices may satisfy the need for additional far-field monitoring facilities at the Hanford Site (cf. USGS letter from Rollo to Olson, October 21, 1985). Additional facilities are needed to characterize the regional groundwater flow system in terms of both horizontal and vertical hydraulic gradients. For example, monitoring of such facilities outside of the Cold Creek Syncline may provide DOE with the ability to characterize vertical pressure profiles in areas where site activities are not expected to cause significant transient hydrologic responses. This type of additional information could significantly contribute to BWIP's understanding of the groundwater flow system at the Hanford Site. Based on experience gained with the Westbay device at RRL-14, BWIP should consider installing similar types of

- 4 -

devices in boreholes distant from the RRL to characterize the regional groundwater flow system.

- 5 -

Testing Procedures

7. LHS Testing Focus

The test plan states on page 41 that the "real focus of large-scale hydraulic testing in the Grande Ronde Basalt at the RRL-2 site is the Cohassett flow interior." This statement appears to be inconsistent with both the objectives of LHS testing stated earlier in the plan and BWIP's approach to repository performance assessment. As described in other sections of the test plan and NRC's BWIP Site Technical Position 1.1, the primary objective of LHS testing at BWIP is to provide repository-scale hydraulic data to support licensing assessments of repository performance. This includes characterization of hydraulic parameters, identification of hydrologic boundaries, evaluation of far_field hydraulic continuity, and formulation of defensible conceptual models of the groundwater flow system. To accomplish these objectives, LHS testing should develop a far-field perturbation in response to controlled stress, which can best be done in the units with the highest transmissivities. Of the three units identified in the test plan for LHS testing, the Cohessett flow appears to have the lowest transmissivities. Therefore, BWIP's focus on the Cohassett flow may decrease the potential for fulfilling the primary objective of LHS testing.

The focus on the Cohassett flow interior also appears inconsistent with BWIP's current approach to repository performance assessment. As stated on page 2-9 of the Exploratory Shaft Test Plan [SD-BWI-TP-007], "BWIP is following a logic which does not take credit for [groundwater] travel time [in] the preferred horizon dense interior." Since the goal of LHS testino is to develop information necessary for demonstrating compliance with licensing requirements, it would appear that BWIP should focus testing on hydrogeologic units that it plans to take credit for in the compliance demonstration.

In addition, if BWIP's proposed testing plan focuses on the Cohassett flow interior, the plan should be modified to include a long-term pumping test of the Cohassett flow top. The test plan implies that LHS testing will not be considered in the Cohassett flow top because of its assumed low transmissivity relative to other flow tops. However, long-term testing of the flow top may yield valuable information about the vertical hydraulic conductivity of the Cohassett and Rocky Coulee flow interiors. Uncertainty in estimates of vertical leakage can be reduced by pumping a lower transmissivity unit such as the Cohassett flow top because uncertainty in leaky aquifer analyses is reduced in LHS tests where aquifer response deviates substantially from the theoretical Theis response, and this deviation increases as the ratio in conductivities between the aquifer and confining units decreases. Thus, LHS testing of low

transmissivity flow tops may provide more information about vertical hydraulic conductivity than tests in higher transmissivity units.

- 6 -

BWIP should determine the appropriate focus of LHS testing at RRL-2 with respect to its approach for performance assessment and the objectives for LHS testing. As discussed during the meeting, BWIP should also evaluate LHS testing of the Cohassett flow top based on preliminary estimates of the unit's transmissivity at RRL-2B that will be determined through pulse tests and well development.

8. Pump Selection

The test plan states that the first LHS test in the Rocky Coulee flow top will use a positive displacement (sucker rod) pump. Positive displacement pumps, however, do not produce a continuous and constant rate of discharge. Fluctuations in pressure at the pumping well caused by pump cycling may complicate interpretation of early-time drawdown data if the fluctuations cause oscillations in water levels at observation wells RRL-2C and -2A. In addition, changes in pumping rate may be difficult to accomplish during the early part of the test because of the operation of the pump. It appears BWIP would have to turn the pump off to alter the pump discharge rate, which may unrecessarily complicate interpretation of the LHS test results. If the production capability of RRL-2B in the Rocky Coulee flow top is greater than anticipated, the sucker rod pump may not be able to pump at sufficiently high rates to optimize the performance of the LHS test.

When the selection of the sucker rod pump was discussed during the meeting, BWIP indicated the selection was based on the need to minimize the effects of wellbore storage. Although this is an advantage of using the sucker rod pump, other pumping schemes such as submersible pumping may also acheive this advantage while providing relatively constant discharge rates.

BWIP should attempt to keep the discharge rate relatively constant, as appropriate, during the pumping test to minimize complications in interpreting the test results. In addition, BWIP should document its rationale for selecting the sucker rod pump and evaluate potential adverse effects of sucker rod pumping on interpretation of water level data from the pumping well and RRL-2C and -2A.

9. Criteria for LHS Testing

The LHS test plan describes a nominal 30-day period of pumping during the first test from the Rocky Coulee flow top. The plan recognizes satisfactory tracer recovery and indications of hydraulic boundary conditions as criteria to determine when pumping should be terminated. Premature termination of the pumping, however, may limit the ability of the test to fulfill its objectives.

During the meeting, BWIP elaborated on the termination criteria which included accomplishment of test objectives and jeopardization of synchronous head measurements. In their present form, however, both of these criteria are subjective and need to be defined in greater detail to develop objective criteria for determining when pumping should be terminated. BWIP should also develop criteria for determining when transient responses caused by LHS testing have sufficiently subsided to allow subsequent LHS tests to begin.

- 7 -

Similar criteria should be developed to determine when pressure trends have been reestablished after the first tracer has been injected during the first LHS test, but before the transducer is pulled out of the second piezometer prior to tracer injection. During the meeting, BWIP indicated that both transducers in RRL-2A and -2C in the Rocky Coulee flow top could be out of the piezometers at the same time, which would eliminate BWIP's capability of monitoring drawdown if measurable perturbations from the first test do not reach more distant monitoring facilities beyond 2250 m. Thus, BWIP would not be able to detect hydrogeologic boundaries. Further, the removal of the tracer injection apparatus may also perturb pressures in the flow top, which could not be characterized unless at least one transducer remained in a piezometer in the flow top. Once developed, these criteria should be incorporated into LHS and tracer testing procedures.

10. Development of RRL-28

The LHS test plan does not discuss how the the pumping well, RRL-2B, has been or will be developed prior to the first LHS test in the Rocky Coulee flow top, or how the well will be developed prior to subsequent tests. Drill cuttings and drilling fluids remaining in the Rocky Coulee flow top may inhibit flow to the well, thus decreasing well efficiency and potential pumping rates. The purpose of well development is to remove cuttings and drilling fluids from the formation. The drilling and completion specifications document for RRL-2B and -2C [SD-BWI-TC-023] mentions that RRL-2C will be developed prior to installation of the piezometers, but does not discuss well development activities for RRL-2B. In addition to improving well efficiency, controlled development of RRL-28 using air-lift pumping or other suitable techniques may provide valuable pre-LHS testing transmissivity estimates allowing selection of optimal pumping rates from the Rocky Coulee flow top. Use of well development as a pre-test would require that BWIP monitor water levels and/or pressures. discharge rates, and hydraulic responses to the development stress. Controlled well development of RPL-2B may provide more accurate estimates of aquifer transmissivity and a more defensible basis for selection of optimal pumping rates than the proposed pulse testing, particularly in higher transmissivity Hydrochemical sampling during well development could also be used to units. evaluate whether the bulk of drilling fluids injected during drilling have been removed. BWIP should carefully document the development procedures used in RRL-2B. If the well has not been developed, BWIP should evaluate alternative

development techniques and develop RRL-2B, as appropriate, prior to initiation of LHS testing.

- 8 -

11. Mechanical Effects

Based on pre-test analyses described in the test plan, BWIP expects that pumping from RRL-2B will develop significant drawdowns (e.g., 263 meters) in the vicinity of the pumping well during the first LHS test. Such large drawdowns may stimulate discontinuous deformation of the basalt flows by decreasing pore pressures and changing fracture apertures. Although stresses caused by changes in pore pressure may be insignificant compared with in-situ stresses, BWIP should recognize that changes in fracture apertures in close proximity to the pumping well may cause anomalous head responses during LHS testing.

12. Vesicular Zone Testing

As agreed in the meeting, BWIP needs to consider performing LHS tests of the vesicular zone in the Cohasset flow interior. BWIP's decision to conduct testing of the vesicular zone should be consistent with the test plan and be based on preliminary testing of the vesicular zone after the pumping well has been drilled through the zone.

13. Convergent Tracer Test

The test plan proposes integration of convergent well tracer testing with LHS testing of the Rocky Coulee flow top. The NRC is concerned that the tracer test may complicate the interpretation of LHS testing results. Injection of tracer solution and chase water under 250 m of head into RRL-2A and -2C, may result in pressure perturbations that could interfere with aquifer responses to pumping stress, especially within the flow interiors. Although such perturbations may not last long within flow tops (e.g., several hours to days), the pressure pulses in flow interiors may be on the order of meters and persist for periods up to tens of days. As discussed in comment number 9, conduct of the tracer test may also prevent continuous collection of pressure data at RRL-2A and -2C because the pressure transducers will be removed to inject the tracers.

In addition, the test plan does not provide a detailed rationale for how information derived from the convergent well tracer test will be utilized in evaluations of site performance. For example, the two-well recirculating tracer test conducted previously at the BWIP was not designed to provide repository-scale estimates of dispersivity (Leonhart et al., 1984). This same limitation also applies to the dispersivity values determined in the convergent well tests at RRL-2. The test plan's description of proposed tests does not evaluate whether lateral dispersion will be significant with respect to

	ISSUE	DISQUALIFYING CONDITION	PARAMETERS	EVALUATION CRITERIA*	TESTS
.9.1	Post-Closure Geohydrology	Groundwater travel time less than 1000 years	a. Hydraulic properties of flow tops	<u>Ti</u> > 5m/yr nb	
			 Hydraulic gradient (i) Transmissivity (T) 		Spatial and temporal distribution of hydraulic head LHS tests in flow tops
			 Effective thickness (nb) 		Multiwell tracer tests
			• Storativity		LHS tests in flow tops
			b. Hydraulic properties of flow interior	K'v 10 ⁻⁹ m/s	
			 Vertical hydraulic conductivity (K'v) of dense interior 	• •	LHS tests in flow tops
			 horizontal hydraulic conductivity (Kh) of flow 		LHS Tests in flow tops
			Specific storageEffective porosity		Estimated from tests of core samples Estimated from tests of core
	•		c. Presence or absence of discrete, highly transmissive fea- tures which cross- cut flows	Unexpected vertical response to LHS, such as responses across several intervening flow interiors	samples
			• Leakance	Recharge boundary	LHS tests in flow tops
			 Hydraulic bound- aries 	שונחות כאש	LHS tests in flow tops
			d. Radioisotope content of ground water	Presence of recent meteoric water:	Sampling and analysis
			 Radioisotope con- centrations 	C-14 80% modern I-129 10 ⁻⁸ pCi/L	
					•

STRATEGIES TO INVESTIGATE DISQUALIFTYING CONDITIONS

.

	ISSUE	DISQUALIFYING_CONDITION	PARAMETERS	EVALUATION_CRITERIA*	TESTS
4.1.4	Pre-closure Hydrology	Engineering conditions beyond reasonably avail- able technology	a. Hydraulic properties of Cohassett dense interior	K'v≥ 10 ⁻⁹ m/s	· ·
			 Vertical hydraulic conductivity 		LHS test in Birkett flow top
			• Specific storage	N.A.	Estimated from tests core
			b. Hydraulic properties of adjacent flow tops		samples
			• Transmissivity		LHS test in flow tops
. ·			• Storativity		LHS test in flow tops
• •			 Head distribution 		Spatial and temporal distri- bution of hydraulic head
			c. Gas content of groundwater	CH4 ≥ 1200mg/L	
	· .	· · · · ·	• Gas concentration		Sampling and analysis

STRATEGIES TO INVESTIGATE DISQUALIFTYING CONDITIONS (Cont'd)

*Conditions that are so severe as to be indicative of potential disqualification. Futher evaluations and/or investigations to resolve the conditions will be necessary.

EXHIBIT IV (cont'd)

SCHEMATIC OF RELATIVE EFFECTS OF SITE CHARACTERIZATION ACTIVITIES ON GROUND-WATER LEVELS IN PUMPED INTERVALS EXHIBIT V

, 0216-0024DS 3/16/87

OPTIONS FOR PRE-ES HYDROLOGY TESTING PROGRAM

OPTION

PRO

CON

- Provides insufficient information about Minimal schedule disruption on start of - drill and equilibrate DC-24, 25 ES disgualifying conditions Provides no information to support • Least cost impact Yields data on perishable head conditions engineering design Potential compromise of interpreting ٠ future test results Probably not credible with technical community Subject to severe programmatic criticism Gains no experience with testing procedures and equipment Potential change of hydraulic parameters in vicinity of ES not detectable Establish baseline; Test Rocky Coulee only • No reprogramming necessary; conform to • Provides little information to support current test plan and facilities engineering design Provides little information on impact of Yields data on perishable conditions and hydraulic parameters of Rocky ESF on future tests May not be credible with technical Coulee Provides some information on community disgualifying conditions Limited experience with testing Expedites start of ES construction procedures and equipment • Provides some information for engineering Limited credibility with technical • community desian . Limited experience with testing Yields data on perishable hydraulic pro-۰. perties and conditions of Birkett flow top procedures and equipment and Cohassett interior May delay ES construction schedule Provides some information on Requires modification to pumping well disqualifying conditions and additional monitoring facilities Provides some information on impacts Some reprogramming required of ESF on future tests Yields data on perishable conditions in Delays ES construction schedule Grande Ronde Near-term site costs increase Requires additional monitoring facilities Provides substantial information for engineering design at RRL-2 site Reprogramming required Provides information on . disgualifying conditions at RRL-2 site Enhances credibility with technical community Provides information to predict impacts of ES on future geohydrologic tests • Yields definitive data on perishable Major delays in ES construction schedule conditions in Grande Ronde Near-term site costs increase Provides definitive design information substantially over wide area of Cohassett flow Major reprogramming required Provides definitive information on Requires considerable monitoring and disqualifying conditions over much of pumping facilities CASZ • Provides some information on flow system boundaries Avoids interference from ESF activities
- Β. - drill and equilibrate DC-24,25,32,833 - pump RRL-28
 - take samples from Rocky Coulee
 - run tracer test

Establish baseline only

Α.

- Establish baseline: Test Birkett only C. - drill and equilibrate DC-24,25,32,&33
 - deepen and pump well RRL-2B
 - take samples from Birkett
 - run tracer test
- D. Establish baseline; test multiple flow tops (Rocky Coulee, Cohassett, and Birkett) and Cohassett vesicular zone
 - drill and equilibrate DC-24,25,32,833
 - deepen and pump well RRL-2B
 - take smaples' from flow tops
 - run tracer tests

- Ε. Establish baseline; test multiple flow tops (Rocky Coulee, Cohassett, and Birkett) and Cohassett vesicular zone at several (3-4) additional pumping centers
 - drill and equilibrate DC-24,25,32&33.
 - deepen and pump well RRL-2B
 - drill and pump other centers take smaples from flow tops
 - run tracer tests

and attendant interpretation problems High credibility with technical community EXHIBIT Z - DTIVITIES FOR THE

÷

•

EXITRIC VII

21

I

longitudinal dispersion, or whether the hydraulic gradients imposed during the test will result in tracer behavior that is fundamentally different from tracer behavior under ambient conditions. This difference may be especially significant if flow through fractured basalt is assumed to represent an equivalent porous medium. Further, the plan does not discuss uncertainties about the representativeness of effective porosity and dispersivity values for portions of the Rocky Coulee flow top distant from RRL-2 and other basalt flow tops.

- 9 -

The NRC agrees that the DOE needs to characterize effective porosity and dispersivity at the BWIP site, but this information should be collected in a manner that does not compromise the primary objective of the LHS testing, i.e. to characterize the groundwater flow system including hydrologic boundaries, hydraulic continuity, and hydraulic parameters. BWIP should assess potential complications of conducting the convergent tracer tests in conjunction with the LHS test and concurrent ratio test, particularly with respect to monitoring water level responses within the flow interiors. This assessment should also document the rationale for the tracer tests including a discussion of the limitations and uncertainties that will be associated with the tracer test results.

REFERENCE: Leonhart, L. R., R. Jackson, D. Graham, L. Gelhar, G. Thompson, B. Kauchoro, and C. Wilson, 1984, "Analysis and Interpretation of a Recirculating Tracer Experiment Performed in a Deep Basalt Flow Top," RHO-BW-SA-300 P, Rockwell Hanford Operations.

Hydrologic Baseline

14. Perturbations to Hydrologic Baseline

Based on reviews of recent water level data submitted by BWIP, NRC observes that trends in hydraulic heads appeared to have been sufficiently established for LHS testing in the Rocky Coulee flow top in May and June of 1985. Since that time, concurrent site preparation activities (e.g., drilling bridgeplugs at RRL-14 and drilling DC-23) have perturbed the groundwater system causing significant deviations to pre-test trends. During the meeting, BWIP acknowledged that more time is now required to reestablish pre-test trends before LHS testing can begin. These recent perturbations demonstrated that hydraulic stresses can be propagated across the Reference Repository Location, thus adding credence to the feasibility of conducting repository-scale LHS testing. The perturbations also indicate that future combinations of drilling, construction, and testing may perturb hydraulic heads to the extent that characterization of the pre-emplacement groundwater flow system and LHS testing would be delayed for a significant amount of time.

In developing strategies and schedules for site activities, BWIP should consider potential complications and delays of site activities caused by perturbations to the hydrologic system. For example, BWIP indicated that a multi-year period of reduced site activity might be required to establish hydrologic baseline if it cannot be established prior to LHS testing and Exploratory Shaft construction. BWIP's strategy for site characterization should consider the practicality of these contingencies in light of the ambitious project schedules.

15. Hydrochemical Sampling

The test plan lists constituents that will be analyzed in groundwater samples collected during pumping (cf. Table 13). Although the list appears comprehensive, the test plan does not discuss the objectives for collecting the hydrochemical data or provide a rationale supporting the list. Based on NRC's understanding of BWIP's current strategy for site characterization, these data will be used to characterize baseline hydrochemistry of the Hanford Site to confirm conceptual groundwater flow models and to support predictions of post-emplacement hydrochemical environments along potential radionuclide pathways. BWIP should amend the test plan to discuss the objectives and rationale for the hydrochemical sampling.

In addition, BWIP has omitted carbonate and bicarbonate species from the list of constituents that will be analyzed. Bicarbonate and carbonate species may significantly affect radionuclide transport by a variety of processes, such as complexing, pH buffering, and precipitation. In addition, concentrations of these two species are essential for calculating ion balances. The NRC recognizes that the concentrations of these two species may be calculated based on pH, alkalinity, and concentrations of other constituents (Stumm and Morgan, 1970). However, it would be prudent for BWIP to analyze for carbonate and bicarbonate as a more direct and precise method of determining their concentrations than through calculations. BWIP should include carbonate and bicarbonate in the list of constituents to be analyzed or amend the test plan to describe how their concentrations will be determined in lieu of analysis.

REFERENCE: Stumm, W. and J. J. Morgan, 1970, "Aquatic Chemistry: An Introduction Emphasizing Chemical Equalibria in Natural Waters," (New York, New York: Wiley-Interscience).

16. Data Release

Until several days before the meeting, the most recent water level information available to the NRC staff and contractors had been collected six months earlier (May/June 1985). NRC has not received pressure data from the BWIP site for the last 10 months. If NRC is to provide constructive comments to DOE on the adequacy of hydrologic data and interpretations, BWIP needs to release

essential information such as the water level data on a more-timely basis. The meeting may have been postponed if the NRC had been informed about the perturbations caused by drilling activities prior to the meeting. BWIP should release tabulated and time profile data including down-hole pressures, water levels, and environmental heads in accordance with the Site Specific Agreement, which specifies a 45-day release time frame from the time of data acquisition to the time the data are provided to the NRC.

- 11 -

APPENDIX C

PROPOSED PRE-ES GEOHYDROLOGIC TESTING PROGRAM

After the establishment of a hydraulic-head baseline and before the start of construction of the exploratory shafts (ES), DOE will conduct hydraulic tests in the Rocky Coulee flow top, Cohassett flow top and vesicular zone, and Birkett flow top within the upper Grande Ronde Basalt sequence. The logical basis for the proposed testing program is presented in Figure 1.

The hydraulic-head baseline will be established, for the most part, from a network of about 36 monitoring sites within the Hanford site (Figure 2). These monitoring sites consist of single boreholes that monitor single basalt horizons and several nested piezometer wells that monitor multiple horizons (i.e., RRL-2C, DC-19, DC-20, and DC-22). Two additional nested piezometer wells (DC-24 and DC-25) will be completed and equilibrated as part of the hydraulic-head baseline network before the first LHS test takes place. These new facilities will be used for water-level monitoring of multiple hydrostratigraphic units; they will neither be hydraulically tested nor hydrochemically sampled while under construction.

The chemistry of the ground waters is not perceived to be a "perishable" condition in the pre-ES timeframe. However, if ground-water sampling is not on the critical path, provisions will be made to collect hydrochemical samples at DC-24 and DC-25 as drilling progresses.

For the LHS tests, several existing boreholes will be modified (fitted with piezometers) in order to add monitoring points in the Birkett flow top. Those boreholes requiring modification include the McGee well, RRL-2A, RRL-6, RRL-14, RRL-17, DC 4/5, and DC-16. In addition, new nested piezometers, DC-32 and DC-33, will be placed at locations about 1000 meters southwest and southeast of RRL-2, respectively, in order to provide additional monitoring locations in appropriate proximity to the RRL-2B pumping center. The distribution of primary monitoring facilities during LHS tests of key horizons of the Grande Ronde Basalt is presented in Figure 3. The total time required for drilling and modifying all boreholes and reestablishing a hydrologic baseline is estimated at approximately 10 months.

After the reestablishment of the hydraulic-head baseline in the controlled-area study zone (CASZ), a series of LHS tests will be initiated. The tests would be conducted in the following order: the Rocky Coulee flow top, the Cohassett flow top, the Cohassett vesicular zone, and the Birkett flow top. Testing the Rocky Coulee flow top offers the opportunity for exerting appreciable stress on the system by pumping RRL-2B. This borehole will be successively deepened after each test. The Cohassett flow top and vesicular zone are assumed to be not transmissive enough for an LHS test; therefore, small-scale injection tests in RRL-2B are planned for these units. In the event either of these zones proves sufficiently transmissive, then a full LHS test will be performed. The Birkett flow top is expected to yield sufficient water to perform an LHS test.

Convergent tracer tests will be conducted in conjunction with LHS tests either by injecting tracers prior to the start of pumping or late in the pumping portion of the tests. Different, nonradioactive tracers will be injected into

C-1

two nearby observation wells (RRL-2A and RRL-2C); tracer arrival will be observed at the pumping well (RRL-2B). The time required to complete the four tests is estimated to be approximately 12 months.

The Birkett and the Rocky Coulee LHS tests will allow the testing of a large volume of rock, probably to repository scale (i.e., a volume comparable to that of the proposed repository). Since it is expected that the Birkett flow top can be pumped at a greater rate than the Rocky Coulee flow top, the Birkett test could yield more data about the geohydrologic system in the vicinity of the ESF. The tests in the Cohassett flow top and vesicular zone will probably be of shorter duration and would interrogate a lesser volume of rock because of the lower hydraulic conductivities of these units relative to other units to be tested.

Results from these four tests will be evaluated for, among other things, hydraulic parameters that would be used to determine the presence of disqualifying conditions and any changes necessary to current ESF and repository designs (see Figure 1). The results of these evaluations will be used to determine whether and where further tests should be run before ES construction.

Pumping during the tests will provide an opportunity to collect representative ground-water samples from the Rocky Coulee and Birkett flow tops for chemical analysis. Water samples will be analyzed, at a minimum, for 14 C, 36 Cl, 129 I, tritium, major dissolved and suspended solids and gases, temperature, and pH. The results of these analyses, particularly for the short-lived radioactive isotopes, could yield an indication of the presence of a disqualifying condition. The collection and analysis of ground-water samples during LHS testing should not affect the ES schedule.

The combined schedule to carry out the recommended pre-ES geohydrologic testing program is presented in Figure 4. The total duration of the program is estimated at 22 months after the start of drilling.

C-2

LOGIC PROCESS FOR PRE-ES GEOHYDROLOGIC TEST PROGRAM

)

FIGURE 2

HYDRAULIC-HEAD BASELINE MONITORING LOCATIONS AT THE HANFORD SITE

0216-0024DS 3/18/87

PRIMARY LHS TEST MONITORING FACILITIES IN THE ROCKY COULEE FLOW TOP

0216-0024DS 3/16/87

0216-0024DS 3/16/87

0216-002405 3/16/87

PRIMARY LHS TEST MONITORING FACILITIES IN THE UMTANUM FLOW TOP

FIGURE 3 (cont'd)

.....

ENCLOSURE C

RESPONSE TO LETTER FROM NRC STAFF

ABOUT THE GEOHYDROLOGY TESTING PROGRAM

AT HANFORD

The letter, dated April 10, 1986, from J. Linehan to O. Olson, made two major observations with regard to the geohydrology program presented at the December 1985 hydrology workshop. First, there was concern that the initial testing will not be on a repository scale. The NRC staff considered this to differ from the strategy defined by the NRC's Site Technical Position (STP) 1.1. Second, the staff felt that the ability to establish the hydraulic-head baseline may be in jeopardy from perturbations such as those caused by the Exploratory Shaft Facility (ESF). In the absence of a baseline, the evaluations of the pre-waste emplacement ground-water system and the results of future Large-scale Hydraulic Stress (LHS) tests could be compromised.

On the basis of an analysis of information needs to resolve licensing issues for the Hanford site, we have revised the geohydrologic program for the pre-ES time period. That program is structured around four objectives:

- To collect data on geohydrologic conditions that will be changed by site characterization activities.
- To collect data having the potential for providing an early indication of the presence of disqualifying conditions.
- To collect data on geohydrologic conditions in order to identify the effects of the ESF on the flow system and subsequent geohydrologic tests.
- . To collect data on geohydrologic conditions that may affect the design of the ESF and/or the repository.

In order to meet the aforementioned objectives, the initial testing is planned to be of repository scale in areal extent. Therefore, we intend to stress four separate horizons: Rocky Coulee flow top, Cohassett flow top, Cohassett vesicular zone, and Birkett flow top. As a minimum, the tests of the Rocky Coulee flow top and Birkett flow top at the RRL-2B pumping well will be LHS tests and should reach to the boundaries of the proposed repository and beyond. In addition, we anticipate small-scale injection tests of the Cohassett flow top and vesicular zone. LHS tests of these units will be performed in the event they prove sufficiently transmissive. The tests identified above will be done in the absence of any external disturbances from other site characterization activities, especially ES construction. Further, descriptive information about the pre-ES testing program may be found in Section 8.3.1.3. of the Site Characterization Plan (in preparation), and the Department's option paper on pre-ES geohydrologic testing which gives a general overview of the program.

As for the hydraulic-head baseline, the program contains ongoing hydraulic-head monitoring which we believe provides the baseline needed to

understand the ground-water flow regime and to evaluate subsequent hydraulic tests. As part of its pre-ES geohyrologic testing program, the Department of will supplement the monitoring network for hydraulic head. In particular, two multi-piezometer wells, DC-24 and DC-25, will be constructed. These facilities will be located to augment our understanding of the ground-water flow system and refine the preferred conceptual model. During the post-ES time period, additional monitoring wells will be installed and LHS tests will be performed to investigate the boundaries of the system.

Hydraulic head is monitored at 36 sites scattered over the Hanford site. Data from these sites, plus new multi-piezometer wells will, in our view, constitute a suitable baseline to characterize the pre-waste emplacement ground-water system at the site. We expect that the hydraulic-head data will be sufficient to meet our criteria for establishing the hydraulic-head baseline before the start of LHS testing. We expect these steps will adequately serve our testing objectives.

The NRC staff noted that the Department had not performed the analyses required to address their concerns. The results of the analyses will be available before start of the LHS test series at RRL-2B.

The NRC staff also requested early involvement in the readiness review process for the testing program. The Department agrees to keep the staff informed of progress with the readiness review. NRC's Onsite Representative and other interested staff will be invited to attend formal review meetings. Documentation related to the readiness review, including QA plans and procedures, will be provided as soon as internal management checks are completed. Whenever individual tests are performed, the NRC staff will be invited to attend as observers. 2. Responses to Detailed Comments

Monitoring Facilities

1. Monitoring Locations and Frequencies

NRC Comment -

Because of the uneven distribution of monitoring facilities around the pumping well (RRL-2B), EWIP's ability to characterize and interpret hydraulic responses to pumping stress in three dimensions is limited. As planned, water levels will not be monitored between radial distances of 152 m (RRL-2A) and 2250 m (RRL-14). Without water level information at intermediate scales between RRL-2A and RRL-14, results from LHS testing of the Grande Rhonde Basalts at RRL-2 may yield considerable uncertainty in interpretations drawn from the test results. For example, deviations from expected drawdown responses may be caused by distributed leakage through flow interiors or discrete features, or by interference by hydrogeologic boundaries. It appears that current monitoring facilities at the Hanford Site are inadequate to achieve the objectives of LHS testing because of their locations and limited number.

The inadequacy of present monitoring facilities is especially acute for the third planned LHS test, which will stress the Grande Ronde 5 flow top. Of the three proposed tests, the LHS test of the Grande Ronde 5 flow top has the greatest potential to be a repository-scale test because of the unit's apparent high transmissivity in the vicinity of the RRL-2 cluster. However, only two facilities presently monitor the Grande Ronde 5 flow top: RRL-2C at 76 m from RRL-2B and RRL-14 at 2250 m. The limited number and locations of these facilities appear to be inadequate to characterize hydrologic boundaries and hydraulic continuity, and the spatial distribution of hydraulic properties. BWIP should install additional monitoring facilities or substantially modify existing facilities prior to conducting the proposed LHS test in the Grande Ronde Number 5 flow top.

Prior to conducting LHS testing, BWIP needs to demonstrate how proposed monitoring facilities will provide necessary hydraulic head and response data for site characterization. EWIP should assess the limitations of the present monitoring network at the Hanford Site and improve the network to accomplish the objectives of LHS testing and site characterization. Potential improvements to the network range from increasing the frequency and location of head measurements at existing facilities to installing new monitoring facilities. A more comprehensive piezometer network (both in frequency of measurement and 'location) would support characterization of the groundwater flow system in the Pasco Basin and provide a potentiometric baseline against which EWIP could compare effects of drilling, well development, testing, and other activities (e.g., exploratory shaft . construction, off-site perturbations, wastewater disposal activities).

DOE RESPONSE -

Current plans include the construction of additional multiple-level piezometer facilities at five sites; DC-23, DC-24, DC-25, DC-32, and DC-33 (figure 1) prior to initiating pre-ES LHS tests. At each site monitoring points will be provided in the Priest Rapids interflow, the Sentinel Gap flow top, the Ginkgo flow top, the Rocky Coulee flow top, the Cohassett flow top, the Birkett flow top, and the Umtanum flow top.

Eight existing boreholes will be modified for use as test observation points (figure 2). A permanent piezometer will be installed in DC-16 to monitor the Birkett flow top. The Birkett flow top was selected to be monitored in DC-16 based on comparison of the distribution of monitoring points available for each of the four pre-ES tests. Straddle packers and bridge plugs will be used to isolate test horizons in boreholes RRL-2A, RRL-6, RRL-14, RRL-17, DC-4, DC-5, and McGee well.

Borehole RRL-2A is currently configured to monitor the Rocky Coulee flow top and the Grande Ronde No. 2 flow above the Rocky Coulee flow. RRL-2A will be reconfigured for each of the three tests that follow the Rocky Coulee test such that the stressed (e.g., pumped or pulsed) horizon will be monitored. Monitoring of the stressed horizons at RRL-2A is important because of the near proximity of RRL-2A to the test well, RRL-2B. The remaining six boreholes, RRL-6, RRL-14, RRL-17, DC-4, DC-5, and McGee well will be configured to monitor the Rocky Coulee flow top during the Rocky Coulee flow top LHS test and then reconfigured to monitor the Birkett flow top during the Birkett flow top LHS test. Hydraulic response is not expected at RRL-6, RRL-14, RRL-17, DC-4, DC-5, and McGee well for the stress tests of the Cohassett flow top and Cohassett vesicular zone because of the distance the boreholes are from the test well and the expected low transmissivity of these horizons. However, if after deepening the test well, RRL-2B, it is found the Cohassett flow top and/or the Cohassett vesicular zone have sufficient transmissivity to support LHS tests, then the six facilities would be reconfigured to monitor the pumped horizon(s).

As reflected in the test plan for hydraulic testing at RRL-2B (Stone, et al., 1985), the frequency of measurement of hydraulic head or pressure at facilities in the Hanford Site Monitoring Network (figure 2) will be increased during hydraulic testing. Current monitoring frequencies are adequate for determining the hydraulic head baseline in the absence of any large perturbations. 2. Cement Effects

NRC COMMENT -

During the drilling of RRL-2A and -6, the Rocky Coulee flow top was cemented to reduce mud loss. This cementing may adversely complicate the interpretation of water level responses and tracer breakthrough during the first LHS test. Such complications in RRL-2A could be especially important because of the sensitivity of test interpretations to water level responses at this location and because cement may inhibit tracer injection into the Rocky Coulee flow top.

During the meeting, BWIP asserted that cement does not significantly interfere with hydraulic communication between RRL-2A and the Rocky Coulee flow top. This position was based on evaluation of dynamic temperature logs and comparisons of hydraulic test data. Dynamic temperature logging indicated that the Rocky Coulee flow top still contributes flow to the well. EWIP also compared the transmissivity value determined from a hydraulic test of the combined Grande Ronde 2 flow and the Rocky Coulee flow top in RRL-2A with the transmissivity value determined from a pulse test in RRL-2B. EWIP concluded that the two transmissivity values compared favorably, thus indicating that cement does not inhibit hydraulic communication between the borehole and the Rocky Coulee flow top.

Although BWIP provided a verbal basis for its assertion that cement in RRL-2A and -6 does not significantly inhibit hydraulic communication with the Rocky Coulee flow top, BWIP did not provide any documentation of the conclusions nor supporting assessments. BWIP should document the basis for its assertion and then provide it to NRC for review and comment.

DOE RESPONSE -

Available information indicates that spot cementing of the Rocky Coulee flow top during drilling of borehole RRL-2A had minimal effect on the hydraulic properties of this flow. Evidence suggesting that the cement did not significantly inhibit hydraulic communication between the borehole and the flow top includes:

Single borehole tests performed on the composite Rocky Coulee and Grande Ronde No.2 flow tops at RRL-2A prior to cementing resulted in an estimated transmissivity ranging between 1 and 10 ft²/d (Strait and Mercer, 1986). Pulse testing of the Rocky Coulee flow top was conducted at RRL-2B while monitoring hydraulic responses in the same horizon at RRL-2A and RRL-2C. Estimated transmissivity of the Rocky Coulee flow top at RRL-2A, following cementing of the Rocky Coulee flow top, was 6.5ft2/d (Jackson et al., 1986). The post-cementing test results are consistent with estimates of transmissivity obtained from the pre-cement test.

o Dynamic fluid-temperature logs (copies on file with Basalt Records Management System) run subsequent to cementing indicate water production (about two gallons per minute) from the Rocky Coulee flow top at RRL-2A. This suggests a significant hydraulic connection between the Rocky Coulee flow top and the open interval in RRL-2A.

 Hydraulic responses were observed in the Rocky Coulee flow top at RRL-2A and RRL-2C while drilling RRL-2B in June, 1985 (Jackson et al. 1986, p. 23-24), indicating hydraulic connection.

The effects of cementing of the Rocky Coulee flow top at RRL-6 are not as well understood. Dynamic temperature logs of RRL-6 did not indicate a hydraulic connection between the Rocky Coulee flow top and the borehole. However, water-level data from subsequent monitoring of the Rocky Coulee flow top at RRL-6 are consistent with data from other Rocky Coulee flow top piezometers on the site.

3. Borehole Interflow

NRC COMMENT -

Subsequent to the first LHS test in the Rocky Coulee flow top and removal of bridgeplugs, interformational flow via open boreholes between flow tops and other producing zones may occur within observation wells RRL-2A, DC-4, RRL-6, and the McGee Well. The bridgeplugs were originally installed to minimize borehole interflow, which could interfere with interpretations of LHS test results by perturbing water levels. BWIP indicated during the meeting that borehole interflow, would not significantly perturb water levels, yet did not provide any rationale for this conclusion. BWIP should carefully analyze whether borehole interflow subsequent to bridgeplug removal will significantly affect interpretations of LHS test results. This analysis should then be presented to NRC for review.

DOE RESPONSE -

Preliminary, unpublished analyses (Internal letter 10130-85-034, S. M. Baker to W. H. Price) have been performed to determine the approximate effect of borehole interflow at DC-16. It was concluded from these analyses that borehole interflow at DC-16 would not affect water-level measurements at other observation points (e.g., DC-19, DC-20, DC-22, and RRL-2) for the Rocky Coulee flow top test.

We believe the results of the above described modelling can be used to qualitatively estimate the effect of borehole interflow at observation wells RRL-2A, DC-4, RRL-6, and McGee well. That is, effect on observed water levels at other observation points (e.g., DC-19, DC-20, and RRL-2C) is expected to be negligible due to borehole interflow at RRL-2A, DC-4, RRL-6, and McGee well. However, the water levels observed in the interval in which interflow occurs will not be accurate at the borehole (i.e., RRL-2A, DC-4, RRL-6, and McGee well). As recommended in internal letter 10130-85-034, additional modelling will be performed to estimate the effects of borehole interflow, subsequent to bridge plug removal to reposition the straddle packer in RRL-2A, DC-4, RRL-6, and the McGee Well. The approach taken to estimate the effects of borehole interflow will be described in the Site Groundwater Study Plan (SD-BWI-SP-047) which is expected to be released by July 1987. The results of the modelling will be used to chose the appropriate monitoring option.

4. Monitoring Facilities for the Ratio Test

NRC COMMENT -

BWIP proposes to analyze LHS test results using the Neuman-Witherspoon ratio method to derive estimates of vertical hydraulic conductivity of the flow interiors near RRL-2B. The utility of the first ratio test in the Rocky Coulee flow top is limited, however, because limitations of present monitoring facilities preclude determination of diffusivity for the flow interior above the Rocky Coulee flow. In addition, ratio testing could result in low, nonconservative estimates of hydraulic diffusivity for the Rocky Coulee flow interior because of piezometer compliance, which is the non-ideal response of piezometers caused by small-scale deformation of piezometer components. The Neuman-Witherspoon (1972) ratio method requires head response data from within confining beds adjacent to the pumped aquifer (e.g., Rocky Coulee flow top in the first planned LHS test). These data are interpreted along with response data from within the pumped aquifer to estimate the hydraulic diffusivity of the confining units, where diffusivity equals the ratio of the confining unit's vertical hydraulic conductivity and its specific storage. Although response

data can be collected from the piezometer completed within the Rocky Coulee flow interior at RRL-2C, response data cannot be collected within the flow interior above the Rocky Coulee flow top because BWIP has not completed a piezometer within the interior of Grande Ronde flow number 2. Thus, the first LHS test will not estimate the diffusivity of the flow interior above the Rocky Coulee flow top. Because of this limitation, the first LHS test will not serve as a good example of applying the ratio test to characterize vertical hydraulic conductivities of the Columbia River Basalts. In comparison, testing the Cohassett flow top may provide a better demonstration of ratio testing since flow interiors above and below the flow top will be monitored.

In addition, the utility of the first ratio test may also be limited because piezometer compliance could delay head responses in piezometers completed in the flow interiors. This delay could bias analyses of test results by underestimating the hydraulic diffusivity of the interiors, thus underestimating values of vertical hydraulic conductivity which would be nonconservative with respect to repository performance. BWIP should assess the significance of time-lag due to compliance of piezometers in the RRL-2C cluster that will be used for the ratio test. For example, BWIP could measure piezometer compliance prior to LHS testing by conducting pulse tests in appropriate piezometers. After the LHS test is completed and the results needed for the ratio test have been collected, BWIP could then compare the lag time determined in pulse tests with the time difference between the start of the test and initial response detected in the piezometers completed in the flow interiors. If the piezometer lag time is comparable with the initial response time, then BWIP may need to correct the response data to characterize hydraulic diffusivities.

DOE RESPONSE -

A single multiple-piezometer nest, RRL-2C, was designed and constructed to serve as a nearby monitoring facility for the test at RRL-2B. One of the purposes RRL-2C is to serve is that of a facility for ratio tests to calculate vertical hydraulic diffusivity of several flow interiors. Piezometers are completed in flow tops (interflow zones) and flow interiors of the Rocky Coulee, Cohassett, and Birkett (Grande Ronde No. 5) flows. These piezometers will provide for ratio tests of the Rocky Coulee flow interior when the Rocky Coulee flow top is pumped, and of the Cohassett and Birkett flow interiors when the Birkett flow top is pumped. The practical limit to the number of piezometer tubes in a multiple-level installation was six at the time of construction of RRL-2C. Therefore, the interior of the Grande Ronde No. 2 was not fitted with a piezometer.

The ratio method is yet to be successfully applied in testing deep basalt flows. Therefore, the use of the ratio method to calculate vertical hydraulic diffusivity from the results of the first LHS test should be viewed as an evaluation of the methodology as well as an

attempt to estimate this parameter. Even if successful, the ratio test at RRL-2 may yield results of limited applicability because the vertical hydraulic diffusivity estimates derived from the test will apply to only a small region within the flow interior. Using the ratio method to evaluate results of the first LHS test will be valuable in developing plans for subsequent tests designed to determine vertical hydraulic properties.

Other approaches will be used to estimate flow interior vertical diffusivity. These approaches include analysis of the drawdown data in the pumped flow top with the Hantush-Jacob method (Hantush and Jacob, 1955) and Hantush Modified method (Hantush, 1960) and numerical analysis using the observed responses in the pumped flow top and adjacent flow tops. Estimating vertical diffusivity of confining units based solely on response of the pumped aquifer does have a disadvantage that should be noted here. That is, in a layered system it is generally not possible to discriminate the source of leakage into an aquifer if it is confined above and below such as the basalt flow tops are confined above and below by flow dense interiors.

The numerical analysis approach would use a quasi-three dimensional or fully three-dimensional numerical groundwater flow model of the site which would be "calibrated" to the observed water-level responses. The major disadvantage of the numerical approach is that solutions are not unique. However, with ever increasing data base, the number of solutions possible should be reduced. Both the analytical and numerical approaches have the advantage of providing estimates of flow dense interior vertical diffusivity integrated over a large area. The application and limitations of all anticipated techniques will be discussed in the Site Groundwater Study Plan (SD-BWI-TP-047) which is expected to be released by July 1987.

The significance of time lag resulting from piezometer compliance in the RRL-2C piezometer cluster is an important consideration and will be assessed. Piezometer compliance due to compressibility of the fluid within the piezometer tube will be minimized by using a packer set at depth in the piezometer tube to isolate the lower part of the piezometer. Lag time due to compressibility of the remaining fluid in the piezometer tube and sand pack can be calculated. A detailed discussion of the plans for performing sensitivity studies and field tests of piezometer compliance and lag time are to be discussed in the Site Groundwater Study Plan (SD-BWI-SP-047).

As noted in response to comment 7, the Birkett flow top will be pumped prior to ES construction. When the Birkett flow top is pumped data from piezometers completed in the overlying Cohassett interior and the underlying Birkett interior and in the Birkett flow top will provide for ratio tests of both the Cohassett and the Birkett flow interiors.

5. Grout Permeability

NRC COMMENT -

During the meeting, BWIP indicated that the permeabilities of grouts used in the clustered piezometer installations (i.e. DC-19/20/22) had recently been estimated using permeameter testing. The contrast between the grout permeability in the cluster installations and that of the basalts is important to reliable performance of the piezometers. In addition, the effectiveness of the bond between the grout and basalt also affects the reliability of piezometer responses. Isolation of monitoring intervals using grout is especially important to reliable performance of piezometers completed within flow interiors because of the similarity of hydraulic conductivities between the grout and basalt. BWIP should present its analyses of grout permeability and integrity to NRC to demonstrate reliable performance of the piezometers.

DOE RESPONSE -

Formal documentation of the cement permeability is provided by Jackson et al. 1986, pp. 44-45. This document contains test results, obtained by Rockwell and their cementing subcontractor. Details on the laboratory tests are found in the subcontractor's laboratory reports or in controlled notebooks, both of which are on file with the Site Characterization Field Investigation Department. The same document (pp. 49-65) shows the observed responses in RRL-2C piezometers during development pumping of each of the piezometer tubes. This information was provided to the NRC in December, 1986 at Richland, Washington.

-7-

In an effort to determine the sufficiency of piezometer seals a preliminary evaluation of historic hydraulic perturbations and monitored responses to drilling activities has been performed (Wilson, 1987, 29p.) The conclusion from the preliminary evaluation is that the piezometer seals are probably good and the observed vertical response to drilling activities is probably due to naturally occurring connections.

Additional activities to assess the integrity of piezometer seals and estimate the effect of a finite seal leakage on characterization activities will include numerical modelling of observed responses and sensitivity studies to estimate the effect of piezometer seal leakage on large-scale hydraulic test interpretation. Integrity tests similar to those done at DC-19, DC-20, and DC-22 will be performed at all new piezometer installations (e.g., DC-24, DC-25, DC-32, and DC-33) and evaluation of data from both new and existing piezometers will be ongoing for evidence of seal degradation or inadequacy.

6. Westbay Installation

NRC COMMENT -

Based on discussions during the meeting and the subsequent site visit by NRC consultants (12/11/85), the trial installation of a Westbay device in RRL-14 appears to be providing useful information about the device's utility within the Hanford Site monitoring network. BWIP indicated during the meeting that the travelling pressure probe in the Westbay device will be used to mintor several horizons at RRL-14 during the LHS test. This does not appear feasible, however, because approximately 8 hours are required to complete a profile of all ports. The probe cannot be moved back and forth from one portal to another, thus it may not be useful to monitor several horizons during the LHS test because of the time consumed in moving the probe. BWIP should evaluate whether the configuration of the Westbay device can be effectively modified to monitor several flow horizons during LHS testing.

Despite their apparent limitations for near-field multi-level monitoring of LHS tests, Westbay devices may satisfy the need for additional far-field monitoring facilities at the Hanford Site (cf. USGS letter from Rollo to Olson, October 21, 1985). Additional facilities are needed to characterize the regional groundwater flow system in terms of both horizontal and vertical hydraulic gradients. For example, monitoring of such facilities outside of the Cold Creek Syncline may provide DOE with the ability to characterize vertical pressure profiles in areas where site activities are not expected to cause significant transient hydrologic responses. This type of additional information could significantly contribute to BWIP's understanding of the groundwater flow system at the Hanford Site. Based on experience gained with the Westbay device at RRL-14, BWIP should consider installing similar types of devices in boreholes distant from the RRL to characterize the regional groundwater flow system.

-8-

DOE RESPONSE -

The BWIP agrees that the usefulness of the Westbay system at RRL-14 for near-field monitoring of several horizons during an LHS test is limited by the time required to complete a profile of all ports. However, this limitation is not so important at a large distance from the pumping well during a long-term test. The proximity of the DC-22 piezometer site to RRL-14 will also provide a backup monitoring point and a comparison for evaluating the usefulness of the Westbay system.

The Westbay system has been removed from RRL-14 because of an unanticipated problem with the packer material. The system will be reinstalled with new packers prior to LHS testing. Following evaluation of the renovated Westbay system, BWIP will develop a plan for its appropriate employment.

Testing Procedures

7. LHS Testing Focus

NRC COMMENT -

The test plan states on page 41 that the "real focus of large-scale hydraulic testing in the Grande Ronde Basalt at the RRL-2 site is the Cohassett flow interior". This statement appears to be inconsistent with both the objectives of LHS testing stated earlier in the plan and BWIP's approach to repository performance assessment. As described in other sections of the test plan and NRC's BWIP Site Technical Position 1.1, the primary objective of LHS testing at BWIP is to provide repository-scale hydraulic data to support licensing assesssments of repository performance. This includes characterization of hydraulic parameters, identification of hydrologic boundaries, evaluation of far-field hydraulic continuity, and formulation of defensible conceptual models of the groundwater flow system. To accomplish these objectives, LHS testing should develop a far-field perturbation in response to controlled stress, which can best be done in the units with the highest transmissivities. Of the three units identified in the test plan for LHS testing, the Cohassett flow appears to have the lowest transmissivities. Therefore, BWIP's focus on the Cohassett flow may decrease the potential for fulfilling the primary objective of LHS testing.

The focus on the Cohassett flow also appears inconsistent with BWIP's current approach to repository performance assessment. As stated on page 2-9 of the Exploratory Shaft Test Plan [SD-BWI-TP-007], "BWIP is following a logic which does not take credit for [groundwater] travel time [in] the perferred horizon dense interior". Since the goal of LHS testing is to develop information necessary for demonstrating compliance with licensing requirements, it would appear that BWIP should focus testing on hydrogeologic units that it plans to take credit for in the compliance demonstration.

In addition, if BWIP's proposed testing plan focuses on the Cohassett flow interior, the plan should be modified to include a long-term pumping test of the Cohassett flow top. The test plan implies that LHS testing will not be considered in the Cohassett flow top because of its assumed low transmissivity relative to other flow tops. However, long-term testing of the flow top may yield valuable information about the vertical hydraulic conductivity of the Cohassett and Rocky Coulee flow interiors. Uncertainty in estimates of vertical leakage can be reduced by pumping a lower transmissivity unit such as the Cohassett flow top because uncertainty in leaky aquifer analyses is reduced in LHS tests where aquifer response deviates substantially from the theoretical Theis response, and this deviation increases as the ratio in conductivities between the aquifer and confining units decreases. Thus, LHS testing of low transmissivity flow tops may provide more information about vertical hydraulic conductivity than tests in higher transmissivity units.

BWIP should determine the appropriate focus of LHS testing at RRL-2 with respect to its approach for performance assessment and the objectives for LHS testing. As discussed during the meeting, BWIP should also evaluate LHS testing of the Cohassett flow top based on preliminary estimates of the unit's transmissivity at RRL-2B that will be determined through pulse tests and well development.

DOE RESPONSE -

The BWIP hydrology testing strategy has evolved significantly since the DOE/NRC workshop of December 1985. BWIP will establish a groundwater level baseline before the potential disturbance of LHS testing and ES construction occur. Hydraulic tests on four hydrostratigraphic units (Three flow tops and the Cohassett vesicular zone) will be performed at the RRL-2 site prior to ES construction. Two of the flow tops, the Rocky Coulee and Birkett flow top, are expected to have transmissivity sufficient to support LHS tests based on estimates of flow top hydraulic conductivity from the nearby corehole RRL-2A. The Cohassett flow top and vesicular zone are expected to not have sufficient transmissivity to support LHS tests thus, local-scale tests of the Cohassett flow top and Cohassett vesicular zone are expected.

8. Pump Selection

NRC COMMENT -

The test plan states that the first LHS test in the Rocky Coulee flow will use a positive displacement (sucker rod) pump. Positive displacement pumps, however, do not produce a continuous and constant rate of discharge. Fluctuations in pressure at the pumping well caused by pump cycling may complicate interpretation of early-time drawdown data if the fluctuations cause oscillations in water levels at observation wells RRL-2C and -2A. In addition, changes in pumping rate may be difficult to accomplish during the early part of the test because of the operation of the pump. It appears BWIP would have to turn the pump off to alter the pump discharge rate, which may unnecessarily complicate interpretation of the LHS test results. If the production capability of RRL-2B in the Rocky Coulee flow top is greater than anticipated, the sucker rod pump may not be able to pump at sufficiently high rates to optimize the performance of the LHS test.

When the selection of the sucker rod pump was discussed during the meeting, BWIP indicated the selection was based on the need to minimize the effects of wellbore storage. Although this is an advantage of using the sucker rod pump, other pumping schemes such as submersible pumping may also acheive this advantage while providing relatively constant discharge rates.

BWIP should attempt to keep the discharge rate relatively constant, as appropriate, during the pumping test to minimize complications in interpreting the test results. In addition, BWIP should document its rationale for selecting the sucker rod pump and evaluate potential adverse effects of sucker rod pumping on interpretation of water level data from the pumping well and RRL-2C and -2A.

DOE RESPONSE -

The pumping system selected to remove water from the Rocky Coulee flow top in RRL-2B is powered by an electric motor, operated by 60 cycle alternating current. The system embodies a reciprocal positive displacement pump and a geared reduction system for translating the rotary motion of the motor to the linear, reciprocal motion of the pump plunger. A multiple belt drive is used to transmit power from the motor to the geared reduction system. Short of belt slippage, which can be prevented by proper adjustment, the system must produce a constant rate of discharge from minute to minute, provided the current frequency does not vary substantially.

The pump will lift about 8 gpm at about 10 strokes per minute. The estimated hydraulic head fluctuation 250 ft from the pumping well caused by removal of 0.8 gallon (i. e., one stroke of the pump) is so small its estimation with the Theis equation is out of range of the W(u) tables. This fluctuation is not expected to have an adverse effect on the interpretation of data from the observation wells and is expected to be attenuated in travel to the nearest observation well, 250 feet away.

Changes in pumping rate are not difficult to accomplish with the sucker rod pump system, but they do require stopping the pump. If changes in discharge rate are needed in the early part of the test, it would be advisable to stop, equilibrate, and start the test over. The lack of ability to adjust pumping rate continuously is not viewed as a disadvantage.

If the Rocky Coulee flow top yields more than about 15 gpm, a different pumping system may be needed. Yield of more than 15 gpm is viewed as unlikely, but if it is the case, the test design will be reevaluated in light of the apparent differing hydraulic conditions. If all test objectives would not likely be accomplished using the
above pump operating at the maximum discharge rate (i.e., 15 gpm) then, a different pumping system would be required. The pump that is presently installed at RRL-2B is adequate to produce the greatest flow that can be reasonably expected from the Rocky Coulee flow top with approximately 800 feet of drawdown.

A submersible pump has the advantage of producing a continuous flow. However, the groundwater must be degassed before it enters the pump to avoid gas lock and wellbore storage must be minimized. Minimizing wellbore storage in combination with the degasser is difficult. A packer has to be set above the pump to reduce borehole storage which requires an elaborate system for venting gas to the surface plus providing electric power to the submersible motor and monitoring groundwater pressure change below the packer. Without the gas separation and venting capability, the submersible pump would be likely to fail due to gas lock.

Pressure measurements only will be made in RRL-2B, the pumping well. The measurements during pumping are not regarded as particularly useful in estimating hydraulic parameter values because of the frictional losses in flow near the well bore and on entry into the well bore. This commonly recognized fact negates the supposed adverse effect of "sucker rod pumping on interpretation of water level data from the pumping well." Pressure measured after pumping ceases in RRL-2B will be useful information for recovery analysis to estimate hydraulic property values, etc.

9. Criteria for LHS Testing

NRC COMMENT -

The LHS test plan describes a nominal 30-day period of pumping during the first test from the Rocky Coulee flow top. The plan recognizes satisfactory tracer recovery and indications of hydraulic boundary conditions as criteria to determine when pumping should be terminated. Premature termination of the pumping, however, may limit the ability of the test to fulfill its objectives. During the meeting, BWIP elaborated on the termination criteria which included accomplishment of test objectives and jeopardization of synchronous head measurements. In their present form, however, both of these criteria are subjective and need to be defined in greater detail to develop objective criteria for determining when pumping should be terminated. BWIP should also develop criteria for determining when transient responses caused by LHS testing have sufficiently subsided to allow subsequent LHS tests to begin.

Similar criteria should be developed to determine when pressure trends have been reestablished after the first tracer has been injected during the first LHS test, but before the transducer is pulled out of the second piezometer prior to tracer injection. During the meeting, BWIP indicated that both transducers in RRL-2A and -2C in the Rocky Coulee flow top could be out of the piezometers at the same time, which would eliminate BWIP's capability of monitoring drawdown if measurable perturbations from the first test do not reach more distant monitoring facilities beyond 2250 m. Thus, EWIP would not be able to detect hydrogeologic boundaries. Further, the removal of the tracer injection apparatus may also perturb pressures in the flow top, which could not be characterized unless at least one transducer remained in a piezometer in the flow top. Once developed, these criteria should be incorporated into LHS and tracer testing procedures.

DOE RESPONSE-

Hydraulic testing will not begin until synchronous hydraulic head baseline criteria have been reached. Criteria will be developed to determine when pumping should be terminated and when transient responses caused by earlier testing have subsided sufficiently to allow subsequent tests to begin. The criteria will be included in the Site Groundwater Study Plan (SD-BWI-SP-047) and are expected to be released by July 1987.

Tracer injection can precede pumping and/or be delayed until all other hydraulic test objectives have been met in order to minimize the effect on hydraulic testing (see response to comment 13). The installation of additional monitoring points (i.e., DC-32 and DC-33) at an intermediate distance will also help in determining when hydraulic testing objectives have been met. Criteria for starting and stopping the tracer test will be developed and will also be included in the Site Groundwater Study Plan (SD-BWI-SP-047).

10. Development of RRL-2B

NRC COMMENT -

The LHS test plan does not discuss how the pumping well, RRL-2B, has been or will be developed prior to the first LHS test in the Rocky Coulee flow top, or how the well will be developed prior to subsequent tests. Drill cuttings and drilling fluids remaining in the Rocky Coulee flow top may inhibit flow to the well, thus decreasing well efficiency and potential pumping rates. The purpose of well development is to remove cuttings and drilling fluids from the formation. The drilling and completion specifications document for RRL-2B and -2C [SD-BWI-TC-023] mentions that RRL-2C will be developed prior to installation of the piezometers, but does not discuss well development activities for RRL-2B. In addition to improving well efficiency, controlled development of RRL-2B using air-lift pumping or other suitable techniques may provide valuable pre-LHS testing transmissivity estimates allowing selection of optimal pumping rates from the Rocky Coulee flow top. Use of well development as a pre-test would require that BWIP monitor water levels and/or pressures, discharge rates, and hydraulic responses to the development stress. Controlled well development of RRL-2B may provide more accurate estimates of aquifer transmissivity and a more defensible basis for selection of optimal pumping rates than the proposed pulse testing, particularly in higher transmissivity units. Hydrochemical sampling during well development could also be used to evaluate whether the bulk of drilling fluids injected during drilling have been removed. BWIP should carefully document the development procedures used in RRL-2B. If the well has not been developed, BWIP should evaluate alternative development techniques and develop RRL-2B, as appropriate, prior to initiation of LHS testing.

DOE RESPONSE -

The test plan will be revised to discuss well development which was conducted at RRL-2B prior to pump installation and any further development planned prior to subsequent tests. Hydrochemical sampling will be conducted during any future development pumping to determine the degree of drilling fluid removal. Well RRL-2B was developed, as described by Jackson et al., 1986 (p. 39), prior to installation of the sucker rod pumping system. The borehole clean-up involved circulating Hanford system water in the open-hole part of the borehole immediately after reaching the interim depth of 2,858 ft. This was done to remove drill cuttings that may have accumulated in the borehole during the drilling operation (note: the drilling fluid was water with no additives). In addition to this work, limited borehole development was performed by air-lift pumping in September, 1985. An estimated 1,000 gal of fluid was removed from the borehole. Further flushing of the borehole was accomplished in October, 1985. The total volume of Hanford system water used to flush the borehole was about 48,000 gal. A video survey indicated that only minor amounts of particulate matter remained suspended in the water after circulation.

Air-lift pumping was not used as the principal technique to develop the borehole because of the low transmissivity of the Rocky Coulee flow top. Preliminary estimates of transmissivity of the Rocky Coulee flow top range from about 2 to 6 ft_2/d in the vicinity of RRL-2B.

11. Mechanical Effects

NRC COMMENT -

Based on pre-test analyses described in the test plan, BWIP expects that pumping from RRL-2B will develop significant drawdowns (e.g., 263 meters) in the vicinity of the pumping well during the first LHS test. Such large drawdowns may stimulate discontinuous deformation of the basalt flows by decreasing pore pressures and changing fracture apertures. Although stresses caused by changes in pore pressure may be insignificant compared with in-situ stresses, BWIP should recognize that changes in fracture apertures in close proximity to the pumping well may cause anomalous head responses during LHS testing.

DOE RESPONSE

The BWIP agrees with NRC that "changes in fracture apertures in close proximity to the pumping well may cause anomalous headresponses during...testing." BWIP also agrees with the NRC that changes in pore pressure should be insignificant and the changes in fracture aperture would occur only very near the pumping well where the maximum change in groundwater pressure will occur. The nearby piezometer, RRL-2C and RRL-2A, would not be affected by either mechanical effects or wellbore inefficiency. For these reasons, and for reasons stated in response to comment 8, the pumping well is not relied on for data during drawndown.

12. Vesicular Zone Testing

NRC COMMENT -

As agreed in the meeting, BWIP needs to consider performing LHS tests of the vesicular zone in the Cohasset flow interior. BWIP's decision to conduct testing of the vesicular zone should be consistent with the test plan and be based on preliminary testing of the vesicular zone after the pumping well has been drilled through the zone.

DOE RESPONSE -

Preliminary results from testing the Cohassett vesicular zone at RRL-2A during drilling indicates that the vesicular zone possesses a transmissivity of 10^{-4} ft²/d (Strait and Mercer, 1986). Because the Cohassett vesicular zone is believed to be of such low transmissivity, BWIP is anticipating performing a pressurized pulse test or constant head injection test. If conditions are identified at RRL-2B that indicate sufficient water is available to pump, a constant discharge pumping test will be performed at that well site.

13. Convergent Tracer Test

NRC COMMENT -

The test plan proposes integration of convergent well tracer testing with LHS testing of the Rocky Coulee flow top. The NRC is concerned that the tracer test may complicate the interpretation of LHS testing results. Injection of tracer solution and chase water under 250 m of head into RRL-2A and -2C, may result in pressure perturbations that could interfere with aquifer responses to pumping stress, especially within the flow interiors. Although such perturbations may not last long within flow tops (e.g., several hours to days), the pressure pulses in flow interiors may be on the order of meters and persist for periods up to tens of days. As discussed in comment number 9, conduct of the tracer test may also prevent continuous collection of pressure data at RRL-2A and -2C because the pressure transducers will be removed to inject the tracers.

In addition, the test plan does not provide a detailed rationale for how information derived from the convergent well tracer test will be utilized in evaluations of site performance. For example, the two-well recirculating tracer test conducted previously at the BWIP was not designed to provide repository-scale estimates of dispersivity (Leonhart et al., 1984). This same limitation also applies to the dispersivity values determined in the covergent well tests at RRL-2. The test plan's description of proposed tests does not evaluate whether lateral dispersion will be significant with respect to longitudinal dispersion, or whether the hydraulic gradients imposed during the test will result in tracer behavior that is fundamentally different from tracer behavior under ambient conditions. This difference may be especially significant if flow through fractured basalt is assumed to represent an equivalent porous medium. Further, the plan does not discuss uncertainties about the representativeness of effective porosity and dispersivity values for portions of the Rocky Coulee flow top distant from RRL-2 and other basalt flow tops.

The NRC agrees that the DOE needs to characterize effective porosity and dispersivity at the BWIP site, but this information should be collected in a manner that does not compromise the primary objective of the LHS testing, i.e., to characterize the groundwater flow system including hydrologic boundaries, hydraulic continuity, and hydraulic parameters. BWIP should assess potential complications of conducting the covergent tracer tests in conjunction with the LHS test and concurrent ratio test, particularly with respect to monitoring water. level responses within the flow interiors. This assessment should also document the rationale for the tracer tests including a discussion of the limitations and uncertainties that will be associated with the tracer test results.

REFERENCE: Leonhart, L. R., R. Jackson, D. Graham, L. Gelhar, G. Thompson, B. Kauchoro, and C. Wilson, 1984, "Analysis and Interpretation of a Recirculating Tracer Experiment Performed in a Deep Basalt Flow Top," RHO-BW-SA-300 P, Rockwell Hanford Operations.

DOE RESPONSE -

As discussed under comment 9, the tracer test should not be conducted until specific criteria have been met to insure that objectives of the hydraulic portion of the test have been met. These criteria will be developed prior to the LHS test.

The detailed rationale for how information derived from the convergent well tracer test will be utilized in evaluation of site performance will be contained in the site groundwater study plan and performance assessment plans, issue resolution strategies, and other higher-order documents. These documents drive the test plan.

The BWIP does recognize the need to understand the degree of scale-dependency of dispersivity parameters. The strategy being developed within the site groundwater study plan therefore proposes to conduct several tracer tests at different scales up to about 1 km. This will allow the BWIP to determine if functional relationships with distance can be defined. The tests at RRL-2 will provide input to this data base but are not intended to fulfill the entire data need.

The NRC is correct in noting that the proposed convergent tracer tests will not yield a direct estimate of lateral (transverse). dispersivity. The assumption of zero lateral dispersivity is conservative, and performance measures will be insensitive to the parameter, thereby precluding the need for actual field measurement. The hydraulic gradients imposed during the test will obviously be much greater than under ambient conditions. The flow, however, is expected to be laminar under test conditions except very near to the pumping well. In order to investigate the effect of scale with respect to gradient, tracer tests will be carried out in other flow tops and locations in the CASZ at several selected gradients. Information on these tracer tests is provided in the Site Groundwater Study Plan (SD-BWI-SP-047) to be released by July 1987.

The NRC expressed other concerns implying that underlying assumptions traditionally made in the analysis of convergent tracer tests may not be maintained by the test conditions. The basis of these concerns focused on a consideration that the hydraulic gradient imposed by the pumping test may be so steep (as compared to ambient conditions) as to affect the dispersivity and effective porosity measurement. This effect will be examined theoretically and/or (if necessary) experimentally to demonstrate the sensitivity. Conceptually, this concern would arise if (1) groundwater flow conditions exceeded threshold values for Reynold's Number, thereby invalidating the assumption of Darcian flow conditions; (2) porous medium assumptions were invalid, or (3) there were a change in hydraulic properties resulting from changes in elastic or inelastic properties of the aquifer due to the high stress conditions. It is not clear that any of these conditions would exist in the case of the proposed testing of RRL-2.

Past discussions with the NRC have also revealed concerns over the role of diffusive versus dispersive properties of the porous medium. It is recognized that gradients of magnitudes imposed by the assumed pumping test conditions would not permit discrimination between the relative contributions of diffusion and dispersion in flow tops with regard to the transport of a conservative solute. Under planned test conditions the diffusive component is insignificant compared to the dispersive component.

The comment reads in paragraph 3: "NRC agrees that the DOE needs to characterize effective porosity and dispersivity at the BWIP site, but this information should be collected in a manner that does not compromise the primary objective..., i.e., to characterize the groundwater flow system..." Performing radial convergent tracer tests as adjunct to the LHS test is one means from which effective porosity and dispersivity data can be obtained without compromising the hydraulic objectives of the test. Modifications to the test plan that will assure both data from tracer tests and pumping tests are not compromised are being considered and developed.

For the purpose of developing a methodology that assures neither test is compromised the following is being considered. Two discrete suites of tracers are required. One suite of tracers is injected prior to pumping. Tracer arrival observations would then be analyzed on a real time basis to define the mass and dilution of the second suite of tracers. The second suite of tracers would be injected after all pumping test objectives are accomplished. The expectation is that nearly identical results can be demonstrated from analysis of the two tracer tests. If so, then future radial convergent tracer tests performed as adjunct to LHS test will use the "pre-pumping" injection methodology which would minimize test duration and interference between test objectives (i.e. perturbations associated with removal of transducers, injection of tracers, and reinstallation of transducers). Other concerns associated with tracer tests include the effects of scale of separation and scale of test gradient. Plans to address these concerns and other limitations and uncertainties are provided in the Site Groundwater Study Plan (SD-BWI-SP-047).

The need and rationale for tracer tests are discussed in detail in issue resolution strategies and study plans, respectively. The rationale underlying our initial proposal to conduct convergent tracer tests as adjunct to pumping tests at RRL-2 involved recognition of the need to build a representative data base on effective porosity of basalt flow tops. This need arises in support of groundwater travel time and radionuclide transport estimations. If it is possible to obtain effective porosity data in such a manner, the opportunity exists to obtain a more substantial assemblage of field-measured effective porosity at an earlier time in the site characterization schedule than would be possible through independent tests.

Hydrologic Baseline

14. Perturbations to Hydrologic Baseline

NRC COMMENT -

Based on reviews of recent water level data submitted by BWIP, NRC observes that trends in hydraulic heads appeared to have been sufficiently established for LHS testing in the Rocky Coulee flow top in May and June of 1985. Since that time, concurrent site preparation activities (e.g., drilling bridgeplugs at RRL-14 and drilling DC-23) have perturbed the groundwater system causing significant deviations to pre-test trends. During the meeting, BWIP acknowledged that more time is now required to reestablish pre-test trends before LHS testing can begin. These recent perturbations demonstrated that hydraulic stresses can be propagated across the Reference Repository Location, thus adding credence to the feasibility of conducting repository-scale LHS testing. The perturbations also indicate that future combinations of drilling, construction, and testing may perturb hydraulic heads to the extent that characterization of the pre-emplacement groundwater flow system and LHS testing would be delayed for a significant amount of time.

In developing strategies and schedules for site activities, BWIP should consider potential complications and delays of site activities caused by perturbations to the hydrologic system. For example, BWIP indicated that a mult-year period of reduced site activity might be required to establish hydrologic baseline if it cannot be established prior to LHS testing and Exploratory Shaft construction. BWIP's strategy for site characterization should consider the practicality of these contingencies in light of the ambitious project schedules.

DOE RESPONSE -

The BWIP agrees that the installation of monitoring facilities will perturb the baseline, however, we will reestablish the baseline prior to initiation of LHS testing.

15. Hydrochemical Sampling

NRC COMMENT -

The test plan lists constituents that will be analysed in groundwater samples collected during pumping (cf. Table 13). Although the list appears comprehensive, the test plan does not discuss the objectives for collecting the hydrochemical data or provide a rationale supporting the list. Based on NRC's understanding of BWIP's current strategy for site characterization, these data will be used to characterize baseline hydrochemistry of the Hanford Site to confirm conceptual groundwater flow models and to support predictions of post-emplacement hydrochemical environment along potential radionuclide pathways. BWIP should amend that test plan to discuss the objectives and rationale for the hydrochemical sampling.

In addition, BWIP has omitted carbonate and bicarbonate species from the list of constituents that will be analyzed. Bicarbonate and carbonate species may significantly affect radionuclide transport by a variety of processes, such as complexing, pH buffering, and precipitation. In addition, concentrations of these two species are essential for calculating ion balances. The NRC recognizes that the concentrations of these two species may be calculated based on pH, alkalinity, and concentrations of other constituents (Stumm and Morgan, 1970). However, it would be prudent for EWIP to analyze for carbonate and bicarbonate as a more direct and precise method of determining their concentrations than through calculations. BWIP should include carbonate and bicarbonate in the list of constituents to be analyzed or amend the test plan to describe how their concentrations will be determined in lieu of analysis.

REFERENCE: Stumm, W. and J. J. Morgan, 1970, "Aquatic Chemistry: An Introduction Emphasizing Chemical Equalibria in Natural Waters," (New York, New York: Wiley-Interscience).

DOE RESPONSE -

As the NRC staff notes, two objectives of the hydrochemistry program are to: test groundwater flow concepts, and identify the geochemical environment that radionuclides released from a repository would encounter. Other objectives are to: establish a baseline of radionuclide concentrations in groundwater, and contribute to quantification of groundwater flow rate using age dating techniques. The SCP and appropriate study plans will reflect these objectives. BWIP agrees with the NRC staff that carbonate and bicarbonate concentrations can be calculated using pH and alkalinity (obtained by titration) (Greenburg et al, 1985). To our knowledge reliable techniques to directly measure the concentrations of carbonate and bicarbonate are not available.

16. Data Release

NRC COMMENT -

Until several days before the meeting, the most recent water level information available to the NRC staff and contractor had been collected six months earlier (May/June 1985). NRC has not received pressure data from the BWIP site for the last 10 months. If NRC is to provide constructive comments to DOE on the adequacy of hydrologic data and interpretations, BWIP needs to release essential information such as the water level data on a more-timely basis. The meeting may have been postponed if the NRC had been informed about the perturbations caused by drilling activities prior to the meeting. BWIP should release tabulated and time profile data including down-hole pressures, water levels, and environmental heads in accordance with the Site Specific Agreement, which specifies a 45-day release time frame from the time of data acquisition to the time the data are provided to the NRC.

DOE RESPONSE -

DOE's policy on data release is to provide data in accordance with the Site Specific Agreement. DOE Will comply with this policy to the best of its ability.

-20-

REFERENCES

Basalt Records Management Center, Basalt Waste Isolation Project, Rockwell Hanford Operations, P.O. Box 800, Richland, Washington 99352, Telephone (509) 376-7114.

Early, Spice, and Mitchell (1986), "A Hydrochemical Data Base for the Hanford Site, Washington," Rockwell Hanford Operations, RIchland, Washington, SD-BWI-DP-061).

Greenburg, Trussell, and Clesceri, Eds., (1985). "Standard Methods for the Examination of Water and Wastewater," 16th edition, AWWA and WPCF.

Internal Letter: 10130-85-034, S.M. Baker to W.H. Price: Golder Associates Consultant Report, February 1987, C.R. Wilson to P.M. Rogers.

Jackson, R. L., L. C. Swanson, L. D. Diediker, R. L. Jones, and R. K. Ledgerwood, 1986, <u>Design</u>, <u>Drilling</u>, and <u>Construction of Well RRL-2B</u>, and <u>iezometer Nest RRL-2C</u>, SD-BWI-TI-329, Rev. 0, Rockwell Hanford Operations, Richland, Washington.

Marinelli, F., 1986, <u>Time-Lag in Flow Interior Piezometers</u>, Technical Memorandum to A. Brown and M. Galloway, Dated December 20, 1986.

Stone, R., A. H. Lu, P. M. Rogers, R. W. Bryce, 1985, <u>Plans for Multiple-</u> well Hydraulic Testing of Selected Hydrogeologic Units at the RRL-2 Site, <u>Basalt Waste Isolation Projection, Reference Repository Location</u>, SD-BWI-TP-040 (Draft 11/85), Rockwell Hanford Operations, Richland, Washington.

Strait, S. R. and R. B. Mercer, 1986, <u>Hydraulic Property Data From Selected</u> Test Zones on the Hanford Site, SD-BWI-DP-051, Rev. 2 (in preparation), Rockwell Hanford Operations, Richland, Washington.

-21-

Internal Letter

. 10130-85-034

Date March 18, 1985

TO Name Organization Internal Address!

- .' W. H. Price . Drilling & Testing
- M0/029/600 Area

FROM Name Organization internal Address Prones

- . S. M. Baker
- . Site Analysis Group

Rockwell International

- PBB/1100 Area
- . 6-4764

Subject . Modeling Analysis of Effects of Open Intervals in Boreholes DC-16A and DC-16C

Attached is a report of study entitled "Effects on Open Intervals in Boreholes DC-16A and DC-16C". The study is done under your request addressed in your letter (10120-84-372). The report summarizes a modeling analysis of the effects of the present borehole configuration on flow in the Cohassett Flow Bottom during Large Scale Hydraulic Stress Tests.

The study concludes a negligible effect on predicted water levels at the various observation wells due to present bridge plug placement in boreholes DC-16A and DC-16C. It should be noted that neither DC-16A or DC-16C will be used as monitoring wells. The calculated heads at DC-16 presented in this report would not be accurate because the leakance through the well has spread to the entire cell where the well is located. Further study should be conducted if boreholes DC-16A and EC-16C would be used as monitoring wells in Grande Ronde flow tops.

If you have any question, please contact A. H. Lu of my staff on 3-5381.

S. M. Baker. Manager

Site Analysis Group

SM3/AHL/abj

Att.

cc:	R. C. Arnett	w/a	att.
	W. R. Brown	w/0	att.
	C. R. Comstock		
	R. E. Gephart	w/o	att.
	R. L. Jackson		
	J. M. Jimenez		
	A. H. Lu		
	D. J. Moak	w/o	att.
	P. M. Rogers	w/o	att.
	R. M. Smith		
	F. A. Spane	w/o	att.
	R. Stone		
	'S. R. Strait		
	M. D. Yeatch		

0216-002408 3/16/87

FIGURE 2

1

MONITORING LOCATIONS AT THE HANFORD SITE

CONSULTING GEOTECHNICAL AND MINING ENGINEERS

Golder Associates

February 6, 1987

Rockwell Hanford Operations P.O. Box 800 Richland, WA 99352

ATTENTION: Mr. P.M. Rogers

RE: CA-988 PRELIMINARY EVALUATION OF THE ADEQUACY OF PIEZOMETER SEALS

Dear Mr. Rogers:

I am pleased to transmit our draft report "Preliminary Evaluation of the Adequacy of Piezometer Seals." This report documents the results of a brief overview of the available piezometric data in the RRL area to provide a preliminary evaluation of the apparent adequacy of the piezometer seals. Also included are recommendations for future analyses, field tests, and a discussion of alternative piezometer designs.

If the potential exists for using information contained in this report in support of licensing, I recommend that it be returned with your comments and formalized as a final Golder report in accordance with our QA procedures.

The concepts presented were developed by Larry Rollins, David South, Dick Bielefeld and myself. Please contact me if you have any questions or would like further elaboration on the ideas presented.

Sincerely,

GOLDER ASSOCIATES

Charles R. Wilson

CRW/ah Enclosure

cc: J. Cheshire, Rockwell

SOLDER ASSOCIATES, INC + 4104-148TH AVENUE N.E., REDMOND ISEATTLEI, WAS, HINGTON 38032, U.S.A. + TELEPHONE (208) 883-0777 + TELEX \$106002944

OFFICES'IN CANADA + UNITED STATES + UNITED KINGOOM + AUSTRALIA

1

1

1.1

1.1.1

Golder Associates

CONSULTING GEOTECHNICAL AND MINING ENGINEERS

REPORT TO ROCKWELL HANFORD OPERATIONS

PRELIMINARY EVALUATION OF THE ADEQUACY OF PIEZOMETER SEALS

Distribution:

į.

5 copies - Rockwell Hanford Operations Richland, Washington

5 copies - Golder Associates Redmond, Washington

•...

February 1987

863-1049.005

SCLDER ASSOCIATES, INC + 4104-148TH AVENUE N E., REDMOND (SEATTLE), WASHINGTON 98052, U.S.A. + TELEPHONE 12081 883-0777 + TELEX \$105002944

OFFICES IN CANADA + UNITED STATES + UNITED KINGDOM + AUSTRALIA

2023

863-1049.005

TABLE OF CONTENTS

المراجع فالمحرفين المرجون والارتصاص والمراجع

		<u>Page No.</u>	
1.	INTRODUCTION	1	
2.	EVALUATION OF WATER LEVEL RESPONSES		
3.	NUMERICAL ANALYSIS OF AVAILABLE DATA	5	
4.	FIELD TESTS	7	
	 4.1 Radioactive Tracer Test 4.2 Trace Constituent Test 4.3 Thermal Perturbation Test 4.4 Borehole Geophysical Tests 4.5 Tracer Sorption Test 4.6 Multiple Well Interference Test 	7 8 9 10 11 11	
5.	ALTERNATIVE PIEZOMETER DESIGNS	13	
	5.1 Single Casing Design 5.2 Single Piezometer Installation 5.3 Multiport Piezometer Installation 5.4 Downhole Remote Nonretrievable Sensing 5.5 Refinement of Present Techniques	13 14 14 14 15	
۶.	CONCLUSIONS AND RECOMMENDATIONS 16		

•

ŧ

i

LIST OF FIGURES

Figure	Number	Description
1		Hydrographs of Wanapum and Grande Ronde Horizons in DC-19C
2		Hydrographs of Wanapum and Grande Ronde Horizons in DC-20C
3		Hydrographs of Wanapum and Grande Ronde Horizons in DC-22C
4	•	Pressure Hydrograph for the Rosalia and Sentinel Gap Flow Tops at DC-23W
5		Location Map of Pasco Basin Showing Wanapum Model Boundary
6		Wanapum Model Mesh
7		Heads in Ginkgo Flow Top From Model Calibration Run
8		Schematic of Radioactive Tracer Test
9		Schematic of Trace Constituent Test
10	1 2 `	Schematic of Thermal Perturbation Test
- 11		Schematic of Tracer Sorption Test
12		Schematic of Alternative Single Casing Design

•.....

Golder Associates

863-1049.005

1. INTRODUCTION

This report presents the results of a preliminary evaluation of the adequacy of piezometer seals in four multilevel standpipe piezometers located in the RRL area of the Cold Creek Syncline on the BWIP Site. This evaluation was based upon a review of water level responses to drilling and testing in boreholes DC-23W and DC-23GR. Available hydrographs from piezometers DC-19C, DC-20C, DC-22C, and DC-23W were studied to help assess the adequacy of the seals in those installations. The results of these studies are summarized in Section 2. Alternatives for future analyses, field tests, and alternative piezometer designs are presented in Sections 3 through 5, respectively. Conclusions and recommendations are presented in Section 6.

Our conclusions are based upon information on historic hydraulic perturbations and monitored responses presented in the following BWIP documents: (1) SD-BWI-TI-313 "Preliminary Evaluation of Piezometer Responses at DC-19, DC-20 and DC-22 During Construction of DC-23W;" (2) Internal Letter 75220-86-114 from F.A. Spane to S.M. Baker; (3) "Cross-Formational Responses at RRL Nested Piezometer Sites DC-19C, DC-20C, and DC-22C" by F.A. Spane; and (4) the data package provided to us by Mary Hartman in support of the DC-23W piezometer response modeling effort.

• • •

1.5

لللكان

Ĵ

And

A REAL

Market

h N

11.1

1

2. EVALUATION OF WATER LEVEL RESPONSES

Hydrographs of key horizons in the Wanapum and Grande Ronde were taken from document (1) above and are shown in Figures 1 through 3 for DC-19C, DC-20C, and DC-22C, respectively. The perturbation of interest occurred from September 12 to October 3, 1985, during DC-23W drilling, and from October 21 to 25, 1985, during DC-23W development pumping. Weak perturbations are seen through September 28, during the period of mud rotary drilling in the upper Wanapum. It is interesting to note that during this period a perturbation was monitored in the Sentinel Gap flowtop before drilling reached that flowtop. Much stronger perturbations are seen beginning September 29, when drilling resumed with water instead of mud, and beginning October 21, when the composite Wanapum was developed by air-lift pumping. An earlier perturbation occurred in the Grande Ronde in late May and early June, 1985, during removal of a bridge plug in RRL-14. A lack of detailed information on this earlier perturbation prevented it from being studied in the same degree of detail as that from the DC-23W drilling.

Hydrographs from DC-23W presented in Figure 4 show the response of the Rosalia and Sentinel Gap flow tops to pump testing in the Rosalia flow top in nearby DC-23GR. Again, water pressures in the Rosalia and Sentinel Gap are seen to be synchronous before and after the test, and an attenuated perturbation from the pump test is clearly seen in the underlying Sentinel Gap flow top.

The synchronous behavior of water pressures in the Rosalia (Priest Rapids Interflow Zone) and Sentinel Gap flow tops in the upper Wanapum is clearly evident in all piezometers in the forementioned figures, and is strong evidence for efficient hydraulic communication between these horizons. The independent behavior of the Ginkgo and nearly all Grande Ronde flow tops is strong evidence for a lack of efficient hydraulic communication among these deeper horizons. The only exception to this latter statement is the evidence, provided by synchronous behavior, of efficient communication between the Rocky Coulee and Cohassett flow tops

CHARLES BU3-1049-005 CONTINUED FOR EAST 276787 CHARMER BW APPRICATE CW

at DC-20C. While some degree of hydraulic communication may exist among all monitored Wanapum and Grande Ronde horizons, highly efficient communication is evident only between the Rosalia and Sentinel Gap flow tops and between the Rocky Coulee and Cohassett flow tops in the vicinity of DC-22C.

2

Highly efficient communication between two flowtops suggests the presence of relatively high permeability vertical flow paths. The available information is insufficient to confidently determine whether these flow paths are naturally present or result from flaws in the piezometer seals.

Assuming that the piezometer seals were carefully placed, with appropriate use made of tubing spacers, high density neat grout, and emplacement by pressure injection beneath a rising grout surface, then good seals would be expected. Further, if proper grout emplacement and tubing spacing techniques were used, one would expect flaws to occur randomly and to be relatively independent of the competence of the surrounding rock and the number of tubes in the hole. There is a total of 20 seals between monitored Wanapum and Grande Ronde zones in the four wells. Assuming proper placement techniques, it is not likely that significant flaws would randomly occur in every seal in the four piezometers between the Rosalia and Sentinel Gap, and in none of the seals between virtually every other set of flowtops.

The one questionable seal in the Grande Ronde, between the Rocky Coulee and Cohassett flowtops in DC-20C, is understood to be at a location where the Rocky Coulee dense interior is thin and the rock is of poor quality. This evidence suggests enhanced hydraulic communication through a geologic anomaly rather than a faulty seal.

•

• . • .

863-1049.005

Although the foregoing reasoning suggests that the seals are probably good and that the observed vertical communication is probably a natural phenomenon, it does not provide complete assurance that this conclusion is correct. Additional information regarding the adequacy of the seals can be obtained from more detailed numerical analysis of existing data, and from the results of specifically designed in-situ tests.

4

863-1049.005

3. NUMERICAL ANALYSIS OF AVAILABLE DATA

Hydrologic modeling of the Wanapum basalts would be expected to provide additional information on the possible mechanisms responsible for the observed hydraulic communication between the Rosalia and Sentinel Gap flow tops. This would be accomplished by developing a model with defensible boundary conditions that is calibrated to available head data. This model would then be run in a transient state reproducing the known hydraulic perturbations from drilling and testing, and evaluating the sensitivity of the results to alternative vertical leakage scenarios. The principal scenarios to be considered would include localized vertical leakage at or near the piezometers, uniform vertical leakage through the dense flow interiors, and treatment of the upper Wanapum as a single, homogeneous hydrostratigraphic unit. Variations of these scenarios, such as the locations and sizes of discrete leakage features, could be readily evaluated with the model.

5

Development of such a model is currently in progress by Golder, in support of BWIP's Site Characterization Plan. The 3-dimensional finite element code FE3DGW is being used. The area covered by the model is shown in Figure 5. The boundaries of the model extend laterally to noflow boundaries at the edge of the Pasco Basin on the north, west and south, and to known constant head boundaries on the east. The eight deep wells shown on the figure within the model area coincide with model nodes, and any can be modeled as pumping centers. A plan view of the model mesh is shown in Figure 6. The more refined discretization in the RRL will support more detailed analyses in that area. Also, the results of this model are expected to provide supportable local boundary conditions for future highly detailed models of the RRL.

In vertical section, the model divides the Wanapum into seven material layers, consisting of the Rosalia, Sentinel Gap, and Ginkgo flow tops and the four adjacent composite horizons. The Mabton interbed and Rocky Coulee flow top form the upper and lower model boundaries, respectively, and are held at constant head.

PHD211140 803-1049-005 ING NO 6 HEV NO DATE 2/6/87 (MIARN 8W APPHINED CW

1

Results from a recent steady state run are shown in Figure 7, where equipotential contours are plotted for the Ginkgo flow top. The predicted heads on this run matched measured heads to within about +/- 2 m., which was slightly improved in our final steady state calibration run. Preparations are now underway to continue into transient simulations of the hydraulic perturbations during DC-23W drilling and development pumping.

4. <u>FIELD TESTS</u>

A variety of field tests have been conceptualized that may provide additional information regarding the integrity of the questionable piezometer seals. If significant leaks are present, certain of these tests can potentially provide positive evidence for those leaks; however, if the leaks are slight, the degree of confidence that can be placed in the results of most of the tests will rapidly decline. None of these tests can be considered standard, all will require pretest technique development and analysis, and any of these tests may yield inconclusive results.

7

As will be seen, the list of tests was developed in an unconstrained, "blue-sky" discussion. While each test has certain merit, they have been addressed in a preliminary order of priority because not all are believed to have the same probability of success. The tests are described below in terms of an "upper" monitored flowtop, such as the Rosalia, that directly overlies the questionable seal, and a "lower" monitored flowtop, such as the Sentinel Gap, that directly underlies the questionable seal.

4.1 Radioactive Tracer Test

A steady-state, vertically downward hydraulic gradient would be established by pumping in the lower flowtop, and a short-lived, poorly sorbed gamma emitting radioactive tracer such as NH_4 Br⁸² would be released in the upper flowtop as shown in Figure 8. Gamma detectors would be placed inside the tubing of the other piezometers at locations within the lower flowtop and between the upper and lower flowtops where the seal is questionable. The tracer would be expected to migrate toward the lower flowtop. If it migrated through a flowpath within the seal, a strong response would be expected to be measured through the

3

M

1

and a

N.

M

metal tubing. The gamma energy would be rapidly attenuated by the rock, and if the tracer followed a natural flowpath through the rock even a few meters away from the hole, little or no response would be expected to be seen.

8

The likelihood of success is considered to be higher for this test than for most of the other tests considered. This test may be capable of detecting relatively small seal leaks. Pretest analysis and evaluation of gamma ray attenuation in the basalt, grout and tubing wall would be required. Also, care would be required in handling the radioactive materials, and approval to release such a tracer may be difficult to obtain.

4.2 Trace Constituent Test

A steady-state, vertically downward hydraulic gradient would be established by pumping in the lower flowtop, and a nonsorbing tracer would be released in the upper flowtop as shown in Figure 9. The tracer-laden water would be expected to migrate toward the lower flowtop. Samples would be regularly taken of water issuing from the lower flowtop and subjected to hydrochemical trace analysis. Detection of the tracer would indicate that vertical fluid movement was occurring. If the tracer-laden water had migrated through a flowpath largely within the seal, it may acquire dissolved trace minerals that would be different than if the water had migrated largely along a natural flowpath within the rock.

The likelihood of success for this test is potentially good, but will depend upon the ability of the moving tracer-laden water to dissolve exotic trace minerals from the grout, the ability to detect those minerals, and the ability to distinguish trace minerals dissolved at the grout-sand pack interface from those dissolved along a leakage flowpath.

leš h

6.4.4

11.14

Even if this test provides an indication of a leak, it may not be able to distinguish whether the leak is in the seal above or below the lower flowtop without further refinement. The uncertainties of this test are greater than those of the foregoing tests, and pretest analysis and evaluation of the dynamics of trace mineral pickup from the basalt, grout and tubing walls would be required. The environmental effects of this test are expected to be relatively small.

Q

4.3 Thermal Perturbation Test

A steady-state, vertically downward hydraulic gradient would be established by pumping in the lower flowtop, and heated water would be injected into the upper flowtop as shown in Figure 10. Temperature detectors would be placed inside the tubing of the other piezometers at locations within the lower flowtop and between the upper and lower flowtops where the seal is questionable. The heated water would be expected to migrate toward the lower flowtop. If it migrated through a high conductivity flowpath within the seal, a strong temperature response would be expected to be measured through the metal tubing. The heat would be rapidly attenuated by the rock, and if the heated water followed a natural flowpath through the rock even a few meters away from the hole, a significantly weaker response would be expected to be seen.

If a relatively large leak is present, the likelihood of success for this test is considered to be relatively high. Smaller leaks may not be as easily detected because the rate of heat transfer by conduction may be as rapid as by advection along the flowpath. Under either case the rate of heat loss to the formation is expected to be significant and it may not be possible to track water movement by this approach along the entire distance between the two flow tops. Pretest analysis and evaluation of thermal conduction and heat capacity in the basalt, grout and tubing wall would be required. This test would be fairly easily implemented and its environmental effects are expected to be small.

February 6, 1987

863-1049.005

4.4 Borehole_Geophysical_Tests

A number of standard borehole geophysical tests are available which might provide information on the potential for seal leaks. These include density, sonic and resistivity logs. As discussed below, each of these logs has potential benefits but may also have problems related to the presence of multiple piezometers in the same hole.

10

Standard omnidirectional density logging would not be expected to work because the high density of the multiple steel pipes would be expected to dominate the response such that minor variations resulting from voids in the grout would not be distinguishable. Directional density scanning with a neutron emitting tool could be potentially useful, but could only be directed radially outward away from the center of the hole. This constraint may be significant if flaws from grout emplacement are preferentially related to interference among tubes rather than interference between the tubes and the borehole wall.

Sonic waves can be used to check bonding between the piezometers and grout by testing for reflective fracture surfaces. While they may be useful very near the piezometer tube, multiple reflections would be expected at greater distances from the other standpipes in the hole. Sonic bonding logs may have already been performed in these holes, and should be checked for an initial evaluation of the adecuacy of this

The shielding provided by the metal piezometer pipes. Detection of the weak electric current induced by the magnetic field established by moving polar water molecules outside a piezometer tube was considered and may provide some results, but should first be tested under controlled conditions. Detection of variations in resistivity of the fluid outside the piezometers was considered in association with injection of an electrolytic tracer solution, but would also be expected to be shielded by the tubing.

Golder Associates

ومراجعة والمراجع والمراجعة والمعادية والمراجع المتنافع والمترفي فسطر والمستجر المحاجب والمراجعة والمحافظ المتناكية

February 6, 1987

863-1049.005

時代の日本があることにないの日本のため日本日本

4.5 <u>Tracer Sorption Test</u>

A steady-state, vertically downward hydraulic gradient would be established by pumping in the lower flowtop, and a nonsorbing and sorbing tracer pair would be released in the upper flowtop as shown in Figure 11. The tracer-laden water would be expected to migrate toward the lower flowtop. Samples would be regularly taken of water issuing from the lower flowtop piezometer and subjected to hydrochemical analysis to determine breakthrough characteristics. Retardation of the sorbing tracer would be expected to be greatly enhanced if the tracers traveled uniformly through a quasiporous medium rather than through a discrete fracture flowpath.

11

While support for such an interpretation of differences in sorptive characteristics may be obtained from the results of the tracer tests performed in DC-7/8, the lack of experience in performing and interpreting such tests at the BWIP Site would necessarily attach considerable uncertainty in assessing their results. Additionally, this test would only be capable of distinguishing high surface area flow paths from low surface area flow paths, and would not be able to distinguish among them. For example, flow through a seal leak and flow through a nearby natural fracture are both low surface area flow paths and could not be distinguished from each other.

The greatest strength of this test may lie in the ease of coupling with the forementioned trace constituent test, to provide additional information on the nature of the flow path. The environmental effects of this test are expected to be relatively small.

4.6 Multiple Well Interference Test

A transient pressure perturbation would be induced by pumping in the upper flowtop, and arrival times of that perturbation would be precisely monitored in the lower flowtop of the pumping well and in the upper and lower flowtops in at least one other well. If the flowtops were hydraulically homogeneous and isotropic, a pressure perturbation

Golder Associates

February 6, 1987

-

The second

1

I

Mark

L

a de

traveling uniformly downward would be expected to arrive at the nearest observation point sooner than at a more distant observation point. However, if that perturbation traveled through a discrete, permeable pathway such as an isolated tectonic fracture or a leaky seal, the perturbation would be expected to first appear in the piezometer nearest that pathway. If such a pathway exists, its general proximity might be inferred from sequential pump testing at each of the wells.

The likelihood of success for this test is considered to be poor. Successful analysis of the results will depend strongly upon the extent to which the assumptions of flow top homogeneity and isotropy are valid. Although the need to assume isotropy could be mitigated through direct analysis of tests in three or more wells for this parameter, the presence of significant heterogeneities in the flow tops could in themselves cause results that could not be distinguished from those of discrete leakage features. The effects of flow top heterogeneities will be particularly significant if the contrast between horizontal permeability in the flow tops and vertical permeability in the dense interiors is large.

The test is also inherently weak because it cannot distinguish between leakage within a seal and leakage through a natural feature in the vicinity of a piezometer. Further, this test will work only if significant leaks are present at or near only one of the two wells. If high permeability seal leaks are actually present in all Rosalia-Sentinel Gap seals, then this test will not be capable of distinguishing between uniform vertical flow and vertical flow through those leaks.

The uncertainties of this test are significant, and pretest analysis will be required. The environmental effects of this test are expected to be relatively small.

Golder Associates

February 6, 1987

11

1

12

122

No.

kad

P

·

19233

10.00

5. <u>ALTERNATIVE PIEZOMETER DESIGNS</u>

Alternative piezometer designs may be considered if substantive evidence of seal failure becomes available. Several conceptual alternatives are described below. Each of the major alternative designs has a significant technical or cost problem and further analysis should be performed before pursuing any one of them.

5.1 <u>Single Casing Design</u>

The single casing design would eliminate many of the grout-pipe surface interfaces in the current design that may lead to seal failure, yet retain the simplicity of individual open standpipes. A schematic drawing of this alternative is shown in Figure 12. The concept of the design is to cement one string of casing in the hole, gun-perforate next to monitoring zones, install the piezometer tubes, and isolate the zones within the casing using manufactured seal blocks.

The advantage of this concept is that grouting would be performed in a single operation on a single outer casing, thereby reducing the likelihood of bond failure. A cement bond log could be run prior to installation of the seal blocks to evaluate the quality of the grout bond. The individual piezometer tubes could then be sealed after casing perforation under more readily controlled conditions inside this outer casing. The design of leak-proof inner seal blocks then becomes the focal point of this conceptual approach. Several options exist, including mechanical packers, resin grouting, and plumbed piezometers, which should be evaluated in further studies.

This approach has the disadvantage of being developmental, and the equipment used would have to be specially designed, fabricated and tested. In addition, grout emplacement would necessarily be under considerable pressure which could drive excessive grout into the horizons to be monitored. Although this design is used successfully in the oil industry, its use at the BWIP site is not expected to be

Golder Associates

المراجعة المراجعة المراجعة المحاولة والمحاجة المراجعة المراجعة والمحاجة والمحاجة والمحاجة والمحاجة والمحاجة

``

February 6, 1987

863-1049.005

acceptable because of potential damage to the monitored horizons. Techniques should be investigated for alternative staged grouting through perforations in the outer casing that would limit grout emplacement to predetermined locations.

14

5.2 <u>Single Piezometer Installation</u>

The single piezometer installation design also eliminates many of the grout-pipe surface interfaces in the current design that may lead to seal failure, yet retains the simplicity of individual open standpipes. This relatively obvious solution would place only one piezometer in each borehole, and would use the technology developed for the existing piezometers. The disadvantage of this approach is the high cost of drilling a separate hole for each individual installation.

5.3 <u>Multiport Piezometer Installation</u>

The multiport piezometer monitors a number of separate horizons using a traveling probe within a single tube. An example of this type of piezometer is the Westbay System which was installed in RRL-2. We understand that this system failed because of packer leaks. The approach has the advantage of permitting many individual horizons to be monitored from a single relatively small diameter borehole, but the disadvantage of being mechanically more complex and more developmental than the standard grouting process presently being used. Additional development work appears to be required to successfully implement this alternative.

5.4 <u>Downhole Remote Nonretrievable Sensing</u>

This conceptual alternative would involve permanent emplacement of downhole pressure sensors which could be read remotely at a surface location. It is considered highly developmental because (1) the sensor would have to be capable of functioning remotely for the life of the facility (some 10 to 20 years), and (2) the readout system from the

Golder Associates

February 6, 1987

P.F.N.

2

100

ai.c

P.T.

Land

863-1049.005

sensor (for example, an electric wire or optical fiber) would have to be more amenable to sealing than the piezometer tubes now being used. Meeting the first criterion is expected to be very difficult to achieve and would require significant development work.

15

5.5 <u>Refinement of Present Techniques</u>

•.:.

Several aspects of the present piezometer installation and grout emplacement techniques may be amenable to improvement. These would include potential modification of the grout mix, hole cleaning and development practices, piezometer spacing techniques, and grout emplacement practices. An independent evaluation of existing techniques would be required before recommendations for refinements could be prepared.

Golder Associates

February 5, 1987

1.11

1.11

1

فكلقينا

de la

863-1049.005

6. CONCLUSIONS AND RECOMMENDATIONS

The synchronous behavior of water pressures between several monitored flowtops is strong evidence for efficient vertical hydraulic communication, and the pattern of such behavior suggests that this communication is through naturally occurring flowpaths. However, the available information is not sufficient to assure that this conclusion is correct. The present uncertainty associated with the integrity of piezometer seals is not considered to be of overriding significance to the site characterization effort to date because all but one of the questionable seals is in the upper Wanapum far from the reference repository horizon, and the one remaining seal that is near the repository horizon is in a zone of poor rock thought to be relatively permeable. However, the issue is significant to future installations because of the importance of avoiding seal failures in the Grande Ronde.

16

Because the available information suggests that the seals are not likely to be the cause of the observed synchronous behavior, it would not be prudent to embark on an ambitious field testing program to evaluate leakage paths without further information. It is recommended that a stepwise investigation be adopted, as follows:

(1) Perform short term analytical and numerical modeling studies to develop additional insight into the nature and hydrologic implications of the observed field responses. Such studies are already underway and can provide additional information within one to two months. These studies should include a comprehensive review of present piezometer installation and grout emplacement practices at BWIP. February 6, 1987.

.....

(2) Develop conceptual designs for the most promising field tests and evaluate their likelihood of success. Such studies could be performed concurrent with the foregoing modeling studies, and their early initiation would recognize the likelihood that some field testing will ultimately be required before the issue of leakage can be finally put to rest. Such testing capability will ultimately also be required to demonstrate the adequacy of final borehole sealing techniques at the time of repository closure.

17

- (3) If the additional information provided by the modeling suggests that seal failure is a reasonable possibility and if the conceptual design studies suggest that the piezometer seals can be successfully tested insitu, then proceed to develop final designs and implement field testing.
- (4) If seal failure is found to be likely based on the results of the foregoing, proceed to develop alternative piezometer designs.-

Golder Associates

BWIP SUPPORTING DO	Numcer	Rev./Chg. No. Page 1	
-nd Function Activity. Kydrochemistry	Project (21,1)	COL - MI-UP OGY	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Occument Title: A Hydrochemical Data Base for Washington	the Hanford Site,	Baseline Ooc.: Yes No X WBS No. or Work Package No.	Ciass:
Borenole No.: Stratigrennic Formation N/A N/A	ns: Doc. Type Subj. Cove 2019 H400	T. U. Ear Py G. D. M. D. Mitchell. M. Sc. 1911 a suce for additional	A. doine Date Spice 5/86
THIS DOCUMENT IS FOR USE IN PERFORM CONTRACTS WITH THE U.S. DEPARTMENT O OR FOR PURPOSES WITHIN THE SCOPE OF SEMINATION OF ITS CONTENTS IS HANDLE THE FREEDOM OF INFORMATION ACT. ADMITTENT This data package contains a r Site Hydrochemical Data Base f associated with the Basalt Was Project (BWIP). In addition t chemical analyses the followin included: 0 A summary description of th 0 Detailed descriptions of ve cedures used to check data 0 Detailed descriptions of va used to evaluate data quali	AANCE OF WORK UNDER OF ENERGY BY PERSONS THESE CONTRACTS. DIS- DIN ACCORDANCE WITH evision of the or water samples te Isolation to the detailed ig information is he data base format entries lidation procedures ty. 5/86	Distribution Name R. C. Arthur R. C. Arthur M. O. Baechler S. M. Baker T. O. Early i. J. Halko S. H. Hall J. M. Hiller G. S. Hunt V. G. Johnson D. L. Lane A. D. Marcy M. D. Mitchell A. F. Noonan R. L. Premzic S. M. Price W. H. Price P. J. Reder T. Reed P. F. Salter R. M. Smith R. W. Smith K. G. Solomon S. R. Strait W. F. Todish M. D. Yeatch F. I. Wallick M. J. Wood BRMC(2) PRS U.S. Decartment of COMPLETE COCUMENT (No asteriat, site page/summe at revision page aniv) Reitale Stame/Cate: OFFICIALLY	Mail Address 1135 Jad/110 2101M/200E PSB/1100 2101M/200E PBB/1100 2101M/200F PSB/1100 2101M/200E PBB/1100 2101M/200E PBB/1100 PBB/1100 PBB/1100 M0-029/600 1135 Jad/110 1135 Jad/110 1135 Jad/110 PSB/1100 1135 Jad/110 PSB/1100 1135 Jad/110 PSB/1100 PSB/100 PSB
Prepared By: UE-HCUGH//KEUIUUU (Company & Contract No.) Bockwell Hanford Coel	Date:	1935 Jun -6	<u>111 ic 54</u>
Used Bv:			•

٠

.

.

. .

:

٠

2-2400-215 4-841

Approvers R. M. Smith R. M. Smith	Date	1 Direcibusion		
R. M. Smith R. m. Suid			Name	Mail Address
Peer Review X J. F. Marron Than Personation Vention Vention Personation Vention Vention Personation Vention Vention Personation Vention Vention Personation Vention Vention Vention Ventin Ventin<	5-14-86 5/19/86 5-14-86 5/19/86 5/19/86 5/19/86 5/19/86 5/19/86 19/19/86 19/19/86 19/19/86 19/19/86 19/19/86	Rockwell cont G. C. Evans P. E. Long G. D. Spice D. L. Starr YAKIMA INDIAN L. B. Hovis L. Lehman CONFED. TRIBES M. J. Farrow NEZ PERCE INDI A. Pinkhan WASH. STATE DE T. Hussemar D. W. Stevens CONSULTANT TO G. E. Grisak UNIVERSITY OF S Sorooshi DREGON STATE L R. Hudspeth WHITMAN COLLEG M. M. Sparks U. S. GEOLOGIC L. S. Laird U. S. NUCLEAR Sranch Chief, Technical Branch Chief, Constrained U. S. NUCLEAR Technical Branch Chief, Coket Contro Waste Mana M. Gordon K. Contro Stribution Coket Contro Waste Mana K. Gordon K. Contro Stribution Coket Contro Stribution K. Contro Stribution K. Contro Stribution Coket Contro Stribution K. Stribution K. Stribution K	Name Name Name NATION NATION OF THE UMA OF THE UMA AN TRIBE PT. OF ECOLO ROCKWELL HAM ARIZONA an NIVERSITY E AL SURVEY/RE TAL	Mail Address CDC 1/3000 PBB/1100 PBB/1100 TILLA INDIAN RES DGY FORD OPERATIONS ESTON ACOMA COMMISSION Waste Branch Waste Branch Sta Management vision of ATROLLED

_~	•		Number	Page		
•		WIP SUMMARY OF REVISION	sd-BWI-DP-061	7.1 of 415		
HeviCitig, NG	Date	Description	OF Char Jas	•••		
1	5/15/86	SD-BWI-DP-O61, Rev 1, is a complete package (SD-BWI-DP-O61, Rev 0). Th addition of new data since the rele All tables and figures found in the new data.	e update of the 1985 data ne changes made reflect the ease of SD-8WI-DP-061, Rev mew version include these	0.		
			,	- 2 86. <u>2010</u> 81 0828		
	1					
•						
		•				
			1			
	1					
	-					
	:					
			-			
		•				
	•					
	1					

.

.

÷.,

•

.

7-9400-511 1-97

SD-BWI-DP-061 Rev. 1

A HYDROCHEMICAL DATA BASE FOR THE HANFORD SI HE, WASHINGTON

1.0 INTRODUCTION

This data package contains a listing of the Site Hydrochemical Data Base for the Hanford Site and a summary of data verification and validation procedure applied to the analyses. The data base originally reported by Early et al. (1905) utilized the INFO data base software package (Henco Software, Inc., Copyright 1983). In March 1985, all hydrochemistry data were transferred to the NOMAD2 data base (Dun and Bradstreet Corp.) This document represents a revision of the original data package and the included data base (reported from NCMAD2) is current to April 15, 1986.

The hydrochemistry data tables present the following types of theoreminent

o Sample Event

- . Sample Identification
- Location
- Date
- Collection Techniques Used
- Source of data
- o Results of Field Measurements
 - Sample Temperatures
 - Conductivity
 - Alkalinity
 - Turbidity
 - pH
 - Redox potential

Results of Laboratory Measurements.

- Alkalinity
- Conductivity
- pH
- Major, minor and trace inorganic components
- Jotal carcon and total organic carcon
- Dissolved gases
- Staple isotopic constituents
- Radioactive constituents

Nearly all of the hydrochemical samples reported in this data base were collected from within the Hanford Site and represent all components of the hydrologic cycle. Personnel from the Basalt Waste Isolation Project (BWIP) collected most of the samples as part of a hydrochemical characterization program although this report includes numerous data from other sources. The following sections of this cocument identify the location of sample sites and specific sources of non-BWIP data as well as verification and validation procedures applied to the data.

SD-EWI-DP-061 Rev. 1

In addition to incorporating data from many new analyses, during the past year the data base has been improved through an aggressive verification program that has resulted in increased confidence in the accuracy of hydrochemical data published in the current data package. Consequently, some minor differences will be noted for a few analyses presented in this document as compared to those reported in Early et al. (1985). The changes are based on discovery of transcription and data entry errors or incorrect conversion of data from one set of units to another. In addition, some older analyses have been removed from the data base because of the lack of adequate documentation and traceability. Hany of these changes are described in the following sections of this report.

Every attempt has been made to eliminate errors in data transcription and transfer. However, the potential exists for some errors to occur inadvertantly in a data base of this size. It is anticipated that future updates of this document gradually will reduce the probability of errors.

2.0 LOCATION OF SAMPLING SITES

The data base includes hydrochemical samples of the following types:

- a Precipitation
- o Surface Water
- a Springs
- o Groundwater (confined and unconfined)

Figures 1 through 5 identify the location of all sampling sites.

3.0 DATA SCURCES

Most of the analyses listed in the Site Hydrochemical Data Base were determined by several Rockwell Hanford Operations (Rockwell) laboratories on samples collected by Rockwell personnel. During 1976-1980, there was a sampling activity known as the confined aquifer sampling program (CASP) with two Rockwell laboratories jointly providing the analyses. The BWIP began sample collection in 1980 and in 1982 one of the Rockwell analytical laboratories (Research and Engineering) was transferred into the BWIP. Since 1982 the BWIP has operated its own laboratory and performed all field and most laboratory analyses. Subcontractors of the BWIP analyze selected constituents requiring specialized equipment.

li

SD- 8HI-00-061 Rev. 1

FIGURE 1. Location of Precipitation Stations.

SD-BHI-OP-OC1 Rev. 1

.

,

FIGURE 2. Location of Surface Matar Sampling Sites.

SD-BWI-DP-061 Rev. 1

FIGURE 3. Location of Sorings.

SH-PU1-99-061 Pev. 1

.

ø

TIMUSE 4. Location of Sampling Malls for the Unconfined Adulter.

.

SD-BWI-DP-061 Rev. 1

•

FIGURE 5. Location of Sampled Borenoles for the Confined Adulfers.

Э

SD-8WI-0P-061 Rev. 1

Hydrochemical data also are available from a variety of additional dorumented sources and are included in the Site Hydrochemical Data Base for the seke of completeness. Most data for the unconfined aquifer are contained within a collection of Pacific Northwest Laboratory (PNL) reports (Raymond, et al. 1976; Myers et al. 1976, 1977; Myers, 1978; Eddy, 1979; Eddy and Wilbur, 1980, 1981; Eddy et al. 1982, 1983; Prater et al. 1984; Cline et al. 1985). Several additional analyses are found in Graham et al. (1984). Analyses for a variety of springs and/or boreholes are found in Strait and Moore (1982); LaSale et al. (1973), Apps et al. (1979), and Summers and Weber (1978) and are also included.

Samples analyzed by non-BWIP laboratories and documented in the sources cited above frequently contain some data that are not reported in the Site Hydrochemical Data Base-due to the specific format used in reporting data. For example, HCO3 and CC3⁻ concentrations are reported by some authors but this data base currently does not explicitly include these components. Interested readers are referred to those publications for a more complete listing of available data.

A number of partial chemical analyses for springs of the Rattlesnake Hills are available in Schwab et al. (1979). However, questions exist as to the quality of these analyses. Consequently, they have not been incorporated into the data base.

4.0 STRUCTURE OF DATA BASE PRINTCUT

The printout of the Site Hydrochemical Data Base is found in Appendix A and is arranged into the following series of reports:

a	Sampling Events	 pages 66 to 88
0	Major Inorganics	
	(4 reports)	- pages 90 to 137
C	Trace Elements	- pages 189 to 264
0	Dissolved gases	- pages 266 to 269
C	Radioactive Isotopes	- pages 271 to 313
Э	Stable Isotopes	- pages 315 to 328

Each report contains specific information as described below. Where specified data or information is unknown or not available a blank field occurs. For some species where a specific analysis is below the instrumental detection limit a blank data field also exists. However, the BWIP solution chemistry laboratory recently began to identify anion analyses that are below detection and they are reported in the data base as "ND" (not detected). The confusion that this may cause data base users will be eliminated in a future update of this data package where all species that were not detected will be so indicated.

^{1 -} Wany groundwater samples from the unconfined adulter at Hanford are affected by waste management activities. The listed references discuss the areal extent of discosal effects.

SD-BWI-DP-061 Rev. 1

The printout of data is constrained to the format of the NOMALY drive hasa software package. As such numerically when for specific parameters cannot be truncated to the proper number of significant figures for output. In general, one or more zeroes may be added to some printout values to satisfy formating requirements. The user should be aware of this limitation and refer to the analytical uncertainties that are discussed elsewhere in this document, or may be included in the data tables, to ascertain the significance of trailing zeroes for data entries.

4.1 <u>Sampling Events</u> (pages 66-88)

Figure 6 is a copy of a page of the sampling event report and contains information that is common to all samples associated with a sampling event. For example:

0	Location -	This is a site name referenced to the maps in Figures 1 to 5
0	Sample Event Code -	Each sampling event may have as many as three samples associated with it. The first sample number is arbitrarily chosen as the sample event code (SEC) number for the event. No Brit data are assigned, a unique SEC number for bookkeeping purposes ²
0	Producing Zone –	This information applies only to groundwater samples and represents the major stratigraphic zone(s) from which the sample came. Some inconsistencies in level of stratigraphic detail exist but all producing zone information is referenced to the representative geologic log in Figure 7.
3	Packer Top/Bottom -	For boreholes these data fields report the depth interval below surface (in feet) that was isolated by packers (or a packer and the cottom of the hole or slotted pipe) during sampling. Where a plank field exists packer depth information is not available. For spring and prect itation samples for which packer information is not appropriate blank fields are also listed.

2 - Samples collected by the BWIP are assigned a two-part numerical code. The first two digits (e.g., 83-) refer to the fiscal year (FY) in which they were collected. Some samples reported in the data base were collected as part of the CASP and analyzed by the Analytical Lacoratories of Rockwell. These samples are identified by sample numbers with a CP-prefix. During FY 1979 some samples analyzed under the auspices of CASP were taken from borencle CB-15 which was partially funded by the BWIP. As a consequence, water samples were assigned both CP- and 79- sample numbers. The latter are used in the data base while the equivalent CP-numbers are maintained in BWIP records. All remaining hon-BWIP samples are arbitrarily assigned a sample number of the Form SITE-xxx.

SAMPLING EVENTS SAMPLE TYPE: CONFINED

ŧ

lucalion	EVENT CODE	PRODUCING ZONE	PACKER TOP	PACKER BOTTOM	SAMPLING METHOD	DATE	SOURCE
BLRK	85-255	PRIEST RAPIDS TO ROZA	884	1239	PUMP	06/13/85	1
{} <u>{</u> } <u>{</u> {}	81-19 81-65 82-27 85-32	MADION PRIEST RAPIDS PRIEST RAPIDS PRIEST RAPIDS	976 1080 1080 1080	990 1139 1139 1139	AIRLIFT IG AIRLIFT IG PUMP SIPHONED	02/02/81 05/01/81 11/10/81 10/27/84	1 1 1 1
¢₿÷02	79-65 81-13 81-10	MAHION Priest Rapids Roza	846 1028 1166	. 924 1190 1190	AIXLIFT IG AIRLIFT IG AIRLIFT IG	07/13/79 12/08/80 12/23/80	111
DB-04	79-71	MABION	1360	1403	AIRLIFT IG	05/07/79	1
DB-07	79-89 83-413 85-216	MABTON MABTON MABTON	597 597 597	812 812 812	AIRLIFI IG AIRLIFT WINDMILL	07/13/79 06/29/83 04/25/85	1 1 1
DH - 0 A	79-28 83-472	MAUTON MADION	461 461	589 589	AIRLIFT IG PUMP	07/12/79 07/15/83	1 1
11-44 17	85 - 4 85 - 15 85 - 18 86 - 52 86 - 103 81 - 57	MABTON MABTON PRIEST RAPIDS PRIEST RAPIDS PRIEST RAPIDS PRIEST RAPIDS	709 708 1020 1020 1020 1037	1020 1020 1210 1210 1210 1210 1046	FLOWING FLOWING FLOWING FLOWING PUMP FLOWING	10/10/84 10/15/84 10/15/84 10/28/85 11/21/85 01/15/81	111111111111111111111111111111111111111
DB-12	63-95 81-25	SELAN PRIEST RAPIDS	171 524	189 692	SWAB Airlift ig	04/20/78 10/31/80	1
08-13	80-159 83-404	ман Гон Мав Гон	1195 1195	1292 1292	PUMP	04/18/80 07/07/83	1
08-14	81-162	PRIEST RAPIDS	1181	1213	AIRLIFT	05/25/81	λ
р н-15	79-17 79-35 79-33 79-15 79-31 79-31 79-51 79-51 79-85 79-80 79-80 79-80 79-80 80-35 80-24	RATTLESNAKE RIDGE SELAH COLD CREEX ASOTIN/UMAILLIA UHALILA INTRAFLOW HAUTON PRIEST RAPIDS PRIEST RAPIDS PRIEST RAPIDS/RCZA FRENCHMAN SPRINGS FRENCHMAN SPRINGS FRENCHMAN SPRINGS FRENCHMAN SPRINGS FRENCHMAN SPRINGS FRENCHMAN SPRINGS	150 370 510 640 680 680 858 909 1045 1300 1300 1353 1393 1450	222 4223 6132 7544 84699 11053 113773 1137733 11433 1137733 114 114	Pump Pump Pump Pump Pump Pump Swab Swab Swab Swab Swab Swab Swab Swab	01/28/79 05/10/79 05/10/79 06/04/79 06/14/79 07/24/79 03/13/79 03/13/79 03/13/79 03/15/79 03/27/79 03/27/79 10/24/79 10/13/79	17.7.1.1.2.2.1.2.1.2.1.2.1.2.1.2.1.2.1.2

FIGURE 6. Sampling Events Report.

.

PAGE 1

SD-BWI-OP-OG1 Rev.

مدو

SD-BWI-DP-061 Rev 1

. .

-	000	1000	3 3	"Of The second	14 10 100 100 100 100 100 100 100 100 10		SEDIMENT STRATIGRAPHY OR PASALT FLOWS
TERMARY	Hotocene					SURPICIAL UNITS	10468 5440 OUNES 5440 OUNES 5410741 2485 110741 2485 1117555 1117555 1117555 1117555 1117555 1117555 1117555 1117555 1117555 11175555 111755555 11175555555 11175555555555
VND	Plaisto- Cuna			llan- ford		TOUCHET BEDS	
	cit.			Ringuld	•		INTERSISTOCENT UNIT
:			. .		E.5	ICE KAREOR KEMBER	GOOSEISLANGALEROW
				us threaft	10.5	ELEPHONT MOUNTAN	LEVEL MERSED
				10เกาะค่	12.0	PSKONA MELAL	APTILEPAPE FILDE INTERBELS POISONA FLOW IZ COOLING UNITSS SELAR INTERGED
				A elbb	13.5	ESQUATZEL MEMBER	GARCE MOUNTAIN FLOW 2 COOLING UNITS I COLD CREEK INTERSED
				Š	•	UMATTLA MEMBER	VAHLUKE FLOW SILLUSI FLOW UMATILLA FLOW
AIIY		ult Group	նեսե		14.5	PRIEST RAPIOS MEMBER	MAATON INTERBED LOLO FLOW ROSAUA FLOW ISEVERAL COCUNG UNITS I
TEAL	ocene	ior Uus	alt Su	llasut	-	ROZA MEMBER	AUINCY INTERBED
	Mi	nbla ffin	ull sint	undena			SENTINEL CAP FLOW WALLULA GAP FLOW SAND HOLLOW FLOWS
		Culu	7	3		PREMUMBINAL ANIMALA REMARK	SILVEN FALLS FLOWS SIRA DO FLOWS PALOUSE FAILS FLOW
					13.6		JNOIFFEREN INTED ILOWS
•	-	÷		to Llasaf	• .	SENTINGL BLUFFS SEQUENCE	COMASSETI FLOW UNAMED FLOW BIRKETT FLOW
			•	In Hund	• •		UNDIFFERENTIATED FLOWS MCCOV CANYON FLOW UNNAMED INTERMEDIATE MG FLOW
				Genn		SCHWANA SEQUENCE	UNNAMED LOW-MG FLOW UNTANUM FLOW UNNAMED RIGH-MG FLOWS
				_	16.5		UNIAMED VERY HIGH-MO FLOW

FIGURE 7. Stratigraphic Units Present in the Pasco Basin.

CD-BWI-DP-061 Rev. 1

A brief description of the sampling technique is Sampling Method -Q reported. The sample method and its identifier in the data base are as follows: Airlift - Airlift pumping using compressed air Airlift IG - Airlift pumping using compressed inert gas Dip - Sample bottle was submerced below water surface Flowing - Sampled zone was flowing under artesian pressure. For springs, water was pumped through submerced plastic tubing using a periotaltic pump Precipitation Collector - A sampling device consisting of a large funnel emptying into a plastic sample bottle. Snow samples frequently were collected from the ground near the precipitation collector. Swab - Swap cups and rods Pump - A submersible or turbine pump Windmill - A windmill-type pump actuated by a -compressed air cylinder The date that sampling occurred (Month/Day/Year). Date đ The data base requires a cate even if one is unknown. Many unconfined aquifer samples fall into this category and are dealt with by recording the cate as 1/1/xx, where xx is the calendar year of collection Sourca -A number which is keyed to specific data source С references appearing at the end of the sampling event report. In addition to identifying data sources, this code number also contains information relative to the traceapility of analyses. The reader is referred to Section 5.1.1 for a more detailed discussion of data traceapility.

4.2 Maior Inormanics - Pegors 1 (pages 90-106)

Figure 8 presents a copy of a portion of the first major inorganic report. This information is common to all samples collected during the sampling event.

c Location - Same as above

o Sample Event Code - Same as above

SAMPLING EVENTS SAMPLE TYPE, CONFINED

. . .

location	SATIPLE EVENT GODE	TAB PH PH UNITS	i ilid ph Ph units	LAB COND HICROSIEMENS/CH	FIELD COND MICROSIEMENS/CM	TURBIDITY TURBID UNITS	ORP NV	SAMPLE TEMP(C)
ы кк рө-от	85-255 81-19 81-65 82-27 35-32	7 85 8 55 8 95 8 95	7 80 8 24 8 90 8 67 9 05	268 00 438.00 491.00 473.00 482.00	•	0,]\$ 100 031 0,40	-180.00 -110.00 -190.00 -260.00 -245.00	22.7 18.1 23 9 19.9 20.6
· D8-02	79-65 81-13 81-10	8.86	8.43 8.67	463.00 496.00	.*	2.00 1.90		24 0 18 5 20 9
08-04 08-07	79-77 79-89					۲		22.0
	83-413 85-216	9 45 9 05	9.35 9.15	- 528.00 530.00		0.14 19.00	-380.00 -220.00	24.5
120-09	83-472	8 50	6 50	311.00		0.15	-240.00	22.4
1981 - 1 1	85-4 85-15 85-18	8.10	8.10	259.00 262.00		0.17	-230.DV	27.1
	86-52 66-103	8.11	7.95	277.00	•	1,60	-250.00	28.5
08-12	81:57 63-95 81-25		8 1 8 05 8 46	277.00	320.00	1.60	, 140 vy	/ 23.4 15.8 17.1
DH - 13	80-159	8, 25	8 25	301 00		0.21	300 .00	77 5
DB-15	81-152 79-17 79-35 79-35 79-15 79-30 79-31 79-25	`9`31 7.80	6.10 7.00 6.10 7.20 9.70 8.70	714.00	317.80 327.00 342.00 352.00 627.50 450.30	0.73	-300.00	257.46 277.46 277.46 277.46 201.9 200.9 200.9 200.9 200.9 200.0 200.0 200.0 200.0 20
	79-51 79-85 79-80 79-62 79-90 60-35 80-24 80-77 80-1		8.50 9.67 9.63 9.231 9.43 9.41 9.45 9.44 9.34		70%,20 70%,20 72%,80 738,80 737,55 751,56 737,26 737,26	ئ		000004 2000004 2000004 2000004 2000004 2000004 2000004 2000004 2000004 2000004 2000004 2000004 2000004 2000004 2000004 2000004 20000004 20000004 200000000
ini 01	SIIF-230 SIIE-226 SIIE-227 SIIF-228 SIIF-228 SIIF-231 SIIF-231 SIIE-233 SIIE-233	8 10 8 50 9 20 9 40 9 50 8 90 8 60 8 90 9 30	9.62 9.51 8.64		314.00 351.00 590.00 65.00 353.00 37.70 402.00 552.00			•

FIGURE 8. Major Inorganics Report

2465 1

D-BWI-DP-051 Rev.

SD-BWI-DP-061 Rev. 1

- o Lap pH -
- o Field pH -

o Lab Specific
Conductance (Lab Cond.)

- o Field Specific
 Conductance (Field Cond.)
- o Turbidity -
- o 0२२ -

The pH value (in pH units) measured in the laboratory at room temperature. It is determined on only one of the samples in a sampling event but is recorded for all common samples

The pH value (in pH units) measured in the field at the time of sample collection and at the collection temperature. It is determined on only one of the samples in a sampling event but is recorded for all common samples.

It is reported in units of microsiemens/cm at 25°C and is determined on only one of the samples in a sampling event but is recorded for all common samples. For samples collected by Rockwell personnel prior to approximately October 1, 1980, specific conductance usually (but not always) was measured in the field. Comparison of conductivity measurements made in the field and laboratory during this time period indicated essentially no difference within the precision of the measurements. Therefore, following that approximate date all conductivity measurements made by Rockwell personnel have been performed in the laboratory. Complete documentation as to the details of specific conductance measurements made prior to October 1, 1980 is lacking but it is assumed that they were performed in the field. Since February 1986, personnel of the Hydrochemistry Unit of the Site Department (BWIP) have made routine field measurements of specific conductance that will be incorporated into the data base.

It is reported in units of microsiemens/cm at 25°C and is determined on only one of the samples in a sampling event but is recorded for all common samples.

It is measured in the field on an unfiltered sample in nephelometric turbicity units (NTU) and is determined on only one of the samples in a sampling event but is recorded for all common samples.

The oxidation reduction potential (ORP) is measured in units of millivolts with a platinum electrode relative to an Orion reference electrode that has the potential characteristics of a saturated calomel electrode. Measurements are reported for the collection temperature listed and are cetermined on only one of the samples in a sampling event. SD-8WI-0P-061 Rev. 1

Data are recorded for all common samples. These data can be converted by the following equation to a standard hydrogen reference electrode at 25°C yielding a value of Eh:

Eh (MV) = $E_{pt,T} + 257.1 = 0.64 T(°C)$

This equation results from linear regrossion of data found in Orion (1980).

c Sample Temperature -

The temperature (in °C) of the sample at the time of collection. The in situ temperature of sampled zones in borcholes at Hanford can be adequately mestimated by use of the following equation:

 $T = (^{\circ}C) = 15.0 + 0.038$ [Lepth (m)] (Early, et al., 1983)

This equation is based on a linear regression of temperature-depth results from five Hanford boreholes. As more borehole temperature data are decommented this equation will be reviewd

4.3 Major Inorganics - Report 2 (pages 108-133)

Figure 9 is a continuation of the major inorganic data. The location and sample event code are interpreted as described previously. Where the concentration of a species is below the quantification limit of the instrument a "<" will precede the numerical estimate of quantification limit.

Associated with each species listed is an analysis code, "(A)", which defines the analytical technique used to obtain the data. The key for these analysis codes is given at the end of this report.

a	Sample Number -	The specific sample number associated with the sampling event for which data exist.
<u>о</u>	'VA	Sodium concentration in mg/L.
Э	κ -	Potassium concentration in mc/L.
C	CA -	Calcium concentration in mc/L.
٥	MG -	Magnesium concentration in mg/L.

SAMPLE TYPE CONFINED ANALYSIS GROUP, MAJOR

SAMPEING EQCATION	SAMPI ING EVENT CODE	SAMPLE NUHBER	NA NG/L	<u>(A)</u>	к ИЗ/L (4	CA MG/L	(A)	14G 14G/1	(A)
ыкк	85-255	85-255 85-256	27.000 28.400		6 840 (1 6 900 (1	15 300 15,500	$\left\{ \begin{array}{c} 1\\ 1 \end{array} \right\}$	9 140 9 230	<pre>{1}</pre>
DR-01	81-19	81-15 81-19	101 000 87 200	{}	13 100 (1	1.700	$\begin{pmatrix} 1\\ 1 \end{pmatrix}$	0 479 0 490	
	51-55	81-65 81-70	101.000		16 000 11	0.490		0,150	
	82-27	82-27 82-87	99.700 100.000		15 300 11	0.430		0.100	
	85-32	85-32 85-33	101.000 100.000		15,800 (1 15,700 (1	0.420		0.084 0.095	$\left\{ \begin{array}{c} 1\\ 1 \end{array} \right\}$
DB-02	79-65 81-13	CP123 81-11	107.700 98.700		13 500 11	1.500		0.450 0.290	
	81-10	81-13 81-10 81-7	103.000 104.000		16.500 (1 16.500 (1	0.590		0.080 0.090	
DB 04	79-77	CP116	77.800	{1}	10.600 []) 0.580	(1)	0.160	(1)
DH-01	79-89 83-413	CP121 83-413	118 400 117.000	$\{l\}$	14.200 1 12.600 1	1.500	(1)	0,090 0,100	
 	85-216	83-448 85-216 85-217	114.000 113.100 112.900		12.300 (1 12.300 (1 12.300 (1	1 1.430 1 390 1.360		0.100 0.100 0.100	
178-09	79-28 83-472	CP115 83-410 83-472	75.100 70.900 71.000		12.200 1 10.520 1 10.500 1	0 560 0.450 0.450		0.130 0.100 0.100	$\left\{ \begin{matrix} 1\\1\\1\\1 \end{matrix} \right\}$
08-11	85-18	85-18 85-19	31.400 31.100		9.720 [] 9.610 []	14.700	$\begin{pmatrix} \Lambda \\ \Lambda \end{pmatrix}$	7 020	
	86-52	86-52 86-53	32 300 32 700	H	9 450 11 9 640 11	14.903	- lil	7,180	ł
	81-57	81-57	33.300	lis	9 920 (1	15.300	(1)	2 500	(1)
DB-12	63-95 81-25	63-95 81-25 81-42	16 800 31.400 31.500		7 100 (1 9 240 (1 9 310 (1	25.300 18.900 18.900		13 509 10 300 10 300	
68-13	83-404	83-404 83-455	54.200 55.000	111	10,100 (1 10,300 (1	8.000	11	2 030 2 020	{ ! }
DB-14	81-162	81-139 81-162	130 900 137 000	{ ! }	17 600 (1 16 370 (1	2.030	{};	0 020 0 020	$\left\{ \begin{array}{c} 1\\ 1 \end{array} \right\}$
DB-15	79-17	79-17 79-4	44 400 42.000	{}	10 400 (1 11.600 (1) 18.900 19.600		4,900 5,100	$\left\{ \begin{array}{c} 1\\ 1 \end{array} \right\}$
			SEE END OF	mis	REPORT FOR A	LISTING OF	ANALYS	IS METHOR	DS.

...

FIGURE 9. Major Inorganics Report 2.

SD-EHI-DP-061 Rev. 1

4.4 Major / Arganics - Report 3 (pages 135-158)

Figure 10 is a continuation of the major inorganic data. The location, sample event code, and sample number are interpreted as described previously. Where the concentration of a species is below the quantification limit of the instrument a "<" will precede the numerical estimate of quantification limit. The analysis code key is given at the end of this report.

0	Lad Alkalinity -	A laboratory measurement of alkalinity usually is made in duplicate for each sampling event. The mean of the two analyses is recorded in the data
		base for all associated semples. It is reported in
	•	units of mg/L as CaChz.
•	Field Alkalinity -	A measurement of alkalicity mude in the field at

the time of sample willustion. See water lab alkalinity for additional information.

o SI - Gilicon concentration in mg/L.

o TOC - Total organic carbon in mg/L.

o Total Carbon (10) The sum of 211 organic and inorganic forms of carlon in mpla.

4.5 Maior Inorganics - Report 4 (pages 161-187)

Figure 11 is a continuation of the major inorganic data. The location, sample event code, and sample number are interpreted as described previously. Where the concentration of a species is below the quantification limit of the instrument a "<" will precede the numerical estimate of quantification limit. The analysis code key is given at the end of this report.

٥	CL -	Chloride concentration in mg/L.
э		Fluoride concentration in mg/L.
3	2R -	Bromide concentration in mg/L. Bromide measurements made by the high performance liquid chromatography (HPLC) technique were performed on samples archived by the solution chemistry laboratory for up to three years. Sample integrity relative to bromide has not been established over this period of time.
c	S04 -	Sulfate concentration in mg/L.
3	N03 -	Nitrate concentration in mg/L.
0	204 -	Phosphate concentration in mg/L.

SAMPLE TYPE: CONFINED ANALYSIS GROUP: MAJOR

. . . .

SAMPLING LOCATION	SAMPLING EVENT CODE	SAMPI E NUMBER	TAB ALK NG/L AS CACU3	FIELD ALK MG/L AS CACU3	ST HG/L	(A)	TUC MG/L	(A)	TC MG/L	(A)
BIRK	85-255	85-255 85-256	132 000 132 000	135.000	27 500 27 800		0.600	(1)	32.500	(1)
118-01	81-19	81-15	193.000	191.000	27 500	<u>{}</u> }				
	81-65	81-65	132.000	134.000	35.500	11				
	82-27	82-27		136.000	35 400	} ! {	0,660	{ 1 }		
	85-32	85-32 85-33	138.000 138.000	137 000 137 000	33.600 33.600	ii	0.400	{1}	28.860	(1)
DB-02	79-65	CP123	140.000	134 200	000 EE	<u>{</u> }}				
	B4 - 13	81-13	140.000	134 200	. 29.700	11			•	
	81-10	81-10 81-7		134.200	34.300	{i}				
DB-04	79-77	CP116			48.500	[1]				
ØB~07	79-89	CP121	170 000	170 000	41 500	111	0 740	(1)	24 890	
	87-417	83-448	170.000	170.000	37.400		0.740	111	34.840	1
	82-519	85-216 85-217	163.000	164.000	36.600		T'1RO	{ 1 }	32,200	111
ີ ມາກ - ຄ.ຄ.	19-53	CP115			31.400	11)				
	83-472	83-410 83-472	138,000	139 000	27.400		0.440	(1)	32.410	(1)
08-11	45-15	95-18	140.000	141 000	28.000	421	0.240	(1)	32 990	(1)
	86-52	86-52	141 000	141.000	30.400		0.240	<pre>{1}</pre>	32 900	
	81-57	81-57	141,000	141.000	32.170	11]			:	
DU-12	63-95	53-85		145 000	14.300	<u>;;;</u>			i	
	81-25	81-25		171 900	26.000					
DB-13	83-404	83-404	154,000	153.000	29.800	<u>{}}</u>	0.640	(1)	33,650	(1)
50 14		83-499	104,000	123.000	30.000	141				
00-14	01-102	81-162	128 400		36.560	111		÷		
DB-15	79-17	75-17 79-4		98.400	24.900					٠

SEE END OF THIS REPORT FOR A LISTING OF AMALYSIS METHODS.

FIGURE 10. Major Inorganics Report 3.

SD-BWI-DP-061 Rev.

pres 1

PAGE

SAMPLE TYPE. CONFINED ANALYSIS GROUP: MAJOR

Sec. 2.1

SAMPETNO LOCATION	SAMPI ING EVENT CODE	SAHIPI E NUHBER	CL HG/L (A)	F MG/L (A)	ач MG/L (А)	SD4 MG/1 (A	1×03) MG/L (A)	Р04 MG/L (А)	C ARGE BALANCE .
HERK .	85-255	85-255 85-256	4.600 (1) 4.500 (1)	0 560 (1) 0.490 (1)			•		
DB-01	81-39 81-65 82-27 85-32	81-15 81-19 81-65 81-70 82-27 82-87 85-32 85-33	16.000 11 16.000 11 47.500 11 47.600 11 46.600 11 48.000 11 48.000 11	3.490 (1) 3.660 (1) 7.210 (1) 7.200 (1) 7.080 (1) 7.140 (1) 7.200 (1) 7.200 (1) 7.200 (1) 7.200 (1)	• • •	0 270 (1 0.210 (1 13.300 (1 16.200 (1 16.600 (1 17.000 (1 17.000 (1			2.478 3.979 1.050 0.634 0.119 -0.079 -0.017 -0.482
DH-02	79-65 81-13 81-10	CP123 81-11 81-13 81-10 81-7	14.600 [1] 29.700 [1] 29.900 [1] 31.900 [1] 31.900 [1]	5.500 (1) 5.080 (1) 5.140 (1) 5.760 (1) 5.760 (1)		1.200 [1] 35.600 [1] 35.700 [1] 38.200 [1] 38.500 [1]	< 0.500 (1)	< 0.500 (1)	2.774 3.115 2.617 3.046
08-04	79-77	CP116	5.400 (1)	1.100 [1]		1.100 [1]	ler v	• •	
- 04 - 114	/5-89 83-413 85-216	CP121 83-413 83-448 85-216 85-217	55,530 (1) 56,500 (1) 57,100 (1) 52,700 (1) 53,000 (1)	7.300 (1) 7.680 (1) 7.950 (1) 8.300 (1) 8.400 (1)		7.900 1 0.990 1 0.990 1 0.950 1		•	0.696 -0.877 0.859 0.631
DB-09	79-28 83-472	CP115 83-410 83-472	9.600 (1) 10.200 (1) 10.100 (1)	0.100 (1) 0.840 (1) 0.840 (1)		<pre>(1.200 11 10.500 11 10.400 11</pre>			- 1. 412 - 0. 313
0 11 - 2 1	85-18 86-52 81-57	85-18 85-19 86-52 86-53 81-57	4.900 (1) 5.000 (1) 4.130 (1) 4.160 (1) 4.600 (1)	0.800 (1) 0.700 (1) 0.770 (1) 0.770 (1) 0.720 (1)	•	ND 11	ND {1}		
DH-12	83-95 81-25	63-95 81-25 81-42	4.620 (1) 5.300 (1) 5.300 (1)	0.030 (1) 0.710 (1) 0.710 (1)		15,100 (1) 3,810 (1) 3,790 (1)			-3.528 -3.407
08-13	. 33-404	83-404 83-455	4.620 11	0.490 [1] 0.490 [1]		8.143 (1)			2.213 0.857
DU-14	81-152	81-139 81-162	129 030 11 129 000 11	9,490 (1) 9,440 (1)		· 0.500 [1]			545 -3.905
28-15	79-17	79-17 79-4	7.700 11	<pre> 0.300 [1]</pre>		37,700 (1)	7.000 (1) 6.400 (1)	(1.200 (i) (1.200 (i)	9 395 5.824

FIGURE 11. Major Inorganics Report 4.

PAGE 1

SD-BWI-DP-061 Rev. 1

SD-BWI-DP-061 Rev. 1

o Charge Baiance - The calculated percent deviation between the observed total cations and anions (each measured in millequivalents/L) determined according to the following equation:

where:

Total Cations (Meq/L) = $\frac{\lceil Na+1 \rceil}{22.9898} \div \frac{\lceil K+1 \rceil}{39.102} \div \frac{\lceil Ca^{2+1} \rceil}{20.04} \div \frac{\lceil No^{2+1} \rceil}{12.156}$ Total Anions (Meq/L) = $\frac{Alkalinity}{50} \div \frac{\lceil Cl-1 \rceil}{35.453} \div \frac{\lceil S-1 \rceil}{13.9984} \div \frac{\lceil No51 \rceil}{52.0049} \cdot \frac{\lceil SO^{2-1} \rceil}{48.0308}$

> The concentrations are in units of mg/L and divisors in these equations are the equivalent weights of the respective species.

A charge balance will be computed as long as data for all of the key species are present. Key species include sodium, potassium, calcium, magnesium, alkalinity, chloride, fluoride, and sulfate. If available, nitrate is included in the calculation, but does not appear to be quantitatively important except for the unconfined aquifer. Therefore, a charge balance will be determined whether or not nitrate analyses are provided.

4.6 Trace Elements (pages 189-264)

Figure 12 is an example of the printout for trace element data. The report is an alphabetical listing of 18 trace constituents that covers three printed pages. The location, sample event code, and sample number are interpreted as described previously. All elements are reported by their conventional chemical sympols and concentrations are reported in units of mg/L. Measurements below duantification are noted by use of "<". The analysis code key is given at the end of this report.

Since October 1985, determination of several trace elements was stopped by the BWIP solution chemistry laboratory because these elements were rarely, if ever, above the quantification limit of the instrument. Chromium, cobalt, nickle, cadmium, and lead are affected by this change.

Because of their low concentrations in groundwaters, trace elements are more likely than major constituents to suffer the effects of contamination prior to analysis. While the BWIP has not systematically evaluated the impact of contamination on trace element concentrations, several cautionary comments are warranted. First, unusually high concentrations of molyodenum in a few groundwater samples are suspected of resulting from contamination by joint compound used on drill pipe. Second, anomalously high concentrations of iron and other transition metals occassionally are reported and are believed to be caused by contamination from the borehole casing pipe and pump tubing. Finally, the elevated zinc concentrations toserved in precipitation samples probably are due to the use of galvanized iron funnels in the sample collectors.

SAMPLE TYPE: CONFINE ANALYSIS GROUP, TRACE

. . . .

4

. • •

SAMPLING LOCATION	SAMPI ING EVENT CODE	Sampi e Humber		A1 MG71	[A]	AS MG/L	(A)	M	9 G/1	<u>,)</u>	BA MG/L	(A)	CD MG/L	[.9.]		CO MG/L	: 1 :	
81 NA	85-255	85-255 85-256	۰ <u>-</u> - د	C 05 V 0 050				с с	0.015	{ ² { ¹ }	0 024	<pre>{}}</pre>			¢	0.017 0:017		
0 6 - 0 1	81-29 81-65 82-27 85-32	81-15 81-19 81-65 81-70 82-27 82-27 85-33 85-33		0 010 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0					0 0 0 0 0 130 0 210 0 210 0 210 0 210 0 200 0 190 0 190		0.011 0.014 0.005 0.005 0.011 0.021 0.025	<pre>1) (2) (2) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1</pre>			~ ~ ~ ~ ~ ~ ~ ~ ~	0.01 0.004 0.004 0.004 0.015 0.015 0.00 0.00 0.00 0.00 0.00 0.		
MB-05	81-10 81-13	CP123 81-11 81-13 31-10 81-7		0,929 0,020 0,500 0,500 0,920			•		0.200 0.150 0.150 0.140 0.150		0,120 0,200 0,220 0,120	1) 1) 1) 1) 1)			<pre></pre>	0.010 0.010 0.010 0.010		
68-64	79-77 [°]	CP116		0.100	111		•	!	0. 1 (e.	~ 10	. 200	[1]			(<	0.010	-{1]	
08-07	79-89 83-413 85-216	CP121 83-413 83-448 85-218, 85-217,	~ ~ ~ ~	0.170 0.080 0.090 0.050 0.060		. 1		+ 	0 650 0.490 0.432 0.630 0.630		0.010 0.011 0.011 0.021 0.062		9 • •	+ 14 1 		0.010 0.010 0.010 0.017 0.017	1) 1) 1) 1)	3
109 - 81 -	79-28 83-472	CP115 83-410 33-472	((0.030 0.080 0.050				с с	0 020 0 020 0 020	;;)	0.012 0.010 0.011				(((0.010	[]}	
58-11	35-18 86-52 81-57	65-19 85-19 95-22 86-30 81-37	((((0 033 005 0 005 0 250 0		,		c c	0.007 0.0 0.0 0.025		0,000 0,041 0,052 0,053 0,053				<pre></pre>	0.003 0.003 0.003	[1] .	, [•]
0B-12	63-95 81-25	53-95 81-25 31-42	٢	0.225 0.970 0.076					0.02 0.01 0.030	+: { ¹ }	0.170				۲ ۲	0.020 0.005 0.005	· · } · `	
9b-13	83-404	63-404 83-455	۲ ۲	0 080 0,080				с с	0.020 0.020	\$1.1	0.01	;1}		•	¢ .	0.010	[i]	
06-14	81-162	81-139 81-162		5,030 0,030	{}}				0.522		0.003 0.004			•	Ċ	0.00.0 *20.0	•••	
DB-15	79-17	79-17 79-4	•	() 0.040		1 •		с с	0.005		0.110	13、	0.01	0 {11	š K	0.010		

SEE END OF THIS REPORT FOR A LISTING OF ANALYSIS METHODS.

FIGURE 12. Trace Elements Report.

SD-BWI-DP-061 Rev.

....

.

.

PA3: 1

SAMPLE TYPE CONFINED ANALYSIS GROUP. TRACE

SAMPLING LOCATION	SAMPEING EVENT CODE	SAMPLE NUMBER	ся ИG/L	(A)		CU HG/L (A)	FE MG/L (A)		11 HG/L (A)	t 14	1N 3/L. (A)		MO MG/1. [A]
ыкк	85-255	85-255 85-256	< 0.03 < 0.03		ć	0 006 [1] 0 006 [1]	$\begin{array}{c} 0 & 052 \\ 0 & 072 \\ \end{array} \left(\begin{array}{c} 1 \\ 1 \\ \end{array} \right)$	((0.008 (1) 0.008 (1)	().053 (1)).049 (1)	« «	0 034 11 0.034 11
DR - 01	81-19 81-65 82-27	81-15 81-19 81-65 81-70 82-27	0 00 0	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		0 002 (1) 0 002 (1) 0 003 (1) 0 003 (1) 0 006 (1)	$\begin{array}{c} 0 & 0.18 & (1) \\ 0 & 050 & (1) \\ 0 & 360 & (1) \\ 0 & 370 & (1) \\ 0 & 120 & (1) \\ 0 & 130 & (1) \end{array}$		0 087 (1) 0 048 (1) 0 015 (1) 0 015 (1) 0 015 (1) 0 015 (1)		201 11 100 11 006 11 005 11 003 11	٢	0.151 (1) 0.030 (1) 0.110 (1) 0.110 (1) 0.100 (1) 0.100 (1)
	\$5-32	82-87 85-32 85-33	< 0.00 < 0.00		•	0 002 11 0 002 11	0 049 11 0 046 11		0.015 11		003 11 003 11		0 099 11 0 102 11
DB 02	79-85 81-13 81-10	CP123 81-11 81-13 81-10 81-7	 0 0 0 0 0 	1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1	((0.010.(1) 0.009 (1) 0.005 (1) 0.005 (1) 0.005 (1)	0 030 1 0 680 1 0 690 1 0 130 1 0 130 1	< < <	0.005 (1) 0.005 (1) 0.005 (1)).020 (1)).374 (1)).399 (1)).335 (1)).374 (1)	٢	0 030 (1) 0 270 (1) 0 280 (1) 0 280 (1) 0 280 (1) 0 240 (1)
DB-04	28-71	CP116	¢ 0.00)3 (1)		0.024 (1)	1 080 (1)			< (0.024 [1]	¢	0.030 (1)
DD+07	79-89 83-413 85-218	CP121 83-413 83-448 85-216 85-217	 < 0.00 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 	3 1 10 1 10 1 12 1 12 1	د د	0.020 (1) 0.010 (1) 0.010 (1) 0.006 (1) 0.006 (1)	0.500 (1) 0.030 (1) 0.030 (1) 0.187 (1) 0.202 (1)	د د	0.007 (1) 0.008 (1) 0.008 (1) 0.008 (1)).020 (1)).005 (1)).006 (1) ·).005 (1) 0.005 (1)	•	$\begin{array}{c} 0 & 0 & 3 & 0 \\ 0 & 0 & 5 & 0 \\ 0 & 0 & 5 & 0 \\ 0 & 0 & 5 & 0 \\ 0 & 0 & 4 & 0 \\ 0 & 0 & 4 & 0 \\ 0 & 0 & 4 & 0 \\ \end{array}$
201-07 12	15.25 83 472	CP115 83-410 83-472	< 0.0(< 0.0(< 0.04		د د	$\begin{array}{ccccccc} 0 & 0.16 & (1) \\ 0 & 0.10 & (1) \\ 0 & 0.10 & (1) \end{array}$	0.220 11 0.030 11 0.040 11		0.006 {1 0.007 {1}	< 1 1).020 (1)).006 (1)).005 (1)	с с с	0.000 [1] 0.020 [1] 0.020 [1]
DB- 1 J	85-18 86-52 81-57	85-18 85-19 86-52 86-53 81-57	¢ 0.00 ¢ 0.00	$\left\{ \begin{array}{c} 1\\ 1\\ 1 \end{array} \right\}$		0 001 11 0 001 11 0 012 11 0 012 11 0 012 11 0 005 11	$\begin{array}{c} 0 & 092 & (1) \\ 0 & 090 & (1) \\ 0 & 087 & (1) \\ 0 & 055 & (1) \\ 0 & 103 & (1) \end{array}$		0 016 (1) 0.017 (1) 0 021 (1) 0.020 (1)		0.053 (1) 0.052 (1) 0.047 (1) 0.043 (1) 0.335 (1)	* * *	D.003 (1) O.008 (1) O.600 (1) O.500 (1) D.131 (1)
DB-12	ยม- 95 81-25	63-95 81-25 81-42	< 0 00 0 01	$ \begin{array}{c} 5 \\ 7 \\ 1 \\ 0 \\ 1 \end{array} $	٢	0 005 (1) 0 010 (1) 0 010 (1)	<pre></pre>			1		•	0.210 (1) 0.210 (1)
DB-10	404-404	83-404 83-455	 C C D D		۲ ۲	0.010 (1) 0.010 (1)	8 970 11		0.020 13		0.030 (1)	і (0.020 111
DB-14	81-152	81-139 81-162	< 0.00 < 0.00	5 11 5 11	ć				0 002 11 0 003 11	4	007 11		01110 (2)
QB-15	19-17	79-17 79-4	 c o o		• •	0 002 11	$\begin{bmatrix} 0 & 0 & 2 & 0 \\ 0 & 0 & 2 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$	۲	0.020 (1)).020 (1)).020 (1)	د د	0.030 (1)

SEE END OF THIS REPORT FOR A LISTING OF ANALYSIS METHODS.

.

FIGURE 12. Continues

PAGE 1.1

SD-841-0P-061 Rev.

ev. 1

.

•、

•

6

- (]
SAMPLE TYPE, CONFINED ANALYSIS GROUP: TRACE

,

÷

SAMPLING LOCATION	SAMPI ING EVENT CODE	SAHPLE NUMBER		N] HG/1	(À)		р MG/L	(A)		93 MG/L (A)	SX NG/L (A)	Zא MG/L	(A)
ÐĽRK	\$5-255	85-255 85-256	· (0.030 0,030	{ ! }		•		ć	0.180 [1] 0.180 [1]	$\begin{array}{c} 0 & 054 \\ 0 & 055 \\ 1 \end{array}$	<pre></pre>	
()11 - 0 1	81-19 81-65 82-27 85-32	81-15 81-19 81-65 81-70 82-27 82-87 85-32 85-33		0,020 0,020 0,008 0,008 0,026 0,026 0,003 0,003	1) 1) 1) 1) 1) 1) 1) 1) 1)	¢ ¢ ¢	0.200 0.200 0.080 0.080 0.340 0.340			$\begin{array}{c} 0.100 \\ 0.010 \\ 1.0 \\ 0.043 \\ 0.043 \\ 1.0 \\ 0.043 \\ 1.0 \\ 0.040 \\ 1.0 \\ 0.040 \\ 1.0 \\ 1.0 \\ 0.040 \\ 1.0 \\ 1$	$\begin{array}{c} 0 & 013 & (1) \\ 0 & 010 & (2) \\ 0 & 002 & (1) \\ 0 & 002 & (1) \\ 0 & 002 & (1) \\ 0 & 002 & (1) \\ 0 & 002 & (1) \\ 0 & 000 & (1) \\ \end{array}$	 0.002 0.002 0.004 0.004 0.150 0.015 0.054 0.054 	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1)U-02	/9-65 81-13 81-10	CP123 81-11 81-13 81-10 81-7	 	6.010 0.010 0.010 0.010	$ \left\{ \begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{array} \right\} $	(((0.200 0.200 0.200 0.200 0.300			0 100 11 0 100 11 0 100 11 0 100 11	0 004 11 0 004 11 0 002 11 0 003 11	0.020 0.030 0.030 0.020 0.020	$ \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 $
DH- 64	79-77	CP116				• • • •		• • •				0.100	(1)
DD-07	79-80 83-413 85-216	CP121 83-413 83-448 85-216 85-217	· · · · ·	0,030 0,030 0,030 0,030		¢ ,	0.340 0.340	{!}	((((0.150 [] 0.150 [] 0.180 [] 0.180 []	0.009 (1) 0.009 (1) 0.007 (1) 0.007 (1)	0.010 0.010 0.020 0.020 0.020 0.020	$ \begin{bmatrix} 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1 \end{bmatrix} $
09-09	79-28 83-472	CP115 83-410 83-472	۰۰ ۲	0.030	<pre>{}}</pre>	، د د	0.340 0.340	·{}}	¢ ¢	0.150 11 0.150 11	0 003 [1] 0.003 [1]	0.050 < 0.010 < 0.010	{1) {1} {1} {1}
DH-11	85-18 80~52 81-57	\$5-18 85-19 86-52 86-53 81-57	((0.003 0.003 0.010	{ } }	(0.020	(1)	< < <		0.049 (1) 0.049 (1) 0.055 (1) 0.055 (1) 0.055 (1)	<pre>c 0 007 c 0.074 c 0.040 c 0.040 c 0.040 0.071</pre>	
08-12	63-95 81-25	63-95 81-25 81-42	((0 310 0.010	{ ! }		0.200 0.200	{ H }	د د		0.030 (1)	4 0.005 0.069 0.089	
D8 - 13	83-404	83-404 83-455	((0,030 0.030	{}}	с. с	0.340 0.340	{}}	۲ ۲	0 159 (1) 0 150 (1)	0,050 (1)	< 0.010 < 0.010	{ 1 }
DD-14	81-162	81-339 81-162	с с	0.008 0.008	}		0.110 0.130	{ }	د . د	0.040 (1) 0.062 (1)	0.027 (1)	0.905	[1]
bB-15	79-17	79-17 79-4	د د	0,020 0.010		۲ ۲	0.200 0.100	<pre>{}}</pre>		0 1 · · · · · · · · · · · · · · · · · ·	0,143 (1) 0,160 (1)	0.027 0.100	8
		•		E.M. 4.6	1	• 			rot	THO OF ANALY	CTC METHODE	•	

SEE END OF THIS REPORT FOR A LISTING OF ANALYSIS METHODS.

FIGURE 12. Continued

FAGE 1.2

SD-8WI-DP-061 Rev.

مدر

A large number of phosphorous results determined by inductively coupled atomic emission spectrometry (ICP-AES) are presented in the trace elements report. It is known that the detection of trace amounts of phosphorous by this technique is subject to significant error and all of these analyses must be considered suspect.

....

4.7 Dissolved Gases (pages 256-269)

Figure 13 presents a portion of the dissolved gas report. The location, sample event code, and sample number are interpreted as described previously. The gas data are reported in units of mole percent for each constituent. The BWIP provided its vendor with samples either in the form of gas (exsolved from groundwater under atmospheric pressure at the well head) or as gas dissolved in groundwater. In the latter case (which accounts for most samples), the vendor who supplied the analyses extracted dissolved gases, under vacuum, from groundwater samples in stainless steel containers. The extraction time was insufficient to remove all of the dissolved gases. Therefore, because of the different solubilities and exsolution rates of individual gas components the relative amounts (mole %) reported in this table must be regarded only as estimates.³ Similarly, the vendor reported the volume of gas extracted from each sample but, for the reason cited above, these results are known to be significantly in error and are not reported. Changes in procedures for sample collection and analysis of dissolved gases in groundwaters have been implemented.

Absolute gas concentrations are not available except for a few non-BWIP samples (Aops et al. 1979) and they are not reported in the data base. New sample collection techniques recently implemented by the BWIP permit reliable determination of absolute dissolved gas concentrations in groundwater. These results will be reported in a future update of this document.

All analyte species are reported by their conventional chemical symbols except carton monoxide which is referred to as "C MCN". A "K" denotes analyses below the detection limit of the mass spectrometer. The analysis method is listed at the bottom of each page.

Cross-referencing sample numbers between dissolved gas samples and the appropriate sampling method (Sampling Events Report) illustrates a source of uncertainty in this report that must be acknowledged. There is an indication that some gas samples were collected by airlift techniques. This implication is incorrect as gas samples are never collected in that manner. Future updates of this data package will seek to correct these errors.

3 - Currently, the only use made of these data by the SWIP is with the relative amounts of the two major gaseous components, nitrogen and methane.

SAMPLE TYPE: CONFINED ANALYSIS GROUP: GAS

Sampi Ing Location	SAMPI ING LVENT CODE	SAMPI E NUUUE R	AS MOLLX(REL)	C_MUN MOLEX(REL)	CH4 MOLEZ(REL)	CC2 MOLEX(REL)	IIE MOLEX(REL)	112 MOLEX[REL]	N2 MOLEX (REL)	DZ MOLEX(REL)
08-13	83-404	83-404	0.970;	< 0.100	15,600	0.070	0.010	< 0.010	83.300	0.020
юн - 15	79-17 79-35 79-33 79-15 79-39 79-51 79-80 79-62 80-35 80-24 80-77	79-17 79-35 79-35 79-39 79-51 79-51 79-92 79-85 79-80 79-85 79-80 79-80 79-80 79-85 79-80 79-85 79-80 79-84 80-35 80-41 80-24 80-74 80-73	<pre></pre>	<pre>< 0 100 < 0 010 < 0 010 14 400 < 0 100 < 0 100</pre>	 0.010 0.010 29.200 4.400 96.300 96.000 96.100 3.930 7.070 94.870 83.060 91.933 86.900 89.800 94.400 94.300 91.100 90.500 	0 200 0 010 0 010 0 060 0 070 0 7 300 0 7 300 0 7 300 0 040 0 040 0 040 0 010 1 330 0 7 200 0 7 2	<pre></pre>	$\begin{array}{c} 0.130\\ 0.100\\ 0.30\\ 0.010\\ 0.330\\ 0.100\\ 0.010\\ 0.010\\ 0.010\\ 0.010\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.050\\ 0.050\\ 0.050\\ 0.950\\ 0.950\\ 0.950\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.0$	$\begin{array}{c} 0.650\\ 0.270\\ 0.020\\ 7.570\\ 2.500\\ 3.880\\ 3.870\\ 3.800\\ 74.100\\ 70.300\\ 4.210\\ 4.000\\ 10.880\\ 7.620\\ 10.900\\ 8.340\\ 5.400\\ 5.500\\ 7.770\\ 8.380\\ 5.600\\ \end{array}$	0.01 0.020 0.180 0.180 0.039 0.039 0.010 0.010 0.010 0.010 0.020 0.380 0.380 0.380 0.380 0.110 0.380 0.110 0.380 0.110 0.380 0.110 0.380 0.380 0.110 0.380 0.380 0.020 0.020 0.010 0.010 0.010 0.010 0.010 0.010 0.020 0.010 0.010 0.020 0.010 0.020 0.010 0.020 0.010 0.020 0.010 0.020 0.010 0.020 0.010 0.020 0.010 0.020 0.010 0.020 0.010 0.020 0.010 0.020 0.010 0.020 0.010 0.020 0.0
	90-1 Ta po	80-51	0.150	C 0.100	93.800	¢ 0 0 10	< 0.010	< 0.010 < 0.010	6.060	¢ 0.010
pt06	80-238 80-15 80-29 79-53 80-75	80-238 90-15 80-29 80-37 79-57 79-58 80-45 80-75	1. 120 1. 350 1. 360 1. 500 3. 140 1. 170 1. 230 2. 540	 < 0.100 	0.570 0.010 0.480 0.900 0.770 0.750 1.580 1.950	<pre></pre>	0 230 0 340 0 310 0 350 0 300 0 260 0 420 0 320	<pre> 0 010 0 10 0 170 0 246 0 180 0 230 0 290 0</pre>	93.000 97.600 97.800 96.800 97.500 97.600 97.600 95.000 95.000	 0.013 0.020 <
DC-07	82-23 82-10	82-23 82-56 82-10A 82-10B 82-33	1 190 1,330 1,510 1,350 1,300	2.300 1.800 (0.100 2.000 3.200	4.320 4.390 4 140 5.160 5.190	 0.010 0.010 0.010 0.010 0.030 	0 210 0 210 0 100 0 200	0.080 0.090 < 0.010 0.030 0.030	91.300 92.000 \$4.300 91.000 • 89.700	(390 (77) (77)
μC-15	80 - 80 80 - 100 80 - 97 80 - 32 80 - 124	511-50 80-100 80-40 80-97 80-32 80-32 80-124	0.140 0.110 0.130 0.130 0.130 0.140	<pre> 0.100 0.100 0.100 1 300 0.100 0.100 0.100 0.100 </pre>	95.900 92.100 94.100 92.700 91.900 91.500	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	<pre>c 2 12 c 2 310 c 2 310 c 3 310 c</pre>	 0.010 0.039 0.039 0.020 0.010 0.010 	3.420 7.780 5.200 7.860 3.300	 0.010 0.010 0.010 0.010 0.010

ANALYSIS METHOD . MASS SPECIROMETRY

FIGURE 13. Dissolved Gases Report.

SD-BWI-DP-061 Rev. 1

PAJE 1

· .

Several dissolved gas analyses for borenole OB-15 (sample numbers 79-15, 79-17, 79-33, 79-35, and 79-39) were analyzed under conditions where compensation for water vapor present in the gas was not done. While these few analyses are of questionable value they are included for completeness.

4.3 Radioactive Isotopes (pages 271-313)

Figure 14 is an example of the printout for radioactive species. The report is an alphabetical listing of all analytical data for radioactive constituents currently in the data base and it covers three pages. The location, sample event code, and sample number are interpreted as described previously. Measurements below detection are noted by use of a "<". The analysis code key is given at the end of this report.

> C1-36 concentration in atoms/L. The vendor who supplied the SWIP with C1-36/C1 analyses also determined total chloride (C1) on the same sample. The value of C1-36 provided by the vendor was based on these analyses. However, the C1-36 values reported in this data package have been computed from the vendor-supplied C1-36/C1 value and the appropriate SWIP chloride data reported in Major Inorganics Report 4 (see Section 4.5). The $\frac{2}{3}$ uncertainty in the C1-36 concentration is that reported by the vendor.

o C1-36/C1 -

C1-36 -

0

0 C-14 PMC -

The atomic ratio of C1-36 to total C1. The $\pm/-$ uncertainty in C1-36/C1 value is that reported by the vendor.

The activity of carcon-14 relative to the total amount of carcon in the sample is normalized to the analogous ratio in a modern carcon standard (oxalic) acid - corrected to 1950) and is reported as Percent Modern Carcon (PMC). The reported values of PMC for all BWIP samples (source code = 1) have not been corrected for fractionation by use of the measured 5^{12} C of the samples.

Many of the carbon-14 analyses for BWIP samples reported in Early at al. (1985) were corrected for isotopic fractionation effects. As this correction is based upon assumptions that may not be valid for Hanford groundwaters, this practice has been discontinued. Carbon-14 results from non-BWIP sources (source code = 2 to 13) may nave been corrected for isotopic fractionation. Generally, information relative to these corrections is not available in the referenced documents. However, the magnitude of this correction on PMC values is small.

SAMPLE TYPE. CONFINE. ANALYSIS GROUP: RADIO

SAMPI ING LUCATION	SAMPLING EVENT CODE	SATIPI E NUTBER	CL36 ATOMS/LITER	+/- RANGE	(A)	ATOM RATIO	*/- HANGE	{A}	с16РМС Х	+/- RANG:	[A]
BESK	85-255	\$5-255							7.300E+00	1.20000E+00	(1)
8B - 0 F	81-19 81-65 82-27 85-32	81-19 81-65 82-27 82-87 85-32	8.500E+07	2 00000E+U&	; (1)	1.0602-13	2.00000E-15	(1)	2.700E+00 3 100E+00 6.300E+00 2.500E+00 1.700E+00	8:000021-01 8:00000E-1 1:10000E+00 8:00000E-01 1:200005+00	
DH+02	81-13 81-10	81-13 81-10		•		•			1.100E+01 2.200E+00	1.500002+00 6.00000E-01	<pre>{}}</pre>
DB+07	83-413 85-216	83-413 85-216					:		4.300E+00 3.000E+00	1 .50000E+00 1 .40000E+00	·{1}
08-09	83-472	83-472		· · ·			•	•	2.210E+01	2.100002+01	{1}
08-11	85-9 85-15 85-13	85-4 85-15 85-18							2.600E+00 1.800E+00 2.400E+00	1.20000E+00 9.00000E-01 1.50000E+03	$\left\{\begin{array}{c}1\\1\\1\\1\end{array}\right\}$
	HG-52	35-19 86-52 86-53							3.4005+00 4.800E+00.	1.100001.	
10 10 10 11 12	81-25	81-25	•			• .		•	8.2005+00	\$.00000E-C	(1)
DU - 13	80 - 159 80 - 404	80-159 83-404	۰، ۱		۰.				8.200E+00 1.100E+01	1.20000E+00 1.60000E+00	113
08-14	81-162	81-139 81-162	,	<i>.</i>	٠			ł	3.100E+00 3.500E+00	1.000002+0?	[]]
08-15	79-17	79-17							1		
	19-35	79-20		•							
	79-33	79-27	• •								•
	19-15	79-15									
	79-39-	79-38 75-39							00+3008.C	1.100:01-2.	<u>, 1</u>
	19-31	79-8 79-31									
	79-51 79-85	79-5 79-51 79-66	•						· .		
	/9-80 79-62	79 · 80 79 · 62	•			٠		,	5.700E+00	1.60000E+0: 1.70000E+00	33

SEE FND OF THIS REPORT FOR A LISTING OF ANALYSIS METHODS.

FIGURE 14. Radioactive Isotopes Report.

-3E I

SD-BWI-DP-061 Rev. 1

SAMPLE TYPE CONFINED ANALYSIS GROUP, RADIO

SAMPLING LOCATION	SAMPLING EVENT CODE	SAMPLE NUMBER	TREETING UNITS	+/- RANGE (U MICROGRAM/L A)	+/- RANGE	(A)	U234 DPM/L	+/- RANGE	(A)
BI BK	85-255	85-255	5 000E-02	6 00000E-02 (1)					
1013-01	81 - 19 81 - 5 82 - 27	81-19 81-65 82-27 82-87	1 470E+00 2 680E+00 5 400E-01	1 00000E-01 (9 00000E-02 (6 00000E-02 (1) 1) 1) 7 000E-03		(1)			
	85-32	85-32	2 000É-02	8.0000E-02 (11					
DB+02	31-13 81-10	81-13 81-10	7 810E+00 2 900E-01	2 /0000E-01 5.00000E-02	4.200E-02		(1)			
DB-07	83-413 85-216	83-413 85-216	5.000E-02 8.000E-02	8 00000E-02 (1 00000E-01 (1 } 1 }					
DB-09	83-472	83-472	6.800E-01	1 10000E-01 (1 }		•			
DB - 11	85-4 85-15 85-18	85-4 85-15 85-18	1 600£-01 1.300E-01	9 00000E-02 (9 00000E-02 (1) 1)					
	86-52	85-19 86-52 86-53	8 000E - 02 3 000E - 02	1 00000E-01 (8 00000E-02 (1)					
မာ။ - 12	81-25	81-25	1.130E+00	1 00000E-02 1	1) 4.000E-03		(1)	-		
DB=13	80-159 83-404	80-159 80-404	6.000E-02	7.00000E-02 1	1)	•				
D83 - 4 4	81-162	81-139 81-162	2.590E+00	1 30000E-01 (1)					
DB 15	19-17	79-17 79-22	1.080E+01 1.060E+01	2 00000E-01 1 2 00000E-01	1) 4.600E+00	4.00000E-01	(1)	4.400E+00	4.00000E-01	(1)
:	19-32	79-20 79-35	2 600E-01 9 000E-01	4.00000E-02 7.00000E-02	1 1 1.900E-02	2 000005-03	(1)	2.7098-02	2.00000E-03	(1)
	19-33	79-27	1 1005-01	1 400006-02 1	3 300E-02	3.80000E-02	{! }	2 700E-02	2 40000E-02	[1]
	19-15	79-15 79-38	1 200E-01 1 100E-01	5 00000E-02	1 6 900E-02	3 20000E-02	{i}	7.800E-02	2.30000E-02	HI -
	19-39	79-39 79-8	1 0002-01	5.00000E-02	1 4 700E-01 5 500E-01	3 00000E-02 6 00000E-02	$\left\{ \begin{array}{c} 1\\ 1 \end{array} \right\}$	5 300E-01 5 700E-01	3.00000E-02 5.00000E-02	
	79-31	79-31	2 2005.01	5 000006-02 1	2.000E-01	1.00000E-02	(1)	2.000E-01	1.00000E-02	115
	79-51 79-85	79-51 79-66	2 500£-01 1 200£-01	5 00000E-02 6 00000E-02	1.800E-01	1 . 00000E -02	(£)	1.8005-01	1.000008-02	(1)
	79-80 79-62	79-85 79-80 79-62	1 900E-01 1 500E-01	5 00000E-02 6 00000E-02	11 6 900E-01 11 3 600E-01	3.00000E-02 2.00000E-02	$ \left\{\begin{array}{c}1\\1\end{array}\right\} $	5.500E-01 2.700E-02	3.00000E-02 1.00000E-02	1)

SEE END OF THIS REPORT FOR A LISTING OF ANALYSIS METHODS.

FIGURE 14. Continued

PAGE 1.1

SD-8WI-DP-061 Rev.

⊢

.

24. 2 1.2

SD-3WI-DP-061 Rev.

.

SAMPLE TYPE. CONFINED ANALYSIS GROUP: RADIO .

.

SAMPLING LOCATION	SAMPI ING EVEN1 CODE	SAMPI E NUMUER	11238 DPM/L	+/- BANGE (A)	U2307U233 ATOM RATIO	+/- RANGE	U235/U238 Atom Ratio (A)	+/- RANGE
невк	85-255	85-255		•		· · ·		
DB-01	81 - 19 81 - 65 82 - 27 85 - 32	81-19 81-65 82-27 82-87 85-32			1.0302-04		(1) 7.300E-03	(s)
DB-02	81-13 81-10	81-13 81-10			1.2004	7.000008-08	(1) 7.2122-03	7.000002-03 (1)
DU-07	83-413 85-216	83-413 85-216	·	•	•			
06-09	83-472	83-472		х -	•	, , ,	•	
1)11-11	85-4 85-35 85-38	85-4 85-15 85-18			· .	•		
	86-52	88-19 86-52 86-53	, ·			· · · ·		••• ••
-12 	81-25	81-25			8.800E-05	7.000002-08	(1) 7.100E-03	2.000002-04 (1)
08-10	80-159 83-404	80-159 83-404	· · · ·			· · ·		• • • • • • • •
DB-14	81-162	81-139 81-152	•	•				
68-15	79-17	79-11	3 37.5+00	2.70000E-01 (1)	7.0008-03	8.0000006	{2}	
	79-35	79-20	1 4005-00	1 000005-03 (1)	1.01.02.12	1	() •	
	79-33	79-27	2.4015-02	2.70000E-02 11	6 0001-13	6.70000E-05	i (•
	79-15	79-15	5.100E-02	2 JOOODE-02 [1]	1.3403-05	4.500005-05		
	79-39	79-39	3 5765-01	2.00000E-02 [1]	8.3011-25	8.000003-05	<u>;</u> ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	
	/9-31	79-31	1 400 -01	1.00000E-02 11	7.500 0003	8.000 12-05		
	79-51 79-85	79-51 79-66	: 4002-01	1.00000E-02 (1)	7.: ::05-::5	5.000007-05	(1)	
	79-80 79-62	79-85 79-80 79-62	2.7005-01	3 00000E-02 (1) 1 00000E-02 (1)	5,8105+05 5,500E-05	3.0000014 CS 4.0000005-05	<pre>(1) (1)</pre>	
	•	•.	SEE END THE	S REPORT FOR A LTS	TING ST A CALY	SIS MERKODS.		

FIGURE 14. Continued

SD-BHI-DF-061 Rev. 1

Early et al. (1985) reported values for the carbon-14 "age" of groundwaters based upon measurements of PMC. Because of the amoiguity associated with such age estimates they have been eliminated from this update of the data base.

Where reported, the +/- range is the uncertainty (in percent) for PMC given by the wonder.

H-3 - Tritium concentration reported in tritium units
 where:

1 Tu = 3.23 pC1/L

Where reported, the $\tau/-$ range is the uncertainty (in tritium units) of the tritium concentration as reported by the vendor.

- o Total Uranium Uranium concentration in ug/L. Where reported, the $\pm/-$ range is the uncertainty in the total uranium concentration reported by the vendor.
- o Uranium 234 U-234 concentration in DPM/L. Where reported, the +/- range is the uncertainty in the U-234 concentration reported by the vendor.

Uranium 238 - U-238 concentration in OPM/L. Where reported, the +/- range is the uncertainty in the U-238 concentration reported by the vendor.

Uranium 234/238 - The atomic ratio of U-234 to that of U-238 (no units). Where reported, the t/- range is the uncertainty in the U-234/U-238 ratio reported by the vendor.

Uranium 235/238 - The stomic ratio of U-235 to that of U-238 (no units). Where reported, the +/- range is the uncertainty in the U-235/U-238 ratio reported by the vendor.

4.9 Stable Isotopes (pages 315-323)

Figure 13 presents a portion of the stable isotope report. The analysis method is listed at the bottom of each page.

TAMPLE TYPE: CONFINED ANALYSIS GROUP: STABLE

· .

S MPL ING LOCATION	SAMPLING EVENI CODE	SAMPLE NUMBER	619(014) PPT	0 (C 4) PPT	C13 PPT -	-5 1 -5	018 PPT	534 PPT	•"
HFRK	85-255	\$5-255			-11.200	38.000	-17.600		
VB-01	81-19 81-65 82-27 85-32	81-19 81-65 82-27 82-87 85-32			3.400 -18.300 -18.400 -18.200 -18.100	-147.000 -138.000 -141.000 -142.000	-17 500 -17 300 -17 400 -17 400	20.500 17.000 21.500 15.000	
DB-02	79-65 81-13 81-10	79-65 81-13 81-10		•	-16.100 -15.400	- 168,000 - 161,000 - 163,000	-17,000 -15,600 -1,000	2.7.7 8.000	1
DB-04	79-77	79-77				-255.000	-17 020		
011-07	79-89 83-413 85-216	79-89 \$3-413 85-216		•	6.600 7.100	-115.000 -1.7.000 -1.7.000	-13.400 ' -15.700 -17.300	,	· · · · ·
DH -CA	79-28 80-472	79-28 83-472			-12:400	•152.000 -145.000	-17 500		:
1)B-11	85-4 85-15 85-18 86-52	85-4 85-15 85-18 86-52		,	-10.000 -9.900 -9.400 -10.000	-150.000 -150.000 -154.000 -165.000	-18,500 -17,500 -13,800	8.400 7.400 15.800	•
DP 13	91-25	81-25		· ;	-13 600	-1.3.000	-14.800		
19-13	80-159 83-404	80-159 83-404			-13.400		500		
bil-14	81-182	81-139 81-162		• ;	11.300 11 400	-134.000	- 5 400	11.000	
198-12	19-17	79-17 79-22			-13.100	- 200 - 45.000	-17 100	-10.300	
	19-15	79-20			-23 800	-145 000	- 7 600		•
	V9-33	19-13			-15 500	-152 000	-17 800	•	
	/9- <u>1</u> 5	79-15		•	-8 400		7 200	23.700	
	79-39	79-38 79-39 79-8			-8.500 -6.500	-153.000	-17 200	0.6(•
,	79-31	79-31			-3.900	-151.000	-17 200	3.200	

ANALYSIS HETHOD+ HASS SPECTROMETRY

.

FIGURE 15. Stable Isotopes Report.

PAG

1

SD-BWI-OP-061 Per. 1

÷

SD-BHI-DP-061 Rev. 1

C	C-13 (CH ₄) ~	The δ^{13} C (in units of permil) for methane in gas separated from the sample. Dolta- 13 C values are referenced to the Pee Dee Belemnite (PCB). ⁴
0	0(CH ₄) -	The 5D (in units of permil) for methane gas separated from the sample. Delta-D values are referenced to standard mean ocean water (SMCW).
0	C-13 -	The δ^{13} C for inorganic carbon in equeous samples (concentrated by precipitation of $BaCO_3$ from a basified aliquot). It is reported in units of per- mil and referenced to PDB. The analytical uncertainty for δ^{-3} C for inorganic carbon is +/- 0.5 per mil.
o	0 -	The 5D for water samples. It is reported in units of permil and referenced to SMOW. The analytical uncertainty for 5D for water is +/- 2.0 per mil.
a	0-18 -	The S^{18} O for water samples. It is reported in units of permil and referenced to SMOW. The analytical uncertainty for S^{10} O for water is $\pm/-$ 0.2 per mil.
о	5-34 -	The 3^{34} S for sulfate-sulfur in aqueous samples (concentrated by precipitation of BaSO ₄). It is reported in units of permit and referenced to the Canyon Diablo troilite. The analytical uncertainty for 3^{34} S for sulfate sulfur is \pm/\pm 0.5 per mil.
<u> </u>	The celta terminology is	dafined as follows:

 $S(%) = E(R_{sample} - R_{std})/R_{std}] \times 1000 \text{ permit}$

knere:

R = 0/H

= 13_{C/}12_C

= 13_{9/}15₉

= 34_S/32_S

5.0 EVALUATION OF DATA QUALITY

There are three techniques used by the BWIP for assessing the quality of hydrochemical data reported in the Site Hydrochemical Data Base. These are:

o Verification of data transferred into the data base.

o Evaluation of the chemical analyses.

o Evaluation of sample representativeness.

For the purpose of this document the term "verification" refers to all of those techniques by which the accurate recording and transfer (electronically or by hand) of data is confirmed. "Validation" refers to those techniques by which the ability to represent the chemical composition of water from a specific site or stratigraphic zone by a collected sample can be assessed.

5.1 Data Tracespility and Verification

All data presented in the Site Hydrochemical Data Sase have been evaluated with respect to traceapility to original sources. Furthermore, the accuracy of data transfer (verification) has been addressed. A discussion of these topics follows.

5.1.1 <u>Traceability</u>. All data collected by the BWIP solution chemistry laboratory (or its predecessor - Research and Engineering laboratory of Rockwell) and subcontractors to the BWIP are traceable through sample numbers to the appropriate controlled notebooks, numbered internal letters and cata sheets (provided by the vendors). Data conforming to these criteria are denoted by a source code of 1 (see Section 4.1) and are considered to be fully traceable. All other hydrochemical data come from sources external to the BWIP and are traceable only to the reports or documents from which they were extracted (source code = 2 to 18). The BWIP does not assume responsibility for any further level of traceability for these samples.

Early et al. (1985) reported chemical analyses for groundwaters collected from Hanford boreholes for the CASP program between 1975 and 1960 (see Section 3.0). These samples were analyzed by several Hanford laboratories for dajor constituents and by off-site vendors for tritium, carten-14, and stable isotopes. Significant questions as to the traceability and quality of the major constituent analyses currently exist and the BWIP has adopted the position that, at present, it is most prudent to remove the entire analysis for all of these samples from the Site Hydrochemistry Data Base. "Consequently, this revision of the data package contains none of these data. Before the next update of this document the BWIP will thoroughly examine available hydrochemical data for these samples to see if traceability and analytical quality can be confirmed. Analyses will be reinstated to the data base on a case-by-case basis. It is anticipated that most of these analyses will be permanently removed.

SD-EWI-OP-061 Rev. 1

The confirmation of traceability for sample analyses presented in the hydrochemical cata base is an ongoing process. Future updates of this data package will continue to address this concern.

5.1.2 <u>Verification</u>. All data reported in the Site Hydrochemical Data Base have been entered and verified by two clerks. In addition, data from the BWIP solution chemistry laboratory have been checked for correctness by laboratory personnel. Furthermore, special verification checks have been made by a clerk on an ad hoc basis.

Information relative to the sampling event has been supplied by personnel of the Drilling and Testing Group of the Site Department and verified by a clerk. The sampling method information currently is under review and likely contains some errors (i.e., wrong method reported for a sampling event). Furthermore, attempts are being made to provide missing packer depths, and sample dates where possible. These changes will be incorporated in updates to this data package.

Since the Site Hydrochemistry Data Base was first published (Early et al. 1985) significant progress in verification and data security has been accomplished. For example, substantial upgrading of reported results for carbon-14, uranium isotopes, and 3^{13} C (CH₁) has occurred as a result of careful reevaluation of data reported by vendor laboratories. In addition, the verification process for sample analyses now calls for a sequence of checks to insure accuracy and includes a provision for "Tocking" the data entry/update capabilities of the data base such that the ability to make changes are restricted to authorized individuals.

5.2 Evaluation of the Chemical Analyses

There are a variety of test strategies that can be applied to the hydrochemical analyses to check them for internal consistency. These include the following:

- o Examination of the charge balance for each sample
- o Examination of total cations vs. specific conductance
- o Examination of total anions vs. specific conductance
- o Comparison of duplicate analyses
- o Analysis of lab control samples
- o Participation in interlaboratory analysis programs

5.2.1 <u>Charge Balance</u>: The charge balance, as defined in section 4.5 is a neasure of how closely the analyzed water sample achieves electrical neutrality. Because it <u>must</u> be neutral, any deviation is a reflection of uncertainties in major ionic species of the analyses and, possibly, may indicate that one or more species of importance either is in error or was not determined. Canceling errors and large analytical errors for trace elements will not be detected by this type of evaluation.

Figure 16 is a presentation of charge balance results, is histogram form for 11 samples from the data base with appropriate analytical information. Of the approximately 700 analyses presented in Figure 18 nearly 60 percent are within t/-2 percent of a perfect charge balance and approximately 85 percent are within t/-5 percent of neutrality. Many sources of information on the analytical aspects of water quality address the question of charge balance and suggest appropriate limits of acceptability for analyses (Skougstad et al., Freeze and Cherry, 1979; APMA, 1978; ASTM, 1980; Anderson, 1975; Hem, 1970). Most of those discussions recognize the need for a sliding scale with more restrictive criteria for samples with large concentrations of dissolved ionic species. However, the specific criteria chosen differ among the sources.

The BWIP tentatively has adopted a maximum allowable deviation of +/- 5 purcent as a criterion to screen all analyses. This standard is consistent with that which the BWIP uses charge balance as only one of many indicators of sample quality. Table 1 dentifier those samples which exceed this criterion. In addition Table 1 reports the recults of other data quality evaluations as discussed below.

5.2.2 Total Cations and Total Anions vs. Specific Conductance: While the observed charge balance deviation for a sample may be small, a chemical analysis way be sectors in addition. for those samples with correcting in the field and aboratory. In addition, for those samples with correcting balances if may not the obviou: what component(s) is in error. In both cases, an analysis of the late cations and total anions relative to specific conductance may be helpful discriminators.

AFHA (1978) recognizes that a close functional relationship exists between specific conductance and total dissolved solids. Summers et al. (1978) applied this technique for evaluating groundwaters from the Fasco Basin. By separating the total dissolved solids into total cations and total anions, examining the covariance of each with respect to specific conductance, and comparing these results to those samples with poor charge balance identified above, it should be possible to identify if the poor balance results from an error in the anion or cation analyses. Alternatively, badly contaminated samples with an acceptable charge balance may standout from the overall population of water samples and be identified as anomolous. Finally, poor determinations of specific conduct te may be recognized by this type of evaluation.

• • • •

Figure 17 presents graphs of specific conductance vs. total cations and total amions for all waters from the Haniord Site with appropriate analytical data. The central line results from linear regression of data with a charge balance within +/- 5 percent of neutrality and a specific conductance less than 2000 microsiemens/cm (to avoid inclusion of outliers) and the two boundary lines represent a 95 percent confidence limit uncertainty band.

FIGURE 16. Histogram of Charge Balance Data for Hydrochemical Samples from Springs, Surface Maters, and Groundwaters on the Hanford Site. Twenty-Six Analyses Lie Outside the Limits of the Figure.

ដ

	. TABLE 1.	Summary I	istin	y of F	oten	lial	l)y /	Anom	alou	is Ai	na lys	523	for Hyd	rochen	nical	Sampl	es			PAGE	1
1 DCA 1 IUN	SAMPLE EVENT NUMBER	SAMPLE NUMBER	CB	C A	SC	11 NA	DUPI. K	ICAT Ca	e coi Hg	MPAR Cl.	ISONS F	s 504	1SAN NA X	ME ZONE CA P	/SIJE 1G SI	COMPA CL	KISONS F SO	1 4 FA	T	Tes . 2	<u>,</u>
D8-02	81-13	81-13																	x		
DB-00	79-28	CP115															X	ζ			
DU-14	81-162	81-139 81-162					X X										• .				
DB-15	79-15	79-15								X											
	79-62	79-62					X			^	•										
	79-90	79-90					Ŷ										•				
	80-35	80-35					X			X									•		
	79-51	79-51	×							Ŷ	x	X									
	79-85	79-74	X					•		X	X	N.			٠					ð	
	79-80	79-80	x				X					A								7	
	79-17	79-99 79-17 79-22 79-4	X X			x x	x x					 . X							X X		
0C-01	SI 1E - 238 SI 1E - 242 SI 1E - 242 SI 1E - 236 SI 1E - 237 SI 1E - 231 SI 1E - 235	SITE-238 SITE-242 SITE-246 SITE-236 SITE-237 SITE-230 STTE-231 SITE-235	:		x		× . -		• •	,						ŗ			X X X X X		
DC-02-A2	SI IE-213 80-4	S116-213 80-25 80-4	X			x X	X X	X X	X X		x								x		
ÐG-03	80 - 27	80-27 80-81	x					X X		X X	X X	à									•
Ď::- 05	19-30	/9-30 79-32	л Х	X X							X X										
DC-0E	80-13	80-13 80-58 80-186 80-191	X X		x																
	80-29 79-58	80-29 80-37 79-57			 х						ж Х						• .				
.33- CHARGE H	ALANCE C- CA	110NS A=	ANTONS	SC=	SPEC	11 IC	Con	DUCT	1711	Y .	FA≖ ª		D ALKALI	NI)7	74 73	RITIUM	100=	TOTA	L ORG	ANII LA	.3B

DCALLOR	EVENT NUMBER	SAMPLE NUHBER	CB	c.	Α.	sc	1 ·· - L - NA 	NDP1.1 K	CATE (CA MO	COMPAND CL	F	S1 1/ SU4 NA	SAME A K 	CA	NG	IE C SI	CL	ARIS F	504	FA	1	TOC2
- Ü Ü	19-28 10-118	79-58 80-118				X				3	x											
	19 29	79-59 79-97				^	X			^	^											
	511E-214 80-238	STIE-214 80-201	X	X X			^								X X							
	80-15	80-15 80-70	X X		X X					X X	X X					•	х	x				
- 07	80-103	80-103 90-163	¥					X	X	X	X										х	
	80-183	80-178	~				-	Ŷ	^	n	n			X						X		
	80-195	80-177 30-196				X X		K	X. X	X X	X X	XX	•	Ŷ						X X		
	80-11	80-11 80-19														•	X	X X.	X X			
	80-38	80-39 80-98									X X	X					X X	X X	x X			
	82 - 10 82 - 23	82-10 82-23										•									X X	X X
-12	80-209	80-209 80-242								X	X							•				
	80-233	80-233						X X		~	n											
	80-32 80-82	80-68 80-23	X	Х							х	,										
	80-234	80-82 80-208									X	х										
	80-100	80-234 80-100						х				х									X	
	80-114	60-83 99-143						X		X	ò											
	80-59	80-114								X	X	۰.				X						
• • •	84-99	80-83								X		x										
	80-88	80-99 80-36						х		Â		X										
	81-20	80-89 81-20	х					ÿ		x		X							•			
	80-3	81-22 80-3	X				•		х													
	80-155	80-34 80-155						х	х		•											
	80-104	80-185 80-104					x	X X										İ	,			

3D-3WI-0P-061 Rev.

	contante est						1	ABI E	1 [con	Linue	d)								•				•		
LOCATION	EVLNT NUMBER	SAMPI E NUMBER	cu	C	A	sc	1 NA	DUPL K	ICAT CA	E C MG	OMPAR CL	ISON F	s04	I NA	- SAME K	Z0 CA	NE/S MG	ITE SI	COMP CL	47.75 F	ONS- SO4	FA	ĩ	100	22	
DC • 14	80-104 80-129	80-125 80-115 80-129		,			X	x					Ň							,						
	80-117	\$0-123 \$0-117 \$0-151	X X										•													
	83-261 80-213	83-261 80-213	X													_									Ŷ	
	81-30 80-189	81-18 80-12/ 80-189	n					X				•				•							х			
	80-47	80-47 80-85 80-157						Ŷ	X		x															
00-15	30-57	80-183 80-57					¥	¥			Ŷ								•							
	80-135 ·	80-65 80-135 80-149				x	Ŷ	ŶX			Ŷ															20-0
	80-131 80-131	80-139 80-108 80-131					X																X			# F - U
.] 9 - 4	80-193 81-33	80-114 50-193 81-72	X				x	X X X														•				-06
-	81-69	31-33 81-37 81-54				x	X	X															X			r ze
	81-96 22-94	81-85 81-95 82-94									X X													х		י די
	81-41 81-2	21-24 81-41 81-2	X X	.1		Х																				
	80-176	81-36 80-130 80-176	X							•	X	X													•	
	81-64	80-299 81-54 81-80				X X					Х	Х												7		
DC-15A	82-124	82-135 82-139																							N N	
	82-202 82-231	82-202 82-228 82-214A				. X														•				X	_	
	· · ·	82-279A 82-279B																							:	

CU- CHARGE BALANCE C= CATIONS AF ANIONS SC- SPECIFIC CONDUCTIVITY FA- SUELD ALKALINLTY 74 TRITION TOD- TOTAL ORGANIL WARBON 1.1

.

•

.

1

PA3. 3

LUCATION	SAMPLE EVENT NUMBER	SAMPLE NUHBER	CB	C	A	sc	1 NA	DUPL K	ICA CA	TE CO MG	OMPAR CL	ISON:	51 504	1 NA	-SAME	CA CA	IE/SI MG	ITE S1	COMP. CL	ARIS	DNS- SO4	EA	1	100	02	
DC 16A	82-332 82-188	82-332 82-140	X																						Š	
	82-19 81-109	82-198 81-109					X		X															х	x	
	83-29	81-167 83-20 83-29					X		X															х	ХÌ	,
	82-430	82-430																						X		
00-190	84 53	84-53																							x	
DC-20GR	86-141	86-141 86-142					•						X X													
ENYLARI	84-166	84-166								·															х	
FORD	SI1E-219 85-303	SITE-219 85-303 85-304	X					X X	, X X						ı		X	•								
HCGEE	83-513 STIE-225 80-64	83-513 SIIE-225 80-64						x						x		X		x					x			
4	81-54	80-88 81-54 81-56						X		X X												•				
KR1 = 02	82-401	52-401 82-414																						х	x	
	82-170 82-65	82-170 82-65 82-75										X											x	x		
	82-309	82-309										^												х		
SP-BENNETT	SI1E-218 79-13	511E-218 79-13	х																x		X					
21. DENZON	511E-217	STTE-217	х																						•	
SP-BUILER	19-1	79-1 79-50									X X															
SP~JUH1PER	5116-215 79-2	S11E-215 79~2 79-43	x				•			Ŷ			٠				X				X					
	81-115	81-115								X											X					
	80-372	83-305 83-372	х			٠			X X												' Ж					

TABLE 1 (continued)

PAGE 4

• *

SD-8WI-DP-061 Rev.

مہو

;

.

CB- CHARGE BALANCE C+ CATIONS A- ANIONS SC+ SPECIFIC CONDUCTIVITY FA+ FIELD ALKALINITY T+ TRITIUM TCC+ TOTAL ORGANIC CARBON

٠

.

	SAMPLE						14	AULE	1 [4	conti	Inver	a 1												
LOCA LEON	EVENT	SAMPLE NUMBER	св	С	A	sc	11 NA	DUPLIC K C	CATI CA	e com Mg	IPAR I CL	ISONS1 F SO4	1 NA	- Sam K	E ZD CA	ne/s Mg	ITE (SI ;	COMPAR	SONS-	1 Fa	т	TOC	02	
SP-10-SHIVELY	79-34	79-19 79-34	X				XX		X X	XX	x X		x		• • •				X					
SP-LOZIER	/9~6 83-316	79-44 79-6 83-316 83-343									•	X							X X X X					
SP-MAIDEN	79-100	79-67 79-96										2							•					
SP-OUSERVÀ LORY	81-119 84-392	81-119 81-157 84-310 84-392					X X X X																	
SP-RATEROAD	79-76	79-76, 79-81	. X		X		X X		X X								•							S
SP-RAITIESNAKE	SITE-218 79-88	SITE-216 79-87 79-88	X					•	X X			; X	x		X	X				X.				0-841-
SP-SHIVELY	79-49	79-37 79-49										X								•				-OPC
SP-SINTUR 5	79-29 83-409	79-29 79-38 83-409 83-442	X X																х х х х				·)61 Rev
SP-UNNAHED-02	79-75	79-75	X																					, 1-4
5P - DHNAHI D - 16	79-73	79-73 79-82	• • •									X X												
SP-MUNAMED-26	79-98	79-54 79-98	•					X X																
SP-UNNAHED-29	79-16	79-16 79-24	• • •								X X	. X X												
SP-YK5-08	85-336 86-147	85-330 85-337 86-147 86-148													•	XXXX	•	X X X X	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX					•
s 12 m- 1	85-297	85-297 85-298	•			•		X X	X X	•														

...

· · · · ·

•

1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -

UB- CUANGE BALANCE C+ CATIONS A+ ANIONS SC- SPECIFIC CONDUCTIVITY FA+ FILED ALKALINITY T+ TRITIUM TOC+ TOTAL ORGANIC LARGON · · ·

•

PAGE 5

•

	SAMPLE EVENT	SAMPLE					i	ояыт		- COM	1PAR I	SONS	+	1	SAM	20	NE 75	HE	COMP	ANIS	ONS-	1			
LUCATION	NUMBER	NUMBER	СВ	<u>с</u>	Α	SC	ĤА	h	CA	MG	CL	F	SU4	NA	ĸ	CĂ	MĠ	\$1	CL	f	S04	FA	I	100	02
123-108-03	S11E-72	S11E-72	х																						
199-1104-03	511E-91	SITE-81				Х																			
10a-K-1 a	S11E-83	SITE-83	x																						
199-1-12	STIE-42	S11E-42	Х																						
299-518-01	STE-161	\$17E-161	X													Х						х	Х		
299-£26-08	SITE - 167 SITE - 168 SITE - 165	S11E-167 S1TE-168 S1TE-165	х X		x	x															х				
299-£33-12	STIE-170 STIE-171 STIE-172 STIE-169	SIIE-170 SIIE-171 SITE-172 SIIE-169	X X X X		х х х																	х	X X X		
699-506-L04D	5112-11	SI7E-11	х																						
899-511-E12A	80-51	80-61																	x						
699-14-38	\$178-\$\$	S17E-86	х						•																
naa 11-02	STIE-151 STIE-18	SINE-151 SINE-18																X X							
ม ม.ศ. 1. ศ. ค.ศ.	85-278	35-278 85-279											X X												
699-27-0¥	S111-50 STIE-76 SIIE-87	SITE-50 SITE-76 SITE-87	X X X			÷																			
699-91-01	SI (E - 59	STIE-69	X														1								
∂99~32×22	S118-51 S118-55 S118-89	S11E-51 S11E-65 S11E-89	X X																X						•
o99-32-70B	SITE-70	SITE-70	x																						
699-33-42	S11E-12 S11E-67 S11E-91	SITE - 12 SITE - 67 SITE - 91	X X		Х												·		X X		я				
£99-32-69	SI1E-104	SEIE-104												x							,				
699-35 66	\$111-77	STIE-77	х																		1				

.

TABLE'1 (continued)

1

9.4GE **9**

.

۰.

.

.

TABLE 1 (continued)

LŪCA LION	SAMPLE EVENT NUMBER	SAMPI E NUMBER	CU	С	A	SC	11 NA	DUPL. K	ICAI CA	E CU MG	HPAR CL	ISUNS F	<u>}</u> . S04	1 NA	SAMS	201 CA	ie/s Mg	I TE SI	COMP. CL	ARIS F	ONS- 504	FA	T	100	02	
699 - 37 - 43	SITE-173 SITE-34	SI [E - 173' SI IE - 34				Χ,						,				X X	X X	X	X X		XX					
699-37-82A	STTE-105	SITE-105	x																							
699-40-01	SITE-10 SITE-108	SITE-10 SITE-106												x					х							
899-42-40C	SI1E-176 SI1E-177 SI1C-178 SI1E-180	SITE-176 SITE-177 SITE-178 SITE-180	X X X		x											r.		•	•		x		X X X			
699-45-42	\$11E-57	SI1E-57	х																							
699-46-05	S11E-156 S11E-256	S]1E-156 SITE-256	X				•		•					•			X	•								
699-46-21A	SITE-75	SITE-75	x												•							•				Ċ
699-47-50	SITE - 181 SITE - 205	SITE-181 SITE-205																					X X			
699-48-71	S11E-59	SITE-59	х																		•	•				1
699-49-55 In CA	SIIL-126 SIIF-157 SIIE-39 SIIE-58 SIIE-78 SIIE-9	SI1E-126 SIVE-157 SIVE-33 SIVE-58 SIVE-78 SIVE-78 SIVE-0													ĸ		X X X X	X X			x	Х Х		•		
599-49-55A	STIE-182	5178-182				X						•					:		•							1
699-49-558	SITE-183 SITE-184 SITE-185	SITE-183 SITE-184 SITE-185	X X																X							
699-50-42	S11E-125 STIE-14 STIE-271	SITE-115 SITE-14 SITE-271														X	א X	X X	x			X X			•	
899-50-45	SI1E-186 SI1E-203	S112-186 S11E-203	x	X			•									i, x				٠						
699-50-48	STTE-187 STTE-204	SITE-187 SITE-204	¥.	а																	X		x			
599 51-46	S11E-188	S17E-188	X																							

OD- CHARGE BALANCE C- CATIONS A- ANIONS SCH SPECIFIC CONDUCTIVITY FILE CELD ALMALIGETY T= TRITIUS TOC= TOTAL OSUMAL ARBON . .

, ,, ,, , , ίų, . .. • . . ٠ .

I.

7

PAGE

SD-BWI-DP-061 Rev

.

TABLE 1 (continued)

LUCATION	SAMPLE EVENT NUMBER	SAMPLE NUHBER	св	G	A	SC	11 NA	DUPI K	ICAT CA	E CO MG	MPAR: CL	ISONS	1 S04	1 NA	- SAME K	Z01 CA	ie/si Mg		COMPA CL	RISO F	NS 504	I FA	1	100	02
699-52-46A	STIE-189	STIE-189	x																						
578-25-4R	STIE-190 STIE-199	SITE-190 SITE-198	x	X												X X						`			
699-54-57	5116-192	S1TE-192	X																						
698-55-586	5111-128 SI (E-193	SIJE-128 SIJE-193	X X													x		x				X			
699-55-76	511E-117 511E-129 511E-71	SITE-117 SITE-129 SITE-71												x							x	X			
689-58-53	STTE-198 STTE-197	SITE-196 SITE-197	X X							•															
699-29-28	SI1E-107	SITE-107	х						•									•							
099 03-90 0	STTE - 130 STTE - 74	SI7E-133 SI1E-74	х																X X						
699-72-73	SIIL-109	ST1E-109	х																					,	
t- 01																						•			

SD-8WI-DP-061 Rev.

.....

TOC+ TOTAL ORGANIC CARBON

T= TRITIUM

ч. .

PAGE 3

CB- CHANGE BALANCE C- CATIONS A- ANTONS SC- SPECIFIC CONDUCTIVITY FA- FIELD ALKALINITY

SD-BWI-DP-061 Rev. 1

FIGURE 17. Total Cations and Total Anions vs. Specific Conductance for Hydrochemical Samples from Springs, Surface Waters, and Groundwaters on the Hanford Site. Samples 80-135 and Site-81 Lie Outside the Limits of the Figures.

: 17 Table 1 identifies those samples that lie significantly off the trands (i.e., outside of the 95 percent confidence limit uncertainty band). When coupled with charge balance information it becomes clear that for some samples the source of a poor charge balance can be identified as resulting from either inaccurate cation or anion analyses while the others are suggestive of contamination, erronecus conductivity measurement, or both. Furthermore, when the analyses are viewed within the context of their nearest neighbors in a borehole (see section 5.3.2) it may be possible to identify the specific cation or anion that is anomalous. Early et al. (1985) attempted to make this type of evaluation. However, in Table 1 of this document such specific information has been excluded pending implementation of procedures for objectively evaluating the anomalies. Future updates to this data package will address this question further.

5.2.3 <u>Comparison of Duplicata Analyses</u>: Nearly all analyses for a specific sampling event performed by the BKIP solution chemistry laboratory since 1980 nave been done as duplicates. Figure 18 presents histogram comparisons of these duplicates for the major cations and anions. Only ICP-AES data for cations and ion chromatography data for anions are used for these comparisons. Where triplicate analyses exist, the comparison is based on the maximum and minimum concentration values reported for the sampling event.

The deviations are computed as follows:

Deviation (percent) = $\frac{M_1 - M_2}{(M_1 + M_2)/2}$

× 100%

where: $M_1 = concentration of M in the 1st duplicate <math>M_2^2 = concentration of M in the 2nd duplicate$

This equation is a slight modification of that used in Early et al. (1985) but is preferred because the absolute value of the calculated deviation does not depend upon which analysis is taken as M_1 or M_{2^4} . It is the absolute value of the caviations that are presented in Figure 13.

The analytical uncertainties of instruments used in an analysis are closely related to the observed deviations for duplicates. Nest et al. (1983) report that for dations (analyzed by ICP-AES) a relative precision of 1-3 percent is observed. For anions (analyzed by ion chromatography) the relative precision is less than 1 percent. In general, these results are based upon repetitive analysis of samples under optimum instrument and laboratory conditions. An estimate of relative precision that is more applicable to routine analytical conditions probably is on the order of 3-5 percent. For the purpose of this document a criterion of $\pm/-5$ percent is acopted.

SD-BKI-DP-OE1 Rev. 1

4

,T2

FIGURE 18. Histograms Showing Comparison of Duplicate Analyses for Major Cations and Anions in Hydrochemical Samples from Springs, Surface Waters, and Confined Aduifers for the Hanford Site. Several Analyses Lie Gutsice the Limits of the Figure. Figures Above Bars Represent the Number of Occurrences Within the Concentration Ranges Shown.

SD-BWI-DP-061 Rev. 1

Table 1 presents results of these comparisons for those samples with a deviation greater than +/- 5 percent for the major cations and anions. Alkalinity, a major, possible source of error is omitted from this evaluation. While it is measured on both duplicate samples only a mean value is reported by the BWIR solution chemistry laboratory. However, errors in alkalinity may be detected in the total anion vs. specific conductance analysis described above. In recognition of the fact that analytical uncertainties increase with decreasing concentrations, the comparison of duplicate analyses described above 4s performed only when concentrations exceed 5 mg/L.

In addition to the major inorganic components, a comparison of auplicates for all analytical data is possible in principle. While few duplicate analyses exist for dissolved gases and stable and radioactive isotopes, trace elements could be evaluated in this manner. Future updates of this data package will extend the evaluation of duplicate analyses to these additional components.

5.2.4 <u>Laboratory Control Samples</u>. In general, inclusion of one or more lacoratory control samples with a batch of water samples sent to a vendor for analysis represents an appropriate check on the laboratory. While this procedure could be applied to most of the analytical needs of the BWIP it has been used only with the 50 and 5^{10} 0 analyses.

Table 2 is a listing of the 6D and δ^{10} D analyses of a laboratory control sample sent to the vendor and reported on the dates noted. The results suggest a gradual trend toward enrichment of the samples in the neavy isotopes of both hydrogen and exygen from 1981 to 1985. Based upon extensive review of analytical procedures and the results obtained on internationally recognized isotopic standards during this time period the vendor has concluded (and the BWIP concurs) that observed fractionation effects probably represent a problem in long-term storage of the laboratory control samples. Since October 1985 new laboratory control samples nave been prepared on a six-month cycle to avoid this problem.

5.2.5 Interlaporatory Analyses: The solution chemistry laboratory of the BWIP has participated in the United States Geological Survey Analytical Evaluation Program for Standard Reference Mater Samples (USGS-AEPSRWS) since 1982. Reference water samples are analyzed semi-annually by nearly one hundred laboratories nationwide. This program is a valuable aid to a laboratory in assessing the quality of its analytical capabilities. A discussion of the results for the BWIP solution chemistry laboratory covering the early stages of participation in this program is presented in Mest et al. (1983).

Table 3 presents a comparison of results of the 3WIP solution chemistry laboratory relative to those of all participants in the interlaboratory analysis program for the major chemical parameters important in Hanford groundwaters. Approximately 30 percent of the 3WIP results lie within π/π ld of the mean and nearly 35 percent are within π/π 2d.

SD-BWI-DP-061 Rev. 1

· .

TABLE 2. MAB CONTROL SAMPLE ANALYSES MAN SE UND SIP.

DATE REPORTED	SAMPLE NUMBER	LAB CONTROL ^a	<u>6D (permil)</u>	<u>6180 (permil)</u>
12/23/81	82-59	- 1	-124	-17.4
03/23/82	82-18	1	-137	-17.6
05/14/82	72-82	1	135	-17.5
05/29/82	82-128	1	-137	-17.5
06/22/82	82-171	1	- 138	-17.2
12/30/82	83-192	. 1	-138	-18.2
02/24/83	83-186	1	-133	-17.7
06/15/83	53-346	$\mathbf{I}^{(n)} = \mathbf{I}^{(n)}$	135/-134	-17.7
12/28/83	84-66	1	- 136	-16.9
94/06/84	84-155	- 1	-130	-16.7
06/26/84	84-248	1	-131	-15.8
09/20/84	84-321	-1	- 128	16.9
05/10/85	85-209	1	-130/-128	-17.0
07/31/85	85-259	· 1 ·	-125	-17.1
10/17/85	85-332	1	-129/-127	-17:1
10/17/85	85-342	2	-128	-17.2
10/17/85	85-355	2 .	-130	-17.0
12/04/85	86-75	2	-132/-1320	-17.5

a Lab control series 1 corresponds to a set of sample bottles containing Columbia River water prepared in 1981. Series 2 represents a new set of sample bottles containing Columbia River water prepared in October 1985.

5 3D values from a rerun analysis of sample 86-76 reported on 3/18/86.

515

.

TABLE 3. COMPARISON OF BWIP SOLUTION CHEMISTRY LABORATORY RESULTS WITH THOSE OF OTHER LABORATORIES: USGS ANALYTICAL EVALUATION PROGRAM

	Fall 1982
	Constituent Mean slo ⁰ 3W12
•	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Soring 1983	<u>Fall 1993</u>
<u>Constituent Mean Els^b BWIP</u>	Constituent Mean =100 3W12
$41ka1inity(mg/LF150.2)$ 55.2 156 $C1 (mg/L)$ 36.2 51.3 30 $C1 (mg/L)$ 49.7 52.1 50 $F (mg/L)$ 1.01 50.10 0.3 $C (mg/L)$ 4.36 50.33 4.4 $Mg (mg/L)$ 51.7 53.2 55 $Ma (mg/L)$ 73.2 53 $S10_2 (mg/L)$ 7.59 ± 1.20 7.7 $50_4 (mg/L)$ 346.1 ± 22.1 320	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
oH 3.09 =0.17 7.3 So. Cond. (⊻S) 1098 ±59 1110	orf 3.13 ±0.20 3.2 So. Cond. (45) 359 ±47.3 375
Sorthe 1984	<u>7311 1984</u>
Constituent Mean almo BWIP	Constituent Yean =100 BW12
Alkalinity(mg/LF200.6 ±6.4 199 Callinity(mg/LF200.6 ±6.4 199 Callinity(mg/LF200.6 ±6.4 199 Callinity(mg/L) Callinity(mg/L) State Callinity(mg/L) State Callinity(mg/L) Callinity(mg/L) State Callinity(mg/L) Callinity(mg/L) State Callinity(mg/L) State Callinity(mg/L) Callinity(mg/L)	1kalinnity (mg/L)* 3.2 =3.0 1 Ca (mg/L) 25.3 =2.4 28 C1 (mg/L) 4.24 =0.39 3.3 F (mg/L) 0.44 =0.39 3.3 F (mg/L) 0.14 =0.39 3.3 Vg (mg/L) 10.36 =0.39 11.0 Na (mg/L) 10.36 =0.39 11.0 Na (mg/L) 13.2 =2.0 14 S04 (mg/L) 12.9 =10 120 CH 5.53 =0.23 5.5
<u>Ser-ne 1985</u>	F377 1985
<u>Constituent Mean siz³ 3412</u>	loostituent "gan its" BW19
11kai*ntty(mg, LF 142.5 14.3 133 1a (mg/L) 52.5 52.5 58 11 (mg/L) 1 1 1 2 (mg/L) 3.72 10.59 3.3 2 (mg/L) 3.72 10.59 3.3 2 (mg/L) 27.9 11.5 30 3 (mg/L) 27.9 11.5 30 3 (mg/L) 55.2 13.3 70 3 (32 (mg/L)) 55.1 1.42 3.3 3 (32 (mg/L)) 210.3 12.9 120 2 (mg/L) 3.32 20.15 3.2	1)kalimity:mg/L;027.16 \$4.65 25.2 Ca (mg/L) 11.42 \$3.90 11.3 C1 (mg/L) 2.39 \$0.70 2.7 F (mg/L) 3.49 \$0.053 3.48 K (mg/L) 1.14 \$0.13 1.2 Mg (mg/L) 1.14 \$0.13 1.2 Mg (mg/L) 1.14 \$0.13 1.2 Mg (mg/L) 1.35 \$0.37 3.1 Ma (mg/L) 1.64 \$0.47 4.3 S102 mg/L 1.3 \$1.2 1.5 S04 mg/L 19.5 \$0.37 19 Sn 19.5 \$0.3 12 15 S0 mg/L 19.5 \$0.3 19 Sn 100 111.2 \$5.5 100

No papa provided by SWLP Solution Chemistry Laboratory
 Mean values are the average of reconted results from canticipating (appratories, The up values are pased on treas analyses;
 Alkalimity is in units of revulas SaDD;

5.3 Evaluation of Sample Representativeness

Although the checks on the quality of the chemical analyses described above are important, evaluation of the representativeness for each sample is crucial before interpretations based upon the data are considered reliable. For precipitation and stream samples seasonal variability is a virtual certainty and must be addressed accordingly. Likewise, the composition of spring samples may be seasonally dependent. In order to address this possibility, the BWIP implemented a quarterly spring sampling program for selected springs approximately one year ago.

For groundwater samples there are special problems related to drilling and . sampling that complicate attempts at obtaining representative samples. For example, most Hanford boreholes have been drilled with bentonite-based fluids frequently containing additives such as soda ash, causticized lignite and organic polymers (Halko, 1985). Estimates of the amount of fluid lost to each zone and the amount of mater recovered prior to sampling are made during drilling and testing. These estimates are included in the borehole completion reports (e.g., see Diediker, 1983; and Wintczak, 1984). However, a record of fluid composition rarely is available.

While detailed reconstruction of potential contamination effects occurring in most Hanlord Morenoles is not possible, Graham et al. (1985) report results for a well-documented test in borehole DC-14 that illustrates the chemical effects of drilling fluid and borehole development on water chemistry. In addition, the current hydrochemistry borehole sampling program now includes detailed evaluation of drilling fluid composition and the time-dependent chemistry of groundwater recovered during the development phase of a sampled zone. Future updates to this data package will include groundwater samples that have been collected by this more rigorous program and it should be easier to assess their representativeness.

A further question of sample representativeness is related to changes in the sample (resulting from chemical reactions) that occur during decompression as groundwater is prought to the surface prior to collection. For example, field collection personnel report that degassing sometimes occurs and unstable (i.a., gradually rising) pH values are observed when field measurements are made on groundwaters from the Saddle Mountains Formation.

All perspectives of the question of sample representativeness cannot be accressed in this document. However, there are a number of tests that, when applied to the analyses, may provide an astimate of the overall consistency of the hydrochemical data. These are:

o comparison of multiple analyses from the same borehole and producing zone or spring.

comparison of all analyses from a single corenole as a function of cepth.

- evaluation of tritium contamination in groundwater.
- o evaluation of organic carbon contamination in groundwater.
- evaluation of contamination of dissolved gases.

5.3.1 Analysas from Same Samoling Sita: In many instances more than one sample has been taken over a period of years from the same producing zone of a borehole. Occasionally, these samples have been analyzed by different laboratories. Appendix 3 presents a comparison of all multiple sample analyses from borenoles in the Site Hydrochemical Data Base. Several significant deviations of major chemical constituents result from the intercomparisons. There are no clear guidelines for identifying anomalous analyses by this technique. For the present, elemental analyses for one sample differing by more than approximately 25 percent (arbitrarily chosen) from the median value of the analyses are highlighted unless the concentrations are below 10 mo/L. These anomalies are recorded in Table 1. While one cannot dismiss the possibility of temporal changes in groundwater chemistry, to a first approximation it is assumed that these effects are small. However, this problem is potentially serious for groundwaters from a large part of the unconfined aquifer at Hanford where changes in water chemistry may reflect changes in waste disposal over the past 40 years. This possible problem has not been addressed in the current evaluation.

Spring sample analyses might be anticipated to be more variable than groundwater analyses due to the potential for evaporation effects and contamination of spring bools by surficial processes. Appendix 3 presents comparisons of multiple sampling events for springs. The internal consistency of most analyses suggests that the comparison is valid. Anomalous analyses are noted in Table 1.

The current comparison is limited to the major chemical parameters although it could be extended to all constituents (trace elements, dissolved gases and stable and radioactive (sotopes). Future revisions to this data package may consider these additional components.

Analyses by atomic adsorption spectrophotometry (A1, Mg, Mn) and nigh performance liquid chromatography (Br) have not been included in this evaluation.

5.3.2 <u>Continuity of Compositional Depth Profiles</u>. Another test that may aboly as a validation tool for borehole data is useful for those sites where a sufficient quantity of data as a function of depth exists. This test is based on the observation that compositional depth profiles for Hanford boreholes (from data presented in this data package) do not appear to exhibit random variation of major chemical parameters. While compositional discontinuities may exist, the overall pattern is quite regular. This observation suggests that random compositional fluctuations, potentially indicating non-representative analyses, can be identified by statistical means.

The potential value of this technique is that it encompasses the following factors associated with a sampling event:

o corehole development (i.e., criling fluid contamination).

- o sampling techniques.
- o uncertainties in chemical analyses.

In addition, nowever, any inherent depth-related compositional variability is addressed by this analysis.

In principle, this technique can be caplied to 10-15 he choles on the Hanfold Site and used to evaluate most major and trace indiganic and isolopic species. However, this type of analysis has not yet been attempted systematically.

5.3.3 <u>Tritium Contamination</u>. Tritium (H-3) is formed in the earth's upper atmosphere, incorporated into the water molecule, precipitated and becomes associated with the groundwater system through infiltration. Because of its short half-life (12.3 years) groundwater that has been is plated from the atmosphere for greater than approximately 100 years should be free of tritium. However, Davis (1981) acknowledges that a small amount of tritium (U.1 to 1.0 Tu) can be produced in situ in groundwater due to nuclear reactions involving the decay of natural uranium and thorium.

During the drilling of most boreholes at Hanford, drilling fluid made up with Columbia River water has been used. The current natural tritium content of the river water is approximately 25 to 30 Tu (see analyses in the fite Hydrochemical Data Base). LaSala and Doty (1971) report that in 1969 the tritium content of the Columbia River was from 300 to 600 Tu and that the drilling fluid used in borehole ARC-DC-1 contained 418 Tu. Therefore, tritium from the Columbia River is a useful tracer for identifying borehole contamination associated with drilling.

The results of saveral studies contained by the BWII suggest that the triblar content of Hanford groundwaters can be used as an indicator of contamination by drilling fluid. However, the specific, quantitative criterion used for identifying contamination must be matched to the type of data evaluation being done (Graham, 1984 and Graham et al., 1985). For example, Gifford et al. (1985) excluded groundwater samples with more than 0.5 Tu from a chlorine-36 study out of concern for the effect of contamination on this sensitive parameter. Graham (1984) and Graham et al. (1985) suggest that groundwaters with less than 1 Tu are sufficiently free of contamination to yield representative hydrochemical cata for major inorganic constituents and stable isotopes.

Based on the measured tritium concentrations of drilling fluid make-up water from the Columbia River (300-600 Tu, 1969; 25-30 Tu, 1986) five percent contamination of groundwater (similar to the overall analytical uncertainty for major cations and anions) leads to expected tritium levels of 15-30 Tu (1969) and approximately 1.5 Tu (1986) in collected samples. Early et al. (1985) chose a bounding tritium content of 5 Tu such that groundwaters exceeding this value wight be expected to show the effects of drilling fluid contamination and use of that value is continued in this revision of the data base. The intent of this criterion is to alert Site Hydrochemical Data Base users of the potential problem of contamination. However, it is the user's responsibility to cetarmine whether this limit is appropriate for the evaluation being made.

Figure 19 is a histogram of tritium analyses for groundwaters from confined aquifers at Hanford. Based on the discussion above, many of the samples represented in the data base exhibit some tritium contamination. Table 1 identifies the affected samples.

and the second
)). (14

FIGURE 19. Histogram of Tritium Concentrations in Groundwaters from Confined Aquifers. Figures Above Bars Represent the Number of Occurrences Within the Concentration Ranges Shown.

SD-SHI-SP-061 Rev. I

5.3.4 Organic Carbon Contamination. As in the case of tritium, the organic carbon content of Hanford groundwaters can be a measure of contamination with drilling fluid. Halko (1984) describes the organic components that frequently are included in drilling fluids and Granam et al. (1985) assess the affects of these fluids on the total organic carbon (TCC) level of recovered water in the test at DC-14. They found that, for this specific test, TCC values of approximately 5 to 10 mg/L may be indicative of contamination for some major inorganic constituents.

Figure 20 is a histogram of observed TOC values (including dissolved methane) for groundwaters taken from confined aquifers at Hanford. Because the organic composition of drilling fluids can be so variable no definitive criterion for TOC to identify such contamination is available. Table 1 notes those samples with TOC in excess of 10 mg/L which is tentatively suggested as an indicator of contamination that may affect the major chemistry of the water samples.

5.3.5 <u>Dissolved Gases</u>. One simple test of the representativeness of dissolved gas analyses is to note those samples containing significant amounts of exygen. The great majority of gas analyses reported in the Site Hydrochemical Data Base contain very little if any exygen. Furthermore, the discussions in DOE/R A2-3 (1952; pg. 5.1-132) suggest that this observation is compatible with the reading conditions thought to prevail in basalt groundwaters. Join(1), these findings point to the low probability of significant dissolved exygen associated with Hanford groundwaters. Generally it can be assumed that air contamination during sample collection is responsible for elevated exygen levels. Using the normal composition of air it is possible to correct these analyses for contamination. Table 1 identifies these gas analyses that have apparent air contamination (i.e., >LZ exygen) and the five samples from borehole DB-15 that were identified in Section 4.7 as being of questionable value. Also identified in Table 1 is one gas sample apparently grossly contaminated with argon.

5.0 SUMMARY AND CONCLUSIONS

This data package presents the Site Hydrochemical Data Base (Appendix A). A variety of verification and validation procedures have been applied to the data and those are summarized in Figure 21. The goal of these procedures is to insure that hydrochemical data quality is high and to identify those specific analyses that eppear to be questionable. The results of this evaluation is summarized in Table 1.

Icentification of potentially anomalous samples or analyses in Table 1 must be approached with caution. The great majority of analyses in the Site Hydrochemical Data Base appear to be excellent. Many of those samples flagged in Table 1 probably are of equally high quality. The purpose of Table 1 is only to serve as a guide for data users and to alert them to <u>potential</u> uncertainties.

FIGURE 20. Histogram of Total Organic Carbon Concentrations in Groundwaters from Confined Aquifers. Figures Above Bars Represent the Number of Occurrences Within the Concentration Ranges Shown.

SD-BHI-DP-051 Rev.

1.0

SD-BKJ-DP-OG1 Rev. 1

:

FIGURE 21. Summary Logic Diagram for Verification and Validation Procedures Applied to Hydrochemical Analyses. Currently, the verification and validation procedures are incomplete. For example, certain information (e.g., sampling method, in situ temperature, date) has not been fully verified. Furthermore, in future updates to this data package it will be possible to compare the total inorganic carbon (TIC) content of samples determined by a carbon analyzer to analogous information extracted from alkalinity values. Many of the validation checks can be extended to parameters beyond the major inorganics (e.g., trace elements) and this will be addressed also. Finally, it is anticipated that greater use will be made of laboratory control samples in the future to evaluate the quality of analyses from subcontractors.

A further concern that must be considered is the fact that some types of data can be checked more thoroughly than others. For example, validation of precipitation and surface water analyses is more limited in scope than for groundwater samples. Fortunately, the BWIP is not as dependent on these data for its characterization and flow modeling studies.

7.0 ACKNOWLEDGEMENTS

Completion of this data package revision has required the close cooperation of numerous individuals within the 2WIP. F. S. Brim and G. F. Stevens of the Technical Data Systems Group worked tirelessly to produce the computer reports that are the heart of this document. Verification of the major and trace chemical constituents for all of the BWIP samples was provided by M. O. Baechler (Solution and Solids Characterization Group), while W. L. Meinke (Site Analysis Group) assisted in other verification tasks. D. L. Starr (Site Analysis Group) and L. L. Daniel (System Integration Department) are responsible for creating the graphics. The authors are coeply indepted for their assistance.
J.O REFERENCES

Anderson, K. E., ed., 1975, <u>Water Well Handbook, 3rd Edition</u>, Missouri Water Well and Pump Contractors Association, Inc., Third Edition, Rolla, Missouri.

AFHA, 1975, Standard Methods for the Examination of Water and Waste Water, American Public Health Association, Fourteenth Edition, Washington, D.C.

Apps, J., Doe, T., Doty, E., Doty, S., Galbreith, R., Kearns, A., Kohri, E., Lons, J., Monroe, A., Narasimhan, T. N., Nelson, P., Wilson, C. R., and Witherspoon, P.A., 1979, <u>Geonydrologic Studies for Nuclear Waste Isolation</u> at the Hanford Reservation, LBL-8764, Yol. 2, Lawrence Berkeley Laboratory, Berkeley, California.

ASTM, 1980; Annual Each of ASTM Standards, American Society for Testing and Materials, Philadelphia: Pennsylvania.

Cline, C. S., J. J. Rieger, and J. R. Raymond, 1985, <u>Ground-Water Monitoring</u> at the Hanford Site, January-December 1984, PML-5408, Pacific Northwest Laboratory, Richland, Washington

Javis, S. N. ed., 1961, <u>Workshop on Isotope Hydrology Applied to the</u> <u>Evaluation of Deeply Buried Repositories for Radioactive Waster</u>, University of Arizona, Tucson, Arizona.

Diediker, L. D., 1983, <u>Borehole DC-16A Peport</u>, SD-BWI-TI-135, Rockwell Hanford Operations, Richland, Wasnington.

Early, T. O., C. C. Allen, and W. J. Anderson, 1983, <u>Characteristics of the</u> <u>Waste Package Environment Expected in a Repository Located in the Conassett</u>, <u>McCov Canvon, or Umtanum Floys</u>, in P. E. Long, editor, Repository Horizon Identification Report; DRAFT, October 1983, Rockwell Hanford Operations, Richland, Washington.

Early, T. O., R. D. Mudd, G. D. Spice, and D. L. Starr, 1985, <u>A Hydrochemical</u> <u>Data Ease for the Hanford Sita, Washington</u>, SD-BWI-DP-061 (Rev. 0), Rockwell Hanford Operations, Richland, Washington.

Ecdy, P. A., 1979, <u>Radiological Status of the Groundwater Beneath the</u> <u>Hanford Project, January-December 1978</u>, PNL-2899, Pacific Northwest Laboratory, Richland, Washington.

Eddy, P. A. and Wilbur, J. S., 1980, <u>Pariological Status of the Groundwater</u> Beneath the Hanford Site, January-December 1979, PNL-3346, Pacific Northwest Laboratory, Richland, Washington.

Edcy, P. A. and Wilbur, J. S., 1981, <u>Padiological Status of the Groundwater</u> <u>Reneath the Hanford Site, January-December 1980</u>, PNL-3768, Pacific Northwest Laboratory, Richland, Wasnington.

SD-BWI-DP-061 Rev. 1

Eddy, P. A., Cline, C. S. and Prator, L. S., 1982, <u>Radiological Status of the Groundwater Beneath the Hanford Site, January-December 1981</u>, PNL-4287, Pacific Northwest Laboratory, Richland, Washington.

Eddy, P. A., Prator, L. S. and Rieger, J. T., 1983, <u>Groundwater Surveillance</u> at the Hanford Site for CY 1982, PNL-4659, Pacific Northwest Laboratory, Richland, Washington.

Freeze, R. A. and Cherry, J. A., 1979, Groundwater, <u>Erentice-Hall</u>, Inc. Graham, M. J., Last, G. Y., and Fecht, K. R., 1984, <u>An Assessment of Aquifer</u> <u>Intercommunication in the 3 Pond - Gable Mountain Pond Area of the Hanford Sita</u>, RHO-RE-ST-12, Rockwell Hanford Operations, Richland, Mashington.

Gifford, S. K., H. W. Bentley, D. L. Graham, 1985, <u>Chlorine Isotopes as</u> <u>Environmental Tracers in Columpia River Besalt Groundwaters</u>, in Hydrogeology of Rocks of Low Permeability, Memoires, Yol. XYII, Part 1, pp. 417-429, International Association of Hydrogeologists, Tucson, Arizona.

Graham, D. L., 1984, <u>An Assassment of Orilling Fluid Tracers Used to Monitor</u> <u>Boranola Development for Hydrochemical Sampling</u>, RHO-BW-ST-61P, Rockweil Hanford Operations, Richland, Washington.

Granam, D. L., Bryce, R. W., and Halko, D. J., 1985; <u>A Field Test to Assess</u> the Effects of Drilling Fluids on Groundwater Chemistry Collected from <u>Columbia River Basalts</u>, in Hydrogeology of Rocks of Low Permoability, Memoires, Vol. XVII, Part 1, pp. 382-394, International Association of Hydrogeologists, Tucson, Arizona.

Halko, D. J., 1984, <u>Chemical Analysis of Drilling Eluid and Drilling Eluid</u> <u>Additives used in a Cleanup Test in Borenole DC-14</u>, SD-BWI-TD-D12, Rockwell Hanford Operations, Richland, Washington.

Hem, J. D., 1970, <u>Study and Interpretation of Chemical Characteristics of</u> <u>Matural Water</u>, Mater-Supply Paper 1473, U.S. Geological Survey, Wasnington, J.C.

LaSala, A. M., Jr., and Doty, G. C., 1971, <u>Preliminary Evaluation of Hydrologic</u> <u>Eactors Related to Radioactive Masta Storage in Basaltic Rocks at the Hanford</u> <u>Reservation, Masnington</u>, Open-File Report, U.S. Geological Survey, Masnington, D.C.

LaSala, A. M., Jr., Doty, G. C., and Pearson, F. J., Jr., 1973, <u>A Preliminary</u> Evaluation of Pegional Groundwater Flow in South-Dentral Machington, Open-File Report, U.S. Geological Survey, Washington, D.C.

Myers, D. A., 1973, Environmental Monitoring Report of Groundwater Beneath the Hanford Site, January-December 1977, PNL-2624, Pacific Northwest Laboratory, Richland, Mashington.

Myers, D. A., Fix, J. J., Plummer, P. J., Raymond, J. R., McGnan, V. L., and mility, E. L., 1975, <u>Environmental Monitoring Report of Groundwater Beneath</u> <u>and Hanford Site, January-December 1975</u>, BNWL-2034, Battelle, Pacific Northwest Laboratories, Richland, Hashington.

SD-BHI-DP-OC1 Rev. 1

· . . .

Eyeru, D. A., Fix, J. J., and Raymond, J. R., 1977, Invironmental Monitoring Esport of Groundwater Beneath the Hanford Site, January Machimber, 1976, BNWL-2119, Battelle, Pacific Northwest Laboratories, Richland, Washington.

Orion, 1980, The Instruction Manual for Platinum Redox Flectrode Mudel 96-79 and Model 97-78, Orion Research, Inc., Cambridge, Massachulauris.

Prater, L. S., J. T. Rieger, C. S. Cline, E. J. Jenson, T. L. Hikalas and K. P. Oster, 1984, Ground-Water Surveillance at the Hanford Site for (Y 1983, inL-5041, Facific Northwest Laboratory, Richland, Washington,

Raymond, J. R., Myers, D. A., Fix, J. J., McGhan, V. L., and Shrotke, P. M., 1975, Environmental Monitoring Report on the Radiological Status of Groundwater Seneath the Hanford Site, January December 1974, BNWL-1970, Batteller Pacific Northwest Laboratories, Richland, Washington.

Schwab, G. E., Calpitts, R. M., Jr., and Schwab, D. A., 1979, Spring Inventory of the Rattlesnake Hills, RHO-BXI-C-47, Rockkell Hanford Operations, Richland, Washington.

Skoudstad, M. W., Fishman, M. J., Friedman, L. C., Erdmann, D. F. - C. Dur, and 5. S., ed., Methods for Deterministion of Inorganity Substances in Rober and Fluxial Sediments, U.S. Geological Survey, Washington, 1.C.

Strait, S. R. and Moore, B. A., 1982, Geohydrolocy of the Ratilesnake Ridce Interbed in the Gable Mountain Pond Area, RHO-ST-38, Rockwell Hamford Operations, Richland, Washington.

Summers, W. K. and Weber, P. A., 1978, Data for Wells Penetrating Basalt in the Pasco Basin Area, Washington, RHO-BWI-C-19, 6 Vol., Rockwell Hanford Operations, Richland, Washington.

Summers, W. K., Weber, P. A., and Schwab, G. E., 1978, <u>A Survey of the</u> Groundwater Geology and Hydrology of the Pasco Basin, Washington, RHO-BWI-C-41, W. K. Summers and Associates for Rockwell Hanford Operations, Richland, Washington, Octoper 1978.

West, M. H., Baechler, M. O., Homis C. S., Joness T. E., and Paynos J. R., 1988, Maasurement Verification Practices of the Banalt, Waste Isolation ("rolect (EWIF) Basalt Matarials Research Laboratory, 50-3WI-TRP-003, Rockwell Hanford Operations, Richland, Washington.

Wintzak, T. M., 1984, <u>Principal Borehole Report: Borehole RPL-2</u>, SD-8WI-TI-113, Rockwell Hanford Operations, Richland, Washington.

. ι,

. •

с.

SD-EHI-OP-OSI Rev. 1

.

THIS PAGE INTENTIONALLY LEFT BLANK

54

D-BWI-DP-061 Rev. 1

APPENDIX A

i

.

65

localion	SAMPLE EVENT CODE	PRODUCTNG ZONE	PACKER TOP	РАСКЕЯ Воттои	SAMPLING HETHOD	DATE	SOURCE
HE RK	85-255	PRIEST RAPIDS TO ROZA	884	1239	PUMP	08/13/85	1
DB 01	81 - 19 81 - 65 82 - 27 85 - 32	MAUTON PRIEST HAPIDS PRIEST HAPIDS PRIEST RAPIDS	976 1080 1080 1080	990 1139 1139 1139 1139	AIRLIFI 1G AIRLIFI 1G PUMP SIPHONED	02/02/31 05/01/81 11/10/81 10/27/84	1
()µ+02	79-65 81-13 81-10	MAUTON PRTEST RAPIDS ROZA	846 1028 1166	924 1190 1190	AIRLIFT IG AIRLIFT IG AIRLIFT IG AIRLIFT IG	07/13/79 12/08/80 12/23/80	1 1 1
DB 04	19-77	MAUTON	1360	1403	AIRLIFT 19	06/07/79	1
128-01	79 - 89 83 - 413 85 - 216	MAB I ON MAB I ON MAB I ON	597 597 507	812 812 812	AIRLIFT IG AIRLIFT WINDMILL	07/13/79 05/29/83 04/25/85	1 1 1
פט - שם	79-28 83 472	HABION MADION	461 461	539 539	AIRLIFT IG PUMP	07/12/79 07/15/83	1
01 11 01	85 - 4 85 - 15 85 - 18 86 - 52 86 - 103 81 - 57	HAUTON MABION PRIEST RAPIDS PRIEST RAPIDS PRIEST RAPIDS PRIEST RAPIDS	709 709 1020 1020 1020 1020	1020 1020 1210 1210 1210 1210	FLOWING FLOWING FLOWING FLOWING PUMP FLOWING	10/10/84 10/15/84 10/15/84 10/28/85 11/21/85 01/15/81	1 1 1
QB-12	も3 - 95 81 - 25	SELAH PRIEST KAPIDS	171 524	189 592	SNAB AIKLIFT IG	04/20/78 10/31/80	1
DA-13	80-155 83-404	MAUTON MABION	1195 1195	1202 1292	PUMP	04/18/80 67/07/83	1 1
DB-14	81-162	PRIEST RAPIDS	1181	1218	AIRLIFT	05/25/81	1
ינק קו-12	/9 - 17 75 - 33 79 - 33 79 - 15 79 - 39 79 - 31 79 - 25 79 - 80 79 - 80 79 - 80 79 - 80 79 - 80 80 - 35 80 - 77	RATTLESNAKE RIDGE SELAH COLD CRESK ASOTIN/UMATILIA UHATILLA THTRAFLOW HABION PRIEST RAPIDS PRIEST RAPIDS PRIEST RAPIDS/RUZA FRENCHAAM SPRINGS FRENCHAAN SPRINGS FRENCHAAN SPRINGS FRENCHAAN SPRINGS FRENCHAAN SPRINGS FRENCHAAN SPRINGS FRENCHAAN SPRINGS	150 370 510 640 680 680 858 909 1045 1300 1300 1353 1353	2223244499533 2223244499533 233675388604333 113847450 113847450 113847450	Римр Римр Римр Римр Римр Римр Римр Swab Swab Swab Swab Swab Swab Swab	04/25/79 05/10/79 05/24/79 05/24/79 05/24/79 05/14/79 05/14/79 05/13/79 05/13/79 05/27/79 05/27/79 15/04/79 15/16/79	

SD-84I-0P-061 Rev.

-

.

PAGE 1

\$

		PRODUCTNG ZUME	TOP	BOTTOM	METHOD	DATE	SOURCE
DB-15	80-1	FRENCHMAN SPRINGS	1570	1683	SWAB	11/09/70	1
ÐC- 01	\$11E-230 \$1E-226 \$1E-227 \$1E-228 \$1E-229 \$1E-231 \$1E-232 \$1E-233 \$1E-233 \$1E-234 \$1E-236 \$1E-236 \$1E-237 \$1E-238 \$1E-240 \$1E-241 \$1E-242 \$1E-242	POHUNA POHUNA TO UMATILIA POHUNA TO UMATILIA POHUNA TO MABION POHUNA TO MORATO POHUNA TO ROCKY COULEE FT POHUNA TO ESQUATZEL FT ESQUATZEL TO COLD CREEK COLD CREEK TO UMATILIA UMATILLA INTRAFLOW CONTACT PRIEST RAPTOS L.: PRIEST RAPTOS COMASSETT FU AND HELOW UMTANUM FB AND BELOW UMIANDE RONDE GRANDE RONDE	362 362 362 362 362 450 540 638 720 980 1090 1090 3146 3166 3200 4080	416 712 890 1190 530 5226 5120 5120 5120 5120 5120 5120 5120 5120	SWAB PUMP PUMP SWAB SWAB SWAB SWAB SWAB SWAB SWAS SWAS	05/08/89 05/20/69 05/26/69 05/26/69 05/26/69 05/12/69 05/19/69 05/19/69 05/19/69 05/19/69 05/22/39 06/29/69 06/29/69 06/29/69 06/29/69 06/29/69 07/14/69	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
DC-02-A2	80-4 STTE-213	ROCKY COULES 3B TO BELOW UNTANUM GRANDE RONDE	2253 3243	33273 3273	SWAR? SWAR	19/15 79 08/01/85	1 5
00-03	80-27	UMTANUN FB	2575	ວສັວຣ໌.	SWAB	03/10/80	3
DC-05	79-30	VANTAGE	· .	· ".	РИМР	07/19/79	1
DU-06	$\begin{array}{c} 80 - 161 \\ 80 - 72 \\ 5116 - 214 \\ 80 - 238 \\ 80 - 131 \\ 80 - 13 \\ 79 - 59 \\ 81 - 45 \\ 80 - 118 \\ 80 - 15 \\ 81 - 82 \\ 81 - 82 \\ 81 - 82 \\ 80 - 29 \\ 79 - 58 \\ 80 - 75 \end{array}$	ROCKY COULEE VANTAGE TO ROCKY COULEE FT ROCKY COULEE FT IO TO BELOW UMIANUM ROCKY COULEE FT IO TO BELOW UMIANUM COHASSETT TO ROCKY COULEE FB COHASSETI FT MCCOY CANYON FT MCCOY CANYON FB AND UMTANUM FT UMIANUM FB AND BELOW UMIANUM FB AND BELOW UMIANUM FE AND BELOW GRANDE RUNDE GRANDE RONDE	2156 2258 2260 22396 22396 24892 2892 22992 3242 35391 4189	2023 2289 4333 4353 26677 24177 5078 5529 3529 3529 3529 3524 413	FLOWING FLOWING FLOWING FLOWING FLOWING FLOWING FLOWING FLOWING FLOWING FLOWING FLOWING FLOWING FLOWING	07/14/30 10/13/79 08/11/80 08/14/80 10/31/80 00/27/70 10/31/80 02/24/81 02/28/81 02/28/81 02/28/81 02/28/81	115111111111111111111111111111111111111
DC-01	82-23 82-10 80-39 80-11 79-52 80-103 80-188	POCKY COULEE THRU UNIANUM ROCKY COULEE THRU UNIANUM ROCKY COULEE FB AND COMASSETT ROCKY COULEE FB AND COMASSETT UNIANUM ST GRANDE RONDE GRANDE RONDE	2730 2780 2952 2952 2555 4112 4830	3943 3943 3052 3052 3052 3052 3053 3053	ATRLIFT IG ATRLIFT IG ATRLIFT IG ATRLIFT IG ATRLIFT	10/12/79 14/17/79 14/17/79 09/26/70 08/14/30	****

PAGE 2

1

SD-BWI-DP-061 Rev.

}__1

• •

location	SAMPLE EVENT CODE	PRODUCING ZONE	PACKER TOP	PACKER BOTTOM	SAMPLING METHOD	DATE	SOURCE
DC-07	80-196	GRANDE RONDE	4830	5008	SWAB	08/15/80	1
DC - 12	$\begin{array}{c} 80 - 50 \\ 80 & 100 \\ 80 & 97 \\ 80 & 32 \\ 80 & 82 \\ 80 & 124 \\ 80 & 101 \\ 80 & 101 \\ 80 & 209 \\ 80 & 233 \\ 80 & 234 \\ 81 & 61 \\ 82 & 85 \end{array}$	PRIEST RAPIOS PRIEST RAPIOS/RUZA ROZA/FRENCHMAN SPRINGS FRENCHMAN SPRINGS FRENCHMAN SPRINGS FRENCHMAN SPRINGS RUCKY COULEE FT ROCKY COULEE FT COMASSETT FB COMASSETT FB GRANDE RONDE GRANDE RONDE GRANDE RONDE	1217 1328 1508 1688 1910 2050 2408 2408 2818 2818 2818 2838 4022 4419	1254 1364 1534 1710 1984 2079 2446 2845 2864 4071 4455	PUMP PUMP PUMP PUMP AIRLIFT IG AIRLIFT IG AIRLIFT IG AIRLIFT IG AIRLIFT IG AIRLIFT IG AIRLIFT IG AIRLIFT IG	01/23/80 02/07/80 03/11/80 04/08/80 05/09/80 07/14/80 07/14/80 09/02/80 09/10/80 09/10/80 09/24/80 04/20/81 11/04/81	
DC-14	80 - 3 80 - 53 80 - 47 80 - 69 80 - 99 80 - 99 80 - 89 80 - 71 80 - 144	ELEPHANT MUUNTAIN RATTLESNAKE RIDGE SELAH ASOTIN ASOTIN MABION PRIEST RAPIDS	168 475 675 880 910 925 969 1180	475 538 758 925 969 1083 1492	PUMP PUMP FLOWING FLOWING FLOWING FLOWING FLOWING FLOWING	01/22/80 01/13/80 02/05/80 03/14/80 03/25/80 03/25/80 04/07/80 05/20/80	1
υ Ω	$\begin{array}{c} 30 & 112 \\ 80 & -157 \\ 80 & -157 \\ 80 & -157 \\ 80 & -157 \\ 80 & -157 \\ 80 & -157 \\ 80 & -213 \\ 81 & -20 \\ 81 & -20 \\ 81 & -20 \\ 81 & -30 \\ 81 & -44 \\ 81 & -141 \\ 82 & -8 \\ 82 & -315 \\ 83 & -156 \\ 83 & -157 \\ 83 & -157 \\ 83 & -157 \\ 83 & -157 \\ 83 & -154 \\ 83 & -154 \\ 83 & -150 \\ 83 & -266 \\ 83 & -261 \end{array}$	RUIST RAPIDS RUIST RAPIDS SQUAW CREEK FRENCHIAN SPRINGS FRENCHIAN SPRINGS FRENCHIAN SPRINGS FRENCHIAN SPRINGS L FRENCHIAN SPRINGS TO ROCKY COULEE COMASSETT FT MCCOY CANYON FB AND UMIANUM FI UMIANUM FB UMIANUM FB GRANDE RONDE GRANDE RONDE	1 196 1285 1640 1575 1640 1720 1820 1888 2120 2410 3060 3180 3260 3260 3260 3260 3260 3260 3260 326	1214662990535535355555555555555555555555555555	FLOWING FLOWING	05/20/80 06/11/80 05/23/80 07/07/80 07/14/80 07/29/80 07/12/80 08/22/80 09/09/80 10/14/80 10/14/80 12/23/80 01/10/81 07/15/83 02/15/83 03/01/83 03/01/83 03/01/83 03/11/83 03/11/83	
DC-15	80 56	I EVEY	275	343	PUMP	01/04/80	1

PAGE 3

30-3WI-OP-CEI Rev. 1

location	SAMPLE EVENT CODE	PRODUCING ZOME	THERE TOP	PACKER Bottom	SAMPLING METHOD	DATE	SOURCE
DC-15	80-54 80-57 80-87 80-137 80-135 80-135 80-135 80-131 80-131 80-133 81-41 81-41 81-4 81-46 81-45 81-33 81-27 81-64 81-56 81-56	RATTLESNAKS RIDGE GULD GREEK MABTUN PRIEST RAPIDS/ROZA ROZA FRENCHMAN SPRINGS FRENCHMAN SPRINGS FRENCHMAN SPRINGS I. FRENCHMAN SPRINGS IO U. GRANDE RONDE ROCKY COMPERTY GRANDE RONDE GRANDE RONDE GRANDE RONDE GRANDE RONDE GRANDE RONDE GRANDE RONDE GRANDE RONDE GRANDE RONDE GRANDE RONDE	417 713 1003 1210 1357 1481 1540 1735 1834 2099 2227 2651 2692 2961 3245 3301 3301 4138	406720080007 #004044200 1020080007 #004044200 11555899-03044200 20155999-03044200 20155999-03044200 2015599-03044200 2015599-03044200 2015599-03044200	PUMP PUMP PUMP PUMP AIRLIFT IG AIRLIFT IG SIPHONED	01/23/80 03/25/80 04/14/80 05/05/80 06/30/80 00/30/80 00/20/80/80 00/20/80/20/80 00/20/80/80 00/20/80/20/80/20/80/20/80/20/80/20/80/20/80/20/80/20/80/20/80/20/80/20/20/20/20/20/20/20/20/20/20/20/20/20	
DC~16A	81-109 82-17 82-93 82-19 82-18	RATILESNAKE RIDGE Selah Magtun Priest Popids/Roza L. Roza and U. Frenchman Springs	• 568 928 1395 1760 1892	535 1021 1568 1825 2000	DUND PUMP DUMP DUMP VINP VINDHILL	10/21/81 10/21/81 01/25/82 03/20/11 04/11/12	1
рания 19	82 - 124 82 - 143 82 - 231 82 - 202 82 - 339 82 - 339 82 - 339 82 - 332 82 - 419 82 - 419 82 - 410 83 - 29	FRENCHMAN SPRINGS FRENCHMAN SPRINGS FRENCHMAN SPRINGS FRENCHMAN SPRINGS FRENCHMAN SPRINGS FRENCHMAN SPRINGS FRENCHMAN SPRINGS VANTAGE AND U. GRANDE RONDE VANTAGE AND U. GRANDE RONDE ROCKY CUULEI	2105 2201 2266 2476 2585 2585 25870 2671 2838		VINDMILL WINDMILL WINDMILL AIRLIFT IQ FUMP PUMP VINDMILL WINDMILL	05/12/12 03/03/92 04/24/22 05/02/82 08/20/82 08/20/82 09/14/12 09/14/12 09/14/12	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
DC+198	83-147	MABTON	1368	1500	PIMB	05/53/30	
DC-16C	81-100 83-259	ROCKY COULE FY MCCOY CANYON FT	2823 3499	2943 3551	AIRLIFT /	11/19/32 03/15/83	1
00-18	86-166	PRIEST RAPIDS	398	136	en in	02/31/85	1
DC19C	84-53 84-40 84-75 84-86	FRENCHWAN SPEINGS FRENCHWAN SPRINGS COHASSETT FI UNTANUM FI	2421 3008 3567	2088 3105 3578	عقمان ملائع مريري	12/03/83 13/19/83 13/19/83	1
DC-20C	84-9	NANAPUM/GRANUE RONDE	1581	3731	PUMP	21/30/83	•
DC-22C .	84-105	WANAPUM/GRANDE HONDE	1709	3530	PUMP	02/11/84	1

2

FAGE 4

.

٠

SD-871-09.061_Rev.

•••

.,

з.

focation	Sampi e Event Cude	PRODUCING ZONE	PACKER TOP	PACKER BUTTOM	SAMPLING METHOD	DATE	SOURCE
DC-23GR	86-133 86-141 86-181	PRIEST RAPIDS SENTINEL GAP GINKGO	1345 1575 2155	1425 1635 2216	PUMP PUMP PUMP	02/26/86 03/05/86 04/02/86	3 1 1
E NYEAR I	SI1E-209 SITE-210 84-106 85-1 85-130	PRIEST RAPIDS PRIEST RAPIDS PRIEST RAPIDS PRIEST RAPIDS PRIEST RAPIDS	935 935 935 935 960 960	1092 1092 1092 1088 1088	PUMP PUMP FLOWING FLOWING FLOWING	11/29/51 05/14/69 02/23/84 10/09/84 03/01/85	6 1 1 1
) DRD	5112-206 511E-207 511E-219 85-188 85-303	PRIEST RAPIDS PRIEST RAPIDS PRIEST RAPIDS PRIEST RAPIDS PRIEST RAPIDS	620 620 620 620 620 620	777 111 111 111 111	Pump Pump Flowing Pump Pump Pump	11/30/51 0\$/27/70 08/11/78 03/22/85 08/22/85	6 6 1 1
Picge E	S11E-224 S11E-222 S11E-220 S11E-220 82:7 85-175 85-300 86-34 80-64 81-79 81-54 82-64 82-64 82-64 82-420 82-420 82-420 83-32 83-32 83-32 83-32 83-32 83-32 83-32 83-460 83-476 83-513 84-24	PRIEST RAPIDS PRIEST RAPIDS RUZA ROZA INTRAFIOW ROZA/FRENCHMAN SPRINGS FRENCHMAN SPRINGS GRANDE RONDS INTERFLOW ROCKY COUSEE FB COMASSETT FT COMASSETT FT	$\begin{array}{c} 691\\ 691\\ 691\\ 691\\ 691\\ 691\\ 691\\ 691\\$	978 978 978 978 978 978 978 978 978 978	FLOWING FLOWIN	05/14/69 08/27/70 09/03/70 09/03/70 09/03/70 09/03/70 09/03/70 09/02/82 09/19/85 09/22/85 10/13/82 03/10/81 04/05/82 09/13/82 09/13/82 09/13/82 09/13/82 09/13/82 09/13/82 09/13/82 09/13/82 09/13/82 09/13/82 09/13/82 09/13/82 09/13/82 09/13/82 09/13/82 09/13/82 09/13/82 09/13/82 09/13/83 05/24/83 05/21/83 05/21/83 05/21/83 05/21/83	8776511111111111111111111111111111111111
OBRIAN	85-194	PRIEST RAPIDS	600	730	FLOWING	03/27/85	1
kat - 02	82 68 82 65 82 170 82 122 82 401	PRIEST RAPIDS ROZA FRENCHMAN SPRINGS U. GRANDE RONDE AND ROCKY COULEE COMASSETT FB	1574 1735 2244 2719 3247	1714 1773 2644 2910 3344	AIRLIFF IG AIRLIFT IG AIRLIFT IG AIRLIFT IG WINDMILL	02/12/82 02/26/82 04/34/82 05/17/82 05/17/82	1 1 1

SD-BWI-DP-061 Rev. 1

.

.

7AGE 5

.

.

.

.

.

lucaliún	SAMPLE EVENT CODE	PRODUCTING ZONE	PACKER TOP	PACKER BUTTOM	SAMPLING METHOD	DATE	SOURCE
XK102	84-7 82-364 82-309 82-456	COHASSETT FU UNTANUM FT UNTANUM VERY PAGI MG ZONE	3247 3568 3781 3837	3344 3781 3827 3889	WINDMILL WINDMILL WINDMIIL WINDMIIL	10/24/83 07/21/82 08/16/82 09/29/82	1 1 1
KKL-ÖGH	83-25	UATANUA	3768	3823	PUMP	10/08/82	1
HHI. ~ I 4	82 - 403 84 - 1 1 83 - 15 1 83 - 49	COHASSETT COHASSETT COHASSETT FS UMTANUM FT	3017 3077 3294 3715	3147 3140 3403 3814	VINDMILL WINDMILL PUMP WINDMILL	09/20/82 10/27/83 12/02/82 11/05/82	1 1 1 1
STEM-1	85-252 85-297 86-31	PRIEST CAPLOS OF UPPER FRENCHMAN SPRINGS PRIEST RAPIDS TO UPPER FRENCHMAN SPRINGS PRIEST RAPIDS TO UPPER FRENCHMAN SPRINGS	· 460 469 469	970 970 870	римр Римр Римр	03/13/185 08/22/85 10/18/85	1 1 1
STEM-2	86-19	PRIEST RAPIDS TO UPPER FRENCHMAN SPRINGS	565	1002	римр	10/07/85	1
299-E16-01	STTE-161 STTE-162 STTE-163 STTE-163 STTE-164	ELEPHANT MOUNTAIN ELEPHANT MOUNTAIN ELEPHANT MOUNTAIN ELEPHANT MOUNTAIN	468 468 468 468	510 310 510 510	римр Римр Римр Румр	05,115/82 07/13/82 07/13/82 07/13/82	2 2 2 2
299-E26-08	SI1E - 186 SI1E - 167 SITE - 168	RATTLESNAKE RIDGE RATTLESNAKE RIDGE RATTLESNAKE RIDGE	326 326 328	396 395 395	ринр Ринр Римр	05/18/82 05/19/82 05/19/82	2 2 2
209-E33-12	STTE-170 STTE-171 STTE-172	RATTIESNAKE RIDGE RATTLESNAKE RIDGE RATTLESNAKE RIDGE	305 305 305	330 330 380	Pump Pump Pump	05/21/82 05/22/82 05/22/82	· 2 2 2
699-511-E12A	80-61 80-180	LEVEY INTERBED	225 225	282 232	TLOWING ATRLIFT IG	07/24; :0	. 1
899-42-40C	SIIE-176 SIIE-177 SIIE-178 SIIE-179 SIIE-180	ELEPHANT MOUNTAIN RATTLESMAKE RIDGE RATTLESMAKE RIDGE RATTLESMAKE RIDGE RATTLESMAKE RIDGE	245 306 306 306 306 306	245 390 390 390	римр римр римр римр римр римр	04/16, 32 05/20/82 05/21/82 05/21/82 13/18/37	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
099+47-50	SI1E-205 STIE-181	RATILESNAME MIDDE Ratilesname Midde	260 260	225	פאיי <u>י</u> פאייי	08/25/30 07/15/32	· · · · · · · · · · · · · · · · · · ·
699-49-55B	SIIE-183 SIIE-184 SIIE-185	RATTLESNAX2 - 1002 RATTLESNAKE - RIDGE RATTLESNAKE - RIDGE -	170 170 170	223 226 226	PUMP PUMP PUMP	05/27/02 05/27/82 05/28/82	222
899-50-45	SIIE - 203 SIIE - 186	RATHESNARL REDGE RATHESNARE REDGE	133 133,	178 178	PU14P	05/22/20 08/03/82	32 2

...

•

. • •

. . . .

. •

PAGE 6

.

.

, ا

.

.

•

.

.

1 .

.

location	SAMPLE EVENT CODE	PRODUCING ZUNE	PACKER TOP	раске я вотторі	SAMPLING METHOD	DATE	SOURCE
699 50 48	STTE - 204 STTE - 187	RATTLESNAKE RIDGE RATTLESNAKE RIDGE	213 213	250 250	PUMP PUMP	06/10/80 08/07/82	3
699-51-40	STTE-188	RATTLESNAKE RIDGE	120	163	РИМР	03/04/82	2
	STTE-201	RATTLESNAKE RIDGE	120	165	Римр	05/06/80	3
699-52-46A	STIE-202	RATTLESNAKE HIDGE	165	225	римр	05/13/80	3
	STIE-189	RATTLESNAKE RIDGE	170	225	Римр	08/07/82	2
សិមិម - 52 - 48	S17E - 199	RATILESNAKE RIDGE	145	195	91409	04/08/30	3
	SITE - 190	RATILESNAKE RIDGE	145	195	91409	08/10/82	2
699-53-50	SI1E-191 SI1E-200	RATTLESNANE RIDGE	145 146	194 193	римр Римр	07/14/82 04/17/80	2
699-54-57	S17E-192	RATHESNAKE RIDGE	236	321	PUMP	05/17/82	2
699-56-5 <u>3</u>	STTE - 196	RATTLESNAKE RIDGE	190	270	РИМР	08/03/32	2
	STTE - 197	RATTLESNAKE RIDGE	190	270	РИМР	06/03/82	2

12

SD-BWI-DP-061 Rev.

\$--+

.

.

.

.

1

PAGE 7

.

1

SAMPLING EVENTS SAMPLE TYPE: PRECIPITATION

:

.

.

tecation	SAMPLE EVENT CODE	FRODUCING ZONE	PACKER TOP	FACKER BOTTOM	SAMPLING METHOD	DATE	SOURCE
STATION-Ò3	82-89 82-51 82-51 82-78 82-179 82-138 83-00 83-46 83-118 83-118 83-114 83-143 83-277				PRECIP COL PRECIP COL	12/14/81 03/02/82 03/15/82 03/29/82 04/14/82 05/10/82 10/26/82 11/82 02/02/83 02/02/83 02/02/83	
S1A110H-04	82 - 15 82 - 61 82 - 60 82 - 120 82 - 120 82 - 117 83 - 36 83 - 141 83 - 141 83 - 116 87 - 155 83 - 180 83 - 180 83 - 250				PRECIP COL PRECIP COL	12/02/82 03/15/82 03/15/82 03/15/82 03/15/82 03/10/82 19/26/83 19/26/85 19/26 19/26/85 19/26/85 19/26/85 19/26/85 19/26 19/26/85 19/26/85 19/26/85	1 1 1 1 1 1 1
\$ 1 A 1 I ON - 07	82 - 45 82 - 92 82 - 57 82 - 44 82 - 136 82 - 185 83 - 43 83 - 23 83 - 187 83 - 187 83 - 181 83 - 181 83 - 124 83 - 208				PRESENT COL PRESENT COL PRESEN		
STATION-14	82-38 82-20 82-63 82-86		,		PRECIP COL PRECIP COL PRECIP COL PRECIP COL	02/20/82	- 2 1 1

: · .• s 1 ,

PAG:

8

D-8WI-DP-001 Rev.

مىز

SAMPLING EVENTS SAMPLE TYPE PRECIPITATION

.

.

tocation	SAMPLE EVENT CODE	PRODUCTAG ZUNE	PACKER Top	РАСХЕВ Воттом	SAMPLING METHOD	DATE	SOURCE
51411014 14	82 - 173 82 - 147 83 - 71 83 - 55 83 - 132 83 - 184 83 - 184 83 - 174 83 - 128 83 - 128 83 - 149 83 - 149 83 - 295 86 - 106				PRECIP COL PRECIP COL PRECIP COL PRECIP COL FRECIP COL FRECIP COL PRECIP COL PRECIP COL PRECIP COL PRECIP COL	04/14/82 05/10/82 10/26/32 11/01/82 12/02/82 12/02/82 12/02/82 01/07/83 02/11/83 03/09/83 11/21/85	
STATION-17	$\begin{array}{c} 82 - 99\\ 82 - 53\\ 82 - 53\\ 82 - 95\\ 82 - 970\\ 82 - 100\\ 82 - 118\\ 82 - 134\\ 83 - 11\\ 83 - 86\\ 83 - 129\\ 83 - 129\\ 83 - 182\\ 83 - 102\\ 83 - $				PRECIP COL PRECIP COL	12/14/81 01/18/82 01/18/82 02/26/92 03/15/82 03/15/82 03/29/82 04/14/82 11/01/82 11/01/82 11/01/82 12/29/82 12/29/82 01/07/83 02/02/83 03/09/83 11/21/85	
51411011 20	82 - 50 82 - 16 82 - 26 82 - 54 82 - 54 82 - 186 82 - 196 82 - 196 82 - 196 82 - 196 82 - 197 83 - 37 83 - 170 83 - 130 83 - 158				PRECIP COL PRECIP COL	12/14/81 C1/19/82 02/26/82 03/02/82 03/02/82 03/15/82 03/15/82 03/14/82 15/26/82 11/01/82 11/01/82 12/20/82 01/07/83	
51A110N-25	82-9				PRECIP COL	12/14/81	1

PACL 0

.

.

.

SD-3WI-JP-061 Rev. 1

•

•

•

PAGE 10

SD-BWI-DP-061 Rev.

· •••

4,

SAMPLING EVENIS SAMPLE TYPE: PRECIPITATION

tocátion	SAMPLE EVENT CODE	PRODUCTNG ZONE	PACKER TOP	PACKER BOTTOM	SAMPLING METHOD	DATE	SOURCE
\$1A110N-25	82-76 82-24 82-83 82-66 82-79 82-25 82-67 82-67 82-153				PRECIP COL PRECIP COL PRECIP COL PRECIP COL PRECIP COL PRECIP COL PRECIP COL	12/17/81 01/19/82 02/26/82 03/02/82 03/05/82 03/15/82 03/15/82 03/29/82 03/14/32	
	82-152 83-89 83-53 83-134 83-139 83-142 83-190 83-198 83-198 83-217				PRECIP COL PRECIP COL PRECIP COL PRECIP COL PRECIP COL PRECIP COL PRECIP COL PRECIP COL PRECIP COL	05/10/82 10/26/82 1/10/82 1/10/82 12/02/82 12/27/82 01/07/83 02/02/83 02/02/83 03/09/83	2 1 1 1 1 1 1
S1A110H-26	82-29 82-32 82-48			•	PRECIP COL PRECIP COL PRECIP COL	12/17/51 0./19/32 01/19/82	1
The second second	82-98				PRECIP COU PRECIP COU	03/02/32	1
N	82-71- 82-39 82-116 82-108 83-3 83-70				PRECIP COL PRECIP COL PRECIP COL PRECIP COL PRECIP COL PRECIP COL	00/15/82 03/00/32 05/10/32 1/28/82 1/28/82	
	83 - 163 83 - 177 83 - 171 83 - 167 83 - 131 83 - 101 83 - 104 83 - 284 86 - 108				PRECIP COL PRECIP COL PRECIP COL PRECIP COL PRECIP COL PRECIP COL PRECIP COL PRECIP COL PRECIP COL	1/19/82 ?/02/82 ?/23/82 ?/23/82 ?/23/82 ?/23/82 ?/33 03/02/33 11/21/35	1 1 1 1 1 1 1
	•					• • •	• •
	1 		<u> </u>	• • •			
				-	٠		
		· .					

SAMPLING EVENTS SAMPLE TYPE, SPRING

lucation	SAMPLE EVENT CUDE	PRODUCTING ZONE	PACKER TOP	PACKER BUTTOM	SAMPLING METHOD	DATE	SOURCE	
SP - ЫЕННЕТТ	STIE - 218 79 - 13 85 - 362 86 - 190				FLOWING FLOWING FLOWING FLOWING	08/03/78 05/25/79 09/20/85 04/04/86	5 1 • 1 1	
SP BENSON	SIIE-217				FLOWING	03/01/18	5	
SP BULLER	19-1				FLOWING	08/07/79	1	
SP-GULCH	84-359				FLOWING	0//18/84	1	
SP «ЛИЙТРСК	STIE-215 79-2 81-115 83-372				FLOWING FLOWING FLOWING FLOWING	07/23/78 05/31/79 06/26/81 05/26/83	5 1 1 1	
SP-1D-SHIVLLY	79-34 82-382 83-396	·			FLOWING FLOWING FLOWING	05/18/79 08/12/82 05/19/83	1 1 1	
5P-10211R	79-6 81-185 83-316				FLOWING FLOWING FLOWING	05/29/79 06/30/81 05/15/83	1	
CISP HAIDEN	79-100 83-420				FLOWING FLOWING	08/24/79 07/21/83	1	
SP - OUSERVATORY	81 - 119 83 - 433 84 - 392 84 - 329 85 - 359 86 - 178				FLOWING FLOWING FLOWING FLOWING FLOWING FLOWING	07702/01 06730783 08725784 08702784 08702784 08702784 08718785 04701786		
SP-RATEROAD	79-76				FLOWING	03/20/79	1	
SP RATILESNAKE	5116-216 79-88 83-412				FLOWING FLOWING FLOWING	C7/31/78 03/07/79 07/28/83	5 1 1	
SP-SHIVELY	/9-49				FLOWING	05/23/79	l	
SP-SULLUR	79-29 83-409				FLOWING FLOWING	03/03/79 07/21/83	1	
SP UNHARED 02	19-75	•			FLOWING	07/26/76	1	
SP UNNAHLD 16	19-73				FLOWING	03/04/79	1	
SP-UNNAMED-26	19 98				FLOWING	63/13;79	1	

SD-BHI-DP-061 Rev. 1

.

PAGE 11

SAMPLING EVENIS SAMPLE TYPE SPRING

. '

location	SAMPLE EVENI GODE	PRODUCTNS ZONE	PACKER TOP	РАСКЕЯ Воттом	SAMPLING METHOD	DATE	SOURCE
SP-UNMALLED-29	79-16				FLOWING	07/24/70	1
SP-UP-SNIVELY	79-71 81-125 83-503 86-193				FLOWING FLOWING FLOWING FLOWING	03/04 79 07/31/81 09/08/83 04/08/86	1 1 1 1
5P-UK2-07	85-343 86-159				FLOWING FLOWING	05/29/85 03/17/86	1 1
SP-U85-20	85-246 86-162				FLOWING FLOWING	03/20/85 03/17/86	1
5P-087-22	85-349 86-153	•			FLOWING FLOWING	05/29/85 03/13/86	1
SP-WARM	84-358				FLOWING	07/13/84	. i
SP-483-04	85-333 86-150				s Loviing Flowing	03/27/85 03/13/88	1 1
SP-485-08	85-336 86-147				SLOWING FLOWING	03/27/85 03/19/88	1
SP-YR7-14	85-339 86-156				FLOWING FLOWING	09/27/95	1
~	·				, *	•	

SD-BWI-DP-OS! Pev,

.

.

nva: 12

.

.

.

1

.

••••

•

÷ 4

 \mathbf{r}_{i}

. . . .

SAMPLING EVENIS SAMPLE TYPE: SURFACE

location	SAMPLE Event Code	PRODUCING ZONE		PACKER TOP	РАСКЕЯ ВОТТОМ	SAMPLING METHOD	DATE	SOURCE
COLD CREEK	84-317 84-302 85-223		,			DIP DIP DIP	03/01/84 08/09/84 05/01/85	1 1 1
CR-DC-14	80-258					DIP	03/18/83	1
Ск. БС -15	81-68 81-1					DIP DIP	03/23/81 12/10/81	1 1
GR (4115)	STIE 221					DIP	07/25/78	5
CR ~ V - BR	84-311 84311 85206 85-266 86-70 86109	·				DIP DIP DIP DIP DIP DIP	05/01/84 08/07/84 04/11/85 07/26/85 11/06/85 01/27/86	1
¥Ж - 113.	85-210 85-260 86-67 86-113	,				DIP DIP DIP DIP	04/15/85 07/26/85 11/04/85 01/29/86	1 1 1

1

3

SD-BWI-OP-O61 Rev.

مــر

.

PAGE 13

.

۰.

. .

location	SAMPLE EVENT CODE	PRODUCING ZONE	PACKER TOP	раскея воттои	SAMPLING METHOD	DATE	SOURCE
KR1 06A	82-40	MIDDLE RINGOLD		*****	PUMP	10/21/81	1
199-004-04	SITE-41	UNCONFINED			PUMP	01/01/77	11
199 · D05 - 12	SITE-80	UNCONFINED			PUMP	01/01/79	13
199-008-03	SITE-72	UNCONF INED			PUMP	04/18/78	12
199-105-01	SI1E-82	unconf infd			ғимр •	01/01/79	13
199-1104-03	SITE-81	UNCONFINED			PUMP	01/01/78	13
/aa-K-1a	SIIĖ-BJ	Unconf Ined			римр	01/01/78	13
199-11-15	STTE-42	UNCONF INED			рлир	01/01/77	11
299-826-08	SITE-165	UNCONF TNED	•		FUMP	03/23/82	· 2
299-E33-12	SITE-169	UNCONFINED .			PUMP	05/11/82	2
399-01-01	SITE-244	UNCONF INED			PUMP .	07/01/83	17
389-01-93	STIE-43	UNCONFINED			PUMP	01/01/77	11
. 99+02-01	SITE-245	UNCONF INED			PUMP	C~/01/83	17
······································	SITE-246	UNCONFINED			รบ พค้	07/01/83	۲1
399-04-10	ST1E-44	UNCONFINED			румр	r1/01,77	11
399-08-04	S11E-140	unconf thed			PUMP	01/01/32	15
599-HAH-19	STIE-3	UNCONFINED			PUMP	01/01/74	\$
699-503-E12	ST1E-22 ST1E-141	UNCONFINED UNCONFINED			Pumo Pump	01/01/75 01/01/82	10 16
6 39- 803-25	SITE-7 SITE-142 86-55 86-130	UNCONFINED UNCONFINED UNCONFINED UNCONFINED			<u>аліго</u> БПНБ БЛНБ БЛНБ	())/74 ()/01/82 10/31/85 (2/13/85	3 16 1 λ
699-506-E04D	SITE-11	UNCONFINED "	,		PUMP	08/01/75	9
000+208-10	ST1E-46 ST1E-84	UNCONFINED			PUMP PUMP	177 16/10 97/10/10	11
99-511-E12A	SIIE-4	UNCONF INED			, PUMP	01/01/74	8 · `
599-S12-03	SI IE - 45	UNCONF INED 1 (1) (1)	• * .	:	FUMP	01/01/77	77

 $\mathbf{v} \in \mathcal{V}$

.

.

1

na: 14

SD-BWI-DP-061 Fov.

-4

٠

,

PAGE 15

SAMPLING EVENTS SAMPLE TYPE UNCONFINED

focation	SAMP1 E EVI NI CODE	PRODUCING ZONE	PACKER Top	РАСКЕХ ВОТТОИ	SAMPI ING METHOD	DATE	SOURCE
699 512-03	SITE-143	UNCONFINED			PUMP	01/01/82	16
699-519-E13	STFE-120	UNCONF INED			PUMP	01/01/81	15
699-524-19	85-210 85-291	UNCONFINED UNCONFINED	ن 0	82	римр Римр	04/18/85 03/14/85	1 1
699-529-E12	S11E-21	Unconf Ined			PUMP	01/01/76	10
699-530 E15A	SIJE-144	UNCONF INED			PUMP	01/01/82	16
01-18	ST1E-145	UNCONFINED			PUMP	01/01/82	16
099-02-03	ST 1E - 1	UNCONF INED	,		PUMP	01/01/74	8
699-02-33	SI1E-85 SI1E-146	UNCONFINED UNCONFINED			PUMP PUMP	01/01/79 01/01/82	13 16
699-04 600	S17E-47	UNCONF INED			PUMP	01/01/77	11
P33-08-11	5116-23	UNCONFINED			PUMP	01/01/28	10
699 08-25	ST1E-32	UNCONF I MED			PUMP	01/01/75	10
099-08-32	ST1E-19	UNCONFINED			PUMP	05/01/75	9
699-09 E02	SI1E-16	unconf Ined			PUMP	06/01/75	9
699-10-E12	STIE-147 STIE-247	UNCONFINED UNCONFINED			римр Римр	C1/01/82 07/01/83	16 17
699 II 45A	SILE-148 85-263 86-43 86-124	UNCONFINED UNCONFINED UNCONFINED UNCONFINED			римр Римр Римр Римр	01/01/82 07/25/85 10/24/85 02/07/88	16 1 1 1
699-13-01A	511E-80	UNCONFINED			римр	04/19/78	12
699-14-38	STIE - 86 STIE - 86	UNCONFINED UNCONFINED			римр Римр	03/20/78 01/01/79	12 13
098-12-128	S11E-13 STIE-149	unconf thed unconf thed			гимр Римр	C5/01/75 01/01/82	ษ 16
699~15-26	ST11-24 ST1E-150	unconfined unconfined			PUMP PUMP	01/01/75 01/01/32	10 16
639-17-05	5111-18 511E-151	UNCONFINED UNCONFINED			erne Brive	0:/01/75	۵ 16

SD-2HI-DP-061 Rev.

e---

.

.

2

€

localion	SAMPLE EVLNT CODE	PRODUCTING ZONE	PACKER TOP	PACKER SOTTOM	SAMPLING METHOD	DATE	SOURC
899-18-43	SI1E-48 SI1E-121	UNCONFINED UNCONFINED			Pump Pump,	01/01/77 01/01/81	11 15
699-19-58	85 - 228 85 - 260 86 - 40 86 - 121	UNCONFINED UNCONFINED UNCONFINED UNCONFINED			римр Римр Римр Римр Римр	05/06/85 07/24/85 10/30/85 02/07/38	1 1 1
289- <i>19-</i> 88	85-278 86-34 86-127	UNCONFINED UNCONFINED UNCONFINED			PUMP PUMP PUMP	03/01/35 11/01/85 02/12 35	.l 1 2
\$90-20-E05-0	SITE-49	UNCONFINED			PUMP	01/01/77	11
699-20-20	S11E-25	UNCONF I NED			PUMP	01/01/75	10
699-24-33	SILE-28	UNCONF INED			римр	01/01/78	10
699-24-46	SITE-122	UNCONFINED			PUMP	01/01/31	15
699-24-95	85-288 86-61 86-115	UNCONFINED UNCONFINED			гимр Римр Римр	08,	1 1 1
	SI1E-100	UNCONFINES			615	/ 8D	1 -
J99-26-15	SITE-28	UNCONFINED			PUMP	01/01/76	· 91 ·
599-28-15A	SITE-263	UNCONS ED			Pump	05/06/84	15
539-27-04	SITE-101	UNCONFINED			PUMP -	01/015	; 6
699-27-08	SITE-5 SITE-30 SITE-50 SITE-76 SITE-87	UNCONSINED UNCONFINED UNCONFINED UNCONFINED	•		римр римр римр римр римр	01/01.74 02/01/76 01/01/77 00/17/78 01/01/79	8 10 11 12 13
699-28-40	S11E-68	UNCONFINED			จบพค	€4/19 /78 ′	12
699-31-31	SITE-69 SITE-102	UNCONFINED UNCONFINED			ылуы Балуы	01/01/30	<u>]</u>
599 ar 5au	SI 16-88	Unconfined			PLINP	01/01/79	13
789 32-22	SIIE-17 SIIE-27 SIIE-51 SIIE-65 SIIE-89	UNCONFINED UNCONFINED UNCONFINED UNCONFINED UNCONFINED		·	оция Зума РОмр РОМР	01/01/75 01/01/75 01/01/73 01/01/73	9 10 11 12 23
• •							

PAGE 16

SD-BWI-DP-OGI Ray.

مىر

:

.

location	SAMPTÉ EVENT CODE	РКОВИСТИС ZUNE	PACKER Top	РАСКЕВ Воттои	SAMPL ING METHOD	DATE	SOURCE
099+32-70B	STHE-70 STHE-90 STHE-152	UNCONF INED UNCONF INED UNCONF INED			римр Ринр Ринр	01/01/78 01/01/79 01/01/82	12 13 16
699-32-72	STIE-35	UNCONF INED			Pump	01/01/76	10
699 32-77	S11E-103	UNCONF INED			римр	01/01/80	1-)
699-39-42 -	S11E - 12 S11E - 29 S11E - 52 S11E - 67 S11E - 91	UNCONFINED UNCONFINED UNCONFINED UNCONFINED UNCONFINED	•		Pump Pump Pump Pump Pump	08/01/75 01/01/76 01/01/77 04/20/78 01/01/79	9 10 11 12 13
ម្ភភាព- ៨៨ - ខ្	SIIL-8 SIIE-40 SIIE-53 SIIE-62 SIIE-92	UNCONFINED UNCONFINED UNCONFINED UNCONFINED UNCONFINED			римр Римр Римр Римр Римр	01/01/74 01/01/76 01/01/77 04/20/78 01/01/79	8 10 11 12 13
888-34-38V	S11E-93	unconf ined			PUMP	01/01/79	10
699-34-42	511E-33 511E-153	UNCONFINED UNCONFINED			римр Римр	01/01/76 01/01/82	10 18
M222-24-21	5112-65	UNCONFINED			PUMP	04/20/78	12
£28.32.09	S11E-31 S11E-104 S11E-264	UNCONFINED UNCONFINED UNCONFINED			римр Римр Римр	01/01/76 01/01/30 05/04/84	10 14 18
649 35 66	SI18-77 SI1E-94	UNCONFINED UNCONFINED			PUMP PUMP	04/18/78 01/01/79	12 13
899-35-10	5142-36	UNCONFINED			PUMP	01/01/76	10
688-32-18	5111-54	Unconf info			римр	01/01/77	11
616-61A	S116-95	Unconfined			PUMP	01/01/79	13
699-37-41	ST1E-34 ST1E-173	UNCONF INED			PUMP PUMP	01/01/75 08/13/82	10 2
699-37-82A	STIL-105	UNCOHF INED			PUMP	01/01/80	14
639-38 10	S11E-37	UNCONF INED			римр	01/01/75	10
₽98×38×13	SITE-248	UNCONF INED			PUMP	07/01/83	17
699-39-01	S11E-249	UNCONF INED			PUMP	07/01/83	17

PAGE 17

-

,

location	SAMPLE EVENT CODE	PRODUCTING ZUŃE	. ;`\СКЕК Тор	PACKER BUTTOM	SAMPLING METHOD	DATE	SOURCE
599-39-39	ST1L-206	UNCONF INED			римр	06/04/84	18
699-40-01	STTE - 10 STTE - 106 STTE - 250 STTE - 265	UNCONFINED UNCONFINED UNCONFINED UNCONFINED			Римр Римр Римр Римр	06/01/75 01/01/80 07/01/83 06/04/84	0 14 17 18
699-40-33	STTE-55 STTE-251	UNCONF INED UNCONF INED			PUMP PUMP	01/01/77 07/01/83	11 17
699-40-62	SITE-56	UNCONF THED			PUMP	C1/C1/77	11
699-41-01	SI1E-252	UNCONF INED			PUNIP	07/01/83	17
699-41-23	SITE-15 SITE-113	UNCONFINED UNCONFINED			римр Ринр	08/01/75 01/01/80	ุ ค. 1. 4
699 42-02	SIIE-154	UNCONFINED			PUMP	01/01/82	16
699-42-12	SI1E-2 SI1E-155 SI1E-267	UNCONFINED UNCONFINED UNCONFINED			אוייק PUMP PUMP	01/01/74 01/01/82 08/04/84	3 15 13
រដ្ឋមន្ត្រ-42-40A	S11E-174	UNCONFINED			L.IMP	03/11/82	2.
699-42-400	\$11E-175	unconf ined			PUMP	01/19/82	2
699-42-42	STIE-114	unconf ined			PUMP	01/01/30	14
099-43-03	SITE-253	UNCONFINED		•	PUMP	07/01/03	17
699-49-88	SITE-123	Unconf Ined			PUMP	01/01/81	15
899-44-04	ST1E-254	UNCONFINED			рийр 1	07/01/83	17
ธรร-45-04	SI TE - 255	Unconf Ined	• •		PÚMP	07/01/83	17
699-45-42	STTE-57 STTE-268	UNCONFINED UNCONFINED			rnwr rnwr	01/01/77 05/04/34	11
639-45-69	SI1E-96	unconf ined			PUMP	01/01/73	13
899-46-05	SIIC-156 SIIE-256	UNCONFINED UNCONFINED			Pump Pump	01/01/82 07/01/83	17
899-46-21A	SI 1E - 75 SI 1E - 124	UNCONF INED UNCONFINED			si'Nn 2018	04/17/78	32'' 15
699-47-00 [°]	SI 16-257	UNCONF INED	٠. ۲	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Linda -	07701 33	17

PAG: 18

.

SD-8HI-DP-061 Rev. 1

.

tocation	SAMPLE EVENT CODE	PRODUCTING ZONE	PACKER TOP	РАСХЕВ Воттом	SAMPLING METHOD	DATE	SOURCE
639-47-46	\$11E-269	UNCONFINED	······		римр	06/04/84	18
699-48-07	511E-258	UNCONFINED			PUMP	07/01/83	17
PDD 48 18	ST1E-125	UNCONFINED			PUMP	01/01/81	15
PBB-48-11	S11E - 59	UNCONFINED ,			PUMP	01/01/77	11
699-49-10	S11E-259	UNCONFINED			PUMP	07/01/83	17
£28.48-22	S17E - 9 S11E - 39 S11E - 58 S11E - 78 S11E - 47 S11E - 126 S11E - 126 S11E - 157	UNCONFINED UNCONFINED UNCONFINED UNCONFINED UNCONFINED UNCONFINED UNCONFINED	• •		РИМР РИЛР РИЛР РИМР РИМР РИМР РИМР	01/01/74 01/01/76 01/01/77 04/17/78 01/01/79 01/01/81 01/01/82	8 10 11 12 13 15 16
Paa-4a-22V	SI 1E - 182	UNCONFINED			PUMP	05/11/82	2
nna 4a-21	S11L-38	UNCONFINED			PUMP	01/01/78	10
£88⊬48- 1 8	5118-20	UNCONF 1NED			римр	08/01/75	9
14 199-20-08	5111-64	UNCONFINED			PUMP	04/19/78	12
599×50×28B	SI11-63	Unconfined			PUMP	04/19/78	12
ธ99÷50 42	5171 - 14 5176 - 115 STTE - 271	UNCONFINED UNCONFINED UNCONFINED			¹ Римр Римр	08/01/75 01/01/80 08/04/84	9 14 18
899-50-53	SI1E-270	Unconf ined			PUMP	06/04/84	13
899-20-82	\$111-127	UNCONFINED			20M2	01/01/81	15
099-21-03	SITE-118	Unconf ined			PUMP	01/01/80	14
898-23-193	S17E-160	UNCONFINED			римр	01/01/77	11
eaa-20-41N	S11E-272	UNCONFINED			PUMP	05704/84	18
323-54 34	S11E-273	UNCUNE INED	•		PUMP	05/04/84	15
699-55-50C	SIIE-19 SIIE-128 SIIE-193 SIIE-274	UNCONFINED UNCONFINED UNCONFINED UNCONFINED			римр Римр Римр Римр	04/17/78 01/01/31 03/09/82 05/04/84	12 15 2 18
naa 72-10	ST1E-71	UNCONFINED			Fump	04/18/78	12

1

SD-EWI-DP-OGI Rev. 1

.

PAGE 10

.

.

lucation	SAMPLE EVENT CODE	PRODUCTING ZUNE	PACKER TOP	PAGKER 807 TOM	SAMPLING METHOD	DATE	SOURCE
599-55-76	SITE-117 STTE-120 .	UNCONFINED UNCONFINED			PUMP PUMP	01/01/80 01/01/81	14 15
899-55-89	SITE-118	unconf i ned			PUMP	01/01/80	14
899-56-53	SITE-194 SITE-195	UNCONFINED UNCONFINED	·		PUMP PUMP	01/11/52 01/11/82	22
399-57-25A	SI1E-119 SI1E-275	UNCONFINED UNCONFINED			рцмр Рцмр	01/01/80 08/04/84	14 18
699-57-29A	SITE-276	UNCONFINED			PUMP	25/03 184	13
699-57-83	S17E - 130	UNCONF THED			PUMP	04/03/81	15
699-59-58	SI IE - 107 SI IE - 277	UNCONFINED UNCONFINED			PUMP PUMP	01 10./80 06/04/84	14 18
899-80-32	SITE-278	UNCON THED			bîmu	23/04/84	18
609-60-57	STTE-198	UNCONF INED			PUMP	00,110,182	2
699-62-31	SI1E-131, SI1E-279	UNCONFITED UNCONFITED			PUTAP PUMP	02/01/81 05/04/84	15
0899-63-25A	S11E-132	UNCONF TYED			קאיור	71/01/31	15
699-63-55	SITE-280	UNCONFINED	•		PUMP	06/04 .84	18
899-63-58-	SITE-281	UNCUNF IMED			FUMF	03/06/34	18
£83-P3-A0	SI1E-74 SI1C-133	UNCONFINED UNCONFINED	•		rtinda BANKE (04/19/78 01/01/31	17. 15
689-64-27	STIL-158	UNCONFINED			Pump	91/21/32	18
199-65-50	STTE-73 STTE-134 STTE-282	UNCONFINED UNCONFINED UNCONFINED			римр Римр Гімр	04/18/78. 01/91 01/91	12 15 13
:99-66-103	85-203 86-73 86-112 85-294	UNCONFINED UNCONFINED UNCONFINED		124	руумр Ругир Ромр Римр	94/11/85 11 108/85 01 17 38 05/15/35	1
699-86-39	S11E-105	UNCONF INED			PUMP	01/01/81	15
668-66-58	SI1E-136	UNCONFINES		, ··· *,	P. MP	01/01 81	15
C.9-05-64	S11E-107	UNCONF 1SED	•	lst is t≁	PUMP	01/01/83	15

7491 20

.

.

SD-EWI-DP-OEJ Rev, 1

. : 0 · : .

.

•

.

10643308	SAMP1E EVENT CODE	PRODUCING ZONE	PACKER TOP	PACKER BOTTOM	SAMPLING METHOD	DATE	SOURCE
923-91 38	SITE-260	unconfined			PUMP	07/01/83	17
699-69-38	STIE-6	UNCONFINED			PUMP	01/01/74	3
222-11-30	* S11E-10B	UNCONF 1 NED			PUMP	01/01/80	14
699 /1-52	2115-108	UNCONFINED			PUMP	01/01/81	15
099-72-73	SIJE-109	UNCONF INED			PUMP	01/01/80	14
200 12-8R	STIE 99 STIE 261	UNCONFINED			римр Римр	01/01/70 07/01/83	13 17
699-72-92	S11E-262	UNCONFINED			PDMP	07/01/83	17
699-11-36	SIIE-110	unconf ined			PUMP	01/01/80	14
699 78 62	S11E - 111	Unconf Ined			римр	01/01/80	14.
899-81-28	S11E-159	UNCONFINED			римр	01/01/82	15
699-83-47	SI46~112	UNCONFINED			ትቦሃኑ	01/01/80	14
ยุคล พ	\$11E~99	UNCUNF INED			римр	01/01/79	13
เมษุ 90-45 ว	\$111-139	UNCONF INED			Pump	01/01/81	15

•

-

ŝ

SD-8WI-DP-061 Rev.

•---

.

PAGE 21

LET OF BUDGETHER DOCUMENTS BY SOURCE KUMBER

SOURCE NUMBER	RUDERENCE DOCUMENT
1	SANDLES COLLECTED BY THE BASALT MASTE FEOLATION PRODUCT (DWTP). ANALYSIS OF DEST HAJOR AND TRACE SPECIES DONE BY THE BULL SOLUTION CHUMISTRY LABORATORY OR ITS PEIDLESSON (RESEARCH AND UNGINIERING LABORATORY-ROCKWELL). ANALYSES OF OTHER SPECIES DORE BY VEDDOR LABORATORIES.
•	ORIGINAL RECORDS FOR ANALYSES PERFORMED BY THE BULF SOLUTION COEDISTRY LAB- ORATORY PEDER TO APPROXIMATELY SEPTEMBER 1, 1985 ARE FOUND IN LABORATORY NOTEBOOKS STORED REPRESENTED AFTER THAT DATE ARE KEPT IN THE BASALT RECORDS PERHANENT RECORDS CERERATED AFTER THAT DATE ARE KEPT IN THE BASALT RECORDS HARAGEMENT CERTER (BREC). ORIGINAL RECORDS FOR ALL VERDOR SUPPLIED ANALYSES ARE OR FILE WUNDER THE HYDROCHTHISTRY DRIT. IN THE FUTURE, THE PERHANENT RECORDS FOR ALL HYDROCHTHICAL DATA WILL BE OR FILE WITH THE BREC.
2	GRAHAM, M. J., 'AST, G. V. AND FECHT, K. R., 1984, AN ASSESS' 287 OF AQUITER INTERCOMBUNICATION IN THE B FORD - GAULE HOURTAIN 155' ANEA OF THE HANFORD SITE, RHO-RE-ST-12, ROCKWELL HARFORD OPERATIONS, RICHLARD, WASHINGTON,
3	STRAIT, S. R. AND PROME, R. A., 1982, GEOHYDROLOGY OF THE RATTLESNAKE RIDGE INTERDED IN THE GABLE HOUNTAIN FORD AREA, RIG-ST-38, ROCKWELL HANFORD OFFRATIONS, RIGHLAND, WASHINGTON,
4	LASALA, A. H., CR. AND DOTY, G. C., 1971, PRELIMINARY EVALUE TYBOP HYDROLOGIC PACTORS RELATED TO RADIOACTIVE WASTE STORAGE IN MASALTIC ROCKS AT THE HAPPORD RESERVATION, WASHINGTON, OPEN-FILE REPORT. U. S. GEOLOGICAL SURVEY, MASEINGTON, D. C.
5	APPS, J., DOE, T., DOTY, D., DUTY, S., GALBRAITH, R., KEASHS,, KOURT, B., LONS, J., HORKOE, A., NARASIHHAN, T. N., NELSOH, F., WILSON, C. R., AND WITHERSITON, P. A., 1979, GEOHYDROLOGIC STUDIES FOR MOCLEAR WASTE ISOLATION AT THE HARFORD RESERVATION, 101-0764, VOL. 2, LAWRENCE BURKELEY LABORATORY, BERKELEY, CALIFORNIA.
ն	DATA FROM U. S. GEOLOG CAL SURVEY DATA FILE, 1978, AS REPORTED TO SUPPLERS, V. K. AND VEBER, P. A., 1978, DATA FOR VELLS PERETOATING DASALT IN THE PASCO BASIN ARTA, VASILINGTON, RIG-BUI-C-19, 6 VOL. ROCKVELL HARFORD OPTRATIONS, RIGHLAND, VASILINGTON.
, 7	LASALA, A. H., JV., 2017, S. G., AND PEARSON, F. J., JR., 19 A PRE- LIMIMARY EVALUATION OF REGIONAL GROUNDWATER FLOW IN SOUTH-CENTRAL WASH- INGTON, OPTH-FILE REPORT, 0. S. GEOLOGICAL SURVEY, WASHINGTON, D. C.
8	RAYNORD, J. R., MYENS, D. A., FIX, J. J., MCCHAR, V. L., AN. SUNYXE, P. H., 1976, UNVIRONATIVAL DOBITORING REPORT OR THE RADIO//SICAL STATUS OF GEODERATIC SURFACT THE HARVORD SITE, JARUARY DECEMBER, 1976, SAUL- 1970, BATTELLE, PACIFIC RORTHREST LABORATORIES, RICHLARD, WASS WEFOR,

22

CD-EWI-DP-051 Rev.

اسو

11

. .

A 4117 OF REFERENCE DOCTORENTS IN COURCE NUMBER

LOORCI NDODUR	REFERENCE DOCUMENT
ij	HVERS, D. A., LIX, L. L., PLUMMER, P. J., RAYMOND, J. R., HEGHAR, V. L. AND HILTY, E. L., 1976, INVIRONMENIAL MONITORING REPORT OF GROUNDWATER DEREATH THE HANFORD SITE, FANDARY DECEMBER 1975, BRWL-2034, BATHILE, PACIFIC NORTHREST LABORATORIES, RICHLAND, WASHINGTOR.
10	MYFKS, D. A., FIX, J. J., AND RAYMOND, J. K. 1977, ENVIRONMENTAL MORT- TORING REPORT OF CROUNDWATCH BENEATH THE HARFORD SITE, JANUARY-DECEMBER 1976, DRUG-2199, BATTELLE PACIFIC NORMWEST LABORATORIES, RICHLAND, WASHINGTON,
11	MIERS, D. A., 1978, INVIRORMENTAL MONITORING REPORT ON THE STATUS OF GROUNDAVATER DEREATH THE MANFORD SITE, JARDARY-DECEMBER 1977, PRL-2624, PACIFIC RORTHNEST LABORATORIES, RICHLARD, WASHINGTON.
12	FDDY, P. A., 1979, KADIOLOGICAL STATUS OF THE GROUNDWATER BENEATH THE NAMEORD PROJECT, JANDARY DECEMBER 1978, PNL-2899, PACIFIC NORTHWEST LABORATORY, RICHLARD, WASHINGTON,
13	EDDY, F. A. AND WILBUR, J. S., 1980, RADIOLOGICAL STATUS OF THE GROURD- WATER BEREATH THE NANYORD SITE, JANUARY-DECLIDER 1979, PRL-3346, PACI- FIC NORTHWEST LABORATORY, RICHLAND, WASHINGTON.
14	EDDY, P. A. AND WILBUR, J. S., 1981, RADIOLOGICAL STATUS OF THE GROUND- WATER DERIATH THE HARFORD SITE, JANUARY DECIDBER 1980, PRI-3768, PACI- FIC ROFTHWEST LABORATORY, RICHLAND, WASHINGTOR.
15	EDDY, P. A., CLINE, C. S., PRATER, L. A., 1952, RADIOLOGICAL STATUS OF THE CROUNDWATER BEHEATH THE HANFORD SITE, JANUARY-DECEMBER 1983, PHL-4237, PACIFIC NORTHWEST LABORATORY, RICHLAND, WASHINGTON.
tti	EDDY, F. A., FRATER, L. S., KITCER, J. T., 1983, CROURDWATER SUBVEHIL- ANCE OF THE HANFORD SITE FOR CY1982, PRI 4659, PACIFIC ROKTRWEST LAB- ORATORY, RICHLARD, WASHYRGTON.
17	PRATUR, L.S., J.T. RIEGER, C.S.CLINE, E.J. JENSEN, T.L. LILLALA, AND K.R. OSTER, 1984, GROUND-WATER SURVEILLANCE AT THE HANFORD SITE FOR CY 1983, PNL-5041 - PACIFIC NORTHWEST LABORATORY, RICHLAND, WASHINGTON.
18	CLINE, C.S., J.T. RIEGER, AND J.R. RAYMOND, 1985, GROUND-WATER FORTWORING AT THE HARFORD SITE, JANUARY DECEMBER 1984, PHE-5408 PACIFIC NORTHWEST LABORATORY, RICHLAND, WASHINGTOR.

сы С SD-BWI-DP-061 Rev. 1

THIS PAGE THTENTION ITY LEFT MLANK

39

...

tocation	SAMPLE EVENT CODE	LAB PH PH UNITS	F1ELD PH Ph 08115	LAB COND MICROSIENENS/CM	FIELD COND MICROSTEMENS/CM	TURBIDITY TURBID UNITS	orp MV	SAMPLE TEMP(C)
ытик	85 255	7 85	1.80	268.00			-180.00	22 7
DB 01	81-19	& 55 8 05	8.24	438.00		0.18	-110.00	13 1
	82-27	0 33	8 67	431 00		0.31	-260.00	233
	85-32	8 95	9 05	482.00		0.40	-245.00	20.6
DB-02	79-65		· · · · ·					24.0
	81-13	8.66	843	463 00		2.00		16 5
08.04	79-71		6.07	490.00		1.80		20.9 22.5
08 07	79-89							22 0
	\$3-413	9 45	9.35	- 528,00		0 14	-380.00	24.6
60.00	85-216	9.05	9.15	530.00		19.00	-220.00	20.0
11 02	19-28 83 872	8 50	8 50	211 00 .		0.19	240.00	22.0
08-11	85-4	6 30	8 10	274 00		0.14	-240.00	22.4
	85-15		8 10	259 00		0 17	-	27 7
	85 18	8 10	0 10	262 00			-230.00	27 1
	80 52	8 11	/ 95	277.00		1.60	-250.00	26.5
	81-57		8 19	277 00				56 A
DB 12	63 95		8 05	*// 00	320 00			15 8
	81-25		8 46	301 00		1 80	140.00	17.1
DB-13	80~159			.				
1)11-14	81-404	8 35	\$ 32			0.28	-300.00	27.5
201 · 15	79.17	3 31	7 66	714.00	317 80	V.F.J		25.0
ц	79-35	7.80			327 00			19.6
	29-33		8 10		342 00			21.2
	79-15		8 20		382.00			22 0
	79-31		8 70		427 50			22 1
	79 25				450.50			22.8
	79 51		5 50					23.0
	79 85		9.67		798 20			24 0
	79.80		9.63		790.30			23.9
	79-90		9 31		741 00			20.0
	80 35		9 4 1		747 10			22 4
	80 24		9 53		758 90			25 4
	80-77		8 38		737 30			23.1
DC · 0.1	80-1 STLE 200	8 10	9.44		764.40	0 28		25:1
	SI IE - 226	8 50			314 00			
	STIE - 227	9 20	9 62		580.00			
	SI1E - 228	9 40	9 5 8		664.00			
	SI 1E - 229 SI 1E - 224	9 50	961·		707 00			
	STIE-231	00 6 A A A	8 60		353 00			
	STIE -233	8 90			344.00 402.00			
	STIE - 234	9 <u>3</u> 0			552 00		•	

-

PAGE 1

,

÷. *

.

:

١

location	SAMPLE EVENI , CODE	TAB 241 PH UNITS	FIELD PH PH UNITS	LAB COND MICROSIEMENS/CM	FIELD OND MICROSIEMENS/CM	JURGIDI Y TURBID UNITS	ÛRP MV	SAMPLE TEMP(C)
00-01	S112-235 S112-236 S112-237 S11E-237	9:50 10:20 9:70 8:90	9.70 10.43 9.94 8.10		773.00 804.00 \$39.00 403.00	,		
	SI 1E - 239 SI 1E - 240 SI 1E - 241	0.60 9.90 9.91	10.12		867.00 860.00 850		· ·,	
DC-02-42	SITE-242 SITE-243	0.70 8.90	9.70 9.10 2.40		80.) 630,00	•		22.3
00-02-72	\$11E-213 80-27	9.80	9.90 10.80		841.3.			33.4
DC-05 DC-06	79-30 80-161 80-72	9.00 9.90	20.00		1790.00			21.0
	S11E-214 80-238 80-191 80-13	10.10	10.10 10.20 9.62 8.55		1060.9 1128.9 1326.89	0.17 0.36	-330.05 -380.00	41.0 21.0 24.9
	79-59 81-05 80-118	· · ·	10.05	1291.70	1539)	0 27 2.10	-360.00	18.8
	80-15 81-82 80-29 79-58	9.70	9.40 10.44	1666.00	1578.00 886.70	0.08 0.21	-450.00	37.5
DC-07	\$0 - 75 82 - 23 82 - 10 80 - 39	9 15 9.26	10.50 9.89 9.57 8.40	1110.00 1126.00	1082.00	03 4.50 15.00	-420.00 -440.00	43.23
	79-52 80-103 80-188	•	9.10 9.83 8.95		1527	: . 8	-	19 J. 25 5
DC-12	80 - 196 80 - 80 80 - 100 80 - 97		9.48 9.21 9.40 9.45		1276 40 672 83 653 24 653 70	1 00	-60.00	23.6
	80-32 80-82 80-124		9.38		707	0 25 55,10 0,28	·	23.5 21.5 24.1
	80-174 80-209 80-233		9.5. 9.14 9.46		70% () 746,40	1.70	-210.00 -165.00 -250.00	20 8 24 7 25 1
	80-234 81-61,.	9.44	10 15 9.52	776.00	807,20	2.30	-300.00	28 î 41 7
bc-14	82~85 80~3 80~53		9 52 8 35 8 10	744.00	253.0:	0.27 0.27	-255.00	23.0 13.9 15.7
	• • •	•		•				

PA32 2

SD-BHI-DP-061 Rev.

اسر

٠

focation	SAMPLE EVENT CODE	TAB PH PH UNITS	FIELD PH PH UNITS	LAB COND MICROSIEMENS/CM	FIELD COND MICROSIENENS/CM	TURBIDITY TURBID UNITS	OR P MV	SANPLE TEMP(C)
BC 14	$\begin{array}{c} 80 - 47 \\ 80 - 69 \\ 80 - 59 \\ 80 - 89 \\ 80 - 71 \\ 80 - 189 \\ 80 - 189 \\ 80 - 112 \\ 80 - 155 \\ 80 - 155 \\ 80 - 155 \\ 80 - 104 \\ 80 - 129 \\ 80 - 129 \\ 80 - 170 \\ 80 - 129 \\ 80 - 170 \\ 80 - 129 \\ 81 - 30 \\ 81 - 30 \\ 81 - 30 \\ 81 - 44 \\ 81 - 141 \\ 82 \\ 84 - 31 \\ 81 - 31 \\ $	ย 50 9 70 9 74	/ 55 0 41 9 56 9 22 9 44 8 84 8 80 8 75 9 44 9 38 9 57 9 44 9 38 9 55 9 69 9 59 9 59 9 72 9 54	1340 00 1458 00 1543 00 1523 00 1510 00	281 83 353.60 390.00 351 70 396.00 315.80 325.90 323.00 357.50 361.09 358.90 351.40 421.40 757.40	0.19 0.16 0.12 0.18 0.18 0.18 0.15 0.20 0.10 0.02 0.11 0.24 0.19 0.34 0.19 0.34 0.16 0.45 0.54 0.29 0.10 0.41	-120 &0 45 00 -215 00 -210 00 -225 00 -300 00 -270 00 -350 00 -280 00 -295 00 -418 00	20 0 19 3 19 5 20 7 24 1 20 7 20 8 20 7 20 8 20 7 20 8 20 7 20 8 20 9 20 8 20 8
00 10 10 10	82 - 115 83 - 156 83 - 157 83 - 157 83 - 178 83 - 183 83 - 150 83 - 266 83 - 266 83 - 266 83 - 261 80 - 56 80 - 54	9 21 9 15 9 19 9 20 9 14 9 10 9 20 9 10 9 20 9 20	9 53 9 60 9 30 9 33 9 33 9 30 9 60 7 80 8 25	1550 00 1559 00 1553 00 1554 00 1576 00 1572 00 1573 00 1570 00 1584 00	364.10 301.90	0 50 0 25 0 34 0 35 0 35 0 35 0 35 0 35 0 48 1 00	-290.00 -310.00 -320.00 -320.00 -300.00 -300.00 -325.00	31.2 29.4 29.7 30.2 30.2 30.5 30.5 30.5 30.5 17.0
ДС - 16А	$\begin{array}{c} 80 - 87 \\ 80 - 87 \\ 80 - 137 \\ 80 - 176 \\ 80 - 176 \\ 80 - 125 \\ 80 - 125 \\ 80 - 121 \\ 80 - 131 \\ 80 - 193 \\ 81 - 41 \\ 81 - 2 \\ 81 - 41 \\ 81 - 2 \\ 81 - 41 \\ 81 - 2 \\ 81 - 64 \\ 81 - 56 \\ 81 - 65 \\ 82 - 94 \\ 81 - 109 \end{array}$	9 /0 9 16 9 23 9 16 9 30 8 69	8 0 0 0 0 0 0 0 0 0 0 0 0 0	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1/9 50 477 00 419 50 450 00 65966 00 515 70 583 60 627 80	0,17 15,300 0,221 0,31 0,31 0,31 0,31 0,32 0,31 0,32 0,31 0,32 0,420 1,40 0,420 1,700 1,700 1,700 0,4200 0,4200 0,420000000000	-240.00 -390.00 -140.00 -380.00 -420.00 -90.00 -70.00 -305.00 -420.00 -330.00 -330.00	212222222222222222222222222222222222222

SD-&WI-DP-OG1 Rev.

.

PAGE 3

.s. 8

15 . . .

•

.

.

location	SAMPLE EVENT CODE	LAB PIL PIL UNITS	FIELD PH PH UNITS	LAB COND MICROSIEMENS/CM	FIELD COND MICROSTEMENS/CM	TURBIDITY TURBID UNITS	ORP • MV	SAMPLE TEMP(C)
DC-16A	82-17	8.04	7.25	293.00		0 18	-245.00	24.1
	82-19	9 38	9.14	795.00		1.00	-450.00	29.7
	82-188	9.09 20.8	9 43	878.00		0 52	-405 00	21.5
. .	82-143	9,11	9.44	1236.00	1	5.40	-425.00	22.4
	82-202		9.07	1230.00	,	0.50	-170.00	31.6
	82-322	8.95	9.11	1673.00		0.14		34.2
	82-332	9.00	8.30	1663.00	•	0 24	-375.00	36.0
,	82-419 82-430	9.32	P 15	1738.00	•	1.35	-390.00	23.4
00- 180	83-29	9.18	9.51	1746.00		0.51	-350.00	25.0
DC-16C	83-100	8.76	9.20	288.00		e.30	-205.00	29.4
DC-18	83-259	8.40	3.80 0.18	920.00 388.00		ð. 13 5 00	-216 00	30.5
DC 19C	84-53	8.50	8.60	941.00		3.35	-370.00	28.7
· · ·	84-40 84-75	9.00	8 85	942.00 1009.00		0.57	-100.00	24.0
00-200	84-86	9.05	3,85	888.00		3.25	-330.00	23 3
100-200 1000-220	84-105	9 00	9,15	639,00		3.83	-310.00	30.5
CDC-23GR	86-133 86-141	9.41	9,30 9,253	705.00		C 50	-255 00	28.0
F	86-181.	9.94	0.92	602.00		4.60	-410.00	25.5
LNYEANI	STIE-209 STIE-210		7.70 3.50	· · · · ·	277.09 290.00		* 1	ູຊ3ຸດ
	84-166	8.13	3 05	280.00		D.11	-210.00	22.2
	85-180	8:05	7 95	270,00		0.13	-140.00	20.2
r ord	S1(E-206 S1(E-207	с. ,	7.80		291.00	,		23.9
• •	SIIC-219		8 10.0		302.05			
	85-188	8.02	8,05	283,00 289,00		0.28 9:45	-210.00	24 3
ADGLE	5118-224		2.10		290 12			·····
	SI 1E - 221		3 10	• •	235	•.	1	
	STIE-225 STIE-220		20	• •	193 (96)	<i>.</i> .	1,,	.
	82-7	6.88	1 63	283 00	.	4.13.	-300 00	2.5
	85-300	8.05 7.95	X 05 7 90	262.00 278.00		0.23	-155.00	. 0
	86-34	8.00	Ţ. ??	278.00	010 AC	9.37	-250.00	24.9
	81-79	8.11	7 85	280.00 -	218.00	29	-250.00	24.3
• *	81~54 82~64	8.09	7.69.	281.00		0.12	-205.00	25.0
•			• • • •			e". • J	-303.00	49,J

. ..

10 g 10 ge

SD-8WI-0P-061 Rgv.

•ر ـــر

.

2105 4

Ν.

SAMPLING EVENTS SAMPLE TYPE. CONFINED

forațion	SAMPLE EVENT CODE	LAB PH PH UNITS	FIELD PH PH UNITS	LAB COND MICROSIEMENS/CM	ÉTELD COND MICROSTEMENS/CM	TURBIDITY TURBID UNITS	08 P 14V	SAMPLE TEMP(C)
HUGLE	82-263 82-397	/ 3/ 7 10	/ /0 8 11	271 00 283 00 283 00		0 15 0.19	-250.0	0 26.7 0 28.2
	82 430	8 11	7 80	288 00		0 10	-100 0	0 31 7
	83 32	7 65	7 56	281 00		0.25	-150 0	20.4
	83 188	2 98	8 00	282 00		0.25	-210 0	31.8
	83 373	9 40	9 40	388 00		0.20	-350 0	27.3
	83-460	9 25	9 45	395.00		0 12	- 350 .00	263
	83-476	9 40	9.40	389.00		0 23	- 300 0	26.6
	83-513	955	950	524 00		0.54	-340 0	D 27.9 D 25.8
DURTAH	85-194	7 95	7.85	284.00		0.42	-205 0	5 19 0
RR1 - 02	82-58	9 09	9 14	810.00	•	0 32	-160 01	0 6 5
	82-170	8 60	8.30	1408.00		11 00	-202 0	28 1
	82-122	8.60	8.76	1856 00		0.28	~405 0	26 9
	84-7	9 60	9 60	1632 00		10 00	-290 01	2 2 3 4
	82-364	9 38	8 41	1740.00		0 25	-220 0	294
	82 456	9 30	9 14 9 78	1/47 00		42 00	-300 04	25.0
KRI OUB	83-25					42 00	400.00	
4 KIKL 14	82-403	9 40	9.48	1634.00		0.53	-50 00	0 22 9
-	81-151							
511111 A	83-49	7 15	1 06	206 00		A 99	176 0	5 5 11 E
Sitti i	85-297	8 01	6 05	302 00		1 60	-140 00	0 19 9
5 3 5 P 1 '2	86 31	8 12	7 80	302 00		0 50	-150 0	195
299 116 01	STIE-161	8 60	9 05	293 00	325 00	0 30	-25.00) 19 5
	STIE - 162	8 30	8 45		380 00			22.9
	STIE-163 STIF-164	8 80 8 60	8.35		370 00			22.8
299 626 08	S11E - 166	8 40	8 50		360 00			21.3
	STIE 167 STIE 169	8 30	8.35		370 00			19.5
299 133-12	STIE 170	9 10	975		345.00			20.6
	ST IE - 174	9 00	9 45	•	305 00			Ĩ9.7
699-511 E12A	80.61	8.90	8 25 8 15		315.00	0.12		19.9
· · · · · ·	80 180		8 04		356 00	ŏ 14	-190.00	
698-42 40C	STIE-176 STIE 177	1 80	7 70		425 00			18.0
	STIE-176	8 30	9.FJ		260 00			13.4
	STIE 179	8 20	8 45		330.00			19.5
699-47-50	STIE - 205		1 50		521 60			13.3

SD-BWI-DP-061 Rev.

<u>م</u>ــــز

.

PAGE 5

.

ċ

. .

÷.,

.

Lucalion 899-47-50 609-49-550 609-50-45 899-50-48 699-51-46 609-52-46 699-52-46 699-52-48 899-53-50 899-54-57 699-56-53	SAMPLE EVENT CODE SITE-181 SITE-183 SITE-184 SITE-186 SITE-203 SITE-186 SITE-204 SITE-188 SITE-204 SITE-188 SITE-201 SITE-201 SITE-201 SITE-200 SITE-199 SITE-190 SITE-192 SITE-197	I AU PII PII UNITS 7.80 7.60 7.60 7.50 8.20 8.20 8.20 8.80 8.00 8.00 7.60 7.60 7.50 7.60	FIELD PH FH UNITS 7.80 7.80 7.80 7.80 7.80 7.50 8.90 7.50 8.90 7.50 8.90 7.65 7.40 7.65 7.40 7.55 7.80 7.50 8.90 7.85 7.80 7.80 7.50 7.50 8.90 7.80 7.55 7.50 7.50 7.55 7.20 7.55 7.20 7.55 7.80 7.55 7.80 7.55 7.80 7.55 7.80 7.55 7.80 7.55 7.80 7.55 7.80 7.55 7.80 7.55 7.80 7.55 7.80 7.55 7.80 7.55 7.80 7.85	I AB CUND MICROSTEMENS/CM	FIELD COND MICROSTEME 43/CM 550.00 375.00 365.00 301.10 410.00 320.30 470.00 320.00 254.80 313.40 350.0 350.0 306.33 306.33 350.00	IURBID VY IURBID UNITS	NR P MV	SAMPLE ; ID. 4 IS. 1 IS. 2 IS. 2 IS. 2 IS. 2 IS. 3 IS. 4 IS. 4
Ω								
· •.								· •
•••• ••		: · · · ·	•			: · · · · · · · · · · ·	•	

PAGE 6

••

SAMPLING EVENTS SAMPLE TYPE: PRECIPITATION

. •

٠

location	Sample Event Code	TAB PH PH UNITS	ГТЕТР РИ РИ (МТТS	LAB COND MICROSIEMENS/CM	FIELD GOND MICROSIEMENS/CM	IURBIDITY IURBID UNITS	OR P MV	SAMPLE TEMP(C)
51A110N-03	82-89 82-51							2 0
	82-81 82 78							76
	82 - 179 82 - 138							90
	83-90 83-46							14.0
	83-118 83-189							10 0
	80 114 83 143							8 5 14 0
STATEUR 04	83-277 82-15			н Т				17.0
	82-60 82-60						•	7.2
	82~50							9 0 3 0
	83-36							18.0
								7.8
	83-110							1.0
ца ал	83-102 83-165							8.5 5.0
	83-180 83-250							13.0
STATION 07	82 · 46 82 · 92							2 2
	82 57 82 44							95 11.0
	82-136							10.0 20.0
	83-23 83-191							12.0
	83-148 83-169							20
	83-181 81-124							70
STATION-14	8.1 - 20.8 82 - 3.8							
	82-20 82-63			•				9 X
	82~86 82~178							10 0
	82-147 83-71				• •			17 5

SD-BHI-DP-061 Rev.

،__.

.

.

· .

> ' i (

PAGE 7
SAMPLING EVENTS SAMPLE TYPE: PRECIPITATION

.

location	SAMPLE EVENT CODE	LAB PII PII UNITS	FIELD PH LAB COND FIELD COND JURBIDITY ORP PH UNITS MICROSTEMENS/CM MICROSTEMENS/CM TURBID UNITS MV	SAMPLE TEMP(C)
STATION-14	83-55 83-132 83-184	•		19.0 70
	83-160 83-174			13.0
	83-128 83-149 83-205			50 11.0
S1A1108-17	86-106 82-99			17.0 2.4
	82-53 82-95			101.0
	32-70 82-80 82-100			0.6
	82-113 82-134	•	•	3.0 9.0
	83-11		•	A.0 7.5
	83-120			5.0
	83-182 83-126			5.S
1	83-162	•		1.0 9.0
STATION-20	82-50 82-16			3.8
	82-26 82-58			
	82-74 82~54 82-1			6.0
	- 82-96 82-196		· · ·	33 4.0 2.0
	82#197 83-37			12.0
	23-14 83-170 83-130			\$.5 2.0
	83-119 83-158			4.0
S1A1108-25	82-9 82-75			242.0
	82-24 82-83 82-66			2.0
• • • • •	82-79 82-25		 A second s	8.0 6.6
	• • • • • •	and a second		~ ~ ~
	х. [,]			•

PAG: δ

SD-BHI-DP-061 "EV.

SAMPLING EVENTS SAMPLE TYPE: PRECIPITATION

.

.

.

tocation	SAMPLE EVENT CODE	LAU PH PH UNITS	FIELD PH PH UNITS	I AB COND HICRUSTEMENS/CM	FIELD COND MICROSTEMENS/CM	TURBIDITY TURBID UNITS	DR P HV	SAMPLE TEMP(C)
STATION 25	82 - 47 82 - 153 82 - 153 83 - 89 83 - 53 83 - 134 83 - 134 83 - 142 83 - 142 83 - 190 83 - 198 83 - 135 83 - 217							10 0 8 5 14 5 10 0 13 0 5 5 4 0 5 0 10 0 2 0 11 5 17 0
STATION-26	82-29 82-32 82-48 82-91							2_0 1_0 1_0
Ω.	82 98 82 71 82 71 82 19 82 110 82 110 83 3 83 70 83 70 83 153							50 32 55 30 120 50 110 30
	8.3 - 177 83 - 171 83 - 167 83 - 167 83 - 101 83 - 104 83 - 104 83 - 284 86 - 108							4.0 15.1 11.0 12.0

2AGE 9

.

SD-8WI-DP-061 Rev. **p**-14

.

SAMPLING EVENTS SAMPLE TYPE. SPRING

.

.

.

. .

location	SAMPLE EVENT CODE	LAB FR PH UNITS	FIELD PH PH UNITS	LAB COND MICROSIEMENS/CM	FIELD COND MICROSIEMENS/CM	TURBIDITY TURBID UNITS	OR P MV	SAMPLE TEMP(C)
SP-BENNET F	SITE-218		7.50		230.00		•	13.0
	79-13	3 60	7.15	262 44	220.30	0.00	140 00	11.2
	20L-C8	7.03	1.50			0.30	100 00	12.2
SP-BENSON	S11E-217	7.30	1.30	200.00	200.00	0.00	39.00	13.5
SP-BUTLER	79-1		\$ 80		201.10			12.0
SP GUICH	84-359	7.55	7.65	431.00				15.2
SP-JUNIPER	STTE-215	8,30	8.30		280.00			20.0
	19-2	7 0.3	2.30	224 00 1	330,00	A 1.0		47.J
	81-113	1 00	7 75	357 00 '		0.10	150 00	17.7
SPALD-SHIVELY	79-34	1.50	1 60	454.00	220 0.	V. 12	130.00	14.2
	82-362	7.09	7.34	221.00 .		0.36	140.00	14.9
	83-396	7,85	7.75	231.00	•	0.21	170.00	14.7
SP-LOZIER	79-6		7.35		212.84		•	12.5
	81-186	7.50		215.00		9.35		
en maneti	83-316	1.20	2.22	221.00		0.75	122.00	12 9
SP-MAIDEN	19-100	7 6.	1.15	170 00	•	0.28	120 00	12.8
50-005FRVAT0RV	81-110	7.0.5	. 4.5	219 00		0.23	170.00	11.0
31 - OUSERANTON 1	83-433	7.85	7 35	211.00		0 13	-30.00	12.4
	84-392	7.40	2.55	220.00		1.33	140.00	10.0
	84-329	•••	• • • •					
• •	85-359	7.5"	2.85	217.00	_	0.32	195.00	10.1
	86-178	7 97		219.00		3.20	120.00	. ş. g
SP-RAILRDAD	/9-/6	· · · ·	1 - U		248 98			
C C C C C C C C C C C C C C C C C C C	3116-210 70-99	1.14			275.00			· · · · ·
	k3-412	7.55	,	395 00	420.20	2 34	130 00	2: 0
SPISNIVELY	79-49		\$ 75	333.00	193.50		100.00	3.4
SY-SULFUR	79-29		5.20		214.2.			14.1
	83-409	7.50	1.65	235.00		0.34	100.00	16.0
SP-URNAMED-02	79-75		7.85		206.05			,12.0
SP-WRIATED-16	79-73		2.00	•	197.30			13.2
5P-0300400-20	79-98	1 36	2	•				11.0
SP-HP-SHIVELY	79-71	1.35	7 55		186 5"			4 1
al of antert	81-126	7.77		195 00	105.01	0.26		•••••
	83-503	2 95	6 . 3	188 00		0.30	-20.00	13.0
	86-193	7.86	7.12	205.00		9.27	110.00	12.8
SP-UR2-07	85-343	6 72	5.73	238 00 -		÷ 30	195.00	13.0
	86-159	6 9;	6.33	252.00	•	27	135.00	
SP-086-20	85-346	6.86	5 70	232.00		3 30 .	180.00	- 1 <u>7</u> - 2
54-1-67-22	80-332	7.0	2 1	238.00		0 A 2 5 95	140.00	1.2
51-581-22	86-157	7 71	5 19.	229.00		0.30	133.00	14.5
SP-VARM	84-358	7.60	4.83	308 00		•	155 00	22 3
SP . YX3 . 04	85-333	06.0	3 10	236.00		ý. Ev	\$80.00	12.3
	85-130	7 03	5.94	262.00	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	6.38	162.00	8.0
SE-Y85-08	85-336	6.52	3.65	218.00		0.20	250.00	13.5
• ' ·	4 / 4 M A		•					

. 1 1 ÷

. 1

PAS 1 10

.

• .*

:

SD-BWI-DP-061 Rev.

SAMPLING EVENTS SAMPLE TYPE: SPRING

location	SAMPLE EVENT CODE	TAB PH PH UNITS	F1E1D PU PH UN135	LAB COND HICROSIEMENS/CM	FIELD COMP MICROSTEMENS/CM	IURBIDITY IURBID UNITS	0RP MV	SAMPLE TEMP(C)
SP YR5 08 SP YR7 14	86-147 85-339 86-156	6 65 6 89	6 65 6 87	952 00 177 00 158 00		0 85 0 40 0 7 3	190 00 245.00 165.00	5.5 11.8 7.6

,

001

į.

SAMPLING EVENTS SAMPLE TYPE: SURFACE

localion	SAMPLE EVENT CODE	TAB PH PH UNITS	F.T.D PH PH UNITS	LAB COND MICROSIENENS/CM	FIELD COND MICROSIEMENS/CM	TURBID UNITS	OKP MV	SAMPLE TEMP(C)
COLD CREEK	84-317							
	84-302	8.50	8.10	308.00		1.60	165.00	19.0
	85-223	8 40	8.50	278.00		1.80	112.00	14.0
CR-DC-14	83-258	7.50	5.80	150.00		0.30		6.9
CR-DC-15	81-68							
ı	81-1							
C8-1115	SI1E-221	8.70	5.70		115.00			22.2
CK-V-BK	84-330							
	84-311	8.29	8.00	117.00		1.50	160.00	20.7
	85-206	8 40	8.50	152.00		1.30	25.00	11.0
	85-266	8.35	8.15	123 00		1,60	87.00	20.2
	86-70	8.04	1.50	128.00		1.60	125.00	11.9
	86-109	7.93	7.94	143.00		1.10	126 00	11.9
YR-IIR	85-210	7.35	7.25	. 122.00		23 50	135.00	<u>.</u>].0
•	85-269	8.47	8,40	291.00		22 00	• 73.00	25.7
	86-67	1.97	7.55	218.00			205.00	10.2
	86-118	8.09	5.95	260.00		15.30	162.00	3.7

io .

.

٩

•

.

SD-8WI-0P-061 Rev. 1

•

PAGE 12

. •

а•е ,

SAMPLING EVENTS SAMPLE TYPE: UNCONFINED

.

tocation	SAMPLE EVENT CODE	LAU PH PH UNITS	FIELD PH PH UNITS	LAB COND MICROSIEMENS/CM	FIELD COND MICROSIEMENS/CH	TURBIDITY TURBID UNITS	ORP MV	SAMPLE TEMP(C)
RRI - 06A	82-40	7.13						17 9
199-804-04	SI1E-41		7.60		310.00	0.00		39 1
199-005-12	ST1E-80	8.00	7 70	338.00	335.00	4 20		24.2
199-1908-03	STIE - 72	7 80	7.80	314.00	320.00	2.00		32.5
199-105 01	STIE-82	7 90	7.80	232 00	228.00	0.80		20.6
199-1104-03	SI 1E - 81	8.00	7.90	3500 00	3500.00	3.90		22.4
199 K-19	STIE-83	8.00	8.10	240,00	235.00	0.70		22.2
199-1-15	STIE-42		7,90		194.00			20.7
299 126-08	STIE - 165	8.20	7.70		395.00			
299 £33-12	STIE-169	1.60	2.10		630 00			
399-01-01	STIE - 244		1 40	*	212.00	0.20		17.1
797-01-01	5111-43		8.00		330.00			15.9
799-05-01	5111-245		6,90		183.00	0.50		17.1
103-07-01	5112-240		6.30		200.00	0.20		16.4
399-04-10	5116-44		1.50	244 62	302.00	1.00	•	17.5
	5116-140	8 00	1.00	718.00	310.00	2.00		16.6
099-11AH-19	5116-3	1.90		371 00	6 0 2 8 8	1.00		17.5
023.203-E15		0 46	9.40	56 6 60	223.00	4.00		16.8
Can tab be	5116-141	8.40	8 10	256.00	255.00	1.60		
022.202.52	5116-7	4 20	1,90	513,00	F 10 03			18.5
	511C~142 68 86	1 93	7 80	535.00	540.00	1.20		18.9
	80-33 80-130	1.02	1.13	210.00		9.50	-142.00	19.2
644. SA6. SAM	6116.11	/ 40	7 43	521.00		34.00	-1/2.00	18.0
1000-100-10 1000-10			7.50	410.00	ADA 00	5.00		
C 000.000.10	ST1E-90	8 I.A	1.00	122 00	420.00	0 0 0		18.0
NEGU-SIL CHAR	511C-04 611C-A	4.IU	a .uu	423.00	412.00	0.80		13 2
699.517.07	6116-46		2 00	352.00	245 00	1.00		11.2
035.315.03	6116-44	v 10	7.00	206 60	393.00	2.00		17.3
600.510 619	ST16-143	2.30	7 00	333.00	334.00	3.50		11.1
699-524-19	85-213	7.30	7 90	398.00	332.00	1.00		17.1
000.024.10	85-201	7 27	7 00			0.35	55.00	14.0
644-524-612	5115-21	1.41	7 90	203.00	205 .00	0.24	172.00	10.1
699-530-ELSA	5116-144	7 66 -	5 50	165 00		3 60		10.7
699-01-18	ST1E-145	8 40	8 20	422.00	430.00	0.00		13.3
699-02-03	5115-1		7 60	418 00	422.00	1 40		19.1
699-02-33	5115-85	0.8 C	7 30	352 00	725 0.0	13 00		10 3
	STIF-148	8 20	2 70	310 00	335 00	4 50		10.2
699-04-806	STIF-47	8 00	1.10	310.00	352 00	-1.50		12.5
699-08-17	ST 1E - 23	•.••	5 0.0		436 00	10.00		19 0
699-08-25	STIE-32		6 6.5		130 00	10.00		19 6
699-08-32	STIE-I9		7 80	361 00	430.00	3 00		19.5
699-09-202	STIE-16		2 80	322 00		2 00		• 7 •1
699-10-E12	STIE-14/	8 20	1 80	403 00	408 00	2 80		10.3
	S11E-247		7 80	103.00	424 00	ñ 2ñ		17 9
899-11-45A	STIE-148	8 00	7 70 .	293 00	290 00	1 20		10 3
	85-263	7 80	7 55	288 00	299 00	1 20	-127 00	19.0
	86-43	2 82	7 70	287 00		6 20	-65 00	10 1
	86-124	7.86	7 82	291 00		6 30	-60 00	17.4
699-13-01A	STIE-60	7.80	7 80	352 00	348 00	, v . u u	-00.00	17.4

SD-BWI-DP-061 Rev.

2-4

PAGE 13

.

and a standard warm and the second standard standard standard standard standard standard standard standard stan

SAMPLING EVENTS SAMPLE TYPE. UNCONFINED

: • •

.

,

location	SAMPLE EVENT CODE	TAB PH PH UNITS	FIELD PH PH UNITS	LAB COND MICROSIEMENS/CM	FIELD COXO MICROSIEMENS/CM	TURBIDITY TURBID UNITS	OR P MV	SAMPLE TEMP(C)
599-14-38	SI [E-61	7.80	7.80	315.00	300.00	2.00		19.0
899-15-158	STIE-13	7.30	7.70	408.00	310.00	4.00		19.1
699-15-26	SI 1E - 24	8.20	7,90	446.00	445.00	14 00		19.4
699-17-05	STIE-18	8.20	7.80	447.00	445.00	31.00		18.8
699-19-43	STIE-48	8.20	7,80	494.00	505.00 380.00	7.40		19.0
899-19-58	85-229 85-260	7.30	7.60 7.15 7.50	402.00 315.00 316.00	400.00	0.80 0.50 0.50	-150.00 -167.00	17.5 21.5 20.4
699-19-88	86-40 86-121 85-278	7.63 7.64 7.70	7.67	317.00 311.00 264.00	· .	1.29 1.10 0.35	-120.00 -170.00 225.00	19.7 20.0 17.6
699-20-E05-0	80-00 80-127 STIE-40	7.17	7,49 8,00	260.00	298.00	0.89 1.00	-12.00	17.2 17.4 19.3
699-24-33 699-24-46	STIE-25 STIE-28 STIE-122	7.90	7.90 7.90 7.90	323.00	460.00 455.00 325.00	23.00		17.5 19.4 20.5
099-54-92	85-288 86-61 86-115	7.47 7.46	7.85 2.00 7.45	418.00 351.00 415.00	•	19:00 7:30 1:35	-70.00 -115.00 -125.00	19.7 13.3 12.9
699-25-55 699-26-15 699-26-15A	STTE-100 STTE-26 STTE-263	8.00	3,00 8,00 7,90	392.00	461 .00 442.00	3.00 0.50		18,1 17,2 17,5
699-27-04 699-27-08	SI 1E - 101 SI 1E - 5 SI 1E - 30	8.00	8,00 8,00 8,00	354.00 486.00	349.00 468.00	24.00 1.00 1.00		17.5 35.3 35.3
	STTE-50 STTE-76 STTE-87	7 90 7 90	7.80 7.90 7.90	4/3 00 488 00	485.00 450 01 462.00	0.40		25 3 15 4 16 5
699-24-40 699-31-31	STTE-68 STTE-69 STTE-102	7.90 7.90 8.10	7,30 7,30 8,00	416,00 454,00 435,00	418.00 454.00	1.00 1.00 3.10		19.2 20.5 19.4
699-31-530 639-32-22	SI 1E - 88 SI 1E - 17 SI 1E - 27	7.80	8 00 70 8,00	394.00 533.00	382.04 315.2.	1,00 5,00 1,00		23 1 13 3 15 2
	SI1E-51 SI1E-65 SI1E-89	7 80 7 90	7,90 7,90 8,00	512.00 528.00	522 11 521 10 561 90	1 00 2.10 3.40		13 4 18 4 18 7
699-32-708	SIIE-70 SIIE-90 SIIS-152	7 89 7.30 8.10	7.70 7.80 7.71	351 00 353 00 342 00	340 00 360 00 363 00	3.00		20.3
399-32-72 699-32-77 699-33-42	STIE-35 STIE-103 STIE-12	8.20	7 80 8 04 7 20	285.00	297.01 280.00	28.VD 0.59		20 5 16 5
-	SI IF - 29 SI IE - 52		7.90	440.00	425 0. 420 04	5.00 4.00		19,5- 19,8

۰.

. .

SD-BWJ-DP-061 Rev.

سر

•

•••

PAC1 14

THE STATE AND AND A STATE

SAMPLING EVENTS SAMPLE TYPE: UNCONFINED

Lucation	SAMPLE EVENT CODE	TAB PH PH UNITS	FIELD PH PH UNITS	LAB_COND MICROSIEMENS/CM	FIELD COND HICROSTEMENS/CM	TURBIDITY TURBID UNITS	ORP MV	SAMPLE TEMP (C)
599-33-42	S[1E-67 S1/E-01	7.60	7.90	429.00	415.00	2 00		19.7
699-33-26	SI1E-8 SI1E-40	1.30	7.70	429.00	• 416.00	9.00		20.0
	SI IE - 53		7 70		420 00	1 00		21.5
	STIE-62 STIE-92	7.90	J. 90 7 80	427.00	430.00	4.00		21 2
699-34-39A	SI 1E - 93	7 90	7.90	412.00	405 00	1.30		21.5
699-34-42	SITE-153	8.20	7,90	387.00	433.00	1.00		20.8
699-34-51	SILE-66	2.70	7 80	- 434.00	424.00	•••••		21.1
000-10-00	STIE-104	8.10	7 90	394.00	352.00	1.30		17.3
699-15-66	SI1E-264	7 04	8.00	104 00	407.00	0.80		17.5
000-00-00	STIE-94.	8 00	7.90	412.00	400.00	0.90	•	21.2
699-35-70 699-35-78	STIE-36 STIE-54		7 70		489 00	10.00		20.4
699-36-61A	STIE-95	8.00	7.80	400.00	395.00	0.00		22 2
099-31-43	STIE-173	7 80	8 00 7 75		367.00	2.00		21.0
699-37-82A	S11F-105	10.40	10.70	387.00	382.00	7.40		18.0
2699-39-13	STIE-248		7 90		850.00 310.00	1.00		20.7
E 699-39-01	SI 1E - 249 SI 1E - 266		7.80		390 00	0.40		18.4
699-40-01	SI IE - 10		7.70	357 00	214.00	4.00		19.2
	SI 1E - 106 SI 1E - 250	8.10	8.10	389.00	390.00	1.00		17 3
(****** ***	SI 1E - 265		8.00		410.00	0.70		17.5
039*40*13	STIE-55 STIE-251		8.00		324.00	2 00		18.1. 38.1.
699-40-62 699-41-01	STIE-56		7 70		405.00	0.00		21.4
699-41-23	STIE-15		7 70	507.00	390.00	0.30		17.7
699-42-02	STIE-113 STIE-154	820 820	8.00	454.00	460 00	8.20		18.0
699-42-12	SI IE - 2		8 00	440.00	333.00	1.00		17.5
1	STTE-155 STTE-207	8.20	7.90	447 00	450 CU 426 00	1.90		17.6
- 699-42-40A	STIE - 174	7.90	7 . 95		395.00	0.50		18.1
699-42-400	SI1E-115	8 00	8 00	457.00	447.00	0 70		17.2
699-43-03 699-43-88	ST 1E - 253 ST 1E - 123	7 80	7.80	366 00	390.00	3 90		18.0
699-44-04	SIIE-254	1 00	7.80	100.00	385 00	170.00		18.0 17.5
699-45-04 699-45-42	STTE - 255 STTE - 57		7 70		379.00	0.70		17.1
	SI 1E - 268		8 10		261 00	1.60		18.8
028-42-08	STIE-96	8 00	8 00	430 00	420.00	3.40		20.0

"AGE 15

SD-BWI-DP-061 Rev.

.

SAMPLING EVENTS SAMPLE TYPE: UNCONFINED

1

÷

location	SAMPLE EVENT CODE	LAB FH PH UNITS	FILO PH PH UNITS	LAB COND MICROSIEMENS/CM	FIELD COND MICROSIEMENS/CM	TURBIDITY TURBID SINITS	OR P MV	SAMPLE TEMP(C)
599-45-05	STTE-156	8.20	7.80	402.00	410.00	1.00		17.7
599-46-21A	S115-256 S115-75	7 90	2.30	398 00	410.00	35.00		17.5
	5518-124	8.10	7.80	425.00	425.00	1.50		15.9
899-47-06	SI 1E-257		2.70		320 00	0.20		17.1
699·47-46	SI'I-269		3.89		443.00	0.50		17.5
699-48-07	5116-258	9 0.0	7.00	371 44	155.00	0 20		11.3
699-48-71	ST1E-125	a. 00	7 90	371.00	317 06	3 00		19 7
699-49-13	SITE-259		7.70		321.00	D.40		15.8
699-48-55	6-3772		3.10	601.00		10 00		
	\$115-39		8.20		580.00	4.03		17.0
	51115-58	0 7 7	8 20	E#0 00 *	635.00	2.00		17.4
	5112-78	6.70 8.00	8.40 0.20	504,00 604,00	00.00	1 00		17.0
	ST 1E - 126	9.50	10.00	601 00	590 00	14 33	•	17 0
	<u><u><u>S</u>iie-157</u></u>	8.80	8.80	637.00	632.00	16.00		18.3
699-49-55A	SI 1E-182	8.20	8.15		850.00			18.8
699-49-57	SI1E-38		-7 60		927.00			16.4
609-50-04	5112-20	7 65	1.60	388.00	200 1	2.00		
699-50-288	5112-63	7 80	7 80	327 00	290 04	1 00		10.2
699-50-42	SI 1E - 14		7.80	330 00	150.00	13.00		10.1
	STIE-115	7.80	2.70	215.00	212.00	32.00		16.7
the second s	SI 1E-271		7.70		304.00	5.50		19.0
C699-50-53 (Denn fn ff	SI1E-270	a \.	7.80	200 00	610.00	0.70		18.0
699-50-85	5116-127	8 00	8,00 8,00	208 00	204 60	2.80		20.0
699-53-103	ST 1E - 160		8 00	285 00	234.00	0.00		26 8
699-53-478	S11E-272		7.80	200.00	251.07	1 20		15.5
699-54-34	SIIE-273		7.30		326.00	3 .00		21.0
699-55-50C	S11E-79	8.00	7.90	236.00	230.00	1.00		16.4
	5112-128	8.00	7.80	233.00	235.00	3.60		16.8
	STIE-274	a.uu	3 00		245 5.	5 63		10.5
699-55-76	STIE-71	8.00	8.50	352.00	355 66	150 00		17.7
	S11E-117	9,00	9.10	298.00	284.00	2.80		17.2
	SI1E-129	7.80	2.70	254.00	255	5 13		27.0
699-22-89	S11E-118	8.10	8.10	308.00	304.1	2.79		17.7
099-20-21	5115-194	8.40	7.05.		260.99			14.6
899-57-25A	STIF-119	8 10	r.25 8.10	321 00	312 05	· · .		16.1
	SI IF-215	0.10	\$ 10	. JLI UU	316 00			25 0
509-57-29A	SI1E-276		\$1.80		295.00	1.20		15.5
699-57-87	STIE-130	7.90	7.70	285.00	285.00	2.80		17.3
037-28-28	STIE-107	8.20	8.20	266.00	203.01	Q. 59		.7.5
649-60-72	511L-2// ST1E-27W		8.10		209.55	0150 0 E0		17.5
699-60-57	STIE-198	8 10	7 95		375 00	N. 20		10.0
639-62-31	SIIE-131	7.60	7.30	339.00	338 00	15.00	· ·	17.5

۰·,

SD-8HI-DP-061 Rev.

مسو

PAs: 16

1

SAMPLING EVENTS SAMPLE TYPE: UNCONFINED

Location	SAMPLE EVENT CODE	LAB PH Ph UNITS	FIEID PH PH UNITS	LAB COND MICROSIEMENS/CM	FIELD COND MICROSIEMENS/CH	TURBIDITY TURBID UNITS	OR P MV	SAMPLE TEMP(C)
699 62-31	S11E-279		7 80		333.00	2 40		17.5
699-63-25A	STTE-132	8.00	7.80	518 00	515.00	1.10		16.8
699-63-55	SI1E-280		8.10		281.00	0.60		17.0
699-63-58	S11E-281		8.10		310.00	0.40		17.0
699-63-90	STIE-74	7 90	7.80	323.00	320.00	1 00		17.4
	S11E-133	8.00	7.80	318.00	325.00	1 50		17.0
699-64-27	SI I E - 1 S 8	8.10	7.80	759 00	775 00	2 40		17.7
699-65-50	SI1E - 73	8.10	8.00	276.00	272.00	1.00		17 7
	SI1E-134	8.10	8.00	280,00	280.00	1 10		19 0
	SI1E-282		8.20	,-	274.00	õ. ŠÕ		12 5
699-66-103	85-203	7.95	7.95	- 219.00		0 23	20 00	14 5
	86-73	8 03	7.65	206.00		0 00	114 00	13 4
	86-112	7.89	8.16	228.00 .		0 22	185 00	12 8
· · · · · · · · · · · · · · · · · · ·	85-294	8.03	7 80	228.00		0 19	175 00	16 4
699-66-39	STIE-135	9.20	9 60	378.00	375 00	1 40	110.00	17 5
699 66-58	STIE-136	8 10	7 90	217 00	286 00	1 40	•	16 9
699-66-64	STIE · 137	7.80	7.80	282 00		2 00		17 1
699-67-98	SELE-260		2.70		280 00	0 20		16 7
599-69-38	SIIE-6		7 50	704 00	200.00	1 00 .		14 5
699-71-30	SI1E-108	8 10	7 80	569 00	571 00	2 60		19.5
699-71-52	SI I E - 138	7 80	2 90	332 00	328 00	100.00		17 6
699-72 73	STIE - 109	8 00	2 00	287 00	285 00	14 00		10 7
699-72-88	S11E-98	7 80	2 50	294 00	280 00	0.10		21.2
	STIE-261		2 50	294.00	282 00	0.70		21.2
699-12-92	S11E-262		3 70		282 00	0.00		20.8
++699·27-36	STIF-110	1 90	2 80	862 00	830 00	0.90		17.0
2699-78-62	STIF-111	8 10	¥ 10	342 00.	333 00			10.0
0699-81-58	ST1E-150	8 20	8 00	342.00	322.00	0.90		10.2
699-83-47	ST(F=112		9 10	213.00	214.00	5 30		10.0
600-87-55	CT1F_00	8 20	0.JU	344.00	320,00	9.10		47.1
699.00.45	CT1E_130	3 60	3.00	212.00	203.00	0.30		16.9
0.49.00-49	2115-118	1.00	7.40	J45.UU	345 00	12.00		16.5

PAGE 17

(

•

SD-BHI-DP-061 Rev.

ه سو

50-8WI-DP-061 Rev. 1

•

·

THIS FAGE INTENTIONALLY LEFT DE ...

107

• • •

. .

SAMPLE TYPE: CONFINED ANALYSIS GROUP: MAJOR

٠

SAMPLING LOCATION	SAMPLING EVENT CODE	SAMPTE NUTBER	NA 11G/1 (A)	K HG/L (A)	CA NG/L (A)	м <u>G</u> MG/L (А)
шенк	85-255	85-255 85-256	27.900 [1] 28.400 [1]	6 840 1 6 900 1	15 300 (1) 15,500 (1)	9.140 (1) 9.230 (1)
08-01	81-19 81-65 82-27 85-32	81-15 81-19 81-65 81-70 82-27 82-87 85-32 85-33	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	13 100 11 13 200 11 16 000 11 15 900 1 15 300 11 15 300 11 15 800 11 15 700 11	1 700 (1) 1 780 (1) 0 490 (1) 0 500 (1) 0 430 (1) 0 490 (1) 0 420 (1) 0 430 (1)	$\begin{array}{c} 0 & 479 & (1) \\ 0 & 490 & (1) \\ 0 & 150 & (1) \\ 0 & 150 & (1) \\ 0 & 100 & (1) \\ < 0 & 100 & (1) \\ 0 & 084 & (1) \\ 0 & 095 & (1) \end{array}$
DH~02	81-10 81-10	CF123 81-11 81-13 81-10 81-7	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	13 500 (1 17 000 (1 17 300 (1 16 300 (1 16 500 (1	1 500 (1) 0.740 (1) 0.750 (1) 0.590 (1) 0.600 (1)	0 350 1 0 290 1 0 360 1 0 090 1 0 090 1
DU-04	79-77	CP116	77.800 [1]	10.600 [1]	0.560 [1]	0.160 (1)
00 01-07	79-89 83-419 85-216	CF121 83-413 83-448 85-216 85-217	118.400 (1) 117.000 (1) 114.000 (1) 113.100 (1) 112.900 (1)	14 200 (1 12 600 (1 12 300 (1 12 300 (1 12 300 (1	1.600 (1) 1.460 (1) 1.430 (1) 1.390 (1) 1.360 (1)	0.090 1 0.100 1 0.100 1 0.100 1 0.100 1 0.100 1 0.100 1 0.100 1 0.100 1
09 - 90 1	79-28 83-472	CP115 83-410 83-472	75 100 11 70 900 11 71,000 11	12 200 (1 10 520 (1 10 500 (1	0.560 (1) 0.450 (1) 0.450 (1)	0.130 (1) 0.100 (1) 0.100 (1) 0.100 (1)
DH-11	85-18 80-52 81-57	85-18 85-19 86-52 86-53 81-57	31.400 (1) 31.100 (1) 32.300 (1) 32.700 (1) 33.300 (1)	9 720 (1 9 610 (1 9 450 (1 9 640 (1 9 920 (1	$\begin{array}{c ccccc} 14.700 & 1 \\ 14.600 & 1 \\ 14.900 & 1 \\ 15.000 & 1 \\ 15.300 & 1 \\ \end{array}$	$\begin{array}{ccccc} 7 & 020 & (1) \\ 6 & 960 & (1) \\ 7 & 180 & (1) \\ 7 & 240 & (1) \\ 7 & 500 & (1) \end{array}$
DB-12 ·	63-95 81-25	63-95 81-25 81-42	16.800 (1) 31.400 (1) 31.500 (1)	7 100 1 9 240 1 9 310 1	25.300 (1) 18.800 (1) 18.900 (1)	13 500 (1) 10 300 (1) 10 300 (1)
DU-13	83-404	83-404 83-455	54.200 (1) 55.000 (1)	10,100 (1 10,300 (1	9.000 (1) 9.080 (1)	$ \begin{array}{c} 2 & 039 \\ 2 & 020 \\ 1 \end{array} $
DB-14	81-162	81-139 81-162	137 000 (1) 130 900 (1)	17 600 (1 16 370 (1	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	<pre> 0 020 (1) 0 020 (1) </pre>
08-15	19-17	79-17 79-4	44 400 (1) 42 000 (1)	10 400 [1 11 600 [1	18.900 (i) 19 600 (1)	4,900 {1 5 100 {1

.

SEE END OF THIS REPORT FOR A LISTING OF ANALYSIS METHODS.

and the second s

SD-BWI-DP-061 Rev. 1

PAGE 1

SAMPLE TYPE: CONFINED ANALYSIS GROUP: MAJOR

, **i** i

. . . •

SAMPLING COCATION	SAMPLING EVENT CODE	SAMPLE NUMBER	NA .MG/L (A)	X Mg/l (A)	CA MG/1 (4)	мg мg/1 (А)	
DB-15	79-35	79-20	78.400 (1)	7.120 (1)	2.360 [1]	0.380 (1)	
	19-33	79-27	33,000 (1)	8.170 (1)	2.040 (1)	0.390 (1)	
	79-15	79-33 79-15 79-46	82,100 (1) 89,900 (1) 90,700 (1)	8 160 11 10 600 11	2.000 (1) 1.620 (1)	0.400 (1) 0.460 (1) 0.470 (1)	
	79-39	28-39	97.100 11	10.600 (1)	1 328 111	0 460 11	
	- 79-31	78-31 78-31 78-5	97.800 (1) 91.800 (1) 93.900 (1)			0.420 (1)	
	79-51	79-51	171.000 11	14.800 11	2.030	0.050 11	
	79-85	79-74	179.000 11	15.400 (1)		0.820 1	
	19-80	79-80	171.000 11	15.800 11	1.500 11	0.340 11	•
	79-62	79-82	135.000 (1)	14.500 11	2.200 1)	0.240 11	
	79-90	79-90	168.000 (2)	14.700 11	1.1:0	0.230 11	
	80-35	80-35	170 000 11	18.600 (1)	4.300 1)	2.200 1	
	80-24	80-24	163.000 11	19.300 (1)	1.300	0.080 11	
	80-77	80-14 80-42	162 000 1	19.200 (1)	1.407 (1)	0.050 (1)	
	80-1	80-77 80-15	161.000 (1) 164.000 (1)	18.300 (1) 17.700 (1)	1.400 (i) 1.300 (i)	$0.200 \{1\}$ $0.110 \{1\}$	
	.* *	80-51	164.000 [1]	17.600 [1]	1.200 (1)	0.100 111	
J)(; - 0 1	SIIE -230 SIIE -226 SIIE -227 SIIE -228 SIIE -229 SIIE -231 SIIE -231 SIIE -233 SIIE -234 SIIE -235 SIIE -236 SIIE -238 SIIE -238 SIIE -230 SIIE -240 SIIE -240 SIIE -240	SITE-230 SITE-226 SITE-227 SITE-227 SITE-229 SITE-231 SITE-233 SITE-233 SITE-236 SITE-236 SITE-236 SITE-238 SITE-239 SITE-241 SITE-242 SITE-243	$\begin{array}{c} \$ 0 & \$ 0 & \$ 0 \\ 79 & \$ 0 & 0 \\ 142 & \$ 0 & 0 \\ 142 & \$ 0 & 0 \\ 141 & 0 & 0 \\ 141 & 0 & 0 \\ 77 & \$ 0 & 0 \\ 90 & 0 & 0 \\ 90 & 0 & 0 \\ 90 & 0 & 0 \\ 114 & 0 & 0 \\ 164 & \$ 0 & 0 \\ 117 & 0 & 0 \\ 163 & 0 & 0 \\ 87 & 0 & 0 \\ 182 & 0 & 0 \\ 181 & 0 & 0 \\ 181 & 0 & 0 \\ 165 & 0 & 0 \\ 134 & 0 & 0 \\ 0 \\ 134 & 0 & 0 \\ 0 \\ \end{array}$	$\begin{array}{c} 8.800 \\ 8.000 \\ 0 \\ 9.600 \\ 10.000 \\ 0 \\ 11.000 \\ 0 \\ 11.000 \\ 0 \\ 11.000 \\ 0 \\ 11.000 \\ 0 \\ 12.000 \\ 10$	4.700 (0) 2.000 (0) 2.400 (0) 2.400 (0) 2.100 (0) 1.700 (0) 5.800 (0) 5.800 (0) 5.800 (0) 5.800 (0) 0.700 (0)	$ \begin{array}{c} 1 & 200 \\ 0 & 300 \\ 0 & 300 \\ 0 & 100 \\ 0 & 100 \\ 0 & 300 \\ 0 & 300 \\ 0 & 400 \\ 0 & 400 \\ 0 & 100 $	

2

SEE END OF THIS REPORT FOR A LISTING OF AMALYSIS METHODS. · . - ·

· . · ·

٠

• •

PAGE 2

SD-EXI-DF-061 Key.

• ----

.

÷

20%

. .

2. **.**

SAMPLE TYPE CONFINED ANALYSIS GROUP: MAJOR

SAMPLING LOCATION	SAMPLING EVENT CODE	SAMPLE NUMBER	NA HG/L (A)	к . на/l. (А)	CA MG/L (A)	MG MG/L (A)
DC-02-A2	80-4 SIIE-213	80-25 80-4 SIJE-213	287.000 (1) 263.000 (1) 181.000 (0)	19 900 11 17 100 11 3 200 0	55.700 (1) 35.300 (1) 0.260 (0) <	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
DC-03	80-27	80-27 80-81	4410 000 [1]	739 000 (1) 734 000 (1)	383.000 (1) 337.000 (1)	$\begin{array}{c}1.310\\0.150\\1\end{array}$
DC-05	19-30	79-30 79-32	278.000 [1] 286.000 [1]	$\begin{array}{c} 23 & 900 \\ 23 & 100 \\ 1 \end{array}$	$\begin{array}{c} 13 & 000 & (1) \\ 12 & 600 & (1) \end{array}$	$\begin{array}{c} 0.110 \\ 0.090 \\ 1 \end{array}$
DC-06	80-181	80-147 80-161		3 780 (1) 3 900 (1)	1 320 11	0.050 (1)
	89-15	80-22 80-72		13.300 11	3.700 11	1 140 11
	SITE-214 80-238	SITE-214 80-201 80-238	233.000 0	3 200 0 3 260 1 3 560 1	1,300 00 c 1,170 11 c	470 000 0
	80-191	80-186	350 000 11	15.900 11	4 510 11	0.170 11
	80-13	80-13	432.000 11		6.500 11	0.120 11
	18-28	79-59	300.000 11		2.000 11	0 170 11
} •·•	81-45	81-45	270 000 1	6.180 1		0.030 11
6	80-118	80-118	310.000.11	6 720 11		
	80-15	80-15 80-70	361 000 11	4 060 11	2.140 (1)	0 025 11
	81-82	81-76	359,000 11	3.350 11	2.640 (1) <	
	80-29	80-29 80-37		1 650 1	0.950	0.006 11
	79-58	79-57 79-58	212,000 1	1.490 11	1.120 11	0.008 11
	80-15	80-45 80-75	242.000 11 241.000 11	1.900 11	0.950 [1] (0.930 [1] (0.005 1 0.005 1
DC+07	82-23	82-23	235.000 11	3 060 (1)	3.739 (1) (0.100 (1)
	82~1û	82-10 82-33	259,000.11 258,000.11	3 330 (1) 3 310 (1)	3.460 (1) < 3.470 (1) <	0,100 11
	80-37	80-39 80-98		5 200 11	2.900 {!}	0.220 11
	80-11	80-11	199.000 11	5 000 11	2 400 (1)	0.050 11
	79-52	79-52	264.000 [1]	3,700 (1)	2.900 (1)	0,220 (1)

SEE END OF THIS REPORT FOR A LISTING OF ABALYSIS METHODS.

. . . .

-

PAGE 3

SAMPLE TYPE: CONFINED ANALYSIS GROUP: MAJOR

1 C 1 C

a star e a

.

.

1

SAMPI ING 1 DCATION	SAMPLING EVENT CODE	SAMPI E NUMBER	ም አማ አማ አማ አማ አማ አማ አማ አማ አማ አማ አማ አማ አማ	K NG/L (A)	CA MG/L (A)	MG MG/L (A)
00-07	79-52 80-103	79-55 80-103 80-163	263.000 (1) 312.000 (1) 303.000 (1)	3.600 (1) 8.650 (1) 4.820 (1)	2.800 {1} 7.280 {1} 5.250 {1}	0.220 (1) 1.200 (1) 1.240 (1)
	80-196 80-196	80-178 80-188 80-177 80-196	416.000 11 433.000 11 438.000 11 420.000 11	5.800 (1) 5.500 (1) 6.080 (1) 6.250 (1)	4.540 (1) 4.600 (1) 11.000 (1) 17.700 (1)	0.013 (1) 0.020 (1) 0.910 (1) 1.200 (1)
DC-12	80-90	80-62	142.000 (1)	15.200 (1)	1.030 (1)	0 000 (1)
	80-100	80-100	123.000 (1)	13.800 (1)	1.319 (1)	0.045 (1)
	80-97	80-73	126,000 11	13.800 11	1.600 (1)	0.098 11
	80-32	80-32	244.000 11	26.500 11	3.890 (1)	0.150 11
	80-82	80-23	135.000 11		1.540 (1)	0.120 11
	80-124	80-102	135.000 11	16.300 (1)	1.150 (3)	0.075 11
	80-101	80-101	143.000 11	15.700 (1)	2.280 1)	0.750 11
	80-174	80-174				0.051 11
9-4 9-4	80-209	80-209	155,000 111	13.000 11	1 400	0.050 111
<u>}-</u> +	5 1 11	80-242	159.000 (1)	12.500 11	1.400 (2)	0.057 (1)
	80-233	80-233		13.000 [1]	1.640 [1]	0.160 (1)
	80-234	80-208	159.000 11	16.000 11	5.000	0.051 (1)
	81-61	81-61	161.000 11	7.620 (1)	4,860 111	0.020 11
	82-85	81-72 82-47	185.000 (1)	7.580 [1]	1,280 (1)	0.100
	x + <u>x</u>	82-85	137 000 (1)	7 610 (1)	1.280 [1]	0.028 2
DC-14	80-3	80-3	53.500 (1)	9.950 (1)	0.500 [1]	1.577 111
	80-53	80-16 80-16	1 005,86	13 400 (1)	9.000 (11) 6.700 (1)	1 47 5 21)
	80-47	80-53	48.800 (1) 30,500 (1)	13 100 (1) 12 000 (1)	6,500 1) 15 100 13	1.640 (1) 2 070 (1)
	80-69	80+85 [°] 80-69		13.000 (1)	16,000 (1)	2.500 11
		80-83	78 200 111	12,800 11	1 450	0.077 111
	80-99	80-55	83,200 11		4.672	0.120 7.1
	80-89	80-36	81.800 11 -	12.200 11	0.950	
	80-71	80-2	79,400 [1]	12.800 (1)	7.000 (2)	0.250 (1)

ţ - ·

SEE END OF THIS REPORT FOR A LISTING OF AVALYSIS ME SODS.

. .

.

•

SD-BWI-DP-OE! Rev.

محر

PAGE 4

.

.

g gá hán nưới từ th

.

SAMPLE TYPE: CONFINED ANALYSIS GROUP: MAJOR

SAMPI ING LOCATION	SAMPI ING EVENT CODE	SAHPLE NUHBER	NA HG/I (A)	К ЮG/L (А)	CA MG/L (A)	MG HG/L (A)
DC - 14	80 - 71 80 - 144	80-71 80-136 80-144	79.600 (1) 64.000 (1) 65.600 (1)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	7 030 (1) 2.440 (1) 2.740 (1)	0.260 (1) 0.250 (1) 0.290 (1)
	80-189	80-127	65.500 11	22,100 1	3.530 11	0.300 11
	80-112	80-112 80-168	62 700 11 61 300 11	21,300 11	3 190 11	
	80-157	80-157 80-183	72 500 11		3 990 11	0,380,11
	80-155	80-155 80-185	76.100 1	11.900 11	1.170 11	0 053 1 0 054 1
	80-104	80-104 80-125	79 400 (1) 85 300 (1)	12 200 (1) 13 100 (1)	1 600 (1) 2 300 (1)	0.080 11 0.011 11
	80-129	80-115 80-129	73.200 (1) 74.700 (1)	11.300 (1)	0 950 (1)	0.020 1 0.020 1 0.020 1 0.020 1 0.020
	80-170	80-156 80-170	79 300 1 78 200 1	$\begin{array}{c} 13.600 \\ 14.100 \\ 1\end{array}$	0.880 (1) 0.860 (1)	$\begin{array}{c} 0 & 0 & 1 \\ 0 & 0 & 2 & 0 \\ 1 \end{array}$
	80-117	80-117	$\begin{array}{c} 114.000 \\ 116.000 \\ 11\end{array}$	11 700 (1)	0 710 11	0.020 11
	84-213	80-213		9 620 11	1.250 (1) 1.320 (1)	0.050 (1)
	81-20	81-22	270.000		3 890 11	
grad grad fra	U 1 3 3	8i-30	315.000 [1]	8 080 (1)	4 140 ii	0 040 11
	81-44	81-44	325.000 (1)	8.100 (1)	4.520 (1)	0.090 11
	61 141 82-8	81-47 81-141 82-42	$\begin{array}{c} 317 & 000 & (1) \\ 344 & 000 & (1) \\ 323 & 000 & (1) \end{array}$	8.340 (1) 7.320 (1) 5.770 (1)	4.590 (1) 1.820 (1) 1.300 (1)	0 087 11 < 0 087 11 < 0 100 11
	84-156	82-8 83-156	316 000 11 337 000 11	5 560 11 5 810 11	1.270 11 1.290 11	 0.100 11 /ul>
	83-152	83-197 83-152	336 000 (1) 336 000 (1)	5.780. (1) 5.730 (1)	$\begin{array}{c}1.270\\1.560\\1\end{array}$	<pre>< 0 100 [1] < 0 103 [1] 0 010 [2]</pre>
	80-157	83-193 83-157	332.000 (1) 338.000 (1)	5.810 (1) 5.900 (1)	1 540 (1) 1 320 (1)	<pre>< 0 100 (1) < 0 103 (1) 0 009 (2)</pre>
	83-118	83-179 83-103 83-178	337 000 11 327 000 11 328 000 11	5 880 (1) 5 690 (1) 5 710 (1)	2.070 (1) 1.280 (1) 1.280 (1)	 0 100, 11 0 100, 11 0 103, 11
	83-183	83-123 83-183	331.000 (1) 330.000 (1)	5.850 (1) 5 880 (1)	$\begin{array}{c}1.290\\1.290\\1.290\\1\end{array}$	 0.100 (1) 0.103 (1) 0.008 (2)
	83-154	83-154	336.000 [1]	5 730 (1)	1.320 (1)	< 0.103 [1]
			SEE END OF THIS R	EPORT FOR A LT	STING OF ANAL	YSIS METHODS.

PAGE 5

١

.

.

.

.

.

and the second
٠

30-841-09-061 Rev. 1

•

SAMPLE TYPE. CONFINED ANALYSIS GROUP: MAJOR

· _ • • • •

;;

SAMPLING LUCATION	SAMPI ING EVENT CODE	SAMPLE NUMBER	4M 1\Dr4 -	[A]	K HG/L (A)	CA MG/L	(A)	MG MG/L	(A)
DC-14	80-154	83-154						0.011	(2)
	83-150	83-191 83-108 83-150	235,000 334,000 335,000		5 760 (1) 5.680 (1) 5 770 (1)	1,300 1,290 1,413		0.100 0.100 0.103	$\begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}$
	83-266	83-233 83-266	335,000 329,000	{ 1 }	5.820 (1) 5.660 (1)	1.300 1.300		0.100	
	83-281	83-203 83-261	382,000 333,000-	113	5 870 (1) 5 880 (1)	1.330 1.350		0.100	
DC-15	80-5B	80-31 80-56	50,300 51,300		12 600 (1)	10.500 10.700		3 300 3 340	
	80-54	80-54	58.200	} ! [8.970	11	2.450] i{ ∙
	80-57	80-57	112.300	115	12 100 11	3.440	1.1	0.510	jii
	80-87	80-87	109 300		13 600 11	2.530		0.850	i{
	\$0-137	80-137	89.100		11.100 (1)	2.590		0 935	
•	80-176	80-176	91.300		14 200 (1)	1.0	• •	1074 1074	(1) ,1)
	80-135	80-999	98.100	{ ! }	14 200 (1)	1.150		0.024 0.040	(1) (1)
61	80-120	80-149 80-120 80-139	97.900 102 050 100.000		13 300 (1) 15 900 (1) 15 400 (1)	1.67 1.329 1.330		0.040 0.053 0.054	
	80-131	80-108 80-131	11 000		14.000 11	0.950		0.000	
	80-193	80-114	3.000][{	14.700	1.413		0,030	
	81-41	81-24	189 199	1. I.	10 600 11	3.49	1	0 23	
	81-2	81-2	2 0.00	} []	14 600 (1)	5 890	1	1. 375	1
	81-46	81-30 81-46 81-50	228 900 230 000		$\begin{array}{c} 14 & 500 & (1) \\ 11 & 900 & (1) \\ 11 & 700 & (1) \end{array}$	10.400 10.200		0.080 0.080 0.80	(<u>}</u>
	81-33	81-32	255.000	(1)	14 800 (1)	7.000	``	0. 37S	
	81-27	81-33 81-27 81-74	252,000 254,000 262,000		23 600 (1) 5 720 (1) 5 640 (1)	7.770 2.129 2.110	(i) (i)	0 025 0 025 0 025	
	81-64	81-64 81-80	362.020 355.000		8 140 (1) 8 010 (1)	4 300 4.180		9 080 9 080 9 080 9 080	1

SEE END OF THIS REPORT FOR A LISTING OF ANALYSIS * ... MCDS.

> . .

21%5 5 .

SD-BHI-DP-061 Rev.

All All And All

,

SAMPLE TYPE: CONFINED ANALYSIS GROUP: MAJOR

.

SAMPI ING LOCATION	SAMPLING EVENT CODE	SAMPLE NUHUER	NA HG/L	[A]	K HG/L	(A)	CA HG/L	(A)	MG NG/L	(A)
DC~15	81-96	81-85 81-96	267.000 277.000	{}}	3 860 4 010	<pre>{1}</pre>	2.030 2.210	{}	0.04	
	81-69	81-89 81-84	271.000 263.000	{}}	3,840 3,690	<pre>{}}</pre>	2 220 2 110	{}	0.03	
	82-94	82-41 82-94	265 000 271.000		2.740 2.880		1.790 1.840	[]	< 0.10 < 0.10 0.04	
N/1 1 C A		01 100							•.••	
DC-198	81-105	81-109	98.200		4.200		10.800		4.90	
	82-17	82-17	46 600		6.440	- <u>{-</u>]}}	14.900		3.51	0 11
	82-93	82-45 82-83	68.600 68.700		11 600 11.600	-11	5 970 5.970	{i}	1.41	
	82-19	82-19 82-88	165.000 166.000		17.000 16.900	{ ! }	2:020 2:000	<pre>{}</pre>	< 0.10 < 0.10	
	82-188	82-140	180.000	(11	18,200	(1)	1.670	(11	< 0.10	0 11
₽~ 4	82-124	82-188 82-124	180.000 142.000	{ ! }	18.300 20-300	$\left\{ \begin{array}{c} 1\\ 1\end{array} \right\}$	1.870 1.670	[]]	 0,03 0,10 0,10 0,10 0,10 	
}	82-143	82-172 82-126	140.000 232.000	{ ! }	20.100 34.400	<pre>{1}</pre>	1.670 4.830	<pre>[]}</pre>	 < 0.10 < 0.10 < 0.10 	
	82-202	82-143 82-202	232.000 217.000	{!}	34 800 30 200	<pre>{1}</pre>	4.900 3.870	11	< 0.10 < 0.10 0.05	
	82-322	82-228 82-322	227 000 324 000	{}},	31.500 32.000	<pre>{}</pre>	4.050 3.890	<pre>{}}</pre>	< 0 10 < 0 10 0,03	
	82-332	82-361 82-332 82-358	320.000 323.000 325.000		31.600 29.400 29.500		3,820 4,360 4,310		< 0.10 < 0.10 < 0.10	
	82-430	82-430	346.000	(1)	20.000	(1)	2.740	(1)	< 0.03	
	83-29	82-473 83-29 83-41	355,040 355,000 353,000		20.400 24 300 23.800	$ \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix} $	2.810 2.630 2.620	$\left\{ \begin{matrix} 1\\1\\1\\1 \end{matrix} \right\}$	< 0.10 < 0.10 < 0.10 < 0.10	0 (1) ::: 0 (1) :::
DC-16B	83~147	83-147 83-185	56.300 56.600	-{ 1 }	11 400 11 500	{ ! }	4.800 4.820	[i]	1 49 1 46	
DC-16C	83-100	83-100	300.000	(1)	9 050	(1)	1.530	(:)	< 0.10	0 [1]

. e ·

. . .

. . .,

SEE END OF THIS REPORT FOR A LISTING OF ANALYSIS METHODS.

.

CD-841-09-061 Rev. 1

•

:

.

PABE 7

SAMPLE TYPE. CONFINED ANALYSIS GROUP: MAJOR

.

٠ .

.

.

SAMPE ING LOCATION	SAMPI ING LVENT CODE	SAMPLE NUMBER	NA NG/L (A)	к Hg/L (А)	CA HG/L 1A)	MG NG/L (A)
00-150	87-100 83-259	¥3-30 83-215 83-259	297.000 (1) 180.000 (1) 180.000 (1)	8,900 (1) 17,300 (1) 17,300 (1)	1.600 (1) 1.630 (1) 1.740 (1)	<pre>< 0.100 (1) < 0.100 (1) < 0.100 (1) < 0.100 (1)</pre>
DC-18	86-166	86-166 86-167	84.300 11 84.600 11	12 400 11 12 400 11	0.653.11) 0.619 11	<pre> 0.200 (1) 0.200 (1) </pre>
100 - 190	84-53 84-40 84-75 84-86	84-53 84-84 84-40 84-77 84-29 84-29 84-18 84-18 84-86	185.000 (1) 190.000 (1) 191.000 (1) 193.000 (1) 194.000 (1) 194.000 (1) 197.000 (1) 177.000 (1)	19.400 11 19.700 11 20.800 11 12.000 11 16.000 11 6.340 11 6.200 11	1.72? [1] 1.760 [1] 2.040 [1] 2.050 [1] 1.890 [1] 1.870 [1] 2.000 [1] 1.990 [1]	0.160 [1] 0.180 [1] 0.130 [1] 0.130 [1] 0.310 [1] 0.310 [1] 0.310 [1] 0.310 [1]
DC-20C	84-9	84-49 84-9	171.000 [1]	17.400 [1] 17.400 [1]	1.550 (1)	<pre>0.100 (1) </pre>
DC-22C	84-105	84-105 84-153	125.000 (1) 125.000 (1)	17.000 (1) 16.800 (1)	1.850 (3)	<pre>c 0.100 [1] c 0.100 [1]</pre>
DC- 23GR 5	86 - 133 86 - 141 86 - 181	86-133 86-134 80-141 86-142 86-181 86-182	134.800 (1) 133.300 (1) 120.200 (1) 120.300 (1) 127.300 (1) 127.000 (1)	20,200 (1) 19,900 (1) 19,300 (1) 19,300 (1) 19,300 (1) 12,200 (1)	4,070 ;;; 4,020 ;;;; 3,820 ;;;; 3,940 ;;;; 2,450 ;;;;	0.200 1 0.200 1 0.200 1 0.200 1 0.200 1 0.200 1 0.200 1 0.200 1 0.200 1
E NYEAR I	511E-209 511E-210 84-106 85-180	SI FE - 209 SI FE - 210 84 - 146 84 - 184 85 - 180 85 - 181	29 000 (0) 27 000 (0) 26 390 [1] 25 000 [1] 25 000 [1] 25 100 [1]	6.700 (0) 6.400 (0) 6.410 (1) 6.300 (1) 6.220 (1) 6.240 (1)	13.000 (1) 18.000 (0) 18.000 (0) 18.000 (1) 18.000 (1) 18.200 (1) 18.200 (1)	11.000 (0) 11.000 (0) 1200 (1) 1200 (1) 10.900 (1)
F ORD	\$11£-206 \$11E-207 \$11£-219 \$5-188 \$5-303	SITE-200 SITE-207 SITE-219 85-188 85-189 85-303 85-303 85-304	27.000 (0) 26.000 (0) 26.200 (0) 26.700 (1) 26.500 (1) 26.200 (1) 27.400 (1)	8 500 (0) 7 300 (0) 5 600 (0) 7 240 (1) 7 260 (1) 6 910 (1) 7 390 (1)	19 002 () 18 000 () 17 572 () 18 300 () 18 600 () 18 600 () 18 502 ()	12 300 (0) 13 900 (0) 6 305 (0) 10 603 (1) 10 603 (1) 10 403 (1) 10 903 (1)
F#:()2 2	ST 1F - 224 ST 1F - 222 ST 1F - 223 ST 1F - 225 ST 1F - 225	SITE-224 SITE-222 SITE-223 SITE-223 SITE-225	30.000 (0) 30.000 (0) 30.000 (0) 38.000 (0)	7,900 (0) 8,600 (0) 8,000 (0) 8,000 (0)	17.000 16.000 16.000 24.00	5 500 (0) 5 800 (0) 8 800 (0) 13 000 (0)
		: · · · ; ·	SEE END DE MIS R	EPORT FOR A LI	STING OF MAL	YSIS >ETRODS.

٠

SD-BWI-DP-061 REV. 1

•

PAGE S

.

.

.

.

.

.

.

•

.

. • .

.

.

.

• •

· ·· .

2 10.0

• • •

毎日 一般 減齢 時時。 こうえ

SAMPLE TYPE. CONFINED Analysis group: Major

SAMPLING LUCATION	SAMPI ING EVENT CODE	SAMPI L NUI4BER	NA MG/L ·· (A)·	K NG/L (A)	CA NG/L (A)	HG HG/L (A)	
MCGEE	STTE-220 82-7	SITE-220 82-52	29.500 (0) 28.300 (1)	7,500 (0) 7,560 (1)	16 500 (0) 15 900 (1)	8 500 (0) 8 400 (1)	
	85-175	82-7 85-175 85-176	27.700 11	7.310 (1) 7.800 (1)	15.600 (1) 18.700 (1)	8.280 (1) 8.660 (1)	
	85-300	85-300	29.200 [1]	7.910 (1)		8 590 11	
	86-34	86-34	29.300 1	7.910 11	16.500 11	8 630 11	
	80-64	80-64	29.700 11	8.850 11	16.600 (1)	9.290 (1)	
	81-73	81-73	30.800 11		16.400 11	8.770 11	
	81-54	81-54	31 200 11	8.310 11		9.500 11	
	82-64	82-11.	29.900 11	8 100 (1)		8.810 1	•
	82-263	82-263	27.000 11	7 010 11		8.600 11	
	82-397	82-325	28.300 11	7 430 (1)		8.900 [1]	
	82-424	82-424 82-474		7.660 11		9.500 11	
л Л	82-436	82-436 82-498	28.200 11	7.770 11		9.200 11	
	83-32	83-32 83-63	27.400 11	7.770 11	17.700 11	8.500 11	
	83-83	83-27 83-83	28.500 11		17.600 11	9.160 11	
	83-188	83-113 83-188	31 700 11	9 110 11		5.800 11	
	83-373	83-323	85.600 (1)	8 150 [1]	2.670 [1]	0 250 11	
		83-373	85.400 (1)	8.120 (1)	2.660 (1)	0.260 11	
	83-331	83-331	87.100 (1)	8.060 (1)	1.080 (1) <	0.100 11	
		83-344	88,600 (1)	8.140 (1)	1.040 (1) <	0.100 11	
	83-460	83-460 83-474	89 100 (1) 90 700 (1)	8.170 (1) 8.270 (1)	0.820 (1) ¢	0 100 11	
	83-476	83-417 83-476	90.500 II. 90.900 II.	8.320 11	0.870 11 4	0.100	
	83-513	83-513 83-545					
	84-24	84-24 84-38	130.000 11			0 100 11	

SLE END OF THIS REPORT FOR A LISTING OF ANALYSIS METHODS.

SD-BWI-DP-061 Rev.

PAGE 9

÷.,

SAMPLE TYPE: CONFINED ANALYSIS GROUP: MAJOR

.

SAMPLING LOCATION	SAMPLING EVENT CODE	SAMPLE NUHBER	NA MG/L	(A)	к . ма/1.	(A)	CA MG/L	'Aj	ма Mg/l. (A }
UBRIAN	85-194	85-194 85-195	24.800 24.800	{ 1 }	6.330 6.340	{ ! }	19.300 19.709		11.700 { 11.500 {	1 }
KRI 02	82-68	82-28 82-68	162.000 162.000	8	20.900 20.900	{ ! }	1 980 2.020	{}}	C 200 0 190	
	82-65	82-65 82-75	141.000 139.000		15.500) 15.400	{! }	1,949 1,979	<pre>[]}</pre>	001.0	
	₃₁ 82-170	82-163	285.000	(1)	35.600	(1)	9.500	(1)	0.230	
	82-122	82-170 82-122	252.000 374.000	$\left\{ \begin{array}{c} 1\\ 1 \end{array} \right\}$	35.100 25.300	{! }	8 470 2.880		0 230	2) 1) 1) 2)
	82-401	82-192 82-401	379.000 337.000		25.600 13.800	{ ! }	2.391 2.220	[]} < _]} ∢	0.100	
	84-7 82-364	82-479 84-43 84-7 82-364	337.000 351.000 353.000 355.000		13,900 13,400 13,500 9,390	, { 1 } { 1 } { 1 } { 1 } { 1 }	2.190 2.360 2.350 1.633		0.100 0.100 0.100 0.100	Ĩ } 1 } 1 } 1 }
بنکر د- و	\$2-309	82-361 82-309	361.000 336.000		9 610 8 460	{}}	2.845		0.100	$\frac{2}{1}$
	82-456	\$2-351 82-413 82-456	328 200 358 000 364 000		8.360 5.770 5.870	$\left\{ \begin{matrix} 1\\1\\1\\1 \end{matrix} \right\}$	2,800 1,850 1,830		0.130	
XRI - 14	82-403	82-403	338.900	(1)	24.700	(1)	2.100	(1) ¢	0.100 (1)
	•	82-489	335.000	(1)	24.500	(1)	2.129	1.1 0	0.100	2} !}
51EM-3	85-252 85-297	85-252 85-253 85-297	25.500 23.500 25.000		5.610 5.510 6.120	$\left\{ \begin{array}{c} 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1 \end{array} \right\}$	20.400		12,100	
	86-31	86-31 86-32	25 200 25 200 25,400		5 720 5 710		20 304 20 400		12.500	
STEM-2	36-19	86-19 86-20	230 24 .800	(†)	5 830 5 840	[1]	19 -4: 19 340		11.900 {	1}
299-816-01	STTE-161 STTE-162 STTE-163 STTE-164	SITE - 161 SITE - 162 SITE - 163 SITE - 164	26.000 30.000 31.000 31.000		10 900 10 200 10 200 10 200		15 001 28 000 28 000 26 000	101	901 4.200 9.600 2.900	2)
· .	: :	e	5 535 05 1	 1016 -			TOTING 1		01. as ann	
			LL LND UP	1112.1	VELOKI LUI	T A L	að Elliniða í Eit	ALY	axa na ∩00	э.

Sec. 1

111

. . .

ł

SD-BWI-DP-OE1 Rev.

امبر

1471 10

.

.

.

.

,

SAMPLE TYPE: CONFINED ANALYSIS GROUP: HAJOR

SAMPLING LOCATION	SAMPLING EVENT CODE	SAMPLE NUMBER	NA MG/L	(A)	к MG/1	(A)	CA MG/L	(A) ²	MG HG/L	(A)
299-E26-08	SITE-166 SITE-167 SITE-168	SITE-166 SITE-167 SITE-168	20.000 18.000 19.000		10 400 9 900 9 900		19.000 21.000 19.000		8.200 9.200 9.200	$\left[\begin{smallmatrix} 0\\ 0\\ 0 \end{smallmatrix} \right]$
299-E33-12	STTE-170 STTE-171 STTE-172	SITE-170 SITE-171 SITE-172	17.000 17.000 17.000		8.600 8.300 8.000		14.000 18.000 19.000		7.200 7.700 8.500	
690-S11-E12A	80-61 80-180	80-61 80-7 80-138 80-180	50.300 51.300 47.200 48.200	$ \left\{ \begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{array} \right\} $	8.700 8.860 7.500 7.800	$ \begin{bmatrix} 1\\1\\1\\1\\1\\1\\1 \end{bmatrix} $	22.400 22.800 21.100 21.600	$\left\{ \begin{matrix} 1\\1\\1\\1\\1\\1 \end{matrix} \right\}$	6.050 6.170 5.800 5.900	$ \left\{\begin{array}{c}1\\1\\1\\1\\1\\1\\1\\1\end{array}\right\} $
899-42-40C	SI IE - 175 SI IE - 177 SI IE - 178 SI IE - 179 SI IE - 180	SITE-176 SITE-177 SITE-178 SITE-179 SITE-180	24.600 35.000 33.000 35.000 36.000		6.400 14.400 13.700 13.600 12.700	0000	26.600 10.000 7.500 10.000 18.700	0000	11 800 3.700 4 500 4.600 4.500	
699-47-50	SIIE-205 SIIE-181	S11E-205 SITE-181	20,390 22,000	[8]	7.390 7.200	[0]	55.310 46.000	[0] [0]	14.660 18.500	[8]
ีษียม∝49-558 ⊷ ฌ	ST 1E - 183 ST 1E - 184 ST 1E - 185 ST 1E - 185	STTE-183 STTE-184 STTE-185	11,000 12,000 12,000	$\begin{pmatrix} 0\\ 0\\ 0 \end{pmatrix}$	6.900 6.800 6.800		30,000 39,000 38,000	0 0 0	11.900 12.200 12.400	0 0 0
699-50-45	SI 1E - 203 SI 1E - 186	SITE-203 SITE-186	15.390 17.000	[0]	5.710 6.000		30.020 92.000	(0) (0)	10.210 15.700	[8]
ธ ุษษ-50-4∎	SITE-204 SITE-187	SJTE-204 SITE-187	30.300		10.990 11.000		22 080 19.000	$\begin{pmatrix} 0 \\ 0 \end{pmatrix}$	4.230 6.200	[8]
699-51-46	SI 1E - 188 SI 1E - 201	SITE-188 SITE-201	21 000 20,000	{ 0 }	9.200 9.310		19.000 32.020	$\begin{bmatrix} 0 \\ 0 \end{bmatrix}$	2.200 4.230	[8]
699+52-46A	SINE-202 SINE-189	SITE-202 SITE-189	16.510 16.000	[8]	4.230 7 300	[8]	33,639 24,009	(0) (0)	9 190 10.500	{ 0 }
699-52-48	STIE-199 STIE-190	SITE-199 SITE-190	51,700 50,000		6.690 6.400	$\begin{pmatrix} 0\\ 0 \end{pmatrix}$	14.430 6.200	$\begin{pmatrix} 0 \\ 0 \end{pmatrix}$	3 050 1 900	{8}
699-53-50	SITE-191 SITE-200	SITE-191 SITE-200	21_000 20_390		7 300 7 120		30.000 28.980	[8]	10 900 8.630	{ ⁰ }
699-54-57	STTE-192	SITE-192	2.300	[0]	7 200	(0)	25.000	(0)	11.600	(0.)
ŭ₽9~56-53	STTE-195 STTE-197	SITE-196 SITE-197	21.000 21.000		6 800 6 600	[0]	38.000 38.000	[0]	13.200 13.500	

Ŧ

1

SEE END OF THIS REPORT FOR A LISTING OF ANALYSIS METHODS.

٠,

SD-BWI-DP-061 Rev. 1

.

.

PAGE 11

,

.

.

SAMPLE TYPE, PRECIPITATION ANALYSIS GROUP: MAJOR

.

٢

۰.

SAHPI ING LOCATION	SAMPLING EVENT CODE	SAMP1 E NUTIDER	Ма Ма/1	(A)	к Ма/L	(A)	CÁ HG/L	(A)	MQ MQ/L	(A)
STATION-03	82-51	82-51	0.184	(1) <	0.277	(1)	0.268	11) <	10.103	(1)
STATION-04	82-61	82-61	0.174	(i) <	0.277	(4)	0.516	{13 <	0.103	(1)
STATION-07	82-92	82-92	D:112	·131 ×	0.277	.(1)	0.205	en e	0.103	(1)
STATION-14	\$2-20	82-20	0.180	(1)	0.501	.(1)	0.219	(1) C	0.103	(1)
STATION-17	82-70	82-70	0.270	(1) <	0.277	(i)	0.281	(1) <	0,103	(1)
S1A110N-20	82-58 82-74	82-58 82-74	< 0.067 0.110	{{}} {{}} {{}} {{}} {{}} {{}} {{}} {{}	0.277 0.277	{ ! }	0.038 0.101		0,103 0,103	
STATION-25	82-83 82-66	82-83 82-66	< 0.067 0.107	{ i } ;	0.277	· {}}	0.142. 0.129	<pre>{};</pre>	D.103 0.103	{ 1 }
STATION-20	82-91 82-98	82-91 82-98	0:069 0.259	{ i } { i } {	0.277 0.277	{] }	0.22		0 075 0 103	. { } }
	2000 X 19 N X 19			•	· · ·		 	, 3 , 6 , ;	• • •	
io	<u>, * } * </u>		· · · · ·	、 (*) (*) (*) (*) (*) (*) (*) (*)	•	:	• • •	•	}	· . :
	,		• .•	•			ł			:
		• •							,	
							۰.		•	
		, · · f · · , · · · ·	•	· · · ·	·				•	ı
	۰.	、 、	• •	•	•				,	··· ·
N		99 - 83 1994 - SE	E END OF I	INS R	EPORT FOI	RAL.	ISTING C ⁵	ALYS	14 - 2019	DDS.

. .

Ŧ

. • **!**

ø

. :::: . . . •• PA5: 12

÷

SD-8KI-DP-061 Rev.

SAMPLE TYPE: SPRING ANALYSIS GROUP: MAJOR

SAMPI ING LOCATION	EVENT CODE	SAMPLE NUMBER	NA NG/L (A)	K HG/L (A)	CA MG/L (A)	MG MG/L (A)
SP-BLANETT	SINE-218 79-13 85-362	S11E-218 79-13 85-362 85-263	7 100 (0) 8 900 11 9 130 11	1 600 (0) 2 600 (1) 2 740 11	22 800 (0) 25 600 (1) 29 000 (1)	8 200 (0) 9.800 (1) 10.100 (1)
	86-190	86-190 86-191	9.080 11 9.240 11	2 380 11 2 360 11	28.700 11 28.500 11	9.890 (1) 9.850 (1)
SP-BERSON	\$11E-217	SITE-217	6.090 (0)	1.500 (0)	22.830 (0)	4.300 (0)
SP-DULLER	¥9-1	79-1 79-50	8.800 (1) 8.800 (1)	2.300 (1) 2.400 (1)	21.700 (1) 21.900 (1)	9.700 (1) 9.680 (1)
SP-GULCH	84-359	84-359 84-383	18.200 (1) 19.300 (1)	4 780 11 4 700 11	43.800 (1) 43.100 (1)	19.500 (1) 19.200 (1)
SP-JUN1PER	SITE-215 79-2	SITE-215 79-2 79-43	19.600 (0) 30.000 (1) 28.800 (1)	5.200 (0) 6.906 (1) 6.600 (1)	23.600 (0) 24.700 (1) 23.500 (1)	10.300 (0) 17.800 (1) 16.900 (1)
	81-115	81-115 81-161		5 850 11	23.950 11	15.240 11
	81-372	83-305 83-372	24 570 11 24 500 11	5 910 11 5 800 11	27.810 [1] 25.350 [1]	17 000 11 16.570 11
SP-LO SNIVELY	19-34	79-19 79-34	9.500 (1)	2500(1)	19.900 (1) 22.600 (1)	9.800 (1)
12	82-362	82-362	8.700 11	2.400 11		
0	83-396	83-311 83-396	8.500 8.590 -	2 660 11 2 430 11	22.860 11 22.500 11	10 370 11 10 230 11
SP-LOZIER	19-6	79-44	7.700 (1)	2 000 (1)	23.400 (1)	9.300 (1)
	81-186		7.850 11	1.260,11	24.080 11	8.940
	83-316	83-316 83-343	7 810 11 7 720 11	1 410 11 1 480 11	24.580 11 24.580 11	8.870 1 8.860 1
SP-MAIDEN	79-100	79-67 79-96	7 810 (1)	2 570 (1)	19 350 (1)	8 890 (1)
	83-420	83-420 83-435	7 130 11 7 270 11	1.660 (1) 1.700 (1)	19.320 (1) 19.660 (1)	7.370 (1) 7.510 (1)
SP-OBSLRVATORY	81-119	81-119 81-157	7 540 (1)	1,740 (1)	21.990 (1)	10.670 (1)
	83-433	83-433		1.820 11		
	84-392	84-310 84-392	7 430 [1] 7 830 [1]	1 810 (1) 2 000 (1)	22 600 11 23.000 11	11 000 11 11 200 11

SEE END OF THIS REPORT FOR A LISTING OF ANALYSIS METHODS.

- -----

١

SD-8HI-0P-051 Ray. i

6;

Ν.

FAGE 13

1 $\mathcal{O}(X_{n})$. . · · · · · · · ·

SAMPLE TYPE: SPRING ANALYSIS GROUP: MAJOR

• 3 · • • • • • • •

. .

SAMPLING 10CATION	EVENT CODE	SAMPLE NUMBER	на Ни/1.	(A)	к ИG/L, •	(A)	C.\ MG/L	(A)	. 14G MG/L - ((A)
SP-OUSERVATORY	84-329	84-329	7.380	(1)	1 830	{!}	22.3:0	;;;}	10.200 (111
	#5-359	85-359	7.330		1.580		22,200	樹	10.400	
	86-178	85-360 86-175 86-179	7.360		1,480 1,700 1,600		22,500		10.600 10.900 30.800	
SP-RAILROAD	79-76	79-78 79-81	7.200 6.800	[]}	3.200 2.900	{! }	18.700 16.900	[]]	14 900 14.200	
SP-HAITLE SHAKE	511E-218 79-88	S17E-216 79-87 79-88	12.000 16.600 16.300	$\begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$	3.000 8.300 8.300		28 500 48 500 45 800	$\left\{ \begin{array}{c} 0\\ 1\\ 1 \end{array} \right\}$	\$.907 17.200	0)
	33-412	83-412 83-466	19.250		4 990		53,980 53,840		15.630 15.600	ii
SP-SNIVELY	79-49	.79-37 79-49	000 %) 000 %	{}}	2 500 2.500	{} }	21.602 21.500	\mathbb{R}	9 apo 9 300	$\left\{ \begin{array}{c} 1\\ 1 \end{array} \right\}$
SP-SULFUR	79-29	79-29	. 900	(1)	3.600	(?)	23 900	• : :.	10 100 1	123
121	83-409	83-409 83-442	9.870 9.780		2.970		25.820		10.030 2.200	i
SP-UNNABLD-02	79-75	79-75	1.100	ita)	2.930	(1)	19.700	:)	10.000 1	1)
SP-UNNAMED-16	79-73	79-73 79-82	8.320 8.400	$\left\{ 1 \right\}$	2.100 2.080	{ ! }	20.6.2		6.752 5.860	}
SP-UNNAMED-26	79-98	79-54 79-98	12 000 11 800		6.800 5.200	{ ! }	27 . 31	۱ ()	11 300	}
SP-UNNAMED-29	79-15	79-16 79-24	12.200 11.700	Ì₿	2.560 2.100	[]]	27 \$1 28.50*		10.400	1}
SP-UP-SNIVELY	-/9-71	79-60 79-71	870	H.	2 360	Ĥ	16,980 16,620	(j.)	7.500	
	81-126	81-126	7 900 700	11	1 900	11	13.500		7.400	Ī.
•	80-500	83-503	230	<u>}</u>]]}	2.090	∕}iĮ	19 490	111	270	ii
	86-193	86-193 86-194	\$.980 5.050		2.180	i]	21.500 21.300		3 030	
58-082-07	85-343	85-343	3.890	(!)	1.700	(!)	27.100	•	1.572	1
•	86-159	86-159 86-160	8,900 8,900		1,690 1,530 1,530		25 8.7 28 703 28 809		4,522 9,800 9,800	
		۰ ۲۰۰۰ میں ۲۰	SEE ENDIOS T	HIS	REPORT FOR		LISTING OF :	17 AL	.YSIS MEIHOD	้ร

٩. 14

.

٠

.

•

.

SD-BMI-DF-COl Rev.

هنو

.

٠

•

SAMPLE TYPE: SPRING ANALYSIS GROUP: MAJOR

SAMPLING LOCATION	SAHPLING EVENT CODE	SAMPLE NUHBER	NA MG/L L	K A) MG/L	(A) MG/L	(A)	MG MG/L	{A}
SP-U16-20	85-345	85-346 85-347	9.860 9.920	1) 1.110 1) 1.090	1 24.10 1 24.20	0 (1)	9.850 9.890	{}}
	86-162	86-162 86-163	10.000	1) 1.280 1) 1.270	1 24.90 1 24.90 24.90	$ \begin{bmatrix} 1 \\ 1 \end{bmatrix} $	9 840 9,820	$\left\{ \begin{array}{c} 1\\ 1 \end{array} \right\}$
SP-UR7-22	85-349	85-349 85-350	11.200 11.100 (1) 2.370 1) 2.320	(1) 17.30 (1) 17.30	$ \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} $	12,300 12,300	$\{\frac{1}{4}\}$
	80-153	86-153 86-154	-14.600 14.500	1) 1.830 1) 1.940	1 19.80 1 19.80 1 19.90		12 100 12 200	
SP-WARM	84-358	84-358 84-371	22.900 22.900	1 6.200 1 6.200	1 25.60 1 25.70	$\begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$	11.200 11.300	{ ! }
SP-¥K3+04	85-333	85-333 85-334	3.440 (8.420)	1) 2.580	1) 20.40 11 20.30		12.700	-{}}
	86-150	86-150 86-151	8,530 8,530	1 2.360 1 2.290	1 23 00 1 23 10		14 200 14 200	
SP-485-08	85-336	85-336 85-337	10.000 (1) 2.580	(1) 20.20 20.30		9,190 9,200	111
	86-147	86-147 86-148	12.600 12.400	1 2.690 1 2.720	33.50 1 33.60		15 400 15 400	
SP-YR7-14	85-339	85-338 85-340	7.900	$\frac{1}{1}$ 2.260			6,900	
122	80-150	86-156 86-157	7.180	1 1.770			6.050	

۰.

SEE END OF THIS REPORT FOR A LISTING OF ANALYSIS METHODS.

1----

PAGE 15

SAMPLE TYPE, SURFACE ANALYSIS GROUP: MAJOR

SAMPLING LUCATION	SAMPI ING EVENT CODE	SAMPLE NUMER	»я >б∕\ (А)	к MG/I. (А)	CA MG/L [A]	MG MG/L (A)
COLD CREEK	84-317	84-317	15.400 (1)	3.030 [1]	30.900 ;1)	12 500 (1)
	84-302	84-302	15.600 (1)	2.870 (1)	31.800	13 215 11
	85-223	84-345 85-223 85-224	13.800 (1) 13.800 (1) 13.300 (1)	2 900 (1) 2.630 (1) 2.550 (1)	28.100 (1) 27.700 (1)	12,600 (1) 12.000 (1) 11.600 (1)
CR-DC-14	83-258	83-211 83-258	$ \begin{array}{c} 2.400\\ 2.470\\ 1 \end{array} $	0.900 (1) 0.960 (1)	20 300 11) 20 700 11)	4.520 [1] 4.953 [1]
CR-HIS	SIIE-221	STIE-221	1.250 (0)	0 300 (0)	15.000 103 4	9,300 (0)
CR-V-DR	84-330	84-330	2.470 (1)	0 720 (1)	15.97 (1)	3
	84-311	84-311	2.560 11	0.720 (1)	15.900	3 100 11
•	85-206	84-356	2.430 11	0.910 (1)	22.200 11	Š 0 1
	85-286	85-266	2.260 (1)	0.420 (1)	17.30 1.1	3 920 11
	86-70	85-267	2.220 (1)	0.590 (1)	19.200 .)	a. 380 [1]
123	KQ - 100	86-71 36-109 86-110	2,070 (1) 2,250 (1) 2,250 (1)	0.590 (1) 0.742 (1) 0.740 (1)	18.80 19.70 19.700:11]	4:590:(1) 4:590:(1)
58~11 8	85-210	85-210	5.180 (1)	1.300 (1)	12.703 11	4.233 (1)
	85-269	85-269	16 300 11	2.980 11	30.300	10 - 10 11
	86-67	86-67	13.400 (1)	2.310 1	22 800)	3.280 (1)
	86-118	86-118 86-118	15,700 11	2 670 11	24.100	9,549 (1)
	4	80-119	12 200 (1)	2.000 (1)	24.000 [3]	8.130 [I]
		1 T T	~			
		• • •	• • •			,
				- 	,	
		*		,		• • •
			• • • • •	•	,	
	·	۰.	• ·			· · · · · · · · · · · ·
						. •

i

· · · · '

SEE EVE OF THIS REPORT FOR A LISTING OF AN LYSIS * COS.

÷

SD-BHI-DP-061 Rev. 1

PAG: 15

SAMPLE TYPE: UNCONFINED ANALYSIS GROUP: MAJOR

SAMPLING LOCATION	SAMPI ING EVENT CODE	SAMPLE NUHLER	NA MG/L	(A)	K MG/L	(A)	CA MG/L	(A)	MG MG/1.	(A)
KKL -06A	82-40	82-35 82-40	20 100 20.200	{ ! }	4 400 4.400	<pre>{}}</pre>	41.200 41.400	{ 1 }	14.500 14.500	11}
199-104-04	SI 1E - 41	SITE-41	10.000	(0)	4.900	[0]	43.000	[0]	5.900	(0)
199-005-12	SITE-80	SITE-80	12.000	(0)	4.100	(0)	39.000	(0)	*8.400	10)
199-008-03	STTE-72	SITE-72	5.200	(o)	5.000	(0)	46.000	[0]	6.900	(0)
198-102-01	STTE-82	SITE - 82	4.400	(0)	2,700	(0)	34.000	[0]	4.500	10)
199-1104-03	SI1E-81	SITE-81	700.000	(0)	10.000	(0)	50.000	(0)	7.500	(0)
199- K- 19	S11E-83	S11E-83	3.400	[0]	1.900	(0)	34.000	(0)	4.300	[0]
199-11-12	ST1E-42	S11E-42	2.900	(0)	2.400	(0)	27.000	101	4 600	(0)
299-E26-08	STIE-165	SITE-165	15.600	[0]	5,600	(0)	25.800	(0)	10.700	(0)
299-E33-12	SI1E-160	SITE-169	74.000	(0)	7.000	(0)	34.000	(0)	13.100	[0]
399-01-01	SI1E-244	SITE-244	9.700	(0)	2.200	(0)	26.000	(0)	4.700	[0]
	S11E-43	SITE-43	21.000	(0)	3.100	(0)	33.000	(0)	5.500	[0]
4-399 02-01	S11E-245	SITE-245	11.000	(0)	2.600	(0)	19.000	(0)	4.100	(0)
393-03-01	SITE-246	SITE-246	12.000	(0)	2,900	(0)	22.000	(0)	4 500	(0)
399-04-10	SITE-44	STIE-44	22.000	(o)	3.800	(0)	29.000	[0]	5.800	[0]
399-08-04	SITE-140	S1TE-140	17.000	(0)	4.600	(0)	35.000	(0)	7.200	[0]
61-11AH-19	SITE-3	SITE-3	25.000	101	5.400	(0)	31.000	(0)	7.100	[0]
699-S03-E12	SITE-22 SITE-141	SITE-22 SITE-141	17.000 13.000	{ ⁰ }	7 000 4 700	[0] [0]	26 000 24.000		3.130 8.100	10]
699-203-25	5116-7 5116-142 80-55 80-130	S11E-7 SIIE-142 86-55 36-56 86-130 86-131	26.000 26.000 26.000 25.700 25.600 25.200	(0) (0) (1) (1) (1) (1)	7.300 7.700 7.490 7.460 7.610 7.380	$\begin{pmatrix} 0 \\ 0 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}$	51 000 62 000 61 000 60 800 62 500 61 000	(0) (0) (1) (1) (1) (1) (1)	14.000 15.000 14.900 14.900 14.600 14.600 14.300	(0) (1) (1) (1) (1)
899-506-E04D	SI JE - 1 1	SITE-11	22.000	[0]	6.600	(0)	45.000	(0)	12.000	[0]
699-508-19	S11E-48	STIE-46	32.900	(0)	7 600	(0)	41.000	(0)	8.200	(0)

SEE END OF THIS REPORT FOR A LISTING OF ANALYSIS METHODS.

•

.

and a second

PAGE 17

124 . . .

SAMPLE TYPE, UNCONFINED ANALYSIS GROUP: MAJOR

SAMPLING LOCATION	SAMPEING EVENT CODE	SAMPLE NUMBER	NA MG/L (A)	K MG/L (A)	CA MG/1 (A)	MG MG, L (A)
699-508-19	STTE-84	SITE-84	36.000 (0)	7.800 (0)	20.000 (0)	3.200 (0)
899-SII-E12A	.SITE-4	SITE-4	16.000 [0]	4.600 (0)	39.000 (0)	11 000 (0)
699-512-03	STIE-143 STIE-143	SITE-45 SITE-140	23.000 (0) 24.000 (0)	5.600 (0) 5.800 (0)	43.000 (0)	(0) 008 Q (0) 003 Q
699-519-E13	SI1E-120	SITE-120	22.000 (0)	6.000 (0)	40.000 (0)	.1.000 (0)
699-524-19	35-213 85-291	85-213 85-214 85-291 85-292	16.400 11 16.300 11 18 800 11 17.000 11	J. 180 11 J. 220 11 2.820 11 2.940 11	29.502 29.600 31.400 ! 31.900	10.700 [1] 10.700 [1] 11.500 [1] 11.500 [1]
699-529-E12	S11E-21	S11E-21	23.000 [0]	8.500 (0)	44.000 00	8.39D (O)
699-530-E15A	SITE-144	SITE-144	17.000 (0)	6.000 (0)	50.0	12 500 (0)
260-01-18	SI 1E - 145	SITE-145	23.000 (0)	6.600 (0)	46.000 101	(i. 205 (o)
697-05-03	S11E-1	SITE-1	19.000 (0)	6.300 (0)	44.000 10)	11.000 (0)
19 19 19 19 19 19 19 19 19 19 19 19 19 1	5118-85 5112-146	SITE-85 SIJE-146	13.000 10	4.400 [0] 4.400 [0]	38.000 0) 42.000 0)	11.000 [0]
899-04-E06	SITE-47	SITE-47	17.000 (0)	6.000 (0)	39, 995 (9)	(0) 070.11
099-08-11	S1 (E - 23	SITE-23	22.000 [0]	7.300 (0)	46.000 (0)	11.000 (0)
699-08-25	SI1E-32	S11E-32	22.000 (0)	7.300 (0)	46.000 .0)	12.000 (0)
829-08-12	. SI IE - 19	SITE-19	12.000 10	5.900 (0)	40.000 00	76,955. (0)
699-09-£02	SI1E-16	SI 1E - 16	30.000 (0)	6.900 (0)	24.002 (0)	8.700 (0)
PDD-10-F15	511E-147 511E-247	SITE-14! SITE-247		5 500 (0) 5 900 (0)	45.000 (1) 48.000 (1)	10 103 101
690-11-45A	STTE-148 85-203	SIJE-148 85-263 85-264	11.200 (0 11.200 1	4.600 (0) 5.220 (1) 5.190 (1)	34.403 · · ·	3.900 (0) 9.300 (1)
	86-43	86-43		4.750	32	
	36-124	86-124 85-125	9 940 1 9 330 1	4.750 1)	33.900 33.900	
699-13-01A	511E-60	SITE-60	22.000 (0)	6 500 (0)	33.909	.3.249 (0)
	•		EC END OF THIS	S REPORT FOR A L	ISTING OF BUALS	ISIS VEINODS.

....

.

· · · ·

· : · · ·

-

5D-821-00-061 R=v. 1

PA: 18

Stand A ME HE Hand

SAMPLE TYPE: UNCONFINED ANALYSIS GROUP: MAJOR

SAMPI ING LUCATION	SAHPI ING EVENT CODE	SAMPLE NUMBER	NA NG/L	(A)	к - Ис/1	(A)	CA MG/L	[A]	MG MG/L	(A)
699-14-38 699-14-38	SITE-61 SITE-86	SIIE-61 SIIE-86	17.000 17.000		6.000 5.700	(0) (0)	34 000 30,000		11.000 9.400	181
000-12-12N	SITE - 13 SITE - 149	SITE - 13 SITE - 149	20.000 20.000	[0]	7.200 6.400	[0]	47.000 54.000	$\left\{ \begin{smallmatrix} 0\\ 0 \end{smallmatrix} \right\}$	0.300 11.000	
699-15-26	SIIE-24 SIIE-150	SITE-24 SITE-150	22,000 23,000	[0]	7.300 6.300		46 000 48 000	{ 0 }	12.000 12.000	{ 0 } 0 }
699-17-05	SITE-18 SITE-151	S17E-18 SITE-151	12.000 10.000	{ 0 }	6.400	[0]	61.0C0 70.000	{ 0 }	11.000 10.000	
699-19-43	SI1E-48 SI1E-121	SITE-48 SITE-121	13.000 19.000	[0]	5.700 5.600		43.000 44.000	[8]	11.000 10.000	
699-19-58	85-229 85-260. 86-40	85-229 85-230 85-260 85-261 86-40 86-41	12 900 12 900 13 800 13 800 13 800 12 800 12 600		4 810 4 850 5 500 5 500 5 020 4 830		34.303 34.900 34.300 34.700 34.700 34.000 33.700	<pre>(1) (1) (1) (1) (1) (1)</pre>	12 300 12 500 12 400 12 500 12 500 12 200 12 100	
125	86-121	86-121 86-122	12.400 12.400		5 040 4.920		33.800 33.100		12.200	{i}
	85-278 86-64 86-127	85 - 278 85 - 279 86 - 64 86 - 65 86 - 127 86 - 128	12.200 12.100 11.600 11.700 11.500 11.500		3.250 3.210 3.330 3.300 3.480 3.690	$ \begin{pmatrix} 1 \\ 1 \\ 1 $	27.000 27.000 26.600 26.800 27.000 27.000	$ \begin{array}{c} 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ $	10,800 10,800 10,400 10,500 10,600 10,700	
699-20-E05-0	SITE-49	S17E-49	13.000	(0)	5.900	(0)	35.000	[0]	9.500	(0)
699-20-20	SI1E-25	STTE-25	20 000	(0)	8.000	(0)	53 000	(0)	11 000	(0)
699-24-30	ST1E-28	SITE-28	25.000	(0)	7.600	(0)	47.000	(0)	13.000	(0)
699-24-46	ST1E-122	S11E-122	15,000	(0)	6.000	(0)	32.000	101	12.000	(0)
699-24-95	85-288 86-61 86-115	85 - 288 85 - 289 86 - 61 86 - 62 86 - 115 86 - 116	14 800 14 800 13 800 13 800 14 800 14 200	$ \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 $	4.220 4.220 4.120 4.140 4.390 4.340	$\begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 $	51 800 51 800 47 300 47 700 52 600 52 300		16.500 16.500 14.000 14.100 16.500 16.000	(1) (1) (1) (1) (1) (1) (1)
699-25-55	STIE-100	SITE-100	10.000	[0]	5.100	[0]	50.000	(0)	12.000	(0)

SEE END OF THIS REPORT FOR A LISTING OF ANALYSIS METHODS.

.

SD-821-00-061 Rev. 1

PAGE 19

· • • .

option to the

.

• •

·• .

.

• . •

SAMPLE TYPE: UNCONFINED ANALYSIS GROUP: MAJOR

SAMPLING LOCATION	SAMPLING EVENT CODE	SAMPLE NUMBER	NA MG/1 (A)	K . HG/L (A)	CA MG/1 (1)	MG MG/L (A)
699-26-15	S11E-26	SITE-26	23.000 (0)	7.100 (0)	48.000 (0)	11.000 (0)
699-26-15A	SITE-263	SITE-263	24.000 [0]	6.000 (0)	49.000 (0)	11.000 (0)
699-27-04	SI (E-101	SITE-101	10.000 (0)	5.700 (0)	50.000 (0)	10,000 (0)
699-27-08	SI1E-5 SI1E-30 SI1E-50 SI1E-76 SI1E-47	SI1E-5 SI1E-30 SI1E-50 SI1E-76 SI1E-87	19.000 (0) 19.000 (0) 20.000 (0) 20.000 (0) 21.000 (0)	6.400 (0) 6.300 (0) 6.300 (0) 6.700 (0) 6.400 (0)	56.000 10) 54.000 10) 55.000 01 54.000 01 48.000 (0)	12.000 (0) 11.000 (0) 12.000 (0) 13.000 (0) 12.000 (0)
699-28-40	SITE-68	SITE-68	23,000 (0)	6.700.(0)	46.000 (0)	15.000 (0)
699-31-31	SÍTE-69 SITE-102	SITE-69 SITE-102	30.000 (0) 30.000 (0)	7.200 (0) 6.900 (0)	43.000 (0) 37.000 (0)	13 030 [0]
699-31-538	SITE-88	SITE-88	21.000 (0)	4.900 [0]	38.000 (0)	75.905 (0)
699+32-22	SI IE - 17 SI IE - 27 SI IE - 51 SI IE - 65 SI IE - 89	SIYE - 17 SIIE - 27 SIIE - 51 SIIE - 65 SIIE - 89	31.000. (0) 29.000 (0) 29.000 (0) 30.000 (0) 29.000 (0)	7.000 (0) 7.200 (0) 6.500; (0) 6.900 (0) 6.600 (0)	53:000 (0) 53:000 (0) 51:000 (0) 50:000 (0) 46:000 (0)	14.000 (0) 13.000 (0) 13.000 (0) 14.000 (0) 13.000 (0)
699-32-708	SINE-70 SINE-90 SINE-152	SITE-70 SITE-90 SITE-152	18.000 (0) 19.000 (0) 18.000 (0)	4.500 (0) 4.300 (0) 4.100 (0)	37:000 (0) 32:000 (0) 34:000 (0)	12:220 (D) 9 800 (O) 11:000 (O)
699-32-72	STTE - 35	SITE-35	16.000 [0]	4 300 (0)	28.000 (0)	12.000 (0)
699-32-77	5116-103	SITE-103	25,000 (0)	3.200 (0)	30.002 .0)	7.909 (0)
699-33-42	S11E-12 S11E-29 S11E-52 S11E-67 S11E-91	SITE-12 SITE-29 SITE-52 SITE-67 SITE-91	31.000 (0) 29.000 (0) 29.000 (0) 29.000 (0) 31.000 (0)	6 900 (0) 7 000 (0) 5 300 (0) 6 400 (0) 6 200 (0)	61.007.10 38.000.00 37.000.00 38.009.00 35.009.01	13.200 0 12.000 0 12.000 0 12.000 0 12.000 0 0
699-33-20	S11E -8 S11E -40 S11E -53 S11E -62 S11E -92	SI IE - 8 SI IE - 40 SI IE - 53 SI IE - 62 SI IE - 92	27 600 (0) 25 000 (0) 24 900 (0) 24 000 (0) 25 000 (0)	5 800 (0) 6 100 (0) 5 700 (0) 6 000 (0) 5 700 (0)	42.000 (0) 42.000 (0) 46.000 (0) 47.000 (0) 41.000 (0)	
899-34-39A	S11Ê-93	SITE-93	31.000 (0)	6.800 (0)	32.000 (?)	13.000 (0)
699-34-42	\$116-33	S11E-33	32.000 (0)	7.300 (0)	37.019 (7)	11.000 (0)
2000 - 2013 2000 - 2013 2000 - 2013	· · ·		SEE END OF THIS	REPORT FOR A L	ISTING OF AWALY	SIS HE CODS.

•

•

••

.

7 ·.. 20

.

.

.

:

SD-BWJ-DP-061 Rev. **~~**

•

٠

1

1

.

•

.

•

- 经一定新期股份 的现在分词

SAMPLE TYPE: UNCONFINED ANALYSIS GROUP: MAJOR

.

.

SAMPLING LOCATION	SAMPLING EVENT CODE	SAMPLE NUMBER	NA MG/L	(A)	к 11471	(A)	CA MG/L	(A)	MG NG/L	(A)
699-34-42	STIE-153	SI [E-153	28.000	(0)	6.100	(0)	32.000	10)	9.900	(0)
699-34-51	SITE-60	SITE-66	21.000	(0)	5,900	(0)	50,000	(0)	15.000	(0)
699-35-09	SITE-31 SITE-104 SITE-264	SITE-31 SIIE-104 SIIE-264	19.000 10.000 20.000		5.500 5.500 5.200		40.000 50.000 46.000		9 500 10 000 12.000	
699-35-66	SI 1E - 77 SI 1E - 94	SI 1E - 77 SI 1E - 94	20.000 23.000	{ 0 }	5.900 5.600		43.000 • 40.000	[8]	13.000 11.000	[8]
699-35-70	S11E-36	SI1E-36	28.000	103	6.800	[0]	51.000	(0)	16.000	[0]
888-32-38	SITE-54	S11E-54	23.000	(0)	3.200	10)	19.000	[0]	6.400	(0)
699-36-61A	\$11E-95	SITE-95	21.000	(0)	5.600	[0]	40.000	{0}	13.000	(0)
699-37-43	STTE-34 STTE-173	SITE-34 SITE-173	41.000 57.000	{0} {0}	8 400 8 700		25.000 \$2.000	[0]	7 900 29.000	[⁰]
699-37-82A	ST LE - 105	SITE-105	22.000	(0)	8.000	(0)	50.000	(0)	0.400	10)
13699-38-70	ST1E-37	SITE-37	21.000	[0]	7.300	(0)	92.000	(0)	29.000	(0)
683-39-E3	SITE-248	S11E-248	15.000	[0]	5.000	[0]	31.000	(0)	11.000	(0)
989-39-01	SI [E-249	SITE-249	18.000	(0)	5,700	(0)	43.000	10)	12.000	(0)
699-39-39	SITE-266	SITE-266	28.000	(0)	4.600	(0)	23,000	[0]	4.900	(0)
699-40-01	SINE-10 SINE-106 SINE-250 SINE-265	STTE-10 STTE-106 STTE-250 STTE-265	17.000 10.000 18.000 13.000		6.000 5.800 5.700 4.800		40.000 50.000 44.000 44.000	00000	11.000 11.000 12.000 12.000	(0) (0)
699-40-33	\$11E-\$5 \$11E-251	SI1E-55 SI1E-251	52.000 56.000	{0} {0}	7.500 7.100	[0]	14.000 16.000		3 900 4.000	[0]
699-40-62	SI JE - 56	S11E-56	17.000	(0)	5.300	(0)	43.000	(9)	15.000	(0)
599-41-01	\$11E-252	SITE-252	19.000	(0)	5.600	(0)	42.000	103	12 000	[0]
899-41-23	SI 1E - 15 SI 1E - 113	SITE-15 SITE-113	30.000 29.000		7.300 6.700		48.000 42.000	$\begin{pmatrix} 0 \\ 0 \end{pmatrix}$	15.090 12.000	<u>{}}</u>
699-42-02	S11E-154	SITE-154	19.000	10)	5.300	(0)	41.000	(0)	12.000	(0)
699-42-12	S11E-2	SITE-2	24.000	(0)	5.400	(0)	41.000	{0}	14.000	(0)
			SEE END OF T	une	VEDAUT CAL		LETING OF		VOTO NETUO	ne

PAGE 21

SD-8WI-0P-061 Rev.

-

1

SAMPLE TYPE. UNCONFINED ANALYSIS GROUP: MAJOR

SAMPLING LOCATION	SAMPLING IVENT CODE	SAMPLE NUMBER	NA MG/L (A)	K NGZĹ (A)	CA NG/L (A)	MG/L (A)
699-42-12	STIE - 155 STIE - 267	SITE-155 SITE-267	28.000 (0) 25.000 (0)	5.400 (0) 4.700 (0)	43.000 10) 43.000 (0)	13.000 (0) 13.000 (0)
699·42-40A	S11C-174	SITE-174	28.000 (0)	3.800 (0)	19.000 (0)	14.000 (0)
699-42-400	STIE-175	SITE-175	25,000 (0)	4.300 (0)	22.000 (0)	12.000 (0)
699-42-42	STIE-114	SITE-114	24.000 (0)	5.800 (0)	50.000 101	14.200 (0)
699-43-03	ST 1E - 253	SITE-253	20.000 (0)	5.100 (0)	41.000 (0)	12.000 (0)
699-43-88	5116-123	S17E-123	14.000 (0)	4,600 (0)	42.002 (2)	5, 300 (0)
699-44-04	SITE-254	SITE-254	19,000 (0)	5.400 (0)	44.000 111	12:000 (0)
699-45-04	SITE-255	SITE-255	19.000 (0)	5.200 (0)	40.000 (0)	11.000 (0)
819-45-42	SI1E-57 SI1E-268	SITE-57 SIJE-268	18.000 (0) 13.000 (0)	4.500 (0) 3.700 (0)	25.000 (0)	11.000 00
899 -45-69	SI [E-96	SITE-96	14,000 (0)	3.800 (0)	41.000 (2)	17.000 [0]
_899-46-05 N	STTE-156 STTE-256	SITE-156 SITE-256	22 000 [0]	4.700 (0) 5 200 (0)	43.000 (2)	0.014 (0)
509-46-21A	SI 1E-75 SI 1E-124	SI1E-75 SI1E-124	21.000 (0) 21.000 (0)	4,900 (0) 4,700 (0)	40.000 (0) 42.000 (0)	15 000 (0) 24 000 (0)
399-47-06	S1 (E - 257	STIE-257	21 000 (0)	4.400 (0)	37,000 (0)	3.000 (0)
599-47-46	SÍTE-269	SITE-269	23,000 (0)	7.300 (0)	43.00: (3)	14 09: (0)
699-48-0/	STIE-258	SI1E-258	8.600 (0)	1.400 (0)	22.000 101	5.200 (0)
899-43-18	ST1E-125	SITE-125	13,000 (0)	5.700 (0)	44.0.2	24.923 (0)
849-48-71	SI1E-59	SITE-59	10.000 (0)	3,600 (0)	32.000	13.000 (0)
699-49-13	STTE-259	STIE-259	27.000 (0)	5.500 (0)	34,000 0	T. 200 (D)
69 0-4 9-55	S11E-B S1E-39 S1E-58 SIE-78 SIE-78 SIE-126 SIE-126 SIE-157	SITE-9 SITE-39 SITE-58 SITE-78 SITE-78 SITE-97 SITE-126 SITE-157	C C	7,700 (0) 10,000 (0) 11,000 (0) 12,000 (0) 13,000 (0) 12,000 (0) 13,000 (0)	55 000	12 000 (0) 12 000 (0) 15 000 (0) 7 700 (0) 5 400 (0) 3 300 (0)

.

.....

SEE END OF THIS REPORT FOR A LISTING . . ALYSIS METHODS.

۰.

SD-8WI-DP-961 Rev. 1

MG. 22

SAMPLE TYPE: UNCONFINED ANALYSIS GROUP, MAJOR

(1월) 11년 년) 1

.

SAHPLING LOCATION	SAMPLING EVENT CODE	SAMPLE NUMBER	na hg/l	(A)	K MG/L	[A]	CA Mg/l	(A)	MG MG/L	{A}
699-49-55A	ST1E-182	SITE-182	35.000	(0)	10.300	(0)	70.000	(0)	20.000	(0)
699-49-57	SI1E-38	SITE-38	53.000	(0)	8.700	(0)	85.000	(0)	25.000	(0)
899-49-79	SI1E-20	SITE-20	8.700	[0]	4.200	[0]	44.000	(0)	15.000	(0)
633-20-08	SITE - 64	SITE-64	22.000	(0)	6.900	(0)	42.000	(0)	12.000	(0)
699-50-28 1	SI1E-53	SITE-60	22.000	(0)	4.200	(0)	31.000	(0)	11.000	(0)
699-50-42	SIIE-14 SIIE-115 SIIE-271	SITE-14 SITE-115 SITE-271	18.000 16.000 18.000		5 900 4 600 5,200		31.000 17.000 28.000		12.000 5.000 9.200	
699-50-53	SI 1E-270	SITE-270	28.000	[0]	7.200	(0)	62.000	[0]	18.000	[0]
699-59-85	SITE-127	SITE-127	10.000	101	3.900	(0)	38.000	(0)	12.000	(0)
699-51-63	ST1E-118	SITE-116	12.000	[0]	4.100	[0]	32.000	[0]	12.000	(0)
699-53-103	SI 1E-160	SITE-160	29.000	[0]	7.800	[0]	17.000	(0)	9.200	(0)
699-53-47B	ST1E-272	SITE-272	5.900	[0]	3.200	(0)	33,000	[0]	9.400	[0]
្នុក ដែនមូន- 54 - 34	\$11E-273	SITE-273	19.000	(0)	4.400	(0)	27.000	[0]	12.000	[0]
699-22-200	SITE-79 SITE-128 SITE-193 SITE-274	S11E - 79 SIIE - 128 SIIE - 193 SIIE - 274	6.000 5.000 4.700 4.700		4 700 4 300 4 100 4 000	(0) (0) (0)	29,000 29,000 19,000 31,000		8.800 7.900 9.200 8.700	
699-55-76	SITE-71 SITE-117 SITE-129	SITE-71 SITE-117 SITE-129	14.000 10.000 9.600		5 900 5,500 4,800	(0) (0)	41.000 34.000 28.000		8 100 5 200 4 900	
699-55-89	S11E-118	S11E-118	10.000	(0)	4.400	(0)	33.000	(0)	12.000	[0]
899-58-53	STTE-194 STTE-195	SITE-194 SITE-195	8.400 8.500	{0}	5.300 5.400	(0) (0)	25.000 25.000	$\begin{pmatrix} 0 \\ 0 \end{pmatrix}$	10.500 10.500	{ 8 }
699-57-25A	STIE-119 STIE-275	SITE-119 SITE-275	31.000 31.000		6 600 5 600	[0]	30.000 24 000		7 100 7.300	[2]
699-57-29A	511E-276	SITE-276	29.000	(0)	6 900	(0)	23,000	[0]	, 6.700	(0)
699-21-83	ST1E-130	STIE-130	7.500	(0)	3.500	(0)	30,000	[0]	12.000	101
699-59-58	STIE - 107	SITE-107	27.000	(0)	5.400	(0)	30,000	(0)	7.000	(0)

SEE END OF THIS REPORT FOR A LISTING OF ANALYSIS METHODS.

SD-841-09-061 Rev. 1

.

FAGE 23

•

τ.

• • •

SAMPLE TYPE, UNCONFINED ANALYSIS GROUP: MAJOR

.

· · · ·

.

.

۰ ۲ . .

Sampi Ing Lucation	SAMPE ING EVENT CODE	SAMPLE NURBER	»А MG/1, (А)	K - , MG/L (A)	CA MG/L (A)	MG/L (A)
699-59-58	STIE-277	SITE-277	27.000 (0)	5.100 (0)	21.000 (0)	5.800 (0)
899-60-32	SI1E-278	SI1E-278	23.000 (0)	4.300 (0)	28.000 (0)	8.200 (0)
699-50-57	STTE-198	SITE-195	38.000 (0)	7.800 (0)	16.000 (2)	8.500 (0)
899-62-31	SI IE - 131 SI IE - 279	SITE-131 SITE-279	20.000 (0) 21.000 (0)	5.200 (0) 5.000 (0)	36.000 (0) 35.000 (0)	8.100 (0) 8.700 (0)
699-80-25A	ST (E-132	SITE-132	24.000 (0)	5.200 (0)	64,000 (0)	13 000 10)
699-69-55	SI1E-280	SI1E-280	29.000 [0]	5.400 (0)	21,000 (0)	7.200 (0)
699-63-58	\$118-281	SITE-281	29.000 (0)	5.000 (0)	23.000 101	7.600 (0)
<u> 997-93-90</u>	SITE-74 SITE-133	SI 1E - 74 SI 1E - 133	11.000 (0) 11.000 (0)	4.700 (0) 4.400 (0)	36.000 (0) 34.000 (0)	13.000 (0) 12.000 (0)
699×64~27	SI1E-158	SITE-158	48.000 (0)	7.100 (0)	91.000 (0)	21.000 (0)
699-65-50	SI 1E - 73 SI 1E - 134 SI 1E - 282	SITE-73 SITE-134 SITE-282	19.000 (0) 19.000 (0) 21.000 (0)	5.400 (0) 5.000 (0) 4.800 (0)	- 26,000 (0) 24,000 (0) 24,000 (0)	9.200 (0) 3.200 (0) 3.200 (0)
699-86-103 	85-203 86-73 86-112 85-294	85-203 85-204 86-73 86-74 86-112 86-113 85-294 85-295	6.840 11 6.230 11 6.540 11 6.60 11 6.660 11 6.880 11 6.880 11	3.530 (1) 3.280 (1) 2.260 (1) 2.170 (1) 3.060 (1) 3.050 (1) 2.920 (1) 2.890 (1)	29,000 (1) 28,000 (1) 27,199 (1) 26,500 (1) 28,300 (1) 28,200 (1) 28,200 (1) 28,200 (1)	7.000 (1) 7.730 (1) 7.230 (1) 7.230 (1) 7.730 (1) 7.730 (1) 7.730 (1) 7.840 (1)
699-55-39	\$11E-135	SITE-135	61.0:0 (0)	1 300 (0)	(9.300 (2)	1.300 (0)
699-66-58	SI1E-136	SIIE-136	14.000 (0)	5.400 (0)	27.000 (0)	\$.400 (0)
699-65-64	STTE-137	SITE-137	16.000 (0)	5.500 (0)	27.000 (2)	3.390 (0)
699-67-98	SI 1E - 260	SITE-260	13.000 (0)	4.500 (0)	38.000 (1)	75/600 101
699-69-38	SITE-6	SITE-6	34.000 (0)	13 000 (0)	72.000 (1)	\$,\$00 (0)
699-71-30	S1TE-108	SI1E-108	39.000 (0)	6 200 (0)	56.000 (2)	14, 700 (0)
899-71-52	ST1E-138	STIE-138	22.000 (0)	5.500 (0)	30.000 (0)	10,000 (0)
699-72-73	SITE-109	SITE-109	10.000 (0)	5.500 (0)	32,000 10)	10.000 (0)
,		· • • •	SEL END OF THIS	REPORT FOR A I	ISTING OF AWALY	SIS METHODS.

.

SD-BHI-DP-061 Rev. 1

PAGE 24

SAMPLE TYPE: UNCOMFINED ANALYSIS GROUP: MAJOR

SAMPLING LOCATION	SAHPI ING EVENT CODE	SAMPLE NUHBER	NA HG/L	(A)	k MG/L	(A)	CA MG/L	(A)	MG MG7L	(A)
699-72-88	STIE-98 STIE-261	STIE-98 STIE-261	9,300 9,700	[0]	4.500 4.300	[0]	33.000 38.000	{ ⁰ }	7.500 7.600	{
699-72-92	SITE-262	SITE-262	8 600	(0)	4.100	(0)	36.000	(0)	9.100	[0]
699-77-36	S11E-110	SITE-110	69,000	(0)	7.100	[0]	70.000	(0)	30.000	(0)
699-78-62	STTE-111	SITE-111	15.000	(0)	5.100	(0)	35,000	(0)	10.000	(0)
PDB-R1-28	ST1E-159	SIJE-159	4.000	[0]	2.600	(0)	20.000	(0)	7.400	[0]
699-89-47	S11E-112	SI1E-112	18.000	101	4.400	(0)	31 000	(0)	11.000	[0]
699-87 55	SI 1E - 99	SITE-89	16.000	[0]	3.500	(0)	26.000	(0)	9.600	(0)
699-90-45	ST1E-139	SITE-139	16.000	(0)	5.700	[0]	35.000	[0]	11.000	(0)

. •

132

SD-BWI-DP-061 Rev.

· .

SEE END OF THIS REPORT FOR A LISTING OF ANALYSIS METHODS.
LIST OF ANALYSIS METHODS FOR MAJOR CATIONS

SPECIE	<u>(A)</u>	ANALYSIS METHOD
CA	0 1	Unclass)fied ICP
К	() 1	Unclassified ICP
hli	0 1 2	Unclass fiel ICP AA
HΛ	0 1	Unclassified ICP

AA: Graphile Furnace Atomic Adsorption Spectrophotometry ICP: Inductively Coupled Plasma Atomic Emission Spectrometry Unclassified: Analysis comes from a non-BWIP documented source and the method is not specified in this data package. SD-BWI-DP-061 Rev.

SD-BWI-DP-061 Rev. 1

THIS PAGE INTENTIONALLY LEFT BLANK

.

SAMPLE TYPE: CONFINED . ANALYSIS GROUP: MAJOR

.

SAMPLING LOCATION	SAMPI ING EVENT CODE	SAMPI E NUMUE R	LAL ALA MUZI AS CACUS	FIELD ALK MG/L AS CAGO3	SI HG/L (A)	.CC MG/L IA	TC) MG/L (A)
lit XK	85-255	85-255 85-256	132.000 132.000	135.000 135.000	27.500 (1) 27.800 (1)	0.600 (1) 32 500 (1)
DH-0:	81-19	81-15 81-19	193.000	191.000	27.500 [1]		
	81-65	81-65	122 000	134.000	35.500 (1)		
	82-21	82-27 82-87		136.000	35.400 (1) 35.300 (1)	0.660 11)
	85-32	85-32 85-33	131.000 133.000	137.000	33.500 (1) 33.600 (1)	0.400 13) 28.860 (1)
DB-02	79-85 81-13	CP123 81-11	140.000	134.200	- 33 000 111	•	
	81-10	81-13 01-10 81-7	140.000	134.200 134.200 134.200	29.700 (1) 34.200 (1) 34.300 (1)		•
DB-04	79-77	CP116			48.800 (1)		
DB-07	79-89 83-413	CP121 83-413	110.000	170 000	41 500 (1) 38.370 (1)	0.740 ji	} 34.880 (1)
• ↓ ↓_} ↓ 1	85-216	83-448 85-216 85-217	170 000 163.000 163.000	170.000 164.000 164.000	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.180 (1) 32.200 (1)
08-09	79-28 83-472	CP115 83-410 83-472	133.000 134.000	139.000 139.000	31 400 (1) 27.400 (1) 27.400 (2)	0.440 11	32.410 (1)
DB-11	85-18	85-18 85-19	140 000	141.000		0.240 12 0.240 11	32.990 (1)
	86-52	86-52 86-53	141 000	140 000	30,400 (1)	0.200 1	\$ 32.900 11
4R-12	81-57	81-57		141.000	32.170 [1]		
10-12	81-25	81-25 81-42		171,900	26,100 11 26,000 (1)		
08-13	83-404	83-404 83-455	154.000 154.000	153,000 153,000	29,800 (1) 30,000 (1)	0.640 (l) 33,650 (1) .
DB-14	81-182	81-139 81-162	128.400 128.400		36.230 (1) 36.560 (1)		·
DB15	79-17	79-17 79-4		98 400 88,400	24 900 (1) 26.000 (1)		
				4			

.

SEE END OF THIS REPORT FOR A LISTING OF ANALYSIS METHODS.

.

, **v**

PACE 1

.

. .

.

;

SD-8HI-DP-061 Rev. 1

SAMPLE TYPE. CONFINED . AMALYSIS GROUP: MAJOR

SAMPLING LOCATION	SAMPI ING EVENT CODE	SAMPLE NUMBER	LAB AFK MG/L AS CACU3	FIELD ALK MG/L AS CACO3	51 146/l	(A)	TUC MG/L	(A)	TC NG/L	(A)
DU-15	79-35	79-20		171.500	20.700	<u>{</u>]}				
	79-33	79-35		174.000	20.500					
	79-15	79-15		191 300	25,200					
	79-39	79-46		207.700	29.700	$\{1\}$				
	79-31	79-8 79-31		207.700 194.700	28.800 28.000	$\{1\}$				
	79-51	78-5 79-51		194,700 154,200	28 600 53.200	$\{1\}$		•		
	79-85	79-61 79-74		154.200 156.650	54.000 57.900	{}		•		
	79-80	79-85 79-80		156.650 149.600	50.000 62.500					
	19-62	79-99 79-62		149.600 146.800	57.200					
	19-90	79-84 79-90		146.800 161 200	40.300					
	80-15	79-95 80-35		161.200 158.600	43 500	}i{				
	80-20	80-41		158.600	85.400	} <u>i</u> {				
	80-77	80-74 80-42		154 200	47.500	ļi (
م نبو	80-)	80-77		168.600	44.300	١Į				
ы Ф	20-1	80-51		148.200	46.000	11				
DC-01	\$176-230	SITE-230		122.000	11.000	[2]				
	STIE-225 STIE-227	SITE-226 STTE-227		180.000	25.000	[8]				
	SI1E-228	SI1E-228		171 000	37.000	lõ				
	SI1E-229	SILE-229		171.000	38.000	{ 0}				
	STIE-232	SI1E-231		101:000	21 000	181				
	<u>ŠIIĒ-233</u>	SI1E-233		192.000	26.000	101				•
•	STIE-234	STIE-234		182 000	27.000	105				
	S11E-235 S11E-236	STIE-235 STIE-236		157 000	42.000	{ <u>\</u>				
	S11E-237	STIE-237		168.000	38 000	121				
	STIE-238	SI1E-238		179 000	22.000	lal				
	STIE-239	SI1E-209		208 000.	54.000	<u> </u>				
	STIE-240	STIE-240		208.000	56.000	181				
	SI IE - 242	SIJE-242		180.000	29.000	251				
	SIIE-243	SI1E-243		161.000	31.000	101				

. .

SEE END OF THIS REPORT FOR A LISTING OF AMALYSIS METHODS.

.

TAGE 2

· 4

. .

SAMPLE TYPE. CONFINED ANALYSIS GROUP: MAJOR

SAMPLING LOCATION	SAMPLING EVENT CODE	SAMPI E NUHBER	LAD ALK MG/LAS CAC03	FILLD ALK MG/L AS CACUJ	SI MG/L	(A)	∵.)∂ ⊻G/1	[A]	TC MG/L	(A)
DC-02 A2	80-4 SITE-213	80-25 80-4 SIJE-213		390 200 -390,200	124.000 93.600 71.400	$ \left\{\begin{array}{c}1\\1\\0\end{array}\right\} $				
102-03	80-21	80-27 80-81		143.000	2.790 2.060					
DC-05	79-30	79-30 79-32	121.000 121.000	•	34.800 33.600	33				
рс-08 ;- ;- ;- ;- ;- ;- ;- ;- ;- ;- ;- ;- ;-	80 - 161 50 - 72 SITE - 214 80 - 238 80 - 191 80 - 13 79 - 59 81 - 45 80 - 15 81 - 32 80 - 29 79 - 58 80 - 75 82 - 75	80 - 147 80 - 161 80 - 22 80 - 72 5176 - 214 80 - 201 80 - 238 80 - 191 80 - 131 80 - 131 80 - 59 79 - 87 81 - 45 81 - 85 80 - 1133 80 - 1133 80 - 153 80 - 153 80 - 29 81 - 76 81 - 82 80 - 277 79 - 57 80 - 275 80 - 75 80		153.100 166.600 166.600 137.000 134.000 84.000 151.800 155.500 173.400 173.400 173.400	52.300 53.400 22.500 53.700 61.800 63.100 53.500 54.900 50.500 54.900 50.500 40.400 40.400 40.400 50.000 50.000 40.100 50.0000 50.0000 50.0000 50.0000 50.0000 50.0000 50.0000 50.0000 50.0000 50.0000 50.00000 50.00000 50.00000000					•
DC 07 .	82-23 82-10 80-39 80-11 79-52	82-23 82-56 82-10 82-33 80-39 80-98 80-98 80-11 80-19 79-52		180 000 180 000 160 000 160 000 177 400 177 400 177 400 141 200	45 900 46 620 45 000 15 300 35 200 43 200 43 600 43 600 47 200		34 ™.51	0 (1)	·	

SEE END OF THIS REPORT FOR A LISTING OF AMALYSIS METHODS.

 $(r_{\rm e}) = r_{\rm e} \frac{1}{2} + \frac{1}$

and the second
,

۰.

SD-BHI-DP-061 Rev. 1

, 143E - **3**

٠

Watash an Association

SAMPLE TYPE. CONFINED ANALYSIS GROUP: MAJOR

SAMPLING LOCATION	SAHPI ING EVENT CODE	SAMPLE NUMBER	IAB AIK Mg/l As Cacoj	FIELD ALK MG/L AS CACO3	SI MG/L (A)	10C NG/L	(A)	1C MG/L	(A)
DC-07	80-103 80-188	80-103 80-163 80-178		158 400 158 400 108 000	47.200 (1) 47.700 (1) 57.400 (1)				
	80~195	80-188 80-177 80-196		108 000 107 600 197 600	57 700 11 75 200 11 77 500 11			1	
DC-12	80-80	80-62 80-80		137 100 137 100	32.600 11 32.600 11				
	80-100	80-100		139.700	34.100(1)				
	80-97	80-73		143 400	31 300 11			1	
	80-32	80-97 80-32 80-68		143 400 173,250 173,250	31.200 (1) 86.300 (1) 86.100 (1)			1	•
	80-52	80-23		147.400					
	80-124	80-102 80-124		139.700	35 300 (1)	•			
	80-101	80-101 80-169			51.800 11				
	80-174	80-174		144.650	28 900 11				
	80-209	80-209		163.000	52 800 11				
1-1 (-)	80-233	80-233		157 400	46 300 (1)				
ω	80-234	80-208 80-234		210 600	54 500 (1)				
	81-61	81-61	146.000	150.000	54 900 11			•	
	82-85	82-47 82-85	140.000	151 800 151 800	63.000 (1) 63.000 (1)	2.56	0 (1)		
DC-14	80-3	80-3 80-34		132.400 132.400	27 700 13)		•		
	80-53	80-16		109.300	32 400 11				
	80 - 47	80-47 80-85		107 800 107 800	32 400 11				
	80-69	80-69 80-83		144.600	25,100 1	•			
	80-99	80-55		166 700					
	80-88	80-36 80-89		149 600	25.600 11				
	80-71	80-2		151.800	26 200 11				
	80-144	80-136		134.200	27 800 11				

SEE END OF THIS REPORT FOR A LISTING OF ANALYSIS METHODS.

SD-BWI-DP-061 Rev. 1

.

743E 4

۰.

۰.

and the constant of the second s

.

in di-je

SAMPLE TYPE: CONFINED ANALYSIS GROUP: MAJDE

SAMPUING LUCATION	SAMPLING EVENT CODE	SALIPI E NURIDER	LAG ALK MGZI AS CACP3	FIELD ALK MG/L AS CACUD	SI MG/L (A	10 10 10	р , L — [А] [*]	tc Mg/l (A)
DC-14	80-144 80-189	80-144 80-127		134.200	26 800 (1 27,400 (1	3		
	80-112	80-189 80-112		140 800	27.000	}		
	80-157	.80-168 .80-157		134.200	29.800	{		
	80-155	80-183		145.200	20 000	1		•
		80-185		145.750	42 100			
	80-104	80-125		148.500	38 200	. •		
	80-129	80-115 80-129		146.300	58,800 (1			
	80-170	80-156		160 000	60.900	i (
	80-117	80-117		387.600	68.900 (1	2		•
	80-213	80-213	4	206.600	72.500	•		
	81-20	81-20		150.900	48.400	Ś		
	¥1-30	81-22	112.000	109.000	49,200	1		
	81-44		124 000	131.000	48.500			
.) D	81-141	81-141	106.430	131.000	54 200			
	82-8	82-42 82-8		109.000 109.000	51.600	1 0	.980 (3)	
	83-156	83-156 83-197	103 000	110.000	53.700 (3	1 0	.840 (1)	11.500 (1)
	83-152	83-152	116 000		53.200 1	5	.770 (1)	10.740 (1)
	89-157	83-157	110 000	123.000	54.300) 0	.740 (1)	11.100 (1)
	83-178	83-179 83-103	114 000	123.000	53,400 (.	. 1 . j	•	
	83-183	83-178 83-123	110 000	109.000	53.400 (1	}. ⊃	.640 [1]	11.100 (1)
	83-154	83-183	107 000	118.000	53,100 1		510 (1)	11.009 (1)
	80 154 80 16A	83-191	110 000	120.000	54.800 1	i i	. 020 (1)	11.000 (1)
	81-120	83-150	108 000	•	54:700 (1	3 0	.\$10 .13	10.800 (1)
	83-266	83-233 83-266	110.000	117.000	55,300 [1		. 110 (11)	11.300 (11
	83-261	83-203 83-261	109.000 109.000	118.000 118.000.	53.700 (3 53.900 (1	} .	.540 (!)	12.800 (1)
DC-15	80-55	80-31		167 500 .	23.100 (1	3		•

SEE END OF THIS REPORT FOR A LISTING OF AMALYSIS METHODS.

× 1

• • •

...

...

and And sha

۰.

• • •

1

.

٠٠.

:*

۰.

SD-BHI-DF-OGI Rev, 1 • •

24.1 5

SAMPLE TYPE CONFINED ANALYSIS GROUP: MAJOR

Sampi Ing Location	SAMPLING EVENT CODE	SAMPLE NUMBER	LAB ALK MG/L AS CACU3	FIELD ALK MG/L AS CACD3	SI Mg/l (A)	TÙC MG/L (A)	TC Mg/l (A)
DC-15	80-56 80-54	80-56		167.500	25.500 (1) 25.500 (1)		
	80-57	80-76 80-57		157 900 248 600	26.000 11		
	80-87	80-65 80-87		248,600 232,600	33 700 11 28,500 11		
	80-13/	80-94 80-137		232.600	28.600 (1) 32.600 (1)		
	80-176	80-197		138 600	32.100 11		
	80-135	80-135		148.500	37.800 11		
	80-120	80-120 80-139		162.250	37 700 11		
	80-131	80-108 80-131		151.800 151.800	55.700 11		•
	80-193	80-114 80-193		173.000 173.000	58.000 11 59.200 11		•
	81-41	81-24 81-41		94.400 94.400	40.800 (1) 41.200 (1)		
	61-2 N1-45	81-2 81-36 81-46		86.240 86 240 78 200	43 400 (1) 44 500 (1)		
-•	81-40 	81-50		78.300			
5	81-27	81-33 81-27	108.000	52 300	42 500 11		
	81-64	81-74 81-64	108.000	104.000 75 170	54 800 11	23.000 (1)	
	81-98	81-80 81-85	66.000 88.000	75,170 85,000	39 900 (1) 38 100 (1)		
	81-69	81-96 81-69	88.000	85 000 86.000	39 300 11 37 700 11		
	82-94	82-41	146.300	60.000	54.700 1	11 270 /11	
DC- 16A	81-109	81-109	226.000	224.000	22 200 (1)		
	82-17	81-167 82-17	229.000 141.000	224.000 148.000	22.200 11 9 870 11	3.410 (1)	!
	82-93	82-55 82-45	141.000	148.000 184.000	9,870 (1) 33,900 (1)	• • •	
	82-19	82-93	146.000	184 000 150 000	34 200 11 38 300 11	9 740 11 8 440 11	•
×	82-138	az-an 82-140 82-188	145.000	150 000	39.400 [1] 36.100 [1]	0 650 455	
		02-140	143.0055	121,000	10.100 [1]	3.550 (1)	

SEE END OF THIS REPORT FOR A LISTING OF ANALYSIS METHODS.

ł

2.AGE 6

SAMPLE TYPE, CONFINED ANALYSIS GROUP: MAJOR

SAMPLING LOCATION	SAMPI ING EVENT CODE	SAMPI E NUMBER	1 AB ALX HG/L AS CACUD	FIELD ALK MG/L AS CACO3	SI MG/L	(A)	10C Mg/L	(A)	TC MG/L	[A]
DC- 15A	82-124	82-124 82-172	142.000	144.000	40,800 40,600		4.910	[1]		
	82-143	82-126 82-143	86.000 85.000	103.000	37.700 38.000		3.610	(1)		
	82-202	82-202 82-228	•	107,600 107,600	33.700 34.200		11.180	{1}	30.230	(1)
	82-322	82-322 82-361	91,000 91,000	90,000	37.900		6.900	(1)	24.950	(1)
	82-332	82-332 82-358	121.000	126.000 126.000	34.000		5,800	(2)		
	82-430	82-430 82-473	138.000	150,000 150,000	28.600		20 800	(1)	46.210	(1)
	83-29	83-29 83-41	141 000		· 45.900 46.400		15.320	[2]	36.190	(1)
DC~16B	83-147	83-147 83-185	135.000 135.000	148.000 148.000	33.400 33.500	$\left\{ \begin{array}{c} 1\\ 1 \end{array} \right\}$	1.740	(1)	35.700	(1)
DC-16C	83-100	83-100 83-30	118.0D0 118.000	124,000	42.700	É.	1.970	(1)	23.120	(1)
3-11 - Fai - June	83-259	83-215 83-259	126.000 125.000	130.000 130.000	38.000 37.800		1. 190	(3)	28.400	(1)
DC-18	86-188	86-166 86-167	133.000 155.000	154.000 154.000	26 600 26 600	(i)	0.500	(3)	30.600	(1)
DC-19C	84-53	84-53 84-84	127.000	125,000	31.400		210	.1)	30.130	(1)
	84-40	84-40 84-77	144 000		31.600 31.700		1.620	(1)	31.430	(1)
	84-75	84-29 84-75	115.000	117.000 117.000	37.900	{i}	1.750	[1]	25.780	(1)
	84-80	84-18	111 000	113.000	41,300 40,600	13	1.850	(1)	25.060	(1)
HC-20C	84-9	84-49 84-9	132,500 132,500	132 000 132 000	35.800 35.800	$\left\{ \begin{array}{c} 1\\ 1 \end{array} \right\}$. 95t	(1)	29.270	(1)
DC-22C	84-105	84-105 84-153	125.000 225.000	114,000 114,000	35.600 35.700	<u>{}</u>	.1.080	143	27.230	(1)
PC-2368	86-133	86-133 86-134	124,000	124 000	27.300	113	.1.160	[1]	26.600	(2)
	86-141	86-141 86-142	112 000		28.300	Ìŧ	0.950	(3)	21.300	(1)
	89-181	86-181 86-182	168.000 156.000	167,000 167,000	50.300 50.600	[i]	460	111	13,500	(1)

SEE END OF THIS REPORT FOR A LISTING OF ANALYSIS METHODS.

.

PAGE 7

SD-BWI-DP-OC1 Rev. 1

· • .

SAMPLE TYPE: CONFINED ANALYSIS GROUP: MAJOR

SAMPLING LOCATION	SAMPLING EVENT CODE	SAMPLE NUMBER	IAB ALK MG/I AS CACD3	FILD ALK MG/L AS CACU3	S1 MG7L	(A)	IDC : Mg/l (A	1C) HG/L (A)
ENYEART	S11E-209 SIIE-210 84-166 85-180	SITE - 209 SITE - 210 84 - 166 84 - 184 85 - 180 85 - 181	146.000 146.000 145.000 145.000	151.000 150.000 147.000 147.000 145.000 145.000	30.000 28.000 28.000 27.900 27.900 27.900 28.000	(0) (0) (1) (1) (1)	0.270 (1 0.620 (1 0.330 (1) 34.340 (1) } 35.200 (1) 35.940 (1)
F UKD	SIIE-206 SIIE-207 SIIE-219 85-188 85-303	SIIE - 206 SIIE - 207 SIIE - 219 85 - 188 85 - 189 85 - 303 85 - 304	148.000 148.000 148.000 148.000 148.000	155 000 148 000 154 100 145 000 145 000 150 000 150 000	30.000 26.000 24.700 27.600 27.600 31.300 31.100		0.860 (1 0.440 (1 0.860 (1	33.970 (1) 34.570 (1) 35.000 (1)
NCGE E	511E-224 511E-222 511E-225 511E-220 82-7 85-175	SITE-224 SITE-222 SITE-225 SITE-225 SITE-220 82-52 82-7 85-175	140.000 140.000 142.000	146.700 145.000 145.000 143.000	27 100 26 000 0 110 29 300 29 800 27 900		0.760 (1 0.430 (1	34 700 [1]
	85-300 86-34 80-64	85-300 85-301 86-34 86-35 80-64	142.000 142.000 142.000 143.000 143.000	143.000 142.000 143.000 143.000 143.000 142.400	30.600 30.500 28.700 28.700 26.600		0.280 (1 0.280 (1	$\begin{array}{c} 33.110 & (1) \\ 34.500 & (1) \\ 33.400 & (1) \end{array}$
	81-79 81-54 82-64	80-88 81-73 81-79 81-54 81-56 82-11	139,000 139,000 138,000 138,000 138,000	142 400 136 000 136 000 133 000 133 000 139 000	26,300 27,300 28,200 28,000 27,800 29,600		0.660 [1)
	82-263 82-397	82-64 82-263 82-283 82-325	134 000 143.000 143.000 148 000	139 000 139 000 139 000 142 000	29.300 28.500 28.800 28.900		0.440 [1) 39.700 (1)
	82-424	82-397 82-424 82-474	148 000 139 000 139 000	142.000 146.000 146.000	29,100 29,200 29,600		0.350 (1 0.290 (1	40 490 (1) 37 910 (1)
	82-436 83-32	82-498 83-32	143.000 143.000 144.000	148.000 148.000 148.000	29.200 29.600 29.800		0.540 [1) 38.600 (1) } 36.600 (1)
	80-83	83-63 83-27 83-81	144.000	148.000 151.000	30.000 29.900 30.000		0 500 (*	1 28 800 (11
	83-188	83-113	148.000	150.000	30.800	11	0.200 [1	i serono (t)

.

.

. . .

SEE END OF THIS REPORT FOR A LISTING OF ANALYSIS METHODS.

SD-BWI-DP-061 Rev. 1

.

.

Ċ

.

1

Personal and the second

SAMPLE TYPE: CONSINSD ANALYSIS GROUP: MAJOR

. .

SAMPI ING LOCATION	SAMPI ING E VENT CODE	SAMP1 E NUMBER	MG, I AS CACUJ	FIELD ALK MG/L AS CACU3	SI NG/L (A	,70C ()) MG/L ()	TC A) MG/L (A)
MCGEE	83-188 83-373	83-188 83-323	148.000 189.000	150.000 193.000	31.000 11 41.100 11	2.430 (1) 40,500 (1)
	83-331	83-373 83-331 - 83-144	189.000	193.000		8.770	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
. •	83-450	83-460 83-474	194.000 194.000	191.000 191.000	45.900	1.940	1) 41.390 (1)
	83-476	83-417 83-476 83-513	188.000 198.000 175.000	181.000 ± 181.000 ±76.000	44.800 1 45.000 1 48.400	3.350	1) 38.690 (1)
	84-24	83-545 84-24 84-38	175.000	176 000 208.000 208.000	48.700 11 56.600 11 57.200 11) 3.980 (1) 38.420 (1)
OBRIAN	85-194	85-194 85-195	147.000 147.000	148.000 148.000	27_100 (1 27.000 (1) 0.460 ($\begin{array}{c}1) & 34.720 \\1) & 35.010 \\1\end{array}$
RRL-02	- 82-68	82-28 82-68	156.000 158.000	190.000 190.000	29.800 11 29.300 11	3.490 1	1)
н. Э	× 82-65	82-65 82-75 82-163	144.000 144.000	155 000	33.400	1 5:080 []	1)
	- 82-122	82-170 82-122	38.000 \$1.000	83.000 86.000	26,500 34,500,	2.650	1)
	82-401	82-192 82-401 82-479	31 000 159 000 159 000	+86:000 165.000 165:000	35 300 44 700 1 44 500 1		1) 29.800 (1)
	84-7 82-364	84-43 84-7 82-364	145.000 165.000 131.000	149.000 149.000 135.000	49.200 21 49.500 1 47.700	5.140 j	1) 23.550 (1) 1) 26.740 (1)
	82-309	82-381 82-309 82-351	131 000 124 400 134 000	136,000 132,000 132,000	48.800.44 36.100 35.400	; 008'¢.	1) 45.080 (1)
	82-456	82-413 82-456	135.000	135.000	37 100 11 37 300 (1 4.680 :	.) 24.430 [1]
RRL-14	82-403	82-403 82-489	132.000 182.000	195 000 195 000	43 600 11 44 000 11	ì	
STEM-1	85-252	85-252 85-253	151.000 151.000	151.000	27.400	3 0.830 1	1) 34.900 (1)
	85-291	85-297 85-298	155 000 155 000	.156.000 156.000	29 700 (1 29.600 (1	\$ 0.370 f	1) 35.900 (1)
1	86-31	86-31 86-32	157 000 157 000	157.000	27 300 (1 27.400 (1	0.200 (1) 35.400 (1)
STEM-2	86-19	86-19 86-20	153.000 153.000	152.000 152.000	27 700 /1 27.900 (5	} 0.340	3) 35 400 (1)
			SEE END OF	THIS REPORT	FOR A LISTIN	Q OF ANALYSIS	METHODS.

A CALL CONTRACT OF A CALL CONTRA

· • ·

۰.

đ

SD-BWI-DP-051 Rev. 1

. `

.

7401 6

٠

.

SAMPLE TYPE: CONFINED ANALYSIS GROUP: MAJOR

á

SAMPLING LOCATION	SAHPLING EVENT CODE	SAMPI E NUMBER	IAB ALK MG/L AS CACU3	FIELD ALK MG/L AS CACDJ	51 14G/L	(A)	TOC HG/L	(A)	TC HG/L	(A)
299-£16-01	SI (E - 161 SI SE - 162 SI SE - 163 SI SE - 163 SI SE - 164	SITE-161 SITE-162 SITE-163 SITE-164		90.000 143.000 144.000 145.000	68.000 68.000 66.000 68.000					
299-E26-08	SITE-166 SITE-167 SITE-168	SITE-166 SITE-167 SITE-168	-	99 000 103 000 104.000	78.000 79.000 79.000					
299~133+12	STIE-170 STIE-171 STIE-172	SITE-170 SITE-171 SITE-172		39.000 50.000 64.000	60.000 67 000 72.000	$\begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$				
699-511-E12A	80 - 6 1 80 - 180	80-61 80-7 80-138 80-180		170 500 170 500 172 700 172 700	21.200 21.500 27.200 27.800	$ \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{bmatrix} $				•
699-42-400	STTE - 176 STTE - 177 STTE - 178 STTE - 178 STTE - 179	SITE-176 STTE-177 SITE-178 STTE-178 STTE-179		128 000 122 000 123 000 125 000	49.000 72.000 72.000 72.000	$\left(\begin{array}{c}0\\0\\0\\0\end{array}\right)$				
4-699-4/-50	S11E-181	SITE-181		95,000	51.000	10)				
699-49-558	S17E-183 S11E-184 S11E-185	SITE-183 SITE-184 STTE-185		120.000 122.000 117.000	73.000 73.000 71.000	0)				
699-50-45	SI 1E - 186	SITE-186		114.000	58.000	[0]	,			
699-50-48	S11E-187	STTE-187		114.000	66 000	(0)				
699-51-46	SITE-188	SITE-188		86,000	69.000	(0)				
699-52-46A	SI1E-189	ST1E-189		117.000	79.000	[0]				
699-52-48	SI IE - 190	SITE-190		147 000	59.000	[0]		•		
699-53-50	SI 1E - 191	SITE-191		114.000	70.000	(0)				
699-54-57	ST (E - 192	SITE-192		117.000	70.000	(0)				
298-20-23	SITE-196 SITE-197	SITE-196 SITE-197		130.000 129.000	43.000					

. 2

.

SEE END OF THIS REPORT FOR A LISTING OF ANALYSIS METHODS.

SD-BWI-DP-CE1 Rev.

مسو

PAGE 10

4

.

SAMPLE TYPE: PRECIPITATION ANALYSIS GROUP: MAJOR

٠

SAMPI ING LOCATION	SAMPLING EVENT CODE	SAMPI E NUMBER	LAB ALX MG/L AS CACU3	FIEID ALK MG/L AS CAC03	SI MG/L (A)	-TOC MG/L	(A)	IC MG/L	(A)
51A110N-03	82-51	82-51		· · · · · · · · · · ·	(0.045 (1)				
STÅ110N-04	82-61	82-61			0.608 (1)				
SIA1100-07	82-92	82-92	1		(0.045 (1)			•	
SIA110N-14	82-20	82-20			0.057 (1)				
STATION-17	82-70	. 82-70		,	< 0.045 (1°				
STATION-20	82-58 82-74	\$2-58 82-74		. .	<pre>0.133 {1} < 0.045 {1} </pre>			•	
51A110N-25	82-83 82-66	82-83 82-66			0.126 (1)				•
STATJON-26	**************************************	82-91 82-98		;	<pre> 0.045 [1] 0.045 [1] </pre>				
		•••••	• • • •	· · · · ·				¢.	
	1997 - 19		** .			•		10 - 1	·
		3.11		• • •	· · · · · ·				
	- ,	1 15		12 1 1				·)	
	- • •	. 1		•	•				
	· · ,	•							
				1.					
				1 ₁				•	
	.`			: ''	•				
	. ·	•							
		۰.			,				
		1 - F			,			,	
				, · ·	;	•			
	· · · · · ·	· . 		•				<u>,</u> , ,	
		· · · ·	SEE END OF	IHIS REPORT	FOR A LISTING O	F ANALYS	is mi	THODS.	

٠.

.

> . s. . , . ۰.

SD-8WI-0P-061 Rev. . مىر

.

.

.

PARE 11 · •

SAMPLE TYPE SPRING ANALYSIS GROUP, MAJOR

SAMPLING LOCATION	SAMPI ING EVENT CODE	SAMP1 E NUMBER	IAB AIK MG/L AS CACD3	HG/L AS CACOG	SI NG/L (A)	TOC MG/L (A)	TC NG/L (A)
SP-BEAMETT	SITE-218 79-13 85-362	S11E-218 79-13 85-362 85-363	92.000	88.500 85.600 91.000	21.500 (0) 22.900 (1) 23.600 (1)	0.630 (1)	22.300 (1)
	86-190	86-190 86-191	91.000 91.000	90.000 90.000	22.600 1 22.600 1	0.690 (1)	21.400 (1)
SP-IILNSUN	S17E-217	SI7E-217		90.980	18.200 (0)		
SP-BUILER	79-1	79-1 79-50		93.000 93.000	19.400 (1) 19.400 (1)		
sp-gui ch	84-359	84-359 84-383	147.000 147.000	147.000 147.000	21 900 11 21 500 11	13.040 (1)	46.910 (1)
SP-JUNIPER	511£-215 79-2	SITE-215 79-2 79-40		156.600 152.800 152.800	23.300 (0) 26.100 (1) 24.900 (1)		•
	81-115	81-115	146.000	145 000			
	83-372	83-305 83-372	153 000 153 000	154.000 154.000	26 890 11 26.450 11	0.600 (1)	37.120 (1)
SP-LO-SNIVELY	79-34	79-19 79-14		91 900	19 100 (1)		
5	82-362	\$2-362 \$2-377	91 000	90 000	23.700 11	0.480 (1)	26.500 (1)
	83-396	83-311 83-396	94.300 94.300	92.900 92.900	23.680 1 23.500 1	0.450 (1)	23.920 (1)
SP-1021ER	19-6	79-44		98.700	20 900 111		
	81-185	81-116	91 420	55.700	23.340 11		
	83-316	83-316 83-343	89.000 89.000	93.000 93.000	23 220 11 22 760 11 22 450 11	0.670 (1)	23.530 (1)
SP MATDEN	19-190	79-67			23.900 (1)		
• •	80-420	83-420 83-435	71.000 71.000	71 000 71 000	$\begin{array}{c} 23 & 760 & (1) \\ 18 & 640 & (1) \\ 18 & 960 & (1) \end{array}$	0.380 (1)	18.980 (1)
SPHODSERVATORY	81-119	81-119	91.970	•	18 230 11)		
	80-433	83-433	91.000	98 000		0.680 (1)	23.710 (1)
	84 392	81-461 84-310 84-392	91 000 94 000 94 000	96,000 96,000 96,000	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.790 (1)	22.260 (1)

• •

SEE END OF THIS REPORT FOR A LISTING OF ANALYSIS METHODS.

:

. . .

PAGE 12

SD-BWI-DP-061 Rev.

.

C

.

1.7

S. 827

SAMPLE TYPE: SPRING ANALYSIS GROUP: MAJOR

. .

SAMPLING LCATION	EVENT CODE	SAMPLE NUMBER	MG71 AS CADOD	FIELD ALK MG/L AS CACO3	SI NG/L (A)	MGAL	(A) Y	1C 16/1	(A)
SP-OBSERVATORY	84-329	84-329 84-365			18.100 (1)		*** ****		
	85-359	85-359	83.000	91.000	17.900 (1)	0.890	(1). 2	2.800	(1)
	86-178	86-178 86-179	94.000 94.000	93.000 93.000	17 900 (1) 17 000 (1) 16,900 (1)	1.630	(1) 2	2.300	(1)
SP · HA 11 NOAD	19-76	79-76 79-81		118.130 118.130	25,500 (1) 25,800 (1)				•
SP-RATTLESNAKE	SJ1E-216 79-88	S1TE-216 79-87		136.100 20:500	21 000 10				
	83-412	83-412 83-466	200.060 200.000	203 000	23.180 (1) 23.210 (1)	1.750	(1) 5	1.380	(1)
SP-SNIVELY	79-49	79-37 79-49		79.800 79.800	20.700 11 20.500 11				
SP-SOLFUR	79-29	79-29		87.000	24.100 [1]				
	B)-409	83-409 83-442	102.000	99.000 99.000	24.000 (1) 25.640 (1) 25.390 (1)	d.580×	[1] 2	7.950	(1)
SP-UNNAHED-02	79-75	79-75		91.350	16.300 (1)	2.500	(1)	1 .	
SP-UNNAHLD-16	79-73	79-73 79-82	· • · · ·	\$9 800" 89 800	25.500 (1) 25.600 (1)	. ·	5	, ,	•
SP-DNNAHID-26	70-98	79-54 79-98		124.220 124.220	26 100 111 26 100 1.1				•
SP-UNNAMED-29	/9-16	79-16 79-24	•	1 12 400 112 400	20 230 11 20 230 11		۰.	r	•
SP-UP-SHIVELY	79-71	79-69 ^{°°°}		71.920	21.170 (13				
	81-126	81-126		74 000	20.500	·			
	83-503	83-503	75.000	77.000	21,710 (1)	0. 350 ((3) 1	068.8	(1) .
	86-193	86-193 86-194	75.000	-77.000	20,300 (1) 20,100 (1)	C.560 (1 (2)	8:100	(1)
SP-082-07	85-343	85-343	111 020	111.000	24.200 11	270	(1) 3	3.800	(1)
	86-159	86-159 86-160	108.000	109.000	24.200 (2) 19.300 (2) 19.400 (1)	2.840	3 3	1.900	(1) .
		-							

. . .

1

• • • •

· . .

1

SEE END OF THIS REPORT FOR A LISTING OF AVALYSES WETTINGS.

• .

245 . 13

.

SD-BWI-DP-061 Rev

• •

٠ -

an and the second off

SAMPLE FYPE. SPRING ANALYSIS GROUP: MAJUR

. :.

SAMPLING LOCATION	SAMPLING EVENT CODE	SAMPI E NUMBER	HAU ALK MG/L AS CACO3	HIELD ALK MG/L AS CACU3	SI MG/L	[A]	TOC MG/L (A)	TC MG/L (A)
SP-UK6-20	85-346	85-346 85-347		104.000	27.300	<u>{</u>].	0.980 (1)	30.200 (1)
	86-182	86-162 86-163	95,000 95,000	97 000 97 000	21.100 21.000		2.370 (1)	28.800 (1)
SP-1417-22	85-349	85-349 85-350	90,000 90,000	92.000 92.000	23.000 23.100	} }	1.050 (1)	23.800 (1)
	86-153	86-153 86-154	92.000 92.000	93.000 93.000	20.900 21.300		2.300 (1)	25.200 (1)
SP-WARH	84-358	84-358 84-371	133.000 133.000	134.000 134.000	28 300 28.400	{ ! }	0.780 (1)	31.580 (1)
SP-YR3-04	85-333	85-333 85-334	102.000	103.000	20.700	<u>{</u>]}	0.660 (1)	31.000 (1)
٠.	85-150	86-150 86-151	109.000	109.000	18.900 18.900	<u> </u>]	1.330 (1)	31.400 [1]
SP-YR5-08	85-336	85-336 85-337	94.000 94.000	95 000 95 000	23.100 23.500	{ }}	1,150 (1)	27.000 (1)
	86-147	86 - 147 86 - 148	97.000 97.000	96.000 96.000	20 000 19 800		4.380 (1)	32.300 (1)
SP-YR/-14	85-009	85-339 85-340	83 000 63 000	66 000	18 000 18 000		1.090 [1]	22.000 (1)
င်ခံ	85-155	86-156 .86-157	53,000 53,000	54.000 54.000	15 400	<u>}</u>	1.940 [1]	17.600 (1)

SEE END OF THIS REPORT FOR A LISTING OF ANALYSIS METHODS.

-

SAMPLE TYPE.: SURFACE ANALYSIS GROUP: MAJOR

1. ;

SEE END OF THIS REPORT FOR A LISTING OF ADALYSIS SELADDS

1. 1. 1. 1. 1.

. .

.

ł

SAMPLING LOCATION	SAMPLING 1 VENT CODE	SAMPLE NUMBER	LAS ALK MG/L AS CACU3	FIELD ALK MG/L AS CACOD	SI HG/L (A)	TOC MG/L	A)	TC MG/L	(A)
COLD CHLEK	84-317 84-302	84-317 84-336 84-302	142.000	139.000	24.000 (1) 24.000 (1) 21.000 (1)	1.390 į		33,000	(1)
,	85-223	85-223 85-224	122.000	122.000	21.100 (1) 21.200 (1)	1,440 (1)	30,030	(1)
· CR-DC-14	83-258	83-211 83-258	81.000 61.000	65.000 85.000	3.100 11 3.200 11	1.510 {	1)	16.420	(1)
CR-1115	S17E-221	SITE-221		54.900	0.930 (0)				
CK-V-HK	84-310	84-330 84-361	,		2.640 (1) 2.620 (1)				•
	84-311	84-311	49.000 49.000	48.000 48.000	2.750 (1)	2.030 [:)	14.190.	(1)
	85-206	85-206 85-207	F3/000 63,000	61.500		1.550 (1)	16.310	(1)
,	85-260	85-266	53.000 53.000	53.000 53.000		1.770 [1)	13,940	(1)
۱.	86-70	86-70 86-71	59.000 59.000	54.000 54.000	1.960 (1)	1.560 į	1)	15.000	(1)
14 14 10	86-109	86-109- 86-110	61.600 51.600	58.200 58.200	2.090 11	1.150 :	1)	15,100	(1)
HB	85-210	85-210	49.000	51.000 51.000	9.000 (1)	3,340 j	1)	14.940	(1)
	85-269	85-269 85-270	123 000	121.000	10.700 (1)	. 470 [1)	29.510	(1)
	86-67	86-67 86-68	000.89	97.000 97.000	9.010 11	1.720 1	1)	24.700	(1)
	86-118	86-118 86-119	107 000	107.000	10.600 11	1.970 i	1)	26.300	(1)

. . . .

.

• .•

SD-BWI-DP-061 Rev.

٠

7AGE 15

•

SAMPLE TYPE: UNCONFINED ANALYSIS GROUP: MAJOR

SAMPLING LOCATION	SAMPLING EVENT CODE	SAMPLE NUMBER	IAB AIK MUZI AS CACDD	FIELD ALK NG/L AS CACOD	SI MG/L	(A)	TOC MG/L	(A)	TC MG/L	(A)
RHL-06A	82-40	82-35 82-40		116.000 116.000	21 900 21,800	{ ! }				
199-804-04	SITE-41	S11E-41		១ង , ០០០	21.000	{0}				
199-D05-12	SITE-80	S1 FE - 80		80.000	19,000	(0)				
199-008-03	S11E-72	SI 1E - 72		70.000	18,000	[0]				
199-202-01	SI IE - 82	SI (E - 82		98.000	12.000	[0]				
199-1104-03	S11E-81	SITE-81		196.000	14.000	(0)				
199-K-19	S1TE-83	SITE-83		72.000	6,600	(0)			•	
199-N-15	SITE-42	SI TE - 42		62.000	. 8,000	[0]				•
299-226-08	SITE-165	SI1E-165		89.000	21.000	(0)				
299-E33-12	SITE-169	SITE-169		109.000	46.000	[0]			•	
399-01-01	SIIE-244	ST1E-244	62,000		6.100	(0)				
**288-01-03	STIE-43	SI 1E - 43		77.000	6,000	(0)				
C399-05-01	S11E-245	ST1E-245	55.000		6.100	(0)				
388-03-01	ST1E-246	SI1E-246	59.000		1.000	(0)				
399-04-10	SITE-44	STIE-44		90.000	9.000	(0)				
399 08-04	SIIC-140	SITE-140	120.000		16.000	(0)				
61- NAH- 669	SIJE-3	SITE-3		138,000	17.000	(0)				
699-503-£12	S11E-22 S11E-141	SITE-22 SITE-141	98.000	82.000	15.000 15.000	[0]				
699-503-25	SILE-7 SILE-142 86 55	SITE-7 SITE-142 86-55 86-56	140.000 148.000 148.000	125.000 147.000 147.000	13.000 15.000 15.500 15.500		0.28	0 (1)	34.27	D (1)
	00.170	86-131	152.000	149 000	15.000	11	V 450	- [1] - [1]	J4. 60	n [1]
699-506-6040	S11E-11	STIE-11		147.000	15.000	[0]				
688-208-18	STIE-46	S11E-46		160 000	18 000	(0)				

.

SEE END OF THIS REPORT FOR A LISTING OF ANALYSIS METHODS.

.

•

SD-BWI-DP-061 Rev. 1

•

.

SAMPLE TYPE: UNCONFINED ANALYSIS GROUP: MAJOR

SAMPEING LUCATION	SAMPTING LVENT CODE	SAMPLE NUMBER	LAB ALK MG/L AS CACU3	FIELD ALK MG/L AS CACU3	SI MG/L	(A)	100. MG/L	{A}	TC NG/L	[A]
699-208-19	SIIE-84	S1TE-84		172.000	18.000	(0)				
699-S11-E12A	5115-4	SITE-4		126.000	18,000	. (0)				
699-512-03	\$17E-45 •\$11E-143	SITE-45 SITE-143	130.000	- 120,000	15:000 15:000	{ 0}	:			
899-219-813	SI1E-120	STIE-120		131.000	17.000	101				
699·S24-18	85-213	85-213	127.000	127.000	12.800		0,660	[11]	32.570	(1)
	85-291	85-291 85-291 85-292	140.000	136.000 136.000	13.100		1.490	:1}	35.700	(1)
699-S29-f12	SI1E-21	SITE-21		157.000	. 16.000	(0)				•
599-530-E15A	S11E-144	SI1E-144	200.004		15.000	[0]				
009-01-18	SITE-145	SITE-145	120.000		19.000	103	. •		1.1	J
899-02-03	STTE-1	SITE-1	• •	126.000	16.000	19)		:,	· .	
699-02-วว เก	511E-85 STIE-146	STTE-85 STTE-146	130.000	140.000	17.000	(0) (0)	÷	,	. ' .	
599-04-E00	SI1E-47	SITE-47	•	129.000	16.000	10)		•	•	
699-08-17	SI 1E-23	SIIE-23		121.000	16.000	(0)			÷.,	
699-05-25	S11E-32	SITE-32	· ·	126.000	16.000	(0)				
699-98-95	SI7E-19	SI (E-19		123.000	13.000	(0)			۰. ·	•
209-09-E02	SI1E-16	SI1E-16		131.000	17.000	[0]				
899-10-E12	SI 1E - 147 SI 1E - 247	SITE-147 SITE-247	13. (0) 178 000	٢	20,000 19.600					
599-11-45A	SITE-148 85-263	S11E-148 85-263 85-264	120.000	121 000	12 000 13 000	(e: };;	0.340	· •)	27.600	(1)
	86-43	86-43 86-43	113 000	121.000	12.400		- X80	:A:	23.000	{1}
•	80-124	86-124 86-125	121.200 121.000	123.000	12.600	E ,	÷.320	113	27.600	(I) (I)
899-13 01A	STIE-60	SITE-60		130.000	17,000	(0)				
		· · ·							•	

:

• .

....

- - - - - -

: .

SEE END OF THIS REPORT FOR A LISTING CF ANALYSIS METHODS.

1 .

1.11

SD-BWI-DP-061 Rev. 1

• •

٠

1947年4月1日 - 日本書本·西方

SAMPLE TYPE: UNCONFINED ANALYSIS GROUP: MAJOR

SAMPLING LOCATION	SAMPLING EVENT CODE	SAMPI E NUHBER	LAU ALK MG/L AS CACO3	FIELD ALK MG/L AS CACUJ	SI MG/L	(A)	10C MG/L	(A)	TC Mg/l	(A)
699-14-38	SITE-61 SITE-86	SITE-61 SITE-86		140.000 148.000	22.000 23.000	[0]				
699~15-158	517E-13 STTE-148	SITE-13 SITE-149	120.000	123.000	14.000 15.000	[0]				
699-15-26	SI1E-24 SI1E-150	SITE-24 SITE-150	130.000	124 000	17.000 17.000	[0]				
898-11-92	S11E-18 S11E-151	S11E-18 S11E-151	100.000	105.000	13.000 23.000	10)				
699-19-43	S11E-48 S11E-121	SITE - 48 SITE - 121		110.000 115.000	13.000 14.000	[0]				
' 0aa - 1a - 28	85-229	85-229	134 000	137.000	25 400	111	0.430	(1)	33.030	`(1)
	85-260	85-260	139.000	139.000	26.500	11	0.510	(1)	32.300	(1)
	B ti - 40	86-40	139 000	139 000	25.300	ļi	0.260	(1)	32,900	(1)
	86-121	86-121 86-122	138.000 138.000 138.000	141.000	24.200 24.300		0.270	(1)	32.100	(1)
	85-278	85-278	118.000	113.000	22.800	11)	0.290	(1)	27 560	(1)
N	86-64	86-64	116.000	114.000	22 200		0.310	(1)	28.000	(1)
	86-127	86-127 86-128 86-128	118.000	114 000 117 000 117 000	21.100		0.300	(1)	28.100	(1)
699-20-205-0	ST1E-49	SITE-49		110,000	15.000	103				
699-20-20	S11E-25	S11E-25		116.000	17.000	(0)				
599-24-33	S11C-28	SILE-28		135.000	20.000	(0)				
699-24-46	\$11£-122	SITE-122		156.000	29 000	(0)				
699-24-95	85-288	85-288	206.000	199.000	20 200	(1)	1 610	(1)	48.600	(1)
	86-61	86-61	189.000	189.000	21 000		0.700	(1)	45.100	(1)
	86-115	86-62 86-115 86-116	189,000 209,000 209,000	189.000 211.000 211.000	21 000 20 000 20 000	$ \begin{bmatrix} 1\\ 1\\ 1\\ 4 \end{bmatrix} $	0.630	(1)	50/100	(1)
699-25-55	STTE-100	SI (E - 100		. 146 000	23.000	(0)				

SEE END OF THIS REPORT FOR A LISTING OF ANALYSIS METHODS.

PAGE 18

SD-8WI-0P-061 Rev. 1

SAMPLE TYPE: UNCONFINED ANALYSIS GROUP: MAJOR

÷ •

• • • • •

SAMPLING LUCATION	SAMPI ING EVENT CODE	SAMPLE NUMBER	TAB ALK NG/L AS CAC03	FIELD ALK NG/L AS CACU3	SI NG/L	(A)	TDC ™G/L	(A)	TC MG/L	(A)
899-26-15	S11E-26	SIJE-26		120.000	17.000	(0)				
899-28-15A	S11E-263,	SI1E-263	116.000		17.000	(0)				
699-27-04	SI 1E-101	SIJE-101		131.000	14.000	[0]				
599-27-08	SLTE-5 STIE-30 STIE-50 STIE-76 STIE-87	SITE-5 STIE-JO STIE-50 STIE-76 STIE-87		119.000 122.000 110.000 120.000 123.000	17.000 16.000 17.000 16.000 17.000					
699-28-40	SITE-68	SI1E-68		140.000	16.000	10.				
699-31-31	SITE - 69 STIE - 102	SI 1E -69 SI 1E - 102		110 000 109.000	20.000 23.000	{ 8 }				•
809-31-538	SITE-88	S11E-88		164:000	• 21.000	(0)				
699-32-22	S11E-17 S11E-27 S11E-51 S11E-65 S11E-89	SITE-17 SITE-27 SITE-51 SITE-65 SITE-89		105.000 113.000 110.000 110.000 115.000	14.000 15.000 14.000 14.000 14.000 16.000	(0) (0) (0)				
ភាមិមម - 32 - 70B សេ	SITE-70 SITE-00 SITE-152	SITE-70 SITE-90 SITE-152	120.000	110.000 123.000	20.000 21.000 20.000	(0) (0) (0)				
699-32-72	\$118-35	SITE-35		115:000	14.000	(0)		·		
699-32-77	51TE - 103	SITE-103		106.000	23.000	101				
699-33-42	SI IE - 12 SI IE - 29 SI IE - 52 SI IE - 67 SI IE - 91	SI IE - 12 SI IE - 29 SI IE - 52 SI IE - 67 SI IE - 91		107 000 117 000 110 000 110 000 110 000 115 000	18.000 19.000 18,000 18.000 18.000 20.000	(000)				
0U9-33-56	SI15-8 SI16-40 SI16-53 SI16-62 SI16-02	SITE-8 SITE-40 SITE-53 SITE-62 SITE-92		167.000 171.000 170.000 170.000 170.000 180.000	18 000 19 000 21.000 20.000 22.000					
599-34-39A	S1 [E-93	S11E-93		115:000	21.000	(0)				
699-34-42	STIE-33	STTE-33		113.000	20.000	: ? ?			· 1	
		•	OFC LOS OF	THE DEPOST	COR 4 1 10	1 T 1 M/C - C			THODA .	

.

SEE END OF THIS REPORT FOR A LISTING OF AMALYSIS METHODS.

- -

SD-BHI-DP-GE1 Rev.

....,

SAMPLE TYPE, UNCONFINED ANALYSIS GROUP, MAJOR

· 1

0 39 - 34 - 4zS11E - 153S11E - 153110 0 0020 0 00(0) $0 99 - 34 - 51$ S11E - 06S11E - 06140 0 0019 0 00(0) $0 99 - 35 - 60$ S11E - 21S11E - 104131 0 0015 0 00(0) $6 99 - 35 - 66$ S11E - 77S11E - 104132 0 0018 0 00(0) $6 99 - 35 - 66$ S11E - 77S11E - 74142 0 00018 0 00(0) $6 99 - 35 - 70$ S11E - 38S11E - 34144 0 00018 0 00(0) $6 99 - 35 - 70$ S11E - 38S11E - 34144 0 00018 0 00(0) $6 99 - 35 - 70$ S11E - 38S11E - 34144 0 00018 0 00(0) $6 99 - 35 - 70$ S11E - 54S11E - 5498 0 0017 0 00(0) $6 99 - 35 - 70$ S11E - 34S11E - 34148 0 0022 0 00(0) $6 99 - 35 - 70$ S11E - 34S11E - 34151 0 00023 0 00(0) $6 99 - 37 - 43$ S11E - 34S11E - 34150 0 0024 0 00(0) $6 99 - 37 - 90$ S11E - 34S11E - 248120 0 0014 0 00(0) $6 99 - 39 - 30$ S11E - 248S11E - 248120 0 0014 0 00(0) $6 99 - 39 - 30$ S11E - 266S11E - 266100 0 0014 0 000(0) $6 99 - 39 - 30$ S11E - 266S11E - 266120 0 0017 0 00(0) $6 99 - 39 - 30$ S11E - 265S11E - 256129 0 0014 0 00(0) $6 99 - 39 - 30$ S11E - 265S11E - 256 </th <th>SAMPI ING LOCATION</th> <th>SAMPLING EVENT CODE</th> <th>SAMPI E NUMBER</th> <th>LAB ALK MG/L AS CACU3</th> <th>FIELD ALK HG/L AS CACU3</th> <th>SI HG/L</th> <th>(A)</th> <th>TOC MG/L</th> <th>(A)</th> <th>TC MG/L</th> <th>(A)</th>	SAMPI ING LOCATION	SAMPLING EVENT CODE	SAMPI E NUMBER	LAB ALK MG/L AS CACU3	FIELD ALK HG/L AS CACU3	SI HG/L	(A)	TOC MG/L	(A)	TC MG/L	(A)
699-34-51SITE-66SITE-66160.00019.000(0)699-35-09 $STE-31$ $STE-34$ $STE-31$ $STE-34$ 125.000 131.000 15.000 10 699-35-66 $STE-77$ $STE-78$ $STE-77$ $STE-78$ 140.000 18.000 10 699-35-70 $STE-78$ $STE-78$ 140.000 18.000 10 699-35-78 $STE-78$ $STE-54$ 98.000 17.000 10 699-37-78 $STE-54$ $STE-54$ 98.000 17.000 10 699-37-78 $STE-54$ $STE-54$ 98.000 17.000 10 699-37-40 $STE-54$ $STE-54$ 98.000 17.000 10 699-37-40 $STE-54$ $STE-54$ 98.000 17.000 10 699-37-40 $STE-36$ $STE-37$ 148.000 22.000 10 699-37-40 $STE-34$ $STE-34$ 120.000 14.000 10 699-37-40 $STE-105$ $STE-105$ 50.000 14.000 10 699-37-40 $STE-37$ 128.000 17.800 10 699-39-39 $STE-248$ $STE-248$ 120.000 17.800 10 699-39-39 $STE-248$ $STE-248$ 120.000 17.800 10 $699-39-39$ $STE-258$ $STE-258$ 120.000 17.000 10 $699-39-39$ $STE-258$ $STE-258$ 120.000 17.000 10 $699-39-39$ $STE-258$ $STE-258$ 120.000 17.000 10 $699-39-3$	699-34-42	S14E-153	SITE-153	110.000		20.000	10)				
$ \begin{array}{c} 699-35\cdot09 & \begin{array}{c} 5116-31 \\ 5116-264 \\ 5116-244 \\ 5116-17_3 \\ 5116-17_3 \\ 5116-17_3 \\ 5116-17_3 \\ 5116-17_3 \\ 5116-17_3 \\ 5116-27_3 \\ 126,000 \\ 14,000 \\ 10 \\ 10 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 110 \\ 100 \\ 110 \\ 1$	888-34-21	S1YE-66	SI1E-66		160.000	19.000	(0)				
699-35-66 $S11E-77$ $S11E-94$ $S1TE-94$ $S1TE-94$ 140.000 144.000 18.000 20.000 0 $699-35-70$ $S11E-36$ $S1TE-36$ 184.000 18.000 10 $699-35-78$ $S11E-34$ $STE-54$ 98.000 17.000 0 $699-37-43$ $S11E-36$ $S1TE-95$ 140.000 22.000 0 $699-37-43$ $S11E-14$ $S1TE-14$ 151.000 22.000 0 $699-37-43$ $S11E-165$ $S1TE-105$ 50.000 14.000 0 $699-37-42$ $S11E-105$ $S1TE-105$ 50.000 14.000 0 $699-37-42$ $S11E-105$ $S1TE-105$ 50.000 14.000 0 $699-37-42$ $S11E-105$ $S1TE-105$ 50.000 14.000 0 $699-37-42$ $S11E-248$ $S1TE-248$ 120.000 17.000 0 $699-39-39-30$ $S11E-248$ $S1E-248$ 120.000 17.000 0 $699-39-39-30$ $S11E-266$ $S11E-266$ 100.000 14.000 0 $699-39-39$ $S11E-106$ $S11E-106$ $S11E-106$ $S11E-106$ $S11E-106$ $S11E-250$ $S11E-251$ 172.000 17.0000 0 $699-39-39$ $S11E-55$ $S11E-251$ 172.000 160.000 21.000 $699-39-39$ $S11E-55$ $S11E-55$ 120.000 17.000 0 $699-39-39$ $S11E-55$ $S11E-251$ 172.000 17.000 0 $699-39-39$ $S11E-55$ $S11E-55$ <	099-32×09	STIE-31 STIE-104 STIE-264	SITE-31 SITE-104 SITE-264	125.000	131.000 131.000	15 000 15,000 15,000					
699-35-70 $S11E-38$ $S17E-30$ 184.000 18.000 10 $699-35-78$ $S11E-54$ $S11E-54$ $S11E-54$ $S11E-54$ $S1000$ 17.000 10 $699-37-43$ $S11E-95$ $S1TE-95$ 148.000 22.000 10 $699-37-43$ $S11E-173$ $S11E-173$ $S11E-173$ 151.000 23.000 10 $699-37-43$ $S11E-173$ $S11E-173$ $S11E-173$ 106.000 44.000 10 $699-37-82A$ $S11E-105$ $S17E-105$ 50.000 14.000 10 $699-37-82A$ $S11E-248$ $S11E-248$ 120.000 16.800 10 $699-39-30$ $S11E-248$ $S11E-248$ 120.000 17.800 10 $699-39-30$ $S11E-266$ $S11E-266$ 129.000 17.800 10 $699-39-30$ $S11E-265$ $S11E-265$ 129.000 17.800 10 $699-40-61$ $S11E-106$ $S11E-265$ 129.000 17.800 10 $699-40-53$ $S11E-255$ $S11E-255$ 172.000 160.000 21.000 10 $699-40-62$ $S11E-55$ $S11E-55$ 172.000 17.800 10 $699-41-23$ $S11E-55$ $S11E-55$ 108.000 17.800 10 $699-41-23$ $S11E-55$ $S11E-55$ 108.000 17.800 10 $699-41-23$ $S11E-55$ $S11E-251$ 120.000 14.000 10 $699-41-23$ $S11E-55$ $S11E-55$ 108.000 17.800 10 <t< td=""><td>899-35-66</td><td>SI 1E - 77 SI 1E - 94</td><td>SITE-77 SITE-94</td><td></td><td>140.000 148.000</td><td>18.000 20.000</td><td>{⁰}</td><td></td><td></td><td></td><td></td></t<>	899-35-66	SI 1E - 77 SI 1E - 94	SITE-77 SITE-94		140.000 148.000	18.000 20.000	{ ⁰ }				
699-35-78 $SIIE-54$ $SIIE-54$ 98.000 17.000 (0) $699-36-61A$ $SIIE-95$ $SIIE-95$ 148.000 22.000 (0) $699-37-43$ $SIIE-173$ $SIIE-173$ 151.000 23.000 (0) $699-37-82A$ $SIIE-105$ $SIIE-173$ 106.000 44.000 (0) $699-37-82A$ $SIIE-105$ $SIIE-105$ 50.000 14.000 (0) $699-37-82A$ $SIIE-248$ $SIIE-37$ 126.000 22.000 (0) $699-38-70$ $SIIE-248$ $SIIE-248$ 120.000 16.800 (0) $699-39-70$ $SIIE-248$ $SIIE-248$ 120.000 17.800 (0) $699-39-30$ $SIIE-266$ $SIIE-266$ 100.000 14.000 (0) $699-39-30$ $SIIE-265$ $SIIE-265$ 129.000 17.800 (0) $699-40-01$ $SIIE-10$ $SIIE-255$ $SIIE-250$ 129.000 17.800 (0) $699-40-01$ $SIIE-55$ $SIIE-250$ 172.000 17.800 (0) $699-40-52$ $SIIE-55$ $SIIE-251$ 172.000 17.800 (0) $699-40-52$ $SIIE-55$ $SIIE-551$ 172.000 17.800 (0) $699-41-21$ $SIIE-55$ $SIIE-552$ 128.000 17.800 (0) $699-40-52$ $SIIE-55$ $SIIE-551$ 172.000 17.800 (0) $699-41-21$ $SIIE-552$ $SIIE-552$ 128.000 17.800 (0) $699-42-22$ $SIIE-55$ $SIIE-551$ <td>699-35-70</td> <td>S11E-36</td> <td>S17E-38</td> <td></td> <td>184.000</td> <td>18.000</td> <td>10)</td> <td></td> <td></td> <td></td> <td></td>	699-35-70	S11E-36	S17E-38		184.000	18.000	10)				
$699 \cdot 36 \cdot 61A$ $S11E \cdot 95$ $S1TE \cdot 95$ 148.000 22.000 (0) $699 \cdot 37 \cdot 43$ $S11E \cdot 173$ $S1TE \cdot 173$ 151.000 23.000 (0) $699 \cdot 37 \cdot 82A$ $S11E \cdot 173$ $S1TE \cdot 173$ 106.000 44.000 (0) $699 \cdot 37 \cdot 82A$ $S11E \cdot 105$ $S1TE \cdot 105$ 50.000 14.000 (0) $699 \cdot 38 \cdot 70$ $S1TE \cdot 248$ $S1TE \cdot 248$ 120.000 14.000 (0) $699 \cdot 38 \cdot 70$ $S1TE \cdot 248$ $S1TE \cdot 248$ 120.000 16.800 (0) $699 \cdot 39 \cdot 30 \cdot 216$ $S1TE \cdot 248$ $S1TE \cdot 248$ 120.000 17.800 (0) $699 \cdot 39 - 30$ $S1E \cdot 266$ $S1E \cdot 266$ 100.000 14.000 (0) $699 \cdot 39 - 30$ $S1E \cdot 266$ $S1E \cdot 266$ 129.000 17.000 (0) $699 \cdot 40 \cdot 01$ $S1E \cdot 265$ $S1E \cdot 250$ 129.000 17.000 (0) $699 \cdot 40 - 01$ $S1E \cdot 255$ $S1E \cdot 256$ 129.000 17.800 (0) $699 \cdot 40 - 33$ $S1E - 255$ $S1E \cdot 256$ 172.000 160.000 (0) $699 \cdot 40 - 52$ $S1E - 55$ $S1E - 55$ 140.000 21.000 (0) $699 \cdot 41 - 21$ $S1E - 55$ $S1E - 55$ 128.000 17.800 (0) $699 \cdot 41 - 21$ $S1E - 54$ $S1E - 55$ 128.000 17.800 (0) $699 \cdot 42 - 02$ $S1E - 54$ $S1E - 55$ 128.000 17.800 (0) $699 \cdot 42 - 02$ $S1E - 54$ $S1E - 55$ 1	699-35-78	SI IE - 54	SITE-54		98.000	17.000	101				
$699-37+43$ $S11E-34$ S11E-173 $S11E-173$ $151,000$ $106,000$ $23,000$ $44,000$ $\left\{0\right\}$ $699-37+82A$ $S11E-105$ $S17E-105$ $50,000$ $14,000$ $\left\{0\right\}$ $699-3E-70$ $S1JE-37$ $S1TE-37$ $126,000$ $22,000$ $\left\{0\right\}$ $699-3E-70$ $S1JE-34$ $S1TE-248$ $120,000$ $16,800$ $\left\{0\right\}$ $699-39-30$ $S1TE-248$ $S1TE-249$ $124,000$ $17,800$ $\left\{0\right\}$ $699-39-30$ $S1E-266$ $S1E-266$ $100,000$ $14,000$ $\left\{0\right\}$ $699-39-30$ $S1E-266$ $S1E-266$ $100,000$ $14,000$ $\left\{0\right\}$ $699-39-30$ $S1E-266$ $S1E-266$ $129,000$ $17,000$ $\left\{0\right\}$ $699-40-01$ $S1E-106$ $S1E-255$ $129,000$ $17,000$ $\left\{0\right\}$ $699-40-33$ $S1E-55$ $S1E-255$ $172,000$ $160,000$ $21,000$ $17,800$ $\left\{0\right\}$ $699-40-62$ $S1E-55$ $S1E-251$ $172,000$ $17,800$ $\left\{0\right\}$ $699-41-23$ $S1E-55$ $S1E-252$ $128,000$ $17,800$ $\left\{0\right\}$ $699-41-23$ $S1E-55$ $S1E-153$ $108,000$ $17,000$ $\left\{0\right\}$ $699-41-23$ $S1E-154$ $S1E-154$ $120,000$ $18,000$ $\left\{0\right\}$ $699-42-02$ $S1E-154$ $S1E-154$ $120,000$ $18,000$ $\left\{0\right\}$ $699-42-12$ $S1E-154$ $S1E-25$ $118,000$ $\left\{18,000,00$ $\left\{0\right\}$ $699-42-12$ $S1E-154$ $S1E-25$ $118,000$ $\left\{18,000,00$ $\left\{0\right\}$ <td>A10-31-963</td> <td>S11E-95</td> <td>S1TE-95</td> <td></td> <td>148 000</td> <td>22.000</td> <td>10)</td> <td></td> <td></td> <td></td> <td>•</td>	A10-31-963	S11E-95	S1TE-95		148 000	22.000	10)				•
699-37-82A $S11E-105$ $S11E-105$ 50.000 14.000 (0) $699-3E-70$ $S1]E-37$ $S1TE-37$ 126.000 22.000 (0) $1609-3U-03$ $S11E-248$ $S1TE-248$ 120.000 16.800 (0) $609-39-30$ $S1E-249$ $S1TE-249$ 124.000 17.800 (0) $699-39-30$ $S1E-266$ $S11E-266$ 100.000 14.000 (0) $699-39-30$ $S1E-266$ $S11E-266$ 100.000 14.000 (0) $699-40-01$ $S11E-106$ $S11E-106$ $S11E-106$ $S11E-250$ 129.000 17.000 (0) $699-40-01$ $S11E-255$ $S11E-250$ 129.000 17.800 (0) $699-40-40$ $S11E-255$ $S11E-255$ 172.000 160.000 21.000 (0) $699-40-52$ $S11E-55$ $S11E-55$ 172.000 160.000 24.000 (0) $699-40-52$ $S11E-52$ $S11E-55$ 172.000 17.000 (0) $699-40-52$ $S11E-55$ $S11E-55$ 172.000 160.000 21.000 (0) $699-40-52$ $S11E-55$ $S11E-55$ 140.000 17.000 (0) $699-41-23$ $S11E-15$ $S11E-15$ 108.000 17.000 (0) $699-42-02$ $S11E-154$ $S1TE-154$ 120.000 18.000 (0) $699-42-12$ $S1E-2$ $S1E-2$ 118.000 18.000 (0)	699-37-43	STTE-34 STTE-173	SITE-34 SITE-173		151.000 106.000	23,000 44,000	[0]				
699-38-70SIJE-37SITE-37126,00022,000 (0) $16699-39-39$ SITE-248SITE-249120,00016,800 (0)• $699-39-01$ SITE-249SITE-249124,00017,800 [0) $699-39-30$ SITE-266SITE-266100,00014,000 (0) $699-39-30$ SITE-266SITE-266100,00017,000 (0) $699-39-30$ SITE-106SITE-266129,00017,000 (0) $699-40-01$ SITE-265SITE-265129,00017,000 (0) $699-40-01$ SITE-250SITE-255120,00017,000 (0) $699-40-01$ SITE-250SITE-255120,00017,000 (0) $699-40-01$ SITE-255SITE-255120,00017,000 (0) $699-40-01$ SITE-251SITE-251172,000160,00021,000 (0) $699-40-02$ SITE-252SITE-252128,00017,000 (0) $699-41-02$ SITE-252SITE-252128,00017,000 (0) $699-42-02$ SITE-154SITE-154120,00018,000 (0) $699-42-02$ SITE-154SITE-252118,00018,000 (0)	699-37-82A	S11E-105	S11E-105		50.000	14.000	(0)				
16099 - 39 - 63SITE - 248SITE - 248120.00016.800 (0)• $6099 - 39 - 01$ SITE - 249SITE - 249124.00017.800 [0) $699 - 39 - 39$ SITE - 266SITE - 266100.00014.000 (0) $699 - 39 - 39$ SITE - 266SITE - 266100.00014.000 (0) $699 - 40 - 01$ SITE - 106SITE - 106SITE - 265129.00017.000 (0) $699 - 40 - 01$ SITE - 255SITE - 255129.00017.000 (0) $699 - 40 - 01$ SITE - 255SITE - 255172.000160.00021.000 (0) $699 - 40 - 33$ SITE - 55SITE - 251172.000160.00024.000 (0) $699 - 40 - 33$ SITE - 252SITE - 252128.00017.600 (0) $699 - 40 - 62$ SITE - 55SITE - 252128.00017.600 (0) $699 - 41 - 01$ SITE - 252SITE - 252128.00017.600 (0) $699 - 41 - 23$ SITE - 15SITE - 15ITE - 15 $699 - 42 - 02$ SITE - 154SITE - 154120.00018.000 (0) $699 - 42 - 02$ SITE - 154SITE - 154120.00018.000 (0) $699 - 42 - 12$ SITE - 154SITE - 154120.00018.000 (0) $699 - 42 - 12$ SITE - 154SITE - 154120.00018.000 (0)	899-38-30	51]£~3/	SITE-37		126.000	22,000	[0]				
$F_{009-39-01}$ SITE-249SITE-249124.00017.80010 $699-39-30$ SITE-266SITE-266100.00014.000(0) $699-39-30$ SITE-106SITE-106120.00017.000(0) $699-40-01$ SITE-106SITE-106129.00017.800(0) $STE-250$ SITE-250129.000123.00017.800(0) $699-40-33$ SITE-255SITE-255120.000160.000(0) $699-40-33$ SITE-251SITE-251172.000160.000(0) $699-40-62$ SITE-251SITE-251172.00017.800(0) $699-41-61$ SITE-252SITE-252128.00017.800(0) $699-41-61$ SITE-252SITE-252128.00017.800(0) $699-41-23$ SITE-15SITE-15108.00017.000(0) $699-42-02$ SITE-154SITE-154120.00018.000(0) $699-42-02$ SITE-154SITE-154120.00018.000(0) $699-42-12$ SITE-252SITE-2118.00018.000(0)	64698-39-E3	SI1E-248	SITE-248	120.000		16.800	(0)	•			
$699 \cdot 39 - 39$ $S1 fE - 266$ $S1 IE - 266$ $100 \ 000$ $14 \ .000 \ (0)$ $699 \cdot 40 - 01$ $S1 IE - 106$ $S1 IE - 106$ $I29 \ .000$ $I7 \ .000 \ 14 \ .000 \ 0)$ $699 \cdot 40 - 01$ $S1 IE - 106$ $S1 IE - 250$ $I29 \ .000$ $I7 \ .000 \ 0)$ $699 \cdot 40 - 03$ $S1 IE - 250$ $S1 IE - 255$ $I29 \ .000$ $I60 \ .000 \ 21 \ .000 \ 0)$ $699 \cdot 40 - 02$ $S1 IE - 251$ $S1 IE - 251$ $I72 \ .000$ $I60 \ .000 \ 24 \ .000 \ 0)$ $699 \cdot 40 - 62$ $S1 IE - 56$ $S1 IE - 252 \ 128 \ .000$ $I7 \ .800 \ 0)$ $699 \cdot 41 - 01$ $S1 IE - 252 \ S1 IE - 252 \ 128 \ .000$ $I7 \ .800 \ 0)$ $699 \cdot 41 - 23$ $S1 IE - 153 \ S1 IE - 154 \ S1 IE - 251 \ S1 IE - 25$	201-39-01	SI1E-249	SITE-249	124.000		17.800	(0)				
699-40-01 $S11E-10$ SI1E-106 SI1E-265 $S11E-100$ SI1E-265 129.000 120.000 17.000 14.000 0 10 $699-40-33$ $S11E-265$ $S11E-265$ SI1E-251 129.000 120.000 160.000 21.000 20.600 10 20.600 $699-40-33$ $S11E-55$ SI1E-251 $S11E-251$ SI1E-251 172.000 160.000 21.000 20.600 10 20.600 $699-40-62$ $S11E-56$ $S11E-56$ 140.000 $24.000.00$ 10 20.600 $699-41-62$ $S11E-55$ $S11E-252$ 128.000 $17.800.00$ $699-41-23$ $S11E-15$ SI1E-153 $S11E-15$ SI1E-154 $108.000.00$ $17.000.00$ $699-42-02$ $S11E-154$ $S1TE-154$ 120.000 $18.000.00$ $699-42-02$ $S11E-2$ $S11E-2$ $118.000.00$ $18.000.00$	699-39-30	51 (E - 266	SITE-266	100 000		14.000	(0)				
699-40-33 $S11E-55$ $S11E-251$ $S11E-251$ 172.000 160.000 21.000 10 20.600 10 10 $699-40-62$ $S11E-251$ $S11E-251$ 172.000 140.000 $24.000.00$ 10 $699-40-62$ $S11E-252$ $S11E-252$ 128.000 $17.800.00$ 10 $699-41-23$ $S11E-15$ $S11E-15$ $S11E-15$ $108.000.17.000.00$ 10 $699-42-02$ $S11E-154$ $S11E-154.120.000$ $18.000.00$ 10 $699-42-12$ $S11E-2$ $S11E-2$ $118.000.00$ $18.000.00$	699-40-61	STIE-10 STIE-106 STIE-250 STIE-265	SITE-10 SITE-100 SITE-250 SITE-265	129.000 120.000	120 000 123.000	17 000 14.000 17.800 18.000					
699-40-62 STIE-56 140 000 24 000 (0) 699-41-23 STIE-15 STIE-15 108 000 17 800 (0) 699-42-02 STIE-154 STIE-154 120 000 18 000 (0) 699-42-12 STIE-2 STIE-2 118 000 (0)	699-40-33	S11E-55 S11E-251	S11E-55 SIIE-251	172.000	160 000	21 000 20.600	[8]				
U99 41-01 SILE-252 SILE-252 128.000 17.800 01 099-41-23 SILE-15 SILE-15 108.000 17.000 10 099-41-23 SILE-15 SILE-113 114.000 14.000 00 099-42-02 SILE-154 SITE-154 120.000 18.000 01 099-42-12 SILE-2 SILE-2 118.000 18.000 01	699-40-62	STIE~58	STIE-58		140 000	24.000	(0)				
699-41-23 SITE-15 SITE-15 108.000 17.000 [0] 699-42-02 SITE-154 SITE-154 120.000 18.000 [0] 699-42-12 SITE-2 SITE-2 118.000 [0]	699-41-01	SI1E-252	STIE-252	128.000		17.800	(0)				
699-42-02 STTE-154 STTE-154 120 000 * 18.000 {0} 699-42-12 STTE-2 STTE-2 118.000 18.000 {0}	699-41-20	ST1E-15 ST1E-113	S11E-15 S11E-113		108.000	17 000 14 000	18]				
699-42-12 SITE-2 SITE-2 118 000 18 000 (0)	699-42-02	SITE-154	SITE-154	120 000	•	18.000	(0)				
	899-42-12	S11E-2	SITE-2		118 000	18.000	(0)				

SEE END OF THIS REPORT FOR A LISTING OF ANALYSIS METHODS.

SD-BWI-OP-061 Rev. i

SAMPLE TYPE: UNCONFINED ANALYSIS GROUP: MAJOR

: -

SAMPLING LOCATION	SAMPLING EVENT CODE	SAMPLE NUMBER	149 ALX MG/1 AS CAC00	FIELD ALK MG/L AS CACU3	SI MG/L (A)	· · · · · · · · · · · · · · · · · · ·	TC HG/L	(A)
699-42-12	SI7E-155 SITE-267	SITE-155 SITE-267	120.000 114.000	,	19.000 (0) 18.000 (0)			
699-42-40A	5118-174	· SITE-174		114.000	44 000 (0)		i	
699-42-42	: SITE-114	SI1E-114	•	114.000	18.000 (0)			
699-43-03	5178-253	\$11E-253	130.000		17.800 (1)		•'	
~suu-43-88	S11E-123	SITE-123		80,000	7.000 (0)			
699-40-04	\$11E-254	STIE-254	128.000	*	17.800 (0)			
699-45-04	STIE-255	S11E-255	122.000		16 800 (0)			
699-45-42	SI 1E-57 SI 1E-268	SITE-57 SITE-268	103.000	98.000	22.000 (9) 21.000 (0)			•
699-45-69	SITE-96	511E-96		98,000	20.000 199			
699-46-05	SITE - 156 SITE - 256	SITE-156 SITE-256	120.000 123.000	:	10 000 (0) 17 300 (0)			
699-46-21A	STIE-75 STIE-124	STIE-75 STIE-124		120.000 123.000	16.000 (0) 17.000 (0)			•
699-47-06	51 (E-257	S11E-257	124.000		15.000 101			
699-47-46	S11E-269	SIJE-269	156 505		22 000 10	0.800 (C)		
699-45-07	5112-258	SI1E-258	000.01		יר: 000 7			
699-48-18	STIE-125	SI1C-125		119.000	0.000 (0)			
399-48-11	\$11E-59	S11E-59		98.000	18.000 (?)			
699+49-13	511£-259	S11E-259	133.000		16.400 10)			
699-49-55	SITE-9 SITE-39	SITE -9' SITE -30		94.000 93.000	17.000 (0) 15.000 (0)			
.,	SI12-78 SI12-78 SI1E-97 SITE-126	SITE-97' SITE-97' SITE-125		57.000 72.000 26.000	14.000 (C) 16.000 (C) 8.000 (C)			
	SI 1E - 157	STIE-157	40,000	-	11.000 10			
399-49-55A	SITE-182	SITE-182		104.000	39.000			
	117 J 1	- 1 C - 1 C	SEE END OF	THIS REPORT	FOR A LISTING C	ALYSIS ME	THODS.	: •
		• •	•••					

. . * *

4

÷

D-8WI-DP- Al Hev. I

465 21

.

.

. • •

SAMPLING LOCATION	SAMPLING EVENT CODE	SAMPTE NUMBER	LAB ALK MG/L AS CACU3	FIELD ALK MG/L AS CACOJ	51 MG/L	(A)	10C MG/L	(A)	tc Mg/L
699-4 <u>9-51</u>	SITE-38	SITE-38	2000000000	113.000	18.000	(0)			
699-49-79	S11E-20	SITE-20		94.000	17.000	(0)			
038-20-08	SI 1E - 64	SI1E-64		130.000	17.000	(0)			
699-50-280	S11E-63	S11E-63		130.000	17.000	(0)			
699-50-42	SI IE - 14 SI IE - 1 15 SI IE - 271	SITE-14 SITE-115 SITE-271	89.000	106.000 42.000	21 000 5 000 14 000				
599-50-53	SI1E-270	SITE-270	93.000		15.000	(0)			
699-50-85	\$11E-127	SIJE-127		123.000	20.000	(0)			
\$99-51-83	SI IE - 116	\$148-116		114.000	14.000	10)			
699~53~103	SITE-160	S17E-160		140.000	26.000	(0)			
699-53-47B	S11E-272	SITE-272	120.000		12.000	101			
eaa. 24 - 34	\$11E-273	\$11E-2/3	92.000		28.000	10)			
01 01 1→ 1→ 100 - 55 - 50C	S11E -79 S11E - 128 S11E - 193 S11E - 274	SITE - 79 SITE - 128 SITE - 193 SITE - 274	104.000	110 000 79 000 109 000	11.000 11.000 26.000 11.000				
ນັ≌ອ≃55-7ຍ	STTE-71 STTE-117 STTE-129	SITE - 71 SITE - 117 SITE - 129		46.000 29.000 43.000	4.100 5.000 6.000				
699-55-89	SITE-118	SITE-118		131.000	23.000	[0]			
699-57-25A	S11E-119 S11E-275	SITE-119 SITE-275	126.000	131.000	23 000 19.000	[°]			
699-57-29A	511E~276	SI1E-276	119.000		21.000	(0)			
089-21-83	STIE-130	SI TE - 130		115.000	16.000	[0]			
PBA-20-28	SI1E-107 SI1E-277	SITE-10/ SITE-277	113.000	114.000	23.000 19.000	[0]			
699-60-32	\$115-278	SITE-278	117 000	•	19 ú00	(0)			
699-60-57	STIE-198	\$11E-198		155.000	44.000	[0]			

SAMPLE TYPE, UNCONFINED ANALYSIS GROUP: MAJOR

section and

SEE END OF THIS REPORT FOR A LISTING OF ANALYSIS METHODS.

PAGE 22

.

 \mathbf{G}

`

SD-BWI-DP-061 Rev. 1

(A)

SAMPLE TYPE: UNCONFINED ANALYSIS GROUP: MAJOR

SABPI ING LOCATION	SAMPI ING EVENT CODE	SAMPI E NUMBER	1AU ALK MG/L AS CACD3	FIELD ALK MG/L AS CACD3	SI MG/L (A]	T (15 MG/L	(A)	TC HG/L	[A
699-62-31	STTE-131 STTE-279	SI IE - 131 SI IE - 279	125.000	139.000	17.000 { 18.000 {	8}				
699+53+25A	\$11E-102	SITE-132		155 000	17.000 (0)				
699-63-55	5111-280	SITE-280	120.000		19.000 (0)				
699-63-58	S11E-281	SI1E-281	109.000		18.000 (0)				
699-63-90	SINE - 74 SINE - 133	SITE-74 SITE-133		120.000 123.000	20.000 (20.000 (0)				
699-64-27	SI1E-158	SITE-ISB	150.000		17.000 (0}				
₽ 88-92-20	SITE-73 SITE-134 SITE-282	S11E-73 S11E-134 S11E-282	115.000	110.000	· 17.000 { 18.000 { 18.000 {	0) 0) 0)				•
899-66~100	85-203	85-203	50 000	83.000	13.200 (ij	0,390	(1)	22.380	{1
	88-73	86-73	90.000	91.000	12 300 (1	0.370	11)	22.600	11
	86-112	86-112	96.700	96 500	12.000	i{	0.430	[1]	22.700	[1]
	85-294	85-294 85-295	88.000 88.000	95.000 95.000 95.000	12.800 12.800 12.800	i } i }	0.550	(1)	22.300	[1
699-66-39	\$11E-135	STTE-135		31.000	4.000 (0)				
699-66-58	S11E-136	SINE-136		107.000	17.000 (C)				·
699-66-64	STIE-137	SITE-137		123.000	17.000 (0)				
699-67-98	STTE-260	SI1E-260	125 000		16.400 (0)				
688-68-38	SITE-6	S1 JE - 6		258.000	11.000 (0)		•		
699-71-30	S11E-108	SITE-108		196.000	15.000 [0)				
599-11-52	S11E-138	\$11E-138		107.000	13.000 (0)	•			
699-72-73	S11E-109	SITE-109		119.000	14.000 (0)				
689 72 88	511E-98 511E-261	SITE-98 SITE-261	10+ 000	98.000	17.000 { 15.900 {	0) 0]				
699-72-92	STIE-262	S11E-202	111 000		15,000 (0}				

SER END OF THIS REPORT FOR A LISTING OF APALYSIS METRIDS.

1

.•

. 1

. •

.

s. 17

SAMPLING LOCATION	SAMPLING EVENT CODE	SAMPI E NUMBER	LAB ALK MG/L AS CACU3	FIELD ALK MG/L AS CACU3	SI MG/L	(A)	toc NG/L	(A)	tc Mg/l	(A)
b99-77-36	SI 1E - 110	SITE-110		230.000	10.000	(0)				
699-78-62	S11E-111	SITE-111		114.000	14.000	(0)				
098-81-28	STIE-159	SITE-159	86.000		7 000	[0]		•		
699-83-47	SI 1E - 112	SITE-112		114.000	15.000	(0)				
699-87-55	SI1E-99	S11E-99		98.000	18.000	(0)				
699-90-45	S11E-138	SITE-139		156.000	17.000	(0)				

1.1

SAMPLE TYPE: UNCONFINED ANALYSIS GROUP: MAJOR

. . . .

SEE END OF THIS REPORT FOR A LISTING OF ANALYSIS METHODS.

SD-8HI-0P-061 Rev. 1

FAGE 24

.

,

1

<u>. SPECÍE</u>	<u>(A)</u>	ANALYSIS METHOD
FIFED ALK	1	litration (
LAB AFK	1	Titration
SI -	0 1	Unclassified ICP
10	0 1	Unclassified IR Detector
100	0 1	Unclassified Persulfate Oxidation

1CP: Inductively Coupled Plasma Atomic Emission Spectrometry Unclassified: Analysis comes from a non-BWIP documented source and the method is not specified in this data package.

SD-BWI-DP-061 Rev. 1

.

.

•

THIS PAGE INTENTIONALLY LEFT BLANK

20

SAMPLE TYPE: CONFINED ANALYSIS GROUP: MAJOR

.

.

SAMPLING LOCATION	SAMPLING EVENT CODE	SAMPI E NUMBER	U) MG/L (A)	F Mg/l (A)	BR HG/L (A)	SO4 MG/L (A)	NO3 Mg/l (Å)	P04 MG/L (A)	CHARGE BALANCE
DENK	85-255	15-255 15-256	4 600 (1) 4,500 (1)	0.560 (1) 0.490 (1)			· • • • • • • • • • • • • • • • • •		
DH-01	81-19 81-65 82-27 85-32	81 - 15 81 - 19 81 - 65 81 - 70 82 - 27 82 - 87 85 - 32 85 - 33	$\begin{array}{c} 15 & 000 & (1) \\ 15 & 700 & (1) \\ 47 & 500 & (1) \\ 43 & 600 & (1) \\ 45 & 600 & (1) \\ 43 & 000 & (1) \\ 43 & 000 & (1) \end{array}$	3.490 (1) 3.660 (1) 7.210 (1) 7.080 (1) 7.140 (1) 7.200 (1) 7.200 (1)		0.270 [1] 0.210 [1] 13.300 [1] 15.200 [1] 15.500 [1] 15.500 [1] 17.000 [1] 17.000 [1]			473 3.979 3.050 0.634 0.118 -0.079 -0.017 -0.482
1)13-02	79-65 81-13 81-10	CP123 81-11 81-13 81-10 81-7	14.600 (1) 29.700 (1) 29.900 (1) 31.900 (1) 31.900 (1)	5.500 (1) 5.080 (1) 5.140 (1) 5.760 (1) 5.760 (1)	•	1,200 [1] 35,600 [1] 35,700 [1] 38,200 [1] 38,500 [1]	• 0.500 (1) • • •	0.500 (1)	2.374 3.115 2.617 3.046 0
DB-04	79-77	CP116	6.400 (1)	1.100 (1)		1.150 (1)			
DB-07	79-89 83-413	CP121 83-413 83-448	55,500 (1) 53,500 (1) 57,100 (1)	7.300 (1) 7.680 (1) 7.950 (1)		2		•	- 6 377 - P
151	85-216	85-216 85-217	52.700 (1) 53.000 (1)	8.300 (1) 8.400 (1)		0.850 11			0.859
DB-09 ·	79-28 83-472	CP115 83-410 83-472	9.800 10.200 10.100	0.100 11 0.840 11 0.840 11		1.200 11 14.503 11 14.605 11			-0.442 Rev -0.313 V
()B-11	85 - 18 80 - 52 81 - 57	85-18 85-19 80-52 86-53 81-57	C.900 (1) S.000 (1) 4.130 (1) A.1*0 (1) 4.800 (1)	0.800 (1) 0.700 (1) 0.770 (1) 0.770 (1) -0.720 (1)			ND {1 ND {1}	 	• ••
DB-12	63-95 81-25	63-95 81-25 81-42	4,800 5,300 5,300	0.030 (1) 0.710 (1) 0.710 (1)		19.100 (1) 0.810 (1) 0.790 (1)	۰.	•	-2.40 -3.616 -3.447
DB-13 .	83-404	83-404 83-455	4 520 [1]	0 490 (1) 0 490 (1)		0.160 (1)			・215 の、857
DU-14	81-162	81-139 81-162	129 000 [1] 129 000 [1]	9.490 11 9.440 11			• .		
DB-15	79-17	79-17 79-4	7.755 [1]	0.300 (1) 0.300 (1)		37 107 (1) 39 703 (1)	7.000 (1) ¢ 6.400 (1) ¢	1.200 (1) 1.200 (1)	5.896 5.824

SEE END OF THIS REPORT FOR A LISTING OF AMALYSIS METHODS. . '

.

and a second · · · · ·

4

:

.

PAGE 1

•

.

•

in here the

SAMPLE TYPE: CONFINED ANALYSIS GROUP: MAJOR

SAMPEING LOCATION	SAMPLING EVENT CODE	SAMPI E NUMBER	CL HG/L (A)	F MG/L (A)	BR MG/L (A)	SD4 MG/L (A)	NO3 Hg/l (A)	род Mg/L (А)	CHANGE BALANCE
р в-1 5	70-35 79-33 79-15 79-31 79-51 79-85 79-80 79-80 79-62 79-90 80-35 80-35 80-24 80-77	79-20 79-35 79-35 79-37 79-36 79-31 79-31 79-31 79-31 79-31 79-51 79-51 79-51 79-51 79-80 79-85 79-80 79-90 79-90 79-90 79-90 79-90 79-90 79-90 79-90 79-90 79-90 79-90 79-90 80-41 80-24 80-77	$\begin{array}{c} 3.500 \\ 3.400 \\ 1 \\ 3.400 \\ 1 \\ 7.200 \\ 1 \\ 8.800 \\ 1 \\ 9.400 \\ 1 \\ 6.900 \\ 1 \\ 6.900 \\ 1 \\ 105.000 \\ 1 \\ 1 \\ 105.000 \\ 1 \\ 1 \\ 105.000 \\ 1 \\ 1 \\ 105.000 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 $	$\begin{array}{c} 0.900 \\ 0.800 \\ 1 \\ 3.000 \\ 1 \\ 3.000 \\ 1 \\ 3.000 \\ 1 \\ 3.000 \\ 1 \\ 3.000 \\ 1 \\ 1 \\ 1.000 \\ 1 \\ 1 \\ 1.000 \\ 1 \\ 1 \\ 1.000 \\ 1 \\ 1 \\ 1 \\ 1.000 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 $	((((($\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 0.600 & (1) \\ 0.600 & (1) \\ 0.600 & (1) \\ 0.600 & (1) \\ 0.600 & (1) \\ 0.500 & ($	$\begin{array}{c} 0 & 900 & (1) \\ 0 & 900 & (1) \\ 7 & 400 & (1) \\ 0 & 900 & (1) \\ 5 & 200 & (1) \\ 5 & 200 & (1) \\ 1 & 000 & (1) \\ 1 & 000 & (1) \\ 1 & 000 & (1) \\ 1 & 000 & (1) \\ 1 & 000 & (1) \\ 1 & 000 & (1) \\ 1 & 000 & (1) \\ 1 & 000 & (1) \\ 0 & 500 & (1) \\ 0 & 500 & (1) \\ 0 & 500 & (1) \\ 0 & 500 & (1) \\ 0 & 500 & (1) \\ \end{array}$	1.789 3.150 0.918 0.475 0.391 0.673 2.317 3.359 1.010 3.572 6.964 5.978 5.750 3.042 5.444 1.3551 3.750 3.042 5.444 1.3551 3.042 5.444 1.3551 3.042 5.444 1.3551 3.042 5.444 1.3551 3.042 5.444 1.3551 3.042 5.444 1.3551 3.042 5.444 1.3551 3.042 5.444 1.3551 3.042 5.444 1.3551 3.042 5.444 1.3551 3.042 5.444 1.3551 3.042 5.444 1.3551 3.042 5.444 1.3551 3.042 3.551 3.042 5.444 1.3551 3.042 3.042 3.042 3.042 3.042 3.044 3.044 3.044 3.042 3.044 3.042 3.0
152	80-1	80-1 80-51	105 000 11 105.000 11	19,800 (1) 19,500 (1)		9.400 11 < 9.400 11 <	0 500 (1) < 0 500 (1) <	0.500 (1) 0.500 (1)	3.348
0α-01	SI IE - 230 SI IE - 226 SI IE - 227 SI IE - 228 SI IE - 229 SI IE - 231 SI IE - 233 SI IE - 235 SI IE - 236 SI IE - 236 SI IE - 236 SI IE - 239 SI IE - 240 SI IE - 241 SI IE - 242 SI IE - 243	S11E - 230 S1IE - 226 S1IE - 227 S1IE - 228 SIIE - 231 SIIE - 231 SIIE - 232 SIIE - 235 SIIE - 235 SIIE - 236 SIIE - 236 SIIE - 238 SIIE - 238 SIIE - 239 SIIE - 240 SIIE - 241 SIIE - 242 SIIE - 243	$\begin{array}{c} 11.000 \\ 3.900 \\ 0\\ 68.000 \\ 0\\ 85.000 \\ 0\\ 13.000 \\ 0\\ 13.000 \\ 0\\ 13.000 \\ 0\\ 13.000 \\ 0\\ 13.000 \\ 0\\ 120.000 \\ 0\\ 120.000 \\ 0\\ 120.000 \\ 0\\ 120.000 \\ 0\\ 120.000 \\ 0\\ 120.000 \\ 0\\ 120.000 \\ 0\\ 0\\ 13.000 \\ 0\\ 0\\ 13.000 \\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 0 & 010 & (0) \\ 0 & 250 & (0) \\ 0 & 140 & (0) \\ 0 & 070 & (0) \\ 0 & 080 & (0) \\ 0 & 080 & (0) \\ 0 & 110 & (0) \\ 0 & 160 & (0) \\ 0 & 210 & (0) \\ 0 & 210 & (0) \\ 0 & 080 & (0) \\ 0 & 010 & (0) \\ 0 & 040 & (0) \\ 0 & 040 & (0) \\ 0 & 040 & (0) \\ 0 & 040 & (0) \\ 0 & 040 & (0) \\ 0 & 040 & (0) \\ 0 & 040 & (0) \\ 0 & 040 & (0) \\ 0 & 040 & (0) \\ 0 & 010 & (0) \\ 0 & 010 & (0) \\ 0 & 010 & (0) \\ 0 & 030 & (0) \\ \end{array}$	-0.189 0.017 0.161 -0.919 -0.453 -0.453 -0.188 6.382 3.713 -0.250 -0.810 -2.627 -1.406 -0.194
DC-02-A2	80-4	80-25 80-4	75.500 [1] 74.600 [1]	17 /00 [1] 20.800 [1]		44.200 (1)			17.353 8.786

SEE END OF THIS REPORT FOR A LISTING OF ANALYSIS METHODS.

PAGE 2

,

SD-BWI-OP-061 Rev.

ينيو هو منو به اللول،

;

SAMPLE TYPE. CONFINED ANALYSIS GROUP MAJOR

SAMPI ING LUCATION	SAMPI ING EVENT CODE	SAMPLE NUMBER	C1 , MG/L (A)	F NG/L (A)	BR MG/L	(A)	504 MG/L	(A)	H03 HG/L	{A}	р04 ИG/L	(4)	." IRGE B.,_ INCE
pe-02-A2	STIE-213	SITE-213	95.000 (0)	21.000 (0)			26.000	(0)					
DC+ 03	80-27	80-27 80-81	6230.000 [1] 7392.000 [1]	40.800 (1) 13.700 (1)			720.222 162.000						3.035 1.927
DC- 05	19-30	79-30 79-32	36,400 (1)	14 000 (1) 13 300 (1)			¢ 0.300 ¢ 0.500	{ ! }	0.500 0.500	$\left\{ \begin{array}{c} 1\\ 1 \end{array} \right\}$	< 0.50 < 0.50		52.101 53.285
DC-05	80-161 80-72 517E-214 80-238 80-191 80-13 81-45 80-118 80-118 80-15 81-82 80-29 79-58 80-75	80-147 80-161 80-22 80-72 SITE-214 80-201 80-186 80-191 80-13 80-58 81-45 81-88 80-133 80-133 80-158 80-133 80-158 80-158 80-70 81-82 80-29 80-37 79-58 80-45	110.000 1 120.000 1 120.000 1 120.000 1 120.000 1 120.000 1 120.000 1 290.000 1 290.000 1 290.000 1 290.000 1 290.000 1 250.000 1 145.000 1 156.000 1 157.000 1 158.000 1 280.000 1 280.000 1 280.000 1 280.000 1 280.000 1 280.000 1 280.000 1 280.000 1 280.000 1 280.000 1 280.000 1 280.000 1 280.000 1 280.000 1 280.000 1 280.000 1 280.000 1 280.000 </td <td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td> <td>,</td> <td>·</td> <td>74 100 75 900 113,900 95 200 197,000 194,000 194,000 194,000 197,000 197,000 197,000 197,000 197,000 181,000 187,900 187,000 187,000 187,000 197,0000 197,0000 197,000000000000000000000000000000000000</td> <td></td> <td>1.300 6.200</td> <td>{1 {1 1</td> <td></td> <td></td> <td>63.449 -7.131 -1.552 .211 .312 </td>	$\begin{array}{cccccccccccccccccccccccccccccccccccc$,	·	74 100 75 900 113,900 95 200 197,000 194,000 194,000 194,000 197,000 197,000 197,000 197,000 197,000 181,000 187,900 187,000 187,000 187,000 197,0000 197,0000 197,000000000000000000000000000000000000		1.300 6.200	{1 {1 1			63.449 -7.131 -1.552 .211 .312
. 07 . 10	82-23 82-10 80-39 80-11 80-103 80-188 80-188	80-75 82-23 82-56 82-10 82-33 80-39 80-98 80-11 80-19 80-103 80-163 80-163 80-178 80-188 80-188	35.000 (1) 125.000 (1) 125.000 (1) 135.000 (1) 135.000 (1) 39.600 (1) 97.500 (1) 95.800 (1) 171.000 (1) 180.000 (1) 180.000 (1) 385.000 (1) 385.000 (1) 332.000 (1)	41.100 (1) 37.000 (1) 39.000 (1) 39.000 (1) 39.000 (1) 39.000 (1) 39.000 (1) 39.000 (1) 39.000 (1) 10.000 (1) 24.500 (1) 24.400 (1) 34.900 (1) 22.000 (1) 22.200 (1) 20.800 (1)	0.27:	. •)	157,000 Ta,000 76,500 83,000 25,000 75,000 25,000 25,000 25,000 25,000 173,000 175,000 175,000 175,000 155,000		•				-2.533

SES END Nº THIS REPORT FOR A LISTING OF AMALYSIS METHODS.

• • •

• • • • •

10. 3

٠

SD-BWI-DP-061 Rev. 1

.

24

;÷ to the first of a second

SAMPLE TYPE: CONFINED ANALYSIS GROUP: MAJOR

SAMPLING LOCATION	SANPLING EVENT CODE	SAMPLE NUMBER	G1 MG/1 (A)	F NG/L (A)	ธิส 14G/1 (A)	SO4 MG/L (A)	NO3 MG/L (A)	P04 MG/L (A)	CHARGE BALANCE
DC-12	80-80	80-62 80-80 80-100				3.300 (1) 2.800 (1)			2.859 0.766
	80~100	80-63	95.600 11	8 900 (1)					
	80-91	80-93	103.000 11	8.200 11		1.200 (1)			-3.694
	80-32 80-82	80-68 80-23	109.000 (1)	9 500 (1) 6.000 (1)		5,900 (1)		1.800 (1)	22.817
80-124 80-101	80-82 80-102	89.600 (1)							
	80-124		9.800 11					•	
	80-134	80-169	107.000 11	13 100 11					
	80-174	30-1/4	127.000 (1)	13.600 (1)		1.700 (1)	•		-2.430
	80-209	80-209 80-242	110.000 (1) 101.000 (1)	13.200 (1) 12.300 (1)		2.200 [1]			J.269 S
	80-233	80-233 80-243	116 200 (1)	13.400 (1)	•	1.300 (1)			-1 439 🔀
80-234	80-208 80-234				15 400 11			-3.407	
	81-61	81-61	130.000 11			4.200 11		•	-1.228 7
	82-85	82-34	100.000 (1)	12,300 (1)	0.220 (2)	4.200 (1)			-0.052 0
• } •		82-85	132.000 [1]	13.700 (1)		3 250 11			-0.115 20
DC - 14	80-3	80-3	5.900 (1)	1.100 [1]		28.100 [1]			-0.375
	80-53	80-16	6.700 (1)	0.800 11		28.100 [1]			-0 885 0 806
	80-41	80-51 80-47	4.900 (1)	0.600 (1)		23 500 11	2.700 (1)		-0.003 -2.732
	80-69	80-85 80-69	5 000 (1) 5.500 (1)	0.600 (1) 1 500 (1)			2.700 (1)		-0.305 . 4.142
	80-99	80-83 80-55	7 400 (1)	2 900 (1) 2,900 (1)		18.800 11			2.646
	80-89	80-99 80-36	5.900 11	2.300 (1)		19,600 11	•		2.127
	50-71	80-89 80-2	5.500 (1)			11 000 01	0.700 (1)		4.562
	80-141	80-71	11 800 11	1 500 11		29,100 11	•	4.100 [1]	1.288
80 - 144 80 - 189	80-144	6.300 (1)	1.000 [1]					1.141. 2.613	
	80-105		(0.050 (2)					
		80-127 80-189	6 200 (1)			24.200 (1)		•	0.946
	80-112	80-112	6.600 11	0 800 11		16.500 11			2.843

SEE END OF THIS REPORT FOR A LISTING OF AMALYSIS METHODS.

1-1 01 4-Ð

1

SAMPLE TYPE CONFINED ANALYSIS GROUP: MAJOR

1.16 1.44

.

•

۰.

.

SAMPLING LOCATION	SAMPT ING EVENT CODE	SAMPLE NUMBER	CL MG/L (A)	F NG/L (A)	BR MG/L (J	SD4 A) '' MG/L	(A)	ND3 Mg/L	(A)	РО4 MG/L (,	CHARGE A) BALANCE
DC-14	80-112	80-168	5.900 (1)	0.900 (1)	0 050 1	16.600	(1)				1.359
	80-157	80-157	7.800 (1)	2.200 (1)	0.050 1			•			
	80-155	80-183 80-155 80-185	5 900 11 5 900 11	2.200 (1) 2.200 (1) 2.100 (1)	0.050	20 500 20.500					0.343 2.523 2.523
	80-104	80-104 80-125	5,100 (1) 5,100 (1)	1.800 (1)		•				0.800 j 1.700 j	
	80-129	80-148 80-115		2.300 (1)	0.050	2) 13.500	[1]				- ,
	80-170	80-129 80-156 80-170 80-105	5.100 [1] 5.100 [1]	2.300 (1) 2.200 (1) 2.200 (1)	1 020.0	21 17.300 13.500 18.600	${1 \\ 1 \\ 1 \\ 1 }$	•			-0.084 -0.524
	80-117 80-213	80-109 80-117 80-151 80-213 80-225	$\begin{array}{c} 7.000 \\ 7.200 \\ 1 \\ 70.200 \\ 1 \\ 70.400 \\ 1 \\ 1 \\ \end{array}$	3.600 (1) 3.600 (1) 24.300 (1)	0.050	2) 24.300 24.700 18.700	$\left\{ \begin{matrix} 1 \\ 1 \\ 1 \\ 1 \end{matrix} \right\}$	•			5.431 - 161 - 7.091
4-4 Ch Cl	81-20	80-236 81-20 81-22 81-40	$\begin{array}{c} 222.000 \\ 217.000 \\ 1 \\ 1 \end{array}$	24.400 (1) 22.000 (1) 21.600 (1)	0.210 1	2) 13,750 169,000 166,000				•	-8.21% -8.951 -5.028
	81-30	81-16 81-30 81-44	271 000 (1) 231,000 (1) 217,000 (1)	40.700 (1) 40.600 (1) 47.100 (1)	0.420 ()	145.000 2) 144.000 135.000	(1) []]				i. 123 1. 123 1. 181 - 583
	81-141 82-8	81-141 82-31	257.000 (1) 258.000 (1) 247.000 (1)	48.300 (1) 50.000 (1) 44.000 (1)	0.450 1	2) 112.003 2) 134.000	(1) (1) (1)			н.,	-2003 -2003 2006 2006
	83-156 83-152 83-157	82-42 83-156 83-197 83-152 83-152 83-157 83-157 83-179	$\begin{array}{c} 275.000\\ 253.000\\ 11\\ 253.000\\ 11\\ 254.000\\ 11\\ 254.000\\ 11\\ 254.000\\ 11\\ 254.000\\ 11\\ 254.000\\ 11\\ \end{array}$	14.000 (1) 48.400 (1) 48.400 (1) 48.700 (1) 48.900 (1) 50.700 (1) 49.900 (1)	0.409 į.	130,000 141,000 147,000 141,000 141,000 140,000 140,000					-0.137 -0.203 -0.053 -0.975 -0.326
	83-178 83-183	83-103 83-178 83-123 83-183	254.000 1 253.000 1 254.000 1 254.000 1	48 500 11 48 300 11 49 800 11 49 800 11		140,000 140,000 143,000 143,000				•	-1.268 -0.935 -355 700

SEE END OF THIS REPORT FOR A LISTING OF ANALYSIS METHODS.

1 1

7AGE 5

SD-BWI-DP-061 Rev.

SAMPLE TYPE: CONFINED ANALYSIS GROUP: MAJOR

SAMPI ING LOCATION	SAMPLING EVENT CODE	SAMPLE NUMBER	Ci MG/1. (A)	F HG/L (A)	BR MG/L (A)	SO4 NG/L (A)	NO3 MG/L	(A)	р04 ИG/L	(A)	CHARGE BALANCE	
DC-14	83-154 83-150 83-266 83-261	83-154 83-191 83-108 83-233 83-266 83-203 83-203 83-261	254.000 (1) 253.000 (1) 253.000 (1) 253.000 (1) 252.000 (1) 251.000 (1) 251.000 (1) 251.000 (1)	50 100 (1) 50 800 (1) 49 000 (1) 49 000 (1) 50 100 (1) 50 100 (1) 50 100 (1) 50 100 (1) 48 900 (1) 48 900 (1)		141.000 (1) 140.000 (1) 140.000 (1) 140.000 (1) 140.000 (1) 140.000 (1) 140.000 (1) 140.000 (1) 140.000 (1) 140.000 (1) 138.000 (1) 138.000 (1)					$ \begin{array}{c} -1 & 005 \\ -1 & 207 \\ -0 & 151 \\ 0 & 026 \\ -0 & 547 \\ -1 & 954 \\ -0 & 749 \\ -0 & 596 \\ \end{array} $	
DC-15	80-56 80-54 80-57 80-87 80-137 80-137	80 - 31 80 - 56 80 - 54 80 - 57 80 - 65 80 - 87 80 - 94 80 - 137 80 - 130	$\begin{array}{c} 11 & 200 & (1) \\ 11 & 300 & (1) \\ 8 & 100 & (1) \\ 7 & 800 & (1) \\ 15 & 500 & (1) \\ 9 & 800 & (1) \\ - & 17 & 900 & (1) \\ 17 & 800 & (1) \\ 46 & 900 & (1) \\ 35 & 200 & (1) \end{array}$	1.200 (1) 1.200 (1) 1.000 (1) 1.100 (1) 0.700 (1) 2.000 (1) 2.000 (1) 1.500 (1) 1.400 (1) 8.900 (1)		2 000 (1) 2.400 (1)					-4.018 -2.997	SD-BMI
	80-135	80~176 80~999 80-135 80-149	38.600 (1) 35.900 (1) 40.100 (1) 39.700 (1)	9 500 (1) 9 000 (1) 9 100 (1) 9 300 (1)	0.130 (2)	2.700 [1]	< 0.500	(1) <	0.500	(1)	0.787	-DP-061
	80-120 80-131 80-193 81-41	80-120 80-139 80-108 80-131 80-131 80-133 81-24	44.500 (1) 44.500 (1) 66.000 (1) 64.700 (1) 70.700 (1) 72.200 (1) 170.000 (1)	10,900 (1) 10,900 (1) 12,100 (1) 11,800 (1) 8,600 (1) 8,600 (1) 11,500 (1)		1.300 (1) 1.300 (1) 7.500 (1) 7.500 (1) 4.800 (1) 4.800 (1) 140.000 (1)					-1.884 -2.890 -1.160 -1.356 -3.553 -5.339 -5.506	Rev. 1
	81-2 81-46	81-31 81-41 81-2 81-36 81-46	165.000 (1) 224.000 (1) 224.000 (1) 183.000 (1)	11 500 (1) 18 400 (1) 18 300 (1) 17 500 (1)	0.270 (2) 0.330 (2)	141.000 [1] 119.000 [1] 119.000 [1] 139.000 [1]					-0.754 -7.238 -5.990 -5.990 1.161	
	81-33	81-50 81-17 81-32 81-33 81-27	182.000 (1) 205.000 (1) 205.000 (1) 189.000 (1)	17 400 (1) 22 900 (1) 22 800 (1) 32 600 (1)	0.340 (2) 0.400 (2)	139.000 (1) 198.000 (1) 198.000 (1) 131.000 (1)		•			1.161 1.475 -5.122 -0.813 -0.498	
	81-64	81-74 81-77 81-64	11 000 001 11 000 001	32.800 (1) 23.500 (1)	0.340 (2)	133.000 [1] 214.000 [1]		• .			-1.217	

SEE END OF THIS REPORT FOR A LISTING OF ANALYSIS METHODS.

.

•

.

1

PAGE 6 11

Ang (1974) - 1974 - 1

.

. •

:

.

• :

. . . .

۰.

11.1

1

. .

SAMPLE TYPE: CONFINED Analysis group: Major

SAMPLING LUCATION	SAMPI ING EVENT CODE	SAMPLE NUMBER	CL HG/L (A)	F MG/L (A)	53 HG/I (A)	SD4. MG/L (A)	NI)) MG/L (A)	P04 MG/L	U ARGE (A) BALANCE
PG+15	81-64 81-96	81-80 81-66 81-85	303.000 (1) 210.000 (1) 222:000 (1)	23 500 (1) 22 700 (1) 21 800 (1)		214.000 (1) 171.000 (1) 175.000 (1)			- 070 ·
	81-69	81-69 81-84	224.000 11 224.000 11	21 700 (1) 21 700 (1)	0.300 [2]	175.000 (1) 175.000 (1)	1		-3.312 -3.312 - 832
	82-94	82-41 82-94	138.000 (1) 137.000 (1)	46.900 (1) 46.300 (1)	0.000 .23	105.000 (1) 107.200 (1)	,		0 955
ра-16А	81-109	81-109 81-134	3.520 (1)	0.480 (1)	< 0.050 (2)	22.102 (1)			बे.754
	82-17	81-167 82-17	0.570 (1) 9.580 (1)	0.480 (·1) 0.470 (1)					1.350 0.719
	82-93	82-22 82-55 82-45	3.570 [1]	0.470 (1)	< 0.050 (2)	4 476 11	•	•	0 902 -3,358
	82-19	82-6 82-93 82-19		0.620 (1) 9.500 (1)	< 0.050 (2)	4,802 (1)			151
· ·	82-168	82-72 92-88 82-110	147.000 (1)	9.900 (1)	0.240 ;2) 0.270 !?	5.009 [1]		•	. 333
	82-124	82 - 140 82 - 188 82 - 124 82 - 124		9.900 (1) 10.000 (1) 13.000 (1)	0.200.101	1.200 11 1.200 11 1.900 11			- 150 - 150 - 1 202 - - 1 593 - D
	82-143	82-172 82-172 82-126 82-143	109.000. 208.000. 309.000	13.000 (1) 10.900 (1) 10.800 (1)	0.200 (1)	1.900 (1) 3.700 (1) 5.510 (1)			-1.107
	82-202	82-175 82-202 82-228	253.000 [1] 255.000 [1]	12 300 (1) 12 400 (1)	0.460 (4)	5.100 (1), 5.950 (1),			289 P.
•	82-322	82-322 82-361	222 000 (1) 233 000 (1)	24.100 [1] 24.000 [1]	0.440 (2)				
	82-002	82-378 82-332 82-358	452.00.2 [1]	26.100 (1) 25.900 (1)	0.600 .4.	2,520 [1]			-3 32
	82-430	82-430 82-473	414 000 11	27 600 11 27 300 11	0.029 (2)	3 420 11			-1,358
	80-29	83-29	427 000 (1)	28 600 (1)	0.540 7)	5,500 (1)			- 291 - 111
	• ,	83-41	427.000 (1)	26 900 (1)	0.936 (%)	3,320 (1)	•		- 308 - 908

SEE ET OF THIS REPORT FOR A LISTING OF MALYSIS XELHODS.

..

. .*

1 11

.

. . .

• •

PAGE

7

. .

.

.

BU TART ON ...

1

· . · .

SAMPLE TYPE. CONFINED ANALYSIS GROUP: MAJOR

SAMPLING LOCATION	SAMPLING EVENT CODE	SAMPLE NUMBER	CL NG/L (A)	F HG/L (A)	6R MG/L (A)	SO4 MG/L (A)	NO3 MG/L (A)	P04 NG/L (#	CHARGE A BALANCE	
DC-168	83-147	83-147 83-185	7.360 (1) 7.360 (1) 7.360 (1)	0 740 (1) 0.770 (1)						
DC-16C	83-100	83-100	367 000 (1)	23.900 (1)	0 460 (2)	3.980 (1)			-2.934	
		83-30	354 000 (1)	23.600 (1)	0.500 (2)	4.000 (1)			-3.072	
	83-259	83-215 83-259	188.000 (1) 188.000 (1)	11 200 (1) 11 200 (1)		1.530 11			-0.971 -0.938	
DC-18	86~168	86-165 86-167	$\begin{array}{c} 26 & 400 \\ 26 & 400 \\ 1 \end{array}$	3 540 (1) 3 550 (1)		0 220 11			0.217 0.351	
DC-19C	84~53	84-53 84-84	180 000 111	15 100 (1)		21.800 (1)				
	84-40	84-40 84-77		14 600 11		9.890 1	•		-0.057	Ŋ
	84~75	84-29 84-75	202 000 11	15 700 11		14 800 11			-1.750	-84
	៨ 4 - ៥ ដ	84-18 84-86	185.000 (1) 185.000 (1)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		4.600 11 4.550 11			-2.185 -2.225	1-Df
္ ျပင္ - 20C လ	84~9	84-49 84-9	154.000 [1] 164.000 [1]	$\begin{array}{cccc} 10,600 & (1) \\ 10,600 & (1) \end{array}$		7.790 (1) 7.790 (1)		•	-0.107 -0.107	-061
DC-22C	84~105	84-105 84-153	103.000 [1] 107.000 [1]	7 630 (1) 7 610 (1)		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	•		3.296 1.885	Rev
DG-23GR	86-133	86-133 86-134	133 500 (1)	6 990 (1) 6 990 (1)		2.530 (1)			-0.504	
	86-141	86-141 86-142	117 000 11	6 280 11 6 430 11		4.490 11 5.000 11			0.043	
	86-181	86-181 86-182	$\begin{array}{c} 64 & 600 \\ 64 & 500 \\ 1 \end{array}$	16.900 (1) 16.900 (1)		1.420 11 1.450 11			-0.580	
ENVEART	STTE-209 STTE-210	SITE-209 SITE-210	5.400 (0)	0 600 101		1 800 (0)			-0.110	
	84-166	84-166 84-184	4 670 11							
	82-180	85-180 85-181	4 500 11	0,600 (1) 0,600 (1)						
FURD	STIE-206 STIE-207	SITE-206 SITE-207	5 800 (0)	0.500 (0)		1 800 (0)	0 100 (0)		-3.029	
	SI IE - 219 85 - 188	STIE-219 85-188	4 870 0	0 620 0	•	2:000 0			-10.445	
	85-303	85-189 35-303	4.700 (1) 4.640 (1)	0 700 11						

SEE END OF THIS REPORT FOR A LISTING OF ANALYSIS METHODS.

۰.

.

PAGE 3
1999 2

SAMPLE TYPE: CONFINED ANALYSIS GROUP: MAJOR

.

.

Э

.

· ...

SAMPLING LOCATION	SAMPI ING EVENT CODE	SAMPLE NUMBER	ы MG/1 · (А)	F MG/L (A)	BR MG/L	A)	SD4 MG/L	(A)	NO3 Mg/L	(A)	P04 MG/L (A)	ARGE	
TORD	85-303	85-304	4.840 (1)	0.640 (1)					· · · · · · · · · · · · · · · · · · ·				
HCGEE	S111-224	SITE-224	5.200 (0)	0.500 (0)					0.200	{0}	0.020		
	5111-222	SIIE-222 SIIE-222	9 400 01	0 700 (0)		•	¢ 2.000	(0)					
	STIE-225	S11F-225	1 000 101	0 800 101			 3 500 	:01 (0 250	101	0.030 10:		
	SITE-220	STIE-220	4. 820 01	0.800.101			¢ 2.000	iŏi	. 0.130	(0)		-2.538	
	82-7	82-52	4,400 (1)	0.600 (1)				,					
		82-7	4.500 (1)	0.700, (1)								•	
	85-175	85-175	9.500 [1]	0.650 [1]									•
	85.200	85-200	4.500										
	03-300	85-301	4 310 11										
	86-34	86-34	4.340 11	0.690 11		••	ND	in -	ND	(3)			
		86-35	4,330 111	0.680 [1]			ND	11	ND	- 115 -			
	80-64	80-64	5.000 (1)	0.700 (1)			7.200	(1)				-1.034	
	91 70	80-88	4.300 (1)	0.700 [1]									in
	81-79	81-73	4,100 11	0.070,111				·. ·					្ព
	81-54	81-54	4 100 111	0 650 11			•						က်
		81-56	4,150 111	0.650 (1)	•		, 、	•				• •	- 21
	82-84	82-11	4,800 (1)	0.700 (3)									1
		82-64	- 4.700 (1)	0.700 (1)							•	<i>.</i>	- 2
1 1	82-263	82-263	4 120 (1)	0 610 (1)			•	· ·					4
6	82-297	82-283	4.120 (11)	0.010 1.1		•		-					្តត្ត
10	42-337	82-397	4 940 111	0 580 111			•	1.1	•				هـــه
	82-424	82-424	5.070 11	0.650 11			· , ·						20
		82-474	4.390 (1)	0 640 (1)	,								e v
	82-436	82-436	4.200 [1]	0.650 (1)			0.200	{!}				-1.241	•
	NO-00	82-498	4.300 [1]				0.200	<u>}</u>				-0.905	هـــه
	03-32	0J-JZ	4.000 [1]	0.040 [1]	0 050 i	21	0.090	[1]				-2.498	
		83-63	4.600 (1)	0.640 (1)	0.000 [~1	0.000	(1)				-2 099	
				· · · · · · · · · · · · · · · · · · ·	0.050 1	÷)			•			-2.099	
	83-83	83-27	5.000 (1)	0.640 (1)			9.030	(1)				-2.042	
		01. E 0		C C	0.050	<u> </u>				1		-2.042	
		87-97	5 000 (1)	0 640 (1)	0.020	< 1	1 066	(1)		•			
	83-188	87-110	4 800 11	0 610 11			0.050	[1]					
	• •••		1.000 [1]	· · · · · · · · · · · · · · · · · · ·	0.05%	21		•		•			
		83-188	4.900 (1)	0.600 (1)		•••							
				•	0.050 (23							
	83-373	83-323	6.822 (1)	3.660 [1]			1.553	<u>{!</u>]		•		317	
	83-331	87-771	7 400 11	J.000 []]			1.650	<u>}</u>		•		429	
	17 771	83-344	7 600 111	1 480 111			* 630	111				-1.337	
	83-460	81-460	7.655 111	3.520 11			. 250	111				- 310	
• • :*	• • • • •	Start V	E END OF THIS	REPORT FOR A LI	STING OF A	MALY	ISIS METER	DS.					

.

.

100

**** • • • • •

• . •

ł

.

SAMPLE TYPE CONFINED ANALYSIS GROUP: MAJOR

2 (44 m + 14 h

1.

5 . I

SAMPLING LUCATION	SAMPI ING EVENT CODE	SAMPI E NUMBER	CI MG/L (A)	F Mg/L (A)	BR MG/L (A)	SU4 MG/L (A)	NU3 MG/L (A)	PD4 CHARGE MG/L (A) BALANCE
NCGEE	83-480 83-476	83-474 83-417 83-476	7.060 (1) 7.600 (1) 7.570 (1)	3.520 (1) 3.500 (1) 3.510 (1)	0.170 (1) 0.170 (1)	0 240 (1) 0.450 (1) 0.450 (1)	·	-0.046 2.104 2.326
	83-513 84-24	83-513 83-545 84-24 84-38	48.400 (1) 48.400 (1) 48.400 (1) 48.400 (1)	11.000 (1) 10.700 (1) 9.300 (1) 9.300 (1)		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		0.430 0.593 -1.402 -3.053
OBRIAN	85-194	85-194 85-195	4.800 (1) 4.800 (1)	0.710 (1) 0.780 (1)	,			
RR1-02	82-68	82-28	133.000 (1)	8.500 (1)	A 33A (A)	1.600 (1)		-2.138
	82-65	82-68 82-65 82-75	133 000 (1) 122 000 (1) 123 000 (1)	8 500 (1) 8 600 (1) 9 400 (1)	0.230 (2)	1 800 (1) 2.000 (1) 2.000 (1)	•	-2.129 -2.129 -2.934 -4.132
	82-170	82-163	347.000 (1)	15.000 (1)	0.220 (2)	21.000 (1)	2.300 (1)	-4 132 3 499
	82-122	82-170 82-122 82-192	344.000 11 507.000 11 508.000 11	15.000 (1) 21.700 (1) 21.400 (1)	0.480 (2)	21.000 (1) 1 400 (1) 1.500 (1)	2.300 (1)	3 499 3 113 -0 268 0 245
	82-401	82-401	403.000 (1)	20.000 (1)	0.700 (2)	4.200 [1]		0 245 -2.190
	84-7 82-364	82-410 82-479 84-43 84-7 82-304	405.000 1 420.000 1 415.000 1 451.000 1	20 000 (1) 14 000 (1) 14 000 (1) 18 200 (1)	0.530 (2) 0.560 (1) 0.690 (1)	4.200 11 0.870 11 0.950 11 1.703 11		-2,453 0,485 1,131 -2,082
	42 240	82-381		18.000 (1)	0.680 (2)	1.700 (1)		-0.919 -0.919
	62-305	82-351	383.000 11	17 100 11	0 560 (2)	3.680 11		0.880
	82-456	82-413	454 000 (1)	20.100 (1)	0 500 (2)	2 400 (1)		~
		82-456	455.000 (1)	20.100 (1)	0.020 (2)	2 400 [1]		-1.711
RR! - 14	82-403	82-403	357 000 (1)	24.300 (1)	0.500 (2)	15.800 (1)		-0.545
		82-489	356.000 (1)	23.700 (1)	01000 (2)	16.000 (1)	•	-0.583
SILM-1	85-252	85-252 85-253	5 100 (1) 5 100 (1)	$\begin{array}{c} 0 & 400 & (1) \\ 0 & 410 & (1) \end{array}$		•		
	85-297	85-297 85-298	4.930 11	0.590 (1)		0 199 (1) 0 180 (1)	, 	-0.646
	86-31	86-31 86-32	4.870 (1) 4.830 (1)	0.570 (1) 0.570 (1)	·	0 190 (1) C 190 (1)	ND (1) ND (1)	-0.294 -0.074

SEE END OF THIS REPORT FOR A LISTING OF ANALYSIS METHODS.

•

PAGE 10

SD-AWI-DP-OGI Rev.

هبر

SAMPLE TYPE: CONFINED ANALYSIS GROUP; MAJOR .

.

.

.

1

.

÷. ١ •

.

:

SAMPI ING LOCATION	SAMPLING EVENT CODE	SAMPLE NUMBER	C1 MG/1 (A)	F • HG/L (A)	BR MG/L (A)	504 MG/1 (/	NU3 NG/L	(A)	PO4 MG/L	U ARGE [4] BALANCE
STEM-2	86-19	86-19 86-20	4.820 (1) 4.830 (1)	0.580 (1) 0.580 (1)		ND {	ND ND	$\left\{ \begin{array}{c} 1\\ 1 \end{array} \right\}$		
299-£16-01	SITE-161 SITE-162 SITE-163 SITE-164	SI 1E - 161 SI IE - 162 SI IE - 163 SI IE - 164	2.600 (0) 1,400 (0) 1.200 (0) < 1.000 (0)	$\begin{array}{cccc} 0.620 & (0) \\ 0.610 & (0) \\ 0.570 & (0) \\ 0.590 & (0) \end{array}$		28.000 (0 33.000 (0 31.000 (0 35.000 (0				0.771 0.523 2.802 0.447
299 ·F25-08	S1TE - 166 SI 1E - 167 SI 1E - 168	SITE-165 SITE-167 SITE-168	7.900 (0) 7.300 (0) 8.100 (0)	0.510 (0) 0.580 (0) 0.530 (0)		35.000 (0 18.000 (0 37.000 (0				3.496 2.019 -3.469
299-133-12	S11E-170 S11E-171 S11E-172	SITE-170 STTE-171 STTE-172	5.600 (0) 7 300 (0) 5.100 (0)	0.230 (0) 0.200 (0) 0.170 (0)		28.000 28.000 25.000				103 103 103 103
699-511-E12A	80 61 80-180	80-61 80-138 80-180	(1) 008.61 (1) 009.841 (1) 009.841	0 700 (1) 7.700 (1) 7.700 (1)						SD-E
699-42-40C	\$11E-178 \$11E-177 \$11E-178 \$11E-178 \$11E-170 \$11E-180	ST1E-176 ST1E-177 STTE-178 STTE-179 STTE-180	5.100 (0) 3.000 (0) 4.000 (0) 4.000 (0) 3.500 (0)	0.850 (0) 0.660 (0) 0.960 (0) 0.840 (0) 0.700 (0)		18.000 38.000 17.000 18.003 15.503			• .	. 135 . . 135 .
	SITE-205 SITE-181	STTE-205 STTE-181	30,950 (0) 31,000 (0)	0.570 (0) 0.660 (0)		107,300 100,000	2) 7,6	30 (0)		بن بن 188، يور
899 - 49 - 558	STIE-183 STIE-184 STIE-185	STTE-183 STTE-184 STTE-185	15.700 (0) 9.500 (0) 10.600 (0)	0 370 00 0.260 00 0.230 00	•	20 000 (1 21 000 (0 17,000 (0		·		3.252 8.422 9.173
599-50-45	S112-203 S11E-186	SI1E-203 SIIE-186	22 000 0	0.490 (0) 0.600 (0)		18,000	9.0))	30 [0]		34.400
599-50-48	S11E-204 S11E-187	STIE-204 STIE-187	15 350 (0) 25 000 (0)	0 800 (0) 0 640 (0)		18.7%) 10 21.000 (1	0.1	20 (0)		536
699-51-46	S11E-188 S11E-201	SITE-188 SITE-201	13.000 (0) 13.230 (0)	0.540 (0) 0.460 (0)		23,850 (32,850 (1.1	80 (O)		
539-52-46A	S11E-202 S11E-189	SI1E-202 SITE-189	25 (50 (0) 25 (00 (0)	0.460 (0) 0.470 (0)			0.4	30 101		- 138
699-52-48	SI IE - 199 SI IE - 190	SITE-199 SITE-190	4 990 (0)	0 710 (0) 0 640 (0)	. •	85 270 1 24 706 1 0	3)	· · · · · ·		233
1, 2, 4, 4, 4, 4 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1	ري. 14-14 - مارين 14-14 - مارين	ns yr + yt i	see end de this :	REPORT FOR A LI	STING OF ANAL	YSIŠ ŽEFKOD	S .			

PAGE :1

-.

.

• •

.

.

.

.

.

.

ی فیس اوران ۱۹۰۰ زیار ٠. •••

•

SAMPLE TYPE: CONFINED ANALYSIS GROUP: MAJOR

SAMPLING LOCATION	SAMPI THG EVENT CODE	SAMPI E NUMBER	C1 NG/1.	(A)	F HG/L	(A)	- ex Mg/l	(A)	504 MG/L	(A)	ND3 MG/L	(A)	204 MG/L	CHARGE (A) BALANCE
649-53-50	SITE-191 STIE-200	SI1E-191 SITE-200	21.000 20.990	[8]	0 600 0.420	{0}			29.000 18.930	{ 0 }	1.050	(0)		-0.200
699-54-57	S11E-192	SI1E-192	12.900	[0]	0.530	[0]			20.000	(0)				-11.758
689-56-53	SIIE-196 SIIE-197	SITE-196 SITE-197	28.000 27.000	[8]	0.200 0.140	[0]·		•	1,000 2,000	{0} {0}				3,853 9,338

SEE END OF THIS REPORT FOR A LISTING OF ANALYSIS METHODS.

SD-BWI-DP-061 Rev. 1

PAGE 12

172

SAMPLE TYPE: PRECIPITATION ANALYSIS GROUP: MAJOR

.

.

3

•

.

SAMPLING 10CATION	SAMPI ING EVENT CODE	SAMPLE NUMBER	••••	CI MG/L	(A)		i F MG/L	(A)	6)! MG/L	[A]		94 MG/L	{A}		NO3 Mg/l	(A)		FD4 MG/L	[A]	RGE
STATION-03	82-51	82-51		1,000	(1)	<	1.000	(1)			·	1.000	(1)		1.670	(1)				
STATION-04	82-61	82-61	۲	1.000	(\mathbf{n})	¢.	1.000	(1)			¢	1.000	(1)		1.310	(1)				
STA110N-14	B2-20	82-20	¢	1.000	(\mathbf{u})	۲	1.000	(1)			•	1.000	(1)	۰. ۲	1.070	(1)	٢	1.000	(1)	
STATION-20	82-58	82-58	¢	1.000	in .	٢	1.000	(1)			٢	1.070	(1)	¢	1.000	(1)				
STATION-25	82-66	82-66	¢	1.000	(1)	¢	1.000	(1)			¢	1.000	(1)		1.670	(1)				
		t i s													•					
		2 V .			1			•				·			-					
	, · · ·						• 1							•		•				
, L	·.	*		•																
		ц , , ,						6 E				ہ				•				
	, * :	· ·				•	. 1				:	- ,	•		••••			:		
	,,,		-		•		, [,]	; ;			ć		: '		• • •	•		•		
1	ŕ,			. ·			· · ·				-	• •	•							•
	1												,							• • •
	•						-	1					• •							•
		•								•										. •
	·	I.			• ,			`							•					
																				•
	:						·													
	۰.	;			:			• •							•					
					•			,												
												·	• .			•				
	• • •			•	۰ ^۰		٠	•				• •				•	•			
	1437 11				•		••••	, i	••			·· ;	· · ·		ι			• .		
· · ·		•	SEE E	ND OF 1	IIIS	KE P	ORT FOR	A L	ISTINĠ CE	- ANAL	.YSI	S METHO	DS.							

.

.

.

. ..

•

1

SD-BWJ-DP-061 Rev.

PAGE 13

10.324年1月1日

SAMPLE TYPE: SPRING ANALYSIS GROUP: MAJOR

SAMPEING LOCATION	SAHPI ING EVENT CODE	SAMPLE NUMBER	CL HG/L (A)	F HG/L (A)	BR NG/L (A)	504 MG/L (A)	NU3 MG/L (A)	P04 NG/L (A)	CHARGE BALANCE
SP-DENNET1	S11E-218 79-13 85-362 86-190	SI1E-218 79-13 85-362 85-363 86-190	5.070 (0) 13.700 (1) 11.000 (1) 11.100 (1) 11.600 (1)	0 270 (0) 2 300 (1) 0 290 (1) 0 290 (1) 0 310 (1)		10,000 (0) 16,900 (1) 13,800 (1) 13,900 (1) 15,000 (1)	10.000 (1) 13.400 (1) 13.400 (1) 13.400 (1) 13.300 (1)		0.093 -5.291 1.782 1.821 0.580
		86~191	11.700 (1)	0.310 [1]		14.600 [1]	13.200 [1]		0.587
sp-Benson	S11E-217	S11E-217	3,120 (0)	0.280 (0)		11.000 (0)			- 5.997
SP-BUTLER	79-1	79-1 79-50	5,400 (1) 4 800 (1)	0.100 11		18 700 [1] 18 400 [1]	9.700 (1) 8.000 (1)	$ \begin{array}{c} 1.600 \\ 2.200 \\ 1 \end{array} $	-4.933 -3.705
SP-Gin Ch	84-359	84-359 84-383	23.000 11 22.700 11	0 400 [1] 0 400 [1]		31 500 (1) 31 500 (1)	21 400 [1] 21 200 [1]		1.380 0.975 g
SP-JUN1PER	ST1E-215 79-2 81-115 83-372	SIIE-215 79-2 79-43 81-115 81-161 83-305 83-372	4.670 (0) 6.900 (1) 6.900 (1) 4.630 (1) 4.630 (1) 6.110 (1) 6.110 (1)	$\begin{array}{ccccccc} 0 & 500 & (0) \\ 0 & 600 & (1) \\ 0 & 600 & (1) \\ 0 & 530 & (1) \\ 0 & 530 & (1) \\ 0 & 460 & (1) \\ 0 & 460 & (1) \end{array}$	٠	18 000 0 30 900 1 30 500 1 12 000 1 12 000 1 28 750 1 28 570 1	< 0.600 (1) < < < < < < < < < < < < < < < < < < <	1.200 (1) 1.100 (1)	- 9: 802 2:994 #[- 0 727 [- 5:495 1:661 06 -0:380 06
_SP-LO-SNIVELY N H	79-34 82-362 83-396	79-19 79-34 82-362 82-377 83-311 83-396	$\begin{array}{c} 4 & 700 & (1) \\ 6 & 900 & (1) \\ 3 & 700 & (1) \\ 3 & 700 & (1) \\ 4 & 350 & (1) \\ 4 & 270 & (1) \end{array}$	<pre></pre>		20.500.11 20.90011 13.00011 13.00011 12.65011 12.48011	8.600 (1) 8.400 (1) 8.400 (1) 8.400 (1)	0.700 [1] 0.800 [1]	-5.870 -0.073 PP -1.235 - -1.842 - 3.735 - 3.160
SP-LOZIER	79-6 81-186 83-316	79-44 79-6 81-116 81-186 83-316 83-343	1,900 (1) 1,900 (1) 3,730 (1) 3,730 (1) 5,030 (1) 5,030 (1)	<pre></pre>	·	4.200 (1) 5.200 (1) 7.140 (1) 7.140 (1) 10.050 (1) 10.140 (1)	4 800 (1) < 4 700 (1) < 10 250 (1) 11 050 (1) 8 480 (1) 8 630 (1)	0.500 (1) 0.500 (1)	2.203 0.774 1.022 0.480 -3.620 -3.913
SP-HAIDEN	79-100 83-420	79-67 79-96 83-420 83-435	3,300 (1) 3,400 (1) 3,820 (1) 3,760 (1)	0 200 (1) 0 400 (1) 0 180 (1) 0 180 (1)		7 500 (1) 8 000 (1) 9 240 (1) 9 240 (1)	5 200 (i) 2 700 (1) 6 860 (1) 6 860 (1)		1.197 9.156
SP-OBSERVATORY	81-119 83-433	81-119 81-157 83-433 83-461	3 030 (1) 3 030 (1) 3 280 (1) 3 280 (1)	$\begin{array}{c} 0 & 190 & (1) \\ 0 & 190 & (1) \\ 0 & 160 & (1) \\ 0 & 160 & (1) \end{array}$		10 330 (1) 10 330 (1) 12 520 (1) 12 520 (1)	9.400 (1) 9.400 (1) 5.590 (1) 5.480 (1)	,	0 988 1 302 0 587 1 356
	84-392	84-310 84-392	3,140 [1] 3,170 [1]	0 130 11		13.090 11	6 230 11		0.285

SEE END OF THIS REPORT FOR A LISTING OF ANALYSIS METHODS.

.

PAGE 14

. .

SAMPLE TYPE: SPRING ANALYSIS GROUP: MAJOR

• . . . • ·

.

SAMPLING LOCATION	SAMPLING EVENT CODE	SAMPLE NUMBER	CL NG/L (A)	F HG/L (A)	BR MG/L (A)	SDA MG/L	(Å)	ND3 MG/L	(A)	PO4 MG/L (A)	CHARGE BALANCE
SP-OBSERVATORY	84-329	84-329	3.500 [1]	0 400 (1)		11.700	<u>{</u>	3.500	<u>}</u>		
	85-359	85-359	3.020 11	0.190 11	•	11.300		4.510	{i}		1.769
	86 - 178	86-178 86-179	3.260 11 3.230 11	0.210 (1) 0.200 (1) 0.190 (1)		12.000		4.130 6.610 6.480			1.626
SP-RAILROAD	79-76	79-76	19.600 (1)	3.700 (1)		30.000	(1) C	0.500	(1) C	1.000 (1)	-19.885
SP-RATTESNAKE	511E-216 79-88	S1TE-216 79-87 79-88	3.850 (0) 5.300 (1) 5.300 (1)	$\begin{array}{c} 0.360 & (0) \\ 0.400 & (1) \\ 0.500 & (1) \end{array}$		14.000	10) ;1]	0.200	<u>1</u> 27,	0 E00 (1)	940 3. 550
	83-412	83-412 83-466	7.300	0.500 [1] 0.490 [1]		12.440		0.200	[1] (0.500 (1)	1,823 1,698 0,474
SP-SNEVELY	79-49	70-37 79-49	3.500 11 3.500 11	0.300 {1 0.300 {1		18 500 15 500		10.000 8.100	$\left\{ \begin{array}{c} 1\\ 1 \end{array} \right\}$	0.800 (1) 0.800 (1)	1,268 3,794 8
SP-SULFUR	79-29	79-29 79-36	5.300 (1) 5.000 (1)	0.300 (1)		25.700 23.000	{ <u>}</u> }	11.600	{! }	3.800 (1)	-5.828 00
	83-409	83-409 83-442	5 220 11 5 200 11	0.340 I 0.330 I		11.500 11.500	i}	5.160			1.357
SP-UNHAMED-02	79-75	79-75 79-93	0.500 (1) « 3.400 (1) «	0 500 (1) 0 500 (1)		6.500 8.500		3.200 2.700	<pre>[1] :</pre>	0.500 (1) 0.500 (1)	5.352 0
SP-UNNAMED-16	79-73	79-73 79-82	1.100 11 3.400 11	0.600 (1)	·	5.700		• •	,		907 to
SP-URHAMED-26	19-98	79-98	7.600 (1)	0.400 (1)	• •	\$.300	(1) <	0,500	(1) C	1.000 (1)	- 2, 493
SP-UNNAMED-29	19-18	79-16 79-24				11.200 10.600		1.800 2.300	{1}		
SP-OP SHIVELY	79-71	79-69 79-71	3,800 (1)	0.200 11		1 693		5 1 10	••••	1 000 1 1	.235
	81-126	81-126	4.830 11			10,005		5.810		1.000 ()	. 108
	83-503	83-503 83-547	5 490 11	0.230 1		1		5.280	124		
	86-193	86-193 86-194	5.050 1 5.120 1	0 310 11 0 310 11		12.100		8 920 8 999	ii)		. 351
SP-082-07	85-343	85-343	2.450 111	0 410 11		7.391	11	1.490	511	•	. 41
	86-159	86-159 86-160	4.620 11	0.360 (1) 0.360 (1)		11.700		5.160 5.000			. 168 168
• •	• ••	11	SFF FM, BE THIS PF		ISTING OF AVAIN	, , אפור איזאי	32	۰ <u>.</u> ۰		. •	· .
and the second sec	1. 815 S. 1. 51 M	ten station Station	SEE END DE TITTA RE	TORFFOR A L	LATING OF WANT	1919 (" <u>1</u> 4"0.	J3.				

.

. .

•

2

÷

.

.

.

مېردون ور وو وو در د

PAGE 15

.

.

.

.

•

.

.

٠

SAMPLE TYPE: SPRING ANALYSIS GROUP: MAJOR

SAMPLING LOCATION	SAMPLING LVENT CODE	SAMPLE NUMBER	CL NG/L (A)	F MG/L (A) M	BR SO4 IG/L (A) MG/L	NUG A) MG/L (A)	PO4 CI-ARGE NG/L (A) BALANCE
5P - URG - 20	85-346	85-346 85-347	4.470 (1) 4.520 (1)	0 450 (1) 0.430 (1)	11.000 11.200	1)	0.230
	86-162	86~162 86~163	6 640 (1) 6 480 (1)	$\begin{array}{c} 0 & 450 \\ 0 & 430 \\ 1 \end{array}$	13.400 13.400	$\begin{array}{c}1\\1\\1\end{array} \begin{array}{c}5\\5\\750\\1\end{array} \begin{array}{c}780\\1\\1\end{array}$	-0.070 0.012
SP- UR7-22	85-349	85-349 85-350	3 540 (1) 3 490 (1)	0 470 (1) 0.470 (1)	16.300 16.200	1) 4.880 (1) 1) 5.290 (1)	0.836 0.654
	86-153	86-153 86-154	7.030 11	0.520 11	23.600 23.700	1 8.120 1 1 8.200 1	-0.785 -0.678
SP-WARH	84-358	84-358 84-371	8 400 (1) 8 500 (1)	0.700 (1) 0.500 (1)	16.200 16.300	1)	0.933 1.220
SP-YRJ-04	85-333	85-333 85-334	4 630 (1)	0.360 (1)	11.300	1) 1.550 (1)	0.312
	86-150	86-150 86-151	7 070 11 7 080 11	0 390 11 0 370 11	14.100 14.200	1 3.460 11 1 3.520 11	-0.039 -0.022
SP-485-08	85-336	85-336 85-337	5.550 (1)	0 380 (1)	10 120	11	0.348 0.184
	86-147	86-147 86-148	16 900 11 16 900 11	0 370 11	18 900 18 900	1 39.800 (1) 1 39.700 (1)	1.479 1.469
SF-YR7-14	85-339	85-339 85-340	7.470 (1)	0 200 (1)	11.900	1) 0.800 (1)	0.151
	8ŭ~15o	86-156 86-157	6.610 11 6.620 11	0 200 11	11.700 11.700	1 3.390 (1) 3.920 (1)	-0.143

SEE END OF THIS REPORT FOR A LISTING OF ANALYSIS METHODS.

PAGE 16

SD-8HI-0P-061 Rev.

وسو

SAMPLE TYPE. SURFACE ANALYSIS GROUP: MAJOR

.

SAMPLING LOCATION	SAMPLING EVENT CODE	SAMPLE NUMBER	01 Mg/L (A)	F HG/L (A)	BR MG/L (A)	504 MG/L (A)	NOJ Mg/L (A)	PO4 ARGE NG/L (A) BALINCE
COLD CREEK	84-317	84-317	7.700 (1) 7.700 (1)	0 600 (1)		13.500 (1)		
	84-302	84-302	7.800	0 600 11		13.700 11		353
	85-223	85-223 85-224	7 200 11	0.570 (1) 0.550 (1)		13,300 (1) 12,300 (1)		1.779
CR-DC-14	83-258	83-211 83-258	0.820 [1] 0.860 [1]	0.120 (1) 0.120 (1)		11.500 11		-1.030 3.110
CH-HIS	SITE-221	SITE-221	5.500 (0)	0.460 (0)		7.000 (0)		4.008
GK - V - BR	84-030	64-330		0.500 11	2	\$ \$22 11}		
	84-311	84-311	1.700 11 6	0.500 11		0.000 1	•	1 4
	85-206	85-205 85-207	1.100 11	0.320 11		13.400 11		1.391 1.391
	45-268	85-266	1.025 11	0.190 11		130 11		· • • • • • • • • • • • • • • • • • • •
· · · ·	86-70	86-70 86-71	0.870 11	0 230 11	· · · · · · · · · · · · · · · · · · ·	10.700 11	ND	3.226
•	86-109	86-109 86-110	1.070 I 1.100 I	0.130 (1) 0.130 (1)	•	11.500 [1] 11.600 [1]	ND 150 11	
YR-HR	\$5-210	85-210	2.200 [1]		۰	5.200 128		
~ 1 ~ 1	85-269	85-269	6,170	0.210 (1)		17.900 11	1.560 (1)	. 821
	86-67	86-67 86-68	5.500 11	0.180 11			0.390	1.901
	86-118	86-118 86-119	5 550 11	0.190 11 0.200 11		17 .400 (1) 13.000 (1)	3.970 11	-2.155 -2.737
	· ,	•	* * *					
		• *	· · · ·			·		
.					•	· / · · · ·	: · ·	
•	,	1# #					• •	
			•	·		· · · · ·	•	
:			•	- ·		, , , , , , , , , , , , , , , , , , ,	•••	
								•
	•	SE	E END OF THIS RE	PORT FOR A LI	STING OF AMALY	SIS METHODS.		

1

*N2E 17

SD-8HI-DP-061 Rev.

هسو

,

÷

3

SAMPLE TYPE: UNCONFINED ANALYSIS GROUP: MAJOR

 SAMPLING LOCATION 	SAMPI ING EVENT CODE	SAMPLE NUABER	CL NG/L (A)	ғ MG/L IA	BX) MG/L	(A)	SO4 MG/L	(A)	NO3 Mg/l	(A)	Р04 MG/L (А	CHA BALA	RGE NCE	
RRL-OŬA	82-40	82-35 82-40	13,800 (1) 13,800 (1)	0 500 (1 0 500 (1	}		46 100 45,800	{ ! }	27 400 27 000	{! }		1	. 172 . 494	
199-104-04	SITE-41	SITE-41	6.600 (0)	0.200 (0	0.100	(0)	42.000	[0]	1.100	[0]		2	. 282	
199-005-12	ST1E-80	SITE-80	16.000 (0)	0.200 (0) 0.100	(0)	46.000	[0]	16.000	(0)	0.080 (0) -3	. 171	
199-008-03	ST1E-72	SITE - 72	11.000 (0)	0.200 (0	0.100	(0)	51.000	(0)	. 3.300	(0)		δ	. 297	
199-805-01	S11E-82	SITE-#2	2.600 (0)	0.100 [0)		14.000	(0)	4.000	(0)	0.060 (0	1 -1	. 427	
199-1104-03	SI1E-81	S11E-81	8.800 (0)	0.300 (0) 0.300	(0)	160.000	[0]	1700.000	(0)	0.250 (0) -1	. δ27	
199-8-19	S11E-83	SITE-83	2.600 (0)	0.200 to	}		42.000	(0)	5,300	10)	0.030 (0) -5	. 0 1 0	
198-8-12	S11E-42	S11E-42	2.500 (0)	0.100 [0	1		16.000	(0)	4.900	(0)		5	.088	ഗ
299-E26-08	S11E-165	SITE-165	9.500 (0)	0.680 (0)		29.000	10)				5	. 317	Ë
299-633-12	STTE-169	SITE-169	5,800 (0)	2.600 (0)		70.000	(0)				22	. 100	IN
399-01-01	ST1E-244	S11E-244	7,900 (0)	0.500 (0) 0.040	(0)	18 000	(0)	19.000	(0)		- 0	. 189	ģ
309-01-03	S11E-43	SITE-43	31.000 (0)	0.500 (0) 0.100	(0)	25,000	(0)	4.100	(0)		1	. 053	6
4399-02-01	SI1E-245	S11E-245	9.800 (0)	0.500 (0) (0.010	(0)	17.000	(0)	12.000	[0]		-3	. 172	Ë
399-03-01	SITE-246	SI1E-246	8.500 (0)	0.400 (0) 0.010	{0}	19.000	(0)	15.000	(0)		-0	. 344	Rev
388-04-10	SI 16 - 44	SI 1E - 44	12.000 (0)	0.800 [0	7.000	10)	27.000	(0)	3.300	(0)		3	. 107	•
399-08-04	ST1E-140	S11E-140	8.600 (0)	0.300 (0)		23.000	(0)	11.000	(0)		-1	. 825	
699-HAH-19	ST 1E - 3	SI 1E - 3	3.100 [0]	0.400 (0) 0,100	(0)	20.000	(0)	4.200	[0]	•	0	. 058	
699-503-E12	SI IE - 22 SI IE - 141	SITE-22 SITE-141	3.700 (0) 4.600 (0)	0 500 (0 0 300 (0	0 100	(0)	25 000 15.000	[0]	13.700 14.000	[0]		-0 -1	. 928 . 912	
699-803-25	STIE-7 STIE-142 86-55	SITE-7 SITE-142 86-55 86-56	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0 500 (0 0 500 0 0 700 1 0 740 1	0.100	(0),	81 000 98 000 90 590 90 590	$ \begin{pmatrix} 0 \\ 0 \\ 1 \\ 1 \end{pmatrix} $	0 270 1 200 0 400 0 360			0 0 0	.501 .148 .554 .430	
	0-130	86-131	21.700 1	0 660 11	}		89 600 88.700		0 410 0 420			10	.056 .208	•
899-206-E04D	\$11E-11	STIE-11	3,400 (0)	0.400 (0) 0.200	(0)	2.200	101	6.500	101		15	. 185	
699-508-19	ST1E-46	SITE-46	22.000 (0)	1.300 (0) 0 100	(0)	12 000	(0)	0.960	10)		Э	305	
					•				•					

SEE END OF THIS REPORT FOR A LISTING OF ANALYSIS METHODS.

PAGE 18

SAMPLE TYPE, UNCONFINED ANALYSIS GROUP: MAJOR

· • .

SAMPI 1116 1 OCATION	SAMPLING EVENT CODE	SAMPLE NUHUER	13 NG/1	(A)	F MG/1.	(A)	8x MG/L	(A)	504 MG/L	1A }	N03 MG/L	(A)	PB4 MG/L	(A)	NRGE I II NNCE	
699-208-19	SITE-84	SITE-84	22.000	[0]	1.300	(0)	0.101	103	13.000	10)	3.900	(0)	0.120	101		
339-511-E12A	S1TE-4	SIIE-4	5.800	(0)	0.300	(0)	0.100	10)	25.000	[0]	22.000	(0)			1.241	
229-212-03	STTE-45 STTE-143	STTE-45 STTE-143	18.000	{	0.600 0.400	{0} {0}	0 200 0,100	(0) (0)	3 000	{ô}; (0};	1.900 8.400	[6]			2.893 - 3.904	
899-519 E13	S11E-120	SITE-120	24.000	(0)	0.400	[0]	0.100	(0)	41.000	101	14.000	{0}				
699-524-19	85-213 85-291	85-213 85-214 85-291 85-292	5.100 5.200 5.710 5.780		0.110 0.350 0.280 0.350				17:000 12:503 13:223 13:430		· · ·				.1.408 2.803 7.803 7.95 2.985	
899-S29-E12	SITE-21	S17E-21	5.100	(0)	0.400	(0)	0.100	. 33	24.000	10)	.14.100	(0)				
399-530-E15A	SITE-144	SITE-144	4.100	(0)	0.200	(0)			15.000	10)	20.000	(0)			J. 521	ÿ
599-01-18	SITE-145	SITE-145	9.900	101	0,400	(0)	< 0.010	(0)	87.23.	(0)	26.000	(0)			-1.634	IMB
699-02-03	\$118-1	S11E-1	5.900	(0)	0.300	(0)	0.100	10)	08.000	101	22.000	(0)			. 544	ģ
609-02-33	5118-85 5118-146	SITE-85 SITE-146	5.800 5.800	{o 0}	0.400 0.300	[0]	0.100 0.200	(0) {0}	04.000 36.000	(D)	1.400 2.500	{ 0 }	• 0,210	(0)	-3.205 0 815	-061
599-64-206	STIE-47	SITE-47	7.100	(0)	0.400	[0]	0.100	161	40 000	(0)	1.900	10)				20
599-08-17	SITE-20	S17E-23	11.000	10)	0.400	(0)	0.100	1:)	\$2.220	{0}	29.800	[0]			752	×
699-08-25	SI1E-32	SITE-32	\$.500	(0)	0.400	(ó)	0.100	101	65.000	101	23.000	10)			-1.114	8 4
399-08-32	STIE-19	SITE-19	5.500	(0)	0.400	(0)	0.100	[0]	45.000	[0]	9.3bo	(0)			.393	
699-09-E02	S11E-16	SITE-16	3.520	(0)	0.400	(0)		•	25.000	(0)	1.200	(2)			970	
550-10-£12	SI 1E - 147 SI 1E - 247	SITE-147 SITE-247	8.200 9.403	[8]	0.300 0.300	[0]	0.043	10)	29.000 28.000	:0}	.17.000 ±3.000	[\$]			451 0.258	
899-11-45A	SITE-148 85-263	SITE-148 85-263 85-264	5 200 4.550 4.590		0.300 0.610 0.380			•	13.000 17.750	$ \left\{ \begin{matrix} 0 \\ 1 \\ 1 \end{matrix} \right\} $	4.100				475 025	
	86-43	86-43	4.680	{i	0.370	{ i}		·	18.400	<u> </u>	5.690				688	
,	86 124	86-124 86-125	4.350 4.650	.] []	0.360. 0.360.			. '	19 200 19 100		5.020 6.760 6.540		•		-1.834	
399-19-01A	STTE - 60	SITE-60	7.790	(0)	0.400	{0}	0.100	10)	38.000	:0)	2.900	{ ()}	•		. 024	
	•	,				:	•	;	· .				•			

SEE END OF THIS REPORT FOR A LISTING OF AMALYSIS METHODS.

••••

.

PAGE 19

-

٠

and a state of the second

. -

.

.

-

.

: '

SAMPLE TYPE: UNCONFINED ANALYSIS GROUP: MAJOR

SAMPI ING LOCATION	SAMPLING EVENT CODE	SAMPLE NUHBER	Cl. MG/L (* [A])	F MG/L (A)	BR MG/L (A)	SO4 MG/L (A)	NO3 MG/L (A)	PO4 CHARGE MG/L (A) BALANCE
699-14-38	SI 1E - 81 SI 1E - 86	SITE-61 SITE-86	4.200 (0) 4.000 (0)	0.500 (0) 0.400 (0)	0.100 (0)	20.000 (0) 21.000 (0)	0.580 (0)	1.943 0.090 (0) -5.749
899-15-158	STTE-13 STTE-149	SITE-13 SITE-149	6 000 (0) 6 700 (0)	0.400 (0) 0.300 (0) <	0 100 (0) 0 010 (0)	57.000 (0) 84.000 (0)	16 000 (0) 21 000 (0)	0.530 -0.636
699-15-26	SI IE -24 SI IE - 150	SITE-24 SITE-150	9.800 (0) 9.900 (0)	0.500 (D) 0.400 (D) <	0.100 (0)	57 000 (0) 80 000 (0)	29.700 (0) 26.000 (0)	-0.252 -0.274
899-11-05	S1 FE - 18 S1 TE - 151	SITE-18 SITE-151	14.000 (0) 19.000 (0)	0.300 (0) 0.200 (0)	0.100 (0) 0.200 (0)	53.000 (0) 65.000 (0)	53.000 (0) 6.200 (0)	1.593
699-19-43	ST 1E - 48 ST 1E - 121	SI 1E - 48 SI 1E - 121	6.900 (0) 7.400 (0)	0.500 (D) 0.400 (D)	0.100 (0)	67.000 (0) 71.000 (0)	2 300 (0) 12 000 (0)	1.513
699-19-58	85-229	85-229	3.600 (1)	0.370 (1)		23.500 (1)	•	0.847
· · · ·	85-260	85-260	3.450 (1)	0.450 (1)		22.200 1		1.435 W
	86-40	86-40	3.580 11	0.400 11		22.800 11	ND (1)	0.127
	86-121	86-121 86-122	3.520 11 3.530 11	0.420 11 0.330 11		22 800 11 23 400 11	ND 11 ND 11 ND 11	-0.451 O -0.451 O -1.785 O
*-+ 677-10~88	85-278	85-278	3.760 (1)	0 420 11		14.000 (1)	0.420 (1)	3.090 70
30	86-64	86-64	3 590 11	0.350 11		13.500 11	0.790 [1]	1.447
•	86-127	86-127 86-128	3 560 11 3 550 11	0.350 (1) 0.350 (1)		13 400 (1) 13 400 (1)	1.890 (1) 1.900 (1)	0.720 ++
'699-20-E05-0	STIE-49	SI1E-49	6.400 (0)	0.300 (0)	0.100 (0)	24.000 (0)	2.500 (0)	4.983
699-20-20	STTE-25	SITE-25	14.000 (0)	0 400 (0)	0.100 (0)	51.000 (0)	53.000 (0)	-0.308
699-24-33	SITE-28	S11E-28	9.200-(0)	0.600 [0]	0.100 (0)	64.000 (0)	27.400 (0)	-0.730
699-24-46	SI (E -122	SITE-122	3.400 (u) ¹	ú.400 (0)		22.000 (0)	0 440 (0)	-3.767
699-24-95	85-288	85-288	4.420 (1)	0 490 (1)		15.260 (1)	•	2.687
	86-61	86-61	4 270 11	0.500 11			ND {1}	0,091
	86-115	86-115 86-116	4 460 11 4 460 11	0 480 11 0 490 11		13.600 1 13.700 1	ND 1 ND 1	0.524 -0.024
669-25-55	ST1E-100	SITE-100	1.000 [0]	0.600 (0)	0.100 [0]	34.000 (0)	15.000 (0)	-0.630

SEE END OF THIS REPORT FOR A LISTING OF ANALYSIS METHODS.

.

PAGE 20

۰.

.

.

SAMPLE TYPE: UNCONFINED ANALYSIS GROUP: MAJOR

.

• • • • • •

•

.

· ..

. •

I

.

.

SAMPLING LOCATION	SAMPEING EVENT CODE	SAMPLE NUMBER		F MG/L (A)	BR MG/L (A)	SD4 Mg/L, (A)	N03 Mg/l (A)	PD4 HG/L (A)	L ARGE BALANCE
699-26-15	ST1E-26	SITE-26	13 000 [0]	0 400 (0)		55.000 (0)	39.300 (0)		-0.938
699-26-15A	SI1E-263	SITE-263	14.000 (0)	0.400 (0)	0.034 (0)	51.000 10)	44.300 (0)		3.386
899-27-04	STTE-101	SITE-101	5.800 (0)	0.300 (0)	0.200 [0]	27.000 (0)	21.000 (0)		2.227
699-27-08	SIIE-5 SIIE-30 SIIE-50 SIIE-76 SIIE-87	SITE-5 SITE-30 SITE-50 SITE-76 SITE-87	13.000 (0) 13.000 (0) 12.000 (0) 11.000 (0) 13.000 (0)	0.200 (0) 0.300 (0) 0.300 (0) 0.300 (0) 0.300 (0)	0.100 (0) 0.100 (0) 0.100 (0) 0.100 (0)	45 610 00 50 000 00 52 000 00 49 000 00 56 000 00	58 000 (0) 57.400 (0) 13.100 (0) 13.100 (0) 58.000 (0)	0.060 (0)	1.238 ~1.991 10.620 9.674 ~5.153
699-28-40	SITE-68	SITE-68	7.500 (0)	0.500 (0)	0.100 (0)	55.000 10)	3.000 101		7.587
699-31-31	STIC-69 STIE-102	SITE-59 SITE-102		0.700 (0) 0.700 (0)	0.100 10)	56.000 (0) 56.000 (0)	·11.200 [0] 34.000 [0]		11.322 -0.594
699-31-53B	SITE-B8	SITE-88	8.300 (0)	0.400 (0)	0.100 (0)	33.000 (0)	8.000.[0]	0.090 (0)	-4.537
699-32-22	STTE-17 STTE-27 STTE-51 STTE-65 STTE-89	S11E-17 SIIE-27 SIIE-51 SIIE-65 SIIE-89	17.000 (0) 17.000 (0) 23.000 (0) 14.000 (0) 15.000 (0)	0.400 (0) 0.400 (0) 0.400 (0) 0.400 (0) 0.400 (0) 0.400 (0)	0.100 (0) 0.100 (0) 0.100 (0)	86.000 0 81.000 0 81.000 0 81.000 0	75.000 (0) 61.900 (0) 16.100 (0) 16.500 (0) 75.000 (0)	. 0.080 (0)	1.326 1.461 1.550 516 1.266
699-32-70B	SITE-70 SITE-90 SITE-152	SITE-70 SITE-90 SITE-152	13.000 (0) 12.000 (0) 12.000 (0)	0.500 (0) 0.500 (0) 0.400 (0) <	(01 001.0 (61 010.0	25.070 (0) 24.000 (0) 25.000 (0)	4.200 (0) 15.000 (0) 17.000 (0)	1.200 (0)	-3.961 -0.923
699-32-72	STIE-35	STTE - 35	15.000 (0)	0.400 (0)	0.100, [0]	22.000 (0)	5.200 (0)		:. 478 👸
699-32-17	S1TE-103	SITE-103	11.000 (0)	0.800-(0)	· .	20.000 (0)	6.600 (0)		.3.953
699-33-42	STTE-12 STTE-29 STTE-52 STTE-67 STTE-91	SITE-12 SITE-29 SITE-52 STTE-67 SITE-91	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.600 (0) 0.700 (0) 0.700 (0) 0.700 (0) 0.600 (0)	0.103 19) 0.103 (0) 0.103 (0) 0.100 (0)	2 400 (0) 60 000 (0) 55 000 (0) 52 000 (0) 59 000 (0)	49.000 (0) 34.500 (0) 7.100 (0) 6.000 (0) 24.000 (0)	0.060 (0)	17.309 -1.917 4.203 7.066 -1.825
899-33-56	SIIE-8 SIIE-40 SIIE-53 SIIE-62 SIIE-92	SITE-8 STIE-40 STTE-53 STIE-62 STIE-92	7.500 0 7.300 0 7.700 0 7.800 0 7.600 0	0.300 (0) 0.400 (0) 0.500 (0) 0.500 (0) 0.500 (0)	0.100 (0) 0.100 (0) 0.100 (0) 0.100 (0)	30.000 (0) 30.000 (0) 34.000 (0) 33.000 (0) 32.000 (0)	11.007 (C) 10.700 (O) 2.500 (O) 2.000 (C) 9.700 (O)	0.090 (0)	-1.102 -1.923 -714 -3.554 -4.448
699-34-39A	ST1E-93	\$11E-93	11.000 (0)	0.600 (0)	•	50.000 (0)	33.000 (0)	0.090 (0)	-* 320
699-34-42	STIE-00	STTE-33 -	10.000 (0)	0.100 (0)		54.000 (0)	44.200 (0)	· · ·	
• • • • •	4 ⁴	2 # \$ 4 # 3 * 2 * * 4 # 3 *	SEE END OF THIS &	REPORT FOR A LI	STING OF MALLY	SIS METHODS.	:		

.:

.

٠

PAG: 21

SAMPLE TYPE: UNCONFINED ANALYSIS GROUP, MAJOR

٠

Sampling Location	SAMPLING EVENT CODE	SAMPLE NUHLER	CL HG/L	{A}	F. HG/L	(A)		88 HQ/L	(A)	SD4 MG/L	(A)	N 14	03 G/L	(A)	PD4 MG/L	(A)	CHARGE BALANCE	
899-34-42	STIE-153	SITE-153	11.000	(0)	0.600	[0]	ζ.	0.010	[0]	45.000	[0]	2	6.000	(0)			-1.471	
899-34-51	SITE-68	SITE-66	8.200	(0)	0.500	(0)		0.100	101	47.000	(0)	:	2.400	(0)			3.435	i
699-32-09	STTE - 31 STTE - 104 STTE - 264	SITE-31 SITE-104 SITE-264	8.700 11.000 12.000		0.400 0.400 0.400			0.100 0.100 0.040		30.000 38.000 34.000		1 2 3	9.500 4.000 3.700				-1.070 -2.947 2.078	: 1
699-35-66	SITE - 77 SITE - 94	SITE-77 SITE-94	11.000 14.000	[8]	0 400 0.400	{ 8 }		0.100 0.100	{ 0 }	27.000 28.000	{ 8 }	2	5.800 5.000	[0]	0.120	(0)	5.637 -3.779)
699-32-70	\$11E-36	SI1E-36	16.000'	10]	0.400	(0)		0.200	(0)	26.000	(0)	2	2.900	10)			1.791	
699-35-78	S11E-54	S1TE-54	6.900	(0)	0.500	io)				13.000	(0)		0.240	(0)			2.023	ł
899-06-61A	S11E-95	S11E-95	7.700	(0)	0.400	(0)		0.100	(0)	32.000	(0)	' 1'	7.000	(0)	0.090	(0)	-0.202	S
699-37-43	SITE-34 STIE-173	SI 1E - 34 SI 1E - 173	3.600 19.000	{ 0 }	0.600 0.460	[0]				45.000 305.000	{ 0 }	i I	0.900	(0)			-2.611 0.818	0-84
699-37-82A	S11E~105	SITE-105	13.000	(0)	0 300	(0)		0.100	[0]	59.000	(0)	< 4	3.000	(0)			5.504	. 2
699-38-10	SI1E-37	STIE-3/	32.000	[0]	0.400	(0)		0.200	[0]	24.000	(0)	25	6.000	(0)	. •		0.023	P
ញ ព ព ព ព ព ព ព ព ព ព ព ព ព ព ព ព ព ព ព	SITE-248	S11E-248	6.000	(0)	0.300	(0)		0.040	(0)	20.000	(0)	23	3.000	[0]			-2.125	190
699-39-01	SITE-249	SITE-249	11,000	(0)	0.400	(0)		0.040	[0]	35.000	(0)	3	4.000	(0)			-ü.584	Re
699-39-33	STIE-288	SI1E-266	5.600	(0)	0.300	[0]		0.000	[0]	35.000	{0}	(0.650	10)			-) . 481	Ň
มีบบ-40·01	SI IE - 10 SI IE - 106 SI IE - 250 SI IE - 265	SITE-10 SITE-106 SITE-250 SITE-265	6.900 9.300 12.000 12.000		0 400 0 400 0 400 0 400 0 400	0000	٢	0.100 0.100 0.040 0.043	00000	25.000 31.000 35.000 36.000	0000	4 2 2 3 3 4	4.000 2.000 1.000 1.200				2 402 0 991 -0 685 -1 031	مىو
698 40 33	S11E-55 S11E-251	511E-55 511E-251	3.600 6.900		0.900 0.900	[0] [0]	•	0.020	(0)	2.700 0.800	{ 8 }	c (0.010 0.400	[0]			5.987 0.535	•
699-40-62	SITE-56	SITE-56	8.300	[0]	0.400	(0)		0.100	(0)	39,000	(0)		4.400	(\$)			3.883	1
899-41-01	SI IE - 252	S11E-252	12.000	[0]	0.400	(0)		0.010	(0)	35.000	[0]	3.	1.000	{0] .			-1.187	
899-41-23	SITE-15 SITE-113	S17E-15 SITE-113	15 000 9.600		0.400 0.500	{ 8 }				77 000 61 000	{ 8 }	5: 4:	3.000 0.000	[0]).575 0.260	ŀ
699-42-02	SI 4E - 154	SI1E~154	11.000 *	[0]	ų, 300	[0]	¢	0.010	[0]	35.000	[0]	3.	1.000	(0)	•		-0.278	I.
699-42-12	S11E-2	SITE-2	13.000	(0) ·	0.400	(0)		0 200	(0)	49.000	(0)	21	8.000	(0)			1.861	
			C		0.000 C	• •		***** **									•	

SEE END OF THIS REPORT FOR A LISTING OF ANALYSIS METHODS.

PAGE 22

- 061

.

Ġ

,

SAMPLE TYPE: UNCONFINED ANALYSIS GROUP: MAJOR

•

.

:

SAMPLING LUCATION	SAMPI ING EVENT CODE	SAMPLE NUMBER	C1 HG/1 (A)	F - HG/L (A)	BS MG/L (A)	SD4 MG/L (A)	ND3 MG/L (A)	PD4 MG/L (A)	OPARGE BALANCE
899-42-12	SI1E-155 SI1E-267	SI 1E - 155 SI 1E - 267	12.000 (0) 14.000 (0)	0.400 (0) (0.400 (0) (0)	0.010 (0) 0.043 (0)	60.000 (0) 56.000 (0)	37.000 (0) 41.200 (0)).468).667
699-42-40A	STTE-174	S11E-174	7:000 (0)	0.700 (0)		27.000 (0)	- • ·		1.944
699-42-400	S11E-175	• STTE-175	5.700 (0)		×.	29,000 101	•		
699-42-42	S11E-214	STTE-114	14.000 (0)	0.500 (0)	0.100 101	57.000 10) 4	35,000 (0)		3.978
- 699-40-00	ST1E-253	S11E-253	12.000 (0)	0.400 (0)	0.050 (0)	37,000 (0)	27.000 (0)		
សំមម · 4 ប · 8 ឆ	STTE-123	SITE-123	21.000 (0)	0.300 (0)	0.300 (0)	57.000 (0)	23,000 (0)	•	-0.377
699-49-04	SITE-254	· SITE-254	14.000 [0]	0.400 (0)	0.040 (0)	35.000 10)	31.000 (0)		-0.588
699-45-04	S11E-255	: SITE-255	13.000 (0)	0.400 (0)	0.050 (0)	38, 999 . [0]	24.000 (0)		419 2
699-45-42	SITE-57	SITE-57 SITE-268	3.800 (0) 2.100 (0)	0.600.(0) 0.600.00} «	0.010 (2)	28.000 (0)	3.300 (0) 5.300 (0)	•	5.074
699-45-69	Site-96	SI1E-96	20.000 (0).	0 400 (0)	0,200,10).	62.000 (0)	34.000 (0)	0.030 (0)	
	SITE-156 SITE-256	SITE-156 SITE-256	12.000 (0) 14.000 (0)	0.400 (0) <	0.010, (0) 0.040 (0)	52,000 [0] 50,000 [0]	30.000 (0) 24.000 (0)	•	- 587 0
699-45-21A	SITE-75 SITE-124	SITE-75 SITE-124	12.000 (0) 17.000 (0)	0 500 (0) 0.500 (0)	0 100 101	54.000 [D] 61.000 [D]	2 200 (0)		-029 -20 -0.605 -20
559-47-36	S11E-257	S11E-257	7.400 (0)	0.400 (0)	e.242 (10)	31,000 (0)	10.000 (0)		.197 5
699-47-46	SITE-269	SITE-269	21.000 (0)	0.500 (0)	0.120 (0)	78.000 (0)	14.200 (0)		0.610
699-48-07	STTE-258	SI 1E-258	1.400 (0)	0.200 (0) «	0.01: (2)	14,000 [0]	1.400 (0)		. 363
655-48-18	SIIE-125	\$11E-125	11.000 (0)	0.200 (0)	0.100 (0)	52,000 (0)	3.500 (0)		699
699-48-71	S17E-59	SI1E-59	11.000 (0)	0 500 (0)	0.100 (0)	20,003 (0)	5,100 10)		182
899-49-13	SITE-259	SITE-259	4.800 (0)	0.400 (0)	0.035 (0)	27.005 101	5.300 (0)		
599-49-55	SILE-9 SITE-39 STTE-58 STTE-78 STTE-78 STTE-126 STTE-157	SITE-9 SITE-39 SITE-78 SITE-78 SITE-97 SITE-120 SITE-157	24.000 (0) 23.000 (0) 23.000 (0) 25.000 (0) 25.000 (0) 25.000 (0) 25.000 (0) 25.000 (0)	0.300 (0) 0.500 (0) 0.500 (0) 0.500 (0) 0.400 (0) 0.300 (0) 0.400 (0)	0.200 0.400 0.200 0.300 0.200 00	150,023 (0) 150,003 (0) 180,000 (0) 180,000 (0) 170,000 (0) 210,000 (0) 230,000 (0)	12.000 (0) 12.000 (0) 3.700 (0) 3.700 (0) 16.000 (0) 4.900 (0) 3.900 (0)	0.030 (0)	
		• . • • •	F . I				· · · ·	•	

SEE END OF THIS REPORT FOR A LISTING OF A CALYSIS METHODS.

.

× ... *. . • •

· ·

PAGE 23

1

.

SAMPLE TYPE: UNCONFINED ANALYSIS GROUP: MAJOR

5

Sampi ing Location	SAMPLING EVENT CODE	SAMPLE NUMBER	C1 .MG/L (A)	F HG/L (A)	BR MG/L (A)	• SO4 MG/L (A)	NOJ Mg/l (A)	PD4 CHARGE MG/L (A) BALANCE
699-49-55A	SIJE-182	SITE-182	21.000 (0)	0.540 (0)	,	209.000 (0)		-0,917
699-49-57	S11E-38	SITE-38	9,200 (0)	0.900 (0)	0.100 (0)	89.000 (0)	270.000 (0)	-0.733
699-49-79	SITE-20	SI 1E-20	11.000 (0)	0.300 (0)	0.300 (0)	45.000 (0)	44.000 (0)	J. 805
699-50-08	S11E-64	SITE-64	11.000 (0)	0.400 (0)	0.100 (0)	45.000 (0)	3.000 (0)	3.885
699-50-288	S17E-63	SITE-63	8,400 (0)	0,600 (0)	0.100 (0)	28.000 (0)	0.720 (0)	0.780
899-50-42	SITE-14 SITE-115 SITE-271	SITE-14 SIIE-115 SIIE-271	11.000 (0) 12.000 (0) 16.000 (0)	0 500 (0) 0 500 (0) 0 500 (0)	0.100 (0) 0.100 (0) 0.080 (0)	39.000 (0) 39.000 (0) 35.000 (0)	3.100 (0) 0.090 (0) 2.300 (0)	2,200 1,343 0,763
699-50-53	SI1E-270	SITE-270	53 000 (0)	0.400 (0)	0.350 (0)	97.000 [0]	-23.900 (0)	1.681
699-20-82	SI1E-127	\$1TE-127	11.000 (0)	0,300 (0)		21.000 (0)	21.000 (0)	-2.063
699-51-63	SITE-116	SI FE - 116	9.500 (0)	0.500 (0)	0.100 (0)	22.000 (0)	(7.100 (0)	1 005
699-53-103	STIE-160	SITE-160	4.500 (0)	0,800 (0)	0.100 (0)	1.400 (0)		1.119 🖕
⊷699-53-47B ស	SI1E-2/2	SITE-272	4.200 (0)	0,200 (0) <	0.010 [0]	9.700 (0)	0.800 (0)	· 0.264 Å
**699-54-34	SITE-273	SITE-273	12.000 (0)	0.700 (0)	0.110 (0)	36,000 (0)	15.100 (0)	1.002
£99-22-20C	SI1E-79 SI1E-128 SI1E-193 SI1E-274	SITE-79 SITE-128 SITE-193 SITE-274	2.700 (0) 3.000 (0) 2.000 (0) 4.700 (0)	0.200 (0) 0.200 (0) 0.270 (0) 0.200 (0) <	0.100 (0) 0.010 (0)	12.000 (0) 15.000 (0) 18.000 (0) 15.000 (0)	$\begin{array}{c} 0.160 \\ 0.800 \\ 1.510 \\ 0 \end{array}$	0.258 PD 9.583 < -13.174 • 0.186 P
699-55-76	SITE-71 SITE-117 SITE-129	SITE-71 SITE-117 SITE-129	$\begin{array}{cccc} 21 & 000 & 0\\ 17 & 000 & 0\\ 17 & 000 & 0 \end{array}$	0 400 (0) 0 400 (0) 0 300 (0)	0.500 (0) 0.200 (0) 0.200 (0)	85 000 (0) 83 000 (0) 46 000 (0)	<pre> 0.370 (0)</pre>	2,403 -2,139 0,560
699-55-89	51TE-118	SITE-118	7.500 (0)	0 300 (0)	0 100 (0)	19.000 (0)	(2.400 (0)	-1.552
699-50-53	5116-194 - 5116-195	SI [E - 194 SI IE - 195	3 700 (0) 3 700 (0)			8 400 (0) 8 400 (0)		
689-57-25A	STIE-119 STIE-275	SITE-110 SITE-275	6 100 (0) 6 700 (0)	0.500 (0) 0.500 (0)	0.100 {0 0.030 {0}	$\begin{array}{c} 24 & 000 \\ 22 & 000 \\ \end{array} \left(\begin{array}{c} 0 \\ 0 \end{array} \right)$	3.300 (0) 3.800 (0)	0.537 0.537
699-57-29A	S11E-276	SINE-276	7 800 (0)	0.400 (0)	0.030 (0)	22,000 (0)	2.600 (0)	0.251
699-57-83	SI IE - 130	SITE-130	7,500.(0)	0.300 (0)	0,100 [0]	20.000 (0)	• •	- Ů , 678
699-59-58	ST1E-107	STIE-107	5.900 (0)	1.400 (0)		15.000 (0)	< 0.930 (0)	8 269

SEE END OF THIS REPORT FOR A LISTING OF ANALYSIS METHODS.

°A05 24

.

×

SAMPLE TYPE, UNCONFINED ANALYSIS GROUP, MAJOR

,

SAMPLING LOCATION	SAMPT ING EVENT CODE	SAMPLE NUMBER	СІ. Mg/1 (А)	F 'HG/L (À)	Br. MG/L 1A)	504 Mg/l (A)	ND3 MG/L (A)	PD4 CHARGE NG/L (A) BALANCE
699-59-58	S11E-277	SITE-277	5,900 (0)	1.300 (0)	0.010 (0)	15.000 (0)	0.930 (0)	1.570
699-60-32	SITE-278	S17E-278	7,600 (0)	0,500 (0)	0.020 (0)	21.000 (0)	4.900 (0)	1.357
699-90-57	SI (E - 198	STTE-198	13.000 (0)	1 600 (0)		1.300 10)		3.435
599·62·31	SIXE-131 SIXE-279	STIE-131 STIE-279	5 300 (0) 6.900 (0)	0,400 (0) 0,400 (0)	0.040 (0)	31.009 (0) 30.000 (0)	6.200 (0) 7.100 (0)	- 0.218 - 9.161
699-53-25A	S11E-102	ST1E-132	11.000 (0)	0.300 (0)	0.100 (0)	80.000 10)	19.000 (0)	ð.201
699-83-55	\$11E-280	SITE-280	8,700 (0)	1 400 (0)	0.010 10)	17.000 [0]	1.100 (0)	. 088
699-63-58	S17E-281	SITE-281	5.000 (0)	1.200 (0)	0.030 (2)	22.000 (0)	13.300 (0)	1.236
699-63-90	STTE-74 STTE-133	STTE-74 STTE-133	9.100 (0) 21.000 (0)	0.400 (0) 0.300 (0)	0.100 (0) 0.100 (0)	28.000 (0) 30.000 (0)	1.290 (0) 5.800 (0)	2.712 -7.246
699-64-27	SI1E-158	SITE-158	30.000 (0)	0.200 (0)	0.200 (0)	190.000 (0)	30.000 (0)	1.434 2
699-85-50	SI1E-73 SI1E-134 SI1E-282	SITE-73 SITE-134 SITE-282	5.300 (0) 7.200 (0) 6.200 (0)	1.000 (0) 1.100 (0) 1.200 (0)	0.100 (0) 0.020 (0)	15.000 (0) 13.000 (0) 17.000 (0)	0.320 (0) 1.300 (3) 1.800 (7)	-1.544 -0.586
′្ម 589-66-103 ភ្ល ហ	85-203 86-73 86-112 85-294	85-203 85-204 86-73 86-74 86-112 86-113 85-294 85-295	1 900 (1) 1 970 (1) 1 970 (1) 2 100 (1) 2 000 (1) 2 050 (1) 2 050 (1)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		15.400 (1) 16.500 (1) 15.700 (1) 15.700 (1) 16.900 (1) 16.900 (1) 16.900 (1) 16.800 (1)	1,1%0 (1) 0,7%0 (1) 1,640 (1) 1,270 (1) 1,270 (1) 0,500 (2)	2. 930 1. 068 1. 068 1. 027 1. 287 1. 289 1. 893 1. 886
044-00-34	SIJE-135	SITE-135	23.000 [0]	0,300 (0)	0.100 (0)	(ó; '600,001	0.040 101	· . 80 3
599-58-58	STIE-136	SITE-136	6.200 (0)	0.800 (0)	· · .	20.000 (Ò)	1.900 (0)	-0.335
699-60-64	s11e - 137	stre-137	5.000 (0)	0.500,[0]		17.000 (0)	1.800 (0)	- T . 444
699-67-98	\$116-260	SITE-260	6.700 [0]	0,300 ₁ (0)	0.069 (0)	20.000 (0)	4.000 (0)	2.005
699-69-38	SI1£-6	S11E-6	14.000 (0)	0.100 (0)	0.100 [0]	64.010 (0)	15.000 101	°.049
899-71-30	SI 1E - 108	SITE-108	15.000 [0]	0.500 (0)	0.200 ())	57 900 (0)	27.000 (11)	
699-71-52	STÍE-138	SITE-138	7.300 (0)	0.400 (0)	0.100 (0)	45.000 [0]	3,500 (0)	?.839
699-72-73	SI fE - 109	SI [E-109	5.100 (0)	0.400 (0)		14.000 (0)	40.030 (0)	- 3 . 6 8 7

SEE END OF THIS REPORT FOR A LISTING OF ANALYSIS METHODS.

.

· · · · ·

.

۰.

a S. Are are, PAGE 25

:

•

٠

SAMPLE TYPE: UNCONFINED ANALYSIS GROUP. MAJOR

..

. . .

•

SAMPEING LOCATION	SAMPLING EVENT CODE	SAMPLE NUMBER	сі НG/L	(A)	F MG/L	(A)	BR MG/L	[A]	SO4 MG/L	(A)	NU3 MG/L	(A)	PO4 MG/L (A)	CHARGE BALANCE
899-72-88	SITE-98 SIIE-261	SITE-98 SITE-261	000.C 008.a	{0} {0}	0.200 0.200	{0}	0.030	(0)	42.000 35.000	{0} {0}	3.400 3.600	{ 0 }	0.150 (0)	-3.911 0.681
699-72-92	SITE-262	S1TE-262	6.000	(0)	0.200	[0]	0.050	(0)	26.000	(0)	5.300	[0]		- 0.045
699-77-36	SITE-110	SITE-110	12.000	(0)	0.700	(0)	0.200	(0).	44.000	10)	k 160.000	[0]		3.812
699-78-62	SITE-111	SITE-111	4.300	(0)	0.500	[0]	0.100	(0)	47.000	(0)	4.000	103		-i.739
699-81-58	STTE-159	SITE-159	1.300	(0)	0.100	[0]			15.000	(0)	1.700	[0]		-0.118
699-83-47	STIE-112	SITE-112	4.300	(0)	0.500	(0)	0.100	(0)	46.000	(0)	c 4.900	{0}		-1.719
699-87-55	SITE-99	SITE-99	3.800	(0)	0.400	(0)			25,000	(0)	13,000	[0]		0.951
699-90-45	SITE-139	SITE-139	3.700	[0]	0.600	(0)			23.000	{0}}	2.500	[0]		-3.830

136

٠

SEE END OF THIS REPORT FOR A LISTING OF ANALYSIS METHODS.

PAGE 25

SD-BHI-DP-061 Rev. 1

•

LIST OF ANALYSIS METHODS FOR MAJOR ANIONS

SPLCIE	<u>(A)</u>	ANALYSIS METHOD	-
BR	0	Unclassified	
	I	1 L ·	
	2	HPLC	
C1.	U	Unclassified	
	3	IC	
F	0	Unclassified	
	1	IC	
1103	0	Unclassified	
	ĩ	IC	:
P04	Ð	linclassizaed	A
	ĩ	10	
	-		• :
S04	0	Unclassif.ed	
	1	IC	
	-		

in in it is
MPLC: High Performance Liquid Chromatography IC: Ion Chromatography Unclassified: Analysis comes from a non-BWIP documented source and the method is not specified in this data package.

SD-8WI-0P-061 "~v.

مىر

SD-BWI-DP-061 Rev. 1

.

:

•

.

THIS PAGE INTENTIONALLY LEFT BLANK

SAMPLE TYPE: CONFINED ANALYSIS GROUP: TRACE

SAMPI ING LOCATION	SAMPI ING EVENT CODE	SAMPLE NUHBER		AL MG/L	(A)	.AS MG∕L	(A)	1	B MG/L	(A)	BA NG/L	(A)		CD Mg/L	{A]		C0 M0/L	(A)
HFBK	85-255	85-255 85-256	((0.060 0.060	{ ! }	,		((0.016	$\begin{pmatrix} 1 \\ 1 \end{pmatrix}$	0.024 0.033	{ ! }				۲- ۲	0.017 0.017	13
1))) - O 1	81-19 81-65 82-27 85-32	81-15 81-19 81-65 81-70 82-27 82-87 85-32 85-33	~ ~ ~ ~ ~ ~ ~ ~	0.020 0.010 0.017 0.017 0.075 0.075 0.013 0.013					0.059 0.130 0.210 0.210 0.210 0.210 0.200 0.190 0.190		0 011 0 014 0 005 0 005 0 011 0 011 0 004 0 009					•••••••••••••••••••••••••••••••••••••••	0,010 0,004 0,004 0,015 0,015 0,015 0,003 0;003	
D8-02	79-65 81-13 81-10	CF 123 81-11 81-13 81-10 81-7		0.380 0.200 0.200 0.070 0.070 0.090			:		0.200 0.150 0.150 0.150 0.140 0.150		0,13) 0,220 0,220		٠		•	< < < < < < < < < < < < < < < < < < <	0.010 0.010 0.010 0.010 0.010	
1)11-04	79-77	CP116		0.100	(1)		• .		0.100	<i>{</i> 7)	2.300	113			· · ·	¢.	0,019	[1],
08-07 .œ	79-89 83-413 85-216	CP121 83-413 83-448 85-216 85-217	•••••	D 170 01030 0.080 0.060 0.060		· ·	· ·		0.650 0.490 0.480 0.630 0.620		0.010 0.011 -0.011 0.009 0.052			, ,	- ; · - :		0.010 0:010 0.010 0.017 0.017	(1), (1), (1), (1), (1), (1), (1), (1),
40-81-09 60-810	79-28 83-472	CP115 83-410 83-472	с с	030.0 080.0 030.0		· · · · · · · · · · · · · · · · · · ·	•	((0.090 0.020 0.020		0.012 0.010 0.011	$\left\{ \begin{array}{c} 1\\ 1\\ 1\\ 1 \end{array} \right\}$				с с с	0.010 0.010 0.010	$\begin{bmatrix} 1\\1\\1\\1 \end{bmatrix}$
08-11	85-18 86-52 81-57	85-18 85-19 86-52 86-53 81-57	< < < <	0.013 0.013 0.200 0.200 0.042			, `	۲ ۲	0.007 0.010 0.109 0.100 0.025		0.042 0.041 0.062 0.053 0.023					(((0.003 0.003 0.005	(1)(4)
DB- 12	61-95 81-25	63-95 81-25 81-42	٢	0.070 0.070 0.070			• •		0.02% 0.030 0.030		0.043 0.170 0.100	$ \left\{ \begin{matrix} 1 \\ 1 \\ 1 \\ 1 \end{matrix} \right\}. $			·		0.027 0.005 0.005	
08-13	83-404	83-404 83-455	((020.U 680 0	[1]	• • • • • • • • • • • • • • • • • • •		с с	0.020		0.014				•	((0.010 0.010	
DD-14	81-162	81-139 81-162		0.030 0.004	[]		•		0.520 0.530		0.005 0.004	[]}	•			< <	0.007 0.094	3
й д-1 5	79-17	79-17 79-4	¢	C.510 0.040				((0.005	ii).	0.114 0.120	<u>{</u> }	<	0.010	(1)	((0.010	::}

SEE END OF THIS REPORT FOR A LISTING OF WALVELS WETHODS.

.

;

PAGE 1

SD-BWI-DP-061 Rev.

SAMPLE TYPE: CONFINED ANALYSIS GROUP: TRACE

51 6 C + 1

1. A. S. S.

SAMPLING LOCATION	SAMPLING EVENT CDDE	SAMPLE NUHBER		CR MG/L	(A)		cu HG/1	(A)		FE HG/L	(A)		LI NG/L	(A)		MN MG/L	(A)		MD MG/L	14)
BERK	85-255	85-255 85-256	< <	0.032 0.032	{!}	< <	0.006 0.006	<pre>{1}</pre>		0.052 0.072	{!}	с с	0.008 0.008	{ 1 }		0.053 0.049	{ ! }	(0.034 0.034	$\left\{ \begin{array}{c} 1\\ 1 \end{array} \right\}$
()() - () (81-19 81-65 82-27 85-32	81-15 81-19 81-65 81-70 82-27 82-87 85-32 85-33	~ ~ ~ ~ ~ ~ ~	U.004 0.003 0.006 0.036 0.036 0.036 0.036 0.007		~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	0 002 0 002 0 003 0 003 0 006 0 006 0 002 0 002			0 038 0 050 0 360 0 370 0 120 0 130 0 049 0 043			$\begin{array}{c} 0 & 087 \\ 0 & 048 \\ 0 & 015 \\ 0 & 015 \\ 0 & 015 \\ 0 & 015 \\ 0 & 014 \\ 0 & 015 \\ 0 & 015 \end{array}$	$ \begin{pmatrix} 1 \\ 1 \\ 1 $	د د د	0.201 0.100 0.005 0.003 0.003 0.003 0.003	$ \begin{pmatrix} 1 \\ 1 \\ (1) \\ $	¢	0.161 0.030 0.110 0.110 0.100 0.100 0.099 0.102	<pre>(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)</pre>
DU-02	79-65 81-13 81-10	CP123 81-11 81-13 81-10 81-7	K	0.003 0.010 0.005 0.004 0.005		۲ ۲	0 010 0 009 0.005 0.005 0.005			0.033 0.680 0.690 0.130 0.130	$\begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}$	< < <	0.005 0.005 0.005	$\left\{\begin{smallmatrix}1\\1\\1\\1\end{smallmatrix}\right\}$	、	0.020 0.374 0.399 0.338 0.374	$ \begin{pmatrix} 1 \\$	¢	0,030 0,270 0,240 0,260 0,240	$ \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{pmatrix} $
DH-04	79-77	CP116	۲	0.003	(1)		0.024	(1)		1.930	(1)				•	0.024	(1)	۲	0.030	(1)
08-01	79-89 83-413 85-218	CP121 83-413 83-448 85-218 85-217		0.003 0.040 0.040 0.032 0.032		۲ ۲	0.020 0.010 0.010 0.006 0.008			0,500 0,030 0,030 0,197 0,202	$\begin{pmatrix} 1 \\ 1 \end{pmatrix}$ $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$ $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$ $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$	د د	0.007 0.008 0.008 0.008	$\left\{ \begin{matrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$	۲ ۲	0.020 0.005 0.008 0.008 0.005	$ \begin{pmatrix} 1 \\ 1 \\ 1 $	۲ ۲	0,030 0,050 0,050 0,049 0,040	(1) (1) (1) (1) (1)
1)R-09 C2	19-28 83-472	CP115 83-410 83-472	с с с	0 003 0.040 0.040		د د	0.016 0.010 0.010	$ \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix} $		0.220 0.030 0.040			0.008 0.007		۲	0.020 0.006 0.005	$\left\{ \begin{array}{c} 1\\ 1\\ 1\\ 1 \end{array} \right\}$	< < < <	0.030 0.020 0.020	$ \left\{\begin{array}{c}1\\1\\1\\1\end{array}\right\} $
DH-11	85-18 86-52 81-57	85-18 85-19 86-52 86-53 81-57	((0.007 0.007 0.004	<pre>{1}</pre>		0 001 0 001 0 012 0.012 0.015	$ \begin{pmatrix} 1 \\ 1 \\ 1 $		0.092 0.090 0.087 0.088 0.108			D.016 0.017 0.021 0.020	$ \begin{bmatrix} 1\\ 1\\ 1\\ 1 \end{bmatrix} $		0.053 0.052 0.047 0.048 0.336	$\begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}$	••••	0.003 0.008 0.600 0.600 0.131	$ \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{pmatrix} $
DB-12	63-95 81-25	63-85 81-25 81-42	٢	0 005 0.007 0.010		٢	$\begin{array}{c} 0 & 0.05 \\ 0 & 0.10 \\ 0 & 0.10 \end{array}$		•	0.005 0.060 0.060				•		0.318 0.304	$\left\{ \begin{array}{c} 1\\ 1\\ 1 \end{array} \right\}$	٢	0.020 0.210 0.210	$\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$
DB-13	83-404	83-404 83-455	((0.040 0.040		, ¢ , ¢	$\begin{array}{c} 0 & 010 \\ 0 & 010 \end{array}$			0.070 0.070			0.020 0.020	$\left\{ \begin{array}{c} 1\\ 1 \end{array} \right\}$		0.030 0.030		¢	0.023	$\left\{ \begin{array}{c} 1\\ 1 \end{array} \right\}$
DU-14	81-162	81-139 81-162	ć	D 005 0 005		۰ ۲	0.003 0.003			0.153 0.170			0.002 0.003	{i}}		0.008			0.110	$\{1\}$
DH-15	79-17	79-17 79-4	۲ ۲	0.003 0.010	{ ! }	۲ ۲	0 002 0 010	<pre>{}</pre>		0.020 0.020		•	0.020	(1)	۲ ۲	0.020 0.020	$\left\{ \begin{array}{c} 1\\ 1 \end{array} \right\}$	< <	0.030 0.010	11 11

SEE END OF THIS REPORT FOR A LISTING OF ANALYSIS METHODS.

PAGE 1.1

SD-BWI-DP-061 Rev.

SAMPLE TYPE: CONFINSD ANALYSIS GROUP: TRACE

.

3

.

t

1

.

. . . .

SAMPI ING LUCATION	1	SAMPLING EVENT CODE	SAMPLE NUMBER		ы Н9/1	[A]		P MG/L	(A)		рв MG/L	[A]	: •	58 HG/1	{A}		2 N MG/1	(A)
веях		85-255	85-255 85-256	 	0.030				• = •	; ;	0.180 0.180			2.US4 0.055	{}}	< <	0.020	{}}
DH-01		81-19 81-65 82-27 85-32	81-15 81-19 81-65 81-70 82-27 82-87 85-32 85-33		0.020 0.020 0.008 0.025 0.025 0.025 0.003 0.003		•	0.200 0.200 0.080 0.080 0.340 0.340 0.340	$ \begin{pmatrix} 1 \\$	~~~~~~	0.100 0.010 0.043 0.043 0.160 0.160 0.160 0.040 0.040		¢ {	0 0:00 0 010 0 002 0 002 0 002 0 002 0 002 0 002 0 000			0.002 0.002 0.004 0.150 0.015 0.004 0.004	
DB-02		79-65 81-13 81-10	CP123 81-11 81-13 81-10 81-7	6 6 6	0.010 0.010 0.010 0.010 0.010		••••	0.200 0.200 0.200 0.300	{ 1 } { 1 } { 1 } { 1 } { 1 } { 1 } { 1 }	~ ~ ~ ~	0.100 0.100 0.100			0,003 0,004 0,002 0,003		•	0.020 0.020 0.020 0.020	
DU 04		70-77	CP116		,						,	. :					0.100	(1) /
D8-07		79-53 83-413 85-215	CP121 83-413 83-448 95-216 85-217	((; ((, 030), 030 0, 030 0, 030		ι (0.340 0.340	}}	~ ~ ~ ~	0 .120 0 .120 0 .180 0 .180			11.008 0.008 0.008 0.008		{ { {	0.020 0.010 0.010 0.020 0.020	
58-09		79-28 83-472	CP115 83-410 83-472	¢ . ¢	0.230	{ }}	۲ ۲	0.340 0.340	{]}	۲ ۲	0.130 0.150	<pre>{}</pre>		0.003 0.003	{ ! }		0.050 0.010 0.010	$\left\{\begin{array}{c}1\\1\\1\\1\end{array}\right\}$
ÐB 11		85-18 88-52	85-13 85-18 86-52	۲ ۲	0.003					((0.040	;;		0,049 0,049 0,356		• • • •	0.004 0.004 0.00 0.00	
		81-57	81-57	¢	0.010	(1)	¢	0.020	(1)	¢	0.100	(1)		0.050		•	A 47	
DB-12		63-95 81-25	63-95 81-25 81-42	((0.010 0.010		((0 200 0.200	{ ! }	«	0 10) 0.100			0-013 0-050		ſ	0,050 0,050 0,130	
D0-13		83-404	83-404 83-455	4 4	0.030 0.030	{}}	с с	0.340 0.340	{! }	۲ ۲	0.150 0.150	<u></u>		0.050 0.050		х К	0.010 0.010	j1)
DD-14		81-162	81-139 81-162	۲ ۲	300.1. 800.9	{ ! }		0.110 0.130	{ }}	< (0.040 0.040			0.007 0.007			0.003 0.005	{ 1 }
DB-15		79-11	10-17	Ì¢ ¢	5.927 0.010	$\{\mathbf{H}\}$	•	0.200 0.100		<	0.1.1			0 145 0 160	倍		0.000	<u>{</u>
р 			5 - 4 - 10 5 -	SEY	END: OF	11115	HE	PORT FOR	A L	151	TING OF	ANALY	\$15	KET4:00:	s.			• • •
		1. 1. 1. J. 1.	,															

1.1

SD-BHJ-DP-061 Pev.

مىر

· · · ·

. .

. .

PAGE 1.2

.

+

5 5 St 1 ر جه، ای ۲

SAMPLE TYPE: CONFINED ANALYSIS GROUP: TRACE

SAMPLING LOCATION	SAMPLING EVENI CODE	SAMPLE NUHBER	A MG	/L	(A)	AS MG/L	[A]	 B MG/L	(Å)		BA MG/L	(A)		CD MG/L	(A)	 CO MG/L	(A)
DB-15	7 9 - 35 7 9 - 33 7 9 - 15 7 9 - 39 7 9 - 51 7 9 - 51 7 9 - 85 7 9 - 80 7 9 - 82 7 9 - 80 80 - 35 80 - 24 80 - 1	79-20 79-35 79-35 79-39 79-39 79-39 79-39 79-39 79-39 79-51 79-51 79-51 79-61 79-89 79-89 79-89 79-89 79-89 79-95 80-24 80-74 80-71 80-51	<pre></pre>	$\begin{array}{c} 020\\ 010\\ 020\\ 330\\ 340\\ 340\\ 340\\ 340\\ 340\\ 340\\ 34$		·		$\begin{array}{c} 0 & 005\\ 0 & 010\\ 0 & 010\\ 0 & 110\\ 0 & 100\\ 0 & 090\\ 0 & 030\\ 0 & 040\\ 1 & 280\\ 1 & 270\\ 1 & 300\\ 1 & 270\\ 1 & 300\\ 1 & 270\\ 0 & 900\\ 0 & 910\\ 0 & 910\\ 0 & 870\\ 0 & 910\\ 0 & 850\\ 0 & 910\\ 0 & 810\\ 1 & 300\\ 1 & 300\\ \end{array}$		<pre></pre>	$\begin{array}{c} 0.020\\ 0.025\\ 0.005\\ 0.265\\ 0.265\\ 0.265\\ 0.265\\ 0.265\\ 0.265\\ 0.265\\ 0.260\\ 0.240\\ 0.019\\ 0.025\\ 0.025\\ 0.025\\ 0.025\\ 0.025\\ 0.025\\ 0.025\\ 0.025\\ 0.005\\ 0.$		•	0.010	(1)	 $\begin{array}{c} 0 & 0 & 10 \\ 0 & 0 & 10 \\ 0 & 0 & 10 \\ 0 & 0 & 50 \\ 0 & 0 & 50 \\ 0 & 0 & 50 \\ 0 & 0 & 50 \\ 0 & 0 & 50 \\ 0 & 0 & 10 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 &$	
DC - 01	SIIL -230 SIIE -226 SIIE -227 SIIE -227 SIIE -229 SIIE -231 SIIE -232 SIIE -233 SIIE -233 SIIE -234 SIIE -236 SIIE -238 SIIE -238 SIIE -240 SIIE -243 SIIE -243	S1 (E - 230 S1 (E - 226 S1 (E - 227 S1 (E - 227 S1 (E - 227 S1 (E - 229 S1 (E - 231 S1 (E - 232 S1 (E - 233 S1 (E - 233 S1 (E - 236 S1 (E - 236 S1 (E - 239 S1 (E - 239 S1 (E - 240 S1 (E - 242 S1 (E - 242)		100 700 500 100 100 100 100 100 100 100 100 1				0.060 0.560 0.560 0.560 0.560 0.560 0.060 0.060 0.060 0.060 0.730 0.730 0.650 0.170 0.650 0.380			•			、			

SEE END OF THIS REPORT FOR A LISTING OF ANALYSIS METHODS.

PAGE 2

SD-8WI-DP-061 Rev. 1

(İ

Ø

SAMPLE TYPE: CONFINED ANALYSIS GROUP: TRACE

SAMPI ING COCATION	SAMPI ING EVENT CODE	SAMPI E NUHBER	ur Mg/L (A)	CU HG/L (A)	FE MG/L (A)	LI NG/L (A)	MN MG/L (A)	MO MG/L (m)
2	79-35 79-33 79-35 79-39 79-51 79-51 79-85 79-85 79-80 79-62 79-62 79-62 79-62 79-62 79-62 79-62 79-80 80-35 80-24 80-77 80-1	19-20 79-35 79-27 79-33 79-15 78-46 79-39 79-39 79-31 79-31 79-51 79-51 79-51 79-80 79-80 79-80 79-80 79-80 79-80 79-80 79-95 80-35 80-24 80-77 80-1	$ \begin{pmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 &$	$ \begin{pmatrix} & 0 & 002 & 1 \\ < & 0 & 002 & 1 \\ < & 0 & 010 & 1 \\ < & 0 & 010 & 1 \\ \\ & 0 & 050 & 1 \\ \\ & 0 & 050 & 1 \\ \\ & 0 & 049 & 1 \\ \\ & 0 & 053 & 1 \\ < & 0 & 002 & 1 \\ < & 0 & 002 & 1 \\ < & 0 & 002 & 1 \\ < & 0 & 002 & 1 \\ < & 0 & 002 & 1 \\ < & 0 & 002 & 1 \\ < & 0 & 002 & 1 \\ < & 0 & 002 & 1 \\ < & 0 & 002 & 1 \\ < & 0 & 002 & 1 \\ < & 0 & 002 & 1 \\ < & 0 & 002 & 1 \\ < & 0 & 002 & 1 \\ < & 0 & 002 & 1 \\ < & 0 & 002 & 1 \\ < & 0 & 002 & 1 \\ < & 0 & 002 & 1 \\ < & 0 & 002 & 1 \\ < & 0 & 002 & 1 \\ < & 0 & 002 & 1 \\ < & 0 & 002 & 1 \\ < & 0 & 002 & 1 \\ < & 0 & 002 & 1 \\ < & 0 & 002 & 1 \\ < & 0 & 002 & 1 \\ < & 0 & 002 & 1 \\ < & 0 & 002 & 1 \\ < & 0 & 002 & 1 \\ < & 0 & 002 & 1 \\ < & 0 & 002 & 1 \\ < & 0 & 002 & 1 \\ < & 0 & 002 & 1 \\ < & 0 & 002 & 1 \\ < & 0 & 002 & 1 \\ < & 0 & 002 & 1 \\ < & 0 & 002 & 1 \\ < & 0 & 002 & 1 \\ < & 0 & 002 & 1 \\ < & 0 & 002 & 1 \\ < & 0 & 002 & 1 \\ < & 0 & 002 & 1 \\ < & 0 & 002 & 1 \\ < & 0 & 002 & 1 \\ < & 0 & 002 & 1 \\ < & 0 & 002 & 1 \\ < & 0 & 002 & 1 \\ < & 0 & 002 & 1 \\ < & 0 & 002 & 1 \\ < & 0 & 002 & 1 \\ < & 0 & 002 & 1 \\ < & 0 & 002 & 1 \\ < & 0 & 002 & 1 \\ < & 0 & 002 & 1 \\ < & 0 & 002 & 1 \\ < & 0 & 002 & 1 \\ < & 0 & 002 & 1 \\ < & 0 & 002 & 1 \\ < & 0 & 002 & 1 \\ < & 0 & 002 & 1 \\ < & 0 & 002 & 1 \\ < & 0 & 002 & 1 \\ < & 0 & 002 & 1 \\ < & 0 & 002 & 1 \\ < & 0 & 002 & 1 \\ < & 0 & 002 & 1 \\ < & 0 & 002 & 1 \\ < & 0 & 002 & 1 \\ < & 0 & 002 & 1 \\ < & 0 & 002 & 1 \\ < & 0 & 002 & 1 \\ < & 0 & 002 & 1 \\ < & 0 & 002 & 1 \\ < & 0 & 002 & 1 \\ < & 0 & 002 & 1 \\ < & 0 & 002 & 1 \\ < & 0 & 002 & 1 \\ < & 0 & 002 & 1 \\ < & 0 & 002 & 1 \\ < & 0 & 002 & 1 \\ < & 0 & 002 & 1 \\ < & 0 & 002 & 1 \\ < & 0 & 002 & 1 \\ < & 0 & 002 & 1 \\ < & 0 & 002 & 1 \\ < & 0 & 002 & 1 \\ < & 0 & 002 & 1 \\ < & 0 & 002 & 1 \\ < & 0 & 002 & 1 \\ < & 0 & 002 & 1 \\ < & 0 & 002 & 1 \\ < & 0 & 002 & 1 \\ < & 0 & 002 & 1 \\ < & 0 & 002 & 1 \\ < & 0 & 002 & 1 \\ < &$	$\begin{array}{c} 0 & 050 & 11 \\ 0 & 050 & 11 \\ 0 & 150 & 11 \\ 0 & 140 & 11 \\ 0 & 233 & 11 \\ 0 & 233 & 11 \\ 0 & 234 & 11 \\ 0 & 240 & 11 \\ 0 & 250 & 11 \\ 0 & 250 & 11 \\ 0 & 250 & 11 \\ 0 & 250 & 11 \\ 0 & 100 & 11 \\ 0 & 100 & 11 \\ 0 & 100 & 11 \\ 0 & 080 & 11 \\ 0 & 080 & 11 \\ 0 & 080 & 11 \\ 0 & 270 & 11 \\ \end{array}$	$ \begin{pmatrix} & 0 & 020 & (1) \\ & & 0 & 020 & (1) \\ & & 0 & 020 & (1) \\ & & & & 0 & 020 & (1) \\ & & & & 0 & 020 & (1) \\ & & & & 0 & 020 & (1) \\ & & & & 0 & 020 & (1) \\ & & & & 0 & 020 & (1) \\ & & & & 0 & 020 & (1) \\ & & & & 0 & 020 & (1) \\ & & & & 0 & 020 & (1) \\ & & & & 0 & 020 & (1) \\ & & & & 0 & 020 & (1) \\ & & & & 0 & 020 & (1) \\ & & & & 0 & 020 & (1) \\ & & & & 0 & 020 & (1) \\ & & & & 0 & 020 & (1) \\ & & & & 0 & 0 & (1) \\ & & & & 0 & 0 & 0 \\ & & & & 0 & 0 & 0$	$\begin{array}{c} 0.012 \\ 0.033 \\ 1 \\ 0.033 \\ 1 \\ 0.020 \\ 1 \\ 0.056 \\ 1 \\ 0.056 \\ 1 \\ 0.050 \\ 1 \\ 0.050 \\ 1 \\ 0.050 \\ 1 \\ 0.050 \\ 1 \\ 0.050 \\ 1 \\ 0.050 \\ 1 \\ 0.050 \\ 1 \\ 0.050 \\ 1 \\ 0.050 \\ 1 \\ 0.050 \\ 1 \\ 0.050 \\ 1 \\ 0.020 \\ 1 \\ 0.280 \\ 1 \\ 0.280 \\ 1 \\ 0.280 \\ 1 \\ 0.280 \\ 1 \\ 0.280 \\ 1 \\ 0.280 \\ 1 \\ 0.280 \\ 1 \\ 0.280 \\ 1 \\ 0.280 \\ 1 \\ 0.280 \\ 1 \\ 0.260 \\ 1 \\ 0.260 \\ 1 \\ 0.260 \\ 1 \\ 0.260 \\ 1 \\ 0.020 \\ 1 \\ 0.000 \\ 0.000 \\ 1 \\ 0.000 \\ 0.0$	<pre></pre>
ÐG-01	SIIE - 230 SIIE - 226 SIIE - 227 SIIE - 229 SIIE - 231 SIIE - 233 SIIE - 233 SIIE - 234 SIIE - 236 SIIE - 237 SIIE - 239 SIIE - 239 SIIE - 240 SIIE - 241 SIIE - 242	SITE-230 SITE-227 SITE-227 SITE-229 SITE-229 SITE-231 SITE-231 SITE-233 SITE-233 SITE-235 SITE-236 SITE-236 SITE-238 SITE-238 SITE-240 SITE-240 SITE-241 SITE-242			0.25° (0) 0.05° (0) 0.05° (0) 0.1°°			0.300 (4)

SEE END OF THIS REPORT FOR A LISTING OF DEALYSIS METHODS.

angels der

- × ,

.

193

2.1 PAGE

•

۰.

SD-BWI-DP-051 Rev.

هسر

. .

SAMPLE TYPE. CONFINED ANALYSIS GROUP: TRACE

SAHPI ING LOCATION	SAMPLING EVENT CODE	SAMPLE NUMBER		NI MG/L	:(A) -		р На/L	(A)		PB MG/L	(A)		SR HG/L	(A).		ZN MG/L	(A)	
DH-15	79-35	79-20 79-35	¢	0.020	<u>}</u> }}		0.100	<u>}</u> }	ć	0.100			0.012	{ } }		0.060	{}}	
	79-33	19-27	ŝ	0.010	}i{		0 150	} <u>]</u>]]	è	0.100]][0 007	} ! {		0.010	}i{	
	79 15	79-15	ſ	0.030			0.600		`	0.290	ļi		0.000	<u>}</u>		0.060		
	19-39	79-39		0.030			0.660			0.300	<u>}</u>		0.059			0.060		
	79-31	79-31	<	0.020			0.500	{i}	¢	0.100			0.059	11		0.030	{i}	
	79-51	79-51	Ś	0.020		¢	0.420		ć	0.100			0.007		•	0.010		
	79-85	79-01	č	0.020	{!}	ć	0 200		¢	0.100	$\begin{pmatrix} 1 \\ 1 \end{pmatrix}$		0.007		<	0.010	$\begin{pmatrix} 1\\1 \end{pmatrix}$	
	19-80	79-85 79-80	¢	0.020		č	0 200	$\left\{ \begin{array}{c} 1\\ 1 \end{array} \right\}$	ć	0.100	$\left\{ \begin{array}{c} 1\\ 1 \end{array} \right\}$		0 013	$\{1\}$	•	0,200	$\{1\}$	
	79-62	79-99 79-62	¢	0.020	(1)		0.600	(1)	۲	0.100	(1)		0.011	(1)		0,050	$\{1\}$	
	79-90	79-84 79-90	ć	0.020	$\{1\}$		0 600 0 500	{!}	č	0 100	$\left\{ \begin{array}{c} 1\\ 1 \end{array} \right\}$	<	0.011	$\left\{ \begin{array}{c} 1\\ 1 \end{array} \right\}$		0 080		
	80-35	79-95 80-35	č	0.020	$\{1\}$		0 450	$\{1\}$	¢	0.100	$\begin{pmatrix} 1 \\ 1 \end{pmatrix}$		0.012			0:560	$\left\{ \begin{array}{c} 1\\ 1 \end{array} \right\}$	
	80-24	80-41 80-24	۲ ۲	0.020 0.020	$\{1\}$	۲	0.230 0.200			0 120	$\begin{pmatrix} 1\\1 \end{pmatrix}$	ć	0.015	$\begin{pmatrix} 1\\ 1 \end{pmatrix}$		0.620		•
-	80-11	80-74 80-42	Ċ	0.020 0.020	$\{1\}$	ć	0 200	$\{1\}$	•	0.140		4	0.001			0.010	$\{1\}$	
÷	80-1	80-77 80-1 80-51	(((0.020 0.020 0.020		с с с	0 200 0 200 0 200	$\left\{ \begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{array} \right\}$	(((0 100 0 100 0 100			0.001 0.006 0.005	$\left\{ \begin{array}{c} 1\\ 1\\ 1\\ 1 \end{array} \right\}$	د د د	0.020 0.010 0.010	$ \begin{bmatrix} 1\\ 1\\ 1\\ 1 \end{bmatrix} $	
DC-01	SI 1E - 230 SI 1E - 226 SI 1E - 227 SI 1E - 228 SI 1E - 229 SI 1E - 231 SI 1E - 232 SI 1E - 234 SI 1E - 235 SI 1E - 236 SI 1E - 237 SI 1E - 239 SI 1E - 240 SI 1E - 242	SI 1E - 230 SI 1E - 226 SI 1E - 227 SI 1E - 229 SI 1E - 231 SI 1E - 231 SI 1E - 233 SI 1E - 233 SI 1E - 234 SI 1E - 235 SI 1E - 236 SI 1E - 238 SI 1E - 238 SI 1E - 239 SI 1E - 241 SI 1E - 243			•			·				•					•	

SEE END OF THIS REPORT FOR A LISTING OF ANALYSIS METHODS.

ig 4

PAGE 2.2

SD-BHI-DP-061 Rev.

2. 452.4

SAMPLE TYPE: CONFINED ANALYSIS GROUP: TRACE

.

• •

SAMPEING FOCATION	EVENT CODE	SAMPLE NUMBER		AL 14671	{A) -	AS MG/L	. (A)		B MG/L	{A}	_	BA MG/L	(A)	CC MG /) /L ·	(A)	i	00 MG/L	(4)	
DC-02-A2	80-4 SIIE-213	80-25 80-4 SITE-213	•	77 100 13.800 0.050	$ \left\{ \begin{array}{c} 1 \\ 1 \\ 0 \end{array} \right\} $				1.400 1.100	{}}		0.330 0.430	{ ! }				` ‹	0.010 0.010	[]]	
DC+ 03	80-27	80-27 80-81		1 680 1 190	11				0.150 0.070	11		5.470 1.320	[]}		-	•	۲ ۲	0.010		
DC-05	79-30	79-30 79-32		0 300 0.210			•		0.500 0.500	23		0.020 0.020	11	·			((0.010		
DC - 06	80-161 80-72	80-147 80-161 80-22 60-72	۲ ۲	0.010 0.050 0.490 57.100		-			1.200 1.240 1.300 1.600		< <	0,005 0,005 0,280 0,130					۲ ۲	0.010 0.010 0.010 0.020		,
(in) (n	S112-214 80-238 80-238 80-13 79-50 81-45 80-13 80-15 81-82 80-29 79-58 80-75	S112-214 80-238 80-238 80-186 80-189 80-189 80-189 80-58 80-58 81-8 80-113 80-155 81-8 80-113 80-155 81-8 80-133 80-155 81-76 81-76 81-75 80-37 79-53 80-75	ι ι ι	$\begin{array}{c} 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 \\$					1.2650 0.860 0.770 1.000 1.000 1.000 1.000 1.210 1.2210 1.2210 1.2210 1.2210 1.2210 1.2210 1.2210 1.2210 1.2210 1.2210 1.2210 1.2210 1.2210 1.2210 1.2210 1.2210 1.2210 1.2210 1.2200 1.2200 1.2200 1.2200 1.2200 1.2200 1.2200 1.2200 1.2200 1.2200 1.2200 1.2200 1.2200 1.2200 1.2200 1.2200 1.2000 1.2000 1.2000 1.2000 1.2000 1.2000 1.2000 1.2000 1.2000 1.2000 1.2000 1.2000 1.2000 1.2000 1.2200 1.20000 1.20000 1.20000 1.20000000000			0.005 0						$\begin{array}{c} 0 & 0 \\$		· ·
50-07	82-23 82-10 ``	82-22 82-56 82-10 82-33		0.410 0.470 0.550 0.390					1 800 1.820 1.870 1.870		· · ·	5.012 5.012 5.012	$\left\{ \begin{array}{c} \lambda \\ 1 \\ 1 \\ 1 \end{array} \right\}$	• • •		•		0.020 0.020 0.011 0.011		
	20-25 80-11 80-33	80-39 60-98 80-11 80-19 79-52		0.330 0.300 0.230 0.230 0.840		•	· • * * *	•	0.547 0.370 0.800 0.800 1.800		, , , , , , , , ,	00000 0000 0000 0000 0000 0000 0000 0000			· .		<	$\begin{array}{c} 0.010 \\ 0.010 \\ 0.010 \\ 0.010 \\ 0.010 \\ 0.010 \end{array}$		·
		 	S	EE EMD	oř tuř	S REPOR	T FOR	A LIS	STING OF	AVA	LYS	15 METHO	DDS.			•			-	

. . .

المتع فالمراجع المراجع

.

• • • •

FAC: 3

SD-BWI-DP-OCI Rev.

Se 135

.

. .

,

SAMPLE TYPE. CONFINED ANALYSIS GROUP: TRACE

SAMPLING LOCATION	Sampling Event Code	SAHPLE NUMBER		CR NG/1	[A]		CU MG/L	(A)		FE NG/L	(A)		LI MG/L + (A J	MN MG/	, ,	(A)		MO NG/L	(A)
DC-02-A2	80-4 SITE-213	80-25 80-4 SITE-213		0.090 0.080	<pre>{1}</pre>		0.060 0.110	{! }		48.600 32.300	{}}	< <	0.020	1}	0. 0.	944 646	{}}		0.500 0.500	{i}
pc-00	80-27	80-27 80-81	٢	0.003 0.003	{ ! }		0 180 0.060	{}}		0.180	{}}		0.340	1 } 1 }	0. 0.	017	{ ! }		0.410 0.470	{ ! }
DC-05	79-30	79-30 79-32	ć	000.00 000.0		4	0 016 0.002	[]]		0.400 0.250	{] }		0.100	1}	< 0. < 0.	020 020	$\left\{ \begin{array}{c} 1\\ 1\\ 1 \end{array} \right\}$	۲ ۲	0,030	$\left\{ \begin{matrix} 1 \\ 1 \\ 1 \end{matrix} \right\}$
DC - 06	80-161 80-72 SITE-214	80-147 80-161 80-22 80-72 5116-214	د د	0.003 0.003 0.090 0.090,		د د	0.002 0.002 0.050 0.040	$\left\{ \begin{array}{c} 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1 \end{array} \right\}$		0.350 0.400 46.800 51.500	$ \left\{ \begin{matrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{matrix} \right\} $	<u>د</u> د	0.020 0.020 {	1)	0. 0. 2. 2.	039 188 268 299	$\left\{ \begin{matrix} 1\\1\\1\\1\\1\\1 \\1 \end{matrix} \right\}$	((0,030 0,030 0,500 0,600	1) 1) 1) 1)
	80-238 80-191 80-13 79-59 81-45	80~201 80~238 80~191 80-13 80-58 79-59 79-97 81-45		0.020 0.030 0.003 0.003 0.003 0.003 0.030 0.003 0.010 0.005			0 002 0 002 0 002 0 002 0 002 0 002 0 002 0 002 0 002 0 002	$ \begin{pmatrix} 1 \\$	د ,	$\begin{array}{c} 0 & 010 \\ 0 & 020 \\ 0 & 060 \\ 0 & 040 \\ 4 & 100 \\ 4 & 100 \\ 0 & 760 \\ 0 & 700 \\ 0 & 040 \end{array}$	$ \begin{pmatrix} 1 \\ 1 \\ 1 $	(((0 020 0 020 0 020 0 020 0 020	1 1 1 1 1	 0. 0	020 020 051 020 181 160 030 020 225	$ \begin{pmatrix} 1 \\ 1 \\ 1 $	•	0.440 0.520 0.580 0.030 0.700 0.900 0.400 0.400 0.400	(1) (1) (1) (1) (1) (1) (1) (1) (1)
րտ են Մի	80-118 80-15 81-82 80-29 79-58 80-75	81 - 8 80 - 118 80 - 133 80 - 15 80 - 70 81 - 82 80 - 29 80 - 37 79 - 57 79 - 58 80 - 45 80 - 75		$\begin{array}{c} 0 & 0.05 \\ 0 & 0.03 \\ 0 & 0.12 \\ 0 & 0.16 \\ 0 & 0.36 \\ 0 & 0.036 \\ 0 & 0.036 \\ 0 & 0.031 \\ 0 & 0.033 \\ 0 & 0.033 \\ 0 & 0.033 \\ 0 & 0.033 \\ 0 & 0.033 \\ 0 & 0.033 \\ 0 & 0.033 \end{array}$		•	0.005 0.009 0.025 0.005 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002		د د د	$\begin{array}{c} 0 & 040 \\ 0 & 200 \\ 0 & 140 \\ 0 & 030 \\ 0 & 006 \\ 0 & 100 \\ 0 & 004 \\ 0 & 002 \\ 0 & 020 \\ 0 & 002 \\ 0 & 002 \\ 0 & 010 \\ 0 & 002 \\ 0 & 010 \\ 0 & 002 \end{array}$		~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	$\begin{array}{c} 0 & 0 & 2 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 1 & 3 \\ 0 & 0 & 1 & 3 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 2 & 0 \\ \end{array}$		0 0	218 020 020 020 020 020 020 020 020 020 02		٢	$\begin{array}{c} 0.400\\ 0.660\\ 0.900\\ 0.850\\ 0.710\\ 0.610\\ 0.600\\ 0.420\\ 0.360\\ 0.560\\ 0.560\\ 0.160\\ 0.230\end{array}$	
DC-07	82-23 82-10	82-23 82-56 82-10 82-33	< <	0.030 0.030 0.030 0.030 0.030	$\left\{ \begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 $		0 006 0 006 0 006 0 006 0 006	$ \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 1 $		0.140 0.130 0.170 0.190	$\left\{ \begin{matrix} 1\\1\\1\\1\\1\\1 \end{matrix} \right\}$	•••••••••••••••••••••••••••••••••••••••	0 006 0.006 0.006 0.006	1) 1) 1) 1)	< 0. < 0. < 0.	003	$ \left\{\begin{array}{c}1\\1\\1\\1\\1\\1\end{array}\right\} $		0,080 0,100 0,470 0,440	
	80-33 80-11 80-33	80-39 80-98 80-11 80-19 79-52		0.003 0.003 0.003 0.003 0.003 0.003		•••••	0 002 0 002 0 002 0 002 0 002	$ \begin{cases} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 1 1 1 1 1 1 1 1 1 $		1.300 1.340 2.100 2.100 1.500	$\begin{pmatrix} 1 \\ 1 \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \end{pmatrix}$	•••••	0.020 0.020 0.020 0.020 0.020 0.020		< 0. 0. < 0. < 0.	020 021 021 020 020 020	12) (1) (1) (1) (1) (1)	۲ ۲	0,030 0,030 0,200 0,250 0,250 0,600	
	۰.	· · ·	SEE	END OF	this	RE	PORT FOR	AL	.151	ING OF	ANAL Y	515	METHODS .							•

:

2

ي. منه ورياني

. .

SD-BHI-DP-061 Rev.

PAGE 3.1

SAMPLE TYPE: CONFINED ANALYSIS GROUP: TRACE

as signify.

. 5° ° 67

SAMPLING LOCATION	SAMPI ING EVENT CODE	SAMPLE NUMBER	. ·	NI MG/L (A)		P MG/L	(A)		· РВ MG/1	(A)	SA Mg/L	[A]		ZH MG/L	(A)	•
DC-02-A2	80-4 S11E-213	80-25 80-4 SITE-213	í (0.020'(1) 0.020'(1)		2.400 1.500	{I}		1.300 0.850		0.217 0.119			2,960 2,200		
рс од	80-27	50-27 80-81	ć	Ů.020 0.020		1.700 1.520	{]}	с с	0.100 0.100	$\left\{ \begin{array}{c} 1\\ 1 \end{array} \right\}$	22 300 16,300	$\left\{ \begin{array}{c} 1\\ 1 \end{array} \right\}$		0.010 0.010	3	
DC-05	19-30	79-30 79-32	۲ ۲	0.020 [1] 0.020 [1]	((0.200 0.200	{I}	с с	0.100 0.100		0.220	<pre>[]]</pre>	•	0.020 0.020	H.	
ÐU-06	80-161 80-72 5715-214	80-147 80-161 	((0.020 (1) 0.020 (1) 0.160 (1) 0.150 (1)		0.240 0.420 0.400 0.700	$\begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}$	¢	0.100 0.300 0.400		 0.001 0.001 0.010 0.014 			0.140 0.150 3.100 3.400	() () ()	•
197	80-238 80-13 79-59 81-45 80-15 80-15 80-15 81-82 80-29	S112-2114 80-201 80-201 80-191 80-191 80-13 80-58 79-59 79-97 81-45 81-45 81-45 81-45 80-118 80-113 80-15 80-70 81-76 81-76 81-76 81-76 81-76 81-76 81-76 81-76	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		$\begin{array}{c} 0.500\\ 0.400\\ 0.260\\ 0.250\\ 0.400\\ 0.200\\ 0.$		~~~~~~~	0		0004 0004 00000 00000 000000 000000 000000			$\begin{array}{c} 0.002\\ 0.002\\ 0.000\\ 0.$		
	80-75	79-58 80-45 80-75		0.020 1 0.020 1 0.020 1	• • • •	0.200 0.200 0.200 0.200		• • • •	0.100 0.100 0.100	::}	0.007 0.007	$\left\{ \begin{array}{c} 1\\ 1\\ 1\\ 1 \end{array} \right\}$	č	0.010 0.010 0.010		•
DC-07	82-23 82-10	¥2-23 82-56 82-10 82-33	• • • •	0.020 (1) 0.020 (1) 0.020 (1) 0.020 (1) 0.070 (1)	• • • • •	0,340 0,340 0,340 0,340 0,340	$\left\{ \begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ \end{array} \right\}$	• • • •	0.159 0.159 0.159 0.159		0.011 0.012 0.010 0.010	<pre> { } { } } { } } </pre>		0.050 0.050 0.050 0.050		; ···
	80 - 19 80 - 11 79 - 52	80-39 80-98 80-11 80-19 79-52		0 020 11 0.020 11 0.020 11 0.020 11 0.020 11 6.020 11	د د د د	0.200 0.200 0.200 0.200 0.200 0.200	$ \begin{pmatrix} 1 \\ 1 \\ (1) \\ (1) \\ (1) \\ (1) $	• • •	0.100 0.100 0.100 0.100 0.100		0.008 0.008 0.007 0.007 0.009	(1) (1) (1) (1)		0,250 0,250 0,030 0,030 0,070		

SEE END OF THIS REPORT FOR A LISTING OF ANALYSIS METHODS.

. .

SD-BHI-DP-061 Rev. 1

.

. .

Aaž

3. -

• • •

1

SAMPLE TYPE CONFINED ANALYSIS GROUP: TRACE

, ·

SAMPI ING LOCATION	SAMPLING EVENI CODE	SAMPLE NUMBER		AL MG/L	{A} ¹	as MG/1 (A)	в Мо/1	L	(A)	• •	BA Mg/l	(A)	C MG	D /L -	(A)		CQ MG/L	(A)
DC-01	79-52 80-103	79-55 80-103 80-163		0.830	H.		1.	000 610 580		٠	0.010					۰ ۲	0.010	$ \begin{array}{c} 0 & (1) \\ 5 & (1) \\ 0 & (1) \end{array} $
	80-188	80-178 80-188		0 190	語目		2.	220		٢	0.510					ċ	0.010	
	80-196	80 - 177 80 - 196		43.900	H		2	550 620			0,140					ć	0.010	
DC-12	80-80	80-62 80-80		0.050		ه ۲	0.	940. 930	H	٠	0.005	11				ć	0.01	
	80-100	80-100 80-63	ć	0.010			0.	860		ć	0.005					š	0.010	
-	80-97	80-73	ć	0 010			0.	760	 i {	č	0.005	}!!				Ś	0.010	
	80-32	80-32	č	0.010	111 1		Ĩ.	280	11	ż	0.005		•			÷	0.010	ă lii
	80-82.	80-23	ċ	0.010			0.	810		¢	0.005	_ }i }:		٠		è	0.010	
	80-124	80-102	•	0 080			ă.	860			0.007					è	0.01	ŏ [1]
	80-101	80-124		3 460			0	140 780 750	li!	с с	0.005					č	0.010	
	80-174	80-174	¢	0 010	{i}		ŏ.	800	$\{i\}$	•	0,196	11				÷.	. 0.01	ő [i]
	80-209	80-209	Ś	0.010	{}}		0.	730		\$	0.005	111				ç	0.01	$\left \begin{array}{c} 0 \\ 1 \\ 1 \end{array} \right $
)+	80-233	80-233	•	0 040	11		0.	780		•	0.008	11				È	0.01	ō [1]
00 00	80-234	80-208		0.050			0	790	{i}	č	0.005					č	0.010	5 11
	81-61	80-234 81-61		0 050			0.	780		č	0.005					č	0.005	5(1) 0(1)
	82-85	81-72 82-47		0.300	11		0.	750 850		۲	0.005					ć	0.010	
		82-85		0.230		,	0.1	860	111		0.003	111				•	0 01!	5 (1)
00.14	N 15 ¹ 3	80		0.050				1 2 4			0.054						0.010	
00 14	00-5	80-34		0.060	111		ŏ.	ÎĴŎ	lij		0.053	111		-		è	0.01(5 11
	80 - 53	80-16		0.030			< 0 (005	<u>{</u> }		0.064	<u>}</u>		-		Ś	0.01(<u>)</u>
	80-47	80-47		0.060	\i {	:	¢ 0.1	005	<u>{i</u> {		0 053	115				č	0.010	ō (1)
	80-69	80-85 80-69	٢	0.030			¢ 0 (005		4	0.058	{ <u>1</u> }				K K	0.010	
	80-94	80-83	Ś	0.010		.• •	0.0	070	<u>}</u>	\$	0.005	11				Ś	0.010	
	60 00	80-99	•	0.020	111		0.0	067	11	ì	0:005	111			•	č	0.010	
	80-89	80-36 80-89	Š	0.010		1	0.1	070	<u>{</u>]}	,	0.235	- 1 - 1	,		• • •	¢	0.01	j jij
	80-71	80-2	•	0.020	}i }⊧		0	040		•	0.005	111				ć	0.010	8 [1]

SEE END OF THIS REPORT FOR A LISTING OF ANALYSIS METHODS.

193

U

ı

PAGE 4

> SD-8WI-0P-061 Rev. .

> > ----

SAMPLE TYPE: CONFINED ANALYSIS GROUP: TRACE

•

SAMPLING LOCATION	SAMPI ING EVENT CODE	SAMPI E NUMUER		CR HG/L	(Å)	CU MG/L	(<u>A</u>)	FE NG/L	{A)	LI MG/L	1A)	MN MG/L	(A)	MO MGZL (A)
0C-07	/9-52 80-103 80-188 80-188	79-55 80-103 80-163 80-178 80-188 80-188 80-177 80-196	٢	0.003 0.050 0.050 0.050 0.230 0.230 0.160		0.002 1.020 0.019 0.002 0.002 0.260 0.260	$ \begin{pmatrix} 1 \\ 1 \\ 1 $	1.500 30.100 29.100 1.360 1.4;4 106.000 79.500		0.050 0.020 0.020		0.020 0.305 0.236 0.916 0.921 50.500 41.900		0.530 (); 0.800 (); 1.400 ()) 1.200 ()) 1.020 ()) 0.580 (])
ФС~12 	80-80 80-100 80-97 80-32 80-82 80-124 80-124 80-101 80-209 80-209 80-233 80-234 81-61 82-85	b 0 - 62 $b 0 - 80$ $b 0 - 63$ $b 0 - 73$ $b 0 - 97$ $b 0 - 32$ $b 0 - 32$ $b 0 - 23$ $b 0 - 124$ $b 0 - 101$ $b 0 - 169$ $b 0 - 124$ $b 0 - 169$ $b 0 - 179$ $b 0 - 242$ $b 0 - 209$ $b 0 - 209$ $b 0 - 208$ $b 0 - 208$ $b 1 - 51$ $b 1 - 51$ $b 1 - 51$ $b 1 - 51$ $b 2 - 67$ $b 2 - 95$				0.002 0.0020		0.070 0.080 0.027 0.024 0.210 0.2200000000		0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020		0.00007700160000000000000000000000000000		0.240 11 0.210 11 0.030 11 0.240 11 0.240 11 0.230
	80-3 80-53 80-47 80-69 80-99 80-99 80-89 80-71	80-3 80-16 80-53 80-47 80-35 80-69 80-83 80-55 80-99 80-83 80-36 80-89 80-36	(((((((((((((((((((00033 00033 000033 00003 00030 0003 00033 0000 0000 0000 0000 00000 00000 000000		0 002 0 002 0 002 0 002 0 005 0 002 0 002	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	0 150 0 173 0 650 0 650 0 200 0 200 0 0 0 200 0 0 0 0		C 220 C 220 C 220 C 020 C 0 C 0 C 020 C 020 C 020 C 020 C 020 C 020 C 020 C 020	11 C 11 C 11 C 11 C 11 C 11 C 11 C 11 C 11 C 11 C 11 C 11 C 11 C 11 C 11 C 11 C 11 C 11 C 11 C 12 C 13 C 14 C 15 C 16 C 17 C 18 C 19 C 11 C 11 C 12 C 13 C 14 C 15 C	0.020 0.020 0.020 0.02743 9.053 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020		0.11 0.250 { . 0.040 { . 0.070 { . 0.070 { . 0.020 { . 0.020 { . 0.020 { . 0.020 { . 0.020 { . 0.030
						•••••••	•	· · .	•			•		

PAQE 4.1

SD-BWI-DP-06J Rev.

---1

11

۰..

•

.

.

100

.

.

SAMPLE TYPE, CONFINED ANALYSIS GROUP: TRACE

1. 1. 1.

SAMPLING LOCATION	SAMPLING EVENT CODE	SAMPLE NUHBER		NI NG/L	(A)	N	p G/L	(A)		PB MG/L	(A)	SR NG/L	(A)		žn Mg/l	(A)	
DC-07	79-52 80-103	79-55 80-103 80-163	4	0.020 0.980 0.046			0.400 0.900 0:830		((0.100 0.100 0.130		0.00 0.15 0.04	1) 0 11 2 11		0.070 0.780 0.670		
	80-188	80-178	Ś	0.020			0 240	11	\$	0.100		0.02			0.420	11	
	80-196	80-177 80-196	((0.020			0.650	 i 	•	1.560	{ ! }	0.04			12.200		
DC-12	80-80	80-62 80-80	. (0 020	h.	(0.200	{ } }	Ś	0.100	<u>{}</u>	0.01			0.010	<u>{</u>]}	
	80-100	80-100	ç	0.020		ç	0.200	łįĮ	č	0.100	}i{	0.00	š li	·ç	0.002	};{	
	80-97	80-03	č	0.020	祖	č,	0.200	ļį	č	0.100		0.03		ķ	0.002	11	
	80-32	80-32	è	0.020		ç	0 200	ļi	è	0.100		0.02	5 11	• •	0.002	11	
	80-82	80-23	- C	0.020		ć	0 200		ć	0.100		0.02	5 11	Ś	0.002		
	80-124	80-102	k k	0.020		č	0.200	111	č	0.100		0.01		č	0.002	}i{	
	80-101	80-101		0.020		`	0.230	}	¢	0.100	}	0 00		`	0.185	{!{	
	80-1/4	80-174	, c	0.020			0.340	11	č	0.100	11	0.00		•	0.007	$\{i\}$	
	80-209	80~209 80-242	Ś	0.020			0.260	• { } }	Ś	0.100	{}}	0.00	5 11	Ś	0.002	[1]	1
a a	80-233	80-233	ç	0.020	111	•	0.250	ļį	č	0.100		0.00	5] i j	•	0.130]i[
	80-234	80-208	č	0.010		•	0.200	-{;}	č	0 100		0.01	6 11	ć	0.005		
	81 -61	80-234 81-61	۲ ۲	0.010	{}}	ć	0.200 0.200	{!}	¢	0.100	$\begin{bmatrix} 1\\1 \end{bmatrix}$	0.01	$\begin{bmatrix} 5 & 1 \\ 4 & 1 \end{bmatrix}$	ć	0.005		
	82-85	81-72 82-47	۲ ۲	0.020 0.026	:{1}	к к	0.200 0.340	{!}	۲ ۲	0.100 0.160	{ ! }	0.00		ć	0.002 0.015	$\left\{ \begin{array}{c} 1\\ 1 \end{array} \right\}$	
		82-85	۲	0.026	(1)	•	0.340	(1)	۲	0.180	(1)	0.00	3 (1)	۲	0 015	<i>{1}</i>	
DC-14	80-3	80-3	۲	0.020	ί.	٢	0.200	(1)	<	0.100	(1)	0.09	0 (1)		0.010	(1)	
	80-53	80-34 80-16	к к	0.020	{ ! }	¢	0.200 0.260	$\{1\}$	ć	0.100	$\left\{ \begin{array}{c} 1\\ 1 \end{array} \right\}$	0.03	5 (1) 9 (1)	٢	0.010 0.020	$\{ \begin{array}{c} 1 \\ 1 \\ 1 \\ \end{array} \}$	
	80 47	80-53 80-47	((0 020		ć	0.200		Ś	0 100		0 04	$\begin{bmatrix} 8 \\ 2 \\ 1 \end{bmatrix}$		0.020	<u>}</u>	
		80-85	ć	0.020	111	¢.	0 200	{i}	č	0.100	lis	ŏ iŏ	5 113		0.040	-{i}	
	80-69	80-69 80-83		0.020			0.430		ć	0,100	11	0 01	1 11		0.006	<u></u>	
	80-99	80-55	ć	0.020	11		0 280	<u>}</u>]]	è	0 100	[i]	0.06	i (i)	•	0.007	{i}	
	80-89	80-36 80-36	ć	0.020			0.320 0.300		¢	0.100		0.05	1 11	ć	0.002	· { } }	
	80-71	80-2	•	0.020	<pre>{1}</pre>		0.410 1.450		с с	0.100	{ ! }	0.00	$\begin{bmatrix} 9 \\ 8 \\ 1 \end{bmatrix}$	ć	0.002 0.002		
	, e. e		SEE	END OF	mis	REPO	RT FO	RAI	LIST	ING OF	ANALYSIS	METHO	DS.				

PAGE

4.2

SD-BWI-DP-061 Rev. <u>م</u>مو

200

· · · · · · , . . .

SAMPLE TYPE: CONFINED ANALYSIS GROUP: TRACE

.

.

.

UNMPLING LOCATION	SAMPI ING EVENT CODE	SAMPI E NUMBER	Mill	14)	AS MG/L	(A)	B MG/1)	MG, L	(A)	UU MG/L	(A)	CO MG7L (\)
(°C-14	80-71 80-144	80-136	0.0 0.0	$\begin{bmatrix} 26 & 11 \\ 0 & 11 \end{bmatrix}$			0.042		0.031			< <	0.010 (1)
•	80-189	80-127	0 0	30 11			0.020	4.1	0.013				0.010
	80-112	80-112	0.0	30 11			0.030		0.005				0.010 11
	80-157	80-108				•	0.010		0.005		· ·	· · · · ·	0.010
	80-155	80-185		10 [1]			0.03		0.005			((0.010
	80-104	80-185		10 11 /	-		0.032		0.005			((0.010
	80-129	80-125	C 0 0	20 11		•	0.050		0.005	{i}		с с	0.010 11
	80-170	80-129	< 0.1			• •	0.030		0.005		,	c	0 010 11
	80-117	80-170	0.0	10 11			0.050	ţi, č	0.005				0.010 (1)
	80-213	80-213	0.2			,	0.580		0.023	- {] }			0.020 11
	81-20	81-20		11 20		, :	0.590		0.015		,		0.005 (1)
· .	81-30	815	0.1		•	· · · ·	0.991		0.020				0.010
22	81-46	81-04	0.0	27.12	•		0.300	· · · · · ·	0.040	113			0.010
1	0 1 - 4141	41 47	0.0	75 2			1.350		v. c. v	(1)			0.011
	81-141	81-141	0 0 ×	30 1			1.420		0.003			((0.005
	02-0 02-0	82-8	0.1			•	1.420		0.005			c	0.010 11
	87-120	01-120,1	0.0	10 2			1.430		7.005	. 4 1	· ·	C	0.010
	83-152	83-197	< 0.0	79 14	•		1.420		5.003			((
	80-157	83-193 83-157	· · · · · · · · · · · · · · · · · · ·	SO (1) 76 (1)	:	· · · ·	1.430 1.450		7.005 0.005	<u>{}</u>	•	((0.010 (1)
	83-178	83-179 83-103	0.0 (0.0 (0.0	05 (2) 90 1) - 80 (1)	•	+5. }	1.430		0.005 0.003		:	· ·	0 010 (1)
		83-178;	< 0.0 0.0	$\begin{bmatrix} 75 \\ 07 \\ 12 \end{bmatrix}$. 1	1.400		0.003	ii)		ć	0.010 13
	83-180 -	83-123 83-183	< 0 0 < 0 0		•	۰.	1.100		0 004 0 004	<pre>{}</pre>		• • • . (0.010 (1) 0.010 (1)
	83-154	80-154	< 0.0				1.730	112	0.014	{1}		¢	0.010 (1)
• .			SEE EN	6 01 111	S REPORT	FOR A L	.1511NG 0	DF ANALY	SIS METH	UDS		•	

.

PAGE 5

SD-BWI-DP-061 Rev.

فسو

•

. .

.

an sister water

• . . •

: · · · · · ·

SAMPLE TYPE: CONFERED ANALYSIS GROUP: TRACE

SAMPI ING LOCATION	SAMPLING EVENT CODE	SAMPLE NUMBER		CR MG/L (A)	-	CU MG/L	(A)	· ·	FE NG/L	(A)	·]	11 16/1	(A)		MN MG/L	(A)		MO MG/L	[A]	
DC-14	80-71 80-144	80-71 80-136 80-144	ŝ	0.008 (1) 0.003 (1)	•	0.002 0.002 0.002			0.050		с с	0.020	{ <u> </u> }	۲ ۲	0.009	$\left\{ \begin{matrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$	•	0.030	$\left\{ \begin{array}{c} 1\\ 1\\ 1\\ 1 \end{array} \right\}$	
	80-188	80-127	i i	0.003	ć	0.002			0.040	1.		0.042][[č	0.020	<u>}</u>	č	0.030	ļij	
	80-112	80-112	Ì	0.006		0 007]][[0.024	}i{	•	0.020	}!!	i	0.020	i{	š	0.000	11	
	80-157	80-157	Ś	0.003	č	0.002		•	0.060	<u>}</u>]]	\$	0.020	<u>]</u> [[ç	0.020	111	¢.	0.030		
	80-155	80-185 80-185 80-185	``````````````````````````````````````	0.010 11	č	0.002		ć	0.010		č	0.020		с с	0.020		с с	0.030		
	80-104	80-104 80-125	ć	0.003 11	ć	0.002			0 015		č	0 020	{! }	č	0.020	[1]	ć	0.030		
	80-129	80-115	ć.	0.003	ć	0.002	ļi		0.030	ļį	•				0.034] [[•	0.220	lil	
	80-170	80-156	•	0.003	č	0.002	ļ	C	0.010	<u>}</u> įį				`<	0.020	}	¢.	0.030	ļi	
	80-117	80-117	۲	0.003	ć	0.002	; }i{		0.074					ć	0.020		ć	0.030		
	80-213	80-213		0.030		0.030			0.100					i i	0.020	}! {	•	0.940		
	81-20	81-20	Ś	0.005.11	Ż	0 007]]{		0.120					•	0.260	ļļ į		0.800	11	•
202	81-30	81-16 81-30	č	0.010 1	č	0.005			0.030			0.185 0.060	{ ! }		0.281			0.870		
	81-44	81-44		0.000 [1]		0 009	(1)		0,120	(1)		0.041	(1)		0.268			0.810	[1]	
	81-141 82-8 83-156	81-47 81-141 82-42 82-8 83-156		$\begin{array}{c} 0 & 0 & 10 \\ 0 & 0 & 40 \\ 0 & 0 & 40 \\ 0 & 0 & 40 \\ 0 & 0 & 40 \\ 1 \\ 0 & 0 & 40 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ $	•••••••••••••••••••••••••••••••••••••••	0 005 0 005 0.006 0.006	$\left\{\begin{array}{c}1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\$	•	0.070 0.030 0.006 0.006	$ \begin{pmatrix} 1 \\$		0.160 0.013 0.032 0.031	$ \left\{\begin{array}{c}1\\1\\1\\1\\1\\1\\1\\1\end{array}\right\} $	•	0.272 0.003 0.004 0.004			0.783		
	63 130	92-107		0.040 (1)		0.010			0.010	(*)		0 033	(+1		0.001	2		0.040	111	
	83-152	83-152	ć	0.040 11	č	0.010		č	0.010	{i}	•	0.032	[1]	ć	0.004			0.610	$\begin{pmatrix} 1 \\ 1 \end{pmatrix}$	•
	83-157	83-193 83-157	۲ ۲	$\begin{array}{c} 0 & 040 \\ 0 & 040 \\ 1 \end{array}$	ć	0.010 0.010	{ } }	۲	0.010 0.010	$\left\{ \begin{array}{c} 1\\ 1 \end{array} \right\}$		0.036		ć	0.004			0.640 0.640	$\left\{ \begin{array}{c} 1\\ 1 \end{array} \right\}$	
	83-178	83-179 83-103 83-178	· ((0.040 (1) 0.040 (1) 0.040 (1)	· · · · ·	0.010 0.010 0.010	$\left\{ \begin{array}{c} 1\\1\\1\\1 \end{array} \right\}$	c c	0.010 0.010 0.010	$\left\{\begin{smallmatrix} 1\\ 1\\ 1\\ 1 \end{smallmatrix}\right\}$		0.036 0.032 0.033	$ \left\{\begin{array}{c}1\\1\\1\\1\end{array}\right\} $	د د د	0.004			$0.660 \\ 0.610 \\ 0.610 \\ 0.610 $	$ \left\{\begin{array}{c}1\\1\\1\\1\end{array}\right\} $	
	83-183	80-123 83-183	c c	0.040 11	۲ ۲	0 010 0.010	{}}	د د	0.010	{ ! }		0.034 0.035			0.004			0.630 0.630		
	83-154	83-154	¢	0.040 [1]	•	0.010	(1)		0.010	(1)		0.032	(1)	¢	0.001 0.004	$\binom{2}{1}$		0,750	(1)	
			SEE	END OF THE	< 81			ISTI	ING OF		ere i									

.

----.

A CONTRACTOR OF A CONTRACTOR O

202

,

5. PAGE

1.4

÷

, ·

SD-BWI-DP-061 Rev. 1

SAMPLE TYPE: CONFINED ANALYSIS GROUP: TRACE

.

.

SAMPUTNG LUCATION	EVENT CODE	SAMPLE NUMBER	NT HG/L (A)	P NG/L (A)	ру На/1 , 4)	SR MG/L (A)	ZN NG/L (A)	
DC-14	30-71 80-144	80-71 80-136	(0 020 (1) (0.020 (1)	1.470 (1) • 0.200 (1)	<pre></pre>	0.049 (1) 0.017 (1)	0.006 (1)	
	80-189	80-144 80-127	<pre></pre>	<pre></pre>	<pre>< 0.100 (1) < 0.100 (1)</pre>	$\begin{array}{c} 0 & 0 \\ 1 \\ 0 & 0 \\ 1 \\ 7 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$	0.017 (1) 0.010 (1)	
	80-112	80-189 80-112	<pre> 0.020 [1] </pre> <pre></pre>	<pre></pre>		0.017 11 0	0.002 11	· ·
	80-157	80-168 90-157		<pre>< 0.200 [1]</pre> <pre>< 0.200 [1]</pre>		0.008 (1) 0	0.002 (1)	
	80-122	80-155	(0.020 11	<pre> 0.200 [1] 0.200 [1] </pre>			0.007 11	
	80-104	80-104	¢ 0.020 []]			0.010 11	0.002 (1)	
	80-129	80-115 80-129	¢ / 0.020 1		0.130 11 4		0 002 (1)	
	80-170	80-156	 0.020 1 0.020 	< 0 200 [1] 0 350 [1]		0.001 11	0.002 11	
	80-117	80-117 80-151	< 0.020 11 < 0.020 11	0.300 1	< 0.103 [1]	0.005 11	0.002 11	•
	80-213	80-213 80-236	.0.050 11	0.260 11	0 370 11	0.014 11	0.010 111	
3 7	81-20	81-20 81-22		<pre>< 0.200 [] < 0.200 []</pre>		0.034 11	0.005 111	
	/81-'30	81-16 81-30	< 0.010 (1) < 0.010 (1)	<pre>< 0.200 [1] < 0.200 [1]</pre>	<pre>(0.100(1)); (0.100(1));</pre>	2.329 (1) 0.030 (1)	0.010 (1) 0.010 (1)	
	81-44	81-44	0.020 (11)	< 0.200 (1)	< 0/100 111	0.070 (1)	0.020 (1)	•
	81-141 82-8	81-47 81-141 82-42 82-8	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	<pre> 0.200 (1) 0.150 (1) 0.340 (1) 0.340 (1) </pre>	()))))))))))))))))))))))))))))))))))))	D.D73 11 0.073 11 0.073 11 0.073 11	0.006 (1) 0.020 (1) 0.013 (1)	
	83-158	83-156	< 0.030 [1]	< 0.340 [1]	< 0.150 (B)	(I) E66 0	0.010 [1]	
	83-152	83-197 83-152	(0.030 [1] (0.030 [1]	<pre> 0.340 {1 0.340 {1 1 0.340 {1 1 1 1 1</pre>	< 0.150 11 < 0.159 11	0 003 (1) 0.004 (1)	0.010 (1)	
	83-157	83-193 83-157	<pre>< 0.030 [1] < 0.030 [1]</pre>	<pre>c 0.340 [1] c 0.340 [1]</pre>	<pre>(0.150 (1) (0.150 (1)</pre>	0.004 (1) 0.004 (1)	0.010 (1)	
	81-178	83-179 83-103 83-178	<pre>0.010(1) 0.030(1) 0.030(1)</pre>	<pre>< 0 340 (1) < 0 340 (1) < 0 640 (1) 0 640 (1)</pre>	<pre> 0.135 15 0.15 1 0.15 1</pre>	2 004 (1) 2 003 (1) 2 223 (2)	0.050 11) 0.010 11) 0.010 11)	•
	83-183	80-123 83-180	<pre> 0.930 (1) C.930 (1) </pre>	<pre> 0.340 (1) 0 340 (1) </pre>	<pre>< 0.151 [1] < 0.150 [1]</pre>	$\begin{array}{c} 0.203 \\ 0.203 \\ 1 \end{array} \left\{ \begin{array}{c} 2 \\ 1 \end{array} \right\}$	0.010 (1) 0.010 (4)	
	84-154	83-154	< 5.036 [1]	< 0.340 (1)	< 0.150 (1)	0.CC3 (1) 《	0.010 (1)	
· · ·	5 	• • •	SEE END CE THES	REPORT FOR A L	ISTING OF AVALYSI	S METADOS.		

. .

٠. ٠

.

SD-BHJ-DP-051 Rev. 7

1

.

٠

.

PA01 5.2

÷

n ny r · • • .

..

• •

503

Ŧ

•

-S. frim infri 1 - 1 - A

SAMPLE TYPE: CONFINED ANALYSIS GROUP: TRACE

Sampling Location	SAMPLING EVENT CODE	SAMPLE NUMBER		A1 MG/1	(A)	AS NG/L	(A)	u Hg/l	(A)	BA MG/L	(A)	CD MG/L	(A)		CD NG/L	(A)
DC-14	83-154	83-154 83-191	·	0 024	{2 1			1.740	m	. 0.008	- (1)			4	0,010	(1)
	83-150	83-108 83-150	ć	0 080				1.740	 	0.004 0.004	-{ <u>1</u> }			ć	$\begin{array}{c} 0 & 010 \\ 0 & 010 \end{array}$	$\left\{ \begin{array}{c} 1\\1\\1 \end{array} \right\}$
•	83-266	83-233 83-266		0.014			•	1,430 1,390	{ ! }	0.004 0.004	{ ! }			((0.010 0.010	$\left\{\begin{smallmatrix}1\\1\\1\end{smallmatrix}\right\}$
	83-261	83-203 83-261		0.080 0.080 0.012			•	1.110 1.120	{}}	0 005 0,005	{1}		-	• •	$0.010 \\ 0.010$	{ ! }
DC=15	80-56	80-31 80-56	•	0 010 0 010				0:050 0:050	{}}	0.061 0.063				•	0.010 0.010	
	80-54	80-54	ć	0.020				0.020		0.068		•		č	0.010	
	80-57	80-57	ç	0.010	i i i			0.045	}i!	0.058] []			È	0.010	ļii
	80-87	80-87	è	0.010				0.035		0.033				è	0.010	
	80-137	80-94 80-137	<	0.010				0 260		< 0.0017	{! }			č	0.010	$\left\{ \begin{array}{c} 1\\ 1 \end{array} \right\}$
N	80-176	80-197 80-176	4	0.030				0.260		<pre>0.005 0.005 0.005</pre>	$\left\{ \begin{array}{c} 1\\ 1\end{array} \right\}$			¢ ¢	0.010	$\begin{pmatrix} 1 \\ 1 \end{pmatrix}$
	80-135	80-999 80-135		0 034				0.220		0.009		•		¢ ¢	0.010	
	80-120	80-149		0 053				0.230		< 0.00S	ļī{			ç	0.010	_}i{
	80 120	80-139	ì	0.010	{i}			0.210		< 0.005				č	0.010	{i}
	80-171	80-131		0.070		•		0.290		< 0,005 < 0,005				č	0.010	
	80-193	80-114	ć	0 010				0.190	11	< 0.005 < 0.005	11			ć	0.010	
	81-41	81-24	•	0.070				0.350	}i{	0.010	i _:			č	0.005	{i}
	81-2	81-2		0.700				0.510	{i}	0.013	· {]]			¢	0 007	
	81-46	61-36 81-46		0.700				0 520		0.033				, č	0.015	{1}
		81-50		0.150				0.650]1]	0.020	life			è	0.010	(if
	81-33	81-32		0.100				0.810	(1)	0.030	(1)			۲	0.010	(1)
		81-33		0.032	2			0 770	(1)	0 020	an		•		0 010	111
	81-21	81-27	Ś	0 080				0.880	11	0.004	- } [[.].			ç	0.010	{ï}
		V 4 - 7 4	`	0 044	2		*	0.210	(1)	0.004	(1)			•	0.004	[1]
	41-64	81-80		0 140 0 080 0 060	112			0.812 0.790	(1) (1)	0 015 0,010	{ ! }			· .	$ \begin{array}{c} 0 & 012 \\ 0 & 010 \end{array} $	

SEE END OF THIS REPORT FOR A LISTING OF ANALYSIS METHODS.

PAGE б

g--- 4

1 .

204

 1.5°
. . . .

SAMPLING LOCATION	SAMPE ING EVENT CODE	SAMPLE MUMJER		CR MG/1	(A)		СЫ ИG/L (A)	MG/L	.A)		Måzi	{A}		- :3) MG/L	(A)		MU MG/L	i
DC-14	83-154 83-150	83-154 83-191 83-108 83-150	 ; ; ;	0 040 0 040 0 040		(((0.010 { 0.010 { 0.010 {		 0.01° 0.010 0.010 			0.032 0.031 0.032	(1) (1) (1)	< < <	0.002 0.001 0.004 0.004	(2) 1) 1) 1)		0.750 0.740 0.740	
	83-266	83-233 83-266	۲ ۲	0.040 0.040	{}}	((0.010	1}	< 0.010 < 0.017	13		0 034 0.033	$\left\{ \begin{array}{c} 1\\ 1 \end{array} \right\}$	۲ ۲	0.001 0.004 0.004	(2) (1) (1)		0.630 0.630	li)
	83-251	83-203 83-261	•	0.040 0.040	{ ! }	((0.010 {	ł	<pre>0.010 < 0.010</pre>	{ ! }		0.034 0.035	[]}	((0.004 0.004 0.004 0.002		•	0.620 0.640	$\left\{ \begin{array}{c} 1\\ 1 \end{array} \right\}$
DC-15	80-56 80-54 80-57 60-87 80-117 80-135 80-135 80-135 80-135 80-133 81-131 80-193 81-41 81-2 81-46 81-33 81-27 81-64	80 - 31 80 - 56 80 - 57 80 - 57 80 - 57 80 - 87 80 - 137 80 - 137 80 - 137 80 - 1397 80 - 135 80 - 24 81 - 32 81 - 32 81 - 32 81 - 27 81 - 74 81 - 64		0.003 0.0000 0.003 0.0000 0.0000 0.00000000		**********	$\begin{array}{c} 0 & 002 \\ 0 & 005 \\$				~~~~~	D D						0.030 0.0300 0.0000 0.00000000	
· .	. ·	81-80	SEE	0 010	(1) THIS	< . R 2	0.002 {	1) A LI	0.390 STING DT	::) 	SIS	0.082 METE 202	11)		0.130 0.017			1.080	•
			452	- 10 UI	1111.4		, ont ton i		GING G.	n • 164	919	nie reality	•.						

: .

.

.

PAGE 5.1

٠

.

6

SD-BWI-DP-061 Rev. 1

.

()

٠

.

.

.

105

5 · •

SAMPLING LOCATION	SAMPI ING EVENT COPE	SAMPLE NUMUER		NI NG/L ··· (A)		р MG/L (А	\)		(A)	SR MG/	L.	(A)		ZN MG/L	(A)
DC-14	83-154	83-154													
	\$3-150	83-191 83-108 83-150	(((0 030 1 0 030 1 0 030 1	с с с	0.340 (1 0.340 (1 0.340 (1		0.150 0.150 0.150	$ \left\{\begin{array}{c}1\\1\\1\\1\end{array}\right\} $	0. 0 0.	003 003 003	$\left\{ \begin{array}{c} 1\\ 1\\ 1\\ 1 \end{array} \right\}$	((($0.010 \\ 0.010 \\ 0.010$	$ \left\{\begin{array}{c}1\\1\\1\\1\end{array}\right\} $
	83-255	83-233 83-266	۲ ۲	0.030 (1)	ć	0.340 (1 0.340 (1	} :	0.150 0.150	[]]	0. 0.	003	<pre>[1]</pre>	۲ ۲	0.010 0.010	$\left\{ \begin{array}{c} 1\\ 1\end{array} \right\}$
	83-261	83-203 83-261	۲ ۲	0.030 [1]	ć	0.340 1 0.340 1	} :	0.150 0.150	{] }	0. 0.	003 003.	${1 \\ 1}$	ć	0.010 0.010	<u>}</u>
DC-15	80-56	80-31 80-56	< <	0.020(11) 0.020(11)		0.300 (1		0.100		0	084 065	<u>}}</u>		0.110	
	80-54	80-54	ć	0.020 11		0.280 1	il č	0.100	111	Ŏ.	051	{i{	•	0.020	[i]
	80-57	80-16	. ((0.020 (1) 0.020 (1) 0.020 (1)		0.200 11 0.300 11		0.100 0.100 0.100		0.0.	052			0.020	
	80-87	80-87	¢	0 020 11	4	0.200	ijċ	0.100	lij	Ö.	018	1ij		0.040	<u>(i)</u>
	80-137	80-94 80-137 80-197	(((0.020 11	(() ()	0.200 1		· 0 100 0.100 0 100		0. 0. 0.	018		ć	0.043	
2 D	80-178	80-176	¢	0.020 11	¢	0.200	i) i	0.100		ŏ.	002	11	ć	0.002	$\{i\}$
ת	80-135	80-999 80-135 80-149	((0.020 [1]	۲ ۲	0.200 (1		0.100		0. 0.	005		ć	0.002	{ ! }
	80-120	80-120	ì	0.020 11	è	0 200 11	ij č	0.100	11	0.	004	11	è	0.002	{i}
	80-131	80-139 80-108 80-131	(((0.020 (1) 0.020 (1) 0.020 (1)	۲ ۲	0 200 11		0.100		0. (0)	004		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0.002	
	80-193	80-114	ç	0.020 11	č	0 200 1	il <	0 100	-{i}	¢ Ö.	õõî	1i {	•	0.030	11
	81-41	80-193 81-24 81-41	•		ć	0 200 11		0.100		0 0 0	002			0.030	
	81-2	81-2	¢	0.010 11	č	0.200	ij č	0 100	li)	Õ	028	11		0.320	111
	81-40	81-36 81-46 81-50	ć	0.010 11 0.010 11 0.010 11	C	0 200 11 0 440 11 0 490 11		0.100 0.100 0.100		0. 0. 0.	030 040 040			0.030 0.008 0.010	$\left\{ \begin{matrix} 1\\1\\1\\1 \end{matrix} \right\}$
	81-33	81-32	٢	0.010 (1)	۲	0.200 (1	ŋ [']	0.610	(1)	0.	030	<u>{</u>]]		0.013	(1)
·	B1-27	81-33 81-27 81-74	، د	$\begin{array}{cccc} 0 & 010 & 1 \\ 0 & 020 & 1 \\ 0 & 008 & 1 \\ \end{array}$	((0.200 (1 0.200 (1 0.100 (1		0.100 0.100 0.043	$\begin{pmatrix} 1\\1\\1\\1 \end{pmatrix}$	0. 0. 0.	030 008 008	$\left\{ \begin{array}{c} 1\\ 1\\ 1 \\ 1 \end{array} \right\}$	(((0.005 0.002 0.004	
	81-64	81~64 81~80	ć		۲ ۲	0 200 11		0.100 0.100		0. 0	024 023	{ 1 }	۲ ۲	0.015	{ ! }

SEE END OF THIS REPORT FOR A LISTING OF ANALYSIS METHODS.

.....

SD-BHI-DP-061 Rev. **م**ىر

(

PAGE 8.2

206

SAMPLE TYPE: CONFINED AMALYSIS GROUP: TRACE

Sampling Localion	SAMPLING EVENT CODE	SAMPLE NUBBER	Al , HG/L (A) : *	AS MG/L (A)	B MOZL (Å)	_	BA MG/L (A)	CD Mg/L	(A)	CO MG/L	{A}
DC-15	81-96	81-85 81-96	0.100 (1) 0.190 (1)			0.740 (`) 0.760 (±)	((0.005 (1) 0.005 (1)			c 0,010 c 0.010	$\begin{pmatrix} 1\\ i \end{pmatrix}$
	81-69	81-69 81-84	0 500 (2) 0 (30 1) 0 040 1)			0.780 {1} 0.740 {1}	•	0.007 (1) 0.005 (1)			c 0,010 c 0,010	$\left(\begin{array}{c} 1\\ 0\\ \end{array} \right)$
	82-94	82-41 82-94	0 025 12 0 360 11 0 360 11 0.930 12	•		2 340 (*) 2 320 (1)		0.009 {1 0.013 {1 1}			0.015 0.015	
DC-16A	81-109	81-109 81-167	<pre></pre>		¢	0.022 (1)		0.030.11			0.020	
	82-17	82-17	< 0 080 11 < 0 080 11			0.020		0.003 11			0.020	{ {i{
	85-93	82-45 82-93		•	•	0.050 (1) 0.050 (1)		0.024 (1) 0.024 (1)	•			
	82-19	82-19 82-88	 0 080 11 0 080 11 0 080 11 	· • •	ł	0.500 (1) 0.510 (1)	•	0.003 [1]			c 0.01(c .0.010	5 13
	82-188	82-140	< 0.080 [1] 0.022 [2]	•		D. SOU (1)		0 365 (1)	· .		c 0.010	<u>i</u> (11)
207	82-124	82-188 82-124				0.600 (1) 0.630 (1)	• ;	0.205 11			c 0.010 c 0.010	
,	82-143	82-172 82-126	 0.080 0.030 1 0.052 	 	·	0.620 (1) 0.610 (1)		0.007 [1]	•		c 0.010 c 0.010	} <u>{}</u> } →
	82-202	82-143 82-202	< 0.080 11 < 0.070 11			0.620 (;;; 0.540 (;)		2 078 [1] 2 217 [1]			c 0.010 c 0.010	
	82-322	82-228 82-322	 0.070 [1] 0.080 [1] 0.030 [2] 			0.550 [1]		0.014 (1)		,	c 0.010 c 0.010	
	82-332	82-361 82-332 82-358	<pre>< 0 080 [1]</pre> < 0 080 [1]< 0 080 [1]< 0 080 [1]	, :		1 410 11 1 500 .) 1 500 .)		0 020 11			c 0.010 c 0.010 c 0.010	
	82-430	82-430	0 290 11			2.600		0.023 (2)			c 0.010) (a)
	83-29	82-473 83-29 83-41	0 280 11 0 280 11 0 080 11 0 080 11			2.600 11 2.570 11 2.600		0 013 (1) 0 013 (1) 0 074 (1)		•	c 0.010 c 0.010 c 0.010	
DC-16N	83-147	83-147. 83-185	(1) 080 0 >		,	0.030 (1) 0.070 (1)		0.024 (1) 0.024 (1)			0.010 0.010	
DC-16C	89-100	83-100	(250 (1)			3.900 (1)		2.030 (1)			0.013	(1)

· · · ·

4 1 A

+ 2.s

.

.

1

SD-BWJ- DP-061 Rev.

هـــ

PAGS 7

.

- **3** - 24 17 5 56 - 686

SAMPLE TYPE: CONFINED ANALYSTS GROUP: TRACE

. .

• ;

.

SAMPLING LUCATION	SAMPLING EVENT CODE	SAMPLE NUMBER		Сн MG71. ** (A)	· "I	CU NG/L	(A)	FE MG/L	(A)	ł	L1 · 4G/L	(A)		MN MG/L	(A)		MO MG/L	(A)
DC-15	81-96	81-85 81-96	(0.003	1 }	۲ ۲	0.002 0.002	$\left\{ \begin{array}{c} 1\\ 1\end{array} \right\}$	0.160 1.010	[1]		0.120 0.110	{ ! }		0.247	$\left\{ \begin{array}{c} 1\\ 1\\ 1 \end{array} \right\}$		1.130	$\left\{ \begin{array}{c} 1\\ 1 \end{array} \right\}$
••	81-69	$81 - 69 \\ 81 - 84$	۲	0.003	1)	¢ ¢	0.002 0.002	{}	0.080 0.050	<pre>{1}</pre>		0.103		ć	0.100			1.070 1.000	
	82-94	82-41 82-94	د د	U 036 0 036 (1]	((0.006 0.006	{ ! }	0.140 0.160			0.019 0.020	{ 1 }	٢	0.003 0.004 0.003	1 1 1 2		0.470 0.470	$\left\{ \begin{array}{c} 1\\ 1 \end{array} \right\}$
DC-16A	81-109	81-109 81-167		0.230	<u>}</u>	¢	0.006	}}	0 . 0 8 0 0 . 0 9 0	#1	(0.007			0.013		š	0.020	
	82-17	82-17	ć	0.040	Ī{	\$	0.006	} ! }	0.070	11		0.020			0.030	ĮĮ.	Č	0.020	IĪ
	82-93	82-45 82-93	ć	0.040	i}	č	0.006]i}	0.090 0.090			0.028		•	0.040		č	0.020	
	82-19	82-19 82-88		0.080 0.080	1}	((0.006 0.006	{ ! }	0.100 0.110	[1]	ć	0.006 0.006	$\left\{ \begin{array}{c} 1\\ 1 \end{array} \right\}$	« «	0.003			0.150 0.150	$\{1\}$
	82-188	82-140	۲	0.030 (11	۲	0.006	(1)	. 0.070	(1)	۲	0.006	(1)		0.004			0.200	(1)
228	82-124	82-188 82-124	•	0.030 0.050	1}	((0.006 0.006	$\left\{ \begin{array}{c} 1\\ 1\end{array} \right\}$	0,070 0,050	<pre>{}}</pre>	¢	0.006 0.007	{}		0,005		•	0.200	$\left\{ \begin{array}{c} 1\\ 1 \end{array} \right\}$
	82-143	82-172 82-126		0,050 0,060	1}	« «	0.006 0.006	{}}	0.050 0.070	{! }		$0.010 \\ 0.019$	$\left\{ \begin{array}{c} 1\\ 1 \end{array} \right\}$	4	0.004			0.110 0.130	<pre>{1}</pre>
	82-202	82-143 82-202		0.060 0.100	1}	с с	0.006 0.006	$\left\{ \begin{array}{c} 1\\ 1\end{array} \right\}$	0 060 1:810	$\left\{ \begin{array}{c} 1\\ 1 \end{array} \right\}$		0.020 0.011	{ ! }	«	0.003			0.140 0.040	$\left\{ \begin{array}{c} 1\\ 1 \end{array} \right\}$
	82-322	82-228 82-322	¢	0.030	1)	¢ ¢	0.006 0.006	[]	2.230 0.030	$\left\{ \begin{array}{c} 1\\ 1 \end{array} \right\}$		0.013 0.110	$\left\{ \begin{array}{c} 1\\ 1 \end{array} \right\}$	۲	0.003	1		0.040 0.130	$\left\{ \begin{array}{c} 1\\ 1 \end{array} \right\}$
	82-332	82-361 82-332 82-358	(((0.030 0.030 0.030	<u>i</u> }	с с с	0.006 0.006 0.006	${1 \\ 1 \\ 1 \\ 1}$	0.020 9.300 8.500	$\begin{pmatrix} 1\\ 1\\ 1\\ 1 \end{pmatrix}$		0.110 0.025 0.024	$\left\{ \begin{matrix} 1\\1\\1\\1 \end{matrix} \right\}$	•	0.003 0.140 0.140		•.	0.180 0.150 0.150	
	82-430	82-430		0.160 (1)	۲.	0.006	(1)	0.100	(1)	¢	0.006	(1)		0.167	$\left\{ \begin{array}{c} 2\\ 1 \end{array} \right\}$		0.250	(2)
	83-29	82-473 83-29 83-41		0 160 0 060 0 060	1) 1) 1)	с с с	0.006 0.010 0.010	$\left\{ \begin{array}{c} 1\\ 1\\ 1\\ 1 \end{array} \right\}$	0.100 0.080 0.100		¢	0.014 0.017	$\left\{ \begin{matrix} 1 \\ 1 \\ 1 \\ 1 \end{matrix} \right\}$		0.010 0.003 0.007 0.008			0.250 0.240 0.024	
DC-168	83-147	83-147 83-185	د د	0 040 0 040	H	د د	0 010 0.010	{ ! }	0.430 0.430	[i]		C 025 0.027	<pre>{1}</pre>		0.044. 0.047			0.030 0.020	{i}
DG-16C	83-100	83-100	٢	0 040 (1)	۲	0 010	(1)	3.600	(1)		0.010	(1)		0.092	(2)		0.390	[1]
			SEE	END OF 1	210	REDI	10 T F D L		LETING OF			IC THON	c						

LISTING OF ANALYSIS METHODS.

•

SD-BWI-DP-061 Rev. 1

•

Ċ

×.

•.

PAGE 7.1

:

.

SAMPLING LOCATION	SAMPI ING EVENT CODE	SAMP1 E NUMBE R		51 5671	' (A)	• •	р NG/L	{A}		NG/L	(A)	MOLL	(A)	ZN Ng/	L	(A)
DC-15	81-96	81-85 81-96	< <	0.020	{}}	. « . «	0.200 0.200	{ }]	C C	1 01 00	;1)	010 0.011	{ ! }	0. 0.	010 040	(i)
. ,	81-69	81-89 81-84	((0.020 0.020	{{}	с с	0.200 0.200	{ ! }	د د	00 041.0		0.011 0.011	23 23	D. 0.	010 010	
	82-24	82-41 82-94	č	C 026 0.026		((0.340 0.340	{ }}	((0 150 0 160	[]]	0.012 0.012	{ 1 }	¢ 0.	015 015	{}}
DC-18A	81-109	81-209	;	3.030	<u>, ; ; ;</u>	. ç	0 340	<u>{}}</u>	¢	(in	122	0.051	<u>;;;</u>	¢ 0.	0:::	11
	82-17	82-17	< <	0.030		Č,	0 340		Ċ	0.160		0.042		¢ 0.	020	
	82-93	82-45 82-93	с с	0.030		• • •	0 340		ċċ	0.150		0.044			010	{ ! }
	82-19	82-19 82-88		0.020	{!}	c c	0.340 0.340	{}}	¢	0.350 0.350	11	0.015	[]	c 0.	010	
	\$2-188	82-140	K 5	0.020	(1)	¢	0.340	(1)	4	0 130	(11	0.011	11)	x).	010	(1)
	82-124	82-188 82-124	۲ ۲	0.020	- { ! }	•	0.340 0.340	{ ! }}	с.	0.150		0.011 0.011	`{}}	< 0.	010 010	11) 11)
200 ·	82-143	82-172 82-126	•	0.020 0.020		((0.340 0.340	{! }	۲ ۲	0.172		0.011 0.017	{ ì }	< 0.	010	
	82-202	82-143 82-202	((0.020		ć	0.340 0 340	{! }	۲ ۲	0.150 0.150		0.017		· P.	010	11 1
	82-322	82-228 82-322	ć	0.020 0.020	{}	¢	0.340 0.500	<i>{!}}</i>	` < <	0 159 0,139		0,015 0,019	$\begin{pmatrix} 1\\ 1 \end{pmatrix}$	< 0.	010	(i)
	82-332	82-361 82-332 82-358	6 6 1	0 020 0 020 0 020			0.500 0.460 0.490	{ ! }	((((0.150 0.350 0.159	11	0.018 0.017 0.017		¢ 0.	010 010 010	
	82-430	82-430	¢	0.020	:		0.500	(1)	¢	0.132	:2)	\$1517	12)	· ?.	010	(1)
	83-25	82-473 83-29 83-41	• • •	0.020 0.010 0.030		с с	0 470 0 340 0 340	{i}	(((0.150 0.150 0.150 0.150		0.017		< 0. < 0. < 0.	010 [°] 010 010	
DC-168	83-147	83-147 83-185	((0.030	{}}		0.410 0.350	{!}	د د	0.150 0.150	;;;;}	0.000 0.000		c 0.	21V 019	11) 12)
0C-16C	83-100	83-100	ſ	v. v30	(1)		2.000	(1)	<	0,150	(2)	0.003	(1)	¢ 0.	010	(2)
	,	· · · · · · · ·	SEE	END OF	1111	s RE	PORT FO	ŘÁĹ	151	ING OF	HALYS	IS METHOD	S .			

·· . ·· (

SD-BWI-DP-061 Rev.

مىرو

•

.

PA3: 7.2

· · · · ·

.

100.34

1

.

SAMPLING LOCATION	SAMPLING EVENT CODE	SAMPLE NUMBER		A1 44G/1 ·	(A)	AS MG/L	(A)	B MG/L	(A)	¢	BA MG/L	(Ą)	CD MG/L	(A)		CO MG/L	(A)
DC-16C	83-100 83-259	83-30 83-215 83-259	< <	0 250 0 080 0 080	{ } }			3 90 0.81 0.80	$\begin{array}{c}0\\0\\1\\0\\1\end{array}$		0.047 0.010 0.020	$ \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix} $			(((0.010 0.010 0.010	$\begin{pmatrix} 1\\1\\1\\1 \end{pmatrix}$
DC-18	86-166	86-166 86-167	ć	0.200 0.200	{ ! }}			0,10 0,10	5 (1) 6 (1)	κ. 	0.003 0.003	{ ! }					
DC-19C	84-53 84-40 84-75 84-86	84-53 84-84 84-40 84-77 84-29 84-75 84-75 84-18 84-86	(((U 070 0 070 0 070 0 070 0 090 0 080 0 210 0 180			-	0 80 0 81 0 78 0 79 0 66 0 66 0 65 0 64	0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1	• •	0.004 0.004 0.004 0.002 0.002 0.002 0.002 0.003	(1) (1) (1) (1) (1) (1) (1)			*******	$\begin{array}{c} 0 & 0 & 10 \\ 0 & 0 & 10 \\ 0 & 0 & 10 \\ 0 & 0 & 10 \\ 0 & 0 & 10 \\ 0 & 0 & 10 \\ 0 & 0 & 10 \\ 0 & 0 & 10 \\ 0 & 0 & 10 \end{array}$	
DC-20C	84-9	84-49 84-9	с с	0.070 0.070	$\{1\}^{1}$			0.57 0.58	8 {}		0.004 0.004	<pre>{}</pre>			¢	0.010	{ ! }
DC-22C	84-105	84-105 84-153	د د	0.070 0.070	<pre>{1}</pre>			0.36 0.36	8 {i}		0.005 0.004	{ ! }	•	•	с с	0.010 0.010	[1]
DC-23GR 24 0	86-133 86-141 86-181	86~133 86~134 86~141 86~142 86~142 86~181 86~182	<pre><</pre>	0 200 0 200 0 200 0 200 0 200 0 200 0 200				0 22 0 22 0 20 0 20 0 44 0 44	$\begin{array}{c} 5 \cdot (1) \\ 2 & (1) \\ 3 & (1) \\ 4 & (1) \\ 6 & (1) \\ 8 & (1) \end{array}$	د د	0 006 0.006 0.004 0.005 0.003 0.003	$ \left\{ \begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 $			•		
E NYË AK I	STTE-209 STTE-210 84~166 85-180	SITE-209 SITE-210 84-166 84-184 85-180 85-181	< < <	0,100 0,070 0,070 0,060 0,060	0 1 1 1 1 1 1			0.04 0.03 0.03 0.01 0.01	0 (0) 3 (1) 4 (1) 7 (1) 6 (1)	·	0 017 0 017 0 032 0 051	$ \left\{\begin{array}{c}1\\1\\1\\1\\1\end{array}\right\} $	•			0.015 0.015 0.017 0.017	
F OKD	SITE-208 SITE-207 SITE-219 85-188 85-303	SITE-206 SITE-207 SITE-219 85-188 85-189 85-303 85-304	< < < <	0 090 0 050 0 060 0 060 0 060 0 060 0 060	(0) (1) (1) (1) (1)			0.09 0.09 0.01 0.01 0.02 0.02 0.01	0 (0) 8 (1) 6 (1) 6 (1) 6 (1)		0 D20 0 020 0 016 0 018	1 1 1 1 1 1			~ ~ ~ ~	0.017 0.017 0.017 0.017 0.017	
HCGLE	511E-220 82-7 85-175	S11E-220 82-52 82-7 85-1/5	< < < <	0 050 0.080 0.080 0.080 0.060	(0) (1) (1) (1)			 0.02 0.02 0.02 	U [] 0 [] 2 []		0 021 0 021 0 011	<pre>{1 {1 {1 {1 {1 {1 {1 {1 {1 {1 {1 {1 {1 {</pre>		• • •	< < <	0.010 0.010 0.017	

SEE END OF THIS REPORT FOR A LISTING OF ANALYSIS METHODS.

.

4 1

SD-EWI-DP-061 Rev.

....

.

PAGE 8

.

٠Ķ

.

Saart Ing Location	SAMPLING EVENT CODE	SAMPLE NUI-ILER		CR BG∕l`	{Â}	× •	CU MG/L	(A)		FE MU/L	[A]		LI. MG/L	·{A}		MN MG/L	(A)		140 MG/L	{A})	•
DC-16C	83~100 83-259	80-00 80-215 83-259	(((0 040 0 040 0 040		(((0.010 0.010 0.010	$\left\{ \begin{array}{c} 1\\1\\1\\1 \end{array} \right\}$		3.4.3 1.070 1.050			0.010 0.007 0.007			0.087 0.030 0.030	$\left\{ \begin{array}{c} 1\\1\\1\\1 \end{array} \right\}$		0.380 0.190 0.180		
DC-18	80-166	81 - 166 86 - 167			-	((0.030 0.030	{!}	د د	0.030	{}}	¢ ¢	$\begin{array}{c} 0 & 016 \\ 0 & 016 \end{array}$	<pre>{}</pre>	¢ ¢	0.010 0.010	$\{1\}$	с с	0.600 0.800	$\{i\}$	
DC+10C	84-53 84-40 84-75 84-86	84-53 84-84 84-40 84-77 84-29 84-75 84-18 84-86	* * * * * * * *	0,030 0,030 0,030 0,030 0,040 0,040 0,040 0,040			$\begin{array}{c} 0.006\\ 0.006\\ 0.006\\ 0.006\\ 0.010\\ 0.010\\ 0.010\\ 0.010\\ 0.010\\ 0.010\\ 0.010\\ \end{array}$	<pre> { 1 } 1 } 1 } 1 } 1 } 1 } 1 } 1 } 1 } 1</pre>		0.170 0.180 0.320 0.320 1.310 1.330 1.330 1.350 0.950			0 003 0 009 0 008 0 013 0 012 0 012 0 012 0 012	<pre>(1) (1) (1) (1) (1) (1) (1) (1)</pre>	•	0.022 0.021 0.019 0.019 0.047 0.043 0.043 0.043			0.290 0.300 0.260 0.260 0.310 0.300 0.310 0.310 0.290		
рс-20C	84-9	84-49 84-9	د د	0.030 0.030	{ ! }	((0.006 0.005	{! }		0.580 0.570	(i)		0,003 0,008	<u>}</u> }		0.030 0.030	$\left\{ \begin{array}{c} 1\\ 1 \end{array} \right\}$		0.240		
DC 22C	84-105	84-105 84-153	د د	0.030 0.030	- { } }	с с	0.006 0.006	{ ! }		0.050 0.030	$\begin{pmatrix} 1 \\ 1 \end{pmatrix}$		0.000 0.003	$\left\{ \begin{array}{c} 1\\ 1 \end{array} \right\}$	ć	0 23¢ 0.004			0.12 0.120	lit	
рс-236н Ц	86-133 86-141 86-181	86-133 86-134 86-141 86-142 86-181 86-181		•		((((0.030 0.030 0.030 0.030 0.030 0.030 0.030	$ \{ \begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 $		0.030 0.030 0.030 0.030 0.030			0.013 0.016 0.016 0.013 0.013 0.018		~ ~ ~ ~ ~ ~ ~	0.010 0.010 0.010 0.010 0.010 0.010			0.600.0 0.600.0 0.600.0 0.500.0 0.500.0	(1) (1)	
LNYERA I	STIE - 209 STIE - 210 84 - 166 85 - 180	SITE - 209 STIE - 210 84 - 166 84 - 184 85 - 180 85 - 181	< < < < <	0 030 0 036 0 036 0 032 0 032		• • • •	0 006 0.006 0.006 0.005	(1) (1) (1) (1)		0:05: 0:120 0.074 0.074 0.050 0.059	······································	((0.016 0.015 0.008 0.008		¢	0.020 0.057 0.057 0.032 0.032		< < < <	0.020 0.020 0.034 0.034	[<u>1</u>]	•
FORD	SIIE-206 SIIE-207 SIIE-219 85-188	SIIE-200 SIIE-207 SIIE-219 85-188 85-189	۲ ۲	0,030 0.032 0.032	(0) { }	<	0.050 0.006 0.006	(0) {1 }		0.020 0.020 0.120 0.140		٢	n.020 0.014 0.014	<pre>{0} {1 } </pre>		0.120 0.065 0.064	(0); ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	•	0.034	{`	•
MC-63- 5	85-30J	85-303 85-304	((0.032 9.032	{i}		0.006	<pre>{}}</pre>		0.102			\$ \$13 8			0.062	<u></u> [5]	ć	0.027	t.	
NOUL L	82-7 85-175	82-52 82-7 ((85-175	4 4 4	0,000 0,030 0,032		с с с	0 006 0 006 0 006		•	D 0.060 0.051			$0.013 \\ 0.014 \\ 0.008$			0.037 0.054 0.034			0.020 0.020 0.034	•	
 	, *,* *, * , * * .*	م و ماند ایر ۲۰ و ۲۰	SEF	END OF	INI	S KE	PORT FOI	RAL	15T1	NG DY .	SAAL)	(\$1\$	METHOD	S.	•				•		

.

.

PAGE 8.1 •

Ì.

.

SD-BWI-DP+061 Rev. 1

SAMPLING LOCATION	SAMPLING EVENT CODE	SAMPLE NUMER	NI HG/L	(A)		р HG/L	(A)	•••	PB MG/L	(A)	SI MG,	R /L	(A)		ZN MG/L	(A)	
DC-16C	80-100 80-259	83-30 83-215 83-259	<pre>< 0.030 < 0.030 < 0.030</pre>	<pre>{!}</pre>	((2.100 0.340 0.340		(((0.150 0.150 0.150		0 0 0	.003 .005 .005	$\left\{ \begin{array}{c} 1\\ 1\\ 1\\ 1 \end{array} \right\}$	< < < <	$\begin{array}{c} 0 . 0 1 0 \\ 0 . 0 1 0 \\ 0 . 0 1 0 \end{array}$	$ \left\{\begin{array}{c}1\\1\\1\\1\end{array}\right\} $	
DC-18	86-166	86-166 86-167		•							0	002	{ ! }	« «	0.040 0.040	{ ! }	
DC-19C	84-53	84-53	< 0.020 0.020	111		0.440	<u>{}}</u>	ç	0.150	111	0	. 006	111		0.020	<u>}}</u>	
	84-40	84-40	< 0.020	11		0.470	}i{	š	0.150		0	008			0.160	11	
	84-75	84-29	< 0.030	};;	\$	0.340	ļi	ş	0.150		0	.003			1.340		
•	84-86	84-18	< 0.030 < 0.030		с с	0.340		• • •	0.150		0	.020		. (0.020		
DC-20C	84-9.	- 84 - 49 84 - 9	<pre>< 0:020 < 0.020</pre>	{ ! }		0.350 0.400	$\left\{ \begin{array}{c} 1\\ 1 \end{array} \right\}$	۲ ۲	0.150 0.150	$\left\{ \begin{array}{c} 1\\ 1 \end{array} \right\}$	0	.005 .005	$\left\{ \begin{array}{c} 1\\ 1 \end{array} \right\}$		0.040 0.040	{}}	
DC-22C	84-105	84-105 84-153	< 0.020 < 0.020	(1)	с с	0.340 0.340	日	۲ ۲	0 150 0.150	{ ! }	0 0	. 006 . 006	$\left\{ \begin{array}{c} 1\\ 1 \end{array} \right\}$	¢	0.010 0.010	{}	
DC-23GR	86-133	86-133									0	013	<u>{}</u>	¢	0.040	<u>{</u>]}	
21	86-141	86-141									0 0	014	{i{	ç	0.043		
15	86-181	86 - 181 86 - 182									000	005		• • •	0.040	$\left\{ \begin{array}{c} 1\\ 1\\ 1\\ 1 \end{array} \right\}$	
ENYEART	SITE-209 SITE-210 84-106	SI 1E-209 SI 1E-210 84-166	< Q 026	(i)	¢	0 010 0.340	{°}}	ç	0.150	(1)	0	. 055	(1)	۲	0.015	(1)	
	82-180	84-184 85-180 85-181	<pre>< 0.026 < 0.030 < 0.030</pre>	$\left\{ \begin{matrix} 1\\1\\1\\1 \end{matrix} \right\}$	<	0,340	(1)	с с с	0.150 0.180 0.180	$ \left\{\begin{array}{c}1\\1\\1\\1\end{array}\right\} $	0 0 0	065 .057 .057	$ \left\{\begin{array}{c}1\\1\\1\\1\end{array}\right\} $	(((0.015 0.020 0.020		
FORD	S17E-205 SLIE-207	SI1E-206 SI1E-207	< 0.050	101					0 100	101	()	250	(0)	,	0.010	101	
	STIE-219 85-188	STIE-219 85-188	< 0.030					Ż	0.100	(1)	· · ·		101	Ì	0.020	(0)	
	85-303	85-189 85-303 85-304	 < 0.030 < 0.030 < 0.030 < 0.030 						0 180 0 130 0 130		0 0 0	071 054 061		· · · · · · · · · · · · · · · · · · ·	0.020 0.020 0.020		
MCGEE	S11E-220 82-7	SITE-220 82-52	(U. 1)28	(1)		0 340		ć	0 150	111	0	050	(1)		0.010		
	85-175	82-7 85-175	 0.020 0.030]]]	ć	0.340	115	((0.150 0.180	[i]	• 5	057		č	0.010	{i}	
		· · · · ·	SEE END OF	THIS	REPO	ORT'FOR	A L	1ST1	NG OF	ANAL Y	SIS MET	HID	5				

SEE END OF THIS REPORT FOR A LISTING OF ANALYSIS METHODS.

1 1 N N

SD-BWI-DP-061 Rev.

-

PAGE 8.2

SAMPLING LOCATION	SAMPLING EVENT CODE	SAMPLE NUMBER	1	A1 M8/L	{A]	AS MG/	L. '	(A)		NG/L	(A)	S/ MG,	۹ /۱	1A3	СС НG) 'L	{A}		CO MG/L	(A)
FOREE	85-175 85-300	85-178 85-300	•	0:050 0:060					< .	0.017	13	0	.012					ć	0.017	
	86-34	86-34	č	0.200]i]				è	0.100		į	020					•	0.017	(1,
	80-64	80-64	•	0.036	-111				•	0.025	· :{	Ő	013	} <u>;</u> {				¢	0.010	$\{1\}$
	81-79	81-73		0.040	-]]]				Ś	0.005		Ŏ		-}i{-				č	0.010	
	81-54	81-54		0.030					š	0.005	111	ů N	023	33				Ś	0.010	
	82-64	82-11	<	0.030		•		1	ç	0.020	11	ě	022					č	0.010	
	82-263	82-263	č	0 030				•	č	0.020		j	200.					č	0 010	
	82-397	82-325	è	0.080					· ·	0.020		, ,	0.1		•			è	0.010	
	82-424	82-424	•	0.250	 i 				Ś	0.020	1.1	5	005	[]]				č	0.010	
	82-436	82-436		0.250				5	ŝ	0.02		Ő	2003		<i>,</i>	· .•	. '	š	0.010	
	83-32	83-32	ç	0.00					Ę.	0.020	i i j	Ŏ	.õii	11			•	È.	0.010	
2 k.) 8 ml	83-83	83-27.	ŝ	0.080					ŝ	0 020		. 0	007	損	,	•		3.	0.010	
(.)	83-188	83-113	č	0.080]; {			•	÷ Ç	0.020	11	Ő	003		1			Ì.	0.010	li (
	83-373	83-323	č	0 080					•	0.040		0 0	009	11				š	0.010	til
		83-373	۲	0.080						0.030		ა	. 208	[1]				¢	0.010	:13
	83-331	83-331	۲	0.060						0 050	(1)	< 0	.001	111				¢	0.010	[])
	· · · · ·	83-344	۲	010 0						0.050	(1)	¢ . D	001	(1)				¢	0.010	(1)
	83-450	83-450	Š	0 380			•			0.083		. :	00.1	H.				¢	0.0	
	83-476	83-417	č	0 080						0.040		`	905]]]				š	0 0.0	175
	83-513	83-513	č	0.030						0.110		ĊŎ	102	罰				è	0.010	
	84-24	84-24 84-39		0.080						0 120 0 130		· · ·	00. 100					ċċ	0.010	
UURIAN	85-194	85-194 85-195	۲ ۲	0.050 0.060					((7.0.0 7:0.0			24				• • •	۲ ۲	0.017	· · · · · · · · · · · · · · · · · · ·
881-02	82-88	82-28	٩	0 080	<u>{1</u> }			,		0.380	: * *	Ģ	. ?	[1]				¢	0.010	·)
· · · ·	· ·	, 10 a. k. s. a. j. s. s. sa	S	EE END	01 1111	S REPO	ŘT F	OR A	LI	STING O	F AVAL	YSIS a	NEIN	DS.						

PAG: 0

.

.

.

SD-8WI-DP-061 Rev. 1 •

Ň

.

the state of the

.

. .

SAMPLE TYPE CONFINED ANALYSIS GROUP: TRACE

· .

. .

1.1.1 arta Alexandre

SAMPI ING LOCATION	SAMPLING EVENT CODE	SAMPLE NUMBER		CR MG/L	(A)	· .	CU MG/L	(A)	F MG	E S/L	(A)		LI HG/L	(A)		MN NG/L	(A)		MU MQ/L	(A)
HEGEE	85-175	85-176	4	0.032	$\{ \mathbf{I} \}$	4	0.006	$\{1\}$	Q	.052	(1)	•	0 008	(1)		0.034	(1)	•	0.034	(1)
	85-300	85-300	<u> </u>	0.032		Ś	0.006	- []]	0	134			0.015	{}}		0.053	<u>{</u>]}	ć	0.034	
	86-34	86-34	•	0.032	111	ì	0 012	111	Č	5.114			0.018	1ii		0.044	111	à	0.600	
4		86-35				4	0.012	11	0	1.113	11		0.017	115		0.044	11	۲.	0.600	(1)
	80~64	,80-64		0.008	311	Ś	0 002	- { } }	0	0.098		C	0,020			0.057	{}}	Ś	0.030	<u>{</u>]}
	81-79	81-73	(0,036	111	ì	0.002	- 111		150		`	0.091	111		0 290	111	•	0.030	111
		81-79	•	0.036	115	۲.	0 002	lis	Ō	150			0.082	115		0.360	111	¢	0.030	111
	81-54	81-54	<	0.036	. (!)	<	0 002	(1)	Ç	.260) (1)		0.074	(1)		0.403	(1)	<	0.020	(1)
	11.7 C A	81-56	<	0.036	-{!}	<.	0.002	- <u>{ ! }</u>	0	260			0 105	(1)	•	0.505	(1)		0.310	(1)
	82-04	82-11	· · · ·	0.010	311	Ś	0.000	111	L C	0.050			0.013	. []]		0.058	<u>{!</u> }	Ś	0.020	
	82-263	82-263	2	0 030	111	à	0 000	111	0	160				111		0 054	111	2	0.020	111
		82-283	ć	0.030	111	č	0.006	lif	ŏ	170			0.010	111		0.049	111	è	0.010	111
	82-397	82-325	۲	0.030	115	<	0 006	115	Č	100	111.		0.016	111		0.048	115	è	0.020	lif
		82-397	<	0.030	(1)	۲	0 006	- (1)	0	. 100	(1)		0.017	(1)		0.050	(1)	¢	0.020	(1)
	82-424	82-424	Ś	0.030	:{}}	Ś	0.006	- [1]	0	.160			0.009	$\{1\}$		0.045	$\{1\}$	<	0.020	(1)
	82.496	82-474	, c	0.030	311	Ś	0.006		L L	1.160			0.011	111		0.046	{!}	< c	0.020	{}
	02 400	82-498	č	0.030	111	2	0.000			000.000			0.011			0.045	111	~	0.020	111
	83-32	83-32	i	0.040	lit	ż	0 010	lif	ŏ	490			0.013	111		0 062	111	à	0.020	111
		83-63	•	0.040	115	۲	0 010	lif	ō	500			0.012	lif		0.064	lif	٠ċ	0.020	111
<i>v</i>	83-83	83-27	۲	0.040	(1)	۲.	0 010	(1)	Q	1.110			0.013	(1)		0.046	115	۲	0.020	[1]
i-d Ka	93.109	83-83	ć	0.040	·{}}	ç	0.010	- {] }	Q	.120			0.014	(1)		0.046	$\{1\}$	<	0.020	$\{1\}$
•-	0.1-146	83-188		0.040	111			111	0				0.016	111		0.042	111	< .	0.020	
	83-373	81-323	ì	0.040	HIC	ì	0.010	111	č	1060			0.010	111	6	0.044	111	2	0.020	111
					N - 1	•							0.014		•	0.005	121	•	0.020	141
	•	83-373	۲	0.040	(1)	۲	0 010	(1)	0	0.060	(1)		0.014	11	۲	0.004	11	۲.	0.020	.(1)
	80-331	83-331	<	0.040	άn.	c	0.010	111	0	080			0 017	(in	•	0.005	{{		0 020	(1)
														·-,	•	0.005	121	•	0.020	(•)
		83-344	•	0,040	(1)	٢	0.010	(1)	0	0.090	(1)		0.013	(1)	•	0.004	111	۲	0.020	(1)
	83-460	83-460	(0.040	ப்ப	ć	0 010	(1)	0	060	(1)		0 015	(1)		0.005	111	<i>`</i>	0 020	(1) .
		83-474	۲	0.040	111	ć	0.010	lii	ā	050	11		0.013	lit	ċ	0.004	11	ì	0.020	111
	83-476	83-417	· •	0.040	(1)	(0.010	(1)	0	070	115		0 016	115		0.004	iif-	ċ	0.020	lií
	0 1 E 1 1	83-476	¢	0.040	<u>{</u>]]	¢	0.010	(1)	0	.050	(1)		0.015	• (1)	<	0.004	(1)	۲.	0.020	(1)
	01-211	83-513		0.040	111	ç	0 010		0	130			0.011		<	0.004	$\{1\}$		0.050	$\{1\}$
	84-24	84-24	ì	0.040	111	2		111	0	140		•	0.012	311		0.004	111		0.050	111
		84-38	č	0.040	lif	č	0.010	lis	ŏ	170	lil		0.020	:{i}		0.005	{i}		0.030	
OURTAN	85-194	85-194	(0 032	(1)	ć	0 006	613	n	210			0 812	(1)		0 060	415		0.000	
,	,	85-195	,	0.032	4i}	k	0.006	11	ŏ	210	11		0.016	111		0.056	{i}	č	0.034	
KR1 - 02	82-68	82-28		0.040	ന്	(0.006	111	6	300	(1)		0 012	(1)		0 081	(1)		0 200	(1)
· ·				CND 05												0.001	14)		V.10V	(-)

SEE END OF THIS REPORT FOR A LISTING OF ANALYSIS METHODS.

the second second second second second second second

.

.

.

•

1 ī

:

?AG: 9.1

SD-BWI-DP-061 Rev.

	85-175 85-300	85-176 85-300 85-301	<pre></pre>		<pre></pre>	$\begin{array}{c} 0 & 056 \\ 0 & 057 \\ 0 & 057 \\ 1 \\ 0 \\ 057 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ $	<pre></pre>
	80-24	86-35	•			0 058 11	< 0.040 11
	80-64	80-64		< 0.200 [1] < 0.200 [1]	<pre>< 0.100 (1)</pre>	0.052 11	< 0.002 11 < 0.002 11
	81-79	81-73	0 020 11	< 0.200 1	< 0.100 11	0.064 11	0.002 11
	81-54	81-54	0 020 11	0.200 11	0.100 11	0.055 11	0.015
	82-64	82-11	< 0.020 11		¢ 0.150	2 062 11	c 0.010 1
	82-263	82-263	0.020	< 0 340 (1)	c 0.150 11	0.059 1	< 0 010 [1]
	82-397	82-325	< 0.020 [1]	< 0.340 (1)	< 0.150 11)	0.051 (1)	
	82-424	82-424		<pre>< 0.340 [1] < 0.340 [1] < 0.340 [1]</pre>	0.150 11		<pre>< 0.010 11 < 0.010 11 < 0.010 11</pre>
	82-436	82-436 82-436		 0.340 (1) 0.340 (1) 		0.050	
	83-32	83-32		< 0.340 (1) < 0.340 (1)	< 0.75 } }	10.050	C 0.010 11
,	83-83	83-27	0.030	¢ 0.340 [1]	¢ 0.150 [1]	0.063 (1)	
	83-188	83-113		< 0.340 (1)	c 0.120 11		
	83-373	83-323	< 0.030 [i]	< 0.340 (i)	< 0.150 [1]	0.015 [1]	¿ 0.010 [11
		83-373	0 030 [1]	< 0.340 (1)	<. 0.150 (1)	0.015 (1)	(D.D1C (1)
	83-331	83-331	< 0.030 (1)	< 0.340 (1)	< 0.130 (1)	0 003 11)	< 0.010 (1)
	•	83-344	(0.030 (1)	< 0.340·(1)	< 0.150 (1)	0.002 (1)	(0.010 (1)
	83-460	83-460		<pre>< 0.340 (1)</pre>	<pre>< 0.150 **) </pre>		
	83-476	83-417	0.030	< 0.340 (1) < 0.340 (1)	< 0.150 (1) 0.13(1)	0.003 11	
	,83-513	83-513	0 030 11	< 0.340 11 < 0.340 11	¢ 0.192	ğ. 253 (1)	0.010
	84-26	84-24 84-38		· 0.340 [1]			 3.323 4.523 4.523 4.523

(A)

р Ма/L

• *

:

SAMPL NG

10041108

.

HICGLE

. .

.

19 14 55

DURTAN

XRL-02

. .. .

SAMPLING EVENT

CODE

SAMPLE

NUMBER

85-194

85-195

82-28

· ·· .:

85-194

82.68

2.45 2.42 2.43

11

- MG/L (Ă)

0.030 (1) 0.030 (1)

0 030 (1)

۰.

۰.

۲

۲,

۲

14. #1+47 A. 15

1-1

PE NG/L (A)

0.155 11)

<

¢

0.420 (1) <

SEE END OF THIS REPORT FOR A LISTING OF AVALYSIS NETHODS.

MG/L

[A]

0 153 (1) < ...056 (1) <

(1) est (1)

6.626 (1)

0.030 (1)

. .

PAGE 9.2

;

· 1

. • SD-BWI-DP-061 Rev. 1

.

11

ZN MG/L

(Á)

an the second second second

SAMPLE TYPE CONFINED ANALYSIS GROUP: TRACE

Sampi Ing Location	SAMPLING EVENT CODE	SAMPI E NUMBER		AL MG/L	(A)	AS MG/L	(A)		В 1G/L	(A)	. •	BA MG/L	(A)	CD MG/L	(A)		CO MG/L	(A)
RRL-02	82-68	82-68	<	0 080	{}}				0.380	(1)		0.019	(1)			•	0.010	(1)
	82-65	82-65 82-75	((0.080					0.360 0.350	{}		0.005 0.002				ç	0.010 0.010	[]]
÷	82-170	82-163	٢.	0 080					1.110	(1)		0.025	(1)			۲	0.010	{1}
	82-122	82-170 82-122	د د	0.030					1,090 2,610	$\left\{ \begin{array}{c} 1\\ 1 \end{array} \right\}$		0.024 0.004				¢ , ¢	0.010 0.010	$\left\{ \begin{array}{c} 1\\ 1 \end{array} \right\}$
i i	82-401	82-192 82-401	•	0.080 0.410 0.129	$\left\{ \begin{array}{c} 1\\ 1\\ 2\\ \end{array} \right\}$	•			2.650 3.500	[1]		0.003 0.002			÷	۲ ۲	0.010 0.010	$\left\{ \begin{array}{c} 1\\ 1 \end{array} \right\}$
	84-7	82-479 84-43 84-7	•	0.410 0.080 0.030					3.510 2.900 2.910		¢ ¢	0.002		•		~ ~ ~ ~	0.010 0.015 0.010	
	82-304	82-304	•	0.096	2				3,440	[1]		0.004	131				0.010	(4)
	82-309	82-381		0.110					3.140	-{i}		0.003	{i}			č	0.010	{i}
	82-456	82-351 82-413 82-456		0.100 0.350 0.330					3.090 3.480 3.510	$\left\{ \begin{array}{c} 1\\ 1\\ 1\\ 1 \end{array} \right\}$		0.007 0.002 0.005	$\left\{ \begin{matrix} 1\\1\\1\\1 \end{matrix} \right\}$			•••	0.010 0.010 0.010	
NRE-14	82-403	82-403		0 320	111				2.250	(1)		0.004	(1)			۲	0.010	(1)
ດ 1-1		82-489		0.410	111				2.240	(1)		0.005	(1) 5			•	0,010	{1}
STEN-1	85-252	85-252 85-253	۰ ۲	0.050 0.060	HI -			۲ ۲	0.018			0.015	111			⇒¢ ¢	0.017	
	85-297	85-297× 85-298	č	0 060				č	0.016			0.019		•		č	0.017	
	86-31	86-31 86-32	ć	0 200				ć	0.100 0.100			0.017 0.017						
STEM-2	86-19	85-19 86-20	د د	0-200 0-200	{}]} ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			د د	0.100 0.100	{ i }		0-018 0-018						
299-E18 OI	SITE-161 SITE-162 SITE-163 SITE-164	SITE-161 SITE-162 SITE-163 SITE-164										0.059	[9]		•	, « ,	0.038	10)
299-120-08	SIIE-165 SIIE-167 SIIE-168	SI 1E - 166 SI 1E - 167 SI 1E - 168			•					•		0-052 0.092	[8]		•	•		

SEE END OF THIS REPORT FOR A LISTING OF ANALYSIS METHODS.

and the second second

· · · ·

PAGE 10

SD-BWI-DP-061 Rev. 1

I.

- -

JAMPI ING LOCATION	SAMPLING EVENT CODE	SAMPLE NUHUER		СХ Mg/L	(A)		CU MG/L	(A)	33 MG/L	{A]	j .	LI HG/Ľ	(A)	MN MG/L	{A}		MD MG/L	1 A
RH1 - 02	\$2-68	82-68		0,040	(1)	ξ.	0.008	(1)	6.6	0 (1))	0.011	(1)	'0.0	15 [1]		0 .100	
	82-65	82-65 82-75	ن ۲	0 030 0 030	{¦}	Ċ	0 006 0 006		0 3)) (2.007 0.006	[i]	0.0			0.175	$\begin{pmatrix} 1 \\ 1 \end{pmatrix}$
•	82-170	82-163	4	0.030	(1)	¢	0.006	(1)	0 1	55 [1]	١	0 018	(1)	0.0			0.050	11:
	\$2-122	82-170 82-122	ć	0,030 0,030	{! }	с с	0.006 0.006	{}}	· 0.1 0.8		}	D D17 0.020	{! }	0.0	15		0.950 0.130	
	82-401	82-392 82-401	è	0,000 0,000	{ ! }-	« «	0.006 0.006		0.5. 0.1:		}	0.026	$\left\{ \begin{array}{c} 1\\ 1 \end{array} \right\}$	0.0			0 100 0 280	
	84-7 82-384	52-179 84-43 81-7 82-364	< < < <	0,030 0,035 0,040 0,030		< < < < <	0.006 0.006 0.006 0.006		0.1 0.0 0.0)))	0.012 0.023 0.023 0.023		0.01 • • 0.01 • 0.01			0.270 0.290 0.290 0.290	
	82-309	82-381 82-309	¢	0,030 0,030	{}}	د د	800 0 0.008)) 0 ()	10 11))	0.064		0.00 • 0.00 0.01	$ \begin{array}{c} 1 \\ 2 \\ 3 \\ 1 \\ 2 \\ 1 \\ 1 \\ 1 \\ 2 \\ 1 \\ $		0.230 0.240	
 	82-456	82-351 82-413 82-456	с с с	0.030 ² 0.030 0.030		(((0.006 0.006 0.006	{i}	0.1 0.0 0.0).))	0.027 0.042 0.041	$ \left\{ \begin{array}{c} 1\\ 1\\ 1\\ 1\\ 1 \end{array} \right\} $	0.00 < 0.00 < 0.00	1 1 <t< td=""><td>•</td><td>0.240 0.260 0.260</td><td></td></t<>	•	0.240 0.260 0.260	
NR1-14	82-403	82-403	٢,	0.030	ណ៍	۲	0.006	(i);	0, 13	26 [1]	n,	0.021	{1)	¢ 0.00	02 (1) 05 (2)		0.170	(7)
7		82-489	(0.030	(1)	<	0.006	(1)	0.21	: · · · · ·)	e.022	£1),	0.00	or (1)		0.130	
STEN-1	85-252 85-297	85-252 85-253 85-297	с с	0.032		• • •	0.006 0.006 0.006	{!}	0.0			200 0 300 0 2:5 7		0.0 0.0		<pre></pre>	0.034	
	88-31	86-31 86-32	•	0.032	(1)	(((0.012	łił	0.0	5		0.012 0.015 0.015	8	0.0		с с	0.600	
S1FM-2	86 - 19	86-19 86-20		•	,	с с	0.012 0.012	{! }	0.0	c8 1	} ;	0.015 0.015	{i}	· 0.0: 0.0:	35 (1) 34 (1)	ċ	0.311 0.500	C .3
299-610-01	5112-151 SIJE-162 SIJE-153 SIJE-154	SITE-161 SITE-162 STTE-163 SITE-164	٢	0.030 ,	(U)	¢	100.0	[0]	0.0 0.0 0.0 0.0		ì							
299-126-08	S11E-195 S115-197 S116-193	3775-160 S175-167 S17E-168	¢	0 012	{°}	۲ ۲	0.001 0.001	(0) (0)	< 0.0	ес 30 . ч					•			
•	•	• • •	SEE	END OF	mis	R£	PORT FO	R A L	ISTING O	е ала: •	YS1:	s method	S.					

A. 1997

• •

PAGE 10.1

.

,

.

SD-2WI-DP-061 Rev.

⊢

:

SAMPLING LOCATION	SAMPLING EVENI CODE	SAMPLE NUMBER		N1 HG/L	(A)		р НG/L	(A)	ř.	P8 MG/L	(A)	SR MG/L	(A)		ZN MG/L	1A)	
RXL-02	82-68	82-68	•	0.030	(1)		0 420	(1)	•	0.150	(1)	0.009	(1)		0.050	(1)	
	82-65	82-65 82-75	ć	0.020 0.020	{ ! }	۲ ۲	0.340 0.340	{}}	¢	0.150 0.150	{!}	0 005 0.005	{ ! }	¢	0.020 0.010	$\left\{ \begin{array}{c} 1\\ 1 \end{array} \right\}$	
	82-170	82-163	۲	0,020	(1)	۲	0.340	(1)	۲	0.150	(1)	0.040	(1)	•	0.010	(1)	
	82-122	82-170 82-122	¢	0.020 0.020		٤	0 340 3 500	<u>{}</u>	< <	0,150 0,150	{{{ }}}	0 040 0.010	{}	¢	$0.010 \\ 0.010$	<u>{}</u> }	
	82-401	82-192 82-401	ć	0,020 0,020	{ ! }		3.200 1.300		((0,150 0,150	{}}	0.010 0.009	{ ! }	۲ ۲	0.010 0.010	$\begin{pmatrix} 1\\1 \end{pmatrix}$	
	84-7	82-479 84-43 84-7	к к к	0,020 0,026 0,020		۲ ۲	0.340	(4) (1)	< < <	0.150 0.150 0.150	$\left\{ \begin{array}{c} 1\\ 1\\ 1\\ 1 \end{array} \right\}$	0.009 0.015 0.015	$\left\{ \begin{matrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$	`c • c • c	0.010 0.015 0.010	$ \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} $	
	82-364	82-364	<	0.020	111	۲	0.340	115	۲	0.150	[1]	0.005	[1]	۲	0.010	[1]	
• • •	82-309	82-381 82-309	ć	0.020 0.020		ć	0.340 0.340	{ }}	ć	0.150 0.150	{ ! }	0 006 0 011	{]}		0.020 0.020	$\left\{ \begin{smallmatrix} 1\\ 1\\ \end{smallmatrix} \right\}$	
	82-456	82-351 82-413 82-456	(((0,020 0,020 0,020		د د د	0.340 0.340 0.340	$\left\{ \begin{smallmatrix} 1\\1\\1\\1 \end{smallmatrix} \right\}$	(((0.150 0.150 0.150	$ \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix} $	0.011 0 011 0.010	$\left\{ \begin{smallmatrix} 1\\ 1\\ 1\\ 1 \end{smallmatrix} \right\}$	۲ ۲	0.020 0.010 0.010	$\begin{bmatrix} 1\\1\\1\\1\end{bmatrix}$	•
NRL-14	82-403	82-403	•	0.020	(1)		0.500	(1)	•	0.150	(1)	0.009	(1)	۲	0.010	(1)	
8		82-489	<	0.020	(1)		0.500	(1)		0.170	(1)	0.010	(1)		0.030	(1)	
S1EM-1	85-252	85-252 85-253	ć	0.030 0.030					((0,180 0,180	<pre>{1}</pre>	0.056 0.056	{! }	¢	0.020	$\begin{pmatrix} 1\\1 \end{pmatrix}$	
	86-31	85-298 86-31 86-32	ć	0.030					č	0,180	<u>[1]</u>	0.063 0.063 0.063	$\left\{\begin{array}{c}1\\1\\1\\1\end{array}\right\}$	· · · · ·	0.020 0.020 0.040 0.040		
STEM-2	80-19	86-19 86-20										0.052 0.061	{}}	۲ ۲	0.040 0.040		
299-E16-01	STTE-161 STTE-162 STTE-163 STTE-163 STTE-164	SITE-161 SITE-162 SITE-163 SITE-164	٢	0.012	(0)				٢	0.020	{0}				0.081	[0]	
299-£26-08	STTE - 166 STTE - 167 STTE - 168	STTE-166 STTE-167 STTE-168	د د	0 002 0,002					۲ ۲	0 049 •0 049	{ 0 }				0.117 0.117	[8]	

.

SEE END OF THIS REPORT FOR A LISTING OF ANALYSIS METHODS.

PAGE 10.2

SD-BHI-DP-061 Rev.

•---

.

ŕ

	****** 1.14/						-	7								
SAMPI ING LOCATION	EVENT CODE	SAMPLE NUHBER	- AN MG 71	(A)	AS MG/L	(A)	B Ma/l	• ())		RA MG/1	(A)	CD MG/L	(A)		C0 Mg/L	{A}
299-133-12	SITE-170 STIE-171 STIE-172	STTE-170 STTE-171 STTE-172								200 0 800,0					0.00%	je to:
899-SII-EIZA	80-61 80-180	80-61 80-7 80-138 80-180	0,050 0,030 0,090 0,070		•		0.043 0.043 0.050 0.040		٢	0,049 0,049 0,049 3,230		•		« « «	0.019 0.0 0.010 0.010	
899 - 42 - 40C	STTE-176 STTE-177 STTE-178 STTE-179 STTE-180	SITE-176 SILE-177 SILE-178 SILE-179 SILE-180								0 110				,	0 010	10.1
649-47-50	5116-181	STTE-185								D 039	101	•			0.010	103
699-29-550	5135-183	5175-181								0,000	10)		· . :		0.010	10)
	SITE-184 STTE-185	SITE-184 SITE-185		. • . 3			•			0 105	103				0 014	(0)
- 599-50-45	\$178-188	SITE-186		*****		741 - F				0.200	101			Ì	0.010	101
699-50-48	SITE -167	SITE-187								6 64	(0)		• •		0 037	(0)
<u>699-51-46</u>	SI1E-138	SITE-188	•			· · ·				0.033	(0)			ì	0.057	102
151 1.1699-52-46A	SITE-LUS	SITE-189		t + 1	• •					0.059	101	•		· ·	0.005	101
609-52-48	SITE-190	SITE-190								0.084	101				0.005	(0)
699-53-50	SH1E-191	5175-191							,	3.174 2	. 21			۰ ۲	0.010	
689-54-51	SITE-192	\$175-192		:	,					0.129	101	•	•			
899-58-53	SITE-196 SITE-197	STIE-196 STIE-197						•	:	0,048 1,023	{0} {0}		• •	с с	0.0:: 0.012	i0)
		· · · · ·												•		
		e.e		, i i							•		•	•		
		· 1			,											
		v 124		•/• { ` '	! '				i	·			•••			
	· • •	1 6 5 ¹						. ,	:	. •	, -	, ï			,	
	_ • • 34 t	t internet States and the	SEE END	OF THIS	REPORT	FOR A	LISTING O	F (ANIAL	YSI	S METH	ods,					

341 • 1.55*

.

. .

.

.

SD-BWI-DP-061 Rev.

.

FAGE 11

SAMPLING LOCATION	SAMPLING EVENT CODE	SAMPLE NUHBER		CX MG/L	(A)		CU MG/L (A)		FE MG/L	(A)		LI MG/L	(A)		MN MG/L	(A)		MD MG/L	(A)
299-133-12	SIIE-170 SIIE-171 SIIE-172	SITE-170 SITE-171 SITE-172	۰ ۲	0.009 0.009		< <	0.001 {	0 }	< < <	0 030 0 030 0 030					۰ د	0.002	{0} (0)			
699-S11-E12A	80-61 80-180	80-61 80-7 80-138 80-138	((0 009 0.008 0.003 0.003	$\left\{ \begin{array}{c} 1\\ 1\\ 1\\ 1\\ 1\\ 1 \end{array} \right\}$	(((0.002 0.002 0.002 0.002	1) 1) 1) 1)	·	0 074 0.084 0.080 0 080	$ \begin{cases} 1 \\ 1 \\ 1 \\ 1 \\ 1 1 1 1 1 1 1 1 1 1 $	¢ ¢	0.020 0.020	{ 1}		0.052 0.006 0.071 0.064	$ \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{bmatrix} $	< < < <	0.030 0.030 0.030 0.030	$ \begin{array}{c} 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ $
699-42-40C	SITE-178 SITE-177 STTE-178 SITE-179 SITE-180	SITE-176 SITE-177 STTE-178 SITE-179 SITE-180		0.030	(0)	ć	0.006 (0)	(((2 720 0 030 0 030 0 030 0 030 0 003						0.100	(0)			
699-47-50	S11E-181	SITE-181				<	0.001 (0)		0.060	(0)				•	•				
898-49-558	SITE-180 SITE-184 SITE-185	SITE-183 SIIE-184 SIIE-185				ć	0.001 (0)	(((0.030 0.030 0.030	(0) (0)				•	0.003	{0}			
599-50-45	SIJE-186	SITE-186	ć	0.010	[0]	۲	0.001 (0)		0.040	(0)									
699-50-48	S11E-187	SITE-187	۲	0.030	[0]	¢	0 001 (0]	٢	0.030	(0)					0.033	[0]	•		
51-48	5111-158	SITE-188				۲.	0.001 (0}		0.300	10)									
⊃699-52-46A	SITE-189	SITE-189	4	0.007	(0)	•	0.001 (0)	٢	0.000	(0)				<	0.003	[0]			
699-52-48	SITE-190	SI1E-190	٤	0.007	(0)	٢	0.001 (0)	•	0.030	10)					0.005	(0)			
899-23-20	SITE-191	SITE-191				۲	0.001 i	0)		0.000	{0}									
899-54-57	STTE-192	SITE-192				4	0.001 (0)	¢	0.030	(0)									
899-58-54	STTE - 196 STTE - 197	SITE-196 SITE-197				< <	0.001	8}	د د	0 030	$\left\{ \begin{array}{c} 0 \\ 0 \end{array} \right\}$									

2

SEE END OF THIS REPORT FOR A LISTING OF AMALYSIS METHODS.

ټ

.....

(n, k, k)

.

· · . . •

SD-8WI-0P-061 Rev.

2-4

.

SATIPLEING LOCATION	EVENT CODE	SAMPLE NUMBER		NI MG/L	(Á)	P MG/L	(A)		РВ MG/L	(A)	SR MG/L	(A)		ZN NG/L	{A}
299-833-12	STTE-170 STTE-171 STTE-172	SITE-1/0 SITE-171 SITE-172	((0.002 0.002	{0} {0}			((0.045 0.043	8			• -	0,097 0,097	18}
699-511-E12A	80-61 80-180	80-61 80-7 80-138 80-180	c c c c	0.020 0.020 0.020 0.020		0,200 0,200 0,260 0,200	$ \left\{\begin{array}{c}1\\1\\1\\1\\1\end{array}\right\} $	(((((((((((((((((((0.100 0.100 0.100 0.100 0.100		0.115 0.118 0.092 0.100	$ \left\{\begin{array}{c}1\\1\\1\\1\\1\\1\end{array}\right\} $	(0,010 0,010 0,002 0,002	
399-42-406	S1TE-176 S1IE-177 S1IE-178 SIIE-179 SIIE-180	SITE-176 STTE-177 SITE-178 SITE-179 SITE-180	۲	0.020	(0)			¢	0.350	10)				0.0 2 0	101
599-47-50	S11E-181	STTE-181	<	0.002	(0)	•		•	0.025	10)		. •	•	0.097	(0)
699-49-55B	STIE-183 STIE-184 STIE-185	SIYE - 183 SITE - 184 SITE - 185	¢	0.002	(0)			ć	0.015	(0)				0,140	(0)
, 599-50-45	S11E-185	S2TE-186	¢	0.005	(0)			¢	0.025	(2)				0.117	(0)
้ 599-50-48	S17E-187	SITE-187	۲	0.015	[0]			¢	0.013	10)				0,085	(0)
N ⁶⁶⁹⁻⁵¹⁻⁴⁶	SITE-188	STTE-188	٢	0.003	[0]			۲	0.015	.0)				0.150	(Ô)
15 1-1589-52 - 46A	SITE-189	\$175-189	۲	0.003	(0)			۲	0.011	:0)				9.955	10)
399-52-48	S11E-190	SI1E-190	۲.	0.003	[0]			٢.	** 2 0 ·	(0)				0.088	(0)
599-53-50	ร่าวราวยา	\$175-191	•	0.014	(0)			۲	0.035	(e)				0.129	163
659-54-57	STIE-192	SJJE-192	6 -	0.014	(0)			•	0.015	· • • •				0.223	$\{2\}$
599-50-5J	SINE-198 SINE-197	S (TE - 196 ST TE - 197	•	0.014 0.014	[0]			с с	0 C1. 0.023	- ; }				9 145 9 247	Ĵ.

1 . .

;

:

. 4

۰.

۰.

.

SEE END OF THIS REPORT FOR A LISTING OF AMALYSIS METHODS.

1 '

٠

· .

SAMPLING LOCATION	SAMPLING EVENT CODE	SAMPI E NUMBER		AL NG/L	(A)	AS MG/L	(A)		B MG/L	(A)		BA MG/L	(A)	CD Mg/l	(A)		CO NG/L	(A)
STATION-03	82-51	82-51	•	0.076	(1)			<	0.023	(1)		0.016	(1)			<	0.015	(1)
STATION-04	82-61	82-61		0.233	(1)			۲	0.023	(1)		0.009	{1}			۲	0.015	(1)
STATION-07	82-92	82-92	۲	0.076	(1)			¢	0.023	(1)		0.002	in i			٢	0.015	(1)
STATION-14	82-20	82-20	۲	0 076	(11		-	۲	0.023	(1)		0.003	(1)	•		۲	0.015	(1)
STATION-17	82-70	82-70	4	0.076	(1)			٢,	0.023	(1)		0.002	(1)			•	0.015	(1)
STAT10#-20	82-58 82-74	82-58 82-74	, č	0.076	{ ! }			۲ ۲	0.023 0.023	{ ! }	٢	0.001 Q.001	{ ! }			¢	0.015 0.015	<pre>[]]</pre>
STATION-25	82-83 82-66	82-83 82-66	•	0 111 0.076	{}			((0.023 0.023	$\left\{ \begin{array}{c} 1\\ 1 \end{array} \right\}$	٢	0.004 0.001	{ ! }	•		د د	0.015 0.015	<pre>{}</pre>
STATION-26	82-91 82-98	82-91 82-98	((0.078 0.076	{ }]			۰ ۲	0.023 0.023	{ ! }		0.001	[1]			ć	0.015	[1]

SAMPLE TYPE: PRECIPITATION ANALYSIS GROUP: TRACE

,

222

SD-BWI-DP-061 Rev.

-

SEE END OF THIS REPORT FOR A LISTING OF ANALYSIS METHODS.

PAGE 12

SAMPLE TYPE: PRECIPITATION ANALYSIS GROUP: TRACE

SAMPLING LOCATION	SAMPTING EVENI CODE	SAHPI E NUHBER	1	CR MG/L	(A)		CU 14671.	(A) '	FE MG/L	. 4) [°]		LI. MG/L	{A}	MN MG/L	(A)		914 1\214	·
SIA710H-03	82-51	82-51	<	0.036	(1)	ζ.	0.006	(1)	0.063	(1)	ζ.	0.006	(1)	0.006	(1)		0.020	[3]
STAT10N-04	82-61	82-61	•	0.036	(1)	۲	0.006	(1)	0.493	[1]	۲	0.005	(1)	0.024	(i)	¢	0.020	:::
STA (10N-07	82-92	82-92	٢	0.036	(1)	¢	0 006	(1)	0.097	[1]	¢	0.008	(1)	0.005	(1)	¢	0.020	
STATION-14	82-20	82-20	۲	0.036	(1)	۲	0.006	(1)	0.202	(1)	•	0.006	(1)	0.007	(1)	¢	0.020	;1)
STA110N-17	82-10	82-70	4	0.036	(1)	¢	0.006	(1)	0.482	133	¢	0.008	[1]	0.010	(1)	۲	0.020	(1)
STAT10N-20	82-58 82-74	82-58 82-74	د د	0.036 0.036	{}}·	¢ ¢	0.006 0.006	{I}	0.803 0.141	{}}	((0.005 0.005	<pre>{1}</pre>	0.008 0.004	$\left\{ \begin{array}{c} 1\\ 1 \end{array} \right\}$	с с	0.020 0.020	•••) •••
STATION-25	82-83 82-66	82-83 82-66	۲ ۲	0.030 0.036	{ }	۲ ۲	0.006	{}}	0.248 0.124	[]]	((0.006 0.008	<pre>{}].</pre>	0.008	$\left\{ \begin{array}{c} 1\\ 1 \end{array} \right\}$	с с	0 020 0.020	$\frac{1}{1}$
S1A110N-26	82-91 82-98	82-91 82-98	c c	0.036 0.036	{}}	((0.006 0.006	}	1.037 0.085	[]]	« «	0.005 0.008	{ ! }	0.020 0.012	{ ! }	۲ ۲	0.020 0 020	

222

I.

SD-BWI-DP-061 Rev.

-

SEE END OF THIS REPORT FOR A LISTING OF AWALYSIS WETHODS.

. ..

PAG: 12.4

SAMPLE TYPE: PRECIPITATION ANALYSIS GROUP: TRACE

SAMPLING LOCATION	SAMPLING EVENT CODE	SAMPLE NUMBER		NI MG/L	(A)		p MG/L	(A)		84 HG/L	(A)	SR MG/L	(A)	ZN MG/L	{A}
E0-KGLLALS	82-51	82-51	٠	0.026	(1)	<	0.340	(1)	<	0.155	(1)	0.001	(1)	5,840	(1)
STAT10N-04	82-61	82-61	۲	0.026	(1)	۲	0.340	(1)	•	0.155	(1)	0.002	(1)	13,755	(1)
STATION 07	82-92	82-92	4	0.026	(1)	۲	0.340	(1)	•	0.155	(1)	0.001	[1]	8.231	(1)
STATION-14	82-20	82-20	۲	0.026	(1)	¢	0.340	(1)	•	0.155	{1 }	0 001	(1)	10.434	(1)
STATION-17	82-70	82-70	۲	0.026	[1]	¢	0 340	(1)	٢	0.155	(1)			6.598	(1)
STATION - 20	82-58 82-74	82-58 82-74	((0-026 0-026	[1]	« «	0 340 0.340	{}}	((0.155 0.155	{ }			8.538 7.673	{] }
STATION-25	82-83 82-66	82-83 82-66	с с	0.028 0.026	{ ! }	¢	$ \begin{array}{c} 0.340 \\ 0.340 \end{array} $		с с	0.155 0.155	{! }	0.001	(1).	7.416 4.235	<pre>[1]</pre>
SIA110N-26	82-91 82-98	82-91 82-98	((0.028	{ ! }	((0.340 0.340	<pre>{}}</pre>	((0.155 0.155	111			7.290 4.867	$\left\{ \begin{array}{c} 1\\ 1 \end{array} \right\}$

...

SD-BHI-DP-061 Rev.

PAGE 12.2

4

SEE END OF THIS REPORT FOR A LISTING OF ANALYSIS METHODS.

SAMPLE TYPE: SPRING ANALYSIS GROUP: TRACE . • .

۰,

SAMPEING LOCATION	SAMPLING EVENT CODE	SAMPLE NUMBER	AL ¥G/1.	141	AS MG/L	(A)		5 14G/L	SA MG71	(A)	CD MG/L	(A)		CO MG/L	[0]	
SP BENNELL	571€-218 79-13 85-362 86-190	S11E-218 79-13 85-362 85-363 86-190 86-191	0.050 0.060 0.200 0.200 0.200 0.200				< < < < <	0 100 (1) 0 100 (1) 0 100 (1) 0 100 (1)	0,000 0,011 0,011 0,003 0,007	$ \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{bmatrix} $			< <	07.013	;1	
SP-BENSON	ST1E-217	SITE-217	0.050	[0]				1								
SP-BHILLK	79-1	79-1 79-50	0.300 0.310	[]	•			0.022 [1] 0.030 [1]	0,250 0,250	{i}				0.049 0.049	į.	;
SP-GUI CH	84-359	84-359 64-383	0.070			· •	¢	0.022 11	0.024 0.024	{! }			((0.015	$\begin{bmatrix} 1\\ 1 \end{bmatrix}$	
SP - JUNTPER	S11E-215 79-2 81-115 83-372	SITE-215 79-2 79-40 81-115 81-161 83-305 83-372	0.050 0.040 0.050 0.017 0.017 0.017 0.017			•	• • • • • • • •	0.005 0.002 0.002 0.012 0.012 0.020 0.020	0.015 0.010 0.009 0.008 0.010 0.010 0.010	<pre>(1) (1) (1) (1) (1) (1) (1)</pre>	< 0.03 < 0.01	0 [1]		0.010 0.010 0.004 0.004 0.004 0.010 0.010		
SP-10 SNIVELY	79-34 82-362 83-396	79-19 79-34 82-352 82-377 80-311 83-396	0,040 0,040 0,040 0,040 0,040 0,040		.	4 <u>1</u>	• • • • • • • • • • • • • • • • • • • •	0.00 ⁺ 111 (0.044 1 ⁻ 11 (0.020 111 (0	0,005 0,005 0,009 0,003 0,013 0,010				; ; ; ; ; ; ; ;	0.010 0.010 0.010 0.010 0.010 0.010		•
\$?-10211 R	79-6 81-186 83-316	79-5 81-116 81-135 83-316 83-343	0,077 0,077 0,077 0,077 0,077 0,070 0,080					0.005 (1) (0.005 (1) (0.012 (0.012 (0.012 (0.020 (0.005 0.005 0.005 0.055 0.055 0.050 0.040					0.010 0.010 0.004 0.004 0.010		•
SP-MAIDEN	79-100 83-420	79-57 79-96 83-420 83-435	0 025 0 030 0 080 0 080				(((0.005 0.005 0.027 0.020	0.010 0.012 0.001 0.005	(1) (1) (1)	< 0.01	0 (1)	~ ~ ~ ~ ~ ~	0.0.0 0.010 0.012 0.012		
SP- ODSTRVATORY	81-119 83-433 84-392 ×	81-119 81-157 83-433 83-461 84-310 84-392	0 017 0 917 0 530 0 080 0 070				< < < <	0.055 11) 0.020 0.020 0.020 0.020	0.004 0.004 0.010 0.010 0.010 0.010			• • •	••••••	0.000 0.010 0.010 0.010 0.015		1

SET END OF THIS REPORT FOR A LISTING OF WALYSIS MEYHODS.

.

· · · ·

PAGE 13

SD-BWI-DP-061 Rev. 1

in and states ,

.

الانصافية والانتجامية والاطلقيق مراداتها

SAMPLE TYPE: SPRING ANALYSIS GROUP: TRACE

ς.

.

3

SAMPI ING FOCATION	SAMPLING EVENT CODE	SAMPLE NUMBER		CR HG/L (4	()	CU MG/I.	(A)		FE MG/L	(A)	LI MG7L	(A')		MN MG/L	(A)		MD MG/L (A)
SP-BENNETY	SITE-218 79-13 85-362	SITE-218 79-13 85-362	4	0.003 (:	() ((0.002	{! }	¢	0.007	{ ! }	< 0.020 < 0.016	<u>{</u>]	•	0.020	{ <u>+</u>]	•	0.030	$\begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}$
	80-190	85-101 86-190 86-191			4 4 4	0.030		د د	0.030 0.030 0.030		< 0.016 < 0.016 < 0.016		с с с	0.010 0.010 0.010	{i}		0.600	i { i }
SP-BENSON	SITE-217	SITE-217																
SP-BUILER	79-1	79-1 79-50		0 061 (0 060 (}	0.057 0.059	{}}		0.057 0.067	<u>{}}</u>	¢ 0.020 ¢ 0.020	{ ! }		0.055 0.054	<pre>{1}</pre>		0.320 j 0.300 (1). 11
SP-GULCH	84-359	84-359 84-383	۰ ۲	0.038	8 8	0,006 0,006	{ ! }	ć	0.006 0.006	{ ! }	<pre>0.006 0.006 0.006</pre>	{! }	ć	0.003 0.003	<pre>{1}</pre>	¢ ¢	0.020 (0.020 (1]
SP-JUN1PER	511E-215 79-2	SITE-215 79-2	¢	0.003 1		0.002	(1)		0.030	(!)	< 0.020	<u>{</u> 1}	ç	0.020	<u>{}</u>	•	0.030	1)
	81-115	81-115	Ś	0.006		0.002		٠	0.002	<u>}i</u>]	0.008		¢	0.013			0.001	
	83-372	81-101 83-305 83-372	с с с	0.040		0.010 0.010	$\left\{ \begin{array}{c} 1\\ 1\\ 1 \end{array} \right\}$		0.040		0.010 0.010	{i}	¢	0.004 0.004		• • •	0.020	i}
SP-LO-SNIVELY	19-34	79-19	•	0.003	11 :	0.002	<u>{}</u>		0.010	<u>{</u>]}	0.020	<u>{</u>]}	ć	0.020	$\{\frac{1}{2}\}$	۲	0.030	1)
10 10	82-362	82-362	č	0.030	il ?	0.006	11	è	0.006		0.006	}i{	č	0.003	ļį	\$	0.020	i {
	83-396	83-311 83-396	č	0.040		0.010 0.010	i]	•	0.020 0.030		0.0100.010	li	č	0.004 0.004		•	0.020	11
SP-LOZIER	79-6	79-44 79-6	ć	0.003.		0.002			0:010	<u>{}</u>	< 0.020 (0.020		ć	0.020		4	0.030	1)
× 1	81-186	81-116 81-186	ć	300.0	i} č	0 003	₩.		0.020	11	0.003	11	į	0.002	11	č	0.005	ī
	83-319	83-316 83-343	ć	0.040		0.010 0.010]i]	č	0:010 0.020		0.0100.010		ċċ	0.004 0.004		č	0.020	i} .
SP-MAIDEN	79-100	79-67 79-96	ć	0.003 (}.	0 051	<u>{}</u>		0.025	<u>{}</u>	< 0.020 (0.020	{}}	¢	0.020		ć	0.030 (<u>}</u>
	83-420	83-420 83-435	č	0 040 0.040		0.010 0.010			0.010		< 0.010 < 0.010	}i}	Ċ	0.004		с с	0.020	
SP-DUSERVATORY	81-119	81-119	ć	0.006 (0.003	{}}	Ś	0 002	{}}	< 0 003	(1)	¢	0.001	<u>{</u> }}		0.002	1)
	80-403	83 433	ç	0.040		0 010	lil	•	0.010	<u>}</u>	< 0.010	.11	¢	0.004	<u>{i}</u>	ì	0.020	11
	84-392	84-310 84-392	((0.036		0 006 0 006		۲ ۲	0.010 0.006 0.006		< 0.010		(((0.004 0.004 0.004		с с	0.020	1) 1)
			SEE	END OF 1	115 R	EPORT FOR	KAL	ist	ING OF A	ANALYS	IS METHOD	S.						

SEE END OF THIS REPORT FOR A LISTING OF ANALYSIS METHODS.

PAGE 13.1

SD-BWI-DP-061 Rev.

-

•

SAMPLE TYPE: SPRING ANALYSIS GROMP: TRACE

.

SAUPLING LOCATION	SAMPLING EVENT CODE	SAMPLE NUMUER		NI MG/1 · · ·	(A)	•••	р На/1.	(Å)		- 98 MG/1	(A)	· SR Vig./	1	, (A)		ZN MG/L	(A)
SP - DENNET I	SI(E-218 79-13 85-362 86-190	SITE-218 79-13 85-362 85-363 86-190 86-191		0.020	(1)	<	0.200	(1)	<	0.100	[1])). 2. 2. 0.	105 108 108 109 109		<pre></pre>	0.01) 0.040 0.040 0.040 0.040 0.040	· · · · · · · · · · · · · · ·
SP-BEHSON	SINE-217	S11E-217		• •	•					•			:	1			•
SP-BUILER	79-1 ^{°°}	79-1 79-50		0.028 0.030	. [¦]		0.570 0.590	{] }		0.330 0.320		0 0	140 140	{]}		0.049 0.049	$\left\{ \begin{array}{c} 1\\ 1 \end{array} \right\}$
sp-gin ch	84-359	84-359 84-383	۲ ۲	0.026	{}}	د د	0.340 0.340	·{1} 1}	((0.150 0.150		0.	229 227	{ ! }		0.058 0.061	- { <u>1</u> }
SP-JUNIPER	S116-215 79-2	SITE-215 79-2	ć	0.020	{ <u>}</u> }	<	0.200	<u>{</u>]}	Ś	0,149	(1)	0.	083	ці. ЦіЗ	¢	0.010	<u>{}</u>
	81-115	81-115	č	0.008	} <u>]</u>]	•	0 100]]]	š	0.043	HI.	0.	080		è	0.004	
	83-372	83-305 83-372	, c , c	0.030		с с	0.340	H	Ċ	0.150		0 0	230 190		<	0.013	
SP-LO SHIVELY	79-34	79-19		0.020	(Ê)	¢	0.200	<u>{}</u>	¢	0.110	<u>;1</u>	Q.	032	<u>}</u>]}	Ś	2 010	511
NJ NJ	82-362	82-362		0.020	11	č	0.200	١į	č	0.150		ó.	000		č	0.010	
	80-395	83-311 83-396	• •	0.030	{i{	((0.340 0.340 0.340		с с	0,150 0,150		0. 0.	090		с с с	0.010	
SP-LOZIER	79-6	78-44	ş	0.020	<u>}}</u>		0.200	<u>}}</u>		0.200	[1]	ir S	586	122	š	0.010	<u>13</u>
	81-186	81-116	· ·	0.008	}i{		0.110	}	ç	0.043	111	0. 0.	090]]		0.004	11
	83-316	83-316 83-343	с с с	0.030		((0.340		((0.150	13	0	020 020		с с	0.010	
SP IIA IDEN	79-100-	79-67	2	1.020	<u>}</u>	Ś	0 200-	<u>{</u>]}	ç.	0 101	122	<u>э</u> .	073	j22	4	0.020	<u>{1</u> }
·· · · · ·	83-420	83-420 83-435	с с с	0.030 C.030	}i}	((0.340	{i}	Ċ	0,150 0,150		0. 0.	075		с с	0.010	· { i }
SP-OBSERVATORY	81-119	81-119	ć	0 008	HY -		0.150	{}}	ć	0.043	11	<u>?</u> .	070	11		0.007	<u>{</u>]}
	89-499	83-433	ŝ	0.030	}i{	ç	0.340	ξį.	è	0.150	11	j.	070	11	ç	0.010	計
	84-392	84-310 84-392	č	0.026	};;{``	ċ	0.340] ;{	č	0.133		0.	067	H	ċ.	0.015	
· · · · · ·	· ·	 	SEE	ENDIOF	1015	REP	001 FOR	. A I	IST	ING 65	NALYS	IS MET	300 1900	,.,. S	-		,
s. 3.≮ sa seste - sa	يو قد ماند ماند الجاني ماند الجاني	· · · · ·															

. .

••

٠.

.

.

1. . . .

.

.

• • •

• :

· ·

.

SD-8WI-DP-061 Rev. 1

المشاهدة ويتجزره تراجع

SAMPLE TYPE: SPRING ANALYSIS GROUP: TRACE

SAMPLING LOCATION	SAMPLING EVENT CODE	SAMPI E NUMBER		AL MG/L	(Ä)"	AS MG/L	(A)		B MG/L	(A)		BA NG/L	(A)	CD MG/L	(A)		со Mg/L	(A)
SP-OBSERVATORY	84-329	84-329	ć	0.065	111			ć	0.014	{}}	Ś	0.003	{}}			ć	0.017	<u>{</u>]}
	85-359	85-359	č	0.100	徂			è	0.050	11	•	0.003	\ !			•	0.017	(1)
	86-178	86-178 86-179	с с	0.200	i			č	0.100		¢ ¢	0.003						
SP-RAILROAD	79-76	79-76 79-81	¢. ¢	$ \begin{array}{c} 0 & 010 \\ 0 & 010 \end{array} $			-	((0.030 0.030		۲ ۲	0.005 0.005	[]]	·		ć	0.010 0.010	$\begin{pmatrix} 1\\1 \end{pmatrix}$
SP-RAITLESNAKE	517E-215 79-88	SITE-216 79-87	۲	0.050	{0} 1				0.083	11		0.075	<u></u>	•		ç	0.010	11
	83-412	83-412 83-466	۲ ۲	0.080				۲ ۲	0.020			0.050	lií	•		č	0.010	
SP SHIVELY	79-49	79-37 79-49		0.070 0.080	{}}			((0.005 0.005	$ \left\{ \begin{matrix} 1 \\ 1 \\ 1 \end{matrix} \right\} \cdot$		0.010	[1]	•		((0.010 0.010	[]]
SP-SOLFUR	79-29	79-29	Ś	0.010	111				0.030	<u>}</u> }}	ç	0.005	<u>}</u> }}			Ś	0.010	{}}
	83-409	83-409 83-442	((0.080	i			((0.020	{i}	•	0.030				ċ	0.010	
SP-UNNAMED-02	19-75	79-75		0.190	(1)				0.030	{ 1)		0.020	(1)			4	0.010	{1}
NSP-UNNAMED-16	74-73	79-73 79-82		0.074 0.045	[1]				0.035 0.080			0.022 0.021	{†}			د د	0.010 0.010	
SP-UNNAMED-26	79-98	79-54 79-98		$0.150 \\ 0.200$	[1]				0.070 0.050			0,152 0,153	$\left\{ \begin{smallmatrix} 1\\ 1\\ 1 \end{smallmatrix} \right\} :$			۲	0.020 0.010	<u>[1]</u>
SP-UNNAMED-29	/9-16	79-18 79-24		020 0 680.0	{ ! }	· .			0.027 0.030	{}};		0.030 0.030				۲ ۲	0.010 0.010	$\begin{bmatrix} 1\\ 1 \end{bmatrix}$
SP-UP-SNIVELY	79-71	79-69 79-71		0.080	日1			(0 005	<u>{}</u>	ŝ	0.010	81				0 020	111
	81-126	81-126	ć	0.120	11			ć	0.010	ļiļ -	•	0.004				Ś	0.020	損
	83-503	83-503	ś	0 080	11			š	0 020	ЦЦ.		0 000	11			ŝ	0.010	11
	86-193	86-193 86-194	č	0 200	[i]			((0 100		ć	0.003				`	0.010	11]
SP-UR2-07	85-343	85-343	ç	0.100	<u>}}</u>			ć	0 050	{}}		0 020	{!]					
	86-159	86-159 86-160	ċ	0 200				\dot{c}	0 100			0 013						

SEE END OF THIS REPORT FOR A LISTING OF ANALYSIS METHODS.

PAGE 14

SD-BWI-DP-061 Rev.

مبين

SAMPLE TYPE: SPRING ANALYSIS GROUP: TRACE

:..

1

.

. . .

4.7

SAM- ING LOCATION	SAHPI ING EVENT CODE	SAMP1 E NUMBER		Ch Mg/l	iA)	. •	-CU MG/1.	(A)		MG/1	[A]		1. 2 MG/L	{A}		MN MG/L	(A)		но MG/L	:43
SP-OBSERVATORY	84-329	\$4-329 \$4-366	< <	0.034	111	((0.005	{}}		0.012	{}}	< c	0.008	<u>{</u>	4	0.003		< c	0.038	111
	\$5-359	85-359	•	0.034	(•)	č	300.0	ļį	<u>د</u>	0.015	-ξį	č	0.008	Įξ.	ç	0.004	11	č	0.300	
	86-178	86-178 86-179				Ċ	0.030	{i}	•	0.030 0.030		č	0.016]i {	ċ	0.010 0.010		č	0 600	13
SP-RAILROAD	79-76	79-76 79-81	۲ ۲۰	0.003	{ ! }	c c	0.002 0.002	{ ! }		0,040 0,090	1}	۲ ۲	0.020	11	к к	0.020 0.020	¦i}	с с	0.020 0.030	13
SP-HATTIESNAKE	SITE-216 79-88	SITE-216 79-87	¢	600.C		¢	0.002			0.212	11	٢	0.020	143		1.050	$\left\{ i \right\}$	¢	0.030	1:1
· .	83-412	83-412 83-466	•	0.040	 	((0.010			0.030		(((0.010 0.010	{i}.		0.200		((0 020 0.020	
SP-SNIVELY	79-49 19-49	79-37 79-49	: (0.003 0.003	{}	с. с.	0.002 0.002	{ ! }		0.029 0.029	$\left\{ \begin{array}{c} 1\\ 1\\ 1 \end{array} \right\}$	۲ ۲	0.020 0.020	13	; ;	0.020	(i)	۲	0.020 0.00	
SP-SULFUR	79-29	79-29	< .	£00.0	113	ć	0.002	<u>}}</u>		0.120	Ц.		· · ·		ş	0.020	111	¢	0.030	112
02 102	83-409	83-409 83-442	• • •	0.040	ii	•	0.010		·	0.020	iii	((0.010 0.010	$\left\{ \begin{array}{c} 1\\ 1 \end{array} \right\}$	۹.	0.010		. č	0.020	. •)
BSP-UKNAMED-02	79-75	79-75		9.010	(1)		0.030	(1)		9.329	(1)	١	0 020	(1)	ć	0.020	(1)		0.190	: ·
SP-UNNAMED-16	79-73	79-73 78-82	۲ ۲	600.0 600.0	{}}	Ċ	0.002			0 0PC		र ४	0 020 9 920	:1) (1)		0.040 0.030	$\left\{ { 1 \atop 1 } \right\}$		0.054 0.020	•
SP-UNNAMED-26	79-98	79-54 79-98	, (003 0.003	[1]	¢ ¢	0.002	[]]		4.890	13	к к	0 020 0 020	$\left\{ \begin{array}{c} 1\\ 1 \end{array} \right\}$		1.000		с с	0.01 0.030	• •
SP - UNNAMED - 29	79-16	79-16 79-24	4 4	0.003 0.003	[]}	¢ ¢	0.002 0.002	[]		0.071 0 210]]	к с	: 320 0.020	(ii)	с с	0.020 0.020			0,120 0,124	1.i :
SP UP-SNIVELY	/9-71	/9-69 29-71		0.020			0.030	HÌ.	¢	0.001	. <u>†</u> }	4	2.220	沼	\$	0.029	(1)		0.220	
• •	81-126	81-126	4 4	0 040		ć	0.005	.);{	č	0.205		ć	0.009		•	0.005		< c	0 220	
	89-503	83-503	Ś	0.040		č	0 010	} ! {-	č	0	Ţ	š	A 3 3		4	0.004		è	0.020	
	88-193	86-193 86-194	•	0.040		č	0.030	[]	с с с	0.030		č	2.016 2.015		č	0.010 0.010		Ċ	0.800	• •
5P-UR2-07	85-343	85-343 85-344		• •	·	Ċ	0.006	<u>}</u> }}	¢.	0.015	.;;}	Ş	800.0	133	¢	0.004	<u>(1)</u>	¢	0.032	•••
• • • • • • •	86-159	86-159 86-160		• • • •	•;	((0.030		ć	0.012 0000.0		` ` `	0.016		Ċ	0.010		•	0.600 0.500	•
	• •		341	END DY	mis	REP	UKT FOR	I A L	IST	ing of a	43-i - Y	515	SCORVER -	5.						

.

:

.

•

,

PAGE 14.1

.

SD-BWI-DP-061 Rev.

. . .

SAMPLE TYPE, SPRING ANALYSIS GROUP: TRACE

•

. . .

.

. .

.

SAMPLING LOCATION	EVENT CODE	SAMPLE NUMBER		N1 MG/1. 1A)	р Иб/1 (А)		PB MG/L (A)	SR MG/L (A)	<u>:</u> .	ZN MG/L (A)
SP-OUSERVATORY	84-329	84-329	<	0.017 [1	1 5	0 540 (1)	<	0.200 [1]	0.064 (1)	(0.200 [1]
	85-359	85-359	•	a'att (t	, 、	0.540 [1]	•	0.200 (1)	0 058 11	č	0.020 11
	86-178	85-380 86-178 86-178							0.064 [1] 0.064 [1]	č	0.040 11 0.040 11
SP-RATERDAD	79-76	79-76 79-81	۲ ۲	0.020 [1 0.020 [1	} :	0.200 [1]	۲ ۲	$\begin{array}{c} 0 & 100 & \{1\\ 0 & 100 & \{1\} \end{array}$	0.056 11	ć	$\begin{array}{c} 0 & 0 & 10 \\ 0 & 0 & 10 \\ 0 & 0 & 10 \\ \end{array} $
SP-RATTLESNARE	S11E-216 79-88	SITE-216 79-87 79-88	ć	0.020 (1		0.200 (1)	ć	0.100 [1]	0.206 (1)	¢	0.010 (1)
	83-412	83-412 83-466	č	0.030 11 0.030 11		0,340 11 0,340 11	č č	0.150 1 0.150 1	0.190 11	č	0.010 [1] 0.010 [1]
SP-SNIVELY	79-49	79-37 79-49	« «	0.020 0.020) :	0,200 (1) 0,200 (1)	(, ($\begin{array}{c} 0 & 100 \\ 0 & 100 \\ 1 \end{array} \left(\begin{array}{c} 1 \\ 1 \end{array} \right)$	0.083 (1) 0.082 (1)	•	$\begin{array}{c}0.010\\0.210\\1\end{array}$
SP-SULFUR	79-29	79-29 29-36	ć	0.020	1 2	0.200 [1]	ç	0.100 (1)	0.143 (1)	ç	0.010 (1)
	83-409	83-409 83-442	į	0.030 11		0.340 11	ċ	0.150 11	0.100 11	ċ.	0.010 11
N SP-UNNAMED-02	79-75	79-75	ć	0.020 (1	1	0.360 (1)		0.210 (1)	0.060 (1)		0.250 (1)
SP-UNNAMED-16	79-73	79-73 79-82	د د	0.020	} `	0 200 11 0 330 11	ć	$\begin{array}{c} 0 & 100 & \{1\\ 0 & 100 & \{1\} \end{array}$	0.090 11		0.020 11 0.010 11
SP-UNNAMED-26	79-98	79-54 79-98	۲ ۲	0.020 11	} :	0.200 [1] 0.200 [1]	د د	0.100 11	0.108 11 0.107 (1)	¢	0.020 [1]
SP - UNIMMED - 29	/9-16	/9-16 79-24	د د	0.020 11 0.020 11	ł	0,310 (1) 0,340 (1)		0.100 (1) 0.133 (1)	0.120 11) 0.120 11)	۲ ۲	0.010 [1]
SP-UP SNIVELY	79-71	79-69		0.020 (1	1			0.150 (1)	0.050 (1)		0.010 (1)
	81-126	81-126	č	0.020		0.200 11	ć	0 150 1	0.090.11	ç	0.020 11
	83-503	83-503	ç	0 030 11		0 340 11	ç	0.150 11	0.090 11	•	0.020 11
	80-183	86-193 86-194	•	0.030 (1	1. X	0.340 [1]	•	0.120 [1]	$\begin{array}{c} 0 & 090 \\ 0 & 092 \\ 0 & 090 \\ 1 \\ \end{array}$	ć	0.040 11
SP-UR2-07	85-343	85-343		•					0:086 [1]	¢	0.020 [1]
,	86-159	86-159 86-160							0.091 (1) 0.091 (1)	(($ \begin{array}{c} 0.020 \\ 0.040 \\ 1 \end{array} $

SEE END OF THIS REPORT FOR A LISTING OF ANALYSIS METHODS.

in a second second second second second second second second second second second second second second second s

PAGE 14.2

.

SD-BWI-DP-061 Rev.

}--6

.

•

.

1

SAMPLE TYPE: SPRING ANALYSIS GROUP: TRACE

• ; /

SAMP1 + NG I DCATION	SAMPI ING EVENI CODE	SAMP1 E NUHUER		AL MG/1 (A)	AS MG/L	(A)		·B MG/L	. 1)	MG/L (A)	CD MG/L	14)	C0 MG/L	- {A i
SP-UR6-20	85-346 86-162	85-246 85-347 86-162 86-153	(((0 .72 1 0.100 1 0.200 1 0.200 1			< < < <	0.050 0.050 0.100 0.100		$\begin{array}{c} 2.011 \\ 0.011 \\ 11 \\ 0.010 \\ 11 \\ 0.010 \\ 11 \\ 0.010 \\ 11 \end{array}$				
SP-VR7-22	85-349 86-153	85-349 85-350 86-153 86-154	• • • •	0.100 (1) 0.100 (1) 0.200 (1) 0.200 (1)		•	•••••	0.050 0.050 0.100 0.100	(1) (1) (1)	D.003 (1) 0.003 (1) 0.013 (1) 0.015 (1)				
SP WARM	84-358	84-358 84-371	с с	0.070 (1) 0:070 (1)				0.034 0.032	••••	0.00 (1) 0.004 (1)		•	0.0	15 (1) 15 (1)
5P-483-04	85-150 86-150	85-333 85-334 86-150 88-151	•••••	0.050 1 0.060 1 0.200 1 0.200 1			<pre></pre>	0.016 0.016 0.100 0.100		0.008 11 0.009 11 0.007 11 0.007 11	•	•	0.0 0,0	17 [1]
SP-485-08	85-336 86-147	85-336 85-337 86-147 86-148	(((0.050 1 0.060 1 0.200 1 0.200 1	• ,	- 1	<pre></pre>	0.018 0.018 0.100 0.100		0 005 (1) 0 008 11 0 009 (1) 0 010 (1)			0.0	17-11) 17-11)
5 25p-787-14 1	85-339 86-156	85-339 85-340 86-156 86-157	(((p.050 11 0.060 11 0.200 11 0.200 11 0.200 11		.•	••••	0.015 0.015 0.100 0.100		$\begin{array}{c} 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$	· ·		0.0	17 (1)

SEE END OF THIS R

SEE END OF THIS REPORT FOR A LISTING OF ADALYSIS RECAUDS.

. .

· · · ·

AG: 15

.

SD-BHI-DP-061 Rev.

-

• •

SAMPLE TYPE: SPRING ANALYSIS GROUP; TRACE

SAMPLING LOCATION	SAMPT ING EVENT CODE	SAMPLE NUMBER		CR 14971			- CU ** MG/L	(A)		FE MG/L	(A)		LI MG/L	(A)		MN MG/L	(A)		MO MG/L	[A]
SP-UR6-20	85-346 86-162	85-346 85-347 86-162 86-163				< < < <	0.006 0.006 0.030 0.030		< < < <	0 015 0 015 0 030 0 030	$ \left\{\begin{array}{c}1\\1\\1\\1\\1\\1\end{array}\right\} $	د د د	0.008 0.008 0.016 0.016	$ \left\{\begin{array}{c}1\\1\\1\\1\\1\\1\end{array}\right\} $	< < < <	0.004 0.004 0.010 0.010	$ \begin{cases} 1\\1\\1\\1\\1\\1\\1 \end{cases} $	< < < <	0,300 0,300 0,600 0,600	
5P-UR7-22	85-349 86-153	85-349 85-350 86-153 86-154				, , , , , , , , , , , , , , , , , , ,	0.008 0.006 0.030 0.030		(((0 015 0.015 0 030 0.030		•	0.008 0.008 0.016 0.016		• • • •	0.004 0.004 0.010 0.010		(((0.300 0.300 0.600 0.600	
SP-WARN	84-358	84-358 84-371	((0.030 0.030	ŝ {}}	« «	0 006 0.006			0.026 0.034	{ }	د د	0.006 0.006	{}		0.004 0.004	$\left\{ \begin{array}{c} 1\\ 1 \end{array} \right\}$	۲ ۲	0.020 0.020	$\left\{ \begin{smallmatrix} 1 \\ 1 \end{smallmatrix} \right\}$
SP-YR3-04	85-000 88-150	85-333 85-334 86-150 86-151	۲ ۲	0.032		((((0 006 0.006 0.030 0.030	$ \begin{bmatrix} 1\\1\\1\\1\\1\\1\\1\\1 \end{bmatrix} $	(((0.009 0.009 0.030 0.030	$ \left\{\begin{array}{c}1\\1\\1\\1\\1\\1\end{array}\right\} $	• • • •	0.008 0.008 0.016 0.016	${1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\$	••••	0.005 0.005 0.010 0.010	$ \begin{bmatrix} 1\\1\\1\\1\\1\\1\\1\\1 \end{bmatrix} $	< < < < <	0,034 0,034 0,600 0,600	
5P-485-08	85-338 86-147	85-336 85~337 86-147 86-148	۲ ۲	0 033 0.033		< < < < <	0.008 0.006 0.030 0.030		<pre></pre>	0.009 0.009 0.030 0.030	$\left\{ \begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ \end{array} \right\}$	~ ~ ~ ~	0.008 0.008 0.016 0.016	$ \left\{\begin{array}{c}1\\1\\1\\1\\1\\1\end{array}\right\} $	• • • •	0.005 0.005 0.010 0.010	$ \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{pmatrix} $	~~~~	0.034 0.034 0.600 0.600	$ \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix} $
SP- YH7 - 14 3	85-339 86-156	85-339 85-340 86-156 86-157	د د	0.032		< < < <	0 006 0 006 0 030 0.030		•••••••••••••••••••••••••••••••••••••••	0.009 0.009 0.030 0.030		6 6 6	0.008 0.008 0.016 0.016	$ \begin{pmatrix} 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1 \end{pmatrix} $	د د د	0.005 0.005 0.010 0.010	$ \left\{ \begin{matrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{matrix} \right\} $	< < < <	0.034 0.034 0.600 0.600	$\begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}$

1

SEE END OF THIS REPORT FOR A LISTING OF ANALYSIS METHODS.

×.

*

PAGE 15.1

SD-BWI-DP-061 Rev.

سو

٠

SAMPLE TYPE: SPRING ANALYSIS GROUP: TRACE

	SAMPLING LOCATION	SAMPEING EVENI CODE	SAMPLE NUMBER		NI. MG/1.	(A)		P hg/L	• (A)		PB MG/L	[A]	SR MG/L	(A)		ZN Ma/l	(A)	
ł	SP-1186-20	85-348 86-162	85-346 85-347 86-162 86-163										0.080 0.081 0.084 0.034	$\left\{ \begin{matrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$	(((0.020 0.020 0.040 0.040	$ \begin{cases} 1 \\ 1 \\ 1 \\ 1 1 1 1 1 1 1 1 1 1 $	
	SP -UR7 -22	85-349 86-153	85-349 85-350 86-153 86-154										0.040 0.040 0.056 0.056	$ \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 $	< < < <	D.020 0.020 0.040 0.040		
	SP-WAXH	84-358	84-358 84-371	č	0.026 0.026	{ }]-	((0.340 0.340	8 {}}	ć	0.159 0.150		0.050 0.030	}	۲ ۲	0.130 0.150	[]]	
	SPYK3- 04	85-333 85-150	85-333 85-334 86-150 86-151	۲ ۲	0.030	{}}			•	((0.189 0.139	{ 1 }	0 048 0 047 0.054 0.054	1) 1) 1) 1)	* * * • * *	0,020 0,020 0,040 0,040	(1) (1) (1)	
	26 - 142 - 08	85-338 86-147	85-336 85-337 86-147 86-148	((0.030 0.030	-{{}}				6 6	0.180 0.130	8	0, 070 0, 066 0, 120 0, 120	;1) ;1) ;1) ;1)	~ ~ ~ ~	0,020 0,020 0,040 0,040	$ \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} $	4 - • •
ı	SP-YR7-14 NJ NJ	85-309 86-156	85-379 85-340 86-156 86-157	(0.030 0.030	<u>{}</u>				č č	0.140 0.140	{ ! }}	7, 77 0, 787 0, 759 0, 759	1) 11 11 11	< < < <	1.020 0.020 0.040 0.040		
•						;						;	·					
			• • • •		•	<u>.</u> .								1				
			- - -			•						•		•			•	
			4		·							•	· · ·	· ·		,	•	

SEE ENDEDE THIS REPORT FOR A LISTING OF MELLYSIE MELLYDS.

e ate i

. ...

. .

:

PAGE 15.2

.

.

•

SD-8KI-DP-OE1 Rev. 1

. . ,

SAMPLE TYPE: SURFACE ANALYSIS GROUP: TRACE

SAMPI ING LOCATION	SAMPLING EVENT CODE	SAMPLE NUMBER		AL NG/L·	(A) [.]	AS NG/L	` (A)	-	B MG/L	{A}	BA MG/I	(A)	CD MG/L	, (A)		CO NG/L	[A]
CILD CREEK	84-317 84-302 85-223	84-317 84-336 84-302 84-345 85-223 85-224		0 065 0.065 0.065 0.065 0.060 0.060	<pre>1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</pre>			< < < < < < < < < < < < < < < < < < <	$\begin{array}{c} 0 & 014 \\ 0 & 014 \\ 0 & 017 \\ 0 & 014 \\ 0 & 016 \\ 0 & 016 \\ 0 & 016 \end{array}$	(1) (1) (1) (1) (1)	0 024 0 024 0 024 0 024 0 024 0 040 0 040	$ \begin{pmatrix} 1 \\ 1 \\ 1 $			• • • • • • • • • • • • • • • • • • • •	0.017 0.017 0.034 0.017 0.017 0.017	$ \begin{pmatrix} 1 \\ 1 \\ (1) \\ $
CR-DC-14	83-258	83-211 83-258	((0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	{ ! }			د د	0 020 0,020	$\left\{ \begin{array}{c} 1\\ 1 \end{array} \right\}$	0.034 0.031	$\left\{ \begin{array}{c} 1\\ 1 \end{array} \right\}$			۲ ۲	0.020 0.010	{! }
CR-HIS	SI 1E - 22 I	SITE-221	•	0.050	[0]									•			
CK-V-UK	84-330 84-311 85-206 85-266	84-330 84-361 84-311 84-356 85-206 85-207 85-266	******	0.065 0.065 0.065 0.065 0.060 0.060 0.060 0.060				~ ~ ~ ~ ~ ~ ~ ~	$\begin{array}{c} 0.014 \\ 0.014 \\ 0.014 \\ 0.014 \\ 0.016 \\ 0.016 \\ 0.016 \\ 0.015 \end{array}$	(1) (1) (1) (1) (1) (1)	0.029 0.028 0.028 0.030 0.032 0.032 0.032	1) (1) (1) (1) (1) (1)	•		~ ~ ~ ~ ~ ~ ~ ~	0.01? 0.017 0.017 0.017 0.017 0.017 0.017	(1) (1) (1) (1) (1) (1) (1)
2 2	86~70 86-109	85-267 86-70 86-71 86-109 88-110		0 060 0 200 0 200 0 200 0 200 0 200	1) (1) (1) (1) (1)			< < < < <	0.015 0.100 0.100 0.100 0.100 0.100	$ \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 $	0.023 0.028 0.028 0.028 0.029	$\begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}$			۲	0.020	[1]
YR - 110	85-210 85-209 80-67 80-118	85-210 85-211 85-269 85-270 86-67 86-68 86-118 86-119	~ ~ ~ ~ ~ ~ ~ ~	0.080 0.080 0.100 0.100 0.200 0.200 0.200 0.200 0.200				* * * * * *	0 016 0.018 0.050 0.050 0.100 0.100 0.100 0.100		0 012 0 014 0 026 0 025 0 019 0 019 0 018 0 018				((0.017 0.017	{] }
		3.5			<i>.</i>												

. . .

SEE END OF THIS REPORT FOR A LISTING OF ANALYSIS HETHODS.

SD-8WI-DP-061 Rev.

.

•

1

τ.

PAGE 16

SAMPLE TYPE: SURFACE ANALYSIS GROUP: TRACE

3 · 12 · 2

ł

ł

.

.

SAMPEING LOCATION	EVENT CODE	SAMP1 E NUMBER	СХ Уб/1	[A]		CU NG/L	(A)		72 MG/1	{A}		M0/1	1A)		MN . MG/L	(A)		MD MG/L	
CIND DREEK	84-317 84-302	84-317 84-336 84-302 84-345	 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 	34 (1) 34 (1) 34 (1)	с с с	0 005 0.005 0.005 0.005			0.015 0.010 0.024 0.022		((800.0 800.0 800.0 800.0		۲ ۲	0.003 0.004 0.003 0.003	$\left\{\begin{array}{c}1\\1\\1\\1\\1\\1\\1\end{array}\right\}$	•••••	0 038 600.0 0.039 0.035	Įų.
	85-223	85-223 85-224	< 0.0 < 0.0		ć	0.006	i		0 020 0 022		Ċ	800 0 800.0	lil	Ċ	0.005		Ċ	0.034	13
DU-14	33-258	83-211 83-258	< 0.0	40 11	ć	0.006 0.010	<pre>{}}</pre>		0.000 0.030	13	Ċ	0.006 0.010	{}	٢	0.004 0.004	{ }}	c c	0.020	11
C8+1112	S11E-221	SITE-221			•													•	
CR-V-BR	84-330	84-330	< 0.0		¢	0.005	{}}	۲	0	23	¢	0 003	133	Ś	0.003	112	ç	\$C0.0	· .
	84-311	84-311	< 0.0	34 11	č	0.005	i i{	ć	0.008		č	0.008	H	· č	0.003	111	č	0.038	11
	85-208	85-206	< 0.0		č	0.006	}!{{	č	200.0	нţ	è	200 0 0 003		č	0.005		č	0.034	ļ.
	85-266	85-260 85-267	< 0.0		ċ	0.006		č	0.009	1	č	0.003	- tis	ċ	0.005	11	Č.	0.030	
	86-70	86-70			ć	0.012	} {{	ċ	0.030		Ċ	0.016	<u>ii</u>	ċ		! ;{	è	0.600	
	85-109	86-109 86-110		· · · ·	((0.030		((0 0:		Ċ	0.018 0.016		Ċ	0.010 0.010		• •	0.500 0.500	
RI - 84	85-210	85-210	s 0.0	32 [1]	¢	0.006	<u>{</u> <u></u> }.		0.335	m	¢	0.008	111		0 012	;33	¢	0.034	1
·	85-269	85-269	· •.•	52 [1]·	ċ	0.006	\!{	ç	0.015	-ăţ	ŝ	0.008			0.017	1i)	č	0.300	長
	86-67	86-67	·		č	0.012	ji{	•	0.044		è	0.019			0.015	[]]	č	0.600	
	86-118	86-118 86-119			č	0.030	i	¢	0.030		• • •	0.016			0.028			0.600	
	••	•								·								•	
•																			
,										`•			•						
		. ·											ŀ						
,	•																		į.
		•										•				•			

•• ••

• · • • . •

. . .

SEE END OF THIS REPORT FOR A LISTING OF AMALYSIS METHODS.

. .

.

SD-BWI-DP-061 Rev. 1

SAMPLE TYPE. SURFACE ANALYSIS GROUP. TRACE

٠

SAMPLING LOCATION	SAMPLING EVENT CODE	SAMPLE NUMBER		N1 NG/L **** (A)		р NG/1	(A)		Р8 MG/L (A)	SR MG/L	(A)		ZN MG/L (A	¥)
COLD CREEK	84-317 84-302	84-317 84-336 84-302 84-345	< < < <	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(0,540 0,540 0,540 0,540	$\left\{\begin{array}{c}1\\1\\1\\1\\1\\1\end{array}\right\}$	< < < <	0.200 0.200 0.200 0.200 0.200	1) 1) 1) 1)	0 104 0.105 0.102 0.102	$ \left\{\begin{array}{c}1\\1\\1\\1\\1\\1\\1\end{array}\right\} $	(((0,020 (1 0,020 (1 0,020 (1 0,020 (1	
	85-223	85-223 85-224	ć	0.030 11 0.030 11				ć	0.180 0.180 (11	0 096 0 092		¢ . ¢	0.020 1	1
CR-DC-14	80-258	83-211 83-258	۲ ۲	0.030 (1) 0.030 (1)	((0 340 0 340	111	د د	0.150	1)	0.102 0.100	{ ! }	۲	0.040 (1 0.030 (1	8
CR-1115	S11E-221	SITE-221													
CR-V-BR	84-330	84-330 84-361	ć	0.017 $\{1\}$ 0.017 $\{1\}$	ć	0.540		۲ ۲	0 200 (0 200 (1]	0.075	<u>[}</u>]	ć	0.020 (1	1)
	84-311	84-311 84-356	ć		ć	0 540	H	ć	0.200	ii -	0.078	<u>}</u> i{	· č	0.020	i{
	85-205	85-206 85-207	ć	0.030	-		,	ċ	0.180	Ϊį́	0.114	}ī{	č	0.020 1	<u> </u>
	35-255	85-266 85-267	ć					Č	0.020	i{	0.077	ļį{	č	0.020 11	įĮ –
	85-70	86-70 86-71						-		-,	0.092		č	0.040	i (
5 5 6	86~109	86-109 86-110									0 098 0 100		č	0.040 11	}
AB - 113	85-210	85-210 85-211	č	0 030 11				ć	0.130	1	0.059	11	ć	0.020 11	1
	×5-259	85-269 85-270								• ,	0 133	li(č	0.020 11	1
	80-67	86-67 86-68									0 102]][č	0.010	1
	86-118	86-118 86-119							,		0.109 0.108		•	0.040 11	5

SD-8WI-0P-061 Rev.

SEE END OF THIS REPORT FOR A LISTING OF AMALYSIS METHODS.

. . . .

PAGE 16.2

۰.

.

.

.

1

4

•

.

٠

SAHPT 100 LOCATION	SAMPLING EVENT CODE	SAMPLE NUMBER		Ai MG/L	(A) ··	AS HG/L	(A)		B MG/L	{A)	34 \$13/1	(A)	CD MG/	L (A)		CO NG/L	(A.
XKI - 0UA	82-40	82-35 82-40	د د	0.080	{}}			((0.020 0.020		0.050 0.050	{}}			 < <	0.020	ti)
199-804-04	STIE-41	SIÍE-41				0.002	(0)		0.010	(2)							
199-005-12	STTE - 80	SÍ1E-80	¢	0.050	(0)	0.005	(0)		0.030	10)	0.000	(0)			۲	0.005	(0,
100-101-03	STIE -72	SITE-72		0.050	(0)	0.004	[0]		0.007	[0]	0.070	[0]		1	(0.005	(0)
199-202-01	SITE-82	SITE-82	¢	0.050	10)	0,003	(0)		0.030	[23	0.070	(0)		•	•	0.00%	[0]
199-104-03	SITE-81	S11E-81	¢	· D. DSD	{0}	. 0.010	(0)		0 050	10)	0.070	(0)	•	•	۲	0.005	(0)
199-X-19	SITE-83	SITÈ-83	¢	0.050	{0}	0.003	(0)		0.010	101	0.000	(0)			¢	0.005	[0]
199-11-15	S11E-42	SITE-42				0.002	(0)		0.010	101		1 -	•				
299-126-05	ST1E-165	SITE-165			•						• 0.031	10)	•		¢	0.012	10)
299-833-12	S11E-169	stiż-i69									0.025	(0)			<	.0.018	10:
399-01-01	SITE-244	`SITE-244	` ‹	0.050	101	•			0.050	101	0,050	103 -			د	0.005	;01
1388-01-03	5116-43	SI IE - 43	· ·	0.020	[0]	0.002	[0]		0.020	10)	•			x *	-		•
3399-02-01	STIE-245	S1TE-245	<	0.050	(0)		· .		0.050	(0)	0.050	(0)		•	i 'e	0.005	(0)
399-53-01	SITE-246	SITE-246	Ċ	0.050	(0)		•		0.050	:01	0.055	10)			•	0.005	(0)
399-34-10	ST1E-44	SITE-44		0.020	;0)	0.001	(0)		0.03 \	÷.)						0.002	(0)
399-08-04	511E-140	STTE-140	¢	0.050	(0)				0.010	~ ` .	3.030	(0)			¢	0.005	(0)
899-11AN - 19	S11E-3	STIE-3				0.010	(0)							-			
899-203-112	SI 1E - 22 SI TE - 141	STIE-22 STIE-141	્ ૯	0.04L 0.050	10}	0.016	(0)		0.025 0.025	(?)	0.020 0.030	183			4	0,024 0,005	(0)
699-503-25	5118-7 5118-142 86-55	SITE-7 S71E-142 86-55		0 770 0 250 0 200		0 008	(0)	ć	0.057 0.073 0.100	•••	0.03 0.070 2.053	(0) (0)	〈 0.	008 (0)	۲	0.007 0.005	(n) (1
	86-130	86-56 86-130 86-131	с с с	0 500		· .		((0 100 0 200 0 20	i 1 P	0 058						
509-396-E04D	STIE-H	STIE-11		0.30	.01	0.001	(0)		0.02?	• >	0.¢i×	(0)			•	0.002	.53
699-508-19	SITE-46	SITE-40		9.010	101	0.009	(0)		0.150	~ e		•					• •
· · · · ·		er en er	. S	i CK3 351	DF THÌ	S REPORT I	OR A	LI	STING OS	AIV 6	LYSIS METHI	DS.					

. .

۰.

. . . .

PAGE 17

SD-BWI-DP-061 Rev.

.

•

SAMPI ING LOCATION	SAMPLING EVENT CODE	SAMPLE NUMBER		CR MG/L (A)	· · ·	CU MG/L	(A)		FE MG/L	(A)		LI MG/L	(A)		MN MG/L	(A)		MO MG/L	(A)
RHL-OGA	82-40	82-35 82-40	((0.030 (1) 0.030 (1)		0.009	{!}	ć	0.006 0.006	{}}	((0.006 0.006	{ \ }		0.008 0.008	{ <u>+</u>]	د د	0.020 0.020	{1 1}
199-104-04	SITE-41	SITE-41		0.010 (0)					0.030	[0]		0.010	(0)		0.004	(0)		0.002	(0)
199-005-12	SITE-80	SITE-80		0.100 (0)	۲	0.010	[0]	4	0.005	(0)		0.010	(0)		0.001	(0)		0.010	(0)
јаа-ров-оз	S11E-72	SITE-72		0.100 (0)					0.003	(0)		0.005	[0]		0.030	(0)		0.010	[0]
199-605-01	S [] E - 82	SI1E-82	•	0.050 (0)	۲	0.010	101		0.010	[0]	4	0.010	(0)		0.007	(0)		0.010	(0)
199-1104-03	STIE-81	SITE-81		1.000 (0)		0.100	(0)		0.005	[0]		0.010	[0]		0.000	(0)		0.010	(0)
- 188-X-18	S11E-83	SITE-83		0.100 (0)	4	0.010	(0)	۲	0.005	(0)	4	0.010	(0)	۲	0.001	(0)	¢	0.010	[0]
100-11-12	SITE-42	SITE-42		·					0.030	(0)			•						
299-829-08	SITE-165	SITE-165				0.049	(0)	(0.030	[0]					0.114	(0)			
299-233-12	SITE-169	SITE-169			۲	0.001	(0)		0 050	[0]									
388-01-01	S11E-244	SITE-244	•	0.050 (0)	۲	0.010	(0)		0.007	[0]	4	0.005	(0)		0.003	(0)	. ‹	0.010	(0)
12338-01-03	S1TE-43	SITE-43				0.001	(0)		0.030	(0)					0.004	[0]		0.025	(0)
00388-05-01	SITE-245	\$11E-245	4	0.050 (0)	۲	0.010	[0]		0.050	(0)	۲	0.005	(0)		0.001	(0)	•	0.010	[0]
399-03-01	SIIE-246	SI1E-246	•	0.050 (0)	۲	0.010	[0]		0.010	(0)	۲	0.005	(0)	۲	0.001	(0)	¢	0.010	(0)
388-04-10	SILE-44	SITE-44		0.010 [0]		0.001	[0]		0.030	(0)					0.004	(0)		0.005	(0)
399-08-04	S11E-140	SITE-140	۲	0.050 (0)	۲	0.010	[0]	۲	0.005	(0)		0.010	(0)		0.003	(0)	•	0.010	10)
:03a-HVN-1a	SITE-3	SITE-3				0.002	(0)		0.050	(0)			•						
699-503-E12	5111 - 22 5116 - 141	S11E-22 S11E-141	¢,	0.004 00	¢	0 001 0.010	{ 8 }		0.020 0.010	{ 8 }		0.007	(0)		0.002 0.003	{0 {0}		0.020	[0] ·
699-503-25	S F I E - 7 S I I E - 142 86 - 55 86 - 130	SIYE~7 SITE-142 86-55 86-56 86-130	¢	0 010 (0) 0.050 (0)	~ ~ ~ ~	$\begin{array}{c} 0 & 011 \\ 0 & 010 \\ 0 & 012 \\ 0 & 012 \\ 0 & 012 \\ 0 & 030 \end{array}$			1 600 0 030 0 120 0 120 0 039	(0) (0) (1) (1) (1)	•	0.008 0.030 0.016 0.016 0.016	(0) (0) (1) (1)	•	0.250 0.100 0.108 0.107 0.110	(0) (1) (1) (1)	•	0.008 0.010 0.500 0.500 0.500	00
,		86-131			¢	0.030	(1)		0 035	(1)	٢.	0.016	(1)		0.108	[1]	۲	0.600	1 .1
699-206-1040	SI 1E-11	SITE-11	<	0.001 (0)		0.004	(0)		0.130	[0]		0 007	(0)		0.480	10)		0.003	(9)
899 · S08 - 19	SI1E-46	SITE-46							0.020	101					0.020	[0]		0.005	(\$)

SEE END OF THIS REPORT FOR A LISTING OF ANALYSIS METHODS.

.

۰.

; ·

PAGE 17.1

· .

SD-8HI-0P-061 Rev.

. ...

. •

SAMPI ING I DCAYTON	SAMP1 ING EVENT CODE	SAMPLE NUHBER	. •	ні Ма/і	(Å)		P MG/L	(A)		PR MG/1	(A)	SH'' MG/L	(A)		2N M3/L	(A)
881 USA	82-40	62-35 82-40	((0.030	{ ! }	۲ ۲	0.340 0.340	{ <u> </u>]	۲. ۲.	0.180	{ \ }	0 160 0.160	<pre>{}}</pre>		0.450 0.440	{ <u>1</u> { <u>1</u> }
199-804-04	SITE-41	SITE-41		0.002	(0)							0.220	[0]		0.009	(0)
199-005-12	\$175-80	S17E-80	۲	0.050	(0)		0.030	(0)		1.001	10)	0,300	(0)	¢	0.005	{0}
199-1008-03	SI 1E-72	S11E-72	۲	0.050	(0)				C	0:030	103	0,000	10)	۲	0.005	(0)
199-105-01	STTE-32	\$178-82	۲	0.050	(0)		0.020	(0)		0.700	(0)	2.100	10)	٢	0.005	(0)
199-1104-03	5175-81	SITE-81	۲	0.050	(0)		0.080	(0)		1 000	[0]	300	(0)	ſ	0.005	[9]
199-X-19	S11E-83	SITE-83		0.050	[0]		0.010	(0)		0.500	[0]	0.100	10)		0.010	(0)
199-11-15	S11E-42	517E-42		0.003	(0)			•		0.000	{9}	3.140	10)		2.003	(2)
299-E26-08	\$11E-165	SITE-165	¢	0.000	(0)		;		¢	0.01-'	(0)	*			0.093	101
∡ J9- £33-12	SITE-169	SITE-169	۰	0.052	(0)		· `.	1	¢	0.014	10)	· · · · ·	· · ·		2.130	(0)
388-01-01	ST 1E-244	SITE-244	(0.050	{0}		0.080	(0)	¢	0.982	[0]	v.100	(0)		0.010	(0)
13399-01-03	STTE-43	SITE-43		0.002	(0)						; ·	0.140	10)		0.020	(0)
399-02-01	SITE-245	SITE-245			•		0.100	(0)	<	0.0	[0]	3.100	{0}		0.019	(0)
399-03-01	STTE-248	S11E-246	۲	0.050	(0)		0.120	(0)	¢	0.030	101	3.100	(0)	٢	0.000	10)
399-04-10	STTE-44	SITE-44		0.003	[0]					0.002	101	ئ. 160	(0)		0.010	(0)
399-08-04	SITE-140	SITE-140	¢	0 050	(Ó)		0.030	(0)	¢	0.030	(0)	0.300	(0)		0.100	10)
699-HAN-19	SITE-3	SITE-J					0.030	(0)					• .			
899-303-E12	S11F-22 S11E-141	SITE-22 SITE-141	¢	0.004 0.050	{ 8 }		0.010	(0)	¢	0.0C. 0.030	· []	0.100	[3]	•	0.909	(0)
899 803-25 8	STIE-7 STIE-142 86-55	SITE-7 SITE-142 86-55 86-56	¢).194 0.050	[0] [0]		0.060 0.030	[8]		0.(37 0.039	(0)	0,130 0,300 7,251 0,249	0)	((0,030 0,030 0,040 0,040	
	00-130 · ,	86-131			·							0.254 0.250	{]	ć	0.040 0.040	
699-508-L04D	STTE-11	SITE-11		0.005	(0)		0.020	(0)		0.004	(0)	0.220	[0]		1.600	(0)
889-208-19	S1 fE-46	SITE-45	•	J.002	[0]					•	• •	0 020	(0)		0.005	(9)
	••,	5 g H - 5	SEŁ	END OF	ากร่	RE	PORT FOR	R A L	IST	ING OF	MALYS	IS METHODS	i.			-

. :

SD-8WI-DP-061 Rev. 1

TAV. 17.2

.

.

1

. .

• • • •

•

· ·

4.1

SAMPLING LOCATION	SAMPLING Event Code	SAMPLE NUMBER		AL HG/L	'(A)	AS MG/L	(A)		B MG/L	(A)	BA MG/L	(A)		CD MG/L	(A)		CO MG/L	(A)
699-508-19	SITE-84	SITE-84	<	0.050	(0)	0.013	(0)		0.100	(0)	0.050	(0)				<	0.005	(0)
699-\$11-£12A	SIIE-4	SITE-4		0.052	[0]	0.012	10}		0.013	10)	0.053	(0)				۲	0.002	(0)
699-512-03	SIIE-45 SIIE-143	SITE-45 SITE-143	۲	0.050	[0]	0.005	(0)		0.040 0.007	{8}	0.030	(0)				¢	0.005	[0]
699-519-E13	SITE-120	SITE-120		0.300	(0)			4	0.005	[0]	0.050	(0)				۲	0.005	(0)
699-824-19	85-213 85-291	85-213 85-214 85-291 85-292	< < < <	0.080 0.060 0.100 0.100	$\left\{ \begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 $			۲ ۲	0.024 0.025 0.050 0.050	$ \left\{\begin{array}{c}1\\1\\1\\1\\1\end{array}\right\} $	0.039 0.039 0.034 0.035					• • • •	0.017 0.017 0.017 0.017	$ \begin{cases} 1 \\ 1 \\ $
599-529-E12	ST 1E-21	SITE-21		0.010	(0)	0,006	(0)		0.030	(0)	0.060	(0)	•				0.006	[0]
699-530-EISA	SITE-144	SITE-144	¢	0.050	(0)		•		0.010	(0)	0.050	[0]				¢	0.005	(0)
699-01-18	SIIE-145	SITE-145		0.070	[0]				0.010	10)	0.050	(0)					0,005	(0)
699-02-03	SITE-1	SITE-1		0.007	(0)	0.014	[0]		0.012	(0)	0.050	[0]				<	0.002	[0]
699-02-33 24 44	S11E-85 SITE-146	S11E-85 SITE-146	«	0.050 0.070	$\left\{ \begin{smallmatrix} 0\\ 0 \end{smallmatrix} \right\}$	0.007	[0]		$ \begin{array}{c} 0.010 \\ 0.010 \end{array} $	[0]	0.050 0.030			•		' ‹	0,005 0,005	[0]
[∞] 699-04·106	S17E-47	SITE-47		0.010	(0)	0.007	(0)		0.010	[0]	 							
699-08-17	SITE-23	SITE-23		0.020	[0]	0.008	(0)		0.020	(0)	0.040	(0)					0.006	(0)
699-08-25	SITE-32	SI 1E - 32		0.020	[0]	0 007	(0)		0.030	[0]	0.040	(0)					0.006	(0)
699-08-32	S11E-19	SITE-19		0.010	(0)	0.001	(0)		0.017	(0)	0.044	(0)		0.004	(0)	۲	0.002	(0)
639-09-E02	SITE-16	SITE-16		0.065	(0)	0.010	101		0.020	(0)	0.048	(0)	۲	0.003	(0)	•	0.002	[0]
699-10-£12	SI IE - 147 SI IE - 247	SITE-147 SITE-247	۲ ۲	0 050 0.050					0.050 0.030	{0} {0}	0.050 0.050	{°}				د د	0.005 0.005	[8]
699-11-45A	SI 16 - 148 85 - 263	SITE-148 85-263 85-261	•	0,050				•	0.010	(0) [1]	0.050	$ \left\{ \begin{smallmatrix} 0 \\ 1 \\ 1 \end{smallmatrix} \right\} $				•	0.005	(0) (1)
	86-43	86-43	È	0.200	. <u> </u>		•	č	0.100		0.045	<u>}i</u> {				¢	0.020	[1]
	86-124	86-124 86-125	•	0.200				ر د د	0.100 0.100		0.043							
699-13-01A	SITE-60	SITE-60		0 070	(0)	0.014	(0)		0.030	(0)	0.052	(0)			•	¢	0.005	10)

SEE END OF THIS REPORT FOR A LISTING OF ANALYSIS METHODS.

: J

SD-8HI-9P-061 Rev.

مبو

PAGE 18
۰,٬

.

.

• ·

SAMPI ING I OCATION	SAMPI ING EVENI CODE	SAMPI E NUHBER		СХ И G/I . ·	(A) ²		CU HG/L	(A)	• .	FE NG/L	{Ä}		-1 1 MG/L	(A)		MN MG/L	(A)		MD MG/L	1
699-508-19	SITE-84	SITE - 84		0.050	(0)	ζ.	0.010	(0)	ζ.	0.005	(0)		0.010	(0)		0.030	(0)		0.010	103
699-S11-E12A	SIIE-4	SITE-4		R 00.0	(0)		0.007	(0)		0.330	10)		0.005	(0)		0.012	(0)		0.002	(2)
699-512-03	SI 1E - 45 SI 1E - 143	SITE-45 SITE-143	ſ	0.050	[0]	¢	0 010	(0)		0.020	0		0.007	103		0.001	10)	¢	0.004 0.010	[0] [v]
899-519-E13	SI1E-120	S17E-120	۲	0.050	(0)	¢	0.010	(0)		0.020	(0)		0.010	(0)		0.005	(0)		0.010	(0)
599-524-10 ,	85-213 85-291	85-213 85-214 85-291 85-282	с с с	0.032 0.032 0.033 0.033	$ \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{bmatrix} $	((((0.006 0.006 0.006 0.006	$ \begin{cases} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 1 1 1 1 1 1 1 1 $	 	0,000 0,000 0,015		~ ~ ~ ~	800.9 800.0 800.0 800.0	$ \begin{cases} 1 \\ 1 \\ 1 \\ 1 1 1 1 $	••••	0.005 0.005 0.005 0.005	(1) (1) (1) (1)	• • • • • • • •	0.024 0.034 0.034 0.034	
899-529 £12	\$115-21	SITE-21		ů.008	(0)		0.002	(0)		0.210	103					0.004	10)		0.005	
699-530-115A	SITE-144	SITE-144	۲	0.050	(0)	•	* 0.010	(0)		0.007	[0]		0.010	(0)		0.001	10)	¢	0.010	[0]
699-01-18	SITE-145	SITE-145	¢	0.050	(0)	¢	0.010	(0)		0.010	(0)		0.010	(0)		0.003	(0)		0 010	(0)
<u></u> 699-02-03	SITE-1	SITE-1		0.004	101		0.010	(0)		080 0	[0]		0.005	(0)	¢	0.001	(ò)		0.005	(0)
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	SITE-85 SITE-146	STTE-85 STTE-140	۲ ۲	0.050 0.050		((0.010 0.010	[0] [0]		060.0 060.0	0		0.010 0.010	[8]		0.050	[8]	• •	0.010 0.010	01
599-04-E06	SI1E-47	SITE-47		•	• `					0.040	10)		0.010	[0]		,			0.008	. 33
699-08-17	SITE-23	SI1E-23		0.005	(0)		0 002	(0)		0.10	(0)		,			0.020	(0)		0.010	(9)
699-08-25	ST1E-32	SI TE - 32		0.006	(0)		0 002	(o)		0.010	10)					0.004	10)		0.010	(0)
699-08-32	STTE-19	S11E-19	۲	6.001	[0]		0.002	(0)		0.351	; > }		5. 598	(0)		0.055	10.		0.00	(0)
899-09-E02	S11E-16	S17E-16	4	0.008	(0)		0.00/	[0]		2,130	[0]		0.010	(0)		0.140	123		0.007	12
899-10 E12	511E - 147 511E - 247	S11E-147 SI1E-247	((U 050 0 050	{ 8 }	((0.010 0.010			0.022	10 10]		0.007 0.010	[8]		0.001 0.003	{?}	٢	0.010	
605-11-45A	ST1E-148 85-263	SITE - 148 85 - 263 85 - 254	•	0.050 0.030	$\begin{pmatrix} 0\\1\\1 \end{pmatrix}$	с с	0.010	{ 0 1 1		0 000		۲ ۲	0.003]]]		0.13	10)	« «	0.010 0.030	•
· ·	38-43	85-43	•			č	0.012	ļi į		0 150		è.	0.015	jį į	·	0.120		è	0 500	:
	86-124	86-124 ~ 86-125				((0.030	li		0 032			0.015 0.016 0.015))(1)		9.129 0.145		Ċ	0.500	
810-11-01A	SI 1E - 60	SITE-60	۲	D.050	(0)		• •		(0.005	(0)		0 010	(0)		0.001	(0)		0.010	
· · · · · · · · · · · · · · · · · · ·	2007 2007 2007		SEE	END OF	11115	RE	PORT FOR	IAL	IST	ING DE	44LÝ	S13	me thods	5.						

.

۰.

1413 18.1

. .

í

٠

.

.

.

SD-8WI-DP-061 Rev.

• • •••

.

.

1997 - B. 1997 - B.

SAMPLING LOCATION	SAMPLING EVENT CODE	SAMPLE NUMBER		ні НG/1	[A]	1	16/L	(A)		ри НG/1	(A)	SR MG/L	(A)		ZN MG/L	(A)	
699-508-19	SITE-84	SITE-84	<	0.050	[0]		0.040	(0)		1,000	(0)	0.10	0 (0)	<	0.005	(0)	
699-\$11-E12A	SIIE-4	SITE-4	4	0.002	(0)		0 050	{0}		0.017	(0)	0.18	0 (0)		0.030	(0)	
699-512-03	STTE - 45 STTE - 143	SITE-45 SITE-143	¢,	0.003 0.050	[8]		0.040	(0)	٢	0.030	(0)	0.21 0.10		٢	0.070	[0]	
699-519-E13	S17E-120	SITE-120	•	0.050	[0]		0.040	(0)		0.590	(0)	0.30	0 (0)	4	0.005	(0)	
699-524-19	85-213 85-281	85-213 85-214 85-291 85-292	< < < < <	0.030 0.030 0.030 0.030				;	•••••••••••••••••••••••••••••••••••••••	0.180 0.180 0.180 0.180 0.130		0.14 0.14 0.15 0.15	$\begin{array}{c} 4 & \{1 \\ 4 & \{1 \\ 1 \\ 1 & \{1 \\ 2 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ $	~ ~ ~ ~	0.020 0.020 0.020 0.020 0.020	$ \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 $	
699-529-E12	ST/E-21	SIVE-21		0,006	(0)					0.007	(0)	0.20	0 (0)		0.010	(0)	
699-530-E15A	STIE-144	SITE-144	¢	0.050	(0)		0 030	(0)	¢	0.030	(0)	0.30	0 10)	4	0.009	[0]	
699-01-18	SITE-145	SITE-145	۲	0.050	(0)		0.030	(0)		0.050	{0}	0.30	0 (0)		0.010	(0)	
699-02-03	SITE-1	SITE-1	6	0.002	(0)		0.020	10)		0.010	[0]	0,20	0 (0)		0.010	(0)	
19 19 19	SITE-85 SITE-146	SITE-85 SITE-146	د د	0.050 0.050	{ ⁰ }		0.070 0.020	[8]		1.000 0.030	[0] [0]	0 10 0.10		((0.005 0.009		•
699-04-E06	SIIE-47	SITE-47		0.003	10)						. •	0.22	0 (0)		0.010	{0}	
699-08-13	\$11E-23	S11E-23		0.006	(0)					0.005	(0)	0.20	0 (0)		0.120	[0]	
699-08-25	SITE-02	SITE-32		0.006	(0)					0.006	(0)	0.19	(0)				
699-08-32	SITE-19	S11E-19		0.003	(0)		0.090	{0}		0.002	{0}	0.19	0 (0)		0.010	(0)	
899-09-E02	SITE-15	SITE-16		U.002	(0)		0.040	(0)		0.005	[0]	0.19	0 (0)		0.017	[0]	
699-10-E12	ST1E-147 ST1E-247	SI1E-147 SI1E-247	« «	0.050 0.050	{ 8 }		0.010 0.030		۲ ۲	0 030 0.030	{°}	0 10 0.30	8 [8]		0.100 0.010		
699-11-45A	SI 1E - 148 85 - 263	SITE-148 85-263 85-264	۲ ۲	0.050	{0 1		0.010	[0]	•	0.030	10) (1)	0.10 0.19	$ \begin{bmatrix} 0 \\ 1 \end{bmatrix} $		0.700	$\left\{ \begin{matrix} 0 \\ 1 \\ 1 \end{matrix} \right\}$	
	80-43	86-43	`	0.030	111				•	0.200	[1]	0 17			0.572		
	46-124	86-124 86-125			4		•					0 18 0 18 0 18			0.354 0.354 0.350		
599-13-01A	SI FE - 80	\$1TE-60		0.050	[0]				۲,	0.030	(0)	0.30	6 (0)	¢	0.005	[0]	

. .

SEE END OF THIS REPORT FOR A LISTING OF ANALYSIS METHODS.

FAGE 18.2

.

SD-BWI-DP-061 Rev. 1

.

ļ

.

. .

. .

•

.

1

SAMPLING L'OCATION	SAMPI ING EVENT CODE	SAMPLE NUMBER	<u>.</u>	AL MG21. (A)	AS MG/L	(A) · ·	8 MG/1_1`)	BA MG/L	IA)	CD MG/L	(A)	C0 M0/L	(A)
689-14-38	SITE-61 SITE-86	SI1E-61 SI1E-86	۰	0.0/0 0	0.004 0.004		0.030 (0) 0.030 (0)	0 070 0 070			· · · · · · · · · · · · · · · · · · ·	0.005	[0]
ัธษัษ - 15 - 158	SITE-13 SITE-149	SITE-13 SITE-149	¢	0.005 0	0.004	(0)	0.020 (0)	0.051 0.050	[0]	¢ 0.004	(0) (0.002 0.005	(0) (0)
699-15-20 699-15-20	SI1E-24 SIIE-150	SITE-24 SITE-150	۲	0.010 {0 0.050 {0}	0.018	(0)	0,030 10)	0.050 0.050	{0} {0}		۲	0.008	[<u>0</u>]
699-17-05	SI1E-18 SI1E-151	SITE-18 SITE-151	¢	0 470 0) 0 050 0)	0.004	(0)	0.015 (1) 0.010 (3)	91039 91932	[8]	0.004	(9) (0.002	0
699-19-43	STIE-48 STIE-121	SITE-48 SITE-121		0.100 [0]	i 0,002	(0) <	0.050 101	0.050	10)	·	¢	0.050	(0)
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	85-229 85-260 86-40 86-121	85-229 85-230 85-260 85-261 86-40 86-41 86-41 86-121	<	0.260 [1] 0.060 [1] 0.060 [1] 0.060 [1] 0.200 [1] 0.200 [1] 0.200 [1]	:		0.020 0.023 11 0.015 11 0.015 13 0.015 13 0.100 100 0.100 0.100 0.100 0.100 0.100 0.100 0.020 0.023 0.025 0.023 0.025 0.023 0.025 0.	0 031 0 032 0 055 0 055 0 055 0 055 0 055 0 055 0 055 0 055	$ \begin{pmatrix} 1 \\ 1 \\ 1 $	•	(((0 017 0.017 0.023 0:020	
<i>もかい-13-88</i> つ ビ	85-278	86-122 85-278	c c	0.200 (1)		······································	0.052	0.054	₹፤ } {1}-1	14 1 A	· .	•	
	86-64 86-127	85-279 86-64 86-65 86-127 86-128	<pre></pre>	0.100 (1) 0.200 (1) 0.200 (1) 0.200 (1) 0.200 (1)			0.050 (.) 0.100 (.) 0.100 (.) 0.100 (.) 0.100 (.)	0.008 0.011 0.010 0.009 0.009 0.009	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	· · · ·· ·			•
a95-20-205-0	5111-49	SITE-49		· · · .	0.005	(0)	0.015 (2)	000	10)				
699-20-20	\$116-25	SITE-25		0 010 10)	0.013	(0)	0.030 (0)	0.090	(0)-			0.00	i 0
669 24-33	SI1E-28	\$1 fE-28		0.510 (0)	0.004	[0]	0.040 10)	0.030	(:)			0.007	10;
559-24-46	S11E-122	SITE-122		0 100 (0)	. •	· · · ·	0.005 (:)	3.270	10)		(0.005	10
\$99+24-95	85-288	85-288	۰	2.050 [1]		¢	0.050	. ep.	(1)			0.017	! •
	86-61	85-289	· (0 200 (1)	``.	· · · · · · · · · · · · · · · · · · ·	0.05C 0.100 \	2 256	$\{1\}$		•	0.017	· • .
	86-115	86~62 86~115 86-116	(((0 200 1 0 200 1 0 200 1	a: /	- , ((0.100 0.100 0.100 ()	043 047 047	$ \begin{cases} 1 \\ \frac{1}{1} \\ 1 \end{cases} $		•		
•		C11C 100									•		

and the second second second second second second second second second second second second second second second

· · ·

.

SD-EWI-DF-061 Rev. 1

.

.

•

٠

:

1462 19

4 ș ·

SAMPLING LOCATION	SAMPLING EVENT CODE	SAMPLE NUMBER		CR MG/L	(A)		CU MG/L	(A)		FE NG/L	(A)	۰,	LI MG/L	(A)		MN MG/L	(A)	a.	MQ MG/L	(A)
699-14-38	SIIE-61 SIIE-86	SITE-61 SITE-86	۰. ۲	0.050 0.050	18)	<	0.010	(0)		0.050	183		0.010	{8}		0.070 0.050	[8]		0.010 0.010	{8}
699-15-15H	SITE-13 SITE-149	SITE-13 SITE-149	((0.001 0.050	[0]	٢	0 002 0 010	[8]		0.020 0.010	[8]		0 006 0 010	{8}		0.040 0.007	$\begin{pmatrix} 0 \\ 0 \end{pmatrix}$	۲	0,003 0,010	
699-15-26	SI 1E-24 SI 1E-150	SI 1E - 24 SI 1E - 150	4	0.006 0.050		<	0 002		4	0 020 0.010	[⁰]		0.010	{ 8 }	<	0.004			0.020 0.010	
699-17-05	SITE-18 SITE-151	SI1E-18 SITE-151	•	0 001 0 050	[8]	4	0.004 0.010	{ 8 }.		3.900 0.030	{ 8 }		0.005 0.007	{ 8 }		0.055 0.001	[0]	• .	0.001 0,010	$\left\{ \begin{smallmatrix} 0 \\ 0 \end{smallmatrix} \right\}$
699-19-43	SITE - 48 SITE - 121	SITE-48 SITE-121		0,050	(0)	¢	0.010	(0)	۲	0.010 0.005	{ 0} }		0.010			0.001	(0)	۲	0,000 0,010	
698-18-28	85-229	85-229	¢	0.032	(1)	¢	0.006	(1)		0.470	<u>{1</u>]	۲	0.008	(1)	•	0.106	(1)	<	0.034	(1)
	85-260	85-260	č	0.030		ć	0.006		•	0.480	{ i }	¢	0.009	{ ! }		0.107		č	0.034	$\left\{ \begin{array}{c} 1\\ 1 \end{array} \right\}$
	៨ ម ~ 4 ម	86-40	•	0.030	[1]	ć	0.012			0.430	{ ! }	ć	0.008	{i}		0.105	$\left\{ \begin{array}{c} 1\\ 1 \end{array} \right\}$	č	0.034	$\left\{ \begin{array}{c} 1\\ 1 \end{array} \right\}$
12 12	86-121	86-41 86-121 86-122				c c	0 120 0 030 9.030	$\left\{ \begin{array}{c} 1\\ 1\\ 1\\ 1 \end{array} \right\}$		0.429		с с с	0.016 0.016 0.016	$ \left\{\begin{array}{c}1\\1\\1\\1\end{array}\right\} $		$0.100 \\ 0.108 \\ 0.105$	$\begin{bmatrix} 1\\ 1\\ 1\\ 1\\ 1 \end{bmatrix}$	د د د	0,600	$ \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix} $
2000-10-88	85-278	85-278				¢	0 006	<u>}}</u>		0.022		ć	0.003	111	¢	0.004	$\{1\}$	ç	0.300	$\{ i \}$
	86-64	86-64				č	0.012	<u>}</u> ;{		0.033		è	0.016		è	0.010		è	0.600	
	86-127 ,	86-127 86-128			1	ć	0.030		(0.034 0.035		с с с	0.016		c c	0.010 0.010 0.010		с с с	0.600	$ \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} $
699-20-E05-0	SI 1E - 49	SITE-49					0.001	(0)		0.020	(0)			•		0.020	(0)		0.002	(0)
699-20-20	STTE-25	SITE-25		0.007	(0)		0.002	[0]		0.020	(0)		0.010	(0)		0.004	(0)	•	0.005	(0)
699-24-33	SI1E-28	S11E-28		0.007	(0)		0.002	(0)		0.030	(0)					0.004	(0)		0.030	(0)
699-24-46	S11E-122	S11E-122	•	0.050	(0)	۲	0.010	[0]		0.050	(0)		0 010	(0)		0.070	(0)		0.010	(0)
699-24-95	85-288	85-288 85-289	ć	0.032	{!}	۲ ۲	0.006 0.006			0.245 0.250		۲ ۲	0.008	{ ! }		0.014 0.014	-{ } }	ć	0.035	
	80-01	86-61 86-62				ć	0.012	-{}}		01537		۲ ۲	0.016	<u>}</u> [ć	0.010	\\\\	Ś	0.600	} <u></u>]
	86-115	86-115 86-116				ć	0 030 0 030			0.695 0.690		ć	0.016		•	0.019	[i]	č	0.600	
699-25-55	S11E-100	STIE-100		0.070	(0)	(0.010	(0)		0.030	101		0.010	for	•	0 007	101		0 030	(0)

SEE END OF THIS REPORT FOR A LISTING OF ANALYSIS METHODS.

1 ...

PAGE 19.1

SD-BWI-DP-061 Rev.

هندو . 11

•

N

замріїно Госатіон	SAMPI ING EVENI CODE	SAMPLE NUMBER	: ·	ні MG/1.	(A)	P MG/L (A)		рв MG/1 1	A) 3	S8 ^3/1	(A)		ZN MG/L	(A)	
699+14-38	SI 1E-61 SI 1E-86	SITE-61 SITE-86	< <	0.050 0.050	10)	0.030 (0)		0.030	0)	0.100	- { 0 }	< <	0.005	{0} {0}	
899-12-128	SITE-13 SITE-149	SITE-13 STIE-149	۲ ۲	0.002 0.050	[8]	0.050 (0) 0.020 (0)	<	0.003	0} 0}	0.200	{0} {0}		0.100 0.030	$\left\{ \begin{smallmatrix} 0\\ 0\\ 0 \end{smallmatrix} \right\}$	
v99-15-28	SI1E-24 SI1E-150	SITE-24 SITE-150	¢	0.006 0.050	{ 0 }	0.020 (0)	¢	0.006	0	0.200 0.300	{ 0 }	۲	0.009	(0)	
298-17-05	SITE-18 STIE-151	SITE-18 SITE-151	¢	0.005 0.050	{ 8 }.	0.070 (0) 0.010 (0)	٢	0.010	0	0.190	[0]		0.050	[0]	
689-18-43	SI (E-48 SI IE-121	SITE-48 STIE-121	۲	0 002 0.050	[8]	0.030 (0)		0.200 (0)	0.240 0.300	10}		0.230 0.700	$\left\{ \begin{smallmatrix} 0\\ 0 \end{smallmatrix} \right\}$	
088-18-28	85-229	85-229	¢	. 030	$\{ \mathbf{l} \}$	•	¢	0.190 1	1)	0.140	(1)	<	0.020	(1)	
•	85-260	85-260	ć	0.030			č	0.189	1	0.141	$\left\{ \begin{array}{c} 1\\ 1 \end{array} \right\}$	ć	0.020	$\left\{ \begin{array}{c} 1\\ 1 \end{array} \right\}$	
τ.	86-40	86-40	•	0.030	[1]		¢	0.1.3 1	.()	0.136		ć	0.020		
2	86-121	86-121 86-122			•	- f -				0.135		<.	0.040	$\left\{ \begin{array}{c} 1\\ 1\\ 1\\ 1 \end{array} \right\}$.	
сл ~ рр9 - 19 - 88	85-278 86-64 88-127	85-278 85-279 86-64 86-65 86-127 86-128							~	0.107 0.107 0.104 0.105 0.106 0.107		<pre></pre>	0.020 0.020 0.040 0.249 0.040 0.040		
899-20-E05-0	STTE-49	S11E-49		0.G02	(0)					9.200	(0)		0.005	[9]	
699-20-20	S17E-25	STTE-25		0.007	(0)			0.00	0)	0. 00	:23		0.030	[?]	
839-24-33	STTE-28	S11E-28		0.007	(0)			0.007 (*	0)	0.210	{ 0 }				
699-24-46	SI FE-122	SI 1E - 122	¢	0.050	(0)	0.010 (0)		1.000	3)	0.100	(0)	•	0.005	(0)	
899-24-95	85-288	85-288	¢	0.030	(1)		¢	0.150 {	1)	0.112	(1)		0.608	(1)	
	86-81	36-51 36-51	•	0.030			•	0.149 4.	*]	0.30			0.618		
	86-115	86-115, 86-116								5.720			0.292 C 874 0.074		
699-25-55 *	ST1E-100	SITE-100		0.100	(0)	0.040 (0)		0.700	0)	0:209	(0)		0.010	(0)	
	?	• • •		•	••										

.....

• .

.

.

3

t

.... r 4484 •

SES END OF THIS REPORT FOR A LISTING OF AMALYSIS MELSODS.

.

an an tha dt. An an an

PAT: 19.2

.

.

.

SD-BWI-DP-061 Rev. ***

.

۰.

.

. .,

.

ي يندر

SAMPLING LOCATION	SAMPLING EVENT CODE	SAMPLE NUMBER	AL MG/L	[A]	AS MG/L	(A)	B MG/L	(A)	BA MG/L	(A)	CD MG/L	(A)	CD MG/L	(A)
699-26-15	S11E-26	SITE-26	0.01	0 (0)	0.007	• (0)	0.030	(0)	0.070	(0)			0.007	(0)
699-26-15A	SITE-263	STTE - 263	< 0.05	0 (0)		•	0.030	[0]	0.050	(0)			¢ 0.005	5 (0)
699-27-04	SITE-101	SITE-101	0.50	0 (0)			0.030	(0)	0.070	10)			0.010) (ò)
699-27-08	SITE-5 SIIE-30 SIIE-50	SITE-5 SITE-30 SITE-50	0,00 0,02		0.009 0.005 0.006		0.015 0.020 0.020		0,065 0,060 0,100		¢ 0.006	(0)	< 0 002 0.007	
١	SIIE-76 SIIE-87	SI IE - 76 SI IE - 87	< 0.070 < 0.050	8 [0]	0.003	0	0.030	0	0.050 0.100				< 0.005 < 0.005	5 (0) 5 (0)
699-28-40	SITE-68	SITE-68	0.07	0 [0]	0.007	[0]	0.030	(0)	0.050	[0]			< 0.005	5 (0)
699-31-31	S11E-69 S11E-102	SITE-69 SITE-102	0.07 0.50	0 10]	0.009	[0]	0.030 0.030	[0]	0.050 0.050	0 0	•		0.005 0.007 0.007	
699-31-538	S11E-88	SITE-88	0.07	0 (0)	0 006	(0)	0.030	[0]	0.050	(0)			< 0.00S	5 (0)
699-32-22	SIJE-17 SIJE-27 SIJE-51 SIJE-66	SITE-17 SITE-27 SITE-51 SITE-51	0.10 0.01	8 [8]	0 003 0 002 0 003	$\begin{pmatrix} 0\\ 0\\ 0 \end{pmatrix}$.	0.015 0.030 0.020	0	0 044 0.050 0.100		¢ 0.005	(0)	<pre>< 0.003 0.007 0.002</pre>	
	STIE-89	SITE-89	< 0.05		0.007	[8]	0.030	lö]	0.070	101	< 0.001	(0)	< 0.005	5 10}
699-35-708	STTE-70 STTE-90 STTE-152	SITE-70 SITE-90 SITE-152	0.05 0.05 0.05		0 005 0.005	(0) (0)	0.010 0.030 0.010		0.030 0.050 0.070				<pre>< 0.005 < 0.005 < 0.005</pre>	
699-32-72	S11E-35	\$118-35	0.01	0 (0)			0.020	(0)	0.020	[0]			0.005	(0)
699-32-77	S11E-103	S11E-103	0.50	0 (0)			0.030	[0]	0.630	[0]	•		< 0.005	i (0)
699-33-42	S11E - 12 SI IE - 29 SI IE - 52	SITE-12 SITE-29 SITE-52	0.07 0.02	5 (0)	0.001 0.001 0.001		0.030 0.040 0.030		0.037 0.040				¢ 0.002 0.006	
	SI 1E-67 SI 1E-91	SI IE - 67 SI IE - 91	< 0.07 < 0.05	8 [0]	0.006		0.030		0.030 0.050	0 0	< 0.001	(0)	< 0.005 < 0.005	
699-33-56	SITE-8 SITE-40 SITE-53	SI IE - 8 SI IE - 40 SI IE - 53	0.09 0.01		0.005 0.002 0.002		0 016 0.020 0 020		0.053 0.070 0.100	0	·		<pre> 0.002 0.007</pre>	2 (0) (0)
	STIE-62 STIE-92	SI 1E - 62 SI 1E - 92	0.03		0 0 0 0 0 0 0 0		0.030 0.030		0.070 0.070	0			< 0.005	
699-34-39A .	517E-93	S11E-93	< 0.05	n (n)	0.006	[0]	0.030	(0)	0.030	[0]		•	< 0.005	(0) ڏ
699-34-42	S11L-33	STIE-33	0 021	0 [0]	0.004	(0)	9.030	(0)	0 050	(0)			0.007	103

. .

والمتعاد المستحد والمراجع المراجع

and the second

.

:

- 1

PAGE 20

.

SD-BWI-OP-O61 Rev.

I.

.

1

:

SAMPI ING LOCATTUN	SAMPLING EVENT CODE	SAMPLE NUHBER		CR MG/L (A)		CU NG/L (A)		FS MG/_ (A)	LI MG/L (A)	MN MG/L (A)		НО MG71 (\\;
699-28-15	S17E - 26	\$1TE-26		0 007 (0)		0.002 (0)		0.010 (0)		0.004 (0)		0.010
899-28-15A	S17E-263	SITE-263	¢	0.050 (0)	¢	0.010 (0)		0.213 (0)	0,010,(0)	0.001 (0)	¢	0.030 (0)
849-27-04	SI 1E - 101	SITE-101		0.070 (0)	٢	0 010 (0)		0.010 (0)	0.010 (0)	0.010 (0)		0.010 [0]
699-27-08	STTE-5 STTE-30 STTE-50	STTE-5 STTE-30		D.004 (0) 0.007 (0)		0.002 (0) 0.002 (0)	•	0 020 10	0.005 (0)	0.012 (0)		0.002 (1)
	SI1E-76 SI1E-87	STIE-76 STIE-87	د د	0.050 0.	4	0.010 (0)		0 0 0	0,010 (0)	0.001 (0) 0.001 (0)	((0.010 0.010 (0)
699-28-40	SI1E-68	S1TE-68	ś	0.050 (0)				0.010 (0)	D.007 (0)	0.001 (0)		0.030 [0]
899-31-31 /	SI1E-59 SIIE-102	SITE-69 SITE-102	(0 050 (0) 0 070 (0)	٢	0.010 (0)		0.010 [0]	0.010 (0)·	0.003 (0) 0.005 (0)		0.030 (°) 0.030 (°)
\$99-31-53B	S115-98	SITE-88	:	0.050 (0)	٢	0.010 (0)	¢	(0) 200.0	0.010 (0)	0.001 101		0.020 ()
699-32-22	SITE-17 SITE-27 SITE-51	STTE-17 STTE-27 STTE-51		0.003 (0)		0.005 (0) 0.002 (0) 0.001 (0)		0.120 (0) 0.030 (0)	0.005 (0) 0.010 (0)	0.012 (0) 0.020 (0) 0.020 (0)		0.003 (C) 0.010 () 0.003 (C)
	SI1E-65 S11E-89	SIIE-65 SIIE-89	¢ ¢	0 USU (0) 0 050 (0)	¢	0.010 (0)		0.010 0	0.037 00	0.005 (3)		0.010
599-32-70B	SITE-70' SITE-90 SITE-152	SITE-70 SITE-90 SITE-152	د د	0.050 0 0.050 0 0.050 0	¢ ¢	0.010 (0) 0.010 (0)	(0 22 10	0.005 (0) 0.010 (0) 0.010 (0)	(0) 600 0 (0) 600 0 (0) 600 0		0.030 [0)
699-32-72	STTE-35	STIE-35		0.005 (0)		0.001 [0]		0.141 101	ə. 210-10)	0.003 103		0 010 /*
649-32-77	S11E-103	SITE-103	ï	0.050 [0]	¢	0.010 (0)		0.010,101 ((* 0.010.(0)	0.003 [0]		0.030 :::
659-33 - 42	SITE-12 SITE-29 STTE-52	SITE-12 SITE-29 STTE-52		0.005 (0)		0.025 (0) 0.002 (0)		0 77 10)	0.007 (0)	0.050 101		- 10.0 (330.0
	SI 1E - 67 SI IE - 91	SIIE-67 SIIE-91	č	0.050 0	۲	0.010 (0)		6 439 - 88		0.010 (0) 0.010 (0)	<	0.010
699-33-56	SITE-8 SITE-40 SITE-53	STIE-8 STIE-40 STIE-53		0.000 (0) 0.007 (0)		0.009 (0)		2.400 (0)	0 010 001	0.083 (0) 0.000 (0)		0.000
	SI 1E - 62 SI 1E - 92	SI1E-62 SITE-92	~	0.050 0	۲	0.010 (0)	¢	0 27 0	0:010 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.003 0		0.030
699-34-39A	\$17E-93	\$11E-93	٤	0.050-(0)	¢	0.010 (0)		0.030 10)	J.010 (0)	0.007 (0)		0.010 1.1
899-54-42	ST1E-33	STIE-33		0.007 (0)		0.001 (0)		0.036 (0)	.	0.050 (0)		0.000 1)
4 - 11 		, , , , , , ,	SEE	END OF THIS	RE	PORT FOR A'L	IST	ING CS AMALYSI	is me il:ods			

•

PALL 20.1

SD-AWI-DP-061 Rev.

. . ٠

.

· · ·

4.5

SAMPLING LOCATION	SAMPLING EVENT CODE	SAMPLE NUMBER		NI MG/L(A):	P HG/L	(A)	• .	рв Mg/L	(A)	SR NG/L	(A)	ZN MG/L	[A]
699-26-15	ST1E-26	SITE-20		0.007 (0)				0.007	(0)	0.230	(0)		
699-26-15A	STTE-263	SITE-263	(0.050 (0)	0.010	(0)	۲	0.030	(0)	0.300	(0)	010.0	(0)
699-27-04	S17E-101	SI FE-101.		0.070 (0)	0.020	(0)		0.500	(0)	0.300	(0) <	0,005	[0]
699-27-08	SI1E-5 SI1E-30 SI1E-50 SI1E-76 SI1E-87	SITE-5 SITE-30 SITE-50 SITE-76 SITE-87	د د د	0 002 (0) 0 007 (0) 0 002 (0) 0 050 (0) 0 050 (0)	0.020	(0) (0)	¢	0.004 0.007 0.002 0.030 1.000	00000	0 250 0.240 0.280 0.300 0.300		0.120 0.060 0.060 0.030 0.030 0.030	
699-28-40	S1 [E-68	SITE-68	۲	0 050 (0)			۲	0.030	(0)	0.300	(0) <	0.005	[0]
699-31-31	SITE-69 SITE-102	STTE-69 STTE-102	•	0.050 (0) 0.070 (0)	· 0.030	(0)	٢	0.030 0.700	{ 0}	0 300 0 300	10] - «	0,005 0,005	{ 0 }
699-31-538	SITE-88	SITE-88	4	0.050 (0)	0.030	(0)		1.000	(0)	0.100	(0)	0.100	[0]
699-32-22 N 63	SITE - 17 SITE - 27 SITE - 51 SITE - 65 SITE - 89	SITE-17 SITE-27 SITE-51 SITE-65 SITE-89	۲ ۲	0.003 (0) 0.007 (0) 0.003 (0) 0.050 (0) 0.050 (0)	0.040 0.040 0.020	(0) {0}	٢	0.004 0.007 0.002 0.030 1.000		0.270 0.260 0.290 0.300 0.300		0.012 0.010 0.020 0.005 0.005	
699-32-70H	SITE - 70 SITE - 90 SITE - 152	SITE-70 SITE-90 SITE-152	° ° °	0.050 (0) 0.050 (0) 0.050 (0)	0.380 0.050	[8]	د د	0.030 1.000 0.030	0	0.100 0.100 0.300		0,005 0,005 0,010	
699-32-72	STTE - 35	STTE-35		0.005 (0)				0.005	101	0 110	(0)	0.020	(0)
699-32-17	ST 1E - 103	SITE-103	•	0.050 (0)	0.060	(0)		0.700	(0)	0.100	(0) <	0.005	(0)
699-30-42	SIIE-12 SIIE-29 SIIE-52 SIIE-67 SIIE-91	SITE-12 STTE-29 STTE-52 SITE-67 STTE-91	د د	0 005 (0) 0 006 (0) 0 002 (0) 0 050 (0) 0 050 (0)	0.030	(0) (0)	٢	0.010 0.006 0.030 1.000		0.200 0.170 0.200 . 0.100 0.100		0,020 0,010 0,010 0.005 0,005	$ \begin{pmatrix} 0 \\$
890-33-56	STTE-8 STTE-40 STTE-53 STTE-62 STTE-92	SITE-8 SITE-40 SITE-53 SITE-62 SITE-92	<u>د</u> د	0 003 (0) 0 007 (0) 0 002 (0) 0 050 (0) 0 050 (0)	0.020	(0) (0)	٢	0.030 0.007 0.030 1.000		0.180 0.170 0.240 0.300 0.300		0 400 0.110 0.210 0.005 0.100	
699-34-39A	STJE-93	SITE-93	۲	0.050 (0)	0.030	(0)		1.000	[0]	D. 100	(0) <	0.005	(0)
699-34-42	ST 1E-33	SHE-33		0.007 (0)				0.007	(0)	0.170	(0)	0.020	(0)

:

2

SEE END OF THIS REPORT FOR A LISTING OF ANALYSIS METHODS.

.

PAGE 20.2

SD-BWI-DP-061 Rev.

-

. ÷4

. .

. .

Sampi ing Location	SAMPLING EVENT CODE	SAMPLE NUHBER	. N	AI 19/1 -	(A).,	.AS • MG/L	[A]	6 HG/L	[A]	NG/L	(A)	.'D Mg/l	(A),	C0 Mg/l	[A]
899-34-42	5116-153	SI [E-153		0.050	(0).		···· ,	0.030	101	0.030	(0)			0.005	19,
899-34-51	STIE-66	SIJE-66		0.100	10) 1	U.006	(0)	0.030	10)	0.050	[0]			0.005	10)
689-32-08	STIE-31 STIE-104 STIE-264	SIIE-31 SIIE-104 SIIE-264	¢	0,030 0,500 0,050		0.004	[0]	0.020 0.030 0.030		0.070 0.070 0.070				0,005 0,007 0,005	(0) (0) (0)
640-32-66	SITE-77 SITE-94	SITE-77 SITE-04	٢	0.070 0.050	[8]	0.004 0.004	[8]	0.010 0.030	[0] [0]	0.030 0.050	0}		¢	0.005 0.005	101 101
859-35-10	SITE-36	STIE-38		D.010	[0]	0.001	(0)	0.020	[n]	0.050	(0)		·	0.008	(0)
898-32-18	STIE-54	SITE-54				0.003	(0)	0.030	: n j				· .		
899-38-61A	SI1E-95	SITE-95		0.050	(0)	0.006	(0)	0.030	(0)	0.070	(0)		•	0:005	(0)
599-37-43	SI1E-34 SI1E-173	SITE-34 SITE-173		0.010	(0)	0.006	[0]	0.030	101	0,040 0,059	{ 8 }			0.006	[0]
699-37-82A	S11E-105	SI1E-105		0.500	101			0.010	.0); -	0.050	(0)		·····	0.005	(0)
13 699 - 38 -70	ST12-37 (SITE-07"		0.010	(0)	0.002	{0}	0.020	<u>(0)</u>	0.100	[0]			0.010	101
699-39-E3	SITE-248	SITE-248	٢	0.050	(0)			0.030	tasi.	0.030	(0):		•	0.005	(0)
699-39-01	SI1E-249	SITE-249	٢	0.050	10)			0.030	•••••	0 270	10)		1 ° C	0.005	15.
P99+28-38	SITE-268	STIE-200	٢	0.050	(0)			0.050	(2)	0.050	(0)			0.005	10)
509-40-01	STIE-10 STIE-106 STIE-250 STIE-265	SITE-10 SITE-106 SITE-250 SITE-265	¢ ¢	0 130 0 300 0 050 0 050		0,004	{0}	0.015 0.010 0.030 0.030		0.040 0.070 0.070 0.070 0.070		0.00	3 {0}. { ; ; ; ;	0.002 0.003 0.001 0.005	
699-40-33	SI 1E -55 SI 1E -251	SITE-55 SITE-251	۲	0 010 0 250		0.009	{0}	0,020 0,050	}	\$. 1 ¢.	10)			0.00:	. 0]
ö99-40-62	SITE-56	SITE-56			:	0.002	(0)	0.020	(n) [`]		•				
699-41-01	STIE-252	SITE-252	¢	0.050	(0)			360.0	· .	0.070	(0)		• * * •	0.005	10]
899-41-23	SUIE-15 SITE-113,	SI16-15, SI16-113,		0.014 0.050		0.002	(0)	0,020 0,031	•••	0.033 :.)50	[0] (0.00	c (0) (0.092 0.007	· (0.
699-42-02	STIE-154	\$11E-154.		0 100	10) +	ì		0 050	121	0,250	(0)		• • • •	0.005	·
699-42-12	STIF-5	SI 1E - 2	SEF	0.\$10 ESD 1	(0)	0.008 S REPORT	(0) FOR A	0.020	(0) 	P. 050	(0) (005	0.00	6,{0} <	0.002	: (0)
1	•								11.1.1						

1

PAGE 21

SD-8WI-DP-061 Rev.

-

Sampling Lucation	SAMPLING EVENI CODE	SAMPLE NUMBER		CR MG/L	[A]		CU MG/L	(A)		FE MG/L	(A)	LI MG/L	(A)		MN MG/L	(A)		MD MG/L	(A)
699-34-42	SITE-153	STTE-153	4	0.050	(0)	<	0.010	(0)		0.010	(0)	0.010	(0)		0.001	(0)		0.010	(0)
699-34-51	S11E-66	SITE-66	4	0.050	[0]					0.010	(0)	0.010	(0)		0.003	(0)		0.010	(0)
899-35-09	SITE-31 SITE-104 SITE-264	SI 1E - 31 SI 1E - 104 SI 1E - 264	4	0.005 0.070 0.050		с с	0 010 0.010 0.010			0.010 0.010 0.007		0.010 0.010 0.010			0.004 0.003 0.001			0.010 0.030 0.010	0
699-35-66	SITE-17 SITE-94	SITE-77 SITE-94	د د	0.050	{ 0 }	•	0.010	(0)	۲	0.005 0.005	{0 0	0.007 0.010	[8]		0.030 0.001	[0]		0.010	[0] [0]
899-35-70	STTE-36	SITE-36		0.001	[0]		0.001	(0)		0.010	(0)				0.110	[0]		0.030	101
699-35-78	SIIE-54	SITE-54						•		0.030	(0)	0.010	(0)			•		0.007	[0]
699-36-61A	S11E-95	SITE-85	4	0.050	(0)	۲	0.010	[0]	۲	0.005	(0)	0.010	(0)	•	0.003	(0)		0.010	[0]
899-37-43	ST1E-34 ST1E-173	STTE-34 STTE-173	4	0.006 0.018	[8]	¢	0.002 0.001	{ 8 }	۲	0.030		0.020	(0)		0.100 0.008	{ 0 }		0.030	(0)
699-37-82A	SITE-105	SITE-105	4	0 050	(0)	¢	0 010	(0)		0.005	[0]	0.010	[0]	۲	0.001	(0)		0.010	{0}
12039-38-20	ST1E-37	SI 1E-37		0.010	(0)		0.003	(0)		0.010	(0)	0.010	[0]		0.007	{0}	•	0.005	10)
Q899-39-E3	SI 1E - 248	SITE-248	٤	0.050	[0]	۲	0 010	[0]		0.010	(0)	0.010	10)		0.007	(0)	۲	0.010	(0)
Paa+3a-01	S11E-249	SITE-249	4	0.050	(0)	¢	0.010	(0)		0.005	[0]	0.007	10)		0.001	(0)	•	0.010	[0]
699-39-39	SITE-266	SITE-266	4	0.050	(0)	<	0.010	[0]		0.030	(0)	0.010	(0)		0.030	(0)		0.010	[0]
699-40-01	SITE-10 SITE-106 SITE-250 SITE-265	ST1E-10 STIE-100 STIE-250 STIE-265	•	0 003 0.050 0.050 0.050 0.050		< < <	0 022 0 010 0 010 0 010	0 0 0		0.130 0.010 0.010 0.007	0)	0 005 0.010 0.010 0.010	(0) (0) (0)	۲ ۲	0 017 0.003 0.001 0.001	(0) (0) (0)	((0.002 0.010 0.010 0.010	0)
088-40-33	ST1E-55 ST1E-251	SITE-55 SITE-251	4	0.050	(0)	4	0.002 0.010	{0 {0}		0 170 0.100	10}	0.020 0.010	10		0.050 0.050	[8]	۲	0.003	
699-40-62	STTE-56	SITE-56								0.030	(0)	0.010	(0)					0.007	(0)
699-41-01	S11E-252	S11E-252	4	0.050	(0)	¢	0.010	[0]		0.007	101	0.010	(0)	4	100.0	(0)	4	0.010	15)
699-41-23	STTE-15 STTE-113	SITE-15 SITE-113		0.001 0.050			0.002 0.010	{ 0 }		0 310 0.010	[0]	0.005 0.010	10)		0.025 0.005	[0]		0.007 0.030	[2] [0]
699-42-02	S11E-154	SITE-154	4	0.050	(0)	۲	0.010	[0]		0.100	(0)	0.010	(0)		0.001	(0)	•	0.010	(0)
899-42-12	S11E-2	SITE-2		0.005	(0)		0.002	[0]		0.030	(0)	0.007	(0)		0,004	(0)		0.005	(0)

SEE END OF THIS REPORT FOR A LISTING OF ANALYSIS METHODS.

.

SD-8WI-0P-061 Rev.

⊷

.

í.

PAGE 21.1

(x, y) = (x, y) = (x, y)

· .

.

•

:

ł

.

SAMPLE TYPE: UNCONFINED ANALYSIS GROUP: TRACE

SAMPL (NG LOCATION	EVENT CODE	SAMPLE NUMBER		N) MG/L	(A)	Р НG/L	(A)		pe Ng/l	14)	33 MG.11	(A)		ZN MG/L	[1]
809-04-42	\$115-153	S1TE-153	<	0.050	(0)	0.030	(0)		0.030	10)	0.100	(0)	<	800.0	(0)
099-34-51	ST 1E - 66	SITE-68	۲	0.050	(0)				0.000	[0]	0.000	(0)	(0.005	101
591-35-09	SITE-31 STTE-104 STTE-264	SITE-31 STTE-104 STTE-264	¢	0 005 0.070 0.050		0.020 0.010	{8}	¢	0.903 0.599 0.399	000	0.210 0.300 1.300		с с	0.030 0.005 0.009	
599-35-66	S17E-77 S17E-84	SITE-77 SITE-94	((0.050	{°}	0.040	(0)	ć	0.000 1.000	[0]	0.100 0.300	[0] [0]	¢	0.005 0.005	[8]
699-35-70	S11E-36	\$112-30		3.008	[0]				6.205	10)	9.220	10)		0.040	(0)
699-35-78	\$1-5-54	51TE-54		0.002	(0)				•		0.100	10)		0.013	[5] -
699-36-61A	SITE-95	\$115-95	۲	0.050	[0]	0.030	(0)		1.000	(0)	0.100	:0)	¢	0.095	101
699-37-44	SI1E-34 S11E-173	STTE-34 STTE-173	Ň	0.005	{ 8 }			٢		{°}	9.210	10)		0.020	[0] [0]
399-37-82A	\$175-105	SITE-105	۲.	0.350	(0)	0.010	(0)		0.026	:0)		10)	۲	0.005	(1)
609 38-10	\$175-37	\$118-07		0.010	(0)				0.01	[0]	0.330	(0)		0.020	10)
11699-39-E3	SITE-248	SITE-248	. (. D.030	(0)	0.030	(0)	¢	0.021	[0]	0.000	(0)	۲	0.002	10)
699-39-01	SI1E-249	SITE-249	Ň	0.030	(0)	0.020	(0)	•	0.00.	(0)	0.300	(0)	۲	0.000	101
609-39-39	SITE-266	SITE-266	¢	5.050	(0)	< 0.010	(0)	¢	0.000	(0)	v. 100	103	¢	0.002	[0]
589-40-01	SIIE-10 SIIE-106 SIIE 250 SIIE-265	SIYE-10 SITE-106 STTE-250 SITE-265	(((0.052 0.050 0.050 0.050 0.050	(0) (0) (0)	0.070 0.030 0.040 0.020	0		0.020		1 220 9 330 200 0 200	(0)	۲ ۲	0.010 0.005 0.020 0.020	
599-40-03	511E-55 STTE-251	STTE-55 STTE-251		0.003 0.050	{ ⁰ }	0.040	(0)	۲	6.02%	(0)	0.150 0.199	(8)	•	0.010	[8]
699-40-62	SI (E-56	SITE-56		0.003	{0}						. 2:0	(0)		0.005	{ 2}
699-41-01	ST (E-252	SITE-252	¢	0.030	(0)	0.020	(0)	۲	0.0at	(9)	0.300	(0)	¢	0.900	(0}
599-41-23	5175-15 ST1E-113	SITE-15 STIE-113		0.013 0.073		0 030 0.030	{ 0 }	(0.001 0.700	[8]	0,250 0,300	18}		0.030	{0} {0}
529-42-02	SITE-154	SITE-154	¢	0.05.	[0]	0.020	(0)	۲	0 220	.9)	3.000	:0}	•	. 0.022	101 .
699-42-12	SITE-2	SIJE-2	٢	0.002	(0)	0.010	{0}		0.002	(9)	9.250	(0)		0.010	(ð i
	. (*** 		SFY	EVD 28	1111 S	REPORT FO	I A L	151	ING 34 7	WALYS	SIS MELEODS	i.			

34. 21.2

.

· •

. . . ٠,

· . ·

..

.

.

:

.

.

SD-BHI-DP-061 Rev.

مىر

۰.

•

4

.. ...

•

٠

.

.

· ···

SAMPLING LOCATION	EVENT CODE	SAMPLE NUMBER		AL HG/L	(A)	AS MG/1	[A]		B MG/L	(A)	BA MG/L	(A)	CD MG/L	(A)		CO MG/L	(A)
699-42-12	SITE-155 SITE-267	S11E-155 SIJE-267	¢ ¢	0.050 0.050	[0]				0.010 0.030	[0]	0.050 0.070				ć	0.005 0.005	
699-42-40A	SME-174	SITE-174						•			0.045	(0)					
699~42~406	SITE-175	SITE-175			•		•									٠	
699-42-42	SITE-114	STIE-114		0.300	(0)				0.030	(0)	0.070	(0)				0.007	(0)
699-43-03	STIE-253	SITE-253	•	0.050	[0]	•			0.030	(0)	0.050	(0)			٢	0.005	(0)
699-43-88	SITE-123	SITE-123		0.300	[0]			•	0.005	(0)	0.040	10)			۲	0.005	[0]
599-44-04	SI1E-254	SITE-254	•	0.050	[0]		٠		0,030	101	0.050	[0]			۲	0.005	[0]
699-45-04	SITE-255	SI1E-255	۲	0.050	[0]		•		0.030	(0)	0.030	(0)	•.		¢	0.005	(0)
699-45-42	SITE-57 SITE-268	SITE-57 SITE-268	٢	0.050	(0)	0.002	(0)		0.009 0.030	[0]	0.030	{0}				0.005	{0}}
699-45-69	511E-96	SITE-96		0.050	(0)	0.004	(0)		0.030	(0)	0.030	[0]			•	0.005	(0)
10 10699-46-05 10	511E-158 511E-256	STTE-156 STTE-256	د د	0 050 0.050	[8]				0.010 0.030	{ 0 }	0.030 0.050	{0 0			, ,	0.005 0.005	[⁰]
699-46-21A	STIE-75 STIE-124	SITE-75 SITE-124		0.070 0.100		0.005	[0]	¢	0.010 0.005	[0]	0.050 0.100	$\left\{ \begin{smallmatrix} 0 \\ 0 \end{smallmatrix} \right\}$			¢	0.005 0.007	[0] [0]
699-47-06	SITE-257	SITE-257	4	0 050	(0)				0.030	[0]	0.030	(0)			۲	0.005	(0)
699-47-46	ST1E-269	ST1E-269	۲	0.050	10)				0.030	[0]	0.050	(0)			•	0.005	(0)
699-48-07	STIE-258	S11E-258	٢	0.050	(0)				0.010	(0)	0.030	101			۲	0.005	10]
699-48-18	ST 1E - 125	S11E-125		0.100	(0)			٢	0.005	(0)	0.040	(0)			٠	0.005	10)
699-48-71	\$11E~59	SITE-59				0.001	[0]		0.009	[0]							
699-49-13	S11E-259	SI1E-259	(0.050	(0)				0.030	(0)	0.030	(0)			¢	0.005	(0)
099-40-55	S11E-9 S11E-39 S11E-58	SI1E-9 SIIE-39 SIIE-58		$\begin{array}{c}0&100\\0&010\end{array}$	{°}	0.011 0.004 0.003			0.020		0 034 0 040 0 100		< 0,01	0 (0)	٢	0.002 0.008	(0) (0)
	STIE -78 STIE -97 STIE -126	SIIE-78 SIIE-97 SIIE-126	۲	0 100 0 050 0 100	000	0.011 0.013		<	0 030 0 030 0 005	• 0	0 030 0 030 0 030	0	< 0.00	1 [0]	۲ ۲	0.005 0.005 0.007	0
	2116-121	2115-121		01010	10}				0.030	[0]	0.030	101			<	0.005	[0]

SEE END OF THIS REPORT FOR A LISTING OF ANALYSIS METHODS.

.

7AGE 22

4

۰.

SD-8WI-DP-061 Rev.

- ب

.

SAMPETAG LOCAYTON	SAMPLING EVENT CODE	SAMPLE NUMBER		. GR NG71	(A)		CU HG/L	(A)		F3 MG/1	1A)		15 MG.'L	{A}	1	MN HG/L	(A)		мо Ма/с	: 2
609-42-12	SI 1E - 155 SI 1E - 267	SIIE-155 SIIE-267	((0.050	{0}}	, «	0.010	{ 8 }		0.010 0.010		•	0 010 0.010	[0]		0.007	{ 8 }	((010.0	131
699-42-40A	SI7E-174	SITE-174	۲	0.001	(0)	ſ	0.001	(0)	۲	0.030	[0]			:		0.014	(0)			
699-42-40C	STTE-175	SITE-175			•				۲	0.05·	10)		• ^				.`			
699-42-42	STTE-114	SITE-114		0.050	(0)	¢	0.010	(0)		0.010	19)		0.010	{0}	•	0.003	[0]		0.010	(0)
699-43-03	SI1E-253	S1 VE-253	•	0.050	[0]	¢	0.010	(0)		0.027	(0)		.0.010	(0)		0.001	(0)	· <	0.010	[0]
699-43-88	SI IE - 123	SITE-123	ć	0.050	10)	•	0.010	(0)		0.030	[0]		0.010	[0]		0.030	(0)		0.010	(0)
699-44-04	SI 1E-254	SITE-254	۲	0.050	(0)	۲	0.010	(0)		0.010	[0]		0.010	[0]	¢.	100.0	(0)	۲	0.010	(9)
699-45-04	S11E-255	SITE-255	•	0.050	[0]	۲	o.oio	(0)		100.0	10)		0.010	(0)	¢	0.001	10)		0.010	101
699-45-42	SITE-57 SITE-268	SITE-5/ SITE-268	¢	0.050	(0)	•	0.010	(0)		0.010 0.070	[0]		0.010 0.007	{0}		0.040	[8]		0.007 0.010	[0] [9]
899-45-69 N	SITE-96	SITE-96	٢	0.050	[0]	۲	0.010	(0)	¢	0.005	(0)		0.010	(0)	•	0.003	[0]	۲	0.010	{0}
CNUUU-46-05	SITE-156 SITE-256	STTE-156 STTE-256	Ċ	0.050 0.050	[0]	с с	0.010	{0} {0}		0.010 0.010	[0];		0 010 0,010	{ô}	٢	150.0 100.0	[6]	(-0.030 0.010	
699-46-21A	S11E-75 S11E-124	SITE-75 SITE-124	¢	0.050 0.070	10],	<	0.010	(0)		0.010	18}:		0.010 0.010			0:003	{ 0 }		0.010	•••
899-47-06	STIE - 257	SITE-257	4	0.050	(0)	۲	0.010	(0)		0.01	10]		0.007	(0)	•	0.001	[0]	¢	0.010	:•
699-47-46	ST1E-269	\$11E-269	4	0.050	(0)	۲	0.010	(0)		0,010	101		0.010	(0)	٢	0.001	(0)		0.010	10)
899-48-07	S11E-258	SITE-258	•	0.050	(0)	4	0.010	[0]		0.00:	(0)	¢	3:005	(0)	•	0:001	(ó)	۲	0.010	102
G99-48-18	STTE-125	SITE-125	¢	0 050	(0)	٢	0.010	(0)		0.003	103		9.010	(0) ·		0.030	(0)	۲	0.110	
699-48-71	S11E-59	SITE-59		•						0 010	101		0.010	10)		•		•	0.01	4. x
699-49-13	SI [E ~ 259	SITE-259	Ċ	0.050	(0)	¢	0.010	(0)		0.010	193		0.007	(0)		0.003	(0)	` (0.010	•••
899-49-55	SIIC-9 SIIE-39 SIIE-58 SIIE-78 SIIE-78	SITE-9 SITE-39 SITE-58 SITE-78 SITE-78	•	0.003		:	0.001	{0} {0}		0.350 0.020 0.010	100000		0.005	00000		0.070 0.070 0.005	00000		0.013 0.035 0.015 0.030	(?)
·	SIII-126 SIIE-157	STIE-126 STIE-157		0.070		C C	0.010	l o l	•	0.020			0 010	lõ		0.003			0.050	185

SEE END OF THIS REPORT FOR A LISTING OF ANALYSIS METHODS.

.

;

· ; * 1. 1. 1. 1. I. ÷

PA. . 22.1

SD-BWI-DP-061 Rev. 1

. . . .

1.2.8

٠

SAMPI ING LOCATION	SAHPLING EVENT CODE	SAHPLE NUMBER		NI NG/L (A)	P MG/L (A)		PB MG/L (A)	SB MG/L	(A)		ZN MG/L	(A)
899-42-12	S11E-155 ST1E-267	SITE-155 SITE-267	ć	0.050 00	0.020 (0) 0.010 (0)	ć	0.030 (0) 0.030 (0)	0.300. 0.300	[⁰]		$0.010 \\ 0.010$	{ 8 }
899-42-40A	STIE-174	SITE-174	۲	0.003.(0)		•	0.009 (0)				0.095	(0)
699-42-40C	ST1E-175	SITE-175							;			•
899-42-42	SI (E-114	SITE-114		0 070 (0)	0.020 (0)		0.700 (0)	0.300	[0]	۲	0.005	(0)
699-43-03	SITE-253	STIE-253	•	0.050 (0)	0.020 (0)	4	0.030 (0)	0.300	(0)	۲	0.009	[0]
699-43-88	SITE-123	SITE-123	۲	0.050.(0)	0.010 (0)		0.300 (0)	0.100	(0)	۲	0.005	(0)
699-44-04	STIE-254	SITE-254	۲	0.050 (0)	0.030 (0)	\$	0.030 (0)	0 300	(0)		0.013	(0)
699-45-04	STTE-255	SITE-255	۲	0.050 (0)	0.030 [0]		0.030 (0)	0.300	10)	<	0.009	(0)
699-45-42	SITE-57 SITE-268	SITE-57 SITE-268	۲	0.002 (0) 0.050 (0) <	0.010 (0)	¢	0.002 [0]	0.210 0.100	$\left\{ \begin{smallmatrix} 0\\ 0 \end{smallmatrix} \right\}$		0.003 0.010	{
699-45-69	\$11E-95	SITE-96	¢	0.050 (0)	0.010 (0)		1.000 (0)	0.300	(0)	۲	0.005	[0]
NU33-40-05 F	SITE-156 SITE-256	STTE-150 STTE-256	с с	0.050 (0) 0.050 (0)	0.020 (0) 0.020 (0)	۲	0.050 (0) 0.030 (0)	0.300 0.300	{ 0 }	((0.009 0.009	[0] [0]
699-46-21A	STTE-75 STTE-124	SI1E-75 SITE-124	٢	0.050 (0) 0.070 (0)	0.010*(0)	۲	0.030 (0) 0.500 (0)	0.300 0.300	{ 0 }	ć	0.005	[0]
699-47-06	STTE-257	SITE-257	۲	0 050 (0)	0.050 (0)	¢	0.030 (0)	0.100	(0)	۲	0.000	10)
599-41-46	SI1E-269	SI1E-269	4	0 050 (0)	0.010 (0)	¢	0.030 (0)	0 300	(0)		0.030	[0]
839-48-01	SITE-258	SI1E-258	¢	0.050 (0)	0.020 (0)	۲	0.930 (0)	0.100	(0)	ć	0.000	(0)
699-48-18	ST1E-125	SITE-125	•	0.050 (0)	0.030 [0]		0.300 [0]	0.300	(0)		0.010	{0}
699-48-71	SITE-59	SITE-59		0.003 (0)				0.170	(0)		0.003	(0)
649-49-13	\$11E-259	SITE-259	۲	0.050 (0)	0.050 (0)	4	0.030 (0)	0.100	(0)		0.019	(0)
699-49-55	STIE-9 STIE-39 STIE-53	ST1E-9 ST1E-39 ST1E-58	٤	0.003 (0) 0.008 (0). 0.004 (0).	0.080 (0)	•	0 003 (0 0 800 0	0.250 0.270 0.320	$\left(\begin{array}{c} 0 \\ 0 \end{array} \right)$	٢	0.000	(0)
	STIE - 78 STIE - 97 STIE - 126 STIE - 157	STIE-78 STIE-97 STIE-126 STIE-127 STIE-157	د د د	0.050 0 0.050 0 0.070 0 0.050 0	0.010 (0) 0.020 (0)	ć	0 030 (0) 1.000 (0) 0 300 (0) 0 030 (0)	0 320 0 300 0 300 0 300 0 300		• • • •	0.005 0.005 0.005 0.005	

۰.

Ξ.

SEE END OF THIS REPORT FOR A LISTING OF ANALYSIS METHODS.

PAGE 22.2

(

.

Y

.

.

SD-BWI-DP-061 Rev.

÷

....

SAMPLING LOCATION	SAMPLING EVENT CODE	SAMPLE NUMBER	AL MG/L	(A) ·	AS MG/L	(A)'	MG/L	(A)	3.) MG/L	(A)	CD MG/L	, (A)		CO MG/L	• 4
699-49-55A	SITE-182	SITE-182		÷.	`										
699-49-57	S11E-38	SITE-38	0.05%	{0}	0 004	(0)	0.330	[0]	9.900	(0)				0.039	101
699-49-79	SITE-20	SITE-20	0.130	(0)			0.012	(0)	0.030	(0)	< 0.0	04 [0]	¢	0.002	(0)
v99-50-08	STIE-64	S17E-64	0.070	· (0)· .	800 0	(0)	0.030	(ei	0.050	(0)	,		۲	0.003	10}
099-50-288	\$11E-63	SITE-63	0.070	(0)	0.007	(0)	0.019	101	0.050	101			۲	0.00,	[þ]
699-50-42	SITE-14 SITE-115 SITE-271	S1TE-14 STTE-115 S1TE-271	D.230 0.580 < 0.050	0 0 0	0.004	(0)	• • • • • • • • • • • • • • • • • • •	0)	n n:s 0 030 0.050	(0) (0)	< 5.50	03 (0)	с . с	0.002 0.010 0.005	
699-50-53	51ÌE-270	SITE-270	• 0.050	(0)		•	0.030	101	0. Ď3D	(0)	•		¢	0 .0.5	:03
699-50-85	SITE-127	SITE-127	0.300	(0)			• 0.005	101	0.040	10)	•			0.007	10) .
599-51-60	SITE-118	SITE-118 .	0.500	10)			0.010	()) .	0.000	10)		•		0.007	[0]
naa-23-103	SITE-160	SITE-160	· ·		,		0.020	101					•		
699753-478	SI1E-272	SITE-272	< Ó.03D	10)			. 0.010	123 (2)	0.000	[0].			· •	0.005	:0)
13699-54-34	S11E-273	\$775-273''	• 0.050	10)	•	- :	0.030	1936.0	0.070	10)		. :	••••	0.01.	[0]
01699-55-50C	STIE-79 STIE-127	S1 ⁻⁷⁹	0.050	101	0.006	(0)	0.010		0.007	101:		•	•	0.005	. <u>.</u>
·	SI 1E - 103 SI 1E - 274	STIE-274	< 0.050	{0} {0}			0.030	51	5.615				۲ ۲	0.012	101
699-55-76	SITE-TI SITE-117 SITE-129	ST -71 SITE-11/ SITE-129	5.059 0.300 0.100		0.002	(0)	0.010 0.030 < 0.005	:2)	0,030 0,030 0,030				۲ ۲	0.005	10
699-55-89	S11E-118	ST7E-118	0.500	(0)		. •	0.010	(0)	0.050	(0)		· •	•	0.005	103
699-50-53	STIE-194 STIE-195	SITE-194 SIIE-195						•	•						
699-57-25A	S115-119 S116-275	SITE-119 SITE-275	0 500 4 0 050	[0] .			0,000 0,030	(6)	0.010 0.010	{0}	•	•	, K	0,005	[8]
699-57-29A	ST1E-276	SITE-276	¢ 0.050	[0]		-	0.030	10)	0.029	(0)	, :		Ġ	0.005	;0;
699-57-83	SITE-130	SITE-130	0 100	101 .			< 0.005	103	0 020	10)		• .		0.007	10)
699-59-58	SI 1E - 107	SI'1-107	0 390	(0)			0.030	. C	0.020	(10)	· · ·	٠,		0.00°	. 2)
•		10020-00	SEE END	OF INIS	REPORT	FOR A	LISTING	ANALY	SIS METH	BDS.					

SD-BWI-DP-061 Rev. 1

.

.

.

PAG2 23

.

•

ان المتحدية **،** والماد الدين · · . . .

.

•

3.

Sampi ing Location	SAMPLING EVENT CODE	SAMPLE NUHBER		CH MG/L ~	(A)		CU MG/L	(A)		FE MG/1.	[A]	L I MG/L	(A)	ł	MN MG /L	(A)		MO MG/L	(A)
699-49-55A	STIE-182	SITE-182							<	0.030	(0)								
699-49-57	SITE-38	SITE-38		0.014	(0)		0.033	101		0.120	(0)	0.010	(0)		0.007	(0)		0.020	[0]
699-49-79	SITE-20	SITE-20	٢	0.001	(0)		0.007	(0)		0.590	[0]	£00.0	(0)		0.023	(0)		0.002	[0]
599-50-08	\$112-84	SITE-64	•	0.050	(0).				۲	0.005	(0)	0.010	(0)		0.001	(0)		0.012	(0)
699-50-28B	SITE-83	SITE-63	۲	0.050	(0)				• 6	0,005	(0)	0,010	[0]		0.01,1	(0)		0.030	[0]
899-50-42	SITE-14 SITE-115 SITE-271	SITE-14 SITE-115 SITE-271	۲ ۲	0.008 0.070 0.050		د د	0.010 0.010 0.010			0.970 0.030 0.010		0.006 0.010 0.010			0.023 0.050 0.070		¢	0.005 0.030 0.010	
699-50-53	SI1E-270	S11E-270	4	0.050	[0]	۲.	0.010	[0]		0.010	[0]	0.010	(0).		0.003	(0)		0.010	(a)
699-50-85	SITE-127	SITE-127		0.070	(0)		0.010	(0)		. 0,020	(0)	0.010	(0)		0.005	(0)		0.030	(0)
599-51-63	SITE-118	SITE-116		0.050	(0)	۲	0.010	[0]		0.010	(0)	0.010	(0)		0.000	(0)		0.030	(0)
899-53-103	SITE-180	SITE-160								0.120	[0]	0.020	[0]		0.060	(0)			
15899-53-478 (7	S17E-272	SITE-272	۲	0.050	(0)	۲.	0,010	[0]		0.030	[0]	0.007	·[0]		0.003	(0).	¢	0.010	10)
699-54-34	SITE-273	\$11E-273	(0.050	(0)	۲	0.010	[0]		1.000	(0)	0.010	[0]		0.100	(0)	۲	0.010	(0)
699-55-50C	SITE-79 SITE-128 SITE-193 STTE-274	SITE-79 SITE-128 SITE-193 SITE-274	۲ ۲	0.050 0.070 0.013 0.050		••••	0,010 0.001 0.010		۲	0,005 0,040 0,030 0,005	0	200.0 0.010 0.010		۲	0.001 0.003 0.001 0.001	0000	¢	0.010 0.030	[8]
599-55-76	SI1E-71 SI1E-117 SITE-129	STTE-71 STTE-117 STTE-129	с с с	0.050 0.050 0.050		۲ ۲	0.010 0.010			0.005 0.010 0.020		0.005 0.010 0.010		•	0.100 0.010 0.070			0.010 0.030 0.010	
599-55-89	SITE-118	SITE-118	۲	0.050	(0)	¢	0.010	(0)		0.010	(0)	0.010	(0)		0.007	(0)		0.010	(0).
699-58-53	S11E-194 S11E-195	SITE-194 SITE-195							((0.050 0.050	- { ô }								
899-57-25A	SITE-119 SITE-275	SITE-119 SITE-275	۲ ۲	0.050 0.050	{ ⁰ }	ć	0.010	[0]		0.010 0.010	0	• 0,010 0,010	[0]		0.001 0.003	{8}		0.030 0.010	{ð}
699-57-29A	5112-276	STIE-276	(0.050	[0]	¢	0.010	(0)		0.010	101	0.010	(0)	٢	120.0	{0}		0.610	(0)
899-51-83	SITE-100	SITE-130		0 070	[0]	۲	0.010	. [0]		0.020	10)	0.010	(0)		0.005	10)		0.030	(0)
699-59-58	SIJE-107	SITE-107		0.030	(0)	۲	0.010	[0]		0.530	(0)	0.010	(0)		0.001	(0)		0,000	(0)

SEE END OF THIS REPORT FOR A LISTING OF ANALYSIS METHODS.

SD-BWI-DP-061 Rev.

PAGE 23.1

. . .

۰.

.

. . .

:

.

.

.

. ..

SAMPI ING LOCATION	Sampi Ing Event Code	SAMPI E NURIUE R	I.	NI NG/L	(A)		р MG/1.	[A]		- 28 MG/L	(A)	SX MG/L	(A)		ZN MG/L	(A)
899-49-55A	STIE-182	SITE-182			•		•					. ,				
899-49-57	SI [E-38	SITE-38		0:010	[0]					0.010	10)	0 390	(0)		0.070	(0)
699-49-79	SITE-20	SI1E-20		0.003	[0]		0.040	(0)		0.007	(0)	0.150	(0)		0.045	{0}
693-20-08	STIE-04	SITE-64	۲	0.050	(0)		,		4	0.030	(0)	0.300	(0)	۲	0.005	(0)
699-50-280	STTE-63	SITE-63	4	0.050	[0]				•	0.030	(0)	0.300	(0)		0.300	(0)
699-50-42	SIIE-14 SIIE-115 SIIE-271	SITE-14 SI[E-115 SIIE-271	¢	0:003 0:070 0:050	{ 0 } . 0 }	¢	0.030	(0)	د	0.005 0.300 0.030		0.190 0.100 0.100		¢	0.100 0.005 0.010	
699-50-53	SITE-270	SITE-270	ſ	0.050	(0)		0.010	(0)	4	0.030	10)	0.330	(0).		0.010	(0)
699-20-82	STIE-127	SITE-127		0.100	(0)		0.020	(0)		0.500	101	0.100	(0)		0.007	(0)
699-51-63	S11E-116	SITE-116		0.070	[0]		0.040	(0)		0.500	(0)	0.100	103	¢	0.005	(0)
699-53-103	ST 1E - 160	SI1E-160		0.002	(0)						•	0.090	(b)		0.003	10)
(5699-53-47B	STIE-272	STE-272	٢.	0.050	[0]		0.010	(0)	4	0.030	10)	0.100	(0)	٢	0.000	(0).
699-54-34	SI 1E-273	SITÉ-273	•	0.050	[0]	۲	0.010	(0)	¢	0.030	-10)	0.300	(0)		0.700	(0)
699-55-50C	SI1E-79 SIIE-128 SIIE-193 SIIE-274	SITE-79 SITE-128 STTE-193 SITE-274	(((0.050 0.070 0.003 0.050			0.040	(0) (0)	د د د	0.030 0.300 0.020 0.030	00000	D.100 0.100 0.100	(0)	((0.005 0.005 0.101 0.010	0)0)0)
699-55-76	STTE-71 STTE-11/ STTE-129	511E-71 511E-117 511E-129	د د	0 050 0.050 0.050			.0.010	(0)	٢	0.030 0.300 0.100		0.100 0.100 0.100		((0.005 0.005 0.005	0
699-55-89	STTE-118	SI1E-118	¢	0.050	(0)		0.010	(0)		0.700	101	0.100	(6)	٢	0.005	[0]
898-29-23	STTE-194 STTE-195	SITE-194 SITE-195		÷						• .	•		<u>.</u>			,
699 - 57 - 25A	SITE-119 SITE-275	SITE-119 SITE-275	ć	0.050 0.050	[8]		0 050 0.030	[]	۲	0.700 0.030	[0]	0.100 0.100	{ô}	د د	0.005 0.009	{ 8 }
699-57-29A	SITE-276	STIE-2/6	(0.050	(0)		0.010	(0)	۲	0.030	{0}	0.100	(0)	۲	0.009	[0]
699-57-83	SIJE-130.	SITE-130		0.079	(0)		0.010	(0)		0.500	10)	0.100	(0)		0.010	(0)
699-59-58	ST 1E - 107	SITE-107		6.050	[0]		0.050	(0)		0 705	10)	0 200	(0)	۲.	0.005	(0)
			SEE	END 07	THIS	RE	PORT'FOR	A L	ISTI	ING OF A	NALYS	IS METHOD	S.	•		

. ,

.

SD-BWI-DP-061 Rev.

٠

•

.

.

"AGE 20.2

.

۲

÷.,

.

.

 \mathbf{x}_{1}

.

2401 24

SAMPLE TYPE, UNCONFINED ANALYSIS GROUP: TRACE

SAMPLING LOCATION	SAMPLING EVENI CODE	SAMPLE NUHBER		AL MG/L	(A)	AS MG/L	(A)		B MG/L	(Å)	BA MG/L	(A)		CD MG/L	(A)		CO MG/L	(A)
599-59-58	SITE-277	SI1E-277	<	0.050	(0)				0 030	(0)	0.010	(0)		******		ζ.	0.005	(0)
699-60-32	S11E-278	SITE-278	4	0 050	(0)				0.030	(0)	0.010	(0)				۲	0.005	(0)
899-60-57	STTE-198	SITE-198		• .	1 + 2					4	0.029	(0)				<	0.003	(0)
599-62-31	STTE - 131 STTE - 279	SITE-131 SITE-279	ć	0.100 0.050	[0]			۲	0.005 0.030	[0]	0 050 0.050	{0}				¢	0.010	(0) (0)
699-63-25A	STIE-132	SITE-132		0.100	(0)			¢	0.005	[0]	0.050	(0)				•	0.005	(0)
699-63-55	S11E-280	SITE-280	¢	0,050	(0)				0.050	(0).	0.010	(0)				<	0.005	(0)
~.699+63+58	SITE-281	SITE-281	٢	0.050	(0)		·		0.050	(0)	0.010	[0]			•	¢	0.005	(0)
699-63-90	SI 1E - 74 SI 1E - 133	SITE-74 SITE-133		0.070 0.100	[0]	0.004	(0)	٢	0.010 0.005	[0]	0.010 0.020		•		•	٢	0.005	[0] [0]
699-64-27	STIE-158	SITE-158		0.100	{0}				0.010	[0]	0.070	(0)					0.005	(0)
898-82-20	SINE-73 SINE-134 SINE-282	SIIE-73 SIIE-134 SIIE-282	۲	0 070 0 300 0 050		0.014	[0]	¢	0.030 0.005 0.050		0.010 0.020 0.010				•	د ر.	0.005	(0) (0)
យ យ ល ល	85-203 86-73 86-112 85-294	85-203 85-204 86-73 86-74 86-112 86-113 85-294 85-295		0 150 0 060 0 200 0 200 0 200 0 200 0 200 0 200 0 200 0 200 0 200	$ \begin{pmatrix} 1 \\ 1 \\ 1 $				0 040 0 024 0 100 0 100 0 100 0 100 0 016 0 016		0.012 0.008 0.005 0.005 0.008 0.008 0.003 (0.003	<pre>1) 1) 1) 1) 1) 1) 1) 1) 1) 1) 1) 1) 1) 1</pre>				< < <	0.017 0.017 0.017	
699-66-39	\$11E-135	ST1E-135		0.100	(0)			4	0.005	(0)	0.020	(0)					0.007	(0)
699-66-58	STIE - 136	SME-136		0.300	[0]		۰.	٢	0.005	10)	6.020	(0)	,				0.007	101
699-66-64	S11E-137	SITE-137		0.100	10)			٢	0.005	[0]	Q.020	(0)					0.007	101
699-67-98	S1TE-260	SI 1E - 260	4	0.050	(0)				0.030	(0)	9 010	[0]				<	0.005	101
699-69-38	SITE-6	SITE-6		0.110	(0)	0.003	(0)		0.010	(0)	0.062	(0)	۲	0.010	(0).	¢	0.003	(0)
699-71-30	SIIE-108	S1TE-108		0.300	(0)				0.030	(0)	0.050	(0)					0.005	(0)
899-71-52	ST1E-138	SIIE-138		0.100	(0)			4	0 005	[0]	0.040	(0)			•••	•	0,005	[0]
599-72-73	ST1E-109	SITE-109		0 500	(0)				0.030	(0)	0.030	(0)					0.010	10)

SEE END OF THIS REPORT FOR A LISTING OF ANALYSIS METHODS.

.

1.5

SD-BWI-DP-061 Rev.

مسو

. •

2 3

:

.

SAMPLING LOCATION	SAUPI ING EVENT CODF	SAMP1 E NUMUER		CR MG/L	(A)		CU MG/L	(A)		75 Mg/1	ia)	1. I MG/L		(A)		MN MG/L	(A)		_ M0 MG/1	(A)
699.50-58	SI [E - 277	SI 1E - 277	<	0.050	(0)	<	0.010	(0)		0.010	(0)	0.0	07	(0)	<	0.001	(0)		0,010	(1)
699-60-32	511E-278	STTE-278	4	0.050	(0)	¢	0.010	(0)		0.007	(0)	Ó C	10	(0)		0.003	(0)		0,010	(0)
899.80.51	S11E-198	S17E-198	۲	0.002	[0]	٢	0.001	(0)	¢	ó.030	10)					0.050	[0]			
699-62-31	S11E-131 S11E-279	STTE-131 STTE-279	۲	0.070 0.050	[8]	((0.010 0.010			0.500	[0] ·	0.0 0.0	10	[8]) 100 0.070	$\begin{pmatrix} 0 \\ 0 \end{pmatrix}$	۲	900.0 910.0	(8)
599-63-25A	SITE-132	SITE-132	۲	0.050	(0)	۲	0.010	(0)	¢	799.0	101	0 (10	10)		0.001	(0)	۲	0.010	(0)
898-83-85	SITE-280	SITE-280	ſ	0.050	(0)	٢	0.010	(0)		0.010	[0]	0.0	10	(0)		0.001	(0)		0.030	[0]
699-60-58	SITE-281	SITE-281	¢	0.050	(0)	۲	0.010	(0)		0.005	10)	0.0	07	(0)	۲	0.001	(0)	<	0.010	; ^)
rna-23-80.	SIVE-74 SIVE-133	SI 1E - 74 SI 1E - 133	¢	0.050	[8]	¢	0.010	(0)		0.010 0.030	10}	0.0	07		•	0.001	{ ⁰ }		0.010 0.030	(0) (0)
699-64-27	SITE-158	SITE-158	۲	0.050	[0]	4	0.010	(0)		0.011	(0)	ð. c	30	(0)		0.007	(0)		0.010	[n]
899-65-50	S17E-73 S11E-134 S11E-282	STTE-73 SITE-134 STTE-282	د د	0 070 0 070 0 050		((0.010 0.010	{ 0}		0.050 0.050 0.003		0.0 0.0	10		٢	0.001 0.002 0.001	[0] [0]	•	0,010 0,050 0,010	(0) (0)
102 - 00 - 103 - 1	85-203	85-201	¢	0.032	111		0.025	(1)		0.000	41)	0.0	is'	(1)	¢	0.005	(1)		0.073	(1)
.,	85-73	85-204	¢	0.032	(1)	¢	0.012	·{}}·	¢	0.015	.][]	< 0.0	16		ć	0.005	· {] } ;	¢	0.038	$\left\{ 1 \right\}$
•	86-112	66-112				ć	0.012	111		0.030	41	< 0.0	18		ć	0.010		ć	0.600	13
. ·	85-294	85-294 85-295	۲ ۲	0.032	{ <u>}</u> }	(((0.030 0.006 0.006		с с с	0.009 0.009		< 0.0 < 0.0	808		с с с	0.005		с с с	0.034 0.034	
898-89-38	\$115-135	\$775-135		Ó.?TO	[0]	¢	0.010	(0)		0.023	10)	ð. s	· . Ð	(0)		0.003	101		0,050	(2)
599-68-58 ⁻	STIE-136	SITE-136		0.070	(0)	¢	0.010	(0)		0.040	<i>[0]</i>	0.3	10	10)		0.003	(0)		0.030	121 .
699-66-64	SITS-137	STIE-137		0.070	(0)		0 010	(0)		0.02	(0)	٥.۵	10	(e)		0.003	(9)		0.02.	(2)
829-67-58	511E-250	SI1E-200	٢	0.050	(0)	•	0.010	(0)		0.01	(2)	0.5	10	(0)	۲	0.201	(0)	¢	0.070	::)
699-69-38	5112-6	5175-6	ć	0.003	(0)		0.003	(0)		0.330	(0)	0.0	16	(2)		0.250	103		0.003	£0]
paa-11 30	SI1E-108	SI12-108	۲	0.050	[0]	۲	0.010	(0)		0.1	(0)	0.0	10	(0)		0.003	(0)		0.0i0	:::
699-71-52	SITE-138	SITE-138	t	5.535	(0)	۲	0.010	(0)	۲	0.205	.5)	ə e	::)	(၁)		0.::3	(0)	¢	0.010	.ن.
829-12-13	SIJE-109	SITE-109		0.079	(0)	¢	0.010	(0)		0.01**	5)	C :	10	(0)		0.010	(0)		0.03.	. ? ?
		1. 1. 1. 1. 1. 1.	SEE	END OF	THIS	RL	PURT FOI	K A L	.isr ≰	ING OF !	° sAL¥	SIS METT	IOD S							

.

.

*

.

74. 24.4

SD-8½I-0P-061 Rev. 1

• •

•

.

•

•

SAMPLING LOCATION	SAMPLING EVENT CODE	SAMPLE NUMBER		NI MG/L	'(A)	p NG/L	(A)	· .	p3 Mg/l	(A)	SR MG/L	(A)		ZN MG/L	(A)	
699-59-58	SITE-277	SITE-277	(0.050	(0)	0.020	(0)	<	0.030	(0)	0:100	(0)		0:010	(0)	
69-60-32	SITE-278	SITE-278	۲	0.050	(0)	0.010	(0)	¢	0.030	(0)	0.300	(0)		0.030	(0)	
899-80-57	SI 1E-198	SITE-198	٠	0.003	[0]			۲	0.009	10)				0.095	[0]	
899-62-31	SITE-131 SITE-279	SITE-131 SITE-279	¢	0.070 0.050	[8]	$ \begin{array}{c} 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ \end{array} $	[]	¢	0.500 0.030	[0]	0.100 0.100	{°}		3.000 0.300	0	
699-63-25A	STTE-132	SITE-132	(0.050	[0]	0.050	(0)		0.500	[0]	0.500	(0)		0.007	10)	
899-83-55	SITE-280	SITE-280	•	0.050	(0)	0.010	(0)	۲	0.030	(0)	0.100	(0)		0.010	[0]	
899-63-58	SITE-281	SITE-281	۲	0.050	[0]	0.030	(0)	4	0 030	(0)	0.100	(0)		0.050	(0)	
699-63-90	SI1E-74 SI1E-133	SITE-74 SITE-133	¢	0.050 0.100	{ 8 }	0.010	[0]	٢	0.030 0.500	[0]	0.100 0.100	[8]	• •	0.005 0.007	[8]	
899-84-27	SITE-158	SITE-158	¢	0.050	(0)	0.030	(0)		0.030	(0)	0.700	(0)		0.010	10)	
699-65-50	SITE-73 SITE-134 SITE-282	SITE-73 SITE-134 SITE-282	((0.050 0.100 0.050		0.050 0.010	{ 8 }	۲ ۲	0.030 0.500 0.030		0.100 0.100 0.100		٢	0.005 0.010 0.009		
Q 897-80-103	85-203 86-73 86-112	85-203 85-204 86-73 86-74 86-112 86-113	¢	0.038 0.030	<pre>{1}</pre>			ć	0.130 0.180	<pre>{1}</pre>	0.113 0.111 0.104 0.102 0.100 0.110		•••••	0.020 0.020 0.040 0.040 0.040 0.040 0.040	$\begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}$	
	85-294	85-294 85-295	< <	0.030	$\{1\}$			ć	0.180 0.180	11	0.103	$\left\{ \begin{array}{c} 1\\ 1 \end{array} \right\}$	ć	0.020		
699-66-39	S17E-135	SITE-135		D.070	[0]				0.100	10)	0,100	10)	٢	0.005	10)	
699-60-58	S11E-138	SITE-136		0 070	(0)	0.040	(0)		0.500	10)	0 100	101		0.100	(0)	
649-66-64	ST1E-137	S11E-137		0.100	(0)	0.030	(0)		0.500	(0)	0,100	(0)		0.100	(0)	
eng-21-58	SITE-260	SITE-260	۲	0.053	[0]	0.040	[0]	¢	0 035	(0)	0 100	(0)	4	0.009	(0)	
ត្តត្ត- ក្នុង- ពុង	SITE-6	SITE-6	۲	0.003	(0)	1.500	(0)		0.010	(0)	0.400	(0)		0.050	(0)	
699-11-30	SITE-LUB	SI1E-108		0.050	[0]	0.050	(0)	۲	0.030	(0)	0.500	(0)	٢	0.005	(0)	
699-71-52	SI 18-138	SITE-138	٢	0 050	10)	0.010	(0)		0.300	(0)	0.100	(0)	κ.	0.005	[0]	
699-12-13	SITE-109	SITE-109		0.100	{0}	0.040	(0)		0.700	(0)	0.100	(0)		0.010	(0)	

SEE END OF THIS REPORT FOR A LISTING OF ANALYSIS METHODS.

SD-BHI-DP-OGI Rey. 1

PAGE 24.2

SAMPI ING EDCATION	SAMPLING LVENT CODE	SAMPLE NUMUER		AL HG/I	(A) ^{' · ·}	AS MG/L	(A)	R MG	/L	A)	RA MG/L	{A}	M	27) 3/L	(A)		C0 HG/L	(A)
699-72-88	ST1E-98 ST(C-261	SI11-98 SI1E-261	((0.050		0,005	(0)	0 0	030	[5]	0.050 0.030	{ 0 }	< (0.001	(0)	< <	0.005	10)
699-72-92	SITE-262	SITE-262	<	0.050	10)			0	. 0 1 0	101	0.030	(0)				•	0.002	(0)
699-77-36	SITE-110	SITE-110		0.300	10)			0	. 100	(\cdot, \cdot)	0.070	(0)				<	700.0	10)
699-78-62	SITE-III	SITE-111		0.300	{0}			0	. 0 1 0	(0)	0.030	10)				¢	0.005	(0)
699-81-58	SITE-159	SITE-159	¢	0.050	(0)			< 0	. 005	(<u>6</u>)	0.010	[0]			•	۲	0.005	(0)
509-83-47	STIE-112	\$178-112		0.200	[0]			0	.010	[``	0.050	(0)				۲	0,005	(0)
899-87-55	511E-09	SI1E-99	٢	0.050	(0)	0,011	(0)	0	030	(0)	0.039	(0)	•			۲	0.005	101
599-90-45	SA10-139	SITE-139		0.100	(0)		•	< 0	005	(0)	9.050	{0}	•				0.010	10)
											,							

1201

٠,

. . .

۰.

. `:

11 (11

: . .

. ·

. . .

. .

. .

1

.

SEE END OF THIS REPORT FOR A LISTING OF WALVESS METHODS.

PAGE 25

SD-BWI-DP-061 Rev.

SAMPLING LOCATION	SAMPLING EVENT CODE	SAMPLE NUMBER	ł	CX HQ/L	(A)		CU MG/L	(A)		FE HG/L	(A)	M	L I 1G/L	(A)		MN MG/L	(A)		MO MG/L	(A)
699-72-88	S11E-98 S11E-261	SITE-98 SITE-261	۰ ۲	0.050	{ô}	((0.010 0.010	0) 0]		0.030 0.007	[0]	<	0.010 0.007	{0}	<	0.005	$\left\{ \begin{smallmatrix} 0\\ 0 \end{smallmatrix} \right\}$	۲ ۲	0.010	
699-72-92	SITE-262	\$118-262	ć	0.050	[0]	¢	0.010	{0}	۲	0.005	(0)	ſ	0.005	(0)	۲	0.001	(0)	۲	0.010	(0)
899-77-36	SITE-110	SITE-110	٢	0.050	(0)	۲	0.010	(0)		0 007	(0)		0.030	(0)	۲	0.001	[0]		0.010	[0]
699-78-62	\$116-111	SHE-111		0.100	(0)	¢	0.010	[0]		0.005	(0)		0.010	[0]		0.003	[0]		0.010	(0)
699-81-58	SI1E-159	S11E-158	۲	0.050	(0)	۲	0.010	(0)		0.005	(0)		0.005	(0)		0.003	(0)		0.010	(0)
699-83-47	SITE-112	STTE-112		0.070	[0]	۲	0.010	(0)	٢	0.005	(0)		0.010	(0)		0.003	[0]		0.030	(0)
699-87-55	S11E-99	S11E-99		0.100	[0]	4	0.010	(o)	4	0 005	[0]		0.010	(0)	<u>،</u>	0.001	[0]		0.030	[0]
699-90-45	SI1E-139	SITE-139		0.050	(0)		0.010	(0)		0.500	(0)		0.010	(0)	•	0.500	[0]		0.030	[0]

252

SEE END OF THIS REPORT FOR A LISTING OF AMALYSIS METHODS.

PAGE 25.1

SD-BWI-DP-061 Rev.

SAMPLING LOCATION	L VE NT COPE	SAMPLE NUMBER		ні НС/1.	'(A)		9 14G/L	-(A)		PB MG/L	(A)	5.1 MG/L	(A)		ZN MG/L	(A)
699-12-88	SI1E-98 SITE-261	S175-98 S1JE-261	< <	0.050 0.050	[8]		0 050 0 060	{	۰.	1 000 0.030		0 100 0 100	[0]	č	0.005 0.009	{°}
689-72-92	SI 1E-282	SITE-262	۲	0.050	(0)		0.030	[0]	4	0.030	(0)	0.100	(0)	۲	0.009	(0)
899-17-38	S11E-110	SITE-110	۲	0.050	(0)		0,040	(0)		0.500	(0)	0.700	(0)	۲	0.005	(0)
599-78-62	ST FE - 11 1	SITE-III	¢	0.050	[0]		0.050	(0)		0.500	[0]	0,200	(0)		0.070	(0)
233-81-28	5118-159	SITE-159	٢.	0.030	(0)	¢	0.010	(0)	۲	D.020	(0)	0.100	(0)	۲	9,009	101
199-83-4V	S11E-112	SITE-112	۲	0.050	10)		0.030	(0)		0.500	101	0.300	101	¢	0 005	(0)
699-81-55	STIE-99	SITE-99	4	U.050	(0)		0.020	(0)		900.1	10)	0.000	:0)	<	0.005	[0]
899-90-45	STTE~139	SITE-139		0.050	[0]		0 030	(0)		0.500	[0]	0.300	[0]	•	0.030	[0]

1

1

202

· · · ·

.

1.2

. . .

SEE END OF THIS REPORT FOR A LISTING OF AVALYSIS METHODS.

1

• 1

. • •

PAGE 25.2

SD-BWI-DP-061 Rev.

SD-BWI-DP-061 Rev.

مىر

LIST OF ANALYSIS METHODS FOR TRACE CONSTITUENTS

	SPECIE	<u>(A)</u>	ANALYSIS METHOD	
	A1.	0	Unclassified	,
		1		
	<u>۸</u> ۲	۲ ()		
	<i></i>	U 2	Unclassified	
	R	0		
		1	Unclassified	
	ВА		lluc) accificat	
		1		
	CD	0	lloclassifind	•
		ï		
	CO	0	Unclassified	
		1	ICP	AA: Graphile Euroace Atomic Adamset
	CR	0	Unclassified	Spectrophotometry
54	_	1	1CP	ICP: Inductively Coupled Plasma Atomic Emission
	CU	0	Unclassified	Spectrometry
	r	1 -	ICP	unclassified: Analysis comes from a non-BWIP
	11	0	Unclassified	not specified in the method is
		1		not specified in this data package.
	11	2 ()		
	••	1	Unclassified	
	1411	0		
		U I	unclassified Tro	
		2		
	MO	0	Unclassifind	•
		1	ICP	
	NI	0	Unclassified	
		ł	ICP	
	4 4	Û	Unclassified	
		1	ICP	
	1.12	0	Unclassified	
	£ IL	1	ICP	
	2K	0	Unclassified	
	4.	l	ICP	
	la In	0	Unc. assified	
	•	I	20P	

50-8WI-02-061 Rev. 3

THIS PAGE INTENTIONALLY . LET BLARK

265

1. Part retter

1

:

1

.

. -

SAMPLE TYPE: CONFINED ANALYSIS GROUP: GAS

SAMPLING LOCATION	SAMPLING EVENT CODE	SAMPLE NUMBER	AX HOLE%(REL)	C_MON MULEX(REL)	CH4 Mole%(Rel)	CO2 Mole%(kel)	NE Mole%(Rel)	H2 MOLEX(REL)	N2 MOLEX(REL)	D2 MOLE%(REL)
pp-13	83-404	83-404	0.970	< 0.100	15.600	0.070	0.010	< 0.010	83.300	0.020
DB-15	79-17 79-35 79-33 79-15 79-39 79-39 79-51	79-17 78-35 79-33 79-15 79-39 79-51	 \$\overline{0}\$,010 \$\overline{0}\$,01	$\begin{array}{c} \bullet & 0.100\\ \bullet & 0.010\\ \bullet & 0.010\\ 14.400\\ \bullet & 0.100\\ \bullet & 0.100\\ \bullet & 0.100\end{array}$	 0.010 0.010 0.010 29.200 4.400 96.300 	0.200 0.010 • 0.060 0.070 • 0.030	$\begin{array}{c} & 0 & 010 \\ c & 0 & 010 \\ c & 0 & 010 \\ c & 0 & 010 \\ c & 0 & 010 \\ c & 0 & 010 \\ c & 0 & 010 \end{array}$	0,130 0,100 0,010 0,330 0,100 4 0,010	0,650 0,270 0,020 7,570 2,500 3,580 3,580	0.010 0.020 0.010 0.180 0.030 (0.010
	79-85 79-80	79-92 79-74 79-85 79-80	0.080 0.930 0.880 0.080	 0.100 2.820 3.100 0.100 	96 100 3.980 7.070	0 020 0 040 0 040	 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 	 0.010 0.060 0.040 0.820 	3.800 74.100 70.300	<pre> 0 010 18.100 18.600 0 020 </pre>
	79-62	79-99 79-62	0.070 (0.010	< 0.100< 0.100	05 070 83.060	<pre>< 0 010 1.330</pre>	<pre>< 0.001 < 0.010</pre>	0.850	4.000	< 0.010 0.380
· ·	80-35	79-84 80-35 80-41	0.190	 < 0.100 < 0.100 < 0.100 	91.980 86.900	0.100	<pre>< 0.010 < 0.010 < 0.010</pre>	¢ 0.010 1.070	7.620 10.900	0.110 0.710
	80-24	80-24 80-74	0 110	< 0.100 < 0.100	94,400 94,300	0.010	< 0.010 < 0.010	0.090	5,400 5,500	< 0.010 < 0.010
	80-77	80-42 80-77	0,160 0,160	< 0.100 < 0.100	91,100 90,500	c 0.010 c 0.010	<pre> 0.010 0.020</pre>	0.950 0.940	7.770	<pre>< 0.010 < 0.010</pre>
5	80-1	80-1	0.150	< 0.100 < 0.100	94.300 93.800		<pre>< 0.010 < 0.010</pre>	<pre>< 0.010 < 0.010</pre>	5.600	<pre>< 0.010 < 0.010</pre>
0°pC-05	79-30	79-30	0.160	4.720	93.400	< 0.010	0.010	¢ 0.010	1.700	¢ 0.010
DC-00	80 - 238 80 - 15 80 - 29 79 - 58 80 - 75	80 - 238 80 - 15 80 - 29 80 - 37 79 - 57 79 - 58 80 - 45 80 - 75	1.120 1.350 1.160 1.600 1.140 1.170 1.230 1.540	c 0 100 c 0 100 c 0 100 c 0 100 c 0 100 c 0 100 c 0 100 c 0 100 c 0 100 c 0 100 c 0 100	0.570 0.480 0.900 0.770 0.750 1.580 1.950	 0.010 0.160 0.040 0.010 0.020 0.010 0.010 0.010 0.010 0.010 	0.280 0.390 0.310 0.350 0.300 0.260 0.260 0.420 0.320	 0.010 0.170 0.200 0.240 0.190 0.230 0.290 	98.000 97.800 96.800 97.500 97.600 95.000 95.000 96.000	 0.010 0.490 0.010 0.120 0.020 0.050 0.010 0.120
DC - 07	82-23 82-10	82-23 82-56 82-10A 82-10B 82-33	1.190 1.130 1.010 1.100 1.100 1.100	2 300 1 800 4 0 100 2 000 3 200	4.320 4.390 4.140 5.160 5.190	<pre></pre>	0.210 0.210 0.190 0.200 0.200	0.080 0.090 < 0.010 0.030 0.030	91 300 92 000 94 600 91 000 89 700	0 590 0 370 4 0 013 0 543 0 543
DC-12	80 - 80 80 - 100 80 - 97 80 - 32 80 - 124	80-80 80-100 80-40 80-97 80-32 80-124	0.140 0.110 0.130 0.120 0.120 0.120 0.140	 < 0.100 < 0.100 < 0.100 < 1.00 < 1.00 < 0.100 < 0.100 	95 900 92 100 94 100 92 700 91 900 91 500	0 500 0 010 0 010 0 060 0 130 0 040	<pre>< 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010</pre>	<pre>< 0 010 < 0 010 < 0 010 < 0 010 < 0 010 < 0 010</pre>	3.420 7.780 5.790 5.200 7.860 8.300	<pre>< 0 010 < 0 010 0 010 9 110 < 0 010 < 0 010</pre>

ANALYSIS METHOD= MASS SPECTROMETRY.

PAGE 1

.

SD-BWI-DP-061 Rev. 1

•

.

.

. . .

SAMPLE TYPE. CONFINED ANALYSIS GROUP: GAS

SAMPLING LOCATION	SAMPLING EVENT CODE	SAMPTE NUMBER	AR MDIE%(REL)	C_MON MOLEX(REL)	CII4 MOLE%(REL)	CO2. MOLEX(REL)	NE MOLEX(REL)	H2 MOLEX(REL)	N2 MOLEX(REL)	D2 MOLEZ(REL)
DC-12	80-234	80-234	0.630	< 0;100	0.110	0.020	< 0.010	< 0.010	99.200	0.010
I)C I 4	80 - 144 80 112 80 - 155 80 - 104 80 - 170 80 - 117 81 - 30 82 - 8 82 - 315 83 - 150 83 - 150 83 - 150 83 - 150 83 - 150 83 - 266 83 - 261	80-144 80-144 80-155 80-155 80-170 80-170 80-117 81-30 52-8 82-315 53-158 83-158 83-157 83-157 83-178 83-157 83-150 53-266 83-261	0.950 1.190 0.970 1.140 1.240 1.240 1.10 9.700 1.100 1.270 1.010 0.980 1.110 1.010 1.010 1.010 1.010 1.010 1.020 0.950 1.040	$\begin{array}{c} c & 0 & 100 \\ c & 0 & 0 \\ c & 0 &$	$ \begin{pmatrix} & 0 & 0 & 10 \\ < & 0 & 010 \\ < & 0 & 010 \\ < & 0 & 010 \\ < & 0 & 010 \\ < & 0 & 010 \\ < & 0 & 010 \\ < & 0 & 010 \\ < & 0 & 010 \\ < & 0 & 070 \\ & 0 & 140 \\ < & 0 & 010 \\ < & 0 & 140 \\ & 0 & 150 \\ & 0 & 140 \\ & 0 & 140 \\ & 0 & 140 \\ & 0 & 050 \\ < & 0 & 010 \\ \end{pmatrix} $	$\begin{array}{c} 0 & 0.70 \\ \bullet & 0.080 \\ \bullet & 0.010 \\ 0 & 0.20 \\ 0 & 0.40 \\ \bullet & 0.010 \\ 0 & 0.60 \\ \bullet & 0.60 \\ \bullet & 0.60 \\ \bullet & 0.10 \\ \bullet & 0.020 \\ \bullet & 0.150 \\ \bullet & 0.10 \\ \bullet & 0.010 \\ \bullet & 0.020 \\ \bullet & 0.000 \\ \bullet & 0.0$	<pre> C 010 C 0.010 C 0.020 C 0.00 C 0</pre>	$\begin{array}{c} 0.380\\ < 0.010\\ < 0.010\\ < 0.010\\ < 0.010\\ < 0.010\\ < 0.010\\ < 0.010\\ < 0.010\\ < 0.010\\ < 0.010\\ < 0.010\\ < 0.010\\ < 0.010\\ < 0.010\\ < 0.010\\ < 0.010\\ < 0.010\\ < 0.010\\ < 0.010\\ \end{array}$	55.500 98.700 99.000 95.800 08.700 98.800 08.800 98.000 98.000 98.300 98.300 98.400	<pre>< 0.010 < 0.010</pre>
0C-15 18 7	80-57 80-87 80-137 80-135 80-135 80-120 80-131 80-193 82-94	80-65, 80-87 80-137 80-135 80-135 80-120 80-120 80-131 80-193 82-94	0.250 0.080 0.170 0.250 0.320 0.410 1.140 1.140 1.060	5.600 C 0.100 C 0.100 C 0.100 C 0.100 C 0.100 C 0.100 C 0.100 C 0.100 C 0.100 C 0.100	$\begin{array}{c} 82.500\\ 96.700\\ 87.900\\ 80.000\\ 78.200\\ 65.700\\ 0.140\\ 0.350\\ 1.270\end{array}$	0.510 0.710 0.010 0.010 0.010 0.010 0.010 0.010 0.10 0.10 0.10 0.10	 0 010 0 010 0 010 0 010 0 010 0 030 0 120 0 110 0 120 	$\begin{array}{c} 0.030\\ < 0.010\\ < 0.010\\ < 0.010\\ < 0.010\\ < 0.010\\ < 0.010\\ < 0.010\\ < 0.010\\ < 0.010\\ < 0.010\\ < 0.010\\ \end{array}$	11.100 3.180 11.900 19.700 21.500 33.800 98.500 97.800 97.500	 < 0.010
DC - 15A	82-17 82-93 82-19 82-188 82-124 82-124 82-124	32 - 17 62 - 55 62 - 55 62 - 193 82 - 19A 82 - 19B 82 - 19B 82 - 19B 82 - 188 82 - 140 82 - 124 82 - 124 82 - 135 82 - 135 82 - 168 82 - 214A 82 - 214B	1.200 1.200 1.110 0.140 0.140 0.210 0.100 0.690 0.130 0.690 0.130 0.690 0.130 0.690 0.130 0.690 0.130 0.20 0.20 0.20	<pre></pre>	$ \begin{array}{c} 0.010\\ 0.010\\ 9.920\\ 92.400\\ 92.400\\ 92.400\\ 91.900\\ 91.900\\ 91.900\\ 30.300\\ 94.400\\ 0.650\\ 69.000\\ 4.580\\ 2.180\\ 96.200\\ 89.400\\ 92.900\\ \end{array} $			$\begin{array}{c} 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 &$	9 500 3 400 8 500 7 440 8 800 6 500 5 480 5 500 5 480 5 500 5 480 5 500 5 480 5 7 30 200 74 500 7 200 30 200 74 500 3 580 8 820 6 050	 0.100 0.100 0.100 0.100 0.466 <

ANALYSIS METHOD = MASS SPECTROMETER.

× 4.

• *

......

.

SD-BWI-DP-061 Rev.

---4

.

.

1.

•

۳۱. 2

35 • • .

SAMPLE TYPE: CONFINED ANALYSIS GROUP: GAS

.

SAMPLING LOCATION	SAMPLING EVENT CODE	SAMPLE NUMBER	AR MOLEX(REL)	C_MON HOLE%(REL)	CH4 HOLEX(REL)	CO2 MOLE%(REL)	HE Mole%(Rel)	H2 MOLEX(REL)	N2 MOLEX(REL)	D2 Mole%(Rel)
DC-16A	82-231	82-279A	0.170	< 0.100	87.400	0.030	< 0.010	0.040	10.200	2.170
	82-322	82-2798 82-322 82-334 82-355	$\begin{array}{c} 0.180 \\ 0.060 \\ 0.040 \\ 0.040 \\ 0.040 \end{array}$	<pre>< 0.100 < 0.100 < 0.100 < 0.100 < 0.100</pre>	86.200 96.600 98.000 98.000	0.030 0.060 < 0.010 < 0.010	 < 0.010 < 0.010 < 0.140 < 0.010 	0.040 0.010 < 0.010 < 0.010	11.200 3.280 1.860 1.910	2.350 0.010 0.010 0.010
	82-339	82-394 82-313 82-339 82-345	0.030 < 0.100 < 0.40	 < 0.500 < 0.500 < 0.500 < 0.500 	98,700 99,000 98,700	 0.020 0.100 0.020 	< 0.010 < 0.006 < 0.100 < 0.006		1,230	< 0.010 < 0.100 < 0.100
	82-419	82-419	0.030	(0.100	98,300	¢ 0.010	< 0.001	< 0.010	1.670	0.010
	82-430	82-430	0.030	<- 0.100 0.100	98.000	0.020	< 0.010	0 040	1.780	0.000
	83-29	83-20 83-29 83-54	0:240 0:030 0:030	 < 0.100 < 0.100 < 0.100 < 0.100 	58.200 98.400 98.500	<pre>0.010</pre>	 0.010 0.010 0.010 0.010 	$\begin{array}{c} & 0 & 0 & 10 \\ < & 0 & 0 & 10 \\ < & 0 & 0 & 10 \\ < & 0 & 0 & 10 \end{array}$	19.000 1.590 1.490	4.300 < 0.010 < 0.010
DC-19C	84-53 84-40	84-53 84-40A 84-40U 84-44	1.040 0.800 1.200	<pre>< 0.100 < 0.100 < 0.100 < 0.100</pre>	15.400 68.100 57.900	0.050 1.300 0.300	< 0.010 < 0.003	 0.010 0.010 0.010 0.010 	69.100 29.600 40.600 58.500	14.400 0.100 4 0.010
	84-75	84-73 84-75	0.970	2.800	50.500 47.800	0.010 0.070	0.007	< 0.010 0.030	45.700	< 0.010 0.040
(N)	ង4-ងប	84-46 84-86	0.680 0.660	1 900 0.900	60.000 56.000	0.010 0.080	< 0.010 < 0.010	¢ 0.010 0.100	37.400 41.200	0.010 0.980 0.990 0.980
DC-20C	84-9	84-76 84-9	0.730 0.800	<pre>< 0.100 < 0.100</pre>	68.800 46.300	0.080 0.010	0.008 0.003	<pre>< 0.010 < 0.010</pre>	30.400 53.000	0.040 (0.010
DC-22C	84-105	84-105	0,350	< 0.100	82.400	0,360	< 0.001	< 0.100	15.700	0.170
ENYEART	84-166	84-166	1.440	< 0. <u>100</u>	31,500	4.770	< 0.010	0.110	55.400	6.790
MCGEE	82-7 82-64 82-263	82-7 82-64 82-248A 82-248B	1.000 0.900 0.940 0.950	<pre>< 0.100 < 0.100 < 0.500 < 0.500</pre>	44 000 33,400 34,400 34,500	9.200 9.850 9.190 0.110	<pre>< 0.010 < 0.010 < 0.010 < 0.010</pre>	< 0.310 < 0.010 0.100 0.090	48.000 64.800 64.200 54.290	<pre> 0.010 0.010 0.150 0.110 </pre>
	82-397	82-343 82-373 82-397	0.980 0.960	< 0.100 < 0.100 < 0.100	33.600 33.700 21.200	0.200 0.210	< 0.010 < 0.010	0.040	65.200 65.100	< 0.012 < 0.012
	82-424	82-424 82-428 82-486	0.750 0.970 0.960	< 0 500 < 0 100 < 0 100	27.700 31.800 32.000	0 240	< 0.010 < 0.010 < 0.010	< 0.010 0.060 0.060	71.000	0.290
	82-438 83-32 83-83	82-436 83-85 83-83	0.900 0.930 0.910	 0.100 0.100 0.100 	28.700 26.500 28.400	0.330 0.670 0.370	 0.010 0.010 0.010 0.010 	<pre>< 0 010 < 0 010 < 0 010 < 0 010</pre>	70.000 71.000 70.300	<pre>< 0.010 0.360 0.070</pre>
	83-188 83-331 83-476	83-188 83-331 83-476	0.850 1.020 0.700	 0.100 0.100 4.900 	26 500 54 200 50 300	0.150 0.360 0.060	<pre>< 0.010 < 0.010 < 0.010 < 0.010</pre>	0 020 0 010 0 010	72.500 44.100 44.000	<pre></pre>

ANALYSIS METHOD - MASS SPECTROMETRY

.

. ./

PAGE Э

SD-BWI-DP-061 Rev.

---4

- - ----

Sampi Ing Location	SAMPLING EVENT CODE	SAMPI E NIHIBER	AN 201.E%(95L)	C_HON HOI E%(REL)	CII4 MOLE%(REL)	CO2 Hole%(rel)	HE MOLEX (REL)	H2 MOLE%(REL)	N2 MOLE% (REL)	DT MOLEX(RE_)
MCGEE	83-513 84-24	83-513 84-24	0_US0 0_890	4.700 ¢ 0.100	19.100 31.000	0.040 0.090	0.040 0.060	<pre>< 0.010 < 0.010</pre>	75.100 67.900	0.030 0.010
XKI - 02	82-65 82-401	82-65 82-401 82-414 82-479	0.250 0.040 0.760 0.020	 C 0.100 C 0.100 C 0.100 C 0.100 	83.300 97.600 19.800 98.200	0.040 0.040 0.070 0.070	<pre> 0.010 0.010 0.010 0.010 </pre>	0.220 0.010 0.010 0.170	16.200 2.360 62.700 1.450	 0.013 0.011 16.703 0.010
	84-7 82-364	84 - 47 82 - 354 82 - 370 82 - 391A	0,020 0,030 0,050 0,050	< 0.100 < 0.100 < 0.500	98.700 97.000 96.700 97.800	 0 010 0 040 0 010 0 010 0 020 	<pre></pre>	• 0.220 0.200 0.110 0.160	1.250 1.690 3.110 1.970	 0.0° 0.140 0.030 0.010
	82-309 82-456	82-3918 82-391C 82-383 82-411 82-445 82-456	0.030 0.040 0.080 0.020 0.020 0.030	<pre>< 0.500 < 0.500 < 0.100 < 0.100 < 0.100 < 0.100 < 0.100</pre>	97.900 97.200 96.200 98.900 98.300 97.500	0.010 0.010 0.010 0.010 0.010 0.010 0.010	<pre>>.010 >.010 < 0.010 < 0.010 < 0.010 < 0.010 0.020</pre>	<pre> 0 150 0.170 0.130 < 0.010 < 0.010 0.030 </pre>	1.370 2.210 3.560 1.080 1.340 2.430	 0.0.0 0.310 0.070 0.010 0.010 0.030
RR106B	83-25	83-25 83-69	0.040 0.060	¢ 0.100 ¢ 0.100	97.800 96.500	0.040	< 0.010 0.290	<pre> 0.010 < 0.010 </pre>	2.080 2.720	< 0.010 0.440
RR114	82-403	82-918 82-448	0.020 0.020	< 0.100 < 0.100	98.300 98.400	< : 510 < 0.010	<pre>< 0.010 < 0.010</pre>	< 0.010	1.850 1.610	0.020 ≺ 0.010
	84-11 83-151 83-49	84-11 83-151 83-49 83-96	0 040 0.260 0.040 0.040	<pre>< 0.100 < 0.100 < 0.100 < 0.100 < 0.010</pre>	97.900 97.500 98.000 98.000	0,010 0;350 •0,020 0,010	0.010 < 0.010 < 0.010 < 0.010	 0.010 0.010 0.010 0.010 	2.020 2.170 1.900 1.910	<pre> 0 010 0 010 0 030 0.00 0.00</pre>

SD-8WI-DP-061 Rev.

....

• •

.

•

.

ANALYSIS METHOD= MASS SPECTROMETE ...

. . .

:

•

P.A. 4

SD-BWI-OP-051 Rev. 1

-

THIS PAGE INTENTIONALLY LEFT BLANK

PANT 1

.

SAMPLE TYPE: CONFINED ANALYSIS GROUP: RADIO

.

1

SAMP1 1NG LOCATION	SAMPLING EVENT CODE	SAMPLE NUMBER	CL35 ATOMS/LITER	+/- RANGE	(A)	CI35/CL Atom Ratio	+/- RANGE	{A}	C14PMC %	•/- RANGE	(4)
BERK	85-255	\$5-255							7.3008+00	1.2000000+00	(1)
00-01 1	81~19 81~65 82~27 85-32	81-19 81-65 92-27 82-87 85-32	8.500E+07	2.00000E+06	(1)	• 1.0501-13	2.00000E-15	(1)	2.7005+00 3.100E+00 6.300E+00 2.500E+00 1.700E+00	8.00000E-0: 8.00000E-0: 1.10000E+00 8.00000E-0: 1.20000E+00	$ \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{bmatrix} $
1)13-02	81-10 81-10	81-13 81-10							2.200E+01 2.200E+00	1.50000E+00 6.00000E-0:	
DB-07	83-413 85-216	83-413 85-216				· ·			4.3005+00 3.000E+00	1.50000E+00 1.40000E+00	[]]
DB-09	83-472	83-472		•.				•	2.2105+01	2.10000E-00	[1]
68-11	85-4 85-15 85-18	85-4 85-15 85-18							2.6005+00 1.800E+00 2.400E+00	1.20000E÷00 9.00000E-01 1.50000E+00	
	80-52	85-19 86-52 86-53			•				3.4005+00 4.6005+00	1.10000E+00 1.50000E+00	3
DB 12	81-25	81-25		. A		: ^ '		۰.	8.200E+00	8.00000E-01	(1)
13 13 13	30-159 83-404	80-159 33-404	· · ·	•	•				0.2002+CÓ 1.1002+D1	1.20000E+00 1.60000E+00	
DU-14	81-152	81-139 8152	·	•	•	-			\$ 2.1007400 3 5002400	1.000008+00	1
DB-15	79-17	;									
	79-35	79-20		<i>,</i>			•				
	79-33		· · · · ·	• .	· · ·						•
	79-25	79-15									
	79-39	79-39 79-8							00+3005.E	1.10000E+00	
	/9-31	79-31 78-5	•								
	19-51	79-51							•		
	79-85	79-66 79-85	•	κ.					• • •		
	/9-80	19-80							5.7005.00	1.600002+00	1.11
	12.05	19.02 -							4 000E+00	I.70000E+0C	

SEE END OF THIS REPORT FOR A LISTING OF ANALYSIS METHODS.

.

SD-8WI-DP-061 Rev. 1

SAMPLE TYPE: CONFINED ANALYSIS GROUP: KADIO .

2. Contract of the second s

4

SAHPI ING LOCATION	SAMPLING EVENT CODE	SAMPLE NUMBER	IRITIUH UNITS	' /- RANGE	[A]	U MICROGRAM/L	+/- HANGE	(A)	U234 DPM/L	+/- KANGE	(A)
BERK	85-255	85-255	5.000E-02	6.00000E-02	(1)						
DH-01	81-19 81-65 82-27	81-19 81-65 82-27	1 470E+00 2 680E+00 5 400E-01	1 00000E-01 9.00000E-02 6.00000E-02		7.000E-03		(1)			
	85-32	85-32	2.000E-02	8.00000E-02	(1)						
DB-02	81-10 81-10	81-13 81-10	7 810E+00 2 900E-01	2 70000E-01 5.00000E-02	{ ! }	4.200E-02		(1)			
DB-01	83-013 85-216	83-413 85-216	5.000E-02 8.000E-02	8.00000E-02 1.00000E-01	{ ! }	•					
DH-09	83-472	83-472	\$.300E-01	1.100008-01	{1 }			.•			
08-11	85-4 85-15 85-18	85-4 85-15 85-18	1.600E-01 1.300E-01	9.00000E-02 9.00000E-02	$\left\{ \begin{array}{c} 1\\ 1 \end{array} \right\}$						
27	80-52	85-19 86-52 86-53	8.000E-02 3.000E-02	1.00000E-01 \$.00000E-02	{ ! }		•			•	
10DB-12	81-25	81-25	1.130E+00	7.00000E-02	(1)	4.0008-03		(1)			
DB-13	80-159 83-404	80-159 83-404	6.00UE-02	7.00000E-02	(1)	•			•		
DU-14	81-162	81-139 81-162	2.590E+00	1.30000E-01	(1)						
DB-15	79-17	79-17	1.080E+01 1.060E+01	2.00000E-01 2.00000F-01		4.600E+00	4.00000E-01	(1)	4.400E+00	4.00000E-01	[1]
· .	18-33 18-32	79-20 79-35 79-27	2 600E-01 9 000E-01	4.00000E-02 7.00000E-02		1.900E-02 3.300E-02	2.00000E-01 3.80000E-02		2.700E-02 2.700E-02	2.00000E-00 2.40000E-02	
	/9-15	79-33 79-15	1 100E-01 1 200E-01	4.00000E-02 5.00000E-02		4 200E-02 6.900E-02	7.00000E-03 3.20000E-02		4.400E-02 7.800E-02	7.00000E-03 2.30000E-02	
	79-39	79-39 79-39 79-8	1.000E-01	5 00000E-02	{I}	4 700E-01 5 500E-01	3.00000E-02 6.00000E-02	111	5 300E-01	3.00000E-02 5.00000E-02	111
	79-31	79-31	2 200F-01	5 000005-02	(1)	2.000E-01	1.000002-02		2.000E-01	1.00000E-02	H.,
	79-51 79-85	79-51 79-66	2 500E-01 1.200E-01	5.00000E-02 6.00000E-02		1.3005-01	1.009008-02	(1)	1.800E-01	1.000002-07	(2)
	79-80 79-62	79-85 79-80 79-62	1.900E-01 1.500E-01	5.00000E-02 6.00000E-02	[1]	6 900E-01 3.600E-01	3.00000E-02 2.00000E-02		5.500E-01 2.700E-02	3.00000E-02 1.00000E-02	$\begin{bmatrix} 1\\1 \end{bmatrix}$

SEE END OF THIS REPORT FOR A LISTING OF ANALYSIS METHODS.

يوميونيونونون د د د · · .

. ·

4

....

٠

PAGE 1.1.

SD-8WI-0P-061 Rev.

j---4

1

SAMPLE TYPE: CONFINED ANALYSIS GROUP: RADID

LOCATION	CODE	NUMBER	DPM/L		ATOM RATIO	+/- SAMOE 1	ATON RATIO	+/- RANGE (.A)
BERK	85-255	85-255					· · · · · · · · · · · · · · · · · · ·	
()11 · 0 1	81-19 81-65 82-27	81-19 81-65 82-27 82-87		•	1.0002-04	į į	1) 7.300E-03	аны А . ()
	85-32	85-32						1 .
DB-02	81-13 81-10	81-13 81-10			1.2002-04	7.00000E-08 [1) 7.210E-03	7.00000E-05 (1)
1)8-01	80-410 85-216	80-413 85-216				•		a
69-69	83-472	83-472					•	and the second second
08-14	85-4 85-15 85-18	85-4 85-15 85-18				••		
	86-52	85-19 86-52 85-53						•
08-12	81-25	\$1-25			8.8005-05	7.00000E-08 (l) 7.100E-03	2.000008-04 (1)
DD-13	80-159 83-404	60-159 83-404				•		
Du - 14	81-162	81-139 81-162						
əli - 15	79-17	79-17	3.370E+00	2,70000E-01 (1)	7.000E-03	8.000002-05 1	.	
	79-35 79-33 79-15	79-20 79-25 79-27 79-33 79-15	4001-02 2.400E-02 3.100E-02 5.100E-02	1.00000E-03 (1) 2.70000E-02 (1) 5.00000E-03 (1) 2.30000E-03 (1)	1.00000-05 6.0000-05 7.8005-05 8.3002-05	1	-) 	
	79-39	79-38 79-39	3.5002-01	2.00000E-02 (1)	8.3005-05	8 100002-05	• •	
	/9-31	79-8 79-31 79-5	4.000E-01 1.400E-01	4.00000E-02 11 1.00000E-02 11	7 7092-05 7 5095-05	1.000002-05 8.000002-06		
	79-51 79-85	79-51 79-66	1.4002-01	1,00000E-02 (1)	7 3015-05	5.00002-06 1	!)	
	19-80 79-62	79-85,; 79-80 79-62	5.100E-01 2.700E-01	3,00000E-02 [1] 1,00000E-02 [1]	5.8002-05 5.500E-05	3.300005-06 (4.00000E-06 (

. • •

د . ۱۹۰۰ - ۱۹۰۰ - ۱۹

SEE END OF THIS REPORT FOR A LISTING OF AVALYSIS METHODS.

• . •

PAGE 1.2

. .

SD-BWI-DP-061 Rev. فبر

•

SAMPLE TYPE: CONFINED ANALYSIS GROUP: RADIO

SAMPLING LUCATION	SAMPLING EVENT CODE	SAMPLE NUMBER	C136 ATOMS/LITER	+/- RANGE [A]	CL36/CL ATOM RATIO	+/- RANGE	(A)	С14РИС Х	. +/- RANGE	(A)
DB-15	79-90 80-35	79-86 80-35			· .		•	1.900E+00		(1)
	80-24 80-77	80-24 80-77					۲	3.400E+00 2.400E+00	1.2000UE+00	{I}
	80-1	80-52 80-1 80-51		А.				3.400E+00 -	1.10000E+00	{1}
10C - 01	SITE-230 STTE-227 STTE-228 STTE-231 SITE-232 STTE-233 STTE-234 STTE-236 SITE-236 STTE-237 SITE-237 SITE-237 SITE-240 STTE-241 STTE-242	SITE-230 SITE-227 SITE-228 SITE-231 SITE-233 SITE-233 SITE-234 SITE-236 SITE-236 SITE-236 SITE-238 SITE-241 SITE-242					·	•		
-DC-02-A2	S11E-213	SITE-213								
DC-05	19-30	79-30								
DC-06	SITE-214 80-238 80-191	STTE-214 80-238 80-186 80-191	1.530E+08 2.380E+08	9.00000E+06 (1 2.50000E+07 (1) 7.000E-14) 4.800E-14	4.00000E-15 5.00000E-15	(1) (1)	1.810E+01 9.500E+00	1.70000E+00 1.70000E+00	(1) (1)
	81-45 80-118 80-15	81-26 81-45 80-118 80-15	3.700E+07 1.080E+08 4.3.400E+07	5.00000E+06 11 8 00000E+06 11	1.500E-14 4.000E-14 4.000E-15	2.00000E-15 3.00000E-15	$\left\{ \begin{array}{c} 1\\ 1\\ 1\\ 1\\ 1 \end{array} \right\}$	2.450E+01	2.30000E+00	(1)
	80-29 79-58	80-29 79-57 79-58	2 800E+07	1 00000E+07 (1	1.700E-14	6.00000E-15		8.300E+00 5.700E+00 1.240E+01	1.70000€+00	[]]
	20-12	80-75	3.200L+07_	1.00000E+07 [1) 2.400c-14	8.00002-15	(1)			
DC~07	82-23 82-10	82-23				,		3.3701+01	1.700008+00	;13
	80-103	80-100 80-163	•					2.740E+01	2.40000E+00	(1)
	80-196	80-196						5.2502+01	2.10000E+00	(1)

SEE END OF THIS REPORT FOR A LISTING OF ANALYSIS METHODS.

.

· · · · · · · · · · · · · · · · · ·

1. 1

.

SD-BWI-DP-061 Rev.

مبنو

٠

PAGE 2

SAMPLE TYPE: CONFINED ANALYSIS GROUP, RADIO

~

.

.

.

. .

<u>م</u> ۲

•

SAMPLING LOCATION	SAMPLING EVENT CODE	SAMP1 E NUMBER	T. UNIIS UNIIS	1/- RANGE	(A)	U MICROGRAM/L	+/- RANGE	(A)	U234 DPM/L	+/- RANGE (A)
D8-15	79·90	79-86 90-25	2.8826+00	9.00000E-02	(1)					
	80-33 80-24 80-77	80-35 80-41 80-24 80-77	1.1042-01	5.00000£-02	(1)					
	80-1	80-92 60-1 80-51	9.000E-02 4.000E-02 7.000E-02	5.00000E-02 5.00000E-02 5.00000E-02	$ \left\{ \begin{matrix} 1 \\ 1 \\ 1 \\ 1 \end{matrix} \right\} $				•	
DC - 0 I	STTE-230 STTE-227 STTE-228 STTE-231 STTE-232 STTE-233 STTE-233 STTE-235 STTE-236 STTE-238 STTE-238	SITE-230 SITE-227 SITE-228 SITE-231 SITE-232 SITE-233 SITE-233 SITE-235 SITE-235 SITE-237 SITE-238	2 300E+01 1 300E+00 1 699E+00 5 309E+00 2 209E+00 2 309E+00 5 309E+00 5 309E+00 1 500E+00 1 500E+00 1 600E+00 1 600E+00	$\begin{array}{c} 1 & 0 & 0 & 0 & 0 \\ 2 & 0 & 0 & 0 & 0 \\ 2 & 0 & 0 & 0 & 0 \\ 3 & 0 & 0 & 0 & 0 \\ 4 & 0 & 0 & 0 & 0 \\ 3 & 0 & 0 & 0 & 0 \\ 3 & 0 & 0 & 0 & 0 \\ 3 & 0 & 0 & 0 & 0 \\ 3 & 0 & 0 & 0 & 0 \\ 4 & 0 & 0 & 0 & 0 \\ 5 & 0 & 0 & 0 & 0 \\ 6 & 0 & 0 & 0 & 0 \\ 6 & 0 & 0 & 0 & 0 \\ 6 & 0 & 0 & 0 & 0 \\ \end{array}$				· •	•	· *.
	SI1E-240 SI1E-241 SI1E-242	STIE-240 STIE-241 STIE-242	4.4005+00 1.7805+01	4.00000E-01 4.00000E-01				·		•
13 mDC-02 A2	S11E-213	SITE-213	1.540E+01	5 00000E-01	(0)				-	
20-05	7.9-30	79-30	1.0302+00	6.00000E-02	(1)	6.300E-02	1.000005-02	(1)	0.400E-02	1.30000E-02 (1)
bC-06	S112-214 80-238 80-191	S17E-214 80-238 80-186 80-191	8.0001-02 -1.3001-01 4.0001-02 9.0001-02	A.00000E-02 8.00000E-02 7.00000E-02 7.00000E-02	(0) (1) (1) (1)	4.0001+03 2.000E+38		(1) (4)		
	81-45 80-118 80-15 81-92	8:-26 8:-45 80-118 80-15 81-82	-2 000E-02 -6 000E-02 1 2005-01 1 0000-02	5.00000E-02 5.00000E-02 7.00000E-02 5.00000E-02	$ \begin{cases} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 1 \end{bmatrix} $	1.0.12.03 4.00 -03		(3) {}}		
	80-23 79-58 80-75	80-29 7\$-57 7\$-53 80-18	-1.0002-02 -1.0002-02 4.0002-02	4 00000E-02 5 00000E-02 5.00000E-02		2.0035.093 3.0077.02 0.0205-20	1. 10031-02 3. 30030E-02	(i)	5.000E-02 0.000E+00	1.800001-02 []] 2.00000E-02 []]
		80-75	9.0005-02	5.00000E-02	<i>[1]</i>	1.0007-02		(2)	1	
DG-07	82-23 82-10 80-103	82-23 82-10 80-103 80-163	8.740E+00 5.150E+00 5.050E+00 4.820Z+00	1.90000E-01 1.70000E-01 1.00000E-01 1.90000E-01		9.0001-02 5.9001-02		{ ² 3		
	80-196	80-196	4.700E+00	1.90000E-01	(1)					~ •

SEE END OF THIS REPORT FOR A LISTING OF FURALYSIS METHODS. •

.

SD-BWI-DP-061 Rev.

}_• .

.

PAGE 2.1

PAGE 2.2

•

SAMPLE TYPE: CONFINED ANALYSIS GROUP: RADID

SAMPLING LUCATION	SAMPI.ING EVENI CODE	SAMPLE NUMBER	U238 DPH/L	+/-: KANGE (A):	023470238 ATOM RATIO	+/- HANGE [A	U235/J238 Atom Ratio)	+/- RANGE (A)
DB-15	79-90 80-35	79-86 80-35 80-41						
	80-24 80-71	80-24 80-77 80-92		•				
	80-1	80-1 80-51	· · ·	×				
рС-01	S17E-230 S11E-227 S11E-228 S11E-231 S11E-232 S11E-233 S11E-235 S11E-236 S11E-236 S11E-237 S11E-238 S11E-240 S11E-241 S11E-242	SITE -230 SITE -227 SITE -228 SITE -231 SITE -232 SITE -233 SITE -235 SITE -236 SITE -236 SITE -236 SITE -238 SITE -240 SITE -241 SITE -242		· . ·				•
9DC-02-A2	SITE-213	\$11E-213						
DC-05	79-30	79-30	4.600E-02	8.00000E-03 (1)	1.100E-04	3.00000E-05 (1	3	
DC-06	S11E-214 80-238 80-191 81-45	SITE-214 80-238 80-186 80-191 81-26			4.100E-05	1.00000E-05 (1) 7 000E-03	2.00000E-04 (1)
	80-118 80-15 81-82 80-29 79-58 80-75	80-118 80-15 81-82 80-29 79-57 79-58 80-18 80-75	2 700E - 02 0.000E + 00	9 00000E-03 11 2 00000E-02 11	1.200E-04	5.00000E-05 (1)	
1/07-07	82-23 82-10 80-103 80-195	82-23 82-10 80-103 80-163 80-163		· · · ·	7 1002-05 6.700E-05	3 00000E-06 (1 5 00000E-06 (1	7.290E-03 7.300E-03	5.0000CE-05 (1) 3.50000E-04 (1)

SEE END OF THIS REPORT FOR A LISTING OF ANALYSIS METHODS.

۰.
PA.. ړ .

SD-BWI-DP-061 Rev.

.

SAMPLE TYPE: CONFINED ANALYSIS GROUP: KADID

SAMPLENG LUCATION	SAMPLING EVENT CODE	SAMP1 E NUMBER	CL36 ATOMS/LITER	+/- RANGE	(A)	ATOM 3110	+/- RANGE	{A}	C146MC X	+/- RAMGE	. \)
DC-12	80-80	80-62							2 4005+00	1 200005111	
	80-100	80-100	2.610E+08	1.60000E+07	[1]	1.600E-13	1.00000E-14	(1)	< 1.900E+00	1.300001-30	[i]
	80-97	80-03			•			•			
	80-32	80-97 80-32	3.900E+07	2.00000E+08	(1)	2.2005-14	1.00000E-15	11)	(1.50DE→D0 4.000E+00	1.20000E+00	
	80-52	80-79 80-82		•					3 5005400	1 300005+00	
	80-124	60-124	·						2.800E+00	1.00000€+00	111
	80-209	80.209			•			• •	9.4005+00	1.800001.00	<u> </u>
	81-61	80-214	<u>.</u>	• • •					1.2002+01	3.100C0E+07	
	82-85	82-85	4.000E+07	2.00000£+06	(1)	1,8921-14	1.000002-15	$\{1\}$	3.5002+00	9.00000E-01	[1]
DC-14	80-3 80-53	(80-3 30-51	1 2705408	4 00000000000	111	1 1307-12	4 000008-14	(1)	5.2005+00	1.10000E+00	
	80-47	80-47	1.2700108	4.000002.000	(1)	1.10	1.0000E-14	(-)	4.9002.00	1.20000E+00	jii .
	80-09	80-83	•		• : •				< 1.900E+00		(1)
	80-89 80-89	30-99 80-36			, . ,			•.	< 1.3002+00	•	[1]
2	80-71	80-89' 80-71	5	2 00000F+08	111 111	3 3107-13	1 000005-14	(1)	3.1005+00 5.5005+00	1 200005+00	14
•	80 - 144 80 - 189	80-144						/	1.9002+00	1.10000E+00	jî]
·	80 103	30-189	<i>t</i>								;)
	80-112	80-112	1 080E+08	7.00000E+06	(1)	9.4001-13	5.00000E-14	(1)	3.1095+00	1.100005+0:	(1)
	80-157 80-155	80-183 80-145	. .		,				2.4005+00	1.300002400	,1)
	80-104	80-155 80-104		· ,		{			2.2002+00	9.000002-0.)
	80-129 80-170	80-129 80-170		• . :					< 1.009E+00		1
	80-117	80-117	S. 400E+07	2.00000E+06	(1)	4 5:01 .3	1.40,0005-14	(A)	<		
	81-20	81-20	1.860E+08	2.20000E+07	{i}	5.000E-14	6.00000E-15	{i}	1.190E+01	1.30000E+00	11
	81-30	81-18	6.700E+07	2.80000E+07	(1)	1.7005-14	7.00000E-13	(1)			
	81-44 81-141	81-44 81-141	· •	•	 t				1.200E+01 9.200E+00	1.80000E+00	
	82-8	82-8 83-156	4.200E+07	8.00000E+06	(1)	1.00014	2.000001-15	{2}	< 1.900E+00	1.000002 00	3
	83-152	83-152	•	. *					• •		
	83-157	93-157	, •								
	,										

SEE END OF THIS REPORT FOR A LISTING OF WALVELS METHODS.

277

1

• • •

SAMPLE TYPE: CONFINED ANALYSIS GROUP: RADIO

the last

· · · ·

.

SAMPLING LOCATION	SAMPLING EVENT CODE	SAMPLE NUHBER	TRITIUM UNITS	+/- RANGE	(A)	U MICROGRAM/L	+/- RANGE	(A)	U234 DPM/L	+/- RAN	IGE [A]
PC-12	80-80	80-62 80-80	1.770E+00 1.800E+00	8 00000E-02 9 00000E-02	<u>{</u> }}	7 300F-02		(1)	•		
	80-100	80-100	4.200E-01	B 00000E-02	{i}	7.000E-03		111			
	80-97	80-63	1.000E-02 3.100E-01	5.00000E-02 6.00000E-02						•	
	++	80-97	3 400E-01	6.00000E-02	<u>}</u> [[9.000E-03		<u>{!</u> }			
	80-32	80-32	1.1/0E+00 1.260E+00	8.00000E-02		1.7002-01		[1]			
	80-82	80-82	5.900E-01	7.00000E-02	<u>]</u>]]	5.500E-01		(1)	· · · ·	•	
	80-124	80-124	-1.100E-01 A 100E+00	5.00000E-02		1 9001-01		- } } }			
	80-209	80-209	2.480E.00	1 20000E-01		1.100E-02		{i}			
	80-234	80-234	9.270E+00	3.40000E-01		4.600E-01		(1)			
	82-85	82-85	1.900E-01	7.00000E-02	{i}	1.800E-02		(1)	× ×		
DC-14	80-3	80-3	1.000E-01	6.00000E-02	(J)	4.600E-01		(1)			
	80-53	80-53	-8.000E-02	5.00000E-02	111	3 200E-01		līf			
	80-47	80-47	2.000E-02	5.00000E-02	- { } }	8 800E-01 1 200E-02		{}}			
		80-83	-7 000E-02	5.00000E-02	łif	1.1000 01		(.)			
	80-99	80-99	2.300E-01	5:00000E-02	{}}					•	
3	00 03	80-89	7.600E-01	6.00000E-02	Hit						
ມ	80-71	80-71	1.230E+00	6 00000E-02	11	7.400E-01		(1)			
	80-144	80-127	1.030E+00	7 00000E-02						•	
		80-189	9.500E-01	7.00000E-02	lif	1,400E-01-		(1)			
	80~112	80-112	1,999E-01 6,300F-01	7.00000E-02 6.00000F-02		1 1005-02		(1)			
	80-157	80-183	3.700E-01	6.00000E-02	$\{i\}$			(+)			
	80-155	80-145	5.200E+01 4.000E+02	7.00000E-02	{}}	1 0305-01		())			
	80-104	80-104	1.290E+00	7.00000E-02	lif	3.200E-01		111			•
	80-129	80-129	2.200E-01	7 00000E-02	11	8.200E-02		11			
	80-117	80-117	2.000E-02	7.00000E-02	111	1 300E-02		{{ }			•
	80-213	80-213	2.600E-01	5.00000E-02	- ĮĮ	1.210E-01		11			
	81-20	81-18	4 030E+00	1 10000E-01		1.8002-01		[1]	•		
		81-30	2.200E-01	8.00000E-02	\ij	1.0002-02		(1)	•		
	81-44	81-44	1.380E+00	9.0000E-02	(1)	2.500E-02		(1)			
	82-8	82-8	7.000E-02	4.000008-02	(1)	3.0002-03	•	(1)			
	83-156	83-156	1.000E-02	7 000002 02	111				.		
	83-157	83-157	-5.000E-02 8.300E-01	9 00000E-02	111						
	83-178	83-178	1.300E-01	6.00000E-02	111						

SEE END OF THIS REPORT FOR A LISTING OF ANALYSIS METHODS.

• • •

. .

PAGE 3.1

SD-BWI-DP-061 Rev.

SAMPLE	IYPE	:: CO	NF I NED
AHALYS1	S GR	IOUP:	RAD10

SAMPLING LOCATION	SAMPLING EVENI CODE	SAMPLE NUMBER	11238 DPH/L	·•/- RANGE	(A)	0236, 9238 Atom Ratio	+/- RANGE	(A)	U235/1-238 ATOM RATIO	+/- RANGE	(A)
0C-12	80-80 80-100	80-62 80-80 80-100 80-53		、		1.850E-04 1.730E-04	1.80000E-05 9.00000E-06	{ ! }	7.320E-03 7.280E-03	8.00000E-05 1.40000E-04	[1]
	80-17 80-32	80-71 80-97 80-32				1.650E-04 L.150E-04	6.00000E-05 2.00000E-06	$\left\{ \begin{array}{c} 1\\ 1\\ 1 \end{array} \right\}$	7.250E-03 7.260E-03	8.000005 8.00000E-05	
	80 - 82 80 - 124 80 - 174 80 - 209 80 - 234	80-79 80-82 80-124 80-174 80-209 80-234				5.000E-05 6.300E-05 7.7002-05 7.800E-05 4.000E-05	2.00000E-08 3.00000E-06 3.00000E-03 2.00000E-05 1.00000E-06		7.240E-03 7.310E-03 7.310E-03 7.490E-03 7.280E-03	4.00000E-05 3.00000E-05 4.00000E-05 1.50000E-04 5.00000E-05	
	82-85	81-61 82-85				4.000E-05		(1.)	7.3008-03		1.1.)
DG-14	80-3 80-50 80-47 80-69	80-3 80-53 80-47 80-69				1.500E-04 1.300E-04 1.100E-04 1.300E-04	4.00000E-06 4.00000E-06 3.00000E-06 4.00000E-08	$ \begin{bmatrix} 1\\1\\1\\1\\1\\1\\1 \end{bmatrix} $	7 270E-03 7.280E-03 7.250E-03 7.190E-03	3.00000E-05 5.00000E-05 3.00000E-05 5.00000E-05	
279 19	80-99 80-89	80-83 80-36 80-36 80-89	· · · ·	-	· • •		1	- ; ·		•	
	80-71 80-144 80-189	80-71 80-144 80-127 80-189				8.8002-05	6.00000E-05	- 1 1 1 1	7.2208-03	6.00000E-25	
	80-112 80-157	80-111 80-112 60-183	· , · ·		• ,	1.8002-34	1.00002-05	(1)	7.230E-03	5.000002-05	(1)
	80-104 80-129 80-129 80-170 80-117 80-213 81-20	80-143 80-155 80-104 80-129 80-170 80-117 80-213 81-20				1.8201-04 1.8705-04 1.8805-04 1.9005-04 1.7905-04 1.0605-04 1.8505-04	1.000002-05 3.000002-06 3.000002-06 1.500002-05 1.800002-05 4.00002-06 5.00002-06		7.3505-03 7.300E-03 7.280E-04 7.540E-03 7.320E-03 7.320E-03 7.280E-03 7.280E-03	1 20000E-24 5.00000E-05 3.00000E-05 1.30000E-05 1.10000E-05 4.00000E-05	
	81-30 81-44 81-141 82-8 83-156	81-18 81-30 81-44 81-141 82-8 83-156				1.600°°24 1.6402-04	2.00900E-05 1.00000E-05	<pre>{}</pre>	7.2002-03 7.2002-03	2.00000£-04 2.00000°-04	
-	83-152 83-157 83-178	83-152 83-157 83-178					. ,	•			

SIE END OF THIS REPORT FOR A LISTING OF ANALYSIS DETAGOS.

. . . .

ر

2

•

PAst 3.2

SD-BWI-DP-061 Rev.

<u>مىر</u>

.

.

• 1 . •

•;

1 1 2 2 3

. 1

....

•

PAGE 4

۰.

1

SD-BWI-DP-061 Rev.

مىر

• •

.

.

.

.

SAMPLE TYPE: CONFINED ANALYSIS GROUP: RADIO

Sampling Location	SAMPLING EVENT CODE	SAMP1 E NUMBER	C1.36 ATOMS/LITER	+/- RANGE	(A)	CL36/CL Atom Ratio -	+/- RANGE	(A)	C14PNC X	+/- RANGE	(A)
DC-14	83-183 83-154 83-150 83-266 83-261	83-183 83-154 83-150 83-266 83-261							4.500E+00 (1.900E+00	1.000025+00	[1] [1]
DC-15	80-58 80-54	80-31 80-56 80-54 80-76	4,900E+07	4.00000E+06	(1)	3.600E-13	3.00000E-14	(1)	7.900E+00 4.900E+00	1,30000E+00 1,10000E+00	[1]
	80-57 80-87 80-137 80-135 80-135 80-135	80-57 80-87 80-137 80-137 80-135 80-135 80-130	1 . 150E +08 7 . 900E +07 8 . 700E +07	9.00000E+06 3.00000E+06 6.00000E+06	<u>{</u> †}	3.800E-13 9.900E-14 1.400E-13	3.00000E-14 4.00000E-15 9.00000E-15	$ \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix} $	<pre>< 1.000E+00 1.200E+00 3.900E+00 5.600E+00 3.500E+00 < 1.500E+00</pre>	7.00000E-01 1.30000E+00 1.40000E+00 1.10000E+00	(1) (1) (1) (1) (1)
	80-131 80-193 81-41 81-2 81-33	80-108 80-131 80-131 81-41 81-2 81-33	5.900E+07 3 800E+07 1.790E+08	2.00000E+06 2.00000E+06 2.60000E+07	{ } }	5.300E-14 3.100E-14 6.300E-14	2.00000E-15 2.00000E-15 9.00000E-15	$ \left\{\begin{array}{c}1\\1\\1\\1\end{array}\right\} $	<pre>< 1.900E+00 < 2.400E+00 < 1.600E+00 1.360E+01 2.030E+01</pre>	1.20000E+00 7.00000E-01	
230	81-27 81-64 81-96	81-37 81-27 81-64 81-96	5.340E+08 2 610E+08	2 90000E+07 1 60000E+07	{ ! }	1.860E-13 5.000E-14	9.00000E-15 3.00000E-15	$\left\{ \begin{array}{c} 1\\ 1\\ 1 \end{array} \right\}$	\$.000E+00 1.100E+01	2.00000E+00 1.30000E+00	<pre>[1]</pre>
	81-69 82-94	81-69 82-94	2.700E+07	4.00000E+06	(1)	7.000E-15	1.00000E-15	(1)	1.420E+01 2.070E+01	1.30000E+00 6.00000E-01	$\left\{ \begin{array}{c} 1\\ 1 \end{array} \right\}$
()C-16A	$ \begin{array}{r} & 1 - 109 \\ & 82 + 17 \\ & 82 - 93 \\ & 82 - 18 \\ & 82 - 188 \\ & 82 - 143 \\ & 82 - 202 \\ & 82 - 332 \\ & 82 - 332 \\ & 82 - 430 \\ & 83 - 29 \\ \end{array} $	81 - 109 82 - 17 82 - 93 82 - 19 82 - 188 82 - 124 82 - 143 82 - 202 82 - 332 82 - 332 82 - 430 83 - 29	1 120£+08 6 700£+07 5 200£+07	7.00000E+06 9.00000E+06 7.00000E+06	(1) ⁻ {1 {1}	4.500E-14 1.500E-14 7.000E-15	3.00000E-15 2.00000E-15 1.00000E-15	(1) {1 1 1	2.020E+01 2.030E+01 7.700E+00 4.700E+00 3.200E+00 5.000E+00 1.610E+01 3.070E+01	-1,80000E+00 1,70000E+00 1,30000E+00 9,0000E+00 9,0000E+01 1,20000E+00 3,80000E+00 4,30000E+00	
DC-16B	83-147	83-147							4.000E+00	9.00000Ė-01	121
DC-16C	83-100	83-100							•••		• •
DC-19C	84-23	84-53							3 8005+80	1 200605+00	(2)

•

(1) In the second stationard station of the second station of t

SAMPLE TYPE: CONFINED ANALYSIS GROUP: RADIO

SAMPI ING LUCATION	SAMPL ING EVENT CODE	SAMP1 C NUMBER	TRETTON UNLES	+/- RANGE (A)	U MICROGRAH/L	+/- RANGE	(A)	U234 DPM/L	+/- RANGE	<u>, 1)</u> .
DG-14	83-183 83-154 83-150 83-266 83-261	83-183 83-154 83-150 83-266 83-261	2.700E-01 1.4005-01 -4.0002-02 5.000E-02 3.200E-01	7.00000E-02 [1] 9.00000E-02 [1] 7.00000E-02 [1] 7.00000E-02 [1] 9.00000E-02 [1]				,		
DC+15	80-56 80-54	80-31 80-56 50-54	4.0001-02 1.6005-01 2.5005-01	6 00000E-02 (1) 6 00000E-02 (1) 5 00000E-02 (1)	8.0002-03 3.0002-02		{ <u>}</u>	, , , , , , , , , , , , , , , , , , ,	· .	. •
	80-57 80-87 80-137 80-136 80-135 80-135	80-76 80-87 80-87 80-137 80-135 80-135 80-135 80-139	1.300E-01 3.500E-01 8.500E-01 4.200E-01 2.870E+00 4.670E+00 7.360E+00	3.00000E-02 1 4.00000E-02 1 5.00000E-02 1 8.00000E-02 1 1.10000E-01 1 1.20000E-01 1 2.80000E-01 1	5.0002-03 2.9002-02 9.7002-02 1.3002-02 5.5002-02 6.3002-02			· · ·	• • • • • • •	· · · • • • •
182	80-101 80-103 81-41 81-2 81-33 81-33 81-64 81-69 81-69	0 - 108 0 - 131 0 - 193 1 - 41 1 - 33 1 - 36 1 - 66 1 - 69	3.200E-01 4.400E-01 8.8005-01 3.800E+00 8.100E+00 8.230E+01 5.230E+01 6.300E+01 1.480E+00 6.400E-01	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5.100E-02 1.100E-01 1.00E-01 1.00E-01 1.00E-02 5.400E-02	• . • • • • • 19 •				SD-8WI-DP-061
DC 16A	82 - 94 81 - 109 82 - 17 82 - 93 82 - 19 82 - 18 82 - 124 82 - 124 82 - 124 82 - 202 82 - 322 82 - 332 82 - 430 83 - 29	82-04 81-109 62-17 82-93 82-19 82-188 82-124 82-124 82-143 82-122 82-322 82-332 82-332 82-430 83-29	1.5805+00 3.010E+00 1.450E+00 9.200E-01 3.500E-01 4.005E-01 4.630E-01 5.300E-01 3.400E-01 3.000E-01 7.000E-01	7.00000E-02 [1] 1.10000E-01 [1] 8.00000E-02 [1] 7.00000E-02 [1] 1.00000E-02 [1] 8.00000E-02 [1] 8.00000E-02 [1] 8.00000E-02 [1] 8.00000E-02 [1] 7.00000E-02 [1] 7.00000E-02 [1]	5:3001:2 1:972-02 6:4005-02 4:1001-02 1:4071-22 1:7011-22 1:			`•••		Rev. 1
DC -16H	83-147	83-147	3.0008-02	7.00000E-02 (1)						•
PC-16C	81-100	83-100	1.6032-01	7.00000E-02 (1)			1	• •		
DC-190	84-53	84-53	2.7008-01	8.00000E-02 (1)				-		
,	1	ngent ook S Sectors	SE END OF THIS	REPORT FOR A LI	STING OF AVALY	YSIS METHODS	•		•.	

.

I

.

PACE 4.1

.

.

SD-BHI-DP 061

SAMPLE TYPE: CONFINED ANALYSIS GROUP: RADIO

۰.

Sampling Location	SAMPI.ING EVENT CODE	SAMPLE NUMBER	11238 DPM/1	+/- RANGE (A)	U234/U238 ATOM RATIO -	+/- RANGE	(A)	U235/U238 Atom Ratio	+/- RANGE	(A)
DC-14	83 - 183 83 - 154 83 - 154 83 - 150 83 - 266 83 - 261	83-183 83-154 83-154 83-150 83-266 83-261								
DC-15	80-56	80-31	,							
	80-54	80-50			9.400E-05	8.00000E-06	(1)	7.260E-03	2.00000E-04	(1)
	80-57 80-87 80-137 80-135 80-135 80-135 80-120	80-57 80-87 80-137 80-135 80-135 80-135 80-139		• • •	8 100E-05 8.100E-05 1.470E-04 1.240E-04 1.330E-04	4 - 00000E - 06 8 - 00000E - 06 5 - 00000E - 06 4 - 00000E - 06 3 - 00000E - 06	1) 1) 1) 1) 1) 1)	7.290E-03 7.240E-03 7.360E-03 7.300E-03 7.300E-03 7.300E-03	7.00000E-05 7.00000E-05 4.00000E-05 3.00000E-05 4.00000E-05	
	80-193 81-41 81-2 81-33	80~131 80~193 81-41 81-2 81-37			1,470E-04 1,330E-04 1,380E-04 6,090E-05 1,260E-04	4.00000E-05 3.00000E-06 4.00000E-06 2.00000E-06 1.00000E-05		7.270E-03 7.280E-03 7.240E-03 7.270E-03 7.050E-03	4.00000E-05 5.00000E-05 5.00000E-05 3.00000E-05 2.00000E-04	$ \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{pmatrix} $
292	81-27 81-64 81-96 81-69 82-94	81-27 81-64 81-96 81-69 82-94			1.430E-04 7.200E-05	1.00000E-05	<pre>(1) {1}</pre>	7.100E-03 7.170E-03	1.50000E-04	[1]
DC~15A	81 - 109 82 - 17 82 - 93 82 - 19 82 - 18 82 - 124 82 - 143 82 - 202 82 - 322 82 - 322 82 - 430 83 - 29				1.330E-04 1.200E-04 1.650E-04 1.350E-04 1.320E-04 1.320E-04 1.320E-04 1.210E-04 1.210E-04 1.590E-04 1.590E-04 9.400E-05	2.00000E-06 5.00000E-06 4.00000E-06 7.00000E-06 2.00000E-06 3.00000E-06 2.00000E-06 2.00000E-06 2.00000E-06 1.00000E-06 4.00000E-06		7.280E-03 7.300E-03 7.320E-03 7.270E-03 7.270E-03 7.270E-03 7.270E-03 7.280E-03 7.310E-03 7.280E-03 7.310E-03 7.270E-03	5.000002-05 6.000002-05 1.000002-05 1.000002-04 1.000002-04 1.500002-04 6.000002-05 5.000002-05 5.000002-05 6.000002-05 6.000002-05	
DC-188	83-147	83-147						•		
DG-16C	83-100	83-100	•	•				•		
DC-19C	84-53	84-53								

SEE END OF THIS REPORT FOR A LISTING OF ANALYSIS METHODS

SD-BWI-DP-061 Rev.

-

PAGE 4.2

.

م المعاد التي مرجع ا

SAMPLE TYPE. CONFINED ANALYSIS GROUP: RADID

51 . 13

•• ·

; 1 1

:

.

.

•

1

.

Sampi Ing LOCATION	SAMPLING EVENT CODE	SAMPLE NUMBER	C1 36 A LOMS/LITER	+/- RANGE (A)	CI.36/C1 Atom Ratio ⁻	+/- RANGE	(A)	014920 X	+/- RANGE	(A)
DC-19C	84-40 84-75 84-86	84-40 84-75 84-86				**********	• • • • •	6.300E+00 1.660E+01 8.000E+00	1.60000€+00 3.30000E+00 1.90000E+00	;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
DC-20C	84-9	84-9		•	. ·		•	2.200E+00	1.40Ó00E+00	{1}
DC-22C	84-105	84-105 84-153	· ·		. •			2.300E+00	1.20000E+00	{1}
ENYLARI	84 - 168 85 - 1 85 - 1 80	84 - 166 85 - 1 85 - 180 85 - 181			, · ·			1.0203+01 1.400E+01 1.130E+01 1.130E+01	8.000002-01 1.20000E+00 1.20000E+00 1.20000E+00 1.20000E+00	
FDRD	SITE-219 85-188 85-303	SITE-219 85-188 85-189 85-303		•			•	1.020E+D1 1.070E+01	1.100002433 1.100002400	
AKIGE E	S11E-223	STTE-223			•			6.8005+00	3.00000:-01	(9)
22	82-7 85-175	82-7 85-175 85-176	, , , , , , , , , , , , , , , , , , ,				•	3.000E400 6.200E400 1.000E400	7.000002-01 1.10002-00 1.200002+00	; }] ; }]
	85-300 86-34 80-64	86-34 86-35 80-64						1 040E+91 6.100E+00 7.500E+00	2.400005400 2.200005400 1.100005400	}
· .	81-79 81-54 82-26 82-397 82-424 82-424 82-436 83-32 83-83 83-373 83-188 83-373 83-460 83-476 83-513 84-24	80-88 81-54 82-64 82-64 82-397 82-397 82-397 82-436 83-32 83-83 83-32 83-83 83-331 83-460 83-513 83-513 84-24	4.700E+07 4.800E+07	1 00000E+06 (1) 1 00000E+06 (1)	6.770£-13 6.950E-13	1.700L2E-14 2.10000E-14	(††) , ,	$\begin{array}{c} 5.400 \\ 5.002+00 \\ 1.0002+00 \\ 1.5302+01 \\ 1.4402+01 \\ 6.9002+00 \\ 8.3(32+00) \\ 7.0002+00 \\ 8.1(302+00) \\ 3.002+000 \\ 3.002+0000 \\ 3.002+0000 \\ 3.002+0000 \\ 3.002+0000 \\ 3.002+0000 \\ 3.002+0$	1.20002:00 1.300002:00 1.800002:00 1.00002:00 1.000002:00 1.000002:00 1.800002:00 1.800002:01 8.000002:01 1.300002:01 1.300002:01 1.300002:01 3.000002:01 3.000002:01	
OURTAN	85-194	85-194	•			•	. •	1.2505+01	1.40000E+0	122
•	ي د م و د ر ال 12 م	- <u>1</u> - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	SEE END OF THIS	S REPORT FOR A LIS	STING OF ANALY	VSIS METHODS.		1.4/02071	1.20000:*30	573

g eren e

PAGE S

.

SD-8WI-0P-061 Rev. 1

SAMPLE TYPE: CONFINED ANALYSIS GROUP: RADIO

SAMPLING LOCATION	SAMPLING EVENT CODE	SAMPLE NUMBER	TRITIUM UNITS	+/- RANGE	(A)	U MICROGRAM/L	+/- RANGE	(A)	U234 DPM/L	+/- K	ANGE	(A)
DC-19C	84-40 84-75 84-88	84-40 84-75 84-86	1 . 860E+00 1 .680E+00 3 .480E+00	1 00000E-01 7 00000E-02 1 40000E-01		•						
DC-20C	84-9	84-9	6.000E-02	7.00000E-02	[1]							
DC-22C	84-105	84-105 84-153	-1.000E-01 -2.000E-02	8.00000E-02 7.00000E-02	{ ! }						•	
ENYEART	84-166 85-1 85-180	84-166 85-1 85-180 85-181	-5.000E-02 - 1.100E-01 3.000E-02	9:00000E-02 9:00000E-02 9:00000E-02						·		
FORD	SITE-219 85-188 85-303	SITE-219 85-188 85-189 85-303	1 500E-01 -2 000E-02 4 000E-02 -5 000E-02	4 00000E-02 7 00000E-02 9 00000E-02 8 00000E-02	$ \left\{ \begin{array}{c} 0 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{array} \right\} $			•				
NGGEÉ 12 14 14	S11E-223 S11E-220 82-7 85-175 85-300 86-34	SITE-223 SITE-220 82-7 85-175 85-176 85-300 86-34	<pre>< 5.000E-01 -3.000E-02 3.000E-02 -3.000E-02 -3.000E-02 -2.000E-02 2.700E-01</pre>	4 00000E-02 6 00000E-02 8 00000E-02 9 00000E-02 1 00000E-01	(0) (0) (1) (1) (1) (1)	< 3.000E-03		(1)	ì			
	80-64 81-79 82-64 82-64 82-263 82-397 82-436 83-32 83-83 83-188 83-188 83-373 83-373 83-460 83-476 83-513 84-24	86-35 80-88 81-79 81-54 82-263 82-397 82-436 83-323 83-331 83-331 83-331 83-513 84-24	$\begin{array}{c} -2 & 0 & 0 & 0 \\ 1 & 2 & 0 & 0 & 0 \\ 2 & 0 & 0 & 0 \\ 2 & 0 & 0 & 0 \\ 1 & 9 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0$	5 00000E-02 7 00000E-02 5 00000E-02 6 00000E-02 9 00000E-02 9 00000E-02 9 00000E-02 9 00000E-02 6 00000E-02 6 00000E-02 6 00000E-02 7 00000E-02 7 00000E-02 7 00000E-02 7 00000E-02 6 00000E-02 1 50000E-02		3.000E-03 2.000E-03 3.000E-03 3.000E-03 3.000E-03 1.300E-03 1.300E-02 2.000E-03 7.000E-03 1.900E-03	•	$ \begin{pmatrix} 1 \\ 1 \\ 1 $				
UBRIAN	85-194	85-194 85-195	-4.000E-02 5.200E-01	7 00000E-02 1.00000E-01	$\left\{ \begin{array}{c} 1\\ 1 \end{array} \right\}$							

SEE END OF THIS REPORT FOR A LISTING OF ANALYSIS METHODS. i

5... PACI

SD-BHI-DP-061 Rev.

}_•

.

.

1.1.1.数据2.540 中国 中国 . ,

.

SAMPLE TYPE, CONFINED ANALYSIS GROUP: RADIO

SAMPI ING LOCATION	SAMP1 ING EVENT CODE	SAMPLE NUTILE R	U238 DPM/L	•/- RANGE	U2 A1 (A)	IOM RATIO	+/- RANGE	(A)	U235/9238 Atom Ratio	+Z- RANGE	(A)
DC- 19C	84-40 84-75 84-86	84-40 84-75 34-86									û,
DG-20C	84-9	84-9									
DC-22C	84-105	84-105 84-153									
ENVERSI	84-158 85-1 85-180	84-188 85-1 85-180 85-181									÷.
¥ ОКР	511F-518 85-148 85-301	S17£-219 85-188 85-189 85-303						•			
MCGEE	S17E-223 S17E-220 R2-7	STTE-223 STTE-220 STTE-220									
N) (22 (11)	85-175 85-300 86-34 80-64	85 - 175 85 - 176 85 - 300 35 - 34 86 - 35 80 - 64 80 - 88					• •		•	•	
,	81-79 81-54 82-64 82-397 82-397 82-424 82-436	\$79 81-54 82-64 82-203 82-397 82-424 82-426									÷.
, ·	83-32 83-83 83-188 83-373	83-32 83-83 83-188 83-373			1	1.3205-04	2.000008-06	(1)	7.2502-03	4.0007.1-05	• 3
	83-331 83-450 83-6:6 83-513 84-24	83-331 83-460 83-476 83-513 84-24			1	7C. 5502-04	4 00000E-06 2.00000E-06	[E]	7.280E-03 7.230E-03	8.00000E-03 7.00000E-03	11
UBRIAN	85-194	85-194 35-195	•					• ,	·		

SEE EMD OF THIS REPORT FOR A LISTING OF ANALYSIS METHODS.

.

.

,

. . .

PAJ. 5.2

SD-8WI-DP-061 Rev.

3-4

.

.

the state of the s

.

44

ł

SAMPLE TYPE: CONFINED ANALYSIS GROUP: RADIO

è

SAMPI ING LOCATION	SAMPI ING EVENT CODE	SAMPLE NUHBER	C1 36 ATOMS/LITER	+/- RANGE	(A)	CL36/CL ATOM RATIO	+/- RANGE	(A)	C14PMC X	+/- NANGE	[A]
KXL-02	82-68 82-65 82-170 82-122 82-401 84-7	82-68 82-65 82-170 82-122 82-401 84-7	1.8000+07	1.70000E+07	(1)	9.000E-15	2.000002-15	(1)	1.200E+00 2.280E+01 2.430E+01 1.020E+01 8.300E+00	6.00000E-01 6.30000E+00 4.50000E+00 2.30000E+00 2.40000E+00	
	82-364 82-456	82-364 82-456	8.400E+07	8,0000E+06	(1)	1.100E-14	1.00000E-15	(1)	6.300E+00 1.120E+01	1.40000E+00 2.50000E+00	$\left\{ \begin{array}{c} 1\\ 1 \end{array} \right\}$
Sten-1	85-252 85-297	85-252 85-297							2.140E+01	1.90000E+00	(1)
STEM-2	86-19	80-19 86-20							2.010E+01 1.960E+01	2.40000E+00 2.40000E+00	[1]
299-E15-01	SI 1E - 161 SI 1E - 162 SI 1E - 163 SI 1E - 164	SITE-161 SITE-162 SITE-163 SITE-164						•	•		
299-626-08	SITE-166 SITE-167 SITE-168	SITE-166 SITE-167 SITE-168				•				•	
299-E33-12 N O	SIIE-170 SIIE-171 SIIE-172	SITE-170 SITE-171 SITE-172									
609-511-E12A	80-b1	80-61							5.300E+00	9.000006-01	11)
559-42-40C	ST1E-176 ST1E-177 ST1E-178 ST1E-179 ST1E-180	SITE-176 SITE-177 SITE-178 SITE-179 SITE-180									
699-47-50	STIE-205 STIE-181	SITE-205 SITE-181				•					•
699-49-558	STIE - 183 STIE - 184 STIE - 185	SITE-183 SITE-184 SITE-185		•							
899-50-45	STTE -203 STTE -186	SITE-203 SITE-186							• •		
899-59-48	SIIE-204 SIIE-187	SITE-204 SITE-187									*

SEE END OF THIS REPORT FOR A LISTING OF ANALYSIS METHODS.

and a second second

۰.

SD-BWI-DP-OG1 Rev.

}-4

PAGE A

SAMPLE TYPE CONFINED ANALYSIS GROUP: RADIO

. •

.

.

ł

SAMPLING LOCATION	SAMPEING EVENT CODE	SAMPLE NUMBER	TRITION UNITS	+/- RANGE (A)	U MICROGRAM/L	+/- RANGE	(A)	U234 DPM/L	+/- RANGE LA)
kR1 - 02	82-68 82-65 82-170 82-122 82-401 84-7 82-364 82-364	82-68 82-65 82-170 82-122 82-401 84-7 82-364 82-364 82-456	1.100E+00 9.800E+01 6.340E+00 9.000E-01 4.440E+00 7.000E-01 8.600E-01 6.800E-01	B.00000F-02 9.00000E-02 2.20000E-01 1.00000E-01 1.50000E-01 8.00000E-02 1.10000E-01 8.00000E-02	1) 1) 1) 1) 1) 1)	1.800".02 1.2005-02 5.500E-02 3.000E-03 1.100E-02 8.000E-03 4.000E-03		<pre> { 1 } 1 } 1 } { 1 } { 1 } { 1 } { 1 } { 1 } { 1 } { 1 } { 1 } { 1 } } { 1 } } </pre>			
548.00-1	85-252 85-297	85-252 85-297	-8.000E-02 1.400E-01	7.00000E-02 { 7.00000E-02 {	1}						
STEM-2	86-19	86-19 86-20	1.000E-01	8.00000E-02 (1)						
299 -E 16 - 0 I	SIIE-161 SIIE-162 SIIE-163 SIIE-164	SI 1E - 161 SI 1E - 162 SI 1E - 163 SI 1E - 163 SI 1E - 164	5.250E+00 3.000E-01 -1.000E-02 9.000E-02	2 20000E-01 7 00000E-02 7 00000E-02 6 00000E-02	0 0 0			•	·		Ś
299-£26-08:	SITE-166 SITE-167 SITE-168	SITE-168 SITE-167 SITE-168	-3.000E-02 1.040E+00 1.820E+00	6.00000E-02 (1.10000E-01 (1.10000E-01 (0						D-8WI-
-1299-E33-12	SITE-170 SITE-171 SITE-172	SITE-170 SITE-171 SITE-172	5.450£+01 9.000E+01 1.030E+02	1.80000E+00 2.10000E+00 2.00000E+00	0	• .					0P-06
699-S11-E12A	80-61	80-61	7.000E-02	4.00000E-02 (1)						되
699-42-400	STIE-176 STIE-177 STIE-178 STIE-179 STIE-180	SI 1E - 176 SI 1E - 177 ST 1E - 178 ST 1E - 179 SI 1E - 180	3.740£+02 1.200£+01 5.080£+00 3.760£+00 4.180£+00	7.00000E+00 4.00000E-01 2.20000E-01 1.30000E-01 1.30000E-01	0				•		ev. 1
699-47-50	SI 1E - 205 SI 1E - 181	SITE-205 SITE-181	3 032E+02 9.700E+01	8.64000E+00 { 3.10000E+00 {	0)						
649-49-558	SITE-183 SITE-184 SITE-185	SIIE-133 SIIE-184 SIIE-185	2.400E-01 2.500E-01 2.200E-01	9.00000E-02 (8.00000E-02 (8.00000E-02 (0 }	÷.,			•••		
iuuu-50-45	SITE-203 SITE-186	SITE-203 SITE-186	1.600E-01 3.600E-01	1.30000E-01 7.00000E-02	0 } 0 }		•	•			
698-29-48	SI 15-204 SI 16-187	SITE-204 SITE-187	722E+01 4.100E+00	3.80000F-01 { 2.20000E-01 {	8}				- -	• •	
			SEE END OF THIS	REPORT FOR A	ĹĬSſ	ING OF ANALYS	IS MELCODS.				

.

. . · · ·

. ..

.

PAGE 6.1

.

1

SAMPLE TYPE: CONFINED Analysis group: Radio

:

:

د بر و رغه و ۲ و . رغه د د

÷

.

SAMPLING LOCATION	SAMPLING EVENT CODE	SAMPLE NUMBER	U238 DPM/L	+/- RANGE	(A)	U234/U238 ATOM RATIO :	+/- RANGE	(A)	U235/U238 ATOM RATIO	+/- RANGE (A)	
RRL-02	82-68 82-65 82-170	82-68 82-65 82-170				1 130E-04 1 500E-04 8 400E-05	4.00000E-06 1.00000E-06 1.00000E-06		7.300E-03 7.300E-03 7.300E-03 7.300E-03	8.00000E-05 (1) 1.00000E-04 (1) 3.00000E-05 (1)	
	82-122 82-401 84-7	82-122 82-401 84-7				6.6002-05	2.00000E-08	(1)	7.2802-03	8.00000E-05 (1)	
	82-364 82-456	82-364 82-450			*	5.000E-05	2.00000E-06	(1)	7.380E-03	1.00000E-04 (1)	
S114-1	85-252 85-297	85-252 85-297	-								
SIEM-2	88-19	86-19 86-20									
299-£16-01	SITE - 161 SITE - 162 SITE - 163 SITE - 164	SITE - 161 SITE - 162 SITE - 163 SITE - 164		•				•		•	
299-E26-08 10 60 60	S17E - 166 S1TE - 167 STTE - 168	SITE - 166 SITE - 167 SITE - 168									
299-E03-12	S11E-170 S11E-171 STTE-172	SITE-170 SITE-171 SITE-172									
699-511-E12A	80-01	80-61									
699-42-400	SITE-176 SITE-177 SITE-178 SITE-179 SITE-180	SIYE-176 SIYE-177 SIYE-178 SIYE-179 SIYE-180						·			
699-41-20	SINE-205 SINE-181	SI 1E-205 SI JE-181									
649-49-558	SITE - 183 STIE - 184 STIE - 185	SITE-183 SITE-184 SITE-185									
699-50-45	SI 11 - 203 SI 18 - 186	SITE-203 SITE-186				•			·		
699-20 48	SIII-204 SIIE-187	S1YE - 204 STIE - 187							•		

SEE END OF THIS REPORT FOR A LISTING OF ANALYSIS METHODS.

PAGE 8.2

ı.

.

SD-BWI-DP-061 Rav. 1

SAMPLE TYPE, CONFINED ANALYSIS GROUP: RADID

SÁMPLING LOCATION	SAMPLING EVENT CODE	SAMPLE NUMBER	CL36 A1045/L1	TER TER RANGE	С103, Атом Клі (А)	10. +/- RANG	E (A)	C14PMC X	+/- RANGE	{A}
899-51-46	SITE-188 STIE-201	SINE-188 SINE-201		****		*****				
699-52-46A	SI 1E - 202 SI 1E - 189	SI 1E - 202 SI 1E - 180							•	
ธับ9-52-48	S11E-199 S11E-190	S11E-199 STIE-190								
699-53 50	STIE-191 STIE-200	STTE-191 STIE-200					•			
699-54-57	STTE-192	S11E-192								•
899-56-53	S11E-196 S11E-197	SITE-196 SITE-197			•		•			
							-			· SD-
				•					- ,	BWI-
() () ()									•	0P-0
:										61
										Rev.
		Jate +		:						щ
1	• • •	·· , ·			•					•
				,	1		•	•		
				• •			•	•		
,				;			•			
								•	, ,	
• • • • •	· · · · ·	· · · · · · · ·	SEE END OF	THIS REPORT FOR	A LISTING OF. A	NALYSIS METHOD	• 5.		•••	
	· · · · · · · · ·	200 1 201		n ga d	• • •	•		•		
				·			-		• •	

PAGE 7

.

. •

PAGE 7.1

SD-BWI-OP-061 Rev. 1

SAMPLE TYPE: CONFINED ANALYSIS GROUP: RADIO

SAMPI ING LOCATION	SAMPLING EVENT CODE	SAMPLE NUMBER	TRITIUM UNITS	•/- HANGE	(A)	U MICROGRAM/L	*/-	RANGE	(A)	U234 DPM/L	•/-	RANGE	(A)
699-51-46	SITE - 188 SITE - 201	SITE-188 SITE-201	5.700E-01 -6.000E-02	9.00000E-02 1.60000E-01	[0]								
699-52-46A	S11E-202 S11E-189	SITE-202 SITE-189	4.500E-01 9.000E-02	1.30000E-01 8.00000E-02	(0) (0)	•							
899-52-48	ST 1E - 199 ST 1E - 190	SITE-199 SITE-190	2.600E-01 2.800E-01	1.60000E-01 8.00000E-02									
699-53-50	SITE-181 SITE-200	SITE-191 SITE-200	4.500E-01 1.790E+00	8.00000E-02 1.90000E-01									
699-54-57	SITE-192	S11E-192	2 000E-02	9.00000E-02	{0}								
899-56-53	SI1E-196 SI1E-197	SITE-196 SITE-197	4.200E-01 -2.000E-02	8.00000E-02 6.00000E-02					•				

ł.

SEE END OF THIS REPORT FOR A LISTING OF ANALYSIS METHODS.

. SAMPLE TYPE. CONFINED ANALYSIS GROUP: RADIO

SAMPLING LOCATION	SAMPI ING EVENT CODE	SAMPLE NUMBER	U238 DPH/1	+/- RANGE (A)	0234/0238 Atom Ratio	•/- RANGE	(A)	235/U238 Tom Ratio	+/- RANCE	[A]	
899-21-40	S11E-188 S11E-201	SI1E-188 SI1E-201							·		
699 52-46A	SITE-202 SITE-189	SITE-202 SITE-189							•		
699-52-48	SITE-199 SITE-190	SITE-199 SITE-190			•						
<u>599-51-50</u>	STIE-191 STIE-200	STTE-191 STTE-200									
699-54-57	SITE-192	ST1E-192									
699-56-53	STTE-195 STTE-197	STTE-196 STTE-197					٠				
		· · · ·					•				S
		• • •									43-
						•			•		I-0P-(
	: :										061 R
	· · ·	• •									e۲.
	, . .	• • • *								•	ب يم
,										·	
	· t	• • • •									
						·.					
			EF CARL DE SHAA	. DEDUDI 200 A 134	YING OF 39444	ATT ASTRON	- ;	• •			
, ··•		.	re emp up IIII:	S REPURT FOR A LIS	STING OF PRALY	1515 ME (110)5.		·			
							•		•		

PAGE 7.2

.

. 1 friendlags the month of

PAGE 8

SD-BWI-DP-061 Rev.

SAMPLE TYPE: PRECIPITATION ANALYSIS GROUP: RADIO

	SAMPLING		CL36		CL36/CL		CIAPMC		
SAMPLING LUCATION	CODE	SAMPLE NU4BER	ATOMS/LITER	+/- HANGE (A)	ATUM RATIO	+/- RANGE (A)	4	+/- RANGE	(A)
STATION-03	82 - 51 82 - 81 82 - 73 82 - 179 82 - 138 83 - 90 83 - 45 83 - 118 83 - 189	82-51 82-81 82-78 82-179 82-138 83-90 83-46 83-118 83-189							
SIA110H-04	82 - 61 82 - 50 82 - 120 82 - 117 83 - 36 83 - 141 83 - 116 83 - 110 83 - 155 83 - 102	\$2 - 61 82 - 60 82 - 120 82 - 117 83 - 36 83 - 84 83 - 141 83 - 116 83 - 155 83 - 102				•			
Υ STATION-ΟΫ	82 - 92 82 - 57 82 - 44 82 - 135 82 - 185 83 - 43 83 - 187 83 - 187 83 - 189	82 - 92 82 - 57 82 - 44 82 - 136 82 - 136 83 - 43 83 - 23 83 - 187 83 - 187 83 - 148 83 - 169							
STATION-14	82-20 82-63 82-86 82-178 82-74 83-71 83-55 83-132 83-184 83-160 83-174	82 - 20 82 - 63 82 - 178 82 - 178 82 - 147 83 - 55 83 - 132 83 - 184 83 - 160 83 - 174				•	· · ·		
STATION-17	82-70 82-80	82-70 82-80	-				•		

SEE END OF THIS REPORT FOR A LISTING OF ANALYSIS METHODS.

......

SAMPLE TYPE. PRECIPITATE DE ANALYSIS GROUP: RADIO

•

SAMPLING LOCATION	SAMPLING EVENT CODE	SAMPLE NUMBER	T TRITIUM UNITS	+/- RANGE	(A)	U MICROGRAM/L	+/-	RANGE	(A)	U234 DPM/L	+/-	RANGE	(A)
JATION-03	82 - 51 82 - 81 82 - 78 82 - 179 82 - 136 83 - 46 83 - 46 83 - 189	82-51 82-81 82-78 82-178 82-178 83-90 83-90 83-46 83-189	1.630F+01 1.160E+01 1.810E+01 1.490E+01 1.690E+01 3.790E+00 5.700E+00 0.080E+00	4.00000E-01 3.00000E-01 6.00000E-01 4.00000E-01 4.00000E-01 2.00000E-01 2.10000E-01 2.60000E-01 2.90000E-01									
STA 1 10N-04	62-61 82-60 82-90 82-120 82-117 63-35 83-84 63-141 83-116 83-110 83-155 83-102	82-61 82-60 82-80 82-120 82-117 53-36 83-84 83-141 83-116 83-110 83-155 83-102	1.810E+01 1.410E+01 1.760E+01 1.610E+01 1.840E+01 9.560E+00 7.250E+00 7.250E+00 7.250E+00 7.250E+00 9.010E+00 7.400E+00	4.00000E-01 4.00000E-01 5.00000E-01 5.00000E-01 3.20000E-01 1.70000E-01 1.70000E-01 3.0000E-01 3.00000E-01 3.00000E-01							•		
STATION-07 D L	82 - 92 82 - 57 82 - 44 82 - 135 83 - 43 83 - 43 83 - 23 83 - 187 83 - 148 83 - 159	#2-52 #2-57 \$2-44 \$2-136 \$2-43 \$3-43 \$3-23 \$3-187 \$3-187 \$3-185	1.510E+01 1.380E+01 1.750E+01 1.770E+01 1.770E+00 5.550E+00 5.550E+00 9.6"0E+00 9.6"0E+00	4.00000E-01 4.00000E-01 5.00000E-01 5.00000E-01 2.70000E-01 2.00000E-01 2.90000E-01 3.80000E-01 3.10000E-01	$ \begin{pmatrix} 1 \\ 1 \\ 1 $								
SJA110N-14	82-20 82-63 82-55 82-158 82-147 83-55 83-132 83-184 83-184 83-184 83-184 83-184	82-20 82-53 82-86 82-147 83-147 83-55 83-132 83-160 83-174	2.5202+01 2.4802+01 2.9202+01 3.4302+01 3.702+01 1.2402+01 5.1002+00 6.6405+00 8.7702+00 8.7702+00 8.7602+00 1.1102+01	S 00000F-01 4.00000E-01 S 00000E-01 5.00000E-01 4.00000E-01 3.00000E-01 3.90000E-01 3.90000E-01 3.50000E-01 4.00000E-01						•			
STATION-17	82-70 82-80	82-70 82-80	£ 110£+00 1 410£+01	2.60000E-01 4 00000E-01	<pre>{}</pre>			: .		·		:	
• • •		S	EE END CY THIS	REPORT FOR A	4 LIS	TING OF ANALYS	15 M	ethods .					

PAGE \$.1

٠

.

.

.

•

SD-BHI-DP-OGI Rev. 1

••

PAGE 8.2

SD-BWI-DP-061 Rev.

, - -

SAMPLE TYPE: PRECIPITATION ANALYSIS GROUP: RADIO

SAMPLING LOCATION	SAMPLING EVENT CODE	SAMPI E NUHBER	U238 DPH/1	+/- KANGE	(A)	U234,'U238 ATOM RATIO	•/-	RANGE	(A)	U235/U238 Atom Ratio	+/-	RANGE	(A)
STATION-03	82-51 82-81 82-78 82-179 82-138 83-90 83-46 83-118 83-189	82-51 82-81 82-78 82-138 83-90 83-46 83-18 83-189					•						
STATION-04	82 - 61 82 - 60 82 - 120 82 - 117 83 - 36 83 - 84 93 - 141 83 - 116 83 - 110 83 - 155 83 - 102	82-61 82-60 82-90 82-120 82-117 83-36 83-84 83-141 83-146 83-110 83-155 83-102			•								
SIATION-0/ D	82-92 82-57 82-44 82-136 82-185 83-43 83-23 83-187 83-187 83-169	62-92 82-57 82-44 82-136 82-185 83-43 33-23 83-187 83-187 83-148 83-169											
51A110N-14	82-20 82-63 82-85 82-178 82-147 83-71 83-55 83-132 83-180 83-160 83-174	82-20 82-63 82-86 82-178 82-147 83-71 83-55 83-132 83-184 83-160 83-174											
STATION-17	82-70 82-80	82-70 82-80								·			

SEE END OF THIS REPORT FOR A LISTING OF ANALYSIS METHODS.

SAMPLE TYPE, PRECIPITATION ANALYSIS GROUP: RADIO

.

.

.

SAMPLING	SAMPLING EVENT	SAMPLE	CLS -> A TOMS / LITER		CLOS/C. ATOM RATIO		C14PMC Z	
I DCATION	CODE	NUMBER		+/- RANGE (A)	-,- RANGE (A)	+/- RA	WAE (A)
STATION-17	82-100 82-118 82-134 83-11 83-86 83-150 83-150 83-199 83-199 83-132 83-126	82 - 100 82 - 118 82 - 134 83 - 11 83 - 86 83 - 159 83 - 120 83 - 199 83 - 182 83 - 126			•	•		
STA (1011- 20	82-58 82-74 82-1 82-96 82-196 82-197 83-37 83-34 83-197 83-130 83-130 83-130	82-58 82-74 82-96 82-196 82-197 83-37 83-37 83-34 83-130 83-130 83-139 83-158				·		
\\S\$TA 10N-25 \D !n	82 - 83 82 - 25 82 - 67 82 - 153 82 - 152 83 - 89 83 - 53 83 - 53 83 - 134 83 - 139 83 - 139 83 - 142 83 - 190	82-83 82-85 82-85 82-85 82-153 82-153 83-89 83-139 83-139 83-139 83-142 83-142 83-142			· · · · · · · · · · · · · · · · · · ·		·	•
STATION-26	82-91 82-98 82-71 82-39 82-116 82-108 83-3 83-70 83-163 83-163 83-177 83-171 83-161	82-91 82-98 82-71 82-39 82-116 82-108 83-3 83-70 83-163 83-163 83-171 83-171 83-171			•	•		·
	03-107	0J-10f	SEE END OF THES	REPORT FOR A	LISTING OF STAL	YSIS METHODS.		
. * . -	2 · • •							

.

•

. .

.

1

SD-8WI-DP-061 Rev. 1

"ASI Ð

SAMPLE TYPE: PRECIPITATION ANALYSIS GROUP: RADIO

2

SAMPLING LOCATION	SAMPLING EVENI CODE	SAMPLE NUMBER	F IRITIUM UNITS	+/- HANGE	(A)	U AICROGRAM/L ¹	+/- RANGE	(A)	U234 DPM/L	+/- RANGE	(A)
STATION-17	82 - 100 82 - 118 83 - 11 83 - 11 83 - 86 83 - 159 83 - 159 83 - 199 83 - 182 83 - 126	82-100 82-118 83-11 83-86 83-159 83-120 83-199 83-182 83-126	$\begin{array}{c} 1 & 930E+01\\ 1 & 280E+01\\ 1 & 590E+01\\ 7 & 120E+00\\ 5 & 620E+00\\ 6 & 640E+00\\ 8 & 510E+00\\ 6 & 640E+00\\ 7 & 700E+00\\ 7 & 330E+00\\ \end{array}$	$\begin{array}{c} 7 & 00000E - 01 \\ 3 & 00000E - 01 \\ 4 & 00000E - 01 \\ 2 & 10000E - 01 \\ 2 & 00000E - 01 \\ 2 & 10000E - 01 \\ 3 & 60000E - 01 \\ 3 & 10000E - 01 \\ 3 & 10000E - 01 \\ 3 & 10000E - 01 \end{array}$							
STATION-20	82-58 82-74 82-96 82-196 82-197 83-37 83-34 83-170 83-170 83-119 83-119 83-158	82-58 82-74 82-1 82-90 82-196 82-196 82-197 83-37 83-34 83-170 83-130 83-130 83-130 83-158	$\begin{array}{c} 8.070E+00\\ 1.460E+01\\ 2.340E+01\\ 1.410E+01\\ 1.430E+01\\ 1.550E+01\\ 7.630E+00\\ 4.880E+00\\ 5.950E+00\\ 6.740E+00\\ 8.170E+00\\ 7.950E+00\\ \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$				•			
0351A110N-25 05	82 - 83 82 - 25 82 - 67 82 - 153 83 - 153 83 - 134 83 - 134 83 - 139 83 - 142 83 - 142 83 - 140	82 - 83 82 - 25 82 - 67 82 - 153 82 - 153 83 - 89 83 - 53 83 - 134 83 - 139 83 - 139 83 - 142 83 - 142	7 800E + 00 1 400E + 01 2 160E + 01 1 450E + 01 1 450E + 01 8 680E + 00 5 400E + 00 7 300E + 00 9 640E + 00 8 190E + 00 6 310E + 00	$\begin{array}{cccccccccccccccccccccccccccccccccccc$					•		
STA110H-26	82 - 91 82 - 98 82 - 71 82 - 19 82 - 108 83 - 3 83 - 70 83 - 163 83 - 171 83 - 167	82 - 91 82 - 98 82 - 71 82 - 39 82 - 116 82 - 108 83 - 70 83 - 16 83 - 177 83 - 177 83 - 177	7 930E $+00$ 1 670E $+01$ 1 530E $+01$ 2 350E $+01$ 1 460E $+01$ 1 340E $+01$ 8 540E $+00$ 5 420E $+00$ 7 150E $+00$ 8 930E $+00$ 7 120E $+00$ 7 550E $+00$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$					•		
,			SEE END OF THIS	REPORT FOR	A LIST	ING OF ANALYS	IS METHODS.				

.

and the second second

1

•. * • • • •

-

PAGE 9.1

.

SD-2WI-DP-061 Rev.

SAMPLE TYPE PRECIPITATION ANALYSIS GROUP: RADIO

SAMPE ING EVENT CODE	SAMPLE NUHBER	8238 DPM/L	+/- RANGE	{A}	U234 Y238 Atoy Reiid	+/- ƙANGE	(A)	0235/0238 Atom Ratio	+/- RANGE	(A)
82 - 100 82 - 118 82 - 134 83 - 11 83 - 86 83 - 159 83 - 159 83 - 159 83 - 159 83 - 120 83 - 182 83 - 126	82-100 82-118 82-134 83-11 83-86 83-159 83-120 83-120 83-199 83-182 83-126									
82-58 82-74 82-196 82-196 82-197 83-37 83-37 83-34 83-170 83-130 83-130 83-158	82-58 82-74 82-95 82-95 82-96 82-196 82-197 83-37 83-37 83-34 83-130 83-119 83-158									·
82 - 30 82 - 25 82 - 25 82 - 150 82 - 150 83 - 152 83 - 150 83 - 150	82-80 82-25 82-67 82-150 82-150 83-152 83-50 83-104 80-139 80-139 83-142 83-190		· .		•					••
82 - 9 - 82 - 98 82 - 71 82 - 25 82 - 116 82 - 108 83 - 3 83 - 70 83 - 163 83 - 177 83 - 177 83 - 167	82 - 31 82 - 98 82 - 71 87 - 34 82 - 116 82 - 108 83 - 3 83 - 70 83 - 163 83 - 167							· · ·		
	SAMPLING EVINI CODE 12 - 100 82 - 118 82 - 134 83 - 120 83 - 74 82 - 100 82 - 100 82 - 100 82 - 100 83 - 120 83 - 100 83 - 1	SAMPL ING EVINI CODESAMPLE NUMBER $CODE$ NUMBER $B2 - 100$ $B2 - 118$ $B2 - 118$ $B2 - 118$ $B2 - 134$ $B2 - 138$ $B2 - 134$ $B2 - 134$ $B3 - 11$ $B3 - 11$ $B3 - 86$ $B3 - 120$ $B3 - 132$ $B3 - 120$ $B3 - 199$ $B3 - 120$ $B3 - 199$ $B3 - 120$ $B3 - 199$ $B3 - 120$ $B3 - 190$ $B2 - 190$ $B2 - 74$ $B2 - 74$ $B2 - 74$ $B2 - 74$ $B2 - 196$ $B2 - 95$ $B2 - 196$ $B2 - 95$ $B2 - 196$ $B2 - 196$ $B2 - 197$ $B3 - 170$ $B3 - 130$ $B3 - 119$ $B3 - 158$ $B2 - 57$ $B2 - 57$ $B2 - 63$ $B3 - 158$ $B3 - 158$ $B2 - 152$ $B3 - 130$ $B3 - 153$ $B3 - 133$ $B3 - 134$ $B3 - 134$ $B3 - 139$ $B3 - 139$ $B3 - 140$ $B3 - 139$ $B2 - 71$ $B2 - 71$ $B2 - 71$ $B2 - 71$ $B2 - 108$ $B2 - 108$ $B3 - 3$ $B3 - 3$ $B3 - 163$ $B3 - 163$ $B3 - 163$ <t< td=""><td>SAMMALING U238 EVINI SAMAPLE DPM/L CODE NUMBER DPM/L B2-100 $82-100$ $82-100$ $82-118$ $82-118$ $82-134$ $82-134$ $82-134$ $82-134$ $83-11$ $83-11$ $83-11$ $83-86$ $83-160$ $83-120$ $83-159$ $83-120$ $83-120$ $83-159$ $83-120$ $83-120$ $83-199$ $83-120$ $83-126$ $82-74$ $82-74$ $82-74$ $82-74$ $82-74$ $82-74$ $82-196$ $82-98$ $82-98$ $82-196$ $82-98$ $82-197$ $83-37$ $83-37$ $83-37$ $83-170$ $83-170$ $83-188$ $82-63$ $82-63$ $82-63$ $82-73$ $82-63$ $82-63$ $82-73$ $82-63$ $82-63$ $82-73$ $82-63$ $82-63$ $82-73$ $82-63$ $82-63$ $83-134$ $83-134$ $83-134$ <</td><td>SAMPLING U238 DPM/L $\prime - RANGE$ COUE NUHBER $\prime - reconstructore 100 \$2 - 100 \$2 - 100 \$2 - 118 \$2 - 118 \$2 - 118 \$2 - 118 \$2 - 118 \$2 - 118 \$2 - 118 \$2 - 118 \$2 - 118 \$2 - 118 \$2 - 118 \$2 - 118 \$2 - 118 \$2 - 118 \$2 - 118 \$2 - 118 \$2 - 118 \$2 - 118 \$2 - 118 \$2 - 118 \$2 - 118 \$2 - 120 \$3 - 120 \$3 - 120 \$3 - 139 \$3 - 120 \$3 - 120 \$3 - 139 \$3 - 126 \$3 - 126 \$82 - 74 \$2 - 74 \$2 - 74 \$2 - 196 \$2 - 196 \$2 - 196 \$2 - 196 \$2 - 197 \$2 - 197 \$3 - 34 \$3 - 34 \$3 - 34 \$3 - 130 \$3 - 37 \$3 - 37 \$3 - 34 \$3 - 130 \$3 - 130 \$3 - 158 \$3 - 153 \$3 - 153 \$2 - (2) \$2 - 25 \$2 - 52 \$2 - 25 \$2 - 25 \$2 - 152 \$3 - 130$</td><td>SAMPLING U238 EVINI SAKPIE DPM/L CODE NUMBER $+/-$ RANGE (A) 82-100 82-100 $+/-$ RANGE (A) 82-100 82-118 82-118 82-118 82-118 82-134 83-11 83-11 83-11 83-120 83-159 83-159 83-120 83-120 83-120 83-120 83-126 83-126 82-58 82-74 82-74 82-106 82-98 82-196 82-106 82-98 82-196 82-107 82-197 83-37 83-34 83-130 83-130 83-158 83-158 83-158 82-25 82-25 82-25 82-35 82-67 52-152 82-53 82-67 53-130 83-158 83-153 83-53 83-53 83-53 83-53 83-53 83-53 83-53 83-134 83-134 82-108 82-2108 82-71 82-108 <t< td=""><td>SAMPLING U238 U23A-2238 COUC NUMBUR PPM/L ATCH 8FTD. COUC NUMBUR +/- RANGE (A) 1 1 82-100 82-100 82-118 82-118 82-134 82-118 82-134 82-118 82-134 83-11 83-11 83-120 83-120 83-159 83-120 83-199 83-126 83-126 83-126 82-197 83-126 82-196 82-88 82-197 82-196 82-196 82-196 82-197 83-37 83-318 83-130 83-138 83-130 83-139 83-37 83-318 83-130 83-138 83-158 82-70 82-62 82-70 82-62 82-71 82-73 83-35 83-35 83-36 83-35 83-37 83-314 83-38 83-53 83-39 83-34 83-39 83-35 83-30 83-314 83-319 83-32 83-32 82-61 82-9 82-98</td><td>SAMPL ING CODE SAMPLE NUMER U238 DPM/L U23A':2238 ATC'I XP235 22-100 32-100 32-100 +/- RANGE (A) +/- RANGE 32-100 32-100 32-100 +/- RANGE (A) +/- RANGE 32-100 32-100 32-100 +/- RANGE +/- RANGE 32-100 32-100 32-100 +/- RANGE +/- RANGE 32-114 32-100 32-100 +/- RANGE +/- RANGE 33-120 31-150 +/- RANGE +/- RANGE +/- RANGE 33-121 32-10 +/- RANGE +/- RANGE +/- RANGE 33-120 31-150 +/- RANGE +/- RANGE +/- RANGE 33-130 31-150 +/- RANGE +/- RANGE +/- RANGE 33-130 31-150 +/- RANGE +/- RANGE +/- RANGE 33-130 31-160 +/- RANGE +/- RANGE +/- RANGE 33-140 32-150 +/- RANGE +/- RANGE +/- RANGE 33-140 32-160 +/- RANGE +/- RANGE +/-</td><td>SAUUL 11/G CODE UZ34 DPH/L ATCV1 8/P 7:D. ATCV1 8/P 7:D.</td><td>SAMUPL THRA CODE U238 MPM/L U234/3228 ATG4 38 F T.D. U235/2728 ATG4 38 F T.D. 82-100 32-100 32-100 -/- RANGE (A) -/- RANGE (A) 82-100 32-100 -/- RANGE (A) -/- RANGE (A) -/- RANGE (A) 82-114 32-118 -/- RANGE (A) -/- RANGE (A) -/- RANGE (A) 81-114 12-114 -/- RANGE (A) -/- RANGE (A) -/- RANGE (A) 81-114 12-114 -/- RANGE (A) -/- RANGE (A) -/- RANGE (A) 81-115 11 -/- RANGE (A) -/- RANGE (A) -/- RANGE (A) 81-115 81-116 -/- RANGE (A) -/- RANGE (A) -/- RANGE (A) 81-115 81-116 -/- RANGE (A) -/- RANGE (A) -/- RANGE (A) 81-115 81-116 -/- RANGE (A) -/- RANGE (A) -/- RANGE (A) 82-10 81-120 81-120 -/- RANGE (A) -/- RANGE (A) 81-126 81-120 81-120 -/- RANGE (A) -/- RANGE (A) 81-130 81-120 81-120 -/- RANGE (A) -/- RANGE (A)</td><td>SAMPLE ING UZ18 UZ37 UZ37</td></t<></td></t<>	SAMMALING U238 EVINI SAMAPLE DPM/L CODE NUMBER DPM/L B2-100 $82-100$ $82-100$ $82-118$ $82-118$ $82-134$ $82-134$ $82-134$ $82-134$ $83-11$ $83-11$ $83-11$ $83-86$ $83-160$ $83-120$ $83-159$ $83-120$ $83-120$ $83-159$ $83-120$ $83-120$ $83-199$ $83-120$ $83-126$ $82-74$ $82-74$ $82-74$ $82-74$ $82-74$ $82-74$ $82-196$ $82-98$ $82-98$ $82-196$ $82-98$ $82-197$ $83-37$ $83-37$ $83-37$ $83-170$ $83-170$ $83-188$ $82-63$ $82-63$ $82-63$ $82-73$ $82-63$ $82-63$ $82-73$ $82-63$ $82-63$ $82-73$ $82-63$ $82-63$ $82-73$ $82-63$ $82-63$ $83-134$ $83-134$ $83-134$ <	SAMPLING U238 DPM/L $\prime - RANGE$ COUE NUHBER $\prime - reconstructore 100 $2 - 100 $2 - 100 $2 - 118 $2 - 118 $2 - 118 $2 - 118 $2 - 118 $2 - 118 $2 - 118 $2 - 118 $2 - 118 $2 - 118 $2 - 118 $2 - 118 $2 - 118 $2 - 118 $2 - 118 $2 - 118 $2 - 118 $2 - 118 $2 - 118 $2 - 118 $2 - 118 $2 - 120 $3 - 120 $3 - 120 $3 - 139 $3 - 120 $3 - 120 $3 - 139 $3 - 126 $3 - 126 $82 - 74 $2 - 74 $2 - 74 $2 - 196 $2 - 196 $2 - 196 $2 - 196 $2 - 197 $2 - 197 $3 - 34 $3 - 34 $3 - 34 $3 - 130 $3 - 37 $3 - 37 $3 - 34 $3 - 130 $3 - 130 $3 - 158 $3 - 153 $3 - 153 $2 - (2) $2 - 25 $2 - 52 $2 - 25 $2 - 25 $2 - 152 $3 - 130 $	SAMPLING U238 EVINI SAKPIE DPM/L CODE NUMBER $+/-$ RANGE (A) 82-100 82-100 $+/-$ RANGE (A) 82-100 82-118 82-118 82-118 82-118 82-134 83-11 83-11 83-11 83-120 83-159 83-159 83-120 83-120 83-120 83-120 83-126 83-126 82-58 82-74 82-74 82-106 82-98 82-196 82-106 82-98 82-196 82-107 82-197 83-37 83-34 83-130 83-130 83-158 83-158 83-158 82-25 82-25 82-25 82-35 82-67 52-152 82-53 82-67 53-130 83-158 83-153 83-53 83-53 83-53 83-53 83-53 83-53 83-53 83-134 83-134 82-108 82-2108 82-71 82-108 <t< td=""><td>SAMPLING U238 U23A-2238 COUC NUMBUR PPM/L ATCH 8FTD. COUC NUMBUR +/- RANGE (A) 1 1 82-100 82-100 82-118 82-118 82-134 82-118 82-134 82-118 82-134 83-11 83-11 83-120 83-120 83-159 83-120 83-199 83-126 83-126 83-126 82-197 83-126 82-196 82-88 82-197 82-196 82-196 82-196 82-197 83-37 83-318 83-130 83-138 83-130 83-139 83-37 83-318 83-130 83-138 83-158 82-70 82-62 82-70 82-62 82-71 82-73 83-35 83-35 83-36 83-35 83-37 83-314 83-38 83-53 83-39 83-34 83-39 83-35 83-30 83-314 83-319 83-32 83-32 82-61 82-9 82-98</td><td>SAMPL ING CODE SAMPLE NUMER U238 DPM/L U23A':2238 ATC'I XP235 22-100 32-100 32-100 +/- RANGE (A) +/- RANGE 32-100 32-100 32-100 +/- RANGE (A) +/- RANGE 32-100 32-100 32-100 +/- RANGE +/- RANGE 32-100 32-100 32-100 +/- RANGE +/- RANGE 32-114 32-100 32-100 +/- RANGE +/- RANGE 33-120 31-150 +/- RANGE +/- RANGE +/- RANGE 33-121 32-10 +/- RANGE +/- RANGE +/- RANGE 33-120 31-150 +/- RANGE +/- RANGE +/- RANGE 33-130 31-150 +/- RANGE +/- RANGE +/- RANGE 33-130 31-150 +/- RANGE +/- RANGE +/- RANGE 33-130 31-160 +/- RANGE +/- RANGE +/- RANGE 33-140 32-150 +/- RANGE +/- RANGE +/- RANGE 33-140 32-160 +/- RANGE +/- RANGE +/-</td><td>SAUUL 11/G CODE UZ34 DPH/L ATCV1 8/P 7:D. ATCV1 8/P 7:D.</td><td>SAMUPL THRA CODE U238 MPM/L U234/3228 ATG4 38 F T.D. U235/2728 ATG4 38 F T.D. 82-100 32-100 32-100 -/- RANGE (A) -/- RANGE (A) 82-100 32-100 -/- RANGE (A) -/- RANGE (A) -/- RANGE (A) 82-114 32-118 -/- RANGE (A) -/- RANGE (A) -/- RANGE (A) 81-114 12-114 -/- RANGE (A) -/- RANGE (A) -/- RANGE (A) 81-114 12-114 -/- RANGE (A) -/- RANGE (A) -/- RANGE (A) 81-115 11 -/- RANGE (A) -/- RANGE (A) -/- RANGE (A) 81-115 81-116 -/- RANGE (A) -/- RANGE (A) -/- RANGE (A) 81-115 81-116 -/- RANGE (A) -/- RANGE (A) -/- RANGE (A) 81-115 81-116 -/- RANGE (A) -/- RANGE (A) -/- RANGE (A) 82-10 81-120 81-120 -/- RANGE (A) -/- RANGE (A) 81-126 81-120 81-120 -/- RANGE (A) -/- RANGE (A) 81-130 81-120 81-120 -/- RANGE (A) -/- RANGE (A)</td><td>SAMPLE ING UZ18 UZ37 UZ37</td></t<>	SAMPLING U238 U23A-2238 COUC NUMBUR PPM/L ATCH 8FTD. COUC NUMBUR +/- RANGE (A) 1 1 82-100 82-100 82-118 82-118 82-134 82-118 82-134 82-118 82-134 83-11 83-11 83-120 83-120 83-159 83-120 83-199 83-126 83-126 83-126 82-197 83-126 82-196 82-88 82-197 82-196 82-196 82-196 82-197 83-37 83-318 83-130 83-138 83-130 83-139 83-37 83-318 83-130 83-138 83-158 82-70 82-62 82-70 82-62 82-71 82-73 83-35 83-35 83-36 83-35 83-37 83-314 83-38 83-53 83-39 83-34 83-39 83-35 83-30 83-314 83-319 83-32 83-32 82-61 82-9 82-98	SAMPL ING CODE SAMPLE NUMER U238 DPM/L U23A':2238 ATC'I XP235 22-100 32-100 32-100 +/- RANGE (A) +/- RANGE 32-100 32-100 32-100 +/- RANGE (A) +/- RANGE 32-100 32-100 32-100 +/- RANGE +/- RANGE 32-100 32-100 32-100 +/- RANGE +/- RANGE 32-114 32-100 32-100 +/- RANGE +/- RANGE 33-120 31-150 +/- RANGE +/- RANGE +/- RANGE 33-121 32-10 +/- RANGE +/- RANGE +/- RANGE 33-120 31-150 +/- RANGE +/- RANGE +/- RANGE 33-130 31-150 +/- RANGE +/- RANGE +/- RANGE 33-130 31-150 +/- RANGE +/- RANGE +/- RANGE 33-130 31-160 +/- RANGE +/- RANGE +/- RANGE 33-140 32-150 +/- RANGE +/- RANGE +/- RANGE 33-140 32-160 +/- RANGE +/- RANGE +/-	SAUUL 11/G CODE UZ34 DPH/L ATCV1 8/P 7:D. ATCV1 8/P 7:D.	SAMUPL THRA CODE U238 MPM/L U234/3228 ATG4 38 F T.D. U235/2728 ATG4 38 F T.D. 82-100 32-100 32-100 -/- RANGE (A) -/- RANGE (A) 82-100 32-100 -/- RANGE (A) -/- RANGE (A) -/- RANGE (A) 82-114 32-118 -/- RANGE (A) -/- RANGE (A) -/- RANGE (A) 81-114 12-114 -/- RANGE (A) -/- RANGE (A) -/- RANGE (A) 81-114 12-114 -/- RANGE (A) -/- RANGE (A) -/- RANGE (A) 81-115 11 -/- RANGE (A) -/- RANGE (A) -/- RANGE (A) 81-115 81-116 -/- RANGE (A) -/- RANGE (A) -/- RANGE (A) 81-115 81-116 -/- RANGE (A) -/- RANGE (A) -/- RANGE (A) 81-115 81-116 -/- RANGE (A) -/- RANGE (A) -/- RANGE (A) 82-10 81-120 81-120 -/- RANGE (A) -/- RANGE (A) 81-126 81-120 81-120 -/- RANGE (A) -/- RANGE (A) 81-130 81-120 81-120 -/- RANGE (A) -/- RANGE (A)	SAMPLE ING UZ18 UZ37 UZ37

ະະພຸລະ 9 T (•

· · · • • • :

-

1

.

.

٠

SD-BWI-DP-061 Rev. 1

•

MGE 92

· ..

.

SAMPLE TYPE: PRECIPITATION ANALYSIS GROUP: RADIO .

SAMPLING LOCATION	SAMPLING EVENT CODE	SAMPLE NUHBER	CL36 ATOMS/LITER	+/- RANGE	(A)	CL36/CL ATOM RATIO	+/- RANGE	(A)	с14РМС 2	+/- RANGE	(A)
STATION-26	83-131	83-131									

862

SD-BHI-DP-061 Rev. 1

SEE END OF THIS REPORT FOR A LISTING OF ANALYSIS METHODS.

e por al this krick for a cisting of Antrisis Actions,

.

. .

.....

PAGE 10

SAMPLE TYPE, PRECIPITATE: ANALYSIS GROUP: RADIO

•	SAMPLING		7						1/134		
a-a-191 18G	EVENT	SAMPLE	TRETING UNITS			MICROGRAM/L			DPM/L		
; OCATION	CODE	NUMBER		+/- KANGE	(A)		+/- XANGE	(A)	+	/- KANUE	. 1]
S1A1108-26	83-131	83-131	6.250E+00	2.60000E-01	(1)						

÷.,.

SLE END OF THIS REPORT FOR A LISTING OF AMALYSIS METHODS.

· . . .

SD-BHI-DP-061 Rev. 1

PAGE 10.1

SAMPLE TYPE: PRECIPITATION ANALYSIS GROUP: RADIO

SAMPLING LOCATION	SAMPI ING EVENT CODE	SAMPLE NUHBER	U238 DP14/L	+/- RANGE	(Å)	U234/U238 Atom Ratio	+/- RANGE	(A)	U235/U238 Atom Ratio	•/- RANGE	(A)
STATION-26	83-131	83-131									

PAGE 10.2

SEE END OF THIS REPORT FOR A LISTING OF ANALYSIS METHODS.

300

SAMPLE TYPE. SPRING ANALYSIS GROUP: RADIO

.

Sampling Location	SAMPLING EVENT CODE	SAMPLE NUMBER	CL36 ATOMS/LITER	+/- RANGE (A)	CL36, 2 ATOM RATIO	+/- RAGBE	[4]	C14PMC X	+/- RANGE (.)
SP-BENNET1	SITE-218 79-13 85-362	STTE-218 79-13 85-362						7.080E+01	5.800002000 ()
SP-BENSON	ST1E-217	STTE-217							
SP-BULLER	79-1	79-1			· ·				
SP-JUNIPER	S11E-215 79-2 81-115 83-372	S1TE-215 79-2 81-115 83-372						2.320E+01	(1.80000E+00 (1)
SP-10-SNIVELY	79-34 82-362 83-396	/9-04 82-362 83-396					•	a, 890E+01	5.400002+00 ; ;)
SP-1021ER	79-6	79-44		r :					
	81-186 83-316	81-186 83-316		на страна 1911 г. н.				8.770E+01	4.70000E+00 .)
SP-INIDEN	79-100 83-420	79-95 83-420				•		1.086E+02	5.600002 (0) (1)
₩SP-DUSERVATORY	81-119 83-433 84-322 85-359	81-119 83-492 84-392 85-359		•				0.920E+01 1.018E+02 1.055E+02	2.00000E+00 (1) 1.80000E+00 (1) 7.70000E+00 (1)
SP KATIRUAD	79-75	79-75							
SP-RATILÉSNAKE	STTE-216 83-412	SITE-218 83-412		;	;		1.5	. <i>•</i>	
SP-SNEVELY	79-49	79-49							
S.P-SULFUR	79-29 83-409	79-29 83-409				1 .			
SP-UNHABLD-02	79-15	79-70 79-75					•	• : .	·
ST DRMARLD-16	79-73	18-02				•		1.1342902	6.400001-00 (
37- UNINAMÉ D-26	19-98	79-98	•	,				· · ·	•
SF-UNNAMED-29	79-16	79-15		⁻				1.0748+02	6.8000:
 • • , 	۰. ۱		SEE END OF THIS	REPORT FOR A LIS	TING OF A SLYS	15 VL - 205.			

4.8.2.8.8

. .

SD-BWI-DP-061 Rev. 1

.

.

PAGE 11

PAGE 11.1

SAMPLE TYPE: SPRING ANALYSIS GROUP: RADIO

SAMPLING LOCATION	SAMPLING EVENI CODE	SAMPLE NUHUER	TRITIUM UNITS	+/- RANGE	[A]	U MICROGRAM/L	+/- RANGE	(A)	U204 DPM/L	+/- RANGE	(A)
SP-BENNETT	S11E-218 79-13 85-362	STTE-218 79-13 85-362	3,700E-01 3,400E-01 5,400E-01	4.00000E-02 4.00000E-02 9:00000E-02	$ \begin{cases} 0 \\ 1 \\ 1 \\ 1 \end{cases} $	3.200E-01	4.00000E-02	(1)	6.100E-01	4,00000E-02	[1]
SP-BLNSON	STTE-217	SI1E-217	3.170E+00	2.40000E-01	(0)		•				
SP-BULLER	79-1	79-1	1,520E+00	7.00000E-02	(1)	2.800E-01	4.00000E-02	(1)	5.4008-01	4.00000E-02	{1}
SP-JUNIPER	SI1E-215 79-2 81-115 83-372	SITE-215 79-2 81-115 83-372	1,500E-01 5.800E-01 - -5.000E-02	4.00000E-02 5.00000E-02 8.00000E-02	$\begin{pmatrix} 0 \\ 1 \\ 1 \\ 1 \end{pmatrix}$	7.800E-02	3.00000E-02	[1]	6.200E-02	2.70000E-02	[1]
SP-10-SNIVELY	79-34 82-362 83-396	79-34 82-362 83-396	9,200E-01 1,190E+00	8 00000E-02 1.10000E-01	<pre>{1}</pre>	3.700E-01 3.500E-01	2.00000E-02	<pre>{1}</pre>	4.900E-01	2.00000E-02	(1)
SP-1021ER	79-6 81-186 83-316	79-44 79-6 81-186 83-316	5,650£+00 4.240£+00 2.840£+00	1.50000E-01 1.80000E-01 1.20000E-01	(1) {}}	4.600E-01	3.00000E-02	(1)	6.900E-01	4.00000E-02	(1)
SP-MATDEN	79-100 83-420	79-96 83-420	2.9808+00	1.20000E-01	{1}					۰.	
ÖSP-OBSERVATORY N	81~119 83-433 84-392 85-359	81-119 83-492 84-392 85-359	5.030E+00 4.790E+00 5.020E+00 4.740E+00	2.10000E-01 1.60000E-01 1.40000E-01 1.80000E-01							
SP-RATEROAD	79-16	79-76	7.170E+00	1.900008-01	(1)	9.700E-02	7.00000E-03	(1)	1.400E-01	1.00000E-02	(1)
SP-KATILESNAKE	5112-218 83-412	STIE-216 83-412	4.700E-01 1.890E+00	6.00000E-02 7.00000E-02	$\begin{pmatrix} 0 \\ 1 \end{pmatrix}$,	· ·	
SP-SHIVELY	79-49	78-49				3.600E-01	3.00000E-02	(1)	4.700E-01	3.000005-02	(1) ·
SP-SULFUR	79-29 83-409	79-29 83-409	3 980E+00	I.70000E-01	(1)	6.000E-01	8.00000E-02	(1)	8.100E-01	6.00000E-02	(1)
SP-UNNAHLD-02	19-15	79-70 79-75	5.2705+00	1.30000E-01	(1)	1 400E+00	1.00000E-01	(1)	1.590E+00	1.10000E-01	(1)
SP-UNNAMED-16	79-73	75-82							•		
SP-UNNAHED-26	79-98	79-98	6.880£+00	1 30000E-01	(1)	7 7002-02	8.000002-03	(1)	\$ 200E-02	7.000002-03	(1)
SP-UNNAMED-29	19-16	79-16				1 440E+00	7 .00000E-02	(1)	1.590E+00	8.00000E-02	(1)
· · · ·		4	SEE END OF THIS	REPORT FOR	A LIS	TING OF ANALY	SIS METHODS				

. .

ς κ

5

SD-3HI-DP-061 Rev.

فسو

SAMPLE TYPE: SPRING ANALYSIS GROUP: RADIC

· :

-

.

.

SAMALING LUCATION	SAMPLING EVENT CODE	SAMPI E NUMBER	0238 DPM/L	•/- RANGE	(A)·	U23479208 Atom Ratio	+/- RANGE	(A)	U235/U233 Atom Ratio	+/- RAHGE\)
SP-BLNNE 11	S11E-218 79-13 85-362	STIE-218 79-13 85-362	2,400E-01	3.00000E-02	(1)	L.400E-04	2.00000E-05	(1)		
SP-BENSON	S11E-217	S11E-217								
SP-BOTTEN	79-1	79-1	2.1002-01	3.00000£-02	(1)	1.4008-04	2.00000E-05	(1)		
5р- Juni Per	S11E-215 79-2 81-115 80-372	S175-215 79-2 81-115 83-372	5.800E-02	2.30000E-02	(1)	6.0008-05	3.40000E-05	{ \$}		
SF-10- SNIVLLY	79-34 82-362 83-396	79-34 82-362 83-396	2.7002-01	2.00000E-02	(1)	9.8001-05 . 1.020E-04	8.000001-05 1.00000E-06	{t}	7.240E-03	3.000008-05 (1)
SP+10ZIER	79-6	79-44	2 4005 41	2 44445 42		1.1005	1 000005-05			
	81-185 83-316	81-186 83-316	3.4002-01	2.000002-02	{	1.100201	1.00002-03	[1]		
SP-MAIDEN	79-100 83-420	79-95 83-420								•
Sed onzeranjoka Sed onzeranjoka	81-119 80-400 84-092 85-359	51-119 83-492 84-392 85-359								
SP-KALLROAD	79-75	79-76	7.100E-02	5.00000E-03	(1)	1.100E-94	1.00000E-05	(1)		
SP-RATHESHAKE	SITE-216 83-412	S11E-216 83-412								÷,
SP-SNIVELY	79-49	79-49	2.700E-01	2.00000E-02	(1)	9.6002-35	8.000002-05	{1 }		, •
SP-SULFUR	79-29 80-409	79-29 83-409	4.500E-01	5.00000E-02	(1)	0.900E-05	1.30000E-05	(1)		
SP-UMHAMED-02	/9-75	79-70 79-75	1.0205+00 .	8.00000E-02	(1)	8.5006-05	8.00000E-06	{1}	•	
SP-UNNAMED-16	79-73	79-82								
SP-UNHALLD-26	79-98	79-98	5.700£-02	6.00000E-03	(1)	7.900:45	1.100005-05	11)	• •	· ·
SP-UNNAMED-29	79-16	70-16	1 060E+00	5.00000E-02	(1)	8.200E-05	6.000002-06	(1)		
	۱ ، و- ۱	SEE	END OF THIS	REPORT FOR	A LIS	TING OF ANAL	YSIS METHODS.		•	

1

.

.

. . . .

-

.

PAGI 11.2

SD-BWI-DP-061 Rev. 1

••

.

.

۰ .

•

.(

•

PAGE 12

SD-BWI-DP-061 Rev.

SAMPLE TYPE: SPRING ANALYSIS GROUP: RADIO

SAMPLING LUCATION	SAMPI ING EVENI CODE	SAMPLE NUMBER	CI.36 ATOMS/LITER	+/- RANGE	(A)	CL36/CL ATOM RATIO	+/- RANGE	(A)	C14PMC %	+/- RANGE	(7)
SP-UP-SNIVELY	79-71 81-126 83-503	79-71 81-126 83-503					•		8,0902+01	5.90000E+00	(1)
SP-UR2-07	85-343	85~343					,		'.		
SP-UR6-20	85-346	85-346									
SP-087-22	85-349	85-349									
SP-WARM	84-358	84-358	-								
SP-YR3-04	85-333	85-333									
SP-YR5-08	85-336	85-336						•			
SP-487-14	85-339	85-338			•						

304

SEE END OF THIS REPORT FOR A LISTING OF ANALYSIS METHODS.

. .

SAMPLE TYPE: SPRING ANALYSIS GROUP: RADID

2461 12.1

SD-8WI-DP-061 Rev.

مسو

SAMPIING LUCATION	SAHPLING EVENT CODE	SAMPI E NUI-IBER	T TRITINM UNITS	+/- RANGE	(A)	MICROGRAM/L	+/- RANGE	(A)	U234 DPM/L	+/- RANS:
SP-OP SHIVELY	79-71 81-126 83-503	79-71 81-120 83-503	1.280E+00 1.280E+00	1.00000E-01 6.00000E-02	<pre>{}}</pre>	4.600E-01 4.170E-01	2.00000E-02	{{}}	7.200€-01	4.00000E-02 [1]
SP-082+07	85-343	85-343	2.580E+00	1.00000E-01	(1)					
5P-1186-20	85-348	85-348	1.010E+00	1.000008-01	(1)					
SP-087-22	85-349	85-349	1.390E+00	8.00000E-02	(1)					
SP-WARH	84-358	84-358	1.200E-01	8.00000E-02	{1 }			·		
SP YR3-04	85-333	85-333	4.5008-01	1.00000E-01	(1)					
SP - YR5 - 08	85-336	85-336	4.900E-01	9.00000E-02	(1)			٠		
SP-YR7-14	85-339	85-339	1.070E+01	4.00000E-01	(1)					

SEE LND OF THIS REPORT FOR A LISTING OF AMALYSIS METHODS.

11 · · ·

. .

.

1.4

٠,

. SAMPLE TYPE. SPRING ANALYSIS GROUP: RADIO

SAHPI ING LOCATION	Sampl Ing EVENT CODE	SAMPLE NUMBER	U238 DРM/L	+/- RANGE	(A)	0234/0235 Atom Ratio	•/- 8ANGE (A)	U235/U238 ATOM RATIO	+/- RANGÉ (A)
SP-UP-SHIVELY	79-71 81-126 83-503	79-71 81-126 83-503	3.400E-01	2.00000E-02	(1)	1.160E-04 1.120E-04	B.00000E-06 (1) 2.00000E-06 (1)	7.250E-03	5.00000E-05 (1)
SP-082-07	85-343	85-343							
5P-4185-20	85-346	85-346							
SP-UR/-22	85-349	\$5-349							
SP-WARM	84-358	84-358		-				•	
SP-YR3-04	85-333	85-333				•			
SP-YR5-OB	85-336	85-336					•		
SP-YR7-14	85-339	85-339					•	•	

936

SEE END OF THIS REPORT FOR A LISTING OF ANALYSIS METHODS.

PAGE 12.2

SD-EWI-OP-061 Rev.

مــز

1

SAMPLE TYPE: SURFACE ANALYSIS GROUP: RADIO

SAMPLING LOCATION	SAMPI ING EVENT CODE	SAMPI E NUMBER	Clus A Toms/Liter	+/- RANGE	(A)	CL36/CL ATON RATTO	17 - RANGE	{A}	с14РМС 2	+/- RANGE ;	. \ \
COLD CREEK	84-302 85-223	84-302 85-223							1.099€+02 1.157E+02	1.800005.00 9.20000E+00 (3
CR+DC+14	83-258	83-258				•			1.212E+02	3.80000E+00 [(1)
CR-DC- 15	81-1	81-1									
CH-H1S	5] JE-221	SITE-221									
CN-V BX	84-311 85-205 85-255 86-70	84-311 85-206 85-266 86-70					• .		8.860€+01 9.010E+01 1.077E+02	3 70000E+00 2 10000E+00 ! 1 10000E+01 {	
YH - 11H	25-210 85-269 86-67	85-210 85-269 86-67						•	1.2002+02 1.152E+02	9.800002+00 7.90000E+00 {	3

.

. . . .

SEE END OF THIS REPORT FOR A LISTING OF ANALYSIS ME MODS.

 $(x_{i}) \in \mathcal{X}_{i}$ · . . -

۰.

٩

2181 13

PAGE 13.1

SD-BWI-DP-061 Rev. 1

1 1

,

SAMPLE TYPE: SURFACE ANALYSIS GROUP: RADIO

۰.

Sampling Location	SAHPI ING EVENT CODE	SAMPLE NUMBER	TRITIUM UNITS	RANGE (A)	U MICROGRAM/L	/- RANGE LA	U234 DPM/L	+/- RANGE	(A)
COLD, CREEK	84-302 85-223	84-302 85-223	6.460E+00 2.400 5.860E+00 1.800	00E-01 (1) 00E-01 (1)					
CR-DC-14	83-258	83-258	4.180E+01 L.100	00E+00 [1]					
CH-DC-15	81-1	81-1	5.410E+01 1.500	00E+00 (1)					
CR-H1S	S13E-221	SITE-221	7,830E+01 4.000	00E-02 (0)					
Ск-V-Вк	84-311 85-206 85-266 86-70	84-311 85-206 85-266 86-70	2.970E+01 8.000 2.980E+01 8.000 2.510E+01 8.000 2.590E+01 8.000	008-01 (1) 008-01 (1) 008-01 (1) 008-01 (1)					
¥8 - 168	85-210 85-269 86-67	85-210 85-269 86-67	1,250E+01 4,000 1,350E+01 5,000 1,270E+01 4,000	000E-01 (1) 000E-01 (1) 000E-01 (1)			•		

308

.

SEE END OF THIS REPORT FOR A LT

SEE END OF THIS REPORT FOR A LISTING OF ANALYSIS METHODS.

PAGE 13.2

SAMPLING LOCATION	SAMPI ING EVENT CODE	SAMP1E NUMBER	U238 DPM/L	+/- RANGE	(A)	0234/0235 ATOM 8A110	*/- RANG	E (A)	U235/U208 Atom 3A710	+/- RANGE	(A)
COLD CREEK	84-302 85-223	84-302 85-223			*						
CR-DG-14	83-258	83-258									
CH-DC-15	81-1	81-1									
CR-115	\$17E-221	SIJE-221									
CH-A-RH	84-311 85-206 85-266 86-70	84-311 85-206 85-266 86-70							İ.		
УХ - HK	85-210 85-289 86-67	85-210 85-269 86-67						•		`	
	· , ·	•						•			
										•	
60 60		· :.									
ō	,	; -					•			: .	
	_										. •
	•	· ·								х. 1	• .
. <i>.</i>	÷,	、 '									•
	· ,										
4 - Y		••									
· · · ·		· •									
								•	•		
	•	SE	END OF THIS	REPORT FOR A	A LIST	ING A - John	SIS ME - LE	S.		·	

SAMPLE TYPE: SURFACE ANALYSIS GROUP: RADIO

.

,

.

.

.

• •

•

SD-8WI-0P-061 Rev. 1

PAGE 14

SAMPLE TYPE: UNCONFINED ANALYSIS GROUP: RADIO

- RANGE	(A)	
0000E+00	(1)	
0000£+00 0000£+00	{ 1 }	
0000E+00 0000E+00	$\left\{ \begin{array}{c} 1\\ 1\\ 1 \end{array} \right\}$	
0000E+00 0000E+00 0000E+00	$\left\{\begin{array}{c}1\\1\\1\\1\end{array}\right\}$	
0000E+00 0000E+00	$\left\{ \begin{array}{c} 1\\ 1 \end{array} \right\}$	•
0000E+00 0000E+00	$\left\{ \begin{array}{c} 1\\ 1 \end{array} \right\}$	
0000E÷J0 0000E+00 0000E+00		
	0000E+00 0000E+00 0000E+00 0000E+00 0000E+00 0000E+00 0000E+00 0000E+00 0000E+00	0000E+00 [1] 0000E+00 [1]

્ય

SEE END OF THIS REPORT FOR A LISTING OF AWALYSIS METHODS.

SD-BWI-DP-061 Rev.

د م

• 10 34...

SD-BWI-DP-061 Rev.

,__

٠.

• •

. .

.

.

SAMPLE TYPE: UNCONFINED ANALYSIS GROUP: RADIO

.

4

SAMPE ING FOCATION	SAMPLING EVENT CODE	SAMP1 E NUMBER	1 TRITIUM UNITS	+/- RANGE	(A)	MICROGRAM/L	47-	RANGE	(A)	9250 DPM/L	+/-	RANGE	(7)
299-125-08	SÍTE-165	S11E-165	4.030E+02	7.00000E+00	(0)					· · · · · · · · · · · · · · · · · · ·			
299-833-12	S1TE-169	SI (E-169	4.260E+02	8.00000E+00	(0)			·					
899-803-25	86 - 55	86-55	1.3008-01	8.00000E-02	(1)	•							
699-524-19	85-213 85-291	85-213 85-291	1.640E+01 1.690E+01	5.00000E-01 5.00000E-01	{}}								
899-11-45A	85-263 86-43	%5-283 86-43	1.000E-02 7.000E-02	9.00000E-02 8.00000E-02	{ } }								
PPA-15-28	85-229 85-260 86-40	85-229 85-260 86-40	2.000E-01 -2.000E-01 -8.000E-02	8.00000E-02 1.00000E-01 6.00000E-02									
200-10-98	35-273 86-84	85-278 86-64	-4.000E-02 0.000E+00	9.00000E-02 7.00000E-02	{¦}								
699-24-95	85-288 86-61	85-288 86-61	6.800E-01 6.500E-01	1.10000E-01 1.00000E-01	{!}	•							
699-37-43	511E-173	\$17E-173	2.5902+04	5.00000E+02	ior						•		
699-49-55A	STTE-182	SITE - 182	2.500E-01	3.00000E-02	(0)								
609-55-500	S11E-193	SITE-193	4.520E+01	1.60000E+00	(0)								
299-20-21	ST1E-198	SITE-198	2.140E+02	\$.00000E+00	(0)			•					
899-86-103	85-203 86-73 85-294	85-203 86-73 85-294	5.440£+01 3.940£+01 6.530£+01	1.30000E+00 1.10000E+00 2.00000E+00	$\left\{ \begin{array}{c} 1\\ 1\\ 1\\ 1 \end{array} \right\}$					•			
	· . · .	· · · · · · · · ·											•

SEE END OF THIS REPORT FOR A LISTING OF ANALYSIS VETWODS.

.

••••••

..

..

PAGE 14.2

	SAMPLE TYPE: UNCONFINED Analysis group: Radio									FAG2 14.		
SAMPLING LOCATION	SAMPLING EVENI CODE	SAMPLE NUHBER	U238 DPM/1	+/- KANGE	{A}	U234/U238 Atom Ratio	+/- RANGE	(A)	0235/0238 Atom Ratio	+/- RANGE	(A)	
299-E26-08	STIE-165	S1TE-165										
299-£33-12	SITE-169	SITE-169										
699-503-25	86-55	86-55					•					
699-524-19	85-213 85-291	85-213 85-291										
695-11-45A	85-260 86-40	85-263 86-43					•			•		
	85-220 85-260 86-40	85-229 85-260 86-40			•			٠		,		
000-10-88	85-278 86-64	85-278 86-64										
699-24-95	85-288 86-61	85-288 86-61										
699-37-43	SITE-173	SITE-173										
699-49-55A	\$11E-182	SITE-182										
K 899-55-50C	ST 1E - 193	ST1E-193							•			
699-60-21	STIE-198	SITE-198										
699-66-103	85-203 86-73 85-294	85-203 86-73 85-294										

SEE END OF THIS REPORT FOR A LISTING OF ANALYSIS METHODS.

.
LIST OF ANALYSIS METHODS FOR RADIOACTIVE ISOTOPES

1

(.) 1-1 (.)

. .

SPFCIL	<u>(A)</u>	ANALYSIS HETHOD
CL.36	1	Derived from CL36/CL ratio
ČL 367CL	1	Tandem accelerator mass spectroscopy
СТАРИС	0 1	Unclassified Proportional gas counting on methane
1	0 1	Unclassified Electro. enrich./H2 gas proportional courter
U	0 1 2	Unclassified Thermal emission mass spectrometry Alpha spectrometry
U234	1 2	Mass spectrometry Alpha spectrometry
0234/0238	1 2	Thermal emission mass spectrometry Alpha spectrometry
0235/0238	ì	Thermal emission mass spectrometry
11238	1 2	Mass spectrometry Alpha spectrometry

Unclassified: Analysis comes from a non-BMTP documented source and the method is not specified in this data package.

:

ю

.

.

THIS PAGE INTENTIONALLY LEFT BLANK

• .

SAMPLING LOCATION	SAMPLING EVENT CODE	SAMPLE NUMBER	C13(CH4) PPT	DICHA) PPT	CIJ PPT	P P P	018 PPT	SJ4 PPT
ULKK	85-255	85-255			-11.200	-138.000	-17.600	
DH - 01	81-19 81-65 82-27 85-32	81-19 81-55 82-27 82-87 85-32			3,400 -18,300 -18,400 -18,200 -18,200 -18,100	-147.000 -138.000 -131.000 -142.000	-17 500 -17 300 -17 400 -17 400	20.500 17.000 21.600 15.300
DB-02	79-65 81-13 31-10	70-65 81-13 81-10			-16.100 -15.400	• -148.000 -143.000 13.000	-17.000 -15.800 -17.000	2.700 8.000
pB-04	19-77	79-77				-155.000	-17.000	
4)11 - 07	79-11 83-413 85-236	79-89 83-413 85-216			6.600 7.100	- 145.000 -138.000 -134.000	-13.400 + -15.700 -17.300	
01-09	79-23 83-472	79-28 83-472			-12.400	-152.000	-17.500	
08-11 ()) ()	\$5-4 85-15 85-18 86-52	85-4 85-15 85-18 86-52 86-53			-10.000 -9.900 -9.400 -10.000 -10.200	-153.000 -150.000 -154.000 -156.000	-13.500 -13.500 -13.800	9.400 7.400 15.900
5.08-12	31-25	81-25			-13.600	-153.000	-18.800	
08-13	80-159 83-404	\$0-159 83-404			-13.400 -13.100		?.500	
1)3-14	81-162	81-139 11-162			11.300 11.400	134.000	-13 400	11.000
<i>03-</i> 15	79-17	79-17 79-22 79-4			-13.100	-172 000	-17 200	-10,300
	78-35	79-20 79-35		·	-23.800	45.000	-17 600	,
	19-33	79-27 79-33			-15 500	-112.000	800	•
	79-15	79-15			-8.400	-150,000	17 200	23.700
	79-39	79-39 79-8	•		-6.500 -8.500		-17 300	<u>ଟ୍</u> ଟେର -
	79-25	79-31			-3.900	-15000	-17.200	3.500

ANALYSIS METHOD- MASS SPECTROMETRY.

ана (1986) Ал

.

÷

PAGE 1

.

.

.

Sampi ing Location	SAMPLING EVENT CODE	SAMPLE NUMBER	C13(C114) PPT	D(CH4) PPT	C13 PPT	0 PPT	018 PPT	S34 PPT
DB-15	79-51	79-51 79-61			10.400 1.500	-135 000 -131 000	-14.600 -14.800	3.200 1.800
	79-85 79-80	79-92 79-85 79-68			8.200	-133.000 -135.000 -129.000	-15.000 -14.900 -15.000	2.300
	19-62 79-90	79-62 79-90			17.400	-131.000	-15.400	
	80-35 80-24	80-35 30-24 80-74			16,000 11,600	-131.000 -132.000	-14.000 -15.200 -15.000	3.300
	80-77 80-1	80-77 80-1 80-30			13.300	-132.000 -129.000 -132.000	-15.400	-3.000
DC-01	SITE - 230 SIIE - 226 SIIE - 227	SITE-230 SITE-226 SITE-227		•	-13.300 -14.000 -2.900	-145.000	-17.200	
	STIE-231 STIE-232 STIE-233	SI 1E - 231 SI 1E - 232 SI 1E - 233			-14.200 -14.300 -10.500	-154.000	-18.300	
•	STIE-234 STIE-235 STIE-236	SI1E-235 SI1E-236			15,400 13,200	-138.000	-15.500	
(a) (SITE-237 SITE-238 SITE-239	SI1E-237 SI1E-238 SI1E-239			1.400 -12.600 -7.000	-139.000 -151.000 -138.000	-15.900 -17.800 -18.000	
	SIIE-240 SIIE-241 SIIE-242	SI 1E - 240 SI 1E - 241 SI 1E - 242			-7.600 -7.300 -7.000	-148,000 -138.000 -138.000	-15.900 -15.900	
DC-02-A2	SITE-219	SITE-213			-10.470	-132.500	-15.350	1.960
DC~05	19-30	79-11 79-30			-6.000	-120 000 -232.000	~14.200	
DC-06	5112-214 80-238 80-191	S112-214 80-238 80-186			-19.200 -21.400	-124.500 -131.000 -135.000	-13 000 -15 100 -13 900	-2.120 -6.200
	81-45 80-118	80-191 81-45 80-118			-18,000 -15,800 -21,300	-114.000 -125.000 -119.000	-13.500 -14.100 -13.600	15 000 5 000 4 700
	80-15 81-82	80-15 81-82				-120.000 -125.000	-13 400 -14 500	3.600
	80-29 70-58	80-29 80-37 79-57	•		-23.800	-125.000	-14 500	-0.100
	10-30	70-58			-23.200	-135 000	-14.400	0.100

٠

. :

ANALYSIS HETHOD- MASS SPECTROMETRY.

PAGE 2

SD-841-0P-061 Rev. 1

ş

.4

والمتحد ومراوين

• (

٠,

.

SAMPLING LOCATION	SAMF1 ING EVENT CODE	SAMPI E NUMBER	C13(CH4) PPT-	D(CH4) PPT	C13 PPT	PP1	018 PPT	SJ4 PPT
QC · 05	80-75	80-45 80-75			-21.500 -21.700			-13.200
DC-01	82-23 82-10	82-23 82-10			-23.000	-322 000 -128 000	-34.500 -14.300	2.100
	80-103 80-196	80-103 80-177 80-196	-03.040		-22.900	-121.000	-13.000	2 100
DC-12	80-80	80-17			-23.100	-139 000	-12.700	2.100
	80-100	80-80 80-63	-44.000		15.200	-134.000	-15 800	×
	80-97 80-32 80-82 80-124	80-97 90-32 80-82 80-124	-43.700 -45.500 -44.200		14.800 8.000 12.800 15.200	-135,000 -133,000 -134,000 -140,000	-15.900 -15.300 -15.600 -16.800	
	80-174 80-200 80-224	80-143 80-174 80-209 80-234			-24.800 3.600	-135.000 -132.000 -135.000	-16 400 -18.200	10, 200
• •	81-61 82-85	81-61 82-85			20.700	-139.000	-18.400 -18.300	8.500
ωDC-14	80-53	80-3 80-34 80-53			-11.600	67.000	-13.400	-4.200
	80-47	80-95 80-47 80-85			-11.600	-155,000	-19.300	5.900
	80-89 80-89 80-89	30-69 60-99 80-89			-12.800 -12.700 -12.600	50 000 000 57 000 000	-17,800 -17,900 -17,800	13.500 8.800
	80-71 80-144	80-71 80-336 80-144			-11.400	- 43.000		20.300 7 900
	80-189	80-127 80-189 80-112			-12.100	-11000		9.500
	80-157 80-155 80-104	80-183 80-155 80-104			-12.800 -12.400 -12.300	-11.000	-19.200	11.900 2.809 9.300
	80-129	80-125 80-148 80-115			-12.300	-232,000	-20.400	2.000
	80-170	80-129 80-156			-12.500	-250.000	~13.800	13.500

ANALYSIS METHOD- MASS SPECTROMETRY.

. 1

.

• •

:

.....

2 ° • • • • • •

.

SD-8HI-DP-061 Rev. 1

.

245: 3

.

.....

SAMPI ING LOCATION	SAMPLING EVENT CODE	SAMPI E NUMBER	C13(CII4) PPT	D (CH4) PPT	C13 PPT	D PP1	018 PPT	\$34 PPT
DC - 14	80-170 80-117 80-213 81-20 81-30 81-44 81-141 82-8 83-156 83-156 83-157 83-157 83-157 83-150 83-150 83-150 83-150 83-266 83-261	80 - 170 80 - 117 80 - 213 81 - 20 81 - 30 81 - 44 82 - 141 82 - 141 83 - 156 83 - 157 83 - 157 83 - 157 83 - 157 83 - 157 83 - 150 83 - 266 83 - 261			-12.700 -12.600 -19.700 -16.200 -17.300 -22.000 -21.800 -23.600 -23.400 -23.400 -23.300 -21.800	-152.000 -148.000 -136.000 -127.000 -127.000 -115.000 -113.000 -113.000 -113.000 -113.000 -113.000 -113.000 -113.000 -113.000 -114.000 -114.000	-19.400 -18.600 -16.000 -14.800 -14.100 -14.100 -14.200 -14.200 -14.200 -14.200 -14.200 -14.200 -14.000 -14.000 -14.000	13,600 7,800 11,000 6,900 2,700 1,800 8,500 10,100
μς-15 μ	$\begin{array}{c} 80 - 55 \\ 80 - 54 \\ 80 - 57 \\ 80 - 87 \\ 80 - 137 \\ 80 - 176 \\ 80 - 135 \\ 80 - 131 \\ 80 - 131 \\ 80 - 131 \\ 81 - 41 \\ 81 - 2 \\ 81 - 33 \\ 81 - 27 \\ 81 - 64 \\ 81 - 96 \\ 81 - 69 \\ 82 - 54 \end{array}$	80 - 56 80 - 54 80 - 57 80 - 87 80 - 137 80 - 135 80 - 135 80 - 135 80 - 131 80 - 131 80 - 131 80 - 131 81 - 41 81 - 27 81 - 69 82 - 62 82 - 94	-63.600 -46.500 -67 100 -76.500 -69.800 -89.800	-264.700 -255.300 -264.100	$\begin{array}{c} -13.300\\ -16.200\\ 4.100\\ 14.500\\ 0.300\\ -10.000\\ -9.400\\ -9.400\\ -9.400\\ -17.400\\ -17.400\\ -22.100\\ -25.500\\ -25.500\\ -31.300\\ -20.400\\ -31.500\\ -28.800\\ -28.800\\ -28.400\\ -30.700\end{array}$	$\begin{array}{c} -145.000\\ -145.000\\ -145.000\\ -145.000\\ -138.000\\ -138.000\\ -139.000\\ -137.000\\ -137.000\\ -137.000\\ -137.000\\ -139.000\\ -122.000\\ -122.000\\ -122.000\\ -122.000\\ -114.000\\ -111.000\\ -111.000\\ -110.000\\ -121.000\\ -124.000\\ -124.000\\ \end{array}$	$\begin{array}{c} -17 & 300 \\ -17 & 400 \\ -17 & 100 \\ -16 & 800 \\ -17 & 200 \\ -17 & 200 \\ -17 & 200 \\ -17 & 500 \\ -17 & 400 \\ -16 & 500 \\ -16 & 500 \\ -13 & 400 \\ -13 & 500 \\ -13 & 400 \\ -13 & 400 \\ -13 & 400 \\ -13 & 700 \\ -18 & 100 \\ \end{array}$	-1.700 20.700 33.800 1.900 7.400 -3.500 4.000 -6.000 -8.200 -18.000
DC - 16A	81-109 82-17 82-93 82-19 82-188 82-188	81-109 82-17 82-55 82-93 82-19 82-72 82-188	-44.880 -	•	-11 100 -14 300 -11 800 9 400 10 700	-142 000 -143 000 -141 000 -145 000 -138 000 -138 000	-17 900 -15 000 -15 300 -15 300 -16 400 -15 000	-1,200 33,100 8,600 7,900
	45-154	44.124			~2.700	-131.000	-16.400	3.900

• •

ANALYSIS METHOD - MASS SPECTROMETRY.

and the second second

. . .

SD-BWI-DP-061 Rev.

__

٠.

PAGE 4

SAMPLING LOCATION	SAMPI ING EVENT CODE	SAMPI E NUMBER	C13(6114) PPT	D (CII4) PPT	C13 PPT	D P PT	018 PPT	S34 PPT
DC-16A .	82-124 82-143	82-139 82-101	-83.990 -51.820			· · ·		
		82-143			5.400	-174.000	-11,000	9.300
	82-231	82-214A 92-202	-52,380		3 800	24 000	-14 400	8 500
	82-322	82-322			3.800	-110.000	-12 100	0.000
		82-348	-45.940		•		•••••	
	82-332	82-332				-114.000	-12.000	
	82-430	82-430			5.100	-114.000	-31.209	11.200
	83-20	82-4/3	- 44.790			-105 000	-11 (1)0	
	aj-29	33-54	-47 780	•		03,000	-12,000	
					•	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1		
DC+168	83-147	83-147			-9.800	-145.000	-13.500	
DC-18C	84-57	24-50			• .	-125 000	-15 500	-6 100
1.0 100	84-40	84-40			-4.100	-128.000	-15,500	6.000
. ·	84-75	84-75			2.700	-121 000	-14.700	5.400
	84-85	84-85			10.000	-130.000	-15.100	3.900
DC-20C	84-9	89-9			1.300	-128.000	-15.000	5.200
00-220	84-105	84-105			7.300	-133,000	-18,300	9.800
· · · · · · · · · · · · · · · · · · ·		84-153		•	***	-130.000	-16.500	
		46 100				107 000	12 000	•
1990-2398	1 A L A C A C A C A C A C A C A C A C A C	80-133				-13 000	-13.900	
	00 141				. ,			
EMYEARI	84-166	54-186			-12.300	- 107 . 000	-33,800	
	85-11	85-1			-12.300		-17.700	
	82-180	85-180			-12.200	- 000		
		0.0-1.41			-12.400		~ (. 000	
FORD	STTE-219	\$175-219			-6.310		-13.000	-0.470
	85-188	85-189			-12.500	-146.000	-17.400	21.500
		82-183			-12.800		-11.400	18.500
FORES	ST11-220	S17E-220			-14.510	-127.200	- 13	-0.470
	82-7	82-7		•	-11.200	-149.000	-17.000	
	85-175	85-175			-11.100	-100.000	-19 200	•
	40 54	85-176			-11.200	-143,000	-19.000	B . 400
	80-34	86-35			-11,400			
	80-64	80-64	-53,800		-11.200		-17 300	
	81-79	81-79			-11.300	-100 000	- 13 490	-0.300
	81-54	81-54	•		-11.500	-142.000	-18 300	•
	82 64	82-64			-11.100	-147.000	-13.000	•
	82-253	82-263			-11.100	-344.000	-27.900 .	

•

1

.

ANALYSIS METHOD - MASS SPECTROMETRY.

٠.

SD-BWI-DP-061 Rev. **سر**

والمتعود المراجع

.

.

.

 $(1,1,2,\dots,n)$

SAMPLING LOCATION	SAMPLING EVENT CODE	SAMPI E NUHBER	C13(CII4) PPT	D(CH4) PPT	C13 PPT	D PPT	018 PPT	834 PPT
HCGEE	82-387 82-424 82-436 83-32 83-63 83-188 83-373 83-331 83-460 83-513 84-24	82-388 82-397 82-424 82-436 83-32 83-83 83-188 83-373 83-331 83-460 83-476 83-513 84-24	-40.850		$\begin{array}{c} -11.400\\ -11.600\\ -11.500\\ -11.200\\ -11.500\\ -11.500\\ -11.000\\ -4.900\\ -4.100\\ -4.200\\ -4.500\\ -10.700\end{array}$	$\begin{array}{c} -144.000\\ -146.000\\ -148.000\\ -145.000\\ -145.000\\ -145.000\\ -145.000\\ -143.000\\ -143.000\\ -142.000\\ -142.000\\ -142.000\\ -145.000\\ \end{array}$	$\begin{array}{c} -17.900 \\ -18.000 \\ -18.000 \\ -18.300 \\ -18.300 \\ -18.300 \\ -17.700 \\ -17.400 \\ -17.300 \\ -17.500 \\ -17.500 \\ -17.500 \\ -17.400 \end{array}$	
OBRIAN	85-194	85-194 85-105			-13.700 -13.500	-133.000 -135.000	-17.300 + -16.900	0.000 8.200
KR1 0.2	82-68 82-65 82-170 82-122 82-401 84-7 82-364	82-68 82-65 82-170 82-122 82-401 84-7 82-336	-37.760		8.500 -0.300 15.400 15.300 19.700	-134.000 -136.000 -120.000 -114.000 -116.000 -112.000	-17.000 -16.000 -13.200 -11.500 -11.600 -10.800	2.500 1.800 7.800 11.200
320	82-309 82-456	82-364 82-351 82-456	-38,350 -38,280		16.400	-114.000	-11,200	5.800
RRI - 14	82-403 83-49	82-403 82-489 83-96	-44.060 -43.910 -47.890					1
STEP-1	85-252 85-297	85-252 85-297			-14.000	-130.000	-17 100	
S7FM-5	86-19	86-19 86-20			-13.400 -13.400	-148.000	-17.200	
289-216-01	STTE-151 STTE-162 STTE-163 STTE-164	SI1E-161 SI1E-162 SI1E-163 SI1E-164				42.000 -142.000 -143.000 -143.000	-13.600 -10.800 -13.900 -16.200	7.400
299-626-08	ST1E-186 ST1E-167 ST1E-168	SITE-166 SITE-167 SITE-168				-141 000 -142 000 -142 000	-17 300 -17 300 -17 300	0.500
299-E33-12	SITE-170	SITE-170				-147 000	-13.400	

ANALYSIS METHOD- MASS SPECTROMETRY.

· · · · · ·

PAGE 6

SD-8WI-0P-061 Rev. 1

: ? *

SAMP1 ING L DCATION	SAMPLING EVENT CODE	SAMPLE NUMBER	C131CH4) PPT	D(CH4) PPT	C13 PPT	0 PPT	918 991	334 PFT
299-233-12	SIIE-171 SIIE-172	SIYE-171 SIIE-172					3.300 -18.300	6.200
599-511-E12A	80-81	89-14 80-61 80-7			-13.700	-105.000 -145.000	-17 100 -16,900	·
699-42-40C	SI1E-176 SI1E-177 ST1E-178 ST1E-178 ST1E-179	SITE-176 SITE-177 SITE-178 SITE-178 SITE-179			•	-150.000 -155.000 -158.000 -158.000 -135.000	-13.500 -18.700 -13.600 -18.400	2.700 3.300
699-47-50	SITE-205 SITE-181	STTE-205 STTE-181				-129 000	-17,000 -13,800	-1.400
699-49-558	SIIE-183 SIIE-184 SIIE-185	S11E-183 SIIE-184 SIIE-185				-145.000 -148.000 -145.000	-17 900 -17.800 -17.600	2.800
699 - 50 - 45	SITE-203 SITE-186	SITE-203 SITE-186				-136.000 -146.000	-17.000 -17.000	0.800
699-50 48	SIIE-204 SIIE-187	SITE-204 SITE-187				-140.000	-12,800 -15,800	-1.200
2099-51-48	SI1E-188 SI1E-201	SITE-188 SITE-201				-144.000	- 13,500 - 13,600	1.500
699 - 52 - 46A	STTE-202 STTE-189	SITE-202 SITE-189				-145.000	-17.012 -16.900	0.500
699-52-48	ST 16 - 199 ST 16 - 190	SITE-199 SITE-190				-145.000 -149.000	-18,000 -17,800	-2.700
699-53-50	S11E-191 S11E-200	SITE-191 SITE-200				-147.000	-17.300 -15 400	-0.200
699-54-57	SINE-192	SITE-192				-149.000	-17 800	
000-50-57	SITE-196 SITE-197	ST1E-196 ST1E-197				-163 000 -143,000	-17 600 -17.200	3.600
						· .		

. .

.

1

. . . .

ANALYSIS METHOD- MASS SPECTROMETRY.

. . .

PAGE 7

..

SD-BWI-DP-061 Rev. 1

SAMPLE TYPE: PRECIPITATION ANALYSIS GROUP: STABLE • .

SAMPLING LOCATION	SAMPLING EVENT CODE	SAMPLE NUMBER	C13(CH4) PPT	D (CH4) PPT	C13 PPT	D PP1	O18 PPT	S34 PPT
STATION-00	82 - 80 82 - 81 82 - 81 82 - 78 82 - 179 82 - 138 83 - 90 83 - 46 83 - 118 83 - 189 83 - 143 83 - 143 83 - 277	82-89 82-51 82-81 82-78 82-179 82-138 83-90 83-46 83-118 83-189 83-143 83-143 83-277				$\begin{array}{c} -141.000\\ -30.000\\ -85.000\\ -102.000\\ -110.000\\ -99.000\\ -99.000\\ -26.000\\ -26.000\\ -139.000\\ -139.000\\ -139.000\\ -119.000\\ -85.000\\ \end{array}$	-18.400 -9.700 -9.300 -13.000 -10.500 -9.900 -10.100 -29.000 -17.900 -17.900 -13.100 -14.800 -9.800	
STATIUN-04	82 - 15 82 - 61 82 - 60 82 - 120 82 - 120 82 - 120 82 - 140 83 - 141 83 - 141 83 - 141 83 - 155 83 - 165 83 - 180	82 - 15 82 - 61 82 - 60 82 - 120 82 - 120 82 - 120 82 - 117 83 - 36 83 - 141 83 - 110 83 - 110 83 - 155 83 - 165 83 - 180				$\begin{array}{c} -139 & 000 \\ -102 & 000 \\ -94 & 000 \\ -102 & 000 \\ -101 & 000 \\ -101 & 000 \\ -111 & 000 \\ -234 & 000 \\ -152 & 000 \\ -152 & 000 \\ -121 & 000 \\ -137 & 000 \\ -121 & 000 \\ -109 & 000 \\ -110 & 000 \end{array}$	-17 000 . -11 500 -11 200 -13 400 -11 800 -12 100 -12 100 -12 100 -15 100 -15 700 -14 200 -15 800 -15 800 -13 600	•
STATTON-07	83 - 250 82 - 45 82 - 57 82 - 136 82 - 136 82 - 136 83 - 23 83 - 187 83 - 189 83 - 189 83 - 124 83 - 208	83 - 250 82 - 46 82 - 92 82 - 57 82 - 136 82 - 136 82 - 136 83 - 185 83 - 187 83 - 187 83 - 189 83 - 181 83 - 181 83 - 181 83 - 184				$\begin{array}{c} -100.000\\ -138.000\\ -90.000\\ -91.000\\ -92.000\\ -105.000\\ -104.000\\ -258.000\\ -258.000\\ -151.000\\ -151.000\\ -131.000\\ -107.000\\ -109.000\\ -25.000\\ \end{array}$	$\begin{array}{c} -12.200 \\ -35.100 \\ -9.700 \\ -9.700 \\ -12.500 \\ -11.000 \\ -10.600 \\ -10.600 \\ -30.600 \\ -19.600 \\ -19.600 \\ -14.000 \\ -16.900 \\ -12.100 \\ -14.000 \\ -11.400 \end{array}$	
STATION-14	82-38 82-20	82-38 82-20	•			-135.000	-18.400 -10.300	

.

. .

1.6

.

ANALYSIS HETHOD- HASS SPECTROMETRY.

AAGE 3

.

٠.

•

.

SAMPLE TYPE: PRECIPI: AMALYSIS GROUP: STABLE

Sampling Location	SAMPLING EVENT CODE	SAMPLE NUMBER	013 (UH4) PPT	D (CH4) PPT	C13 PPT		018 PPT	534 PPT
51A110N-14	82-63 82-86 82-178 82-147 83-71 83-55 83-102 83-184 83-184 83-160 83-174 83-128 83-149 83-295 86-108	82-63 82-86 82-178 83-71 83-55 83-132 83-184 83-184 83-184 83-128 83-128 83-128 83-128 83-128 83-128 83-128 83-106				-100.000 -55.000 -37.000 -38.000 -237.000 -142.000	-11 000 -10 900 -11.500 -6.500 -29.700 -13.200 -13.900 -17.300 -15.600 -12.200 -11.800 -20.000	• .
S]A]10N-17	82 - 99 82 - 53 82 - 95 82 - 95 82 - 70 82 - 80 82 - 100 82 - 138 32 - 134	82-99 82-95 82-95 82-95 82-70 \$2-80 \$2-100 82-118 82-134				-134.000 -127.000 -112.000 -29.000 -102.000 -103.000 -108.000 -108.000	-17.800 -16.600 -14.100 -10.100 -13.400 -12.600 -14.709 -13.200	•
323	87 - 11 87 - 86 83 - 159 83 - 120 83 - 129 83 - 129 83 - 128 83 - 162 83 - 162 83 - 255 86 - 107	83-11 83-86 83-859 83-199 83-199 83-199 83-128 83-128 83-128 83-128 83-128	·			- 99.000 - 243.000 - 31.000 - 39.000 - 139.000 - 139.000 - 135.000 - 133.000 - 133.000 - 134.000	-11,700 -31,300 -34,300 -15,300 -14,300 -14,300 -15,400 -34,400 -34,400 -33,400 -25,300	-
STATION 20	82 - 50 82 - 16 82 - 26 82 - 58 82 - 54 82 - 54 82 - 1 82 - 96 82 - 190 82 - 190 83 - 37 83 - 37 83 - 170 83 - 130	82-50 82-16 82-26 82-58 82-54 82-54 82-1 82-96 82-196 82-197 53-37 83-34 83-170				-113.000 -141.000 -121.000 -13.000 -145.000 -145.000 -120.000 -113.000 -113.000 -113.000 -113.000 -113.000 -113.000 -113.000 -114.0000 -114.0000 -114.0000 -114.0000 -114.0000 -114.0000 -114.00	-118 700 -118 700 -115 8000 -115 8000 -118 4000 -118 400000000000000000000000000000000000	• • •

.

.

1

ANALYSIS METHOD = MASS SPECTROMETRY.

. .

SD-8HI-DP-061 Rev. 1

11

PAGI 9

SAMPLE TYPE: PRECIPITATION ANALYSIS GROUP: STABLE

· ,

SAMPLING LOCATION	EVENT CODE	SAMPLE NUMBER	C13(CH4) PPT	- D[CH4] PPT	C13 PPT	0 . PP1	018 PPT	534 PPT
STATION-20	83-119 83-158	83-119 83-158				-158.000 -139.000	-20.600 -18.300	
STATION-25	82 - 9 82 - 76 82 - 24 82 - 83 82 - 66 82 - 79 82 - 25 82 - 67 82 - 152 83 - 152 83 - 134 83 - 139 83 - 135 83 - 217	82 - 9 82 - 76 82 - 24 82 - 83 82 - 66 82 - 79 82 - 25 82 - 67 82 - 153 82 - 152 83 - 89 83 - 134 83 - 139 83 - 139 83 - 198 83 - 135 83 - 217				$\begin{array}{c} -140 & 000 \\ -144 & 000 \\ -120 & 000 \\ -74 & 000 \\ -119 & 000 \\ -121 & 000 \\ -87 & 000 \\ -85 & 000 \\ -105 & 000 \\ -105 & 000 \\ -105 & 000 \\ -234 & 000 \\ -104 & 000 \\ -107 & 000 \\ -113 & 000 \\ -113 & 000 \\ -115 & 000 \\ -110 & 000 \end{array}$	$\begin{array}{c} -18.500\\ -18.700\\ -15.400\\ -7.600\\ -13.100\\ -13.900\\ -10.700\\ -11.000\\ -12.000\\ -11.500\\ -10.700\\ -11.500\\ -10.700\\ -29.700\\ -13.400\\ -13.400\\ -13.400\\ -14.700\\ -14.200\\ -12.900\\ -12.900\\ \end{array}$	
STATION-26	b2 - 25 b2 - 32 b2 - 48 b2 - 51 b2 - 50 b2 - 71 b2 - 71 b2 - 71 b2 - 71 b2 - 115 b2 - 108 b3 - 108 b3 - 163 b3 - 163 b3 - 163 b3 - 167 b3 - 167 b3 - 167 b3 - 101 b3 - 101 b3 - 284 b3 - 108 b3 - 108 b3 - 101 b3 - 284 b3 - 108 b3 - 108 b3 - 108 b3 - 108 b3 - 108 b3 - 101 b3 - 284 b3 - 108 b3 - 108 b3 - 108 b3 - 108 b3 - 108 b3 - 108 b3 - 101 b3 - 108 b3 - 108 b3 - 101 b3 - 108 b3 - 108 b3 - 108 b3 - 108 b3 - 108 b3 - 101 b3 - 108 b3 - 101 b3 - 108 b3 82 - 29 82 - 32 82 - 48 82 - 91 82 - 98 82 - 71 82 - 39 82 - 71 82 - 116 83 - 108 83 - 70 83 - 163 83 - 163 83 - 167 83 - 167 83 - 167 83 - 167 83 - 101 83 - 284 86 - 108				$\begin{array}{c} -140.000\\ -135.000\\ -134.000\\ -83.000\\ -99.000\\ -140.000\\ -101.000\\ -92.000\\ -92.000\\ -96.000\\ -96.000\\ -94.000\\ -94.000\\ -237.000\\ -142.000\\ -142.000\\ -142.000\\ -142.000\\ -115.000\\ -165.000\\ -105.000\\ -102.000\\ -139.000\\ -139.000\\ \end{array}$	$\begin{array}{c} -18 & 100 \\ -18 & 200 \\ -9 & 300 \\ -9 & 300 \\ -10 & 800 \\ -17 & 700 \\ -12 & 000 \\ -11 & 600 \\ -11 & 600 \\ -12 & 700 \\ -12 & 700 \\ -11 & 700 \\ -10 & 900 \\ -30 & 600 \\ -17 & 800 \\ -17 & 800 \\ -16 & 200 \\ -16 & 200 \\ -13 & 500 \\ -13 & 500 \\ -13 & 500 \\ -13 & 500 \\ -15 & 100 \\ -12 & 600 \\ -20 & 100 \end{array}$		

ANALYSIS METHOD- MASS SPECTROMETRY.

.

PAGE 10

SD-BWI-DP-061 Rev. 1

SAMPLE TYPE: SPRING ANALYSIS GROUP: STABLE

SAMPLING LUGATION	EVENT CODE	SAMPLE NUHUER	61316114) PPJ	D(CH4) PPT	C 1 3 PP T	red	018 PPT	SJ4 PPT
SP-BENNET C	SILL-218 79-13	SITE-218 79-13			-5.700 -14.200	-121.100 -128.000	-15.750 -15.000	-0.470 6.200
	85-382	85-362			-11.500	-124.000	-16.000	2.800
SP-BÉASON	SI1E-217	S11E-217		·		-125.200	-16 400	-1.490
SP-BUTTER	79-1	79-1 79-50			-14.600	-132.000 -137.000	-15.000 -15.500	-0.100
SP-JUN1PER	STIE-215 79-2	SITE-215 79-12		•	15 000	-132.700	-15.750	. 2.670
	81-115 83-372	81-115 83-372			-14.900 -16.000	-135.000 -135.000	-16.600 ·	0.900 9.500
SP-LD-SNIVELY	79-34	79-34			-13.700	-134.000	-15.400	-3.000
	82-362 83-306	82-362 83-396			-12.100 -13.500	-123.000 -127.000	-16,100 -15,600	- -5.000
SP-LOZIER S	79·6	79-26 79-44 79-6			-11.900	-127 000	-15.100 -15.100 -5.300	4.300
	81-186 83-316	81-186 83-316			-12.300 -14.600	-127,000	-15,400	3.500
SP-HAIDEN	79-100 83-420	79-100 79-67 79-96 83-420			-13.600	-122.000 -123.000	- 19 800 - 15 400 - 18 500 - 15 700	
SP-OUSERVATORY	81-119 83-433 84-392 85-359	81-119 83-433 84-392 85-359			-11.600 -13.700 -12.000 -11.900	- 13,000 - 15,000 - 13,000 - 11,000	-14 400 -13 700 -14 100 -14 700	* -3.100 3.000 4.100
SP-RATERDAD	79-76	79-60 79-76			-13.000	-12.000 -124.000	-14.900	
SP-RATTLESHAKE	511E-216 79-88	S1TE-216 79-87			- 13 300	- 27.000	-;3.400	-1.640
· · · · · · · · · · · · · · · · · · ·		19-88			-13,200		- 1 800	4.300
94. 941 ALT 1	13-43	79-37 79-49	•		-14.100	~129.000	- ~ J . GVU	-1.200

.

.

•

ANALYSIS METHOD- MASS SPECTROMETRY.

,

SD-8HI-0P-067 Rev. 1

•

PAGE II

.

.

SAMPLE TYPE: SPRING ANALYSIS GROUP: STABLE

SAMPLING - LOCATION	SAMPT ING EVENT CODE	SAMPLE NUHBER	C13(CH4) - PPT	D(CH4) PPT	C13 PPT	D PPT	018 PPT	534 PPT
SP-SULFUR	79-29 83-409	79-29 83-409			-13.700	-134.000 -127.000	-15.300 -15.700	4.000
SP-UNNAMED-02	79-75	79-75			-10.900	-126.000	-13.600	3.400
SP-UNNAHED+16	79-73	79-73 79-82 79-94			-14.500	-127.000	-15.300	·
SP-UNNAHED-26	79-98	79-54 79-98			-15.700		-14.900	12.100
SP-UNNAHED-29	79-18	79-16 79-48			-12.600	-136.000	-18.800 -16.200	0.500
SP-NP-SHIVELY	79-71 81-126 83-503	79-71 81-126 83-503			-10.900 -10.500 -12.000	-135 000 -129 000 -135 000	-16.100 -17.000 -17.100	2.900 -0.800
SP-11R2-07	85-343	85-343				-116.000	-15.300	
SP-UR6-20	85-340	85-346				-118.000	-15.800	
SP+1107+22	85-349	85-349			•	-105.000	-14 100	
DSP-WARM	84-358	84-358				-127.000	-15.700	
SP-483-04	85-333	85-333				-117.000	-14.900	
SP-YR5-08	85-336	85-336				-124.000	-16.000	
58-YK7-14	85-339	85-339				-128.000	-16.000	

.

ANALYSIS METHOD - MASS SPECTROMETRY.

1

.

SAMPLE TYPE: SURFACE ANALYSIS GROUP: STABLE

Sampi ing Location	SAMPI ING EVENT CODE	SAMPLE NUMBER	U13[CH4] PP1	D(CH4) PPT	C13 PPT	0 199	019 . PPT	534 PPT
COLD CREEK	84-302 85-223	\$1-302 \$5-223			-11.200 -10.000	-110 000 -119,000	-15.000 -15.500	
CR-DC-14	83-258	80-258			-8.700	-130.000	-17 700	
CR -HIS	SIIE-221	\$11E-221				-128.100	-15.600	2.730
CK-V-118	84-311 85-206 85-266 86-70 86-109	84-311 85-206 85-266 86-70 86-109			~7.500 -5.900 -6.200	-128.000 -138.000 -125.000 -125.000 -145.000 -135.000	-15.400 -17.700 -15.800 -17.200 -17.900	6.800 9.000 5.800
A K - 11K	85-210 85-269 86-67 86-118	85-210 85-269 86-67 86-118			-8 500 -11.500	-105.000 -103.000 -105.000 -105.000	-14.500) -13.700 · -14.100 -14.600	3.200
	<i>"</i> .	r 1				, • • • • •	** . 2 j	
	2	• <u>•</u> •				· . • • •	•	
		• •		,		1990 - S. 19	•	
127	Ŷ	.'				· · ·		
	• •	; ,					•	
	• •							
		•						
					· .	, <u>.</u>	•	,
								·
		• •						

nsat 1515

MALISIS METHOD+ MASS SPECTROMETRY

PAGE 13

SD-BHI-DP-061 Rev. 1

.

.

÷

SAMPLING LOCATION	SAMPI ING EVENT CODE	SAMPI E NUMBER	C13(CH4) PPT	D (CH4) PPT	C I 3 PPT	6 199	018 PPT	S34 PPT
RRL-OBA	82-40	82-40				-127.000	-16,600	
299-126-08	SI1E-165	SITE-165				-139.000	-15.900	2.200
299-£33-12	SI1E-169	SITE-169				-139.000	-17.100	3.400
699-500-25	86-55 86-130	86-55 86-130			-15.300	-135 000 -131 000	-16,800 -16,700	-0.700
699-524-19	85-213 85-291	85-213 85-291			-14.900 -14.800	-109.000 -106.000	-14,000 -14,400	5.800
694-11-45A	85-263 86-43 86-124	85-263 86-43 86-124			-10.200 -10.500	-129.000 -132.000 -126.000	-16.300 -16.400 -16.100	3.600 4.400
692-19-28	85-229 85-260 86-40 86-121	85-229 85-260 86-40 86-121			-12.300 -12.400 -12.500	-127.000 -131.000 -132.000 -132.000	-18 500 -16 500 -16 600 -16 700	5.200 6.500
52 53 639-19-88	85-278 86-64 86-127	85-278 86-64 86-127			-12 \$00 -14.500	-127.000 -132.000 -128.000	-18,100 -16,900 -16,700	1.600 7.500
รับ9-24-95 ชับ9-24-95	85-235 86-61 86-115	υ5-288 86-61 86-115			-16.300 -14.700	-128.000 137.000 -131.000	-15 400 -17.000 -18.600	7.400 5.900
699-42-40A	STIE-174	5138-174				-142.000	-15 700	3.000
699-49-55A	5178-182	SI1E-182			÷	-144.000	-17.000	-1.500
899-55-50C	SITE-193	SITE-193			•	-133.000	-13.500	7.900
699-60-57	517E-198	SITE-198				-143.000	-17.200	
899-86-103	85-203 86-73 86-112 85-294	85-203 86-73 86-112 85-294			-10.500 -11.000 -10.500	-138.000 -136.000 -138.000 -138.000 -133.000	-17,600 -17,700 -17,900 -17,200	1.000 7.500 5.400

ANALYSIS METHOD- MASS SPECTROMETRY.

.

a supervise of

PAGE 14

SD-BWI-DP-061 Rev. 1

.

.

•

\ \

THIS PAGE INTENTIONALLY LEFT BLANK

SD-8WI-DP-061 Rev. 1

.

APPENDIX B

•

_

					1 DEAT10	N: DB-01		•				,	
Samp 1 1 ng Event Codu	SAMPLE NUMBER	11A HG71	K MG/1.	ua Mg/l	MG NG/L	SI MG/L	CL NG/L	f Mg/l	\$04 Mg/L	193 14G/L	Lab Alkalinity	Field Alkalinity	. arga Batance
PRIEST RA	PIDS				PACKER	10P= 1080	.00	PACK	ER 5077"M=	1139.0	0		
81-65	81-65 81-70	101.000	16.000 15.900	0.490 0.500	0.150 0.150	35.500 35.500	47.500 47.400	7.210	16.300 16.200		132.000 132.000	134.000 134.000	1.050
32-27	82-27 82-87	99.700 100.000	15.300 15.300	0.430 0.490	0.100 0.100	35,400 35,300	46.600 47.500	7.080 7.140	18.300 16.500			136.000 136.000	0.118 -0.079
85-32	85-32 85-33	101.000 100.000	15.800 15.700	0.420 0.430	0.084	33,600 33,600	48.000 48.000	7.200	17.000		138.000 138.000	137.000 137.000	-0.017

1

SD-BHI-DP-061 Rev.

• •

PA's:

LOCATION: DB-07

Samp 1 i ng Evant Goda	SAMPLL NUMBER	NA 14171	к нд/1.	CA MG/L	MG MG/L	SI NG/L	CL MG/L	F MG/L	SO4 MG/L	ND3 MG/L	Lab Alkalinity	Field Alkalinity	Charge Balanco
MABION					PACKER	TOP= 597	. 00	PACKE	ER воттон≠	812.0	0		
19-80	CP121 79-89	118.400	14.200	1.600	0.090	41.500	55.600	7.300	2.100				
89-413	83-410 83-448	117.000 114.000	12.600 12.300	1,460 1,430	0,100 0,100	38.370 37.400	56.500 57 100	7.680 7.950	0.900 0.390		170.000 170.000	170.000 170.000	0.595 -0.877
85-215	85-216 85-217	$\begin{array}{c}113 & 100\\112 & 900\end{array}$	12.300 12.300	1.390 1.360	0 100	36.800 36.600	52.700 53.000	8.300 8.400	0.860 0.860		163.000 163.000	164.000 164.000	0.859 0.631

SD-8HI-DP-061 Rev.

-

FAGE 2

					146504	0H 0B-09						44 A	61	3
Samp Ling Event Cude	SATIPLE NUMBER	NA MG/1	к MG/L	CA MG/L	1:Ki 11G/1	SI HG/L	CL HG/L	™G/L	04 NG/1	՝ ԿՈՅ MG/ Լ	Lab Alkaliniiv	Field Alkalinity (.U.S. Ralar	- ge
MAUTON 79-28	P.0145	35 144			PACKER	100+ 461	.00	РАСК	ER BOTTOM-	589.00)			1C 0
83+4/2	79-28	75.100	12 200	0 560	0.130	31.400	9.800	0 100	1 200					
	83-472	71 000	10 520	0 450 0 450	0 100 0 100	27 400 27 400	10 200 10 100	0 840 0.840	14 SDO 14 400		138 000 138 000	139 000 139 000	- N - N	442 313

SD-BWI-DP-061 Rev.

*---

LOCATION: DB-11

.

Sampling Event Code	SAMPLE NUMBER	NA MG/L	к ИG/L	CA HG/L	14G 14G/1	SI MG/L	CL HG/L	F NG/L	504 HG/1	NO3 MG/L	Lab Alkalinity	Field Alkalinity	Charge Balance
MABION					PACKER	106= 2	709.00	PACKER	BOTTON=	1020.00	1		
85-15 85-4	85 - 15 85 - 4								:		141.000 140.000	140 000 143 000	•
PRIEST RA	P1D5				PACKER	10P= 10	020.00	PACKER	BOITOM	1210 00)		
85-18	85-18 85-19	31.400 31.100	9 720	14.700	7.020	28.90	00 4 .900 00 5.000	0.800			140.000	141.000	
86-52	86-52 86-53	32 300 32 700	9 450 9 640	14 900	7.180	00 40 30 40	00 4 180 00 4 160	0 770 0 770			141.000 141.000	140.000	

334

SD-BWI-DP-061 Rev.

PAGE

LOCATION DB-15

Sampling Event Codu	SAMPLE MUMUE R	NA MG/1.	K MG/L	ca Mg/l	14G 14G/1	SI NG/L	CI. HG/L	F HG/L	504 MG/I	ND3 FG/L	Lab Alkalinily	Field Alkalinity	2. 1796 Balance
FRENCHIAN	SPRINGS				PÁCKER	106+ 1300.	00	PACKE	ER BOTTOM=	1343 00		•	
19-62	79-62 79-84	155.000 160.000	14 500 17 000	2 200 2 400	0 240 0 300	41 000 40 300	97.800 98.000	16 900 17.000	20.100. 20 100	2 900 0.500		146,800 146,800	1.350 0.551
18 80	79-86 79-90 79-95	164,000 164,000	14 700 16,600	1 110 2 700	0.230 0.400	39.500 43.500	94 600 96,800	. 15 800 17 000	19 300 19 800	0.500 0.500		161 200 161.200 161 200	3 750 3 042

SD-8WI-DP-061 Rev.

LOCATION: DC-06

Sampling Event Code	SAMPLE NUMBER	NA HG/L	к нд/l.	CA MG/L	14G 14471.	SI HG/L	CL NG/L	1 11G/1	SU4 MG/L	N03 HG/L	Lab Alkalinity	Fiuld Alkalinity	Charge Balance
ROCKY COD	LEE FT TO T	ID BELOW	UMTANUM		PACKER	TOP= 2260	<u>oo</u>	раскі	R BOTION-	4333.00)		
511£-214 80-238	511E-214 80-201 80-238	233.000 217.000 214.000	3 200 3.260 3.560	1.300 1.170 1.270	470 000 0 010 0 020	53 708 61,800 64,700	125.000 129.000	41 000 39 900	96 000 95,200			$\begin{array}{c} 163 & 100 \\ 166 & 600 \\ 166 & 600 \end{array}$	63.449 -7.131
UNIANUM FI	B AND BELOW	4			PACKER	TOP- 3242	. 00	PACK	ER BUITOM-	3529.00	•		
80-15 81-82	80 - 15 80 - 70 81 - 76 81 - 82	361.000 368.000 359.000 360.000	4.060 4.200 3.350 3.380	2 140 2 240 2 640 2 700	0.025 0.025 0.001 0.010	34 500 35,000 38 500 38 500	211.000 34.100 289.000 289.000	35 400 24 100 35 600 35 600	189 000 184 000 177 000 177 000	1 300 6 200	83.000 83.000	83.200 83.200 84.000 84.000	8 451 34.936 1.416 1.567

PAGE 6

SD-BWI-OP-061 Rev.

LUCATION: DC-07

Sampling Event Code	SAMPI E NUMBER	NA 140/1	к MG/L	CA MG/L	MG MG/L	SI MG/I.	CL MG/L	F MG/1.	SUA MG/L	NDJ MG/L	Lab Alkalinity	Field Alkalinity	l sarge Balance
GLANDE KU	INDE				PACKER	TOP- 4830	.00	PACK	ER BOTTOM	5008.00			
80-192 80-198	80-1/8 80 168 80 177 80-190	416 000 473 000 438 000 420 000	5 800 5 500 6 080 6 250	4 540 4,600 11 000 17,700	0 018 0 020 0.910 1.200	57 400 57.700 75.200 77 500	418 000 420.000 386.000 332.000	22 000 22 200 22 100 20 800	173 000 175 000 177 000 153 000			108.000 108.000 197.600 197.600	-0 644 1 018 0 626 4,900
LOCKY COU	ULL LR AND	COHASSETT			PACKER	10P= 2952	. 00	PACK	er aution-	3082.00			
80-11 80-11	80-11 80-19 80-39 80-98	199.000 198.000 133.000 134.000	5 000 5.100 5.200 5 000	2,400 2,400 2,900 2,800	0 060 0 060 0 220 0 210	43.200 43.600 35.300 35.200	97.500 96.800 40.900 39.600	23 300 24 400 10,000 10,800	78 700 77 500 23 400 25 000			141.200 141.200 177.400 177.400	2 334 2 398 3 102 2 851
HOCKY CON	NEE MRD D	мтанин			PACKER	TUP= 2780	.00	FACK	ER ROTTOM	3948.00			
82-10	82-10 82-10A 82-10B	259,000	3.330	3.460	0.100	45.000	137.000	39,000	83,000		141.000	160.000 160.000	3.069
82-20	82-33 82-23 82-56	258.000 235.000 226.000	3 310 3.060 2 810	3.470 3.730 3.820	0 100 0.100 0.100	45 000 45,900 40,600	136.000 126.000 126.000	29 000 37 000 38 300	83.000 74.000 74.500		141.000 158.000 158.000	180.000 180.000 180.000	3 010 -0 693 -2.608

٥

3 1:1 1

 $Y \to Y$

SD-BHI-DP-061 Rev. 1

LOCATION: DC-12

Sampiing Évent Code	SAHIPI E NIAIBER	NA HG/L	K MG71	CA HG/I	AG HG/L	SI MG/L	CL 11G/L	F HG/L	SO4 NG/L	NOJ MG/L ·	Lab Alkalinity	Field Alkalinity	Charge Balance
ROCKY COU	IEE FI				PACKER	10P= 2408	. 00	PACKE	8 BOTTOM=	2446.00)		
80~101	80-101 80-169	143 000 148 000	15 700 16,100	2,280 2,060	0.760 0.710	51 800 50 800	107 000 107 000	13 000 13 100					
80-174	80 143 80 174	148 000	15 000	1.170	0.051	28 900	103.000 127.000	12 600 13.600	1 700		•	144.650 144.650	-2.430

SD-BWI-DP-061 Rev.

8

PAGE

LOCATION, DC-14

Sampling Event Code	Sahipi L Nin4ul R	NA MG/L	h NG/1	CA 11G/1	ng Ng/L	SI HG/L	CI MG/L	F HG/L	SU4 4G/L	NO3 MG/L	Lab Alkalinity	Field Alkalinity	Charge Balance
GRANDE RI	HIDE				PACKER	TOP= 3260	.00	РАСК	ER BOTTOM=	3335.00)		
82-315 82-8 83-150 83-152 63-154 83-156 83-156	82-315 82-31 82-42 83-108 83-150 83-150 83-150 83-153 83-191 83-156 83-197 83-157 83-157 83-157	323 000 316 000 3175 000 336 000 336 000 336 000 336 000 336 000 336 000 336 000 337 000 338 000 337 060	5.770 5.560 5.680 5.770 5.730 5.730 5.730 5.730 5.730 5.730 5.730 5.780 5.810 5.780 5.880 5.880	1.300 1.270 1.410 1.560 1.540 1.320 1.290 1.290 1.270 1.320 2.070	0 100 0 100 0 103 0 103 0 103 0 100 0 103 0 100 0 103 0 100 0 103 0 100	51.600 51.800 54.300 54.700 53.100 54.800 54.800 54.800 53.300 54.800 54.800 54.300	247 000 249 000 253 000 254 000 254 000 254 000 254 000 253 000 253 000 253 000 254 000	44 000 49 000 49 000 49 000 49 000 49 000 49 000 49 000 50 100 50 100 50 300 48 400 48 400 50 700 48 900	134.000 134.000 140.000 141.000 141.000 141.000 141.000 141.000 141.000 141.000 140.000 140.000 140.000		108 000 108 000 110 000 110 000 110 000 110 000 103 000 103 000 114 000 114 000	109.000 109.000 109.000 120.000 120.000 110.000 110.000 123.000 123.000	-0.137 0.053 0.055 -1.207 0.203 -0.370 -0.932 -0.816
83-178 83-189 83-261 83-265	8 1-103 8 3-178 8 3-123 8 3-123 8 3-203 8 3-261 8 3-266 8 3-266	327 000 328 000 331 000 330 000 332 000 333 000 336 000 326 000	5 690 5 710 5 850 5 880 5 870 5 880 5 820 5 660	1.280 1.280 1.290 1.300 1.300 1.359 1.300 1.300	0 100 0 103 0 100 0 100 0 100 0 100 0 100 0 100	53,400 53,400 53,400 53,100 53,100 53,700 53,900 55,300 54,500	254.000 253.000 254.000 254.000 251.000 251.000 251.000 251.000	42 200 42 200 49 200 43 200 43 200 43 200 43 200 50 100 50 100	140,000 140,000 141,000 141,000 141,000 138,000 138,000 133,000 140,000		114,000 114,000 107,000 109,000 109,000 109,000 110,000 110,000	109.000 109.000 118.000 118.000 118.000 118.000 118.000 118.000 118.000	-1.268 -0.985 -1.555 -1.700 -0.749 -0.598 -0.547 -1.954

ដា ស្ត្រ ស្ត្រ SD-BWI-DP-061 Rev,

PAGE 9

Sampling Event Cude	SAMPLE NUMBER	NA HG/L	K NG/L	(; A MG/1	444 14671	SI HG/L	CL NG/L	5 *6/1	354 MG/1	NO3 NG/L	Lab Alkalinity	Field Alkalinity	. затур 8. алсе
FRENCHMAN	SPRINGS				PACKER	10P- 2266	.00	PACKE	R BOTTOM-	2371.0	0	•	
32-202 82-231	82 - 202 82 - 228 82 - 214A 82 - 214B 82 - 214B 82 - 279A 82 - 279B	217.000 227.000	30,200 31,500	3.870 4.080	0.100 0.100	33 700 34.200	263.000 265.000	i. 300 12,400	\$ 100 5.950		•	107.800 107.600 107.600 107.600 107.600 107.600	0 324 2,289

LOCATION DC-16A

. .

SD-BWI-DP+061 Rev.

LOCATION: FORD

Sompling Event Gode	SALIPLE NULIDER	HA HG/L	к 11971.	CA MG/L	11G 11G/1	\$1 HG/L	CL NG/L	F NG/1	504 MG/L	хоэ Mg/l	Lab Alkalinıly	Field Alkalinity	Charge Valance
PRIEST RA	PIDS				PACKER	TUP- 620	. 00	PACK	ER BOTTOM=	117.0	0		
SIIE-206 SIIE-207 SIIE-219 85-188 85-188	STTE-206 STTE-207 STTE-219 85-188 85-189 85-303 85-303 85-304	27.000 26.000 26.700 26.700 26.500 26.200 27.400	8 500 7 300 5 600 7 240 7 200 6 910 7 390	19 000 18 000 17 600 18 500 18 600 18 400 19 500	12 000 11 000 6 300 10 600 10 600 10 400 10 900	30 000 26.000 24 700 27.600 27.600 31 300 31 100	5 800 4 400 4 870 4 800 4 800 4 640 4 640	0 500 0 700 6 620 0 790 0 700 0 850 0 640	1.800 0 200 2.000	0.100	148 000 148 000 148 000 148 000 148 000	155.000 148.000 154.100 145.000 145.000 145.000 150.000 150.000	-0.020 -0.07! -10.445

SD-8%1-DP-061 Pev.

PAGE 10

LOCATION RRL-02

Sampling Event Code	SAMPLE NUBBER	MA MG/L	Х МG/1	Ch HG/L	MG MG/L	ST MG/L	CI. HG/L	MG/L	SO4 11G/L	NUJ 14G/L	Lab Alkalinity	Fiold Alkalinity	C arge Balanco
CONASSETT	FB				PACKER	10P= 3247	.00	· · · · CKI	ER BOTTOM=	3344.0	0		
82-401	82-401 82-414 82-416	337 000	13 800	2.220	0.100	44.700	403.000	20 000	4,200		159.000 159.000 159.000	165.000 165.000 165.000	-2 190
84 - 1	82-479 84-43 84-47	337.000 351.000	13,900 13,400	2 190 2.360	0 100 0 100	44 500 49,200	406 000 420.000	19 000 59 900	4.200 0.970		159 000 148.000 148.000	165 000 149 000 149 000	45.) 0.485
	84-1	353.000	13.500	2.350	0 100	49 500	416.000	14 000	0 920		145.000	149.000	1.131

PAGE 13

SD BWI-DP-(C) Pev.

LOCATION. SP-JUNIPER

Samp Ling Event Code	SAMPLE NUTIBER	HA MG/L	K MG/L	сл Мб/1	13G 14G/1	S1 MG/L	CL MG/L	F HG/L	504 MG/L	NO3 MG/L	lab Alkalinity	Fiuld Alkalinity	C'irge Balance
					PACKER	TUP= NOT	APPLICABLE	PACK	ER BOTTOM	= NOT AP	PLICABLE		
ST1E-215 79-2	S11E-215 79-12	19.800	5.200	23 600	10.300	23.300	4.670	0 500	18 000			156.600 152 800	-: 802
	79-2 79-41	30,000 28,800	6900 6.600	24.700 23.500	17.800 16.900	26.100 24.900	6.900 6.900	0.600 0.600	30.900 30 500	0.600 0.600		152,800 152,800	2.994
81-115	81-115 81-161	24.190 24.640	5850 5950	23.950 24.160	15.240 15.360	27.130 27.270	4 630 4 630	0 530 0 530	12 000		148.000 146.000	145.000 145.000	4 913 5 495
83-372	83-305 83-372	24.570 24 500	5.910 5.800	27.810 25.350	17 000 16 570	26.890 26.450	8.110 6.110	0.460 0.460	28 750 28 570		153.000 153.000	154.000 154.000	1.661 -0.380

دی 14SD-BWI-DP-061 Rev.

PAGE 17

LOCATION: SP-LOZIER

Cvent Cude	SAMPLE NUMBER	NA LIG/L	K MG/L	C4 NG/L	11G 14G/4	ST HG/L	CL HG/L	1 NG/L	NG/L	ND3 MG/L	Lab Alkalinity	Field Alkalinity	(inge Balance
					PACKER	108= NOT	APPLICABLE	РАСКЕ	R 80110H	нот ар	PLICABLE		·
196	/9-26 79-44 79-6	7.700	2.000	23 400 23 000	0.300 9.100	20 900 20 700	1,900 1,900	0.500	4,200	4 800		98 700 98 700 98 700	2 203
81-180	81-116 81-186	7.850 7.770	1.260	24 080 24.010	8.940 8.880	23.340 23.220	3.730	0 310 0 310	7 140 7 140	10 250	91.420 91.420		1 022
81-016	83-316 83-343	7 810 7.720	1.410 1.480	24.580 24.580	8 870 8.860	22.760 22.450	5.030 5.030	0.270 0.270	10 000 10 140	8.480 8.680	89.000 89.000	93 000 93 000	-0 620 -0.313

PAGE 19

SD-BWJ-PP. OGJ REV.

LOCATION. SP-OBSERVATORY

Code	SAMPI L HUMBE R	NA 14671	K HG/l.	CÁ NG/L	PG MG/1	51 14G/L	CL HG/L	: 273/1	SD4 MG71	NO3 MG/L	Lab Alkalinily	Fiold Alkalinity	Charge Balance
					PACKER	TUP= NOT	APPLICABLE	PACK	ER BOILOM	NOT AP	PLICABLE		
81-110	81-119	1.540	1.740	21.990	10 570	18.230	3.030	3 .190	10.330	9 400	91.970		0 985
	81-157	8.100	1 830	25 680	10 710	18.290	3.030	<u> 190 - 190 </u>	10,330	9.400	91,970		1 802
83-433	87-433	7 400	1 820	22 690	10 930	17 540	3.280	Ů. 160	12 520	5.590	91.000	96,000	0.587
	87-461	7.420	1 900	23.110	11.070	17.730	3.280	0 160	12.520	5.480	91.000	96.000	1.356
	83-492										91,000	000 30	
84-329	84-329	7.380	1.830	22.500	10.000	18.100	3.500	0.400	11.700	3.500			
	84-366	7 330	1.790	22.200	10.800	18.000	3.400	0 0 0 0	12 100	4 000			
84 192	84-310	7.430	1.810	22,600	11 000	17.400	3,140	0 130	13 090	6 230	94 100	96 000	1 285
	84-392	7.830	2.000	23,000	11.200	17.600	3 170	0 30	13 170	6 300	94 000	000 30	415
35-359	85-359	7 100	1 580	21.100	10 400	17 900	3 020	0 140	11 300	4 510	97 000	91 000	0 760
	85-360	7.200	1 480	21 500	10 600	17 900	3 0 7 0	0 210	1 200	4 120	. 03,000	01 000	1 763
86-178	86-178	7 420	1 700	22 700	10 900	12 000	3 260	5 200	2 000	8 8 10	04.010	02 000	525
	86-179	7.360	1.600	22 500	10.800	16.900	3 230	0.190	,5,000	6.480	94,000	93,000	i.211

SD-BHI-DP-061 Dev

PAGE 21

LOCATION: SP-SULFUR

Sampling Event Code	SAMPLE NUMBER	NA HG/L	K NG/L	CÁ MG/L	ме 11671	\$1 MG/I	CL HG/L	MG/L	504 MG/1	N03 HG/L	Lab Alkalinity	Field Alkalinity	Charge Balance
					PACKER	108+ NOT	APPL ICABLE	раскі	ER BOTION-	NOT API	PLICABLE		
/9-29	79-29 79-38	9,900 9,800	3 600 3 600	23.800 23.600	10 100 10 100	24 100 24,000	6.300 6.000	0.300 0.200	25 700 25 000	11.600 11.300		97.000 97.000	-5 828 -5,528
83-409	83-409 83-442	9.870 9.780	2 970 2 890	25 820 25 500	9 330 9 200	25.640 25.390	5.220 5.200	0.340 D.330	11 500 11.500	5.160 5.170	102.000 102.000	99.000 99.000	1 857 1.235

PAG1 23

SD-8WI-0P-061 Rev.

10CA1108. SP-082-07

Sampling Event Code	SAMPLE NUMBER	NA NG/L	X MG/L	DA MGVL	MG MG/L	SI NG/L	Cl MG/I.	F MG/L	504 MG/1	NO3 MG/L	Lab Alkalinity	Field Alkalinity	Charge Balance
					PACKER	TOP+ NOT	APPLICABLE	PACKE	R BOTTOM=	NOT APP	LICABLE		
85-343	85-343 85-344	8.890 8.930	1 700	27 100 26 300	9.670 9.620	24.200 24.200	2.490	C 410 C 400	7.390	1 490	111 000 111 000	111.000 111.000	1 741
22-128	86-159 86-160	8,920 8,990	1 530	28,700 28,800	9 830 9 880	19.300 19.400	4.720 4.620	0 360	11 700 11 500	5.160	108 000	109.000 109.000	Ú 168 0.578

· ·

SD-BWI-DP-061 Rev.

, . . .

-AGE 25

LOCATION SP-UR/-22

	Sampling Event Code	SAMPLE NUMULR	NA 14G/1	K 14G/1.	C+\ MG/L	1445 1467/1.	5 I 146/1	61. MG/L	116/L	Sila MG/L	NO3 MG/L	Láb Alkalinity	Field Alkalinity	Ch ge Balance
•		•				PACKER	TOP+ NUT	APPLICABLE	PACKE	R BOITOM-	NOT AP	PLICABLE		
	85-349	85-340 85-350	11,200 11,100	2 3/0 2 320	17 300	12.300 12.300	23 000 23 100	3540 3,490	0 470 0 470	16.300 16.200	4 880 5 290	80.000 90.000	92.000 92.000	0.836 0.654
	86-153	86-153 86-154	14.600 14.500	1,830 1,940	19.800 19.900	12.100 12 200	20 900 21 300	7.030 7 100	0 520 0 520	23 600 23 700	8 120 8.200	92.000 92.000 •	93 000 93,000	-0.796 -0.676

. .

SD-8WI-DP-061 Rev. 1

PAGE 27

.

. .
LOCATION. SP-YR5-08

Sampling Event Code	SAMPI E NUMBER	NA HG/L	K 14671.	ua Ng/l	14G 1-HG/L	SI MG/L	CL NG/L	МG/1	504 MG/L	NÓĴ MG/L	Lab Alkalinity	Field Alkallnity	C argu Balance
				·	PACKER	108= NOT	APPLICABLE	PACKI	ER BUTTOM=	NOT AP	PLICABLE		
82-339	85-306 85-307	10 900	2.580	20.200 20.300	9 180 9 200	23.100 23.500	5.550 5.620	0,380	10 120		94.000 34.000	95.000 95.000	0.348 0.184
86-147	86-147 86-148	12.600	2 690 2 720	33,500 33,600	15 400 15 400	20 000 19,800	16 900 16 900	370 360	16 200 18 900	39.800 39.700	87 000 97 000	96.000 96.000	479

ŧ

PAGE 29

SD-BWI-DP-061 Rev.

مىر

SD-BWI-TI-329 REV O

ļ

Figure 12. Composite that the $\alpha_{\rm eff}(a_{\rm Eff})$ ical Log Traces for the track to the task and Rocky Coulon Flower of the task.

SD-BWI-TI-329 REV 0

Figure 13. Composite Borelate Graphysical Log Traces for Rocky Coules Floured 111 77.

Figure 14. Composite Parehote Geophysical Log Traces for Coharcett Flow at RRL-2C.

SD-BWI-TI-329 REV 0

• • •

.

SD-BHI-11-329 REV 0

· . .

• .

LOCATION: STEN-L

. ••

:•

 ~ 1

• .

۰.

:

1 ۰. •• 24

> •• a'

Sampling Event Code	SAMPLE NULLER	NA MG/L	K MG/L	CA MG/L	MG MG/L	ST 14671.	CL HG/L	Máji	SU4 HG/L	N03 MG/L	Lab Alkalinity	Field Alkalinity	Cha ge Balance	•
PRIEST RA	PIDS TO UP	PER FRENCH	MAN SPRIN	6 5	PACKER	10P= 469	. 00	FACK	ER BOTTOM+	970.0	0			
85-252	#5-252 #5-253	25,800 25,800	5 610 5 510	20.400 20.300	12.100	27.400 27.400	5.100	0 400	•		151,000 151,000	151 000		
85-297	85-297 85-298	26.300 25.100	6.120 5.670	21.200 20.100	12.800	29.700 29.600	4.930 4.930	0 590	0.190 0.180 .		156.000	156.000 156.000	1 749 -0.646	
86-31	86-31 86-32	25.200 25.400	5.720 5.710	20.300 20.400	12.600 12.600	27 300 27.400	4.870 4.830	0 570 0.570	0.190		157,000 157,000	157.000 157.000	-0.294 -0.074	
						•			•					
						•				•				
														ŝ
														¥ ₽
												•		II-D
1.1														0-q
351														51
														tey.
														٠
													•	
										•				
					•									
									•		• • •			
										•		•		
										•				

PAGE 31

LUCATION. 299-E26-08

Sampling Event Code	SAMPI E NUTUER	NA MG/L	K NG/1.	CA MG/L	HQ MQ/L	SI HG/L	CL NG/L	F. MG/L	504 MG/L	ND3 NG/L	Lab Alkalinity	Field Alkalinily	Charge Balance
RATTLESNA	KE RIDGE				PACKER	108= 326	.00	PACKE	ER BOTTOM=	396.0	0		
511E-166 511E-167 511E-168	STTE-166 STTE-167 STTE-168	20.000 18.000 19.000	10 400 9 900 9 900	19.000 21.000 19.000	8 200 9 200 9 200	79 000 79 000 79 000	7,900 7,600 8,100	6 510 0 580 0 530	35.000 18.000 37.000			89.000 103.000 104.000	-] 493 2 919 -5 484

Υ.

SD-BHI-DP-061 Rev.

1

PAGE 33

• 2

10CATION: 699-S03-E12

Samp 11ng Event Code	SAMPI E NUMBER	NA MG/L	K MG/L	CA MG/1	MG HG/L	SI MG/L	CL MG/L	د ۲۰۲۴ ل	504 MG/L	NO3 NG/L	Lat Altalinity	Field Alkalinily	urarge Balance
Unconf Ine	D				PACKER	TOP= NOT	AVAILABLE	PACK	ER BOTTOM	NOT AV	AILABLE		
SI 1E - 141 ST 1E - 22	STIC-141 STIE-22	13.000	4 700 7.000	24.000 26.000	8.100 3.100	15.000 15.000	4.600	0.300 0.500	15 000 25 000	14 000 13,700	98.000	82 000	-1.812 -0.828

SD-8WI-DP-061 Rev.

PAG2 35

Sampiing Event Code	SAMPLE NUMBER	NA MG/L	к MG/L	са НG/1	MG HG/L	SI NG/L	CL Hg/l	MG/1.	304 MG/1	NDJ MG/L	Lau Alkalinity	field Alkalinity	Charge Balance
UNCONF INC	þ				PACKER	TOP= NOT	AVAILABLE	PACK	ER BOTTOM+	NOT AV	AILABLE		
STIL-46 STIE-84	SIIE-46 SIIE-84	32 000 36.000	7.600 7.800	41.000 36.000	9.800 8.900	18 000 18.000	22.000 22.000	1.300 1.300	12.000 13.000	036.0 006.C		160.000 172.000	,1 305 -1,926

SD-BWI-DP-061 Rev.

PAGE 37

LOCATION: 699-512-03

Sampling Event Code	SAMP1 E NUMBER	NA MG/L	к MG/L	ca Hg/l	NG NG/L	SI NG/L	CL • MG/L	F MG71	\$04 MG/1	ND3 HG/L	Lab Alkalinity	Field Alkalinity	Charge Balance
UNCONFINE	þ				PACKER	TOP- NOT	AVAILABLE	PACKE	R BOTTOM.	VOT AV	AILABLE		
5 ! TE - 143 ST 1E - 45	STTE - 143 STTE - 45	24.000 23.000	5.800 5.600	42.000 43.000	9,600 9,800	15.000 15.000	17.000 18.000	0 400 0 600	44 000 43.000	8 400 1 900	130.000	120.000	-0.904 1 893

PAGE 39

SD-BWI-DP-061 Rev.

LUCATION. 699-10-E12

Samp 1 ng Event Code	SAMPLE NUMBER	NA 14071	K NG/L	MG L	143 146/L	S1 MG/L	CL 146/1	F MG/L	SU4 MG/1	NOJ MG/L	Lab Alkalinity	Field Alkalinity	Charge Valanco
UNCONF THE	3				PACKER	TOP- NOT	AVAILABLE	PACKE	R BOTTOM=	NOT AV	ATLABLE		
SI1E-147 SI1E-247	STIE - 147 STIE - 247	19.000 19.000	5 500 5,900	45.000 49.000	14.000 16 000	20.000 19.600	8,200 9,400	0 300 0 300	29.000 28.000	17 000 18.000	160.000 178.000		N.451 0.258

1

->

PAGE 41

SD-5WI-DP-061 Rev.

. LOCATION: 609-14-38

Sampling Eveni Code	SAMPLE NUMBER	NA MG/L	K MG/L	JA MG/L	MB MG/L	SI HG/L ·	CL MG/1.	MG/L	504 MG/L	103 MG/L	Lab Alkalinity	Field Alkalinity	Salance
UNCONF INE	D				PACKER	TOP+ NOT	AVAILABLE	PACKE	ER BOTTOM=	VA TOK	AILABLE		
STTE-61 STTE-86	SIIE-61 SIIE-86	17.000 17.000	6.000 5.700	34.000 30.000	11.000 9.400	22.000 23.000	4.200 4.000	0.500 0.400	20.000	0.580	I	140,000 148,000	i.943 -5.749

1

LUCATION: 699-15-26

Sampling Event Code	SAMPLE NUMBER	NA 14G/L	K MG/L	CA MG/L	MG MG/L	SI NG/L	CL MG/L	F ነገር/L	504 MG/L	ND3 MG/L	Lab Alkalinity	Field Alkalinity	Charge Ba'ance
UNCONFINE	D				PACKER	TOP+ NOT	AVAILABLE	РАСК	ER BOTTOM=	VA TOK	AILABLE		
STIE - 24	SI 1E - 150 SI 1E - 24	23.000 22.000	6.300 7.300	48.000 46.000	12 000 12.000	17.000 17.000	9.900 9.800	0.400 0.500	60 000 • 57.000	26.000 29.700	130.000	124.000	- ひ、274. - ひ、252

7AGE 45

LOCATION: 699-19-43

Sampling Event Code	SAMPLE NUMBER	NA HKJ/L	K MG/L	CA MG/1	MG MG7 L	si Hg/l	CL MG/L	ч Мак:	SD4 MG/L	N03 Mg/l	Lab Alkalinity	Field Alkalinity	21 rg+ Ballance
UNCONF I NEI	þ				PACKER	TOP= NOT	AVAILABLE	PACKE	ER BOTTOM-	NOT AV	AILABLE		
SITE-121 SITE-48	SITE-121 SITE-48	19.000 18.000	5.000 5.700	44 000 43,000	10 000 11.000	14.000 13.000	7.400 6.900	0 400 0.500	71.000 67.000	12.000 2.300		115 000 110,000	-2 609 1.613

SD-BHI-DP-OCI Key.

143E 87

LOCATION: 699-19-88

Sampling Event Code	SAMPLE NUMBER	NA 14671.	K MG/1.	CA Mg/l	11G 14G/L	SI MG/L	CL MG/L	F MG/L	SO4 MG/L	1403 MG/L	Lab Alkalinity	Field Atkalinity	Charge Balance
UNCONF INE	(D				PACKER	10P+ NOT	AVAILABLE	FACK	EN BOTTOM	NOT AV	AILABLE		
85-278	85-2/8	12.200	3.250	27 000	10.900	22.800 22 800	3.760	0.420	14,000	0.420	116.000	113.000	3 090
86-12/	86-127 86-128	11.500	3.480	27.000	10.600	21.100	3.560	0 350	13.400	1.890	118 000 118 000	117.000	0.720
86-64	86-64 86-65	11.600 11.700	3.330 3.300	26.600 26.800	10 400	22.200 22.200	3,590 3,600	0.350 0.360	13 500 13 700	0.790 0.790	116.000 118.000	114.000 114.000	1.447

SD-BWI-DP-051 Rev.

PAGE 49

LOCATION. 699-27-08

Samp Ling Event Code	SAMPLE NUMBER	NA HG/L	K MG/L	CA Mg/l	14G 14G/1.	SI HG/L	C1 MG/1	van.	504 MG/L	NO3 MG/L	Lab Alkalinity	Field Alkalinity	Churge Ba'ance
UNCONF INE	Ð				PACKER	TOP= NOT	AVAILABLE	PACKE	R BOTTOM=	HOT AV	AILABLE		
SI 18 - 30 SI 18 - 5 SI 18 - 50 SI 18 - 76 SI 18 - 87	STIE-30 STIE-S STIE-S0 STIE-76 STIE-87	19.000 19.000 20.000 20.000 21.000	6 900 6 400 6 300 6 700 6 400	54 000 56 000 55 000 54 000 48 000	11 000 12.000 12.000 13.000 13.000	16,000 17,000 17,000 16,000 17,000	13.000 13.000 12.000 11.000 13.000	0 300 0.200 0.300 0.300 0.300 0.300	50 000 46 000 52 000 49 000 56 000	57 400 58.000 13.100 13.100 58.000		122.000 119.000 110.000 120.000 123.000	-1 991 1.286 10 620 9.674 -5.153

0

SD-BWI-DP-051 Rev.

LOCATION: 699-32-22

Sampling Event Codu	SAMPI E NUHBER	NA MG/L	K MG/L	CA HG/L	MG MG/L	SI MG/L	CL 14G/L	Ma/L	SDA MG/L	ноз Mg/l	Lab Alkalinity	Field Alkalinity	Chaige Balanco
UNCONF THE	þ				PACKER	TOP= NOT	AVAILABLE	PACK	ER SOTTOM=	NOT AV	AILABLE	•	
S]1E-1/ SI1E-27 SI1E-51 SI1E-65 S11E-89	SITE-17 SITE-27 SITE-51 SITE-65 SITE-89	31.000 29.000 29.000 30.000 29.000	7.000 7200 6.500 6.900 6.600	53.000 53.000 51.000 50.000 46.000	14,000 13.000 13.000 14.000 13.000	14.000 15.000 14.000 14.000 14.000	17 000 17.000 28.000 14.000 15.000	0 400 0 400 0 400 0 400 0 400 0 400	66.000 65.000 64.000 61.000 66.000	75.000 61.900 16.100 16.500 75.000		105 000 - 113 000 110 000 110 000 115 000	1,325 0 461 4 550 10 516 -5,268

SN-BWI-OP-OG1 Rev.

~

PAGE 53

LOCATION, 699-33-42

. ;

1

ł.

. .

Sampling Event Codu	SAMPLE NUMBER	NA HG/L	Х МG/1.	CA NG/L	MG NU/L	SI NG/L	CL Mg/L	: MGZL	501 MG/L	NOJ MG/L	Lau Alkalinity	Field Alkalinity	Chargo Balance
UNCONF INE	D			·	PACKER	10P= NOT	AVAILABLE	PACK	R BOTTOM	NOT AV	AILABLE		
S11E-22 S11E-20 S11E-52 S11E-67 S11E-91	SITE-12 SIVE-29 SITE-52 SITE-67 SITE-91	31.000 29.000 29.000 29.000 31.000	6 900 7 000 5 300 6 400 6 200	41.000 38.000 37.000 33.000 35.000	13.000 12.000 12.000 13.000 13.000 12.000	18.000 19.000 18.000 18.000 20.000	3.100 11.000 12.000 14.000 16.000	0 800 0 700 0 700 0 700 0 800	2.400 50.000 55.000 52.000 53.000	49 000 34 500 7.100 6.000 24.000		107.00% 117.000 110.000 110.000 115.000	
										- - 			•
						•				Ι.			
												•	
										`			
285													1
													۲
													•••

PAGE 55

SD-BWI-DP-061 Rev,

LOCATION: 699-34-42

Sampling Evant Cude	SAMPI E NUMBER	NA HG/L	к MG/L	ca Mg/l	14G 1407L	SI MG/L	CL MG/L	ғ MG,1	\$04 MG/L	ND3 MG/L	Lab Alkalinity	Field Alkalinity	Charge Balance
UNCONF INE	n				PACKER	TOP- NOT	AVAILABLE	PACK	ER BOTTOM-	NOT AV	AILABLE		
S1TE-153 SEIE-33	ST 1E - 153 ST 1E - 33	28.000 32.000	6.100 7.300	32.000 37.000	9.900 11.000	20.000 20.000	11.000 11.000	0.600 0.700	45.00D 54.000	26.000 44.200	110 000	113.000	-1.471 -1.306

50-847-09-061 Rev.

2AGE 57

LUCATION. 699-35-66

Sampling Event Code	SAMPLE NUMER	NA MG/L	K 19971.	CA MG/L	MG MG/L	SI MG/L	CL MG/L	: MG/L	SQA MG/L	ND3 MG/L	Lab Alkalinity	Field Alkalintly	Charge Balance	
UNCONFINE	D				PACKER	TOP= NOT	AVAILABLE	PACK	ER BOTTOM	NOT AVA	AILABLE			
ST12-77 STTE-94	STIE-77 STIE-94	20.000	5 900	40.000 40.000	13.000 11 000	18.000 20.000	11.000	0.400	27 000	5.600		140,000 148,000	. 537 -3 779	

SD-BWI-DP-061 Rev.

PAGE 59

LUCATION: 699-40-01

Samping Event Codu	SAMPI E NUABER	NA MG/L	K MG/L	ca Mg/l	MG MG/1	\$1 MG/L	CL MG/L	7 7871	\$04 M07L	NOJ MG/L	Lab Alkalinity	Field Alkalinity	Charge Balanco
UNCONF INE	Þ.				PACKER	top= not	AVAILABLE	PACK	ER BOTTOM=	NOT AV	AILABLE		
STTE-10 STTE-10G STTE-250 STTE-265	SIIE-10 SIIE-106 SIIE-250 SIIE-265	17.000 10.000 18.000 18.000	6.000 5.800 5.700 4.800	40 000 50.000 44.000 44.000	11.000 11.000 12.000 12.000	17.000 14.000 17.800 18.000	8.800 9.300 12.000 12.000	N, 400 0, 400 0, 400 0, 400	28 000 31.000 35.000 36.000	24.000 32.000 31.000 41 200	129.000 120.000	120.000° 123.000	: 402 0 991 -0 686 -1 031

. 191

ž

PAGT fl
10CATION: 699-41-23

Sampiing Event Codu	SAMPLE NUMBER	NA HG/L	к На71	ua Mg/l	MG MG/L	SI MG/L	CL Ma/L	F MG/L	\$04 MG/1	ND3 MG/L /	Lab Alkalinity	Fiel: Alkalinity	Sharge Balance
UNCONT THE	b				PACKER	TOP= NOT	AVAILABLE	PACK	ER BOTIOM-	AVA TON	ILABLE		
STIE-113 STIE-15	SI 1E - 1 1 3 SI 1E - 1 5	29.000 30.000	6700 7300	42.000 48.000	12.000 15 000	14,000 17,000	9.600 15.000	0 500 0,400	61.000 	40.000 53.000		114.000 108.000	0.282 0.575

.

. :

SD-BWI-DP-061 Rev,

PAGE 53

LOCATION: 699-42-40C

Sampling Event Codu	SAMPI E NUMBER	NA HG/L	х MG/L	ca Mg/l	NG NG/L	SI MG/L	CL MG/L	r MG/L	SO4 MG/L	ND3 MG/L	Lab Alkalinity	Field Alkalinity	Charge Balance
RATTLESNAK	E RIDGE				PACKER	TOP= 306	. 00	PACKE	R BOTTOM=	390.00	0		•
S!!L-177 SITE-178 STLE-179 STLE-179 STLE-180	SIIE-177 SIIE-178 SIIE-179 SIIE-180	35.000 33.000 35.000 36.000	14 400 13.700 13.600 12.700	10.000 7.500 10.000 18.700	3 700 4.500 4.600 4.500	72.000 72.000 72.000	3,000 4,000 4,000 3,600	0 560 0 960 0 340 0 700	38.000 17.000 16.000 15.500			122.000 123.000 125.000	- 10, SOU -3 118 -4,227

395

1

Sampiing Event Codu	SAMPLE NUMBER	NA MG/L	к MG/1	са MG/1	MG MG/L	SI MG/L	CL Mg/L	: MG/L	SD4 MG/L	nd3 Mg/l	Lab Alkalinity	Field Alkalinity S	Chu-ge Balance
UNCONF INE	D				PACKER	TOP+ NOT	AVAILABLE	PACK	ER BOTTOM	- NOT .4V.	AILABLE		
SIIE-156	STIE-156	22.000	4.700	43.000	0.014	19.000	12.000	0.400	52.000	30.000	120.000		-14.597

١.

IUCATION: 699-46-05

۰.

5D-8H1-DP-061 Rev.

NAGE 37

LOCALIUN. 699-47-50

Sumpling Event Codu	SAMP1 E NUMBER	NA NG/L	K NG/L	UA MG/L	MG MG/L	SI MG/L	CL MG/L	MG/L	SO4 MG/L	NO3 MG/L	Lab Alkalinity	field Alkalinity	Charge Balance
RATTIESNAKE	RIDGE				PACKER	10P+ 260.	00	PACKE	ER BOTTOH=	295.00)		
5111-181 S 511E-205 S	11E - 181 11E - 205	22.000 20.390	7.200 7.390	45.000 55.310	18 500 14.660	51.000	31.000 30.950	2 560 0.570	100.000 107.300	7.630		95.000	9.881

SD-8WI-DP-061 Rev.

اسز

.

.

1

PAGE 59

٠.

LOCATION: 099-49-558

Sampling Event Gude	SAMPI E NUHBER	NA NG/L	K NG/1	C.A MG/l	MG MG/I	SI MG/L	CL MG/L	: Mg/l	SD4 MG/L	NO3 MG/L	Lab Alkalinity	Field Alkalinily	Charge Balance
RATTLESNA	E RIDGE				PACKER	10P+ 170	. 00	PACKI	ER BOTTOM=	226 0	0		
SITE-183 SITE-184 SITE-185	STIL-183 STIE-184 STIE-185	11.000 12.000 12.000	6 900 6 800 6 800	38,000 38,000 38,000	11.900 12.200 12.400	73.000 73.000 71.000	16.700 9.600 10.600	0 370 0 260 0 230	20.000 21.000 17.000			120 000 122 000 117.000	3.262 6.422 9.173

PAGE C1

.

SD-EKI DP-061 Rev.

LOCATION: 699-50-45

Sampling Event Code	SAMPLE NUTIBER	NA HG/L	K HG/L	SA MGZU	MG MG/L	SI MG/L	CL NG/L	MG∕i	soc MG/L	NO3 MG/L	Lab Alkalinity	Field Alkalinity	Charge Balance
RATTIESNA	KE RIDGE				PACKER	100+ 133	00	PACKE	* BOTTOM*	178.00)		
STIE-186 STIE-203	STTE - 186 STTE - 203	17.000 16.390	6 000 5,710	92 000 30,020	15.700 10.210	58.000 -	22.000 22.970	0.600	18 000	0.930		114.000	34.400

- 1

					LOCATIO	N: 699-52	- 4 8				•	• •	10: 5
Sampling Even1 Code	SALIPI E	NA MG /1	К МС / 1	5.5 19671	14G 14G / 1	SI MG/L		MGZL	504 MG/1	ND3 NG/L	lab Alkalinity	Field Alkalinity	C arge Salance
RATTLESNA	KE RIDGE				PACKER	10P= 145	.00	PACK	ER BOTTOM	195.0	0		
SI1E-190 SI1E-199	STIE-190 STIE-199	50.000 51.700	6 400 6 690	6.200 14.430	1 900 3,060	59,000	4.000 4.990	0.640 0.710	24.000 35 270			147 000	-12,235

SD-BWI-DP-061 Rev.

Sampling Event Code	SAMPLE NUMBER	NA NG/L	K FKI/L	CA MG/L	14G 14G/1.	51 HG/L	СL 140/L	е 19371	\$04 MG/L	NO3 MG/L	lað Alkalinity	Field Alkalinity	ני∵רפע 8אנייר פסרי'ירפ
UNCONF INE	D				PACKER	TOP- NOT	AVAILABLE	PACK	ER SOTTOM	NOT AV	AILABLE		
SITE-117 STIE-129 SITE-71	STTE-117 STTE-129 STTE-71	10,000 9.600 14.000	5.500 4.800 5.900	34.000 28.000 41.000	5 200 4.900 8.100	5,000 6,000 4,100	17.000 17.000 21.000	0.400 0.300 0.400	83.000 46.000 55.000	0.580 0.090 0.370		29,000 43,000 46,000	-2.138 - 1.560 2.403

140E T7

1

SD-BHI-DP-061 Rev.

LOCATION: 689-57-25A

. .

Sampling Event Codu	SAMPLE NUMBER	NA MG/L	K NG/L	CA Mg/l	14G 17,134	SI MG/L	CL MG/L	MG/L	sua Mg/l	NU3 MG/L	Lab Alkalinity	Field Alkalinity	C n go Balance
UNCONF INE	D				PACKER	TOP# NOT	AVAILABLE	РАСК	ER BOTTOM	NOT AV	AILABLE		
ST10-119 ST1E-275	SITE -119 SITE - 275	31.000 31.000	6 600 5 600	30.000 24.000	7 100 7 300	23.000 19.000	6.100 6.700	0,800 0 500	24 000 22 000	3.300 3.800	126.000	131.000	179 0 537
										:	l		
										ł			
												•	
										:			
50r													
													•
											•		
										•			
					•						· .		

PAGE 79

.

LOCATION. 699-62-31

Samplany Event Gode	SAMPLE NUMBER	NA MG/L	K HG/L	UN MG/L	HG NG/L	81 NG/L	CL HG/L	F MG/L	5119 MG/1	ND3 MG/L	Lab Alkalinity	Field Alkalinity	Charge Balance
UNCONF 1 NEI	Þ				PACKER	TOP= NOT	AVAILABLE	PACK	ER BOTJOM	NOT AV	AJLABLE		
S11E-131 S11E-279	SITE-131 SITE-279	20 000 21,000	5.200 5.000	35,000	8,100 8,700	17.000 18.000	5.300 6.900	0.400 0.400	31.002	6.200 7.100	128,000	139.000	: 216 -0.161

SD-BHI-DP-061 Rev.

LOCATION 699-65-50

Sampling Event Code	SAMPLE NUMBER	NA MG/1	K NG/L	са Ис71	MG MG/L	SI NG/L	CL MG/L	с >G/1	SD4 MG/L	ND3 NG/L	Lab Alkalinity	Field Alkalinity	Charge Balance
UNCONF INE	D				PACKER	top= not	AVAILABLS	PACK	ER BOITON	× TOK ₽	AILABLE		
STTE-134 STTE-282 STTE-73	S11E-134 S11E-282 S11E-73	19.000 21.000 19.000	5 000 4.800 5.400	24 000 24 000 26 000	8,200 8,200 9,200	18 000 18.000 17.000	7.200 6.200 6.300	1.100	16 000 17.000 15 000	1.300 1.900 0.320	116 000	115.000	-1.544 -0.586 0.699

24GE \$3

SD-EWI-DP-Of 1 Rev.

LOCATION: 699-72-88

Sampling Event Code	SAMPLE NUABER	NA MG/L	K MG/L	04 MG/L	14G 14G/L	SI HG/I.	CL MG/L	е Мо/L	504 MG/L	N03 MG/L	Lab Alkalinity	Field Alkalinity	Charge Balance
UNCONFINE	D				PACKER	TOP= NOT	AVAILABLE	·.4CX	ER SOTTOM=	NOT AV	ATTÁBLE		
S17E-261 ST1E-96	STIE - 261 STIE - 98	9.700 9.300	4.300 4.500	33 000 33 000	7 600	15.900 17.000	6.900 3.900	0 200	35 000	3 600 3 400	101 000	000 88	0.531 -3.911

SD-BHI-DP-061 Rev.

71GE 35

Rockwell Hanford Operations

.

BWIP SUPPORTING DOCUMENT			Number Rev., Chg. I	181 181	
Eng Function Activity:		; Pra	ect No.:	SU- BWI-TI-329	Total Paces
Hydrologic Ch	aracterization	-	R-314	CIN No.: Date:	181
Dacument Title:		· · ·	0-514		N/A
Design, Drilling	g and Construction	of Wel	1 RRL-2B	Mas No of West Package No L Class	
and Piezometer N	lest RRL-2C				003
Recepcie No :	Stratigraphic Formations:	Dec Type	I Suni Code		L Cate
	Columbia River			Konald L. Jackson 4/24/84	Catto
	Basalt Group	2070	нооо	for additional authors)	06/86
			<u> </u>	See reverse side for accitional approvals	
THIS COCUMENT IS	FOR USE IN PERFORMAN	CE OF WO	RK UNDER	Distribution Name Ma	I Address
CONTRACTS WITH TH	LE U.S. DEPARTMENT OF	ENEPGY B	Y PERSONS	ROCKWELL HANFORD OPERAT	IONS
SEMINATION OF ITS	CONTENTS IS HANDLED I	ACCORDA	ACIS. UIS.	* R. C. Arnett CDC	/3000
THE FREEDOM OF I	NFORMATION ACT.			S. M. Baker PBB	/1100
Apstract				TR. H. Bryce MO-	408/600
INOTE: Please limit the a	instract to a total of 300 cha	racters or le	\$\$1.	* P M Clifton CDC	/1100
ints document de	scribes the design	n, drill	ing and	* R. M. Craig PBB	/1100
nost RPL_7C at t	the Well RRL-25 al	na piezo	DDI_20	* L. D. Diediker MO-	039/600
will act as the	discharge well for	. Hell r nerfor	mina	* H. F. Dove PBB	/1100
larce-scale hydr	aulic tests in un	its of t	the	+ H. D. Downey NO-	029/6C0 j
Grande Ronde Bas	alt. Piezometer i	nest RRL	-2C will	K. R. Fecht PBB	/1100
act as the prima	ry observation po	ints in	the .	TP. C. Frankel PBB,	(1100
vicinity of the	RRL-2 location.	Water le	evels	* G S Hunt PBB	/1100
WILL ALSO DE MEA	sured in RRL-2C as	s part c	of the	* R. L. Jackson(5) M0-1	039/600
prezometer baser	the controring pro	ogram.		* V. G. Johnson PBB	/1100
Well RRL-2B is c	ompleted as a 12.3	25-in. (31 12-cm)	* R. L. Jones 110-1	029/600
open hole at the	interim depth of	2.858 f		* R. D. Landon PBB,	/1100
(871.1 m). On c	ompletion of test	ing the	Rocky	* R. K. Ledgerwood PBB,	(1100
Coulee flow top,	the well will be	deepene	d to the	A. U. Law NO-(28/2001
next norizon for	testing.			* P E Long 203	/1100
· Biozomotow post	201 20 concieto of		•		DEC BUEN
tubes that allow	monitoring of hw	r six pi traulic	ezometer boads in	*! D. J. Moak MO-(29/600
selected hydrode	ologic units with	in the G	irande	* J. K. Patterson HO-4	10/600
Ronde Basalt bet	ween the depths of	f about	2.775	* W. W. Pidcoe 110-4	08/600
and 3,404 ft (84	6 and 1,038 m). T	These mo	nitoring	TIS. M. Price PBB,	1100
horizons, in ord	er of increasing c	lepth, a	re:	* S D Peigel DRR	1297600
the Rocky Coulee	flow top, Rocky (Coulee f	IOW	TP. M. Rogers PBB	1100
rior Grande Son	de No. 5 flow top.	issett r (includ	low inte-	* R. M. Smith P98	1100
of the Cobassett	flow bottom) and	Grande	es part Pende Mo	* F. A. Spane 110-4	08/600
5 flow interior.	Each piezometer	is isol	ated by	* R. Stone 110-4	08/600
densified cement	seals ranging fro	om about	30 to		
150 ft (9 to 46 a	m) in length. Aft	er comp	leting	COMPLETE DOCUMENT	
the diezometer in	nstallation, each	piezome	ter	of revision page aniv)	
Was developed to	remove particulat	es from	the	Release Stamo / Date:	
with fresh system	y. Edin Lube Wds. W water above the	chen TI	usned	_	
so that water of	uniform compositi	on evis	ted in	à.	
the diezometer to	ubes for hydraulic	head m	onitorina.	۲	
			. <u>.</u>		
Prepared By: ROC	kwell	Cate:	07/85	WINGHALL KELEASL	
Campany (Campany	& Cantract No.;	<u> </u>			
Stee Ave Roc	kwell			Διιλη 12 -	
Compan	41	117	1. 201	Was	. •

2-6400-218 (1-86)

÷.

Design, Drilling, and Construction of Well RRL-2B, and Piezometer Nest RRL-2C

Ronald L. Jackson L. Craig Swanson

Ronald L Jackson 7/24/86 7. C. Jwanson 7/24/86

Site Characterization Field Investigation Department Hydrologic Testing and Groundwater Monitoring Group Basalt Waste Isolation Project

Lyle D. Diediker

Site Characterization Field Investigation Department, Geologic Testing Group Basalt Waste Isolation Project

Robert L. Jones

Site Characterization Field Investigation Department Drilling Operations Group Basalt Waste Isolation Project

> Rodney K. Ledgerwood Site Department Geology Group Basalt Waste Isolation Project

> > 3

24/36

Fring/chuligenil

CONTENTS

1.0	Introduction	7
	1.1 Rationale for Constructing Well RRL-2B and Piezometer Nest RRL-2C 1.2 Well and Piezometer Nest Design 1.3 Scope	7 8 12
2.0	Hydrogeology 2.1 Stratigraphic Setting 2.2 Structural Setting 2.3 Hydrologic Setting	12 12 14 15
3.0	Drilling Activities 3.1 General 3.2 Drilling, Casing, and Cementing 3.3 Casing Integrity 3.4 Hydraulic Head Responses to Drilling	15 15 15 19 22
4.0	Subsurface Geology 4.1 General 4.2 Methodology 4.3 Observed Stratigraphy	22 22 22 25
5.0	Borehole Preparation 5:1 Well RRL-2B 5.2 Piezometer Nest RRL-2C	39 39 39
6.0	Piezometer Installation 6.1 Piezometer Design 6.2 Piezometer Materials 6.3 Piezometer Installation Procedure	40 40 41 45
7.0	Piezcmeter Development 7.1 Methodology 7.2 Observed Hydraulic-Head Responses in Piezometer Nest RRL-2C	49 49 60
8.0	Hydraulic Property Estimates 8.1 Low-Transmissive Monitoring Intervals	65 65 67
9.0	Summary and Conclusions	67
10.0	Acknowledgments	68
11.0	References	68

•

.

,

Appendixe A.	s: As-Built Drawings of Well RRL-28 and	
	Piezometer Nest RRL-2C	72
в.	Drilling Operation Summaries	90
с.	Borehole Geophysical Log Listing	133
D.	Borehole Development	141
Ε.	Piezometer Installation	146
F.	Piezometer Development	161
G.	Internal Letters	171
Figures:	•	
1.	Hanford Site Location Map	7
2.	RRL-2 Site Location Map	8
3.	Conceptual Design of Well RRL-2B	10
4.	Configuration and Design Details of Piezometer Nest RRL-2C	11
5.	Stratigraphic Nomenclature of the Pasco Basin	13
6.	Major Synclines and Anticlines in the Pasco Basin	14
7.	Pressure Hydrograph of Rocky Coulee Flow Top at Core	
	Hole RRL-2A Drilling of Well RRL-2B	23
8.	Pressure Hydrograph of Rocky Coulee Flow Top at Piezometer	
	Nest RRL-2C During Drilling of Well RRL-2B	24
9.	Geophysical Logging Schedule for Well RRL-2B	26
10.	Geophysical Logging Schedule for Piezometer Nest RRL-2C	27
11.	Neutron-Epithermal-Neutron Log Traces for Core Hole RRL-2A.	
	Well RRL-28, and Piezometer Nest RRL-2C	31
12.	Composite Borehole Geophysical Log Traces for the	
	Grande Ronde 2 and Rocky Coulee Flows at Well RRL-28	32
13.	Composite Borehole Geophysical Log Traces for Rocky Coulee	
	Flow at Piezometer Nest RRL-2C	33
14.	Composite Borehole Geophysical Log Traces for Cohassett	••
	Flow at Piezometer Nest RRL-2C	34
15.	Composite Borehole Geophysical Log Traces for Grande	•
	Ronde 5 Flow at Piezometer Nest 881-20	35
16.	Number 10-20 and 4-8 Sands and Pea Gravel Gradation	
	Envelopes	44
17.	Pressure Hydrograph of Rocky Coulee Flow-Top Piezometer	
27.	During its Development at Piezometer Nest RRI-2C	51
18.	Composite Pressure Hydrographs of Piezometer Nest RRL-2C	~1
201	Piezometers Aurica Nevelonment of Rocky Coulee	
	Flow_Ton Pigzometer	52
10	Composite Pressure Hydrographe of Piezometer Nest PPL_20	
13.	Diagometers During Fluch Development of Pocky Coules	
	Flexuleters burning rush severophicht of Rocky Course	52
20	Composite Proceure Wydrographs of Discomptor Nest DDL 20	53
20.	Composite rressure nyurugraphs of riezometer mest RRL-20 Biogeneters Busing Eluch Bouelerment of Consectt Electron	
	Piezometers buring riush bevelopment of Conassett Flow-lop	=.
- 11	Plezometer	54
21.	Lomposite Pressure Hydrographs of Piezometer Nest RKL-2L	
	Plezometers during rlush development of Conassett Flow-Interior	
	r1ezometer	23

5

Figures:	(cont.)				
22.	Pressure Hydrograph of the Grande Ronde 5 Flow-Top				
	Piezometer During Air-Lift Development at				
	Piezometer Nest RRL-2C	56			
23.	Composite Pressure Hydrographs of Piezometer Nest RRL-2C				
	Piezometers During Air-Lift Development of Grande Ronde 5				
	Flow-Top Piezometer	57			
24.	Composite Pressure Hydrographs of Piezometer Nest RRL-2C				
	Piezometers During Flush Development of the Grande Ronde 5				
	Flow-Interior Piezometer	58			
25.	Composite Observed Water-Level Hydrographs, August 15 to	•			
	October 11, 1985, at Piezometer Nest RRL-20	59 ·			
Tables:					
1.	Predicted/Observed Stratigraphic Thickness for Boreholes	28			

2.	Pipe Base and Screen Jacket Details	42
3.	Summary of Observed Hydrologic Responses Associated	
	with Piezometer Development Activities at Piezometer	
	Nest RRL-2C	61 •
4.	Preliminary Estimates of Hydraulic Properties Obtained from	
	Borehole Development and Piezometer Development Activities	66

.

(

6

SD-8WI-TI-329 REV 0

1.0 INTRODUCTION

The Basalt Waste Isolation Project (BWIP) is investigating the feasibility of using a thick, layered sequence of the Columbia River basalts beneath the Hanford Site in south-central Washington State as a host medium for high-level radioactive waste disposal (fig. 1). This project is sponsored by the U.S. Department of Energy (DOE) under the direction of the Office of Civilian Radioactive Waste Management as mandated by the Nuclear Waste Policy Act of 1982 (NWPA 1983). Rockwell Hanford Operations (Division of Rockwell International) serves as the prime contractor to the DOE for operating the BWIP.

Figure 1. Hanford Site Location Map.

1.1 RATIONALE FOR CONSTRUCTING WELL RRL-28 AND PIEZOMETER NEST RRL-2C

In July 1983, members of the BWIP, together with the staff and consultants of the U.S. Nuclear Regulatory Commission (NRC) held a workshop to discuss strategies and requirements for hydrologic characterization of the Columbia River Basalt Group at the Hanford Site. As a result of the workshop, a four-stage strategy was developed for acquiring hydraulic head data and measuring hydraulic parameters based on multiple well pumping tests (Nuclear Regulatory Commission (NRC 1983)).

The first phase of large-scale hydraulic testing (stage 2 of the strategy) is planned for the RRL-2 location (NRC 1983). The installation of well RRL-2B (RRL-2B) and piezometer nest RRL-2C (RRL-2C) represents one step in preparing for hydraulic tests at the RRL-2 site. Well RRL-2B will be utilized as a pumping and/or injection well. Piezometer nest RRL-2C will be used as one of the principal observation points. An existing core hole RRL-2A, which is presently open in the Grande Ronde Basalt, will be configured as an observation well during the hydraulic testing at RRL-2B. The locations of the RRL-2 site and surrounding observation sites are shown in figure 2. The layout of the three wells at RRL-2 is shown in figure A-5.

Figure 2. RRL-2 Site Location Map. (

1.2 WELL AND PIEZOMETER NEST DESIGN

The following objectives of construction guided the design of RRL-23.

 Provide hydraulically sound access to the Rocky Coulee flow top, Cohassett flow top, Grande Ronde 5 flow top, and Umtanum flow top, in turn, for pumping from the groundwater zones in each. Sound access to the flow tops implies that no pathway for interchange of water between these or other groundwater sources is created by the presence of the well.

- Provide adequate casing size (at least 10-in. (25.4-cm) ID) for setting a pump to at least a 2,400-ft (731.5-m) depth.
- Provide at least a 3.5-in.- (8.9-cm-) dia. (minimum) access hole through the Umtanum flow top. `

Well RRL-28 was designed so that a hydraulic stress (induced by pumping, injecting, or pulsing) can be imposed on selected hydrogeologic units within the Grande Ronde Basalt (Rocky Coulee flow top, Cohassett flow top, Grande Ronde 5 flow top, and Umtanum flow top). Hydraulic testing will be done by the drill-test staged approach. This approach allows hydraulic testing of a single horizon (i.e., the Rocky Coulee flow top) prior to deepening the well to other testing horizons. On completion of hydraulic testing in each horizon, the test horizon will be cemented off and a centralized steel liner will be cemented in place across the test horizon before drilling to the next test horizon. This procedure will be repeated for the Cohassett flow top and Grande Ronde 5 flow top. The lowermost test horizon (Umtanum flow top) will not be lined or cemented. The conceptual design of RRL-28 is shown in figure 3.

The following objectives of construction guided the design of piezometer nest RRL-2C.

- Provide access for hydraulic head monitoring of selected flow tops and flow interiors within the Grande Ronde Basalt.
- Provide for hydraulic isolation of the selected horizons within the Grande Ronde Basalt.

Piezometer nest RRL-2C consists of six piezometers installed in a single borehole from about 2,775 to 3,404 ft (845.8 to 1,037.5 m) (fig. 4). Three of the six piezometers monitor the flow tops of the Rocky Coulee, Cohassett, and Grande Ronde 5 (which includes the Cohassett flow bottom). The other three piezometers were completed in the flow interiors of the Rocky Coulee, Cohassett, and Grande Ronde 5 flows. These monitoring horizons were isolated both from each other and from the next overlying hydrogeologic unit by densified cement.

This piezometer nest differs from the C-series piezometer nests (i.e., monitoring of flow tops within both the Wanapum and Grande Ronde Easalts) at the borehole cluster sites DC-19, DC-20, and DC-22 (Jackson et al. 1984, Jackson and Veatch 1985) in that the RRL-2C design permits pressure monitoring of basalt flow interiors, as well as flow tops within the Grande Ronde Basalt. This provides an opportunity to estimate vertical hydraulic conductivity of the flow interiors during later hydraulic testing.

à

Figure 3. Conceptual Design of Well RRL-28. Current . drill depth is at 2,858 ft (871.1 m).

10

1---

Figure 4. Configuration and Design Details of Piezometer Nest RRL-2C.

SD-BWI-TI-329 REV 0

.

.

1.3 SCOPE

This report describes the first stage of completion of RRL-2B in the Rocky Coulee flow top and the design and installation of multilevel piezometers at RRL-2C. In addition, this report covers drilling methods, subsurface geologic conditions, borehole preparation, description and installation of the piezometers, as-builts, and post-installation piezometer development. The completion of RRL-2B and RRL-2C was guided by drilling and completion specifications (Jackson and Jones 1985).

2.0 HYDRÖGEOLOGY

2.1 STRATIGRAPHIC SETTING

The reference repository location is underlain by a thick sequence of Miocene-age tholeiitic basalt flows that are, in places, interbedded with and overlain by clastic sediments of Miocene or younger age (fig. 5). The basalt flows beneath the reference repository location and vicinity are part of the Columbia River Basalt Group, which consists of three formations in the Pasco Basin: Grande Ronde Basalt, Wanapum Basalt, and Saddle Mountains Basalt (Swanson et al. 1979). The sedimentary units interbedded with the basalts (principally in the Saddle Mountains Basalt) are part of the Ellensburg Formation (Brown 1959; Newcomb et al. 1972). The Grande Ronde Basalt accounts for about 81% of the total volume of basalt flows comprising the Columbia River Basalt Group (Reidel et al. 1982). The Cohassett flow, which occurs in the upper part of the Grande Ronde Basalt, is designated as the candidate horizon for repository studies (Long and WCC 1984) (see fig. 5).

Overlying the basalts and interbedded sediments are semiconsolidated sediments of the Mio-Pliocene age Ringold Formation (Merriam and Buwalda 1917). A thick sequence of Ringold Formation sediments occurs at the reference repository location where about 600 ft (180 m) of coarse- to finegrained clastic sediments were deposited by fluvial processes. At the reference repository location, the Ringold Formation is informally subdivided into four fluvial facies: basal, lower, middle, and upper Ringold units (Tallman et al. 1981, Bjornstad 1984).

Overlying the Ringold Formation are Quaternary-age deposits of the Hanford Formation. These consist predominately of Pleistocene-age glaciofluvial sediments. Surficial deposits consisting of eolian sand overlies the Hanford Formation throughout the reference repository location.

13

2.2 STRUCTURAL SETTING

The reference repository location is in the Cold Creek syncline (fig. 6) near the center of the Pasco Basin. The Pasco Basin is one of several structural and topographic basins located in the Yakima Fold Belt subprovince of the western Columbia Plateau (Myers et al. 1979). It is bounded on the north by the Saddle Mountains and on the south by the Rattlesnake Hills, both of which are anticlinal ridges. The western margin of the Pasco Basin is defined by the Naneum Ridge-Hog Ranch anticline. The Palouse Slope defines the eastern margin of both the Pasco Basin and Yakima Fold Belt. Myers et al. (1979), Myers (1981), and Caggiano and Duncan (1983) discuss the structure of the area in detail.

Figure 6. Major Synclines and Anticlines in the Pasco Basin.

Most of the anticlines in the Yakima Fold Belt are asymmetrical, tight folds, whereas the synclines between the anticlines are broad, open folds that are sediment filled. Major synclines in the Pasco Basin include the Wahluke and Cold Creek synclines (see fig. 6). The Wahluke syncline lies between the Saddle Mountains and Umtanum Ridge-Gable Mountain anticline. The Cold Creek syncline is a low-relief, sediment-filled trough lying between the Umtanum Ridge-Gable Mountain anticline to the north and the Yakima Ridge anticline to the south (see fig. 6).

2.3 HYDROLOGIC SETTING

The hydrogeology of the basalt sequence beneath the reference repository location and vicinity is known from core samples, borehole geophysical logs, and hydrologic test information obtained from boreholes. In general, the Columbia River Basalt Group beneath the reference repository location consists of a thick sequence of accordantly layered flood basalt flows overlain by glaciofluvial sediments and catastrophic flood deposits (Gephart et al. 1979, Gephart et al. 1983, Myers et al. 1979, DOE/RL 1982, DOE 1984). The stratigraphy of the Pasco Basin was shown in figure 5. Groundwater is in an unconfined to semiconfined state in the sediments overlying the basalt at the reference repository location.

Groundwater in the basalt sequence occurs primarily within the flow tops and within coarser-grained portions of sedimentary interbeds that typically are present in the Saddle Mountains and Wanapum Basalts. The dense basalt flow interiors and fine-grained sediments comprising the interbeds appear to act as confining horizons between the water-bearing basalt flow tops. Further hydrogeologic characterization activities will take place to identify and characterize potential groundwater flow paths in and adjacent to the reference repository location. The RRL-2 site and other piezometers, wells, and boreholes will play an integral part in this characterization.

3.0 DRILLING ACTIVITIES

3.1 GENERAL

The layout of RRL-28, RRL-2C, core hole RRL-2A (existing), and the proposed exploratory shaft, is shown in figure A-5. Starter holes for RRL-28 and RRL-2C were drilled with a subcontracted cable tool rig and completed with a subcontracted rotary rig. Piezometer nest RRL-2C was completed before drilling RRL-28 so it would act as an observation point while drilling RRL-28. Drilling of RRL-2C began on April 21, 1985 and was completed on May 24, 1985 at a depth of 3,404 ft (1,037.5 m) in 34 operating days. Drilling of well RRL-28 began on May 30, 1985. The first phase of drilling for RRL-28 was completed on June 29, 1985 to a depth of 2,858 ft (871.1 m) in 31 operating days.

3.2 DRILLING, CASING, AND CEMENTING

Refer to appendix B for information related to the drilling, casing, and cementing records on RRL-2B and RRL-2C. This appendix contains the caily drilling history, drilling progress graphs, mud drilling records, fluid-loss records, bit record summary, cementing summary for drilling operations, cementing and casing equipment list, casing depth summary, and

deviation and gyro surveys. As-built drawings of RRL-2B and RRL-2C are in appendix A. All drilling and cementing records were documented on shift operations forms (fig. B-5). Copies are on file in the Basalt Records Management Center (BRMC).

3.2.1 Well RRL-28

A cable tool rig drilled the starter hole at RRL-2B. The drill and drive method was used to set 30-in.- (76.2-cm-) OD butt-welded casing to a depth of 19.5 ft (5.9 m).

A rotary drilling rig was then mobilized to the site to deepen the borehole from 19.5 to 2,858 ft (5.9 to 871.1 m). This rig was instrumented with a Visulogger and Canary total gas detector systems. These systems electronically monitor parameters such as mud loss and gas during the drilling and tripping operations. Data is displayed on a video screen as well as permanently recorded by a high-speed printer. These records are on file in the BRMC.

A bentonitic drilling fluid was used to drill the 26-in. (66.0-cm) surface hole from 19.5 to 614° ft (5.9 to 187.1 m). No significant fluid losses occurred when drilling to 614 ft (187.1 m).

A string of 20-in. (50.8-cm) OD, grade H-40 steel casing (94 lb/ft (139.9 kg/m)) was set into the top of rock at a depth of 613 ft (186.8 m) (dense part of the Elephant Mountain Member). The casing string was cemented in place using the inner-string cementing method (Smith 1976). The cement slurry was mixed with a recirculating mixing system.

The cement composition consisted of American Petroleum Institute (API) Class G cement having an average slurry density of 15.8 lb/gal (1.89 kg/L) (table B-11). Additives in the lead-in slurry (72 bbl (11.4 m³)) consisted of 2% calcium chloride (CaCl₂) and lost-circulation material (i.e., cellophane flakes). The tail-in slurry (123 bbl (19.6 m³)) contained 2% CaCl₂. A total volume of 195 bbl (31.0 m³) of cement slurry was pumped in one stage. Cement was circulated to the surface after pumping about 170 bbl (27.0 m³) of slurry. Drilling resumed after waiting on the cement for about 8 h.

Tricone bits (17.5-in.-(44.45-cm-) dia.) were used to rotary drill below the surface casing to a depth of 2,780 ft (847.3 m) with a bentoniticbase mud. Four lost-circulation zones were encountered over this interval as shown in table 8-4. The total volume of mud lost to these horizons was about 740 bbl (235 m³). The loss of mud was controlled by adding lostcirculation material (i.e., cottonseed hulls, cedar fiber, and mud seal) and additional mud to the mud system as needed.

Fishing operations were required at depths of 1,083 ft (330.1 m); 1,766 ft (538.3 m); 2,057 ft (627.0 m); 2,197 ft (659.6 m); 2,219 ft (676.4 m); and 2,655 ft (809.2 m) as a result of twisted off collars, subshocks, and drill pipe. These operations normally took from 3 to 10 h to recover the tools and return to normal drilling operations.

A long string of 13.375-in. (33.973-cm) OD, grade K-55 steel centralized casing (61 and 54.50 lb/ft (90.8 and 81.1 kg/m)) was set in Grande Ronde 2 at a depth of 2,776 ft (846.1 m) after completing borehole geophysical logging. The casing accessories are listed in table B-10.

The long string of casing was cemented in place using the two-stage cementing technique (Smith 1976)... This technique allows cementing behind the long string in two separated stages to reduce mud contamination and lessen the possibility of losing cement in formations, such as the upper part of the Wanapum Basalt.

The cement slurry placed behind the long-string casing consisted of API Class G cement having an average slurry density of 15.8 lb/gal (1.89 kg/L) (table B-11). For both stages, the cement slurry was preceded by mud, mud flush, and water flush. The cement slurry and preceding fluid were displaced with water and mud. Additives in the lead-in cement contained lost-circulation material (i.e., cellophane flakes). The tail-in cement contained no additives. The total slurry pumped was 241 bbl (38.3 m³) during the first stage and 552 bbl (87.8 m³) during the second stage. A temporary loss of circulation occurred prior to placing the second stage of cement.

After waiting on the cement for about 20 h, the cement plug was drilled out of the long string using a 12.25-in. (31.12-cm) tricone bit to a depth of 2,782 ft (848.0 m). At that depth, pressure testing of the casing shoe and a cement bond log were performed to help evaluate the integrity of the long-string casing.

Eased on pressure testing, an additional cementing job was required across the casing shoe to improve its integrity. Approximately 17 bbl (2.7 m^3) of API Class G cement with a slurry density of 17.5 lb/gal (2.10 kg/L) were spot cemented between the interval of 2,674 and 2,782 ft (815.0 and 848.0 m). Pressure during a subsequent casing shoe pressure test held at 100 lbf/in² (0.69 MPa) surface shut-in pressure (about 200 lbf/in² (1.4 MPa) total pressure).

The open part of the borehole was drilled with Hanford system water using 12.25-in_ (31.12-cm) tricone bits from 2,782 ft (848.0 m) to the interim depth of 2,858 ft (871.1 m). During drilling of this interval about 15 bbl (2.4 m³) of water were lost to the Rocky Coulee flow top (2,815 to 2,842 ft (858.0 to 366.2 m)) over a period of about 2.4 h.

After the rotary rig was demobilized, borehole geophysical and gyro surveys were run to complete the drilling phase. The results for the gyro survey are tabulated in table B-13 and shown in figure B-3. Table C-1 lists borehole geophysical logs run in RRL-23.

3.2.2 Piezometer_Nest RRL-2C

A cable tool rig drilled the RRL-2C starter hole. The drill and drive method was used to set the 30-in.- (76.2-cm-) OD butt-welded casing to a depth of 19 ft (5.8 m). At that depth the drive shoe was spot cemented in place.

A rotary drilling rig was mobilized to the site to deepen the borehole from 19 to 3,404 ft (5.8 to 1,037.5 m). This rig was instrumented with a Visulogger data recording system to provide pertinent drilling data. Information was continuously monitored by video and recorded for later reference. These records are on file in the BRMC.

A bentonitic drilling fluid was used to drill the 26-in. (66.0-cm) surface hole from 19 to 610 ft (5.8 to 185.9 m). Lost-circulation material (i.e., cottonseed hulls) was added to the mud system to minimize fluid losses to the formation. Temporary fluid losses occurred at a depth of about 252 ft (76.8 m). Circulation was regained after losing an estimated 125 bbl (19.9 m³) of drilling fluid.

A string of 20-in.- (50.8-cm-) OD, grade H-40 steel casing (94 lb/ft (139.9 kg/m)) was set into the top of rock (dense interior of the Elephant Mountain Member) at a depth of 609 ft (185.6 m). The surface casing was cemented in place using the inner-string cementing method previously described for RRL-28.

The tement composition consisted of API Class G cement having an average slurry density of 15.8 lb/gal (1.89 kg/L) (table B-12). Additives in the lead-in slurry (61 bbl (9.7 m³)) were 2% CaCl₂ and lost-circulation material (i.e., cellophane flakes). The tail-in slurry (164 bbl (26.1 m³)) contained 2% CaCl₂. A total volume of 225 bbl (35.8 m³) of cement slurry was placed in one stage. Cement was circulated at the surface after pumping about 62 bbl (9.8 m³) of slurry. Drilling resumed after waiting on the cement for about 15 h.

Seventeen and one-half inch tricone bits were used to rotary drill from the surface casing to a decth of 2,776 ft (346.1 m) using a bentonitic-base mud. Four lost-circulation zones were encountered over the drill interval of 2,165 ft (659.9 m) as shown in table B-5. The total volume of mud lost to these horizons was about 690 bbl (110 m³). The loss of mud was controlled by adding lost-circulation material (i.e., cottonseed hulls, cedar fiber, and mud seal) and additional mud to the mud system as needed.

Fishing operations were required at depths of 1,398 ft (425.1 m), 1,607 ft (489.8 m); 1,633 ft (497.7 m); and 1,648 ft (502.3 m) as a result of twisted off drill collars and (or) drill pipe. These operations normally required 10 to 24 h to recover the tools and return to normal drilling operations.

A long string of 13.375-in. (33.973-cm) GD, grade K-55 steel centralized casing (61 and 54.5 1b/ft (90.8 and 81.1 kg/m)) was set in Grande Ronde 2 at a depth of 2,775 ft (845.8 m). The casing was cemented in place using the two-stage cementing technique after completing the borehole geophysical logging. The casing accessories are listed in table 8-10.

The cement slurry placed behind the long-string casing consisted of API Class G cement having an average slurry density of 15.8 lb/gal (1.89 kg/L) (table B-12). For both stages, the cement slurry was preceded by mud, mud flush and water flush, followed by the cement slurry. The first stage was displaced with water and mud, and the second stage was displaced with water. Lost-circulation material (i.e., cellophane flakes) was added to the lead-in cement for both stages. The tail-in slurry in the first stage contained no additives. One percent CaCl₂ was added to the second cementing stage. The total slurry pumped was 154 bbl (24.5 m³) during the first stage and 379 bbl ($60.3 m^3$) during the second stage. Cement was not circulated to the surface.

After waiting on the cement for about 19 h, the cement plug was drilled out of the casing using a 12.25-in. (31.12-cm) tricone bit to a depth of 2,778 ft (846.7 m). At that depth the casing shoe was pressure tested, and a cement bond log was run. The results are given in section 3.3.

The open part of the borehole was drilled with Hanford system water using 12.25-in. (31.12-cm) tricone bits from 2,778 ft (846.7 m) to the total depth of 3,404 ft (1,037.5 m). During drilling of the interval, it was estimated that about 3,288 bbl (522.8 m³) of water were lost to the Cohassett flow bottom and Grande Ronde 5 flow top (3,232 to 3,777 ft (985.1 to 1,151.2 m)) over a period of about 25 h.

After the rotary rig was demobilized, geophysical and gyro surveys were run in the borehole (table B-17). The results for the gyro survey are tabulated in table B-14 and shown in figure B-4. Table C-1 lists the borehole geophysical logs run in RRL-2C.

3.3 CASING INTEGRITY

3.3.1 Well RRL-28

A preliminary evaluation of the integrity of the RRL-2B long-string casing (13.375-in. (33.973-cm) OD) was based on information provided from the cement bond log and the casing shoe pressure test. The casing shoe was isolated for pressure testing between a packer set above the casing shoe and the hole bottom. Because the initial pressure test was not positive, the casing shoe was spot cemented with 17 bbl $(2.7 m^3)$ of API Class G cement (17.5 lb/gal (2.10 kg/L)). During subsequent pressure testing the overpressure pulse stabilized at a shut-in surface pressure of about 100 lbf/in² (0.69 MPa) (total pressure of about 2GO lbf/in² (1.4 MPa)).

An acoustic cement bond log tool was run in RRL-2B. The purpose of running the cement bond log was to determine the presence or absence of cement behind the casing string and whether cement was bonded to the pipe, the formation, or both.

An initial bond log was run about 32 h (June 6, 1985) after cementing the long string of casing. This bond log indicated that several areas throughout the casing string lacked a good cement bond due to insufficient compressive strength of the cement.

On August 16, 1985, another bond log was run that indicated portions of the cement sheath had hardened over time to gain enough strength to propagate an acoustic signal (see fig. A-7). To test for the possible presence of a microannulus or channels, a bond log was run while the casing was under 750 lbf/in² (5.2 MPa) of pressure. The resulting log showed very little change from the previous cement bond log. This suggested that areas with little reduction in acoustic amplitude may contain channels rather than a microannulus.

The qualitative interpretation of the cement bond log for the long casing string is as follows.

<u>Depth, ft (m)</u>	Qualitative Interpretation
0-1,090 (0-332.2)	Free pipe
1,090-1,180 (332.2-359.7)	Good bond
1,180-1,400 (359.7-426.7)	Poor bond (essentially free pipe)
1,400-1,530 (425.7-466.3)	Fair to poor bond (partially cemented)
1,530-1,790 (466.3-545.6)	Poor bond
1,790-2,310 (545.6-704.1)	Fair to poor bond
2,310-2,440 (704.1-743.7)	Fair bond
2,440-2,776 (743.7-846.1)	Good bond .

A 100% casing signal amplitude (fig. A-7) is attributed to the lack of a cement bond; i.e., a poor bond. A fair-to-good bond is indicated by a significant amplitude reduction, as well as strong formation signals. Areas where casing signals are still present, but amplitude reduction is at least 50%, suggest that the cement is not cured sufficiently to achieve adequate hardness or channels may be present.

3.3.2 Piezometer Nest RRL-2C

A cement bond log and casing shoe test were run to help evaluate the integrity of the long-string casing $(13.375-in. (33.973-cm) \ OD)$ at RRL-2C. The pressure test involved isolating the casing shoe. This was accomplished by isolating the casing shoe between a packer set at a depth of 2,288 ft (697.4 m) inside the casing and the bottom of the borehole. The depth of the casing shoe was 2,775 ft (845.8 m), and the depth of the borehole was 2,778 ft (846.7 m). The interval between the packer and borehole bottom was then pressurized at 950, 500, and 250 lbf/in² (6.5, 3.4, and 1.7 MPa) (surface pressure readings). The test results were inconclusive with regard to the integrity of the casing shoe. Therefore, the uppermost piezometer densified cement seal was extended inside the casing as a precautionary measure.

A cement bond log was run on May 20, 1985, 24 h after cementing to examine the bonding of the cement sheath on the outside of the 13.375-in. (33.973-cm) casing. The qualitative interpretation of the cement bond log (fig. A-8) is as follows.

<u>Depth, ft (m)</u>	<u>Oualitative Interpretation</u>
0-320 (0-97.5)	Free pipe
320-430 (97.5-131.1)	Fair to good bond
430-500 (131.1-152.4)	Poor bond
500-1,510 (152.4-460.2)	Fair to good bond
1,510-1,730 (460.2-527.3)	Poor bond
1,730-1,800 (527.3-548.6)	Fair to good bond
1,800-2,160 (548.6-658.4)	Peer bend
2,160-2,775	Fair to good bond

As shown in figure A-8, there were no areas of 100% amplitude reduction, which suggests that the cement had not fully cured (i.e., hardened) at the time of logging.

3.4 HYDRAULIC HEAD RESPONSES TO DRILLING

During the drilling of RRL-2B and RRL-2C, ongoing piezometric monitoring was being carried out at the piezometer sites DC-19, -20, and -22; and core hole RRL-2A. Observed water-level data obtained at the sites provided the basis for evaluating the effect of RRL-2B and RRL-2C drilling disturbances on the monitored horizons within the basalt groundwater system.

The drilling of RRL-2B and RRL-2C appears to have had negligible effects on heads monitored in the unconsolidated sediments, Saddle Mountains Basalt, and Wanapum Basalt. In the Grande Ronde Basalt, a drilling disturbance from RRL-2B was observed in the Rocky Coulee flow top at RRL-2A and the recently completed RRL-2C. The response was attributed to losing about 15 bbl (2.4 m^3) of drilling fluid (water) over a period of about 8.42 h at RRL-2B. The pressure hydrographs illustrating the buildup at RRL-2A and RRL-2C are shown in figures 7 and 8, respectively. Raw data are on file in BRMC.

Circulation was lost during the drilling of the composite Cohassett flow bottom and Grande Ronde 5 flow top zone at RRL-2C. The fluid lost in this zone was estimated at 3,288 bbl (522.8 m^3) over a period of about 25.0 h. The areal extent of the disturbance caused by this fluid loss was not determined because no monitoring points existed for the Grande Ronde 5 flow top at that time.

4.0 SUBSURFACE GEOLOGY

4.1 GENERAL

Discussions of the subsurface geology in the vicinity of RRL-2A, RRL-2B, and RRL-2C are provided by Wintczak (1984) and Jackson et al. (1984). This section describes stratigraphic unit contacts and thicknesses encountered in RRL-2B and RRL-2C and compares those with predicted values based on nearby RRL-2A. It also describes the location of fractures, intraflow structures, and borehole wall breakouts in these boreholes for the Rocky Coulee, Cohassett, and Grande Ronde 5 flows.

4.2 METHODOLOGY

Stratigraphic interpretations are based on examination of chip samples, evaluation of rotary drilling rates and borehole geophysical logs from RRL-2B and RRL-2C, together with review of borehole television and borehole sonic televiewer logs.

Figure 7. Pressure Hydrograph of Rocky Coulee Flow Top at Core Hole RRL-2A Drilling of Well RRL-2B.

 \mathbf{a}

SD-8WI-TI-329

REV O

Figure 8. Pressure Hydrograph of Rocky Coulee Flow Top at Piezometer Nest RRL-2C During Drilling of Well RRL-2B.

24

SD-BWI-TI-329 REV 0 Borehole geophysical logs were run to determine stratigraphic relationships, identify low- and high-porosity zones, rock properties, heat-flow relationships, and borehole conditions. The borehole geophysical logs run in RRL-2B and RRL-2C are given in figures 9 and 10. Selected log traces are shown on the as-built drawings in appendix A.

4.3 OBSERVED STRATIGRAPHY

Thickness predictions of the stratigraphic units expected to be encountered at RRL-2B and RRL-2C were based on analyses of unit isopachous maps. These data showed that thicknesses should be very close to those encountered in RRL-2A with the exception of the sediments overlying the basalt, which should be 5 ft (1.5 m) thinner. Variability was expected to be up to ± 5 ft (± 1.5 m) for the contact depths and ± 10 ft (± 3.1 m) for net stratigraphic thicknesses of units (Jackson and Jones 1985).

The stratigraphic units, contact drilled depth, stratigraphic thicknesses, and predicted values for RRL-2B and RRL-2C are listed in table 1. A general stratigraphic framework for the upper Grande Ronde Basalt at the RRL-2 site is provided in figure 11. Composite borehole geophysical log traces for the Rocky Coulee, Cohassett, and Grande Ronde 5 flows are shown in figures 12 through 15. These figures also contain the geologic log summary that was interpreted from core data in RRL-2A (Cross and Fairchild 1985) and a description of geologic features observed from the video surveys run in RRL-2B and RRL-2C.

4.3.1 Saddle Mountains Basalt

Observed net thickness of the Saddle Mountains Basalt was within ± 3 ft (± 0.9 m) of the predicted value of 795 ft (242 m) in both RRL-2B and RRL-2C. Thicknesses of individual units and interbeds within the formation varies similarly to other boreholes, such as at borehole cluster sites DC-19, DC-20, and DC-22 (Jackson et al. 1984).

4.3.2 Wanapum Basalt

Total Wanapum Basalt thickness at RRL-28 was 1,169 ft (356.3 m), which was 9 ft (2.7 m) thicker than predicted. Overall observed thickness of the Wanapum Basalt was 1,153 ft (351.4 m) at RRL-2C, which was 7 ft (2.1 m) thinner than predicted. All individual units within the Wanapum Basalt were within 10 ft (3.1 m) of the predicted values at both sites.

4.3.3 Grande Ronde Basalt

Thicknesses of those units penetrated in RRL-2B and RRL-2C were within 10 ft (3.1 m) of predicted values.

53

P58604 6

Figure 9. Geophysical Logging Schedule for Well RRL-2B.

SD-BWI-TI-329 REV 0

27

SD-8WI-TI-329 REV 0

Figure 10. Geophysical Logging Schedule for Piezometer Nest RRL-2C.

		KL-ZA	A RKL-2B and RRL-2C RRL-2C		RRL-2B			
Stratigraphic unit	Observed net tluckness, ft (m)	Observed depth, It (m)	Prédicted net thickness, ft (m)	Predicted depth, It (m)	Observed net thickness, ft (m)	Observed depth, ft (m)	Observed net thickness, It (m)	Observed depth, ft (m)
Hanford Ringöld Formatións	605	0-605	600	0-600	600	0-600	600	0-600
	(184.4)	(0-184-4)	(182.9)	(0-182 9)	(182.9)	(0-182.9)	(182.9)	(0-182.9)
Saddle Mountains Basalt	794	794-1,399	795	600+1,395	792	600-1,392	798	600-1,398
	(242 0)	(242 0 426 4)	{242.3}	(182 9-425 2)	(241.4)	(182 9-424 3)	(243-2)	(182 9-426 1)
Elephant Mountain Member	B1	605-686	80	600-680	84	600-684	87	600-687
	(24.7)	(184 4-209 I)	(24 4)	(182 9-207 3)	(25 6)	(182 9-208 5)	(26 5)	(182 9-209 4)
Rattlesnake Ridge interbed	96	686-782	95	680-775	106	684-790	104	687-791
	(29-3)	(209.1-238-4)	(29 0)	(207 3-236 2)	(32.3)	(208.5-240 8)	(31.7)	(209 4-241.1)
Pomona Member	159 5	782-941 S	160	775-935	144	790-934	136	791-927
	(48 6)	(238 4-287 0)	(48-8)	(236 2-285 0)	(43 9)	(240 8-284 7)	(41 4)	(241.1-282 5)
Selah interbed	44 5	941 5-986	45	935-980	46	934-980	73	927-1,000
	(13 6)	(287 0-300 5)	(13.7)	(285 0-298 7)	(14 0)	(284 7-298 7)	(22.2)	(282 5-304 8)
Esquatzel Member	118	986-1,104	120	980-1,100	116	980-1,096	98	1,000+1,098
	(36-0)	(300.5-336.5)	(36 6) ·	(298 7-335.3)	(354)	(298 7-334.1)	. (29 9)	(304 8+334 7)
Cold Creek interbed	64	1,104-1,168	65	1,100-1,165	69	1,096-1,165	71	1,098-1,169
	(195)	(336 5-356 0)	(19-8) .	(335 3-355 1)	(21 U)	(334 1-355.1)	(216)	(334.7-356 3)
Umatilla Member	231	1,168+1,399	230	1,165-1,395	227	1,165-1,392	229	1,169-1,398
	(70-4)	(356 0-426 4)	(70.1)	(355 1-425.2)	(69 2)	(355.1-424-3)	(69 8)	(356.3-426 1)
Mabton interbed	124	1,399-1,523	·123	1,395-1,518	123	1,392-1,515	119	1,398-1,517
	(17 8)	(426 4 464 2)	• (37 5)	(425 2-462 7)	(37 5)	(424.3-461 B)	(36-3)	(426 1-462.4)
Wanapum Basalt	1,160	1,523-2,683	1,160	1,518-2,678	1,153	1,515-2,668	1,169	1,517-2,686
	(353-6)	(464 2-817 8)	(353-6)	(462 7-816 3)	(351 4)	(461 8-813 2)	(356.3)	(462.4-818.7)
Priest Rajnds Member	226 4	1,523-1,749 4	227	1,518-1,745	227	1,515-1,742	235	1,517-1,752
	(69 0)	(464 2-533 2)	(69 2)	(462 7-531 9)	(69 2)	(461 8-531 0)	(716)	(462 4-534 0)
(Loto flow)	166	1,523+1,689	165	1,518-1,683	165	1,515-1,680	168	1,517-1,685
	(50-6)	(464 2+514 8)	(50-3)	(462.7-513 0)	(50.3)	(461 8-512.1)	(51.2)	(462.4-513 6)

Table 1. Predicted/Observed Stratigraphic Thicknesses for Boreholes RRL-2B and RRL-2C. (sheet 1 of 3)

ŀ

SD-BWI-TI-329 REV O

()

1

	н	RI-2A	· RAL-20	and RRL-2C	RI	RL-2C	RRI -2B		
Stratigraphic unit	Observed net thickness, ft (m)	Observed depth, ft (m)	Predicted net thickness, ft (m)	Predicted depth, ft (m)	Observed net thickness, ft (m)	Observed depth, ft (m)	Observed net thickness, ft (m)	Observed depth, ft (m)	
(Rosalia flow)	60 4	1,689-1,749 4	62	1,683+1,745	62	1,680-1,742	67	1,685-1,752	
	(18 4)	(514 8 533 2)	(18 9)	(513 0-531 9)	(18 9)	(512.1-531 0)	(20 4)	(513.6-534 0)	
Quincy interbed	0 6 (0 2)	1,749 4-1,750 (533 2-533 4)	Û	-	0	-	- 2 (06)	1,752-1,754 (534 0-534 6)	
Hoza Member	172	1,750-1,922	172	1,745-1,917	177	1,742-1,919	165	1,754-1,919	
	(52-4)	(533 4-585 8)	(52 4)	(531 9-584 3)	(53.9)	(531 0-584.9)	(50.3)	(534 6-584 9)	
Frenchiman Springs Member	761	1,922-2,683	761	1,917-2,678	749	1,919-2,668	767	1,919-2,686	
	(232.0)	(585 8 817 8)	(231 9)	(584 3-816 2)	. (228 3)	(584.9-813.2)	(233 8)	(584 9-818 7)	
Frenchman Springs 1 (Sentinel	182	2,683-2,104	182	1,917-2,099	174	1,920-2,094	184	1,919-2,103	
Gap)	(55.5)	(817 8 641 3)	(55 5)	(584.3-639.8)	(53 0)	(585-2-638-2)	(56 1)	(584.9 641 0)	
Frenchman Springs 2 (Sand	113	2,104 2,217	113	2,099-2,212	112	2,094 ¹ 2,206	106	2,103-2,209	
Hollow II)	(34-4)	(641 3 675 7)	(34-4)	(639 8 674 2)	(34 2)	(638 2 ₁ 672 4)	(32 3)	(641 0-673 3)	
Frenchman Springs 3 (Sand	56	2,217-2,273	56	2,212-2,268	57	2,206 ¹ 2,263	60	2,209-2,269	
Hollow I)	(17 1)	(675 7-692 8)	(17 1)	674.2-691 3)	(17 4)	(672.4-689.8)	(18.3)	(673.3-691 6)	
l renchman Springs 4 (Silver	108	2,273-2,381	108	2,268-2,376	111	2,263-2,374	111	2,269-2,380	
Falls)	(12-9)	(692 8-725 7)	(12 9)	(691 3-724 2)	(33.8)	(689 8-723 6)	(33.8)	(691 6-725 4)	
Frenchiman Springs S (Ginkgo II)	108	2,181-2,489	108	2,376-2,484	107	2,374-2,481	108	2,380-2,488	
	(32.9)	(725 7-758 6)	(32 9)	(724 2-757.1)	(32 6)	(723 6-756 2)	(32.9)	(725 4-758 3)	
Frenchman Springs & (Ginkgul)	128	2,489 2,617	128	2,484-2,612	125	2,481-2,606	126	2,480-2,614	
	(39.0)	(758 6-797 7)	(19 0)	(757 1-796 1)	(38-1)	(756 2-794 3)	(38-4)	(758.3-796.7)	
Frenchman Springs 7 (Palouse	66	2,617-2,683	66	2,612-2,678	62	2,606-2,668	72	2,614-2,686	
Falls)	(20-1)	(797 7 817 8)	(20 1)	(796 1-816 2)	(18 9)	(794 3-813 2)	(219)	(796.7-818 7)	
Vantage interfied	4 (1 2)	2,683-2,687 (817 8 819 0)	4 (1 2)	2,678-2,682 (016 2-817 5)	0	-	4 (1.2)	2,686-2,690 (818.7-819.9)	

Table 1. Predicted/Observed Stratigraphic Thicknesses for Boreholes RRL-2B and RRL-2C. (sheet 2 of 3)

.

SD-BWI-TI-329 REV O

!

	RRL-2A		RRI - 28 and RRL - 2C		RRL-2C		RRL-20	
Stratigraphic unit	Observed net thickness, ft (m)	Observed depth, ft (m)	Predicted net thickness, ft (m)	Predicted depth, ft (m)	Observed net thickness, ft (m)	Observed depth, ft (m)	Observed net thickness, ft (m)	Observed depth, ft (m)
Grande Ronde Dasatt-Sentinel Bluffs Sequence	920 (280 4)	2,687-3,607 (819 0-1,099 4)	920 (280 4)	2,602-3,602 (817 5-1,097.9)	-	-	-	-
Grande Konde 1	34 (104)	2,687-2,721 (819 0-829 4)	34 (10 4)	2,682-2,716 (817 5-827 8)	44 (13 4)	2,668-2,712 (813.2-826.6)	32 (98)	2,690-2,722 (819.9-829.7)
Grande Romle 2	102 (31-1)	2,721-2,823 (829 4-860 5)	102 (31-1)	2,716-2,018 (827 8-858 9)	104 (31.7)	2,712-2,816 (826 6-858 3)	101 (30 8)	2,722-2,823 (829 7-860 4)
Grande Ronde 3 (Rocky Coulee)	170 (518)	2,823-2,993 (860 5-912.3)	170 (518)	2,818-2,988 (858 9-910 7)	166 (50.6)	2,816-2,982 (858 3-908.9)	-	2,823-7 (860 4-7)
Grande Ronde 4 (Cohassett)	262 (79 8)	2,993-3,255 (912 3-992 1)	262 (79 8)	2,988-3,250 (910 7-990 6)	269 (82 0)	2,982·3,251 (908 9 990 9)	-	د
Grande Ronde 5	133 (40 5)	3,255-3,388 (992 1-1,032 6)	133 (40 5)	3,250-3,383 (990 6-1,031.1)	131 (39 9)	3,251-3,382 (990 9-1,030 8)	-	-
Grande Ronde G	29 5 (9 0)	3,308-3,417 5 (1,032 6-1,041 6)	30 (9 1)	3,383-3,413 (1,031 1-1,040 2)	14	3,382+7 (1,030 8+?)	-	-
Grande Konde 7	575 (176)	3,417 5-3,475 (1,041 6-1,059 2)	57 (17 4)	3,413-3,470 {1,040 2-1,057 6}	-	b	-	-
Grande Honde 8 (McCoy Canyon)	132 (40-2)	3,475-3,607 (1,059 2+1,099 4)	132 (40-2)	3,470-3,602 (1,057 6-1,097 9)	-	-	-	-
Grande Honde 9 (Dintanum)	232 (707)	3,607-3,839 (1,099 4-1,170 1)	232 (70 7)	3,602+3,834 (1,097 9+1,168 6)	-	-	-	-
Grande Ronde 10 (very high Mg)	64 (195)	3,839-3,903 (1,170 1-1,189 6)	64 (19 5)	3,834-3,898 (1,168 6-1,188 1)	-	-	-	-

Table 1. Predicted/Observed Stratigraphic Thicknesses for Boreholes RRL-2B and RRL-2C. (sheet 3 of 3)

"Interim total depth 2,858 ft (871.1 m)

⁴⁻Total depth by log 3,404 ft (1,037.5 m)

ы

SD-BWI-TI-329 REV O

1

щ

Figure 11. Neutron-Epithermal-Neutron Log Traces for Core Hole RRL-2A, Well RRL-2B, and Piezometer Nest RRL-2C.

1.

Composite borehole geophysical log traces for part of the Grande Ronde 2 and Rocky Coulee flows at RRL-28, and for the Rocky Coulee, Cohassett, and Grande Ronde 5 flows at RRL-2C are shown in figures 12 through 15. The borehole caliber log measures two diameters both of which are displayed in the figures. The compensated neutron log represents relative porosity as compared with limestone/sandstone calibration blocks. Because the porosity is calibrated to limestone/sandstone rather than basalt, the relative porosity responses are shown in figures 12 through 15. The compensated density values are recorded from aluminum and magnesium density calibrations, and assumes a 2.85 g/cm³ matrix. Omnidirectional tools (neutron-epithermal neutron and gamma gamma) run in RRL-2B are recorded in counts per second and are used to indicate relative porosity and density. The full-wave acoustic log is used to obtain the shear wave amplitude. The data are collected by a multiple receiver tool at 3 and 5 ft (0.91 and 1.52 m) spacings. Static fluid temperature is measured in the open hole. The dynamic fluid temperature is run in the borehole while airlift pumping.

The data suggest that gross intraflow structures (i.e., flow top) can be inferred by examining the video recording and comparing it to the core log for the RRL-2A. Features such as elongated borehole wall breakouts and in situ fractures were noted and examined from the video recording. As indicated by the X-Y caliper log trace, video survey, and televiewer log, borehole wall breakouts tend to be minimal in the basal part of the flow and the flow top. Significant breakouts occur in the upper and middle parts of the flow. The entablature zone, which appears to be more susceptible to extensive breakouts, typically shows a blocky shaped borehole wall. The elongated borehole wall breakouts are attributed to high in situ horizontal stresses that are known to exist in the RRL area (Paillet and Kim 1985).

In extensive breakout zones, the decentralized and compensated borehole geophysical tools could not obtain true formation signals. A determination as to the extent of fractures associated with breakouts cannot be made on the basis of existing borehole geophysical logs. Studies by Paillet and Kim (1985) for selected deep boreholes on the Hanford Site indicate that the effects of borehole wall breakouts are surficial and are confined to a relatively thin zone around the borehole; i.e., within one borehole diameter or less in width.

In situ fractures, indicated as a letter "F" on figures 12, 13, 14, and 15, are identified on the shear wave amplitude log and verified by examination of the video survey. These fractures appear on the video as significant in width (as compared with other fractures within the flow) or as fracture sets at a specific depth. Note that the depth scales in the plots are slightly distorted from true depth due to systematic errors in digitizing and graphic plotting with the computer. Fractures seen in the video were compared to the actual geophysical logs for correlation and depth correction. The temperature anomaly at 2,835 ft (864.1 m) in figure 13 represents a large vug. This depth is more accurately estimated at 2,831 ft (862.9 m). At RRL-28, the following interpretations were made from available borehole logging information (see fig. 12).

- Rocky Coulee Flow
- Borehole wall breakouts are minimal to the interim depth of 2.858 ft (871.1 m) in the Rocky Coulee flow. The average borehole diameter ranged from 12.5 to 13.5 in. (32 to 34 cm). The maximum diameter is 15.5 in. (39 cm).
- The apparent high porosity, between the depths of 2,821 and 2,847 ft (859.8 and 867.8 m), corresponds to the flow-top breccia and vesicular basalt in this interval.
- Intervals of apparent high porosity also were noted on the neutron log between the depths of 2,785 and 2,805 ft (848.9 and 855.0 m). This interval corresponds to a fractured vuggy basalt. Two fractures were also observed on the video that showed on the shear wave amplitude log. The hydrogeologic significance of these fractures is unknown.
- The dynamic fluid temperature log (fig. 12) does not provide adequate information to evaluate where groundwater production occurs within the flow top. The cause for this may be attributed to the low-volume velocities induced during air-lift pumping.

At RRL-2C, the following interpretations were made from available borehole logging information (see fig. 13 through 15).

- <u>Rocky Coulee Flow</u>
- Borehole wall breakcuts are continuous between a depth of 2,845 and 2,974 ft (867.2 and 906.5 m). In this interval the average borehole diameter and maximum diameter are about 15 and 24 in. (38 and 61 cm), respectively.
- The apparent high porosity, as indicated on the neutron log, corresponds to the flow top between the depths of 2,816 and 2,834 ft (858.3 and 863.8 m). Within this interval, the principal groundwater-producing zone appears to be associated with a vuggy and vesicular area at a depth of 2,831 ft (862.9 m). Groundwater production from the zone was interpreted from the dynamic fluid temperature log, shear wave amplitude log, and video survey (see fig. 13).
- Several fractures present in the flow interior are indicated on the shear wave amplitude log trace. The hydrogeologic significance of these fractures is not known.

- Cchassett Flow
- Borehole wall breakouts are nearly continuous between a depth of 3,002 and 3,206 ft (915.0 and 977.2 m). In this interval the average borehole diameter ranged from 15 to 18 in. (38 to 46 cm). The maximum diameter is 23 in. (58 cm).
- The apparent high porosity, as indicated on the neutron log, corresponds to the vesicular flow top between the depth interval of about 2,982 and 3,000 ft (908.9 and 914.4 m).
- The Cohassett interior vesicular zone, between a depth of 3,071 and 3,083 ft (936.0 and 939.7 m), is evident by an apparent intermediate porosity response on the neutron log. An area of apparent high porosity below the vesicular zone is attributed to borehole wall breakouts as verified by the video survey.
- The zone from 3,232 to 3,251 ft (985.1 to 990.9 m) contains two zones of apparent high neutron-log porosity. They are identified as primary emplacement zones based on the natural gamma log response, video survey, and stratigraphic thickness relationships. This interval also corresponds closely to an anomalous zone on the dynamic fluid temperature log.
- Several fractures present in the flow interior are indicated on the shear wave amplitude log trace. The hydrogeologic significance of these fractures is not known.
- Grande Ronde 5 Flow
- Borehole wall breakouts are nearly continuous over the depth intervals of 3,254 to 3,358 ft (991.8 to 1,023.5 m). In these intervals, the average borehole diameter ranged from about 13 to 15 in. (33 to 38 cm). The maximum diameter is 17 in. (43 cm).
- The apparent high-porosity zone, as indicated on the neutron log, corresponds to the flow-top breccia and vesicular flow top between the depth of about 3,251 and 3,272 ft (990.9 and 997.3 m).
- A vesicular zone between the depths of 3,272 and 3,340 ft (997.3 and 1,018.0 m) is evident in the video survey. This zone appears to occur within the interior of the flow. The depth of the vesicular zone is not known because of a cloudy video display image due to the presence of some particulate matter in the borehole fluid.
- A dynamic fluid temperature anomaly (fig. 15) between 3,251 and 3,280 ft (990.9 and 999.7 m) indicates a potential zone of groundwater production.

5.0 BOREHOLE PREPARATION

The borehole preparation activities at RRL-28 and RRL-2C are summarized below. Supporting data and tables are provided in appendix D.

5.1 WELL RRL-28

The borehole preparation involved circulating the open-hole part of the borehole with Hanford system water immediately after reaching the interim depth of 2,858 ft (871.1 m). This was done to remove drill cuttings that may have accumulated in the borehole during the drilling operations. In addition, it prepared the borehole for running the video camera survey and installing pumping equipment for large-scale hydrologic testing.

Limited borehole development also was performed by air-lift pumping while running the fluid temperature sonde on September 19, 1985. An estimated 1,000 gal (3.8 m^3) of fluid were removed from the borehole. Further flushing of the borehole was accomplished on October 17 and 18, 1985. The total volume of Hanford system water used to flush the borehole was about 48,000 gal (181.7 m^3). During circulation, an estimated 14,000 gal (53.0 m^3) of fluid were lost to the Rocky Coulee flow top. A video survey conducted October 26, 1985, indicated that only minor amounts of particulate matter remained suspended in the water after circulation.

Air-lift pumping was not used as the principal technique to develop the borehole due to the low transmissivity of the Rocky Coulee flow top. Preliminary estimates of transmissivity of the Rocky Coulee flow top range from 2 to 6 ft²/d (0.2 to 0.6 m²/d) in the vicinity of the RRL-2 site. This estimate is based on pulse testing of the Rocky Coulee flow top between RRL-2B and borehole RRL-2A and RRL-2C on October 16, 1985 (Stone 1985a). Pressure responses were analyzed using the pulse testing technique described by Johnson et al. (1966).

5.2 PIEZOMETER NEST RRL-2C

The open borehole was developed prior to installing the multilevel piezometers by pumping until the discharge water was essentially free of particulates.

A line-shaft turbine was used to pump the composite interval of the Grande Ronde Basalt in the 12.25-in. (31.12-cm) borehole below the grouted 13.375-in. (33.973-cm) casing. The average discharge rate was 59.6 gal/min (226 L/min) over a pumping period of 52.3 h between June 5 and 7, 1985. The volume of groundwater removed during the period was about 137,000 gal (707.9 m³). The maximum drawdown was of ft (18.6 m). The 2.1-d specific capacity was 0.98 gal/min/ft (12.2 L/min/m).

Groundwater samples were collected for major constituent analyses during the pumping phase to assess hydrochemical recovery dynamics for a water-drilled borehole. Gas samples were collected from an experimental gas-separator barrel to evaluate well-head dissolved gas sampling procedures under two-phase flow conditions. These data are beyond the scope of this report and will be reported in the Hydrochemistry Data Base and in hydrochemical topical reports.

On June 7 and 10, 1985, additional pumping was done to run a dynamic fluid temperature survey and to obtain gas samples. The volume of formation water pumped from the borehole was about 16,600 gal (62.8 m^3). Therefore, the total volume of water removed from the borehole during composite pumping was about 203,600 gal (770.7 m^3).

Two potential zones of groundwater production were indicated on the dynamic fluid temperature survey in the open portion of the borehole (2,775 to 3,404 ft (845.8 to 1,037.5 m)) (see fig. 13 through 15). As indicated by temperature anomalies, a water zone occurs in a distinct vuggy zone at a depth of 2,831 ft (862.9 m), which stratigraphically occurs near the base of the Rocky Coulee flow top. Another water zone occurs between a depth of 3,232 and 3,280 ft (985.1 and 999.7 m), which corresponds to the Grande Ronde 5 flow top and Cohassett flow bottom. Based on drilling-loss data and borehole geophysical logs, the most productive zone appears to be the Grande Ronde 5 flow top.

The transmissivity of the Grande Ronde 5 flow top at RRL-2C was estimated from the specific-capacity data obtained during borehole development. The specific-capacity method (Theis et al. 1963) was employed over other conventional analytical methods because the water column in the pumped borehole was influenced by temperature and gas effects. These effects prevented analysis of the drawdown and recovery data that were monitored with shallow-pressure transducers. Using a specific capacity of 0.98 gal/min/ft (12.2 L/min/m) of drawdown gives a transmissivity of 2SO ft²/d (26 m²/d). Because of the uncertainties discussed previously, the estimated transmissivity for the Grande Ronde 5 flow top falls between 200 and 300 ft²/d (20 and 30 m²/d) at RRL-2C.

6.0 PIEZOMETER INSTALLATION

6.1 PIEZOMETER DESIGN

The nested piezometers in RRL-2C will serve in determining the hydraulic properties of the pumped horizons (i.e., flow tops), as well as those of the adjacent flow interiors, during large-scale hydraulic testing at RRL-2B. Six piezometers designed for monitoring formation pressures and hydraulic heads in the Grande Ronde Basalt comprise RRL-2C. The six monitoring horizons are within the depth interval of 2,775 to 3,404 ft (845.8 to 1,037.5 m). These horizons are (with increasing depth) the Rocky Coulee flow top, Rocky Coulee flow interior, Cohassett flow top, Cohassett flow interior, Grande Ronde 5 flow top (which also includes part of the Cohassett flow bottom interval), and Grande Ronde 5 flow interior.

In general, these piezometers are monitoring facilities consisting of (1) a tail pipe; (2) one or more screened section(s) in the monitoring horizon; (3) a seating nipple; (4) a riser tube to the ground surface; (5) a multiple-gradation filter pack; and, (6) a densified cement seal. Each piezometer string is partially centralized to achieve standoff of the screen sections from the borehole wall and the adjacent piezometer strings in the borehole. This facilitates placement of the filter pack around the tailpipe, the screen sections, and the riser tubing. It also facilitates placement of the densified cement seal around the riser tubing above the filter pack. The six multilevel monitoring horizons are isolated from each other and the next overlying hydrogeologic horizon by densified cement seals. The configuration of the multilevel piezometer and the as-built details are summarized in figures A-3, A-4, and A-8 and in table E-1.

The placement of the piezometers was based on examination of a suite of borehole geophysical logs (fig. 12 through 14). Borehole geophysical logs were correlated to core data at the nearby RRL-2A. High and low porosity within a specific flow were qualitatively differentiated using the neutronepithermal neutron and sonic logs to position the flow-top piezometers and provide approximate locations for the interior piezometers.

The vertical locations of the flow-interior piezometers at RRL-2C were further refined by using axisymmetrical and analytical (Neuman and Witherspoon 1968) models. These models were used to simulate drawdown in the basalt flow interior at various vertical distances from the pumped flow top. It should be noted that the simulated responses assumed a homogeneous and isotropic flow interior. Input parameters used in the models are given by Stone (1985b).

The results reported by Stone (1985a), indicate that the Rocky Coulee flow-interior piezometer should be placed about 60 ft (18.3 m) below the Rocky Coulee flow top; the Cohassett flow-interior piezometer should be placed about 80 ft (24.4 m) above the Grande Ronde 5 flow top; and, the Grande Ronde 5 flow-interior piezometer should be placed about 45 ft (13.7 m) below the Grande Ronde 5 flow top. These depths were used to finalize the location for the three flow-interior piezometers at RRL-2C.

6.2 PIEZOMETER MATERIALS

The piezometer materials installed at RRL-2C were similar to those used at the borehole cluster sites DC-19, DC-20, and DC-22 (Jackson et al. 1984). The components and their position with respect to the overall piezometer string are shown schematically in figures A-3, A-4, and A-8.

6.2.1 Tubing

The tailpipe and riser tubing is API, integral joint (IJ), 10-round (RD) thread, J_{-55} (low-carbon) steel tubing. The tubing weighs 3.25 lb/ft (4.8 kg/m). The yield strength is 55,000 lbf/in² (379.2 MPa), and the nominal diameter is 1.751-in. (4.448-cm) ID and 2.063-in. (5.240-cm) OD.

· Preliminary galvanic corrosion studies by Rockwell (Anantatmula 1985) indicate a life expectancy for the low-carbon steel tubing of at least 30 yr. This estimate is based on static conditions and the assumption that the entire length of the low-carbon steel pipe is in contact with the Type 316-L stainless steel screen.

6.2.3 Screen

The screen sections consist of a continuous-slot, wire-wound screen jacket (2.56-in. (6.50-cm) 00) over a perforated pipe base (2.063-in. (5.240-cm) OD). The screen jacket is fabricated by circumferentially wrapping a 0.06-in. (1.52-mm) triangularly shaped wire around a circular array of 18 internal rods. The wire wrap provides inlet slots with sharp outer edges that widen inwardly to minimize clogging. The boss rings are welded to the ends of the screen jacket and, in turn, are welded to the pipe base. The screen jacket and boss rings are fabricated from corrosionresistant Type 316-L stainless steel. The pipe base and screen jacket details are given in table 2. The screen slot opening is 0.040 in. (10.2 mm). The length of individual screen sections ranged from 2 to 10 ft (0.61 to 3.1 m).

Description	Dimensions
	Pipe base
Inside diameter Outside diameter Weight Thread Diameter of holes Number of holes Open area of holes	1.751 in. (4.448 cm) 2.063 in. (5.240 cm) 3.25 lb/ft (4.8 kg/m) 2.06 in. (5.23 cm) IJ, 10 RD 0.31 in. (0.79 cm) 84 6.44 in ² /ft (136.3 cm ² /m)
	Screen jacket
Outside diameter Open area 40/1,000-in. slot	2.56 in. (6.50 cm) 38.6 in ² /ft (817 cm ² /m)
RD = Round.	

Table 2. Pipe Base and Screen Jacket Details.

IJ = Integral joint.

6.2.4 Urethane Sleeves

Urethane sleeves were fitted on the screen sections to prevent adjacent riser piezometer strings in the borehole from touching the stainless steel screen. The sleeves are 2- by 3-in. (5.1- by 7.6-cm) OD by 2.125-in. (5.398-cm) ID. The sleeves are located on the top and bottom of each screen section. If more than one screen section were used (i.e., Grande Ronde 5 flow top), three sleeves were used as shown in figure A-4.

6.2.5 Seating Nipple

The seating nipple, 8 in. (20.3 cm) in length, is positioned about 2 ft (0.61 m) above the piezometer screen. It has a diameter of 1.375-in. (3.49-cm) ID and 2.063-in. (5.240-cm) OD and is made of low-carbon steel. A wire-line retrievable standing valve is placed in the seating nipple to seal the piezometer string above the screen so it can be checked for tubing leaks prior to placement of the filter pack and cement slurry seal. The seating nipple also provides a landing for the downhole pressure probe during piezometric monitoring.

6.2.6 Centralizers

Each piezometer string was partially centralized to achieve standoff of the screen sections from the borehole wall and adjacent piezometer strings in the borehole. The centralizers were spaced below and above each screen interval, near the pea gravel/dense-cement interface and 30 to 40 ft (9.1 to 12.2 m) above this interface. For the lowermost piezometer, an additional set of centralizers was located about 60 to 70 ft (18.3 to 21.3 m) above the screen. Centralizer plates were fabricated at the drill site with 0.375-in. (9.53-mm) thick, low-carbon flat steel. Individual centralizer plates were arranged radially and were welded onto the piezometer tubing at spacings ranging from 60 to 120 degrees.

6.2.7 Filter Pack

....

The filter pack consists of the monitoring horizon sand pack and the pea gravel pack. Gradation curves for these materials are shown in figure 16. The sand pack consists of well-rounded No. 10-20 and No. 4-8 silica sand. The finer sand pack (No. 10-20) is used to retard downward migration of the cement slurry into the coarser sand pack. The manufacturer's chemical description for the No. 4-8 and No. 10-20 sand is given in table E-8. The sand pack material was bagged in 100 lb (45.4 kg) waterproof bacs.

The pea gravel pack consists of clean, washed, rounded gravel comprised of igneous and metamorphic rock material. This material was provided from a local sand and gravel quarry and delivered in bulk to the drill site. The coarser pea gravel was placed over the sand pack to prevent erosion of the sand pack material curing placement of the next densified cement seal.

6.2.8 Densified Cement Seal

The cement seals consist of API Class G cement. Class G cement is recommended for use from ground surface to a depth of 8,000 ft (2,440 m) (Smith 1976). The composition and physical properties of Class G cement used at RRL-2C are given in table E-6.

Class G cement with a friction reducer was mixed with Hanford system water to a high-density slurry of 17.5 lb/gal (2.10 kg/L). The water ratio and yield of the slurry was 3.38 gal/sack (12.80 L/sack), and 0.93 ft³/sack (0.026 m³/sack), respectively. High-density cement (i.e., low-water content) was used to minimize microannulus effects, provide high-compressive strengths, and low-matrix permeability.

A subcontracted cementing service company performed selected laboratory tests on the densified cement. The results are summarized below.

Thickening time	164 min					
Compressive strength 6 h 12 h 24 h	1,500 lbf/in ² (10.3 MPa) 5,500 lbf/in ² (38.5 MPa) 6,000+ lbf/in ² (41.4+ MPa)					
Hydraulic conductivity Composite Matrix	8 E-06 ft/d (2E-06 m/d) 1 E-06 ft/c (3E-07 m/d)					

The composite hydraulic conductivity refers to matrix hydraulic conductivity, as well as microannulus flow capacity. All samples were cured under simulated formation conditions.

In addition to these tests, hydraulic conductivity tests were performed. The results of these tests are given below.

Slurry density,	Hydraulic conductivity,				
lb/gal (kg/L)	ft/d (m/d)				
16.2	7 E-08				
(1.94)	(2E-08)				
16.2*	6 E-09				
(1.94)	(2 E-09)				
17.5	essentially				
(2.10)	impermeable				
*1% CaC12					

All laboratory test results are on file with BRMC.

6.3 PIEZOMETER INSTALLATION PROCEDURE

The installation procedure consists of a sequence of operations required to place and secure one piezometer tubing string in a borehole to monitor a specific horizon. This sequence of operations is repeated each time another piezometer tubing string is placed and secured in the borehole until the required number of piezometer tubing strings has been installed. Jackson and Jones (1985) provided the design and procedures to guide the piezometer installation at RRL-2C.

Each piezometer tubing string was field checked to determine internal openness and to identify possible major tubing breach defects, such as a tubing hole or split, or flawed tubing joint threads. This was accomplished by the following:

- Steam cleaning the piezometer tubing at the storage facility
- Inspecting piezometer tubing and joint threads while strapping (measuring tubing length) tubing on the workover-rig tubing racks
- Passing a steel rod through the piezometer tubing as it was transferred to the rig derrick rack
- Wrapping tefion tape on the piezometer tubing threads prior to tubing joint make-up

- Tightening each piezometer tubing joint in the rig derrick with hydraulic power tongs
- Performing an approximate 1-h seating nipple test under hydrostatic conditions.

The seating-nipple tubing test was run to verify that no major breaches existed in a piezometer string prior to securing it in the borehole with filter-pack material and a cement seal. This test involved installing a standing valve in the seating nipple and filling the piezometer tubing string with Hanford system water. After allowing the water to equilibrate for about 10 to 15 min, the water level inside the tubing was monitored for about 1 h.

The results of the seating nipple tubing test are summarized in table E-7. No major breaches were identified as a result of the installation process. The conclusion is based on tests run prior to securing the piezometer and after piezometer development activities. Minor head declines that did occur inside the tubing were attributed to worn standing valves, air bubbles escaping from the water that was used to fill the piezometer tubing, and temperature effects caused from temperature equilibration between the test water and the borehole annulus fluids.

The as-built details for the piezometer tubes are documented in figures A-1 through A-8 and the piezometer summary (table E-1). The detailed installation activity for each piezometer tubing string is documented in the piezometer installation activities (table E-2).

The general piezometer installation procedure using a workover rig was as follows.

- Accurately measure the length of work string.
- Run the working string in the borehole.
- Tag the bottom of the borehole with the work string.
- Calculate the volume of slurry to be placed as based on caliper log, place the basal cement seal through work string with cementing equipment.
- Wait on the cement 8 h and tag the top of the cement with the work string.
- Measure the deepest piezometer tubing accurately (Grande Ronde 5 flow interior), and run the piezometer tubing to the design depth. (Note: The piezometer tubing section exposed to the cement seal was sand blasted to enhance cement bonding to the tubing.)

- Run the seating nipple tubing test with the piezometer string tubing in tension.
- Run the work string into the borehole, calculate the volume of filter pack material to be placed as based on the caliper log, place the filter pack through the work string, and tag the top of the filter pack with the work string.
- Rig up the work string for cementing, calculate the volume of cement slurry required to be placed based on the caliper log, and
 place the cement through the work string with cementing equipment.
- Run a fluid temperature log after the cement has set for at least 4 h, wait on the cement at least 8 h, tag the top of the cement with the work string, and remove the work string from borehole.
- Run the next deepest piezometer tubing string (Grande Ronde 5 flow top) in the borehole and repeat the piezometer installation activities as outlined above.
- Secure the piezometer tubes with a locking cap and finish the well head after all the piezometer tubing strings have been installed.

6.3.1 Piezometer Seal Cementing

<u>Placement Method</u>. The balanced and two-plug methods were used to place the cement slurry seals that isolate the piezometer strings from each other in the borehole. Advantages of the balanced method are that it is simple and requires no special type of cementing equipment. A disadvantage is the possibility of the cement being contaminated from borehole fluids, especially when using small quantities of cement. Therefore, the balanced method was limited to the larger volumes of slurry placed in the borehole.

The balanced-method cement placement procedure was as follows.

- Place bottom of the work string, which includes a diverter tool near bottom of seal to be placed. (This tool forces the flow of the slurry into the borehole sidewall and upward in borehole.)
- Calculate required volume of cement as determined from the caliper log.
- Pump cement slurry at a slow rate (i.e., 2 bbl/min (318 L/min)).
- Follow cement with a predetermined amount of displacement water until the level of slurry outside the work string is balanced with level inside work string.
- Pull work string slowly from slurry.

The volume of cement slurries placed while using the balanced method is summarized in table E-4.

In the two-plug method, top (lead) and bottom wiper plugs isolate the cement slurry inside the work string from the borehole water and the displacement water during the placement process. In addition, a plug catcher is attached immediately above the diverter tool. The advantages of the two-plug method are (1) it minimizes the possibility of over displacement; (2) it reduces water and cement contamination; and, (3) small quantities of cement slurry can be placed accurately.

The two-plug method cement placement procedure was as follows.

- Place plug catcher at the same depth as the bottom of the cement seal to be placed.
- Calculate required volume of cement as determined from caliper log.
- Pump predetermined volume of lead water ahead of lead wiper plug.
- Release lead wiper plug from plug container.
- Pump cement slurry at a slow rate (i.e., 2 bbl/min (318 L/min)).
- Release top wiper plug from plug container.
- Chase top wiper plug with a predetermined amount of displacement water
- Pull work string slowly from slurry, see discussion below.

As the cement slurry is pumped through the work string and into the annulus, the bottom wiper will pass through the plug catcher and land in the lower part of the diverter tool. Pumping is terminated when the top plug is caught in the plug catcher, which is indicated by a rise in the pump pressure at the surface. At that time, the plug catcher is slowly pulled to just above the cement slurry. Then the work string is pressurized to about $1,000 \text{ lbf/in}^2$ (6.9 MPa) to shear a sliding sleeve in the plug catcher. This permits communication between the fluids inside the work string with the borehole fluids outside the work string, thereby preventing a sucking action that would disturb the slurry while the work string is pulled slowly from the borehole. The volume of cement slurries placed with the two-plug tecnnique is summarized in table E-4.

<u>Cement Mixing Equipment</u>. The preblended cement was bulk transported to the borenole site prior to mixing. A truck-mounted recirculating cement mixing (RCM) system was used for the initial mixing of the cement slurry. It was then transferred to a separate truck-mounted batch mixer for final weighing. The slurry density was monitored with pressurized mud balance

scales during mixing and an on-line densometer measuring system during pumping. The densified cement slurry was pumped with an RCM pumping unit at a rate of 1 to 2 bbl/min (150 to 320 L/min). Wet and dry cement samples were collected during mixing. The cementing equipment needed to place the cement seals is listed in table E-5.

7.0 PIEZOMETER DEVELOPMENT

The objective of piezometer development was to remove bulk particulate matter that accumulated in the screen, filter pack, and piezometer tubing during the installation process. This development provided confirmatory evidence of the piezometer operation. Activities associated with piezometer development include air-lift pumping, water circulation, piezometer cleanup sampling, and hydraulic-head monitoring. After development, seating-nipple tubing tests and short-term constant head injection tests were conducted. The results of these tests verified the structural integrity of the tubing with respect to tubing leaks and to obtain preliminary transmissivity values of three flow interiors and one flow top. Activities associated with the piezometer development at RRL-2C are summarized in appendix F.

7.1 METHODOLOGY

7.1.1 Air-Lift Method

This method consisted of injecting air through a 1-in. (2.54-cm) nominal plastic air line that extended about 250 ft (76.2 m) below the piezometer water surface. Water was discharged at the surface into a 60-degree v-notch weir. The discharge rate was measured with either the 60-degree v-notch weir or a calibrated container and stop watch. Preliminary groundwater development samples were collected to provide a qualitative indication of particulate cleanup.

The air-lift method was used to develop the Rocky Coulee and Grande Ronde 5 flow-top piezometers because these monitoring horizons were sufficiently transmissive to pump the particulate matter cut of the piezometer tubing. The Cohassett flow top was not transmissive enough to use the air-lift method. Pertinent development activities for the Rocky Coulee and Grande Ronde 5 flow-top piezometers are summarized in table F-2.

7.1.2 Circulation Method

This method consisted of circulating Hanford system water through 0.957-in. (2.431-cm) iD tubing at a rate of 6 to 8 gal/min (23 to 30 L/min) inside the piezometer tubing. A 0.75-in. (1.91-cm) OD, 24-ft- (7.3-m-) long mule shoe was located just above the piezometer seating nipple prior to

 $\overline{}$

initiating circulation. During circulation, the mule shoe was lowered at a rate of about 1 ft (0.31 m) every 20 min past the seating nipple and into the screen section. In-flow into the piezometer through the Hydril tubing was measured with a 0.75- by 0.65-in. (1.91- by 1.65-cm) flow meter. Outflow was measured with a 60-degree v-notch weir at ground surface. Circulation was terminated when the return water was visually clear.

The circulation method also was used for the flow interior piezometers and the Cohassett flow-top piezometer because these monitoring horizons were not sufficiently transmissive to air lift the particulate matter out of the piezometer tubing. Piezometers developed with this method include the Rocky' Coulee, Cohassett, and Grande Ronde 5 flow interior piezometers, and the Cohassett flow-top piezometer. The total volume of water circulated through these piezometer tubings is summarized in table F-2.

The circulation method also was used on the Rocky Coulee and Grande Ronde 5 flow-top piezometers after they became plugged during air-lift development. Hanford system water was circulated to open the piezometer tubing near the seating nipple. Subsequent air-lift pumping improved the discharge rate over previous pumping activities as summarized in table F-2.

7.1.3 Hydraulic-Head Monitoring

Water-level measurements were taken with either an electric water-level indicator or a steel tape, or both, during and after the piezometer installation and piezometer development activities. To monitor fluid pressures, near-surface pressure transducers were installed in the piezometer tubes. The pressure transducers were connected to a surfacebased multichannel recording system. Detailed composite pressure hydrographs during the air-lift and circulation phases are shown in figures 17 through 24. A composite water-level hydrograph for the Grande Ronde piezometers following piezometer development is shown in figure 25.

7.1.4 Seating-Nipple Tubing Tests

Seating-nipple tubing tests were conducted in each piezometer subsequent to their development. The general procedures were described in 5.0. These tests were conducted to ensure that no major breaches in the tubing occurred during the installation process. The results of the seating-nipple tubing tests are summarized in table E-7.

Prior to removing the standing valve from the seating nipple, Hanford system water was circulated above the seating nipple so a column of water of uniform composition existed in the piezometer tubing for hydraulic head monitoring. The chemical composition of the flush water in each of the piezometers is summarized in table F-3.

Figure 17. Pressure Hydrograph of Rocky Coulee Flow-Top Piezometer During its Development at Piezometer Nest RRL-2C.

ŝ

SD-BWI-TI-329 REV O

Figure 18. Composite Pressure Hydrographs of Piezometer Nest RRL-2C Piezometers During Development of Rocky Coulee Flow-Top Piezometer.

ដ

Figure 19. Composite Pressure Hydrographs of Piezometer Nest RRL-2C Piezometers During Flush Development of Rocky Coulee Flow-Interior Piezometers.

SD-BWI-TI-329 REV O

÷

 \mathbb{N}

in Fi

Figure 21. Composite Pressure Hydrographs of Piezometer Nest RRL-2C Piezometers During Flush Development of Cohassett Flow-Interior Piezometer.

ហ

SD-BWI-TI-329 REV 0

Figure 22. Pressure Hydrograph of the Grande Ronde 5 Flow-Top Piezometer During Air-Lift Development at Piezometer Nest RRL-2C.

ch Ch

1

SD-8WI-TI-329 REV 0

Figure 23. Composite Pressure Hydrographs of Piezometer Nest RRL-2C Piezometers During Air-Lift Development of the Grande Ronde 5 Flow Interior Piezometer.

5

SD-8WI-TI-329 REV O

B

SD-BWI-TI-329 REV O

Figure 25. Composite Observed Water-Level Hydrographs, August 15 to October 11, 1985, at Piezometer Nest RRL-2C.

ng Q SD-BWI-TI-329 REV O

7.1.5 Constant-Head Injection Tests

After completion of development activities, short-term constant head injection tests were conducted in the low hydraulic conductivity intervals (i.e., the Rocky Coulee, Cohassett, and Grande Ronde 5 interior piezometers, and the Cohassett flow-top piezometers). These tests were performed by filling the piezometer tubing with Hanford system water and monitoring the injection flow rate for 1 h using a graduated cylinder and stop watch. The final injection rates for these piezometers are shown in table F-4.

7.2 OBSERVED HYDRAULIC-HEAD RESPONSES IN PIEZOMETER NEST RRL-2C

7.2.1 Time-Variant Head Responses During Piezometer Development

This section describes observed hydraulic-head responses in the observation piezometers while air-lift development pumping or flushing. The observed head responses in the piezometers during the development phase are summarized in table 3. Field data is on file in BRMC.

<u>Rocky Coulee Flow-Top Development</u>. Pressure responses shown in figures 17 through 18 are associated with air-lift pumping the Rocky Coulee flow-top piezometer over a period of 5.92 h at an average discharge of about 0.3 gal/min (1.14 L/min). A rapid pressure drawdown of about 1.5 lbf/in² (10.3 kPa) ocurred in the Rocky Coulee flow-interior piezometer during pumping of the Rocky Coulee flow top. This response implies that vertical hydraulic connection exists between these two intervals. Minor pressure changes in the deeper piezometers are attributed to predevelopment waterlevel trends, temperature effects, and possibly other unidentified factors.

<u>Rocky Coulee Flow-Interior Development</u>. The Rocky Coulee flow-interior piezometer was developed using the circulation method. Water pressures were monitored in the adjacent Rocky Coulee flow-top and the Cohassett flow-top piezometers (see fig. 19).

A pressure change noted in the Rocky Coulee interior and Cohassett flow-top piezometers suggests hydraulic communication with the Rocky Coulee flow interior. During the injection phase of development, a pressure increase was noted in both intervals (see fig. 19). After circulation was stopped, the pressures began to decrease. In the case of the Rocky Coulee flow top, it returned to about the preinjection pressure level. The decline of pressures in the Cohassett flow top is thought to be influenced by borehole storage effects. During circulation, an increase in water pressure in the Rocky Coulee flow interior apparently produced a pressure increase in the Rocky Coulee flow-top and the Cohassett flow-top piezometers.

None of these pressure changes appears to be dominated by temperature effects. If temperature effects did dominate, the injection of cooler Hanford system water should have produced a decrease in the observed pressures. However, the observed pressure changes indicate an increase rather than decrease.

C	Observation piezometer								
piezometer	Rocky Coulee flow top	Rocky Coulee flow interior	Cohassett flow top	Cohassett flow interior	Grande Ronde 5 flow top	Grande Ronde 5 flow interior			
Rocky Coulee Now top	Air-lift pumped	Drawdown about 1.5 lbf/in² (10.3 kPa)	Questionable response	Minor tempera- ture effect	Minor tempera- ture effect	Minor tempera- ture effect			
Rocky Coulee flow interior	Build up about 2.5 lb{/in² (17.2 kPa)	Flushed	Build up about 10 lbf/in² (69.0 kPa)	Not monitored	Not monitored	Not monitored			
Cohassett Now top	No response	Build up about 6.5 lbl/in² (44 8 kPa)	Flushed	Build up about 2 lbf/in² (13.8 kPa)	Minor temperature	Minor tempera- ture effects			
Cohassett flow interior	Not monitored	Minor tempera- ture effects	Build up about 2 Ibl/in² (13 8 kPa)	Flushed	Minor tempera- ture effects	Not monitored			
Grande Ronde 5 flow top	Temperature effects	Temperature effects	Temperature ellects	Temperature effects	Air-lift pumped	Temperature effects			
Grande Ronde 5 flow interior	Not monitored	Not monitored	Minor tempera- ture effects	Minor tempera- ture effects	Minor tempera- ture effects	Flushed			

Table 3. Summary of Observed Hydrologic Responses Associated with Piezometer Development Activities at Piezometer Nest RRL-2C.

ġ,

SD-BWI-TI-329 REV O

The difference in shape between the Rocky Coulee flow-top and the Cohassett flow-top hydrographs may be related to the difference in transmissivities of these two intervals. A relatively higher transmissivity in the Rocky Coulee flow top had a greater dampening effect on the pressure transient during development of the Rocky Coulee flow interior. Hence, the response was less conspicuous than the one in the Cohassett flow top.

<u>Cohassett Flow-Top Development</u>. The Cohassett flow-top piezometer was developed using the circulation method. Water pressures were monitored in the piezometers of the Rocky Coulee and Grande Ronde 5 flow tops and the Rocky Coulee and Cohassett flow interiors.

A pressure buildup in two of these piezometers, the Rocky Coulee flow interior and the Cohassett flow interior, occurred while circulating in the Cohassett flow-top piezometer (see fig. 20). The response in the Rocky Coulee interior was similar to that described in the previous section on development of the Rocky Coulee interior; that is, in a step-wise fashion (see fig. 20). The response in the Cohassett flow interior, however, shows an interesting variation in that, after the first injection period, the pressure continued to increase at a slower rate. The reason for this response is not understood.

Two minor pressure changes are also observed in the Grande Ronde 5 and the Rocky Coulee flow-top piezometers at the start of circulation. This change may represent temperature effects. At the start of circulation, water at the bottom of the Cohassett flow-top piezometer moves uphole past the cooler borehole materials. This warmer slug of water moving uphole may have caused the slight pressure increase.

<u>Cchassett Flow-Interior Development</u>. The Cohassett flow-interior piezometer was developed using the circulation method. Water pressures were monitored in the adjacent Grande Ronde 5 flow-top and Cohassett flow-top piezometers, and in the Rocky Coulee flow-interior piezometer.

A pressure change was noted in all three monitored piezometers during the flushing activities. Only one of the pressure responses (the Cohassett flow-top piezometer) behaved in a manner indicating possible hydraulic communication with the Cohassett flow-interior piezometer (see fig. 21). While injecting water into the Cohassett interior, a pressure increase occurred in the Cohassett flow top. This is the type of response expected if these two intervals are hydraulically connected.

The pressure responses in the Grande Ronde 5 flow-top piezometer and the Rocky Coulee flow-interior piezometer represent changes that typically occur from temperature effects. A pressure decrease occured in these piezometers during the development period and a pressure increase occured after development was stopped (see fig. 21). The decrease in pressure is attributed to a condensing of borehole water and, therefore, a lowering of nydraulic heads as the cooler Hanford system water circulates past the relatively warmer downhole water. The increase in pressure occurs as the cooled downhole water returns to quasi-static temperatures.

<u>Grande Ronde 5 Flow-Top Development</u>. The Grande Ronde 5 flow-top piezometer was developed using the air-lift method (see fig. 22). The average discharge rate was 5.5 gal/min (20.8 L/min) over a period of 24 h. Water pressures were monitored during development in the other five piezometers (Rocky Coulee flow top and flow interior, Cohassett flow top and flow interior, and Grande Ronde 5 flow-interior piezometers).

A slight pressure response was noted in the observation piezometers during and after air-lifting activities. As shown in figure 23, the pressure buildups occur at about the same time and in the same directions. Again, the pressure changes may be caused by temperature effects. The increase in pressure is a response to the Grande Ronde 5 flow-top water warming the surrounding observation piezometer water while air-lifting is in progress. The decrease in pressures occurs after air-lifting stops and the temperatures return to quasi-static conditions.

<u>Grande Ronde 5 Flow-Interior Development</u>. The Grande Ronde 5 flowinterior piezometer was developed using the circulation method. Water pressures were monitored in the adjacent Grande Ronde 5 flow top, the Cohassett flow-top, and the Cohassett flow-interior piezometers.

Minor pressure responses were noted in all three of these piezometers. In all cases the pressure changes can be attributed to temperature effects. A pressure decrease during the injection period and a pressure increase when circulation is terminated was shown in figure 24. This is the expected response while the surrounding piezometer water is cooled and as it returns to warmer quasi-static temperatures.

7.2.2 Time-Variant Head Responses After Piezometer Development

The composite water-level hydrograph (see fig. 25) for piezometer nest RRL-2C shows the time-variant responses of the six monitoring horizons after piezometer development between August 15 and October 11, 1985. Salient features of the composite hydrograph include the following.

- An observed water-level head difference exists between the monitoring horizons.
- Observed water levels in the Conassett flow-top and flow-interior piezometers, and the Rocky Coulee flow-interior piezometer decline with respect to time.
- Observed water levels in the Grande Ronde 5 flow-top and flowinterior piezometers, and the Rocky Coulee flow-top piezometer rise with respect to time.

- A subdued water-level buildup occurred in the Rocky Coulee flowinterior piezometer during August, which appears to be associated with injection of water into the Rocky Coulee flow top at RRL-28.
- Atmospheric pressure changes are influencing water levels in the Rocky Coulee and Grande Ronde 5 flow tops.

Under unstressed conditions (i.e., in a monitoring mode), the observed hydraulic heads in the Grande Ronde piezometers appear to be equilibrating to different elevations. This condition suggests that hydraulic isolation exists between the monitoring horizons. However, under stressed conditions (i.e., when air-lift pumping), pressure responses were observed in some of the adjacent monitoring horizons. This suggests that increased vertical leakage is occurring between some of the units (e.g., between the Rocky Coulee flow interior and flow top) when they are subjected to greater than normal vertical hydraulic gradients, such as those imposed by pumping.

Potential pathways that could act as vertical conduits to account for these responses include the following:

- Leaks in the piezometer tubing strings
- Inadequate cement seals with channels
- Enhanced hydraulic conductivity in the disturbed rock zone in the near vicinity of the borehole as a result of drilling
- Presence of in situ formation fractures
- Bedrock structural or stratigraphic discontinuities (i.e., faults and pinchouts).

An abbreviated discussion of these hypotheses is given below.

- Tubing tests performed before and after piezometer development indicated no apparent leaks in the six piezometer strings.
- State-of-the-art cementing practices were used to place the densified cement seals. Each seal was accurately located by tagging the top of the cement with the work string. The position and presence of the cement seal was further verified from fluid temperature logs.
- Accustic logs, televiewer logs, caliper logs, and video camera surveys indicate that numerous breakouts (spalling) occurred in the borehole during drilling. Available borehole geophysical logs do not indicate, however, the extent of the disturbed rock zone or the connectivity of the fractures within this zone. Preliminary monitoring data show an apparent water-level elevation difference between piezometer horizons. This monitoring data suggests that the disturbed rock zone is not extensive.

• The existence of in situ fractures can be determined from geophysical logs and video surveys. Hydraulic testing in conjunction with geologic subsurface investigations (i.e., exploratory shaft and test facility) will be required to evaluate the effects of in situ fractures on the vertical transfer of groundwater through the flow interiors.

As shown in the as-built drawings (fig. A-8), two of the densified cement seals (intervals 2,833 to 2,895, and 3,282, and 3,315 ft (863.5 to 882.4, and 1,000.4, and 1,010.4 m)) are opposite zones of intermediate porosity as compared to the flow top and dense-interior zones. Examination of hydraulic data at core hole RRL-2A indicates a horizontal transmissivity ranging from 10^{-5} to 10^{-4} ft²/d (10^{-7} to 10^{-6} m²/d) for the dense interior of the Rocky Coulee flow (Wintczak 1984, p. 58). The hydraulic properties of the intermediate porosity zones have not been evaluated quantitatively. However, the neutron-epithermal-neutron log, constant head injection test, and observed hydrologic responses during airlift development indicate that these zones may possess relatively greater horizontal and vertical hydraulic conductivities than the dense interior.

 No major cross-cutting features (i.e., fault) or stratigraphic discontinuities have been identified in the evaluation of core logs at RRL-2A and borehole geophysical logs at RRL-2C. Therefore, the hypothesis that these types of features permit vertical hydraulic communication between piezometers during development is not supported by the current data.

At this time the amount of collected field data is insufficient to eliminate any of the hypotheses listed above (with the exception of the tubing leaks). Controlled field tests at RRL-2B and RRL-2C, and possibly hydraulic testing at other sites in the vicinity of the reference repository location are needed to determine the nature of vertical hydraulic communication between units tapped by the piezometers.

8.0 HYDRAULIC PROPERTY ESTIMATES

8.1 LOW-TRANSMISSIVE MONITORING INTERVALS

Constant-head injection tests of 1-h duration were run in the piezometers to obtain preliminary estimates of transmissivity of the Rocky Coulee flow interior, the Cohassett flow top, the Cohassett flow interior, and the Grande Ronde 5 flow interior. Estimates of transmissivity were determined by the Zeigler method (Zeigler 1976, p. 48, Eq. 43). Input parameters are given in table F-4. Estimates of transmissivity are summarized in table 4. As shown in table 4, these monitoring horizons possess transmissivities ranging from 10^{-4} to 10^{-3} ft²/d (10^{-6} to 10^{-5} m²/d). Estimates are given with one order of magnitude range because of the limited testing performed on these horizons.
Borehole number	Interval description	Test method	Estimated transmissivity, ft²/d (m²/d)	Storativity	Analysis method	Remarks
RRL-2B	Rocky Coulee flow top	Pulse	2·6 (0.2·0.6)	10.5	Pulse (Johnson et al. 1966)	Data from observation points RRL-2C and RRL-2A
RKL-2C	Composite Grande Ronde	Borehole development pumping	200-300 (20-30)		Specific Capacity (Lohman 1972)	Principal water zone is Grande Ronde 5 flow top and Cohassett flow bottom
RRL-2C	Rocky Coulee flow interior	Constant head injection	10 ⁻⁴ - 10 ⁻³ (10 ⁻⁶ - 10 ⁻⁵)		Zeigler (1976)	1-h injection period
RRL-2C	Cohassett flow top	Constant head injection	10-4 (10-6)		Zeigler (1976)	1-h injection period
RRL-2C	Cohassett flow interior	Constant head injection	10 ^{.4} (10 ^{.6})		Zeigler (1976)	1-h injection period
RRL-2C	Grande Ronde 5 Ilow interior	Air-lift development	10 4-10-3 (10 6-10-5)		Zeigler (1976)	1-h injection period

Table 4. Preliminary Estimates of Hydraulic Properties Obtained from Borehole Development and Piezometer Development Activities.

ł

8.2 HIGH-TRANSMISSIVE MONITORING INTERVALS

Air-lift pumping development was performed for the Rocky Coulee flowtop and the Grand Ronde 5 flow-top piezometers. Recovery data were not analyzed because borehole temperature effects masked the water-level recovery responses. Borehole storage effects also influenced the recovery data from the Rocky Coulee flow top.

The only available estimate of transmissivity for the Rocky Coulee flow top at RRL-2C is based on pulse testing at RRL-2B (see 5.0). Analysis of pressure buildup data at RRL-2C and RRL-2A indicate a transmissivity of 2 and 6 ft²/d (0.2 to 0.6 m²/d), respectively.

Transmissivity of the Grande Ronde 5 flow top was reported in 5.0. For this horizon, as determined from specific capacity data obtained during borehole development pumping, the transmissivity is estimated to be between 200 and 300 ft²/d (20 and 30 m²/d) at RRL-2C.

The values reported above should be considered preliminary. Longer testing at RRL-2B or at RRL-2C is required to establish representative input parameter values for numerical modeling purposes. These values, however, may be useful for designing future hydraulic tests at RRL-2B and predicting pretest hydraulic responses.

9.0 SUMMARY AND CONCLUSIONS

This report describes the design, drilling, and completion of RRL-2B and RRL-2C. Well RRL-2B will be used as a discharge well for performing large-scale pumping tests of selected Grande Ronde Basalt horizons. Piezometer nest RRL-2C will be one of the primary observation points during these tests. Water levels will also be measured in RRL-2C as part of the piezometric baseline monitoring programs.

Well RRL-2B is completed as a 12.25-in-(31.12-cm-) dia. borehole through the Rocky Coulee flow top. Its interim depth is 2,858 ft (871.1 m). On completion of testing, the well will be deepened to test the next horizon; i.e., Cohassett flow top.

Piezometer nest RRL-2C was completed in the Grande Ronde Basalt with six piezometers between a depth of about 2,775 and 3,404 ft (845.8 and 1,037.5 m). This is the first piezometer facility that has the capability of monitoring flow interiors. The piezometers monitor hydraulic heads in the Rocky Coulee flow top. Rocky Coulee flow interior, Cohassett flow top, Cohassett flow interior, Grande Ronde 5 flow top (which includes the Cohassett flow bottom), and Grande Ronde 5 flow interior. The piezometer tubes are isolated from each by densified cement seals ranging from 30 to 150 ft (9 to 48 m) in length.

C

After completing the piezometer installation, each piezometer was developed by either the air-lift pumping or circulation method. Under unstressed conditions, the piezometer water levels appear to be distinct as suggested by head differences and equilibration trends. Vertical propagation of hydraulic-head transients was observed in the interiors of the Rocky Coulee and Cohassett flows during the development. Controlled field tests are needed to identify formation or borehole characteristics that may provide pathways for vertical groundwater movement between flows under dynamic conditions.

10.0 ACKNOWLEDGMENTS

The completion of RRL-2B and RRL-2C was accomplished by the cooperative efforts of BWIP staff and subcontractors. Basalt Waste Isolation Project staff who assisted with the field drilling or piezometer installation included W. R. Brown, J. A. Bultena, T. S. Clawson, G. O. Henrie, H. O. Jamison, J. M. Jimenez, M. D. McElroy, G. L. Setbacken, S. J. Skurla, S. R. Strait, P. D. Thorne, D. C. Weekes, and T. J. Wood.

Mr. W. R. Brown assisted in the coordination of borehole geophysical logging activities. Mr. J. R. Bollier assisted in the preparation of the as-built drawings. Dr. R. Stone provided analysis of pulse test data. Dr. A. H. Lu, P. M. Rogers, and Dr. R. Stone provided design recommendations for the location of the flow interior piezometers.

Analysis of borehole cleanup water samples was performed by the Solution Chemistry Team. The document was reviewed for technical content by V. G. Johnson, R. D. Landon, Dr. R. Stone, and Dr. M. D. Veatch. Managerial support was provided by S. R. Strait, W. H. Price, and D. J. Moak of the Site Characterization Field Investigation Department.

11.0 REFERENCES

Anantatmula, R. P., 1985, "Galvanic Corrosion of the Couple-AISI 316 Stainless Steel Well Screen Jacket and Mild Pipe Base," (Internal Letter 10330-85-040 to R. L. Jackson, Rockwell Hanford Operations, May 10, 1985).

Beeson, M. H., K. R. Fecht, S. P. Reigel, and T. L. Tolan, 1985, <u>Regional</u> <u>Correlations within the Frenchman Springs Member of the Columpia River</u> <u>Basalt Group: New Insights into the Midcle Miccene Tectonics of</u> <u>Northwestern Oregon</u>, in Oregon Geology, vol. 47, no. 8, August 1985, <u>Oregon Department of Geology and Mineral Industries</u>, Portland, Oregon.

Brown, D. J., 1959, <u>Subsurface Geology of the Hanford Separation Areas</u>, HW-61780, General Electric Hanford Company, Richland, Wasnington.

- Bjornstad, B. N., 1984, <u>Suprabasalt Stratigraphy Within and Adjacent to the</u> <u>Reference Repository Location</u>, SD-BW-DP-039, Rockwell Hanford Operations, Richland, Washington.
- Caggiano, J. A. and D. W. Duncan, eds., 1983, <u>Preliminary Interpretation of</u> <u>the Tectonic Stability of the Reference Repository Location. Cold Creek</u> <u>Syncline, Hanford Site</u>, RHO-BW-ST-19 P, Rockwell Hanford Operations, Richland, Washington.
- Cross, R. W. and K. R. Fairchild, 1985, <u>Geologic Thickness Data-Candidate</u> <u>Repository Horizons</u>, SD-BWI-DP-011, Rockwell Hanford Operations, Richland, Washington.
- DOE-RL, 1982, <u>Site Characterization Report for the Basalt Waste Isolation</u> <u>Project</u>, DOE/RL 82-3, 3 vol., Rockwell Hanford Operations for the U.S. Department of Energy, Washington, D.C.
- DOE, 1984, <u>Draft Environmental Assessment Reference Repository Location</u>, <u>Hanford Site, Washington</u>, U.S. Department of Energy, Office of Civilian Radioactive Waste Management, Washington, D.C.
- Gephart, R. E., R. C. Arnett, R. G. Baca, L. S. Leonhart, and F. A. Spane, Jr., 1979, <u>Hydrologic Studies Within the Columbia Plateau</u>, <u>Washington: An Integration of Current Knowledge</u>, RHO-BWI-ST-5, Rockwell Hanford Operations, Richland, Washington.
- Gephart, R. E., S. M. Price, R. L. Jackson, and C. W. Myers, 1983, <u>Geohydrologic Factors and Current Concepts Relevant to Characterization</u> of a Potential Nuclear Waste Repository Site in Columpia River Basalt, <u>Hanford Site Wasnington</u>, RHO-BW-SA-326, Rockwell Hanford Operations, Richland, Washington.
- Jackson, R. L., L. D. Diediker, R. K. Ledgerwood, and M. D. Veatch, 1984, <u>Piezometer Completion Report for Borehole Ciuster Sites OC-19, DC-20,</u> <u>and DC-22</u>, SD-BWI-TI-226, Rev. 1, Rockwell Hanford Operations, Richland, Washington.
- Jackson, R. L. and R. L. Jones, 1985, <u>Drilling and Completion Specifications</u> for Boreholes RRL-28 (Test Well) and RRL-2C (Multi-Level Piezometer <u>Nest</u>), SD-8WI-TC-023, Rockwell Hanford Operations, Richland, Washington.
- Jackson, R. L. and M. D. Veatch, 1985, <u>Design and Installation of Deep</u> <u>Multilevel Piezometer Nests in Columpia River Basalts of the Hanford</u> <u>Site. Wasnington</u>, Proceedings of the Fifth National Symposium and Exposition on Aquifer Restoration and Ground Water Monitoring, National Water Well Association, Worthington, Ghic (also in RHO-BW-SA-428 P).
- Johnson, C. R., R. A. Greenkorn, and E. G. Woods, 1966, "Pulse-Testing: A New Method for Describing Reservior Flow Properties Between Wells," <u>SPE Transactions</u>, vol. 237, pp. 1599-1604.

Lohman, S. W., 1972, "Ground-Water Hydraulics," Professional Paper 708, U.S. Geological Survey, Washington, D.C.

Long and WCC (Long, P. E., and Woodward-Clyde Consultants), 1984, <u>Repository</u> <u>Horizon Identification Report</u>, SD-BWI-TY-001, Woodward-Clyde Consultants for Rockwell Hanford Operations, Richland, Washington, vol. 1 and 2.

Merriam, J. C. and J. P. Buwalda, 1917, "Age of Strata Referred to as the Ellensburg Formation in the White Bluffs of the Columbia River," Bulletin of Geology, University of California, vol. 10, no. 15.

Myers, C. W., S. M. Price, J. A. Caggiano, M. P. Cochran, W. J. Czimer, N. J. Davidson, R. C. Edwards, K. R. Fecht, G. E. Holmes, M. G. Jones, J. R. Kunk, R. D. Landon, R. K. Ledgerwood, J. T. Lillie, P. E. Long, T. H. Mitchell, W. H. Price, S. P. Reidel, and A. M. Tallman, 1979, <u>Geologic Studies of the Columbia Plateau: A Status Report</u>, RHO-BWI-ST-4, Rockwell Hanford Operations, Richland, Washington.

Myers, C. W., 1981, "Bedrock Structure of the Cold Creek Syncline Area," in <u>Subsurface Geology of the Cold Creek Syncline</u>, RHO-BWI-ST-14, Rockwell Hanford Operations, Richland, Washington.

Newcomb, R. C., J. R. Strand, and F. J. Frank, 1972, <u>Geology and Ground</u> Water Characteristics of the Hanford Reservation of the U.S. Atomic Energy Commission, Washington, U.S. Geological Survey, Professional Paper 717, Washington, D.C.

Nuclear Regulatory Commission, 1983A, <u>BWIP Site Technical Position No. 1.1:</u> <u>Hydrodeologic Testing Strategy for the BWIP Site</u>, Division of Waste Management, Washington, D.C.

NWPA, 1983, Nuclear Waste Policy Act of 1982, Public Law 97-425.

. .

Paillet, F. L. and K. Kim, 1985, <u>The Character and Distribution of Borehole</u> Breakouts and Their Relationship to In Situ Stresses in Deep Columbia River Basalts, RHO-BW-CR-155, Rockwell Hanford Operations, Richland, Washington.

Reidel, S. P., P. E. Long, C. W. Myers, and J. Mase, 1981, <u>New Evidence for</u> <u>Greater than 3.2 Kilometers of Columbia River Basalt Seneath the</u> <u>Central Columbia Plateau</u>, RHO-BWI-SA-162A, Rockwell Hanford Operations, Richland, Washington.

Reidel, S. P., P. E. Long, C. W. Myers, and J. Mase, 1982, "New Evidence for Greater than 3.2 Kilometers of Columbia River Basalt Beneath the Greater Columbia Plateau," <u>EOS Transactions of the American Geophysical</u> <u>Union</u>, vol. 63, no. 8, 173 pp; also RHO-BWI-SA-162, Rockwell Hanford Operations, Richland, Washington.

- Smith, D. K., <u>Cementing</u>, Society of Petroleum Engineers of AIME, Monograph vol. 4 of the Henry L. Doherty Series, New York, New York, 184 pp.
- Stone, R., 1985a, "Placement of Piezometers in Flow Interiors at Well RRL-2C for Use in Ratio Tests" (Internal Letter 10120-85-268, Rockwell Hanford Operations, June 11, 1985).

Stone, R., 1985b, "Pulse Test of the Rocky Coulee Flow Top in Well RRL-28" (Internal Letter 10120-85-394, Rockwell Hanford Operations, September 3, 1985).

Tallman, A. M., J. T. Lillie, and K. R. Fecht, 1981, "Suprabasalt Sediments of the Cold Creek Syncline Area," in <u>Subsurface Geology of the Cold</u> <u>Creek Syncline</u>, C. W. Myers and S. M. Price eds., RHO-BWI-ST-14, Rockwell Hanford Operations, Richland, Washington.

Theis, C. V., R. H. Brown, R. R. Meyer, 1963, <u>Estimating the Transmissivity</u> of <u>Aquifers from the Specific Capacity of Wells</u>, in Methods of Determining Permeability, Transmissivity and Drawdown, U.S. Geological Survey, Water-Supply Paper 1536I, pp.331-341.

Wintczak, T. M., 1984, <u>Principal Borehole Report, Borehole RRL-2</u>, SD-BW-TI-113, Rev. 1, Rockwell Hanford Operations, Richland, Washington.

Zeigler, T. W., 1976, <u>Determination of Rock Mass Permeability</u>, U.S. Army Engineer Waterways Experiment Station, Technical Report S-76-2, Vicksburg, Mississippi.

APPENDIX A

AS-BUILT DRAWINGS OF RRL-2B AND RRL-2C

Coordinates and Elevations listed in the following drawings are based on surveys available at the time of release of this document.

• ,

CONTENTS

Figures:	· · ·	
A-1	Drawing List and Vicinity Map	74
A-2	Site Plan Reference Repository Location	75
A-3	Piezometer Nest RRL-28 and Well RRL-2C Schematic	76
A-4	As-Built Details Piezometer String	77
A-5	As-Built Site Plan RRL-2 Location	78
A+6	As-Built Piezometer Nest RRL-2B and Weld RRL-2C Well Heads	79
A-/	AS-BUILT WELL RRL-28	80
A-8	AS-BUILT Plezometer Nest RRL-2C	85

,

7

APPENDIX B

DRILLING OPERATION SUMMARIES

τ

CONTENTS

.

rigur	'es:		
-	B-1 B-2	Drilling Progress for Borehole RRL-2B Drilling Progress for Borehole RRL-2C	92 93
	8-3	Plan View of Course Direction of Borehole RRL-2B	
		from Surface to Interim Depth, as Determined by Gyroscopic Survey	٩٨
	8-4	Plan View of Course Direction of Borehole RRL-2C	54
		from Surface to Total Depth, as Determined by	•
	n <i>E</i>	Gyroscopic Survey	95
	8-3	Shift Report of Uperations Form	90
Table	s:		
	8-1	Contractors and Service Companies	97
	8-2	Sorehole RRL-28 Daily Drilling History	99
	8-3	Borehole RRL-20 Uaily Urilling History	104
	8-4	Estimated Fluid Loss During Drilling of Borehole RRL-29	109
	8-5	Estimated Fluid Loss During Urilling of Borehole RRL-20	109
	8-0	Mud Urilling Record at Borehole RRL-28	110
	8-1	Mud Urilling Record at Borenole RRL-2L	114
	8-8	Bit Record at Borenole RRL-25	118
	8-9	BIT RECORD AT BORENOIE RKL-26 Fruinson List	119
	0-10	RRL-20 and RRL-20 Cementing and Casing Equipment List	120
•	0 12	Cementing Casing Summary at Borehole RRL-28	121
	0-12	Cumercanic Survey at Perebala 001 20	122
	0-13 0 14	Current Survey at Borenole KKL-28	123
	0-14	Gyroscopic survey at porenoie KKL-20	120

Figure 3-1. Orilling Progress for Borehole RRL-23.

Figure B-2. Drilling Progress for Borehole RRL-2C.

0 6

!

SD-BWI-TI-329 REV 0

Figure B-3. Plan View of Course Direction of Borehole RRL-25 from Surface to Interim Depth, as Determined by Gyroscopic Survey.

 $\overline{}$

۰.

2

Figure 8-4. Plan View of Course Direction of Borehole RRL-2C from Surface to Total Depth as Determined by Gyroscopic Survey.

95

:

	SWIP ROT	TARY R	IG SHIFT	T REPORT	OF OP	ERATION	IS		PAGE 1	<u></u>
2414	-0-0 "eu/	TOP/	^{ما} ا	C31:07 01 MQ16		A 0C = VA	HI Contract N	3	Andore Nu	moer
SPILLING A	453248LY			••		NUC PECCI	0	Store Tur	••	
8.r	R-	3-1 10		1	¥-1		11	End T m	•	
		5.14	l	1	W1.	,	•	BOCEWEI	Time .	
	. 4.	11'5	l	1	NLO A	CHEMICAL	S ADDED	Convocio)r =.m9	
	8.	Tvoe	!	1	· ·	Troe & Amo	unti	PERSON	NEL	
	£ ,	Jets 1-32"	• •							
	8.	Ser No	i					Ormer: _	-Accepta	
Stands OP	1 #1	Seam Que	•			•		1		
Singles CP	F .	Seath In		•]					
Keliy Dawn	1.	-0141 F-g		•				Į		
* 213-	g .	anu Laife mit			ł					
No of Sering	.01		SING HIST	יאני	I			1		
3 P S. te ; Nr #	E Grace	See	Weight Grade	Set Ar	l ·			l		
:	;			1	1			ļ		
				i	Puma Na.	Puma M	anutacourer	1	-, oe	Stroke
Taran Shute Faortes				:	;			1		
	FOOTAG	1				Nr 2019	· • • • • • • •	3.3.000	No V	lernog Aun
DEVIATION	8-9m	PORMATION				1000	Low SP	ng I suner i	5 P 4 54	
Seam Sev.						<u>.</u>			<u> </u>	10-6
					· · · · · · · · · · · · · · · · · · ·					
			•	46.1						
									•	
								•	<u></u>	
								<u></u>		
								·		
			· · ·							
Regart Sv						· • · · · · · · · · · · · · · · · · · ·				
••••					+ _				3+++ :	
Signature					Signature					****
2:5"3180"10%	AP	ara Sanmor	Ciera		ary - Cantre	KT #. +				····

Figure B-5. Shift Report of Operations Form.

.

Table B-1. Contractors and Servi	ce Companies: (sheet 1 of 2)			
Company	Specialty			
Air Drilling Services, Denver, CO	Compressors and service			
Baroid Service, Bakersfield, CA	Mud products			
Bill's Casing Tong Service, Marysville, CA	Tong service and laydown machine			
Brinckerhoff-Signal Co., Casper, WY	Rotary drilling and welding services			
Combined Petroleum Services, Inc., Grand Junction, CO	Mud cleaner			
Christensen Oil Field Tools, Vernal, UT	Shock subs			
Drilco, Kalispell, MT	Stabilizers and magnafluxing service			
Eastman Whipstock, Casper, WY	Gyroscopic surveying			
Economy Bit Service, Casper, WY	Bit retipping			
Gearhart Industries	Geophysical logging			
Getter Trucking, Casper, WY	Truck service			
Grant Oil Tools Casper, WY	Rotating head			
Haliburton Services, Evanston, WY	Cement products and services			
Magcobar Dresser Industries	Mud products and services			
Northwestern Mud Co., Spokane, WA	Mud products			

.

۰.

Company	Specialty
Northwest Rentals, - Vancouver, WA	Bits
Onwego Drilling Co., Inc., Kennewick, WA	Cable tool entry holes and mobile office rental
Pacific Northwest Laboratories, Richland, WA	Geophysical logs
Portable Welding Specialists, Kittitas, WA	Welding
Pride Oil Well Service, Casper, WY	Workover rigs
Totco, Bakersfield, CA	Pit level recording equipment and gas detector and forklift rental
Wapato Fruit and Cold Storage, Wapato, WA	Water hauling, truck service, and forklift rental
Western Well Supply, . Aloha, OR	Rotary tool machine work
Wyoming Casing Service, · Dickenson, ND	Tong service and laydown machine

Table 8-1. Contractors and Service Companies. (sheet 2 of 2)

Table B-2. Borehole RRL-2B Daily Drilling History. (sheet 1 of 5)

Date	Activities
04/10/85-04/16/85	Cable tool set 19.5 ft (5.9 m) of 30-in. (76.2-cm) conductor pipe.
05/30/85	Nippled up and mixed spud mud. Drilled mouse and rat hole. Tripped in with retipped bit (no. 1) and drilled 26-in. (66.0-cm) hole from 19.5 to 94 ft (5.9 to 28.7 m). Deviation survey: 0.25° at 94 ft (28.7 m).
05/31/85	Drilled 26-in. (66.0-cm) hole from 94 to 381 ft (28.7 to 116.1 m) into overburden. Deviation survey: 0.5° at 219 ft (66.8 m).
06/01/85	Orilled 26-in. (66.0-cm) hole from 381 to 553 ft (116.1 to 168.6 m) into overburden. Tripped out to change to new bit (tip no. 2). Tripped in and drilled 26-in. (66.0-cm) hole from 553 to 614 ft (168.6 to 187.1 m). Reached top of basalt at about 600 ft (182.9 m). Deviation survey: 0° at 588 ft (179.2 m).
06/02/85	Drilled 26-in. (66.0-cm) hole from 614 to 618 ft (187.1 to 188.4 m) and circulated mud in order to run full suite of logs. Tripped out and ran borehole geophysical logs. Completed logging and tripped in hole to condition hole and mud prior to running casing. Ran 16 joints of 20-in. (50.8-cm) casing to a depth of 613 ft (186.8 m).
06/03/85	Circulated and cut off 20-in. (50.8-cm) casing prior to cementing. Cemented casing by subcontracted cementing service company. Waited on cement 8 h. Tripped in and drilled with new bit 17.5-in. (44.45-cm) (no. 3) and drilled cement and casing shoe. Drilling a 17.5-in. (44.45-cm) hole from 614 to 645 ft (187.1 to 196.6 m) in the Elephant Mountain Member.
06/04/85	Drilled 17.5-in. (44.45-cm) hole from 645 to 818 ft (196.6 to 249.3 m) through the Elephant Mountain Member, Rattlesnake Ridge interbed, and into the Pomona Member. No detectable fluid losses while drilling the interbed. Started running a methane gas detector. Deviation survey: 0° at 588 ft (179.2 m), 1° at 660 ft (201.2 m) and 0.75° at 813 ft (247.8 m).
06/05/85	Drilled 17.5-in. (44.45-cm) hole from 818 to 900 ft (249.3 to 274.3 m) in the Pomona Member. Deviation survey: 13 at 875 ft (255 7 m)

.

Date	Activities
06/06/85	Drilled 17.5-in. (44.45-cm) hole from 900 to 1,045 ft (274.3 to 318.5 m) through the Pomona Member, Selah interbed and into the Esquatzel Member. Lost 178 bbl (28.3 m ³) in the Selah interbed. Deviation survey: 1/4° at 1,027 ft (313.0 m).
06/07/85	Drilled 17.5-in. (44.45-cm) hole from 1,045 to 1,069 ft (318.5 to 325.8 m) within the Esquaztel Member. Tripped out in morning in order to replace a cracked drill pipe (9th joint from top). Tripped in and drilled from 1,069 to 1,083 ft (325.8 to 330.1 m). At this point, the 16th joint of the drill pipe twisted off. Tripped in with overshot and retrieved fish. Tripped out and laid fish down. Tripped in with new bit (no. 4) and drilled 17.5-in. (44.45-cm) hole from 1,083 to 1,148 ft (330.1 to 349.9 m) through the Esquaztel Member and into the Cold Creek interbed.
06/08/85	Drilled 17.5-in. (44.45-cm) hole from 1,148 to 1,303 ft (349.9 to 397.2 m) through the Cold Creek interbed and into the Umatilla Member. Deviation survey: 0.25° at 1,212 ft (369.4 m).
06/09/85	Drilled 17.5-in. (44.45-cm) hole from 1,303 to 1,418 ft (397.2 to 432.2 m) through the Umatilla Member and into the Mabton interbed. Deviation survey: 0.5° at 1,336 ft (407.2 m).
06/10/85	Drilled 17.5-in. (44.45-cm) hole from 1,418 to 1,602 ft (432.2 to 488.3 m) through the Mabton interbed and into the Lolo flow of the Priest Rapids Member. No apparent fluid loss. Deviation survey: 0.5° at 1,550 ft (472.4 m).
06/11/85	Drilled 17.5-in. (44.45-cm) hole from 1,602 to 1,674 ft (488.3 to 510.2 m) in the Lolo flow of the Priest Rapids Member. Tripped out of hole for bit change. Laid down two 11-in. (27.9-cm) drill collars, and picked up two more 11-in. (27.9-cm) drill collars. No apparent fluid loss in past 24 h. Deviation survey: 0.25° at 1,640 ft (499.9 m).

Table B-2. Borehole RRL-28 Daily Drilling History. (sheet 2 of 5)

• •

Date	Activities
06/12/85	Tripped in with new bit (5) and drilled 17.5-in. (44.45-cm) hole from 1,674 to 1,766 ft (510.2 to 538.3 m) through the Lolo flow, Rosalia flow, Quincy interbed and into the Roza Member. Lost about 520 bbl (82.7 m ³) of mud into the Roza flow top. Twisted off pin on shock sub. Picked up overshot, tripped in hole to fish for bottom collar and bit.
06/13/85	Tripped out of hole and laid down fish. Installed new shock sub. Tripped in hole and resumed drilling the Roza Member to 1,833 ft (558.7 m). Deviation survey: 0.5° at 1,826 ft (556.6 m).
06/14/85	Drilled 17.5-in. (44.45-cm) hole from 1,826 to 1,945 ft (556.6 to 592.8 m) through the Roza Member and into the Sentinel Gap flow. No apparent fluid loss last 24 h. Deviation survey: 0.5° at 1,918 ft (584.6 m).
06/15/85	Drilled 17.5-in. (44.45-cm) hole from 1,945 to 2,057 ft (592.8 to 627.0 m) in the Sentinel Gap flow. At this point, an 8-in. (20-cm) drill collar twisted off. Tripped out of hole and picked up overshot. Tripped in with overshot and began fishing. Retrieved fish and tripped out of hole. Deviation survey: 0.25° at 2,040 ft (621.8 m).
06/16/85	Picked up two 8-in. (20-cm) drill collars and tripped in hole. Drilled from 2,057 to 2,155 ft (627.0 to 656.8 m) through the Sentinel Gap flow and into the Frenchman Springs 2. No apparent fluid losses.
06/17/85	Drilled 17.5-in. (44.45-cm) hole from 2,155 to 2,184 ft (656.8 to 665.7 m) with the Frenchman Springs 2. Tripped out for bit change. Tripped in with new bit (no. 6) and drilled a 17.5-in. (44.45-cm) hole from 2,184 to 2,197 ft (665.7 to 669.7 m). At this point, the drill string twisted off at a 7-in. (18-cm) drill collar. Tripped out of hole and made up fish tool. Tripped in with fishing tool and retrieved fish. Laid down two 7-in. (18-cm) drill collars and picked up two 7-in. (18-cm) drill collars. Tripped in hole and resumed drilling. Drilled from 2,197 to 2,219 ft (669.6 to 676.4 m) through the Frenchman Springs 2 and into Frenchman Springs 3. Deviation survey: 0.75° at 2,164 ft (659.5 m).

Table B-2. Borehole RRL-2B Daily Drilling History. (sheet 3 of 5)

Date	Activities
06/18/85	Drilled 17.5-in. (44.45-cm) hole from 2,219 to 2,365 ft (676.4 to 720.9 m) through the Frenchman Springs 3 and into the Frenchman Springs 4. Encountered a lost- circulation zone between 2,305 and 2,310 ft (702.6 and 704.1 m), resulting in a loss of 25 bbl (4.0 m ³). Deviation survey: 0.75° at 2,347 ft (715.4 m).
06/19/85	Drilled 17.5-in. (44.45-cm) hole from 2,365 to 2,525 ft (720.9 to 769.6 m) through the Frenchman Springs 4, Frenchman Springs 5, and into the Ginkgo I. Deviation survey: 1.25° at 2,470 ft (752.9 m).
06/20/85	Drilled 17.5-in. (44.45-cm) hole from 2,525 to 2,655 ft (769.6 to 809.2 m) through Ginkgo I flow and into Frenchman Springs 7. At this point an 11-in. (28-cm) drill collar twisted off. Tripped out of hole. Deviation survey: 0.5° at 2,564 ft (781.5 m).
06/21/85	Tripped out and picked up fishing tools. Tripped in with overshot and fished. Tripped out of hole and reloaded fishing tools. Retrieved fish and tripped out of hole. Picked up two 11-in. (28-cm) drill collars. Changed bit to (rerun no. 3) and layed down four joints of drill pipe. Tripped in hole and drilled a 17.5-in. (44.45-cm) hole from 2,655 to 2,674 ft (809.2 to 815.0 m) within the Frenchman Springs 7.
06/22/85	Drilled 17.5-in. (44.45-cm) hole from 2,674 to 2,750 ft (815.0 to 838.2 m) through Frenchman Springs 7, the Vantage interbed, Grande Ronde 1, and into the Grande Ronde 2. Tripped out of hole to run neutron log and finished logging. Deviation survey: 0.5° at 2,722 ft (829.7 m).
06/23/85	Tripped in and drilled from 2,750 to 2,776 ft (838.2 to 846.1 m) within Grande Ronde 2. Stopped drilling and circulated for 2 h. Tripped out to run full suite of borehole geophysical logs.
06/24/85	Completed borehole geophysical logging and tripped back into hole to condition hole prior to running casing, strapped pipe out of hole; total depth is 2,780 ft (847.3 m). Rigged up casing crew and began to run casing.

٢

Table B-2. Borehole RRL-2B Daily Drilling History. (sheet 4 of 5)

•

Date	_ Activities
06/25/85	Ran 13.375-in. (33.97-cm), K-55 ST and C casing to 2,780 ft (847.3 m) and pulled it back to set it at 2,776 ft (846.1 m). Cemented casing in two stages by subcontracted cementing service company.
06/26/85	Waited on cement and began nippling up. Tripped in hole and drilled out stage tool and cement plug. Tripped out of hole to run cement bond log.
06/27/85	Tripped in hole to drill out cement and casing shoe to 2,782 ft (848.0 m). Tripped out of hole and made up packer to test casing shoe. Tripped in and tested shoe and 2 ft (0.61 m) of rock. Had a small pressure bleed off and decided to test pipe. Pipe was OK, so tripped out and then spotted 100 sacks of cement. Cement plug at the bottom of the borehole was brought back up to 2,674 ft (815.0 m). Tripped out and waited on cement.
06/28/85	Waited on cement. Tripped in hole with drilling assembly and tagged top of cement at 2,669 ft (813.5 m). Drilled cement to 2,778 ft (846.7 m). Circulated hole and tripped out of hole with drilling assembly. Tripped in hole with packer and retested casing shoe. Tripped out of hole with packer. Tripped in hole with 12.25-in. (31.12-cm) bit to drill out remaining cement to 2,782 ft (848.0 m).
06/29/85	Drilled 12.25-in. (31.12-cm) hole with water from 2,782 to 2,840 ft (848.0 to 865.6 m) circulated hole and trip out to run logs. Completed logging and tripped in hole. Drilled with water from 2,840 to 2,858 ft (865.6 to 871.1 m) through Grande Ronde 2 and into the Rocky Coulee flow. Loss of about 15 bbl (2.4 m ³) of fluid in Rocky Coulee flow top. Tripped out and laid down pipe. Deviation survey: 0.5° at 2,840 ft (865.6 m). Cut off casing and welded a flange on. Rigged down.

Table B-2. Borehole RRL-2B Daily Drilling History. (sheet 5 of 5)

•

 Date	Activition
03/30/85-04-09/85	Cable tool set 19 ft (5.8 m) of 30-in. (76.2-cm) conductor pipe; 7.21 ft ³ (0.20 m ³) of cement was placed in lower section of hole on $04/15/85$.
04/15/85	Crews attended Pre-spud and Safety Meeting and First Aid Class.
04/16/85-04/21/85	Brinckerhoff-Signals Rig no. 80 rigged up and started drilling at 12:30 p.m. Mixed mud and drilled rat and mouse holes. Tripped in and drilled 26-in. (66.0 cm) hole from 19 to 102 ft (5.8 to 31.1 m) through unconsolidated sediments.
04/22/85	Drilled 26-in. (66.0-cm) surface hole from 102 to 273 ft (31.1 to 83.2 m). Encountered lost circulation zone at approximately 252 ft (76.8 m), resulting in a loss of 100 to 125 bbl (15.9 to 19.9 m^3) of fluid to formation over 12 h. Deviation survey: 0° at 100 ft (30.5 m).
04/23/85	Drilled 26-in. (66.0-cm) surface hole from 273 to 479 ft (83.2 to 146.0 m). Deviation survey: 0.25° at 283 ft (86.3 m), 0.25° at 376 ft (114.6 m).
04/24/85 .	Drilled 26-in. (66.0-cm) hole from 479 to 611 ft (146.0 to 186.2 m). Reached top of basalt at about 600 ft (182.9 m). Tripped out of hole to run borehole geophysical logs. Rigged up cementing equipment. Deviation survey: 0.5° at 498 ft (151.8 m).
04/25/85	Completed borehole geophysical logs at 9:00 a.m. Tripped back in hole with drill pipe and broke circulation. Circulated and conditioned hole prior to running casing. Ran 17 joints of 20-in. (50.8-cm) casing to a depth of 609 ft (185.6 m). Circulated the borehole and began nippling up to cement casing.
04/26/85	Cemented 20-in. (50.8-cm) casing by subcontracted cementing service. Waited on cement 15 h. Picked up drilling tools and tripped in hole. Tagged top of cement 596 ft (181.7 m); drilled cement and shoe. Changed to new bit (no. 2) at 610 ft (185.9 m). Drilled 17.5-in. (44.45-cm) hole from 610 to 633 ft (185.9 to 192.9 m) into the Elephant Mountain Member. No fluid losses encountered while drilling interbed. Deviation survey: 0.75° at 597 ft (182.0 m).

able 8-3. Borehole RRL-2C Daily Drilling History. (sheet 1 of 5)

Date	Activities
04/27/85	Drilled 17.5-in. (44.45-cm) hole from 633 to 809 ft (192.9 to 246.6 m) through Elephant Mountain Member, the Rattlesnake Ridge interbed and into the Pomona Member. No measurable fluid losses were encountered while drilling interbed. Deviation survey: 0.5° at 634 ft (193.2 m).
04/28/85	Drilled 17.5-in. (44.45-cm) hole from 809 to 917 ft (246.6 to 251.5 m) within the Pomona Member. Lost 60 bbl (9.5 m ³) of mud at about 825 ft (251.5 m). Deviation survey: 1° at 800 ft (243.8 m); 0.25° at 878 ft (267.6 m).
04/29/85	Drilled 17.5-in. (44.45-cm) hole from 917 to 1,070 ft (279.5 to 326.1 m) through the Pomona Member, Selah interbed and into the Esquatzel Member. Lost approximately 20 bbl (3.2 m^3) of mud while drilling through the Selah interbed. Tripped out of hole at 1,003 ft (305.7 m) for new bit (no. 3), changed out two 11-in. (28-cm) drill collars. Deviation survey: 0.5° at 1,028 ft (313.3 m).
04/30/85	Drilled 17.5-in. (44.45-cm) hole from 1,070 to 1,287 ft (326.1 to 392.3 m) through the Esquatzel Member, the Cold Creek interbed, and into the Umatilla Member. Deviation survey: 0.5° at 1,088 ft (331.6 m); 1° at 1,212 ft (369.4 m); 0.25° at 1,273 ft (388.0 m).
05/01/85	Drilled 17.5-in. (44.45-cm) hole from 1,287 to 1,398 ft (392.3 to 426.1 m) through the Umatilla Member and into the Mabton interbed. At this point, the drill string parted. Tripped out of hole and laid down two bad drill collars. Tripped back in hole with overshot and began fishing. Deviation survey: 0.25° at 1,373 ft (418.5 m).
05/02/85	Completed fishing at 6:00 a.m. and resumed drilling. Drilled from 1,398 to 1;551 ft (426.1 to 472.7 m) through Mabton interbed and encountered the top of Lolo flow of the Priest Rapids Member. Deviation survey: 1° at 1,526 ft (465.1 m).
05/03/85	Drilled 17.5-in. (44.45-cm) hole from 1,551 to 1,607 ft (472.8 to 489.8 m) into the Lolo flow. At this point, the drill string twisted off at the last tool joint above the 11-in. (28-cm) collar. Tripped out of hole and picked up fishing tools. Tripped in with overshot and began fishing. Deviation survey: 1° at 1,558 ft (474.9 m).

Table 8-3. Borehole RRL-2C Daily Drilling History. (sheet 2 of 5)

. .

Date	Activities
05/04/85	Finished fishing at 1:00 p.m. and then resumed drilling. Drilled from 1,607 to 1,633 ft (489.8 to 497.7 m). At this point, the drill string twisted off at the last joint above the 11-in. (28-cm) collar again. Tripped in hole with overshot and began fishing.
05/05/85	Retrieved fish and resumed drilling. Drilled 17.5-in (44.45-cm) hole from 1,633 to 1,648 ft (497.7 to 502.3 m) within the Lolo flow. At this point, an 11-in. (28-cm) drill collar twisted off. Tripped out of hole and picked up fishing tools. Tripped in with overshot and retrieved fish.
05/06/85	Tripped in hole with new bit (no. 4) and drilled 17.5-in. (44.45-cm) hole from 1,648 to 1,679 ft (502.3 to 511.8 m) within the Lolo flow. Encountered high rotary torque. Tripped out to laydown near bit reamer. Tripped in hole and drilled from 1,679 to 1,728 ft (511.8 to 526.7 m) through the Lolo flow and into the Rosalia flow of the Priest Rapids Member. No fluid losses encountered while drilling through the Rosalia flow top. Deviation surveys: 0.5° at 1,650 ft (502.9 m); 0.75° at 1,679 ft (511.8 m).
05/07/85	Drilled 17.5-in. (44.45-cm) hole from 1,728 to 1,835 ft (526.7 to 559.3 m) through the Rosalia flow and into the Roza Member. Lost approximately 12 bbl (1.9 m ³) of drilling fluid while drilling the Roza flow top. Deviation survey: 0.25° at 1,768 ft (538.9 m).
05/08/85	Drilled 17.5-in. (44.45-cm) hole from 1,835 to 1,945 ft (559.3 to 592.8 m) through the Roza Member and into the Sentinel Gap flow of the Frenchman Springs Member. No apparent fluid loss. Deviation survey: 0.5° at 1,862 ft (567.5 m).
05/09/85	Drilled 17.5-in. (44.45-cm) hole from 1,945 to 2,067 ft (592.8 to 630.0 m) in the Sentinel Gap flow. Encountered lost-circulation zone at approximately 2,037 ft (620.9 m), resulting in a loss of 470 bbl (74.7 m ³) of mud over 24 h. Deviation survey: 0° at 2,015 ft (614.2 m).
05/10/85	Drilled 17.5-in. (44.45-cm) hole from 2,067 to 2,166 ft (630.0 to 660.2 m) through the Sentinel Gap flow and into the Frenchman Springs 2. No apparent fluid loss in last 24 h. Deviation survey: 0.5° at 2,109 ft (642.8 m).

Table B-3. Borehole RRL-2C Daily Drilling History. (sheet 3 of 5)

Date	Activities
05/11/85	Drilled 17.5-in. (44.45-cm) hole from 2,166 to 2,180 ft (660.2 to 664.5 m) within Frenchman Springs 2. Tripped out for new bit (no. 5). Tripped in and installed corrosion ring and changed wobble joint. Drilled 17.5-in. (44.45-cm) hole.from 2,180 to 2,237 ft (664.5 to 681.8 m) through the Frenchman Springs 2 and into the Frenchman Springs 3. Deviation survey: 0.75° at 2,227 ft (678.8 m).
05/12/85	Drilled 17.5-in. (44.45-cm) hole from 2,237 to 2,341 ft (681.8 to 713.5 m) through the Frenchman Springs 3 and into the Frenchman Springs 4.
05/13/85	Drilled 17.5-in. (44.45-cm) hole from 2,341 to 2,444 ft (713.5 to 744.9 m) through the Frenchman Springs 4 and in the Frenchman Springs 5. Deviation survey: 0.5° at 2,352 ft (716.9 m); 0.5° at 2,444 ft (744.9 m).
05/14/85	Drilled 17.5-in. (44.45-cm) hole from 2,444 to 2,545 ft (744.9 to 775.7 m) through the Frenchman Springs 5 and in the Ginkgo I flow. Deviation survey: 0.75° at 2,538 ft (773.6 m).
05/15/85	Drilled 17.5-in. (44.45-cm) hole from 2,545 to 2,637 ft (775.7 to 803.8 m) through the Ginkgo I flow and into the Frenchman Springs 7. Encountered extremely rough drilling. No apparent fluid lost. Deviation survey: 0.25° at 2,629 ft (801.3 m).
05/16/85	Drilled 2,637 to 2,750 ft (803.8 to 838.2 m) through the Frenchman Springs 7, Grande Ronde 1 and into the Grande Ronde 2. Tripped out to run borehole geophysical log. Based on neutron log it was determined that the hole should be deepened to 2,776 ft (846.1 m) before running a full suite of logs. Deviation survey: 0.25° at 2,720 ft (829.1 m).
05/17/85	Tripped in with used bit (rerun no. 2). Drilled from 2,750 to 2,776 ft (838.2 to 846.1 m) within Grande Ronde 2. Circulated mud and tripped out of hole. Started running a full suite of borehole geophysical logs prior to running 13.375-in. (33.973-cm) casing.
05/18/85	Finished running logs. Tripped in hole to condition mud. Tripped out of hole. Rigged up for casing operation. Ran 2,802 ft (854.1 m) of 13.375-in. (33.973-cm), K-55 casing. Casing landed at 2,775 ft (845.3 m). Rigged up for cement.

Table B-3. Borehole RRL-2C Daily Drilling History. (sheet 4 of 5)

.

•

Date	Activities
05/19/85	Cemented 13.375-in. (33.973-cm) casing by subcontracted cementing service company. Cut off casing and nippled up flow line.
05/20/85	Finished nippling up rotating head. Tripped in hole and drilled out D.V. tool and shoe joint. Left 10 ft (3.1 m) of cement in shoe joint to squeeze against, if needed, as a precautionary measure. Tripped out of hole to run cement bond log. Finished logging and tripped in hole with new bit (no. 6). Drilled a 12.25-in. (31.1-cm) hole to 2,778 ft (846.7 m). Tripped out of hole and picked up testing packer. Tripped in hole with test packer, in order to test casing shoe.
05/21/85	Tripped in hole and drilled 12.25-in. (31.1-cm) hole from 2,778 to 2,966 ft (846.7 to 904.0 m) through the Grande Ronde 2 and Rocky Coulee flow into the Cohassett flow. No apparent fluid loss. Deviation survey: 0.25° at 2,896 ft (882.7 m).
05/22/85	Drilled 12.25-in. (31.1-cm) hole from 2,966 to 3,166 ft (904.0 to 965.0 m) in the Conassett flow. No apparent fluid loss. Deviation survey: 0.75° at 3,018 ft (919.9 m).
05/23/85	Drilled 12.25-in. (31.1-cm) hole from 3,166 to 3,360 ft (965.0 to 1,024.1 m) through the Cohassett flow and into the Grande Ronde 5. Circulated mud at 3,360 ft (1,024.1 m) in preparation of running borehole geophysical logs. At a depth of 3,231 ft (984.8 m), started losing fluid at an approximate rate of 3.5 bbl/min (557 L/min). Tricped out of hole for a bit change. Deviation survey: 1° at 3,171 ft (966.5 m); 1° at 3,266 ft (995.5 m).
05/24/85	Tripped in with new bit (no. 7). Drilled from 3,360 to 3,404 ft (1,024.1 to 1,037.5 m) through the Grande Ronde 5 and into the Grande Ronde 6. Tripped out and laid down drill pipe and drill collars. Rotating head removed and mud pits cleaned. Borehole RRL-2C reached a total depth of 3,404 ft (1,037.5 m) in the Grande Ronde 6. Rig was released at 8:00 p.m.
05/25/85	Rig down.

Table B-3. Borehole RRL-2C Daily Drilling History. (sheet 5 of 5)

108

.

. :

		•		
Date	Depth interval where loss occurred, ft(m)	Geologic unit	Fluid loss, bbl (m ³)	Fluid
06/06/85	923-998 (281.3-304.2)	Selah interbed	178 (28.3)	Mud
06/12/85	1,746-1,784 (532.2-543.8)	Roza flow	520 (82.7)	Mud
06/19/85	2,305-2,310 (702.6-704.1)	Frenchman Springs 4	25 (4.0)	Mud
06/29/85	2,815-2,842 (858.0-866.2)	Rocky Coulee flow top	15 (2.4)	Water
06/06/85 06/12/85 06/19/85 06/29/85	923-998 (281.3-304.2) 1,746-1,784 (532.2-543.8) 2,305-2,310 (702.6-704.1) 2,815-2,842 (858.0-866.2)	Selah interbed Roza flow Frenchman Springs 4 Rocky Coulee flow top	178 (28.3) 520 (82.7) 25 (4.0) 15 (2.4)	ן ן א

Table 8-4. Estimated Fluid Loss During Drilling of Borehole RRL-28.

Table 8-5. Estimated Fluid Loss During Drilling of Borehole RRL-2C.

•

Date	Depth interval where loss occurred, ft(m)	Geologic unit	Fluid loss, bbl (m ³)	Fluid
04/22/85	252 (76.8)	Ringold Formation	125 (19.9)	Mud
04/28/85	825 (251.5)	Pomona flow	60 (9.5)	Mud
04/29/85	575 (175.3)	Selah interbed	20 (3.2)	Mud
05/07/85	1,736 (529.1)	Priest Rapids/Roza flows	12 (1.9)	Mud
05/09/85	2,037 (620.9)	Sentinel Gap flow	470 (74.7)	Mud
05/23/85- 05/24/85	3,232-3,272 (985.1-997.3)	Cohassett flow bottom and Grande Ronde 5 flow top	3,288 (522.8)	Water

Date	Interval, ft (m)	Bit no.	Average weight on bit, lb (kg)	Average, r/min	Mud visco- sity, s	Mud weight, lb/gal (kg/L)	Water loss, in ³ (mL)	pH	Remarks
5-30-85	19-94 (5.8-28.7)	1	7,500 (3,402)	55	50				Spud Mud
5-31-85	94-381 (28.7-116.1)	1	9,200 (4,173)	62	58	8.8 (1.05)		7.5	
6-01-85	381-553 (116.1-168.6)	1	14,500 (6,577)	60	58	8.8 (1.05)		7.5	
6-01-85	553-614 (168.6-187.1)	2	20,000 (9,072)	60	58	8.8 (1.05)		7.5	Logging surface hole before run- ning 20-in. (50.8-cm) casing to 613 ft (186.8 m)
6-02-85				55	51	8.9 (1.07)		8.0	
6-03-85	614-645 (187.1-196.6)	3	17,500 (7,938)	50 ·	38				
6-04-85	645-818 (196.6-249.3)	3	14,000 (6,350)	57	39	8.8 (1.05)		10.2	
6-05-85	818-900 (249.3-274.3)	3	32,500 (14,742)	63	37	8.8 (1.05)		9.2	
6-06-85	900-1,045 (274.3-318.5)	3	20,000 (9,072)	63	42	8.8 . (1.05)	0.63 (10.2)	8.8	·
I	1	7			1				•

Table B-6. Mud Drilling Record at Borehole RRL-28. (sheet 1 of 4)

SD-8WI-TI-329 REV 0

110

ļ

.

. ·

Date	lnterval, ft (m)	Bit no.	Average weight on bit, lb (kg)	Average, r/min	Mud visco- sity, s	Mud weight, lb/gal (kg/L)	Water loss, in ³ (mL)	рН	Remarks
6-07-85	1,045-1,083 (318.5-330.1)	3	42,500 (19,278)	60	46	8.9 (1.07)		9.0	LCM 6%
6-07-85	1,083-1,148 (330,1-349.9)	4	27,500 (12,474)	54	46	8.9 (1.07)		9.0	LCM 6%
6-08-85	1,148-1,303 (349.9-397.2)	4	35,000 (15,876)	52	49	8.9 (1.07)	0.38 (9.2)	9.3	LCM 2%
6-09-85	1,303-1,418 (397.2-432.2)	4	40,000 (18,144)	57	49	8.9 (1.07)		9.8	LCM 2%
6-10-85	1,418-1,602 (432.2-488.3)	4	37,000 (16,783)	58	57	8.8 (1.05)		9.0	LCM 6%
6-11-85	1,602-1,674 (488.3-510.2)	4	45,000 (20,412)	53	45	8.9 (1.07)		9.0	LCM 1%
6-12-85	1,674-1,766 (510.2-538.3)	5	42,500 (19,278)	50	45	8.9 (1.07)	0.73 (12.0)	9.5	LCM 1%
6-13-86	1,766-1,833 (538.3-558.7)	5	47,000 (21,319)	55	53	8.9 (1.07)	0.59 (9.6)	10.3	LCM 11%
6-14-85	1,833-1,945 (558.7-592.8)	5	48,000 (21,773)	59	53	9.0 (1.08)	0.62 (10.2)	10.6	I.CM 12%
6-15-85	1,945-2,057 (592.8-627.0)	5	49,000 (22,226)	59	53	9.0 (1.08)	0.65 (10.6)	10.8	LCM 6%

Table 8-6. Mud Drilling Record at Well RRL-28. (sheet 2 of 4)

111

1

.

SO-8WI-TI-329 REV 0

:

Date	Interval, ft (m)	Bit no.	Average weight on bit, lb (kg)	Average, r/min	Mud visco- sity, s	Mud weight, lb/gal (kg/L)	Water loss, in ³ (mL)	pH	Remarks
6-16-85	2,057-2,155 (627.0-656.8)	5	48,000 (21,773)	59	52	8.9 (1.07)	0.68 (11.2)	11.0	LCM 3%
6-17-85	2,155-2,184 (656.8-665.7)	5	47,500 (21,546)	60	52	9.0 (1.08)	0.68 (11.2)	10.0	LCM 3%
6-17-85	2,184-2,219 (665.7-676.4)	6	45,000 (20,412)	58	52	9.0 (1.08)	0.68 (11.2)	10.0	LCM 3%
6-18-85	2,219-2,365 (676.4-720.8)	6	45,000. (20,412)	59	48	9.0 (1.08)	0.71 (11.6)	9.5	LCM 1%
6-19-85	2,365-2,525 (720.8-769.6)	6	39,000 (17,690)	63	45	9.0 - (1.08)	0.72 (11.8)	9.0	LCM 2.5%
6-20-85	2,525-2,655 (769.6-809.2)	6	35,000 (15,876)	65	51	9.0 (1.08)	0.73 (12.0)	9.5	LCM 1%
6-21-85	2,655-2,684 (809.2-818.1)	RR-3	45,000 (20,412)	45	45	9.0 (1.08)		9.5	LCM 1%
6-22-85	2,684-2,750 (818.1-838.2)	RR-3	48,000 (21,773)	45	45	9.0 (1.08)		9.5	LCM 3%
6-23-85	2,750-2,776 (838.2-846.1)	RR-3	50,000 (22,680)	48	46	9.0 (1.08)		9.2	LCM 1%; Logging
6-24-85		RR-3			54	9.0 (1.08)	0.60 (9.8)	9.5	LCM 1%

Table B-6. Mud Drilling Record at Well RRL-2B. (sheet 3 of 4)

112

SD-BWI-TI-329 REV O

!

Date	Interval, ft (m)	Bit no.	Average weight on bit, 1b·(kg)	Average, r/min	Mud visco- sity, s	Mud weight, lb/gal (kg/L)	Water loss, in3 (mL)	pli	Remarks
6-25-85				·	65	9.0 (1.08)		0.58 (9.5)	LCM; Run casing to 2,776 ft (846.1 m)
6-26-85	2,696-2,765 (821.7-842.8)	RR-7	15,000 (6,804)	49					Drill cement from 2,696 to 2,765 ft (821.7 to 842.8 m)
6-27-85	2,765-2,781 (842.8-847.6)	RR-7	20,000 (6,096)	50		·			Drill cement and shoe. Drilling with water
6-28-85	2,669-2,778 (813.5-846.7)	RR-7	25,000 (11,340)	50					Drilling cement
6-28-85	2,778-2,782 (846.7-847.9)	RR-7	5,000 (2,268)	55					Set packer and test. Drill cement
6-29-85	2,782-2,858 (847.9-871.1	RR-7	40,000 (18,144)	53					Drilling cement, circulated, survey, logging

Table B-6. Mud Drilling Record at Well RRL-2B. (sheet 4 of 4)

LCM = Lost circulation material (paper, wood fiber, cottonseed hulls).

SD-BWI-TI-329 REV O

1

113

Date	lnterval, ft (m)	Bit no.	Average weight on bit, lb (kg)	Average, r/min	Mud visco- sity, s	• Mud weight, lb/gal (kg/L)	Water loss, in3 (mL)	pH	Remarks
04-21-85	37-102 (11.3-31.1)	1	7,500 (3,402)	58	52	-	-	-	Spud mud
04-22-85	102-273 (31.1-83.2)	1	7,500 (3,402)	59	48	8.8 (1.05)	-	9.0	Lost circulation at 252 ft (76.8 m)
4-23-85	273-479 (83.2-146.0)	1	8,300 (3,765)	60	· 60	8.9 (1.07)	-	8.6	
04-24-85	479-610 (146.0-185.9)	1	10,000 (4,536)	62	48	9.0 (1.08)	1.10 (18)	9.5	
04-25-85	-	-	-	-	50	8.8 (1.05)	-	10.0	Run casing to 609 ft (185.6 m)
04-26-85	610-633 (185.9-192.9)	2	30,000 (13,608)	40	47	8.8 (1.05)	1.10 (18)	10.0	
04-27-85	633-809 (192.9-246.6)	2	27,000 (8,229)	54	40	8.9 (1.07)	1.04 (17)	10.6	
04-28-85	809-917 (246.6-279.5)	2	39,000 (17,609)	65	42	8.8 (1.05)	1.04 (17)	9.6	LCM 7%
04-29-85	917-1,003 (279.5-305.7)	2	38,000 (17,237)	68	45	8.8 (1.05)	0.37 (6)	9.4	LCM 7%
04-30-85	1,003-1,287 (305.7-392.3)	3	40,000 (18,144)	70	45	8.8 (1.05)	0.48 (8)	9.4	LCM 7%

.

Table B-7. Mud Drilling Record at Borehole RRL-2C. (sheet 1 of 4)

114

SD-BWI-TI-329 REV O

Date	Interval, ft (m)	Bit no.	Average weight on bit, lb (kg)	Average, r/min	Mud visco- sity, s	Mud weight, lb/gal (kg/L)	Water loss, in ³ (mL)	pH	Remarks
05-01-85	1,287-1,398 (392.3-426.1)	3	38,000 (17,237)	70	42	8.8 (1.05)	0.50 (8.2)	8.8	LCM 6% -
05-02-85	1,398-1,551 (426.1-472.7)	3	12,000 (5,443)	70	43	8.8 (1.05)	0.44 (7.2)	8.3	Fishing
05-03-85	1,551-1,607 (472.7-489.8)	3	35,000 (15,876)	70	42	9.0 (1.08)	0.44 (7.2)	8.3	LCM 6%
05-04-85	1,607-1,633 (489.8-497.7)	3	30,000 (13,608)	70	43	9.0 (1.08)	0.50 (8.2)	8.0	LCM 5%
05-05-85	1,633-1,648 (497.7-502.3)	3	43,000 (19,504)	60	40	9.2 (1.10)	0.50 (8.2)	8.0	Fishing
05-06-85	1,648-1,728 (502.3-526.7)	4	39,000 (17,690)	55	40	9.2 (1.10)	0.50 (8.2)	8.0	LCM 5%
05-07-85	1,728-1,835 (526.7-559.3)	4	35,000 (15,876)	55	46	9.0 (1.08)	0.49 (8.0)	8.0	LCM 4%*
05-08-85	1,835-1,945 (559.3-592.8)	4	45,000 (20,412)	55	44	9.0 (1.08)	0.54 (8.8)	9.0	
05-09-85	1,945-2,067 (592.8-630.0)	4	45,000 (20,412)	55	40	9.0 (1.08)	0.54 (8.8)	8.6	LCM 5%
05-10-85	2,067-2,166 (630.0-660.2)	4	42,000 (19,051)	53	50	8.9 (1.07)	0.56 (9.2)	8.3	LCM 9%
05-11-85	2,166-2,180 (660.2-664.5)	4	40,000 (18,144)	48	46	8.9 (1.07)	0.57 (9.4)	8.6	LCM 5%

Table B-7. Mud Drilling Record at Borehole RRL-2C. (sheet 2 of 4)

115

SD-8WI-TI-329 REV 0 r]

!

. •

.

Date	Interval, ft (m)	Bit no.	Average weight on bit, lb (kg)	Average, r/min	Mud visco- sity, s	Mud weight, lb/gal (kg/L)	Water loss, in ³ (mL)	pli	Remarks
05-11-85	2,180-2,237 (664.5-681.8)	5	29,000 (13,154)	50	46	8.9 (1.07)	0.57 (9.4)	8.6	LCM 5%
05-12-85	2,237-2,341 (681.8-713.5)	5	38,000 (17,237)	42	40	8.9 (1.07)	0.59 (9.6)	9.6	LCM 4%
05-13-85	2,341-2,444 (713.5-744.9)	5	45,000 (20,412)	45	40	9.0 (1.08)	0.59 (9.6)	9.8	LCM 3%
05-14-85	2,444-2,545 (744.9-775.7)	5	42,000 (19,051)	45	40	9.0 (1.08)	0.59 (9.6)	9.8	LCM 3%
05-15-85	2,545-2,637 (775.7-803.8)	5	45,000 (20,412)	50	40	8.9 (1.07)	0.59 (9.6)	9.6	LCM 2%
05-16-85	2,637-2,750 (803.8-838.2)	5	50,000 (22,680)	50	40	8.9 (1.07)	0.63 (10.4)	9.5	LCM 2%
05-17-85	2,750-2,776 (838.2-846.1)	RR-2	45,000	52	54	8.9 (1.07)	0.57 (9.4)	9.5	LCM 1%
05-18-85	-	-	-	-	53	8.9 (1.07)	0.62 (10.2)	9.3	Run casing to 2,775 ft (845.8 m)
05-19-85	-	-	-	·_	-	-	-	-	Drill with water
05-20-85	2,776-2,778 (846.1-846.7)	6	43,000	55	-	-		j -	Drill with water
05-21-85	2,778-2,966 (846.7-904.0)	6	47,000	53 .	-	-	-	-	Drill with water

•

٠

Table B-7. Mud Drilling Record at Borehole RRL-2C. (sheet 3 of 4)

.. .

115

•

SD-BWI-TI-329 REV O

Date	Interval, ft (m)	Bit no.	Average weight on bit, lb (kg)	Average, r/min	Mud visco- sity, s	Mud weight, lb/gal (kg/L)	Water loss, in ³ (mL)	рН	Remarks
05-22-85	2,966-3,166 (904.0-964.9)	6	42,000	53	-	-	-	-	Drill with water
05-23-85	3,166-3,360 (964.9- 1,024.1)	6	35,000	70	-	-	-	-	Drill with water
05-24-85	3,360-3,400 (1,024.1- 1,036.3)	7	40,000	70	-	-	-	-	Drill with water

Table B-7. Mud Drilling Record at Borehole RRL-2C. (sheet 4 of 4)

1

LCM = Lost circulation material (paper, wood fiber, cottonseed hulls).

117

SD-BWI-TI-329 REV 0

:
Bit no.	Size, in. (cm)	Туре	Serial number	Manufac- turer	Depth, ft (m)	Distance out, ft (m)	Footage, ft (m)	llours	Rate, ft/h (m/h)	Remarks
1	26 (66.0)	R1	BD 865	llughes	19 (5.8)	553 (168.6)	519 (158.2)	45.25	11.5 (3.5)	Prior use, RRL-2C, Retip
2	26 (66.0)	DJ	220 7V	Smith	553 (168.6)	614 (187.1)	61 (18.6)	3.75	16.3 (5.0)	Retip
3	17.5 (44.45)	X-44	ZS 234	llughes	614 (187.1)	1.083 (330.1)	469 (143.0)	83.25	5.6 (1.7)	
4	17.5 (44.45)	X-44	ZS 287	Hughes	1,083 (330.1)	1,674 (510.2)	519 (158.2)	99.25	5.6 (1.7)	
5	17.5 (44.45)	X-44	ZS 215	llughes	1,674 (510.2)	2,184 (665.7)	510 (155.5)	106.25	4.8 (1.5)	
6	17.5 (44.45)	4JS	AT 538	Smith	2.184 (665.7)	2,655 (809.2)	471 (143.6)	71.75	6.6 (2.0)	
RR-3	17.5 (44.45)	X-44	ZS 234	llughes	2,655 (809.2)	2,780 (847.3)	125 (38.1)	32.25	3.8 (1.2)	
RR7	12.25 (31.12)	F4	CK 5161	Smith	2,778 (846.7)	2,858 (871.1)	80 (24.4)	5.25	15.2 (4.6)	Bit used on previous drill- ing (RRL-2C). Interim depth 2,858 ft (871.1 m)

Table 8-8. Bit Record at Borehole RRL-28.

. . • :

SD-BWI-TI-329 REV O

1

÷

Bit no.	Size, in. (cm)	Туре	Serial number	Manufac- turer	Depth, ft (m)	Distance out, ft (m)	Footage, ft (m)	llours	Rate, ft/h (m/h)	Remarks
1	26 (66.0)	R1	BD 865	llughes	19 (5.8)	610 (185.9)	591 (180.1)	66.5	8.9 (2.7)	Overburden
2	17.5 (44.45)	4JS	SAW 327	Smith	610 (185.9)	1,003 (305,7)	393 (119.8)	55.5	7.1 (2.2)	Basalt
3	17.5 (44.45)	X44	ZS 287	llughes	1,003 (305.7) [.]	1,648 (502.3)	645 (196.6)	94	6.9 (2.1)	
4	17.5 (44.45)	4JS	AT 333	Smith	1,648 (502.3)	2,180 (664.5)	532 (162.2)	112.25	4.7 (1.4)	
5	17.5 (44.45)	4JS	SAE 182	Smith	2,180 (664.5)	2,750 (838.2)	570 · (173.7)	119.75	4.8 (1.5)	
RR-2	17.5 (44.45)	4JS	SAW 327	Smith	2,750 (838.2)	2,776 (846.1)	26 (7.9)	8.25	3.2 (1.0)	
6	12.25 (31.12)	M88	162438	Security	2,776 (846.1)	3,360 (1,024,1)	584 (178.0)	60.25	9.7 (3.0)	
7	12.25 (31.12)	F4	878 L.F	Smith	3,360 (1,024.1)	3,404 (1,037.5)	40 (12.2)	3	13.3 (4.1)	Total depth 3,404 ft (1,037.5 m)

Table B-9. Bit Record at Borehole RRL-2C.

SD-8WI-TI-329 REV Q

Table B-10. RRL-2B and RRL-2C Cementing and Casing Equipment List.

20-in. (50.8-cm) OD Casing

75TC4 Pumping unit with recirculating mixer 75C3 Pumping unit with jet mixer MX100T turbine batch mixer 985 ft³ (28 m³) bulk trailer 400 ft³ (11 m³) body load bulk truck 1,410 ft³ (40 m³) field storage bins (2) In-line densometer Pressurized mud scales Double-valve slip-joint float shoe Inner-string adapter

13.375-in. (33.97-cm) OD Casing

75TC4 Pumping unit with recirculating mixer 75C3 Pumping unit with jet mixer MX100T turbine batch mixer 985 ft³ (28 m³) bulk trailer 400 ft³ (11 m³) body load bulk truck 1.410 ft³ (40 m³) field storage bins (2) In-line densometer Pressurized mud scale Super seal float shoe Super seal float collar By-pass baffle Multiple-stage cementing tool with free-fall plug set and by pass plug E-Z LOK limit clamps Fluid master centralizer (10 for RRL-28 and 11 for RRL-2C) Plug container

Casing outside diameter, in. (cm)	Interval, ít (m)	Stage numbers	Number of sacks	API class	Additives per sack	Slurry density, 1b/gal (kg/L)	Mixed slurry, bbl (m ³)	Remarks
· ·	1	• • •	Casing	Summ	ary for 06/02/	B5		
20.0 (50 8)	0-613 (0-186.8)		350	G	0.25 lb (0.11 kg) Flocele, 2% CaCl ₂	15.8 (1.9)	72 (11.5)	Lead
20.0 (50.8)	0-613 (0-186.8)		600	G	2% CaCl ₂	15.8 (1.9)	123 (19.6)	Tail, circulated 15 bbl (2.4 m³) to mud pit
			Casing	Sunm	ary for 06/25/	35		· · · · · · · · · · · · · · · · · · ·
13 375 (33.973)	1,600-2,776 (487.7-846.1)		350	G	0.25 lb (0.11 kg) Flocele	15.8 '(1.9)	71 (11.3)	Lead
13.375 (33.973)	1,600-2,776 (487.7-846.1)		830	G	Neat	15.8 (1.9)	170 (27.0)	Tail
13.375 (33.973)	0-1,800 (0-548.6)		350	G	0.25 lb (0.11 kg) flocele	15.8 (1.9)	71 (11.3)	Lead, loss circulated during placement of the cement slurry regained during displacement
13.375 (33.973)	0-1,800 (0-548.6)		2,350	G	Neat -	15.8 (1.9)	481 (76.5)	Tail
			Casing	Summ	ary for 06/27/8	35		
	2,674-2,782 (815.0-848.0)	1	100	G	0.75% CFR-2	17.5 (2.1)	17 (2.7)	Spot cemented float shoe

Table B-11. Cementing Casing Summary at Borehole RRL-2B.

NOTE: Details of cementing contained in Shift Report of Operations. API = American Petroleum Institute.

bbl = barrel (42 gal). CFR = Cement Iriction reducer.

SD-BWI-TI-329 REV O

Casing outside diameter, in. (cm)	Interval, ft (m)	Stage number	Number of sacks	API class	Additives per sack	Sturry density, Ib/gal (kg/L)	Mixed slurry, bbl (m ³)	Remarks		
Casing Summary for 04/26/85										
20 0 (50.8)	0-610 (0-185.9)		300	G	0.25 lb (0.11 kg) Flocele, 2% CaCl ₂	15.8 (1.9)	61 (9.7)	Lead		
20.0 (50 8)	0-610 (0-185.9)		800	G	2% CaCl ₂	15.8 (1.9)	164 (26.1)	Tail, circulated 63 bbl (10.0 m³) to mud pit		
		•	Casing	Summa	ary for 05/19/8	35		· · · · · · · · · · · · · · · · · · ·		
13.375 (33.973)	1,600-2,775 (487.7-845.8)		350	G	0.25 lb (0.11 kg) Flocele	15.8 (1.9)	72 (11.5) ·	Lead		
13.375 (33.973)	1,600-2,775 (487.7-845.8)		400	G	Neat	15.8 (1.9)	82 (13.0)	Tail		
13.375 (33.973)	0-1,800 (0-548.6)		350	G	0.25 lb (0.11 kg) Flocele	15.8 (1.9)	72 (11.5)	Lead		
13.375 (33.973)	0-1,800 (0-548.6)		1,850	G	1% CaCl ₂	15.8 (1.9)	379 (60.3)	Tail, did not circulate cement to surface		

Table B-12. Cementing Casing Summary at Borehole RRL-2C.

• NOTE: Details of cementing contained in Shift Report of Operations.

API = American Petroleum Institute.

:

bbl = barrel (42 gal).

ł

Measured	Drift Di angle, dire degree de	Drift direction,	Course	True vertical	Rectangular	coordinates	Dogleg severity degrees/	
ft (m)	degree minute	degree minute	ft (m)	depth, ft (m)	ft (m)	ft (m)	100 ft (30.5 m)	
0	0 0	0 0	0	0.00	0.00	0.00	0.00	
100, (30.5)	00	0 0	100 (30.5)	100.00 (30.48)	0.00	0.00	0.00	
200 (61.0)	00	0 0	100 (30.5)	200.00 (60.96)	. 0.00	0.00	0.00	
、300 (91.4)	0 15	N 13 O E	100 (30.5)	300.00 (91.44)	0.43 N (0.131)	0.10 E (0.030)	0.25 (0.076)	
400 (121.9)	00	00	100 (30.5)	400.00 (121.92)	0.43 N (0.131)	0.10 E (0.030)	0.25 (0.076)	
500 (152.4)	00	0 0	100 (30.5)	500.00 (151.40)	0.43 H (0.131)	0.10 E (0.030)	0.00 (0)	
600 (182.9)	030	N 47 O E	100 (30.5)	600.00 (182.88)	1.02 N 0.311)	0.74 E (0.226)	0.50 (0.152)	
700 (213.4)	030	N 34 O E	100 (30.5)	699.99 (213.36)	1.74 N (0.530) [.]	1.22 E (0.372)	0.11 (0.034)	
800 (243.8)	0 15	N 30 O E	100 (30.5)	799.99 (243.84)	2.12 N (0.646)	1.44 E (0.439)	0.25 (0.076)	
900 (274.3)	· 0 0	0 0	100 (30.5)	899.99 (274.32)	2.12 N (0.646)	1.44 E (0.439)	0.25 (0.076)	

Table B-13. Gyroscopic Survey at Borehole RRL-2B. (sheet 1 of 3)

SD-8WI-TI-329 REV O

Measured	Drift angle, degree	Drift direction,	Course	True vertical	Rectangular	coordinates	Dogleg severity degrees/
ft (m)	degree minute	degree minute	ft (m)	depth. ft (m)	ft (m)	ft (m)	100 ft (30.5 m)
1,000 (304.8)	00	0 0	100 (30.5)	999.99 (304.80)	2.12 N (0.65)	1.44 E (0.44)	0.00
1,100 (335.3)	0 0	0 0	100 (30.5)	1,099.99 (335.28)	2.12 N (0.65)	1.44 E (0.44)	0.00
1,200 (365.8)	0 0	0 0	100 (30.5)	1,199.99 (365.76)	2.12 N (0.65)	1.44 E (0.44)	0.00
1,300 (396.2)	030	N 8 O E	100 (30.5)	1,299.99 (396.24)	2.99 N (0.91)	1.56 E (0.48)	0.50
1,400 (426.7)	00	0 0	100 (30.5)	1,399.99 (426.72)	2.99 N (0.91)	1.56 E (0.48)	0.50
1,500 (457.2)	0 0	0 0	100 (30.5)	1,499.99 (457.20)	2.99 N (0.91)	1.56 E (0.48)	0.00
1,600 (487.7)	030	N 17 O E	100 (30.5)	1,599.98 (487.67)	3.82 N (1.16)	1.82 E (0.55)	0.50
1,700 (518.2)	0 0	0 0	100 (30.5)	1,699.98 (518.15)	3.82 N (1.16)·	1.82 E (0.55)	0.50
1,800 (548.6)	00	0 0	100 (30.5)	1,799.98 (548.63)	3.82 N (1.16)	1.82 E (0.55)	0.00
1,900 (579.1)	00	0 0	100 (30.5)	1,899.98 (579.11)	3.82 N (1.16)	1.82 E (0.55)	0.00

Table B-13. Gyroscopic Survey at Borehole RRL-28. (sheet 2 of 3)

ł

Measured	Drift angle,	Drift direction,	Course	True vertical	Rectangular	coordinates	Dogleg severity degrees/
ft (m)	degree minute	degree minute	ft (m)	depth, . ft (m)	ft (m)	ft (m)	100 ft (30.5 m)
2,000 (609.6)	0 0	0 0	100 (30.5)	1,999.98 (609.59)	3.82 N (1.164)	1.82 E (0.555)	0.00
2,100 (640,1)	0 0	0 0	100 (30.5)	2,099.98 (640.07)	3.82 N (1.164)	1.82 E (0.555)	0.00
2,200 (670.6)	0 15	S600W	100 (30.5)	2,199.98 (670.55)	3.60 N (1.097)	1.44 E (0.439)	0.25
2,300 (701.0)	0 45	S 28 O W	100 (30.5)	2,299.97 (701.03)	2.45 N (0.747)	0.83 E (0.253)	0.55
2,400 (731.5)	0 45	S 30 O W	100 (30.5)	2,399.97 (731.51)	1.31 N (0.399)	0.17 E (0.052)	0.03
2,500 (762,0).	0 30	S 51 O W	100 (30.5)	2,499.96 (761.79)	0.76 N (0.232)	0.51 W (0.155)	0.34
2,600 (792.5)	030	S600W	100 (30.5)	2,599.96 (792.47)	0.33 N (0.101)	1.26 W (0.384)	0,08
2.700 (823.0)	0 15	S 24 O W	100 (30.5)	2,699.96 (822.95)	0.07 S (0.021)	1.44 W (0.439)	0.33
2,800 (853.4)	030	S 44 O W	100 (30.5)	2,799.95 (853.42)	0.70 S (0.213)	2.05 W (0.625)	0.28
2,825 (861.1)	0 45	N 15 O E	25 (7.6)	2,824.95 (861.04)	0.38 S (0.116)	1.96 W (0.597)	4.85

Table 8-13. Gyroscopic Survey at Borehole RRL-28. (sheet 3 of 3)

NOTE: Final closure - Direction: South 78 degrees, 57 minutes West. Distance: 2.00 feet. SD-8WI-TI-329 REV O

Measured	Drift Dri angle, direct degree degr	Drift direction, lengt		se True h, depth	Rectangular	coordinates	Dogleg severity degrees/
ft (m)	degree minute	degree minute	ft (m)	depth, ft (m)	ft (m)	ft (m)	100 ft (30.5 m)
50 (15.2)	05	N 64 O E	0	50.00 (15.24)	0.03 N (0.009)	0.07 E (0.021)	0.00
100 (30.5)	0 15	N660E	50 (15.2)	100.00 (30.48)	0.12 N (0.037)	0.27 E (0.082)	0.33
150 (45.7)	0 25	S 55 O E	50 (15.2)	· 150.00 (45.72)	0.09 S (0.027)	0.57 E (0.174)	0.72
200 (61.0)	0 30	S 6 0 E	50 (15.2)	200.00 (60.96)	0.52 S (0.158)	0.61 E (0.186)	0.78
250 (76.2)	035	S130E	50 (15.2)	249.99 (76.20)	1.02 S (0.311)	0.73 E (0.223)	0.21
300 (91.4)	0 30	S80E	50 (15.2)	299.99 (91.44)	1.45 S (0.442)	0.79 E (0.241)	0.19
350 (106.7)	030	S 8 0 E	50 (15.2)	·349.99 (106.68)	1.88 S (0.573)	0.85 E (0.259)	0.00
400 (121.9)	0 10	S40E	50 (15.2)	399.99 (121.92)	2.03 S (0.619)	0.86 E (0.262)	0.67
450 (137.2)	0 15	N 63 O W	50 (15.2)	449.99 (137.16)	1.93 S (0.588)	0.66 E (0.201)	0.73
500 (152.4)	020	N 59 OW	50 (15.2)	499.99 (152.40)	1.78 S (0.543)	0.42 E (0.128)	0.17

Table B-14. Gyroscopic Survey at Borehole RRL-2C. (sheet 1 of 7)

126

SD-8WI-TI-329 REV O Ċ

!

Measured	Drift angle,	Drift direction, degree	Course	True vertical depth	Rectangular	coordinates	Dogleg severity degrees/
ft (m)	degree minute	degree minute	ft (m)	depth, ft (m)	ft (m)	ft (m)	100 ft (30.5 m)
550 (167.6)	0 10	S86 OW	50 (15.2)	549.99 (167.64)	1.79 S (0.546)	0.27 E (0.082)	0.44
600 (182.9)	0 15	N 35 O E	50 (15.2)	599.99 (182.88)	1.61 S (0.491)	0.40 E (0.122)	0.76
650 (198.1)	00	0 0	50 (15.2)	649.99 (198.12)	1.61 S (0.491)	0.40 E (0.122)	0.50
700 (213.4)	0 15	N44 OE	50 (15.2)	699.99 (213.36)	1.45 S (0.442)	0.55 E (0.168)	0.50
750 (228.6)	0 15	N 69 O E	50 (15.2)	749.99 (228.60)	1.38 S (0.421)	0.75 E (0.229)	0.22
800 (243.8)	0 15	S440E	50 (15.2)	799 . 99 (243.84)	1.53 S (0.466)	0.90 E (0.274)	0.55
850 (259.1)	0 15	S 3 0 W	50 (15.2)	849.99 (259.08)	1.75 S (0.533)	0.89 E (0.271)	0.40
900 (274.3)	05	S 55 O E	50 (15.2)	899.99 (274.32)	1.79 S (0.546)	0.95 E (0.290)	0.44
950 (289.6)	05	S530E	50 (15.2)	949.99 (289.56)	1.84 S (0.561)	1.01 E (0.308)	0.01
1,000 (304.8)	05	N 18 O W	50 (15.2)	999.99 (304.80)	[•] 1.77 S (0.539)	0.99 E (0.302)	0.32

Table B-14. Gyroscopic Survey at Borehole RRL-2C. (sheet 2 of 7)

1

Measured	Drift angle,	Drift direction,	Course	True vertical	Rectangular	coordinates	Dogleg severity degrees/
ft (m)	degree minute	degree degree minute minute		depth, ft (m)	ft (m)	ft (m)	100 ft (30.5 m)
1,050 (320,0)	0 15	N 10 O W	50 (15.2)	1,049.99 (320.04)	1.55 S (0.472)	0.95 E (0.290)	0.34
1.100 (335.3)	020	N 15 O E	50 (15.2)	1.099.98 (335.27)	1.27 S (0.387)	1.02 E (0.311)	0.30
1,150 (350.5)	0 15	N 1 O W	50 (15.2)	1,149.98 (350,51)	1.05 S (0.320)	1.02 E (0.311)	0.23
1,200 (365.7)	0 15	N 4 O W	50 (15.2)	1,199.98 (365.75)	0.84 S (0.256)	1.00 E (0.305)	0.03
1,250 (381.0)	0 15	N 15 O E	50 (15.2)	1,249.98 (380.99)	0.63 S (0.192)	1.06 E (0.323)	0.17
1,300 (396.2)	0 25	N 52 O E	50 (15.2)	1,299.98 (396.23)	0.40 S (0.122)	1.35 E (0.411)	0.53
1,350 (411.5)	030	N680E	50 '(15.2)	1.349.98 (411.47)	0.24 S (0.073)	1.75 E (0.533)	0.30
1,400 (426.7)	0 40	N 72 O E	50 (15.2)	1,399.98 (426.71)	0.06 S (0.018)	2.30 E (0.701)	0.34
1,450 (442.0)	040	N780E	50 (15.2)	1,449.97 (441.95)	0.06 S (0.018)	2.87 E (0.875)	0.14
1,500 (457.2)	0 45	S730E	50 (15.2)	1,499.97 (457.19)	0.13 S (0.040)	3.50 E (1.067)	0.73

Table B-14. Gyroscopic Survey at Borehole RRL-2C. (sheet 3 of 7)

Measured	leasured Drift depth, dogree di		Course	True vertical	Rectangular	coordinates	Dogleg severity degrees/
ft (m)	degree minute	degree minute	ft (m)	depth, ft (m)	ft (m)	ft (m)	100 ft (30.5 m)
1,550 (472.4)	0 50	S720E	50 (15.2)	1,549.96 (472.43)	0.35 S (0.107)	4.19 E (1.277)	0.17
1,600 (487.7)	050	S680E	50 (15.2)	1.599.96 (487.67)	0.63 S (0.192)	4.87 E (1.484)	0.12
1,650 (502.9)	030	S 54 O E	50 (15.2)	1,649.96 (502.91)	0.88 S .(0.268)	5.22 E (1.591)	0.74
1.700 (518.2)	0 30	S 56 O E	50 (15.2)	1,699.95 (518.14)	1.13 S (0.344)	5.58 E (1.701)	0.03
1,750 (533.4)	05	S610E	50 (15.2)	1,749.95 (533.38)	1.16 S (0.354)	5.64 E (1.719)	0.83
1,800 (548.6)	0 15	N610E	50 (15.2)	1,799.95 (548.62)	1.06 S (0.323)	5.83 E (1.777)	0.44
1.850 (563.9)	0 10	N 89 O E	50 (15.2)	1,849.95 (563.86)	1.05 S (0.320)	5.98 E (1.823)	0.26
1,900 (579.1)	0 10	N 45 O E	50 (15.2)	1,899.95 (579,10)	0.95 S (0.290)	6.08 E (1.853)	0.25
1,950 (594.4)	0 15	N430E	50 (15.2)	1,949.95 (594.34)	0.79 S (0.241)	6.23 E (1.899)	0.17
2,000 (609,6)	030	N 71 O E	50 (15.2)	1,999.95 (609.58)	0.65 S (0.198)	6.64 E (2.024)	0.61

Table B-14. Gyroscopic Survey at Borehole RRL-2C. (sheet 4 of 7)

: .

. .

129

SD-BWI-TI-329 REV O

()

Measured	Drift angle, d degree	Drift direction,	Course	True vertical, depth	Rectangular	coordinates	Dogleg severity degrees/
ft (m)	degree minute	degree minute	ft (m)	depth ft (m)	ft (m)	ft (m)	100 ft (30.5 m)
2,050 (624.8)	0 25	N 72 O E	50 (15.2)	2,049.95 (624.82)	0.54 S (0.165)	6.99 E (2.131)	0.17
2,100 (640.1)	0 25	S 58 O E	50 (15.2)	2,099.95 (640.06)	0.73 S (0.223)	7.30 E (2.225)	0.70
2,150 (655.3)	030	S 56 _. O E	50 (15.2)	2,149.95 (655.30)	0.97 S (0.296)	7.66 E (2.335)	0.17
2,200 (670.6)	030	S460E	50 (15.2)	2,199.94 (670.54)	1.28 S (0.390)	7.97 E (2.429)	0.17
2,250 (685.8)	0 35	S 19 O E	50 (15.2)	2,249.94 (685.78)	· 1.76 S (0.536)	8.14 E (2.481)	0.53
2,300 (701.0)	020	S 25 O E	50 (15.2)	2,299.94 (701.02)	2.02 S (0.616)	8.26 E (2.518)	0.51
2,350 (716.3)	0 25	S230W	50 (15.2)	2,349.94 (716.26)	2.36 S (0.719)	8.12 E (2.475)	0.63
2,400 (731.5)	10	S11 OW	50 (15.2)	2,399.93 (731.50)	3.21 S (0.978)	7.95 E (2.423)	1.20
2,450 (746.8)	0 50	S34 OW	50 (15.2)	2,449.93 (746.74)	3.82 S (1.164)	7.55 E (2.301)	0.80
2,500 (762.0)	0 55	S610W	50 (15.2)	2,499.92 (761.98)	4.20 S (1.280)	6.85 E (2.088)	0.83

Table B-14. Gyroscopic Survey at Borehole RRL-2C. (sheet 5 of 7)

Measured	Drift angle,	Drift direction,	Course	True vertical,	Rectangular	coordinates	Dogleg severity degrees/
ft (m)	degree minute	degree minute	ft (m)	depth ft (m)	ft (m)	ft (m)	100 ft (30.5 m)
2,550 (777.2)	0 50	S 69 O W	50 (15.2)	2,549.91 (777.21)	4.46 S (1.359)	6.17 E (1.881)	0.30
2,600 (792.5)	030	8690W	50 (15.2)	2,599.91 (792.45)	4.62 S (1.408)	5.76 E (1.756)	0.67
2,650 (807.7)	0 35	S400W	50 (15.2)	2,649.91 (807.69)	5.01 S (1.527)	5.43 E (1.655)	0.57
2,700 (823.0)	040	S310W	50 (15.2)	2,699.91 (822,93)	5.51 S (1.679)	5.13 E (1.564)	0.26
2,750 (838.2)	0 35	S360W	50 (15.2)	2,749.90 (838.17)	5.92 S (1.804)	4.84 E (1.475)	0.20
2,800 (853.4)	020	S80E	50 (15.2)	2,799.90 (853.41)	6.21 S (1.893)	4.88 E (1.487)	0.83
2,850 (868.7)	0 45	S180W	50 (15.2)	2,849.90 (868.65)	6.83 S (2.082)	4.67 E (1.423)	0.95
2,900 (883,9)	0 35	S 6 0 W	50 (15.2)	2,899.90 (883.89)	7.34 S (2.237)	4.62 E (1.408)	0.43
2,950 (899.2)	`040	S230W	50 (15.2)	2,949.89 (899.13)	7.87 S (2.399)	4.39 E (1.338)	0.40
3,000 (914.4)	0 10	S 5 0 W	50 (15.2)	2,999.89 (914.37)	8.02 S (2.444)	4.38 E (1.335)	1.02

Table B-14. Gyroscopic Survey at Borehole RRL-2C. (sheet 6 of 7)

131

SD-BWI-TI-329 REV O

Drift angle,	Brift direction,	Course True I		Rectangular coordinates		Dogleg severity decrees/
degree minute	degree minute	ft (m)	depth ft (m)	ft (m)	ft (m)	100 ft (30.5 m)
05	S 7 0 E	100 (30.5)	3,099.89 (944.85)	8.16 S (2.487)	4.40 E (1.341)	0.09
0 10	580W	50 (15.2)	3,149.89 (960.09)	8.31 S (2.533)	4.38 E (1.335)	0.18
030	S780E	50 (15.2)	3,199.89 (975.33)	8.40 S (2.560)	4.81 E (1.466)	1.03
035	S 3 0 W	50 (15.2)	3,249.89 (990.57)	8.91 S (2.716)	4.78 E (1.457)	1.41
040	S710E	50 (15.2)	3,299.88 (1,005.80)	9.09 S · (2.771)	5.33 E (1.625)	1.51
040	S820E	50 (15.2)	3,349.88 (1,021.04)	9.18 S (2.798)	5.90 E (1.798)	. 0.26
1 10	S400E	50 (15.2)	3,399.87 (1,036.28)	9.96 S (3.036)	6.56 E (1.999)	1.61
	Drift angle, degree minute 0 5 0 10 0 30 0 35 0 40 0 40 1 10	Drift angle, degree minute Drift direction, degree minute 0 5 S 7 0 E 0 5 S 7 0 E 0 10 S 8 0 W 0 30 S 78 0 E 0 35 S 3 0 W 0 40 S 71 0 E 0 40 S 82 0 E 1 10 S 40 0 E	Drift angle, degree minuteDrift direction, degree minuteCourse length, ft (m)05S70E05S70E100 (30.5)010S80W50 (15.2)030S780E50 (15.2)035S30W50 (15.2)040S710E50 (15.2)040S820E50 (15.2)110S400E50 (15.2)	Drift angle, degree minuteDrift direction, degree minuteCourse length, ft (m)True vertical, depth ft (m)05S70E100 (30.5) $3,099.89$ (944.85)010S80W 50 (15.2) $3,149.89$ (960.09)030S780E 50 (15.2) $3,199.89$ (960.09)030S780E 50 (15.2) $3,249.89$ (990.57)040S710E 50 (15.2) $3,299.88$ (15.2)040S820E 50 (15.2) $3,349.88$ (1,005.80)040S400E 50 (15.2) $3,399.87$ (1,036.28)	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $

Table B-14. Gyroscopic Survey at Borehole RRL-2C. (sheet 7 of 7)

NOTE: Final closure - Direction: South 33 degrees, 23 minutes East. Distance: 11.92 feet.

132

SD-BWI-TI-329 REV 0

.

APPENDIX C

BOREHOLE GEOPHYSICAL LOG LISTING

.

.

..

.

•

CONTENTS

Tables:		
C-1	Borehole RRL-2B Geophysical Log Listing	135
C-2	Borehole RRL-2C Geophysical Log Listing	137
C-3	Post Installation Determination/Confirmation of Depths	
	to Seating Nipples and Condition of Piezometers	
	for Bdrehole RRL-2C	140

......

۰.

.

Iac	1e L-1. 80	renote RRL-28 Geophysical Log	Listing. (S	sneet 1 of 2)
Well	Date logged	Geophysical log	Interval ft	logged, (m)
		Pacific Northwest Labor	atory	
RRL-2B	06/02/85	Spontaneous potential and resistivity Caliper Natural gamma Gamma-gamma Neutron-epithermal-neutron	20-611 (0-611 (0-611 (0-611 (0-611 (6.1-186.2) 0-186.2) 0-186.2) 0-186.2) 0-186.2) 0-186.2)
RRL-2B	06/22/85	Neutron-epithermal-neutron	580-2,734	(176.8-833.3)
RRL-2B	06/23/85	Natural gamma Gamma-gamma Neutron-epithermal-neutron Magnetic Caliper	540-2,742 0-2,748 2,650-2,670 619-2,745 600-2,730	(164.6-835.8) (0-837.6) (807.7-813.8) (188.7-836.7) (182.9-832.1)
RRL-2B	06/24/85	Spontaneous potential and resistivity X-Y caliper	0-2,740 592-2,730	(0-835.2) (180.4-832.1)
RRL-28	06/29/85	Neutron-epithermal-neutron Neutron-epithermal-neutron	2,724-2,840 2,760-2,859	(830.3-865.6) (841.2-871.4)
RRL-28	07/25/85	Spontaneous potential and resistivity Magnetic Gamma-gamma Natural gamma Neutron-epithermal-neutron Fluid temperature	2,776-2,858 2,776-2,858 2,700-2,858 2,700-2,858 2,700-2,858 2,700-2,858 220-2,858	(846.1-871.1) (846.1-871.1) (823.0-871.1) (823.0-871.1) (823.0-871.1) (87.1-871.1)
RRL-2B	08/01/85	X-Y caliper	2,650-2,857	(807.7-870.8)
RRL-2B	08/07/85	X-Y caliper	2,750-2,850	(838.2-868.7)
RRL-2B	09/03/85	Fluid temperature	230-2,858	(70.1-871.1)
RRL-28	09/09/85	Fluid temperature	230-2,858	(70.1-871.1)
RRL-28	09/11/85	Dynamic fluid temperature	2,700-2,859	(823.0-871.4)

SD-BW1-TI-329 REV 0

•

.

۰.

٠.

	lable C-1.	Borenole KKL-28 Geophysic	ai Log Listing. (s	neet 2 of 2)
Well	Date ·logged	Geophysical log	Interval ft	logged, (m) -
		Washington State	University	
RRL-2	28 07/24/8	5 Sonic	2,775-2,875	(845.8-876.3)
RRL-2	2B 09/16/8	5 Caliper	0-2,870	(0-874.8)
		Gearhar	t	
RRL-2	28 06/26/8	5 Cement bond	0-2,719	(0-828.8)
RRL-2	28 08/11/8	5 Cement bond/CCL	0-2,790	(0-850.4)
RRL-2	28 08/21/89	5 Cement bond (at 750 lbf/in ²) (5.2 MPa)	0-2,330	(0-710.2)
		Westech Geopl	hysical	
RRL-2	28 08/20/8	5 Video camera	2,752-2,854	(838.8-869.9)
RRL-2	28 10/24/8	5 Video camera	2,776-2,855	(845.1-870.2)

le C-1. Borehole RRL-2B Geophysical Log Listing. (sheet 2 of 2

.

.

Well	Date logged	Geophysical log	Interval logged, ft (m)
		Pacific Northwest Labor	ratory
RRL-2C	04/25/85	Spontaneous potential and resistivity Natural gamma Magnetic X-Y caliper Caliper Neutron-epithermal-neutron Gamma-gamma	19-609 (5.8-185.6). 0-608 (0-185.3) 19-608 (5.8-185.3) 0-608 (0-185.3) 0-609 (0-185.6) 0-608 (0-185.3) 0-609 (0-185.6)
RRL-2C	05/16/85	Neutron-epithermal-neutron	2,160-2,749 (658.4-837.9)
RRL-2C	05/18/85	Spontaneous potential and resistivity Natural gamma Caliper Neutron-epithermal-neutron Gamma-gamma	604-2,774 (184.1-845.5) 590-2,774 (179.8-845.5) 590-2,720 (179.8-829.1) 600-2,774 (182.9-845.5) 590-2,774 (179.8-845.5)
RRL-2C	05/24/85	Neutron-epithermal-neutron Neutron-epithermal-neutron Gamma-gamma	2-3,404 (0.6-1,037.5) 2,946-3,359 (897.9-1,023.8) 2,700-3,359 (823.0-1,023.8)
RRL-2C ·	05/29/85	Caliper Fluid temperature	2,750-3,404 (838.2-1,037.5) 220-3,404 (67.1-1,037.5)
RRL-2C	05/30/85	Gamma-gamma Natural gamma	7-3,403 (2.1-1,037.2) 2,720-3,402 (829.1-1,036.9)
RRL-2C	06/01/85	Spontaneous potential and resistivity X-Y caliper	2,774-3,404 (845.5-1,037.5) 2,750-3,401 (838.2-1,036.6)
RRL-2C	06/10/85	Dynamic fluid temperature	2,700-3,400 (823.0-1,036.3)
RRL-2C	06/16/85	Fluid temperature	3,200-3,329 (975.4-1,014.7)
RRL-2C	06/18/85	Fluid temperature	3,000-3,226 (914.4-983.3)
RRL-2C	06/20/85	Fluid temperature Fluid temperature	3,0C0-3,325 (914.4-1,013.5) 2,900-3,328 (883.9-1,014.4)

Table C-2. Borehole RRL-2C Geophysical Log Listing. (sheet 1 of 3)

SD-BWI-TI-329
REV O

. .

. .

		• • •	• •	•
Well	Date logged	Geophysical log	Interval 1 ft	ogged, (m)
		· Pacific Northwest Labor	atory	
RRL-2C	06/22/85	Fluid temperature	2,800-3,328 (8	53.4-1,014.4)
RRL-2C	06/24/85	Fluid temperature	2,750-3,328 (8	38.2-1,014.4)
RRL-2C	06/26/85	Fluid temperature	2,650-3,328 (8	
RRL-2C	07/01/85	Fluid temperature	220-3,320 (6	7.1-1,011.9)
RRL-2C	08/16/85	Fluid temperature	240-3,327 (7	3.2-1,014.1)
RRL-2C	08/20/85	Fluid temperature	240-3,328 (7	3.2-1,014.4)
RRL-2C	09/1-3/85	Fluid temperature (Time Drive)	50	(15.2)
		Washington State Univer	rsity	
RRL-2C	03/29/85	Sonic	0-1,001 (0	-305.1)
RRL-2C	05/17/85	Sonic	0-2,776 (0	-846.1)
RRL-2C	06/03/85	Sonic	0-3,427 (0	-1,044.5)
		Oresser Atlas		
RRL-2C	05/29/85	Densilog/neutron/gamma-ray four-arm caliper	224-3,403 (6 2,775-3,404 (8	8.3-1,037.2) 45.8-1,037.5)
		Gearhart		
RRL-2C	05/20/85	Cement bond	0-2,766 (0	-843.1)
		Westech Geophysica		
RRL-2C	06/13/85	Video camera	0-3,402 (0	-1,036.9)

Table C-2. Borehole RRL-2C Geophysical Log Listing. (sheet 2 of 3)

138

٠.

Well	Date logged	Geophysical 1	log Interva ft	l logged, (m)
		United States G	Geological Survey	• •
RRL-2C	05/29/85	Televiewer	2,770-2,850 2,850-2,930 2,880-2,995 3,010-3,090 3,090-3,170 3,100-3,120 3,100-3,170 3,170-3,250 3,175-3,200 3,250-3,330 3,330-3,390	(844.3-868.7) (868.7-893.1) (877.8-912.9) (917.4-941.8) (941.8-966.2) (944.9-951.0) (944.9-956.2) (966.2-990.6) (967.7-975.4) (990.6-1,015.0) (1,015.0-1,033.3)
RRL-2C	06/02/85 	Televiewer	2,770-2,850 2,850-2,930 2,930-3,010 3,010-3,090 3,090-3,170 3,170-3,250 3,250-3,330 3,330-3,370	(844.3-868.7) (868.7-893.1) (893.1-917.4) (917.4-941.8) (941.8-966.2) (966.2-990.6) (990.6-1,015.0) (1,015.0-1,027.2)

Table C-2. Borehole RRL-2C Geophysical Log Listing. (sheet 3 of 3)

Well	Date logged	Too1 used	Logged depth ft (m)	Calculated depth ft (m)	Piezometer
•		Pacific Nort	hwest Labo	ratory	
RRL-2C	08/12/85	1.44-in. (3.66-cm) by 4-ft (1.2-m) temperature conde (4.06 ft	2,820 (859.5)	2,819 (859.2)	Rocky Coulee flow top
		(1.237 m) in length	2,907 (886.1)	2,906 (885.7)	Rocky Coulee interior
			2,980 (908.3)	2,981 (908.6)	Cohassett flow top
RRL-2C	08/16/85	1.44-in. (3.66-cm) by 4-ft (1.2-m) temperature sonde	3,235 (986.0)	3,238 (986.9)	Grande Ronde 5 * flow top
			3,327 (1,014.1)	3,327 (1,014.1)	Grande Ronde 5 interior
RRL-2C	08/20/85	1.44-in. (3.66-cm) by 4-ft (1.2-m) temperature sonde	3,157 (962.3)	3,157 (962.3)	Cohassett interior

Table C-3. Post Installation Determination/Confirmation of Depths to Seating Nipples and Condition of Piezometers.

 $\overline{}$

APPENDIX D

BOREHOLE DEVELOPMENT

. . . .

.

• • •

. C

÷

• :

•

CONTENTS

Tables:		
0-1	RRL-28 Borehole Development Activities	143
0-2	RRL-2C Borehole Development Activities	144
D-3	Borehole Development Summary at	
	Boreholes RRL-2B and RRL-2C	145

.

. .

• •

Date	Activity
09/11/85	Temperature sonde positioned at a depth of 2,700 ft (823.0 m) at about 0901 hours. Started monitoring downhole temperatures at 0902 hours. At 0911 hours began air lifting for the dynamic fluid temperature log. Terminated air lift at 1106 hours. Total discharge from Rocky Coulee flow top was about 1,000 gal (3.8 m ³).
10/17/85	At 1030 hours tagged bottom of borehole at a depth of 2,858 ft (871.1 m). Began circulating Hanford system water through working string at 1105 hours. Mule shoe was located at a depth of about 2,850 ft (868.7 m). Stopped circulating at 1630 hours for night. Total volume of water circulated was about 45,000 gal (170.3 m^3).
10/18/85	Conducted test to estimate percentage of water loss to Rocky Coulee flow top during circulation. Loss estimated at 15% of total water circulated. Began developmental circulation at 1008 hours. Terminated develop activities at 1600 hours. Total volume of water circulated was about 48,000 gal ($181:7 \text{ m}^3$). It is estimated that the total fluid loss was about 14,000 gal (53.0 m^3).

Table D-1. RRL-2B Borehole Development Activities.

Date	Activity
06/04-05/85	Installed 200 hp line shaft turbine pump to 500 ft (152 m) by subcontracted pump service company.
06/05-07/85	Pumped composite Grande Ronde Basalt below 13.375-in. (33.97-cm) OD casing for about 3,138 min (52.3 h) at an average discharge rate of about 59.6 gal/min (226 L/min). During pumping preliminary groundwater samples and gas samples were collected for analysis. Pump pulled from borehole after 2030 hours on 06/07/85.
06/08-09/85	No activity.
06/10/85	Pump was on from 1130 to 1715 hours to obtain additional gas [•] samples and to run dynamic fluid temperature survey. The average discharge rate was about 49 gal/min (186 L/min). Total volume pumped was 203,600 gal (770.7 m ³).
06/11/85	Workover rig moved on to site.
06/12/85	Bailing small amount of oil residual derived from line shaft pump.
06/13/85	Ran video survey. After survey added detergent solution (75 gal (.28 m ³) to 480 ft (146.3 m). Started air-lift pumping to further remove oil residual at 2320 hours.
06/14/85	Completed air-lift pumping at O225 hours. An estimated 5,000 gal (18.9 m ³) of water removed from borehole by surging. Proceeded to piezometer installation activities.

Table D-2. RRL-2C Borehole Development Activities.

Borehole	Pumped horizon	Isolated interval, ft (m)	Total time pumping, min	Average discharge rate, gal/min (L/min)	Total volume removed, gal (m ³)	Remarks
RRL-2B	Rocky Coulee flow top	2,776-2,858 (846.1-871.1)	NA	NA	Loss 14,000 (53.0)	Circulated 48,000 gal (181.7 m ³) for cleanup
RRL-2B	Rocky Coùlee flow top	2,776-2,858 (846.1-871.1)	115	8.7 (33)	1,000 (3.8)	Air-lift pumped for dynamic fluid temperature
RR12C	Composite Grande Ronde	2,775-3,404 (845.8-1,037.5)	3,475	58.6 (222) [.]	203,600 (770.7)	Line shaft turbine pumping for cleanup
RRL-2C	Composite Grande Ronde	2,775-3,404 (845.8-1,037.5)	NA	NA	5,000 (18.9)	Surged borehole

Table D-3. Borehole Development Summary at RRL-2B and RRL-2C.

NOTE: NA = Not applicable.

SD-BWI-TI-329 REV O

.

APPENDIX E

PIEZOMETER INSTALLATION

146

.

÷

CONTENTS

lables:		
E-1	Borehole RRL-2C Piezometer Summary	148
E-2	Borehole RRL-2C Piezometer Installation Activities	151
E-3	Borehole RRL-2C Filter Pack Summary	155
E-4	Borehole RRL-2C Piezometer Cement Seal Summary	156
٤-5	List of Cementing Equipment Used to Place	
	Densified Cement Seals	157
E-6	Chemical Composition and Physical Properties	•
	of Class G Cement	158
E-7	Borehole RRL-2C Seating Nipple Tubing Tests	159
E-8	Manufacturer's Stated Filter Pack Material	
	Chemical Specifications	160

Description	Rocky Coulee flow top (depth, ft (m))	Rocky Coulee interior (depth, ft (m))	Cohassett flow top (depth, ft (m))	Cohassett flow interior (depth, ft (m))	Grande Ronde 5 flow top (depth, ft (m))	Grande Ronde 5 flow interior (depth, ft (m))
Top of cement	2,717	2,833	2,917	2,993	3,168	3,282
	(828.1)	(863.5)	(889.1)	(912.3)	(965.6)	(1,000.4)
Top of pea gravel	2,799	2,895	2,963	3,145	3,215	3,315
	(853.1)	(882.4)	(903.1)	(958.6)	(979.9)	(1,010.4)
Top of #10-20	2,803 (854.4)	2,898 (883.3)	2,967 (904.3)	3,148 (959,5)	3,220 (981.5)	NA
Top of #4-8	2,808	2,900	2,971	3,151	3,222	3,317
	(855.9)	(883.9)	(905.6)	(960.4)	(982.1)	(1,011.0)
Centralizers						
#О Тор	NA	NA	NA	NA	NA	3.273.5 (997.76)
∦O Bottom	NA	NA	NA	NA	NA	3,275.5 (998.37)
#1 Top	2,764.8	2,852.4	2,931.8	3,116.7	3,188.4	3,288.4
	(842.71)	(869.41)	(893.61)	(949.76)	(971.82)	(1,002.30)
#1 Bottom	2,766.8	2,854.4	2,933.8	3,118.7	3,190.4	3,290.5
	(843.32)	(870.02)	(894.22)	(950.58)	(972.43)	(1,002.94)
#2 Top	2,796.8	2,893.2	2,958.2	3,144.6	3,213.7	3,316.1
	(852.46)	(881.15)	(901.66)	(958.47)	(979.54)	(1,010,75)
#2 Bottom	2,798.8	2,895.2	2,960.2	3,146.6	3,215.7	3,318,1
	(853.07)	(882.46)	(902.27)	(959.08)	(980.15)	(1,011.36)

Table E-1. Borehole RRL-2C Piezometer Summary. (sheet 1 of 3)

!

Contraction of the local division of the loc	r	**************************************	1	Y	······································	
Description	Rocky Coulee flow top (depth, ft (m))	Rocky Coulee interior (depth, ft (m))	Cohassett flow top (depth, ft (m))	Cohassett flow interior (depth, ft (m))	Grande Ronde 5 flow top (depth, ft (m))	Grande Ronde 5 flow interior (depth, ft (m))
#3 Top	2,816.7	2,903.3	2,978.2	3,154.6	3,235.6	3,326.0
	(858.53)	(884.93)	(907.76)	(961.52)	(986.21)	(1,013.77)
#3 Bottom	2,818.8	2,905.3	2,980.2	3,156.6	3,237.7	3,328.1
	(859.17)	(885.54)	(908.36)	(962.13)	(986.85)	(983.92)
#4 Top	2,827.7	2,911.2	2,988.2	3,162.6	3,264.7	3,334.0
	(861.88)	(887.33)	(910.80)	(963.96)	(995.08)	(1,016.20)
#4 Bottom	2,829.7	2,912.8	2,989.6	3,164.1	3,266.7	3,335.5
	(862.49)	(887.82)	(911.23)	(964.42)	(995.69)	(1,016.66)
Top of seating	2,819.3	2,905.8	2,980.7	3,157.1	3,238.2	3,328.6
nipple	(859.32)	(885.69)	(908.52)	(962.28)	(987.00)	(1,014.56)
Bottom of seating nipple	2,820.4	2,906.9	2,981.8	3,158.2	3,239.2	3,329.7
	(859.66)	(886.02)	(908.85)	(962.62)	(987.31)	(1,014.89)
Screen						
#1 Тор	2,820.8	2,907.8	2,982.2	3,159.1	3,240.1	3,330.6
	(859.78)	(886.30)	(908.98)	(962.89)	(987.58)	(1,015.17)
#1 Bottom	2,825.8	2,909.8	2,987.2	3,161.1	3,250.1	3,332.6
	(861.30)	(886.91)	(910.50)	(963.50)	(990.63)	(1,015.78)
Screen slot	40	40	40	40	40	40

Table E-1. Borehole RRL-2C Piezometer Summary. (sheet 2 of 3)

149

SD-8WI-TI-329 REV O

ļ

(

• •

Description	Rocky Coulee flow top (depth, ft (m))	Rocky Coulee interior (depth, ft (m))	Cohassett flow top (depth, ft (m))	Cohassett flow interior (depth, ft (m))	. Grande Ronde 5 flow top (depth, ft (m))	Grande Ronde 5 flow interior (depth, ft (m))
#2 Top	NA	NA	NA	NA	3,252.2 (991.27)	NA
#2 Bottom	NA	NA	NA	NA • .	3,262.2 (994.32)	NA
Screen slot	NA	NA	NA	NA	40	NA
Bottom of tailpipe	2,830.8 (862.83)	2,913.8 (888.13)	2,990.7 (911.57)	3,165.2 (964.75)	3,267.8 (996.02)	3,336.6 (1,017.00)
Top of lowermost cement seal	NA	NA	NA	NA	NA	3,337 (1,017.1)
Bottom of lower- most cement seal	NA	NA	NA ·	NA	NA .	3,404 (1,037.5)
Bottom of borehole	NA	NA	NA	NA	NA	3,404 (1,037.5)

Table E-1. Borehole RRL-2C Piezometer Summary. (sheet 3 of 3)

NOTE: Depth reported below datum is top of 20-inch 0.D. steel casing. Depths were not corrected for borehole deviation and stretch of tubing. NA = Not applicable.

150

SD-BWI-TI-329 REV O

Date	Activity
06/14/85	Strapped 2.875-in. (7.30-cm) working tubing*. With workover rig, tagged bottom of borehole with working string at 3,404 ft (1,037.5 m). Placed lowermost densified cement seal 1 at 1358 hours by subcontracted cementing service company. Tagged top of cement seal 1 at 3,337 ft (1,017.1 m) (2317 hours).
06/15/85	Installed Grande Ronde 5 flow-interior piezometer and set bottom of assembly at 3,336.6 ft (1,017.0 m). Conducted 1-hr seating nipple tubing test until 0530 hours and then welded piezometer string to well head. Placed first lift of no. 4-8 sand from 0943 to 1007 hours. Tagged top of no. 4-8 sand at 3,322 ft (1,012.6 m) (1200 hours). Since tag was too high, due to bridging, flushed borehole. Retagged at 3,326 ft (1,013.8 m) (1755 hours). Placed second lift of no. 4-8 sand from 1905 to 1953 hours. Tagged top of no. 4-8 sand at 3,317 ft (1,011.0 m) (2156 hours). Placed pea gravel from 2248 to 2255 hours. Tagged top of pea gravel at 3,315 ft (1,010.4 m) (2340 hours).
06/16/85	Placed densified cement seal 2 (between Grande Ronde 5 interior and Grande Ronde 5 flow-top piezometers) at 0802 hours by subcontracted cementing service company. Ran fluid temperature log at 1450 hours. Tagged top of cement seal 2 at 3,282 ft (1,000.4 m) (1720 hours). Flushed borehole with 420 gal (1.6 m ³) of water with diverter tool at 3,282 ft (1,000.4 m). Installed Grande Ronde 5 flow-top piezometer and set bottom of assembly at 3,267.8 ft (996.03 m). Started seating nipple tubing test at 2309 hours.

Table E-2.	Borehole RRL-20	: Piezometer	Installation	Activities.
	(s	heet 1 of 4)		

*The working tubing is J55 steel tubing, 2.875-in. 00 by 2.441-in. ID (7.50-cm by 6.20-cm). The working tubing is used to tremie the cement slurry, filter-pack material, and to "tag" the depth of these materials.

SD-8WI-TI-329 REV 0

Oate	Activity
06/17/85	Completed 56 min tubing test at 0005 hours and then welded piezometer string to well head. Placed first lift of no. 4-8 sand from 0350 to 0553 hours. Ran working tubing to 3,238 ft (986.9 m) to verify that sand was below top of screen. Placed second lift of no. 4-8 sand from 0612 to 0653 hours. Tagged no. 4-8 sand at 3,236 ft (986.3 m) (0845 hours). Placed third lift of no. 4-8 sand from 0855 to 0934 hours. Tagged top of no. 4-8 sand at 3,222 ft (982.1 m) (1045 hours). Placed no. 10-20 sand from 1106 to 1113 hours. Placed pea gravel from 1425 to 1437 hours. Tagged top of pea gravel at 3,215 ft (979.9 m) (1632 hours). Placed stage 1 of densified cement seal 3 (between Grande Ronde 5 flow-top and Cohassett flow- interior piezometers) at 2133 hours by subcontracted cementing service company.
06/18/85	Ran fluid temperature survey at 0520 hours. Tagged top of cement (stage 1, seal 3) at 3,188 ft (971.7 m) (0700 hours). Placed stage 2 of densified cement seal 3 at 1222 hours. Ran fluid temperature survey at 1805 hours. Tagged top of cement (stage 2, seal 3) at 3,168 ft (965.6 m) (2048 hours). Flushed borehole with 420 gal (1.6 m^3) of water with diverter tool at 3,168 ft (965.6 m). Swabbed water level in annulus to about 225 ft (68.6 m).
06/19/85	Installed Cohassett flow-interior piezometer and set bottom assembly at 3,165.2 ft (964.75 m). Conducted 1-h seating nipple test until 0430 hours and then welded piezometer string to well head. Placed first lift of no. 4-8 sand from 0750 to 0821 hours. Tagged no. 4-8 sand at 3,156 ft (962.0 m) (1106 hours). Placed second lift of no. 4-8 sand from 1205 to 1246 hours. Tagged top of no. 4-8 sand at 3,151 ft (960.4 m) (1500 hours). Placed no. 10-20 sand from 1537 to 1607 hours. Placed pea gravel from 1925 to 1933 hours. Tagged top of pea gravel at 3,145 ft (958.6 m) (2138 hours).
06/20/85 `	Placed stage 1 of seal 4 (between Cohassett flow-interior and Cohassett flow-top piezometers) at 0140 hours. Ran fluid temperature survey at 0800 hours. Tagged top of cement (stage 1, seal 4) at 3,136 ft (955.9 m) (1045 hours). Placed stage 2 of seal 4 at 1151 hours. Ran fluid temperature survey at 1824 hours. Tagged top of cement (stage 2, seal 4) at 2,993 ft (912.3 m) (2110 hours). Started circulating water with diverter tool at 2,997 ft (913.5 m).

Table E-2. Borehole RRL-2C Piezometer Installation Activities. (sheet 2 of 4)

152

Date Activity 06/21/85 Completed circulating water with final position of diverter tool at 2,993 ft (912.3 m) at 0325 hours. Evacuated water level in Cohassett flow-interior piezometer string to 224 ft (68.3 m) at 0332 hours. Installed Cohassett flow-top piezometer and set bottom of assembly at 2,990.7 ft (911.57 m). Conducted 58 min seating nipple tubing test until 1400 hours and then welded piezometer string to well head. Placed first lift of no. 4-8 sand from 1650 to 1716 hours. Ran working tubing to 2,982 ft (908.9 m) to verify that sand was below top of screen. Placed second lift of no. 4-8 sand from 1948 to 2200 hours. Tagged no. 4-8 sand at 2,974 ft (906.5 m) (2308 hours). Started placing third lift of no. 4-8 sand at 2331 hours. 06/22/85 Finished placing third lift of no. 4-8 sand at 0008 hours. Tagged top of no. 4-8 sand at 2,971 ft (905.6 m) (0139 hours). Placed no. 10-20 sand from 0217 to 0248 hours. Placed pea gravel from 0555 to 0609 hours. Tagged top of pea gravel at 2,963 ft (903.1 m) (0725 hours). Placed densified cement seal 5 (between Rocky Coulee flow-interior and Cohassett flowtop piezometers) at 1103 hours by subcontracted cementing service company. Ran fluid temperature survey at 1800 hours. Tagged top of cement (seal 5) at 2,917 ft (889.1 m) (1938 hours). Circulated water at 40 gal/min (151 L/min) with diverter tool within 6 ft (1.8 m) of top of cement from 1947 to 2220 hours. Retagged top of cement at 2,917 ft (889.1 m) (2227 hours). 06/23/85 Installed Rocky Coulee interior piezometer and set bottom of assembly at 2,913.8 ft (888.13 m). Conducted 1-h seating nipple tubing test until 0208 hours and then welded piezometer string to well head. Evacuated water level in Cohassett flowtop piezometer to about 170 ft (52 m). Placed first lift of no. 4-8 sand from 0559 to 0643 hours. Tagged no. 4-8 sand at 2,907 ft (886.1 m) (0835 hours). Placed second lift of no. 4-8 sand from 0856 to 0950 hours. Tagged top of no. 4-8 sand at 2,900 ft (883.9 m) (1124 hours). Placed no. 10-20 sand from 1145 to 1219 hours. Placed pea gravel from 1539 to 1550 hours. Tagged top of pea gravel at 2,894 ft (882.1 m)

Table E-2. Borehole RRL-2C Piezometer Installation Activities. (sheet 3 of 4)

153

piezometers) at 2043 hours.

(1718 hours). Retagged top of pea gravel at 2,895 ft (882.4 m) (1945 hours). Placed densified cement seal 6

(between Rocky Coulee flow-top and Rocky Coulee flow-interior
Date	· Activity ·
06/24/85	Ran fluid temperature survey at 0320 hours. Tagged top of cement seal 6 at 2,833 ft (863.5 m) (0510 hours). Circulated and air-lift pumped from 0525 to 1130 hours. Evacuated water level in the Rocky Coulee flow-interior piezometer to about 225 ft (69 m). Ran in Rocky Coulee flow-top piezometer and set bottom of assembly at 2,830.8 ft (862.83 m) (1638 hours). Conducted 1-h seating nipple tubing test until 1809 hours and then welded piezometer string to well head. Placed first lift of no. 4-8 sand from 2046 to 2231 hours. Tagged no. 4-8 sand at 2,815 ft (858.0 m) (2345 hours).
06/25/85	Placed second lift of no. 4-8 sand from 0017 to 0048 hours. Tagged top of no. 4-8 sand at 2,808 ft (855.9 m) (0223 hours). Placed no. 10-20 sand from 0232 to 0306 hours. Placed pea gravel from 0545 to 0551 hours. Tagged top of pea gravel at 2,799 ft (853.1 m) (0750 hours). Placed densified cement seal 7 at 0819 hours. Ran fluid temperature survey at 1400 hours.
06/26/85 and	
06/2//85	cleaned up site.
06/28/85	Tagged top of cement seal 7 at 2,717 ft (828.1 m) and demobilized support equipment.

Table E-2. Borehole RRL-2C Piezometer Installation Activities. (sheet 4 of 4)

	No. 4-8	Sand	No. 10-20	Sand	Pea Gravel		
Monitoring Horizon	Depth interval ft (m)	Volume ft ³ (m ³)	Depth* Volume interval ft ³ (m ³		Depth interval ft (m)	Volume ft ³ (m ³)	
Rocky Coulee	2,808-2,833	18.3	2,803-2,808	4.0	2,799-2,803	2.7	
flow top	(855.9-863.5)	(0.52)	(854.4-855.9)	(0.11)	(853.1-854.4)	(0.076)	
Rocky Coulee	2,900-2,917	14.7	2,898–2,900	2.4	2,895-2,898	3.5	
flow interior	(883.9-889.1)	(0.42)	(883.3–883.9)	(0.68)	(882.4-883.3)	(0.099)	
Cohassett flow	2,971-2,993	19.2	2,967-2,971	5.3 [.]	2,963-2,967	2.5	
top	(905.6-912.3)	(0.54)	(904.3-905.6)	(0.15)	(903.1-904.3)	(0.071)	
Cohassett flow	3,151-3,168	10.7	3,148-3,151	3.2	3,145-3,148	1.8	
Interior	(960.4-965.6)	(0.30)	(959.5-960.4)	(0.091)	(958.6-959.5)	(0.051)	
Grande Ronde 5	3,222-3,282	53.4	3,220-3,222	2.0	3,215-3,220	4.0	
flow top	(982.1-1,000.4)	(1.51)	(981.5-982.1)	(0.057)	(979.9-981.5)	(0.11)	
Grande Ronde 5 interior (3,337-3,317 (1,017.1-1,011.0)	15.7 (0.44)	<u>-</u>	-	3,315-3,317 (1,010.4-1,011.0)	1.4 (0.040)	

Table E-3. Borehole RRL-2C Filter Pack Summary.

*Estimated depth.

Date 1	Séal nu	Stage no	Depth interval. It (m)	API ctass	Additive	Slurry weight, Ib/gal (kg/L)	Volume slurry pumped, fL ³ (m ³)	Placement method	Tool	Remarks
06/14/85	1	1	3,404-3,337 (1,037.5- 1,017 1)	G	3/4% CFR-2	17.4 (2.09)	64 6 (1.83)	Balance	Diverter tool	Lowermost seal
06/16/85	2	1	3,315-3,282 (1,010 4- 1,000 4)	• G	3/4% CFR-2	17.4 (2.09)	33.7 (0.95)	Two-plug	Plug catcher, diverter tool	Between Grande Ronde S interior and Grande Ronde S flow-top piezometers
06/17/85	3	1	3,215-3,188 (979 9-971 7)	G	3/4% CFR-2	17.4 (2.09)	47.5 (1.35)	Two-plug	Plug catcher, diverter tool	Detween Grande Ronde 5 flow-top and Cohassett interior piezometers
06/18/85	3	2	3,188-3,168 (971.7-965-6)	G	3/4% CFR-2	17.5 (2.10)	16 8 (0.48)	Two-plug	Plug catcher, diverter tool	Between Grande Ronde S flow-top and Cohassett interior piezometers
06/20/85	4	1	3,145-3,111 (958 6-948 2)	G	3/4% CFR-2	17.5 (2.10)	39 3 (1.11)	Balance	Diverter tool	Between Cohassett interior and Cohassett flow-top piezometers
06/20/85	4	2	3,111-2,993 (948 2 912 3)	G	3/4% CFR-2	17 5 (2.10) ·	126 3 (3.58)	Balance	Diverter tool	Between Cohassett Interior and Cohassett flow-top piezometers
06/22/85	5	1	2,963-2,917 (903 1-889 1)	G	3/4% CFR-2	17.5 (2.10)	53 3 (1.51)	Balance	Diverter tool	Between Cohassett flow-top and Rocky Coulee interior piezometers
06/23/85	6	1	2,895-2,833 (082 4-863 5)	G	3/4% CFR-2	17.5 (2.10)	59 0 (1 67)	Balance	Diverter tool	Between Rocky Coulee interior and Rocky Coulee flow-top piezometers
06/26/85	7	. 1	2,799-2,717 (853 1-828 1)	G	3/4% CFR-2	17 5 (2.10)	61 8 (1.75)	Balance	Diverter tool	Uppermost seal

Table E-4. Borehole RRL-2C Piezometer Cement Seal Summary.

NOTE: API = American Petroleum Institute

.

CFR = Cement friction reducer.

SD-8WI-TI-329 REV 0

Table E-5. List of Cementing Equipment Used to Place Densified Cement Seals.

75TC4 pumping unit with recirculating mixer

MX100T turbine batch mixer

985 ft³ (27.9 m^3) bulk trailer

In-line densometer

Pressurized fluid mud balance

Continuous head plug container .

Latch down plug catcher

Diverter tool

...

Physical Proper Class G Ceme	ties of ent.			
Oxide analy	sis			
Si02	22.60%			
A1203	3.56%			
Fe ₂ 03	4.77%			
CaO	64.67%			
MgO	0.90%			
S0 ₃	2.14%			
Loss on ignition	0.98%			
Insoluble residue	0.26%			
Total alkalies (as Na ₂ O)	0.40%			
Chemical comp	ounds			
3Ca0•Si02	54.6%			
2Ca0·SiO ₂	23.6%			
3Ca0+A1203	1.4%			
4Ca0+A1203+Fe203	14.6% 🦳			
Physical prope	erties			
Blaine fineness	371.0 m ² /kg			
Normal consistency	22.6%			
Setting time - Vicat				
Initial	120.0 min			
Final	255.0 min			
False set	64.9%			
Autoclave expansion	0.70%			
Air entrainment	8.4%			
Compressive Strength				
1 day				
3 days	2,800.0 lbf/in (19.3 MPa)			
7 days	3,910.0 1bf/in2 (27.0 MPa)			

Piezometer tube	Date	Test duration, min	Head differential, ft (m)	Head drop, ft (cm)	Test type	Remarks
Grande Ronde 5 flow interior	06/15/85	60	244 (74.4)	0	Gravity	Tested prior to installing filter pack and cement seal
Grande Ronde 5 flow top	06/16/85- 06/17/85	56	243 (74.1)	0	Gravity	Tested prior to installing filter pack and cement seal
Cohassett flow interior	06/19/85	60	218 (66.5)	0	Gravity	Tested prior to installing filter pack and cement seal
Cohassett flow top	06/21/85	58	275 (83.8)	0.47 (1.19)	Gravity	Tested prior to installing filter pack and cement seal, standing valve seals worn
Rocky Coulee flow interior	06/23/85	60	216 (65.8)	0	Gravity	Tested prior to installing filter pack and cement seal
Rocky Coulee flow top	06/24/85	60	248 (75.6)	0.12 (0.30)	Gravity ·	Tested prior to installing filter pack and cement seal
Grande Ronde 5 flow interior	07/23/85	60	232 (70.7)	0.02 (0.051)	Gravity	Tested after piezometer development activities, standing valve seals worn
Grande Ronde 5 flow top	08/13/85	60	233 (71.0)	0.04 (0.10)	Gravity	Tested after piezometer development activities
Cohassett flow interior	07/24/85	60	257 (78.3)	0	Gravity	Tested after piezometer development activities
Cohassett flow top	08/12/85	60	226 (68.9)	0	Gravity	Tested after piezometer development activities
Rocky Coulee flow interior	07/26/85	60	235 (71.6)	0	Gravity	Tested after piezometer development activities
Rocky Coulee flow top	08/13/85	60	234 (71.3)	0	Gravity	Tested after piezometer development activities

Table E-7. Borehole RRL-2C Seating Nipple Tubing Tests.

SD-BWI-TI-329 REV 0

Chemical description	Sample size _4+8	Designation -10+20
5102,%	97.3	97.8
A120, %	0.45	1.20
Mg0,%	0.01	0.01
Ca0,%	0.02	0.03
K20,%	0.17	0.06
Na20,% .	0.05	0.17
Fe ₂ 03,%	0.15	0.12
Ti02,%	0.02	0.02
ŁOI,%	0.26	0.33
Feldspar	1.50	5.10
Acid soluble, 15% HCl,%	0.28	0.34
Mud acid solubility (3HF: 12 HCl)	1.10	2.26
Acid demand at pH 3	2.80	0.31
pH 5	0.80	1.00
pH 7	0.40	0.60
Specific gravity	2.63	2.62
AWWA porosity, %	45.20	45.60

Table E-8. Manufacturer's Stated Filter Pack Material Chemical Specifications.

.

APPENDIX F

PIEZOMETER DEVELOPMENT

•

CONTENTS

169
- 103
. 167
. 169
. 170
•

Pie	zometer Nest RRL-2C. (sheet 1 of 4)			
Date	Activity			
06/28/85	Installed shallow pressure transducer in piezom- eter tubes and started monitoring water levels.			
06/29/85-06/30/85	Monitored water levels in piezometer tubes.			
07/01/85	Ran fluid temperature log at 1034 hours in Grande Ronde 5 flow-top piezometer. At 1245 hours, started monitoring downhole temperatures with fluid temperature sonde set at a depth of 260 ft (79 m).			
07/02/85	At 0900 hours, started air-lift development for the Grande Ronde 5 flow-top piezometer.			
07/03/85	At 0900 hours, started air-lift development for the Grande Ronde 5 flow-top piezometer. Started monitoring water-level recovery.			
07/04/85-07/08/85	Continued to monitor water levels.			
07/09/85	Removed fluid temperature sonde from Grande Ronde 5 piezometer. From G945 to 1540 hours, air-lift developed Rocky Coulee flow-top piezom- eter. Discontinued development because pres- sure transducers in Grande Ronde 5 flow-top and Rocky Coulee flow-top piezometers were not calibrated.			
07/10/85	No activity.			
07/11/85	Installed calibrated pressure transducers in the Grande Ronde 5 flow-top and Rocky Coulee flow-top piezometers. Installed pressure transducer in RRL-28. From 1335 to 1430 hours, air-lift devel- oped the Grande Ronde 5 flow top. Development discontinued due to insufficient flow because piezometer tube was plugged at seating nipple. Workover rig moved on site.			
07/12/85	Rigged up workover rig.			
07/13/85-07/14/85	No activity.			
07/15/85	Flushed Grande Ronde 5 piezometer for about 2 h with Hanford system water through nominal 1-in. (2.5-cm) work string.			

Table F-1. Piezometer Development Activities at Piezometer Nest RRL-2C. (sheet 1 of 4)

...

.

.

· . ·

Date	Activity
07/16/85-07/17/85	No activity
07/18/85	Flushed Grande Ronde 5 for about 1.5 h until cir- culation was lost at the seating nipple. Tripped 1-in. (2.5-cm) hydril work string out of piezcmeter.
07/19/85	Flushed Grande Ronde 5 flow-interior piezometer for about 3 h with Hanford system water through 1-in. (2.5-cm) hydril work string.
07/20/85-07/21/85	No activity.
07/22/85	Mule shoe joint on 1-in. (2.5-cm) hydril work string replaced with 0.75-in (1.9-cm-) diameter tubing. Flushed Grande Ronde 5 flow interior piezometer for about 2.5 h with Hanford system water through hydril work string set as deep as bottom of tail pipe. Topped Grande Ronde 5 flow interior piezometer with water and monitored injection rate for 1 h. Aborted seating nipple tubing test run in Grande Ronde 5 flow interior due to inadequate seats in standing valve. Flushed Cohassett flow-interior piezometer for 1.5 h with Hanford system water.
07/23/85	Flushed Cohassett flow-interior piezometer for 1 h with Hanford system water. Ran 1-h seating nipple tubing test in Grande Ronde 5 flow-interior piezometer.
07/24/85	Flushed Rocky Coulee flow-interior piezometer for about 1.5 h with Hanford system water. Ran 1-h seating nipple tubing test in Cohassett flow- interior piezometer.
07/25/85	Flushed Rocky Coulee flow interior piezometer for about 6.5 h with Hanford system water.
07/25/85	Topped Rocky Coulee flow-interior piezometer with water and monitored injection rate for 1 h. Ran 1-h seating nipple tubing test in Rocky Coulee flow-interior piezometer. Flushed Cohassett flow interior piezometer for about 1 h with Hanford system water to obtain a sample of the flush water. From 1501 to 1520 hours, air-lift developed Conassett flow-top piezometer, but development was terminated oue to insufficient flow.

Table F-1. Piezometer Development Activities at Piezometer Nest RRL-2C. (sheet 2 of 4)

 $\overline{}$

Date	Activity				
7/27/85-07/28/85	No activity.				
07/29/85	Flushed Cohassett flow-top piezometer for about 5 h with Hanford system water.				
07/30/85	Continued to flush Cohassett flow top for about 4.5 h with Hanford system water. At 1550 hours started air-lift development for the Rocky Coulee flow-top piezometer.				
07/31/85	At 0010 hours terminated air-lift development for Rocky Coulee flow-top piezometer due to insuffi- cient flow. Flushed Rocky Coulee flow-top piezom- eter for about 1.5 h with Hanford system water.				
08/01/85	Flushed Rocky Coulee flow-top piezometer for 2.5 h with Hanford system water. Topped Cohassett flow top with water and monitored injection rate for 1 h. Aborted seating nipple tubing test due to inadequate standing valve seals.				
08/02/85	Prepared for redevelopment of Grande Ronde 5 flow-top piezometer.				
08/03/85-08/04/85	No activity.				
08/05/85	Aborted seating nipple tubing test in Cohassett flow-top piezometer due to inadequate standing valve seals. From 0940 to 1115 hours, air-lift developed Grande Ronde 5 flow top. Development discontinued due to equipment problems. From 1300 to 2230 hours, air-lift developed Grande Ronde 5 flow top using air-lift equipment arrangement.				
08/06/85	From 0800 to 1025 hours, air-lift development con- tinued in the Grande Ronde 5 flow-top piezometer. Installed standing valve in Grande Ronde 5 flow- top piezometer and circulated above seating nipple with Hanford system water. Retested tubing, but again seals in standing valve were inadequate.				
08/07/85	Prepared to air-lift develop Rocky Coulee flow-top				

Table F-1. Piezcmeter Development Activities at Piezometer Nest RRL-2C. (sheet 3 of 4)

165 _

5

Pie	zometer Nest RRL-2C. (sheet 4 of 4)
Date .	Activity
08/08/85	From 0930 to 1520 hours, air-lift developed Rocky Coulee flow-top piezometer and started water-level recovery at RRL-2C and RRL-2B. Replaced seals in standing valve.
08/09/85	Installed standing valve in Rocky Coulee flow top and circulated above seating nipple with Hanford system water. Aborted seating nipple tubing test in Rocky Coulee flow-top piezometer due to inade- quate seat.
08/10/85-08/11/85	No activity .
08/12/85	Ran 1-h seating nipple tubing test in Cohassett flow-top piezometer. Ran 1-h seating nipple tubing test in Grande Ronde 5 flow top, but still had small leak around standing valve. Confirmed piezometer unobstructed and seating nipple depths with fluid temperature probe for the Rocky Coulee flow top, Rocky Coulee interior, and Cohassett flow-top piezometer. Installed standing valve in Rocky Coulee flow top and lightly tapped valve into seating nipple with sand line.
08/12/85	Evacuated water levels in Grande Ronde 5 flow- interior, Cohassett flow-interior, and Rocky Coulee flow-interior piezometers to about 280 ft (85 m).
08/13/85	Ran 1-h seating nipple tubing test in Rocky Coulee flow-top piezometer and Grande Ronde 5 flow top. Turned piezometer over to monitoring group for long-term hydraulic head monitoring.

Table F-1. Piezometer Development Activities at Piezometer Nest RRL-2C. (sheet 4 of 4)

- 166

Date	Monitoring Norizon	Isolated interval ft (m)	Pumping period min	Average discharge rate gal/min (L/min)	Total volume pumped gal (m ³)	Remarks
07/09/85	Rocky Coulee flow top	2,799-2,833 (853,1-863,5)	355	0.26 (0.98)	92 (0.35)	Air-lift pumped.
07/30/85	Rocky Coulee flow top	2,799-2,833 (853,1-863.5)	490	0.095 (0.36)	47 (0.18)	Circulated about 1900 gal (7.2 m ³) of Hanford system water with an estimated 95% water return on on 7/31/85 and 8/1/85.
08/08/85	Rocky Coulee interior	2,799-2,833 (853.1-863.5)	350	0.65 (2.46)	227 (0.86)	Air-lift pumped on 8/9/85. Flushed piezometer tubing above seating nipple with about 400 gal (1.5 m ³) of Hanford system water.
07/24/85-07/25/85	Rocky Coulee flow interior	2,895-2,917 (882.4-889.1)		-	-	Screen flushed with about 6,400 gal (24.2 m ³) of Hanford system water with an estimated 100% water return.
07/26/85	Cohassett flow top	2,963-2,993 (903,1-912,3)	19	-	-	Terminated air-lift develop- ment due to insufficient flow.
07/29/85-07/30/85	Cohassett flow top	2,963-2,993 (903.1-912.3)	-	-	-	Screen flushed with about 5,700 gal (21.6 m ³) of Hanford system water with an estimated 100% water return.

Table F-2. RRL-2C Piezometer Development Summary. (sheet 1 of 2)

167

-SD-BWI-TI-329 REV 0

Date	Monitoring horizon	Isolated interval ft (m)	Pumping period min	Average discharge rate gal/min (L/min)	Total volume pumped gal (m ³)	Remarks
07/22/85-07/23/85 and 07/26/85	Cohassett flow interior	3,145-3,168 (958.6-965.6)			-	Screen flushed with 4,700 gal (17.8 m ³) of Hanford system water with an estimated 100% water return.
07/02/85-07/03/85	Grande Ronde 5 flow top	3,215-3,282 (979.9-1,000.4)	1,440	5.5 (20.8)	7,920 (30,0)	Air-lift pumped.
07/11/85	Grande Ronde 5 flow top	3,215-3,282 (979.9-1,000.4)	108	-	-	Air-lift development discon- tinued due to piezometer tube plugged at seat nipple.
07/15/85 and 07/18/85	Grande Ronde 5 flow top	3,215-3,282 (979.9-1,000.4)	_	-	-	Piezometer tubing flushed with about 145 gal (0.55 m ³) of Hanford system water before losing circulation at the seating nipple.
08/05/85-08/06/85	Grande Ronde 5 Flow top	3,215-3,282 (979.9-1,000.4)	, 760	4.8 (18.2)	3,648 (13.8)	Air-lift pumped.
07/19/85 and 07/22/85	Grande Ronde 5 flow interior	3,315-3,334 (1,010.4-1,016.2)	-	-	-	Screen flushed with about 2,300 gal (8.7 m ³) of Hanford system water with an estimated 100% water return.

Table F-2. RRL-2C Piezometer Development Summary. (sheet 2 of 2)

SD-BWI-TI-329 REV 0

Constituent	Rocky Coulee flow-top piezometer	Rocky Coulee flow-interior piezometer	Cohassett flow-top piezometer	Cohassett flow-interior piezometer	Grande Ronde 5 flow-top piezometer	Grande Ronde 5 flow-interior piezometer
Na I (mg/L)	9.7	5.6	4.7	7.2	5.4	5.8
K + (mg/L)	1.9	1.4	1.3	1.6	1.1	1.7
Ca + 2 (mg/L)	13.5	14.6	15.2	14.0	12.5	11.4
Mg + 2 (mg/L)	2.5	2.8	2.9	2.4	1.5	2.5
Si (mg/L)	< 0.3	< 0.3	< 0.3	<0.3	<0.2	<0.3
F [.] (mg/L)	0.2	0.2	0.2	0.2	1.2	0.2
Cl (mg/L)	10.0	7.2	5.1	7.9	8.6	7.5
50 ₄ 2 (mg/l.)	21.1	17.8	23.4	19.3	22.5	18.8
TOC (mg/L)	5.2	4.1	3.0	• 3.4	· 3.8	4.2
TC (mg/L)	15.0	13.0	11.7	11.4	8.0	13.6
Conductivity (µmhos/cm)	165	125	148	134		

Table F-3. Chemical Quality of Water in Piezometer Tubes After Flushing with Hanford System Water.

Note: Samples taken on October 1985.

SD-BWI-TI-329 REV 0

Piezometer	Step duration min	Total injection head ft (m)	Final injection rate, Q _f mL/min	Radius of borehole, r _w ft (m)	Assumed radius of influence, R ft (m)
Rocky Coulee interior	60	ッ233 (71)	11.6	0.51 (0.16)	22 (6.7)
Cohassett flow top	30	ッ233 (71)	2.6	0.51 (0.16	30 (9.1)
Cohassett interior	60	ッ233 (71)	6.2	0.51 (0.16)	23 (7.0)
Grande Ronde 5 Interior	60	ッ233 (71)	17.2	0.51 (0.10)	22 (6.7)

lable F-4.	Parameter Values Used to Calculate Transmissivity (T) from Constant
	llead Injection Test (gravity induced).

NOTE: $T = \frac{Q_f}{H_t} \frac{1}{2\pi} \ln \frac{R}{r_w}$

SD-8WI-TI-329 REV 0

۰.

APPENDIX G

INTERNAL LETTERS

.

CONTENTS

Galvanic Corrosion of the Couple - AISI 316 Stainless Steel Well Screen Jacket and Mild Steel Pipe Base	- 173
Placement of Piezometers in Flow Interiors at Well RRL-2C for Use in Ratio Tests	174
Pulse Test of the Rocky Coulee Flow Top in Well RRL-28	177

RHO-BWI-TI-329 REV 0

Internal Letter

Cate May 10, 1985

FROM

Rockwell International

10330-85-040

TO Name Pran (allos Caracter Address) R. L. Jackson R. P. Anantatmula EBODA Group MO-407/200E 3-2853

Subject Galvanic Corrosion of the Couple - AISI 316 Stainless Steel Well Screen Jacket and Mild Steel Pipe Base

- Ref: a) Letter, October 14, 1983, R. P. Anantatmula to R. L. Jackson, Galvanic Corrosion of Type 316 Stainless Steel Weil Screen Jacket Fitted Over Mild Steel Perforated Pipe Base.
 - b) Letter, April 24, 1985, R. L. Jackson to R. P. Anantatmula, Corrosion Resistance of Low-Carbon Steel.

Per our conversation, the following is my re-evaluation of the corrosion behavior of the galvanic couple, viz., carbon steel pipe base and AISI type 316 stainless steel (316) well screen jacket of the piezometer.

Although the present assessment is still conservative, similar to the previous evaluation (Reference a), I feel that the present estimate is a little more realistic compared to the previous estimate. The conservatism in the present calculations is retained by the assumptions that the temperature of the groundwater contacting the galvanic couple is at its maximum of 55°C (Reference b) and the 316 well screen jacket will be in a passive state throughout the life of the low-carbon steel pipe base. As discussed before (Reference a), the coupling of low-carbon steel to 316 raises the corrosion rate of low-carbon steel. Using the same methodology as before, along with the assumption that the entire length of the low-carbon steel pipe is in electrical contact with the 316 well screen jacket, the operating life of the present low-carbon steel pipe is at least 30 years.

As mentioned before (Reference a), the 316 well screen jacket will operate for at least 1000 years (for 1mm thickness) without fail. Stress corrosion cracking of the 316 well screen jacket is not considered to be a problem under the present conditions.

I appreciate the opportunity to be of some help to you in this matter. Should you have any questions with regard to my evaluation, please feel free to contact me on 373-2853.

E.P. Ancakta

R. P. Anantatmula Staff Scientist

FPA:dac

cc:	R. 1	с.	Edwards	₩.	÷.	Price	S. R. Strait
	L. 3	२.	Fitch	Р.	F.	Salter	M. D. Veaton
	Τ.	Ξ.	McCall_	м.	J.	Smita	LS/File
							ERMC (2) W300/3503-002

RHO-BWI-TI-329 REV 0

Internal Letter

Oate June 11, 1985

TO Nome Organization Internet Address

No . 10120-85-268

- R. Stone
- Drilling and Testing Group

Rockwell International

- · M0-408/600 Area
- . 3-4542

Subject - Placement of Piezometers in Flow Interiors at Well RRL-2C for Use in Ratio Tests

A series of estimates of the hydraulic head response in the Rocky Coulee, Cohassett, and Grande Ronde No. 5 flow interiors to pumping from the Rocky <u>Coul</u>ee and Grande Ronde No. 5 flow tops was made to guide the design of well RRL-2C and the ratio method hydraulic tests to be performed using well RRL-2C. The estimates of hydraulic head response in the flow interiors were based on the theory of flow in aquicludes adjacent to slightly leaky aquifers (Neuman and Witherspoon, 1963). Those in the flow tops were based on standard transient flow theory for confined units.

It is assumed that hydraulic head response in flow interiors of at least two feet in a period of 3Q days or less is required for positive identification and measurement of the head transients in the flow interiors within a reasonable period of time. The transducers that will be used to measure the flow interior head changes are known to drift down by about one foot per month.

The theory used to estimate hydraulic response in the flow interiors was judged to be valid for at least 100 days of pumping. The spacing of well RRL-2B and RRL-2C was judged to be small enough for the ratio method to be valid (Neuman and Witherspoon, 1972).

The estimates show that: a piezometer should be located about $(\pm 5 \text{ feet}) 60 \text{ feet below the Rocky Coulee flow too, in the Rocky Coulee$ flow interior (z = 60 feet ± 5 feet); a piezometer should be locatedabout (± 5 feet) 80 feet above the Grande Ronde No. 5 flow top, inthe Cohassett flow interior (z = 80 feet ± 5 feet); and a piezometershould be located about (± 5 feet) 45 feet below the Grande Ronde No. 5flow top in the Grande Ronde No. 5 flow interior (z = 45 feet ± 5 feet).

Parameter values used in the estimate cited above are given in the attached table.

Drawdown in the flow interior of the Rocky Coulee, Cohassett and Grande Ronde No. 5 flows was calculated directly from the theory of flow in acuicludes adjacent to slightly leaky aquifers. Drawdown in the Rocky Coulee and Grande Ronde No. 5 flow tops was calculated using the Theis equation. The transmissivity used for the Rocky Coulee flow top is a RHO-BWI-TI-329 REV 0 Rockwell International

Those Listed Page 2 June 11, 1985

a ·

a

geometric mean value for the reference repository location area. That used for the Grande Ronde No. 5 flow top was derived from an informal pumping test of well RRL-2C during well cleanup operations. The success of a ratio test or the drawdown in flow interiors is not particularly sensitive to the transmissivity of the flow top as long as it is great enough to permit pumping and as long as the pumped discharge is adjusted to provide an adequately strong hydraulic sink.

When pumping the Rocky Coulee flow top at 4 gallons per minute (gpm), the drawdown in well RRL-2B is estimated to be about 840 feet at 30 days. Drawdown at z = 60 feet in the Rocky Coulee flow interior at well RRL-2C is estimated to be about 0.1 feet, 5.9 feet, and 9.8 feet at 20, 30, and 40 days, respectively. At z = 70 feet, the flow interior drawdowns are estimated to be about <0.001 feet, 0.5 feet, and 5.9 feet for the same elapsed times, respectively.

When pumping the Grande Ronde No. 5 flow top at 200 gpm, the drawdown in well RRL-25 is estimated to be about 340 feet at 30 days. Drawdown at z = 80 feet in the Cohassett flow interior at well RRL-2C is estimated to be about <0.03 feet, 2.4 feet, and 3.1 feet at 20, 30, and 40 days, respectively. Drawdown at z = 45 feet in the Grande Ronde No. 5 flow interior is estimated to be approximately 2.4 feet, 4.6 feet, and 6.1 feet at 20, 30, and 40 days, respectively. Wells RRL-2B and RRL-2C are assumed to be 250 feet apart.

R. Stone, ^V Staff Hydrologist

RS:cam

<u>Di</u> :	<u>str</u>	ibution
S.	Μ.	Baker
₩.	R.	Brown
R.	₩.	Sryce
С.	R .	Comstock
R.	Ξ.	Gephart
G.	s.	Hunt
R.	۲.	Jackson
W.	Η.	Price
F.	Α.	Spane
		•

S. R. Strait P. M. Rogers P. D. Thorne - PNL M. D. Yeatch

cc: BRMC (2) 3503 L8 RHO-BWI-TI-329 REV 0

A CONTRACTOR OF A CONTRACT

:

	Th	к _h	ь,	S	ĸ _v ,
•	ft ² /day	ft/day	ft		ft/day
Rocky Coulee					•
Flow Top	1.25	0.125	10	10 ⁻⁵	
Flow Interior			140	10 ⁻⁵	10 ⁻⁶
Cohassett					•
Flow Interior			220	10 ⁻⁵	10 ⁻⁶
Grande Ronde No. 5					
Flow Top	200	10	20	10 ⁻⁵	
Flow Interior	•		100	10-5	10 ⁻⁶

RHO-BWI-TI-329 REV 0

Internal Letter

Date. September 3, 1985

TO: Name Granitation Internal Address Those Listed FROM: INAME, Organization Internet Address, Phones

. 10120-85-394

Na

Rockwell International

R. Stone
Drilling and Testing
MO-408/600 Area
3-4542

Subject. Pulse Test of the Rocky Coulee Flow Top in Well RRL-28

Recently the opportunity arose, during casing bond logging in well RRL-2B; to perform a controlled pulse test of the Rocky Coulee flow top between RRL-2B and borehole RRL-2A and well RRL-2C. In a 79 minute period, 3,277 gallons (78 barrels) of "system" water were injected into well RRL-2B, which is currently completed in the Rocky Coulee flow top. The response to this pulse injection was measured in the piezometer completed in the Rocky Coulee flow top is packed off with a straddle packer assembly.

The flow of water into well RRL-2B was measured using a standard water meter. Pressure response at well RRL-2C was measured with a submerged, O-100 psi Sinco pressure transducer installed in the Rocky Coulee flow top piezometer at 250 foot depth. Pressure response in the Rocky Coulee flow top at borehole RRL-2A was measured with a Paroscientific O-3000 psi pressure transducer in a carrier above the straddle packer. The pressure records for the period of response at both observation locations are attached. The response in borehole RRL-2A to injection of water into well RRL-2B is closely followed by a second pressure pulse believed to have been caused by placement of a large packer on tubing in well RRL-2B, subsequent to pulse injection of the water.

The pressure pulse responses at borehole RRL-2A and well RRL-2C were analyzed using the method of Johnson, Greenkorn, and Woods (1966). A water temperature of 40° C and a formation thickness of 5 feet were assumed in converting oil field transmissivity in md ft/cp to hydrologic transmissivity in ft²/day. The results of the analysis provide what should be rather good estimates of the transmissivity and storativity of the Rocky Coulee flow top in the RRL-2 area. All aspects of this test were well controlled.

Those Listed Page 2 September 3, 1985

The estimated hydraulic property values are listed as follows.

Estimated Transmissivity and Storativity of the Rocky Coulee Flow Top Based on Pulse Input at Well RRL-2B and Pressure Response at Borehole RRL-2A and Well RRL-2C.

•	$RRL-2B \longrightarrow RRL-2A$	RRL-2B ->RRL-2C	
T,ft²/day	6.5	1.5	
S	2×10^{-4}	3 × 10 ⁻⁵	

The storativity estimated from analysis of the response at borehole RRL-2A is near the upper end of the range of storativity values generally associated with confined water-bearing units. The transmissivity estimates are about an order of magnitude greater than those reported in my letters of July 31 and August 21, 1985 on the analysis of pressure response at well RRL-2C and borehole RRL-2A during drilling of the Rocky Coulee flow top in well RRL-2B. The estimates given in this letter are considered to be more accurate. The ratio of the transmissivity calculated from the RRL-2C response to that calculated from the RRL-2A response is about the same for both sets of estimates, however. It is thought that the difference between the transmissivity values in the two directions from well RRL-2B are real. It is unknown whether the difference is caused by areal hydraulic anisotropy or inhomogeneity, or both. RHO-BWI-TI-329 REV 0 Rockwell International

Those Listed Page 3 September 3, 1985

The possibility that the pressure responses at well RRL-2C and borehole RRL-2A were influenced by wellbore storage effects was examined using the method of Prats and Scott (1975). The analysis revealed negligible wellbore storage effects at the responding well and borehole.

References: Johnson, C. R., R. A. Greenkorn, and E. G. Woods, 1966, <u>Pulse-Testing: A New Method for Describing Reservoir Flow</u> <u>Properties Between Wells</u>, SPE Transactions, Vol. 237, pp. 1599-1604.

> Prats, M. and J. B. Scott, 1975, <u>Effect of Wellbore Storage</u> on Pulse-Test Pressure Response, Journal of Petroleum Technology, pp. 707-709.

11

Randolph Stone, Staff Hydrologist Drilling and Testing Group

RS/dbs

R.

Distribution R. C. Arnett S. M. Baker W. R. Brown R. W. Bryce T. S. Clawson P. M. Clifton C. R. Comstock L. D. Diediker R. E. Gephart R. L. Jackson R. L. Jones L. S. Leonhart W. W. Pidcoe W. H. Price P. M. Rogers G. L. Setbacken F. A. Spane S. R. Strait

Stone

L. C. Swanson K. M. Thompson, DOE/RL P. D. Thorne, PNL M. D. Veatch S. E. Wilcox R. A. Yeatman D&T Tech Files BRMC (2) 3505 LB

180

PS8604 209

Rockwell Hanford Operations

• .*

BWIF	SUPPORTING DOCL	IMENT		Nu	mber		Rev	Chg. No.	Page 1
End Function Activity:	<u> </u>	Project N	0.:	SD	- BWI-DP-O	51 .		2	Of
Hydrologic Cha	racterization	N/A		CIN	INO: Date	<u></u> -			Total Pages
Document Title:					Araline Doc :				<u>. </u>
Hydraulic Prop on the Hanford	erty Data from Sele Site	cted Te	st Zones	w L	BS No. or Work P .3D2	ackage No.		CEI No.	·
Borehole No.:	Stratigraphic Formations:	Dac. Type	Subj. Code	Pr	epared by (type	sign name)	<u> </u>	1	Date
N/A	Grande Ronde .	2019	H700	R	Seereveness	E for addition	al approv	ais	3/87
THIS DOCUMENT IS FO TRACTS WITH THE U.S PURPOSES WITHIN THE INFORMATION ACT. Abstract (NOTE: Please limit) This data pack properties, as logic test dat Saddle Nountai Basalts. The includes: bor code, isolated transmissivity hydraulic head properties are subject to cha subsequent doc head values ar values.	DR USE IN PERFORMANCE OF Y DE DEPARTMENT OF ENERGY BU IS COPE OF THESE CONTRACT NULED IN ACCORDANCE WITH The abstract to a total of 300 cha age contains a summ determined from ar a, of selected test ns, Wanapum, and Gr information within rehole, stratigraphi interval, effective r, equivalent hydrau and the uncertair value. The hydrau considered preliming inge with further ar umentation. The ob- re uncorrected, fiel	vork under PERSONS OF S. DISSEMINTHE FREEDO THE FREEDO The FREEDO this particles this pa	RCON- RFOR WATION OF M OF ss). hydraulic of hydro- within nde ckage on, use interval, ductivity he nd and hydraulic ed	• * * * * * * * * * * * * * * * * * * *	Distribution ROCKWE R. C. Arni H. W. Brai D. J. Broi A. E. Cot G. S. Din D. J. Dod A. F. Nooi L. R. Fit R. E. Gep G. S. Hun G. W. Jac A. D. Kru R. L. Gep G. S. Hun G. W. Jac A. D. Kru R. L. Gep G. S. Hun G. W. Jac A. D. Kru R. L. Gep G. S. Hun G. S. Hun G. S. Hun G. S. Hun G. S. Hun G. S. Hun G. S. Hun H. Jac A. D. Kru R. L. Snoi N. A. Ster A. M. Tal DOE-RL (11 W. E: Tod BWIP Libr S. M. Bry P. M. Cli G. C. Eva K. R. Fec R. L. Jac K. Kim A. G. Law	Name LL HANFOI ett (02) ndt (26) wn (04) tom (05) tsch (20) ds (28) nan (29) ch (12) hart (13) t (37) kson (08) g (39) gerwood irath (33) se (06) ce (22) w (41) ger (25) lman (16) O) dish (11) ary (30) er fton ns ht kson	<u>RD OPE</u>)))) (19) 2))	Mail Addr RATIONS PBB/11 MO-238 PBB/11 450 Hi CDC/30 PBB/11 MO-407 CDC-2/ PBB/11 CDC/30 CDC/30 PBB/11 RKE/PB 1135J/ CDC/30 PBB/11 PBB/11 PBB/11 PBB/11 PBB/11 PBB/11 PBB/11 PBB/11 PBB/11 PBB/11 PBB/11 CDC/30 CDC/30 PBB/11 CDC/30 CDC/30 PBB/11 CDC/30 CDC/30 PBB/11 CDC/30 CDC/30 PBB/11 CDC/30 CDC/30 PBB/11 CDC/30 CDC/30 PBB/11 CDC/30 CDC/30 PBB/11 CDC/30 CDC/30 PBB/11 CDC/30 CDC/30 PBB/11 CDC/30 CDC/30 PBB/11 CDC/30 CDC/30 CDC/30 PBB/11 CDC/30 CDC/30 PBB/11 CDC/30 CDC/30 CDC/30 PBB/11 CDC/30 CDC/30 CDC/30 PBB/11 CDC/30 CDC/30 CDC/30 PBB/11 CDC/30 CDC/30 CDC/30 PBB/11 CDC/30 CDC/30 CDC/30 PBB/11 CDC/30 CDC/30 PBB/11 CDC/30 CDC/30 PBB/11 CDC/30 CDC/30 PBB/11 CDC/30 CDC/30 PBB/11 CDC/30 CDC/30 PBB/11 CDC/30 PBB/11 CDC/30 PBB/11 CDC/30 CDC/30 PBB/11 PBB/11 PBB/11 CDC/30 CDC/30 PBB/11 PBB/11 PBB/11 CDC/30 CDC/30 PBB/11 CDC/30 CDC/30 PBB/11 CDC/30 CD	ess 00 /3000 00 11s/3000 00 /200E 3000 00 3000 00 00 00 00 00 00
				*	COMPLETE DOC (No asterisk, tit of revision page	hart (Continued UMENT le page/summ coniy)	on revers	PBB/11 sesice;	00
Prepared By: <u>Ro</u> (Cor	nckwe]]0 mpany & Contract No.)	ate: <u>19</u>	87	Re	lease Stamp/Dat	e:			
Used By:Ro	ockwell							• •	
(Co	ompany)			1					

Page 2NumberOfSD- BWI-DP-051	Rev./Chg.	. No. 2		BWIP SUPP	ORTING	DOCUMENT							
Approvals (Type and Sign N	ame)	Date	Dis	tribution	Name	Mail Address							
Page 2 Number Of SD_BWI-DP-051 Approvals (Type and Sign Nill X Author's Immediate Manager W. X Cognizant Manager X Systems Engineering Dept. Manager X Patentability/Sensitive Material Re X Quality Assurance R. T. JO X Configuration Management P. Licensing Manager J. Office of Chief Counsel R. Management and integration D. Project Director D. Project Director D.	Rev.Chg. ame) H. Price der G. W. Jackson eviewer W. H. Hene hnson J. Reder Graham M. Carter E. Mahagin C. Gibbs	No. 2 Date veld	* Dis * R. * R. * R. * R. * R. * *	BWIP SUPP Tribution D. Mud B. Mercer W. Pidcoe H. Price J. Reder M. Roders A. Spane R. Strait D. Thorne A. Yeatma FI Files c Ret. <u>PACIFIC</u> A. Eddy J. Graham R. Raymon Zimmeri S. DEPT. O E. Consta J. Krupin G. Lassil M. Thomps <u>SULTANT TO</u> W. Bentle E. Grisak <u>YAKII</u> B. Hovis Lehman FED. TRIBE J. Farrow <u>WASH. S</u> W. Steven <u>UNIVE</u> Soroosi OREGOI	(3) Name (3) NORTHWE d man F ENERGY nt a on ROCKWEL Y MA INDIA S OF THE TATE DEP S RSITY OF NIAN Y STATE	DOCUMENT Mail Address PBB/1100 M0-039/600 M0-039/600 M0-410/600 CDC/3000 PBB/1100 M0-039/600 SIGM 5/3000 SIGM 5/3000 SIGM 5/3000 FED/700 M0-039/600 M0-039/600 M0-039/600 M0-039/600 M0-039/600 SIGM 5/3000 SIGM 5/3000 SIGM 5/3000 SIGM 5/300 SIGM 5/3000 SIGM 5/300 SIGM	□			+ Br De + Br Ma	.S. NUCLEA anch Chief velopment I anch Chief nagement B	R REGULA , Hign-L Branch , High-L ranch	TORY <u>COMMISSION</u> evel Waste Technica evel Waste Licensin
Peer Review Identification No:			- * Di Wa - * Li - G. - U - U	rector, Div cket Contro ste Manager brary .S. GEOLOG A. Dinwido .S. GEOLOG B. Laird	vision o ol Cente ment (4) ICAL SUR ICAL SUR	t waste Management r-Division of <u>VEY/RESTON</u> <u>VEY/TACOMA</u>							
Technical Review Identification No.													

.

...

. ·

•

A-6400-216R (9-86)

		<u>_</u>		Number	Page			
	BM	NP SUMMARY OF REV	ISION	SD- BWI-DP-05	1			
Rev/Chg. No.	Date	Date Description Of Changes						
1	2/6/86	This document was r from twenty-three t intervals that were The added zones inc intraflow structure of the Grande Ronde hydraulic conductiv added to the listin	evised by addi est intervals included in t lude flow tops s (fracture an Basalt. In a ity for each t g of hydraulic	ng the hydraulic proper to the forty-two test he previous revision. , flow interiors, and d vesicular zones) ddition, the equivalent est interval has been properties.	ties			
2	3/2/87	This document was r from 179 test inter were included in th include flow tops a Nountains Basalt, f and flow interiors flow tops of the Gr represents an accum data (244 test zone testing.	evised by addi vals to the 65 e previous rev nd interbedded low tops, inte of the Nanapum ande Ronde Bas ulation of all s) from previo	ng the hydraulic proper test intervals that ision. The added zones sediments of the Saddl rbedded sediments, Basalt, and the additi alt. This revision the hydraulic property us local-scale hydrauli	ties e onal c			
				DRAM	2			
		·						
		ъ.						

Hydraulic Property Data from Selected Test Zones on the Hanford Site

S. R. Strait R. B. Mercer

Hydrologic Testing Group Basalt Waste Isolation Project

March 1987

Prepared for the United States Department of Energy Under Contract DE-AC06-77RL01030

> Rockwell International Rockwell Hanford Operations North American Space Operations Richland, Washington 99352

CONTENTS

•											C	:01	(TE	ENT	S						Constant of the second				E		Line in	
Intro	oduct	ion	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	٠	•	•	•	•	•	•	•	•	•	6
Data	Sour	ce	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•.	•	•	•	•	•	•	6
Data	Limi	tatio	ons		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	÷	•	•	•	•	•	6
Data	Desc	ript	ion		•	•	•	•	•	•	•.	•	•	•	•	•.	•	•	÷	•	•	•	•	• .	•	•	•	7
Refer	елсе	s.	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	9
Apper	ndix A.	Hydra	lui	ic	₽	ro	pe	ert	:y	Da	ıţa		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	11
TABLE	: 1.	"Use	Co	de	н	fo	r	Нy	/dr	au	11i	с	Pr	op	er	·ty	, [)at	a	•	•	•	•	•	•	•	•	8

INTRODUCTION

Over the past eight years, hydrologists from the Basalt Waste Isolation Project (BWIP) have done extensive hydrologic testing in the Columbia River Basalts underlying the Hanford Site. The test intervals included within this report includes all tested flow tops, interbedded sediments, flow interiors, and intraflow structures within the Saddle Mountains, Wanapum, and Grande Ronde Basalts. The majority of the tests consisted of single borehole tests conducted in boreholes that were progressively drilled and tested (Strait and others, 1982). Other tests were in existing boreholes in which test zones were isolated using straddle packers. Hydrologic tests conducted prior to 1982 used surface based depth-to-water measurements and tests conducted after 1982 utilized downhole pressure sensing probes for monitoring hydrologic test response.

DATA SOURCE

Sources of information contained within this document include BWIP documents (see references) and BWIP raw data files. All raw hydrologic data used to calculate the hydraulic properties are stored in the Hydrologic Testing Group field file and BWIP's Basalt Records Management Center (BRMC). Raw data is available upon request from the BRMC.

> Basalt Records Management Center Basalt Waste Isolation Project Rockwell Hanford Operations P. O. Box 800 Richland, Washington 99352 Telephone: (509) 376-1102

DATA LIMITATIONS

The hydrologic test data that have been verified by internal and/or external technical review and issued in a Rockwell Hanford Operations document (see references) has no limitations on its use. In this case the transmissivity values, in units of feet squared per

day, have been determined to be accurate to two significant figures. The values reported are considered the best estimate of transmissivity. The best estimate is obtained by examining the test results and associated analyses of the various hydrologic tests conducted (constant discharge, slug, pulse, constant drawdown, and constant head injection tests). Generally, results from long duration and/or high stress tests are given more weight in determining hydraulic properties which are considered more representative of the test horizon.

Equivalent hydraulic conductivity is calculated by dividing the transmissivity by the effective test interval. It is considered to be equally distributed over the effective test interval. The observed hydraulic head parameters, which were obtained from depth-to-water measurements, are recorded as elevation above mean sea level (MSL) to the nearest foot, with an assigned uncertainty (\pm) value. The uncertainty value results from nonequilibrium conditions at the time of measurement and instrument inaccuracies. The hydraulic head values have not been corrected for fluid-density effects, borehole deviation, and barometric or earth tide effects. Hydrologic test data that have not undergone verification by issuance of a document have not been validated by peer or technical review. In these cases, the transmissivities and equivalent hydraulic conductivities are presented in an order of magnitude range, with hydraulic head values assigned a larger uncertainty value. Hydrologic test data over the past six years was collected in accordance to Basalt Operation Procedure, C-2.8.

All raw data files and analyses of the raw data were examined by BWIP hydrologists. Based on the examination, the use of the data was established. The "use code" developed was based upon results of the data review and is presented in Table 1. Data (e.g., transmissivity) contained within this report are preliminary and subject to change with further analysis. Changes to the data will be documented in subsequent revisions to this data package.

DATA DESCRIPTION

This data package contains the borehole, stratigraphic horizons, use code, isolated interval, effective test interval, transmissivity, equivalent hydraulic conductivity, observed hydraulic head, and the uncertainty in the hydraulic head.

•

Table 1. "Use Code" for Hydraulic Property Data.

Use Code	Data Use · ·											
0	The data has been verified by internal and/or external peer or technical review and has unlimited use.											
1	Hydrologic data and analyses appear to be of good quality, but the data has not been verified by any peer or technical review. The data use should be limited to conceptual modeling.											
2	The data and analyses are of questionable quality and should not be used except in the most qualitative manner.											
SD-BWI-DP-051 REV 2

REFERENCES

- Brown, W. R., S. R. Bruce, and S. R. Strait, 1984, <u>Hydrologic Test</u> <u>Results for the Upper Cohassett Flow Interior at Borehole DC-16A</u>, Hanford Site, Washington, SD-BWI-TI-166, Rev. O, Rockwell Hanford Operations
- Jackson, R. L., R. D. Allen, and L. S. Prater, 1983, <u>Results of</u> <u>Hydrologic Testing of the Mabton Interbed and Priest Rapids</u> <u>Flow Top at Borehole DC-15</u>, Hanford Site, Washington, SD-BWI-TI-139, Rev. 0, Rockwell Hanford Operations
- Jackson, R. L., J. R. Raymond, and L. S. Prater, 1983, <u>Results of</u> <u>Hydrologic Testing of the Cold Creek Interbed and Umatilla</u> <u>Basalt Flow Top at Borehole DC-15</u>, Hanford Site, Washington, SD-BWI-TI-150, Rev. O. Rockwell Hanford Operations
- Jackson, R. L., L. D. Diediker, R. K. Ledgerwood, M. D. Veatch, 1984, <u>Piezometer Completion Report for Borehole Cluster Sites</u> DC-19, DC-20, and DC-22, SD-BWI-TI-226, Rev. 1
- Jackson, R. L., L. C. Swanson, L. D. Diediker, R. L. Jones, R. K. Ledgerwood, 1986, <u>Design Drilling, and Construction of Well RRL-2B, and</u> <u>Piezometer Nest RRL-2C, SD-BWI-TI-329, Rev. 0, Rockwell Hanford</u> Operations, Richland, Washington.
- Spane, F. A. Jr., M. P. Howland, S. R. Strait, 1980, <u>Hydrogeologic</u> <u>Properties and Groundwater Chemistry of the Rattlesnake Ridge</u> Interped at Well 699-25-80 (DB-14) Hanford Site. RHO-LD-67
- Spane, F. A., Jr., 1981, <u>Hydrogeologic Properties and Hydrochemistry</u> for the Levey Interbed at Well 699-511-E12A, RHO-BWI-LD-27, Informal Report, Rockwell Hanford Operations, Richland, Washington
- Spane, F. A., Jr., P. D. Thorne, 1985, <u>The Effects of Drilling Fluid</u> Invasion on Hydraulic Characterization of the Roza Flow Interior at Borenole OB-2, SD-BWI-TI-176, Rev. 1
- Strait, S. R., W. R. Brown, 1983, <u>Hydrologic Test Results for the</u> <u>Rattlesnake Ridge Interbed and Pomona Basalt Flow Top at Borehole</u> DC-15, SD-BWI-TI-130, Rev. 0
- Strait, S. R., W. R. Brown, 1983, <u>Hydrologic Test Results for the</u> Selah Interbed at Borehole DB-15, SD-BWI-11-131, Rev. 0
- Strait, S. R., W. R. Brown, 1983, <u>Hydrologic Test Results of the</u> <u>Cold Creek Interbed and Asotin Basalt Flow Top at Borenole</u> DC-15, SD-BWI-TI-142, Rev. 0

SD-BWI-DP-051 REV 2

DRAF

- Strait, S. R., and B. A. Moore, 1982, <u>Geohydrology of the Rattlesnake</u> <u>Ridge Interbed in the Gable Mountain Pond Area</u>, Hanford Site, Washington, RHO-ST-38, Rockwell Hanford Operations
- Strait, S. R., and F. A. Spane, Jr., 1982, <u>Preliminary Results Hydrologic</u> <u>Testing the Composite Umtanum Basalt Flow Top at Borenole RRL-2</u> (3,568 to 3,781 feet, SD-BWI-TI-105, Rev. O, Rockwell Hanford Operations, Richland, Washington.
- Strait, S. R., and F. A. Spane, Jr., 1982, Preliminary Results of Hydraulic Testing the Middle Sentinel Bluffs Basalt Colonnade/Entablature (3,175 to 3,244 feet) at Borehole RRL-2, SD-BWI-TI-109, Rev. 0 Rockwell Hanford Operations, Richland, Washington.
- Strait, S. R., and F. A. Spane, Jr., 1982, <u>Preliminary Results of</u> <u>Hydrologic Testing the Umtanum Basalt Entablature at Borehole</u> <u>RRL-2 (3,762 to 3,805)</u>, SD-BWI-TI-107, Rev. O, Rockwell Hanford Operations, Richland, Washington.
- Strait, S. R., and F. A. Spane, Jr., 1983, <u>Preliminary Results of</u> <u>Hydrologic Testing the Middle Sentinel Bluffs Flow Top at Borehole</u> <u>RRL-2 (2,981 to 3,020 feet)</u>, SD-BWI-TI-102, Rev. 0, Rockwell Hanford Operations, Ricnland, Washington.
- Strait, S. R., and F. A. Spane, Jr., 1983, <u>Preliminary Results of</u> <u>Hydrologic Testing of Middle Sentinel Bluffs Vesicular Zone</u> <u>at Borehole RRL-2 (3.057 to 3.172 feet)</u>, SD-BWI-TI-090, Rev. 0, <u>Rockwell Hanford Operations</u>, Richland, Washington.
- Strait, S. R., and F. A. Spane, Jr., 1983, <u>Results of Hydrologic</u> <u>Testing the Umtanum Basalt Fracture Zone at Borenole RRL-2</u> (3.781 to 3.827 feet), SD-BWI-TI-089, Rev. O, Rockwell Hanford Operations, Richland, Washington.
- Strait, S. R., 1984, <u>Hydrologic Field Testing Procedures</u>, Basalt Operating Procedures, C-2.8, Rockwell Hanford Operations, Richland, Washington.
- Strait, S. R., F. A. Spane, Jr., R. L. Jackson, and W. W. Pidcoe, 1982, <u>Hydrologic Testing Methodology and Results from Deep</u> <u>Basalt Borenoles.</u> RHO-BW-SA-189, Rockwell Hanford Operations, Ricnland, Wasnington and GSA - Rocky Mountain Section, May 1982.
- Thorne, P. D. and F. A. Spane, Jr., 1984, <u>Hydrologic Test Results</u> for the Rocky Coulee Flow Interior at Borenole DC-4, SD-BWI-TI-175, Rev. U, Rockwell Hanford Uperations, Richland, Washington.

SD-BWI-DP-051 REV 2

DRAFT

APPENDIX A

Hydraulic Property Data

Bo ho	re- Strat. le Horizon	Use Code	Isolated Interval (m)	Effective Test Interval (m)	Transmis- sivity (m²/sec)	Equivalent Hydraulic Conducti- vity (m/sec)	Observed Hydraulic Head (m) MSL
DC	-3						
	Umtanum C/E	1	1092-1108	1092-1108	1.0E-12 to 1.0E-11	1.0E-14 to 1.0E-13	NA
DC	-4						
	Rocky Coulee C/E	8	882-897	882-897	1.3E-12	8.8E-14 SD	NA -341-71-175
¥	Cohassett FT	1	899-915	904-909	1.0E-07 to 1.0E-06	1.0E-03 to 1.0E-07	128 <u>+</u> ?
סם	<u>-5</u>				• .		
	Cohassett FT	1	899-915	904-909	1.0E-07 to 1.0E-06	1.0E-08 to 1.0E-07	NA
	Cohassett C/E	1	964-976	964-975	1.0E-12 to 1.0E-11	1.0E-14 to 1.0E-13	NA
סכ	-6						
¥	Grande Ronde Composite	1	689-1321	้ หล	1.0E-05 to 1.0E-04	NĤ	ИВ
¥	Grande Ronde Fĩ	1	730-822	733-746 748-756 761-765 776-783	1.0E-05 to 1.0E-04	1.0E-07 to 1.0E-05	138 <u>+</u> ?
¥	Grande Ronde FT	1	822-882	.821-851 853-872	1.05-05 to 1.05-04	1.0E-08 to 1.0E-07	138 <u>-</u> ?
	Umtanum FT	1	912-938	925-934	1.02-07 to 1.02-06	1.0E-09 to 1.0E-08	136 <u>+</u> 1.5
¥	Umtanum C/E	1	938-989	938-989	1.0E-12 to 1.0E-10	1.0E-14 to 1.0E-12	NA
÷	Umtanum F3	1	988-1075	993-1004 1015-1025 1030-1033	1.05-06 to 1.05-05	1.02-08 to 1.0E-07	136 <u>-</u> ?

* Information new to DP-51 Rev, 2

۰.							
· ·			•		•		
Bo ho	re- Strat. le Horizon	Use Code	Isolated Interval (m)	Effective Test Interval (m)	Transmis- sivity (m²/sec)	Equivalent Hydraulic Conducti- vity (m/sec)	Observed Hydraulic Head (m) MSL
DC	-6 cont						
¥	Grande Ronde FT	1	1076-1166	1077-1082 1088-1092 1097-1098 1100-1102 1103-1113 1116-1120 1123-1159	1.0E-05 t 1.0E-04	• 1.0E-07 to 1.0E-06	137 <u>+</u> ?
*	Grande Ronde C/E	1	1166-1271	1166-1271	1.0E-12 t 1.0E-11	ο 1.0E-15 το 1.0E-14	NA
	Grande Ronde FT	1	1271-1321	1275-1286	1.0E-06 t 1.0E-05	ο 1.0E-08 το 1.0E-07	148 <u>-</u> 1.5
DC	-7						
*	Grande Ronde Composite	1	1254-1526	NA ·	1.0E-06 t 1.0E-05	O NA	>122
¥	Grande Ronde Composite	1	1256-1298	1261-1263 1279-1283 1287-1293	1.0E-09 t 1.0E-08	ο 1.0E-11 το 1.0E-10	NA
¥	Grande Ronde 20 FT	1	1299-1351	1311-1317 1319-1344	1.0E-09 t 1.0E-08	o 1.0E-11 to 1.0E-10	NA
¥	Grande Ronde Composite	1	1355-1407	1367-1370 1374-1384 1386-1389 1392-1396	1.0E-07 t 1.0E-05	o 1.0E-09 to 1.0E-08	>124
¥	Grande Ronde 29 FT	1	1428-1471	1430-1433 1435-1466	1.0E-06 t 1.0E-05	o 1.0E-08 to 1.0E-07	123 <u>+</u> .9
÷	Grande Ronde Composite	1	1472-1526	1482-1482 1487-1493 1495-1508	<1.0E-07 t	o <1.0E-09	>119
DC	-7/9						
	McCoy Canyon FT	1	1039-1060	1053-1059	1.0E-07 t 1.0E-06	o 1.0E-09 :o 1.0E-08	124-1.2
DC	-12						
*	Rosalia FT	1	371-382	373-382	1.0E-04 : 1.0E-03	o 1.0E-06 to 1.0E-05	124 <u>+</u> ?

Information new to DP-51 Rev. 2 Ŧ

1

.

•

.

•

.

.

Equivalent Effective Hydraulic Observed Conduct i -Transmis Bore- Strat. Use Isolated Test Hydraulic sivity fuity hole Horizon Code Interval Interval Head (m²/sec) (m) (m) (m) MSL _____ _____ DC-12 cont 1.0E-04 to 1.0E-06 to 123+? * Quincy IB/ 1 405-416 405-406 408-413 1.0E-03 1.02-05 Roza FT 413-416 1.0E-05 to 1.0E-07 to 124+? 460-468 463-467 * Sentinel 1 1.0E-04 1.0E-04 Gap FT 515-519 1.0E-05 to 1.0E-06 to 124+? 514-521 * Sand 1 Hollow II FT 1.0E-04 1.0E-05 * Ginkgo II FT 582-685 584-585 1.0E-07 to 1.0E-08 to 124+? 1 586-605 1.0E-06 1.0E-07 1.0E-04 to 1.0E-05 to 124+? 627-630 # Ginkgo I FT 1 625-634 632-634 1.05-03 1.0E-04 1.0E-07 to 1.0E-08 to 123+? 676-689 677-684 * Palouse 1 Falls IB/ 1.0E-06 1.0E-07 . Grande Ronde 1 FT 1. 691-701 694-696 1.0E-06 to - 1.0E-07 to 124+.6 Grande Ronde 2 FT 698-701 1.0E-05 1.0E-06 736-743 1.0E-05 to 1.0E-07 to 124+.6 Rocky 1 734-746 Coulee FT 1.0E-04 1.0E-06 . 784-787 1.0E-07 to 1.0E-09 to 782-811 NA Cohassett 1 1.0E-08 789-792 1.0E-06 Composite 794-807 1.0E-03 to 1.0E-04 to 124-.6 859-867 862-865 Grande 1 Ronce 7 FT 1.02-02 1.0E-03 1.0E-04 to 1.0E-05 to 124+.6 Grande 1 865-873 867-871 Ronde 8 FT 1.05-03 1.0E-04 913-927 1.0E-07 to 1.0E-09 to NA * Grande Ronde 908-961 1 942-947 1.0E-06 1.05-08 Composite 949-955 McCoy 1 935-961 942-947 1.0E-08 to 1.0E-10 to NA 1.0E-07 1.0E-09 Canyon FT 949-955 Umtanum FT 1 975-1000 979-988 1.0E-10 to 1.0E-12 to . NA 990-995 1.0E-0S 1.0E-10

Information new to DP-51 Rev. 2

۰.

:

÷

Bo	ire- ile	Strat. Horizon	Use Code	Isolated Interval (m)	Effective Test Interval (m)	Transmis- sivity (m²/sec)	Equivalent Hydraulic Conducti- Vity (m/sec)	Ubserved Hydraulic Head (m) MSL
סם	-12	cont						
¥	Gra Co	nde Ronde mposite	1	1018-1241	NA	1.0E-04 to 1.0E-03	NA	124 <u>+</u> ?
*	Gra Coi	nde Ronde mposite	1	1226-1241	1227-1237	1.0E-04 to 1.0E-03	1.0E-05 to 1.0E-04	124 <u>+</u> ?
¥	Grai Coi	nde Ronde mposite	1	1245-1358	NA	1.0E-04 to 1.0E-03	NA	124 <u>+</u> ?
¥	Grai . Coi	nde Ronde mposite	1	1324-1358	ИА	1.0E-04 to 1.0E-03	NA	124 <u>+</u> ?
DC	-14							
¥	Elej Mos	phant untain FT	1	112-145	120-126	1.0E-06 to 1.0E-05	1.0E-07 to 1.0E-06	115 <u>+</u> ?
*	Rati Ric	tlesnake dge I3	1	145-164	150-162	1.0E-05 to 1.0E-04	1.0E-07 to 1.0E-06	122 <u>+</u> ?
*	Sela	ah IB	1	205-234	214-231	1.0E-04 to 1.0E-03	1.0E-06 to 1.0E-05	124 <u>+</u> ?
÷	8so:	in FT	1	268-276	270-276	1.0E-03 to 1.0E-02	1.0E-04 to 1.0E-03	150 <u>+</u> ?
¥	Asot	in FT	1	277-281	279-281	1.05-03 to 1.05-02	1.0E-04 to 1.0E-03	150 <u>+</u> ?
¥	Asot	in FT	1	282-295	.288-294	1.0E-04 to 1.0E-03	1.05-05 to 1.0E-04	на
¥	Mabt	ion IB	1	295-338	NA	1.0E-05 to 1.0E-04	หล	149 <u>+</u> ?
¥	Prie Rap	est Dics FT	1	360-363	362-362	1.05-04 to 1.05-03	1.0E-04 to 1.0E-03	151 <u>+</u> ?
*	Prie Rap	est Dids FT	I	365-371	356-370	1.0E-03 to 1.0E-02	1.0E-04 to 1.0E-03	150_?
¥	Prie Rap	est Dids FT	1	371-387	372-374	1.0E-03 to 1.0E-02	1.05-04 to 1.05-03	151 <u>-</u> ?
*	Roza	A FT	1	392-409	395-408	1.0E-03 to 1.0E-02	1.0E-04 to 1.0E-03	150 <u>+</u> ?

Information new to DP-51 Rev. 2 ¥

					NP		Equivalent	
	Bore hole	- Strat. Horizon	Use Code	Isolated Interval (m)	Test Interval (m)	Transmis- sivity (m²/sec)	Conducti- vity (m/sec)	Ubserved Hydraulic Head (m) MSL
		4						
	<u> DC-1</u>	4 CONT						
	¥ F	renchman Springs FT	1	451-462	455-459	1.0E-05 to 1.0E-04	1.0E-06 to 1.0E-05	149 <u>+</u> ?
	* F	renchman Springs FT	1	430-497	488-496	1.0E-04 to 1.0E-03	1.0E-05 to 1.0E-04	149 <u>+</u> ?
	* F	renchman Springs FT	1	500-521	512-517	1.0E-04 to 1.0E-03	1.0E-06 to 1.0E-05	149 <u>+</u> ?
-	¥ F	renchman Springs FT	1	524-555	529-532 536-539	1.0E-04 1.0E-03	1.0E-05 to 1.0E-04	149 <u>+</u> ?
	* F	renchman Springs FT	1	555-572.	560-565	1.0E-04 to 1.0E-03	1.0E-05 to 1.0E-04	148 <u>+</u> ?
	* F	renchman Springs FT	1	572-604	575-581 587- <u>5</u> 97	1.0E-03 to 1.0E-02	1.0E-05 to 1.0E-04	134 <u>+</u> ?
	* Y	antage I3/ Grande Ronde FT	1	646-631	653-661 668-671 672-675	1.0E-04 to 1.0E-03	1.0E-06 to 1.0E-05	143 <u>+</u> ?
	6	rande Ronde FT	1	718-733	722-729	1.0E-07 to 1.0E-06	1.0E-09 :0 1.0E-08	133 <u>+</u> 1.5
•	G	rande Ronde FT	1	735-766	747-755	1.0E-06 to 1.0E-05	1.0E-08 :0 1.0E-07	135 <u>+</u> .6
	* Gi i	rande Ronde FT	1	810-876	819-824 833-840 861-871	1.0E-07 to 1.0E-06	1.0E-09 to 1.0E-08	133 <u>+</u> ?
-	Gi	rande Ronde FT	1	841-876	861-871	1.02-09 to 1.02-08	1.0E-11 to 1.0E-10	133 <u>+</u> 1.5
,	Gi I	rande Ronde FT	1	878-907	882-900	1.0E-07 to 1.0E-06	1.02-09 to 1.02-08	133 <u>+</u> 1.5
	U	mtanum FT	1	933-958	936-956	1.0E-05 to 1.0E-04	1.0E-07 to 1.0E-06	134 <u>-</u> .3
	Gr i	rande Ronde FT	1	969-983	975-980	1.0E-06 to 1.0E-05	1.0E-07 to 1.0E-06	134 <u>+</u> .3
	* _ Gr ;	rande Ronde FT	1	994-1017	999-1015	1.05-05 :0 1.05-04	1.0E-07 :0 1.0E-06	134 <u>+</u> ?

•

• .

ı

.

Information new to DP-51 Rev. 2

÷

• .

-

•

•

. . .

.

.

		•		•				
•	Bo bo	re- Strat. le Horizon	Use Code	Isolated Interval (m)	E Effective Test. I. Interval (m)	Transmis- sivity (m ² /sec)	Equivalent Hydraulic Conducti- vity (m/sec)	Observed Hydraulic Head (m) MSL
	DC	<u>-15</u>						
	¥	Levey IB	1	84-105	87-95	1.0E-04 to 1.0E-03	1.0E-06 to 1.0E-05	112 <u>+</u> .3
	*	Rattlesnake Ridge IB	1	127-151	133-150	1.0E-04 to 1.0E-03	1.0E-06 to 1.0E-05	117 <u>+</u> .3
	¥	Selah IB	1	183-192	123-128	1.0E-05 to 1.0E-04	1.0E-06 to 1.0E-05	109 <u>+</u> :6
	¥	Esquatzel FT	1	192-201	193-198	1.0E-05 to 1.0E-04	1.0E-06 to 1.0E-05	109 <u>+</u> .6
	¥	Cold Creek IB	0	217-240	220-239	3.1E-05	1.6E-06 SD	109 <u>+</u> .9 -3wi-ti-150
	•	Mabton IB	9	306-327	310-324	6.1E-05	4.25-06 SD	117 <u>+</u> .6 -EWI-TI-139
	¥۰	Priest Rapids	1	350-362	351-358	1.0E-07 :0 1.0E-06	1.0E-03 to 1.0E-07	118 <u>+</u> ?
	*	Priest Rapids/ Roza FT	1	372-394	378-392	1.0E-03 to 1.0E-02	1.0E-04 to 1.0E-03	119 <u>+</u> .3
	¥	Roza FT	1	414-424	416-419	1.0E-04 to 1.0E-03	1.0E-05 to 1.0E-04	118 <u>+</u> .3
	¥	Sentinel Gap FT	1	425-449	429-431	1.0E-06 to 1.0E-05	1.0E-07 :0 1.0E-06	113 <u>+</u> .6
	¥	Wallula Gap FT	1	451-459	453-458	1.0E-03 to 1.0E-02	1.0E-04 to 1.0E-03	115 <u>+</u> .3
	¥	Sand Hollow III F	1 T	459-473	463-468	1.0E-04 :0 1.0E-03	1.0E-05 to 1.0E-04	118 <u>+</u> .3
	¥	Sand Hollow II FT	1	469-466	475-481	1.0E-03 to 1.0E-02	1.8E-85 to 1.8E-84	118 <u>+</u> .3
	¥	Ginkgo II FT	1	529-559	530-531 543-561	1.0E-06 to 1.0E-05	1.0E-07 to 1.0E-06	118 <u>+</u> .5
	¥	Ginkgo I FT	1	559-575	561-573	1.02-03 to 1.02-02	1.0E-05 to 1.0E-04	115 <u>-</u> .3

.

.

* Information new to DP-51 Rev. 2

.

.

•

						Equivalent	
Bo ho	ore- Strat. Die Horizon	Use Code	Isolated Interval (m)	Effective Test Interval (m)	- Jransmis sivity (m²/sec)	Hydraulic Conducti- vity (m/sec)	Observed Hydraulic Head (m) MSL
DC	-15 cont	•					
	Vantage IB/ Grande Ronde I FT	1	640-670	645-661	1.0E-06 to 1.0E-05	1.0E-08 to 1.0E-07	119 <u>+</u> .6
	Rocky Coulee FT	1	679-714	685-686 690-699	1.0E-03 to 1.0E-02	1.0E-04 :0 1.0E-03	118 <u>+</u> .6
	Grande Ronde 5 FT	1.	723-758	744-747	1.0E-06 to 1.0E-05	1.0E-07 to 1.0E-06	119 <u>+</u> .6
	Cohassett FT	1	760-777	768-775	1.0E-04 to 1.0E-03	1.0E-06 to 1.0E-05	119 <u>+</u> .6
	Grande Ronde 7 FT	2	808-823	810-812	<1.0E-04 .	<1.0E-05	119 <u>+</u> ?
` *	Grande Ronde 9 FT	1	821-842	832-834 840-842	1.0E-06 to 1.0E-05	1.0E-07 to 1.0E-06	119 <u>+</u> .5
	Grande Ronde 11 FT	1	857-874	862-873	1.0E-06 to 1.0E-05	1:02-08 to 1.02-07	119 <u>+</u> .6
	Umtanum FT	1	903-949	910-946	>1.0E-04	>1.0E-06	122 <u>+</u> .3
	Grande Ronde 14 FT	1	989-1005	991-1003	1.0E-06 to 1.0E-05	1.05-08 to 1.05-07	112 <u>+</u> ?
	Very High Mg Flow FT	1	1006-1040	1016-1031	1.0E-06 :0 1.0E-05	1.0E-00 to 1.0E-07	117 <u>+</u> ?
	Grande Ronde 17 FT	1	1101-1108	1102-1106	<1.0E-08	<1.05-09	NA
	Grande Ronde 19 FT	1	1140-1172	:141-1158	1.0E-08 to 1.0E-07	1.0E-10 to 1.0E-09	NA
¥	Grande Ronde 20, 21 & 22 FTS	1	1261-1293	1267-1277 1281-1286	1.05-06 to 1.05-05	1.0E-03 to 1.0E-07	123 <u>+</u> .5
DC	<u>-158</u>						
*	Rattlesnake Ridge IB	1	204-255	208-246	1.0E-03 to 1.0E-02	1.0E-05 to 1.0E-04	137_?
¥.	Selah I3	1	283-311	287-306	1.0E-05 to 1.0E-04	1.0E-07 to 1.0E-06	134 <u>-</u> ?

Information new to DP-51 Rev. 2

÷

·

•

	•			N		Equivalent	
Bo	na- Strat	lleo	Isolated	ENTER		Hydraulic Conducti-	Observed Hudraulic
ho	le Horizon	Code	Interval	Interval	sivity	vity	Head
			(m)	(m)	(m²/sec)	(m/sec)	(m) MSL
	•						
DC	-16A cont						
¥	Cold Creek IB	1	329-369	337-312	1.0E-06 to 1.0E-05	1.0E-08 to 1.0E-07	127 <u>+</u> ?
*	Mabton IB	1	425-478	433-462	1.0E-04 to 1.0E-03	1.0E-06 to 1.0E-05	128 <u>+</u> ?
¥	Priest Rapids FT	1	51,5-527	521-521	1.0E-06 to 1.0E-05	1.0E-06 to 1.0E-05	115 <u>+</u> ?
¥	Roza FT	1	536-557	540-544	1.0E-02 to 1.0E-01	1.0E-03 to 1.0E-02	123 <u>+</u> ?
¥	Frenchman . Springs FT	1	577-610	593-596	1.0E-03 to 1.0E-02	1.0E-04 to 1.0E-03	123 <u>+</u> ?
*	Frenchman Springs FT	1	642-657	648-651	1.0E-05 to 1.0E-04	1.0E-06 to 1.0E-05	123 <u>+</u> ?
¥	Frenchman Springs FT	1	682-689	682-684	1.0E-03 to 1.0E-02	1.0E-04 to 1.0E-03	122 <u>+</u> ?
¥	Frenchman Springs FT	1 .	691-723	694-698 704-708 709-714 715-723	1.0E-05 to 1.0E-04	1.0E-07 to 1.0E-05	123 <u>+</u> ?
*	Frenchman Springs FT	i	755-780	762-780	1.0E-03 :0 1.0E-02	1.0E-05 to 1.0E-04	123 <u>+</u> ?
¥	Frenchman Springs FT	1	788-802	792-802	1.0E-04 to 1.0E-03	1.0E-05 :0 1.0E-04	123 <u>-</u> ?
¥	Vantage IB	:	814-832	825-828 828-524 829-829	1.0E-04 to 1.0E-03	1.0E-06 to 1.0E-05	123 <u>+</u> ?
	Grande Ronde FT	1	814-860	825-829	>1.GE-04	1.0E-05	122 <u>+</u> .6
	Grande Ronde FT	1	864-898	869-885 '	1.0E-07 to 1.0E-04	1.0E-09 :0 1.0E-06	122 <u>+</u> .6
•	Cohassett FT	1	905-941	909-919 922-929	1.05-08 to 1.06-04	1.0E-10 :0 1.0E-06	122 <u>+</u> .9
•	Cohassett C/E (vesicular =	Û ane)	941-992	941-992	2.62-07	4.95-09 SD	NA -BWI-TI-166

I.

•

Information new to DP-51 Rev. 2

-

:

.

.

•				And the second se		Equivalen	t
Bọ ho	re- Strat. le Horizon	Use Code	Isolated Interval (m)	Effective Test Interval (m)	Transmis- sivity (m ² /sec)	Hydraulic Conducti vity (m/sec)	Observed - Hydraulic Head (m) MSL
DC	-16A cont						
	Cohassett C/E	1	961-992	961-992 ·	1.0E-12 to 1.0E-11	1.0E-13 1.0E-12	to NA
	Cohassett FB	1	992-1024	1000-1019	1.0E-09 to 1.0E-08	1.0E-11 1.0E-10	to 122 <u>+</u> .9
¥	Grande Ronde FT	1	1031-1065	NA	1.0E-10 to 1.0E-09	NA	NA .
¥	McCoy Canyon FT	1	1070-1062	NA	NR	NA	·123 <u>+</u> ?
	Umtanum FT	1	1104-1136	1105-1131	1.0E-06 to 1.0E-05	1.0E-08 1.0E-07	:0 123 <u>+</u> .9
	Umtanum C/E	1	1137-1178	1137-1178	1.0E-09 to 1.0E-08	1.0E-11 1.0E-10	to NA
	Grande Ronde FT	1	1193-1231	1202-1209	1.0E-06 to 1.0E-06	1.0E-08 1.0E-07	to 123 <u>+</u> .9
DC	<u>-19C</u>						
¥	Priest Rapids FT	1	503-595	507-516	1.0E-04 to 1.1E-03	1.0E-06 3.5E-05	to NA
			_				SD-BWI-11-226
¥	Sentinel Gap FT	1	557-595	575-591	1.0E-05 to 1.1E-04	1.0E-07 3.5E-06	to NA
						:	SD-BWI-TI-226
*	Ginkgo FT	1	738-752	738-739 744-750	>1.1E-04	>3.52-06	NA SD-3WI-TI-226
¥	Rocky Coulee FT	1	852-866	853-864	1.0E-07 to 1.1E-05	1.0E-09 3.5E-08	to NA
							SD-BWI-TI-226
¥	Cohassett C/E	1	951-980	959-973	1.0E-11 to 1.1E-10	1.0E-13 3.5E-12	to NA
						:	SD-BWI-TI-226
÷	Umtanum FT	1	1093-1118	1095-1116	1.0E-05 to 1.1E-04	1.0E-07 3.5E-06	to NA
					— -	:::::::::::::::::::::::::::::::::::::::	SD-3WI-7I-226

. . ••••

:

Information new to DP-51 Rev. 2 ¥

						and the second		
					Effective	RARE	Hydrauli	c Observed
Во	re-	Strat.	Use	Isolated	Test, Y	V.Transmis-	Conduct	i- Hydraulic
ho	le	Horizon	Code	Interval	Interval	E Sivityte	" vity	Head
				(m) 	(m) (%)***	⊷(M÷/S≷C)	(m/sec) 	(m) MSL
DC	-280	•						
<u> </u>								
¥	Sent Gaj	vinel o FT	1	563-615	567-574	1.0E-03 t 1.1E-02	o 1.0E-05 3.5E-04	to NA
×	C i mi		•	705-777	700-740	1 05-05 4		SD-BWI-TI-226
×.	um	CGO FI	Ŧ	(25-///	133-143	1.0E-05 t	0 1.0E-07 3.5E-06	to NH
								SD-BWI-TI-226
								· · · ·
¥	Coha	assett FT	1	892-944	894-897	1.0E-07 t	0 1.0E-08	to NA
						1.15-06	3.5E-07	SD-BUI-TI-226
								3D-2MI-11-222
¥	Umta	anum FT	1	1080-1131	1083-1117	1.0E-07 t	0 1.0E-09	to NA
						1.1E-06	3.5E-08	•
								SD-BWI-TI-226
ЭC	-220							
					_			
¥	Rock	(y	1	877-922	878-836	1.0E-09 t	D 1.0E-11	to NA
	Cou	lee FT				1.1E-05	3.5E-07	CD-DULLTI 00C
								20-2M1-11-220
¥	Umta	anum FT	1	1126-1172	1127-1164	1.0E-05 to	D 1.0E-07	to NR
						1.1E-03	3.5E-05	· ·
								SD-BWI-TI-226
DC	-2368	5						
		-			•			
¥	Rosa	alia FT	1	410-434	NA .	1.0E-03 to	о на	NA
						1.0E-02		
¥	Sent	inel	1	481-498	NA ·	1.0E-02 to		NB
	Gar	5 FT			•	1.9E-01		
	.							
*	GINK	(90 г.)	1	657-675	NH	1.02-06 to	D NH	to NR
						1.02-04		
¥	Rock	ک	1	742-757	NA	1.0E-08 to	NA NA	NA
	Cou	ilee FT				1.02-07		
¥	Coha	scott FT	1	797-921	ыя	1 05-09 .		NO
-	4011C		•		. 1	1.02-08		1117
÷	Birk	ett FT	1	891-907	NA	1.0E-08 to	NA NA	NA
						1.0E-05		
¥	Umta	num FT	1	1006-1027	NA	1.0E-08 to	NA NA	NA
				•		1.0E-05		·

Information new to DP-51 Rev. 2 ÷

ļ

•

٠.

•

v

`					NP		Equivalent Hudraulia	0.5
Bc hc	ile	Strat. Horizon	Use Code	Isolated Interval (m)	Test Interval (m)	Fransmis- sivity (m2/sec)	Conducti- vity	Ubserved Hydraulic Head
								(m) MSL
DB	-1		•					
¥	Mab	ton IB	1	297-302	NA	1.0E-03 to 1.0E-02	NA	NA
¥	Prio Raj	est Dids FT	1	329-347	NA	1.0E-04 to 1.0E-03	NA	NA
Dġ	-2							•
¥	Mabi	on IB	1	274-282	274-282	1.0E-03 to 1.0E-02	1.0E-05 to 1.0E-04	NA
¥	Roza	A FT	1	355-363	356-360	1.0E-05 to 1.0E-04	1.0E-06 to 1.0E-05	ИЯ
¥	Ròza	A C/E	0	363-388	363-388	3.5E-10	1.4E-11 SD-	NA -BWI-TI-176
*	Prie Rap Çom	est Dids Nposit	1	313-363	313-323 335-338	1.0E-04 to 1.0E-03	1.0E-06 to 1.0E-05	NA
DB	-4					·		
¥	Mabu	on IB	1	415-428	415-428	1.0E-03 to 1.0E-02	1.0E-05 to 1.0E-04	NA
DB	-5				•			
¥	Mabt	on IB	1	248-277	254-277	1.05-04 to 1.05-03	1.0E-06 to 1.0E-05	NA
פפ	-7							
*	Mabt	on IB	1	182-247	237-247	1.05-03 to 1.0E-02	1.0E-05 to 1.0E-04	NA
<u>D3-</u>	-9							
*	Mabt	on IB	1	141-190	149-180	1.02-04 to 1.0E-03	1.0E-06 to 1.0E-05	NA
DB-	-10							
¥	Mabt	on IB	1	242-272	257628	1.0E-07 to 1.0E-06	1.0E-09 to 1.0E-08	ИА

•

.

•

ā

Information new to DP-51 Rev. 2

÷

-

: *

•							B Equivalent	•
Bo ho	re- le	Strat. Horizon	Use Code	Isolated Interval (m)	Test Interval (m)	t f f f f Transmis- sivity (m²/sec)	Hydraulic Conducti- uity (m/sec)	Ubserved Hydraulic Head (m) MSL
DB	<u>-11</u>	•						
¥	Mab	ton IB	1	216-316	264-307	1.0E-07 to 1.0E-06	1.0E-10 to 1.0E-09	207 <u>+</u> ?
¥	Pri Raj	est pids FT	1	311-319	319-319	NA	NA	283 <u>+</u> ?
¥	Pri Raj	est pids FT	1	316-369	365-369	NA	NR	292 <u>+</u> ?
DB	-12							
¥	Mab	ton IB	1	115-156	115-156	1.0E-03 to 1.0E-02	1.0E-05 to 1.0E-04	NA
¥	Pri Raj	es: pids FT	1	160-199	179-180	1.8E-82 to 1.8E-81	1.0E-03 to 1.0E-02	NR •
¥	Pri Raj	est pids FT	1	201-215	207-210	1.8E-82 to 1.8E-81	1.0E-03 to 1.0E-02	NA
DB	-13							
¥	Elej Moi	phant untain FT	1	115-116	NA	1.0E-03 to 1.0E-02	NA	NA
¥	Rat: Ric	tlesnake dge IB	1	141-163	. NU [.]	1.0E-04 to 1.0E-03	NR	NA
*	Sel	ah I3	1	219-225	NA	1.0E-04 to 1.0E-03	NA	NA
¥	Cold Cri	d eek IB	1	264-287	NA	1.0E-04 to 1.0E-03	NA	NA
¥	Mab	ton IB	1	364-394	364-394	1.0E-03 to 1.0E-02	1.0E-05 :0 1.0E-04	NA
DB	-14							
¥	Rat Ri	tlesnake dge IB	9	64-88	64-88	1.05-05	1.05-07 RH	136.5+? 0-LD-57
÷	Sel	ah IB	1	137-150	138-150	1.0E-05 to 1.0E-04	1.0E-06 to 1.0E-05	NA
÷	Col Cr	d eek IB	1	188-202	188-202 -	1.0E-03 to 1.0E-02	1.0E-05 to 1.0E-04	NA .

٠

.

•

.

.

1

•

.

.

•

•

•

.

ŀ

.

•

.

Information new to JP-51 Rev. 2

+

Во	re- Strat.	Use	Isolated	Effective Test [Transmis-	Equivalent Hydraulic Conducti-	Observed Hydraulic
ho	le Horizon	Code	Interval (m)	Interval - (m)	(m ² /sec)	(m/sec)	Head (m) MSL
DB	-14 cont						
*	Nabton IB	1	280-315	280110	1.0E-04 to 1,0E-03.	1.0E-04 to 1.0E-03	128 <u>+</u> ?
DB	-15						
¥	Rattlesnake Ridge IB	Ø	46-68	51-68	5.1E-04 to	3.0E-05 SD	125 <u>+</u> ? -BWI-TI-130
*	Selah IB		113-129	122-129	8.25-06	1.2E-06 SD	124 <u>+</u> ? -BWI-TI-131
*	Cold Creek IB	0	155-188	15864	1.82-03	6.3E-05 SD	124 <u>+</u> ? -BWI-TI-142
¥	Asotin/ Umitilla FT	1	208-208	203-208	1.0E-04 to 1.0E-03	1.0E-05 to 1.0E-04	124 <u>+</u> ?
¥	Umitilla FT	1	207-230	210-230	1.0E-03 to 1.0E-02	1.0E-05 to 1.0E-04	124 <u>+</u> ?
¥	Mabton IB	1	230-257	230-257	1.8E-03 to 1.8E-82	1.0E-05 to 1.0E-04	124 <u>+</u> ?
¥	Priest Rapids FT	1	262-295	230-291	1.0E-03 to 1.0E-02	1.0E-05 to 1.0E-04	125 <u>-</u> ?
¥	Roza FT	1	319 - 337	323-337	1.0E-03 :0 1.0E-02	1.0E-05 to 1.0E-04	125_?
¥	Roza C/E	1	338-350	238-350	1.0E-11 to 1.0E-10	1.0E-12 to 1.0E-11	NA.
¥	Squaw Creek IB	1	377-393	383-393	на	- NA	125 <u>-</u> ?
¥	Frenchman Springs FT	1	395-409	399-409	1.0E-04 to 1.0E-03	1.0E-06 to 1.0E-05	124 <u>+</u> ?
¥	Frenchman Springs FT	1	412-413	414-413	1.0E-04 to 1.0E-03	1.0E-05 to 1.0E-04	125 <u>+</u> ?
*	Frenchman Springs FT	ï	425-440	431-440	1.0E-04 to 1.0E-03	1.0E-06 to 1.0E-05	:25 <u>+</u> ?
¥	Frenchman Springs FT	1	442-456	445-486	1.0E-05 to 1.0E-04	1.0E-06 to 1.0E-05	125 <u>+</u> ?

.•

• .

.

•

Information new to DP-51 Rev. 2 ÷

						•
			• ·			
Bore- Strat. Nole Horizon	Use Code	Isolated Interval (m)	Effective Trace Interver (m)	Transmist Ginu (17) for King (sec) for King (sec) for	Equivalent Hydraulic Conducti- vity (m/sec)	Observed Hydraulic Head (m) MSL
B-15 cont						
Frenchman Springs FT	1	479-513	481-484	1.0E-04 to 1.0E-03	1.0E-04 to 1.0E-03	125 <u>+</u> ?
Frenchman Springs FT	1	524-549	532-535	1.0E-0S to 1.0E-07	1.0E-09 to 1.0E-08	124 <u>+</u> ?
Frenchman Springs FT	1	549-589	568-574	1.0E-09 to 1.0E-08	1.0E-10 to 1.0E-09	123 <u>+</u> ?
Vantage IB	1	589-601	597-601	1.0E-12 to 1.0E-10	1.0E-13 to 1.0E-11	NA
RL-29				•	•	·
Mabton IB .	1	416-471	425-442	1.0E-08 to 1.0E-07	1.0E-10 to 1.0E-09	127 <u>+</u> ?
Priest Rapids FT	1	480-522	515-522	1.0E-04 to 1.0E-03	1.0E-05 :0 1.0E-04	122 <u>+</u> ?
Roza FT	1	529-540	533-536	1.0E-03 to 1.0E-02	1.0E-04 to 1.0E-03	123 <u>+</u> ?
Upper Frenchman Springs FTS	1	581-677	586-593 641-644 676-677	1.0E-03 to 1.0E-02	1.0E-04 to 1.0E-03	123 <u>+</u> ?
Lower Frenchman Springs FTS	1	684-806 .	692-699 725-735 759-763 .796-800	1.0E-03 :0 1.0E-02	1.0E-05 to 1.0E-04	122 <u>+</u> ?
Vantage I3	1	812-827	814-820	1.0E-06 to 1.0E-05	1.0E-07 :c 1.0E-06	122 <u>+</u> .6
Grande Ronde FT	1	829-888	829-841 860-866	1.0E-06 to 1.0E-05	1.0E-08 to 1.0E-07	121 <u>+</u> ?
Rocky Coulee C/E	1	894-909	834-303	1.0E-11 to 1.0E-10	1.0E-13 to 1.0E-12	NА
Cohassett FT	0	909-920	912-918	4.5E-08	7.75-09 S	121.8 <u>+</u> 0.1 D-3WI-TI-102
Cohassett C/E (vesicular z	a one)	932-967	940-945	2.8E-10	5.6E-11 S.	NA D-3WI-TI-090

.

·

•

Information new to DP-51 Rev. 2 ÷

.

....

.

•

•

• .

•

•

.

.

•

•

• •

Bore- hole	Strat. Horizon	Use Code	Isolated Interval (m)	Effective Test Interval (m)	Transmis- sivity (m ² /sec)	Equivalen Hydraulic Conducti vity (m/sec)	t Observed - Hydraulio Head (m) MSL
RRL-2P	cont						
Coh	assett C/1	E 0	968-989	968-989	4.7E-12	2.2E-13	NA SD-BWI-TI-10
Coh	assett FB	0	990-1019	992-1016	8.25-04	3.5E-05	123.5 <u>+</u> 0.5 SD-BWI-TI-09
* Gra Ro	nde nde FT	1	1027-1055	1031-1035 1040-1047	1.0E-10 to 1.0E-09	1.0E-12 1.0E-11	to NA
Mc C Ca	loy Inyon FT	1	1056-1074	1059-1065	1.0E-10 to 1.0E-09	1.0E-11 1.0E-10	CONA
· McC Ca	oy nyon E	1	1088-1095	1088-1095	İ.0Ξ-11 το 1.0Ξ-10	1.0E-13 1.0E-12	to NA
Umt Co	anum mposite Fi	ø TS	1088-1152	1096-1144 	5.12-04	1.12-05	123.7 <u>+</u> 0.1 SD-BWI-TI-10
¥ Umt	anum FT	1	1135-1152	1140-1143	1.0E-06 to 1.0E-05	1.0E-07 1.0E-06	to 124 <u>+</u> ?
Umt	anum E	8	1147-1160	1147-1160	1.72-11	1.3E-12	NA SD-BWI-TI-10
Umt (f	anum E racture Io	0 one)	1152-1156	1154-1166	9.42-04	5.3E-04	NA SD-BWI-TI-029
Umt	anum FB	1	1170-1185.	1170-1178	1.0E-04 to 1.0E-03	1.0E-06 : 1.0E-05	20 124 <u>+</u> 0.5
RRL-23	<u> </u>		· •				
* Roc Co	ky ulee FT	8	846-871	869-866	7.0E-06	1.42-05	· NA SD-BWI-TI-329
RRL-23	<u>~c</u>						
* Roc Co	ky ulee FT	อ	846-871	85822542	1.62-06	2.92-07	NA SD-BWI-TI-325
RRL-20							
* Roc Co	ky ulee C∕⊆	1	882-689	882-889	1.05-10 to 1.15-09	1.0E-12 : 3.5E-11	o NA
- •					·····		SD-341-71-329

.

.

.

.

Information new to DP-51 Rev. 2

.

•

•

•

.

.

•

HEW TO DE-DI KEV.

						•	
Bo	re- Strat. le Horizoņ	Use Code	Isolated Interval (m)	Effective Test Interval (m)	Transmis- sivity (m2/sec)	Equivalent Hydraulic Conducti- vity (m/sec)	Observed Hydraulic Head (m) MSL
RR	<u>L-20 cont</u>						
¥	Cohassett FT	1	903-912	909-914	1.0E-10 to 1.1E-09	1.0E-12 to 3.5E-11 SD	NA -BWI-TI-329
¥	Cohasseitt C	1	959-966	959-966	1.0E-10 to 1.1E-09	1.0E-12 3.5E-11 SD	NA -BWI-TI-329
¥	Birkett FT	0,	846-1038	985-997	1.0E-04 to 1.1E-03	1.0E-06 to 3.5E-05 SD	NA -BWI-TI-329
¥	Birkett C/E	ĺ	1010-1017	1010-1017	1.0E-10 to 1.1E-09	1.0E-12 3.5E-11 SD	NA -341-71-329
RR	<u>L-6</u>						
*	Frenchman Springs T3	1	641-653 .	647-651 654-655	1.0E-11 to 1.0E-10	1.0E-12 to 1.0E-11	NA
	Cohassett FT	1	948-951	943-948	1.0E-11 to 1.0E-10	1.0E-12 to 1.0E-11	NA
	Cohassett C/E	1	954-1016	954-1016	1.0E-14 to 1.0E-11	1.0E-15 to 1.0E-13	NA
	Birkett FT	1	1015-1041	1019-1039	1.0E-08 to 1.0E-07	1.05-10 :0 1.05-09	NA
	McCoy Canyon C/E	1	1104-1126	1104-1125	1.0E-13 to 1.0E-10	1.0E-15 to 1.0E-12	NA
	Umtanum FT	1	1130-1165	3 2183247	1.0E-07 to 1.0E-06	1.0E-09 to 1.0E-08	NR
	Umtanum C/E	1	1166-1200	1166-1200	1.0E-12 to 1.0E-11	1.0E-14 to 1.0E-13	NR
	Grande Ronde 11 FT	:	1201-1231	1203-1206 1219-1221	1.85-89 to 1.85-88	1.85-83 :0 1.85-87	NA
RR	<u>L-14</u>						
	Cohassett FT	1	938-959	939-946 948-950	1.0E-08 to 1.0E-05	1.0E-03 to 1.0E-07	124 <u>+</u> 1.5

. . .

•

Information new to DP-51 Rev. 2 ÷

.

.

..

•

• . •										
Bo ho	ore- ole	Strat. Horizon	Use Code	Isolated Interval (m)	Effective Test Interval (m)	mansnis- sivity (m ² /sec)	Equivalent Hydraulic F Conducti- G vity (m/sec)	Observed Hydraulic Head (m) MSL		
<u>RRL-14 cont</u>										
	Coh	assett C/E	.1	957-1010	957-1010	1.0E-12 to 1.0E-11	1.0E-14 to 1.0E-13	NA		
	Bir	kett FT	1	1004-1037	1012-1036	1.0E-07 tc 1.0E-04	1.0E-09 to 1.0E-06	125 <u>+</u> 1.5		
	Umt	anum FT	1	1132-1163	1135-1156	1.0E-06 to 1.0E-05	1.0E-08 to 1.0E-07	123 <u>+</u> 1.5		
	Umt	anum C/E	1.	1164-1190	1164-1190	1.0E-13 to 1.0E-12	1.0E-15 to 1.0E-14	NA		
	Ver Mg	y High Flow FT	1	1181-1205	1194-1139	1.05-08 to 1.05-07	1.0E-10 to 1.0E-09	NA		
Mc	Gee									
¥	Ros	alia FT	1	247-251	NA .	1.0E-02 to 1.0E-01	NA .	NA		
*	Upp Ro:	er . za FT	i	282-285	NA	1.0E-02 to 1.0E-01	NA .	NA		
¥	Low Ro:	er za FT	1	313-334	326-333	>1.0E-03	>1.0E-05	279 <u>+</u> ?		
¥	Sen: Gaj	tinel pFT	1	335-356	239-350	>1.0E-03	>1.0E-05	<u>.277+</u> ?		
¥	Sano Ho	d 11cu II FT	1	402-420	406-418	>1.0E-03	>1.0E-05	279 <u>+</u> ?		
¥	Sano Ho	d 11ow I FT	1	428-439	429-433	>1.0E-03	>1.0E-04	273 <u>+</u> ?		
*	Sile Fa	ver lls FT	1	440-452	443-450	>1.0E-03	>1.0E-05	278 <u>+</u> ?		
*	Gink	kgo II FT	1	482-512	487-495	>1.0E-03	>1.0E-05	278 <u>-</u> ?		
*	Gink	kgo I FT	1	510-533	517-524	>1.0E-03	>1.0E-04	279 <u>+</u> ?		
¥	Frer Spr	nchman rings FTS	1	538-562	555-560	1.0E-06 :0 1.0E-05	1.0E-07 to 1.0E-05	250 <u>+</u> ?		
÷	Vanț	age IB	1	563-575	567-570	1.0E-08 to 1.0E-07	1.0E-09 to 1.0E-08	282 <u>-</u> 1.5		

Information new to DP-51 Rev. 2

.

·...

-• <u>`</u>	•		•	A.	PAR	Eduivalent	
Bo ho	ore- Strat. Die Horizon	Use Code	Isolated Interval (m)	Effective Test Interval (m)	Transmis sivity (m²/sec)	Hydraulic Donducti- vity (m/sec)	Observed Hydraulic Head (m) MSL
Mc	Gee cont					•	
*	Yantage IB	1	566-592	567-570 581-585	1.0E-07 to 1.0E-06	1.0E-09 to 1.0E-08	187 <u>+</u> 1.5
¥	Grande Ronde II FT	1	593-607	593-597	1.0E-04 to 1.0E-03	1.0E-05 to 1.0E-04	183 <u>+</u> ?
. *	Rocky Coulee FT	1	607-638	607-615	1.0E-04 to 1.0E-03	1.0E-06 to 1.0E-05	183 <u>+</u> ?
¥	Grande Ronde 4 FT	1	649-670	653-662	1.0E-07 to 1.0E-06	1.0E-08 to 1.0E-07	183 <u>+</u> ?
* •	Cohassett FT	1	667-712	670-676 679-681	1.05-04 to 1.05-03	1.0E-06 to 1.0E-05	183 <u>+</u> ?
¥	Grande Ronde 6 FT	1	729-769	738-747	1.0E-06 to 1.0E-05	1.0E-08 to 1.0E-07	180 <u>+</u> 1.5
*	McCoy Canoyn FT	1	799-841	799-802 805-813 815-819	1.0E-06 to 1.0E-05	1.0E-08 to 1.0E-07	183 <u>+</u> ?
*	Very High Mg Flow FT	1	900-952	922-927 /929-936 941-943	1.0E-07 to 1.0E-05	1.0E-09 to 1.0E-08	183 <u>+</u> 1.5
<u>03</u>	RIAN						
¥	Priest Rapids FT	1	183-213	289-212	1.0E-01 to 1.0E+00	1.0E-02 to 1.0E-01	NA
<u>F0</u>	RD			•			
¥	Priest Rapids FT	1	229-237	226716	1.0E-02 to 1.0E-01	1.0E-03 to 1.0E-02	NA
<u>EN</u>	YEART						
¥.	Priest Rapics FT	1	293-333	326-332	1.0E-02 to 1.0E-01	1.0E-03 to 1.0E-02	NA
<u>56</u>	9-52-48						
*	Rattlesnake Ridge IB	· 8	44-59	44-59	1.0E-05	1.0E-06 RHC	NA 9-ST-38

Information new to DP-51 Rev. 2 ŧ

-..

٠

•

.

۰.,

•

•				•				
					Effective		Equivalent Hydraulic	Observed
Bo ho	ne- le	Strat. Horizon	Use Code	Isolated Interval (m)	Test Interval (m)	Transmi ¹ z- sivity (m ² /sec)	Conducti- vity (m/sec)	Hydraulic Head (m) MSL
	·							
*	Rat Ri	tlesnake dge-IB	Ø	45-59	45-59	1.0E-04	1.0E-05 R	NA HO-ST-38
<u>66</u>	9-51	-46						
*	Rat Ri	tlesnake dge IB	0	37-50	37-50	1.0E-05	1.0E-06 R	NA Ho-st-38
66	9-52	-46		-				
¥	Rat Ri	tlesnake dge IB	0	50-69	50-69	1.0E-04	1.0E-06 R	NA H0-ST-38
66	9-58	-45					1	
¥	Rat Ri	tlesnake dge I3	8	41-54	41-54	1.05-04	1.0E-05 R	NA H0-st-38
66	9-50	-48						
¥	Rat Ri	tlesnake dge IB	0	65-76	65215	1.0E-04	1.0E-05 R	NA H0-st-38
<u>66</u>	9-47	-50						
¥	Rat	tlesnake dge IB	0	79-90	79229	1.0E-04	1.0E-05 R	NA HD-ST-38
<u>69</u>	9-51	<u>1-E128</u>						
¥	Lev	I I I	0	69-86	73-81	1.0E-05	1.0E-06 R	NA Ho-BWI-LD-27
<u> 3</u> H	-15				· .			
¥	Sel	ah IB	1	250-282	265-290	1.0E-05 to 1.0E-04	1.8E-86 to 1.8E-85	NA
<u> 3</u> H	-17							
¥	fiso	tin FT	1	312-334	314-318	1.8E-87 to 1.8E-85	1.0E-08 to 1.0E-07	NA

.

Information new to DP-51 Rev. 2

¥

TECENICAL MEMORANDUM

From: Fred Marinelli

To: Adrian Brown Mike Galloway

December 20, 1985

1

Re: Time-Lag in Flow Interior Piezometers

INTRODUCTION

As discussed in the BWIP document entitiled, "Test Plan for Multiple-Well Hydraulic Testing of Selected Hydrogeologic Units at the RRL-2 Site", Rockwell Hanford Operations (RHO) plans to conduct ratio tests (Neuman and Witherspoon, 1972) by pumping from a basalt flow top and measuring associated hydraulic responses within the flow top and also in adjacent flow interiors. An important aspect of ratio tests is to accurately measure the aquitard (flow interior) response using piezometers. It is well known that piezometers can experience time-lag when completed in low permeability materials. To reduce time-lag, RHO plans to use closed piezometer systems in which the riser pipe is sealed by a pneumatic packer and hydraulic responses are measured using a downhole electrical pressure transducer. While this design would be acceptable in most geologic situations, the extremely low permeability of dense basalt might still result in time-lag effects that could potentially affect ratio test

The effects of time-lag are a major concern in interpreting ratio test data. Test analysis, as presented in Neuman and Witherspoon (1972), is highly sensitive to the time at which the initial aquitard response first arrives at the piezometer. If piezometer time-lag results in an overestimation of the actual response time, calculated hydraulic diffusivity will be less than that actually existing within the aquitard. For performance modeling at the EWIP site, underestimates in the diffusity of dense basalt will result in underestimates of vertical hydraulic conductivity, leading to nonconservative performance assessment calculations.

APPROACE

For calculations performed herein, it is assumed that the time required for recovery of a pulse test is comparable to the time-lag of the installation. In a pulse test, an instantaneous pressure differential is induced between the piezometer and the formation. Re-equilibriation of hydraulic head inside the

piezometer is related to the time required for the pressure perturbation to dissipate into the formation. These conditions 'are mathematically analogous to a situation where an instantaneous pressure change occurs within the formation adjacent to the piezometer. Thus, equations describing pulse test recovery aré directly applicable to piezometer response due to a change in formation pressure.

Hydraulic drawdown in a piezometer, experienced after an instantaneous decrease in formation pressure, is given by the following equation (adapted from Bredehoeft and Papadopulos, 1980):

$$s/so = F(a,B) \tag{1}$$

where:

± '

$$a = \frac{PI r r^2 S_5 L}{Cb}$$
(2)

$$B = \frac{PI K L t}{Cb}$$
(3)

s = piezometer	drawdown	[L]	
----------------	----------	-----	--

- so = initial formation drawdown [L]
- F = dimensionless drawdown function []
- PI = 3.14159
- rs = borehole radius [L]
- Ss = specific storage [1/L]
- L = piezometer length [L]
- Cb = wellbore compressibility [L^2]
- K = horizontal hydraulic conductivity [L/T]
- t = recovery time [T]

Wellbore compressibility (Cb) is defined as the volume of fluid added to the wellbore per unit increase in hydraulic head. For an open piezometer, Cb 'is equal to cross-sectional area of the riser pipe. In a closed system, wellbore compressibity is related to the compressibility of borehole fluids and the compliance of downhole equipment (such as expandible packers). For an ideal closed piezometer, a minimum value of C5 is obtained by assuming that wellbore compressibility is related solely to the compressibility of water. In this case:

$$C_{D} = Y_{H} Y_{H} C_{H}$$
(4)

where:

Yw = specific weight of water [M/L²/T²] Yw = volume of water in piezometer [L^3] Cw = compressibility of water [LT²/M]

As discussed by Neuzil (1982), effective wellbore compressibility of real piezometer installations is generally higher than what can be attributed solely to water compressibity. Based on studies reported by Neuzil (1982) and Marinelli and Rowe (1985),

it is reasonable to assume that effective Cb is a factor of 2 to 10 times higher that given by the above equation. The actual factor depends on characteristics of the piezometer installation and the borehole fluids.

According to the solution given above, an infinite time is required to achieve complete recovery. For practical purposes, however, it can be assumed that piezometer time-lag is approximately equal to the time required for 90 percent recovery. This corresponds to:

$$s/so = F(a, B90) = 0.1$$

Values of a and B corresponding to a dimensionless drawdown of 0.1 were obtained by linear interpolation from tables provided in Cooper et al (1967), Papadopulos et al (1973), and Bredehceft and Papadopulos (1980). These values (B90 vs. log[a]) are plotted in Figure 1. Linear regression of the data results in the following empirical relationship:

$$B90 = -1.57 \log(a) + 2.06$$
(5)

Given the value of a, B90 can be calculated. Time required for 90 percent recovery is then determined using the following equation:

$$t90 = \frac{390 \text{ Cb}}{\text{PI K L}}$$
 (6)

where: t90 = time at 90 percent recovery [T]

APPLICATION TO THE ROCKY COULEE FLOW INTERIOR

Estimates of time-lag for the Rocky Coulee Flow Interior piezometer at RRL-2C were made using the equations given above. These calculations were based on the following parameter values obtained either from the RRL-2 test plan or other relevant technical literature:

> rs = .156 m Ss = 3.6 E-07 1/m L = 7.01 m Yw = 1000 N/m⁻³ Cw = 4.25 E-09 m⁻²/N

The following range of horizontal hydraulic conductivities were considered, corresponding to RHO's "best guess" value for the Rocky Coulee Flow Interior plus or minus one order of magnitude:

> Kn = 3.0 E-08 a/d (lower bound) = 3.0 E-07 a/d (RHO "best guess")

$= 3.0 \pm 0.06 \text{ m/d}$ (upper bound)

To obtain minimum (least conservative) values of piezometer time-lag, wellbore compressibility was calculated based on the compressibility of water. The volume of water inside the closed piezometer was calculated to be 0.148 m⁻³. This corresponds to the pore volume of a sand pack with 30% porosity and the internal volume of a 23 meter length of riser pipe, but excludes the volume taken up by other riser pipes within the monitoring installation. Using equation (4), the minimum value of wellbore compressibity was calculated to be:

 $Cb(min) = 6.30 \pm 0.07 \text{ m}^2$

and by equation (2), the corresponding value of a was:

a = .306

Using the empirical relationship in equation (5), B90 was estimated to be:

B90 = 2.87

Finally, based on an assumed value of horizontal hydraulic conductivity, the time required for 90 percent recovery (assumed equal to time-lag) was computed using equation (6). Figure 2 shows predicted piezometer time-lags, corresponding to a wellbore compressibility of 6.30 E-07 m², for the range of horizontal hydraulic conductivity considered.

As previously disscussed, wellbore compressibility based solely on the properties of water tends to underestimate the effective compressibility of the piezometer installation, leading to underestimates of time-lag. To perform more realistic time-lag calculations, wellbore compressibility was increased to $1.9 \pm -06 \mod 2$. This is a factor of about 3 times greater than the value used in previous calculations. Using the procedure previously described, E90 was estimated to be 3.62, and predicted time-lags were calculated by equation (6). Figure 2 shows calculated time-lag for the hydraulic conductivity range of interest. We feel these values are more realistic than those asociated with the lower value of wellbore compressibility. As shown in Figure 2, a time lag of one day is estimated for RHO's "best guess" horizontal hydraulic conductivity of 3.0 $\pm -07 \mod 4$. However, if the actual horizontal hydraulic conductivity of dense basalt were as low as 3.0 $\pm -08 \mod 4$, the predicted time-lag could approach 10 days. For an upper-bound horizontal hydraulic conductivity of 3.0 $\pm -06 \mod 4$, the time-lag is 0.1 day.

Pre-analyzes conducted by REO predict initial ratio test responses in the Rocky Coulee Flow Interior ranging from 2 to 50 days (NEC-DCE, 1985), and our analyzes suggest that piezometer

time-lag could range from 0.1 to 10 days. Thus, considering the range of conditions potentially existing at the RPL-2 site, piezemeter time-lag may or may not be significant factor in interpreting and anlayzing ratio test data. In cases where time-lag is significant, standard ratio test analyses may lead underestimates in vertical hydralulic conductivity, which are nonconservative from the standpoint of performance modeling.

FIELD MEASUREMENT OF TIME-LAG

Since time-lag can be thought of as the time required for recovery of a pulse test, actual field measurement of time-lag for a piezometer installation can be accomplished by performing a standard pulse test and directly measuring (or extrapolating) the time for 90 percent recovery. Piezometers at the RRL-2C site are constructed in such a way that pulse tests can be easily performed. A possible procedure for conducting pulse tests is as follows:

- 1. Install pressure transducer and pneumatic packer (within the riser pipe) just above the monitored interval.
- 2. Expand packer and monitor pressure until static conditions prevail or a background trend is well estabilihed.
- 3. Add a volume of water to the riser pipe, creating 'a hydraulic head differential between the piezometer and the column of water above the packer. The exact height of water column can be measured by steel tape.
- 4. Momentarily deflate and inflate the packer to create an instantaneous pressure change within the piezometer.
- 5. Monition pressure within the piezometer installation and measure (or extrapolate) the time required for 90 percent recovery.

DISCUSSION

After a ratio test is performed, the time of the initial response in the piezometer can be compared to the measured or computed time-lag of the installation. If the facility time-lag is sufficiently less than the initial response time, it can be concluded that time-lag effects need not be considered in interpreting and analyzing ratio test data. If, however, time-lag is comparable to the initial response time, corrections to the data may be required in order to predict the true aquitard response. In extreme cases, piezometer response may be dominated by time-lag effects. This might occur in situations where vertical hydraulic conductivity is relatively high, but the associated (rapid) aquitard response can not be measured due to

5

time-lag effects. In this case, it may only be possible to calcluate a lower bound value of vertical hydraulic conductivity using the ratio method.

REFERENCES

- Bredehueft, J.D. and I.S. Papadopulos. 1980. A method for determining the hydraulic properties of tight formations. Water Resources Research, vol. 16, no. 1, pp. 233-238.
- Cooper, E.E., J.D. Bredehoeft and I.S. Papadopulos. 1967. Response of a finite diameter well to an instantaneous charge of water. Water Resources Research, vol. 3, no. 1, pp 263-269.
- Marinelli, F. and J.W. Rowe. 1985. Performance of drillstem tests in small-diameter boreholes. Ground Water, vol. 23, no. 3, pp. 367-376.
- Neuman, S.P. and P.A. Witherspoon. 1972. Field determination of the hydraulic parameters of leaky multiple aquifer systems. Water Resources Research, vol. 8, no. 5, pp 1284-1298.
- Neuzil, C.E. 1982. On conducting the modified "slug" test in tight formations. Water Resources Research, vol. 18, no. 2, pp. 439-441.
- NRC-DOE. 1985. BWIP large scale hydraulic stress testing: pre-test consultation meeting. December 9-10, Richland, WA.
- Papadopulos, I.S., J.D. Bredehcert and E.E. Cooper. 1973. On the analysis of "slug test" data. Water Resources Research, vol. 9, no. 4, pp. 1087-1089.

RELATIONSHIP SURE BETWEEN P. PEBCENT - - 18 !:: đ :... <u>..</u>.... O - 16 -• 1 • • ٥ H ____ đ Louis AR Recression 1: -12 -Linie -1.57 60 (... Bgo ----. _____Q. -10 **;** : · Ë. Ŧ Ο 4 ;;;;;; Ŀ . : •• ••• **-** . Ī. ÷. i O ٢ ÷ 1. . : i. <u>.</u>... . t . 1 | •••••• 0 • • • . • . :-:: :---i. ... 10-7 10-4 10- 10ï 1 מ 0 ••• ____ -

27 Squarm in the Inch

Full Logarithmic, 3 =

CONDUCTIVITY (m/J)

-

Rockwell Hanford Operations

BINIP	BWIE SUPPORTING DOCUMENT					•	•	Rev./Chg. No.	Page 1
					DUT	70.040			Of
End Function Activity:	Project No.:				CIN No:: Date:				
Cocument Title: Plan f	ydrologic Characterization								
ing of Selected H	lydrogeologic Unit	s at th	ne RRL-2	Base	Eline Doc.	.: Yes			<u>(7A</u>
Site, Basalt Wast	e Isolation Proje	ect, Rei	ference	116.		WORK Packag	e 140.		
Repository Locati	ON L Stratigraphic Formations:	Doc. Type	Subi, Code	Pres	LJU2	Itvae & sign	name)		Date
RRI _ 24 _ 28	Grande Ronde	2055	E926	R.	. Ston	e	A. H.	Lu	11/05
and $-2C$	dialide Nolide	2033	2320	P.	. M. R	ogers	R. W.	Bryce	11/85
					See reve	rse side for a	dditional a	pprovals	
THIS DOCUMENT IS F	OR USE IN PERFORMAN	CE OF WO	AK UNDER	Ŀ	Distribut	ion	Name	Mail	Address
OR FOR PURPOSES WI	THIN THE SCOPE OF THE	SE CONTR	ACTS. DIS-			ROCKWELL	HANFO	RD OPERAT	IONS
SEMINATION OF ITS C	CNTENTS IS HANDLED I	ACCORD	ANCE WITH		υ. J.	Alexand	er	MU-039/	600
THE FREEDOM OF IN	FORMATION ACT.		·	+ +	н. с.	Eabad		CDC/300	0
Abstract				*	S. M.	Baker		PBB/110	0
A comprehensive n	lan for performin	na larna	mn. Descale	*	H. W.	Brandt		MO-410/	600
multiple-well hyd	lraulic tests of u	inits of	f the		W. R.	Brown		MO-039/	600
Grande Ronde Basa	It within and nea	ir the f	Basalt		к. w. т с	Clawson		M0-408/	600
Waste Isolation P	roject reference	reposit	tory	*	R. W.	Cross		PBB/110	000
location on the H	lantord Site has t	been dev	veloped.	*	J. A.	Dill		2101-M/	200E
uate the hydrauli	c characteristics	s of sel	ected		R. C.	Edwards		2101-M/	200E
interflow zcnes a	ind adjacent hydro	ogeologi	ic units,		G. C.	Evans			0
and to characteri	ze the chemical of	composit	tion of	*	L. R.	Fitch		PBB/110	0
groundwater colle	cted from the int	erflow	zones.	*	R. E.	Gephart		PBB/110	0
ification and cla	ssification of h	draulid	le indent-	.*	R. J.	Gimera		PB8/110	0
boundaries, asses	sment of the degr	ee of 1	leakage		J. E.	Grimes		CDC/300	0 ·
into the test int	erflow zones from	n adjace	ent flow		5. ω Δ	Hall		NU-U30/	0 600
interiors, and ev	aluation of the l	ateral	hydraulic	*	G. S.	Hunt	٠	PBB/110	0
continuity of sel	ected intertiow z	cones.	MOST OF	*	R. L.	Jackson		MO-039/	600
al oumped constan	t discharge well	tests.	One		J. M.	Jimenez		MO-410/	600
interflow zone an	d flow interior z	ones wi	ill likely		V. G.	Johnson		PBB/110	0
be tested by an a	Iternate method s	such as	pressure	*	R. D.	Landon		P88/110	0
pulse or constant	head injection t	echniqu	les	*	R. K.	Ledgerw	ood	PB8/110	Ō
The planned seque	nce is to test th	ransmis ne Rockv	/ Coulee	*	L. S.	Leonhar	t	P38/110	0
flow top, Cohasse	t flow top and ir	terior	zones,		P. E.	Long		PBB/110	0
Grande Ronde Ilo.	5 flow top, and L	Imtanum	flow top,	*	R. B.	Mercer		MO-408/	600
in that order. T	he staged constru	iction o	of the	*	D. J.	Moak		10-029/	600
pumping well will individually - Na	ter samples for f	i 90 OJ se blei	ested d	*	W. W.	Pidcoe	nued on re	110-039/	600
laboratory analys	is will be obtain	ied from	the	<u> </u>	COMPL	ETE DOCU	MENT		
interflow zones p	rior to, during,	and aft	er formal		[No ast	erisk, title pa	ige/summa	Ŷ	
pumping tests of	the units. Conve	rgent p	ump		of /evi	sion page onl	v)		
tests after quasi	-steady flow has	heen ee	tablished	Reie	iase Stam	p/Date:			
uiver yuusi 	TACEAL LIGH HAS	Jeen Ca		1					
				į	F		Т	-	
				1	L	J'A'Y'	,I		
Prepared By: Rockwe	11	Oate: _	01/86	1	5,	120/86	0		
(Company d	& Cantract No.)					•		·	
Her Bur Rockwe	11								
[Company]		·	<u> </u>						[

.

. .

A-6400-216

Page Z	Number	Rav./Chg. No.	
01	so- BWI-TP-040	0	BWIP SUPPORTING DOCUMENT
	Approvals (Type and Sign Nar	re) Date	Distribution Name Mail Address
Ø	Author's Immediate Manager W.H. Price/S. M.	Baker	* S. M. Price PBB/1100 * W. H. Price MO-029/600 * P. J. Reder CDC/3000
	Configuration Management P. J. Red	er	* P. M. Rogers PBB/1100 * R. A. Schroder MO-039/600
\boxtimes	End Function/Department Manager	+	* R. M. Smith PBB/1100 * F. A. Spane N0-029/600 * G. L. Spate N0-029/600
X	Patentacility/Sensitive Material Reviewer		* R. Stone(3) M0-408/600 * S. R. Strait
Ø	Cuelity Assurance R. T. Johnson		* L. C. Swanson MO-408/600 * A. M. Tallman PBB/1100
\boxtimes	Systems Integration Cepartment Manager W I Hajlman		* P. D. Thorne NO-408/600 * W. F. Todish (orig.) CDC/3000
X	R. L. NETTHIAN Systems Integration Group Menager J. F. Marron	<u> </u>	- B. G. LUTTLE MO-029/600 * M. D. Veatch PBB/1100 * F. J. Wallick PBB/1100
	Associate Director		* T. J. Wood - MO-029/600 * R. A. Yeatman MO-408/600
	Olrector		*D & T Tech FilesM0-029/600*BWIP LibraryPBB/1100
	Engineering / Construction Manager		* BRMC (2) CDC/1100 PACIFIC NORTHWEST LABORATORY
	Exploratory Shatt Prog. Manager		* M. P. Bergeron SIGMA V/3000 * C. R. Cole SIGMA V/3000 * D. A. Cole SIGMA V/3000
	Safety Representative J. V. HORAT	t	* P. A. Eddy SIGMA V/3000 * M. J. Graham SIGMA V/3000
Ģ	Licensing Meneger J. Grahar	 	U.S. DEPARTMENT OF ENERGY-RICHLAND
	Repository Program Manager		*P. J. KrupinFED/700*A. G. LassilaFED/700*K. M. ThompsonFED/700
XI T	Technical Review: S. R. S	trait	YAKIMA INDIAN NATION
ы ГЯ	Technical Review: F. A. S	pane	* L. L. Lenman CONFED. TRIBE OF THE UMATILLA INDIANS
	Technical Review: L. S. Lo	eonnart	 * WASHINGTON STATE DEPT. OF ECOLOGY * D. W. Stevens
			U.S. NUCLEAR REGULATORY COMMISSION * Branch Chief, High-Level Waste Technical
			Development Branch * Branch Chief, High-Level Waste Licensing
<u> </u>			Management Branch * Director, Division of Waste Management
	-		Management (4)
Pttr Ra	new Identification Nots);		* G. A. DIGWIGHTE U.S. GEOLOGICAL SURVEY/RESTON U.S. GEOLOGICAL SURVEY/TACOMA L. 3. Jaird

.

.

.

A-6400-216R [1-66]

SD-EWI-TP-040 REV 0

Plan for Multiple-Well Hydraulic Testing of Selected Hydrogeologic Units at the RRL-2 Site, Basalt Waste Isolation Project, Raference Repository Location

> Randolph Stone Phillip H. Rogers Allen H. Lu Robert W. Bryce

Site Department Basalt Waste Isolation Project

January 1986

Prepared for the United States Department of Energy Under Contract DE-ACOG-77RL01030

4

Rockwell International Rockwell Hanford Operations North American Space Operations Richland, Washington 99352

5.)-fx/I-TP-040 :XEV_0

CONTENTS

Enscurive Summary
Inercoluction.
Objectives of the Tests
Scope and Relationship of Tosts to Basalt Maste Isolation Project Rest Program
Justification of Hosed for Tests
Description of Terts. Secting and Facilities. Site Hydrogeologic Description Halls, Piezometers, and Eoreholes. Hature of Tests and Their Sequence. Test design Hydraulic Test Design Trees Test Design Occundencer Sampling and Analysis. Equipment Neguirements. Equipment for Hydraulic Testing Sequipment for Hydraulic Testing Sequipment for Tracer Testing. Equipment for Tracer Testing. Sequipment for Tests Data Instrumentation and Data Collection Deta Storage and Display. Data Analysis and Evaluation.
Safcty
Environdanual Efforts
Cuality Auguranco
Organizational and Functional Responsibilities
Senedula
Megores
Sullacry
Acknowledgements
Appendix: Test Evaluation Using Models with Analytical Solutions

DRAFT

EXECUTIVE SUMMARY

This document contains a plan for performing large-scale, multiple-well hydraulic tests of units of the Grande Ronde Basalt, within and near the Basalt Waste Isolation Project reference repository location on the Hanford Site. The purposes of the hydraulic testing are to evaluate the hydraulic characteristics of selected interflow zones and adjacent units, and to characterize the chemical composition of groundwater collected from the interflow zones. Additional objectives of the tests are to identify and classify hydraulic boundaries, to assess the degree of leakage into the test interflow zones from adjacent flow interiors, and to evaluate the lateral hydraulic continuity of selected interflow zones.

The test will be performed using a pumping well located at the RRL-2 site. Two observation wells near the pumping well will be utilized. Several wells and boreholes at greater distance will also be used in the tests. The pumping well will be advanced incrementally through the Grande Ronde Basalt so that each horizon to be tested can be investigated individually and then sealed before proceeding to the next horizon. One of the observation wells near the pumping well will provide the means to measure formation pressure in three flow interiors.

The Cohassett flow is the designated repository horizon, therefore knowledge of its hydraulic characteristics and those of adjacent and subjacent units is necessary for site characterization and repository performance assessment. With the likely exception of the Cohassett flow top and portions of the Cohassett flow interior that may be tested, the interflow zones of interest (Rocky Coulee, Grande Ronde No. 5, and Umtanum flow tops) can be tested using conventional pumped constant discharge well tests. It is assumed that the Cohassett flow top and Cohassett flow interior zones will be tested by an alternate method such as a pressure pulse or constant head injection technique because of their very small estimated transmissivity.

The planned sequence is to test the four horizons of interest in the pumping well, Rocky Coulee flow top, Cohasset flow top and interior zones, Grande Ronde No. 5 flow top, and Umtanum flow top, in that order. Water samples for field and laboratory analysis will be obtained from the flow tops in connection with pumping tests in the units. Convergent pulse tracer tests will be initiated during the pumping tests after quasi-steady flow has been established and after the ratio test is complete. Different tracers will be injected at the two observation wells to faciliate identification of the source of pulses that arrive at the pumping well.

The first test, of the Rocky Coulee flow top, will be performed by discharging groundwater from the flow top at a constant rate from a pumping well designated RRL-28 which is centrally located in the reference

SD-BWI-TP-040 REV 0

DRAFT

repository location on the Hanford Site. Water level and/or pressure measurements in the tested unit, adjacent flow interiors, and adjacent flow tops will be performed before, duing and after pumping. Nine observation wells and boreholes will be used during the Rocky Coulee test. These wells and boreholes are disposed about the pumping well at distances of from 76 m (250 ft) to 7,080 m (23,200 ft).

The Rocky Coulee flow top test was designed using estimates of transmissivity from single-well tests. A pumped discharge rate of 43.6 m³/day (8 gpm) was selected based on numerical simulations which assumed homogeneous, isotropic aquifer conditions. A transmissivity value for the Rocky Coulee flow top equal to the geometric mean of transmissivity values obtained from single-well test analyses, was used in the simulations. The simulations predict about 263 m (863 ft) of drawdown at the pumped well after 50 days of pumping. Somewhat more than 0.6 m (2 ft) of drawdown in the Rocky Coulee flow top at 2,500 m (8,200 ft) from the pumping well is predicted for the same time after the onset of pumping. This amount of drawdown is judged to be measurable and interpretable.

A convergent pulse tracer test in the Rocky Coulee flow top will be initiated during the pumping test after quasi-steady flow has been established and after the ratio test is complete. Conservative tracer solutions of ammonium thiocyanate and lithium bromide will be injected into observation wells located at 76 m (250 ft) and 152 m (500 ft), respectively, from the pumping well. Mean tracer transit times from injection to arrival at the pumping well are expected to be about 1.3 and 5 days, respectively. Estimates of flow top effectively porosity and dispersivity will be derived, based on the measured tracer transit times and tracer breakthrough curve characteristics.
SD-EVI-TP-040 REV 0

DRAFT

INTRODUCTION

This report presents a plan for performing large-scale, multiple-well hydraulic tests of units of the Grande Ronde Basalt within and near the Basalt Waste Isolation Project (BWIP) reference repository location (RRL) on the Hanford Site. The tests will be performed using a pumping well located at the RRL-2 sito (Figure 1). Testing will be achieved by withdrawing water from (or injecting water into) selected basalt interflow zones (commonly.referred to as flow tops or flow bottoms) in the pumping well, or by applying pressure pulses to selected interflow zones. The changes in water level and/or pressure in the interflow zones and flow interiors that result from these actions will be measured at several locations in and near the RRL. The measured changes in water level and pressure will be used to calculate estimates of the hydraulic conductivity and storativity of the interflow zones and flow interiors and will assist in identifying hydraulic boundaries that may exist in and near the RRL.

While withdrawing water from the selected interflow zones in the pumping well, samples of the groundwater will be obtained to characterize its chemical composition. Also, tracers will be injected into selected interflow zones in coservation wells and retrieved by pumping from the pumping well for the purpose of obtaining dispersion and travel time data that will be the basis for estimation of the effective porosity and dispersivity of the interflow zones.

The purposes of the hydraulic testing at the RRL-2 site are to evaluate the hydraulic characteristics of the selected interflow zones and adjacent hydrogeologic units, and to characterize the chemical composition of groundwater collected from the interflow zones. Estimates of the values of the hydraulic characteristics of interflow zones and flow interiors are needed to supplement and check information already available and to help form the basis for repository performance assessment. Characterization of the chemical composition of water from the Grande Ronde Basalt is a step toward understanding the origin and history of the water, and its pattern of flow.

OBJECTIVES OF THE TESTS

Several general objectives of the large-scale hydraulic testing at the RRL-2 site have been identified. These include:

 The facilitation of design of additional large-scale hydraulic tests of hydrogeologic units at other locations on the Hanford Site. · KEY U .

DRAFT

2X8510-18.14

Ł

FIGURE 1. Location of RRL-2 site and principal observation sites for hydraulic testing of Grande Ronde Basalt units.

シ

REY 0

- DRAFT
- Identification and classification of hydraulic boundaries. (These boundaries may later be correlated with rock inhomogeneities and structures that influence groundwater flow in the RRL.)
- Characterization of the nature of dissolved substances in , groundwater removed from selected Grande Ronde Basalt flow tops at the RRL-2 site.
- Assessment of the areal representativeness of hydraulic characteristic values obtained by previous single-well testing.
- Assessment of the degree of leakage into the test interflow zones from adjacent flow interiors.
- o Evaluation of the lateral hydraulic continuity of selected interflow zones in the Grande Ronde Basalt in the RRL.

Specific requirements for evaluation of hydraulic characteristics of units of the Grande Ronde Basalt lead to a series of specific test objectives for the hydraulic testing at the RRL-2 site. These test objectives include:

- Evaluation of lateral hydraulic conductivity, storativity, effective porosity, and longitudinal dispersivity of interflow zones.
- 2. Evaluation of vertical hydraulic conductivity of flow interiors using parameter variation and analytical techniques.

Details of how the test objectives will be fulfilled by the planned testing program at the RRL-2 site are found in the section on the test description. A synopsis of the methods to be used in fulfulling the general test objectives is presented here: 1) Identification of hydraulic boundaries will depend largely on the analysis of drawdown and recovery hydrographs and the recognition of hydrograph shapes diagnostic of a variety of possible hydraulic boundaries. 2) Water samples will be collected from the water pumped from the pumping well (well RRL-2B). These samples will be analyzed to provide a characterization of their dissolved chemical and gas content. 3) The hydraulic characteristic values estimated from the results of pumping from well RRL-28 will be compared with single and mean values of the same hydraulic characteristics as determined in single-well tests to provide an assessment concerning the representativeness of the latter. 4) The degree of leakage into the interflow zones of the Grande Ronde Basalt will be qualitativity assessed by inspection of drawdown hydrographs. Departure of drawdown records from the theoretical confined aquifer drawdown (as in the case of a leaky aquifer) may be quite obvious and easy to recognize. 5) Hydraulic continuity of flow tops can be evaluated by observing water levels in wells other than the pumping well. Where drawdown occurs in an observation well in a particular unit that is being pumped, it can be inferred that some hydraulic connection exists

DRAFT

between the pumped well and the observation well, in the pumped unit. 6) The specific test objectives will be fulfilled by fitting various flow models to the observed pressure and water level responses to pumping from or injecting into well RRL-2B and to the history of recovery of tracers from pumping well RRL-2B. The model comparisons with observed response will provide estimates of the values of lateral hydraulic conductivity, storativity, longitudinal dispersivity, and effective porosity of the interflow zones as well as estimates of the vertical hydraulic conductivity of flow interiors.

> SCOPE AND RELATIONSHIP OF TESTS TO THE BASALT WASTE ISOLATION PROJECT TEST PROGRAM

The large-scale hydraulic tests planned in this document are designed to cause water level and pressure changes in selected interflow zones that can be measured as far as several miles away from the pumping well. The primary observation wells at distance from well RRL-2B are piezometer clusters DC-19C, DC-20C, and DC-22C (Figure 1), which are described in the section on facilities. Hydraulic test design has focused on attempting to ensure measurable hydraulic response at piezometer clusters DC-20C and DC-22C. Because of the greater distance from well RRL-2B to piezometer cluster DC-19C, it may be difficult to propagate measurable responses from the pumping well to piezometer cluster DC-19C within a reasonable period of time.

The planned large-scale, multiple-well hydraulic tests of selected hydrogeologic units above and below the Cohassett flow interior (the designated repository horizon) within the RRL are part of the overall strategy for hydraulic testing at the Hanford Site as given in the Interim Site Investigation Program Plan (Rockwell Hanford Operations, 1985). As snown in Figure 2, these tests are identified in stage 2 of the overall BWIP hydrologic test strategy which is one of the centerpieces of the BWIP site hydrologic characterization effort. Data collection for establishment of background hydraulic head time-series trends at various locations at the site, a major part of stage 1 of the site hydrologic test strategy, is currently in progress.

This plan is prepared only for the large-scale hydraulic testing identified in Stage 2. Implementation of stages 2, 3, and 4 will provide data from several long-term pumping tests using several pumping wells at different locations in and near the RRL. This will facilitate evaluation of hydraulic characteristics of units of interest, and will provide the opportunity to investigate and identify hydraulic boundaries in the groundwater systems that could not otherwise be studied. Testing using several pumping wells, pumped individually in separate tests may also provide insight into the character and mechanism of vertical flow across basalt flow interiors that could not be obtained in a single test.

FIGURE 2. Logic diagram for BWIP hydrologic test strategy. (after Nuclear Regulatory Commission, 1983a)

אבע ט

ġ

DRAFT

During the reconnaissance stage of hydrologic investigation at the Hanford Site, most hydraulic tests were performed in single boreholes (Strait and Mercer, 1984). These tests have provided good local estimates of hydraulic conductivity, however, the representativeness of these conductivity values on larger scales has been questioned and remains unknown (Nuclear Regulatory Commission, 1983). The long-term, largescale, multiple-well hydraulic tests described in this plan represent an advance from the reconnaissance stage of the BWIP hydrologic testing program.

JUSTIFICATION OF NEED FOR TESTS

The information to be obtained from the planned tests is needed, first, to help firmly establish a conceptual model that adequately describes the pattern of groundwater flow in and near the RRL, and second, to provide hydraulic characteristic values that can be used with that model to provide accurate repository performance assessment as required by the Nuclear Regulatory Commission (1983b). Of particular importance is the estimation of hydraulic parameter values that can be used to estimate groundwater flow speed beneath the RRL.

The information to be obtained from the large-scale hydraulic testing at the RRL-2 site (and within the area of influence of the tests) will be useful to help establish boundary conditions to be used in groundwater flow models of the RRL and nearby areas, will provide estimates of hydraulic characteristic values to be used in the models, will provide additional chemical characterization of groundwater which may be useful in postulating patterns of groundwater flow, and will facilitate planning for further large-scale hydraulic testing.

Large-scale, multiple-well hydraulic tests are required to supplement the small-scale information collected previously. Some parameters such as aquifer storativity, porosity, and dispersivity are best estimated from multiple-well tests. Some of the predictive models employed in repository performance assessment and other models used to portray the features of groundwater flow on the scale of the RRL and the Hanford Site deal with the heterogeneous nature of hydrogeologic charactaristics. It is important that the characteristic values used in the models be representative of the actual average site conditions on the scale of the models. Large-scale, multiple-well hydraulic tests will help assure that hydraulic parameter values used in performance assessment modeling will meet this requirement.

The designated repository horizon is contained within the Grande Ronde Basalt Formation. Representative hydraulic parameter values of this and adjacent horizons are necessary for repository isolation system performance assessment. Thus, large-scale, multiple-well hydraulic testing of selected hydrogeologic units in the Grande Ronde Basalt Formation is given high priority.

REV 0

DRAFT

Well RRL-2B is located within about 150 m (500 ft) of the Exploratory Shaft (ES) site which is fairly centrally located within the RRL. Testing at well RRL-2B would, therefore, provide the opportunity to evaluate hydraulic characteristics of units in the Grande Ronde for the central portion of the RRL and the ES site. The evaluation will be of value in predicting the amount of groundwater inflow to the mined region during construction of the underground test area after ES completion. It may also help detect any geologic structures that could have mine safety significance.

It is important to test units of the Grande Ronde Basalt at the ES site prior to construction of the shafts because of possible alteration of the groundwater regime in the vicinity of the shafts. For example, alteration of the units may occur when the shaft is grouted as a result of grout migration into relatively permeable interflow zones. Another possibility is incomplete sealing of the ES annulus, which might allow interconnection of interflow zones. Also, the observation wells, near the ES, prepared for the multiple-well testing may be monitored during ES construction to assess the hydraulic effects thereof. For these reasons and for those given in the proceeding two paragraphs, stage 2 of the hydrologic test strategy (Figure 2) specifies that the first large-scale hydraulic testing will be at the RRL-2 site and the tested information will be the Grande Ronde Basalt.

DESCRIPTION OF TESTS

SETTING AND FACILITIES

Site Hydroneologic Description

<u>Geology</u>. The RRL lies within the central portion of the Cold Creek syncline (Figure 3). This syncline is located in the Pasco Basin, one of several structural and topographic basins within a subprovince of the Columbia Plateau termed the Yakima Fold Belt. Within the Pasco Basin were deposited many flows of the Miocene Columbia River Basalt Group (Figure 4). Because of their low viscosity and great volume, the lavas spread considerable distances from their source vents located mainly in the east and southeast portions of the Columbia Plateau.

The Hanford site is underlain by at least 50 basalt flows with a cumulative thickness greater than 3,000 m (9,800 ft) (Reidel et al., 1981). Sasalt flows originally identified as candidate repository horizons lie between about 807 and 1,100 m (2,650 and 3,600 ft) below ground surface in the RRL in the Grande Ronde Basalt. The designated repository horizon (Cohasset flow) has an average thickness within the Cold Creek syncline of more than 50 m (200 ft).

FIGURE 3. Extent of the Columbia River Basalt Group, Pasco Basin, and reference repository location.

8

REV O.

DRAFT

DEPTH BELOW GROUND SURFACE

1

REV 0

DRAFT

WTEREEDS ARE STRATIGRAPHICALLY CONTAINED IN THE ELLENSBURG FORMATION

ALFIRCP1207-46

FIGURE 4. Stratigraphy of the Columbia River Basalt Group, from within the Grande Ronde to the surface, and sediments within the RRL.

DRAFT

The Grande Ronde Basalt within the RRL is overlain by up to 20 flows of the Wanapum and Saddle Mountains Basalts. These two formations have a cumulative thickness of approximately 700 m (2,300 ft) and are interspersed with sediments of the Ellensburg Formation. In the Cold Creek syncline, the Saddle Mountains Basalt is overlain by approximately 200 m (650 ft) of Miocene-Pliocene fluvial and lacustrine sediments of the Ringold Formation and Pleistocene fluvial deposits of the Hanford Formation.

East-west trending anticlinal ridges of the Yakima Fold Belt border the Pasco Basin on the north and south and plunge into the Basin to the east. Many of the faults within the basin are associated with anticlinal folds and likely developed concurrently with folding (Price, 1982).

The Cold Creek syncline lies between the Umtanum Ridge-Gable Mountain anticline on the north and the Yakima Ridge anticline to the south (Figure 3). Geneath the RRL the basalt formations are nearly flat lying.

Individual basalt flows range in thickness from less than a meter to more than 100 m (300 ft). Average basalt flow thickness is between 30 to 40 m (100 to 130 ft) (Swanson and Wright, 1976). The basalt flows generally consist of an upper vesicular and/or brecciated flow top overlying a more dense jointed interior. The flow top typically accounts for about 15-percent of the total flow thickness.

Most fractures within flow interiors are joints created by contraction during original cooling of the flows (Long and Davidson, 1981). Individual fractures in the flow interiors range in length from a few centimeters to several meters. Post-emplacement tectonic fractures may be locally important in flow interiors and could transect several flows.

Well-developed basalt flow interiors consist of entablature and colonnade. The entablature is comprised of variably jointed rock with relatively small [0.2 to 0.9 m (0.7 to 3.0 ft) diameter] columns. Column orientation is commonly subvertical, but ranges from vertical to horizontal. The colonnade consists of relatively well-formed columns [0.5 to 2 m (1.6 to 6.5 ft) diameter] with fewer fractures than the entablature. Columns are normally upright but radiate locally and exhibit a variety of internal features. In some flows, the entablature overlies a single colonnade; in other flows, colonnade and entablature zones may be repeated in the flow interior (Department of Energy, 1982). The basal portion of basalt flows is usually a thin zone of fractured glassy basalt.

Groundwater Hydrology. Groundwater beneath the Hanford Site occurs in a shallow, unconfined aquifer consisting of fluvial and lacustrine sediments lying atop the basalts, and under confined conditions within flow tops and interpeds of the basalt sequence at greater depths.

The unconfined aquifer thickness varies between 0 and 75 m (0 to 250 ft). It is thickest along the eastern edge of the RRL, where 40

DRAFT

years of local water disposal to surface ponds has raised the water table approximately 25 m (80 ft) (ERDA, 1975). Groundwater recharge to the unconfined aquifer is from both precipitation and intrabasin runoff from surrounding hills, and artificial recharge from water disposal into ponds. Discharge from the unconfined aquifer is to the Columbia River.

The main groundwater occurrence and horizontal movement in basalt formations is within the flow tops and sedimentary interbeds. The basalt flow interiors that separate individual flow tops appear to act as aquitards, with minimal storage capacity, through which some degree of vertical leakage occurs along fractures. The dominant pathways for groundwater movement in the basalt sequence may be:

- The more permeable contact zones between basalt flows and in sedimentary interbeds.
- o Structural discontinuities such as tectonic fracture zones that may transect the basalt flows.
- o Stratigraphic discontinuities within the Basalt flows.
- o Cooling fractures within the basalt flows that allow distributed vertical flow (leakage) between them.

Local groundwater recharge to the shallow basalt units beneath the Hanford Site likely occurs where flow downward from the unconfined aquifer takes place and also results from precipitation and runoff on the basalt outcrops in the uplands at the margins of the Pasco Basin. Natural recharge to aquifers in the shallow basalt units from the overlying unconfined aquifer has been reported by Spane et al. (1980) and Gephart et al. (1976) to occur on the Hanford Site, where favorable potentiometric conditions and hydraulic communication exist. This is expected to take place, for example, in the Gable Mountain Pond area near the southwest corner of Gable Mountain.

The mechanism(s) of groundwater recharge to the deep basalt units is the subject of current investigation. Groundwater likely discharges from shallow basalt units to the overlying unconfined aquifer and, thence, to the Columbia River, near the river. Hydraulic head gradients directed upward from the shallow basalt units to the unconfined aquifer near the river support this concept (Department of Energy, 1982). The discharge pathways for deeper basalt units is still under investigation.

Wells, Pfezometers, and Boreholes

Large-scale hydraulic tests conducted in the Grande Ronde Basalt at the RRL-2 site will utilize one pumping well and two observation wells close to the pumping well. These three wells are shown in plan in Figure 5. The

FIGURE 5. Plan view showing the approximate surface location of wells and boreholes at the RRL-2 site.

RRL-2A

2X8510-18.20

91 m (300 ft)

•

٤S

ユ

DRAFT

facilities at the RRL-2 site consist of the small diameter borehole RRL-2A, the pumping well RRL-2B, and the piezometer nest RRL-2C. Both borehole RRL-2A and well RRL-2C will be used as multiple-level observation wells. Well RRL-2B will be advanced incrementally through the Grande Ronde Basalt so that each horizon to be tested can be investigated individually and then sealed before proceeding to the next horizon.

The other wells, piezometers, and boreholes completed in the Grande Ronde Basalt that will be used as primary observation points during the large-scale pumping tests appear on Figure 1 and include: piezometer clusters OC-19C, OC-20C, and DC-22C, boreholes RRL-6, RRL-14, and OC-4, and the McGee Well. The primary observation boreholes, wells, and piezometers . for the Grande Ronde tests are summarized with their distances from the pumping well in Table 1.

Hydraulic head measurements will be made at all other observation points in the Hanford Site groundwater monitoring network (Swanson and Leventhal, 1984) during large-scale testing of the Grande Ronde. The measurements will include head measurements in wells and piezometers completed in the Wanapum and Saddle Mountains Basalt Formations above the Grande Ronde Basalt as well as in the unconfined system.

<u>Vell RRL-28</u>. Pumping well RRL-28 has been drilled and is presently completed in the Rocky Coulee flow top. The well is constructed so that selected hydrogeologic units (Rocky Coulee flow top, Cohassett flow top, Cohassett vesicular zone, Grande Ronde No. 5 flow top, and Umtanum flow top) within the Grande Ronde Basalt can be tested using a drill-test staged approached. (The flow immediately beneath the Cohassett flow in the lower Cold Creek Syncline is the fifth flow below the top of the Grande Ronde Basalt Formation. Hence, it is currently referred to as the Grande Ronde No. 5 flow. At the McGee Well, in the upper Cold Creek Syncline, an additional flow exists above the Cohassett. The flow immediately below the Cohassett flow is referred to as the Grande Ronde No. 6 flow, in that area. The flow beneath the Conassett flow is correlative throughout the Cold Creek Syncline regardless of its numerical sequence from the top of the Grande Ronde Basalt). This approach allows for hydraulic testing of a horizon prior to deepening the well to test other horizons. Upon completion of hydraulic testing in each horizon, the well will be lined and cemented before drilling to the next test horizon. The lowermost test horizon will not be lined or comented. A detailed description of the plans for construction of well RRL-2B is given by Jackson and Jones (1984). The general design for well RRL-28 is shown in Figure 6.

A positive displacement (sucker rod) pump, operating within 7.3 cm (2.075 in) tubing anchored in well RRL-28 by a packer, will be used to pump from the Rocky Coulee flow top. The general arrangement of the rod pumping system is shown in Figure 7. The rod pump fits into the seating nipple with a water tight seal. This arrangement eliminates wellbore storage in the pumping well, provides for rapid movement of water to the ground surface in the small (7.3 cm) tubing, and will allow pressure measurements

.

Ć

DRAFT

.	······································	Approximate Distance From		
	Observation Facility	Well . (m)	RRL-2B (ft)	
	Piezometer Nest RRL-2C	76	250	-
	Borehole RRL-2A	152	500	
	Borenole RRL-ó	2,250	7,400	
	Borehole RRL-14	2,250	7,400	•
	Plezometer Nest DC-22C	2,410	7.900	
	Piezometer Nest DC-20C	2,570	8,450	
	Borehole DC-4	2,900	9,500	
•	Piezometer Nest DC-19C	5,470	18,000	
•	McGee Well	7,080	23,200	

TABLE 1. Primary Observation Wells, Piezometers, and Boreholes to be Used in Large-Scale Hydraulic Test of Grande Ronde Units.

14

·

• •

FIGURE 6. Proposed design of well RRL-2 B.

REV 0

DRAFT

FIGURE 7. Configuration of well RRL-28 for testing the Rocky Coulee basalt flow top.

SU-BW1-TP-040 REV 0

DRAFT

at formation depth to be made using the Seling triple pressure probe, described in the section on instrumentation. Pumping tests of the Grande Ronde No. 5 flow top and Umtanum flow top will likely be accomplished using large capacity submersible pumps and a substantially different pump system configuration than that shown in Figure 7. The expected small hydraulic conductivity of the Cohassett flow top (Strait and Mercer, 1984) will likely make pumping from the unit impractical. If pulse tests in well RRL-28 indicate that the Cohassett flow top has substantial conductivity, it will be tested by pumping.

<u>Piezometer Nest RRL-2C</u>. Piezometer nest RRL-2C will provide the means to measure head and formation pressure in three flow tops in the Grande Ronde (Rocky Coulee, Cohassett, Grande Ronde No. 5) and formation pressure in three flow interiors (Rocky Coulee, Cohassett, Grande Ronde No. 5). This multiple-level piezometer differs from others in and near the RRL in that the RRL-2C design permits pressure monitoring of basalt flow interiors as well as flow tops. The general completion details of well RRL-2C are shown in Figure 8.

Pressure in the flow interiors will be measured using a transducer mounted below a wireline packer set just above the screen in the piezometers completed in the flow interiors (Figure 9). The shut-in pressure measurements in flow interior piezometers are required to avoid the unacceptably large response lag associated with open standpipes completed in material of very small hydraulic conductivity. Well RRL-2C, with its piezometers completed in flow interiors and flow tops, provides an opportunity to estimate vertical hydraulic conductivity of flow interiors using the ratio method described by Neuman and Witherspoon (1972), and numerial methods described in a subsequent section. Detailed description of the plans for construction of well RRL-2C can be found in Jackson and Jones (1984). The vertical position of the flow interior piezometers is considered in the section on hydraulic test design.

Ecrehole RRL-2A. Borehole RRL-2A was completed as a 7.5 cm (2.98-in.) diameter core hole to a total depth of 1211 m (3,973 ft). The configuration of the borehole as originally completed is shown in Figure 10. It was drilled in 1982 to acquire subsurface information to assess the suitability of the ES site and to aid in selection of ES porthole locations (Wintczak, 1984). The deepest string of casing in borehole RRL-2A was run to 827 m (2,713 ft) and cemented.

During hydraulic tests of the Rocky Coulee flow top, borehole RRL-2A will contain bridge plugs (packers) to isolate selected flow tops as shown in Figure 11. The flow tops are generally distinguished from flow interiors using borehole geophysical logging and coring techniques. The neutron-epithermal-neutron log of Figure 11 illustrates one of these techniques. The flow tops are distinguished by their reduced epithermalneutron count. The hydrogen in water in the pores of the flow tops effectively moderates the fast neutrons from the source to less than epithermal energy levels. The bridge plugs, which are set in flow

FIGURE 8. Schematic of Grande Ronde completions in piezometer nest RRL-2C.

FIGURE 9. Wireline packer to be used in flow interior piezometers in well RRL-2C. (Transducer assembly will thread onto the pressure-sealed electrical feed through sub).

FIGURE 10. As-built configuration of borehole RRL-2A (from Wintczak, 1984).

REV O

DRAF

REV O

DRAFT

FIGURE 11. Configuration of borehole RRL-2A for hydraulic tests of the Rocky Coulee flow top. (Bridge plugs and packers not to vertical scale).

DRAFT

interiors, prevent vertical hydraulic interconnection of various flow tops in the borehole. The flow tops so isolated in borehole RRL-2A are: Umtanum flow top, McCoy Canyon flow top, Grande Ronde No. 5 flow top, and Cohassett flow top. The Rocky Coulee flow top will be isolated within a straddle packed interval during its hydraulic test.

Some preparation and evaluation was carried out prior to installing the straddle packer pressure monitoring system below the 8.9 cm (3.5-in.) casing in borehole RRL-2A. These activities included:

- Dynamic fluid temperature logging of Cohasset and Rocky Coulee flow tops.
- Brief hydraulic tests of zones in the Cohassett flow interior that were previously hydraulically fractured in measurement of in situ stress. These tests were to determine if the hydraulic conductivity in the vicinity of the borehole was materially changed by the in situ stress measurements. The
 results indicate that no measureable change in hydraulic conductivity occurred.
- o Placing bridge plugs to isolate flow tops from one another.
- Installing the straddle packer system to isolate the Rocky Coulee flow top.

During construction, the Rocky Coulee flow top was cemented in borehole RRL-2A to control drilling fluid loss. The Rocky Coulee flow top was, however, not completely sealed from the borehole as has been indicated by the dynamic fluid temperature logging mentioned above.

Pressure responses in the Cohassett flow top at borehole RRL-2A to pumping or pressure pulsing at well RRL-2B can be measured after removal of bridge plugs in the Rocky Coulee flow interior and the upper Cohassett flow interior and repositioning of the straddle packer assembly across the Cohassett flow top. Measurement of pressure response in the Grande Ronde No. 5 flow top will require at least the removal of the bridge plug in the lower Cohassett flow interior and repositioning of the straddle packer assembly. (Pressure can be sensed and measured above, within, and below the packed-off interval.)

Measurement of pressure response in borehole RRL-2A in the Umtanum flow top to pumping the flow top in well RRL-2B will require removal of all but the lowermost bridge plug and repositioning of the straddle packer assembly. This action will result in the interconnection of several flow tops above the upper packer of the straddle packer assembly. The benefits of measuring pressure transients in the Umtanum versus the effects of hydraulic interconnection of flow tops must be considered before such action. If the Umtanum flow top is tested by pumping well RRL-2B, the action may be justified because borehole RRL-2A will be the only nearby

DRAFT

observation point in the Umtanum (well RRL-2C does not have a piezometer in the Umtanum flow top).

Piezometer Nests DC-19C, DC-20C, and DC-22C. Piezometer nests DC-19C, DC-20C, and DC-22C are located in and near the RRL and were recently constructed for the purpose of measuring time series hydraulic heads in flow tops in the Wanapum and upper Grande Ronde Basalts. The configuration of the piezometers in a typical C-series piezometer nest is shown in Figure 12. Details of construction of the piezometer nests are given in Jackson et al. (1984).

<u>Eorehole RRL-6</u>. Borehole RRL-6 was completed as a 2.98-in. (7.6 cm) diameter core hole to a total depth of 1,231 m (4,040 ft) (Patterson, 1983). The configuration of the borehole as originally completed is shown in Figure 13. The deepest string of casing in borehole RRL-6 was run to 866 m (2,843 ft) and cemented. Bridge plugs have been set in flow interiors, as shown in Figure 14, to prevent vertical hydraulic interconnection of various flow tops in the borehole. The Rocky Coulee flow top will be isolated below a packer during its hydraulic test. The Rocky Coulee was cemented during the drilling of borehole RRL-6. It is hoped that complete sealing of the Rocky Coulee flow top did not occur. Testing of the Rocky Coulce flow top at borehole RRL-6 will investigate this possibility prior to the major test. Pressure monitoring in units below the Rocky Coulse flow top will require that bridge plugs be removed from borehole RRL-6 and that the packer be repositioned. This procedure would continue as with borehole RRL-2A, and with the same interconnection of flow tops above the packer assembly.

Borshole RRL-14. Sorehole RRL-14 was completed as a 10.0 cm (3.9-in.) diameter core hole to a total depth of 1,219 m (4,000 ft) (Patterson, 1984). The configuration of the borehole as originally completed is shown in Figure 15. The deepest string of casing in borehole RRL-14 was run to 875 m (2,870 ft) and cemented. A Westbay multiple port monitoring system was installed in borehole RRL-14 as shown in Figure 16. Ports in the Westbay tubing, equipped with check valves, are located between double packers opposite the Rocky Coulee, Cohassett, Grande Ronde No. 5, and Umtanum flow tops. A port is also located opposite the vesicular zone in the Cohassett flow interior. A traveling pressure probe is suspended in the Westbay tubing on a wireline for pressure measurements. The probe is positioned opposite a port to measure pressure. Probe output travels to the surface via the wireline.

<u>Eorehole DC-4/DC-5</u>. Eorehole DC-4 was completed as a 7.7 cm (3.03-in.) diameter core hole to a total depth of 1,219 m (4,000 ft) (Fenix and Scisson, 1978). The configuration of the borehole as originally completed is shown in Figure 17. The deepest string of casing in borehole DC-4 was run to 804 m (2,639 ft) and cemented.

い 4

FIGURE 12. Schematic of C-Series of multilevel piezometer nest (from Jackson and Veatch, 1985).

20-241-12-040 REV 0

DRAF

• •;

52 N

FIGURE 13. As-built drawing of borehole RRL-6 (from Patterson, 1983).

SU-BHI-TP-U4U REV O

DRAF

DRAFT

FIGURE 14. Configuration of borehole RRL-6 for hydraulic tests of the Rocky Coulee flow top. (Bridge plugs and packers not to vertical scale).

R)

 \sim

FIGURE 15. As-built drawing of borehole RRL-14 (from Patterson, 1984).

DRAF

٠.

. •

FIGURE 16. Schematic of Westbay multiple port monitoring system in borehole RRL-14.

REV 0

DRAFT

ステ

Bridge plugs have been set in flow interiors, as shown in Figure 18, to prevent vertical hydraulic interconnection of various flow tops in the borehole. The Rocky Coulee flow top is isolated by a straddle packer and will be so during the hydraulic testing of the Rocky Coulee flow top. The Cohassett flow top is isolated between a bridge plug and the lower packer of the straddle. Pressure monitoring in units below the Cohassett flow top will require that bridge plugs be removed from borehole DC-4 and that the straddle packer be repositioned. This procedure would continue as with borehole RRL-2A, and with the same interconnection of flow tops above the straddle packer assembly. Borehole DC-5, located very near to borehole DC-4, is cased and cemented to the top of the Grande Ronde Basalt. The borehole has a total depth of 1,216 m (3,990 ft) in the Grande Ronde and contains a series of bridge plugs in the open hole (below the casing) that separate the Umtanum, Grande Ronde No. 5, and Rocky Coulee flow tops.

<u>McGae Well</u>. The McGae Well was originally drilled in April 1927 for irrigation water supply. At that time, the well was completed in the Wanapum Basalt at a depth of 298 m (978 ft). Recently, the well was deepened (Wood et al., 1984) to a total depth of 952 m (3,123 ft) (Figure 19). Bridge plugs have been set in flow interiors as show in Figure 20, to prevent vertical hydraulic interconnection of various flow tops in the borehole. The Rocky Coulee flow top is isolated by a straddle packer assembly positioned as shown in Figure 20. Pressure monitoring in units below the Grande Ronde No. 4 flow top will require that bridge plugs be removed from the well and that the straddle packer be repositioned. This procedure would continue as with borehole RRL-2A, and with the same interconnection of flow tops above the straddle packer assembly. The McGee Well is located west of a roughly north-south trending groundwater flow impediment that separates it from the RRL (Figure 3).

<u>Borcholes DC-16A and DC-16C</u>. Boreholes DC-16A and DC-16C contain bridge plugs that serve to prevent interconnection, in the boreholes, of the Wanapum and Grande Ronde horizons that are monitored at piezometer clusters DC-19C, DC-20C, and DC-22C.

NATURE OF TESTS AND THEIR SECUENCE

~~~ ~~

MNO

The Umtanum and Grande Ronde No. 5 flow tops produce substantial quantities of water by pumping from wells and boreholes in the RRL-2 area as indicated by Figure 21. A more recent flow test in borehole RRL-2A shows that the Rocky Coulee flow top produces water also. In this test water was airlifted from the Rocky Coulee flow top at about  $10.9m^3/day$  (2 gpm). These units are therefore of particular interest in the program of hydraulic testing at the RRL-2 site. The Cohassett flow top is also of interest because the Cohassett flow interior is the designated repository horizon.



FIGURE 18. Configuration of borehole DC-4 for hydraulic tests of the Rocky Coulee flow top. (Bridge plugs and packers not to vertical scale).

DRAFT

۰.



FIGURE 19. Construction Details of the McGee Well, (from Wood et al., 1984).

REV 0

DRAFT

C



FIGURE 20. Configuration of the McGae well for hydraulic tests of the Rocky Coulee flow top. (Bridge plugs and packers are not to scale).

REV 0

DRAFT



FIGURE 21. Flow meter log run in borehole RRL-2A during airlift pumping of water from the borehole. (Zones of substantial water production are noted by arrows).

DRAFT

The primary focus of the hydraulic testing in the Grande Ronde Easalt at the RRL-2 site is the Cohassett flow interior. The Cohassett interior is the designated repository horizon, therefore, knowledge of its hydraulic characteristics and those of adjacent and subjacent units is necessary for repository performance assessment calculations.

Except for the Cohassett flow top, and portions of the Cohassett flow interior that may be tested, the interflow zones of interest (Rocky Coulee flow top, Grande Ronde No. 5 flow top, and Umtanum flow top) can be tested using conventional pumped constant discharge well tests. It is presently assumed that the Cohassett flow top and Cohassett flow interior zones will be tested by an alternate method such as a pressure pulse or constant head. injection technique because of their very small estimated transmissivity (Strait and Spane, 1983).

The planned sequence is to test the four horizons of interest in well RRL-29, Rocky Coulee flow top, Cohassett flow top and interior zones (Cohassett vesicular zone), Grande Ronde No. 5 flow top, and Umtanum flow top, in that order. The staged construction of well RRL-28 allows each interflow to be tested individually. This method of construction also requires that each interflow zone be sealed (using cement and steel liners) after it is tested, except for the last interflow tested. It will be difficult or impossible to regain hydraulic access to the sealed interflow zones in well RRL-2B after they have been tested. The alternative to the staged well construction proposed for well RRL-2B is to use a packer assembly to isolate the test intervals in the well. This alternative is less desirable for reasons that include the potential for leakage around the packer, under the influence of large pressure differentials induced by pumping from the well. Hydraulic interconnection of interflow zones in the open borehole above the packer is another shortcoming of this alternative. Single or straddle packer assemblies will be used, however, in pulse or constant head injection testing of the Cohassett flow top and interior zones.

Water samples for field and laboratory analysis will be obtained from the Rocky Coulce flow top, Grande Ronde No. 5 flow top, and the Umtanum flow top prior to, during, and after formal pumping tests in the units. If it is possible to pump water from the Cohassett flow top, water samples will be obtained from that unit. Convergent pulse tracer tests will be initiated during the pumping tests after quasi-steady flow has been established. A tracer pulse will be injected at both borehole RRL-2A and piezometer nest RRL-2C and the pumped discharge from well RRL-2B will be injected at the two observation wells to facilitate identification of the source of pulses that arrive at well RRL-2B.

The large-scale hydraulic tests of units in the Grande Ronde Basalt using well RRL-2B as the pumping/pulse injection well can be initiated as scon as the time series head values from the observation wells and boreholes completed in the Grande Ronde units can be reliably projected beyond the planned test lengths. Means of satisfying this criterion

DRAFT

are currently being investigated. Further discussion of this criterion is beyond the scope of this test plan.

# TEST DESIGN

# Hydraulic Test Design

Introduction. Four flow tops and possibly at least one flow interior zone will be tested at RRL-Z, however, the emphasis of this plan is on the design of the first test in the Rocky Coulee flow top. The hydraulic test design for the Rocky Coulee flow top can be simply adapted to the other flow tops by scaling drawdowns using the transmissivity and discharge ratios between the Rocky Coulee flow top and the other flow tops. Two numerical models were used to facilitate hydraulic test design: a pseudo three-dimensional flow model (McDonald and Harbaugh, 1984) and an axisymmetrical flow model (Golder Associates, Inc., 1983). The threedimensional flow model was used to estimate the areal response in the pumped and adjacent flow tops. The axisymmetrical model provided response estimates within dense flow interiors and for several flow tops including the pumped flow top. The pseudo three-dimensional flow model was only used to estimate response to pumping the Rocky Coulee flow top.

The axisymmetric model was used to simulate responses to three of the four planned hydraulic tests at RRL-2. These are the pumping tests of the Rocky Coulee flow top, the Cohassett flow top and the Grande Ronde No. 5 flow top. It was necessary to model the three tests with the axisymmetric model to assist in vertically locating the three dense flow interior piezometers that were installed in well RRL-2C.

The numerical model studies required the use of boundary conditions, which are based on the conceptualization of the groundwater flow system. They also required values of certain hydraulic parameters, which are based on single well hydraulic test results such as those provided by Strait and Mercer (1984), or are assumed if test results have not supplied estimates of parameter values. The hydraulic test results may be sensitive to heterogeneities such as variations in transmissivity or leakage. There is not enougn information, however, to justify modeling a heterogeneous system on the scale anticipated for the multiple-well hydraulic tests at the RRL-2 site. If the horizontal transmissivity values are lognormally distributed in the areal sense, then their geometric mean value can be used to provide an effective value of transmissivity to use in numerical modeling (Neuman, 1982).

Based on the model studies described herein, it appears that hydraulic test design is relatively insensitive to the likely range of boundary conditions. In light of the discussion in the preceding paragraph, one homogeneous model was considered. Model simulations using ranges of input parameter values then provided insight into the various aspects of the
DRAFT

hydraulic test design such as vertical location of piezometer completion interval (in dense flow interiors), discharge rates from the pumped well, and pumping test duration.

Conceptual Model. Several conceptual models were initially considered. The primary difference between these was their degree of complexity. The most complex conceptual model included heterogeneous distribution of aquifer and aquitard hydraulic properties, and boundary conditions based on geologic structure. Conceptual models that include areal heterogeneities are more complex than existing knowledge will support. Also, the more complex conceptual models preclude the use of many of the analytical solutions to groundwater flow problems. Therefore, a simplified conceptual model was selected commensurate with the available data and consistent with many of the available analytical solutions.

A plan view of the pseudo three-dimensional model shows how boundary conditions are incorporated conforming to the simplified conceptual model of the groundwater flow system (Figure 22). As indicated in Figure 22, north, south, and west of the RRL-2 site, no-flow boundaries are specified. East from the RRL-2 site, the boundary is assumed to be at infinite distance. The effect of a boundary at infinite distance is created in the numerical model by setting the boundary a relatively great distance from the RRL-2 site as shown in Figure 22. The boundaries in Figure 22 that are east of the RRL-2 site are shown as no-flow boundaries, however, the effect of an infinite aquifer in the easterly direction is achieved because of the relatively great distance between the pumping site and the eastern boundaries, relative to the anticipated pumping duration of 60 days.

<u>Hydraulic Parameter Values</u>. Single-well hydraulic test results provide a basis for estimating hydraulic behavior on large scales, and were used in the planning and design of multiple-well hydraulic tests. Table 2 lists flow top transmissivity values and other derived parameter values. Column three contains best estimates of transmissivity values from single well tests in the Rocky Coulee flow top, Conassett flow top, Grande Ronde No. 5 flow top, and the Umtanum flow top. The best estimates of the transmissivity values are based upon the professional opinion of the hydrologist who conducted the test.<sup>\*</sup>

Because the transmissivity values are assumed to be lognormally distributed, we transform them using the transformation X=1n T, where T is the transmissivity. The transformed values are listed in column four, Table 2. Columns five and six list the mean value of the transformed parameter,  $X_m$ , and its standard deviation,  $\sigma_X$ , for each of the flow

"These transmissivity value estimates are not being reported incre for the record. Most of the analysis on which they are based have not been verified or peer-reviewed. The values are used simply as the basis for obtaining estimates of the geometric mean transmissivity of the four flow tops for multiple-well hydraulic test design.



(1) 0)

FIGURE 22. Finite difference grid, well locations, and boundary conditions for hydraulic test simulation.

REV 0

DRAFT

| llortzon     | Well or<br>Borehole | Transmissivity,*<br>T, m²/day | x≖<br>Ln ĭ | Hean of<br>In T, x <sub>m</sub> | Std Dev of<br>In T, <sub>OX</sub> | Geom. Hean T,<br>T <sub>M</sub> "e <sup>x</sup> m,<br>m²/day (ft²/day) |
|--------------|---------------------|-------------------------------|------------|---------------------------------|-----------------------------------|------------------------------------------------------------------------|
| Rocky Coulee | RRL-2A              | 0.93                          | -0.07      |                                 |                                   |                                                                        |
| Flow Top     | DC-19C              | 0.05                          | -2.99      | -1.41                           | 3.0                               | 0.24                                                                   |
| •            | DC-22C              | 0.009                         | -4.71      |                                 |                                   | (2.6)                                                                  |
|              | DC-12               | 8.4                           | 2.12       |                                 |                                   |                                                                        |
|              | DC-16A              | 0.26                          | -1.34      |                                 |                                   |                                                                        |
| Cohassett    | DC-4                | 0.011                         | -4.50      |                                 |                                   |                                                                        |
| Flow Top     | RRL-14              | 0.46                          | -0.77      | -3.95                           | 2.9                               | 0.019                                                                  |
| -            | · RRL-2A            | 0.004                         | -5.52      |                                 |                                   | (0.20)                                                                 |
| ,            | RRL-6               | 0.0005                        | -7.60      |                                 |                                   |                                                                        |
|              | DC-16A              | 0.005                         | -5.30      | •                               |                                   |                                                                        |
| Grande Ronde | RRL-14              | 0.46                          | -0.78      | -1.76                           | ·4.6                              | 0.17                                                                   |
| llo. 5 Flow  | RRL-2A              | 77.1                          | 4.34       |                                 |                                   | (1.8)                                                                  |
| Тор          | RRL-6               | 0.005                         | -5.30      |                                 |                                   |                                                                        |
| Untanum      | DC-19C              | 4.6                           | 1.53       |                                 |                                   | ·                                                                      |
| Flow Top     | DC-6                | 0.93                          | -0.07      |                                 |                                   |                                                                        |
| -            | RRL-2A              | 44.6                          | 3.80       |                                 |                                   |                                                                        |
|              | DC-15               | 2.3                           | 0.83       | 0.11                            | 2.3                               | 1.12                                                                   |
|              | DC-16A              | 4.6                           | 1.53       |                                 |                                   | (12.0)                                                                 |
|              | RRL-6               | 0.05                          | -2.99      |                                 |                                   |                                                                        |
|              | RRL-14              | 0.46                          | -0.78      |                                 |                                   |                                                                        |
|              | DC-20C              | 0.05                          | -2.99      |                                 |                                   |                                                                        |
| All of the   |                     |                               |            |                                 | •                                 |                                                                        |
| Above        | (n)                 | =21)                          |            | -1.50                           | 3.3                               | 0.22                                                                   |
|              |                     |                               |            | •                               |                                   | (2.4)                                                                  |

#### TABLE 2. Transmissivity, Estimated from Single Well Tests, and Derived Parameter Values

\* These transmissivity value estimates are not being reported here for the record. Host of the analyses on which they are based have not been verified or peer reviewed. The values are used simply as the basis for obtaining estimates of the geometric mean transmissivity of the four flow tops for multiplewell hydraulic test design.

65

٠

# 20-841-TP-040 REV 0

DRAFT

## DRAFT

tops and for the combined flow top transmissivity data given in Table 2. The last column in the table gives the geometric mean transmissivity,  $T_m$ .

Table 3 lists parameter values used for the pseudo three-dimensional model runs. Six cases were evaluated. The first three cases simulated three layers, as shown in Figure 23, the Cohassett flow top (lower layer), the Rocky Coulee flow top (middle layer), and the Grande Ronde No. 2 flow top (upper layer), with pumped withdrawal from the Rocky Coulee flow top. The transmissivity of the Rocky Coulee layer was varied, in three cases, from the geometric mean value of the best estimates to a larger value  $(T=\exp(X_m + \alpha_r))$  and then to a smaller value  $(T=\exp(X_m - \alpha_r))$ . The transmissivity of the Cohassett flow top was fixed at its geometric mean value. Because transmissivity values for the Grande Ronde No. 2 flow top were not available, the same values as used for the Cohassett flow top were used in the model study. A storativity of  $10^{-5}$  was used for each layer in all cases. This value is appropriate if we assume each layer is a fully confined system. Leonhart et al. (1985) report a similar value for storativity of the McCoy Canyon flow top. A vertical conductivity value of  $3 \times 10^{-0}$  m/day (1 $\times 10^{-5}$  ft/day) was used for dense basalt flow interiors for all simulations. The work of Spane et al., (1983) provides support for assignment of this value.

Cases 4 through 6 are similar to cases 1 through 3 but with different upper and lower boundary conditions. In cases 1 through 3, an impermeable boundary condition was assumed above the Grande Ronde No. 2 and below the Cohassett flow top. In cases 4 through 6 a layer of large transmissivity and constant hydraulic head was placed above the Grande Ronde No. 2 and below the Cohassett flow top. The transfer coefficient (TCF) value (see next section) used between the uppermost layer and the Grande Ronde No. 2 flow top is the same as that used between the Grande Ronde No. 2 flow top and the Rocky Coulee flow top. Similarly, the TCF value used between the lowermost layer and the Cohassett flow top is the same as that used between the Cohassett flow top and the Rocky Coulee flow top.

<u>Pseudo Three-Dimensional Model Study</u>. A modular pseudo three-dimensional finite difference groundwater flow model, MCOULAR, (McDonald and Harbaugh, 1984) was used to evaluate the sensitivity of drawdown to parameter variation. MOOULAR is an updated version of a code by Trescott (1975). The code utilizes a block centered, finite difference grid in which variable grid spacing is permitted. Three dimensions are simulated by a series of two-dimensional models, using an interaquifer transfer coefficient (TCF) to determine the flow between the layers based on simple Darcian flow. The TCF is a quantity that, when multiplied by the vertical head difference and the area of the appropriate model block, yields the flow rate being transferred between the layers in the block. The TCF values for each confining bed are

$$TCF = K'/5$$

(1)

*∼*~\*\*\*\*

- 1

|                                                                                      |                    |                    |                    |                                          |                                          | . '                                    |  |  |
|--------------------------------------------------------------------------------------|--------------------|--------------------|--------------------|------------------------------------------|------------------------------------------|----------------------------------------|--|--|
| Parameter                                                                            | 1<br>(3 layer)     | 2<br>(3 layer)     | 3<br>(3 ]ayer)     | 4<br>(5 layer)                           | 5<br>(5 layer)                           | 6<br>(5 layer)                         |  |  |
| Transmissivity of Rocky<br>Coulee Flow Top, T2,<br>m²/day(ft²/day)                   | (0.24<br>(2.6)     | 5.0<br>(54)        | 0.01<br>(0.124)    | 0.24<br>(2.6)                            | 5.0<br>(54)                              | 0.01<br>(0.124)                        |  |  |
| Transmissivity of Grande<br>Ronde No. 2 and Cohassett<br>Flow Top,<br>T1, T3, m²/day | 0.02               | 0.02               | 0.02               | 0.02                                     | 0.02                                     | 0.02                                   |  |  |
| Storativity,<br>S1, S2, S3                                                           | 1×10-5             | 1X10-5             | 1X10-5             | 1X10-5                                   | 1X10-5                                   | 1x10-5                                 |  |  |
| Flow Interior<br>Vertical Hydraulic<br>Conductivity, K',<br>m/day                    | 3×10-6             | 3x10-6             | 3×10-6             | 3×10-6                                   | 3x10-6                                   | Зх10-б                                 |  |  |
| Inter Flow Top<br>Transfer Coefficients,<br>TCF01<br>TCF12<br>TCF23<br>TCF34         | 8x10-8<br>1.3x10-7 | 8x10-8<br>1.3x10-7 | 8x10-8<br>1.3x10-7 | 8x10-8<br>8x10-8<br>1.3x10-7<br>1.3x10-7 | 8x10-8<br>8x10-8<br>1.3x10-7<br>1.3x10-7 | 8x10-8<br>8x10-8<br>1.3x10-<br>1.3x10- |  |  |

•

Table 3.Parameter Values Used in Pseudo Three-Dimensional<br/>Groundwater Flow Simulations for Various Cases

•

:

4

DRAFT

| (8)                                 | (b)       | (c) (1)   | (c) (2)       |            |
|-------------------------------------|-----------|-----------|---------------|------------|
| GRANDE RONDE NO. 2 +<br>FLOW TOP    | AQUIFER 3 |           | CONSTANT HEAD | <b>t</b> . |
| GRANDE RONDE NO. 2<br>FLOW INTERIOR | AQUITARD  | AQUIFER 3 | AQUIFER 3     | TCF34      |
| ROCKY COULEE<br>FLOW 10P            | AQUIFER 2 |           | AQUIFER 2     |            |
| ROCKY COULEE<br>FLOW INTERIOR       | AQUITARD  | AQUIFER 1 | AQUIFER 1     | TCF12      |
| COHASSETT<br>FLOW 10P               | AQUIFER 1 | · · ·     | CONSTANT HEAD | 10701      |
|                                     |           |           | 2K8           | 510-16.12  |

t.

ju

FIGURE 23. Conceptualization in vertical plane for pseudo three-dimensional model study. (a) Rocky Coulee flow top and adjacent units, (b) model geohydrologic classification of units, (c) model linkage of units for cases 1-3 (1) and for cases 4-6 (2).

DRAF

REV 0

The equation governing flow in the flow top layers is

$$\frac{\partial}{\partial x} \left( T \frac{\partial h}{\partial x} \right) \quad \frac{\partial}{\partial y} \left( T \frac{\partial h}{\partial y} \right) \quad + (TCF) \Delta h_z = S \frac{\partial h}{\partial t} \quad + Q$$
(2)

DRAFT

2

where T = transmissivity of flow tops S = storativity of flow tops  $\Delta h_z = the hydraulic head difference$ between two flow tops Q = the source (or sink) function.

The model was set up (See Figure 22) to perform a pre-test analysis to provide a basis for planning and designing of the multiple-well hydraulic tests at the RRL-2 site. Though the choice of model boundary conditions discussed previously does not represent a unique selection, the effect of slight variation of the geometry of the boundary structures on the test design is thought to be insignificant. The model grid consisted of 44 rows and 50 columns whose spacing varied from 56 m to 1,609 m (183 ft to 5,280 ft) and which represented an area 51.5 km long and 45 km wide. Figure 22 shows the grid, well and borehole locations, and boundary conditions.

Simulated response in the Rocky Coulee flow top to pumping from it, according to the six cases, is summarized in Tables 4 and 5. Drawdown in the Rocky Coulee flow top is similar for the corresponding three and five layer cases. Pumping rates were chosen to give maximum drawdown at well RRL-2B of less than 305 m (1,000 ft) except for cases 2 and 5 where a maximum pumping capacity of 0.15 m<sup>3</sup>/ min (40 gpm) was used. Drawdown in the Grande Ronde No. 2 flow top and Cohassett flow top for the six cases is given in Table 6. Measurable drawdown in the Rocky Coulee flow top, as far away from well RRL-2B as well DC-19, is predicted only for cases 2 and 5. At the distance of wells DC-16, DC-20, and DC-22 (about 2.5 km), measurable drawdown in the Rocky Coulee flow top has its smallest transmissivity value are drawdowns at the distance of wells DC-20 and DC-22 predicted to be too small to measure.

The simulated pumping from well RRL-28 lasted 50 days for each case using one day time steps. Simulation was continued in all cases except case 1 for 60 days to observe the recovery. The recovery for case 1 was extended to 500 days.

DRAFT

Table 4. Drawdown in Rocky Coulee Flow Top from Pseudo Three-Dimensional Model Study of Three Layer Cases

| · ·                                                                                                                |                          | Case 1           | Case 2           | Case 3                |
|--------------------------------------------------------------------------------------------------------------------|--------------------------|------------------|------------------|-----------------------|
| Well RRL-28<br>Pumping Rate, m <sup>3</sup> /min<br>(gal/min)                                                      |                          | 0.03<br>(8)      | 0.15 (40)        | 0.002                 |
| Total drawdown in Rocky<br>Coulee flow top in well<br>RRL-2B after pumping<br>50 days, m                           |                          | 263              | 74               | 285                   |
| Maximum drawdown<br>in Rocky Coulee<br>flow top in selected<br>wells after<br>pumping well<br>RRL-28 for 50 days,m | RRL-2C<br>DC-16<br>DC-19 | 64<br>2.1<br>0.1 | 26<br>6.9<br>2.6 | 28<br>0.003<br>0.0006 |

.

÷

.

 $\overline{\phantom{a}}$ 

DRAFT

Table 5. Drawdown in Rocky Coulee Flow Top from Pseudo Three-Dimensional Hodel Study of Five Layer Cases

|                                                                                        |        | Case 4   | Case 5       | Case 6         |
|----------------------------------------------------------------------------------------|--------|----------|--------------|----------------|
| Well RRL-28 Pumping Rate,<br>m <sup>3</sup> / min (gal/min)                            |        | 0.03 (8) | 0.15<br>(40) | 0.002<br>(0.5) |
| Total Drawdown in Rock<br>Coulee flow top in wel<br>RRL-28 after pumping<br>50 days, m | y<br>1 | 263      | 74 -         | 285            |
| Maximum Drawdown in                                                                    | RRL-2C | 63       | 26           |                |
| top in selected                                                                        | DC-16  | 2.0      | 6.8          | 0.004          |
| wells after pumping<br>well RRL-28 for 50<br>days, m                                   | DC-19  | 0.1      | 2.5          | 0.001          |

## DRAFT

| Table ( | б. | Drawdown | in  | Grande   | Rondė   | No.   | 2   | (GRŻ)  | and  | Cohasset  | ;t (C)             | Flaw |
|---------|----|----------|-----|----------|---------|-------|-----|--------|------|-----------|--------------------|------|
|         |    | Tops f   | ron | n Pseudo | ) Three | niC-e | ner | nsiona | 1 Ho | del Study | / <sup>#</sup> (m) |      |

|        | Cas  | e 1  | Case | e 2  | Case 3 | 3     | Case 4 | <b>t</b> . | Case | 5    | Case  | 6     |
|--------|------|------|------|------|--------|-------|--------|------------|------|------|-------|-------|
|        | GR2  | С    | GR2  | С    | GR2    | С     | GR2    | С          | GR2  | .C   | GR2   | С     |
| RRL-2C | 17   | 12   | 8.9  | 5.9  | 5.1    | 3.3   | 13.9   | 9.8        | 7.1  | 5.1  | 4.3   | 2.99  |
| 0C-15  | 1.3  | 0.97 | 2.9  | 2.1  | 0.005  | 0.004 | 0.85   | 0.7        | 2.2  | 1.5  | 0.006 | 0.004 |
| DC-19  | 0.03 | 0.02 | 1.2  | 0.93 | 0.0006 | 0.007 | 0.05   | 0.03       | 0.87 | 0.67 | 0.002 | 0.001 |

\*Assumes no storage in Grande Ronde No. 2 and Rocky Coulee flow interiors; after pumping well RRL-28 for 50 days.

Figure 24 illustrates the simulated drawdown in the Rocky Coulee flow top under the conditions of case 1 after 30 days of pumping. It is apparent that, at 30 days, the drawdown to be expected at wells DC-20C and DC-22C is less than 0.6 m (2 ft). Figure 25 illustrates the simulated drawdown for the same case (case 1) after 50 days of pumping. After 50 days, at least 0.6 m (2 ft) of drawdown is predicted at wells DC-20C and DC-22C and the other monitoring facilities except for borehole DC-4 and well DC-19C. It is apparent from figures 24 and 25 that the cone of depression at 30 and 50 days is not substantially influenced by the marginal boundary conditions of the model.

Figure 26 indicates that drawdown in excess of 0.5 (2 ft) will be present in the Rocky Coulee flow top during the recovery from pumping under case 1 conditions at all monitoring sites except at well DC-19C. Thus, the commonly observed phenomenon of depression cone expansion during recovery will work to increase the scale of hydraulic influence during the recovery, over that of the drawdown or pumping period.

Figure 27 provides a comprehensive picture of simulated drawdown in the Rocky Coulee flow top while pumping it at 0.03 m<sup>3</sup>/min (8 gpm) from well RRL-2B under the conditions of case 1. Drawdown at all observation points whose drawdown hydrograph appears in Figure 27 should be measurable after thirty days of pumping, except at well DC-19C.

The pseudo three-dimensional modeling showed that measurable drawdown will occur in the Rocky Coulee flow top and in adjacent flow tops within a radius of about 2.4 km (1.5 mi) from the pumping well if the transmissivity of cases 1 and 4 is assumed. This transmissivity is considered the best estimate and should sustain a planned discharge rate from the pumping well of 0.03 m<sup>3</sup>/min (8 gpm). If the transmissivity is substantially greater than that of cases 1 and 4, as in cases 2 and 5, substantial drawdown can



REV 0

• •

.

..

FIGURE 24. Simulated drawdown in Rocky Coulee flow top after 30 days of pumping at 0.03m<sup>3</sup>/min (8 gpm) from the Rocky Coulee flow top in well RRL-2B under conditions of case 1. Contour interval 2 ft (0.6m).

47



0 3,000 m (9,800 ft)

ر. ۲

2K8510-16.33

FIGURE 25. Simulated drawdown in Rocky Coulee flow top after 50 days of pumping at 0.03m<sup>3</sup>/min (8 gpm) from the Rocky Coulee flow top in well RRL-2B under conditions of case 1. Coutour interval 2 ft (0.6m).

Ас)

REV 0

DRAFT



REV

0

DRAFT

ī

6+

<u>4</u>-

FIGURE 26. Simulated drawdown in Rocky Coulee flow top after 60 days of recovery following 50 days of pumping at 0.03m<sup>3</sup>/min (8 gpm) from the Rocky Coulee flow top in well RRL-2B under conditions of case 1. Contour interval 2 ft (0.6m).



5

30-0#1-12-040 REV 0

DRAFT

be propagated as far as well DC-19C (about 5 km (3.4 mi) from the pumping well). And finally, if the transmissivity of the Rocky Cculee flow top is substantially smaller than in cases 1 and 4, the radius of influence may not extend much beyond borehole RRL-2A and well RRL-2C. This result is predicted for cases 3 and 6.

<u>Axisymmetric Model Study</u>. Axisymmetric model simulations provided estimates of head drawdown in basalt flow interiors in response to pumping selected flow tops. The estimated responses allow the assessment of instrument adequacy and were helpful in deciding on the vertical placement. of piezometer completion intervals in flow interiors.

Pumping test simulations were performed using the Golder Associates, Inc., transient, two-dimensional, axisymmetric, finite element code (Golder Associates, Inc., 1983). The work was performed by Golder Associates under Rockwell direction. Four cases were simulated. The first three cases used input parameter values based on single hole hydraulic tests performed in borehole RRL-2A (Wintczak, 1984). These values appear in Table 7 and are termed "baso case" values. Sensitivity studies were conducted using these base case parameter values to determine head response in flow interiors to variation in the flow interior hydraulic diffusivity. The fourth simulation used flow top hydraulic conductivity values based on the geometric mean parameter values from single borehole testing (Table 8). These are termed "base case geometric mean values". Sensitivity studies were not conducted about these parameter values.

The vertical hydraulic conductivity of flow interiors for both base cases is assumed to be  $3 \times 10^{-9}$  m/day (1  $\times 10^{-9}$  ft/day). The ratio of K<sup>1</sup>/K is assumed to be 10 and 1 for the flow interiors and flow tops, respectively. The greater vertical conductivity in flow interiors is reasoned to be the consequence of less tortuous vertical flow pathways along mostly vertical cooling fractures. Values of specific storage were estimated to be  $3.6 \times 10^{-7}$  and  $1 \times 10^{-9}$  per metre (1.1  $\times 10^{-7}$  and  $3.1 \times 10^{-7}$  per ft) for flow interiors and flow tops, respectively.

Three simulations were calculated using the "base case" parameter values (Table 7). The flow interior vertical hydraulic conductivity was varied by one order of magnitude above and below the table value to yield a corresponding variation in the flow interior vertical hydraulic diffusivity,  $C_v$  (=K'/S'<sub>5</sub>). The other parameters were held constant during the three simulations. The fourth simulation used the geometric mean hydraulic conductivity values for flow tops of the Grande Ronde Easalt equivalent to transmissivities given for use with the pseudo three-dimensional model (Table 2). The other parameter values remained the same as in the first three simulations.

The system modeled consists of areally extensive horizontal units of alternating basalt flow tops and basalt flow interiors. The modeled region is 236 m (773 ft) thick, extending from the top of the Granda Ronde No. 2

| UNIT .                | DEPTH TO<br>TOP OF<br>UNIT,"<br>m | THICKNESS<br>OF UNIT.*<br>m | HORIZONTAL<br>CONDUCTIVITY,<br>K,m/day                                      | VERTICAL<br>CONDUCTIVITY,<br>K',m/day | SPECIFIC<br>STORAGE<br>Ss, m <sup>-1</sup> | CONVIENTS                |
|-----------------------|-----------------------------------|-----------------------------|-----------------------------------------------------------------------------|---------------------------------------|--------------------------------------------|--------------------------|
| Vantage               | 818                               | 1.2                         | · _ · _ · _ · _ · _ · _ · _ · _ · _ · · · · · · · · · · · · · · · · · · · · |                                       |                                            | Not included             |
| GR ) FT               | 819                               | 4.6                         | Upper boundary                                                              |                                       |                                            | Treat as                 |
| GR 1 F1               | 823                               | 5.8 .                       | 3×10-7 : :                                                                  | 3×10-6                                | 3.6×10-7                                   | Constant Hea             |
| GR 2 FT               | 829                               | 12.2                        | 7.6×10-4                                                                    | 7.6×10-4                              | 1+10-6                                     |                          |
| GR 2 FI               | 841                               | 18.9                        | 3×10-7                                                                      | 3×10-6                                | 3.6x10-7                                   |                          |
| GR 3 FI(Rocky Coulee) | 860                               | 24.9                        | $3.6 \times 10^{-2}$                                                        | 3.6x10-2                              | 1x10-6                                     |                          |
| GR 3 F1 (Rocky Coulee | )885                              | 26.8                        | 3x10-7                                                                      | 3x10-6                                | 3.6x10-7                                   |                          |
| GR 4 FT (Cohassett)   | 912                               | 5.2                         | 7.6x10-4                                                                    | 7.6x10-4                              | 1x10-6                                     |                          |
| GR 4 F1 (Cohassett)   | 917                               | 22.2                        | 3×10-7                                                                      | 3x10-6                                | 3.6x10-7                                   |                          |
| GR 4 Vestcular Zone   |                                   |                             |                                                                             |                                       | _                                          |                          |
| (Cohassett)           | 940                               | 7.3                         | 3x10-7                                                                      | 3x10-6                                | 3.6x10-7                                   |                          |
| GR 4 FI (Cohassett)   | 947                               | 45.1                        | 3x1077                                                                      | 3x10 <sup>-6</sup>                    | 3.6x10 <sup>-7</sup>                       |                          |
| GR 5 FT               | 992                               | 24.4                        | 3x10 <sup>0</sup> _                                                         | 3x100                                 | ]x]0-p _                                   |                          |
| GR 5 F1               | 1016                              | 16.1                        | 3x]0-/                                                                      | 3x10-0                                | 3.6x10-/                                   |                          |
| GR 6 FT               | 1033                              | 2.7                         | 3.6x10-2.                                                                   | 3.6x10-2                              | 1x10-0                                     |                          |
| GR 6 F1               | 1035                              | 6.4                         | 3x10-/                                                                      | 3x10-0                                | 3.6x10-/                                   |                          |
| GR 7 FT               | 1042                              | 7.3                         | 3.6x19-2                                                                    | 3.6x10-2                              | 1x10-0                                     |                          |
| GR 7 FI               | 1049                              | 10.0                        | 3x10-7                                                                      | 3x10-0                                | 3.6x10-/                                   |                          |
| GR B FT               | 1059                              | 6.4                         | Lower Boundary                                                              |                                       |                                            | Treat as<br>Constant hea |

### TABLE 7. Axisymmetric Hodel Geometry and Base Case Parameter Values

٤.

\*Taken from results of drilling borehole RRL-2A.

# SU-DHI-IL-OHO REV 0

DRAFT

|                                                          |                                   | •                           |                                        | •                                    |                                             |                           |
|----------------------------------------------------------|-----------------------------------|-----------------------------|----------------------------------------|--------------------------------------|---------------------------------------------|---------------------------|
| <u>un I T</u>                                            | DEPTN TO<br>TOP OF<br>UNIT,*<br>m | THICKNESS<br>OF UNIT,*<br>m | HORIZONTAL<br>CONDUCTIVITY,<br>K,m/day | VERTICAL<br>CONDUCTIVITY,<br>K¦m/day | SPECIFIC<br>STORAGE<br>S <sub>s, m</sub> -1 | COMMENTS                  |
| Vantage .                                                | 818                               | 1.2                         |                                        | ·····                                |                                             | Not included in           |
| GR 1 FT                                                  | 819                               | 4.6                         | Upper boundary                         | ·                                    |                                             | mesn<br>Treat as constant |
| GR 1 FI<br>GR 2 FT<br>GR 2 FI                            | 823<br>829<br>841                 | 5.8<br>12.2<br>18.9         | 3x10-7<br>3:9x10-3<br>3x10-7           | 3x10-6<br>3.9x10-3<br>3x10-6         | 3.6x10-7<br>1x10-6<br>3.6x10-7              | . head                    |
| GR 3 FI (Rocky<br>Coule                                  | e) 860                            | 24.9                        | 9.7x10-3                               | 9.7x10-3                             | 1×10-6                                      |                           |
| GR 4 FT (Cohas<br>GR 4 FI (Cohas<br>GR 4 FI (Cohas       | e 885<br>sett) 912<br>sett) 917   | 26.8<br>5.2<br>22.2         | 3x10-7<br>3.9x10-3<br>3x10-7           | 3x10-6<br>3.9x10-3<br>3x10-6         | 3.6x10-7<br>1x10-6<br>3.6x10-7              |                           |
| GR 4 Vestcular<br>(Cohasset<br>GR 4 FI (Cohas<br>GR 5 FT | Zone<br>t) 940<br>sett)947<br>992 | 7.3<br>45.1<br>24.4         | 3x10-7<br>3x10-7<br>. 7x10-3           | 3x10-6<br>3x10-6<br>7x10-3           | 3.6x10-7<br>3.6x10-7<br>1x10-6              |                           |
| GR 5 FI<br>GR 6 FT<br>GR 6 FI                            | 1016<br>1033<br>1035              | 16.1<br>2.7<br>6.4          | 3x10-7<br>9.7x10-3<br>3x10-7           | 3x10-6<br>9.7x10-3<br>3x10-6         | 3.6x10-7<br>1x10-6<br>3.6x10-7              |                           |
| GR 7 FT<br>GR 7 FI                                       | 1042                              | 7.3<br>10.0                 | 9.7x10-3<br>3x10-7                     | 9.7x10-3<br>3x10 <sup>-6</sup>       | 1x10-6<br>3.6x10-7                          | •                         |
| uk 8 F1                                                  | 1059                              | δ.4 .                       | Lower Bound                            | ary                                  |                                             | Treat as constant<br>head |

TABLE 8. Axisymmetric Hodel Geometry and Base Case Geometric Mean Parameter Values

\*Taken from results of drilling borehole RRL-2A.

5

DRAFT

. .

DRAFT

interior to the top of the Grande Ronde No. 8 flow top. The upper and lower boundaries were maintained as constant head boundaries in the finite element mesh. The mesh extends from the pumping well, RRL-28, to a radial distance of 14,000 m (46,000 ft) where a constant head boundary is maintained. Mesh spacing is fine near well RRL-2C and becomes coarser towards the radial boundary. The finite element mesh incorporates 1,036 nodes and 972 elements.

The results of simulated pumping from the Rocky Coulee flow top for all four cases are illustrated in Figures 28, 29, 30, and 31. These results indicate that for all four cases measurable drawdown occurs at the radial distance of piezometer nest RRL-2C from the pumping well in about the upper one half of the Rocky Coulee flow interior after 10 days of pumping from the Rocky Coulee flow top. The RRL-2C piezometer nest is about 76 m (250 ft) from well RRL-2B. It is assumed that hydraulic head response in flow interiors of at least 0.6 m (2 ft) in a period of 30 days or less is required for positive identification and measurement of the head transients in the flow interiors within a reasonable period of time. The transducers that will be used to measure the flow interior head changes are known to drift down by about 0.3 m (1 ft) per month). Substantial drawdown also was calculated for the Cohassett flow top in all but case 3, the small C<sub>y</sub> value case.

Pumping from the Grande Ronde No. 5 flow top was simulated and the results are summarized in Figures 32, 33, 34, and 35. A measurable drawdown response was calculated for the Grande Ronde No. 4 (Cohassatt) flow interior up to the vesicular zone at about z = 46 m (z = 150 ft) within a pumping period of 20 days for all cases except the low C<sub>v</sub> case. (z is the vertical distance from the upper or lower boundary of a flow top to a position in the overlying or underlying flow interior.) The low C<sub>v</sub> case would require a pumping period in excess of 100 days to produce measurable drawdown as far into the Cohassett flow interior as the vesicular zone. Heasurable drawdown response was calculated to at least the middle of the Grande Ronde No. 5 flow interior within a 10 day pumping period for all cases.

Limited check calculations were accomplished using the technique of Neuman and Witherspoon (1972). Some discussion on limitations of this technique is provided in a subsequent section. The flow interior drawdown responses calculated according to their method generally agree with those obtained using the axisymmetric model. Table 9 provides some of the flow top and flow interior responses estimated in the check calculations using the base case geometric mean parameter values. The table should be compared with responses shown in Figure 31. 20-0WI-12-040 REV O

DRAFT

5 - U3-----S' = 0.5 GR #1 INTERIOR GR #2 500 FLOW TOP -----= 5.03 GR #2 INTERIOR 450 S 50 S' = 300 S' = 350 S' = 400 400 200 150 8 RCCXY COULEE 11 1 11 l in in in PUMPING ZONE 350 S' = 50 300 ROCKY COULSE INTERIOR S **≈** 5.0 250 GR #4 (COHASSETT) FLOW TOP S' = 0.5 200 GR #4 (COHASSETT) INTERIOR 150 GR #4 (COHASSETT) VESICULAR ZONE 100 GR #4 (COHASSETT) 250 INTERIOR 0 ٥ 50 100 150 200 250 300 350 400 450 500 DISTANCE (1) FROM PUMPING WELL IN FEET DIMENSIONS IN FEET

(1 m = 3.28 feet)

550

2X8510-16.29

FIGURE 28. Vertical profile through pumping well RRL-28 while pumping from Rocky Coulee flow top at about 92.7 m<sup>3</sup>/day (17 gpm). Drawdown contours for base case parameter values with  $C_V=91$ after 10 days of pumping.



REV 0

FIGURE 29.

2X8510-16.28

1

Vertical profile through pumping well RRL-28 while pumping from Rocky Coulee flow top at about 92.7 m<sup>3</sup>/day (17 gpm). Drawdown contours for base case parameter values with  $C_{\rm V}$ =910 after 10 days of pumping.

DRAFT



REV O



DRAFT

- - - -

REV 0



DIMENSIONS IN FEET (1 m = 3.28 feet)

2K8510-18.27

FIGURE 31. Vertical profile through pumping well RRL-28 while pumping from Rocky Coulee flow top at about 27.3 m<sup>3</sup>/day (5 gpm). Drawdown contours for geometric mean parameter values with  $C_V=91$  after 10 days of pumping.



FIGURE 32. Drawdown at 76m (250 ft) from pumped well as a function of vertical distance from the pumped unit and time since pumping started. Pumping from the Grande Ronde No. 5 flow top. Base case with  $C_v=91$ .

57

טער-אאד-וג-חלט אבא 0



...

60



ש-שאו-וד-טקט REV 0



טדיםאו-וג-טייט REV 0

DRAFT

FIGURE 34. Drawdown at 76m (250 ft) radial distance from pumped well as a function of vertical distance from the pumped unit and time since pumping started. Pumping from the Grande Ronde No. 5 flow top. Base case with  $C_v=9.1$ .



ť

REY O

717.

DRAFT

| Distance from<br>Pumping well, | Rocky Coulee<br>Flow Top | Rocky ( | Coulee Flow Interior<br>Drawdown, ft |         |  |
|--------------------------------|--------------------------|---------|--------------------------------------|---------|--|
|                                | ft                       | z=5 ft  | z=25 ft                              | z=50 ft |  |
| 100                            | 159                      | 141     | 79                                   | 30.5    |  |
| 250                            | 106                      | 93      | 50                                   | 18      |  |
| 500                            | 67                       |         | <b>29</b> ·                          | 10      |  |

| Table 9. | Drawdown Response (ft) as Predicted by Theis and Ratio |
|----------|--------------------------------------------------------|
|          | Method Analysis for Geometric Mean Base Case While     |
| •        | Pumping from the Rocky Coulee Flow Top at              |
|          | 27.3m <sup>3</sup> /day (5 gom) after 10 Days.         |

Measurable drawdown response should be observed in piezometers properly located in flow interiors overlying and underlying pumped flow tops at piezometer nest RRL-2C. The Rocky Coulee and Grande Ronde No. 5 flow tops are those to be pumped first and are respectively above and below the designated repository horizon (Cohassett flow). The Cohassett flow top will likely not be pumped because of its presumed small transmissivity. Flow interior piezometers in the Rocky Coulee flow, Cohassett flow, and Grande Ronde No. 5 flow have been installed in piezometer nest RRL-2C.

<u>Placement of Piezometers in Flow Interiors</u>. A series of estimates of the hydraulic head response in the Rocky Coulee, Cohassett, and Grande Ronde No. 5 flow interiors to pumping from the Rocky Coulee and Grande Ronde No. 5 flow tops was made to guide the design of well RRL-2C and the ratio method hydraulic tests to be performed using well RRL-2C. The estimates of hydraulic head response in the flow interiors were based on the theory of flow in aquicludes adjacent to slightly leaky aquifers (Neuman and Witherspoon, 1968). Those in the flow tops were based on standard transient flow theory for confined units.

It is assumed that hydraulic head response in flow interiors of at least two feet in a period of 30 days or less is required for positive identification and measurement of the head transients in the flow interiors. The transducers that will be used to measure the flow interior head changes have been found to drift down about one foot per month.

The theory (Neuman and Witherspoon, 1968) used to estimate hydraulic response in the flow interiors was judged to be valid for at least 100 days of pumping. The spacing of well RRL-28 and RRL-20 was judged to be small enough for the ratio method to be valid (Neuman and Witherspoon, 1972).

### DRAFT

The estimates show that: a piezometer should be completed about 18 m (60 ft) below the Rocky Coulee flow top, in the Rocky Coulee flow interior; a piezometer should be completed about 24 m (80 ft) above the Grande Ronde No. 5 flow top, in the Cohassett flow interior; and a piezometer should be located about 14 m (45 ft) below the Grande Ronde No. 5 flow top, in the Grande Ronde No. 5 flow top, in the the grande Ronde No. 5 flow top, in the the determined about 16 m (45 ft) below the Grande Ronde No. 5 flow top, in the Grande Ronde No. 5 flow top, in the the determined about 16 m (45 ft) below the Grande Ronde No. 5 flow top, in the Grande Ronde No. 5 flow top, in the Grande Ronde No. 5 flow top, in the determined to arrive at the above estimates are given in Table 10.

Drawdown in the flow interior of the Rocky Coulee, Cohassett and Grande Nonde No. 5 flows, was calculated directly from the theory of flow in aquicludes adjacent to slightly leaky aquifers. Drawdown in the Rocky Coulee and Grande Ronde No. 5 flow tops was calculated using the Theis equation. The conductivity used for the Rocky Coulee flow top is a geometric mean value for the reference repository location area. That used for the Grande Ronde No. 5 flow top was derived from an informal pumping test of well RRL-2C during well cleanup operations. The success of a ratio test and the drawdown in flow interiors is not particularly sensitive to the transmissivity of the flow tops as long as it is great enough to permit pumping and as long as the pumped discharge is adjusted to provide an adequately strong hydraulic sink.

When pumping from the Rocky Coulee flow top at 21.8 m<sup>3</sup>/day (4 gpm), • the drawdown in well RRL-2B (the discharging well) is estimated to be about 256 m (840 ft)at 30 days. Drawdown at z = 18 m (60 ft) in the Rocky Coulee flow interior at well RRL-2C resulting from the discharge from well RRL-2B is estimated to be about 3 x  $10^{-2}$ m (0.1 ft), 1.8 m (5.9 ft), and 2.9 m (9.8 ft) at 20, 30, and 40 days, respectively. At z = 21 m (70 ft), the flow interior drawdowns are estimated to be about < 3 x  $10^{-4}$ m (<0.001 ft), 0.152 m (0.5 ft), and 1.8 m (5.9 ft) for the same elapsed times, respectively.

When pumping from the Grande Ronde No. 5 flow top at 1,091 m<sup>3</sup>/day (200 gpm), the drawdown in well RRL-2B is estimated to be about 104 m (340 ft) at 30 days. Orawdown at z = 24 m (80 ft) in the Cohassett flow interior at well RRL-2C resulting from the discharge from well RRL-2B is:estimated to be about  $(9 \times 10^{-3} \text{ m} (0.03 \text{ ft}), 0.7 \text{ m} (2.4 \text{ ft}), \text{ and}$ 0.9 m (3.1 ft) at 20, 30 and 40 days, respectively. Orawdown at z = 14 m(45 ft) in the Grande Ronde No. 5 flow interior is estimated to be approximately 0.7 m (2.4 ft), 1.4 m (4.6 ft), and 1.8 m (6.1 ft) at 20, 30, and 40 days, respectively. Well RRL-2B and piezometer nest RRL-2C are assumed to be 76 m (250 ft) apart at the level of the Rocky Coulee flow top and Grande Ronde No. 5 flow top.

#### Tracer Test Design

<u>Theoretical Basis for Design</u>. The two-well convergent pulse technique will be applied to obtain estimates of the effective porosity and longitudinal dispersivity of the Rocky Coulee, Grande Ronde No. 5, and

|                              | TABLE 10. Parameter Values Used in Determination<br>of Vertical Position of Completion Interval<br>in Well RRL-2C Flow Interior Piezometers* |                            |                                                          |                                                               |  |  |  |
|------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|----------------------------------------------------------|---------------------------------------------------------------|--|--|--|
|                              | Horizontal<br>Hydraulic<br>Conductivityl,<br>K,m/day                                                                                         | Unit<br>Thickness,<br>b, m | Specific,<br>Storage2<br>S <sub>S</sub> ,m <sup>-1</sup> | Vertical Hydraulic<br>Conductivity <sup>3</sup> , K,<br>m/day |  |  |  |
| Rocky Coulee<br>Flow Top     | 3.8X10-2                                                                                                                                     | 3                          | 3х10-б                                                   |                                                               |  |  |  |
| Flow Interior                |                                                                                                                                              | 43                         | 2X10-7                                                   | 3X10-7                                                        |  |  |  |
| Cohassett<br>Flow Interior   |                                                                                                                                              | 67                         | 1X10-7                                                   | 3X10-7                                                        |  |  |  |
| Grande Ronde No.<br>Flow Top | 5<br>3.0X10 <sup>0</sup>                                                                                                                     | 6                          | 2X10-6                                                   |                                                               |  |  |  |
| Flow Interior                | •                                                                                                                                            | 30                         | 3X10-7                                                   | 3X10-7                                                        |  |  |  |

REV 0

\*These parameter values are not being reported here for the record. Some of the analyses on which they are based have not been verified or peer reviewed. The values are used simply as the basis for design of flow interior piezometers at at well RRL-2C.

<sup>1</sup>Geometric mean of conductivity values obtained from single well tests of the Rocky Coulee flow top in and near the RRL. A value obtained as an estimate of the Grande Ronde No. 5 flow top conductivity from testing at well RRL-2C.

<sup>2</sup>Based on Leonhart et al. (1985).

<sup>3</sup>Based on Spane et al. (1983).

Umtanum flow tops. For the case in which steady withdrawal from the pumping well does not result in dewatering of the confined flow top, the volume of water pumped from the well during time  $t_0$  is

$$V = Qt_0 = \pi x^2 hn^2$$
 (3)

where Q is the pump discharge rate, h is the thickness of the portion of the flow top that carries the flow, x is the distance from injection well to pumped well, n is the effective porosity of the portion of the flow top that carries the flow, and  $t_0$  is the mean transit time of a tracer pulse from the injection well to the pumped well. Knowledge of the tracer pulse transit time between an injection well and a pumped well permits estimation of the flow top effective porosity using equation (3), provided the flow top is generally homogeneous and isotropic in its properties about the pumping well to the radius of the injection well.

An equation commonly used to describe the unidimensional transport of a non-reactive tracer in steady groundwater flow is (Fried, 1975)

$$\frac{\partial c}{\partial t} = \frac{D_{\partial 2c}}{\partial x^2} - v \frac{\partial c}{\partial x}$$
(4)

(5)

where c is the tracer concentration in the water, D is the coefficient of dispersion, v is the mean interstitial groundwater flow speed, and x and t are the space and time variables, respectively.

Lenda and Zuber (1970) solved equation (4) using appropriate initial and boundary conditions, for the tracer concentration in water from a pumping well resulting from an instantaneous tracer injection into the same horizon in another well. Their approximate solution to this problem is given by

$$= \frac{cx^{2}hn}{m} = \frac{1}{\pi} \frac{1}{\sqrt{4\pi \frac{0}{vx} (\frac{t}{t_{0}})^{3}}} \exp - \left[\frac{(1-\frac{t}{t_{0}})^{2}}{\frac{4}{vx} (\frac{t}{t_{0}})^{2}}\right]$$

where m is the mass of the injected tracer. In radial flow v is not constant but the ratio of D/v is assumed to remain so (D =  $\alpha$  v;  $\alpha$  = longitudinal dispersivity), in the range of pure hydrodynamic dispersion. Equation (5) has its limitations and should be considered only an approximate solution because its integral over the space coordinate does not yield the injected mass of tracer (Zuber, 1974).

# DRAFT

In radial flow, dispersion phenomena may often be treated unidimensionally. This is especially true with convergent pulse tracer tests where the flow lines converge on the pumped well, largely obliterating the effects of transverse dispersion.

Various theoretical tracer breakthrough curves calculated using equation (5) are given in Figure 36. The curves give dimensionless tracer concentration as a function of dimensionless time for various values of D/vx.

Using equation (5) and Figure 36 it is possible to estimate the quantity of tracer material that must be injected at the injection well for a measurable output at the pumping well. To do this one must have estimates of the dispersivity of the flow tops and of their effective thickness (hn product). In addition, the well spacing and pumped well discharge must be known or estimated.

Design Assumptions. The two-well recirculating tracer tests carried out at the DC-7/8 site in the McCoy Canyon flow top at Hanford provide the basis for estimates of flow top longitudinal dispersivity and effective thickness used here in the tracer test design. The McCoy Canyon tracer tests (Leonhart et al., 1985) provide estimates of longitudinal dispersivity that range from 0.46 to 0.84 m (1.5 to 2.8 ft) and of effective thickness that range from 0.002 to 0.003 m. The portion of the flow top that transmits the majority of the flow could be as thin as 1 m (3 ft). We used a = 0.84 m and n = 0.003 for design of the convergent tracer tests. Dynamic fluid temperature logging in well RRL-2C before piezometer installation provided information on the thickness of the portion of the Rocky Coulee and Grande Ronde No. 5 flow tops that carries the major portion of the flow.

Pumping rates from the Rocky Coulee flow top in well RRL-28 of 0.45, 0.9, and 1.8 m<sup>3</sup>/hr (2, 4, and 8 gpm) are used in the tracer test design. Pumping rates from the Grande Ronde No. 5 flow top in the same well of 11.3, 22.7, and 45.4 m<sup>3</sup>/hr (50, 100, and 200 gpm) are used in the tracer test design. (It is assumed that the Cohassett flow top is not transmissive enough to sustain pumped withdrawal at a useful rate). The two injection wells, borehole RRL-2A and piezometer nest RRL-2C, are located about 152 m (500 ft) and 76 m (250 ft) away from the pumping well, respectively. Design of tracer tests in the Umtanum flow top at the RRL-2 site is deferred until the Rocky Coulee and Grande Ronde No. 5 tracer tests have been completed.

In summary, the parameter values for tracer test design are:

o  $\alpha = 0.34 \text{ m} (2.8 \text{ ft})$ o n = 0.003o  $\Omega = 0.45, 0.9, 1.8, 11.3, 22.7, \text{ and } 45.4 \text{ m}^3/\text{hr}$ (2, 4, 8, 50, 100, 200 gpm) o x = 76 m (250 ft), 152 m (500 ft)



e' 9

•

DRAFT

REV

o  $h = 1 \dots (3 \text{ ft})$  for Rocky Coulce flow top o  $h = 9 \dots (30 \text{ ft})$  for Grande Ronde No 5 flow top

 <u>Results of Dovion Calculations</u>. Mean tracer transit time from the two injection points (borahole NRL-2A and piezometer nest RRL-2C) to pumping well RRL-2B can be estimated using a rearrangement of equation (3):

$$t_0 = \frac{\pi x^2 hn}{Q}$$

(5)

DRA

The estimated values of  $\tau_0$  appear in Table 11.

Table 11. Hean Tracer Transit Time, Days

| G ar <sup>3</sup> /hr (gpm) | x=76 m (250 ft) | x=152 m (500 ft) |  |
|-----------------------------|-----------------|------------------|--|
| Rocky Coulee flow top       |                 |                  |  |
| 0.45 (2)                    | 5               | 20               |  |
| 0.9 (4)                     | 2.5             | 70               |  |
| 1.3 (3)                     | 1.3             | <b>ک</b>         |  |
| Grando Ronde No. 5 flow     | top             |                  |  |
| 11.3 (50)                   | 1.3             | 7.2              |  |
| 22.7 (100)                  | 0.9             | 3.6              |  |
| 45.4 (200)                  | 0.45            | 1.0              |  |

For the range of pumping woll discharge rate assumed, mean tracer transit times from 0.45 days (10.8 hours) to about 7.2 days can be expected in the Grande Hende He. 5 flow top. Mean tracer transit times from 1.3 to 20 days can be expected in the Rocky Coulee flow top. The total time required for complete tracer pulse recovery at the pumping well should be greater than the mean transit times given in Table 11. The mean transit times nowever, provide a fair general estimate of the time requirements for tracer test monitoring. Field measurement of the tracer concentration in water from the pumped well will provide information to guide its sampling

DRAFT

for possible laboratory analysis of tracer content. Sampling should continue after pulse arrival until the tracer concentration drops to near the detection limit or to near the background concentration in the groundwater.

Because the purpose of this tracer test is fundamentally to trace the speed of movement and efficiency of mixing of groundwater in a controlled experiment, non-reactive (conservative) tracers were chosen. It was also required that the tracers have reasonably small background concentrations in the groundwater and low analytical detection limits. It is planned to inject an ammonium thiocyanate solution into the Rocky Coulee flow top in well RRL-2C and a lithium bromide solution and deuterium into the Rocky Coulee flow top in borehole RRL-2A. In discussion of results of the DC-7/8 tracer test, Leonhart et al. (1985) report minor declines in thiocyanate concentration with time in water samples from the pumped well, analyzed in the laboratory. Over the period of a short tracer test, where thiccyanate is determined in the field, this should not be a serious complication. In a later tracer test a pentafluorobenzoate (FFB) solution will be injected into the Grande Ronde No. 5 flow top in borehole RRL-2A and a metatrifluoromethylbenzoate (MTFMB) solution will be injected into the Grande Ronde No. 5 flow top in well RRL-2C. Deuterium may be used as a tracer in the Grande Ronde No. 5 tracer test depending on the nature of results obtained using deuterium in the Rocky Coulee flow top test. Bromide exists naturally in the Grande Ronde waters at concentrations of about 1 mg/l (1 ppm) and the practical detection limit for SCNT is also about 1 mg/1. FFB and MTFMB are exotic synthetic organic compounds with no natural occurrence in deep groundwater. Their detection limit is about 0.1 mg/1.

A rearrangement of equation (5) was used to estimate the mass of tracer to be injected into Grande Ronde flow tops in borehole RRL-2A and piezometer nest RRL-2C.

| ш | Ξ | cx <sup>2</sup> hn |                                        |     |                       |   |     |
|---|---|--------------------|----------------------------------------|-----|-----------------------|---|-----|
|   |   | 1                  | 1                                      | exp | $[-(1-t/t_0)^2]$      |   |     |
|   |   | ਕ                  | $\frac{4\pi D}{U}$ (t/to) <sup>3</sup> |     | $\frac{40}{40} t/t_0$ | • | (7) |
|   |   |                    | VA) /                                  |     |                       |   |     |

The peak Br and SCN concentration at the pumping well should be about 10 times the background or detection limit concentration so c in equation (7) was taken as 10 mg/l (10 ppm) for Br and SCN. It is believed that a deuterium concentration peak twice the natural concentration (about 15 mg/l) will be more than adequate to detect its breakthrough at the pumping well. Finally, c in equation (7) was taken as 2.5 mg/l (25 times the detection limit) for both PFB and MTFMB in calculating the appropriate mass of these tracers to be injected.

The values of x and hn used in calculating required tracer mass are as given under design assumptions. Values of D/vx were calculated using v =  $x/t_0$  and D =  $\alpha$ v. The appropriate value of dimensionless time,  $t/t_0$ , for use in estimating required tracer mass was scaled from Figure

DRAFI

(8)

## 35 at the dimensionless concentration peak of the breakthrough curve corresponding to the calculated value of O/vx.

\* The mass of tracer required, according to equation (7) is independent of the discharge rate of the pumped well (RRL-2B) because the mean interstitial groundwater flow speed, v, which varies with the pumped well discnarge rate, appears in both the numerator and denominator of an expression equivalent to D/vx,

 $\frac{D}{vx} = \frac{\alpha v}{vx} = \frac{\alpha}{x}$ 

The value of c/x is invariant for a given flow-top-and injection wellpumping well spacing. Thus, the appropriate value of  $t/t_0$  for use in equation (7) does not vary with the discharge rate of the pumped well.

The parameters of the Rocky Coulee flow top tracer test design are given in Table 12. The tracer substances will be dissolved in appropriate volumes of Rocky Coulee water to provide a balance between the need to limit both total tracer solution concentration and volume of tracer solution and yet provide an initial tracer concentration great enough that the breakthrough will be detectable at well RRL-28. It is desirable to limit tracer solution concentration to avoid large water density contrasts in and near the injection boreholes and well.

| Injection Point,<br>Tracar(s)             | Tracer Mass<br>to be Injected,<br>kg | Volume, 1; and<br>Concentration of<br>Tracer Solution,<br>mg/1 |
|-------------------------------------------|--------------------------------------|----------------------------------------------------------------|
| RRL-2A<br>Libr<br>Deuterium               | 1.0 <sup>A</sup><br>2.2 <sup>B</sup> | 130;7700<br>130;1700                                           |
| <u>RRL - 20</u><br>1111 <sub>4</sub> SC11 | 0.4 <sup>A</sup>                     | 60;7000                                                        |

Table 12. Parameters of Rocky Coulee Flow Top Tracer Test Design

<sup>A</sup> Adequate to provide 10 times background or detection limit concentration at peak of pulse at well RRL-29.

<sup>5</sup> Adequate to provide 2+ times background concentration at peak of pulse at well (RL-23.

DRAFT

It is desirable to limit tracer solution volume to minimize the hydraulic disturbance caused by tracer solution injection and to provide an approximately instantaneous pulse tracer injection into the flow top. The tracer solution to be injected into borehole RRL-2A will contain 7,100 mg/l of bromide and that to be injected into well RRL-2C will contain 5,100 mg/l of thiocyanate. The bromide and thiocyanate content of water pumped from RRL-2B will be measured with a high performance liquid chromatograph. The thiocyanate content of water from well RRL-2B will be also measured with a double beam spectrophotometer. Samples of water pumped from well RRL-2B will be collected throughout the tracer test for subsequent deuterium analysis using mass spectrography.

The parameters of the Grande Ronde No. 5 flow top tracer test design are given in Table 13. The volume of Grande Ronde No. 5 flow top water used to dissolve the PFB and MTFMB was chosen using the same considerations applied to determination of the volume of tracer solution to be injected into the Rocky Coulee flow top. The PFB and MTFMB content of water pumped from well RRL-2B will be measured also with a high performance liquid chromatograph (HPLC).

| Injection Point,<br>Tracer(s) | Tracer Mass<br>to be Injected,<br>kg | Volume, 1; and<br>Concentration of<br>Tracer Solution,<br>mg/1 |  |
|-------------------------------|--------------------------------------|----------------------------------------------------------------|--|
| PFB                           | 1.25                                 | 200;6250                                                       |  |
| <u>RRL-20</u><br>MTFMB        | 0.5                                  | 100;5000                                                       |  |

Table 13. Parameters of Grande Ronde No. 5 Flow Top Tracer Test Design

Note: Tracer mass adequate to provide 25 times detection limit concentration at peak of pulse at well RRL-23.

The tracer solution injected into borehole RRL-2A and well RRL-2C will be followed by Rocky Coulee water to force the tracer solution out into the flow top and to flush it from the borehole and the sand pack in the well. The mechanics of actually injecting the tracer solution into the Rocky Coulee flow top at borehole RRL-2A and well RRL-2C are treated in the test procedures. Injection at both of the injection points will occur as quickly as reasonably possible. The tracer solution will be followed by Rocky Coulee water of at least two times the well or borehole dead volume.

Ç
SU-BUI-TP-040 REV D

# DRAFT

At borchole NNL-2A, the 130 liters of tracer solution will be followed by about 60 liters of Rocky Coulee water. Using results from pseudo-three dimensional modeling, the pressure required to inject the tracer solution and the approximate time to inject the solution can be derived. The tracer solution and the "chase" water will be injected into the Rocky Coulce flow top under 250 m of pressure head. The tracer solution is expected to flow into the Rocky Coulee flow top in about four minutes. At well RRL-2C, the 100 liters of tracer solution and the "chase" water will be injected into the Rocky Coulee flow top under 250 m of pressure head. The tracer solution is expected to flow top under 250 m of pressure head. The tracer solution is expected to flow into the Rocky Coulee flow top in about 3 minutes.

Estimates of "chase" water volumes required, injection pressures, and time to inject tracer solutions into the Grande Ronde No. 5 flow top will be derived prior to the tracer tests in the unit, based on experience gained in the Rocky Coulce tracer test.

#### Groundwater Sampling and Analysis

<u>Field Facilities</u>. A field laboratory installed in a small trailer will be the main field facility for groundwater sampling and field analysis of groundwater samples obtained from well RRL-23. A small portion of the discharge stream from the pumped well will be piped into the field laboratory. Suitable valves will be installed to control flow and two sample spigets will be installed between the well head plumbing and the field laboratory. These spigets will be used for collection of samples to be analyzed for uranium/thorium decay series radionuclides.

Groundwater piped into the field laboratory from pumping well RPL-2B ouring the early stages of pumping will be monitored with daily measurements of pH, conductivity, turbidity, total alkalinity, exidationreduction potential, and temperature. These measurements, together with measurements of the major inorganic constituents, total organic carbon (TBC), and tritium<sup>#</sup> will provide the basis for determining when representative groundwater samples (clear water with consistent chemical composition) were cotained. Equipment to be used in groundwater sampling is listed in detail in Basalt Operating Procedures C-4.71 and C-4.32.

Sampling Activities. The sampling will include the collection of groundwater samples and gas samples. Groundwater samples will be collected inroughout the pumping period for each horizon tested in well RRL-28. Groundwater collected at the surface will be analyzed for major cations and anions, trace elements, stable and radioactive isocopes, pH, alkalinity, temperature, and exidation-reduction potential. Groundwater collected at depth in the well, using subsurface sampling techniques, will be analyzed for dissolved gas content and for 14C. Additional gas samples will be

"There is no real time devantage in measuring this parameter, but it will be useful as historical data.

DRAFT

collected from a gas-water separator at the surface. Table 14 summarizes the specific sample analyses planned, aside from tracer analysis. In addition to well-head sampling, a narrow diameter downhole sampling device will be used to collect a specimen for dissolved gas analysis by lowering the device to the formation level, after pumping ceases.

Samples of groundwater for field analysis and determination of total organic carbon (TCC), tritium, chloride, dissolved oxygen, and sodium will be taken at 24 hour intervals during pumping periods at well RRL-28. Formal groundwater samples for the entire suite of determinations as shown in Table 14 will be collected every third day until the end of pumping. The last two samples before tracer breakthrough will be submitted for fullsuite analysis. Groundwater samples will be analyzed in the field for tracer content at one-half hour intervals between tracer injection and tracer breakthrough. After the first appearance of tracer in water from well RRL-28, samples will be analyzed in the field at least every 15 minutes for tracer content and groundwater samples will be taken every 15 minutes for possible laboratory tracer analysis.

#### EQUIPMENT REQUIREMENTS

#### Equipment for Hydraulic Testing

Aside from the wells, piezometers and boreholes discussed previously, several other items of equipment and systems will be used in the multiple-, well hydraulic tests. These items and systems are described briefly as follows.

<u>Submersible Pumps</u>. Submersible, electric, turbine pumps will be used to pump water from some of the horizons to be tested by pumping, in well RRL-2B. The submersible pump to be used in pumping the Grande Ronde No. 5 flow top will be capable of pumping 22.7 to 45.4 m<sup>2</sup>/hr (100 to 200 gpm) against 335 m (1,100 ft) to 244 m (800) of head. The pumps will be equipped with dynamic gas separators to remove most of the free gas from the pumped water. Requirements exist, of course, for pump power cable, drop pipe, and electrical controls. A positive displacement (rod) pump system will be used to pump from the Rocky Coulee flow top at about 44 m<sup>3</sup>/day ( 8 gpm).

Emergency Power Supply. An emergency power supply will assure that pumping can continue uninterrupted during a short line power outage. A 100 Kw, three phase, diesel-powered generator equipped with an automatic start and switching system will provide uninterrupted power at the RRL-2 site. This generator will be capable of powering the pump, as well as the pressure measuring and recording systems at the RRL-2 site. It is assumed that line power outages will be a few minutes to a few hours in length, hence the primary concern in long-term (30-60 day) pumping tests is to keep the pump running; loss of a few minutes or a few hours of pressure

DRAFT

Table 14. Summary of Heasurements and Analyses to be Performed on Groundwater and Gas Samples from Well ROL-29.

| ph                   | • •                                               |                                            | • ,                          | •                                      | turbidity                              | · ·                  |       |
|----------------------|---------------------------------------------------|--------------------------------------------|------------------------------|----------------------------------------|----------------------------------------|----------------------|-------|
| elo                  | trical conduct                                    | Eivity                                     |                              | •                                      | • •                                    |                      | •     |
| alk                  | linity                                            | •                                          | ••••••                       | •                                      | axidation<br>potential                 | -reduction           |       |
| tan                  | eriture                                           |                                            | •••                          | •••                                    |                                        | •                    | •     |
| oritory              | Analysis - Gr                                     | undvat                                     | tan Samp                     | les Coll                               | lected at S                            | urfaca .             |       |
| Haji                 | r cations - H                                     | 2, <u>C</u> 2,                             | Xa Hga                       | S1 ·                                   |                                        | •                    |       |
| Haji                 | r anions - C                                      | L. SO.                                     | F, S                         |                                        | <b>.</b> .                             | •                    |       |
| Tor                  | ] Organic Cari                                    | oon- (TC                                   | <br>23                       |                                        | . •                                    |                      |       |
| Trad                 | a Elements -                                      | 1, 81,<br>Zn                               | , B, Ca,                     | Cr, Cu,                                | Fa, Li, H                              | a, Ho, Hi,           | P5. 5 |
| . Stal               | la Isotopós -                                     | 5 <sup>2</sup> 1, 5 <sup>18</sup>          | 6. <sup>13</sup> c.          | 6 <sup>34</sup> 5                      |                                        | • .                  |       |
| Rad                  | aisatapas - <sup>1.</sup>                         | IС, ЗН.                                    | 3601.                        | 129 <sub>1</sub> ,99 <sub>1</sub>      | c                                      | _                    |       |
| Urar<br>2307<br>2105 | 100/Thorium 0<br>h, 22683, 2226<br>o, 2350, 23271 | Isaqy1]<br>In, 214<br>., 228 <sub>Ra</sub> | 15 rium<br>P521491<br>228 Th | Sarjes -<br>210p5<br>224 <sub>R3</sub> | , 22 <sup>e</sup> u, 234               | TD, 234y,            |       |
| 0155                 | alvad Oxygan                                      |                                            | •                            | •.                                     | •••                                    |                      |       |
| vestory              | Analysis - Gae                                    | <u>( 53mp 1</u>                            | <u>es (211</u>               | ected at                               | Surface                                |                      | •     |
| Hajo                 | r Gasaous Pha:                                    | ias - C                                    | H4. CO2                      | . 0 <sub>2</sub> . H <sub>2</sub>      | , H <sub>2</sub> S, CO,                |                      | •     |
| Stab                 | la Isotopes -{                                    | ,12 <sub>0</sub>                           | •                            | • • •                                  | <b>,</b> '                             |                      |       |
|                      | Inalysts - Gra                                    | unduar                                     | ar <u>Saan</u>               | 1ac Coll                               | acted y 1th                            | Subsurface           | 5100  |
| 0155                 | alved Gases -                                     | 112, 02                                    |                              | 24, 1, 1, 1                            | CJ. Has                                | •                    |       |
| Sooc<br>40Ar         | Ific Dissolved                                    | Gis I                                      | satapas                      | - <sup>4</sup> Ha,                     | 20 <sub>118</sub> , 22 <sub>11</sub> a | , 36 <sub>År</sub> , | •     |
| 0                    | itsoronas - Ít                                    | ~ 225                                      | o                            |                                        | •                                      | .*                   | •     |

All samples subjected to field analysis is well as deterministion of ICC. Tritium, chlorida, dissolved oxygen, and sodium. Not all samples will be subjected to laboratory analysis, depending on the measured development ratio (water pumped/fluid lost in drilling and testing operations). If suitable development ratio is not reached, some deterministions will be rendored momingless, and will not be performed. Similarly, identified sources of bias or contamination may require that certain deterministions be dropped from the list.

.75

DRAFT

Straddle Packer Assembly and Production-Injection Packer. A standard straddle packer assembly and production-injection packer with shut-in tool, tubing, and downhole pressure transducers will be available for possible hydraulic tests of the Cohassett flow top in well RRL-28 and for possible hydraulic testing of Cohassett flow interior zones (Strait et al., 1982).

<u>Pressure and Water Level Measuring Devices</u>. Pressure measuring systems will be used to monitor hydraulic pressure in the observation wells, boreholes, and piezometers. These systems are described in more detail under Instrumentation and Data Collection. They are based largely on sensitive quartz pressure transducers. Steel tapes will be used to measure water levels periodically at observation points. The specially developed wireline packer, incorporating a quartz pressure transducer, will be used to measure shut-in pressure in the piezometers completed in basalt flow interiors. The wireline packer was discussed under wells, piezometers, and boreholes and is shown schematically in Figure 9.

Wellhead Plumbing, Flow Control and Measurement Devices. Water pumped to the surface from well RRL-28 will course through a system that will provide water temperature measurement, flow rate regulation (as needed) and flow volume measurement. Redundant flow regulators (Figure 37) and doubly redundant flow meters will be featured in the system. Suitably placed valves will allow the flow to be diverted from one flow regulator to the other and from one set of flow meters to the other, at will, in case of malfunction of the equipment. The flow regulation and measurement system diagrammed in Figure 37 will be fitted inside a weatherproof enclosure for year round use. A small centrifugal pump will provide a small flow, from down stream of the flow control and measurement system, to the field laboratory, for water sampling.

Pressure Pulse Generator and Tracer Pulse Pusher. A system consisting primarily of a water reservoir and positive displacement pump, with appropriate hoses, valves, flow meters and fittings, will be used to inject water into wells and tubing to provide for pulse tests between well RRL-2B and Well RRL-2C and borehole RRL-2A. Pulse tests will precede pumping tests in intervals that are pumped and will constitute one of the primary hydraulic tests in intervals that are not pumped. Results from pulse test analysis will be used to estimate the appropriate test well discharge rate. The same system will be used to pump in Grande Ronde water following the tracer solutions that will be injected at well RRL-2C and borehole RRL-2A.

<u>Constant Head Injection Apparatus</u>. A simple, manually regulated system consisting of an appropriate filtered water supply reservoir, valving for flow rate adjustment and a flow meter will be available for constant head injection into intervals of moderate to small hydraulic conductivity. SU-BWI-17-040 REV O

DRAFT





3

77

20-011-17-040 REV 0

DRAFT

#### Equipment for Tracer Testing

Tracer Injection Tools. At borehole RRL-2A, the tracer solution will be placed in the packer tubing with 2.5 cm (1 in.) tubing prior to tracer injection. The water to follow the tracer solution will also be placed with the 2.5 cm tubing.

Tracer injection at well RRL-2C will involve the use of 2.5 cm tubing which will be run into the piezometer in the zone being tested. The lower end of the 2.5 cm tubing will be fitted with a plug retainer sub below three seal packing rings. The tubing will be stabbed into the seating nipple above the piezometer screen. The neoprene seal packing rings will provide a seal between the seating nipple and the tubing. Tracer injection will be accomplished by pressurizing the tubing to blow the plug out of the bottom of the plug retainer sub, allowing the tracer solution to be pumped into the piezometer below the seating nipple, opposite the screen. Water to flush the tracer solution into the flow top will also be injected through the 2.5 cm tubing.

Suitable and appropriate reservoirs and liquid handling apparatus will be available to transfer the tracer solutions and the flush water into the 2.5 cm injection tubing at the two injection points.

Field Analytical Apparatus. A high performance liquid chromatograph (HPLC) will be used in the field to detect and measure the bromide and thiocyanato tracers in the water pumped from well RRL-2B. This field analytical work will help in adequately sampling the pumped water for possible subsequent laboratory analysis for bromide and thiocyanate content. Thiocyanate will also be measured in the field using a method requiring a spectrophotometer. For subsequent tracer tests in the Grande Ronde No. 5 flow top using fluorinated benzoates as tracers, field HPLC equipment will also be used.

#### Equipment for Groundwater Sampling

<u>Electrodes</u>. The pH and oxidation-reduction potential of groundwater will be measured in the field with appropriate electrodes.

<u>Thermometer</u>. The temperature of groundwater will be measured with an immersion thermometer.

<u>Apparatus for Alkalinity Titration</u>. Burettes and pH meters will be available for alkalinity titration in the field.

<u>Subsurface Sampling Device</u>. A subsurface groundwater sampling device will be used to cotain water samples at prevailing formation temperature and pressure. REV 0

# DRAFT

Other equipment to be used in groundwater sampling is listed in Basalt Operating Procedures C-4.71 and C-4.82.

#### CONDUCT OF TESTS

The tests at the RRL-2 site, in the flow top zones to be investigated, will generally consist of a pressure pulse test followed by a constant-rate discharge pumping test. The constant-rate pumping test, a standard well test often used in hydrogeologic investigations, affords the opportunity to perform other tests or activities, concurrently. These will include radial convergent pulse tracer tests, ratio tests to obtain estimates of flow interior vertical hydraulic conductivity, and groundwater sampling.

The discharge rate for the pumping test of the Rocky Coulee flow top has been tentatively selected based on the results of hydraulic simulation studies. Using a geometric mean value of the transmissivity of the Rocky Coulee flow top of 0.24 m<sup>2</sup>/day (2.6 ft<sup>2</sup>/day), a discharge rate of 43.6 m<sup>3</sup>/day (8gpm) will result in a head drawdown of about 260 m (850 ft) at the pumping well after 30 days.

As the test begins, a measurable response in the Rocky Coulee flow top in nearby well RRL-2C and borehole RRL-2A is expected to be manifest very quickly, followed by response somewhat later in the Rocky Coulee flow interior piezometer at well RRL-2C. This response will likely then be followed by response in the Rocky Coulee flow top piezometers at well DC-22C and DC-20C, and response in the adjacent flow top piezometers at well RRL-2C.

The tests will not begin until the time series head values from the observation wells and boreholes completed in the Grande Ronde units can be reliably projected beyond the planned test length. All pretest procedures must have been carried out. All wells, boreholes, and piozometers to be used in the tests must have been checked and tested for integrity and proper downhole configuration prior to the commencement of testing. All measuring devices must have been calibrated prior to the start of testing.

Tracer solution will be injected into the Rocky Coules flow top first at borehole RRL-2A and then at well RRL-2C after the following conditions have been reached:

- Quasi-steady flow conditions have been reached in the vicinity of the RRL-2 site.
- Sufficient drawdown information has been obtained from well RRL-2C to support the ratio method analysis.

Quasi-steady flow can be assumed to exist at the RRL-2 site when the hydraulic gradients between borehole RRL-2A, well RRL-2C, and well RRL-2B become stable.

DRAFT

Several criteria will guide termination of the hydraulic tests. Pumping will continue until the tracer concentration in samples of pumped discharge approaches the background or detection limit concentration. The test may continue beyond this point if there are indications that the head transients are reaching hydraulic boundaries or steady flow has not been reached. A fair chance exists that steady flow conditions (under the influence of distributed vertical leakage) may be reached, at which time the test could be terminated if the ratio and tracer tests are complete. A certain amount of consultation will take place at the time of completion of the tracer test to determine the course of the pumping test from there.

Surveillance and monitoring of the test will be a full-time responsibility during the time that water is being pumped from well RRL-28. Twenty-four hour per day monitoring of the test will be accomplished by staff members. Monitoring of the performance of the pumping system, recording flow rates from the pumping well, checking the pressure measuring equipment, and measuring and recording water levels in wells and boreholes will be continuous requirements. Additional tasks in water sampling and analysis will accompany the tracer injection into well RRL-2C and borehole RRL-2A. Monitoring of pumped water quality will be necessary to obtain representative samples for detailed chemical characterization.

#### DATA

#### Instrumentation and Dara Collection

Eormation Pressure and Hydraulic Head. Formation pressure and hydraulic head will be monitored at numerous observation sites to detect responses to withdrawal of water from well RRL-28. The frequency of long-term hydraulic head and pressure measurements at the principle observation sites, during hydraulic testing at well RRL-28, is given in Table 15. The location of the observation sites is given in Figure 1. Pressure will be measured more frequently than once per hour at well RRL-28, piezometer nest, RRL-2C, and borehole RRL-2A in the first 300 minutes of the tests.

Head and/or pressure will be measured at monitoring facilities in the Hanford Site Monitoring network. The facilities in the network are located in Figure 38. Table 16 gives the monitored horizon and frequency of longterm hydraulic head and pressure measurements during testing at well RRL-28, at the sites in the network.

A variety of monitoring techniques will be utilized to obtain the required data under the variety of conditions that exist at the monitoring facilities. Formation pressures may be monitored using pressure sensors set at various depths or can be determined through water level measurements. The water level measurements can be converted to hydraulic head values using calculational routines developed by Spane and Mercer (1985). REV O

DRAFT

 $\overline{\phantom{a}}$ 



2X8510-16.42

FIGURE 38. Location of wells, boreholes, and piezometers of the Hanford Site Monitoring Network.

DRAFT

|                                                                |                                 | ·                                 |
|----------------------------------------------------------------|---------------------------------|-----------------------------------|
| Observation Facility<br>(Wells, Piezometers,<br>and Boreholes) | . Head Measurement<br>Frequency | Pressure Measurement<br>Frequency |
| RRL-2A                                                         | daily                           | hourly                            |
| RRL-2C                                                         | daily                           | hourly                            |
| RRL-6                                                          | daily                           | hourly                            |
| RRL-14                                                         | NAL                             | daily <sup>2</sup>                |
| DC-22C                                                         | daily                           | hourly                            |
| DC-20C                                                         | daily                           | hourly                            |
| DC-4 ·                                                         | daily                           | hourly                            |
| . DC-19C                                                       | daily                           | hourly                            |
| McGee Well                                                     | daily                           | hourly                            |
| RRL-29                                                         | ean S                           | hourly                            |
|                                                                |                                 |                                   |

| Table 15. | Frequency of Head and Pressure Measurement at        |
|-----------|------------------------------------------------------|
| •         | Principal Observation Facilities During Interference |
|           | Testing Centered at Well RRL-28.                     |

1 Head cannot be measured in borehole RRL-14 as it will be - configured for the test.

2 A daily pressure profile of all the units monitored at borehole RRL-14 will be taken.

<sup>3</sup> Head cannot be measured in well RRL-28 as it will be configured for the test.

DRAFT

Table 16. Frequency of Head and Pressure measurement at Facilities in the Hanford Site Network During Interference Testing Centered at Well RRL-28.

| Observation Facility               | y Horizon        | Head                     | Pressure                 |  |
|------------------------------------|------------------|--------------------------|--------------------------|--|
| (Wells, Piezometers,<br>Boreholes) | , Monitored      | Measurement<br>Frequency | Measurement<br>Frequency |  |
| 25-70                              | Unconfined       | weekly                   | ;t:l                     |  |
| 32-70                              | System           | weekly                   | NI-1                     |  |
| 32-72                              | •                | weekly                   | NH                       |  |
| 43-88                              |                  | weekly                   | NI-                      |  |
| 49-79                              |                  | weekly                   | NM                       |  |
| 50-85                              |                  | weekly                   | 1111                     |  |
| DC-163 ·                           | Mabton           | continuous               | NN                       |  |
| 08-9                               | Interbed         | continuous               | 'NM                      |  |
| 0H-8B                              |                  | continuous               | NE-I                     |  |
| DE-13                              |                  | weekly                   | hourly                   |  |
| DB-7                               |                  | weekly                   | N:4                      |  |
| D8-4                               |                  | . weekly                 | hourly                   |  |
| 0'Brian                            | Priest Rapids    | continuous               | Nr.1                     |  |
| Ford .                             | Interflow        | continuous               | NM                       |  |
| Enyeart                            |                  | weekly                   | weekly -                 |  |
| 08-12                              |                  | continuous               | · NM .                   |  |
| . DE-14                            |                  | weakly                   | hourly                   |  |
| DG-16C                             |                  | weekly                   | hourly                   |  |
| 08-1                               |                  | weekly                   | NM                       |  |
| 06-11                              |                  | weekly .                 | hourly                   |  |
| DU-2                               | Composite        | continuous               | NA                       |  |
| 08-15                              | Wanapum          | weekly                   | NM ·                     |  |
| 08-1                               |                  | weekly                   | hourly                   |  |
| , icGee                            |                  | weekly                   | hourly                   |  |
| 004-3                              | Gingko Flow Top  | weekly                   | NE-4                     |  |
| DC-7/8                             | Rocky Coulee     | weekly                   | hourly                   |  |
| DC-12                              | Flow Top         | weekly                   | hourly                   |  |
| DC-15                              | Composite Grande | weekly                   | NM                       |  |
| CC-1                               | Ronde            | weekly                   | hourly                   |  |
| 00-2                               |                  | weekly                   | NH                       |  |

NH - not measured

83

DRAF

The downhole pressure sensing system being used is based on a Seling, Inc., downhole pressure probe which houses a Paroscientific 4000 series quartz pressure transducer. The transducers have a range of 0 to 20.58 megapascals (0 to 3,000 lb/in<sup>2</sup> abs). The manufacturer's stated accuracy and resolution are 0.04 and 0.001 percent of full scale, respectively. The pressure measurements are temperature compensated using measurements made with a temperature transducer incorporated in the pressure transducer housing. The temperature transducer has an operational range of -55 degrees C to +150 degrees C and a stated accuracy of +/- 0.5 degrees C.

The Seling downhole probe is configured either as a single or triple pressure probe. The single pressure probe contains one pressure transducer for use when monitoring a single zone in a piezometer or borehole. The triple pressure probe contains three pressure transducers for monitoring up to three zones when used in conjunction with a multiple packer system.

The frequency signal produced by the downhole pressure transducer is passed through a Seling signal conditioner to a Hewlett-Packard frequency counter. If multiple pressure probes are used at one site, a multiplexer/signal conditioner is used to connect all the probes to a single control system. The system is controlled and the data is recorded using a Hewlett-Packard desktop computer. Pressure data is recorded on paper and floppy disk or magnetic tape. In addition, at selected sites, frequency counter output may be transmitted to the Basalt Technical Data Base System (BTDS) using FM transmission to trailer MO-408 and transmission over phone lines to BTDS. Various pressure recording frequencies can be selected.

Examination of the data will be carried out through the use of a Hewlett-Packard desktop computer or the BTDS. Management and control of records is described in Basalt Operating Procedure C-2.13.

Under appropriate conditions water levels will be monitored using chalked steel tapes, electrical water-level indicators or Stevens chart recorders. Measurements will be made following procedures described in Basalt Operating Procedure C-2.12, which were adopted from methods described by the U. S. Geological Survey (1977). Water-level measurements recorded on data sheets will also be stored on magnetic tape or disk for ease of manipulation.

Seling single downhole pressure probes will be installed just above the screen in each of the piezometers in well RRL-2C. The pressure probes monitoring the Grande Ronde No. 5, Cohassett, and Rocky Coulee flow interiors and the Cohassett flow top will be isolated from the overlying fluid column by inflatable packers. In addition, to the downhole pressure probes, the well house over well RRL-2C will contain a transducer to monitor atmospheric pressure. This transducer has a range of 0 to 10.3 kilopascals (0 to 15 lb/in<sup>2</sup> abs) and an accuracy of resolution of 0.04 and 0.001 percent of full scale, respectively. The six downhole pressure

DRAFT

transducers and the atmospheric pressure transducer will be muliplexed to the surface recording equipment as discussed previously. Water levels will be monitored in the piezometers open to flow tops using an electrical water level indicator or a steel tape.

A TAM International straddle packer and a Seling single pressure probe will be set in borehole RRL-2A to monitor pressures in the various flow tops. In addition, water levels will be monitored in the flow tops, using an electrical water level indicator or steel tape.

A packer assembly and Seling triple probe will be set in well RRL-2B to allow downhole pressures in the various flow tops to be monitored during pumping and recovery.

Seling single downhole probes will be installed in each of the piezometers in the wells at the DC-19, DC-20, and DC-22 sites. Water levels will also be monitored in these piezometers using a steel tape.

A single packer and Seling triple probe will be set in borehole RRL-6 to allow downhole pressures in the various flow tops to be monitored. The water lavel will be monitored using a steel tape.

A Westbay multiple port monitoring system has been installed at borehole RRL-14. A paroscientific 0 to 13.8 megapascal (0 to 2.000  $lb/in^2$  abs) transducer mounted in a downhole traveling probe will be used to monitor pressure in various flow tops.

Pressure will be monitored in the flow tops at borehole DC-4 using a pressure transducer system, yet to be specified.

A TAM International straddle packer and Seling triple probe will be set in the McGee well to allow downhole pressures in the various flow tops to be monitored. Water levels will be monitored in the flow tops using a steel tape.

<u>Well Discharce Para</u>. The discharge rate at well RRL-28 during pumping from the Rocky Coules flow will be determined using readings of redundant flow totalizing water meters. The meters mechanically measure the volume of water that has passed through them. The periodic volume readings from the water meters will be recorded on data sheets and stored on disk for record. The volume readings will be transmitted to the BTDS.

During pumping from the Grande Ronde No. 5 flow top at well RRL-28 the discharge rate will be detormined using flow-totalizing water meters as well as electronic flow rate meters. Data collection using the water meters will be the same as described for the Rocky Coulee test. The electronic flow meters will provide a voltage signal that can be interpreted and stored by desk top computer at the well site. The flow rate data can then be transmitted to the field test office and the BTDS. REV 0 -

DRAFT

<u>Tracer Concentration</u>. The primary instrument for detecting and measuring tracer concentration in the water pumped from well RRL-23 is the high performance liquid chromatograph (HPLC). In addition, a double beam spectrophotometer will be used to measure thiocyanate concentration in the water. In practice, two HPLC units will be used in the field laboratory. One unit can be active while the other is undergoing periodic calibration with standard solutions.

Chromatograms will be produced by the computer integrator (a part of the HPLC system) and will become part of the permanent record of the tracer analysis. Other details of the tracer determinations will be recorded in controlled notebooks. The record of tracer concentrations as a function of time and/or volume of water pumped from well RRL-28 will be transmitted to the BTDS.

<u>Mater Quality</u>. The indices of water quality to be measured in the field are pH, electrical conductivity, temperature, alkalinity, turbidity and oxidation-reduction potential. The pH and oxidationreduction potential will be measured using specific electrodes. Temperature will be measured with an immersion thermometer. Electrical conductivity will be measured with a simple conductivity meter; alkalinity determination involves an acid titration; and turbidity is measured with a standard device for detecting suspended material in water. Discussion of the instrumentation to be used in laboratory analysis of the water from well RRL-2B is beyond the scope of this document.

The field and laboratory determinations of water quality will be recorded in controlled notebooks. The record of water quality, as measured in field, will be transmitted to the BTDS.

#### Data Storage and Display

Observed hydraulic head, formation pressure, well discharge rate, tracer concentration, and water quality data will be stored in the Basalt Records Management Center (ERMC), in the BTDS, and in the data base maintained by the Drilling and Testing Group. The BRHC holds an archival copy of the data while the BTDS and Drilling and Testing Group data bases serve as working data sources. The hydraulic head and formation pressure data may be displayed through the use of data loggers in the field and through access to the BTDS or the computer data base maintained by the Drilling and Testing Group.

#### Data Analysis and Evaluation

<u>General Considerations</u>. Analysis and interpretation of constant discharge pumping tests of long duration and of convergent tracer tests

DRAFT

conducted in the deep basalt flows will likely be challenging. Some of the analysis will likely be fairly routine and simple, but there are enough unknown aspects of the hydrology and hydraulics of flow in the basalt sequence to ensure that considerable time and perhaps some rather unusual techniques will be employed in data analysis. A brief description of some of the standard methods for test analysis and interpretation is presented in this section and in the appendix. No attempt is made to cover the full range of possible conditions and applications because it is recognized that the pumping and tracer tests will involve a process of discovery requiring that appropriate methods of interpretation and analysis be applied as the need for them becomes apparent, as testing progresses.

Models having both analytical and numerical solutions are expected to be useful in test analysis. The standard analytical solutions to problems of radial groundwater flow to a pumping well may be quite useful in analysis of drawdown near the pumping well. As the responses to pumping from well RRL-2B suggest substantial departure from the conditions under which the closed form solutions apply, numerical models can be used for analysis.

Data compilation and graphical presentation are the first steps in conceptualizing the conditions of flow involved in the basalt hydraulic system involved in a pumping test. Areal patterns of drawdown in the units will be drawn for various times after pumping starts. Tracer breakthrough graphs will be prepared to show the history of tracer arrival at well RRL-2B. The hydrograph at each observation well or borehole will be prepared to portray the drawdown as a function of the logarithm of time and the logarithm of drawdown as a function of the logarithm of time. These graphical displays will be helpful in determining which model to fit coserved data to in the analysis. The drawdown data will be modified by removing the effects of atmospheric pressure variation prior to its graphical display.

Evaluation Using Models with Analytical Solutions. The various models discussed in this section are based on certain assumptions and simplifications (idealizations). Where field conditions do not match the assumptions and idealizations of a model, errors will arise in the computation of the values of the hydraulic characteristics of the hydrogeologic unit tested. In practice, rather large deviations from the ideal conditions often occur. Most of the models are rather robust, and useful quantitative information can be obtained even in the face of such divergence. Actual field conditions will be a guide to help determine the best models with which to treat the observations. The problem of estimating the hydraulic characteristics of hydrogeologic units is often referred to as "parameter identification" or the "inverse problem". Application of models with closed form analytical solutions may be considered a special kind of inverse technique.

27

DRAFT

Some of the most important methods of analysis of interference well tests using models with analytical solutions that have been considered for use include:

- The Johnson, Greenkorn and Woods (1966) method for <u>pulse</u> <u>test analysis</u>.
- 2) The non-leaky type-curve method (Theis, 1935).
- 3) The Cooper-Jacob (1946) modified non-equilibrium method.
- 4) The Hantush and Jacob (1955) <u>r/B method</u> for leaky aquifers.
- 5) The method for leaky aquifers using the <u>Hantush modified</u> <u>model</u> (Hantush, 1960).
- 6) The <u>ratio Method</u> for analysis of leaky aquifer systems (Neuman and Witherspoon, 1972).

These methods are briefly described in the Appendix.

The analysis of the <u>convergent tracer test</u> results could follow the following steps as cutlined by Lenda and Zuber (1970):

- 1. Estimate the value of  $t_0$  and D/vx by comparing the measured tracer breakthrough curve with those given in Figure 36.
- 2. Calculate n or hn from equation (3) using the known pumping well discharge rate, the injection well-pumping well separation distance and the estimated value of  $t_0$ .
- 3. Calculate the percent recovery of the injected tracer mass, R.
- 2 4. Calculate a series of tracer concentration values as a function of time using a rearrangement of equation (5) with mR as the mass term instead of simply m.
  - 5. Compare the theoretical tracer breakthrough curve calculated in 4, above with the observed tracer breakthrough. If the agreement is not satisfactory, repeat the whole procedure for a different trial value of  $\tau_{c}$  and/or D/vx.
  - 6. Finally, calculate dispersivity,  $\alpha$ , from  $\alpha = \frac{D}{V}$ .

DRAFT

Evaluation Using Models with Numerical Solutions. Though pumping tests are expected to integrate highly localized heterogeneity of the flow system to obtain an average value, the existence of areal heterogeneities resulting from geological features (e.g., faults, tectonic breccias, and other structures) would complicate the analysis of the tests. The assumptions on which most analytical solutions are based may be seriously violated. Thus, numerical modeling, coupled with a parameter identification program, may be necessary to provide an additional tool to perform analyses. The parameters, such as conductivity and storativity, are not directly measurable from a physical point of view, rather, they are identifiable by observing the dependent variable (hydraulic head or pressure) collected in the spatial domain. The number of observations is finite and limited in contrast to the infinite dimensions of the spatial domain. Therefore, optimization is generally used for parameter identification. The methods utilize the automatic process of iteration to adjust the estimated parameters in such a way that better agreement between the actual and the calculated heads is obtained. In some instances, however, the parameters identified are physically unreasonable but can reproduce hydraulic head data quite accurately. In order to constrain the estimated parameters to physically meaningful values, techniques have been developed by many researchers to use the physical plausibility of the results to optimize the predictive capabilities of the model. One of the techniques is to use a multi-objective decision framework. In this approach, both model error and physical plausibility criteria (based on prior measurements or statistical information) are considered simultaneously. This approach allows us to sequentially use the information gained from one test as information for other tests yet to be done.

Because the multiple-well hydraulic tests are expected to involve large areas, modeling on two scales is thought to be the most efficient means of designing and analyzing the test. Larger scale, far-field modeling, will provide efficient analysis of the effects of larger phenomena such as hydrologic responses. A smaller scale, near-field model, allows for detailed consideration of small-scale phenomena, such as wellbore storage, and effects of storage in the aquitards or basalt flow interiors. Furthermore, it will provide a flow field for tracer simulation.

Two finite difference codes, MCDULAR (McDonald and Harbaugh, 1984) and TRESCOTT-INVERT (Lu and Yeh, 1985) will be used to estimate transmissivity distribution, storage coefficient, and interaquifer transfer coefficient, TCF. TCF is defined as the ratio of vertical conductivity to thickness of a dense interior. MCDULAR is a modified version of TRESCOTT (Trescott, 1975) and is a well-documented code. TRESCOTT-INVERT is a modified TRESCOTT code incorporating an automatic parameter estimation technique. The applicability of the code has been preliminarily examined by Lu and Yeh (1985).

SEMTRAW is a two dimensional finite element code which can be used for axisymmetric as well as planar simulation of a flow system. The code is a

30-071-17-040 REV 0

# DRAFT

modified version of SENTRA and test cases have been documented by Kanehiro and Wilson (1984). The modified code is referred to as the SEMTRAW code to indicate its application to well test analysis. The code will be used for examination of near-field aspects (in the vicinity of a pumping well) to complement the TRESCOTT code which is more suitable for analyzing far-field behavior.

Flow in Porous Media (FPM) is an axisymmetric finite element code developed by Golder Associates. The code has been used in pre-test analysis of RRL-2 pumping, presented in other sections of this report. FPM has two apparent advantages over SEMTRAW: 1) There are four nodes per element in FPM against eight nodes in SEMTRAW, so that FPM can simulate more layers than SEMTRAW with only a slight reduction of accuracy. 2) FPM has been validated by test run in comparison with the ratio method, so that the model is more useful than SEMTRAW as a tool to estimate the vertical hydraulic conductivity.

A new method has been discussed for analyzing the diffusivity  $(K'/S'_5)$  in the dense flow interiors. The proposed method is to use a one-dimensional finite difference model (or analytical model) to simulate the transient pressure across the dense interior around well RRL-2C. As the drawdown at the boundaries will be recorded by the transducers located at the Rocky Coulee flow top and adjacent flow tops, the recorded data will be used as time dependent boundary conditions in the 1-0 model. Assuming that the vertical flow will be dominant, the parameter, diffusivity, will be identified by adjusting the parameter such that the calculated pressures metch the pressures recorded by the transducer located in the dense interior. In essence, the method decouples the solution in the dense interior from the coupled multiple-layer solution. By doing so we can get away from the requirement that the drawdown in the pumped flow top follow the Theis solution which is one of the assumptions used for the ratio method.

The tracer test may be analyzed by analytical models as well as a number of numerical transport models. The output of the near-field simulation can be used as input to a transport code to predict the distribution of the tracers to match the break-through curves. The available transport codes are: the "random-walk" particle transport code (Prickett et al, 1982), a finite elemont code used by Golder Associates, and a finite element code using an upstream weighted numerical method (Sun and Yen, 1983).

#### TEST PROCEDURES

Test procedures are being written for multiple-well hydraulic testing and convergent tracer testing. The groundwater sampling and analysis activities will be carried out in accordance with the following:

BOP C-2.14 Method of Collection of Pumping Test Samples

BCP C-2.4 Groundwater Sampling and Analysis

BOP C-4.71 Groundwater Sampling, Offsite Shipment, and Storage.

DRAFT

Hydraulic head monitoring will be conducted in accordance with EOP C-2.12. Data transmittal will follow EOP C-2.13.

#### SAFETY

All operations shall be in accordance with RHO-MA-221, Accident Prevention Standards and BOP C-1.2, paragraph 4.0, Safety. It will be the responsibility of the Rockwell Team Leader to ensure that all visitors, vendors, and operating personnel have appropriate protective equipment while at the test site.

Anticipated test conditions which may cause unusual safety hazards include:

- \* Methane that may evolve from discharge water from well RRL-28,
- \* Belts connecting the motor and surface pumping unit at well RRL-29, and the rotating and oscillating parts of the surface pumping unit.
- \* High pressure within packer inflation lines at well RRL-2C.

A pre-job Safety plan will be developed which addresses these and other anticipated hazards.

A closed system will be used to trap and dispose of any methane that evolves from the discharge water. If a hazardous volume of gas escapes, all personnel will clear the area and the Rockwell Hanford Operations Industrial Hygiene and Safety Department shall be notified. High pressure lines will be securely attached to prevent their whipping in the event of a leak. Also, access will be limited in the immediate area of the test to reduce exposure to hazards.

A safety inspection will be conducted after setting up the test equipment and prior to initiating the large-scale pumping test. Any deficiency shall be corrected before operations begin.

#### ENVIRONMENTAL EFFECTS

The main potential environmental effects resulting from the discharge pumping tests at well RRL-28 will come about because of the land disposal of the pumped water. A furrowed surface disposal area west of the RRL-2 site has been prepared. The area has been fenced and the water from pumping will be continuously applied in the disposal area where it will infiltrate into the alluvial materials at the surface. The disposal of the pumped groundwater in this way should cause no significant hazard from the standpoint of human ingestion or plant growth. An environmental evaluation of the effects of land disposal of water from well RRL-28 will be issued prior to the initiation of testing.

#### QUALITY ASSURANCE

Quality assurance requirements applicable to the large-scale pumping and tracer tests to be conducted at the RRL-2 cluster site are found in the following documents:

- \* CAPP 12-101, Instrument Calibration
- \* OAPP 6-106, Controlled Notebooks
- \* OAPP 3-301, Technical Document Review
- \* CAPP 3-301.1, Peer Review
- \* OAPP 17-101, BWIP Records Management System
- \* OAPP 11-205, Data Acquisition Package
- \* OAPP 17-102, Recording Data for OA Records

Appropriate quality assurance requirements are imposed on subcontractors and suppliers. These requirements are documented in the statement of work or service contract. Reference:

> CAPP 4-402, Quality Assurance Review of Procurement Documents

BUIP Quality Assurance verifies implementation of quality requirements imposed on BWIP functions and subcontractors by surveillance, review or audit of activities. The procedures are documented in:

- CAPP 4-402, Quality Assurance Review of Procurement Documents
- CAPP 10-101, Surveillance Activities
- QAPP 18-101, Quality Assurance Audits
- \* CAPP 15-102, Nonconformance Control and Reporting

Testing activities are to be in accordance with the appropriate procedures, instructions, and specifications listed herein and with others which are currently being developed. These include:

DRAFT

- \* BOP C-2.8, Hydrologic Field Testing
- \* EOP C-2.4, Groundwater Sampling and Analysis
- \* BOP C-2.12, Hydraulic Head Monitoring
- BOP C-2.13, Transmittal of Piezometric Data

Prior to release, deliverable data will be reviewed and quality will be assessed. Any deficiencies or conditions which may affect the quality of test data will be explained in the test documentation.

The precedure for changing this test plan is documented in QAPP 6-104, Supporting Document Description. The page change method will be used to revise or replace existing pages and/or add additional pages covering new material.

All data shall be collected in accordance with procedures which provide detailed steps for the execution and documentation of the data collection activity, to the extent necessary to assure that the requirements and objectives of this plan are met within the identified constraints. These procedures shall be prepared, reviewed, approved, and controlled in accordance with CAPP 6-102, "Jocument Control of Field and Facility Procedures", and shall meet the requirements of RHO-OA-MA-3, "BWIP Cuality Assurance Requirements Manual". Each procedure for data collection shall include, but not be limited to (as appropriate):

- 1. Statement of the requirements which are being implemented by the procedure.
- 2. Prerequisites such as borehole configurations and necessary initial conditions, with provisions for documenting that prerequisites have been met.
- 3. Descriptions of methods and instructions for performing the activities in sufficient detail to facilitate:

2

(a) reasonable duplication of the results

- (b) understanding of data limitations and uncertainties.
- 4. Provisions for documentation of facilities, instrumentation, and equipment used to provide traceability to calibration records.
- 5. Provisions for reporting any unusual or unanticipated circumstances encountered during the testing.
- 6. Requirements for recording data and documentation of tasting activities, including control of the records. Documentation shall meet

## DRAFT

the requirements of QAPP 17-102, "Recording Data for Quality Assurance Records and Records Correction". Control of data shall interface with . CAPP 11-205, "Data Acquisition Package".

7. Qualification requirements for personnel, as applicable.

Data analyses shall be documented and verified in accordance with procedures which meet the requirements RHO-QA-MA-3, "EWIP Quality Assurance Requirements Manual", Criterion 3.

Measuring and test equipment shall be controlled in accordance with OAPP 12-101, "Calibration and Control of Measuring and Test Equipment".

Personnel shall be instructed as to the purpose, scope and implementation of quality assurance requirements and procedures, and this instruction shall be documented. Personnel performing activities affecting quality shall be qualified in the principles, techniques, and requirements of the activity being performed. Their experience shall be commensurate with the scope, complexity, or special nature of the activities. Formal training and qualification programs shall be documented to include the objective and content of the program, the attendees and dates of attendance.

Because of unforseen conditions that could be encountered during this activity, minor modifications/deviations to this test plan may be required. The cognizant team leader may initiate emergency field changes with the approval of management, to proceed without further delay. Methods of documenting the changes are described below:

 <u>Controlled Notebooks</u>. Minor modifications to this test plan will be accomplished by documenting the change in a controlled notebook. The controlled notebook shall denote the change, rationale, and effect of the change. The description documented in the controlled notebook shall include reference to the test plan, page number, and a signature and date of persons authorized to make changes. The cognizant team leader or his assigned representative shall brief all on-shift and on-coming shift personnel of the changes made to the plan. The test team leader is authorized to make minor changes to this plan with the approval of the manager monitoring the activity.

J.

#### ORGANIZATIONAL AND FUNCTIONAL RESPONSIBILITIES

The Drilling and Testing Group is responsible for all aspects of equipment procurement and set-up for the test series. The decision to start each test in the series will be made by the Site Department Manager acting on recommendations of Department hydrologists. The Solution SU-SUL-IF-U4U REV 0

DRAFT

Chemistry Team is responsible for outfitting the field laboratory for water sampling and analysis. The Drilling and Testing Group will provide support in this endeavor. The decision to terminate each test in the series will be made by the Site Department Manager acting on recommendations of Site Department hydrologists. The results of decision meetings will be recorded in meeting minutes. Analysis and interpretation of test results will primarily be the responsibility of those Site Department hydrologists involved in planning and executing the test series. Others will become involved as necessary to ensure adequate interpretation of results.

The Site Department Manager will appoint a team consisting of qualified team leaders, hydrochemists, hydrologists, hydrologic technicians, technical advisors, and project assurance engineers. This team will be trained to conduct and analyze the multiple-well hydraulic testing at RRL-2 in accordance with this test plan and appropriate procedures.

#### SCHEDULE

The current schedule for large-scale hydraulic testing at the RRL-2 location (Figure 39) calls for testing of at least four horizons: the Rocky Coulee flow top, Cohassett flow top, the Grande Ronde No. 5 flow top and the Umtanum flow top.

Tests in the Cohassett interior may be carried out if favorable hole conditions are encountored. The scheduled length of testing for each horizon is primarily governed by its estimated transmissivity. The Rocky Coulee flow top will be pumped for about 60 days, followed by a 3 to 4 month period of recovery. Because of the anticipated small transmissivity of this flow top, the recovery period may be longer which would result in shifting the remainder of the scheduled tests. The Cohassett flow top at borehole RRL-2A has a small transmissivity of 1 x  $10^{-3}$  m<sup>2</sup>/day (4 x  $10^{-2}$  ft<sup>2</sup>/day) (Strait and Spane, 1983) and only a pulse test may be possible. Therefore, the testing of this zone should take no more than 2 months to complete. This time includes the pre-test monitoring as well as the pulse test. Orilling to each flow top is expected to take no longer than 2 to 3 weeks.

It is important to note that a schedule based on the dynamics of a natural system (i. e., the groundwater system) is continually subject to Change relative to the response of that system. It is expected that the schedule presented here will be adjusted as testing progresses.

#### REPORTS

Each of the major test activities, hydraulic testing, tracer testing, and groundwater sampling and analysis will be documented in formal reports.



FIGURE 39. Tentative schedule for large-scale hydraulic testing at the RRL-2 site.

26

30-0H1-17-040 REV 0

DRAFT

DRAFT

#### SUMMARY

A comprehensive plan for performing large-scale multiple-well hydraulic tests of units of the Grande Ronde Basalt within and near the reference repository location has been developed. The tests will be performed using a pumping well located at the RRL-2 site. Two observation wells near the pumping well will be utilized. Several wells and boreholes at greater distance will also be used in the tests. The pumping well will be advanced incrementally through the Grande Ronde Basalt so that each horizon to be tested can be investigated individually and then sealed before proceeding to the next horizon. One of the observation wells near the pumping well will provide the means to measure formation pressure in the three flow interiors.

The purposes of the hydraulic testing are to evaluate the hydraulic characteristics of selected interflow zones and adjacent units, and to characterize the chemical composition of groundwater collected from the interflow zones. Additional objectives of the tests are identify and classify hydraulic boundaries, to assess the degree of leakage into the test interflow zones from adjacent flow interiors, and to evaluate the lateral hydraulic continuity of selected interflow zones.

The Cohassett flow is the designated repository horizon, therefore knowledge of its hydraulic characteristics and those of adjacent and subjacent units is necessary for site characterization and repository performance assessment. With the likely exception of the Cohassett flow top and portions of the Cohassett flow interior that may be tested, the interflow zones of interest (Rocky Coulee, Grande Ronde No. 5, and Umtanum flow tops) can be tested using conventional pumped constant discharge well tests. It is assumed that the Cohassett flow top and Cohassett flow interior zones will be tested by an alternate method such as pressure pulse or constant head injection technique because of their very small estimate transmissivity.

The planned sequence is to test the four horizons of interest in the pumping well, Rocky Coulee flow top, Cohasset flow top and interior zones, Grande Ronde No. 5 flow top, and Umtanum flow top, in that order. Water samples for field and laboratory analysis will be obtained from the flow tops in connection with pumping tests in the units. If it is possible to pump water from the Cohassett flow top, water samples will be obtained from that unit. Convergent pulse tracer tests will be initiated during the pumping tests after quasi-steady flow has been established and after the ratio test is complete. Different tracers will be injected at the two observation wells to facilitate identification of the source of pulses that arrive at the pumping well.

The first multiple well test, of the Rocky Coulee flow top, was designed using estimates of transmissivity from single-well tests. A

DRAFT

pumped discharge rate of 43.5  $m^3/day$  (8 gpm) was selected based on numerical simulations which assumed homogeneous, isotropic aquifer conditions. A transmissivity value for the Rocky Coulee flow top equal to the geometric mean of transmissivity values obtained from single-well test analyses, was used in the simulations. The simulations predict about 263 m (863 ft) of drawdown at the pumped well after 50 days of pumping. Somewhat more than 0.6 m (2 ft) or drawdown in the Rocky Coulee flow top at 2,500 m (8,200 ft) from the pumping well is predicted for the same time after the onset of pumping. This amount of drawdown is judged to be measurable and interpretable.

•

### DRAFT

#### ACKNOWLEDGMENTS

Credit for design and development of the wireline piezometer packer and transducer assembly goes to T. S. Clawson and R. B Mercer. Much valuable advice on practical matters involved in setting up the equipment for testing was obtained in numerous conversations with G. L. Setbacken. R. L. Jones suggested that we try the rod pumping system for pumping from the Rocky Coulee flow top. T. E. Jones and J. A. Dill advised us on analytical techniques for determination of tracer concentration in water pumped from well RRL-29. Useful critical reviews of the plan were received from Drs. F. A. Spane and L. S. Leohart, and from W. H. Price, S. R. Strait, and D. J. Moak.

:

DRAFT

#### SD-BWI-TP-040 REV 0

#### REFERENCES

- California Department of Water Resources, 1971, <u>Sea-Water Intrusion:</u> <u>Acuitards in the Coastal Ground Water Basin of Oxnard Plain.</u> <u>Ventura County.</u> California Department of Water Resources, Bull. 63-4.
- Cooper, H. H. and C. E. Jacob, 1946, <u>A Generalized Graphical Method for</u> <u>Evaluating Formation Constants and Summarizing Well-Field History</u>, Amer. Geophys. Union Trans., Vol. 27, No. 4, pp 526-534.
- Department of Energy, 1982, <u>Site Characterization Report for the Basalt</u> <u>Waste Isolation Project</u>, DOE/RL 82-3.
- Earlougher, R. C., 1977, <u>Advances in Well Test Analysis</u>, Soc. Petroleum Engineers Moncgraph, Vol. 5, Dallas, Texas.
- ERDA (U. S. Energy Research and Development Administration), 1975, Final Environmental Statement-Waste Management Operations, Hanford Reservation, Richland, Washington, ERDA- 1538, 2 Volumes, Washington, D. C.
- Fenix & Scisson, Inc., 1978, <u>Drilling History, Core Hole DC-4,</u> <u>Hanford, Washington,</u> RHO-BWI-C-40, Rockwell Hanford Operations, Richland, Washington.
- Fried, J. J., 1975, Groundwater Pollution, Elsevier, Amsterdam, 930 pp.
- Gephart, R. E., P. A. Eddy, R. C. Arnett, and G. A. Robinson, 1976, <u>Geohydrologic Study of the West Lake Basin</u>, ARH-CD-775, Atlantic Richfield Hanford Company, Richland, Washington.
- Golder Associates, Inc., 1983, <u>Ground Water Computer Package</u> <u>User's Manual Hydraulic Solution, FPM Computer Program</u>, Bellevue, Washington.
- Hantush, M. S., and C. E. Jacob, 1955, <u>Non-steady Radial Flow in an</u> <u>Infinite Leaky Aquifer</u>, Trans. Amer. Geophys. Union, Vol. 36., pp. 95-100.
- Hantush, M. S., 1956, <u>Analysis of Data from Pumping Tests in Leaky</u> <u>Acuifers</u>, Trans. Amer. Geophys. Union, Vol 37, pp. 702-714.
- Hantush, M. S., 1960, <u>Modification of the Theory of Leaky Acuifers</u>. Jour. Geophys. Research, Vol. 65, No. 11, pp. 3713-3726.

DRAFT

Hantush, M. S., 1964, <u>Hydraulics of Wells</u>, in Advances in Hydroscience, Vol. 1, V. T. Chow, Ed. Academic Press, New York.

- Jackson, R. L., L. D. Diediker, R. K. Ledgerwood, and M. D. Veatch, 1984, <u>Piezometer Completion Report for Borehole Cluster Sites DC-19,</u> <u>DC-20, and DC-22,</u> SD-BWI-TI-226, Rockwell Hanford Operations, Richland, Washington, Rev. 1.
- Jackson, R. L. and R. L. Jones, 1984, <u>Drilling and Completion</u> <u>Specifications for Boreholes RRL-28 (Pumping Well) and RRL-20</u> <u>(Multi-Level Piezometer Nest)</u>, SD-BWI-TC-023, Rockwell Hanford Operations, Richland, Washington.

Jackson, R. L. and M. D. Veatch, 1985, <u>Design and Installation</u> of <u>Deep Multi-Level Piezometer Nests in Columbia River</u> <u>Basalts at the Hanford Site, Washington, RHO-BW-SA-428P,</u> Rockwell Hanford Operations, Richland, Washington.

- Javandel, I., 1983, <u>Technicues for Measuring the Vertical Hydraulic</u> <u>Conductivity of Flood Basalts at the Basalt Waste Isolation Project</u> <u>Site</u>, University of California, Lawrence Berkeley Laboratory Report, LEL-16578.
- Johnson, C. R., R. A. Greenkorn, and E. G. Woods, 1966, <u>Pulse-Testing: A</u> <u>New Method for Describing Reservoir Flow Properties Between Wells</u>, SPE Transactions, Vol. 237, pp. 1599-1604.
- Kanehiro, B. Y. and C. R. Wilson, 1984, <u>Numerical Modeling for Near-Field</u> <u>Analysis of Large-Scale Hydrologic Stress Testing at the Basalt Waste</u> <u>Isolation Project</u>, Letter Report, Hydrotechnique Associates, Berkeley, CA.
- Lenda, A., and A. Zuber, 1970, "Tracer Dispersion in Groundwater Experiments", <u>Isotope Hydrolocy 1970</u> (Proc. Symposium Vienna, 1974) IAEA, Vienna, p. 277.
- Leonhart, L. S., R. L. Jackson, D. L. Graham, L. W. Gelhar, G. M. Thompson, B. Y. Kanehiro, and C. R. Wilson, 1985, <u>Analysis and Interpretation of a Recirculating Tracer Experiment Performed on a Deep Basalt Flow Tco.</u> Assoc. Engineering Geologists Bull., Vol. 23, No. 3, pp. 259-274.
- Long, P. E. and N. J. Davidson, 1981, "Lithology of the Grande Ronde Easalt with Emphasis on the Umtanum and McCoy Canyon Flows," in Myers, C. W. and Price, S. M., eds., <u>Subsurface Geology of the Cold Creek</u> <u>Syncline</u>, RHO-BWI-ST-14, Rockwell Hanford Operations, Richland Wasnington.
- Lu, A. H. and W. W. G. Yeh, 1985, <u>Basalt System Characterization: Inverse</u> <u>Technique</u>, Proceedings of Special Conference on Computer Applications in Water Resources, ASCE, Buffalo, NY. pp. 1179-1189.

DRAFT

McDonald, M. G. and A. W. Harbaugh, 1984, <u>A Modular Three-Dimensional</u> <u>Finite-Difference Ground Water Flow Model</u>, Open File Report, U. S. Geological Survey, Reston, Virginia.

Neuman, S. P. and P. A. Witherspoon, 1968, <u>Theory of Flow in Aquicludes</u> <u>Adjacent to Slightly Leaky Aquifers</u>, Water Resources Research, Vol. 4, No. 1, pp. 103-112.

Neuman, S. P. and P. A. Witherspoon, 1969, <u>Applicability of Current</u> <u>Theories of Flow in Leaky Aquifers</u>, Water Resources Research, Yol. 5, No. 4, pp. 817-829.

Neuman, S. P. and P. A. Witherspoon, 1972. <u>Field Determination of the</u> <u>Hydraulic Properties of Leaky Multiple Aquifer System</u>, Water Resources Research, Vol. 8, No. 5, pp. 1284-1298.

Neuman, S. P., 1982, "Statistical Characterization of Aquifer Heterogeneities: An Overview", in <u>Recent Trends in Hydrogeology</u>, T. N. Narasimhan ed., Special Paper No. 189, Geological Society of America.

Nuclear Regulatory Commission, 1983a, <u>BWIP Site Technical Position No. 1.1:</u> <u>Hydrogeologic Testing Strategy for the BWIP Site</u>, Division of Waste Management, Washington, D. C.

Nuclear Regulatory Commission, 1983b, <u>Disposal of High-Level Radioactive</u> <u>Wastes in Geologic Repositories: Licensing Procedures</u>, Title 10, Chapter 1, Code of Federal Regulations, Part 60.

Pattorson, J. K., 1983, <u>Borehole RRL-6 Report</u>, SD-BWI-TI-167, Rockwell Hanford Operations, Richland, Washington.

Patterson, J. K., 1984, <u>Borehole RRL-14 Report</u>, SD-BWI-TI-186, Rockwell Hanford Operations, Richland, Washington.

Prats, M. and J. B. Scott, 1975, Effect of Wellbore Storage on Pulse-Test Pressure Response, Journal of Petroleum Technology, pp. 707-709.

Price, E. H., 1982, <u>Structural Geometry, Strain Distribution, and Tectonic Evaluation of Untanum Ridge at Priest Rapids, and a Comparison with Other Selected Localities Within Yakima Fold Structures, South-Central Washington, Ph.D. Dissertation, Washington State University, Pullman, Washington.</u>

Prickett, T. A., and C. G. Lonnquist, 1971, <u>Selected Dicital Computer</u> <u>Techniques for Groundwater Resource Evaluation</u>, Bulletin 55, Illinois State Water Survey.

### DRAFT

- Prickett, T. A., T. G. Naymik, and C. G. Lonnquist, 1981, <u>A Random-Walk</u>" · <u>Solute Transport Model for Selected Groundwater Quality Evaluations</u>, Bull. 65, Illinois State Water Survey.
- Reidel, S. P., P. E. Long, C. W. Myers, and J. Mase, 1981, <u>New Evidence</u> for Greater Than 3.2 Kilometers of Columbia River Basalt Beneath the Cantral Columbia Plateau, RHO-SA-162A, Rockwell Hanford Operations, Richland, Washington.
- Rockwell Hanford Operations, 1985, <u>Interim Site Investigation Program Plan</u>, SD-B%I-GSP-001, Richland, Washington.
- Spane, F. A., Jr., M. D. Howland, and S. R. Strait, 1980, <u>Hydrogeologic</u> <u>Properties and Groundwater Chemistry of the Rattlesnake Ridge Interbed</u> <u>at well 699-25-80 (OB-14)</u>, <u>Hanford Site</u>, RHO-LD-67, Rockwell Hanford Operations, Richland, Washington.
- Spane, F. A., P. D. Thorne, and W. H. Chapman-Riggsbee, 1983, <u>Results and Evaluation of Experimental Vertical Hydraulic Conductivity Testing at Borenoles DC-4 and DC-5</u>, SD-BWI-TI-136, Rockwell Hanford Operations, Richland, Washington.
- Spane, F. A., Jr., and R. B. Mercer, 1985, <u>HEADCO: A Program for</u> <u>Converting Observed Water Lavels and Pressure Measurements to</u> <u>Formation Pressure and Standard Hydraulic Head</u>, RHO-BW-ST-71 P, Rockwell Hanford Operations, Richland, Washington.
- Strait, S. R., R. B. Mercer, 1984, <u>Hydrologic Property Data from</u> <u>boreholes on the Hanford Site</u>, SD-BWI-DP051, Rockwell Hanford Operations, Richland, Washington.
- Strait, S. R., F. A. Spane, R. L. Jackson, and W. W. Pidcoe, 1982, <u>Hydrologic Testing Methodology and Results from Deep Basalt Boreholes</u>, <u>RHO-BW-SA-189</u>, Rockwell Hanford Operations, Richland, Washington.
- Střait, S. R. and F. A. Spane, 1983, <u>Proliminary Results of Hydrologic</u> <u>Testing the Hiddle Sentinel Bluffs Flow Top at Borehole RRL-2</u> (2,981 - 3,020 ft), SD-BWI-TI-102, Rockwell Hanford Operations, Richland, Washington.
- Sun, N. Z. and W. W. G. Yeh, 1983, <u>A Proposed Upstream Weight Numerical</u> <u>Method for Simulating Pollutant Transport in Groundwater</u>, Water Resources Research, Vol. 19, No. 6, pp. 1489-1500.
- Swanson, L. C. and B. A. Laventhal, 1984, <u>Water-Level Data and Rorehole</u> <u>Description for Monitoring Wells Used by the Basalt Waste Isolation</u> <u>Project</u>, SD-BWI-DP-042, Rockwell Hanford Operations, Richland, Wasnington.

103

SD-EMI-TP-040 REV 0 DRAFT

- Swanson, D. A., and T. L. Wright, 1976, "Guide to Field Trip Between Pasco and Pullman, Washington, Emphasizing Stratigraphy and Vent Areas and Intracanyon Flows of the Yakima Belt", in <u>Proceedings, Geological</u> <u>Society of America, Cordilleron Section Meeting</u>, Pullman, Washington, Field Guide 1, p 33.
- Theis, C. V., 1935, <u>The Relation Between the Lowering of the Piezometric</u> <u>Surface and the Rate and Duration of Discharge of a Well Using Ground</u> <u>Water Storage</u>, Amer. Geophys, Union Trans., Vol. 16, pp. 519-524.
- Trescott, P. C., 1975, <u>Documentation of Finite-Difference Method for</u> <u>Simulation of Three-Dimensional Ground Water Flow</u>, Open File Report 75-438, U. S. Geological Survey, Washington, D. C.
- U. S. Geological Survey, 1977, <u>National Handbock of Recommended Methods for</u> <u>Water Data Acquisition</u>, U. S. Department of Interior, Reston, Virginia.
- Wintczak, T. M., 1984, <u>Principle Borehole Report</u>, <u>Borehole RBL-2</u>, SD-BWI-TI-113, Rockwell Hanford Operations, Richland, Washington.
- Witherspoon, P. A., I. Javandel, S. P. Neuman, and R. A. Freeze, 1967, <u>Interpretation of Aquifer Gas Storace Conditions from Water Pumping</u> <u>Tests</u>, American Gas Association, New York.

Wood, T. J., G. S. Hack, W. W. Pidcoe, and C. S. Cline, 1984, <u>McGee Well</u> <u>Report</u>, SD-BWI-TI-227, Rockwell Hanford Operations, Richland, Washington.

Zuber, A., 1974, "Theoretical Possibilities of the Two-Well Pulse Method", <u>Isotope Techniques in Groundwater Hydrology</u> (Proc. Symposium Vienna, 1974), IAEA, Vienna, p. 277.

•

### APPENDIX

DRAFT

The following is a brief description of some of the more important methods of analysis using models with analytical solutions. Common assumptions underlying all of the methods presented are:

- o Hydrogeologic units are infinite in areal extent.
- In the area influenced by a particular test, the unit tested and overlying and underlying units are homogeneous, isotropic, and of uniform thickness.
- Prior to disturbance by pumping or pressurizing, the potentiometric surface(s) is (are) horizontal over the area influenced by the test.
- o The test (pumping) well fully penetrates the tested unit.
- o Water is removed from the tested unit (in a pumping test) at a constant rate (for constant discharge test, only).

#### PULSE TEST ANALYSIS

The <u>pulse test</u> is planned as a pre-pumping test diagnostic tool to obtain estimates of hydrogeologic unit characteristics to guide selection of pumping equipment and discharge rates from the test well. The response in an observation well to a pressure pulse input at a test well completed in a confined formation can be analyzed using a solution of the transient, radial flow equation presented by Johnson, Greenkorn, and Woods (1966). Their solution, with parameter values given in English units because of their petroleum industry affiliation, allows one first to estimate the formation lateral hydraulic diffusivity, n, using

$$(t_{0L}^{+1})t_{0L} \ln(1+\frac{1}{t_{0L}}) = -\frac{r^2}{4\pi t_{0AL}}$$
 (A1)

wnere

- At = input pressure pulse length (interval), min
  r = distance between wells, ft
- toL= dimensionless time lag, given by  $t_{DL} = \frac{\tau_L}{\tau_L}$
- <sup>t</sup>L= time lag between end of pressure pulse input and peak of response at observation well, min
- n= lateral hydraulic diffusivity, ft<sup>2</sup>/min.

DRAFT

(EA)

Next, the formation transmissivity can be estimated using

$$T = \frac{70.6a}{\Delta p_{s}} \begin{bmatrix} Ei \left( \frac{-r^{2}}{4n_{\Delta}t (t_{DL}+1)} \right) & -Ei \left( \frac{-r^{2}}{4n_{\Delta}t t_{DL}} \right) \end{bmatrix}$$
(A2)  
where  $T = transmissivity, md ft/cp$   
 $q = pulse flow rate, bbl/day$   
 $\Delta p_{s} = response amplitude, psi,$ 

remembering that injection gives q a negative sign by convention. Finally, the storage, S, (ft/psi) can be obtained from

$$\frac{56,900 \text{ Sr}^2}{\text{Tat}} = \frac{r^2}{4\pi\Delta t}.$$

Conversion from oil field transmissivity and storage to hydrologic transmissivity and storativity can be accomplished using conversions given by Earlougher (1977). The possible effects of wellbore storage on pulse test response can be examined using the method of Prats and Scott (1975).

#### NON-LEAKY TYPE CURVE ANALYSIS

Analysis of the results of pumping at a constant rate from a well completed in a confined (nonleaky) formation can often be accomplished using a solution of the equation describing radial flow to a well that was developed by Theis (1935). Application of the <u>Theis solution</u> requires that the water removed from storage in the formation be discharged instantaneously with decline in head, and that the pumped well appears to any observation wells as a line sink with infinitesimally small diameter. At least one observation well or piezometer is normally required. Escause of the effects of pumped well bore storage and head losses on entry of water into the pumped well, drawdown observations in the pumped well are somewhat more difficult to interpret.

The Theis solution of the radial, confined groundwater flow equation can be written

 $s = \frac{0}{4\pi T} \quad \forall (u) \qquad (A4)$ 

SD-C:/I-TP-040 REV

where the argument u in the function W (u) is given by

 $u = \frac{r^2 S}{4T+}$ 

· (AS)

DRAFT

- and r = distance between pumping and observation wells
  - s = drawdown at observation well
  - Q = discnarge rate
  - T = formation transmissivity.

The function L(u) is termed the well function of u and is extensively tabulated in the geohydrologic literature.

Application of the Theis solution to the problem of avaluation of hydraulic characteristics of hydrogeologic units involves a type curve matching technique. Basically, the technique involves preparation of a type curve graph of the function U(u) as a function of L/u on logarithmic paper. On a sheet of logarithmic paper of the same scale as the type curve, the drawdown at an observation well is plotted as a function of corresponding values of  $t/r^2$ . Superposing one graph on the other, keeping the coordinate axas of both parallel, a best fit of drawdown data to the type curve is chosen. A common "match point" is chosen and the corresponding values of s.  $t/r^2$ , W(u) and L/u are determined. The formation transmissivity is then calculated from a rearrangement of equation (A4) and the suprativity is calculated using a rearrangement of equation (A5).

#### MODIFIED HOR-EQUILIBATUR HETHOD

The well function, M(u), is represented by an exponential integral that can be expended as a convergent series so drawdown as expressed by equation (Ne) can be given by

$$s^{-} = \frac{0}{4\pi i} \left( -0.5772 - \ln u + u - \frac{u^{2}}{2 \cdot 2!} + \frac{u^{3}}{3 \cdot 3!} - \frac{u^{4}}{4 \cdot 4!} + \cdots \right)$$
(3.5)

For small values of  $r_2$  and at large values of t (u<0.02), the sum of the terms in the series anyond the first two becomes insignificantly small (deoper and Jacoby 1943). With this approximation, equation (A6) can be united

$$s = \frac{Q}{4\pi i} (\ln \frac{1}{u} - 0.5772),$$
 (A7)

DRAFT

which is the same as

$$s = \frac{Q}{4\pi T} \left( \ln \frac{4Tt}{r^2 S} - 0.5772 \right) .$$
 (A8)

Converting to the common lagarithm gives

$$s = \frac{2.30}{4\pi T} \left( \frac{\log 4Tt}{r^2 S} - 0.2509 \right).$$
 (A9)

Equation (A9) predicts that drawdown in an observation well at distance r from a pumped well will increase linearly with the logarithm of time. The slope of a graph of drawdown as a function of the logarithm of time for an observation well in a pumped formation, thus predicted, is given by  $2.30/4\pi T$ .

If drawdowns  $\mathsf{S}_1$  and  $\mathsf{S}_2$  at two different times  $\mathsf{t}_1$  and  $\mathsf{t}_2$  are considered, then

$$s_1 = \frac{2.30}{4\pi T}$$
  $\left( \log \frac{4Tt_1}{r^2 S} - 0.2509 \right)$ 

and

А

$$s_2 = \frac{2.30}{4\pi T} \left( \log \frac{4Tt_2}{r^2 s} - 0.2509 \right)$$

The drawdown difference reduces to

$$\Delta s = s_2 - s_1 = \frac{2.30}{4\pi T} \log \frac{t_2}{t_1}$$
 (A10)
For one log cycle of time, log  $t_2/t_1 = 1$ , and equation (A10) can be solved for T as follows:

$$T = \frac{2.30}{4\pi\Delta S} , \qquad (A1)$$

where As is the incremental drawdown per log cycle of time.

A graph of drawdown as a function of the logarithm of time is all that is required to solve equation (All) for transmissivity. After the early effects of well-bore storage disappear and pumping time becomes greater, the graph should become linear. The constant pumping-well discharge and the drawdown per log cycle of time, in the linear portion of the drawdown data, are substituted into equation (All).

Having obtained a value of T, it is possible to solve-equation (A9) for S if the drawdown is made zero. The linear portion of the drawdown-log time graph is extrapolated to the zero drawdown axis where a value of t, termed  $t_0$ , is determined. The value of  $t_0$  and the previously determined value of T and zero drawdown are substituted into equation (A9) to give

$$0 = \frac{2.30 \text{ Tt}_0}{4\pi T} \left( \frac{\log 4Tt_0}{r^2 S} - 0.2509 \right) ,$$

which can be rearranged with the result that

$$S = \frac{2.25 \text{ Tt}_0}{r^2}$$
 (A12)

a The condition imposed by the method just described, commonly referred to as the <u>Cooper-Jacob method</u> or modified nonequilibrium method, that u be less than 0.02 is a significant limitation. Assuming  $S = 1 \times 10^{-5}$ , T =  $0.24 \cdot m^{-1}/day$ , and r values of 76 m, 152 m, and 305 m, the time required for u to become equal to 0.02 is found to be 3, 12, and 48 days, respectively. Using the estimated geometric mean transmissivity (0.24 m<sup>2</sup>/day) of the Rocky Coulee flow top, it is obvious that the Cooper-Jacob method can be applied to analysis of drawdown within 152 m of well RRL-2B over the period of a 60-day pumping test. Drawdown at distances greater than about 300 m cannot be analyzed using the Cooper-Jacob method. This means that any observed drawdown in piezometers at wells DC-20C and DC-22C will have to be analyzed by type curve methods rather than by the Cooper-Jacob technique.

1)

. DRAFT

## DRAFT

### LEAKY AGUIFER AMALYSIS

A "locky aquifer" is a unit that is over and/or underlain by loss permeable layers that nonetheless provide a flow of water into the locky aquifer when the pressure in the aquifer is reduced by pumping. Senatimes the leakage is so great that it can be detected in the aquifer being pumped. In this situation, the confining layers are termed aquitards and the aquifer or unit is said to be leaky. When the lockage is so little that it is not easily detected, the confining units are called aquicludes and the aquifer is referred to as being slightly leaky (Nouman and Vitherspoon, 1968).

Several models of leaky aquifer flow have been developed. Three of them will be briefly described here. All of the leaky aquifer models assume that flow in the less permeable layers, above and below an aquifer, is essentially vertical. Hence these models provide for the estimation of the average vertical hydraulic conductivity of the confining layer.

#### r/D Herhod

<u>Hansuch and Macch (1955)</u> solve the problem of flow in a leaky, radially infinite equifor. Figure Al depicts a leaky equifer system. An equivard with chickness bi overlies an equifer with a much greater hydraulic conductivity. The equitard is everlain by another very conductive equifer. The lower equifer is pumped at a constant discharge rate, Q. Hancush and Jacob derived an expression that gives the distribution of drawdown in the pumped equifer with cline. Their solution is based on the assumptions that 1) flow is essentially norizontal in the equifer and vertical in the equivard, 2) no drawdown occurs in the upper equifer as a result of pumping from the lower equifer, and 3) leakage into the pumped equifer is proportional we the head difference across the equivard. The last essentially to the based difference across the equivard. The last estimated is equivalent to assigning a negligible storage capacity to the confining bed. Under this condition all the water leading into the pumped equifer comes from the upper equifer (source layer), with the equitard sorving simply as a conduct between the two equifers.

The solution to this problem of leaky aquifer behavior with no storage in the aquitard is

 $s = \frac{0}{4 \pi K b} \quad \forall (u, r/B)$  (A13)

where

$$u = \frac{r^2 S_s}{4tK}$$
 (A14)

# DRAFT



2×8510-16.10

FIGURE A1. Leaky aquifer pumped by a fully penetrating well.

.

|||



(A15)



K,K' = hydraulic conductivity of the aquifer and aquitard, respectively

 $S_s$  = specific storage of aquifer

b,b' = thickness of the aquifer and aquitard, respectively,

Values of the well function for leaky aquifers, W(u,r/B), have been extensively tabulated (Hantush, 1956).

The precedure for analyzing a leaky aquifer test using the <u>Hantush-Jacob model</u> is similar to that of the Theis method for a confined aquifer. First, one must prepare a family of type curves on logarithmic paper of the function W(u,r/B) as a function of 1/u for various values of r/B. The curve with r/B = 0 is the Theis curve. Next, the drawdown in an observation well completed in the aquifer is graphed as a function of time on logarithmic paper of the same scale as that used for the type curves. Match the drawdown record to a type curve and note the value of r/B and the values of s, t, 1/u and W(u,r/B) at a match point.

The hydraulic conductivity of the pumped aquifer is calculated from a rearrangement of equation (A13). The specific storage of the pumped aquifer is calculated from a rearrangement of equation (A14). Finally the vertical conductivity of the aquitard is calculated from a rearrangement of equation (A15).

Neuman and Witherspoon (1969) found that the assumption that no water is released from storage in the aquitard tends to result in overestimating the value of aquifer conductivity and in underestimating the value of the conductivity of the equitard. It is thought that water storage in basalt flow interiors may be quite limited, therefore the assumption of no aquitard storage, of the r/B model, may be valid for the Hanford basalt flow interiors. Another important uncertainty in the Hantush-Jacob model is that it does not distinguish between leakage from above or below the pumped aquifer. (Independent geologic and/or hydrologic knowledge of a situation must be available to assume that leakage is from only above or below the aquifar). This knowledge is crucial if one wishes to estimate the vertical hydraulic conductivity of the aquitard. The Hantush-Jacob model is viewed as one having potential usefulness in the RRL-2 tests as a tool to estimate flow top properties in the face of leakage. The model is not expected to be useful in evaluating, quantitatively, the vertical hydraulic conductivity of flow interiors.

112

SD-BWI-TP-040 REV 0

DRAFT

When the hydraulic conductivity of the confining bed is so small that the ratio K<sup>1</sup>/K tends to zero, the drawdown distribution in the aquifer becomes essentially the same as would be predicted by the Theis model for a confined aquifer (Javandel, 1983). As a result, techniques based on observation in the aquifer alone fail to give the properties of the confining bed.

### Hantush Modified Model

In 1960, Hantush introduced a treatment of leaky aquifers that overcame some of the shortcomings of the Hantush and Jacob model (Hantush, 1960). In the <u>Hantush modified model</u> in which a storage capacity was assigned to the confining aquitard, the leaky aquifer problem was solved for 1) an infinite horizontal aquifer overlain by an aquitard whose upper boundary does not experience change in head from pumping the aquifer and 2) the same situation but with an impermeable bed overlying the aquitard. In this solution Hantush considered leakage into the aquifer from both above and below.

For tless than both b' S'/10K' and b'' S''/10K'', the solution for both cases 1) and 2) above is the same:

$$s = \underline{0} \quad H (u, \beta)$$
 (A16)  
4 \pi Kb

where

.

$$\beta = (r\lambda)/4$$

(712)

$$\lambda = \sqrt{\frac{K'}{Kbb'}} \frac{S'}{S} + \sqrt{\frac{K''}{Kbb''}} \frac{S''}{S}$$
(A18)  
$$u = \frac{r^2 S}{4tbK}$$
(A19)

DRAFT

The single prime denotes parameters of the upper aquitard; the double prime denotes those of the lower aquitard. A table of the function  $H(u,\beta)$  appears in Hantush (1964).

Except for very large values of B, the type curves have very similar shapes that are not much different from the Theis curve. It becomes difficult to decide which of the type curves to use in matching field data. The Hantush modified model provides no means to independently determine the properties of the aquitards. The Hantush modified model is viewed primarily as a diagnostic tool to estimate flow top properties in the face of leakage.

#### Ratio Method

The <u>ratio method</u> of aquitard evaluation is another tool for use in pumping test data analysis. Consider an aquifer confined above by an aquitard with a second aquifer above the aquitard as shown in Figure A2. For relatively short periods of pumping from aquifer A, no drawdown will occur in aquifer B, and the aquifer can be considered to be of effectively infinite thickness. This criterion can be expressed in terms of real time as (Neuman and Witherspoon, 1972).

$$t \leq \frac{0.1 \text{ Ss' b'}^2}{\text{K'}}$$

Near the pumped well the effects of vertical leakage down through the aquitard will be minimized and drawdowns in aquifer A can be approximated by the Theis equation, after pumped well-bore storage effects have diminished. The aquitard can then be treated as an aquiclude according to the theory of slightly leaky aquifers of Neuman and Witherspoon (1968).

The solution to the governing equation giving drawdown in the aquitard is

$$s'(r,z,t) = 0$$
  $\forall (u,u').$  (A20)

119

SD-BW1-TP-040 REV 0 DRAFT PUMPING WELL ≻ a GROUND SURFACE z ٨ . AQUIFER B ACUITARD b'.K'.S',



:

AQUIFER A

۲

. b.K.S.,T

2K8510-16.11

The function  $W(u, u^{i})$  has been evaluated in terms of to and to by numerical techniques. Dimensionless time for the pumped aquifer is  $t_d = Kt/S_s r^2$  and that for the aquitard is  $t_0 = Kt/S_s z^2$ .

It is required that the system remain saturated at all times and that the direction of flow be vertical in the aquitard and horizontal in the aquifer. The validity of the latter restriction for a system of two aquifers separated by an aquitard has been investigated by the finiteelement method. It was found that when the conductivities of the aquifers, are more than two orders of magnitude greater than that of the aquitard, the errors introduced by the assumption of vertical flow in the aquitard are usually less than 5% (California Department of Water Resources, 1971).

Neither equation (A20) nor the Theis equation can be used in itself to yield values of K' or S's. These values, however, can be determined by using the equations in combination. The usefulness of the two equations becomes evident when one considers s'/s, the ratio of drawdown in the aquitard to that in the pumped aquifer at the same elapsed time and the same radial distance from the pumping well.

Heuman and Hitherspoon (1972) have shown that for practical values of the ratio 5/5 independent of the dimensionless leakage parameter,

 $\dot{\beta} = \frac{r}{4b(K'S'_S/KS_S)!_2},$ 

as long as  $\beta$  is about 1.0 or less. Because  $\beta$  is directly proportional to the radial distance from the pumping well, its magnitude can be kept within the limit imposed above by simply placing the observation wells close enough to the pumping well.

The ratio method relies on a family of curves of s'/s versus  $t'_D$ , each curve corresponding to a different value of  $t_D$ , as obtained from equation (A2D) and the Theis equation. These curves are prepared from tables of values published by Witherspoon et al. (1967).

In the ratio method one first obtains the side value at a given radial distance from the pumping well, r, and at a given time t. The next step is to determine the magnitude of to for the particular values of r and t at which side has been measured and from measures of X and  $S_S$  derived from drawdown analysis of the observation well closest to the pumped well. Having determined which one of the curves of side versus to should be

116

SD-BWI-TP-040 REV 0

DRAFT

(A21)

usec, one can read a value of  $t_D$  corresponding to the observed value of s'/s. Finally the vertical hydraulic diffusivity of the aquitard is determined from the relation.

 $\frac{K'}{S_S'} = \frac{t'Dz^2}{t}$ 

When s'/s<0.1, the value of  $t'_D$  obtained by the ratio method is fairly insensitive to the magnitude of s'/s. As a result, the value of  $K'/S'_s$  calculated from equation (A21) depends little on the actual magnitude of the drawdown in the aquitard. Instead, the critical quantity determining the value of  $K'/S'_s$ , at a given elevation z is the time lag t between the start of the test and the time at which the aquitard observation well begins to respond.

To evaluate the vertical hydraulic conductivity and the specific storage of an aquitard from its hydraulic diffusivity, one of these quantities must first be determined by means other than the ratio method. Experience indicates that the hydraulic conductivity may vary by several ° orders of magnitude from one aquitard to another and from place to place in the same aquitard. A much more stable range of values is usually encountered in dealing with specific storage.

A relationship that may be useful in estimating values of S's is given by Domenico (1972) as

 $S_{S}' = \frac{P_{WQ}}{E_{C}}$ 

(A22)

where  $P_W$  = water density g = gravitational acceleration Ec = bulk modulus of aquitard material.

With the aquitard (flow interior) specific storage estimated in this manner, the vertical hydraulic conductivity of the aquitard can be determined from its vertical hydraulic diffusivity.