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EXECUTIVE SUMMARY

It is now well established that the radiations from lightly shielded

radioactive waste canisters embedded in rock salt will produce appreciable

radiation damage, particularly sodium metal colloid particles, in the

surrounding rock salt. Curves of colloid content vs. irradiation dose,

measured for example at 1500C, can be described as classical nucleation

and growth curves containing a pronounced induction period followed by a

rapid growth regime. Colloid formation is either non-existent or negligi-

ble during the induction period, which extends up to 106 or 107 rad. At

n
larger doses the colloid growth is very rapid and is described by C(dose)

relations. Extrapolating the currently available data, which extend to

2-4 x 108 rad, to the doses expected in actual repositories indicates that

very large fractions of the rock salt adjacent to the planned canisters

could be converted into sodium metal colloid particles and an equivalent

amount of chlorine. The salt adjacent to planned canisters will receive

doses in the 10 1 to 2 x 10 rad range in roughly 400 years. Between 0.1

and 10 percent of the salt is converted to colloidal sodium by 1010 rad

and doses of 2 x 1010 rad could convert between 1 and 50 percent of the

salt immediately adjacent to canisters to colloids in 200 to 600 years.

The plastic properties of rock salt are considered advantageous for

waste disposal purposes. However, the radiation-induced colloid formation

is strongly influenced by deforming the salt. The colloid growth induc-

tion period is reduced and the colloid growth rate increased by plasti-

cally deforming (straining) rock salt prior to irradiation. Also, the

plastic properties play an important role in the mechanism for radiation

damage formation in rock salt. The mechanism for colloid particle growth
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is understood qualitatively but the mechanism for colloid particle

nucleation is not at all understood. Since the nucleation step responsi-

ble for the induction period is strongly dependent on strain it is most

likely that dislocations are involved in the nucleation process.

The analysis described in this report was undertaken to determine if

the mobile <100> edge dislocations in NaCl have the requisite properties -

for nucleating radiation-induced colloid particles. Anisotropic

elasticity theory is used to determine the strain field around the <100>

dislocation and from this the "drift flow" describing the movement of

defects to the dislocation is determined. In particular, the time

required for defects to move to the dislocations is determined. It is

found to be in good agreement with experimental data. From these results

one can conclude that the <100> dislocation is a viable nucleating site

for colloid particles in NaCl.

Underway is a similar calculation for the sessile (immobile) <111>

edge dislocation in NaCl to determine if it also is a likely site for

nucleating colloid particles. Although the calculation is not complete,

the results available appear to be leading to the conclusion that the

<111> dislocation is also a viable nucleation site and that the <100> and

<111> dislocations are about equal in nucleating strength.

Additional calculations of this type would provide very useful infor-

mation to determine enough of the nucleation process so as to be able to

model it for calculations of colloid formation in actual repositories. Two

things should be done. 1) Finish the <111> "drift flow" calculation. 2)

Combine the <100> and <111> defect drift flow calculations with defect mi-

gration calculations that include defect diffusion.
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To sumarize, the <100> edge dislocation calculation is consistent

with the observed data on radiation-induced sodium metal colloid formation

in rock salt. Since it strongly supports the role of dislocations in

nucleating radiation-induced colloids in rock salt, it is to be expected

that other dislocation related properties of salt, e.g. strength, creep,

etc. are influenced by radiation. The meager data available regarding

strength support this conjecture, but data on the effects of radiation on

creep are not available.
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ABSTRACT

A theoretical program to investigate the role of dislocations in the

nucleation of sodium colloids in irradiated rock salt has been outlined.

As the first study in the investigation the interaction of radiation-

produced defects with the <001> edge dislocation in rock salt, i.e. the

edge dislocation in the principal slip system of NaCl, has been

considered. The interaction potential between a symmetric defect and the

<001> edge dislocation has been determined on the basis of anisotropic

elasticity theory. The potential arises from the interaction between the

long-range stress field of the dislocation and the displacements around

the point defect. The corresponding flow lines, i.e. the lines along

which the defects flow to the dislocation, have also been determined. In

general, the flow lines are closed loops passing through the center of the

dislocation. One of the novel features introduced by anisotropy is the

possibility of open flow lines for certain elastic constant values. Along

some of these open flow lines defects are attracted to the dislocation,

whereas along others defects are repelled from the dislocation to a common

plane.

The analysis of the migration kinetics of radiation-produced defects

to the <001> edge dislocation has been carried out in the drift flow

approximation in which flow to the dislocation is controlled only by the

dislocation-defect interaction. In this approximation the edge disloca-

tion is a sink for defects and a possible site for colloid nucleation.

(The planar accumulation of defects that occurs along open flow lines for

certain elastic constant values may represent a second dislocation-

controlled mechanism for nucleation.) After the dislocation-defect inter-
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action has been operating for some time, a region about the dislocation

will have been depleted of defects. This region, referred to as the deple-

tion zone, has been determined numerically for a range of elastic constant

values which include those of unirradiated NaCl over the temperature range

24-700C. The defect flow, i.e. the number of defects reaching the disloca-

tion per unit time, has also been determined numerically for this range of

anisotropy.

The depletion time has been defined as the time required for the de-

pletion zone to sweep out a specified area. Utilizing the elastic con-

stants of unirradiated NaCl, the depletion times associated with the migra-

tion of F-centers to the <001> edge dislocation in rock salt have been

computed for temperatures in the range 24-300C, the temperature range of

interest for colloid formation in rock salt. The depletion process is

strongly temperature-dependent. From the numerical results obtained for

defect flow and depletion times it is concluded that the <001> edge dislo-

cation is a viable site for colloid particle nucleation in rock salt.
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I. INTRODUCTION

Recently completed radiation damage studies on natural rock salt,

including samples from potential radioactive waste repository sites, demon-

strate that the gamma-rays from the planned radioactive waste canisters

will convert a large fraction of any rock salt immediately surrounding the

canisters to sodium metal colloid particles. These studies show that

curves of colloid concentration vs. irradiation time, or dose, follow clas-

sical nucleation and growth behavior. More explicitly, gamma-ray doses of

106 - 107 rad produce little or no colloid formation, i.e. a typical induc-

tion period is observed. Doses in excess of these values cause the col-

loid content to increase at a rapid rate given by expressions such as

C(dose) or C(radiation time)n. Inserting experimentally determined

values for the constants C and n in these relations it is estimated by

10
extrapolation that a dose of 10 rad could convert from approximately 0.1

to 10% of the natural rock salt samples studied to colloidal sodium metal.

10
A dose of 2 x 10 rad could convert between 1 and 50% of the samples stud-

ied to colloidal sodium metal. It is important to note that the colloid

formation process is accelerated appreciably by straining samples prior to

irradiation. Laboratory applied strains between 1 and 10% prior to irradi-

ation reduce the induction period from 106 - 107 rad to a negligibly low

3
dose (less than 10 rad). Preirradiation strains greater than approxi-

mately 10% do not produce any further detectable effects. It was

established a number of years ago (Agullo-Lopez and Levy, 1964) that col-

loid formation in strained rock salt samples preferentially occurs on

{110} slip planes. Electron microscope studies also indicate that both

colloid formation and dislocation loops are formed during high dose rate

I
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electron microscope irradiations (Hobbs, 1973). These studies clearly pro-

vide strong evidence to suggest that dislocations in the rock salt lattice

play an important role in the nucleation of radiation-induced colloid

particles.

To determine if dislocations in rock salt have the requisite

properties for colloid nucleation sites, calculations were started to de-

termine if radiation-induced defects in the rock salt lattice, particu-

larly vacancies or F-centers, would be transported to dislocations at the

temperatures where colloid nucleation occurs most readily. Two well-known

processes are important for the migration of defects to dislocations. One

of these is the diffusion of defects in the crystal lattice, a process

which is strongly temperature dependent. The second process is the migra-

tion of defects due to the interaction between the defects and the strain,

or lattice distortion, associated with dislocations. The overall migra-

tion of defects in the rock salt lattice can be considered as the

superposition of the strain-related and normal diffusion processes. The

strain-related processes cause certain defects to move towards the

dislocations. Thus, the general problem can be regarded as a defect diffu-

sion process taking place in the directionally oriented strain field of

the dislocation. The general solution of this problem requires two steps.

First, one calculates the strain field associated with the dislocation.

Second, one combines the solution for the strain induced migration with

the normal diffusion process. Most likely, the general solution is too

complicated to obtain by analytic methods and one must resort to numerical

solutions. However, as demonstrated below, analytical solutions can be

obtained for the strain-related migration of defects to the <100> and

2
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<111> edge dislocations in rock salt. The solution for the <100> edge dis-

location is contained in this report and the solution for the <111> case

will appear in a subsequent report.

Radiation damage in natural and synthetic rock salt: The informa-

tion available in the literature on radiation damage and particularly radi-

ation-induced colloid formation in natural and synthetic rock salt can be

divided into two categories. The first category contains the information

on radiation-induced and intrinsic defects in melt grown crystals of so-

dium chloride, and includes appreciable information on color centers. In

the second category is specific information on radiation damage in natural

and synthetic rock salt which, in one way or another, relats directly to

the radioactive waste disposal program. Most of the information in the

first category is contained in a number of books (Schulman and Compton,

1962; Fowler, 1968; Crawford and Slifkin, 1972; Markham, 1966; and

Stoneham, 1975). A useful short survey of applicable information on color

centers is contained in a recent encyclopedia article (Levy, 1981). It is

very surprising that this extensive literature on color centers and

defects, must of it dealing with alkali halides, contains almost no refer-

ences to natural rock salt. Also, it contains very few references on radi-

ation damage. color center and colloid formation in the alkali halides,

and more specificallv sodium chloride, above room temperature.

Although it has been known for many years that radiation produces col-

loid particles in the alkali halides, it is likely that the first indica-

tion that it might be of importance for radioactive waste disposal in natu-

ral rock salt appeared in the Lyons, KS, studies of Bradshaw and McLain

(1971). Rock salt which had been irradiated at Lyons exhibited considera-

3
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ble radiation damage. It was hard, brittle and almost black in color,

indicating that it contained appreciable quantities of colloidal sodium.

More recent studies using electron microscope techniques on melt

grown NaCl crystals made at Harwell show that the microscope beam irradia-

tion introduced colloid particles and that colloid formation was

accompanied by dislocation climb (Hobbs, 1973; Hobbs, Hughes and Pooley,

1973; Hobbs, 1975). This work also led to the conclusion that the colloid

formation was strongly temperature dependent and that maximum colloid for-

mation occurred at roughly 150°C. In an attempt to explain the results of

Hobbs et al., Jain and Lidiard (1977) developed a theory for radiation-

induced colloid formation in sodium chloride. In many respects this the-

ory provides a qualitative understanding of radiation-induced colloid for-

mation in NaCl. However, in some important respects, both qualitatively

and quantitatively, the- theory is not in accord with recent measurements.

Most importantly, the theory is based on the assumption that the

nucleation processes occur so fast it is unlikely they could be observed,

i.e. the predicted induction period should be much shorter than is actu-

ally measured. Clearly the induction period plays an important role in

colloid formation in natural rock salt. As mentioned above, a

significantly long induction period in unstrained samples can be shortened

by straining samples prior to irradiation, and the induction process ap-

pears to be related in some manner, the precise nature of which is to be

determined, to the presence of dislocations in the crystal lattice.

In the past few years, radiation damage in both natural and syn-

thetic rock salt has been intensively studied by a small group at

Brookhaven National Laboratory. The principal experimental results, very

4
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briefly sketched in the preceding paragraphs, have been outlined in a re-

cent review article (Levy et al., 1981). Preliminary reports describing

some of these results have been published previously (Swyler et al., 1979;

1980; Klaffky et al., 1979; Levy et al., 1980; 1981; 1982; 1983; Loman et

al., 1981). Details on these radiation damage studies in natural and syn-

thetic rock salt are included in reports, submitted or in preparation, for

the Office of Nuclear Waste Isolation (ONWI). These include: 1) radia-

tion damage in synthetic melt grown NaCl between 100 and 300 C (Swyler et

al., 1982). 2) properties of the radiation-induced colloid particles in

natural and synthetic rock salt (Klaffky et al., 1982). 3) heat-induced

colloid formation in previously irradiated natural and synthetic rock salt

(Elgort et al., 1982) and 4) thermoluminescence of irradiated natural and

synthetic rock salt (Skinner et al., 1982).

To recapitulate, -as described above, the available radiation damage

information on synthetic and natural rock salt indicates that appreciable

quantities of sodium metal colloid particles are introduced when samples

are exposed to gamma-ray irradiation. Furthermore, curves of colloid con-

centration vs. dose are described by classical nucleation and growth

curves with pronounced induction periods. The existence of the induction

period demands that colloid growth is preceded by a pronounced nucleation

stage. In turn, to understand this process to a reasonable degree, one

must determine the nature of the nucleation process. Inasmuch as the

nucleation stage depends markedly on the strain state of the material, it

is likely that dislocations act as sites for colloid particle nuclei. To

determine if dislocations are reasonable nucleation sites, the calcula-

tions described below have been undertaken. Specifically, they have been

5
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designed to determine if the dislocation-defect interaction is strong

enough for dislocations. to be nucleation sites for colloid particle forma-

tion.

6



II. OUTLINE OF METHOD

The analysis of the kinetics of migration of point defects to a dis-

location proceeds in three steps.

1) Determine the interaction energy between the defect and the

dislocation.

2) Determine the lines of flow along which the defects move to

the dislocation.

3) Determine the number of defects that migrate to the disloca-

tion as a function of time.

Each of these steps is discussed in turn.

A. Interaction Energy: Of the various types of interactions

(electrical, chemical, and elastic) between a point defect and a disloca-

tion, the elastic interaction is usually the most important (Bullough and

Newman, 1970). It arises from the interaction between the long-range

stress field of the dislocation and the atomic displacements around a

point defect. The analytic form of this interaction is usually deduced

from a continuum model in which the crystalline body is replaced by an

anisotropic elastic medium described by the elastic constants of the crys-

tal. The dislocation is simulated by the appropriate elastic stress

field, usually referred to as a Volterra dislocation. A point defect is

similarly simulated by an elastic inclusion. The latter is introduced by

forcing an elastic sphere of radius r (1+0) into a spherical hole of ra-
0

dius r in the elastic continuum. The interaction energy U between the in-

clusion and the stress field Oij of the dislocation is given by

U = P(AV) - (4/3) Trer 03(ala22+33) (1)

7
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where AV =

-(113)(a

(Cottrell,

can write,

4iTEr03 is the change in volume of the sphere, and P 

+ 2 2 + a33 ) is the hydrostatic pressure of the stress field

1953). In the Appendix it is shown that for cubic crystals one

regardless of the dislocation orientation,

P = -BA (2)

where

B = (c + 2c )
3 11 12

(3)

is the bulk modulus, and

A = 11 + 22 33 (4)

is the dilatational field of the dislocation. In the above expressions

the c.. are the elastic constants and the E.. are the strain field cpo-
1o 1t

nents of the dislocation. Equation (1) can be rewritten as

U = -4fro3 BA (5)

Therefore a determination of the elastic interaction between a point de-

fect and a dislocation in a cubic crystal reduces to a determination

of the dilatational field of the dislocation.

The strain field of a dislocation varies inversely with distance

from the center of the dislocation. Hence, taking (Ri) to be polar coor-

dinates about an infinitely long dislocation, the interaction energy U

will have the general form

U = E D(db)R/b (6)

8



where b is the magnitude of the Burgers (slip) vector of the dislocation,

E is a constant with units of energy, and D(¢) is a dimensionless function

of angle.

B. Flow Lines: A point defect in a dislocation stress field experi-

ences a force, proportional to the gradient of the interaction, which at-

tracts it to the dislocation. In general this force is non-central since

U is a function of angle as well as distance from the dislocation. At any

point the gradient of U is normal to the local equipotential lines. Hence

the flow lines along which the defects move are the family of curves

orthogonal to the equipotentials of the point defect-dislocation interac-

tion. From eq. (6), the general form of this interaction, it can be shown

that the flow lines have the form

R/b exp f-f D() d} (7)

C. Defect Flow: The movement of defects along the flow lines

solely as a result of the defect-dislocation interaction is referred to as

drift flow. The drift flow is superimposed on any defect migration

associated with thermal diffusion processes. When both processes are

operating the defect migration kinetics depend upon the precise nature of

the interaction potential U and any defect concentration gradients which

are present. The concentration of defects, c, must satisfy the following

equation of continuity

1 ac = V2c + V (cVu) (8)
Df at kT

9
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where D is the diffusion coefficient at temperature T, k is Boltzmann's

constant, and U the dislocation-defect interaction energy (Bullough and

Newman, 1970). If the initial defect concentration is c at time-zero,

then the migration of defects to a nearby dislocation is governed by eq.

(8) and the appropriate boundary conditions.

The calculations described here will be concerned with the intrinsic

properties of dislocations which would make them likely sites for radia-

tion-induced colloid nucleation, and also with determining which of the

various possible dislocations are the more probable nucleation sites.

Only drift flow solutions of eq. (8) will be considered, i.e. the cases in

which drift flow predominates and thermal diffusion is totally neglected

(V2c - 0). In the paper by Bullough and Newman (1970) evidence is

presented indicating that the initial accumulation rate for defects at a

dislocation is due almost entirely to drift flow, i.e. that flow due to

concentration gradients is negligible during the initial stages of defect

flow.

For each dislocation considered the calculations will determine the

flow of defects to dislocations as a function of time, N(t). Because of

the dislocation-defect interaction, the defects move along the flow lines

until they reach the center of the dislocation which, in the drift flow

approximation, is an ideal sink. In other words, this corresponds to

putting c = 0 at the center of the dislocation.

After the defect-dislocation interaction has been operating for some

time and if new defects are not being introduced, a well-defined area

surrounding the dislocation will have been depleted of defects. This area

is called the depletion zone. The determination of the defect flow is

10
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equivalent to determining the depletion zone area, weighted by the

defect concentration, as a function of time, or

N(t) 1/2 
20

c- 2dc0 d (9)

where R = R0() represents the depletion zone boundary.

11



III. RESULTS FOR TE <001> EDGE DISLOCATION

The principal slip system in rock salt is <110> 11101, i.e. disloca-

tions prefer to glide on 1101 planes in <110> directions. In general,

dislocation-point defect interactions are greatest for edge dislocations.

Hence the first dislocation to be considered as a possible colloidal

nucleation site is the edge dislocation in the principal slip system of

rock salt. This dislocation lies along an <001> direction.

A. Interaction Energy: The specific slip system considered is that

in which the edge dislocation lies along the (O0l) direction and has a

Burgers vector parallel to the (lo! direction in the (110) plane. The

dilatational field A of this edge dislocation (Chang, 1962; Chou, 1963),

referred to the set of axes-yi where ylrliO, y2IlrllO), y31V001), is

bKy2 (2+H)yl2+2y 2
2

A - . ~~~~~~~~~~~(10)
2T y1

4+(2+H)yl2Y2 +Y24

This can be rewritten in polar coordinates (R,¢) as

A = - bKsin W (2+H cos%) (11)
27R (1+H sin2¢ cosk)

where is the angle about the dislocation line measured from the slip

plane. In these expressions is a measure of the dilatational field

strength and is given by

K c44(c11-cl2) 1/2 (12)
K c +c +2c44 

H11 is 12u t 44

H is a measure of the anisotropy of the elastic continuum and is given by

12
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4(cll+cl2 )(cll-cl2-2c44) (13)
(c -c )(c +c +2c44

11 12 11 12 44)

where cll, c12, and c4 4 are the elastic constants of the cubic material.

The condition of crystal stability imposes certain restrictions on

the range of values of the elastic constants. These restrictions, called

the elastic stability criteria, are determined by imposing the condition

that the energy density of a deformed elastic body be positive-definite

for all stress and strain values. For a cubic crystal the elastic stabil-

ity criteria are c-C 12 > 0, c11+2c12 > 0, c > 0, c4 4 > 0. From the

latter the-ranges of values of the dilatational field strength K and the

anisotropy parameter H are found to be 0 < < 3/2 and -4 < H < . In

the singular case of elastic isotropy H is equal to zero, and the expres-

sion for K reduces to (1-2V)/2(1-v), where is Poisson's ratio.

The elastic constants of unirradiated NaCl have been reported for

the temperature range 24C-700C (Hart, 1968). The values of H and K in the

same temperature range are shown in Fig. 1, having been computed from eqs.

(12) and (13), respectively, using the reported values of c, c , and

c44 ' The values of E are in the interval -1 < H < +1 whereas the K values

vary only between 0.31 and 0.36.

At the high irradiation levels for which the present calculations

are applicable, one expects considerable changes in the elastic constants

with concomitant variations in the H and K values. It is expected that ir-

radiation will increase the value of each elastic constant. For

computational purposes this can be regarded as lowering the crystal temper-

ature. Whether the quantities H and K increase or decrease, and to what

extent, will depend on the variation of each elastic constant with

13
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Fig. 1. The anisotropy parameter H and the dilatational field strength pa-

rameter as a function of temperature in unirradiated NaC1.

These parameters were computed from equations (12) and (13) in the

text using the elastic constant data from Hart (1968).
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irradiation. Since the radiation-induced elastic constant changes are not

known, the theoretical analysis will be carried out for arbitrary elastic

constant values. Consequently the analysis will apply to other cubic mate-

rials, such as C1.

The principal features of the dilatational field A, eq. (10) or

(11), are as follows. For values of the anisotropy parameter H in the

range -2 < H < , the dilatational field is negative above the slip plane

of the edge dislocation, positive below the slip plane, and zero on the

slip plane. In other words the region above the slip plane which has to

accommodate the extra plane of the edge dislocation is in a state of com-

pression, and conversely the region below the slip plane is in a state of

tension. For values of H in the range -4 < H < -2 there are regions of

tension and compression both above and below the slip plane, the addi-

tional zeroes in the dilatational field occurring at angles %0 given by
cos2 0 = -2/H. The values of the dilatational field A at angles of 0,

450, and 900 from the slip plane are independent of H.

Putting the expression for the dilatation A, eq. (11), into eq. (5),

the dislocation-point defect interaction energy for the <001> edge disloca-

tion becomes

U E sin (lt cos 26)

Q (1-a cos2 2) (14)

where

= Rb (15)

E 4r 3 KB (16)

and

15
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a - H/(4+H) <a< 1 . (17)

B. Flow Lines: The equipotential lines form a family of curves

passing through the center of the dislocation. The change in U from one

curve to the next produces a force on each defect which causes it to ac-

quire a drift velocity in the direction perpendicular to the local

equipotential line. Thus, the flow lines along which the defects move are

given by the family of curves orthogonal to the set of equipotentials, as

represented in eq. (7). Utilizing the interaction potential, eq. (14),

for the <001> edge dislocation, the latter can be written

ir(14ax)(1'czx 2)dx
R/b exp {I 2(x+l)f(xa) dxI (18)

where

x cos24 (19)

and

f(xa) a2x 3+a(3-2a)x2 -ax+(1-2a). (20)

Analytic Form of the Flow Lines: The integration indicated in (18) can al-

ways be carried out, i.e. an analytic solution for the flow lines can be

obtained. However the particular analytic form of the flow lines depends

on the nature of the roots x, x2, X3 of f(x,a) = . These roots are

shown as functions of H in Fig. 2. There are three real roots unless H is

in the interval 0 < H < Ho, where Ho is that value of H for which two of

the real roots are equal, namely

16
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(292823 + 12096/49) 1/3 + (292823 - 12096/7) 1/3 - 25 3.5855
o 24 (1

The root x is taken to be always real. In the range 0 < H < Ho, the

roots x2 and x3 are given by x2 3 = k±ik (k, real). The values of

k and . are plotted in Fig. 2 for the range of values 0 < H < Ho

In addition to the two general cases corresponding to one or three

real roots of the polynomial f(x,a), the integration in eq. (18) must be

carried out separately for the values H = 0, Ho, and -1. For the latter

two values the denominator of the integrand in (18) has multiple roots,

whereas, for H - 0, f(x,0) is equal to unity. The analytic expressions

for the flow lines are

1 H< <-
2(H+D) 1 2 3 KH<H<. / 2

jx+lj !Xx 111Ilx-X21 P2xx3 1 3j< (22a)

1
2( H+1)p 2 2 -

Clx+lI JX-x 1l 1 ((i-k)2 +92) exp{r tan (x-k)} O<H<Ho (22b)

R/b = 2(H+1) p1 X 0 (22c)
c~x~| ° X-:l llIxxl, ° expbli0 I(x 0 -x)} echo

CIx+| -1/14 X-x x-x21 2 expf-2/7(x+l)l H=-1 (22d)

1/2
CIX+iI H=0 (22e)
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Fig. 2. The roots x, x2' x3 of the polynomial f(x,C), Eq. (20) in the

text, as a function of the anisotropy parameter H. In the inter-

val O<H<H0, x2,3 = k ± i. (k,2 real). Also, as H--, x-l,

x +1, x
2 x3 1
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where, in each expression, C is a parameter specifying the different

curves in each family of flow lines. The values of the other parameters

are as follows: In eq. (22a) the exponents p, 2, p3 are given by

p - hx2+fxj+d

1 (X1x 2 ) (x -x ) 9 2 

hx2 +fx2+d hx3 +fx 3 +d

(xl-x 2)(X2 -x3) 3 (x2-x3)Xx3-x1)

(23)

where

h (+2) = 2(H+4) -(H+6)(H+4)
2(H+1) ' H (H+)) d 2H(H+1) (24)

Similarly, p1, q, r in eq. (22b) are given by

(hx2+fxl+d)

P1 {(x 1--k) 2 + 92}

(pl+h) (25)

2

2q(xl-k)-(2hk+f)
r = -

where h, f, and d are again given by (24). With defined as

(H 2+9H1+36)1/2 9.007 (26)

the parameters in the flow line solution for H = H, eq. (22c), are given

by

-(12+H1)+4w

= 3HO ~ 4.798 (27)

2w-(12+Ho)
x =x x = H 0.2257

3 0 3H0
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3(5HO+12)(5HO+36)+8wHO(H0+8)

1 - 72(ei2(HO+l) -0.2925

HO{3(5Ho 2+33HO+84)-2 (+8)}
X0 18W2(Ho~~~l -0.31650 lea)'2 H+l )

10 M(H 0+8) (H-K) 0.3925
9o(H +1)

Lastly, in the expression for H = -1, eq. (22d),

X 1,2 '6 ± iT - 10.58, 1.417

(28)

3 rl+/3/7) -0.3546, -0.0740
P12 14 --

The quantities p, p2, p3, q, r are plotted in Fig. 3 as functions

of H. It should be noted that, whereas p1 is negative for all values of

H, the exponents p2 and p3 can be either positive or negative, depending

on H value.

Properties of the Flow Line Solutions: The nature of the flow lines can

be ascertained by considering the various factors in eq. (22). For exam-

ple, the term x+lI 0 at - ±1/2. The term x-x| > 0, since 1x1 > 1

for all H. The term !x-x 2 1 will be zero at certain values of x, i.e. at

certain angles 2' for both -4 < H < -2 and Ho < H < , since x2 1 < 1 for

these values of H (see Fig. 2). Similarly the term Ix-x3 1 = 0 at certain

angles 3 for H values in the ranges -4 < H < -1 and H < H < I. The

angles $2' 3 are defined by

= I cos -1 x * (29)
*2,3 2 2,3 (9
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For each value of x2 or x3 there are obviously four angles that satisfy

(29). The positive acute angle is shown as a function of H in Fig. 4.

Whether any of the terms x+lI, x-x2 1, x-x 3 l represents a zero or infin-

ity in the flow line solution (22) will depend on the sign of its respec-

tive exponent. Using eg. (22) and the results shown in Fig. 3, it is

found that there are two general types of flow lines, depending on whether

or not H lies in the interval -1 - H < H.

(1) H values in the interval -1 - H < H

In this case the flow lines are closed curves consisting of two

symmetric sets. One set of curves lies on either side of the dislocation

and passes through the center of the dislocation. In this H range all of

the loops are closed, but their shape depends on the value of H.

(2) H values not in the interval -1 - < 0:

Within an angle - on either side of the slip plane there are closed

flow lines on each side of the dislocation which pass through the center

of the dislocation. 4 is the acute angle 2 for H < < , and the acute

angle 3 for -4 < H < -1, where 2 and 3 are defined in eq. (29) and

shown in Fig. 4. In fact, for -4 < H < -2, there are three closed loops

on either side of the dislocation. Outside of the region defined by the

angle d1) the flow lines do not close. This follows from the fact that R,

in eq. (22), becomes infinite at certain angles. In the range -4 < H < -1,

R becomes infinite at I-= ±T/2, and for H < H < , R becomes infinite

at the four angles = 1 T +39 where 3 is the acute angle defined by

(29) and shown in Fig. 4.

The possibility that open flow lines might occur is a unique feature

introduced by crystal anisotropy. It should not be regarded as something
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Fig. 4. The acute angles 2 and 3 , Eq. (29) in the text, plotted as a

function of the anisotropy parameter H. The angle 2 is defined

only for values of H outside the interval -2<H<H . There is a

zero in the flow line solution at the angle The angle is

defined only for H values outside the interval -<H<H . For

-4<H<l there is a zero in the flow line solution at the angle

, whereas for H <H<- the flow line diverges to infinityat the angle 0

at the angle 6b3 Also, as H, cb2+O, 6 3-9O.
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of only mathematical interest. Recall that the H value of unirradiated

NaC1 is -0.85 at room temperature. The change in elastic constants

induced by radiation damage can be regarded as the equivalent of going to

lower temperatures. Hence values of H < -1 in highly irradiated rock salt

appear to be likely. Also, note that H values outside the interval

-1 < H < H0 can be found in other cubic crystals. For example, in the tem-

perature range 24C-700C, H values for unirradiated KC1, calculated from

the elastic constant data of Hart (1968), are in the interval -2 < H < -0.7.

Similarly, for unirradiated LiF (Hart, 1977) H values over the temperature

range 24C-650C are in the interval 2 < H < 5.

Direction of Defect Flow: To determine the direction that defects flow

along either open or closed flow lines one must consider the forces acting

on the defect. These are given by

F =F U
R BR R a (30)

where U is the dislocation-defect interaction energy, and (R,d)) are polar

coordinates about the dislocation line. With U given by eq. (14), these

expressions become

Eb sin 6(1+ax)

R -2 (1-ax 2 )

(31)

-= Eb cos ctf(xa)
R2 (l2ax)
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where f(x,c) is defined in eq. (20). Note that the force is purely radial

only at ±T12, and at the angles ¢ = ¢2 c3 defined in eq. (29). The

force is purely tangential at 0,T and, for -4 < H < -2, at angles

given by 1/2 cos (-1/a).

Effects of Anisotropy: Elastic anisotropy not only changes the flow line

shape but also introduces novel features in the dislocation-defect interac-

tion. For H - 0 the flow lines are circles. As increases from zero the

closed flow lines are elongated about the slip plane. At H H0 the

closed flow lines are restricted to an angular zone within 450 of the slip

plane. For larger values of H the angular zone for closed flow lines

diminishes until it vanishes in the limit H m. As H decreases from

zero, the flow lines are elongated normal to the slip plane. For H less

than -1, the zone of closed flow lines diminishes. The closed flow lines

are restricted to a zone within an angle of the slip plane, where is

1T/2 at H = -1 and decreases to T/4 as H -4.

All of the above features are illustrated in Figs. 5 and 6, which

show both the equipotential lines and flow lines for H values of -3, -2,

-1, 0, 1, 3, and 4. The directions of flow shown are for E positive, i.e.

for C > 0, which corresponds to defects which expand the elastic continuum.

(For C < 0, the directions of all arrows would be reversed). The plots

for H = -1, 0, 1, and 3 show that all flow lines in the range -1 < H < Ho

are closed. Hence all defects, both those that expand or contract the

elastic continum, will eventually migrate to the dislocation. The plots

for H = -3, -2, and 4 show that outside the range -1 < H < H both open and

closed flow lines are obtained. More specifically, the closed flow lines

represent the flow of defects to dislocations. For C > 0 as shown, the
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open flow lines in the lower half-plane do likewise but those in the upper

half-plane do not. In other words there is a range of angles about the

edge dislocation in the upper half-plane for which defects will not flow

to the dislocation. (For C < 0, defects are attracted along open flow

lines in the upper half-plane, and repelled along open flow lines in the

lower half-plane.) The defects which are repelled from the dislocation

are driven to a common plane. More exactly, in the continuum theory

approximation, the defects approach this plane asymptotically. For -4 <

H < -1 this plane is given by 7I/2, i.e. the half-plane perpendicular

to the slip plane. For H < H < the defects are driven to two half-

planes above the slip plane which are symmetric about the dislocation and

given by = 73, i-4 3, where 3 is the acute angle shown in Fig. 4.

This last feature, the existence of a plane to which the defects are

repelled, is not readily apparent in Figs. d and 6d. To make it more evi-

dent the flow lines for H -3 and 4 have been replotted in Fig. 7 on a

much larger scale than that employed in Figs. 5d and 6d. For H = -3 the

repelled defects accumulate on the plane given by - 1T/2, which is the

(110) plane. For H 4 the defects are repelled to planes given by

= 450, 1350, which correspond to the (010) and (100) planes, respec-

tively. In general, the indices of the two planes to which the defects

are repelled, for values of H in the interval H < H < , are given by

(1VO), where V tan(7r/4+ 3).

The flow of defects to the dislocation center, which is assumed to

be a defect sink, and which occurs for all H values could be the basis for

a mechanism for colloid nucleation in irradiated rock salt. In addition,

the existence of planes on which defects could accumulate, which occurs
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Fig. 5. Equipotentials and orthogonal flow lines for the drift of defects

to an <001> edge dislocation for values equal to (a) 0, (b) -1,

(c) -2, and (d) -3. The arrows show the direction of flow for a

defect which corresponds to a volume expansion. All closed flow

lines are paths along which defects are attracted to the center

of the dislocation. In those regions where open flow lines

occur, only defects in the lower half plane are attracted to the

dislocation.
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Fig. 6. Same as Fig. 5 for H values (a) 0, (b) 1, (c) 3, and (d) 4.
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for H values outside the interval -1 < H < Ho, could be the basis for

a second dislocation-controlled nucleation mechanism.

C. Defect Flow: Next consider the kinetics of defect migration to

the (001) edge dislocation. The defect concentration, c, must satisfy the

equation of continuity, eq. (8), which, when thermal diffusion is

neglected, becomes

1 Bc = V(cVU)
Df at kT

(32)

When the dislocation-defect interaction energy U for the (001) edge dislo-

cation, eq. (14), is introduced into eq. (32), one obtains

(33)
Be + j(pXa) + T at - v(p,(ba)ec

where

lVp,$,a) = sin 
UP

( 1+C)

( 1_C2 )

11(p( ¢ ) = COS 
UP

f(x.a)
(1-ax2)2

(34)

(35)

V(ODa) = 4 s sin , (xa)
gP) x(1-ax(2)3 ,

g~xa) R l2x(-3a-6x2 Ia) x32x)2a 

and is a temperature-dependent time parameter given by
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T= ' kTh2 (36)

4DfErO3BK

The quantities P, a, x, f(x,a) are defined in eqs. (15), (17), (19) and

(20), respectively.*

Drift Flow Solution: The solution of eq. (33) is obtained, in a

straightforward manner, using the standard techniques for solving first-

order partial differential equations. See, for example, Hildebrand (1962).

The curves represented by the solutions of the subsidiary equations

dp_ , d$ , dt dc (37)
X(P,~,a) Ui(p,O,a) T v(p, ,a) Ac

are called characteristic curves of the partial differential equation

(33). If these are denoted by u(p,J,t) k (constant), i - 1,2,3, then

F(uu 2,u3) = 0, where F is an arbitrary function, represents the general

solution of eq. (33). A particular solution is obtained by applying appro-

priate initial and boundary conditions to this general solution. The char-

acteristic functions u,u 2,u3 associated with eq. (37) are P/Y1, ceY2, and

(P Y3/y t/T). Y1, 2, 3 are functions of the angle (t and the parameter

a defined in eq. (17):

Y (ma) = exp I ( -l)dx(l(38)
1 ~~2(x+l)f(X'a) ax(38)

*The ensuing discussion is given for > 0 so that the time parameter T

is positive. If < 0, a positive time parameter T can still be defined
by (36) with replaced by lei, necessitating the introduction of a
minus sign before the third term in equation (33). The resultant
depletion zone for a negative e value will be rotated by 1800 from
that for the corresponding positive value (as noted previously,
changing the sign of reverses the direction of defect motion along
flow lines).
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(4,a) 2a I g(x,ca) 
Y2(¢'Ct = 2 f(x+1)(1-ax 2 )f(xa) (39)

(Yl(¢,a) )3 (1c2)2
y3 (xa) - cos -f(xc) d. (40)

A comparison of eq. (38) with eq. (18) shows that the curves given

by P - kly(4,c) are the flow lines along which the defects move to the

dislocation. These curves, previously obtained as the orthogonal

trajectories of the interaction potential (14), also represent a family of

characteristics of the differential equation (33). The second set of char-

acteristics gives the angular distribution of the defect concentration.

The third set, the time-dependent characteristics, gives the depletion

zone boundaries.

In the specific problem being considered, the initial concentration

of defects is taken to be uniform, i.e. c - c (constant) at t - 0, except

at the dislocation center (p - 0) where c = 0 at all times. This last con-

dition represents the sink for defects described in Section IC. The solu-

tion of eq. (33) is then

c - O (41)

within the closed region defined by the curve

r)1/3 Y ' 0 =rt1/3

= rY3(¢,a))1/ 3 a(4,a) (42)

This equation describes the time dependent depletion zone boundary.

Outside the region defined by eq. (42) the concentration is given by
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c c0 J2($,a) (43)

The defect concentration is discontinuous across the expanding depletion

zone boundary, eq. (42).

The function Y1 was determined in obtaining the flow line solution

and is given by the right-hand side of eq. (22). There are five different

analytic forms for Y1, depending on the value of H.

The functions Y2 and Y3 also depend on the anisotropy parameter H.

Hence both the form of the depletion zone boundary equation and the equa-

tion for the concentration of defects outside the depletion zone will de-

pend on the value of E.

Defect Distribution: The angular distribution function Y , defined by eq.

(39), can always be evaluated analytically. There are five different

analytic forms, depending on the value of H, corresponding to the forms

encountered in the evaluation of Y1. It should be pointed out that the ex-

pressions derived for Y2 contain parameters which are rather complicated

functions of x1, x2, x3. However, it was found that by using the rela-

tions obtained from the coefficients of f(x,C) = 0, namely

-a(x1.x 2.x3) = 3-2a

(x1 x2x2x 3x 3=-1 (LL4)

1 2 3

the function Y2 could be rewritten in terms of the same parameters

contained in the function yl: specifically, e2 is equal to
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-H -4<H<-1

C21x+11 (l-ox ) x-x| 11 I1x21 1x-x 31P H0 <HOW<- 5

-H

0~~~~~~~~~~~~~~~~~
C2Ix+1I2(HO )(1 2x) 2 JX 1 I IXl-X0_ 1X2+ 2 - xxpllI/kx-

-HHH

1x+l]Ho)(1a Fox 2)2 lx-xllpl xxOIo2 exp{U/(x-x) H=H (45d)

C2 Ix+1 1 /1 (3+x2)2 1x-xl1 ll - 2
2

2exp- 2 H-l (45d)

21x+11 Ix-x 21 ~~~~7(x+l)

C~ is a.constantand H-0 (45e)

C2 is a constant and the parameters p1 9 P2, p3, q, r, 0, Ub are the same

as those defined previously in the corresponding expressions for ,

equations 23 to 28. In Eq. (45c), a = H /(4+H0) 0.4727.

The nature of the distribution function e 2 can be ascertained by

considering the various factors in eq. (45). The Ix-x11 and l-x 21 terms

are always positive. The x+iI, x-x2 j and lx-x 31 terms will be equal to

zero at certa n angles. The first term is zero at t = ±/2. The other

two are zero, for particular ranges of H values, at angles 2' 3 defined

in eq. (29) and shown in Fig. 4. Whether any of the x+lI, x-x21, x-x3 1

terms represents a zero or infinity in the angular distribution function,

eY2. depends on the sign of the corresponding exponent in eq. (45).

These statements are analogous to those given previously in the discussion

on flow lines. However, note that the exponents in eY2 are related to,
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but different from, those in Y1. Using eq. (45) and the results

presented in Fig. 3 leads to the following conclusions: For -1 < H < 0

the angular distribution function consists of two symmetric closed curves,

one on either side of the dislocation. For all values of H outside the in-

terval -l < H < 0 the function eY2 is unbounded at = ±71/2, even in the

range 0 < H < 0 where the flow lines are closed. There are additional

singularities at.the four angles given by x = 2 for -4 < H < -2 and 3.7

x H < A, and also at the four angles given by x = X for -4 < H < -1.4

and < H <.

To illustrate some of these conclusions the defect concentration

function, ceY2, (in arbitrary units) is plotted in Fig. 8 for R = -0.75,

0, 2, and 5. In an isotropic material (H - 0) the concentration of de-

fects is uniform and polar plots of c eY2 are circular. In the range -l

< H < 6 the function e2 contains pronounced peaks at certain angles. For

example, in the plot for H 5 -0.75, which applies to unirradiated NaCl at

~100C, the relative defect concentrations at angles of 00, 400, 73°, and

90° from the slip plane of the dislocation are 0.93, 0.43, 1, and 0, re-

spectively. In the range 0 < < H0 similar peaking occurs in addition to

the singularities at d = T72, as illustrated in the plot for H = 2, Fig.

8c. Finally, the plot for = 5 contains additional unbounded eaks at

the angles given by x = x2,x3.

The singularities in the plots of defect concentration are a mathe-

matical fiction introduced by the drift flow approximation. When aplied

to real crystals, these singularities indicate that the defect concentra-

tion will be high along certain planes. The actual concentration will be

as high as possible consistent with other physical limitations. It is
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Fig. 8. The defect distribution function c eY2, plotted in arbitrary

units, for H values, equal to (a) 0, (b) -0.75, (c) 2 and (d) 5.
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anticipated that the anisotropy-induced peaking in the defect concentra-

tion at certain angles will also be important in a calculation of defect

migration when both drift flow and thermal diffusion are considered.

The last item about the function y2 to be discussed is the determina-

tion of the constant factor C2 in eq. (45). First, note that the differen-

tial equation (33) is homogeneous only for an isotropic medium. The

function (p,O,c) defined in (34) is zero only if 0. Hence, for any

non-zero value of H, the uniform defect concentration initial condition is

not possible. In the drift flow solution the defects (outside the deple-

tion zone) are distributed anisotropically according to eq. (45) at all

times. Taking cO to be the average concentration at t 0 and writing eY2

in the form

eY2 - C2 e\(4) (46)

then C is given as

Cm (L f~i ek(o)d4t) ( f 2 do~)
2 2T e (-s /e (47)

The second expression in (47) follows from symmetry about the dislocation.

Depletion Zone: The function y3, defined by ea. (40), is required for the

evaluation of the depletion zone boundary, eq. (42). It was not possible

to evaluate analytically the integral in eq. (40). Hence Y3 and the deple-

tion zone boundaries were determined numerically for various values of H.

Before proceeding, it should be reemphasized that the principal rea-

son for obtaining the depletion zone boundary is to calculate the number

of defects that reach the dislocation per unit time, i.e. to compute the
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defect flow as defined in eq. (9). In the range -1 < H < Hwhere the

flow lines are closed the numerical determination of Y3, and hence the de-

pletion zone boundary, is straightforward. Outside the interval -1 < H <

H some of the flow lines are open, i.e. Y has singularities. Since the
0 

integrand in the expression for y contains y1 , the numerical determina-

tion of y3 is quite complicated. The function y3 will have singularities

corresponding to those in y1, and it is only the depletion zone boundary,

1/3
which depends on the ratio Y1Y31 / , which is expected to remain finite at

all angles. In addition, the expression for the defect flow will also in-

volve the angular distribution function e 2 which, as shown in the previ-

ous section, has singularities for all H values outside the interval -1 <

H < 0. Hence, even if an analytical expression for the zone boundary were

known, the mathematical singularities in eY2 would greatly complicate nu-

merical computations of the defect flow. This is particularly true for

those singularities which occur for H values outside the interval -1 < H

< Ho, such as shown for H 5 in Fig. 8. From these two considerations it

was decided (to save time and computing cost) to restrict the initial com-

putations to values of H in the interval -1 < H < HO.

Obviously the depletion zone will be symmetric about the disloca-

tion. For all values of H in the interval -1 < H < o the low lines are

closed. The defects enter the center of the dislocation at the angle =

-T/2, as is illustrated in Figs. 5, 6 for the cases H = -1, 0, 1, 3.

Since this is true at all times, it is clear that (-7/2) = 0, where 

refers to the depletion zone boundary defined in eq. (42). Also, by a

1/3
limiting process, one can show that P(r/2) = (3t/T) . Typical results
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of computations are shown in Fig. 9 in which depletion zone boundaries are

shown for H - -0.85, 0, 3.50, at the same t/T value.

A number of interesting characteristics of depletion zone

boundaries, for H values not in the range -1 < H < Ho, can be ascertained

without making computations. These characteristics are associated with

the open flow lines occurring for H values outside the interval -1 < H <

H0, as shown in Figs. 5, 6. The open flow lines below the slip plane con-

tinually bring defects to the dislocation. Hence depletion does not occur

at the angles for which these flow lines exist. For example, for H values

in the interval H0 < H < , the depletion zone is defined only for the in-

terval -2 < < +4)2 ' where 2 is the acute angle defined in eq. (29) and

shown in Fig. 4. In the limit as H d 2 and the depletion zone is

confined to the upper half-plane. The tendency for the region of excluded

angles to develop as H increases from zero can be seen by comparing the H

- 0 and H - 3.50 depletion zones in Fig. 9. The depletion zone boundary

for H - 3.50 is defined for all-angles but is hardly discernible in the

figure in the vicinity of - -r/2.

A similar result is obtained for values in the range -2 < H < -1.

In this case the depletion zone exists only for - < < +) where the
3 3

acute angle 3 is also defined in eq. (29) and shown in Fig. 4.

Likewise, for H values in the range -4 < H < -2 the depletion zone

is defined only for - 3 < < 3 In addition to the zeros in the de-

pletion zone boundary at = -, ra+)3, zeros are also expected at the

angles ° 2' 2 in the upper half-plane. These additional zeros are

associated with the extra loops in the flow lines as illustrated in Fig.

6d. In other words, for -4 < H < -2, the depletion zone contains three
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Depletion Zone

____H= -. 85

.5 ok tt'¢, _H 350

C_ ,, S. .

Fig. 9. The area, or depletion zone, normal to a <001> edge dislocation

..om which defects have been removed, by migrat-ng to the dislo-

cation, by the interaction between the strain field of the disio-

cation and the defect. These curves show the boundaries for var-

ious values of the anisotropy parameter H. The value H = -0.85

corresponds to unirradiated NaCl at room temperature. The axes

lie along <110> directions.
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lobes: one from -43 to 2' the second from 62 to I-¢2' and the third from

Wt2 to +43. In the limit R - -4, each lobe is 900 wide. Hence, for H

values outside the interval -1 < H < O, anisotropy affects not only the

shape but the nature of the depletion zone.

Temperature-dependent Time Parameter : The depletion zone boundary,

defined by eq. (42), is a function of the reduced time (t/T). The parame-

ter T, defined by eq. (36), depends on both the strength of the disloca-

tion-defect interaction, E, and the defect diffusion coefficient, Df

Dexp(-Ef/kT). Since the latter obviously varies exponentially with /T,

in general T will be a decreasing function of temperature. This is

illustrated in Fig. 10 for NaCl, in which the time constant T is plotted

over the temperature range 24C-700C for two values of the misfit parameter

C. (As discussed in Section IIA, the misfit parameter is a measure of

the volume change associated with the defect.) The T values were

calculated from eq. (36), using the elastic constant values reported by

Hart (1968) and the diffusion coefficient for F-centers given by Jain and

Lidiard (1977)

Df 0.01 exp -0.8 eV/kT} cm /sec. (48)

Since decreases with increasing temperature, the time required for

the depletion zone to expand to a given dimension and, therefore, for a

specific number of defects to reach the dislocation will likewise decrease

with increasing temperature. A computation of the movement of F-centers

to the <001> edge dislocation in NaCl, as indicated by the outward move-

ment of the depletion zone, is illustrated in Figs. 11, 12 for crystals at

24C and 150C. Using the diffusion coefficient given by eq. (48) and a mis-
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Fig. 10. The time constant associated with the migration of F-centers

to a <001> edge dislocation in NaCl plotted as a function of tem-

perature for two values of the misfit parameter E.
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SYNTHETI C ROCK SALT 240C
DEPLETION ZONE AS FUNCTION OF TIME

10Gb

10Gb

H= -. 85
t =5 .56x104sec1 ~~~5
t 2=o.56xlO6 sec
t 3 =5.56x10 sec

Fig. 11. Depletion zone boundaries, normal to a <001> edge dislocation in

NaCl at room temperature, as a function of time after defects

have been introduced into the lattice. The axes lie along <110>

directions. The units are Burgers vectors; 100 b = 2x 100

lattice constants.
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SYNTHETI C ROCK SALT 150 0C
DEPLETION ZONE AS FUNCTION OF TIME

'lOOb

I3

2

ti

lObb

H= -. 62
t =6.07

I t =6.07xl
t23=6 . 07x 

lOb

sec
L02 sec

LO sec

100b

Fig. 12. Same as Fig. 11 except that the crystal is at 150C instead of

24C.
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fit parameter 0.02, the T values at 24C and 150C are 16.88 seconds and

1.820 x 10 seconds, respectively. The H values at these temperatures

are -0.85 and -0.62. At both temperatures the depletion zone boundaries

are shown for three times t, t2, t3. Although these times correspond to

the same multiples of (T/3) at the two temperatures (namely, 10 , 10 , and

106), the physical times at the two temperatures are quite different. At

150C, the three times are t t 2 , t 3 6.07 sec, 60.7 sec, and 607 sec, re-

spectively. At 24C the three times are t t 2 , t 3 = 5.56 x 10 sec, 5.56

x 105 sec, and 5.56 x 106 sec, respectively. Obviously, the depletion pro-

cess is strongly temperature dependent. For the depletion zone to reach

a dimension of 100 Burgers vectors (71 lattice constants) at room tempera-

ture requires more than two months. At 150C the corresponding time is ap-

proximately ten minutes. It is interesting to note that these calculated

times are in line with experimental observations. When a sample is

irradiated at room temperature and then stored in the dark, colloids are

observed to form in two to six months. In contrast, samples irradiated at

150C usually form colloids during irradiation. The temperature dependence

of the depletion process will be discussed in greater detail in the sec-

tion below on depletion times.

Number of Defects Reaching the Dislocation: Once the depletion zone is

known, the defect flow, N(t), can be calculated from eq. (9). N(t), the

number of defects which arrive at the dislocation as a function of time,

is given by an integration of the defect density over the area of the de-

pletion zone:

N(t) = 2 2e d = cb -/2e p dd (49)
0- 1 2e 2 d cb 2 2(9
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where P represents the depletion zone boundary, and the second expression

follows from symmetry about the dislocation. With the aid of eqs. (42),

(46), and (47) this last expression for N(t), eq. (49), can be rewritten as

N(t) clb2 (t)2'3 P(R) (50)

where

-I/2 e (51)
-7T/2
-1 i/2 X

The defect flow is proportional to the two-thirds power of the reduced

time. All dependence on the anisotropy parameter is contained in the func-

tion (H).

Over the range of values -1 < H < 0, both and e are bounded,

and the numerical evaluation of the two integrals in (51) is

straightforward. For 0 < < H there are singularities in e at _X/2

in both integrals in eq. (51). To evaluate these integrals, write

e (l = x+lZ A(x,H) (52)

where, from eq. (45b), Z = /2(H+1), and

A(xH) = (1-5x2) Ix-xl'1 ((x-k) 2+Z) 1 exp r tan

First consider the integral in the denominator of (51). To eliminate the

singularity, write the integral
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C , T/2 Zx+1 Z A(x,H)d (54)

as

. , r/2 f x -Z A(R-)d) + f x+l {A(x,H) -A(-1,H)Td6.

See, for example, Davis and Rabinowitz (1967). The integrand in the

second integral is well behaved, and this integral can be computed

numerically. The first integral can be integrated to give

r( 14~
A(-1,H) 2(H+1))

__H r ((H+2)
22(1+1) r7 2(+1)

where r is the gama function. Hence /C. can be determined.

An analogous procedure is utilized to evaluate the integral over

the depletion zone in the numerator of eq. (51) for H values in the range

0 <H < H One writes

f122 0 2 IT/223
I e f e 2 d + F 32/3 A(-1,H) x+11 dl
-Tr/2 -r/2 0

(56)

+ f Ix+llZ (a2A(xH)_32'3 A(-1 ) d

0

-7r/) - an (J(/2) 1/3

Since a(-7=/2) and O(T/2) 31, the integrands in the first and third

integrals on the right-hand side of eq. (56) are well behaved, and, hence,

these integrals can be evaluated numerically. The second integral is
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integrable in terms of gamma functions, as in (55). Hence the numerator of

*(H) in eq. (51) can also be determined for 0 < H < Ho.

It should be pointed out that the function VWH) can be written

solely in terms of the functions Y1, Y2, 3 obtained in the solution of

the differential equation for the defect concentration, i.e.

Ir/2 2 2
CH, ~- f e Y2 3

-WT/2 y73
(57)

Using eq. (40) this can be converted to an integral over y which reads

y (-Ir/2) -/

*(E) - 3 Q(4,a)y3 -23 d (58)

Y3hrr/2)

where

Q(Oa) Cos o*f(xct) eY2
( 1 -ax 2 ) 2 Yl

(59)

Utilizing

< H < Hot

H value:

eqs. (22) and (45) one finds that, over the entire interval -1

the function Q(1,a) reduces to a constant Q0(H) which depends on

specifically,

Qo (q) = l

C2 a2

/2

C2

/2

-1 < H < 0, 0 < < H0

H = 0, -1

(60)

Hence, from eq. (58), one obtains that

,D(H) = 3Q0 (H) {y3 (-Tr/2)}1/3
(61)

-1 < H < Ho
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since 3 (/2) - 0 for these values of H. In other words, for values of

H in the interval -1 < H < Ho, it is possible to obtain '(H) by merely

evaluating the integral Y at one value of C. The integration over the de-

pletion zone is completely eliminated by this method. However, since the

constant C appears in Q0 (H), the problem of dealing with any

singularities in e () is not completely eliminated.

Hence, for H values in the interval -l < H < %, it is possible to

obtain (H), and hence the defect flow N(t), by two methods represented by

eqs. (51) and (61). Computations of (H) were made by both methods for a

series of H values in the interval -1 < H < Ho Both methods gave identi-

cal results. It was found that, over the interval -l < H < H0 , the func-

tion (H) passes through a maximum at H 0: specifically, (-l) 3.378,

'(O) - 3 (/2) 1/3 3.487, and t(3.5) 3.227. All values of *(H) in this

interval of H are within 8 of the *(0) value. In other words, over the

range of H values -l < H < H (for which the flow lines are closed), the

quantity W(H), and therefore the defect flow N(t), is relatively insensi-

tive to the value of the anisotropy parameter H.

The determination of '*(H) for values of H outside the interval -l <

H < H poses similar but more complicated computational difficulties than

those discussed above. Not only are there singularities in e at

`T/2, but (for almost all these H values) also at angles given by x

x2,x3 as discussed in the section on defect distribution. There are two

methods to evaluate Im), represented by eqs. (51) and (58). Both methods

must deal with the singularities in e ( , at least in the computation of

C2 which is common to both methods. The first method involves integration

of the defect density over the depletion zone (numerator of the right-hand
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side of eq. (51)) and again involves the singularities in e($). For

values of H outside the interval -1 < H < H the depletion zone is not

defined for all angles . This is connected with the presence of open

flow lines for these values of H, as discussed in the section on depletion

zones. The lower limit on the integral over the depletion zone in eq.

(51) is not 4) -T/2 but rather a function of H given by 2 -4) for H <

H < , and 4 )3 for -4 < H < -1.

The second method for evaluating (H), eq. (58), is an integral

along 3 which can be expressed in terms of Y3 functions at various

angles. It is to be recalled fron eq. (40) that the function 3 is itself

an integral whose integrand contains Y . For values of H outside the in-

terval -1 < H < R0 the function Y contains singularities associated with

the open flow lines. These singularities would have to be dealt with in

the numerical evaluation of each Y3 integral. Hence for H values outside

the interval -1 < H < H both methods for determining defect flow will in-

volve computational difficulties.

Depletion Times: The depletion zone boundary expands with time. This has

previously been illustrated in Figs. 11 and 12. The depletion time tA is

defined as the time required for the depletion zone to sweep out an area

A. From eq. (42) tA is found to be

f 2A 3/2 2A 23/2 (kTa Ef/kT (62)
A a2 Z(H) ( (a2Z(H) ) 8kro o

where a is the lattice parameter, is defined by eq. (36), and

1r/2

- )T2 d. (63)
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The depletion times associated with the migration of F-centers to the

<001> edge dislocation in rock salt have been computed for temperatures of

24, 100, 150, and 300C. The corresponding values of H in rock salt at

these temperatures are -0.853, -0.697, -0.607, and -0.284, respectively.

These H values were obtained from the elastic constant data for unirra-

diated NaCl (Hart, 1968). The same data were used to compute the values

2of B and K. D was taken to be 0.01 cm /sec (Jain and Lidiard, 1977).

The depletion times are plotted as a function of area in Figs. 13-16.

For each of the four temperatures curves are shown for misfit parameter 

values 0.01 and 0.1, and for activation energy Ef values 0.4, 0.8, and 1.2

eV. These are believed to be suitable values for F-centers in NaCI.

Obviously, the larger the misfit parameter, i.e. the stronger the

dislocation-defect interaction, the shorter will be the time required to

sweep out a particular area at a given temperature. Increasing by a fac-

tor of ten (for the same value of Ef) decreases the depletion time by a

factor of ten. Also, decreasing the value of the activation energy for

diffusion Ef will decrease the time required to sweep out a given area at

any temperature. For example, at 150C and for a misfit parameter =

0.01, decreasing the activation energy from 1.2 eV to 0.4 eV decreases the

time recuired to sweep out an area of 10 a2 from 4.36 x 107 sec

(approximately 1.38 years) to 1.28 x 10 sec.

Next, consider the number of defects which have migrated to the dis-

location at the depletion time tA. Combining eqs. (50) and (62), one ob-

tains

N(t ) c A id (64)
A 0 A T- (64
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Fig. 13. The depletion times associated with the migration of F-centers

at 240C to the <001> edge dislocation in rock salt plotted as a

function of depletion zone area. Depletion times are shown for

values of the misfit parameter equal to 0.01 and 0.1, and for

values of the activation energy Ef equal to 0.4, 0.8, and 1.2
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This is the number of defects per unit length which have arrived at the

dislocation when a depletion zone of area A has been swept out. For a rel-

atively long dislocation of length the total number of defects n for

which the dislocation has acted as a sink (neglecting end effects) is

n - N(t ) - cAt I(H) (65)
A c0 (H) 65

n is the number of defects removed from a cylinder about the dislocation

line whose cross section normal to the dislocation is the depletion zone

(42) at time tA* One needs to estimate how large the depletion zone area

must be in order that the number n be relevant to colloid nucleation in

rock salt. For the values of being dealt with here, t()/Z(H) 1. Tak-

ing c = 10 cm 3 = 5 x 10-4 cm, and A - 105 a2, one obtains n 

(s-3) 3(1.6)10 . Hence the depletion zone area would have to be at least 10

a for n to be physically significant, and probably 10 a to be of rele-

vance to colloid nucleation.

The time required to sweep out a depletion zone area of 10 a2 about

the <001> edge dislocation in rock salt is a function of temperature.

This is illustrated in Fig. 17 in which the depletion times for an area of

104 a are lotted over the temperature range of interest for colloid for-

mation in rock salt, 24C-300C. Curves are shown for misfit parameters 

= 0.01, 0.1 and activation energies E. = 0.4, 0.8, and 1.2 eV. The deple-

tion process is strongly temperature dependent. For example, for a misfit

parameter = 0.01 and an activation energy for diffusion E = 0.8 eV, the

times required to sweep out a depletion zone of 104 a2 at the four tempera-
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tures 24, 100, 150, and 300C are 5.61 x 106, 1.23 x 104, 7.46 x 102, and

3.54 sec, respectively.

Hence it is seen that for reasonable values of the parameters

involved (defect density, dislocation length, misfit parameter, diffusion

activation energy), sufficient defects will accumulate at the <001> edge

dislocation in times that are consistent with experimental observations of

colloid formation. The results thus indicate that the <001> edge disloca-

tion is a viable site for colloid particle nucleation in rock salt.
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APPENDIX

ON TE RELATION BETWEEN HYDROSTATIC STRESS AND DILATATIONAL STRAIN

IN ANISOTROPIC ELASTIC MEDIA

In an anisotropic elastic medium, stress and strain are linearly re-

lated by a relation of the form

CT. F. ekl (Al)aj ijkl kl

where ij , ek, represent the components of the stress and

strain fields, respectively, and F ijkl is the elastic constant

tensor. The hydrostatic stress P i.e. the hydrostatic pressure of

the stress field, is given by

P I1 C + a 2 2 , a 

3 - l 22 33 (A2)

From (Al) one obtains

(a 11 +a 2 2+a33) (F 1 1 +F 1 2 +F 1 3 )e 1 1 +(F 1 2 F 2 2 +F2 3 ) 2 2

+(F 13 +F2 3+F3 3 )E 33 +2(F 1 6+F2 6 F36)e 12 (A3)

.2(F 1 5 2 5 3 5 )e 1 3 2(F 1 4 +F2 4 F34 23

where we have used the contracted notation for the Fijkl (ij i, i = j;

ij k+3, i j). It would appear that, in general, there is no direct

relationship between the hydrostatic stress and the dilatational strain A,

defined as the sun of the principal strains:

A = ll + 2 + ) (A4)
11 22 33
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One must bear in mind, however, that the various F are not independent.

The general transformation formula for the elastic constant tensor in an

anisotropic medium is

ijkl - ip jq kr is cpqrs (A5)

where c rs is the elastic constant tensor referred to the crystal axes

ai, Fijkl the elastic constant tensor referred to an arbitrary

Cartesian system xi and 2k is the direction cosine of the xkkrk

axis with respect to ar.

For cubic crystals, in which there are only three independent

elastic constants (c cc12 ,c'), Eq. (A5) can be written in the simple

form

F A.. X. + f.. (A6)

where

6 =11 c12 2c4 (A7)

11 22 33 11

12 23 13 c12 (A8)

44 55 66 44

and all other Xij are zero. The quantities f are functions only of the

direction cosines and are given as follows:
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I ; 1 -r ) I/ IA I

22 Q2 2 Q2 2
f = -2 ( 2. + . 2 +2 2. ) 

11 11 12 11 13 12 13

Q22 Q22 Q22
f -f -2. 2. + 2 9. + 2. 2

12 66 11 21 12 22 13 23

f J2 2 g2 2 2 92

13 55 11 31 12 32 13 33

f t2 f 2 t t 22 t t

14 56 11 21 31 12 22 32 13 23 33

3 3 +z3 Z

15 11 31 12 32 13 33

3 3 3
f =2 + 2. + 2. 2

16 11 21 12 22 13 33

3 3 2 3 2 33 2

34 31 21 32 22 33 23

2 2 22 2 2
f - -2(2 2 + 2 + 2. )
22 21 22 21 23 22 23

f =f M32 2 2+Z2 22 O2
23 44 21 31 22 32 23 33

3 3 3
f =2. Q +Q. Q +Q 2.
24 21 31 22 32 23 33

2 2 2
f -f 'Q. 2Q 9Q +2. 2Q Q + 2Q 9 .
25 46 21 11 31 22 12 32 23 13 33

t3 3 t 3 
f 2. + +2. 23
26 21 11 22 12 23 13

(A9)

2 2 2 2+92z2
f -- 2(. 9 Q +2 +Q Q )

33 31 32 31 33 32 33

3 z 3 +3 z

35 31 11 32 12 33 13

z2 92 z Z2 9
f36 55 31 11 21 32 12 22 33 13 23

The above equations show that, in a cubic crystal, one always has F14

F56, F25 =46, F36 F45- With the aid of the orthogonalitv relations
56' '25 46' F36( d45t

2. A,. = (Kronecker delta), one obtains from eas. (A6)-(A9) that
ij i.k jk

F11 + F12 + F13 = F12 + F22 + F23 = F13 + F23 + F33 = c11 + 2c12
(AlO)

F + F + F F + F + F =F + F + F =0 
16 26 36 15 25 35 14 24 34
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j *. / .. a, *j pi) A 2

These results apply for any coordinate system xi, i.e. they are indepen-

dent of orientation. Hence, from eq. (A3) we see that, for any elastic

field (ij, ij ) in a cubic crystal, the sum of the principal stresses is

always proportional to the sum of the principal strains by

(a + a22 + a33) (C + 2 1 2 )(E 11 22 + 33 (All)

If we define the crystal bulk modulus as

B - 13 11 + 2c1 2 ) (A12)

then we can state that, in cubic crystals, the hydrostatic stress and the

dilatational strain are related by

P -- BA. (A13)

To see whether or not an analogous result could be expected to ob-

tain in other crystal classes, similar calculations were carried out for

hexagonal crystals for which there are five elastic constants c l, c3 3 ,

c 1 2 , C1 3 , c44. Due to rotational symmetry about the c-axis the

transformed elastic constants in a hexagonal crystal involve only the

three direction cosines (a,S,Y) of the (xl,x 2,x3) axes with respect to the

c-axis (Teutonico, 1970). The expression for the sum of the principal

stresses in a hexagonal crystal is found to be

(a 11 a22 + a 3 3 ) (c1 1 + c12 + c 1 3 )( 11 + 22 + 33) (A14)

+ at'CL 1 1 +B 22 + Y 33 + 2c 1 2 + 2ayE13 + 2E 23)

where
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-

~~~~~ 2 \ D S / 1, j

a - (c 3 3 -c 1 1) + ( 1 3 c 1 2 ) (A15)

The quantity a would be zero only if the material is isotropic. Even for.

an infinitely long dislocation parallel to x3 (E3 3 0 0) the quantity in

square brackets in (A14) is zero only for specific orientations.

Therefore, in a hexagonal crystal, aii is in general not proportional to

*ii. It is presumed that in crystals of symmetry lower than hexagonal the

same result would obtain.

Hence the result that the hydrostatic stress is always proportional

to the dilatational strain appears to be unique to cubic crystals.
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