FirstEnergy				Page i
	NOP-CC-3002-02	Rev. 00		
INITIATING DOCUME	NT	CALCULATION NO.	CALCULATION REV.	ADDENDUM NO.
TM-1-03-011		2.4.6.14	0	A-01
TITLE/SUBJECT: Turbine Building Temperature Response to Steam Leaks				

BV1	BV2	DB	🛛 PY
ORIGINATOR/DATE	REVIEWER/DATE	DESIGN VERIFIER/DATE	APPROVER/DATE
James E. Praser		David J. Godshalk	Tom O'Reilly

OBJECTIVE OR PURPOSE OF ADDENDUM:

This addendum contains two parts. The purpose of Part 1 to this Addendum is to evaluate the temperature response in the Turbine Building to a new limiting Main Steam leak of 32.90 Lb_m/sec. This evaluation is performed in line with the objective of Calculation 2.4.6.14. Conclusions will be based on whether the results meet the specified acceptance criteria in order that boundary dose limits are not exceeded.

The purpose of Part 2 to this Addendum is to evaluate the temperature response in the Turbine Building to a Main Steam leak after two temporary fans, each with a flowrate of 1000 cfm, have been installed to circulate air in the vicinity of temperature switches 1E31N0361A/B/C/D. This information will be compared to the results of PNPP Calculation 2.4.6.14 Rev. 0, as well as Part 1 of this Addendum, and will aid in evaluating the ability of this interim measure to eliminate the possibility of nuisance trips of the Turbine Building temperature switches (1E31N0361A/B/C/D) that trigger MSIV isolation.

SCOPE OF ADDENDUM:

The scope of Part 1 to this Addendum falls in line with the scope of Calculation 2.4.6.14. The only change made to the base analytical models was the mass flow rate of the leak.

The calculation results from Part 2 to this Addendum apply to operation of the fans during the summer months (June 1st - October 1st). The addition of the fans in the Turbine Building is a temporary modification that will be removed during RF10 (April, 2005).

SUMMARY OF RESULTS/CONCLUSIONS OF ADDENDUM: Part 1

The analysis indicates that a steam leak rate of 32.90 Lbm/sec will result in elevated temperatures of 145°F and 160°F near the E31 thermocouples well within the acceptable time limit of 1 hr 11 min 46 sec.

Part 2

Comparing the results of the GOTHIC model, before and after the addition of the fans, reveals minor yet generally consistent effects. Beyond the special case of Summer Leak Location #1 (discussed further in the Conclusions section), the results are consistent in predicting that the fans will help to homogenize the volumes and decrease the time for detection. Even in the instance that the time required is increased, all of the detection times still remain well within the acceptance criteria.

LIMITATIONS OR RESTRICTIONS CREATED BY ADDENDUM: N/A

IMPACT OF ADDENDUM ON OUTPUT DOCUMENTS: N/A

DESCRIBE WHERE THE ADDENDUM HAS BEEN EVALUATED FOR 10CFR50.59 APPLICABILITY:: Refer to TM-1-03-011 and 10CFR50.59 Evaluation 03-00748.

FirstEnergy		CALCULATION ADD	ENDUM	Page ii
	NOP-CC-3002-02	Rev. 00		
INITIATING DOCUME	NT	CALCULATION NO.	CALCULATION REV.	ADDENDUM NO.
TM-1-03-011		2.4.6.14	0	A-01
TITLE/SUBJECT: Turb	ine Building Tempe	rature Response to Steam Leaks		

Т

1

TABLE OF CONTENTS

SUBJECT	PAGE
COVERSHEET:	i
OBJECTIVE OR PURPOSE	i
SCOPE OF CALCULATION	i
SUMMARY OF RESULTS/CONCLUSIONS	i
LIMITATIONS OR RESTRICTION ON CALCULATION APPLICABILITY	i
IMPACT ON OUTPUT DOCUMENTS	i
DOCUMENT INDEX	iii
CALCULATION COMPUTATION (BODY OF CALCULATION):	1
ANALYSIS METHODOLOGY	1
ASSUMPTIONS	4
ACCEPTANCE CRITERIA	4
COMPUTATION	4
RESULTS	5
CONCLUSIONS	30
ATTACHMENTS:	31
ATTACHMENT A: GOTHIC-generated model diagram	1 Page
ATTACHMENT B: Fan and Associated Hydraulic Line Location Diagram	1 Page
ATTACHMENT C: GOTHIC Input File	26 Pages
ATTACHMENT D: GOTHIC Output Data for 32.9 Lb _m /sec Leak	82 Pages
TOTAL NUMBER OF PAGES IN CALCULATION (COVERSHEETS + BODY + ATTACHMENTS)	144 Pages
SUPPORTING DOCUMENTS (For Records Copy Only)	
DESIGN VERIFICATION RECORD	1 Page
CALCULATION REVIEW CHECKLIST	2 Pages
10CFR50.59 DOCUMENTATION	N/A Pages
DESIGN INTERFACE SUMMARY	N/A Pages
DESIGN INTERFACE EVALUATIONS	N/A Pages
OTHER	N/A Pages
	T YES
EXTERIOR INLEDIA: (INIGROFICIE, ETC.) (IF TES, FROVIDE LIST IN BODT OF CALCULATION)	NO NO

FirstEnergy		CALCULATION ADD	ENDUM	Page iii
	NOP-CC-3002-02	Rev. 00		
INITIATING DOCUME	NT	CALCULATION NO.	CALCULATION REV.	ADDENDUM NO.
TM-1-03-011		2.4.6.14	0	A-01
TITLE/SUBJECT: Turb	ine Building Tempe	rature Response to Steam Leaks		

DOCUMENT INDEX

DIN No.	Document Number/Title	Revision, Edition, Date	Reference	Input	Output
1	GOTHIC Containment Analysis Package Users Manual	Version 7.0, July, 2001			
2	PNPP Temp Mod TM-1-03-011	-		\boxtimes	
3	PNPP Calculation 2.4.6.15, "Main Steam Crack Flow in the Turbine Building"	Rev. 0			

FirstEnergy		CALCULATION ADD	ENDUM	Page 1 of 31	
	NOP-CC-3002-02	Rev. 00			
INITIATING DOCUME	NT	CALCULATION NO.	CALCULATION REV.	ADDENDUM NO.	
TM-1-03-011		2.4.6.14	0	A-01	
TITLE/SUBJECT: Turbine Building Temperature Response to Steam Leaks					

This Addendum was prepared in accordance with the methodology of Calculation 2.4.6.14. Therefore, review of this Addendum shall be done in association with Calculation 2.4.6.14.

Analysis Methodology

<u>Part 1</u>

The purpose of this part of the addendum is simply to provide additional Turbine Building temperature response data for the new limiting leak rate of 32.90 Lb_m /sec established in Calculation 2.4.6.15 Rev. 0 (DIN 3). Therefore, the analysis methodology used in Calculation 2.4.6.14 remains the same with the only difference being the leak flow rate (Boundary Condition 2F). Evaluations will also be performed, and subsequent results represented, in a manner consistent with the original calculation (Summer, Winter, and Average conditions at Leak Locations 1, 2, 3 for a total of nine (9) new scenarios).

<u>Part 2</u>

This part of the addendum evaluates the Turbine Building temperature response, after two (2) temporary fans have been installed to circulate air in the vicinity of temperature switches 1E31N0361A/B/C/D, using the GOTHIC computer code (Version 7.0) (DIN 1). Referring to the base calculation as well as Part 1 of this Addendum, the fans were added to the GOTHIC models that predict the highest and fastest temperature rise at the location of the thermocouples at the East end of the Turbine Building. The highest leak rate under Summer Conditions fits this criteria. However, the highest leak rate of 45.11 Lb_m/sec was not selected, because according to Calculation 2.4.6.15 Rev. 0 the limiting leak rate due to critical crack length is 32.90 Lb_m/sec. Therefore, the applicable "worst-case" scenarios being analyzed for this part of the addendum are the following:

- Summer Conditions, Leak Location #1, 32.90 Lb_m/sec
- Summer Conditions, Leak Location #2, 32.90 Lb_m/sec
- Summer Conditions, Leak Location #3, 32.90 Lb_m/sec

The basis and methodology of these original GOTHIC models is described thoroughly in PNPP Calculation 2.4.6.14 Rev. 0, as well as Part 1 to this Addendum.

In addition to the above three (3) scenarios, additional GOTHIC models were run under identical conditions (Summer Conditions, Leak Locations 1, 2, and 3) but with a leak rate of 19.68 Lb_m /sec. The purpose for analyzing these specific scenarios is two-fold. First, the analysis will provide sensitivity data on the effect of the fans as the leak rate decreases. Second, a leak rate of 19.68 Lb_m /sec meets the 10CFR100 site boundary dose limit criteria set forth in the base calculation that the total mass effluent from the steam line leak shall not exceed the total mass release from the main steam line break (141,687 Lb_m) within two hours.

Each evaluation will determine the time required to reach 145°F and 160°F at the location of temperature sensors 1E31N0361A/B/C/D. These results will be compared to those predicted in the absence of the two temporary fans. The E31 leak detection thermocouples are located on the East wall at column TB14, approximate Elevation 632-feet (GOTHIC sub-volume V7s15).

FirstEnergy		CALCULATION ADD	ENDUM	Page 2 of 31
	NOP-CC-3002-02	2 Rev. 00		
INITIATING DOCUME	NT	CALCULATION NO.	CALCULATION REV.	ADDENDUM NO.
TM-1-03-011		2.4.6.14	0	A-01
TITLE/SUBJECT: Turbine Building Temperature Response to Steam Leaks				

A code-generated diagram in Attachment A indicates the basic layout of the Turbine Building GOTHIC model, showing the control volumes, the boundary conditions, the interconnecting flow paths, and the volumetric fans.

The GOTHIC model for this calculation analyzes the addition of two fans each blowing air at 1000 cfm through a hydraulic line. Each hydraulic line takes suction from the East end of the Turbine Building at Elevation 602 ft (GOTHIC sub-volume V7s9) and discharges air at the East end of the Turbine Building at Elevation 621 ft (GOTHIC sub-volume V7s15) up towards the E31 thermocouples (DIN 2). Refer to Attachment B for a sketch of the fan locations.

Control Volumes

Refer to the base calculation for information on how the Control Volumes were set up in the GOTHIC models. No changes were made to the control volumes for this addendum to the calculation.

Thermal Conductors

Refer to the base calculation for information on how thermal conductors were set up in the GOTHIC models. No changes were made to the thermal conductors for this addendum to the calculation.

Flow Paths (Junctions)

Refer to the base calculation for information on how the Flow Paths were set up in the GOTHIC models. The following additions were made for this addendum to the calculation:

Flow Paths 38 and 39 were added to represent the two hydraulic lines used to discharge air from the fans up towards the E31 thermocouples. Both flow paths connect sub-volume V7s9 to sub-volume V7s15. Suction is taken at Elevation 602 ft, and discharge is located at Elevation 621 ft. The hydraulic diameter is set equal to the 8-inch diameter of the round flex duct (DIN 2), and the corresponding flow cross-sectional area is set at .35 ft².

Area =
$$\frac{\pi \times \text{Diameter}^2}{4}$$
 = .35 ft²

The inertia length of a GOTHIC flow path is the center-to-center distance between the connected volumes. For this application, since the flow velocities are relatively small for volume-to-volume flow, the flow path inertia length is approximated at 1 foot for each volume-to-volume connection. The flow path friction length is considered non-critical for this application and is set to 1 foot for all flow paths. The flow path friction length only becomes important when the model is concerned with buoyancy and thermally-induced flow. In this case, air movement is driven by forced convection (i.e. the fans).

FirstEnergy	Page 3 of CALCULATION ADDENDUM			Page 3 of 31
	NOP-CC-3002-02	? Rev. 00		
INITIATING DOCUME	NT	CALCULATION NO.	CALCULATION REV.	ADDENDUM NO.
TM-1-03-011		2.4.6.14	0	A-01
TITLE/SUBJECT: Turb	ine Building Tempe	rature Response to Steam Leaks		

Components

Two volumetric fans were added to the model, representing the temporary vane-axial ventilator fans being installed in the Turbine Building (DIN 2). One volumetric fan was placed on Flow Path 38, and the other was placed on Flow Path 39. They are both set to blow air at 1000 cfm (DIN 2), discharging just below the E31 thermocouples (sub-volume V7s15). Note that according to DIN 2, the estimated flow of 1000 cfm for each fan takes into account losses through the flex duct and grating.

Boundary Conditions

Refer to the base calculation for information on how the boundary conditions were set up in the GOTHIC models. Boundary Condition #2F is adjusted for each scenario in order to model the desired leak rate.

Initial Conditions

Refer to the base calculation for information on how the initial conditions were set up in the GOTHIC models. No changes were made to the initial conditions for this addendum to the calculation.

Turbine Building Thermal Characteristics

Refer to the base calculation for information on how the thermal characteristics were determined for the GOTHIC models. No changes were made to the Turbine Building thermal characteristics for this addendum to the calculation.

FirstEnergy		CALCULATION ADD	ENDUM	Page 4 of 31
	NOP-CC-3002-02	2 Rev. 00		
INITIATING DOCUME	NT	CALCULATION NO.	CALCULATION REV.	ADDENDUM NO.
TM-1-03-011		2.4.6.14	0	A-01
TITLE/SUBJECT: Turb	ine Building Tempe	erature Response to Steam Leaks		

Assumptions

Parts 1 and 2

1. All assumptions stated in PNPP Calculation 2.4.6.14 Rev. 0 apply to this calculation.

2. All other assumptions are stated within the calculation.

Acceptance Criteria

Parts 1 and 2

The temperature in the Turbine Building due to the 32.90 Lb_m /sec steam leak must reach the particular analytical limit (145°F or 160°F) in less than 1 hour 11 minutes 46 seconds.

The temperature in the Turbine Building due to the 19.68 Lb_m/sec steam leak must reach the particular analytical limit (145°F or 160°F) in less than 1 hour 59 minutes 59 seconds (2 hours).

Basis: The total mass effluent from the steam line leak shall not exceed the total mass release from the main steam line break (141,687 Lb_m). A leak rate that satisfies this criterion would ensure that the 10CFR100 site boundary dose limit is not exceeded.

Computation

Parts 1 and 2

The thermal response over a 24-hour period at the location of the temperature sensors and at the steam leak is calculated by the GOTHIC computer program. For calculation brevity, only one input deck is included in Attachment C representing the Summer – Leak $\#1 - 32.90 \text{ Lb}_m$ /sec case. The required changes for all other cases are noted in the attachment. For further information on how GOTHIC performs its analysis, refer to the GOTHIC Users Manual (DIN 1).

FirstEnergy		CALCULATION ADD	ENDUM	Page 5 of 31
	NOP-CC-3002-02	2 Rev. 00		
INITIATING DOCUME	NT	CALCULATION NO.	CALCULATION REV.	ADDENDUM NO.
TM-1-03-011		2.4.6.14	0	A-01
TITLE/SUBJECT: Turb	ine Building Tempe	rature Response to Steam Leaks		

Results

<u>Part 1</u>

The resultant temperature graphs predict the temperature of the sub-volume that contains the E31 leak detection thermocouples (located on the east wall at TB14, approximate Elevation 632-feet, GOTHIC sub-volume V7s15¹). Also shown is the sub-volume temperature at the leak location² if the leak location lies in a sub-volume different from the thermocouple sub-volume. The results over a 24-hour period for all cases are displayed below. A 24-hr period was analyzed in order to assure that steady-state temperatures were reached (the graphs confirm that this occurred). The following three summary items are listed below each graph.

- The maximum temperature realized at the location of the thermocouples, along with the time required to reach the maximum temperature.
- The time required to reach 145°F at the thermocouples.
- The time required to reach 160°F at the thermocouples.

A summary of the times required to reach 145° F and 160° F can be found in Tables 1 and 2, respectively, at the end of this section.³

Attachment D contains the output data from which the results were derived. Note that the data produced by GOTHIC covers the time period from t = 0 seconds to t = 90,000 seconds (25 hours). As mentioned in Calculation 2.4.6.14, the steam leak is delayed to t = 3600 seconds (1 hour) in order to allow the transient to steady. Therefore, times reported in the following results equal the output data minus 3600 seconds.

¹ The legend in the GOTHIC-produced graphs denote sub-volume names with a 'T' in front (e.g. TV7s15 is the same as V7s15).

² Leak Locations 1, 2, and 3 lie in sub-volumes V7s15, V7s11, and V7s12, respectively.

³ Data points created by the GOTHIC analysis typically did not occur exactly at 145°F or 160°F. Consistent with Calculation 2.4.6.14, the data point was chosen that occurred at a time with a realized temperature closest to, but not less than, the target temperature (usually within a few tenths of a degree).

FirstEnergy		CALCULATION ADD	ENDUM	Page 6 of 31
	NOP-CC-3002-02	2 Rev. 00		
INITIATING DOCUME	NT	CALCULATION NO.	CALCULATION REV.	ADDENDUM NO.
TM-1-03-011		2.4.6.14	0	A-01
TITLE/SUBJECT: Turbine Building Temperature Response to Steam Leaks				

Leak Location 1 – Summer 32.90 Lb_m/sec leak rate

GOTHIC Sub-Volume V7s15

Maximum temperature realized - 190.1°F after 7 hrs 7 min 0 sec

Time required to reach $145^{\circ}F - 59$ sec

Time required to reach $160^{\circ}F - 4 \min 41 \text{ sec}$

FirstEnergy	Page 7 of 3 CALCULATION ADDENDUM			
	NOP-CC-3002-02	2 Rev. 00		
INITIATING DOCUME	NT	CALCULATION NO.	CALCULATION REV.	ADDENDUM NO.
TM-1-03-011		2.4.6.14	0	A-01
TITLE/SUBJECT: Turbine Building Temperature Response to Steam Leaks				

Leak Location 2 – Summer 32.90 Lb_m/sec leak rate

GOTHIC Sub-Volume V7s15

Maximum temperature realized - 190.3°F after 10 hrs 10 min 20 sec

Time required to reach $145^{\circ}F - 1 \text{ min } 19 \text{ sec}$

Time required to reach $160^{\circ}F - 7 \text{ min } 2 \text{ sec}$

FirstEnergy	Page 8 c			Page 8 of 31
	NOP-CC-3002-02	2 Rev. 00		
INITIATING DOCUME	NT	CALCULATION NO.	CALCULATION REV.	ADDENDUM NO.
TM-1-03-011		2.4.6.14	0	A-01
TITLE/SUBJECT: Turb	ine Building Tempe	erature Response to Steam Leaks		

Leak Location 3 – Summer 32.90 Lb_m/sec leak rate

GOTHIC Sub-Volume V7s15

Maximum temperature realized - 182.4°F after 7 hrs 24 min 20 sec

Time required to reach $145^{\circ}F - 1 \text{ min } 3 \text{ sec}$

Time required to reach $160^{\circ}F - 7 \min 13 \text{ sec}$

FirstEnergy	Page 9 c CALCULATION ADDENDUM			
	NOP-CC-3002-02	2 Rev. 00		
INITIATING DOCUME	NT	CALCULATION NO.	CALCULATION REV.	ADDENDUM NO.
TM-1-03-011		2.4.6.14	0	A-01
TITLE/SUBJECT: Turbine Building Temperature Response to Steam Leaks				

<u>Leak Location 1 – Winter</u> 32.90 Lb_m/sec leak rate

GOTHIC Sub-Volume V7s15

Maximum temperature realized - 185.8°F after 24 hrs 0 min 0 sec

Time required to reach $145^{\circ}F - 4 \text{ min } 3 \text{ sec}$

Time required to reach $160^{\circ}F - 13 \text{ min } 28 \text{ sec}$

FirstEnergy				Page 10 of 31
	NOP-CC-3002-02	2 Rev. 00		
INITIATING DOCUME	NT	CALCULATION NO.	CALCULATION REV.	ADDENDUM NO.
TM-1-03-011		2.4.6.14	0	A-01
TITLE/SUBJECT: Turbine Building Temperature Response to Steam Leaks				

<u>Leak Location 2 – Winter</u> 32.90 Lb_m/sec leak rate

GOTHIC Sub-Volume V7s15

Maximum temperature realized - 185.6°F after 24 hrs 0 min 0 sec

Time required to reach $145^{\circ}F - 6 \min 6 \sec$

Time required to reach 160°F – 29 min 58 sec

FirstEnergy	Page 11 CALCULATION ADDENDUM			Page 11 of 31
	NOP-CC-3002-02	2 Rev. 00		
INITIATING DOCUME	NT	CALCULATION NO.	CALCULATION REV.	ADDENDUM NO.
TM-1-03-011		2.4.6.14	0	A-01
TITLE/SUBJECT: Turbine Building Temperature Response to Steam Leaks				

<u>Leak Location 3 – Winter</u> 32.90 Lb_m/sec leak rate

GOTHIC Sub-Volume V7s15

Maximum temperature realized - 177.6°F after 24 hrs 0 min 0 sec

Time required to reach $145^{\circ}F - 5 \min 42 \text{ sec}$

Time required to reach $160^{\circ}F - 36 \text{ min } 29 \text{ sec}$

FirstEnergy				Page 12 of 31
	NOP-CC-3002-02	2 Rev. 00		
INITIATING DOCUME	NT	CALCULATION NO.	CALCULATION REV.	ADDENDUM NO.
TM-1-03-011		2.4.6.14	0	A-01
TITLE/SUBJECT: Turbine Building Temperature Response to Steam Leaks				

Leak Location 1 – Average 32.90 Lb_m/sec leak rate

GOTHIC Sub-Volume V7s15

Maximum temperature realized - 186.9°F after 24 hrs 0 min 0 sec

Time required to reach $145^{\circ}F - 3 \min 9 \sec \theta$

Time required to reach $160^{\circ}F - 8 \min 32$ sec

FirstEnergy				Page 13 of 31
	NOP-CC-3002-02	2 Rev. 00		
INITIATING DOCUME	NT	CALCULATION NO.	CALCULATION REV.	ADDENDUM NO.
TM-1-03-011		2.4.6.14	0	A-01
TITLE/SUBJECT: Turbine Building Temperature Response to Steam Leaks				

Leak Location 2 – Average 32.90 Lb_m/sec leak rate

GOTHIC Sub-Volume V7s15

Maximum temperature realized - 187.0°F after 24 hrs 0 min 0 sec

Time required to reach $145^{\circ}F - 4 \text{ min } 30 \text{ sec}$

Time required to reach 160°F – 18 min 17 sec

FirstEnergy				Page 14 of 31
	NOP-CC-3002-02	2 Rev. 00		
INITIATING DOCUME	NT	CALCULATION NO.	CALCULATION REV.	ADDENDUM NO.
TM-1-03-011		2.4.6.14	0	A-01
TITLE/SUBJECT: Turbine Building Temperature Response to Steam Leaks				

Leak Location 3 – Average 32.90 Lb_m/sec leak rate

GOTHIC Sub-Volume V7s15

Maximum temperature realized - 178.7°F after 24 hrs 0 min 0 sec

Time required to reach $145^{\circ}F - 4 \text{ min } 0 \text{ sec}$

Time required to reach 160°F – 22 min 53 sec

FirstEnergy	CALCULATION ADDENDUM			Page 15 of 31
	NOP-CC-3002-02	2 Rev. 00		
INITIATING DOCUME	NT	CALCULATION NO.	CALCULATION REV.	ADDENDUM NO.
TM-1-03-011		2.4.6.14	0	A-01
TITLE/SUBJECT: Turbine Building Temperature Response to Steam Leaks				

Table 1 – Time Required to Reach 145°F at the Thermocouples

	Summer	Winter	Average
32.90 Lb _m /sec	Leak 1 - 59 sec Leak 2 - 1 min 19 sec Leak 3 - 1 min 3 sec	Leak 1 - 4 min 3 sec Leak 2 - 6 min 6 sec Leak 3 - 5 min 42 sec	Leak 1 - 3 min 9 sec Leak 2 - 4 min 30 sec Leak 3 - 4 min 0 sec

Table 2 – Time Required to Reach 160°F at the Thermocouples

	Summer	Winter	Average
32.90	Leak 1 - 4 min 41 sec	Leak 1 - 13 min 28 sec	Leak 1 - 8 min 32 sec
Lb _m /sec	Leak 2 - 7 min 2 sec Leak 3 - 7 min 13 sec	Leak 2 - 29 min 58 sec Leak 3 - 36 min 29 sec	Leak 2 - 18 min 17 sec Leak 3 - 22 min 53 sec

FirstEnergy	CALCULATION ADDENDUM			Page 16 of 31
	NOP-CC-3002-02	2 Rev. 00		
INITIATING DOCUME	NT	CALCULATION NO.	CALCULATION REV.	ADDENDUM NO.
TM-1-03-011		2.4.6.14	0	A-01
TITLE/SUBJECT: Turb	ine Building Tempe	erature Response to Steam Leaks		

<u>Part 2</u>

The resultant temperature graphs indicate the temperature of the sub-volume that contains the E31 leak detection thermocouples (located on the east wall at TB14, approximate Elevation 632-feet, GOTHIC sub-volume V7s15⁴). Also shown is the sub-volume temperature at the leak location⁵ if the leak location lies in a sub-volume different from the thermocouple sub-volume. The results over a 24-hour period for all cases (plus each corresponding case without the fan modification) are displayed below. A 24-hr period was analyzed in order to assure that steady-state temperatures were reached (the graphs confirm that this occurred). The following three summary items are listed below each graph.

- The maximum temperature realized at the location of the thermocouples, along with the time required to reach the maximum temperature.
- The time required to reach 145°F at the thermocouples.
- The time required to reach 160°F at the thermocouples.

A summary of the times required to reach 145°F and 160°F can be found in Tables 3 and 4, respectively, at the end of this section.⁶

Note that the output data produced by GOTHIC covers the time period from t = 0 seconds to t = 90,000 seconds (25 hours). As done in Calculation 2.4.6.14 and Part 1 of this Addendum, the steam leak is delayed to t = 3600 seconds (1 hour) in order to allow the transient to steady. Therefore, times reported in the following results equal the output data minus 3600 seconds.

⁴ The legend in the GOTHIC-produced graphs denote sub-volume names with a 'T' in front (e.g. TV7s15 is the same as V7s15).

⁵ Leak Locations 1, 2, and 3 lie in sub-volumes V7s15, V7s11, and V7s12, respectively.

⁶ Data points created by the GOTHIC analysis typically did not occur exactly at 145°F or 160°F. In order to increase the accuracy of the comparison between cases with and without fans, data points were interpolated and then rounded up to the nearest full second.

FirstEnergy		CALCULATION ADDENDUM			
	NOP-CC-3002-02	2 Rev. 00			
INITIATING DOCUME	NT	CALCULATION NO.	CALCULATION REV.	ADDENDUM NO.	
TM-1-03-011		2.4.6.14	0	A-01	
TITLE/SUBJECT: Turb	ine Building Tempe	erature Response to Steam Leaks			

Leak Location 1 – Summer (No Fans) 32.90 Lb_m/sec leak rate

GOTHIC Sub-Volume V7s15

Maximum temperature realized - 190.1°F after 7 hrs 7 min 0 sec

Time required to reach $145^{\circ}F - 57$ sec

Time required to reach $160^{\circ}F - 4 \text{ min } 35 \text{ sec}$

FirstEnergy		CALCULATION ADDENDUM			
	NOP-CC-3002-02	2 Rev. 00			
INITIATING DOCUME	NT	CALCULATION NO.	CALCULATION REV.	ADDENDUM NO.	
TM-1-03-011		2.4.6.14	0	A-01	
TITLE/SUBJECT: Turbine Building Temperature Response to Steam Leaks					

Leak Location 1 – Summer (Fan Modification) 32.90 Lb_m/sec leak rate

GOTHIC Sub-Volume V7s15

Maximum temperature realized – 190.1°F after 7 hrs 6 min 40 sec

Time required to reach $145^{\circ}F - 51$ sec

Time required to reach $160^{\circ}F - 4 \text{ min } 29 \text{ sec}$

FirstEnergy		CALCULATION ADDENDUM		
	NOP-CC-3002-02	2 Rev. 00		
INITIATING DOCUME	NT	CALCULATION NO.	CALCULATION REV.	ADDENDUM NO.
TM-1-03-011		2.4.6.14	0	A-01
TITLE/SUBJECT: Turbine Building Temperature Response to Steam Leaks				

Leak Location 2 – Summer (No Fans) 32.90 Lb_m/sec Leak Rate

GOTHIC Sub-Volume V7s15

Maximum temperature realized - 190.3°F after 10 hrs 10 min 20 sec

Time required to reach $145^{\circ}F - 1 \text{ min } 16 \text{ sec}$

Time required to reach $160^{\circ}F - 6 \min 49 \text{ sec}$

FirstEnergy		CALCULATION ADDENDUM		
	NOP-CC-3002-02	2 Rev. 00		
INITIATING DOCUME	NT	CALCULATION NO.	CALCULATION REV.	ADDENDUM NO.
TM-1-03-011		2.4.6.14	0	A-01
TITLE/SUBJECT: Turbine Building Temperature Response to Steam Leaks				

Leak Location 2 – Summer (Fan Modification) 32.90 Lb_m/sec Leak Rate

GOTHIC Sub-Volume V7s15

Maximum temperature realized - 190.4°F after 10 hrs 10 min 10 sec

Time required to reach $145^{\circ}F - 1 \text{ min } 10 \text{ sec}$

Time required to reach 160°F - 6 min 38 sec

FirstEnergy		CALCULATION ADDENDUM				
	NOP-CC-3002-02	2 Rev. 00				
INITIATING DOCUME	NT	CALCULATION NO.	CALCULATION REV.	ADDENDUM NO.		
TM-1-03-011		2.4.6.14	0	A-01		
TITLE/SUBJECT: Turbine Building Temperature Response to Steam Leaks						

Leak Location 3 – Summer (No Fans) 32.90 Lb_m/sec leak rate

GOTHIC Sub-Volume V7s15

Maximum temperature realized - 182.4°F after 7 hrs 24 min 20 sec

Time required to reach $145^{\circ}F - 1 \text{ min } 2 \text{ sec}$

Time required to reach $160^{\circ}F - 7 \text{ min } 2 \text{ sec}$

FirstEnergy		CALCULATION ADDENDUM			
	NOP-CC-3002-02	2 Rev. 00			
INITIATING DOCUME	NT	CALCULATION NO.	CALCULATION REV.	ADDENDUM NO.	
TM-1-03-011		2.4.6.14	0	A-01	
TITLE/SUBJECT: Turbine Building Temperature Response to Steam Leaks					

Leak Location 3 – Summer (Fan Modification) 32.90 Lb_m/sec leak rate

GOTHIC Sub-Volume V7s15

Maximum temperature realized - 182.5°F after 7 hrs 24 min 20 sec

Time required to reach $145^{\circ}F - 56$ sec

Time required to reach $160^{\circ}F - 6 \min 48$ sec

FirstEnergy		CALCULATION ADDENDUM		
	NOP-CC-3002-02	2 Rev. 00		
INITIATING DOCUME	NT	CALCULATION NO.	CALCULATION REV.	ADDENDUM NO.
TM-1-03-011		2.4.6.14	0	A-01
TITLE/SUBJECT: Turbine Building Temperature Response to Steam Leaks				

Leak Location 1 – Summer (No Fans) 19.68 Lb_m/sec leak rate

GOTHIC Sub-Volume V7s15

Maximum temperature realized - 171°F after 6 hrs 50 min 30 sec

Time required to reach $145^{\circ}F - 1 \text{ min } 56 \text{ sec}$

Time required to reach $160^{\circ}F - 40 \min 43 \sec \theta$

FirstEnergy		CALCULATION ADDENDUM		
	NOP-CC-3002-02	2 Rev. 00		
INITIATING DOCUME	NT	CALCULATION NO.	CALCULATION REV.	ADDENDUM NO.
TM-1-03-011		2.4.6.14	0	A-01
TITLE/SUBJECT: Turbine Building Temperature Response to Steam Leaks				

Leak Location 1 – Summer (Fan Modification) 19.68 Lb_m/sec leak rate

GOTHIC Sub-Volume V7s15

Maximum temperature realized – 170.2°F after 6 hrs 33 min 40 sec

Time required to reach $145^{\circ}F - 1 \text{ min } 43 \text{ sec}$

Time required to reach $160^{\circ}F - 43 \min 47$ sec

FirstEnergy		CALCULATION ADDENDUM		
	NOP-CC-3002-02	2 Rev. 00		
INITIATING DOCUME	NT	CALCULATION NO.	CALCULATION REV.	ADDENDUM NO.
TM-1-03-011		2.4.6.14	0	A-01
TITLE/SUBJECT: Turbine Building Temperature Response to Steam Leaks				

Leak Location 2 – Summer (No Fans) 19.68 Lb_m/sec Leak Rate

GOTHIC Sub-Volume V7s15

Maximum temperature realized – 174.1°F after 7 hrs 57 min 0 sec

Time required to reach $145^{\circ}F - 2 \min 37$ sec

Time required to reach $160^{\circ}F - 43 \text{ min } 42 \text{ sec}$

FirstEnergy		CALCULATION ADDENDUM			
	NOP-CC-3002-02	2 Rev. 00			
INITIATING DOCUME	NT	CALCULATION NO.	CALCULATION REV.	ADDENDUM NO.	
TM-1-03-011		2.4.6.14	0	A-01	
TITLE/SUBJECT: Turbine Building Temperature Response to Steam Leaks					

Leak Location 2 – Summer (Fan Modification) 19.68 Lb_m/sec Leak Rate

GOTHIC Sub-Volume V7s15

Maximum temperature realized - 174.2°F after 7 hrs 40 min 10 sec

Time required to reach $145^{\circ}F - 2 \min 16 \text{ sec}$

Time required to reach $160^{\circ}F - 42 \text{ min } 20 \text{ sec}$

FirstEnergy		CALCULATION ADDENDUM			
	NOP-CC-3002-02	2 Rev. 00			
INITIATING DOCUME	NT	CALCULATION NO.	CALCULATION REV.	ADDENDUM NO.	
TM-1-03-011		2.4.6.14	0	A-01	
TITLE/SUBJECT: Turbine Building Temperature Response to Steam Leaks					

Leak Location 3 – Summer (No Fans) 19.68 Lb_m/sec leak rate

GOTHIC Sub-Volume V7s15

Maximum temperature realized – 164.6°F after 6 hrs 51 min 0 sec

Time required to reach $145^{\circ}F - 3 \min 0$ sec

Time required to reach $160^{\circ}F - 1$ hr 29 min 42 sec

FirstEnergy		CALCULATION ADDENDUM			
	NOP-CC-3002-02	2 Rev. 00			
INITIATING DOCUME	NT	CALCULATION NO.	CALCULATION REV.	ADDENDUM NO.	
TM-1-03-011		2.4.6.14	0	A-01	
TITLE/SUBJECT: Turbine Building Temperature Response to Steam Leaks					

Leak Location 3 – Summer (Fan Modification) 19.68 Lb_m/sec leak rate

GOTHIC Sub-Volume V7s15

Maximum temperature realized – 164.8°F after 6 hrs 34 min 10 sec

Time required to reach $145^{\circ}F - 2 \text{ min } 22 \text{ sec}$

Time required to reach $160^{\circ}F - 1$ hr 25 min 20 sec

FirstEnergy	Page 29 of 3 CALCULATION ADDENDUM				
	NOP-CC-3002-02	2 Rev. 00			
INITIATING DOCUMENT		CALCULATION NO.	CALCULATION REV.	ADDENDUM NO.	
TM-1-03-011		2.4.6.14	0	A-01	
TITLE/SUBJECT: Turbine Building Temperature Response to Steam Leaks					

Table 3 – Time Required to Reach 145°F at the Thermocouples

	Summer (No Fans)	Summer (Fan Modification)	Difference Due to Fans
32 90	Leak 1 - 57 sec	Leak 1 - 51 sec	Leak 1 - 6 sec less
	Leak 2 - 1 min 16 sec	Leak 2 - 1 min 10 sec	Leak 2 - 6 sec less
LD _m /Sec	Leak 3 - 1 min 2 sec	Leak 3 - 56 sec	Leak 3 - 6 sec less
19.68	Leak 1 - 1 min 56 sec	Leak 1 - 1 min 43 sec	Leak 1 - 13 sec less
	Leak 2 - 2 min 37 sec	Leak 2 - 2 min 16 sec	Leak 2 - 21 sec less
LD _m /Sec	Leak 3 - 3 min 0 sec	Leak 3 - 2 min 22 sec	Leak 3 - 38 sec less

Table 4 – Time Required to Reach 160°F at the Thermocouples

	Summer (No Fans)	Summer (Fan Modification)	Difference Due to Fans
32.90	Leak 1 - 4 min 35 sec	Leak 1 - 4 min 29 sec	Leak 1 - 6 sec less
Lb /sec	Leak 2 - 6 min 49 sec	Leak 2 - 6 min 38 sec	Leak 2 - 11 sec less
L0 _m /300	Leak 3 - 7 min 2 sec	Leak 3 - 6 min 48 sec	Leak 3 - 14 sec less
19.68	Leak 1 - 40 min 43 sec	Leak 1 - 43 min 47 sec	Leak 1 - 3 min 4 sec more
	Leak 2 - 43 min 42 sec	Leak 2 - 42 min 20 sec	Leak 2 - 1 min 22 sec less
	Leak 3 - 1 hr 29 min 42 sec	Leak 3 - 1 hr 25 min 20 sec	Leak 3 - 4 min 22 sec less

FirstEnergy		Page 30 of 31				
	NOP-CC-3002-02	? Rev. 00				
INITIATING DOCUMENT		CALCULATION NO.	CALCULATION REV.	ADDENDUM NO.		
TM-1-03-011		2.4.6.14	0	A-01		
TITLE/SUBJECT: Turbine Building Temperature Response to Steam Leaks						

Conclusions

<u>Part 1</u>

The analysis indicates that a steam leak rate of 32.90 Lb_m /sec will result in elevated temperatures of 145°F and 160°F near the E31 thermocouples well within the acceptable time limit of 1 hr 11 min 46 sec.

<u>Part 2</u>

Comparing the results of the GOTHIC model, before and after the addition of the fans, reveals minor yet generally consistent effects. The time required to reach a setpoint of 145°F is decreased in all six cases by adding the fans. Also, a lower leak rate resulted in the fans having a larger effect for each case. The time required to reach a setpoint of 160°F is decreased in 5 out of 6 cases. Again, except in the case of Leak Location #1 during summer conditions, a lower leak rate resulted in the fans having a greater effect in their ability to decrease the time required for detection. The reason behind Summer Leak Location #1 not performing in line with the other cases can only be conjectured. It is assumed that because Leak Location #1 lies in the same subvolume as the thermocouples, air is being directed via the fans from a cooler sub-volume towards the thermocouples, while the leaking steam is being forced out of the vicinity of the thermocouples where it originates. Over the longer period of time it takes to reach 160°F vs. 145°F, the region surrounding the thermocouples is allowed to be homogenized to a greater extent with the surrounding cooler air. Beyond this special case, the results are consistent in predicting that the fans will help to homogenize the volumes and decrease the time for detection. Even in the instance that the time required is increased, all of the detection times still remain well within the acceptance criteria.

<u>Note:</u> Two anomalies have been identified in the final results represented in this Addendum to Calculation 2.4.6.14. The first anomaly is that there is no definining trend on when a specific leak location is the limiting leak location for a given set of cases/scenarios. The reason for this is not readily apparent. There are many potentially contributing factors to this anomaly that are taken into account in the GOTHIC model, such as the leak rate and location, outdoor temperature, ventilation into the room, forced convection by fans, flow paths into adjacent zones, and the fact that the leaks are being directed away from the thermocouples allowing greater mixing. This complex set of factors results in GOTHIC treating each specific case in an individualistic manner, thus creating a set of solutions in which intuitive trends can sometimes not be found.

The second anomaly is that, according to the graphical results, once it appears that steady-state has been reached in some cases, there is a slight decline in temperature over time. It is conjectured that the reason for this is due to thick concrete walls surrounding the control volume in which the steam leaks and thermocouples reside. Once the concrete walls are heated up to a certain threshold temperature, they are able to begin radiating heat to their surroundings, thus conducting heat away from the control volume in question. Verifying this reasoning would require additional GOTHIC models to be created and executed outside the scope of this calculation.

FirstEnergy		CALCULATION ADDENDUM				
	NOP-CC-3002-02	2 Rev. 00				
INITIATING DOCUMENT		CALCULATION NO.	CALCULATION REV.	ADDENDUM NO.		
TM-1-03-011		2.4.6.14	0	A-01		
TITLE/SUBJECT: Turbine Building Temperature Response to Steam Leaks						

Attachments

Attachment A: GOTHIC-generated model layout (Part 2)	1 page
Attachment B: Fan and Associated Hydraulic Line Location Diagram (Part 2)	1 page
Attachment C: GOTHIC Input File (Part 2)	26 pages
Attachment D: GOTHIC Output Data for 32.90 Lbm/sec Leak (Part 1)	82 pages

Addendum A-01 to Calculation 2.4.6.14 Rev. 0 Attachment A Page 1 of 1

Addendum A-01 to Calculation 2.4.6.14 Rev. 0 Attachment B Page 1 of 1

Addendum A-01 to Calculation 2.4.6.14 Rev. 0 Attachment C Page 1 of 26

PNPP Turbine Building GOTHIC Model⁷

⁷ This particular input file represents the Summer – Leak $#1 - 32.90 \text{ Lb}_m$ /sec case. The required changes for all other cases are noted in this attachment.

Addendum A-01 to Calculation 2.4.6.14 Rev. 0 Attachment C Page 2 of 26

Contr	ol Volum	ies						_ /	_	
VOL # 1s 2s 3s 4s 5s 6s 7s	Descript Operatin TB1-TB4/ TB9-TB10 TB10-TB1 TB11-TB1 TB12-TB1 TB13-TB1	ion g Floor 620.5' 1 2 3 4	Vol (ft3) 3452000. 304471. 264000. 284000. 279500. 270500. 284000.	Elev (ft) 647.5 620.5 577.5 577.5 577.5 577.5 577.5	Ht (ft) 67.2 27.5 70. 70. 70. 70. 70. 70.	Hy (f 2 18: 5 10 52 55 55 53 55	d. D. t) 3.2 4.8 .7 .7 .1 .7 .7	L/V IA (ft2) DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT	Burn Opt NONE NONE NONE NONE NONE	
Lamin	ar Leaka	.ge	Dof	Dof	Ciple				Tool	
Vol # 1s 2s 3s 4s 5s 6s 7s	Lk Rate Factor (%/hr) 0. 0. 0. 0. 0. 0. 0. 0. 0.	REI Press (psia)	ReI Temp (F)	ReI Humid (%)	/Src BC	Model Option CNST T CNST T CNST T CNST T CNST T CNST T	Rep Wall	Subvol Option UNIFORM UNIFORM UNIFORM UNIFORM UNIFORM UNIFORM	Leak Area (ft2) DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT	
Turbu	lent Lea	kage	D	D					- 1	
Vol # 1s 2s 3s 4s 5s 6s 7s X-Dir Volum Cell	Lk Rate Factor (%/hr) 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	Ref Press (psia) Toding	Ref Temp (F)	Ref Humid (%)	Sink /Src BC	Model Option CNST T CNST T CNST T CNST T CNST T CNST T	Rep Wall	Subvol Option UNIFORM UNIFORM UNIFORM UNIFORM UNIFORM	Leak Area (ft2) DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT	fL/D
Plane	(ft)	(ft)								
1 2 3 4	U. 85. 156. 227.	85. 71. 71. 218.								
Y-Dir Volum	ection N	loding								
Cell Plane 1 2 3	Distanc (ft) 0. 38. 77.	e Dept (ft) 38. 39. 38.	ch.							
Z-Dir	ection N	loding								
Volum Cell Plane 1	Distance (ft) 0.	e Heig (ft) 27.	ght							

2 27. 40.2 Cell Blockages Volume 1s
 Coord
 (ft)
 (ft)

 Typ
 X1
 Y1
 Z1
 X2
 Y2
 Z2
 X3
 Y3
 Z3
 L
 Bl No. B N X-Direction Cell Face Variations Volume 1s Cell Blockage Area Hyd. Dia. Loss Drop De-ent. No. No. Fraction (ft) Coeff. Factor def 0 1. 183.2 0. 0. Y-Direction Cell Face Variations Volume 1s CellBlockage AreaHyd. Dia. LossDrop De-ent.No.No.Fraction (ft)Coeff.Factordef01.183.20.0. No.

 Z-Direction Cell Face Variations

 Volume 1s
 Cell
 Blockage Area
 Hyd. Dia. Loss
 Drop De-ent.

 No.
 No.
 Fraction (ft)
 Coeff.
 Factor

 def
 0
 1.
 183.2
 0.
 0.

 ls1
 0
 1.
 1000000.
 0.
 0.

 ls2
 0
 1.
 1000000.
 0.
 0.

 ls3
 0
 1.
 1000000.
 0.
 0.

 ls4
 0
 1.
 1000000.
 0.
 0.

 ls5
 0
 1.
 1000000.
 0.
 0.

 ls6
 0
 1.
 1000000.
 0.
 0.

 ls7
 0
 1.
 1000000.
 0.
 0.

 ls8
 0
 1.
 1000000.
 0.
 0.

 ls10
 0
 1.
 1000000.
 0.
 0.

 ls11
 0
 1.
 1000000.
 0.
 0.

 ls12
 0
 1.
 1000000.
 0.
 0.

 ls14
 0
 1.
 1000 Z-Direction Cell Face Variations Volume 1s Volume Variations Volume 1s Cell Blockage Volume Hyd. Dia. No.No.Porosity (ft)def01.183.21s101.1000000.1s201.1000000.

Addendum A-01 to Calculation 2.4.6.14 Rev. 0 Attachment C Page 4 of 26

L

1s3 1s4	0 0	1. 1.	1	000000	•					
1s5	0	1.	1	000000						
1s6	0	1.	1	000000						
1s7	0	1.	1	000000						
1s8	0	1.	1	000000						
1s9	0	1.	1	000000						
1s10	0	1.	1	000000						
1s11	0	1.	1	000000						
1s12	0	1.	1	000000						
1s13	0	1.	1	000000						
1s14	0	1.	1	000000						
1s15	0	1.	1	000000						
1s16	0	1.	1	000000						
1s17	0	1.	- 1	000000						
1518	0	1.	- 1	000000						
1519	0	1.	- 1	000000						
1s20	0	1.	- 1	000000						
1920	0	1 1	1	000000	•					
1921	0	1 1	1	0000000	•					
1922	0	1 1	1	0000000	•					
1923	0	1 1	1	0000000	•					
Bounda	ary Slip C	onditior	ns							
Volume	e 1s			_						
North	South	East	West	To	p	Bottom				
SLIP	SLIP	SLIP	SLIP	SL	IP	SLIP				
X-Dire Volume	ection Nod e 2s	ing								
Cell	Distance	Width								
Plane	(ft)	(ft)								
1	0.	48.								
2	48.	48.								
Y-Dire	ection Nod	ing								
VOLUME	e ZS	Deveth								
Cell	Distance	Depth								
Plane	(IT)	(IT) 20								
1	0.	30.								
2	38. 77	39. 20								
3	//.	38.								
Z-Dire Volume	ection Nod e 2s	ing								
Cell	Distance	Height	-							
Plane	(ft)	(ft)								
1	0.	27.5								
Cell B Volume Bl	Blockages e 2s				Coord	1	(ft)		(ft)	
No.				- 4		-	(+ /		(+ 0 /	73
	avT	X1	Y1	Ζ1	X2	YZ.	Δ2.	X.3	YЗ	21
	Тур в	X1 N	Y1	Ζ1	X2	ΥZ	ΖZ	Х3	Y3	25
	Тур В	X1 N	Y1	Z1	X2	ΥZ	22	Х3	Y3	20

Volume 2s

CellBlockage AreaHyd. Dia. LossDrop De-ent.No.No.Fraction (ft)Coeff.Factordef01.104.80.0. Y-Direction Cell Face Variations Volume 2s Cell Blockage Area Hyd. Dia. Loss Drop De-ent.
 No.
 Fraction (ft)
 Coeff.
 Factor

 0
 1.
 104.8
 0.
 0.
 No. def Z-Direction Cell Face Variations Volume 2s Cell Blockage Area Hyd. Dia. Loss Drop De-ent. No. No. Fraction (ft) Coeff. Factor def 0 1. 104.8 0. 0. Volume Variations Volume 2s Cell Blockage Volume Hyd. Dia. No. No. Porosity (ft) def 0 1. 104.8 Boundary Slip Conditions Volume 2s North South East West Top Bottom SLIP SLIP SLIP SLIP SLIP SLIP X-Direction Noding Volume 3s Cell Distance Width Plane (ft) (ft) 1 0. 17. 1 0. 17. 2 17. Y-Direction Noding Volume 3s Cell Distance Depth Plane (ft)(ft)10.38.238.39.377.38. Z-Direction Noding Volume 3s Cell Distance Height Plane (ft) (ft) 12. 1 0. 2 12. 30.5 3 42.5 27.5 Cell Blockages Volume 3s
 Coord
 (ft)
 (ft)

 Typ
 X1
 Y1
 Z1
 X2
 Y2
 Z2
 X3
 Y3
 Z3
 L
 Bl No. B N

Volume	3s				
Cell	Blockage	Area	Hyd. Dia.	Loss	Drop De-ent.
No.	No.	Fraction	(ft)	Coeff.	Factor
def	0	1.	52.7	0.	0.
Y-Direc	tion Cell :	Face Varia	ations		
Cell	Blockage	Area	Hyd Dia	Loss	Dron De-ent
No	No	Fraction	(ft)	Coeff	Factor
def	0	1.	52.7	0.	0.
	-				
Z-Direc	tion Cell :	Face Varia	ations		
Volume	3s				
Cell	Blockage	Area .	Hyd. Dia.	Loss	Drop De-ent.
No.	No.	Fraction	(±t)	Coeff.	Factor
dei	0	1.	52.7	0.	0.
3S1 2-2	0	⊥.	1000000.	0.	0.
352	0	⊥ . 1	1000000.	0.	0.
353	0	⊥ . 1	1000000.	0.	0.
354	0	⊥. 1	1000000.	0.	0.
355	0	1. 1	1000000.	0.	0.
307	0	⊥• 1	1000000.	0.	0.
3-8	0	⊥• 1	1000000.	0.	0.
3=9	0	⊥• 1	1000000.	0	0.
3s10	0	1	1000000	0	0
3s11	0	1.	1000000.	0.	0.
3s12	0	1.	1000000.	0.	0.
3s13	0	1.	1000000.	0.	0.
3s14	0	1.	1000000.	0.	0.
3s15	0	1.	1000000.	0.	0.
3s16	0	1.	1000000.	0.	0.
3s17	0	1.	1000000.	0.	0.
3s18	0	1.	1000000.	0.	0.
Volume	Variations				
Volume	JS	TT = 1			
Cell	Blockage	Volume	Hyd. Dia.		
NO. dof	NO.	Porosity	(IC) 52 7		
	0	⊥• 1	100000		
302	0	⊥• 1	1000000.		
393	0	1 1	1000000		
354	0	1 1	1000000		
3s5	0	1.	1000000.		
356	0	1.	1000000.		
3s7	0	1.	1000000.		
3s8	0	1.	1000000.		
3s9	0	1.	1000000.		
3s10	0	1.	1000000.		
3s11	0	1.	1000000.		
3s12	0	1.	1000000.		
3s13	0	1.	1000000.		
3s14	0	1.	1000000.		
3s15	0	1.	1000000.		
3s16	0	1.	1000000.		
3s17	0	1.	1000000.		

Addendum A-01 to Calculation 2.4.6.14 Rev. 0 Attachment C Page 7 of 26

Boundary Slip Conditions Volume 3s North South East West Top Bottom SLIP SLIP SLIP SLIP SLIP X-Direction Noding Volume 4s Cell Distance Width Plane (ft) (ft) 18.5 1 0. 2 18.5 18.5 Y-Direction Noding Volume 4s Cell Distance Depth Plane (ft) (ft) 38. 1 Ο. 39. 2 38. 3 77. 38. Z-Direction Noding Volume 4s Cell Distance Height Plane (ft) (ft) 1 0. 12. 30.5 12. 2 42.5 3 Cell Blockages Volume 4s Coord (ft) (ft) Typ X1 Y1 Z1 X2 Y2 Z2 X3 Y3 Z3 L Bl No. B N X-Direction Cell Face Variations Volume 4s Cell Blockage Area Hyd. Dia. Loss Drop De-ent.
 No.
 Fraction (ft)
 Coeff.
 Factor

 0
 1.
 55.7
 0.
 0.
 No. def Y-Direction Cell Face Variations Volume 4s Cell Blockage Area Hyd. Dia. Loss Drop De-ent.
 No.
 Fraction (ft)
 Coeff.
 Factor

 0
 1.
 55.7
 0.
 0.
 No. def Z-Direction Cell Face Variations Volume 4s Cell Blockage Area Hyd. Dia. Loss Drop De-ent. No. def No. Fraction (ft) Coeff. Factor 1. 55.7 0. 0 Ο. 4s1 0 1. 1000000. 0. Ο.

3s18 0 1. 1000000.

Addendum A-01 to Calculation 2.4.6.14 Rev. 0 Attachment C Page 8 of 26

4s2	0	1.	1000000.	Ο.	Ο.
4s3	0	1.	1000000.	0.	Ο.
4s4	0	1.	1000000.	0.	Ο.
4s5	0	1.	1000000.	0.	Ο.
4s6	0	1.	1000000.	0.	Ο.
4s7	0	1.	1000000.	0.	Ο.
4s8	0	1.	1000000.	0.	Ο.
4s9	0	1.	1000000.	0.	Ο.
4s10	0	1.	1000000.	0.	Ο.
4s11	0	1.	1000000.	0.	0.
4s12	0	1.	1000000.	0.	0.
4s13	0	1.	1000000.	0.	0.
4s14	0	1.	1000000.	0.	0.
4s15	0	1.	1000000.	Ο.	Ο.
4s16	0	1.	1000000.	Ο.	Ο.
4s17	0	1.	1000000.	0.	Ο.
4s18	0	1.	1000000.	Ο.	Ο.

Volume Variatio	ons
-----------------	-----

Volume 4s

Cell	Blockage	Volume	Hyd. Dia.
No.	No.	Porosity	(ft)
def	0	1.	55.7
4s1	0	1.	1000000.
4s2	0	1.	1000000.
4s3	0	1.	1000000.
4s4	0	1.	1000000.
4s5	0	1.	1000000.
4s6	0	1.	1000000.
4s7	0	1.	1000000.
4s8	0	1.	1000000.
4s9	0	1.	1000000.
4s10	0	1.	1000000.
4s11	0	1.	1000000.
4s12	0	1.	1000000.
4s13	0	1.	1000000.
4s14	0	1.	1000000.
4s15	0	1.	1000000.
4s16	0	1.	1000000.
4s17	0	1.	1000000.
4s18	0	1.	1000000.

Boundar	ry Slip (Conditio	ns		
Volume	4s				
North	South	East	West	Тор	Bottom
SLIP	SLIP	SLIP	SLIP	SLIP	SLIP
X-Direc	ction Noo	ding			

Volume 5s Cell Distance Width Plane (ft) (ft) 1 0. 2 18. 18. 18.

Y-Direction Noding Volume 5s Cell Distance Depth

Plane (ft)(ft)10.38.238.39.377.38. Z-Direction Noding Volume 5s Cell Distance Height
 Plane (ft)
 (ft)

 1
 0.
 12.

 2
 12.
 30.5

 3
 42.5
 27.5
 Cell Blockages Volume 5s
 Coord
 (ft)
 (ft)

 Typ
 X1
 Y1
 Z1
 X2
 Y2
 Z2
 X3
 Y3
 Z3
 L
 Bl No. B N X-Direction Cell Face Variations Volume 5s Cell Blockage Area Hyd. Dia. Loss Drop De-ent. No. No. Fraction (ft) Coeff. Factor def 0 1. 55.1 0. 0. Y-Direction Cell Face Variations Volume 5s CellBlockage AreaHyd. Dia. LossDrop De-ent.No.No.Fraction (ft)Coeff.Factordef01.55.10.0. Z-Direction Cell Face Variations Z-Direction Cell Face VariationsVolume 5sCellBlockage AreaHyd. Dia. LossDrop De-ent.No.No.Fraction (ft)Coeff.Factordef01.55.10.0.5s101.100000.0.0.5s201.1000000.0.0.5s301.1000000.0.0.5s401.1000000.0.0.5s501.1000000.0.0.5s601.1000000.0.0.5s701.1000000.0.0.5s801.1000000.0.0.5s1101.1000000.0.0.5s1201.1000000.0.0.5s1301.1000000.0.0.5s1401.1000000.0.0.5s1501.1000000.0.0.5s1601.1000000.0.0.5s1801.1000000.0.0. Volume 5s

Addendum A-01 to Calculation 2.4.6.14 Rev. 0 Attachment C Page 10 of 26

L

Volume	e Variation	IS								
Volume	e 5s									
Cell	Blockad	ge Volume	e H	yd. D	ia.					
No.	No.	Porosi	itv (ft)						
def	0	1.	5	5.1						
5.51	0	1	1	00000	0					
592	0	1	- 1	00000	0					
593	0	1	1	00000	0					
521	0	1 ·	1		0.					
505	0	1 ·	1	000000	0.					
526	0	1 ·	1	000000	0.					
527	0	1 ·	1	000000	0.					
5-0	0	1 ·	1	00000	0.					
5-0	0	1 ·	1	000000	0.					
5-10	0	⊥• 1	1	00000	0.					
5510 E-11	0	⊥. 1	1	00000	0.					
JSII E-10	0	1.	1	00000	0.					
JSIZ	0	1.	1	00000	0.					
5513	0	1.	1	00000	0.					
5SI4	0	1.	Ţ	00000	0.					
5s15	0	1.	L	00000	0.					
5s16	0	1.	L	00000	0.					
5s17	0	1.	1	00000	0.					
5s18	0	⊥.	T	00000	0.					
Bounda Volume North	ary Slip Co e 5s South	onditions East	West	T	ao	Bottom				
SLIP	SLIP	SLIP	SLIP	S	LIP	SLIP				
Volume Cell Plane 1 2	e 6s Distance (ft) 0. 17.5	Width (ft) 17.5 17.5								
Y-Dire	ection Nodi	ng								
Volume	e 6s	Denth								
Dlana	(f+)	Depth (ft)								
1 1	(10)	(10)								
2	38	30.								
2	50. 77	38								
J	//•	50.								
Z-Dire Volume	ection Nodi e 6s	ng								
Cell	Distance	Height								
Plane	(ft)	(ft)								
1	0.	12.								
2	12.	30.5								
3	42.5	27.5								
Cell E Volume	e 6s				Coord		(f+)		(f+)	
Cell E Volume Bl	Slockages e 6s	ұ1 v	71	7.1	Coord x2	v2	(ft) 72	¥ 3	(ft) v3	7.3
Cell E Volume Bl No.	Slockages e 6s Typ	X1 Y	71	Z1	Coord X2	¥2	(ft) Z2	Х3	(ft) Y3	Z3

Addendum A-01 to Calculation 2.4.6.14 Rev. 0 Attachment C Page 11 of 26

X-Direct: Volume 6s	ion Cell B S	Face Varia	ations	S		
Cell	Blockage	Area	Hyd.	Dia.	Loss	Drop De-ent.
No.	No.	Fraction	(ft)		Coeff.	Factor
def	0	1.	53.7		0.	0.
Y-Direct:	ion Cell H	Face Varia	ations	S		
	Blockage	Area	циd	Dia	Loss	Dron De-ent
No	No	Fraction	(f+)	Dia.	Coeff	Factor
NO. dof	0	1	(±C) 53 7		0	0
uer	0	± •	55.7		0.	0.
Z-Direct: Volume 6:	ion Cell B S	Face Varia	ations	S		
Cell	Blockage	Area	Hyd.	Dia.	Loss	Drop De-ent.
No.	No.	Fraction	(ft)		Coeff.	Factor
def	0	1.	53.7		0.	0.
6s1	0	1.	10000	.000	0.	0.
6s2	0	1.	10000	.000	0.	0.
6s3	0	1.	10000	.000	0.	0.
6s4	0	1.	10000	.000	0.	0.
6s5	0	1.	10000	.000	0.	0.
6s6	0	1.	10000	.000	0.	0.
6s7	0	1.	10000	.000	0.	0.
6s8	0	1.	10000	.000	0.	0.
6s9	0	1.	10000	.000	0.	0.
6s10	0	1.	10000	.000	0.	0.
6s11	0	1.	10000	.000	0.	0.
6s12	0	1.	10000	.000	0.	0.
6s13	0	1.	10000	.000	0.	0.
6s14	0	1.	10000	.000	0.	0.
6s15	0	1.	10000	.000	0.	0.
6s16	0	1.	10000	.000	0.	0.
6s17	0	1.	10000	.000	0.	0.
6s18	0	1.	10000	.000	0.	0.
Volume Va	ariations					
Volume 68	5 Dlashawa	770]	IIal	Die		
Cell	BIOCKAGE	Volume	нуа.	Dia.		
NO.	NO.	Porosity	(IC)			
dei Gal	0	⊥.	53./	000		
6S1	0	⊥. 1	10000	000.		
652	0	⊥• 1	10000	000.		
653	0	⊥.	10000	000.		
6S4	0	⊥.	10000	000.		
050	0	⊥• 1	10000			
050 697	0	⊥• 1	10000			
05/	0	⊥. 1	10000			
050	0	⊥• 1	10000			
059 6a10	0	⊥• 1	10000			
0510	0	⊥• 1	10000	000.		
0511 6e19	0	⊥• 1	10000	000.		
6013	0	⊥• 1	10000	000.		
0010	0	⊥ •	T 0 0 0 0			

6s14 6s15 6s16 6s17 6s18	0 0 0 0	1. 1. 1. 1. 1.	1000000 1000000 1000000 1000000 1000000							
Bounda Volume	ary Slip C e 6s	Conditions		_						
North SLIP	South SLIP	East We SLIP SL	st Top IP SLI	р В IP S	LIP					
X-Dire Volume	ection Noc e 7s	ling								
Cell Plane 1 2	Distance (ft) 0. 19.	Width (ft) 19. 19.								
Y-Dire	ection Nod	ling								
Volume	e 7s	Dereth								
Plane	(ft)	(ft)								
1	0.	38.								
2	38.	39.								
3	//.	38.								
Z-Dire Volume	ection Nod e 7s	ling								
Cell Plane	Distance (ft)	Height (ft)								
1	0.	12.								
2	12.	30.5								
3	42.5	27.5								
Cell H	Blockages									
Volume	e 7s			Gereel				(5+)		
No.	Tvp	X1 Y1	Z1	Coord X2	¥2	(IT) Z2	X3	(IT) Y3	z3	L
	В	N								
X-Dire	action Cal	l Face Vari	ations							
Volume	e 7s									
Cell	Blocka	lge Area	Hyd. Dia	a. Loss	Γ	Drop De	e-ent.			
No.	No.	Fraction	(ft)	Coef	f. E	actor				
def	0	1.	55.7	0.	().				
/SI 7a2	0	1.	56.8 56.9	0.).				
/SZ 762	0	1. 1	56.0 56.0	0.).				
753 761	0	⊥• 1	56 8	0.).				
7.s5	0	1 1	56.8	0.	()				
7s6	0	1.	56.8	0.	C).				
7s7	0	1.	56.8	0.	C).				
7s8	0	1.	56.8	0.	C).				
7s9	0	1.	56.8	0.	C).				
7s10	0	1.	56.8	0.	C).				
7s11	0	1.	56.8	0.	C).				
7s12	0	1.	56.8	Ο.	C).				

7s13	0	1.	56.8	0.	0.
7s14	0	1.	56.8	Ο.	0.
7s15	0	1.	56.8	0.	0.
7s16	0	1.	56.8	Ο.	0.
7s17	0	1.	56.8	Ο.	0.
7s18	0	1.	56.8	0.	0.

Y-Direct:	ion Cell H	Face Varia	ations		
Coll	Plackage	⊼ xoo	Und Dia	Logo	Drop Do-opt
Cell	BIOCKAGE	Area	HYO. DIA.	LOSS	Drop De-ent.
NO.	NO.	raction		coerr.	Factor
aei	0	1.	55.7	0.	0.
/sl	0	1.	56.8	0.	0.
7s2	0	1.	56.8	0.	0.
7s3	0	1.	56.8	0.	0.
7s4	0	1.	56.8	0.	0.
7s5	0	1.	56.8	0.	0.
7s6	0	1.	56.8	0.	0.
7s7	0	1.	56.8	0.	0.
7s8	0	1.	56.8	0.	0.
7s9	0	1.	56.8	0.	0.
7s10	0	1.	56.8	0.	0.
7s11	0	1.	56.8	0.	0.
7s12	0	1.	56.8	0.	0.
7s13	0	1.	56.8	0.	0.
7s14	0	1.	56.8	0.	0.
7s15	0	1.	56.8	0.	0.
7s16	0	1.	56.8	0.	0.
7s17	0	1.	56.8	0.	0.
7s18	0	1.	56.8	0.	0.
Z-Direct:	ion Cell H	Face Varia	ations		
Volume 7s	5				
Cell	Blockage	Area	Hyd. Dia.	Loss	Drop De-ent.
No.	No.	Fraction	(ft)	Coeff.	Factor

No.	No.	Fraction	(ft)	Coeff.	Factor
def	0	1.	55.7	0.	0.
7s1	0	1.	1000000.	0.	0.
7s2	0	1.	1000000.	0.	0.
7s3	0	1.	1000000.	0.	0.
7s4	0	1.	1000000.	0.	0.
7s5	0	1.	1000000.	0.	0.
7s6	0	1.	1000000.	0.	0.
7s7	0	1.	1000000.	0.	0.
7s8	0	1.	1000000.	0.	0.
7s9	0	1.	1000000.	0.	0.
7s10	0	1.	1000000.	0.	0.
7s11	0	1.	1000000.	0.	0.
7s12	0	1.	1000000.	0.	0.
7s13	0	1.	1000000.	0.	0.
7s14	0	1.	1000000.	0.	0.
7s15	0	1.	1000000.	0.	0.
7s16	0	1.	1000000.	0.	0.
7s17	0	1.	1000000.	0.	0.

7s18	0	1.	10000	000. 0		0.		
Volume	- Variations							
Volume	$\sim 7s$,						
Cell	Blockage	Volume	Hvd.	Dia.				
No.	No.	Porosity	(ft.)	2101				
def	0	1.	55.7					
7s1	0	1.	10000	000.				
7s2	0	1.	10000	000.				
7s3	0	1.	10000	000.				
7s4	0	1.	10000	000.				
7s5	0	1.	10000	000.				
7s6	0	1.	10000	000.				
7s7	0	1.	10000	000.				
7s8	0	1.	10000	000.				
7s9	0	1.	10000	000.				
7s10	0	1.	10000	000.				
7s11	0	1.	10000	000.				
7s12	0	1.	10000	000.				
7s13	0	1.	10000	000.				
7s14	0	1.	10000	000.				
7s15	0	1.	10000	000.				
7s16	0	1.	10000	000.				
7s17	0	1.	10000	000.				
7s18	0	1.	10000	000.				
Bounda	ary Slip Con	ditions						
Volume	e 7s							
North	South E	last Wes	st	Тор	Bott	om		
SLIP	SLIP S	SLIP SLI	ΙP	SLIP	SLIP			
Turbu	longo Daramo	tora						
TULDU.	Tence ralanie	Liquid Va	nor	Liquid	Vanor			
Vol	Molec Turb	Miy I. Mi	V T.	Dr/Sc	Pr/Sc	Phase		
# #	Diff Model	(f+) (f		No	No	Ontior	h	
" 1 s	NO NONE	. (10) (1	_ C)	1	1	VAPOR	1	
2s	NO NO			1	1	VAPOR		
35	NO NO			1	1	VAPOR		
45	NO NO			1.	1.	VAPOR		
-s	NO NO			1.	1.	VAPOR		
6s	NO NO			1.	1.	VAPOR		
7s	NO NO			1.	1.	VAPOR		
Turbu	longo Source							
Vol	ience bource	 Kinetia	Ener	av	Diss	ination		
#	Type Pha	se (ft 2/s)) [*]}	-91 m/slFl	7 (ft2	/s3)[*]}	om/slFl	F
"	1990 1110	.00 (102/02	-/[_x	51117 0] 1]	(102)	,00,[1,	51117 0] 1]	-
			- 17					
Fluid	Boundary Co	nditions -	- 'l'abl	Le L	-	1	ONT	OFF
	Decemintion	Press.	जन्म	Temp.	r. Trr (LOW lbm/a) I	UN TT Unin	UFF
שט# 1 1 ס י	Description	(psia) 147	Ľ Ľ	(Ľ) 104	ГĽ (,	LDIII/S) I	ас тытр	тттр
그 F (2 도 · ·	JULUUUIS Brook Cource	⊥4./ . 1100		1100 ·	1 2	2 9 . 1	I I	
אר יד די די	stear source	л ттоо. 1 л 7		121	יד כ ו ידי	41 67 0		Leak Flow
4F 1	ventilation	1 14 7		 63	V ·			Rate
5F 1	ventilation	2 14 7		63	v. ٦7	105 0		
6F 1	ventilation	3 14 7		63	v . ۲7	218.33 (_)	
<u> </u>	· ·····	~ /		<u> </u>	v .		-	

7F 8F 9F 10F 11F 12F 13F	ventilation ventilation ventilation ventilation ventilation ventilation	4 14.7 5 14.7 6 14.7 7 14.7 8 14.7 9 14.7 10 14.7	2 63 2 63 2 63 2 63 2 63 2 63 2 63	3 3 3 3 3 3 3 3	v140 v208.3 v155 v150 v150 v158.3 v160	0 3 0 0 0 3 0 0 3 0			
Fluid BC# 1P 2F 3F 4F 5F 6F 7F 8F 9F 10F 11F 12F 13F	d Boundary Co Liq. V St Frac. FF P. 0. h1 0. 1 0. h2 0. h5 0. h5	onditions tm. .R. FF 100 20 55 55 55 55 55 55 55 55 55 55 55 55 55	s - Table Drop D (in) FE NONE NONE NONE NONE NONE NONE NONE NO	2 Cpld F F BC# F	low rac. FF	Heat (Btu/s)	Out FF Qua DEF DEF DEF DEF DEF DEF DEF DEF DEF DEF	let lity AULT AULT AULT AULT AULT AULT AULT AULT	FF
Fluid Gas BC# 1P 2F 3F 4F 5F 6F 7F 8F 9F 10F 11F 12F 13F	d Boundary Co Pressure Rati Air Gas 1 FF Ga 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	onditions ios as 2 FF	s — Table Gas 3 FE	3 7 Gas 4	FF				
Flui Gas	d Boundary Co Pressure Rati	onditions ios	s - Table	4					
BC# 1P 2F 3F 4F 5F 6F 7F 8F 9F 10F	Gas 5 FF Ga	as 6 FF	Gas 7 FE	7 Gas 8	FF				

11F

12F 13F

4

5

6

507.

915.

585.

20.

20.

20.

30.

30.

30.

1.

1.

1.

Flow	Paths - Ta	ble 1							
F.P.			Vol	Elev	Ht	Vol	Elev	Ht	
#	Descriptic	n	A	(ft)	(ft)	В	(ft)	(ft)	
1	TB13/N/B		7s8	589.51	30.48	6s7	589.51	30.48	
2	TB13/N/T		7s14	620.01	19.48	6s13	620.01	19.48	
3	ТВ13/С/В		7s10	589.51	30.48	6s9	589.51	30.48	
4	ТВ13/С/Т		7s16	620.01	19.48	6s15	620.01	19.48	
5	TB13/S/B		7s12	589.51	30.48	6s11	589.51	30.48	
6	TB13/S/T		7s18	620.01	19.48	6s17	620.01	19.48	
7	TB12/N/T		6s14	624.5	13.	5s13	624.5	13.	
8	TB12/S/T		6s18	624.5	13.	5s17	624.5	13.	
9	TB12/N/B		6s2	577.51	10.	5s1	577.51	10.	
10	TB12/S/B		6s6	577.51	10.	5s5	577.51	10.	
11	TB11/N/T		5s14	624.5	13.	4s13	624.5	10.	
12	тв11/ѕ/т		5s18	624 5	13	4s17	624 5	10	
13	TB10/N/T		4914	624 5	13.	3913	624 5	13	
14	TB10/N/I TB10/S/T		1011 4s18	624 5	13	3917	624 5	13	
15	3/1N		3013	617 1	0 01	163	647 51	0 1	
16	3/10		3-17	617 1	0.01	1.50	647 51	0.1	
17	J/15 4/1N		JS17 4a12	647.4	0.01	1.22	647.JI	0.1	
1 /	4/1N		4513	647.4	0.01	1611	647.JI	0.1	Leak Locations:
10	4/15 E/1N		4SI/	047.4	0.01	1-2	647.JI	0.1	$Leak \pm 1 = 7s15$
19	5/1N		JSIJ 5-17	647.4	0.01	15Z	647.JI	0.1	leak #2 = 7s11
20	5/15	- 1-	5SI/ 1-10	64/.4	0.01	ISIU 1D	64/.JL	0.1	Leak $#3 = 7s12$
21	leakage pa	ith		/14.	0.1	1P	/14.	0.1	
22	pipe break	7	/SI5	624.	\sim	ZE	624.	0.01	
23	steam tunn	iel	/SI/	620.5	23.	3E	620.5	23.	
24	TBI3/N/D		/s2	5//.51	/. `	- 6sl	5//.51	<u>χ</u> .	
25	TB13/S/D		756	577.51	7.	6s5	577.51		Leak Elevation:
26	6/1N		6s13	647.4	0.01	1s2	641.51	0.1	Leak $#1 = 624'$
27	6/2S		6s17	647.4	0.01	1s10	647.51	-0.1	Leak #2 = 592'
28	vent1		3s7	616.25	3.	4 F	616.25	3. ~	Leak #3 = 592'
29	vent2		3s17	624.6	3.	5F	624.6	3.	
30	vent3		4s7	592.	3.	6F	592.	3.	
31	vent4		4s17	624.6	3.	7F	624.6	3.	
32	vent5		5s7	595.5	3.	8F	595.5	3.	
33	vent6		5s17	624.6	3.	9F	624.6	3.	
34	vent7		6s7	595.5	3.	10F	595.5	3.	Hydraulic
35	vent8		6s11	615.	3.	11F	615.	3.	Lines for the
36	vent9		7s7	595.5	3.	12F	595.5	3.	Two Fans
37	vent10		7 <u>s11</u>	607.75	3.	13F	607.75	3.	
38	coppus1 🗲		7s9	602.	0.1	7s15	621.	0.1	
39	coppus2		7s9	602.	0.1	7s15	621.	0.1	
Flow	Paths - Ta	ble 2							
Flow	Flow H	lyd.	Iner	tia Fr	iction	Relative	e Dep	Mom 3	Strat
Path	Area D)iam.	Lengt	th Le	ngth	Rough-	Bend	Trn 1	Flow
#	(ft2) (ft)	(ft)	(f	t)	ness	(deg)	Opt (Opt
1	915. 2	.0	30.	1.			0.	- 1	NONE
2	585. 2	.0	30.	1.			0.	- 1	NONE
3	793. 2	0.	30.	1.			Ο.	- 1	NONE

-

_

_

NONE

NONE

NONE

Ο.

0.

0.

Addendum A-01 to Calculation 2.4.6.14 Rev. 0 Attachment C Page 17 of 26

7	390.	20.	30.	1.		Ο.	-	NONE
8	390.	20.	30.	1.		Ο.	-	NONE
9	40.	20.	30.	1.		Ο.	-	NONE
10	40.	20.	30.	1.		Ο.	-	NONE
11	390.	20.	30.	1.		Ο.	_	NONE
12	390.	20.	30.	1.		0.	_	NONE
13	390.	20.	30.	1.		0.	_	NONE
14	390.	20.	30.	1.		0.	_	NONE
15	242	0 1	30	1		0	_	NONE
16	242	0 1	30.	1		0	_	NONE
17	242.	0.1	30.	1 ·		0.	_	NONE
10	242.	0.1	20.	⊥• 1		0.	_	NONE
10	242.	0.1	30.	⊥• 1		0.		NONE
19	242.	0.1	20.	⊥• 1		0.	-	NONE
20	242.	0.1	30.	1.		0.	-	NONE
21	10.	10.	30.	1.		0.	-	NONE
22	0.001	0.001	0.1	0.1		0.	-	NONE
23	500.	20.	70.	1.		0.	-	NONE
24	21.	3.	30.	1.		0.	-	NONE
25	21.	3.	30.	1.		0.	-	NONE
26	115.	5.	30.	1.		Ο.	-	NONE
27	115.	5.	30.	1.		Ο.	-	NONE
28	15.	4.	1.	1.		Ο.	-	NONE
29	15.	4.	1.	1.		Ο.	-	NONE
30	24.	4.	1.	1.		Ο.	_	NONE
31	20.	4.	1.	1.		0.	_	NONE
32	32.	4	1.	1.		0.	_	NONE
33	24	4	1	1		0	_	NONE
34	24	л. Д	1 1	1		0	_	NONE
35	24.		⊥• 1	1 ·		0.	_	NONE
20	24.	4.	⊥• 1	⊥• 1		0.	_	NONE
20	20.	4.	⊥• 1	1 •		0.	-	NONE
37	24.	4.	⊥. 1	1.		0.	_	NONE
38	0.35	0.67		1.			-	NONE
39	0.35	0.67	1.	<u> </u>				NONE
	Datha	m - l- l - 0					Hydraul	ic Line
FLOW	Paths -	Table 3		Quitin 1	T	Deces	Charact	eristics
FIOW	Fwa.	Rev.	â	Critical	EXIC	Drop		
Path	Loss	LOSS	Comp.	FIOW	LOSS	вгеакир		
#	Coeff.	Coeff.	Opt.	Model	Coeff.	Model		
1	2.78	2.78	OFF	OFF	0.	OFF		
2	2.78	2.78	OFF	OFF	0.	OFF		
3	2.78	2.78	OFF	OFF	0.	OFF		
4	2.78	2.78	OFF	OFF	Ο.	OFF		
5								
6	2.78	2.78	OFF	OFF	0.	OFF		
0	2.78 2.78	2.78 2.78	OFF OFF	OFF OFF	0. 0.	OFF OFF		
7	2.78 2.78 2.78	2.78 2.78 2.78	OFF OFF OFF	OFF OFF OFF	0. 0. 0.	OFF OFF OFF		
7 8	2.78 2.78 2.78 2.78	2.78 2.78 2.78 2.78 2.78	OFF OFF OFF OFF	OFF OFF OFF OFF	0. 0. 0. 0.	OFF OFF OFF OFF		
7 8 9	2.78 2.78 2.78 2.78 2.78 2.78	2.78 2.78 2.78 2.78 2.78 2.78	OFF OFF OFF OFF OFF	OFF OFF OFF OFF	0. 0. 0. 0.	OFF OFF OFF OFF		
7 8 9 10	2.78 2.78 2.78 2.78 2.78 2.78 2.78	2.78 2.78 2.78 2.78 2.78 2.78 2.78	OFF OFF OFF OFF OFF	OFF OFF OFF OFF OFF	0. 0. 0. 0. 0.	OFF OFF OFF OFF OFF		
7 8 9 10 11	2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78	2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78	OFF OFF OFF OFF OFF OFF	OFF OFF OFF OFF OFF OFF	0. 0. 0. 0. 0. 0.	OFF OFF OFF OFF OFF OFF		
7 8 9 10 11 12	2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78	2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78	OFF OFF OFF OFF OFF OFF	OFF OFF OFF OFF OFF OFF	0. 0. 0. 0. 0. 0. 0.	OFF OFF OFF OFF OFF OFF OFF		
7 8 9 10 11 12 13	2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78	2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78	OFF OFF OFF OFF OFF OFF OFF	OFF OFF OFF OFF OFF OFF OFF	0. 0. 0. 0. 0. 0. 0. 0.	OFF OFF OFF OFF OFF OFF OFF		
7 8 9 10 11 12 13	2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78	2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78	OFF OFF OFF OFF OFF OFF OFF	OFF OFF OFF OFF OFF OFF OFF	0. 0. 0. 0. 0. 0. 0. 0. 0.	OFF OFF OFF OFF OFF OFF OFF		
7 8 9 10 11 12 13 14	2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78	2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78	OFF OFF OFF OFF OFF OFF OFF OFF	OFF OFF OFF OFF OFF OFF OFF OFF	0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	OFF OFF OFF OFF OFF OFF OFF OFF		
7 8 9 10 11 12 13 14 15	2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78	2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78	OFF OFF OFF OFF OFF OFF OFF OFF	OFF OFF OFF OFF OFF OFF OFF OFF	0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	OFF OFF OFF OFF OFF OFF OFF OFF OFF		
7 8 9 10 11 12 13 14 15 16	2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78	2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78	OFF OFF OFF OFF OFF OFF OFF OFF OFF	OFF OFF OFF OFF OFF OFF OFF OFF OFF	0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	OFF OFF OFF OFF OFF OFF OFF OFF OFF		
7 8 9 10 11 12 13 14 15 16 17	2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78	2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78	OFF OFF OFF OFF OFF OFF OFF OFF OFF	OFF OFF OFF OFF OFF OFF OFF OFF OFF	0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	OFF OFF OFF OFF OFF OFF OFF OFF OFF		
7 8 9 10 11 12 13 14 15 16 17 18	2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78	2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78	OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF	OFF OFF OFF OFF OFF OFF OFF OFF OFF	0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF		

20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39	2.782.782.782.782.782.782.782.782.782.782.782.782.782.782.782.78	OFF 0 OFF	DFF DFF TABLES DFF DFF DFF DFF DFF DFF DFF DFF DFF DF	0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.		OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF	
Ther	mal Conductors	- Table 1					
Cond		Vol H	r Vol	ΗT	Cond	S. A.	Init.
#	Description	A Co	δВ	Со	Туре	(ft2)	T.(F)
ls	east wall	7s6-8 1	7s6-8	7	2	4824.	110.
2s 2-	north wall	7s1-8 1	7s1-8	7	2	1700.	110.
35 /s	south Wall	/S6-11 1 6s1-8 1	/S0-11	7	2	1/00. 1/88	110. 110
	south wall	6s6-11 1	6s6-11	7	2	1488	110.
6s	floor	7s2-5 2	7s2-5	7	2	4370.	110.
7s	floor	6s2-5 2	6s2-5	7	2	4024.	110.
8s	floor	5s5-2 2	5s5-2	7	2	4140.	110.
9s	floor	4s5-2 2	4s5-2	7	2	4255.	110.
10s	floor	3s5-2 2	3s5-2	7	2	3910.	110.
11s	north wall	5s1-8 1	5s1-8	7	2	1537.	110.
12s	south wall	5s6-11 1	5s6-11 4c1-9	/	2	1537. 1562	110. 110
135 17e	north wall	4SI=0 I 4s6=11 1	451-0 /s6-11	7	2	1562.	110.
15s	north wall	3s1-8 1	3s1-8	7	2	1551.	110.
16s	south wall	3s6-11 1	3s6-11	7	2	1551.	110.
17s	north wall	1s1-4 1	1s1-4	5	2	12015.	110.
18s	south wall	1s9-12 1	1s9-12	5	2	12015.	110.
19s	east wall	1s1-5 1	1s1-5	5	2	3105.	110.
20s	west wall	1s12-4 1	1s12-4	5	2	3105.	110.
21s	rooi Nuurnar uall	1s21-1 5	1s21-1	4	3	511/5. 17000	120.
225 23e	N upper wall S upper wall	1s10-2 1 1s13-2 1	1s10-2 1s13-2	5	с С	17889	120.
235 24s	E upper wall	1s16-1 1	1s15-2	5	3	4623.	120.
25s	W upper wall	1s24-2 1	1s24-2	5	3	4623.	120.
26s	V1 heat	1s24-1 1	1s24-1	8	4	10000.	120.
27s	V3 heat	3s18-1 1	3s18-1	8	4	10000.	120.
28s	V4 heat	4s18-1 1	4s18-1	8	4	10000.	120.
29s	V5 heat	5s18-1 1	5s18-1	8	4	10000.	120.
3US 31 -	vo neat V7 hest	0518-1 1 7018-1 1	6818-1 7 ₈ 10-1	Х Q	4 1	10000.	120.
329 329	CV3 steel	3s1 - 18 1	7510-1 351-18	0 1	4 5	14770	120.
33s	CV4 steel	4s1-18 1	4s1-18	1	5	16256.	120.

Addendum A-01 to Calculation 2.4.6.14 Rev. 0 Attachment C Page 19 of 26

34s	CV5 steel	5s1-18 1	5s1-18 1	5	16121.	120.	I
35s	CV6 steel	6s1-18 1	6s1-18 1	8	29621.	120.	Ι
36s	CV7 steel	7s1-18 1	7s1-18 1	9	37221.	120.	Ι
37s	east upper wall	7s14-1 1	7s14-1 5	2	3121.	120.	Ι
38s	north upper wal	7s13-1 1	7s13-1 5	2	1100.	120.	Ι
39s	south upper wal	7s17-1 1	7s17-1 5	2	1100.	120.	Ι
40s	north upper wal	6s13-1 1	6s13-1 5	2	962.	120.	Ι
41s	south upper wal	6s17-1 1	6s17-1 5	2	962.	120.	Ι
42s	north upper wal	5s13-1 1	5s13-1 5	2	995.	120.	Ι
43s	south upper wal	5s17-1 1	5s17-1 5	2	995.	120.	Ι
44s	north upper wal	4s14-1 1	4s14-1 5	2	1011.	120.	Ι
45s	south upper wal	4s17-1 1	4s17-1 5	2	1011.	120.	Ι
46s	north upper wal	3s13-1 1	3s13-1 5	2	1004.	120.	Ι
47s	south upper wal	3s17-1 1	3s17-1 5	2	1004.	120.	I

Thermal Conductors - Table 2

Cond	Therm.	Rad.	Emiss.	Therm.	Rad.	Emiss.
#	Side A		Side A	Side B		Side B
1s	No			No		
2s	No			No		
3s	No			No		
4s	No			No		
5s	No			No		
6s	No			No		
7s	No			No		
8s	No			No		
9s	No			No		
10s	No			No		
11s	No			No		
12s	No			No		
13s	No			No		
14s	No			No		
15s	No			No		
16s	No			No		
17s	No			No		
18s	No			No		
19s	No			No		
20s	No			No		
21s	No			No		
22s	No			No		
23s	No			No		
24s	No			No		
25s	No			No		
26s	No			No		
27s	No			No		
28s	No			No		
29s	No			No		
30s	No			No		
31s	No			No		
32s	No			No		
33s	No			No		
34s	No			No		
35s	No			No		
36s	No			No		
37s	No			No		

38s No No 39s No No 40s No No 41s No No 42s No No 43s No No 44s No No 45s No No 46s No No 47s No No Heat Transfer Coefficient Types - Table 1 Cnd Sp Nat Heat For Type Transfer Nominal Cnv Cnd Cnv Cnv Cnv Rad Option Value FF Opt Opt HTC Opt Opt # Opt VERT SURF PIPE FLOW ON FACE UP PIPE FLOW ON Direct ADD MAX 1 Direct 2 ADD MAX Sp Heat 0. 3 FACE DOWN PIPE FLOW ON 4 Direct ADD MAX 6 5 Sp Ambie 104. Sp Conv 1.46 6 ON 7 Sp Temp 53. Sp Heat 155. 2 8 Heat Transfer Coefficient Types - Table 2 Min Max Convect Condensa Bulk T Type Phase Liq Liq Bulk T Opt Fract Fract Model FF Model FF VAP Tg-Tf Tb-Tw # Tq-Tf 1 VAP Tb-Tw 2 Tg-Tf Tb-Tw VAP 3 4 VAP Tg-Tf Tb-Tw 5 6 VAP Tg-Tw 7 8 Heat Transfer Coefficient Types - Table 3 Char. Nat For Nom Minimum Type Length Coef Exp Coef Exp Vel Vel Conv HTC # (ft) FF FF FF FF (ft/s) FF (B/h-f2-F) 1 DEFAULT 2 DEFAULT 3 4 DEFAULT 5 6 7 8 HTC Types - Table 4 TotalPeakInitialPost-BDType HeatTimeValueDirect#(Btu)(sec)(B/h-f2-F)FF 1 2 3

4 5 6 7 8								
Therm	al Condu	ctor Type	es					
Туре			Thick	. 0.1	D.		Heat	Heat
#	Descript	ion (Geom (in)	(i	n)	Regions	(Btu/ft3-s)	FF
1	insul com	ncrete V	VALL 12.	Ο.		7	0.	
2	cond con	crete V	VALL 36.	Ο.		16	0.	
3	sheet me	tal 🛛	VALL 0.1	Ο.		2	0.	
4	area hea	t V	VALL 0.5	Ο.		1	0.	0
5	Zone 3 s	teel V	VALL 0.17	0.		7	0.	
6	Zone 4 s	teel V	VALL 0.5	0.		10	0.	
7	Zone 5 s [.]	teel V	VALL 0.49	0.		10	0.	
8	Zone 6 s	teel V	VALL 0.15	0.		7	0.	
9	Zone 7 s	teel V	VALL 0.16	0.		7	0.	
Thermann	al Condu	ctor Type	2					
insul	concret	e						
	Mat.	Bdrv.	Thick	Sub-	Heat			
Regio	n #	(in)	(in)	regs.	Factor	2		
1	1	0.	0.12	1	0.			
2	1	0.12	0.24	1	0.			
3	1	0.36	0.48	1	0.			
4	1	0.84	0.96	1	0.			
5	1	1.8	1.92	1	0.			
6	1	3.72	4.140001	1	0.			
7	1	7.860001	4.139999	1	0.			
Therm 2	al Condu	ctor Type	2					
cond	concrete							
	Mat.	Bdry.	Thick	Sub-	Heat			
Regio	n #	(in)	(in)	regs.	Factor	<u></u>		
1	1	0.	0.12	1	0.			
2	1	0.12	0.24	1	0.			
3	1	0.36	0.48	1	0.			
4	1	0.84	0.96	1	0.			
5	1	1.8	1.92	1	0.			
6	1	3.72	3.84	1	0.			
7	1	7.56	7.68	1	0.			
8	1	15.24	5.190001	1	0.			
9	1	20.43	5.19	1	0.			
1U	1	23.62	3.329996	1	0.			
⊥⊥ 1 2	⊥ 1	20.90	3.329993	⊥ 1	0.			
⊥∠ 13	⊥ 1	31 2	0 060000	⊥ 1	0.			
14	⊥ 1	34.4 35 16	0.280000	⊥ 1	0			
⊥⊐ 15	⊥ 1	35 61	0.200000	⊥ 1	0			
16	⊥ 1	35 88	0.240000	⊥ 1	0			
τU	1	55.00	0.110000	1	0.			
Therm	al Condu	ctor Type	2					

3 sheet metal

Mat.Bdry.ThickSub-Heat#(in)(in)regs.Factor10.0.0510.10.050.0510. Region # (in) 1 1 0. 2 1 Thermal Conductor Type 4 area heat
 Mat.
 Bdry.
 Thick
 Sub Heat

 Region #
 (in)
 (in)
 regs.
 Factor

 1
 2
 0.
 0.5
 1
 0.
 Thermal Conductor Type 5 Zone 3 steel Zone 3 steelMat.Bdry.ThickSub-HeatRegion #(in)(in)regs.Factor120.0.013210.220.01320.026410.320.03960.032610.420.07220.032610.520.10480.02610.620.13080.02610.720.15680.013210. Thermal Conductor Type 6 Zone 4 steel Mat. Bdry. Thick Sub- Heat Mat.Bdry.ThickSub-HeatRegion #(in)(in)regs.Factor120.0.013210.220.01320.026410.320.03960.052810.420.09240.105610.520.1980.075510.620.27350.075510.720.3490.055710.820.46040.026410.1020.48680.013210. Thermal Conductor Type 7 Zone 5 steel Mat.Bdry.ThickSub-HeatRegion #(in)(in)regs.Factor120.0.013210. 0.0132 0.0264 1 2 2 0. 3 2 0.0396 0.0528 1 Ο.

8	lla⊥	Conc	lucto	or Typ	be								
Zone	6	steel											
		Mat.	Вс	drv.	Thi	.ck	Sub-	Hea	at				
Regio	n	#	(i	n)	(ir	1)	reas	Fac	rtor				
1		2	0		0 0	1132	1	. 100	0001				
- -		2	0.	0120	0.0	1152	1	0.					
2		2	0.	0132	0.0	264	1	0.					
3		2	0.	0396	0.0	276	1	0.					
4		2	Ο.	0672	0.0	276	1	Ο.					
5		2	Ο.	0948	0.0	21	1	Ο.					
6		2	0.	1158	0.0	21	1	0.					
7		2	0.	1368	0.0	132	1	0.					
Therm 9	nal	Cond	lucto	or Typ	be								
Zone	7	steel											
-		Mat.	Bc	drv.	Thi	.ck	Sub-	Hea	at				
Reain	n	±	14	- <u>-</u>	/i~)	reac	F=/	rtor				
1	/11	ιΓ Ο	()	/	(11)	·/	1 1	. ra(LUL				
⊥ ⊥		2	υ.	0100	0.0	1132	1	∪.					
2		2	0.	0132	0.0	264	1	0.					
3		2	0.	0396	0.0)301	1	Ο.					
4		2	0.	0697	0.0	301	1	Ο.					
5		2	Ο.	0998	0.0	235	1	Ο.					
6		2	0.	1233	0.0	235	1	0.					
7		2	0	1468	0.0	132	1	0					
,		2	0.	1100	0.0	102	-	•••					
Volum	net	ric F	'an -	- Tabl	le 1								
Vol					Flow	On	Off 1	Min	Max	x			
Fan					Path	Trip	Trip	DP	DP				
#	Do	corir	+ i or		#	+ #	p	(mai)	1 (m				
TT		SCTTP					π			271			
10	~ ~	- -		-	# >0	π	#	(bat)	ים (ף:	Sl) Entir m			
" 1Q	СО	ppus1		-	# 38	π	Ŧ	DEFAU	JLT DEI	Sl) FAULT			
" 1Q 2Q	co co	ppus1 ppus2		•	# 38 39	π	#	DEFAU DEFAU	JLT DEI JLT DEI	SI) FAULT FAULT			
" 2Q	co co	ppus1 ppus2		•	# 38 39	π	#	(PSI) DEFAU DEFAU	JLT DEI JLT DEI	SI) FAULT FAULT	–		
" 2Q Volum	co co net	ppus1 ppus2 ric F	an -	- Tabl	# 38 39 Le 2	π	#	(psi) Defai Defai	JLT DEI JLT DEI	SI) FAULT FAULT		Fan Flow Rate	
" 2Q Volum Vol	co co net	ppus1 ppus2 ric F	an -	- Tabl	# 38 39 Le 2 Flow	π	# Hea	(psi) DEFAU DEFAU t	(P: JLT DEI JLT DEI Heat	sı) FAULT FAULT	-	Fan Flow Rate	
" 2Q Volum Vol Fan	co co net Fl	ppus1 ppus2 ric F ow	'an - Flow Rate	- Tabl	# 38 39 Le 2 Flow Rate	π Heat	# Hea Rat	(psi) DEFAU DEFAU t	JLT DEI JLT DEI Heat Rate	SI) FAULT FAULT Disch	_	Fan Flow Rate	
" 2Q Volum Vol Fan #	co co net Fl Op	ppus1 ppus2 ric F ow tion	'an - Flow Rate (CFN	- Tab] 7 2 1)	# 38 39 Le 2 Flow Rate FF	<pre># Heat Optio</pre>	# Hea Rat	(psi) DEFAU DEFAU t	JLT DEI JLT DEI Heat Rate FF	SI) FAULT FAULT Disch Vol	-[Fan Flow Rate	
" 2Q Volum Vol Fan #	co co net Fl Op	ppus1 ppus2 ric F ow tion	an - Flow Rate (CFM	- Tabl	# 38 39 Le 2 Flow Rate FF	# Heat <u>Optio</u> Time	# Hea Rate n (Bt	(psi) DEFAU DEFAU t e u/s)	Heat FF	FAULT FAULT Disch Vol	_[Fan Flow Rate	
" 1Q 2Q Volum Vol Fan # 1Q 20	co co net Fl Op Ti	ppus1 ppus2 ric F ow tion me	an - Flow Rate (CFN 1000	- Tabl 7 1)	# 38 39 Flow Rate FF	<pre># Heat Optio Time Time</pre>	# Hea Rat n (Bt	(psi) DEFAU DEFAU t u/s)	Heat Heat FF	FAULT FAULT Disch Vol 7s15 7s15	_[Fan Flow Rate	e
" 1Q 2Q Volum Vol Fan # 1Q 2Q	co co Fl Op Ti Ti	ppus1 ppus2 ric F ow tion me me	'an - Flow Rate (CFN 1000	- Tabl 7 1)). ().	# 38 39 Flow Rate FF	# Heat <u>Optio</u> Time Time	# Hea Rat n (Bt	(psi) DEFAU DEFAU t u/s)	Heat FF	FAULT FAULT Disch Vol 7s15 7s15	-[Fan Flow Rate Fan Discharg Location	e
" 1Q 2Q Volum Vol Fan # 1Q 2Q Volum	co co fl Cp Ti Ti	ppus1 ppus2 ric F ow tion me me Initi	Can - Flow Rate (CFN 1000 1000	- Tab] 7 9). 1)). Condit	# 38 39 Le 2 Flow Rate FF	# Heat Optio Time Time	# Hea Rat n (Bt	(DSI) DEFAU DEFAU t e	Heat FF	FAULT FAULT FAULT Vol 7s15 7s15		Fan Flow Rate Fan Discharg Location	e
" 2Q Volum Vol Fan # 1Q 2Q Volum	co co Fl Op Ti Ti ne	ppus1 ppus2 ric F ow tion me me Initi	<pre>'an - Flow Rate (CFN 1000 1000 .al 0</pre>	- Tabl V E I) Condit Vapor	# 38 39 Le 2 Flow Rate FF clions	# Heat Optio Time Time .quid	# Hea Rat n (Bt	(DSI) DEFAU DEFAU t e u/s) tive	Heat Rate FF	FAULT FAULT Disch Vol 7s15 7s15 d Ice	[•-	Fan Flow Rate Fan Discharg Location	e
" 2Q Volum Vol Fan # 1Q 2Q Volum Vol	co co met Fl Op Ti Ti ne	ppus1 ppus2 ric F ow tion me me Initi Press	<pre>'an - Flow Rate (CFN 1000 1000 .al 0 sure</pre>	- Tabi v a)). 4). Condit Vapon Temp.	# 38 39 Le 2 Flow Rate FF clions c Li	# Heat Optio Time Time .quid	# Hea Rat n (Bt Rela Humi)	tive	Liquic Volume	FAULT FAULT Disch Vol 7s15 7s15 d Ice	-[Fan Flow Rate Fan Discharg Location	e
" 2Q Volum Vol Fan # 1Q 2Q Volum Vol	co co met Fl Op Ti Ti ne	ppus1 ppus2 ric F ow tion me me Initi Press (psia	Tan - Flow Rate (CFM 1000 1000 .al C	- Tabl v e 1)). Condit Vapor Temp. (F)	# 38 39 Le 2 Flow Rate FF clions c Li F	# Heat Optio Time Time Aquid emp.	# Hea Rat n (Bt Rela Humi(%)	(DSI) DEFAU t u/s) tive dity	Heat Heat FF	Disch Vol 7s15 7s15 d Ice e Volu		Fan Flow Rate Fan Discharg Location	e
" 2Q Volum Vol Fan # 1Q 2Q Volum Vol	co co met Fl Op Ti Ti ne	ppus1 ppus2 ric F ow tion me me Initi Press (psia	Tan - Flow Rate (CFM 1000 1000 .al C sure	- Tabl v e 1)). Condit Vapor Temp. (F) 80	# 38 39 Ele 2 Flow Rate FF Lions Lions	Heat Optio Time Time Quid emp.	# Hea Rat n (Bt Rela Humi (%) 60	tive dity	Heat Heat Rate FF Liquid Volume Fract:	FAULT FAULT FAULT Disch Vol 7s15 7s15 d Ice e Volu io Frac	ume ct.	Fan Flow Rate Fan Discharg Location Ice Surf.A. (ft2)	e
" 2Q Volum Vol Fan # 1Q 2Q Volum Vol # def	co co fl fl Ti Ti	ppus1 ppus2 ric F ow tion me me Initi Press (psia 14.7	Tan - Flow Rate (CFM 1000 1000 .al C sure	- Tabl - Tabl - Tabl - Tabl - Table - Tabl	# 38 39 Flow Rate FF Lions Lions Lions	Heat Optio Time Time Quid emp.	<pre># Hea Rat Rela Humi (%) 60. 00</pre>	(DSI) DEFAU DEFAU t u/s) tive dity	Liquid Fract:	FAULT FAULT FAULT Disch Vol 7s15 7s15 d Ice e Volu io Frac 0.	ume ct.	Fan Flow Rate Fan Discharg Location Ice Surf.A. (ft2) 0.	e
" 1Q 2Q Volum Vol Fan # 1Q 2Q Volum Vol # def 1s	co co fl Op Ti Ti ne	ppus1 ppus2 ric F ow tion me me Initi Press (psia 14.7 14.7	Tan - Flow Rate (CFM 1000 1000 .al C sure	- Tabl - Tabl - Tabl - Tabl - Table -	<pre># 38 39 Le 2 Flow Rate FF Lions Li F 80 13</pre>	Heat Optio Time Time Quid emp.	<pre># Hea Rat Rela Humi (%) 60. 90.</pre>	(DSI) DEFAU DEFAU t u/s) tive dity	Heat Heat Rate FF Liquid Volume Fract: 0.	FAULT FAULT FAULT Disch Vol 7s15 7s15 d Ice e Volu io Frac 0. 0.	ume ct.	Fan Flow Rate Fan Discharg Location Ice Surf.A. (ft2) 0. 0.	e
" 1Q 2Q Volum Vol Fan # 1Q 2Q Volum Vol # def 1s 2s	co co fl Op Ti Ti ne	ppus1 ppus2 ric F ow tion me me Initi Press (psia 14.7 14.7	an - Flow Rate (CFN 1000 1000 .al C sure	- Tabl - T	<pre># 38 39 Le 2 Flow Rate FF Lions Li Te 80 13 10</pre>	<pre># Heat Optio Time Time .quid emp. 30. 55.</pre>	# Hea Rat n (Bt Rela Humid (%) 60. 90. 50.	(DSI) DEFAU DEFAU t u/s) tive dity	Liquid Volume Fract: 0. 0. 0.	FAULT FAULT FAULT Disch Vol 7s15 7s15 d Ice e Volu io Frac 0. 0. 0.	ume ct.	Fan Flow Rate Fan Discharg Location Ice Surf.A. (ft2) 0. 0. 0.	e
"1Q 2Q Volum Vol Fan # 1Q 2Q Volum Vol # def 1s 2s 3s	co co fl Op Ti Ti ne	ppus1 ppus2 ric F ow tion me me Initi Press (psia 14.7 14.7 14.7	an - Flow Rate (CFN 1000 1000 .al C	- Tabl - Ta	<pre># 38 39 Le 2 Flow Rate FF Lions Li F 80 13 10 13</pre>	Heat Optio Time Time Aquid emp.	# Hea Rat n (Bt Rela Humid (%) 60. 90. 50. 90.	tive dity	Liquid Volume Fract: 0. 0. 0. 0.	FAULT FAULT FAULT Disch Vol 7s15 7s15 d Ice e Volu io Frac 0. 0. 0. 0. 0.	ume ct.	Fan Flow Rate Fan Discharg Location Ice Surf.A. (ft2) 0. 0. 0. 0. 0.	e
"1Q 2Q Volum Vol Fan # 1Q 2Q Volum Vol # def 1s 2s 3s 4s	co co fl Op Ti Ti ne	ppus1 ppus2 ric F ow tion me me Initi Press (psia 14.7 14.7 14.7 14.7	an - Flow Rate (CFN 1000 1000 .al C	- Tabl - Ta	<pre># 38 39 Le 2 Flow Rate FF Lions Li Te 80 13 10 13 13</pre>	<pre># Heat Optio Time Time .quid emp</pre>	<pre># Hea Rat Rela Humi (%) 60. 90. 50. 90. 90.</pre>	tive dity	Liquid Volume Fract: 0. 0. 0. 0. 0. 0. 0.	FAULT FAULT FAULT Disch Vol 7s15 7s15 7s15 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	ume ct.	Fan Flow Rate Fan Discharg Location Ice Surf.A. (ft2) 0. 0. 0. 0. 0. 0. 0.	e
"1Q 2Q Volum Vol Fan # 1Q 2Q Volum Vol # def 1s 2s 3s 4s 5s	co co fl Op Ti Ti ne	ppus1 ppus2 ric F ow tion me me Initi Press (psia 14.7 14.7 14.7 14.7 14.7	an - Flow Rate (CFN 1000 al C	- Tabl - Ta	<pre># 38 39 Le 2 Flow Rate FF Lions Li F 80 13 10 13 13</pre>	<pre># Heat Optio Time Time .quid emp. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.</pre>	<pre># Hea Rat Rela Humi (%) 60. 90. 50. 90. 90. 90.</pre>	tive dity	Liquid Volume Fract: 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	FAULT FAULT FAULT Disch Vol 7s15 7s15 7s15 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	ume ct.	Fan Flow Rate Fan Discharg Location Ice Surf.A. (ft2) 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	e
"1Q 2Q Volum Vol Fan # 1Q 2Q Volum Vol # def 1s 2s 3s 4s 5s 6s	co co Fl Op Ti Ti	ppus1 ppus2 ric F ow tion me me Initi Press (psia 14.7 14.7 14.7 14.7 14.7	'an - Flow Rate (CFN 1000 1000 .al C	- Tabl - T	<pre># 38 39 le 2 Flow Rate FF Lions Li F 80 13 10 13 13 13</pre>	<pre># Heat Optio Time Time .quid emp</pre>	# Hea Rat n (Bt Rela Humi (%) 60. 90. 90. 90. 90. 90. 90. 90.	tive dity	Liquid Volume Fract: 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	FAULT FAULT FAULT Disch Vol 7s15 7s15 7s15 Colution Colut	ume ct.	Fan Flow Rate Fan Discharg Location Ice Surf.A. (ft2) 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	e
"1Q 2Q Volum Vol Fan # 1Q 2Q Volum Vol # def 1s 2s 3s 4s 5s 6s 7s	co co Fl Op Ti Ti	ppus1 ppus2 ric F ow tion me me Initi Press (psia 14.7 14.7 14.7 14.7 14.7 14.7	an - Flow Rate (CFN 1000 al C	- Tabl - T	<pre># 38 39 le 2 Flow Rate FF Lions Li F 80 13 13 13 13 13</pre>	<pre># Heat Optio Time Time .quid emp. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.</pre>	# Hea Rat n (Bt Rela Humi (%) 60. 90. 90. 90. 90. 90. 90. 90. 90. 90.	tive dity	Liquid Volume Fract: 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	si) FAULT FAULT Disch Vol 7s15 7s15 7s15 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	ume ct.	Fan Flow Rate Fan Discharg Location Ice Surf.A. (ft2) 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	e
"1Q 2Q Volum Vol # 1Q 2Q Volum Vol # def 1s 2s 3s 4s 5s 6s 7s	co co Fl Op Ti Ti ne	ppus1 ppus2 ric F ow tion me me Initi Press (psia 14.7 14.7 14.7 14.7 14.7 14.7	an - Flow Rate (CFM 1000 .al (sure	- Tabl - T	<pre># 38 39 Le 2 Flow Rate FF Lions Li Te F 80 13 13 13 13 13 13</pre>	<pre># Heat Optio Time Time .quid emp</pre>	<pre># Hea Rat Rela Rela Humi (%) 60. 90. 50. 90. 90. 90. 90. 90. 90.</pre>	tive dity	Liquid Volume Fract: 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	<pre>S1) FAULT FAULT Disch Vol 7s15 7s15 d Ice e Volu io Frac 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.</pre>	ume ct.	Fan Flow Rate Fan Discharg Location Ice Surf.A. (ft2) 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	e
" 1Q 2Q Volum Vol Fan # 1Q 2Q Volum Vol # def 1s 2s 3s 4s 5s 6s 7s Initi	co co Fl Op Ti Ti ne	ppus1 ppus2 ric F ow tion me me Initi Press (psia 14.7 14.7 14.7 14.7 14.7 14.7 14.7	<pre>'an - Flow Rate (CFN 1000 1000 al 0 gure) Pres</pre>	- Tabl - T	<pre># 38 39 le 2 Flow Rate FF Lions Li Te 80 13 13 13 13 Ratic</pre>	<pre># Heat Optio Time Time Quid emp. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.</pre>	# Hea Ratun n (Bt Rela Humio (%) 60. 90. 90. 90. 90. 90. 90. 90.	tive dity	Heat Heat Rate FF Liquid Volume Fract: 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	<pre>s1) FAULT FAULT Disch Vol 7s15 7s15 d Ice e Volu io Frac 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.</pre>	ume ct.	Fan Flow Rate Fan Discharg Location Ice Surf.A. (ft2) 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	e
" 1Q 2Q Volum Vol Fan # 1Q 2Q Volum Vol # def 1s 2s 3s 4s 5s 6s 7s Initi Vol	co co Fl Op Ti Ti ne	ppus1 ppus2 ric F ow tion me me Initi Press (psia 14.7 14.7 14.7 14.7 14.7 14.7 14.7 14.7	<pre>'an - Flow Rate (CFN 1000 1000 al 0 gure) Pres</pre>	- Tabl - Tab	<pre># 38 39 le 2 Flow Rate FF Lions Li Te 80 13 13 13 13 Ratic</pre>	<pre># Heat Optio Time Time .quid emp</pre>	# Hea Ratun n (Bt Rela Humi (%) 60. 90. 90. 90. 90. 90. 90.	tive dity	Heat Heat Rate FF Liquid Volume Fract: 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	si) FAULT FAULT Disch Vol 7s15 7s15 7s15 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	ume ct.	Fan Flow Rate Fan Discharg Location Ice Surf.A. (ft2) 0. 0. 0. 0. 0. 0. 0. 0. 0.	e
" 1Q 2Q Volum Vol Fan # 1Q 2Q Volum Vol # def 1s 2s 3s 4s 5s 6s 7s Initi Vol #	co co Fl Op Ti Ti ne	ppus1 ppus2 ric F ow tion me me Initi Press (psia 14.7 14.7 14.7 14.7 14.7 14.7 14.7 14.7	'an - Flow Rate (CFN 1000 .al C sure) Pres	- Tabl - Tab	<pre># 38 39 le 2 Flow Rate FF Lions Li Te 80 13 13 13 13 Ratic Gas 3</pre>	<pre># Heat Optio Time Time .quid emp. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.</pre>	<pre># Hea Rat Rat Rela Humi (%) 60. 90. 90. 90. 90. 90. 90. 90. 4 G</pre>	tive dity	Heat Heat Rate FF Liquid Volume Fract: 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	FAULT FAULT FAULT Disch Vol 7s15 7s15 7s15 Column C	Jume ct.	Fan Flow Rate Fan Discharg Location Ice Surf.A. (ft2) 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	e
" 1Q 2Q Volum Vol Fan # 1Q 2Q Volum Vol # def 1s 2s 3s 4s 5s 6s 7s Initi Vol # def	co co Fl Op Ti Ti ne	ppus1 ppus2 ric F ow tion me me Initi Press (psia 14.7 14.7 14.7 14.7 14.7 14.7 14.7 14.7	an - Flow Rate (CFN 1000 1000 al C sure) Pres	- Tabl - Tabl - Tabl - Tabl - Tabl - Table - Table	<pre># 38 39 le 2 Flow Rate FF Lions Li Te F 80 13 13 13 13 13 Ratic Gas 3 0.</pre>	<pre># Heat Optio Time Time .quid emp</pre>	# Hea Rat n (Bt Rela Humi (%) 60. 90. 90. 90. 90. 90. 90. 90. 90.	tive dity	Liquid Fract: 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	FAULT FAULT FAULT Disch Vol 7s15 7s15 7s15 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.		Fan Flow Rate Fan Discharg Location Ice Surf.A. (ft2) 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	e

1s 2s 3s 4s 5s 6s 7s	1. 1. 1. 1. 1. 1.		0. 0. 0. 0. 0. 0.	0. 0. 0. 0. 0. 0.	0. 0. 0. 0. 0. 0.	0. 0. 0. 0. 0.		0. 0. 0. 0. 0. 0.	0. 0. 0. 0. 0. 0.	0. 0. 0. 0. 0. 0.
Nonc Gas No.	onder Descr	nsing Ciptio	Gases on	Symbo	l Type	Mol. Weigh	t	Lenna Diame (Ang)	ard-Jones eter	Parameters e/K (K)
1	Air			Air	POLY	28.97		3.617	7	97.
Nonc Gas No. 1	Tmin (R) 360.	Cp I	Gases Equati Imax (R) 2280.	- Cp/ on (Re Cp (Bt 0.2	Visc. Ed quired) u/lbm-R 38534-6	quatic) .2006	ons V Tmin (R)	/isc.	Equation Tmax (R)	(Optional) Viscosity (lbm/ft-hr)
Mate Type 1 2	rials # De cc st	s escrip oncret ceel	otion te							
Mate 1 conc Temp (F) 0. 1000	erial erete	Type Dens: (1bm, 140. 140.	ity /ft3)	Cond. (Btu/h 1. 1.	r-ft-F)	Sp. H (Btu/ 0.2 0.2	leat lbm-	·F)		
Mate 2 stee Temp (F) 0. 5000	erial	Type Dens: (1bm, 490. 490.	ity /ft3)	Cond. (Btu/h 11. 11.	r-ft-F)	Sp. H (Btu/ 0.11 0.11	leat 1bm-	· F')		
Ice Init Temp (F) 15.	Conde ial E . D 3	enser Bulk Densit (1bm/: 33.43	Param S ty M ft3) F	eters urface ultipl unctio	Area H ier T n Oj U	eat ransfe ption CHIDA	er			
Func FF# 0 1 2	tions Desc Cons brea heat	s stant ak flo rate	ion ow rat e	Ind. - i Ind. Ind.	Var. Var. Var.	Dep. V - Dep. V Dep. V	'ar. 'ar. 'ar.	Poir O 4 3	nts	
Func 1	tion									

Addendum A-01 to Calculation 2.4.6.14 Rev. 0 Attachment C Page 25 of 26

break flow ratio Ind. Var.: Dep. Var.: Ind. Var. Dep. Var. Ind. Var. Dep. Var. 0. 3600. 0. 0 1000000. 1. 3601. 1. Function 2 heat rate Ind. Var.: Dep. Var.: Ind. Var. Dep. Var. Ind. Var. Dep. Var. 0. 0.7 1000. 1. 1000000. 1. FPDOSE Control Options Setting Units Generate FPDOSE Input NO Transfer Time Interval 0.0 S Isolation Valve # _ Washout Factor 0.0 Containment Leak Rate/Pressure0.0Vacuum Bldg Leak Rate/Pressure0.0 %/hr-psig %/hr-psig FPDOSE Volume Types Transfer FP Transfer Vol VOLFP Transfer#TypeOption1sNORMALNORMAL2sNORMALNORMAL3sNORMALNORMAL4sNORMALNORMAL5sNORMALNORMAL6sNORMALNORMAL7sNORMALNORMAL Vol. Frac. Ο. 0. Ο. 0. 0. Ο. 0. Run Control Parameters (Seconds)

 Time DT
 DT
 DT
 End
 Print
 Graph
 Max
 Dump
 Phs
 Chng

 Dom
 Min
 Max
 Ratio
 Time
 Int
 Int
 CPU
 Int
 Time
 Scale

 1
 1e-008
 10.
 1e+009
 10.
 10.
 1.
 1e+006
 0.
 DEFAULT

 2
 1e-008
 20.
 1.
 7200.
 7200.
 20.
 1e+006
 0.
 DEFAULT

 3
 1e-008
 20.
 1.
 90000.
 90000.
 1e+006
 0.
 DEFAULT

 Time Scale Solution Options Time Solution Imp Conv Imp Iter Pres Sol Pres Conv Pres Iter Differ Burn Dom Method Limit Limit Method Limit Limit Scheme Sharp Lim_ 0. _ 1 1
 1
 SEMI-IMP 0.
 1

 2
 SEMI-IMP 0.
 1

 3
 SEMI-IMP 0.
 1
 1 DIRECT FOUP 0.0 1 DIRECT 0. 1 DIRECT 0. 1 FOUP 0.0 FOUP 0.0 Run Options Options Setting Restart Time (sec) 0.0 Restart Time Step # 0 Restart Time Control NEW Revaporization Fraction DEFAULT Fog Model OFF

Maximum N	Aist Densi	ity		DEFAUL	Ľ					
Drop Dian	n. From Mi	İst		DEFAUL	C					
Minimum H	HT Coeff.			0.0						
Reference	e Pressure	Э		IGNORE						
Forced Er	nt. Drop I	Diam.		DEFAULT						
Vapor Pha	ase Head (Correctio	on	INCLUDE	Ξ					
Kinetic H	Energy			IGNORE						
Vapor Pha	ase			INCLUD	E					
Liquid Pł	nase			INCLUDE	Ξ					
Drop Phas	se			INCLUD	E					
Force Equ	uilibrium			IGNORE						
Drop-Liq.	. Conversi	Lon		INCLUD	Ξ					
QA Loggir	ng			OFF						
Debug Out	put Level	L		0						
Restart I	Dump on CH	PU Interv	val (sec)	3600.						
Graphs										
Graph				Curve	Number					
# Tit	le	Mon	1	2	3	4		5		
1			TV7s16	TV6s15	TV1s19	TV7s1	.5			
2			TV4s14	TV4s8	TV4s2					
3			PR7s16	PR1s7						
4			1R7s15	SR7s15						
5			TV6s15	TV5s15	TV4s15	TV3s1	.5			
6			FV21	FV23	FV22	FL22		FD22		
7			FV15	FV16	FV17	FV18		FV19		
8			LL7s3	LL6s3						
9			TV7s15	TV7s12						
10			TP1s8t1							
11			TL7s3							
12			TV6s11	TV7s16	TV7s18	TV7s1	.3			
13			TV7s15	K						
14			TP6s1t1	TP6s1t1	TP6s1t4	TP6s1	t8			
15			TP36s1t	TP3631t	TP36s1t	TP36s	1t	TP36s1t		
16			TP31s1t	TP31s1t	TP31s1t	TP31s	1t			
17			RH7s15							
18			AL7s3]				
							Le	ak Location:		
Envelope	Sets						Le	aK # I = V/S I O		
Set	Set			No		1	Le	$a_{1} \# 2 = V/511$ $a_{1} \# 2 = V/7s12$		
No.	Туре	Descript	cion	Ite	ems		20			

Addendum A-01 to Calculation 2.4.6.14 Rev. 0 Attachment D Page 1 of 82

GOTHIC Output Data for 32.90 $\ensuremath{\text{Lb}_{\text{m}}}\xspace$ Leak