

Pressurized water reactor spent fuel rod segments containing small artificially induced claading defects were leach tested in a test matrix that also included rod segments with undefected cladding and rod segments which were split open to fully expose the bare fuel. Results from the first test series conducted in deionized water under air at ambient not cell temperature are presented and discussed.

States States

R. H. C. S. D. DYPERSON FRANC

ABSTRACT

RESULTS FROM NNWSI SERIES

SPENT FUEL LEACH TESTS

C. N. Wilson

HEDL-TME 84-30

UC-70

The amounts of measured fuel dissolution were two to three orders of magnitude less for fuel contained in artificially defected cladding than for the bare fuel removed from the cladding. Post-test microstructural examination of fuel particles from the bare fuel test revealed significant grain boundary dissolution. Total measured fractional release relative to inventory was calculated for several radionuclides. The actinides, plutonium, americium, curium, and probably neptunium, appeared to be released congruently with uranium. Fission products cesium and technetium were both preferentially released relative to their inventory.

iii

Radiochemical analyses described in this report were performed by, or under the direction of, A. C. Leaf of the HEDL Chemistry and Analysis Section. These analyses are a major portion of the results reported.

ACKNOWLEDGMENTS

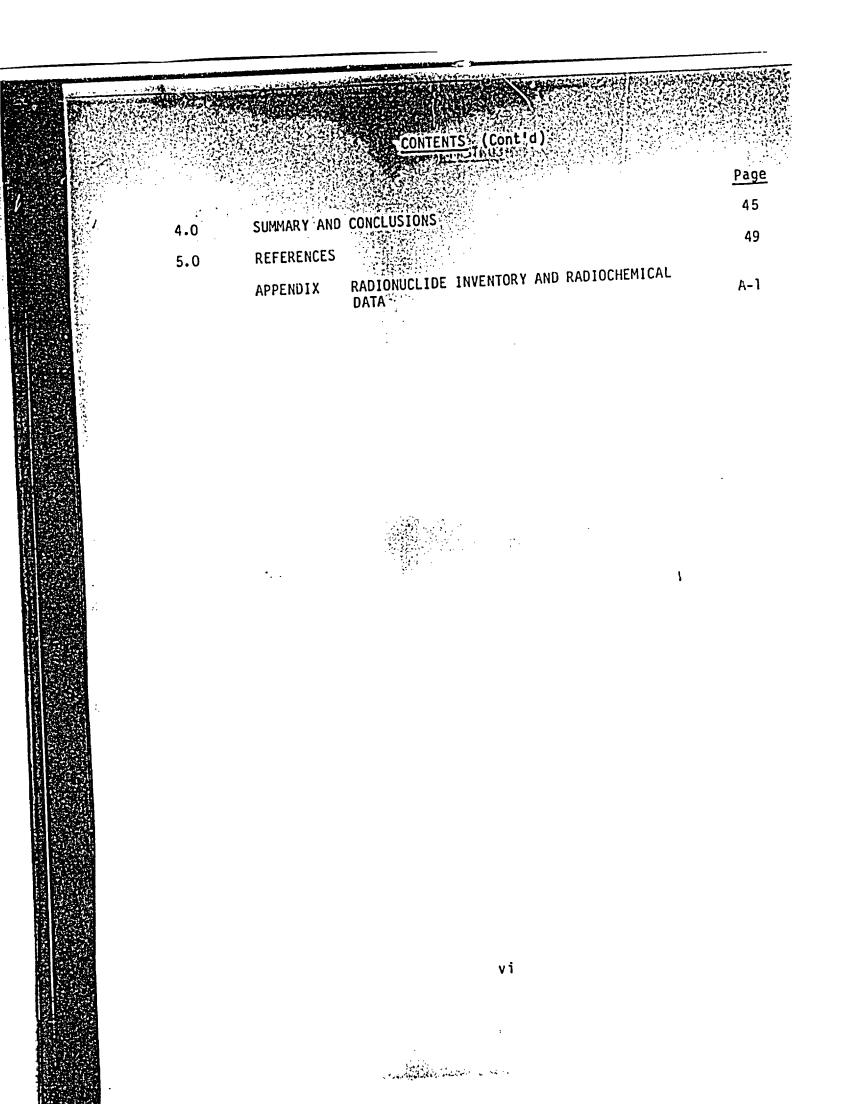
Spent fuel test specimens were prepared by N. H. Larson and M. E. Freed. Post-test ceramographic sections were prepared by R. D. Bell and C. E. Chamberlin. Scanning electron microscopy of fuel specimens was performed by B. Mastel. Hot cell setup and sampling operations were performed by C. E. Saari, R. T. Steele and D. V. Archer. Specimen preparation, testing, and examination were directed by the author, who gratefully recognizes the good work and support contributed by the above and many additional unnamed HEDL personnel.

Tests described in this report were supported by the Waste Package Task of the Nevada Nuclear Waste Storage Investigations (NNWSI): Project at Lawrence Livermore National Laboratory (LLNL). The LLNL technical monitor for this work is V. M. Oversby.

1. 19082 1. 1. 2.22

iv

CONTENTS


A set of the set of	Page
Abstract	iii
Acknowledgments	iv
Figures	vii
Tables	viii
nuronyms	ix
BACKGROUND	1
TEST DESCRIPTION	3
2.1 TEST SPECIMENS	3
2.2 CLADDING SURFACE CONTAMINATION	4
2.3 TEST APPARATUS	7
2.4 TESTING AND SAMPLING	7
2.5 SAMPLE ANALYSES	10
2.5.1 Radionuclides of Interest 2.5.2 Radionuclides Analyzed 2.5.3 Filtering	10 10 12
RESULTS AND DISCUSSION	15
3.1 URANIUM RELEASE	15
3.2 PLUTUNIUM RELEASE	21
3.3 AMERICIUM RELEASE	26
3.4 CURIUM RELEASE	29
3.5 CESIUM RELEASE	32
3.6 TECHNETIUM RELEASE	35
3.7 NEPTUNIUM RELEASE	37
3.8 ¹⁴ C, ⁷⁹ Se, AND ¹²⁹ I RELEASE	38
3.9 SOLUTION CHEMISTRY	40
3.10 STRUCTURAL CONSIDERATIONS	41

1.0

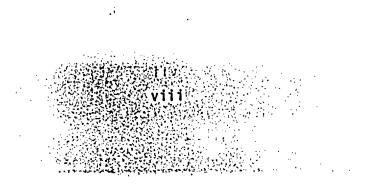
2.0

3.0

v

FIGURES

igure		Page
1	Test Apparatus	8
2A	Uranium in Unfiltered Solution	16
2 B	Uranium on Fused Quartz Rod Samples	16
3	As-Polished Ceramographic Section of Fuel Particles from H-6-19 Bare Fuel Test Showing Grain Boundary Corrosion	20
4A	Laser-Drilled Defect in Test Specimen J-8-24	22
4B	Fuel Surface at Fuel-Cladding Gap Near the Laser- Drilled Defect Showing No Visible Evidence of Fuel Dissolution	22
5A	Slit-Defect in Test Specimen H-6-12	23
5B	As-Polished Fuel Surface Near the Slit Defect Showing Visible Intergranular Attack	23
6	Void Area in Slit Defect Specimen H-6-12 Showing Corroded Fuel Surface Appearance (As-Polished)	24
7A	239 _{Pu Plus} 240 _{Pu} in Unfiltered Solution	25
7B	239 _{Pu} Plus ²⁴⁰ Pu on Fused Quartz Rod Samples	25
8A	241 Am in Unfiltered Solution	28
8B	241Am on Fused Quartz Rod Samples	28
9A	²⁴⁴ Cm in Unfiltered Solution	30
9B	244Cm on Fused Quartz Rod Samples	30
10A	137Cs in Unfiltered Solution	33
IOB	137Cs on Fused Quartz Rod Samples	33
11A	Fracture Surface of Turkey Point Spent Fuel Exhibiting Fracture Primarily Along Grain Boundaries	44
11B	Fracture Surface of Unirradiated Fuel Exhibiting Primarily Cleavage Fracture Through Grains	44


は、11日本には、11日本は、11日本には、

F

vii

	TABLES	
<u>Table</u> ,		Page
, ì	Fuel Characteristics	4
2	Calculated Spent Fuel Specimen Bulk Composition	5
3	Series 1. Test Specimens, Series Transformers and Series 1.	6
4	PWR Spent Fuel Assembly Radionuclide Inventories at 1000 Years	11
5	Radiochemistry Methods	13
6	Uranium Measured in Unfiltered and Filtered Solution Samples	17
7	Uranium Release Data	19
8	239 _{Pu Plus} 240 _{Pu Release Data}	26
9	241 _{Am} Release Data	29
10	244Cm Release Data	31
11	137 _{Cs} Release Data	34
12	⁹⁹ Tc Release Data	36
13	237 _{Np} Release Data	39
14	Final Solution Chemistry	41
15	Total Measured Release as a Fraction of Inventory X 10 ⁵	46

المعالمة المستعندة ومستر الما المحمد والم

ACRONYMS

1.5

BCL	Battelle Columbus Laboratories
DOE	Department of Energy
EDX	Energy-Dispersive:X-Ray,
HEDL	Hanford Engineering Development Laboratory
ICP	Inductively Coupled Plasma (Emission Spectrometry)
LLNL	Lawrence Livermore National Laboratory
LMFBR	Liquid MetallFast Breeder Reactor
LWR	Light Water, Reactor.
NNWS I	Nevada Nuclear Waste Storage Investigations
ORNL	Oak Ridge National Laboratory
PNL	Pacific Northwest Laboratory
PWR	Pressurized Water Reactor
SEM	Scanning Electron Microscope
WHC	Westinghouse Hanford Company

ix

Kandata and an internet and a second

.0 <u>BACKGROUND</u>

The US Department of Energy (DOE), through the Office of Civilian Waste Management, is actively studying the technical feasibility of permanent disposal of high-level nuclear waste in geologic formations. A schedule for siting, licensing, and construction of a geologic repository is established by the Nuclear Waste Policy Act of 1982. (1) Principal geologic formations under consideration for the first repository include tuff, salt, and basalt. The Nevada Nuclear Waste Storage Investigations (NNWSI) Project is investigating the suitability of the Topopah Spring Member of the Paintbrush Tuff at Yucca Mountain, Nye County, Nevada for development of a repository. Lawrence Livermore National Laboratory (LLNL) is the lead contractor for the Waste Package Task in support of the NNWSI Project. LLNL has chosen Westinghouse Hanford Company (WHC) as a subcontractor to assist them in determining the requirements for successful disposal of spent fuel rods in the Yucca Mountain Site. 和国家社会主任任务和任务的时代。

A primary objective of the NNWSI Waste Package Task is to determine if and how the Nuclear Regulatory Commission requirements contained in 10 CFR $60^{(2)}$ can be satisfied. Additional applicable standards are being prepared by the US Environmental Protection Agency in 40 CFR 191.⁽³⁾ Two principal waste package requirements contained in 10 CFR 60 (Section 60.113) are:

- "Containment of HLW (high-level waste) within the waste packages will be substantially complete for a period ... not less than 300 years nor more than 1000 years after permanent closure of the geologic repository" (the containment period).
- 2) "The release rate of any radionuclide from the engineered barrier system (waste packages and the underground facility) following the containment period shall not exceed one part in 100,000 per year of the inventory of that radionuclide calculated to be present at 1000 years following permanent closure."

The principal mechanism for release of radionuclides from a failed waste package is leaching of the radionuclides into groundwater and migration as a result of groundwater flow. The candidate repository horizon for the NNWSI Project is a welded devitrified tuff above the water table. However, a limited amount of water infiltrating the rock may provide a potential transport mechanism for radionuclides to the underlying water table. Contact between this water and the waste package is not expected to occur during the first several hundred years when the repository temperature is greater than the 95°C boiling temperature for water at the repository elevation. After the thermal period, one scenario for water contact with stored spent fuel is the collection of a near static volume of water in a failed waste package. The condition of stored fuel rods at this time will be difficult to determine. Many of the rods may remain intact, some rods may contain breaches but not be catastrophically failed, and others may be broken or more severely degraded.

The objective of the Spent Fuel Leaching/Dissolution Tests being conducted by WHC in support of NNWSI is to gain a better understanding of probable spent fuel behavior and radionuclide release under NNWSI-proposed repository conditions. The initial approach is to perform "semi-static" leach tests with specimens representing a range of fuel physical degradation under conditions applicable to NNWSI. The Series 1 tests described in this report were conducted in deionized water. The Series 2 tests are similar except that they use NNWSI J-13 well water.⁽⁴⁾ Higher temperature is planned for the Series 3 tests. Future tests using fuel that has been degraded by air/steam oxidation and testing with different fuel types are also planned.

TEST DESCRIPTION

2.0

Details of test specimen preparation; testing; and sample analysis are given in the test plan. (5) = 9 + 191

2.1 TEST SPECIMENS

e e de la constance de

Four specimen types, representing a range of potential states of spent fuel rod degradation under NNWSI-proposed conditions; were leach-tested in deionized water under air at ambient hot cell temperature (~25°C). The four specimen types were:

- Spent fuel rod segments with water-tight end fittings and undefected cladding.
- Fuel rod segments with water-tight end fittings and laser-drilled holes through the cladding.

》。 這些認識的情報。 他的。 他的。 他的。

- Fuel rod segments with water-tight end fittings and a sawed slit through the cladding.
- Bare fuel removed from a split fuel rod segment plus the split cladding hulls.

Test specimens used for the Series 1 deionized water tests were prepared from Turkey Point Unit 3 pressurized water reactor (PWR) spent fuel rods. These fuel segments had been previously sectioned at Battelle Columbus Laboratories (BCL) under air, packaged in pine plug-sealed metal tubes, and stored at Hanford Engineering Development Laboratory (HEDL, operated by WHC for DOE) until the present specimens were prepared during June 1983. Fuel rod sectioning diagrams and characterization data are contained in Reference 6. Relevant fuel characteristics are summarized in Tables 1 and 2. Identification and descriptions for all Series 1 test specimens are given in Table 3.

and a perfection of the second

Test specimen radionuclide inventories and spent fuel composition used in the evaluation of results in this report were calculated from ORIGEN-2 data for 10-year old spent PWR fuel compiled in Appendix E of PNL-5109.⁽⁷⁾ Calculation of specimen radionuclide inventories is described in Appendix A.1.

Analy in and site signed but With the reduction of the re

TABLE

UELCHARACTERISTICS

Radionuclide inventory estimates for 1000-year old spent fuel are based on ORIGEN data contained in ORNL/TM-6008. (8)

2.2 CLADDING SURFACE CONTAMINATION

A primary purpose of testing fuel rod specimens with undefected cladding was to provide an estimate for that pontion of released radionuclides originating from the cladding exterior surface in tests with defected cladding. Two types of cladding exterior surface activity were present on the specimens: 1) Contamination picked up during postirradiation sectioning and handling in contaminated hot cells, and 2) "crud" deposits picked up in-reactor during irradiation. The surface contamination picked up during postirradiation sectioning and handling is primarily fine particulate material much of which can be wiped off. "A large amount of this type of postirradiation surface contamination should not be expected on hole rods received at the repository. Crud deposits are more adheren d are expected to occur on fuel received for repository storage. However, mu : of the crud deposit activity (i.e., ⁶⁰Co) is relatively short lived in comparison to the repository waste package containment period. remains a safe s

enderet eethermone a

			TTION
CALCULATED SPEN	I FUEL SPEL	IMEN BULK COMPOS	
iolie tulElement 44	wt%1201	Element	nol Wty 1176961
	A DECEMBER OF A DECEMBER OF		
Detailer ty Se UP?	0.0047	S I SDI UILE	84.808
Br 3-1	0:0016	Np	0.0309
Kr	0.0256	Pu	0.7399
Rb Rb	0:0254	Am	0.0492
Sr	0.0548	Cm T	0.0013
Y .	0.0324	Dillastinidae	85.629
Zr	0.2615	Actinides	00.020
Mo	0.2456	Ovygon	11.852
TC Ru	51 0 1 640	Oxygen	
Rh	0.0366	TOTAL	99.995
Pd	0.1084		
Âg	0.0063		
Cd	0.0086		
In	0.0002	an a	
Sn 👘 🖓 🖉	0.0071		·•
Sb Te	0.0016	Sala string	
Te	0.0368		
I STATISTICS	0.0181		
Xe	0.3934		• • •
Cs	0.1788		
Ba	0.1263	63 433	
La	0.0894		
Ce Pr	0.0820		
Nd	0.2950		
Pm	0.0008	, 	
Sm	.0.0597		s
U III (11)	232 C C C C C C C C C C C C C C C C C C		

TABLE

Eu 0.0096 Gd 0.0026 Tb 0.0002 Dy <u>0.0001</u>

Fission Products and 2.514

*Elements comprising less than 0.0001% (1 ppm) of composition have been omitted. Reference 7 (PNL-5109), 10-year data interpolated to 27.7 MWd/kgU burnup, corrected for oxygen weight.

ANDIT FROMMON SERIES MILTEST SPECIMENS OF THE HOLD A

TABLE

Identification*		
H-6-19	Bare fuel plus split cladding hulls (00.0	250 days, restarted 128 days
H-6-12	Slit defect ∿150 µm, wide by 2 cm long	252 days, restarted 128 days
J-8-24	Two laser-drilled holes ∿200 µm diameter	244 days, restarted 128 days
J-8-19	One laser-drilled hole ~200 µm diameter	60 days
H-6-1	Undefected 33(1)	252 days, restarted 128 days
H-6-24**	Undefected and back	271 days
J-8-12	Undefected	60 days

*All specimens from Turkey Point Unit 3 assembly Bl7 rods H-6 and J-8, sections numbered from bottom of rod, see HEDL-TME 80-85(6) for sectioning diagrams.

**Test H-6-24 was contaminated with ~ 60 ppm H₂SO₄ and pH was ~ 3.0 for duration of test.

56**51301.**975 - 575 - 575

Because of the expected low solubility of the fuel matrix in deionized water, an initial concern was test result bias from radionuclides leached from the cladding exterior contamination picked up during postirradiation sectioning and handling. To avoid this potential problem, specimen cladding exterior surfaces were cleaned several times by wiping with alcohol-dampened wipes. Initial cotton swab smears from the cladding surface read 8000 cpm to 20,000 cpm alpha and 7 mR/h to 15 mR/h beta/gamma. The cladding of the bare fuel and slit defect specimens were decontaminated to a few hundred cpm smearable alpha before slitting in a low contamination hot cell. Final decontamination and assembly of the undefected, laser-drilled, and slit

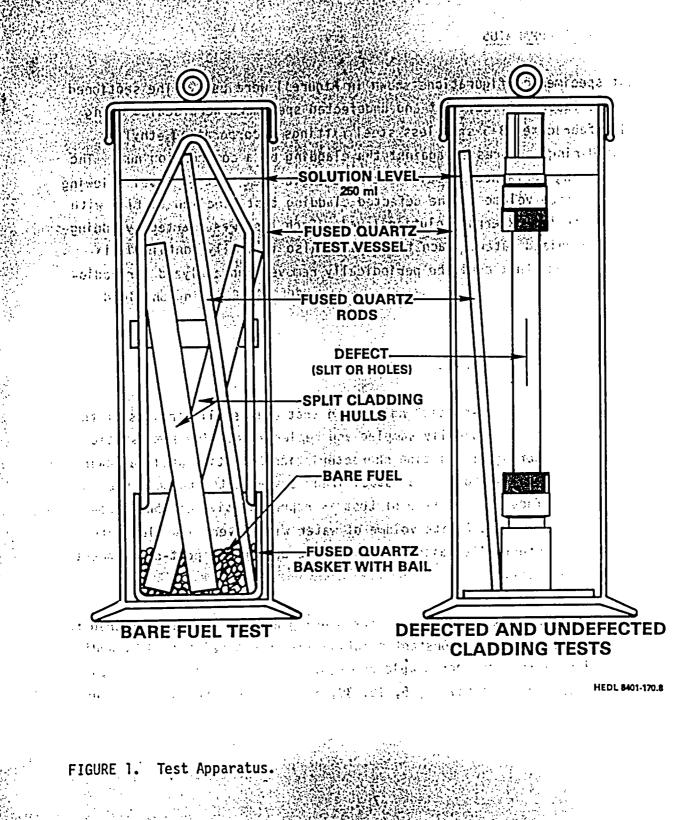
defect specimens was performed in a clean hot cell: Final cladding smears on these specimens read 20 cpm to 50 cpm alpha with beta/gamma levels undetectable above the laboratory background.

TEST APPARATUS

2.3

The test specimen (Configurations shown in Figure 1 were used.) The sectioned ends of the laser-drilled; slit and undefected specimens were sealed using specially fabricated 316 stainless steels fittings incorporating ethylene propylene O-rings compressed against the cladding by a compression nut. The top end fitting contained a small went hole above the solution level allowing the internal free volume of the defected cladding test specimen to fill with solution up to the external solution level. Each test was started by adding 250 ml of deionized water. Each test wessell also initially contained six fused quartz rods that could be periodically removed and analyzed for radionuclide plate-out. The tests were run in the HEDL 325 Building Shielded Analytical Laboratory.

2.4 TESTING AND SAMPLING


The tests were of a "semi-static" nature, in that only small portions of the test solutions were periodically sampled and replenished. The semi-static test allowed monitoring of solution characteristics with time while allowing the bulk of the solution to form a "stabilized" system with the test specimen and apparatus surfaces. This type of test is representative of NNWSI proposed conditions, where a finite volume of water with a very low flow rate would contact a potentially failed waste package during the post-containment and post-thermal period.

05 TE 124

Solution samples of 10-ml volume were taken using a fresh pipette attached to a syringe for each sample. Constant solution volume was maintained by adding fresh deionized water for each sample removed. Approximate solution sampling schedule was to sample at days 1, 5, 15, 30, 60, 90, 120, 180 and 240. Fused

Standards and the second second

Andre Sunctants was not failed from a tean bot cells. Final cladding shears

quartz rod samples were taken approximately at days 15: 30, 60, 120; 180 and 240. The rod samples were briefly rinsed with fresh deionized water to remove lose particulate or colloidal materials and then immersed in a fused quartz tube filled with 10 ml of 8 M HNO; The 8 M HNO; was then analyzed for radionuclides that <u>plated out</u> on the fused quartz rods. 10 01 no used for radionuclides that <u>plated out</u> on the fused quartz rods. 10 01 no used for radionuclides that <u>plated out</u> on the fused quartz rods. 10 01 no used for radionuclides that <u>plated out</u> on the fused quartz rods. 10 01 no used for radionuclides that <u>plated out</u> on the fused quartz rods. 11 01 no used for radionuclides that <u>plated out</u> on the fused quartz rods. 11 01 no used for radionuclides that <u>plated out</u> on the fused quartz rods. 11 01 no used were removed and rinsed with fresh deionized water. The bare fuel; the bare fuel baskets, the 316 stainless steel test specimen pedestals, and the fused quartz test vessels were also briefly rinsed with deionized water to remove loose particulate or colloidal particles. The pedestals and bare fuel baskets were placed back into their respective test vessels and each vessel filled with 300 ml of 8 M HNO; to strip off radionuclide plate-out.

The following resulting sample types were submitted for analysis:

- Periodic test solution samples
- Periodic 8 \underline{M} HNO₃ rod strip solutions
- Final vessel 3 <u>M</u> HNO₃ strip solutions*
- Bare fuel rinse solution

The four longest term tests, one of each specimen type (see Table 2), were then restarted in fresh deionized water. Both solution and rod samples were taken from the "second run" tests on days 15, 70 and 128. The second run tests were terminated on day 128, the components rinsed with fresh deionized water, and stripped with 8 \underline{M} HNO₃ as before.¹¹ The final test specimens were then sectioned, mounted, and examined ceramographically for evidence of fuel corrosion or other microstructural effects.

*The pedestals and test vessels were acid stripped separately in the J-8-12 and J-8-19 tests.

2.5.0 Dal <u>SAMPLE ANALYSES</u> and investment of the second s

with the main of 6 H Hadis Mile Will Him, was then analyten Based on 10 CFR 60, requirements, significant radionuclides present in 1000-year old spent fuel are those of most interest for the current studies. By 1000 years, most of the shorter lived fission product activity (i.e., 137 Cs, 134 Cs, 90 Sr, etc.), which represents a majority of the activity in the 10-year old fuel tested, has decayed out. Most of this activity decays out during the 300-year minimum containment period during which time "substantially complete" waste package integrity is required. Table 4 gives ORIGENcalculated relative inventories for radionuclides with half-life greater than one year and relative activity greater, than that of ¹²⁹I for a 1000-year old 33,000 MWd/MTM burnup PWR spent fuel. It should be noted from Table 4 that 129 I activity is an order of magnitude below that given for 238 U, which originates from the ore removed from the earth to originally fabricate the fuel. Approximately 98% of the calculated 1000-year activity is due to Am and Pu isotopes, with an additional ~0.77% originating from ⁹⁹Tc decay. 59 Ni, 63 Ni, 94 Nb, 14 C and $\sim 8\%$ of the 93 Zr are light element activation products. ¹⁴C activity, in particular, may vary since it originates primarily from activation of as-fabricated fuel and cladding nitrogen impurities, which are variable and not well characterized. Notes and the set

2.5.2 <u>Radionuclides Analyzed</u>

All samples were analyzed by alpha spectrometry, gamma spectrometry, and laser-excited fluorescence (for uranium). The pH was also measured on all solution samples as-sampled from the test vessels. After pH determination and subsequent filtering (for later test solution samples), sample fractions were acidified with ultra-high purity HNO_3 to stabilize the samples and prevent plate-out. Alpha spectrometry gave results for ^{239}Pu plus ^{240}Pu , ^{238}Pu plus ^{241}Am and ^{244}Cm activities. Gamma spectrometry gave results for

fileten og 1289 1286 avis 300 avis TE NU 23 PELOON EN 124 PWR SPENT FUEL ASSEMBLY RADIONUCLIDE INVENTORIES AT 1000, YEARS (a)

us versser voter ho	
(b); Radionuclide !	Activity 20140 (A Cumulative %
Am-241 Am-243	51.84 51.75(C) 1910 00 2010 53.59/5
Pu-240 Pu-239 Pu-242 Pu-238	26.87 17.37 0.10 0.06 80.46 97.83 97.93 97.99
Tc-99	0.77 . 98.76
Ni-59 Ni-63 Zr-93 Nd-94 C-14	0.252 0.021 0.181 0.074 0.076(d)
U-234 U-238 U-236	0.113 0.018 0.015
Np-237 Sn-126 Se-79 Cs-135 Sm-151 Pd-107 I-129	0.058 0.045 0.023 0.023 0.022 0.013 0.006 0.006 0.006 0.0018

(a)Based on ORIGEN data reported in ORNL/TM-6008(8) for 33,000 MWo/MTM burnup PWR Assembly.
(b)Radionuclides with 1000-year activity less than 129I or half-life less than 1 year omitted.
(c)Includes activity of ²³⁹Np daughter products.
(a)14C activity may vary considerably depending on as-fabricated nitrogen impurities.

106_{Ru}, 144<u>Ce</u> and 154<u>Eu</u>, 21120113VII and 2010 for 14213 14313 143 Selective separations and analyses were performed on later samples for ⁹⁹Tc, 237_{Np}, 79_{Se}, 14<u>Clandane</u>, Aliquotsyfor 13<u>C</u> and 1291 analysis were removed from solution sample fractions before acidification. Am-Pu separations were performed on later samples to determine 241 Am activities. The ²³⁸Pu to ²³⁹Pu plus ²⁴⁰Pu activity ratios were determined in order to calculate ²⁴¹Am activity from ²⁴¹Am plus ²³⁸Pu and ²³⁹Pu plus ²⁴⁰Pu activities for early samples from three tests. As testing progressed, sensitivity of some of the radiochemical methods was improved by increasing counting times and using larger sample volumes for specific counting source preparations. A comparison of estimated detection limits, and levels in solution if 10⁻⁵ of specimen inventory were dissolved in the 250 ml of test solution, are given in Table 5.

137 Cs and 134 Cs on all samples measured and for 60 Co for most test solution

samples. Other activities measured by gamma spectrometry samples included ¹²⁵Sb,

2.5.3 Filtering

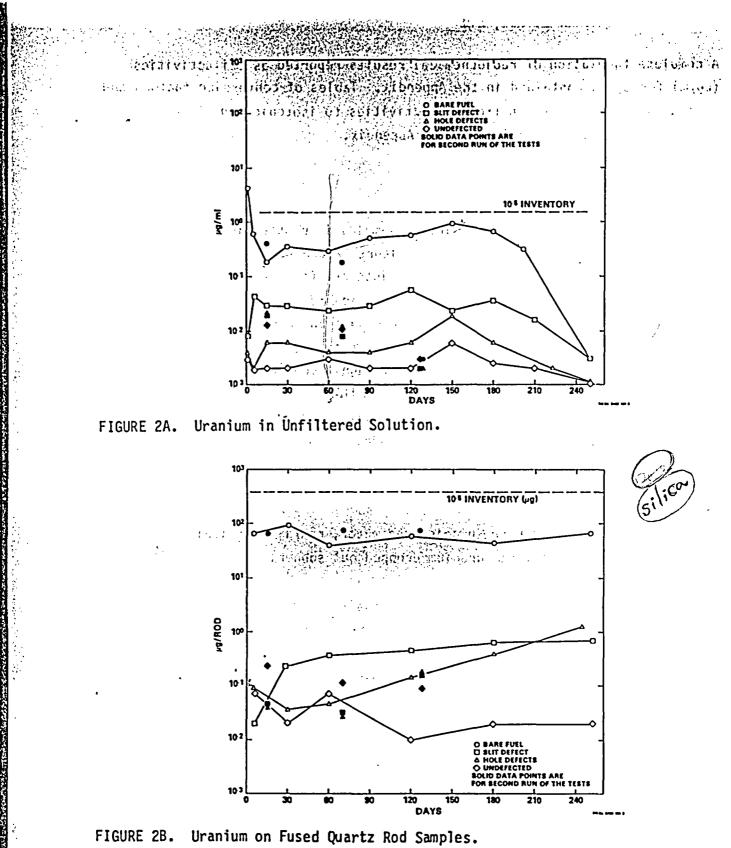
After the 180-day initial run samples from the four longest term tests, solution samples were split and filtered to give unfiltered, 0.4 μ m filtered (Nuclepore stock number 110407 polycarbonate disc filters), and 18 Å filtered (Amicon Corporation Model CTS-1 membrane cone centrifuge filters) fractions. Analyses for radionuclides that routinely produced "below detectable limits" results (⁷⁹Se, ¹⁴C, ¹²⁹I) were performed only on unfiltered fractions. After filtering, all sample fractions were then stabilized by adding ~2 vol% high purity HNO₃ to prevent loss of radionuclides from solution. (¹⁴C and ¹²⁹I sample aliquots taken before acidification.)

TABLE 5 RADIOCHEMISTRY METHODS

<u>Radionuclide</u>	Method	<pre>Uetection (pCi/ml)</pre>	Limits (ppb)	10 ⁻⁵ Inventory (pCi/ml)*
241 _{Am}	<pre>a-spectrometry following separation</pre>	2	0.0006	2400
238 _{Pu}	α-spectrometry following separation	in 2 :	0.0001	3200
239 _{Pu} 240 _{Pu}	a-spectrometry	2	0.03	1200
237 _{Np}	a-spectrometry following separation	0.2**	0.3	0.3
137 _{Cs}	Y-spectrometry	1000	0.01	1.0 x 10 ⁵
129 ₁	Liquid scintillation counting following separation	100	560	0.04
129 ₁	Neutron activation analysis	. 10 ⁻⁵	0.0001	0.04
99 _{Tc}	ß-proportional counting following separation	20**	1.2	16
79 _{Se}	Liquid scintillation counting following separation	100	1.4	0.5
14 _C	Liquid scintillation following CO ₂ distillation	100	0.02	.
U	Fluorescence		1	(1.8 ppm)

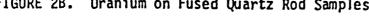
*Assumes 10⁻⁵ of test specimen inventory released to 250 ml. **Using 3-ml sample and 100 minutes of counting time.

.13


3.0 . RESULTS AND DISCUSSION

A complete tabulation of radiochemical results reported as pCi activities $(\mu g/m)$ for U) is contained in the Appendix. Tables of conversion factors and instruction for conversion from pCi activities to isotopic and elemental concentrations are also contained in the Appendix.

3.1 URANIUM RELEASE


Uranium measured in unfiltered solution samples is plotted in Figure 2A. The open data points connected by lines in Figure 2A are for the initial test runs on each specimen. The solid data points are for the second runs in which each specimen was restarted in fresh deionized water. The 10^{-5} inventory line is the concentration that would result in solution if 10^{-5} of the uranium in the test specimen were dissolved in the 250-ml deionized water test solution. Approximately one order of magnitude more uranium was measured in unfiltered solution samples from the bare fuel test than from the slit defect test during the first ~200 days, and approximately two orders magnitude greater uranium was measured in the bare fuel test relative to the laser-drilled test during this time. About 200 days after initial test start, uranium began dropping out of solution and was reduced to 1 ppb to 3 ppb levels in all unfiltered solution samples by 250 days. When the tests were restarted with fresh deionized water, nearly identical behavior was observed except that the uranium dropped out sooner.

Filtered and unfiltered solution uranium levels for the last samples from the initial test runs and the second test runs are given in Table 6. These data suggest that actual uranium solubility in these tests was $\sim 0.001 \ \mu g/ml$ (1 ppb). An initial supersaturation may have occurred early in the tests accounting for the slightly higher $0.007 \ \mu g/ml$ and $0.006 \ \mu g/ml$ 18 A filtered uranium levels, respectively, in the 15-day second run samples from the slit and hole defect tests. With time, the colloids apparently become unstable and settle out. A much higher solubility limit of $\sim 50 \ \mu pm$ has been

NATIONAL CASE

. در ا

Henseles	an and the mu-t	a sat viTABLER	6	्रिकेट्रोने भाष . :	
URA	NIUM MEASURED I	N UNFILTERED AN	DFILTERED	SOLUTION	SAMPLES
	n thursday a b		Q -7 0,50 ;		
Days.	Filter	Bare Fuel		Holes	Undefected
202	Unfiltered 0.4 µm	0.30			
~250	18 Α Unfiltered 0.4 μm 18 Α	0.002 0.003 <0.001 <0.001	0.003 <0.(<0.001	0.002 0.002 0.002	0.002 <0.001 <0.001
		Second Tes		0.002	
15	Unfiltered 0.4 µm 18 A	0.40 0.004 0.001	0.020 0.012 0.007	0.023 0.011 0.006	0.013 0.005 0.003
70	Unfiltered 0.4 µm 18 A	0.18 0.004 0.001	0.008 0.003 0.001	0.011 0.004 0.002	0.011 0.004 0.002
128	Unfiltered 0.4 µm 18 Å	0.003 0.003 0.001	0.002 0.002 0.001	0.0J2 0.002 0.002	0.003 0.003 0.002
		٠ •			

0.30

*Best reported detection limit was 0.001 µg/ml (1 ppb).

predicted for U in NNWSI J-13 well water.⁽⁹⁾ The higher solubility is attributed to uranium complexing by carbonate in the J-13 water.*

The filters used to filter the 202-day solution sample from the bare fuel test were examined by scanning electron microscope (SEM) and SEM-EDX (energy-uispersive x-ray). Nothing was found on the filter surfaces. The $\sim 1 \mu g$ of

2017 0 1

*Uranium measured in initial samples from Series 2 bare fuel tests with J-13 water ranged from ~2 to 5 ppm. Essentially all of the uranium in the initial series 2 samples passed both the 0.4 µm and 18 Å filters.

uranium removed from this solution sample by the 0.4-um filter was apparently too diffuse for detection in the SEM a mistricity of heads in summer

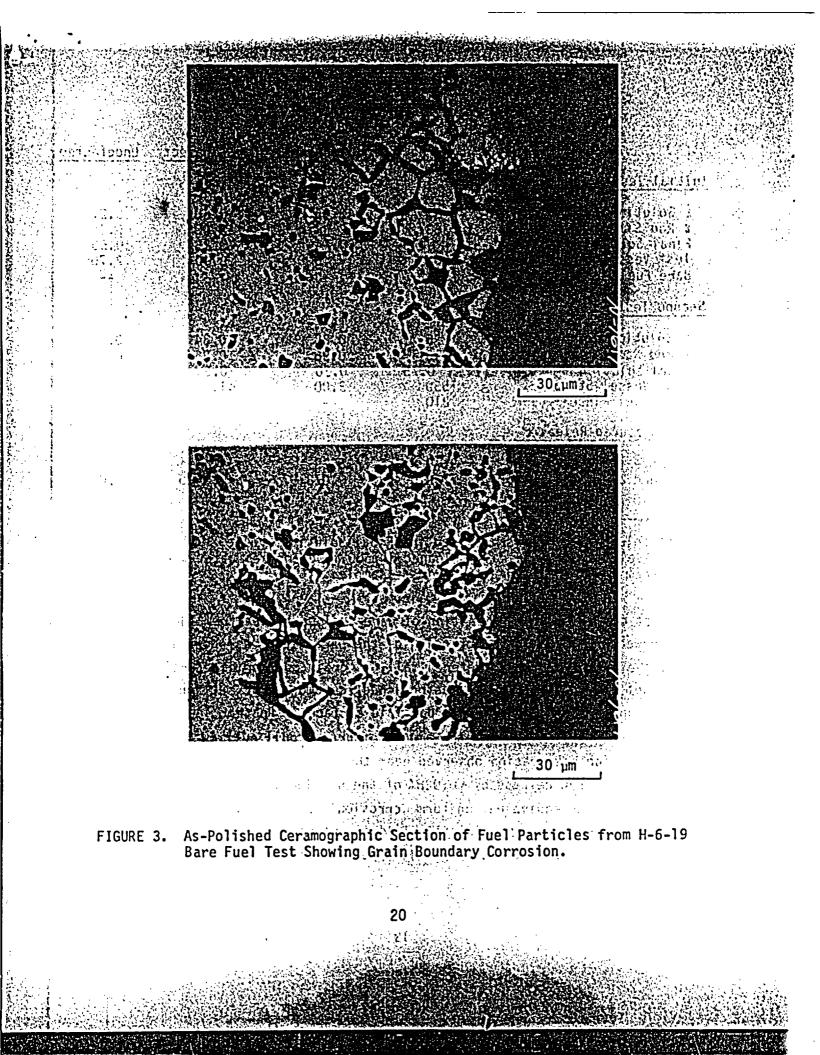
The pH during all but one of the tests remained in a range of 5.4 to 6.7. One test with undefected cladding was initially contaminated with ~ 60 ppm H_2SO_4 . The pH in this test ranged from ~ 2.9 to 3.3. Uranjum, most likely from cladding surface contamination, was about 130 ppb for most unfiltered solution samples from this test. Filtering of the last two samples from this test. Filtering of the last two samples from this test (250 and 271 days) indicated that most of this uranium was in true solution (110 ppb_U_in both 18 Å filtered samples versus_130 ppb_before filtration).

taal seegee

Uranium measured on fused quartz rod samples (Figure 2B) correlated with the unfiltered uranium solution data. Rod samples from the bare fuel test showed much more uranium plate-out than did rod samples from the other three test types, which exhibited much less apparent colloidal uranium in the "solution phase." Most of the plate-out apparently occurred before the first rod samples were taken at 5 days in the initial tests and at 15 days in the second run tests. The 10^{-5} inventory line in the Figure 2B plot is 10^{-5} of the total uranium inventory in the initial test specimens (each specimen contained ~40 g of uranium).

An accounting of the measured released uranium for the various sample types taken is given in Table 7. Two primary observations from the Table 7 data are: 1) total measured uranium release from the bare fuel test was much greater than from the slit or holes defected tests, and 2) only a very small fraction of the total measured uranium release was in solution. Total measured uranium releases from the slit and holes defected specimens were only ~4 and 2 times, respectively, the release measured from the undefected specimen. Total measured release from the bare for specimen were about 360 times that measured with the slit defect specimen and the initial test run may be due to early attack and depl. ion of higher activity material such as exposed grain boundaries, fine particles, or minute exposed secondary phases (i.e., Cs-U-0 phases).

	ALL ALL TABLE	E772		87
	URANIUM RELEA	SELDATA (µg);		250
	Bare Fuel	Slit Defect	Holes Defect	Undefectea
Initial Test Run	(UNEN)			
<pre> Solution Samples* </pre>	87	€.92	0.60	0.27
<pre>E Rod Samples Final Solution</pre>	363 () 0.75	2.44	2.00 0.25	0.19 0.50
Test Vessel Strip	6300 800	17.40	8.40 	2.70
Second Test Run			ма. ма	
Σ Solution Samples*	6	0.28		0.24
Σ Rod Samples Final Solution	213 0.75	0:96	0.85	0.43 0.75
Test Vessel Strip	1530	3.00	<1.50	<1.50
Bare Fuel Rinse**	210			
Total Measured Release	-			
r Ahove (un)	9510 - 🖓	28.25	· <14.44	<6.58

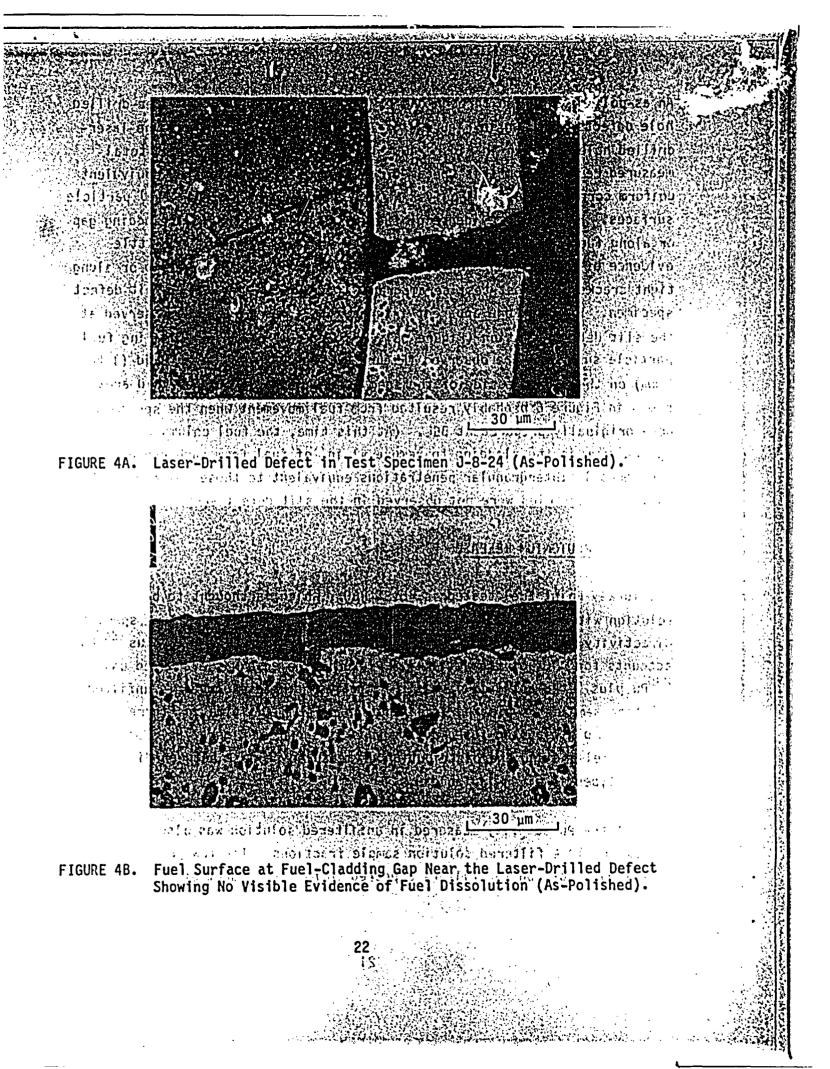

Σ Above (µg)	9510 28.25	<14.44	<6.58
Divided by 10 ⁻⁵ Inventory	28.0 C.078	<0.0406	<0.0185
	9510 28.25 28.0 C.078		·

*Last solution sample is included in _ inal Solution" value. **Bare fuel was ultrasonically cleaned in 500 ml deionized water when the run was terminated to produce the "Rinse" sample.

Post-test ceramographic examination of bare fuel particles from the H-6-19 test snowed clearly visible corrosion of the particles. As shown in Figure 3, the attack occurred preferentially at grain boundaries. Grain boundaries, not visible in pre-test "as-polished" ceramographic sections, were resolved up to 100 µm in from the particle surfaces. Another indication of the grain boundary attack was the amount of grain "pull out" during ceramographic section preparation observed near the bare fuel particle surfaces. The total measured release of ~0.028% of the uranium in the bare fuel test corresponds to an equivalent uniform corrosion depth of ~0.1 µm (assuming '2-mm diameter spherical particles). This amount of total fuel dissolution is consistent with the post-test particle appearance in ceramographic sections.

$$n = \frac{W}{\frac{4\pi x^{3}}{3}} \qquad S = 4\pi r^{2} m = 4\pi r^{2} \frac{3W}{4\pi r^{3}} = \frac{3W}{10r}$$

$$S = \frac{3 \times 8\pi x^{10}}{10 \times 10^{4}} = 26, 1 \text{ cm}^{2} \frac{3W}{10} = \frac{3W}{10r}$$



An as-polished section through one of the tword 8-24 specimen laser-drilled hole defects is shown in Figure 4A? The fueles urface 45° from the laserdrilled hole is shown in Figure 48. The D.04 x 10.5 of inventory total measured release from this specimen corresponds to an estimated equivalent uniform corrosion depth of only 2 A from the specimen internal fuel particle surfaces. No visible evidence of fuelidissolution at the fuel cladding gap or along fuel cracks was observed in this specimen . Similarly, little evidence of fuel dissolution was observed in the fuel-cladding gap or along tight cracks in a post-test ceramographic section of the H-6-12 slit defect specimen. However, one apparent intergranular attack area was observed at the slit defect location (Figure 5B), and areas of corroded appearing fuel particle surfaces were observed (Figure 6) adjacent to a large void (1 to 2 mm) on the opposite side of the specimen from the slits. The void area shown in Figure 6 probably resulted from fuel movement when the specimens were originally prepared at BCL. (At this time, the fuel column was pushed up and down in the cladding to remove vl in. of fuel from each end of the specimens.) Intergranular penetrations equivalent to those observed on bare fuel test particles were not observed in the slit defect section.

3.2 PLUTONIUM RELEASE

The Turkey Point fuel tested is $\sim 0.8\%$ PuO₂, which is thought to be in solid solution with UO₂. At 1000 years, Pu isotopes account for $\sim 44\%$ of spent fuel Ci activity as calculated by ORIGEN. ⁽⁸⁾ At 10,000 years, ²³⁹Pu plus ²⁴⁰Pu accounts for $\sim 90\%$ of the activity. Plutonium release was evaluated using ²³⁹Pu plus ²⁴⁰Pu activity levels. Activity of these isotopes in unfiltered solution samples is plotted as a function of sampling time in Figure 7A. Plutonium plate-out on fused quartz rods is shown in Figure 7B. Total measured Pu release and the distribution of measured release between different sample types is given in Table 8.

Most of the Pu activity measured in unfiltered solution was also measured in 0.4 µm and 18 A filtered solution sample fractions. The rew percent of the Pu activity lost on the filters appeared to be independent of solution Pu

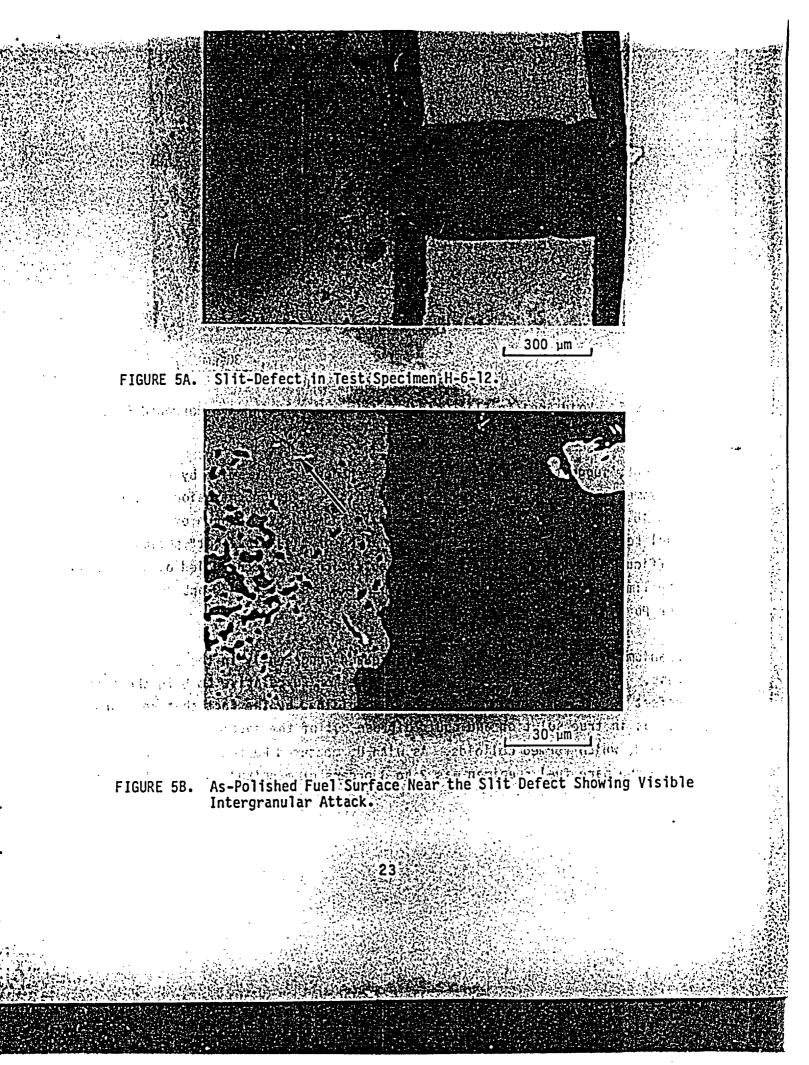


FIGURE 6. Void Area in Slit Defect Specimen H-6-12 Showing Corroded Fuel Surface Appearance (As-Polished).

content, suggesting the loss may have been due to adsorption by the filters or some other systematic artifact: The highest Pu concentration measured was 46 ppb for the 15-day solution sample from the second run of the bare fuel test. Without knowledge of the nature of the "plate-out" phases, it is difficult to know if measured Pu concentrations were controlled by a solubility limit. However, 46 ppb is less than the predicted ~430 ppb solubility for Pu in NMWSI groundwater. (9)

Uranium and Pu appear to have been released congruently in the bare fuel test. Greater apparent fractional release for Purelative to U in the slit defect and holes defect tests could be explained by the fact that released Pu was in true solution and could diffuse out of the specimen much easier than U, which formed colloids. As with U, measured Pu fractional release from the bare fuel specimen was 2 to 3 orders of magnitude greater than from

Andrahine Esteration of the

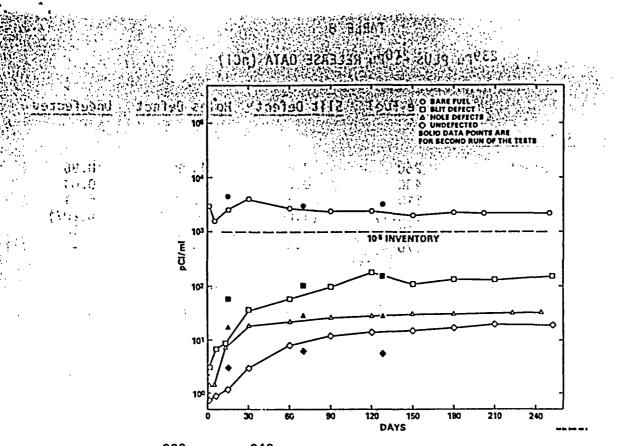


FIGURE 7A. 239Pu Plus 240Pu in Unfiltered Solution.

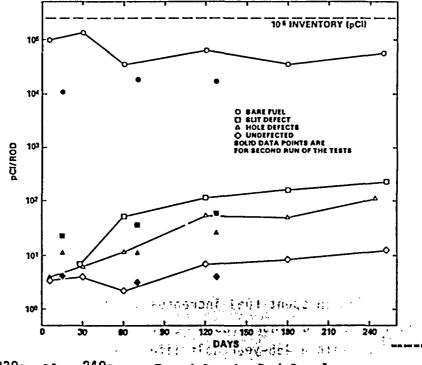


FIGURE 7B. 239Pu Plus ²⁴⁰Pu on Fused Quartz Rod Sample.

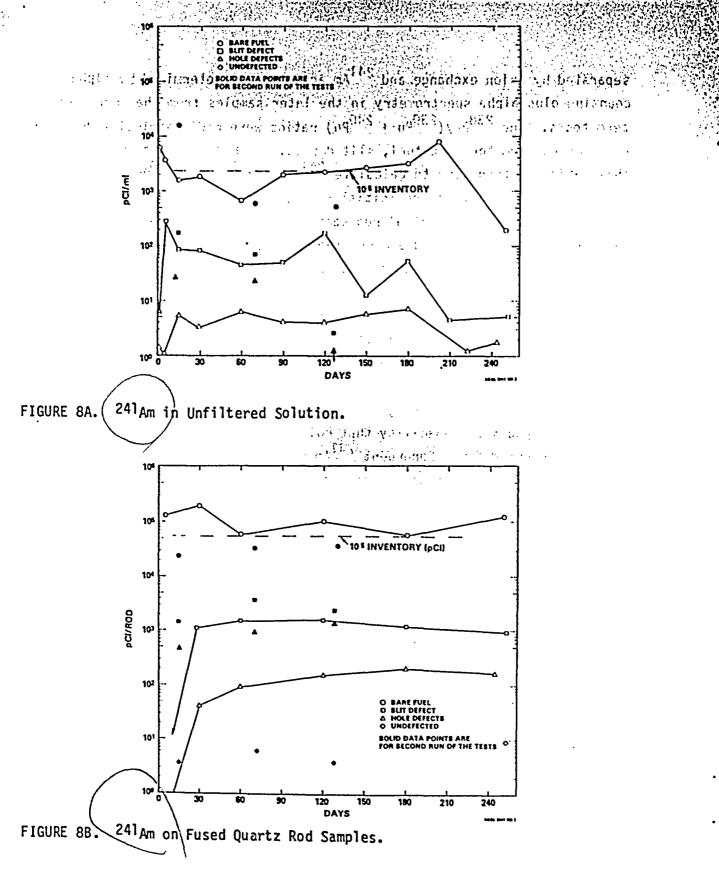
239 _{Pu}	PLUS 240Pu R	ELEASE DATA (ni		
Initial Test Run	Bare Fuelt	<u>SlitiDefect</u>	Holes Defect	<u>Undefected</u>
<pre> p Solution Samples* p Rod Samples Final Solution [Pu (ppb)]** </pre>	250 430 540 (23:1) 4750 370		1.98 0.24 8.33 (0.356) 2.03 	0:96 0.04 4.84 (0.207) 0.46
Second Test Run	\$ the second		1	
<pre>∑ Solution Samples* ∑ Rod Samples Final Solution [Pu (ppb)]** Test Vessel Strip Bare Fuel Rinse</pre>	70 50 860 (36.7) 340 280	1.6 0.1 37.6 (1.60) 4.6	0.45 0.05 7.09 (0.304) 0.46	0.09 0.01 1.46 (0.062) 0.12
Total Measured Release				
Σ Above (nCi) Divided by 10 ⁻⁵ Inventory	7940 27.96	103.8 0.341	20.63 0.0690	7.98 0.0267

*Last solution sample is included in "Final Solution" value.

**Calculated plutonium (all isotopes) concentration in the fuel unfiltered solution sample in ppb (µg/L).

the slit defect and holes defect specimens. The amount of both U and Pu release measured in the holes defect test may not be significant in comparison to release from the undefected specimen, since the differences observed could also be attributed to variations in the effectiveness of pretest specimen surface decontamination.

3.3 <u>AMERICIUM RELEASE</u>


The activity of ²⁴¹Am in spent fuel increases substantially during the first ~ 100 years after reactor discharge as a result of ²⁴¹Pu beta decay (13-year half-life). ²⁴¹Am, with a 458-year half-life, accounts for approximately half of the total Ci activity in 1000-year old spent fuel. Americium was

26

separated by anion exchange and 241 Am activity was determined by alpha counting plus alpha spectrometry in the later samples from the four longest term tests. The 238 Pu/(239 Pu + 240 Pu) ratios were radiochemically determined for samples from the bare fuel, slit defect, and holes defect specimens. This ratio was then used to calculate 241 Am from 239 Pu + 240 Pu and 241 Am + 238 Pu data for the remaining initial run samples from these tests. Calculated 241 Am values for initial run samples from the H-6-1 undefected cladding test were not obtained because the required alpha activities in this test were too low to obtain reliable results.

The calculated and measured ²⁴¹Am activities in unfiltered solution samples are plotted in Figure 8A. The overall ²⁴¹Am release data are given in Table 9. These data suggest that Am was released congruently with U and Pu. The observed differences in fractional total measured release between Am and Pu and U could be explained by the apparently very low solubility of Am in these tests and the probability that colloidal or plate-out Am was not totally accounted for. Congruent ²⁴¹Am release with U and Pu is consistent with its expected state as an oxide in solid solution with the U0₂ fuel matrix.

Most of the measured ²⁴¹Am release was in the test vessel strip solutions. The highest ²⁴¹Am activities measured radiochemically in unfiltered and 0.4-µm filtered bare fuel test solution samples were ~14 nCi/ml (~5 ppb) in the 15-day second run unfiltered sample and ~3.7 nCi/ml (~1.3 ppb) in the 128-day second run 0.4-µm filtered sample. The highest ²⁴¹Am activity measured in 18 A filtered solution samples was ~100 pCi/ml (~35 ppt). However, Am absorption by the 18 A membrane filters may account for the much lower ²⁴¹Am activities measured in the 18 A filtered samples. Am solubility of ~2.4 ppb has been predicted ⁽⁹⁾ in NNWSI groundwater.

のためないないの

.

28

.

241Am RELEASE DATA (nCi)

ABLE 9

· · ·	Bare Fuel Slit Defect		Holes Defect	Undefected
Initial Test Run				
<pre>∑ Solution Samples* ∑ Rod Samples Final Solution [Am (ppt)]** Test Vesse. Strip Bare Fuel Rinse Second Test Run</pre>	336 660 49 (70) 8490 430	7.92 6.36 1.58 (2.3) 77.97	0.400 0.668 0.450 (0.64) 9.865	<0.225 (<0.32) 4.595
Σ Solution Samples* Σ Rod Samples Final Solution [Am (ppt)]** Test Vessel Strip Bare Fuel Rinse	197 92 1273 (1822) 552 525	2.43 7.58 0.56 (0.81) 26.08	0.505 2.851 <0.338 (<0.50) 3.514	0.095 0.309 <0.338 (<0.50) 0.811
<u>Total Measured Release</u> £ Above (nCi) Divided by 10 ⁻⁵ Inventory	12,604 21.7	130.48 0.208	<18.591 < 0.0302	<6.373

*Last solution sample is included in "Final Solution" value.

**Calculated Americium concentration (all isotopes) in the final unfiltered solution sample in ppt (ng/2).

3.4 CURIUM RELEASE

のためになっていた。このでものできたので、「いう」

Relative to Pu and Am isotopes, curium activity from spent fuel will probably not be significant during the repository post-containment period. However, 244 Cm, with a half-life of 17.6 years, represents a significant portion of the total actinide activity in the ~8-year old spent fuel used in these tests. 244 Cm activity measured in unfiltered solution samples is plotted in Figure 9A, and 244 Cm activity measured on fused quartz rod samples is plotted in Figure 9B. The overall measured 244 Cm release data are summarized in Table 10.

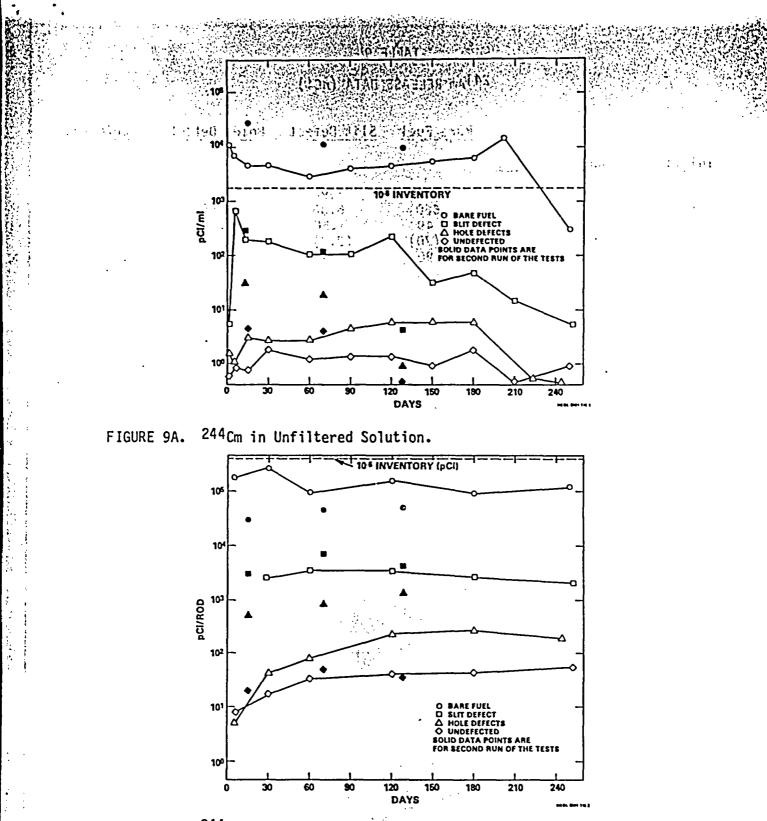


FIGURE 9B. 244Cm on Fused Quartz Rod Samples.

. . .

Ø

「日本になる」をないのであると

. 30

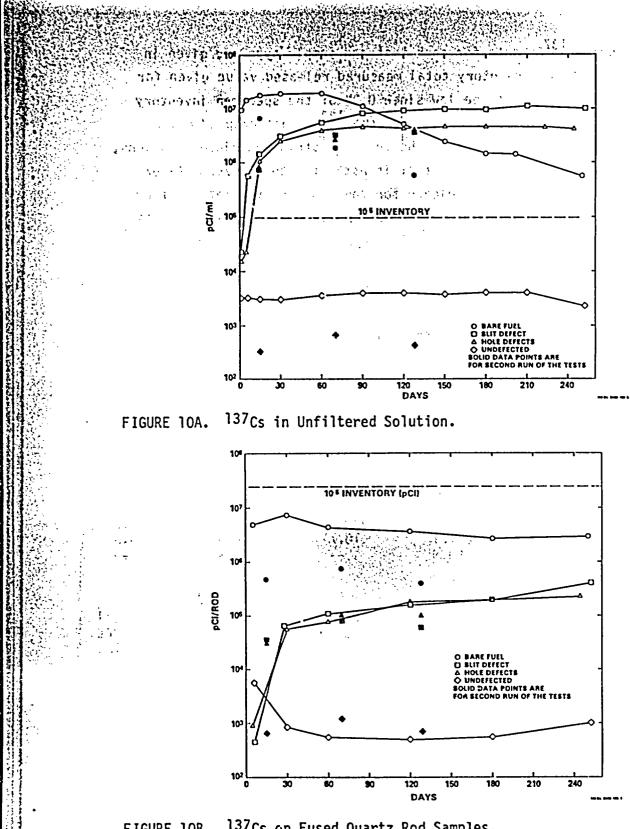
TABLE 10

 Ļ	44C	m:	RE	LEAS	E.DA	TA	(nCi)	

1983 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -	10113 211012	រប់រំបាន ស្រុះ ដែន ស		
• • •	Bare Fuel	Slit Defect	Holes Defect	<u>Undefected</u>
Initial Test Run	· · .			
Σ Solution Samples* Σ Rod Samples Final Solution [²⁴⁴ Cm (ppt)]** Test Vessel Strip Bare Fuel Rinse		1.6 (0.08)	0.338 0.818 0.113 (0.005) 10.680	0.110 0.197 <0.225 (0.011) 2.568
Second Test Run				
Σ Solution Samples* Σ Rod Samples Final Solution [²⁴⁴ Cm (ppt)]** Test Vessel Strip Bare Fuel Rinse	393 124 2487 (119) 588 171	4.1 14.4 1.0 (0.05) 39.0	0.491 2.730 0.225 (0.011) 2.703	0.086 0.105 0.113 (0.005) 0.513
Total Measured Release				
Σ Above (nCi) Divided by 10 ⁻⁵ Inventory	13,300 30.0	235.3 0.49	18.098 0.039	< 3.917 < 0.008

*Last solution sample is included in "Final Solution" Value.

 $**^{244}$ Cm concentration in the final unfiltered solution samples in ppt (ng/2).


A notable observation on 244 Cm data plotted in Figures 9A and 9B is its similarity to 241 Am data plotted in Figures 8A and 8B. Curium appears to have been released congruently with the actinides U, Pu and Am. (The lower apparent fractional U release relative to Pu, Am and Cm in the slit defect specimen may be explained if much of the U released from the fuel was tied up by colloid particles that did not move out of the specimen.) The highest 244 Cm activities measured in solution samples from the bare fuel test corresponded to \sim 330 ppt (15-day second run unfiltered sample), of which only \sim 0.14 ppt (\sim 12 pCi/ml) passed the 18 A filter.

CESIUM RELEASE 3.5

137_{Cs} and 134_{Cs} account for 20% lof the total Ci activity and most of the gamma activity in the %8-year old spent fuel tested. At 1000 years, the only significant Cs activity remaining is 135Cs, which has a 3 x 10^6 year half-life and accounts for ~0.02% of total Ci activity at 1000 years.

137Cs activity measured in unfiltered solution samples is plotted in Figure 10A. Approximately 0.1% of the bare fuel specimen ¹³⁷Cs inventory entered the solution on the first day of the initial test run, and $\sim 0.2\%$ of the bare fuel ¹³⁷Cs activity was in solution a few days later. The highest measured ¹³⁷Cs solution sample activity in the bare fuel test corresponds to a 220 ppb concentration. After 60 days, the ¹³⁷Cs activity in unfiltered solution over the bare fuel began to decline to levels less than that measured in the slit defect and holes defect tests. Much of the ¹³⁷Cs that wift the solution phase was not accounted for in the final vessel strip or bare fuel rinse solutions. Less 137Cs was measured in solution during the second run. However, Cs was still preferentially released relative to inventory during the second run, suggesting that not all of the "free" Cs (at fuel cladding interface, cracks and grain boundaries) had been released during the first run. As in the first run, $\frac{137}{137}$ Cs activity in solution over the bare fuel decreased with time during the second run of the test.

In filtered samples, the fraction of the ¹³⁷Cs activity passing the 18 Å filter ranged from about 40% to 81%. Because of its high solubility, loss of Cs from solution with time or filtering was not expected. The fraction of Cs removed by filtering was independent of the amount in the unfiltered solution. The only correlation with the Cs filtering data noted was that a larger fraction of Cs tended to be removed by filtration of samples from which a large portion of the uranium was also removed by filtration. This suggests that a portion of the Cs may become associated with the colloidal uranium phase.

Cumulative measured 137 Cs data for each test and sample type are given in Table 11. The 0.075% of inventory total measured released value given for the bare fuel test is known to be low since 0.2% of the specimen inventory was in solution at 30 days. Correcting for the 137 Cs that dropped out of solution and was not accounted for in the terminal strip and rinse solutions, total 137 Cs release in the bare fuel test is estimated to be $\sim7600 \ \mu$ Ci or $\sim0.3\%$ of inventory. Fission gas release for the H-6 Turkey Point rod from which the bare fuel specimen was prepared is reported to be 0.3%. ⁽⁶⁾ This agrees with results previously reported for CANDU fuel by Johnson et al., ⁽¹⁰⁾ in which fast Cs release approximately equivalent to the fractional fuel fission gas release during irradiation was observed.

TABLE 11

	Bare Fuel	Slit Defect	Holes Defect	Undefected
Initial Test Run				
<pre> Solution Samples* Rod Samples Final Solution [¹³⁷Cs (ppb)]** Test Vessel Strip Bare Fuel Rinse Second Test Run </pre>	1003.6 25.4 129.5 (6.0) 281.1 84.9	579.73 2.10 2432.43 (112.9) 10.77	296.77 1.64 1033.78 (48.0) 6.92	0.363 <0.020 0.538 (0.025) 0.057
······································	- · · · · · · · · · · · · · · · · · · ·			
Σ Solution Samples* Σ Rod Samples Final Solution [¹³⁷ Cs (ppb)]** Test Vessel Strip Bare Fuel Rinse	83.2 1.5 144.1 (6.7) 19.3 165.3	38.24 0.39 872.75 (40.5) 2.36	34.10 0.53 948.20 (44.0) 4.98	0.011 <0.006 0.102 (0.005) 0.019
Total Measured Release				
Σ Above (μCi) Divided by 10 ⁻⁵ Inventory	1937.9 75.1***	3938.8 142.1	2326.9 85.6	<].]]6 0.041

137Cs RELEASE DATA (µCi)

*Last solution sample is included in "Final Solution" value. **¹³⁷Cs concentration in the final unfiltered solution sample in ppb (µg/L). ***Estimated to be ~300 x 10⁻⁵ of inventory (~7600 µCi) based on highest solution activities measured.

3.6 TECHNETIUM RELEASE

Technetium-95 with a 213,000-year half-life, accounts for $\sqrt{12}$ of the total Ci activity of spent fuel at 1000 years and $\sqrt{32}$ at 10,000 years.⁽⁸⁾ Release of ⁹⁹Tc from spent fuel is of particular interest since Tc compounds are predicted to be quite soluble in NNWSI groundwater.^(9,11) As a pure beta emitter, radiochemical separation is required for ⁹⁹Tc measurement. Release of 10⁻⁵ of the specimen inventory into solution in the current tests gives ⁹⁹Tc activity just sufficient to count at the estimated detection limit. Technetium analyses were conducted on the final test solutions and the $8 \le M$ HNO₃ test vessel strip solutions at the ends of the initial and second test runs. Results from these analyses are given in Table 12.

The most significant observation from the limited Tc release data obtained was that fractional release relative to inventory appears to be very high in comparison to that of the actinioes. Essentially all of the "Sc measured in unfilt. In solution sampler passed through 0.4 µm and 18 A filters, most likely in solution as TCU, in the bare fuel test, <4% of the ⁴⁹TC activity was found as plate-out in the vessel strip solutions. The fractional total measured release values (total measured release divided by 10⁻⁵ of specimen inventor, j for $\frac{99}{10}$ were 8.2. 35.5. and <98 times night, respectively. for the bare fuel, slit defect, and noies defect tests than measured for plutonium. The same ¹³⁷Us-to-Pu fractional release ratios were 2.7 (v11)*. 416, and 1240, respectively, for the bare fuel, slit defect, and holes defect tests. Greater fractional release of Cs relative to Tc in the slit and notes defect tests versus the bare fuel test may be explained if much of the released Cs was from the fuel cladding gap or soluble phases at fuel particle surfaces, while preferential To release resulted from grain boundary dissolution, which occurred to a much greater extent in the bare fuel test.

35

AND DESCRIPTION AND DESCRIPTION OF THE PARTY OF THE PARTY

Fine is-tu-Pu fractional release ratio is estimated to be will for the bare fuel test based on nignest 137Cs activities measured in solution.

TABLE 12

⁹⁹Tc RELEASE DATA (nCi)

	Bare Fuel	Slit Defect	Holes Defect
Initial Test Run			
Final Solution [⁹⁹ Ic (ppb)]* Test Vessel Strip	563 (132) 33.8	28.2 (7) 5.4	<4.5 (<1) <1.4
Second_Test_Run	•		
Final Solution [⁹⁹ Tc (µpb)]* Test Vessel Strip	302 (71) 1.6	15.8 (4) <1.4	18.0 (4.2) 3.8
Total Measured Release			
Σ Above (nCi) Divided by 10 ⁻⁵ Inventory	900.4 230	<50.8 12.1	<27.7 <6.7

*Calculated 99Tc concentration in unfiltered solution in ppb (μ g/ μ).

To be preferentially leached, Tc must be locally enriched in regions of the fuel. It is likely that Tc partitions to the grain boundaries in the hotter central portions of the fuel. As grain boundary attack (which is clearly visible in Figure 3) progresses in these regions, enhanced Tc release would then be observed. Noble metal group fission products are not soluble in the UO_2 fuel matrix under the relatively reducing fuel oxygen potential during irradiation and will segregate when the temperature is high enough for them to diffuse. Technetium is found along with elements Mo, Ru, Rh, and Pd in electron microprobe examination of metallic fission product phases in the central restructured regions in liquid metal fast breeder reactor (LMFBR) fuels.⁽¹²⁾ LMFBR fuel center temperatures are $\sim 2000^{\circ}$ C versus 1200°C to 1300°C in PWR fuels, resulting in more extensive restructuring and noble metal phase separation on a large enough scale for characterization by the electron microprobe. (For an overview of fission product thermochemical behavior in oxide fuels, see Chapter 12 of Reference 13.)

Molybdenum in 0.4-µm filtered solution at the end of the initial bare fuel test run was determined to be 91 ppb by inductively coupled plasma (ICP) emission spectrometry analysis. The 91 pbb corresponds to $\sim 23 \times 10^{-5}$ of the specimen fission product Mo inventory in solution at this time. The Tc concentration in the same solution sample was 132 ppb (determined radiochemically) corresponding to 143×10^{-5} of the specimen inventory. A lesser fraction of the fission product Mo might be expected to segregate from the oxide fuel matrix relative to Tc, since the oxygen potential threshold for Mo oxidation is nearer to the oxygen potential of the fuel during irradiation than is the higher oxygen potential for Tc oxidation. Lower fractional Mo release relative to Tc and Cs, but higher than U and Pu, may have been confirmed had a more accurate accounting of released Mo been made. Some additional insight on the state of preferentially leached Tc may be acquired in future tests by more accurate correlation to total release of Mo, Ru, Rh, and Pd. However, ICP accuracy at the predicted release concentrations may limit this approach.

3.7 <u>NEPTUNIUM RELEASE</u>

The primary Np isotope of concern for repository storage of spent fuel is 237 Np. Activity of 237 Np (2.14 x 10⁶ year half-life) increases with time for about 10,000 years as a product of 241 Am (458-year half-life) decay. At 1000 years and 10,000 years, 237 Np accounts for about 0.06% and 0.25%, respectively, of the total ORIGEN-calculated ⁽⁸⁾ Ci activity of PWR fuel. Although 237 Np is a small portion of the total activity for the first 10,000 years, its expected solubility in groundwater and long half-life give cause for concern relative to long-term repository release. 239 Np represents a greater fraction of the calculated total activity (~0.9% at 1000 years). However, 239 Np with its short (~2 day) half-life is a transient state in the 243 Am to 239 Pu decay chain and is considered as part of the 243 Am activity in this report.

Release of 237 kp from spent fuel could be expected to be congruent with U, Pu, and Am. Neptunium concentration is predicted to be only 0.3% on an

oxide weight basis and should be soluble in the UO₂ fuel matrix as an oxide during irradiation at this concentration. After discharge from the reactor, ²³⁷Np increases slowly as a result of ²⁴¹Am decay (which also increases for ~100 years as a result of ²⁴¹Pu beta decay with a 13.2-year half-life). The ²³⁷Np resulting from ²⁴¹Am decay after discharge should also be uniformly distributed in the UO₂ matrix if ²⁴¹Am exists in solid solution as expected.

Neptunium was separated by a solvent extraction method and ²³⁷Np activity determined by alpha counting plus alpha spectrometry. Samples analyzed for ²³⁷Np were the final solution samples and test vessel strip solution samples at the ends of the both the initial and second runs of the four longest term tests. Results from these analyses are given in Table 13. Detection limit was only ~2 pCi/ml for the first analyses on the initial run final test solutions accounting for the <500 pCi values given for these samples in Table 13. Detection limits were improved afterward by using larger sample portions and longer counting times. Results from initial run vessel strip and the second run samples from the bare fuel and slit defect tests appear to be significant, and suggest that ²³⁷Np may be preferentially released relative to U, Pu, Cm and Am. Preferential Np release would suggest partial segregation of Np from the irradiated UO, matrix contrary to expectations. True leaching of Np from exposed fuel surfaces (with exposed surface area increasing as grain boundary dissolution progresses) could also explain the observed results. Possible errors, including ORIGEN calculation of $^{237}\mathrm{Np}$ inventory and analytical errors, may also be involved.

3.8 14C, 79Se, AND 129I RELEASE

Radiocnemical separations and analyses for 14 C, 79 Se, and 129 I were made on unfiltered solution samples at the end of the initial run of the four longest term tests. Analysis for 79 Se was also conducted on the 8 <u>M</u> HNO₃ initial run test vessel strip solutions (14 C and 129 I are lost from HNO₃). Results for all of these analyses were reported as less-than values. The less-than values are the estimated detection limits for each analysis.

TABLE 13

	Bare Fuel	Slit Defect	Holes Defect	Undefected
Initial Test Run	_			`
Final Solution* Test Vessel Strip	<500 1162	<500 18	<500 <3	< 500 < 4
Second Test Run	_			
Final Solution [²³⁷ Np (ppb)] Test Vessel Strip	3266 (18) 297	90 (0.5) 95	34 (0.2) <130	<130
Total Measured Release	_			
Σ Above (pCi) Dividea by 10 ⁻⁵ Inventory	4725 54	203 2.2		

237_{Np} RELEASE DATA (pCi)

*uetection limit improved after this analysis, initial run final solution not included in "Σ Above (pCi)" value.

¹⁴C results from the (n,p) reaction on nitroyen present as an impurity in asfabricated fuel and from the (n,α) reaction on ¹⁷O. Fuel nitrogen impurities are not well characterized and reported for commercial fuels, and codecalculated ¹⁴C inventories for spent fuel are not reliable. Based on Reference 7 URIGEN-2 data, specimen ¹⁴C inventory should be $\sim 10^{-4}$ µCi/gU. Based on Reference 8 URIGEN data, specimen inventory should be ~ 1.2 µCi/gU. For k. B. Robinson spent fuel (same vendor and vintage as the Turkey Point fuel in this test), ¹⁴C values ranging from 0.14 µCi/gU to 0.29 µCi/gU were reported by Campbell and Buxton. ⁽¹⁴⁾ A specimen of H. B. Robinson fuel from the same assembly was analyzed for ¹⁴C by WHC with the following results: 0.33 µCi/q for the fuel and 0.6 µCi/g for the cladding.

The reported less-than values for 14 C in the present tests correspond to <18 nCi (1/ ppt) in the 250-ml test solutions. Assuming the above WHCdetermined 14 C values for H. B. Robinson fuel and cladding for the specimens

in these tests, specimen 14 C inventory is estimated to be ${\sim}20 \ \mu$ Ci. The reported less-than value (detection limit) would therefore correspond to ${\sim}10^{-3}$ of specimen inventory in solution.

The reported less-than values for 79 Se would correspond to <9 nCi (0.5 ppb) in the test solution and <11 nCi as vessel plate-out. The <20 nCi sum of the reported less-than values for the test solution and vessel strip solution corresponds to <1.6 x 10^{-3} of the calculated specimen 79 Se inventory.

The reported less-than values for ^{129}I would correspond to <8.4 nCi (~0.2 ppm) in solution, or ~8.5 x 10^{-3} of specimen inventory. If ^{129}I were released congruently with ^{137}Cs , as reported for CANDU fuel, $^{(10)} 129_I$ would still probably not be measurable by the liquid scintillation method used. ^{129}I by neutron activation analysis is planned for future tests.

3.9 SOLUTION CHEMISTRY

Samples of 0.4- μ m filtered solution were analyzed by ICP and ion chromatography at the end of the first run of the tests. The ICP (Bausch and Lomb Model 3510 sequential ICP) was set up to analyze for: Al, B, Ca, Cr, Fe, Gd, K, Li, Mg, Mo, Na, Si, U, and Zn. Less-than values were reported for Al, Cr, Gd, and U for all four tests. These less-than detection limit values were 0.075, 0.010, 0.050, and 0.500 μ g/ml, respectively. Lithium just slightly greater than its 0.015 μ g/ml detection limit was reported for the bare fuel and undefected tests. The anions F⁻, Cl⁻, NO⁻₃ and SO⁻₄ were measured by ion chromotography on solution samples from all four test types. The pH of all solution samples was measured immediately after sampling and before filtration. Significant results from these analyses are given in Table 14.

The two highest level impurities measured in the deionized water test solutions at the termination of the first run were NO_3^- and Si. The $\sim l \mu g/ml$ of Si most likely came from the fused quartz test apparatus. The $\sim 2 \mu g/ml NO_3^-$ is though to have resulted from radiolysis of air, forming NO_2 , which dissolves

TABLE 14

FINAL SOLUTION* CHEMISTRY (Units: pH and ug/ml)

	Bare Fuel	Slit Defect	Hole Defects	Undefected
рН	6.03	5.87	6.15	6.05
В	0.19	0.18	0.15	0.13
Ca	0.33	0.29	0.26	0.41
К	<0.5	1.3	0.9	<0.5
Fe	0.07	0.06	0.06	0.10
Мо	0.09	<0.02	<i>-</i> 0.02	<0.02
Na	0.76	0.78	0.69	0.18
Si	0.43	1.06	0.90	1.11
Zn	0.13	0.10	0.10	0.19
۶	0.09	0.13	0.09	0.08
C1	0.21	0.26	0.24	0.34
NO3	2.0	2.1	2.2	1.6
SO4	0.85	0.66	0.63	0.66

*At the end of the first test run (\sim 250 days) with each specimen type; 0.4 μ m filtered.

into the test solution as HNO_3 . This small amount of radiolysis-induced HNO_3 would explain the slightly acidic pH values, ranging from ~ 5.4 to 6.4, observed in the tests.

3.10 STRUCTURAL CONSIDERATIONS

Incongruent release of U and radionuclides implies nonhomogeneous microstructural characteristics for spent fuel. Fuel restructuring (extensive grain growth) and metallic phase separation is easily observable in LMFBR fuels where centerline temperatures exceed 2000°C and fission gas release may exceed 50%. Fission product reaction phases containing Cs, Mo, Te, and I

are also found in the fuel-cladding gap, and alkaline earth oxide phases may be observed in the restructured regions of LMFBR fuels. Very little restructuring or phase separation is observable by optical ceramography of spent PWR fuel such as that used in the current tests. Centerline peak temperatures in these fuels are typically less than 1300°C and gas release is typically less than 0.5%. Cesium, which is relatively volatile at typical LWR fuel irradiation temperatures and reducing oxygen potential, is thought to be released from the fuel as "gap inventory" in quantities comparable to the fuel fractional fission gas release. A portion of the fission product 129I may be similarly released. (10) Little is known about the state of other nonvolatile fission products in LWR fuels, many of which would not be expected to be stable in solid solution with the oxide fuel matrix phase.

..........

Preferential release of nonvolatile radionuclides suggests localized partitioning to fuel surfaces or grain boundaries. Figure 11A shows a SEM photograph of a fracture surface from a particle of the Turkey Point Fuel used in this study. An unirradiated UO₂ fracture surface is shown in Figure 11B for comparison. The spent fuel is very friable and fractures along its grain boundaries. The unirradiated fuel is much tougher and exhibits primarily transgranular cleavage fracture. The spent fuel has open appearing grain boundaries, while the grain boundaries are not resolvable in the unirradiated fracture surface. Progression of spent fuel dissolutions by grain boundary attack, as indicated by Figure 3, is consistent with the spent fuel morphology shown in Figure 11A. Incongruent leaching of ⁹⁹Tc and other preferentially released radionuclides in relatively short-term leach tests is probably due to dissolution of minute phases that have segregated to the grain boundaries. Figure 11 also suggests limitations in applying physical and chemical data obtained from studies using unirradiated UO, as a surrogate for actual spent fuel.

An additional process that could significantly alter the microstructure of spent fuel is oxidation. In the humid air (or oxygen containing steam) atmosphere likely to be present in the NNWS1 repository, oxidation of UO_2 through U_3O_8 to UO_3 is thermodynamically favored. The kinetics of UO_2 oxidation beyond U_3O_7 become too slow to measure on unirradiated UO_2 below

42

 $\sim 200^{\circ}$ C in reasonable laboratory time scales. However, based on thermodynamic considerations, one could argue that over repository relevant time scales, the fundamental question of spent fuel degradation by oxidation (with failed cladding in a failed waste package) is not a question of if, but a question of when. The open microstructure of spent fuel shown in Figure 11A should have greater oxidation rates as well as greater leaching rates in comparison to the unirradiated microstructure. A better understanding of spent fuel microstructure, the state of radionuclides in the microstructure, and the long-term stability of the fuel structure will be needed if any credit is to be taken for the fuel structure by itself as a barrier to long-term radio-nuclide release.

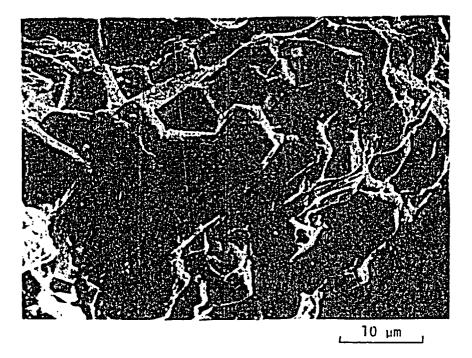


FIGURE 11A. Fracture Surface of Turkey Point Spent Fuel Exhibiting Fracture Primarily Along Grain Boundaries.

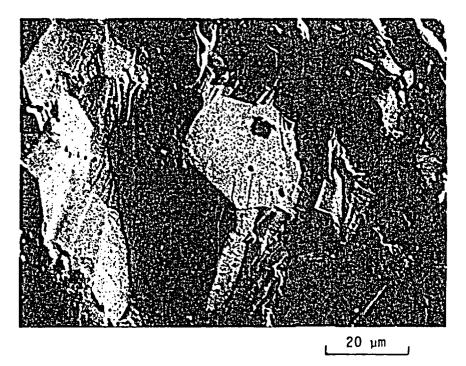


FIGURE 11B. Fracture Surface of Unirradiated Fuel Exhibiting Primarily Cleavage Fracture Through Grains.

4.0 SUMMARY AND CONCLUSIONS

A comparative leach test of PWR spent fuel specimens was conducted in deionized water under ambient hot cell conditions. The Series 1 tests described are the first of several tests planned to characterize potential radionuclide release from and behavior of spent fuel stored under NNWSI-proposed conditions. The Series 1 test specimen types included: 1) bare fuel plus the cladding, 2) a rod segment with capped ends and a slit defect through the cladding, 3) rod segments with capped ends and laser-drilled holes (~200 µm diameter) through the cladding, and 4) undefected rod segments with capped ends. The tests were "semi-static," in that small sample volumes of the test solution were removed periodically and replenished with fresh deionized water. After 5250 days, a test of each type was terminated, radionuclide "plate-out" stripped from the test apparatus, and the tests restarted in fresh deionized water for a second run. An accounting of released radionuclides in solution and stripped from quartz rods and the test vessels was attempted. Selected solution samples were filtered to characterize the state of radionuclides in the "solution." Measured releases were compared to the 10 CFR 60 10⁻⁵ of 1000-year inventory maximum annual release rate requirement. Total measured release and total measured release as a fraction of inventory times 10^5 are summarized in Table 15.

CONCLUSIONS

The principal observations and conclusions from these spent fuel leaching tests are summarized below:

- Within the probable accuracy of total release measurements and specimen inventory calculations, the actinides U, Pu, Am, and Cm appear to have been released congruently.
- 2) Limited data suggest that ²³⁷Np may have been preferentially released rather than being congruently released with other actinides as expected.

TABLE 15

TOTAL MEASURED RELEASE AS A FRACTION OF INVENTORY $\times 10^{5}$ (a)

Component	Bare Fuel	Slit Defect	Holes Defect	Undefected
Uranium	28.0	0.078	<0.041	<0.018
(µg)	(9510)	(28)	(<14)	(<6.6)
239 _{Pu +} 240 _{Pu}	28.0	0.341	0.069	0.027
(nCi)	(7940)	(104)	(20)	(8)
241 _{Am}	21.7	0.208	<0.030	<0.011
(nCi)	(12,604)	(130)	(<18.6)	(<6.4)
244 _{Cm}	30.0	0.76	0.039	0.008
(nCi)	(13,300)	(362)	(18.1)	(<3.9)
237 _{Np} (b) (nCi)	54 (4.73)	2.2 (0.2)		
137 _{Cs}	300(c)	142.1	85.6	0.041
(nCi)	(1.94 x 10 ⁶)	(3.94 x 10 ⁶)	(2.33 x 10 ⁶)	(1.1 x 10 ³)
99 _{TC} (d)	230	12.1	<6.7	
(nCi)	(900)	(51)	(<28)	

(a)

Total measured release given in parentheses. ²³⁷Np includes only vessel strip from initial and second runs and final (b) solution from second run.

(c)

Estimate based on maximum 137Cs activities measured in solution. ⁹⁹Tc includes only final solution and vessel strip from initial and (d) second runs.

However, these data are too limited to be conclusive. Inaccuracies in ORIGEN-2 calculated ²³⁷Np inventory and radiochemical analysis could also account for those results.

A rapid fractional release of cesium on the order of the fractional 3) fission gas release was observed for the bare fuel, slit defect, and holes defect tests. Additional preferential cesium release, possibly from grain boundary inventory, was also noted in the second run on these specimens.

- 4) Observed fractional ⁹⁹Tc release ranged from one order of magnitude greater release relative to the actinides in the bare fuel test to almost three orders of magnitude greater fractional release relative to the actinides in the holes defect test.
- 5) For the actinides U, Pu, Am, and Cm, approximately two orders of magnitude less total fractional release was measured in the slit defect test relative to the bare fuel test. An additional approximate one order of magnitude reduction in actinide release was observed in the holes defect test relative to the slit defect test.
- 6) Apparent uranium saturation occurred at ~l ppb in all tests. Uranium in excess of a few ppb was removed by 18 Å filtration. Most of the U, Am, and Cm in solution samples from the bare fuel test was removed by filtration.
- 7) Grain boundary dissolution appeared to be a major source of release. Preferential release of ⁹⁹Tc is likely a result of Tc segregation to the grain boundaries. Grain boundaries in the spent fuel are relatively wide and easily resolved by SEM. Grain boundaries in unirradiated UO₂ are tight and not resolvable on a fracture surface by SEM.
- 8) Spent fuel leaching behavior, as well as other chemical and mechanical behavior, is influenced by microstructural phenomena, such as localized segregation of some elements to the grain boundaries. The extent of localized radionuclide segregation is influenced by irradiation temperature and may be correlated to fission gas release. Additional segregation of radionuclides into more easily leached phases could possibly occur if the fuel structure is degraded by oxidation during long-term repository storage.

5.0 REFERENCES

- 1. <u>Congressional Record</u>, "Nuclear Waste Policy Act of 1982," Vol. 128, No. 153, Part II, December 29, 1982.
- <u>Code of Federal Regulations</u>, "Disposal of High-Level Radioactive Wastes in Geologic Repositories - Licensing Procedures," Title 10, Chapter 1, Part 60, June 30, 1983 (cited as 10 CFR 60).

- 3. <u>Federal Register</u>, "EPA Proposed Rule," Vol. 47, No. 250, December 29, 1982 (cited as 40 CFR 191).
- 4. C. N. Wilson, <u>Test Plan for Series 2 Spent Fuel Cladding Containment</u> <u>Credit Tests</u>, <u>HEDL-TC-2353-3</u>, <u>Hanford Engineering Development</u> Laboratory, Richland, WA, October 1984.
- 5. C. N. Wilson, <u>Test Plan for Spent Fuel Cladding Containment Credit</u> <u>Tests</u>, HEDL-TC-2353-2, Hanford Engineering Development Laboratory, Richland, WA, November 1983.
- 6. R. B. Davis and V. Pasupathi, <u>Data Summary Report for the Destructive Examination of Rods G7, G9, J8, 19 and H6 from Turkey Point Fuel</u> <u>Assembly B17, HEDL-TME 80-85, Hanford Engineering Development</u> Laboratory, Richland, NA, April 1981.
- 7. J. O. Barner, <u>Characterization of LWR Spent Fuel MCC-Approved Testing</u> <u>Material ATM-101</u>, PNL-5109, Pacific Northwest Laboratory, Richland, WA, June 1984.
- 8. C. W. Alexander et al., <u>Projections of Spent Fuel to be Discharged by</u> <u>the US Nuclear Power Industry</u>, ORNL/IM-6008, Oak Ridge National Laboratory, Oak Ridge, TN, October 1977.
- 9. J. F. Kerrisk, <u>Solubility Limits on Radionuclide Dissolution at a Yucca</u> <u>Mountain Repository</u>, LA-9995-MS, Los Alamos National Laboratory, Los Alamos, NM, May 1984.
- L. H. Johnson, K. I. Burns, H. H. Joling and C. J. Moore, "Leaching of 137Cs, 134Cs and 129I from Irradiated UO₂ Fuel," <u>Nucl. Tech. 63</u>, December 1983.
- 11. J. A. Raro, <u>Critical Review of the Chemistry and Thermodynamics of Technetium and Some of its Inorganic Compounds and Aqueous Species</u>, UCRL-53440, Lawrence Livermore National Laboratory, Livermore, CA, September 1983.
- 12. H. Kleykamp, "Formation of Phases and Distribution of Fission Products in an Oxide Fuel," <u>Behavior and Chemical State of Irradiated Ceramic Fuels</u>, International Atomic Energy Agency, Vienna, 1974.

 D. R. Olander, <u>Fundamental Aspects of Nuclear Reactor Fuel Elements</u>, TID-26711-PL, 1976.

• -

14. U. U. Campbell and S. R. Buxton, "Hot Cell Studies of Light Water Reactor Fuel Reprocessing," <u>Proc. of the American Nuclear Society</u> <u>Meeting</u>, CONF 761103-13, Washington UC, November 15-19, 1976. APPENDIX

RADIONUCLIDE INVENTORY AND RADIOCHEMICAL DATA

A-1

	T	A	B	L	E	S
--	---	---	---	---	---	---

Table		Page
A.1	Radionuclide Inventories Used in Fractional Release Calculations	A-4
A.2	Activity-Concentration Conversion Factors	A-6
A.3	H-6-19 Bare Fuel Test Radiochemical Data	A-7
A.4	H-6-12 Slit Defect Test Radiochemical Data	A-9
A.5	J-8-24 Laser-Drilled (2) Test Radiochemical Data	A-11
A.6	J-8-19 Laser-Drilled (1) Test Radiochemical Data	A-13
A.7	H-6-1 Undefected Test Radiochemical Data	A-15
A.8	II-6-24 Undefected Test Radiochemical Data	A-17
A.9	J-8-12 Undefected Test Radiochemical Data	A-19

A-2

.

APPENDIX

RADIONUCLIDE INVENTORY AND RADIOCHEMICAL DATA

A.1 RADIONUCLIDE INVENTORY DATA

Specimen radionuclide inventories used for most calculations in this report were calculated from ORIGEN-2 data given in PNL-5109 for a H. B. Robinson Unit 2 PWR fuel 10 years after reactor discharge. The H. B. Robinson fuel is very similar (same vendor, same design, similar vincage and same 2.55% initial 235 U enrichment) as the Turkey Point fuel used in the present tests. A burnup of 27.7 MWd/kgM was assumed for the Turkey Point fuel, and radionuclide inventories were calculated by linear interpolation between 25 MWd/kgM and 30 MWd/kgM data given in PNL-5109. The 27.7 MWd/kgM burnup value used is the actual radiochemical burnup analysis results reported for the Turkey Point H-6 and J-8 fuel rods from which the specimens were made (Reference 6, burnup samples 70 inches from rod bottom). Since the age after discharge of the fuel was ~8 years during the Series 1 tests, inventories for shorter-lived isotopes were corrected for decay from 8 to 10 years. A factor of 0.8815 was then applied to convert the inventories from a per gram metal basis to a per gram fuel basis. The resulting per gram fuel radionuclide inventories are given in Table A.l. Specimen radionuclide inventories used for calculation of fractional release values in this report were obtained by multipling the Table A.1 inventories by the specimen fuel weights. The fuel weights for the four primary specimens discussed in this report are listed below.

•	H-6-19	Bare Fuel	40.33 g
•	H-6-12	Slit Defect	43.20 g
٠	J-8-24	2 Laser Punctures	42.50 g
•	H-6-1	Undefected	42.50 g

we are stated and the state of the

A-3

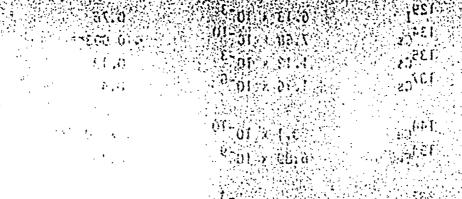
Radionuclide	<u>Inventory (µCi/g)</u>
244 _{Cm} *	1.10 × 10 ³
241 _{Am}	1.45×10^{3}
240 _{Pu}	4.31×10^2
239 _{Pu}	2.73×10^2
237 _{Np}	2.18 x 10^{-1}
137 _{Cs*}	6.40×10^4
129 ₁	2.42×10^{-2}
⁹⁹ Tc	9.74 × 10 ⁰
⁷⁹ Se	3.02×10^{-1}

RADIONUCLIDE INVENTORIES USED IN FRACTIONAL RELEASE CALCULATIONS

*Corrected from 10 to 8 years after reactor discharge.

A.2 RADIOCHEMICAL DATA

With the exception of uranium, all radiochemical data were reported as disintegrations per minute (dpm) per ml of solution or per rod sample. Data were converted from dpm to pCi units using the conversion factor of 1 pCi equal to 2.22 dpm. Since the primary concern was radioactivity release, most data evaluations were based on the pCi activity levels of each radionuclide rather than concentrations. The pCi activity results for all radionuclide determinations, and uranium results as μ g/ml (ppm) or μ g/rod, are given for each individual test in Tables A-3 through A-9 of this appendix.


For chemical and equilibria considerations, it is usually more useful to consider elemental concentrations rather than radionuclide activities. Concentrations may be calculated using Equations (A.1) and (A.2). The μ g/pCi and isotope/element conversion factors for Equation A.1 are contained in Table A.2.

Elemental Concentration (ug/ml)) = Activity (pCi/ml) x (ug/pCi) isotope/element for conversion to molarity:

<u>Alling (mole/4)</u> Molarity (mole/4)

For calculation of Pu concentration from 239 Pu + 240 Pu pCi/ml data using Equation (A.1), the 239 Pu (or 240 Pu) pCi/ml value is needed. The 239 Pu/ (239 Pu + 240 Pu) activity ratio should be 0.389 for the tested fuel based on

the PNL-5109 ORIGEN-2 data:

01 x 51 F

1255

υι < 10°5 14 κ 15 μ 15 μ 15 μ 15 μ

Mussed on URIBER-E Usta Infects Lasting Infects Infects
 Mussed on URIBER-E Usta Infects
 Mussed on URIBER-E Usta Infects
 Mussed OI States
 Mussed OI States
 Mussed OI States
 Mussed OI States
 Mussed OI States

A-5

 (H)g/pul x (Im/1)g)
 TABLESA 2/

 ACTIVITY-CONCENTRATION CONVERSION FACTORS

 Radionuclide

 ug/pci

 14c

 60col

 74m Sime 8:82 x000=10

125 _{Sb}	9.43 x 10 ⁻¹⁰	∼ 0.1 **
129 ₁	6.13 × 10 ⁻³	0.76
134 _{Cs}	7.68 x 10^{-10}	∿ 0.003**
135 _{Cs}	1.13×10^{-3}	0.13
137 _{Cs}	1.16 × 10 ⁻⁸	0.4
144 _{Ce}	3.1×10^{-10}	∿1 x 10 ⁻⁴ **
154 _{Eu}	6.89×10^{-9}	0.13
237 _{Np}	1.42×10^{-3}	0.9999
238 _{Pu}	5.72 x 10 ⁻⁸	0.012
239 _{Pu}	1.63×10^{-5}	0.595
240 _{Pu}	4.41 x 10^{-6}	0.255
241		

3.09 x 10

 1.20×10^{-8}

*Based on ORIGEN-2 data in PNL-5109 interpolated to 27.7 MWd/kgM burnup, 10 years after discharge unless otherwise noted. *106Ru, 125Sb, 134Cs, and 144Ce, half-lives are relatively short (1.0, 2.7, 2.0 and 0.8 years, respectively) causing these values to change significantly with time; values given have been corrected from 10 to 8 years after reactor discharge.

0.863

0.93

3. 2. 3.

TEST TYPE: BARE FUEL

TEST IDENTIFICATION: H-+-19.

SAVELE				Pu-239+Pu-2			1+Pu-238		•••••••	
Y TYPE	pн	UNFELTER 0.4 um	18 A	UNFILTER 0.4 u	. 18 4	UNFILTER	0.4 um	18 A	UMILTER	0.4 .
Sol	3.877	4.326+00		2.97E+03		1.256+04			4.08E+03	
Sol	6.050	4.UCE-01		1.592+03		7.032+03			3.40E+03	
Rod		6.50E+01		9.73E+04		4.700+03			1.322+05	
Sol Sol	6.462 6.208	1.90E-01 3.50E-01		2.32E+03 4.03E+03		1.052+04			1.900+03	
901		J. JAL - VI		*******						
Rod		9.10E+01		1.35£+05		4,772+05			1.872+05	
Sol	6.347	2.906-01		2.475+03		6.44E+03			4.67E+02	
Rod		3.902+01		3.47E+04		1.320+05			3.77E+04	
) Sol	6.083	3.00E-01		2.44E+03		7.218+03			1.978+03	
°0 Sol	5.927	3.30E-01		2.42€+03		7.39E+03			2.19E+03	
· · ·						2.348+05			1.01E+05	
No Rod No Sol	4.219	5.70E+01 9.30E-01		4.31E+04 1.95E+03		4.852+03			2.456+03	
0 501 10 501	5.909	4.50E-01		2.278+03		8.11E+03			3.226+03	
Rod		4.400+01		3.356+04		1.336+05			5.68E+04	
02 Sol			3 2.00E-03		E+03 1.01E+03	1.475.+04	6.130+03	3.99E+03	7.84E+03	1.4
50 501	6.028	3.006-03 (1.006-0	3 <1.00E-03	2.148+03 2.14	E+03 1.93E+03	4.822+03		4.17E+03	1.950+02	1.23
SO Rod		4.70E+01		5.952+04		2.142+05			1.252+05	
50 Strip 50 Rinse		2.102+01		1.376+04		4.22€+04			2.83E+04 8.40E+02	
O Rinse		1.40E+00		7.346+02		2.44E+03			**************************************	
		TEST RESTARTED IN I	FRESH DEIONI	TED MATER						
Rod		6.40E+01		1.082+04		4.43E+04			2.27E+04	
Sol	6.050		3 1.00E-03		E+03 3.94E+03	2.546+04	1.182+04	8.20E+03	1.380+04	2.4
Rad		7.50E+01		1.842+04		7.07E+04			3.33E+04	
D Sol	6.340	1.00E-01 2.00E-0		2.872+03 2.47	E+03 2.51E+03	1.23E+04	7.146+03	5.32€+03	5.84E++>3	7.8
28 Sol	5.902	3.00E-03 3.00E+0	5 1.00E-03	3.43E+03 3.33	E+03 3.03E+03	1.25E+04	1.12E+04	6.50E+03	3.09E+03	7.8
8 Rod		7.400+01		1.71E+04		4.00E+04			3.586+04	
8 Strip		5.10E+00		1.126+03		3.93E+03			1.84E+03	
B Rinse		4.20E-01		5.546+02		1.35€+03			1.05E+03	
SAMPL	_	Co		B6-125			u-104		·····	:e-144
	E pH	UNFILTER 0.4 um	18 A	UNFILTER 0.4 L		UNFILTER		18 A	UNTIL"ER	0.4
AY TYPE	pН	UNFILTER 0.4 um	18 A							0.4
AV TYPE Sol	рн 3. 879	UNFILTER 0.4 um	18 A							0.4
AY TYPE Sol Sol	pН	UNFILTER 0.4 um	18 A	UNFILTER 0.4 L		UNFILTER	0.4 um		UNFILTER	
AY TYPE Sol Sol	рн 3. 879	UNFILTER 0.4 um	18 A				0.4 um			
AY TYPE Sal Sal Rad S Sal	рн 5.877 6.050	UNFILTER 0.4 um 5.756+03 9.106+03	18 A	UNFILTER 0.4 L		UNFILTER	0.4 um		UNFILTER	
Sol Sol Rod S Sol D Sol	рн 5.877 6.030 6.462	UNFILTER 0.4 um 5.955+03 9.105+03 1.855+04	18 A	4.13E+03		UNFILTER	0.4 um		UN ILTER 6.49E+04	•
Ay TYPE Sol Rod 5 Sol 0 Sol 0 Rod	pH 5.879 6.030 6.462 6.298	UNFILTER 0,4 um 5.955+03 9.105+03 1.8555+04 3.185+04	18 A	UNFILTER 0.4 L		UNFILTER	0.4 um		UNFILTER	•
AY TYPE Sol Sol Rod 5 Sol 0 Sol 0 Rod 0 Sol	рн 5.877 6.030 6.462	UNFILTER 0.4 um 5.75E+03 9.10E+03 1.85E+04 3.18E+04 5.45E+04	18 A	LNFILTER 0.4 L 6.13E+03 1.10E+03		UNFILTER 1.02E+05	0.4 um		UNFILTER 6.49E+04 8.87E+04	•
AY TYPE Sal Sal Rod 5 Sal 0 Sal 0 Rod 0 Sal 0 Rod 0 Sal	pH 5.877 6.050 6.462 6.288 6.347	UNFILTER 0.4 um 5.95E+03 9.10E+03 1.85E+04 3.18E+04 5.45E+04 4.42E+03	18 A	4.13E+03		UNFILTER	0.4 um		UN ILTER 6.49E+04	•
AY TYPE Sal Sal Sal Sal Sal O Sal O Rad O Sal	pH 3.877 6.030 6.462 6.288 6.347 6.083	UMFILTER 0.4 um 5.95E+03 9.10E+03 1.95E+04 3.18E+04 5.45E+04 4.472+03 6.44E+04	18 A	LNFILTER 0.4 L 6.13E+03 1.10E+03		UNFILTER 1.02E+05	0.4 um		UNFILTER 6.49E+04 8.87E+04	•
AY TYPE Sol Sol Sol Too Sol O Sol O Rod O Sol O Rod	pH 5.877 6.050 6.462 6.288 6.347	UNFILTER 0.4 um 5.95E+03 9.10E+03 1.85E+04 3.18E+04 5.45E+04 4.42E+03	18 A	LNFILTER 0.4 L 6.13E+03 1.10E+03		UNFILTER 1.02E+05	0.4 um		UNFILTER 6.49E+04 8.87E+04	•
AY TYPE Sai Sai 3 Sai 0 Sai 0 Rad 0 Sai 0 Rad 0 Rad 0 Sai 20 Sai	pH 3.877 6.030 6.462 6.288 6.347 6.083	UMFILTER 0.4 um 5.95E+03 9.10E+03 1.95E+04 3.18E+04 5.45E+04 4.47Z+03 6.44E+04 7.25E+04	18 4	UNFILTER 0.4 U 4.13E+03 1.10E+05 6.33E+04		UNFILTER 1.02E+05 1.38E+05	0.4 un		UF 1L"ER 6,47E+04 8,87E+04 4,64E+04	6 6 4
AV TYPE Sol Sol 3 Sol 0 Sol 0 Rod 0 Sol 0 Rod 0 Sol 20 Sol 20 Rod 50 Sol	pH 5.077 6.030 6.462 6.288 6.347 6.083 5.927	UMFILTER 0.4 um 5.95E+03 9.10E+03 1.95E+04 3.18E+04 5.45E+04 4.472+03 6.44E+04	38 A	LNFILTER 0.4 L 6.13E+03 1.10E+03		UNFILTER 1.02E+05	0.4 un		UNFILTER 6.49E+04 8.87E+04	6 6 4
AY TYPE Sal Sal Rad Sal D Rad D Sal D Rad D Sal 20 Rad Sal 20 Rad So Sal	pH 3.877 6.030 6.462 6.288 6.347 6.083	UNFILTER 0.4 um 5.75E+03 9.10E+03 1.85E+04 3.18E+04 5.45E+04 4.42E+03 4.44E+04 7.25E+04 5.81E+03 7.88E+04 9.10E+04	18 4	UNFILTER 0.4 L 4.13E+03 1.10E+05 4.53E+04 5.50E+04		UNFILTER 1.02E+05 1.38E+05	0.4 un		UF 1L"ER 6,47E+04 8,87E+04 4,64E+04	6 6 4
TYPE Sol Sol Rod Sol Rod Sol Rod Sol Sol Rod Sol	pH 5.077 6.030 6.462 6.288 6.347 6.083 5.927 6.218	UNFILTER 0.4 um 5.75E+03 9.10E+03 1.85E+04 3.18E+04 5.45E+04 4.427+03 6.44E+04 7.25E+04 5.81E+03 7.88E+04 9.10E+04 6.94E+03		UNFILTER 0.4 L 4.13E+03 1.10E+03 4.53E+04 5.50E+04 2.45E+04		UNFILTER 1.02E+05 1.38E+05 1.07E+05	0.4 un		UF 1L"ER 6,47E+04 8,87E+04 4,64E+04	•
TYPE Sol Sol Rod D Sol Rod D Sol Rod D Sol Sol Rod D Sol	pH 5.077 6.030 6.462 6.288 6.347 6.083 5.927 6.218	UMFILTER 0.4 um 5.75E+03 9.10E+03 1.85E+04 3.18E+04 5.45E+04 4.42E+03 4.44E+04 7.25E+04 3.81E+03 7.88E+04 9.10E+04		UNFILTER 0.4 L 4.13E+03 1.10E+03 4.53E+04 5.50E+04 2.43E+04 4.24E+04		UNFILTER 1.02E+05 1.38E+05	0.4 un		UMF IL*ER 6.47E+04 8.87E+04 4.64E+04 3.02E+04	•
TYPE Sol Sol Sol Rod Sol	pH 5.077 6.030 6.462 6.288 6.347 6.083 5.927 6.218	UNFILTER 0.4 um 5.75E+03 9.10E+03 1.85E+04 3.18E+04 5.45E+04 4.427+03 6.44E+04 7.25E+04 5.81E+03 7.88E+04 9.10E+04 6.94E+03	4 6.625+02	UNFILTER 0.4 L 4.13E+03 1.10E+03 4.53E+04 3.50E+04 2.63E+04 4.26E+04 2.02E+04 2.02E+04	- 18 A E+04 2.43E+04	UNFILTER 1.02E+05 1.38E+05 1.07E+05	0.4 un		UMF IL*ER 6.47E+04 8.87E+04 4.64E+04 3.02E+04	•
TYPE Sal Sal Sal Rad Sal Past Sal	pH 5.899 6.030 6.442 6.208 6.347 6.063 3.927 6.218 5.909 6.028	UNFILTER 0.4 um 5.75E+03 9.10E+03 1.85E+04 3.18E+04 5.45E+04 4.47E+03 4.44E+04 7.25E+04 3.81E+03 7.88E+04 9.10E+04 4.94E+03 1.13E+05 8.47E+0 9.55E+04 2.37E+04 9.55E+04	4 6.625+02	UNFILTER 0,4 c 4.13E+03 1.10E+03 4.53E+04 5.50E+04 2.02E+04 2.02E+04 2.02E+04 1.00E+04 1.00E+04	- 18 A	UNFILTER 1.02E+05 1.38E+05 1.07E+05	0.4 un		UP 1L"ER 6.47E+04 8.87E+04 4.64E+04 3.02E+04 2.28E+04 2.14E+04 2.14E+04 3.02E+04 2.14E+04 3.02E+	•
TYPE Sol Sol Sol Rod Sol	pH 5.077 6.030 6.462 6.288 6.347 6.083 3.927 6.218 3.909 6.028	UMFILTER 0.4 um 5.75E+03 9.10E+03 1.85E+04 3.18E+04 5.45E+04 4.472+03 4.442+04 7.25E+04 5.81E+03 7.88E+04 9.10E+04 4.94E+03 1.13E+05 8.47E+0 9.55E+04 9.55E+04 9.55E+04 9.55E+04 9.55E+04 9.55E+04 9.55E+04 9.55E+04 9.55E+05	4 6.625+02	UNFILTER 0.4 L 4.13E+03 1.10E+03 4.53E+04 5.50E+04 2.45E+04 2.02E+04 2.02E+04 1.81E+04	- 18 A E+04 2.43E+04	UNFILTER 1.02E+05 1.38E+05 1.09E+05 8.92E+04	0.4 un		UNF IL"ER 6.49E+04 8.87E+04 4.64E+04 3.02E+04 2.28E+04	•
TYPE Sol Sol Sol Rod Sol	pH 5.077 6.030 6.462 6.288 6.347 6.083 3.927 6.218 3.909 6.028	UNFILTER 0.4 um 5.75E+03 9.10E+03 1.85E+04 3.18E+04 5.45E+04 4.47E+03 4.44E+04 7.25E+04 3.81E+03 7.88E+04 9.10E+04 4.94E+03 1.13E+05 8.47E+0 9.55E+04 2.37E+04 9.55E+04	4 6.625+02	UNFILTER 0,4 c 4.13E+03 1.10E+03 4.53E+04 5.50E+04 2.02E+04 2.02E+04 2.02E+04 1.00E+04 1.00E+04	- 18 A E+04 2.43E+04	UNFILTER 1.02E+05 1.38E+05 1.07E+05	0.4 un		UP 1L"ER 6.47E+04 8.87E+04 4.64E+04 3.02E+04 2.28E+04 2.14E+04 2.14E+04 3.02E+04 2.14E+04 3.02E+	•
TYPE Sol Sol Sol Rod Sol	pH 5.077 6.030 6.462 6.288 6.347 6.083 3.927 6.218 3.909 6.028	UMFILTER 0.4 um 5.75E+03 9.10E+03 1.85E+04 3.18E+04 5.45E+04 4.472+03 4.442+04 7.25E+04 5.81E+03 7.88E+04 9.10E+04 4.94E+03 1.13E+05 8.47E+0 9.55E+04 9.55E+04 9.55E+04 9.55E+04 9.55E+04 9.55E+04 9.55E+04 9.55E+04 9.55E+05	4 6.62€+02 4 1.53£+04	UNFILTER 0.4 C 4.13E+03 1.10E+05 4.33E+04 3.30E+04 2.63E+04 2.02E+04 2.02E+04 1.0E+04 1.34E+04	- 18 A E+04 2.43E+04	UNFILTER 1.02E+05 1.38E+05 1.09E+05 8.92E+04	0.4 un		UP 1L"ER 6.47E+04 8.87E+04 4.64E+04 3.02E+04 2.28E+04 2.14E+04 2.14E+04 3.02E+04 2.14E+04 3.02E+	•
AV TYPE Sol Sol Bol Sol Rod Sol D Sol So Strip So Ringe	pH 5.077 6.030 6.462 6.288 6.347 6.083 3.927 6.218 3.909 6.028	UMFILTER 0.4 um 5.75E+03 9.10E+03 1.85E+04 3.18E+04 5.45E+04 4.47E+03 4.47E+03 6.44E+04 7.25E+04 3.81E+03 7.88E+04 9.10E+04 9.10E+04 1.32E+03 3.81E+03 7.88E+04 1.32E+03 7.88E+04 1.32E+03 7.88E+04 1.32E+03 7.88E+04 1.32E+03 7.88E+04 1.32E+03 7.88E+04 1.32E+03 1.32E+03 1.32E+03 1.32E+03 1.32E+03 1.32E+03 1.32E+03 1.32E+03 1.32E+04 1.32E+03 1.32E+04	4 6.62E+02 4 1.53E+04 FRESH DEIDH1 4 (4.14E+02	UNFILTER 0.4 C 4.13E+03 1.10E+05 4.33E+04 3.30E+04 2.63E+04 2.02E+04 2.02E+04 1.0E+04 1.34E+04	- 18 A E+04 2.43E+04	UNFILTER 1.02E+05 1.38E+05 1.09E+05 8.92E+04	0.4 un		UP 1L"ER 6.47E+04 8.87E+04 4.64E+04 3.02E+04 2.28E+04 2.14E+04 2.14E+04 3.02E+04 2.14E+04 3.02E+	•
AV TYPE Sol Sol Sol Sol Bo Sol D Sol So Sol	pH 5.077 6.030 6.462 6.288 6.347 6.083 3.927 6.218 3.909 6.028 6.050 6.340	UMFILTER 0.4 um 5.95E+03 9.10E+03 1.95E+04 3.18E+04 5.45E+04 4.472+03 4.442+03 4.442+03 5.81E+03 7.88E+04 9.10E+04 9.45E+04 1.32E+00 9.45E+04 1.34E+03 7.88E+02 TEST RESTARTED IN 1.48E+04 1.34E+04 3.44E+04 1.34E+04 3.44E+04 1.34E+04	4 6.62E+02 4 1.53E+04 FRESH DEIDH1 4 (4.14E+02	UNFILTER 0.4 C 4.13E+03 1.10E+05 4.33E+04 3.30E+04 2.63E+04 2.02E+04 2.02E+04 1.0E+04 1.34E+04	- 18 A E+04 2.43E+04	UNFILTER 1.02E+05 1.38E+05 1.09E+05 8.92E+04	0.4 un		UP 1L"ER 6.47E+04 8.87E+04 4.64E+04 3.02E+04 2.28E+04 2.14E+04 2.14E+04 3.02E+04 2.14E+04 3.02E+	•
AV TYPE Sol Sol Sol Rod 5 Sol 0 Sol 0 Rod 0 Sol 0 Sol 0 Sol 0 Sol 0 Sol 0 Sol 0 Sol 0 Sol 0 Sol 50 So	pH 5.899 6.050 6.442 6.208 6.347 6.083 5.927 6.218 5.909 6.028 6.028	UMFILTER 0.4 um 5.73E+03 9.10E+03 1.87E+04 3.18E+04 3.18E+04 5.43E+04 5.81E+03 7.38E+04 9.10E+04 9.10E+04 9.35E+04 9.35E+04 1.34E+03 7.38E+02 TEST RESTARTED IN 1.48E+04 1.34E+04 2.33E+04 4.45E0 4.45E0 4.44E0	4 6.62E+02 4 1.53E+04 FRESH DEIDH1 4 (4.14E+02	UNFILTER 0.4 L 4.13E+03 1.10E+03 4.53E+04 2.63E+04 2.02E+04 2.02E+04 1.34E+04 1.34E+04 2.02E MATER	E+04 2.45E+04 E+04 1.83E+04	UNFILTER 1.02E+05 1.38E+05 1.09E+05 8.92E+04	0.4 un		UP 1L"ER 6.47E+04 8.87E+04 4.64E+04 3.02E+04 2.28E+04 2.14E+04 2.14E+04 3.02E+04 2.14E+04 3.02E+	•
AV TYPE Sol Sol Sol Sol Rod Sol D Sol So Sol	pH 5.077 6.030 6.462 6.288 6.347 6.083 3.927 6.218 3.909 6.028 6.050 6.340	UMFILTER 0.4 um 5.95E+03 9.10E+03 1.95E+04 3.18E+04 5.45E+04 5.45E+04 5.45E+04 7.25E+04 5.81E+03 7.88E+04 9.10E+04 4.94E+03 1.13E+05 8.6YE+04 1.32E+03 7.88E+04 1.32E+04 1.32E+04 1.32E+04 1.32E+04 1.345+045	4 6.62E+02 4 1.53E+04 FRESH DEIDHI 4 44.14E+02 4	UNFILTER 0.4 L 4.13E+03 1.10E+03 4.53E+04 2.63E+04 2.02E+04 2.02E+04 1.34E+04 1.34E+04 2.02E MATER	- 18 A E+04 2.43E+04	UNFILTER 1.02E+05 1.38E+05 1.09E+05 8.92E+04	0.4 un		UNF IL"ER 6.47E+04 8.87E+04 4.64E+04 3.02E+04 2.28E+04 2.28E+04 2.14E+06 4.64E+04 2.14E+06 4.64E+04 2.14E+04 4.64E+04 2.14E+04 4.65E+04 4.65E	4 4 4 3
AV TYPE Sol Sol Sol Sol Rod Sol D Sol So Sol	pH 5.077 6.030 6.462 6.288 6.347 6.083 3.927 6.218 3.909 6.028 6.050 6.340	UMFILTER 0.4 um 5.73E+03 9.10E+03 1.87E+04 3.18E+04 3.18E+04 5.43E+04 5.81E+03 7.38E+04 9.10E+04 9.10E+04 9.32E+04 9.33E+04 9.33E+04 1.34E+03 7.88E+02 TEST RESTARTED IN 1.48E+04 1.34E+00 3.47E+04 2.33E+00 4.45E+05 4.44E+00 1.54E+04 1.34E+04 1.44E+00 1.53E+04 1.44E+00 1.53E+04 1.44E+00 1.53E+04 1.44E+00 1.53E+04 1.44E+00 1.53E+04 1.53E+04 1.54E+04 1.55E+04 1.5	4 6.62E+02 4 1.53E+04 FRESH DEIDHI 4 44.14E+02 4	UNFILTER 0.4 L 4.13E+03 1.10E+03 4.33E+04 3.30E+04 2.02E+04 2.02E+04 1.34E+04 1.34E+04 2.34 2.02E+04 2.34 1.84 2.52 2.52 3.54 3.54 3.54 3.55 3.	E+04 2.45E+04 E+04 1.83E+04	UNFILTER 1.02E+05 1.38E+05 1.09E+05 8.92E+04	0.4 un		UP 1L"ER 6.47E+04 8.87E+04 4.64E+04 3.02E+04 2.28E+04 2.14E+04 2.14E+04 3.02E+04 2.14E+04 3.02E+	4 4 4 3
TYPE Sol Sol Sol Sol Prod Sol	pH 5.077 6.030 6.462 6.288 6.347 6.083 3.927 6.218 3.909 6.028 6.050 6.340	UMFILTER 0.4 um 5.75E+03 9.10E+03 1.87E+04 3.18E+04 5.45E+04 5.45E+04 5.45E+04 7.25E+04 5.81E+03 7.88E+04 9.10E+04 4.94E+03 1.13E+05 8.6YE+04 1.32E+03 7.88E+04 1.32E+04 1.32E+04 1.32E+04 1.32E+04 1.345+045	4 6.62E+02 4 1.53E+04 FRESH DEIDHI 4 44.14E+02 4	UNFILTER 0.4 L 4.13E+03 1.10E+03 4.33E+04 3.30E+04 2.02E+04 2.02E+04 1.34E+04 1.34E+04 2.34 2.02E+04 2.34 1.84 2.52 2.52 3.54 3.54 3.54 3.55 3.	E+04 2.45E+04 E+04 1.83E+04	UNFILTER 1.02E+05 1.38E+05 1.09E+05 8.92E+04	0.4 un		UNF IL"ER 6.47E+04 8.87E+04 4.64E+04 3.02E+04 2.28E+04 2.28E+04 2.14E+06 4.64E+04 2.14E+06 4.64E+04 2.14E+04 4.64E+04 2.14E+04 4.65E+04 4.65E	4 4 4 3
r TYPE Sol Sol Rod Sol Sol Rod Sol O Sol O Sol O Sol O Sol O Sol O Sol O Sol O Sol O Sol Sol Sol Sol Sol Sol Sol Sol Sol Sol	pH 5.077 6.030 6.462 6.288 6.347 6.083 3.927 6.218 3.909 6.028 6.050 6.340	UMFILTER 0.4 um 5. 75E+03 9. 10E+03 1. 87E+04 3. 18E+04 5. 45E+04 4. 47E+03 4. 44E+04 7. 25E+04 9. 10E+04 9. 10E+04 9. 10E+04 9. 10E+04 1. 33E+00 9. 75E+04 9. 35E+00 9. 35E+00 9. 35E+00 1. 34E+03 7. 88E+04 1. 34E+03 7. 88E+04 1. 34E+03 7. 88E+04 1. 34E+03 7. 88E+04 1. 34E+03 7. 88E+04 1. 34E+03 7. 88E+02 TEST RESTARTED IN 1. 40E+04 4. 44E+0 (1. 40E+03 1. 05E+02	4 6.62E+02 4 1.53E+04 FRESH DEIDHI 4 44.14E+02 4	UNFILTER 0.4 L 4.13E+03 1.10E+03 4.33E+04 3.30E+04 2.02E+04 2.02E+04 1.34E+04 1.34E+04 2.34 2.02E+04 2.34 1.84 2.52 2.52 3.54 3.54 3.54 3.55 3.	E+04 2.45E+04 E+04 1.83E+04	UNFILTER 1.02E+05 1.38E+05 1.09E+05 8.92E+04	0.4 un		UNF IL"ER 6.47E+04 8.87E+04 4.64E+04 3.02E+04 2.28E+04 2.28E+04 2.14E+06 4.64E+04 2.14E+06 4.64E+04 2.14E+04 4.64E+04 2.14E+04 4.65E+04 4.65E	4 4 4 3

NITS: Solution samples (Sol) in pCi/el for all but Uranium, ug/ml for Uranium. Rod samples in pCi/rod for all but Uranium, ug/rod for Uranium. Rinem in same units at solution samples, sample mas ringed in 500 ml deionized water. Strip in same units as solution samples, test vessel was stripped with 300 ml of 8 ½ HMO3.

An-241 values through 502 day solution sample calculated from Pu-237+Pu-240 and An-241+Pu-238 values using Pu-238/(Pu-239+Pu-240) a

:

TEST	IDENTIF	ICATION:	H-4-17.
------	---------	----------	---------

• ,

2

	Aa-24	1+Pu-238_			Aa-241+			Ca-244,	• • • • • •	********	Co-137		c	s-134	
•	LNFILTER	0.4 um	18 A	UNF 1LTER	0.4 um	18 A	UNFILTER	0,4 um	18 A	UNFILTER	0.4 um	18 A	UNFILTER	0.4 um	18 A
	7.032+03			3.400+03			A.87E+03			1.456+07			1.418+04		
	3.41E+05			1.322+05			1.772+05			1.800+07			2.000 +06		
	1.052+04			1.800+03			4,64E+0			1.900+07			2.21E+66		
	4.778+05			1.876+05			2.34E+05			7.398+04			7,880+05		
	6.44E+03	1		4.67E+02	2		2.81E+03			1.83E+07			1.938+05		
	1.320+05			5.77E+04 1.97E+03			4.01E+04			4.330+06			4.41E+05 1.14E+06		
	7.34E+03			2.1*€+03			4.59E+03			4.862+06			5.14E+05		
	2.346+05			1.012+03			1.33E+0	1		3.718+04	•		3.47E+05	i	
1	4.85E+03	5		2.45E+03	1		5.320+03			2,386+04			2.452+05		
	8.11E+03			3.228+03			4.08E+0			1.438+04			1.49E+05 2.34E+05		
816+03	1.332+0		3 3.99E+03	9.842+03	5 1.43E+0	3 9.486+01	2.11E+0		3 1.638+02	1.45€+04	9.37E+0	5.43E+05		8.832+04	5.18E+04
¥3£+03	4.825+0		3 4.17E+03	1.950+02	1 735.0	2 4.956+01	2.928+0	1-475+0	2 4.05E+00	5.186+05	5.050+0	3.47E+05	4.596+04	4.356+04	3.090+04
*36*03	2.146+0			1.75E+05	5		1.180+05	5		2.52E+04	,		2.146+03	1	
	4.220+0			2.832+04			2.500+04			9.37E+05 1.70E+05			8.02E+04		
	2.446+03	5		₿. <i>64</i> E+0;	•		1.1.52.40	•		1.702003					
	4.435+04			2.275+04			3.00E+0			4.376+05			3.74E+04		
,94E+03	2.542+0		×4 8.20€+03	1.39E+04		3 4.95E+01	2.746+0	1 4,42E+0	3 1.17E+01	4.53E+04 7.12E+05		6 3.60E+06	5.77E+0	3 5.05E +03	3.16E+05
312+03	7.070+0-		3 5.326+03			2 1.840.01	1.176+0	1.50E+C	3 7.212+00	1.77E+04	1.44E+0	6 8.78E+05	1.54E+05	5 1.15E+05	7.252+04
.03E+03	1.256+0		4 4.580.+03			3 4.415+00		3 7.41E+0	3 4.76E+00	5.772+05	5.90E+0	5 4.22E+05	4.558+04	4.68E+04	3.31E+04
	4.902+0	4		3.580+04	4		4.845+0			3.82€+05	5		2.95€+04	4	
	3.930+0	2		1.046+0	3		1.966+0	3		6.44E+04 3.31E+05			4.91E+03 2.60E+04		
	1	Ru-106			C#+144			Eu-134			Np-237			Tc -99	
1 🔺	UNFILTER	0.4 um	10 Å	UNFILTER	0.4 um	18 A	UNFILTER	0.4 um	18 A	UNFILTER	0.4 um	18 A	UNFILTER	0.4 um	18 A
	1.026.6	•		6.47E +0)4		1.965+0	5							
				8.972+0	94		3.426+0	r5							
	1.386+0	5		4.642+0	04		7.716+	5							
	1.046	2		3.026+0	04		2.326+	75							
							1.526+	54							
2,436+04	8.926+0	34		2.296+4	14		1.946+	55	03 7.668+02	2					
.832+04		•								<2.25E+0	x		2.256+	03 2.250+0	03 2.20€+0
	1.346+0)4		2.14E+(4.85E+)			1.45E+ 4.34E+ 3.35E+	04		3.872+	. 00		1.136+	02	
8. 60E+03									04 43.900+0	2 1.316+	01		1.71E+	03 1.23E+	03 1.16E+0
				1.576+	20		1.250+			7.71E-	01		5.416+	00	
				#+ 3/E*	**		3.7764	~~		7+71E *	••		214164	••	

1.402+03

ŝ

at of B H HH02.

) and Am-241+Pu-238 values using Pu-238/(Pu-239+Pu-240) activity ratio of 2.148.

A-7

1.1

5

TEST IDENTIFICATION: H-4-12

				u		Pu-23	++Pu-240	*	An-24	I+Pu-278			. 2414	
DAY	SAPPLE	D H	UNFILTER		18 A	UNFILTER	0.4 un	18 A	UNFILTER	0.4 um	18 A	UNFILTER	0.4 um	10
1	501	5.760	8.00E-03			3.042+00			1.0000+01			5.675+(-)		
	Sol	4.420	4.30E-02			6.76E+00			2.912+02			2. /ME + 61		E
	Rod		12.00E-02			Alpha 7								
15	Sol Rod	4.585	3.000-02			8,34E+00 6,76E+00			9,91E+01 1,14E+03			8.47C+01 1.13E+03		i i
-														
30	Sol	a. 073	2.40E-02			3.45E+01 5.81E+01			1.420+02	•		8.07E+01	•	
40	Sol Rad	6.667	3.400-01			5.320+01			1.422+03			4.44E+0: 1.53E+03		
+ 0	Sol	4.458	2.905-02			7.82E+01			2.13E+02			4.796+01		
120	501	4.505	5.30E-02			1.BOE+02			4.77E+02			1.75E+02		
120	Rod		4.50E-01			1.14E+02			1.750+03			1.548+03		
150	Sol	4.252	2.40E-02			1.07E+02			1.91E+02			1.150+01		
180	5o1	5.795	3.600-02			1.35€+02			2.78E+02			5.13E+01		3
185	Rod		6.50E-01			1.570+02			1.446+03			1.20€+03		
210	Sol	5.730	1.406-02			1.300+02			2.210+02			3.16E+00		
252	Sol	5.648		<1.00E-03	1.00E-03		1.526+02	1.456+02			2.34€+02	6.31E+00	2.70E+00	4
252	Rod		7.40E-01			2.328+02			1.346+03			9.448+02		· 5
252	Strip		5.90E-02			4.41E+01			3.326+02			2.600+02		Ē
			TEST RESTA	WITED IN FR	RESH DETONT	ED WATER								
15	Rođ		3.00E-01			2.348+01			1.010+03			1.456+03		
13	Sol	5.874	2.000-02	1.208-02	7.00E-03	3.726+01	5.48E+01	4.412+01	2.77E+02	1.200+02	9.59E+01	1.766+02	9.44E+00	
70	Rod		3.00E-01			3.49E+01			4.37E+03			3.778+03		
70	501	5.780		2.00€-03		1.042+02	9,44E+01	8.11E+01			1.49E+02	4.71E+01		
128	Sol	5.826	2.00E+03	2.00E-03	1.00E-03	1.500+02	1.498+02	1.306+02	2.3 4 E+02	2.62E+92	2.21E+02	2.75€+00	1.350+00	
128	Rod Strip		1.40E-01 1.00E-02			3.68E+01 1.49E+01			2.63E+03 1.00E+02			2.348+03		
												8.67E+01		
			Co	o-60			a-123		R	u-106		c		
DÂY	SAMPLE TYPE	рH	UNFILTER	0.4 un	18 A	UNFILTER	0.4 um	18 A	UNFILTER	0.4 um	18 A	UNFILTER	0.4 um	
1	Sol	5.760	1.848+03											
	501	6.620	5.412+03											
.	Rođ		(6.76E+02											2
15	Sol	4.585	1.26E+04											- R
28	Rod													1
30	Sol	6.073	2.87E+04											
60	Sol	6.667	8.42E+04											Ę.
60	Rod		2.312+03											2
40 170	Sol	4.458 4.505	1.400+05											- F
1.0	Sol	e.303	1.730-03											E
120	Rod		9.41E+03											
150	\$o1	6.252	2.23E+05											i i i
	Sol	5.795	2.480+05											
100	Sol Rod Sol	5.75	2.480+05 3.220+04 3.200+05											
180 210	Rod Sol	5.730	3.22E+04 3.20E+05											1. T. T.
100 210 252	Rod Sol Sol		3.22E+04 3.20E+05 3.52E+05	3.586+03	8,40E+04									
100 210	Rod Sol	5.730	3.22E+04 3.20E+05	3.586+05	8,602+04									1
180 210 252 252	Rod Sol Sol Rod	5.730	3.22E+04 3.20E+03 3.52E+03 1.74E+03 5.41E+03	3.30E+03		760 MAYFA								
100 210 252 252 252 252	Rod Sol Sol Rod Strip	5.730	3.22E+04 3.20E+05 3.52E+05 1.74E+05 5.41E+03 TEST REST	3.300+03	- 8.602+04 REBH DE1DNI	IED WATER								
100 210 252 252 252 252	Rod Sol Sol Rod Strip	5.730	3.22E+04 3.20E+05 3.52E+05 1.74E+05 5.41E+03 TEST REST. 1.38E+03	3.586+03	RESH DEIDNI	IED WATER								
100 210 252 252 252 252 252	Rod Sol Rod Strip Rod Sol	5.730 5.848 5.848	3.222+04 3.202+05 3.522+05 1.742+05 5.412+03 TEST RCS1. 1.382+03 3.612+04	3.586+03 ARTED IN F 2.416+04	RESH DEIDNI 8.94E+02	IED WATER								
180 210 252 252 252 252	Rod Sol Sol Rod Strip	5.730	3.22640 3.206405 3.526405 5.416405 5.416403 TEST RCST. 1.386403 3.416404 1.126403	3.580+03 ARTED IN F 2.410+04 4.320+04	RESH DEIDNI 8.94E+02	ZED WATER								
160 210 252 252 252 253 253 253	Rod Sol Rod Strip Rod Sol Sol	5.730 5.848 5.874 5.790	3.22640 3.206405 3.526405 5.416405 5.416403 TEST RCST. 1.386403 3.416404 1.126403	3.58E+03 ARTED IN F 2.41E+04 4.32E+04 1.78E+03	REBH DE1DHI 8.94E+02	ZED WATER								

;

TEST TYPE: SLET DEFECT

UNITS: Solution samples (Sol) in pCi/al for all but Uranium, ug/al for Uranium. Rod samples in pCi/rod for all but Uranium, ug/rod for Uranium. Strip in same units as solution samples, test vessel was stripped with 300 ml of B M MMO3.

An-241 values through 210 day solution sample calculated from Pu-239+Pu-240 and Am-241+Pu-238 values using Pu-238/(Pu-239+Pu-240) activit

TEST IDENTIFICATION: H-6-12

• .

į

	An- 24	1+Pu-258_++			. 2414	• • • •					• • • • •	C	8-134	
	UNFILTER	0.4 um	18 A	UNF TIL TER	0.4 sm	18 A	UNFILTER 0.4 um	18 A	UNFILTER	9.4 um	18 A	UNFILTER	0.4 um	18 A
	1.00E+01 2.91E+02			5.670+64 7.790+60			5,418+00 4,708+02		2.230+04			2.47E+03 6.31E+04		
	4.41E+ 01								4.500-01			+4.05E+00 1.63E+05		
	1.146+03			8.475+01 1.178+07			1.47E+02 1.59E+(13		1.40E+06 h.49E+04			4.532+03		
	1.420+02			8.07[+01			1.775.+02		2.986+04			3.452+05		
	1.420+02			4,442+0			1.03E+02		5.578+04			6.49E+03		
	1.62E+03 2.13E+02			1.532+03			3.49E+03		1.100+05			1.162+04		
	4.77E+02			4.74E+01 1.75E+02			1.04E+02 2.26E+02		8.24E+% 8.74E+06			8.87E+05 9.55E+05		
	1.752+03			1.546+03			3.400+03		1.576+05			1.40E+04		
	1.916+02			1.150+01			3.04E+01		9.558+06			1.01E+06		
	2. 14 .02			5.136+01			9.73E+01		9.73E+06			1.00E+06		
	1.44E+03 2.21E+02			1.200+03			7.61E+03 1.44E+01		1.12E+05 1.12E+07			1.83E+04 1.12E+06		
E+02	1.346+03		2.346+02	4.31E+00 9.44E+02		4++)5E+00	6.31E+00 <4.30E-0 2.02E+03	01 (4.506-01	4.73E+06 4.19E+05	*.82E+ 06	8.076+06	9.64E+03 4.03E+04		7.40E+05
	3.32€+02			2.600+02			4.872+02		3.54E+04			3.336+03		
L	1.012+03			1.456+03			3.05€+03		3.526+04			3.265+03		
2+01	2.77E+02 4.37E+03		9.37E+01	1.760+02	4.46E+0 0	<4.00E-01	2.896+02 1.716+0	01 ₹,01E+01		4.77E+05	3.250+05		4.22€+04	2.886+04
E+01	2.576+02		1.496+07	3.772+03	7 445.000	4.052+00	7.16E+03 1.17E+02 6.76E+0		7.972+04	3.105.04	1.27E+04	7.66E+03	1.846+05	
E+02	2.596+02	2.620+02			1.356+00		4.056+00 2.706+0	0 (4.50E-01			2.126+06		2.832+03	
	2.63E+03 1.09E+02			2.34E+03 8.69E+01			4.22E+03 1.30E+02		5.95E+04 7.88E+03			4.37E+03 6.58E+02		
		u-106		C	•-144		Eu 134		^{Ni}	-737		•	c-99	
	UNFILTER	0.4 um	18 A	UNFILTER		18 A	UNFILTER 0.4 um	18 A	UNFILTER		18 A	UNFILTER		18 A
							3.05E+03							
							5.05E+03 1.05E+04							
							1.050+04							
							1.05E+04 8.74E+03		(2.255+00)				2 2.52E+02	2,30€+02
							1.05E+04 8.74E+03							2,30€+02
							1.05E+04 8.74E+03		(2.25E+0)			2.345.00		7.30C+02
							1.05E+04 8.74E+03	02 (3 ,30E+02	(2.25E+0)			2.345.00		2.30C+02
							1.03E+04 8.74E+03 6.89E+03	02 (3, 30E+ 02	(2.25E+0)			5*24E+03		

of 8 g HH03.

nd Am-241+Pu+238 values using Pu-238/(Pu-239+Pu-240) activity ratio of 1.677.

A-9

TEST TYPE: 2 LASER PUNCTURES

ć

TEST IDENTIFICATION: J-8-24

	SATTLE			•••		**Pu-240	••••	-	1+Pu-238		•••••••	m-241+	
DAY	TYPE	рH	UNFILTER 0.4 um 18	A 6	UNFILTER	0.4 um	18 A	UNFILTER	0.4 um	10 A	UNFILTER	0.4 um	1
1	So1	5.622	4.008-03		1.402+00	1		4,295+00			1.4%+00		
5	Sol	4.333	2.00E-03		1.400+00)		3.92E+00			1.04E+00		
š	Rod		4.00E-02		4.01E+00			8.54E+00			2.700 -01		
			4.00E-02		7.210.00			2.032+01			5.32.00		
13	Sol	6.480			1.000+01			4.050+01			7.200+00		
30	Sol	6.484	6.00E-03										
30	Rod		3.400-02		4.31E+00			3.41E+01 3.07E+01			4.101+01 6.(40+00		
60 0	Sol	A.364	4.00E-03		2.14E+01								
60	Rođ		4.306-02		1.17E+01			1.196+02			9.300+01		
+ 0	Sol	4.104	4.00E-03		2.61E+01			5.84E+01			4.41E+00		
120	Sol	5.958	4.00E-03		2.042+01	1		4.31E+01			4.232+00		
120	Rod		1.405-01		5.41E+01			2.442+02			1.546+02		
150	501	5.829	1.906-02		3.045+01			6.74E+01			5.840+00		
180	Sol	5.875	4.00E-03		3.045+01			7.07E+01			7.215+00		
		a.w/a			5.000+01			3.15€+02			2.121+02		
180	Rod		3.90E-01				3 875461	4.850+01		4.00E+0:		1.272+00	
223	Sol	5.857	2.005-03 2.005-03	1.00E-03	3.24E+01	2.206+01	2.43E+01	0.83E+01	. / et +01		1.2 12 +00	1.2/2+00	
244	Sol	6.156	1.006-03 1.006-03	1.00E-03			2.47E+01	4.71E+01		6.35E+01	1.800+00		•
244	Rod		1.300+00		1.16E+02			3.900+02			1.472+02		
244	Strip		2.000-02		6.76E+00)		4.50E+01			3.246+01		
			TEST RESTARTED IN FRE	SH DEICNIZ	ED WATER								
						_							
13	Rod		3.406-01		1.242+01			3.050+02			4.820+02		
5	Sol	6.074	2.30E-02 1,10E-02	4.00E-03	1.718+01		6.31E+00	4.40E+01		1 1.24E+01	2.70E+01		9 <
70	Rod		2.802-01		1.24E+01			9.01E HOZ			9.5% .02		
10	501	6.088	1.102-02 4.002-03	2.00E-03	2.84€+01	2.486+01	2.40C+01	7.30E+01		1 4.95E+01		4.090+00	
20	Sol	5.403	2.00E-03 2.00E-03		2.842+0		2.646+01	5.996+01	6.08E+0	1 5.238+01		<1.40E+00	
129	Rod		1.805-01		2.612+01			1.456+03			1.412+03		
120	Strip		<3.00E-03		1.536+00	0		1.245+01			1.172+01		
			•								_		
	SAFLE		Co-60			BO-123			NU-100		·C		
DAY	TYPE	pн	UNFILTER 0.4 um 1		UNFILTER	0.4 um	18 A	UNFILTER	0.4	10 A	UFILTER	0.4 un	1
L	Sol	5.422	1.342+03										
3	Sol	**222	1.012+03										
5	Rođ		<1,30E+03										
15	Sol	4.480	2,196+03										
30	Sol	6.484	2.84E+03										
30	Rođ												
60	Sol	6.389	A. 89E+03										
0	Rod												
ю.	Sol	6.106	1.422+04										
20	Sol	5.958	1.645+04										
. ~	Bad												
120	Rod		1.13E+03										
120	النك	5.829	2.712+04										
180	So1	5.875	3.07E+04										
180	Rod		1.422+03										
223	Sol	5.859	3.935+04 3,495+04	2.442+03									
244	Sol	4.134	3.326+04 3.276+04	5.816+03									·
244	Rod		4.476+03										
244	Strip		5.416+02										
- · ·													

5.875 Sol Rod Sol 3.07E+04 1.42E+03 3.93E+04 5.859 3.496+04 2.446+03 Sol Rod Strip 3.32E+04 3.27E+04 5.81E+03 4.49E+03 5.41E+02 4.134

TEST RESTARTED IN FRESH DEIDNIZED MATER

15 501	6.074	2.43E+03	1.556+03	
70 Sol	4.009	4.77E+03	3.83E+03	
120 Sol	5.403	7.84E+03	6.13E+03	<8.00E+02
128 Rod		(1,00E+03		
128 5+++		1.046+02		

Solution samples (Sol) in pCi/al for all but Uranium, ug/al for Uranium. Rod samples in pCi/rod for all but Uranium, ug/rod for Uranium. Strip in same units as solution samples, test vestel was stripped with 300 al of B H HND3. UNITS:

Am-241 values through 223 day solution sample calculated from Pu-239+Pu-240 and Am-241+Pu-238 values using Pu-238/(Pu-239+Pu-240) activity

TEST IDENTIFICATION: J-8-24

c

	Aa -24	1+Pu-23	•		^				Ca-244			Ca-137	•	C	-134	
	UNFILTER	0.4 un	. ti		UNFILTER	0.4 um	LB A	UNFILTER	0.4 um	18 A	UNFILTER	0.4 un	18 A	UNFILTER	0.4 um	18 A
	4.286+00				1.4.20.00			1.496+00			1.516+04			1.40E+03		
	5.920+00				1.046+00			1.04E+0)			2.27E+04			2.072+03		
	8.562+00				2.705.01			4. 956 +00			49.0X+02			<7.00E+02		
	2.03£+01				5.321.00			3.152.00			1.050+06			1.232+05		
	4.050+01							2. 70E+10			2.546+96			2.980+05		
	5.412+01				4.10E+01			4.196+01			5.90E+04			4.71E+03		
	5.096+01				4.646+00			2.70E+00			3.81E+06			4.28€+05		
	1.196+02				9.50E+01			7.796+01			7.756+04			4.98E+03		
	3.86E+01				4.412+00			4,50E+00			4.438+06			4.842+05		
	4.31E+01				4.236+00			5.862+00			4.18E+06			4.55€+05		
	2.665+02				1.348+02			2.37E+02			1.736+05			1.42E+04		
	6.94E+01				5.845+00			5.86E+00			4.596+06			4.912+05		
	7.07E+01				7.216.00			5.846+00			4.64E+06			4.778+05		
	3.150+02				2.121+02			2.47E+02			1.946+05			1.862+04		
•01	4.85E+01		•01	4.00E+0;			1.178-01			1 <5.00E-01			3.246+96		4,100+05	3.032+03
•01	A. 71E+01	A. 94F	•01	4.35E+01	1.805.000	3 155.000	1.350+00	4 505-01	9 (1)5-0	1 (0.56+0)	A 145+04	4.135+04	3.176+06	3,798+05	3.82€+05	2.920+05
	3.980+02				1.471.02		11354.007	1.896+02			2.342+05			2.05E+04		
	4.50E+01				3.246+01			3.568+01			2.31E+04			2.062+03		
	5.03E+02				4.825+02			3. 14E+02			3.07E+04			2.965+03		
•00				1.266+01			<0.5E+00			0 (5.00E-01			3.146+05		4,280+04	7.796+04
~~~	7.01E+02			11206401	7.596+02		V. 32 VOO	8.566+02		0 (3.000+01	1.056+05		3.146403	7.75€+03		
01				4.950+01											1.632+05	8 10E+04
-01				5.23E+01			2.25E+00 (1.40E+00			0 9.01E-01 1 (5.00E-01			1.07E+06	3.120+05	3.15€+05	2.080+0
	1.435+03				1.415+03			1.268+03			1.01E+05			8.450+03		
	1.246+01				1.175.01			7.012+00			1.668+04			1.418+0		
						**144			[u-154		[•]	b-237			c-99	
	UNFILTER	0.4 ш	- 1	18 A	UNFILTER	0.4 un	18 A	UNFILTER	0.4 um	18 A	UNFILTER	0.4 um	18 A	UNFILTER	0.4 um	18 A
			- •	-												

THE REAL PROPERTY OF THE PROPE

<3.00E+02		(1,80E+0) (4,50E+00
3. 71E+03	1, 35E-01 <4, 30E-01	7.21E+01 6.31E+01 7.21E+01 1.24E+01

41 B H HW33.

d Am-241+Pu-238 values using Pu-238/(Pu-239+Pu-240) activity ratio of 2.073.

TEST TYPE: I LASER PUNCTURE

Ē

### TEST IDENTIFICATION: J-0-19

					Pu-23	9+Pu-240_		<b>Ae</b> -24	1+Pu-238		A	-241	
DAY	SAMPLE TYPE pH	UNFILTER	0.4 um	18 A	UNFILTER	0.4	18 A	UNFILTER	0.4 um	LE A	UFILTER	0,4 um	- 14
1	501 5.4	54 3.00E-03	3		1.44E+00			4,958+00					- 1
5		147 4.00E-03	3		2.21E+00			5.84E+00					
5	Rod	3. VOE-02			2,000+00			L.BOE+01					1
15	Sol 6.3	240 1.700-02	2		7.07E+01			1.95E+02					
30	Sol 6.5	577 7.00E-03	3		8.42E+01			2.53E+02					
30	Rod	5.00E-01	1		8.33E+02			2.958+03					
60	5ol 6.0	693 B.OOC-03	5		5.34E+01			1.16E+02			3.54E+01		
60	Rod	1.600-01			1.400+02			4.87E+02			4.828+02		
61	Strip #1	5. 90E+00			1.27E+04			4.77E+04			2.928+04		
61	Strip #2	1.30E+00			4.23E+02			2.75E+03			2.03E+03		
<b>6</b> 1	Strip #3	2.905-01	1		3.11E+02			1.04E+03			5.72E+02		
	SAMPLE		Co-60			S6-125			Ru-106		Co		
DAY	TYPE PH	UNFILTER	0.4 um	18 A	UNFILTER	0.4 u	18 A	UNFILTER	0.4 u	18 A	UFILTER	0.4 um	10
	Sol 5.4	636 8.965+02	2										
5	Sol 6.1	147 1.18€+03	5										
5	Rod	<1.30E+03	5										
15		240 1.000.003											
30		577 1.04E+03											
30	Rod												
60		693 1.84E+03	1										
60	Rod		•										
61	Strip #1	7.61E+03											
61	Strip #2												
61	Strip 03												
UNITS:	Salution as	entes (Sol) in ofi	(a) 400 a)	1 but Ikan									

. . . . .

.

ITS: Solution samples (Sol) in pCi/al for all but Uranium, ug/al for Uranium. Rod samples in pCi/rod for all but Uranium, ug/rod for Uranium. Strip 01 in same units as solution samples, specimen pedestal, SO al of 8 ½ HNO3. Strip 02 in same units as solution samples, test vessel, 25 al of 0.1 ½ HNO3. Strip 03 in same units as solution samples, test vessel, 25 al of 8 ½ HNO3 following Strip 02.

TION: 3-8-19

.

38	An-241	Pu+238	Cm-244	Ce-137	Cs-134_
a 18 A	UNFILTER 0.4 um 18 A	UNFILTER 0.4 um 18 A	UNFILTER 0,4 um 18 A	UNFILTER 0.4 um 18 A	UNFILTER 0.4 U
			2.212+00	1.636+04	1.486+03
			2.396+00	2.400+05	2.67E+04
			1.17E+01	5.842+03	(9.00E+02
			9.59E+01	6.40E+05	7.432+04
1			1.13E+02	9.4IE+05	1.07E+05
			1.77E+03	B. 33E+04	1.01E+04
		8,066+01	1.762+01	2.092+06	2,432+05
	3.546+01		4.506+02	5.72E+04	5.596+03
	4.825+02	2.11E+02	2.862+04	2.00E+06	2.116+05
	2.925+04	1.862+04	1.946+03	5.05E+06	5. 34E+05
	5°07E+03	7.216+02	1.146.03		
	5.721+02	4.502+02	5.412+02	7.23E+04	8.51E+03
	Co-144	Eu-154	Np - 237	Tc-99	Sr Y-9'
18 A	UNFILTER 0.4 um 18 A	UNFILTER 0.4 um 18 A	UNFILTER 0.4 um 18 A	UNFILTER 0.4 um 18 A	UNFILTER 0.4 4

3.49€+04	<pre>{2.30E+01 {4.10E+02 {1.40E+03 {5.90E+03 {5.90E+03</pre>	3,23E+04 7,21E+03 5,81E+05 3,80E+04
	<6.30E+02	1.36E+04

A-13

### TEST IDENTIFICATION: H-4-1

			u		Pu-23	••Pu-240		An-24	1+Pu-238		la-241	
DAY	EA PLE TYPE	рн	UNFILTER 0,4 um	18 A	UNFILTER	0.4 um	18 A	UNFILTER	0.4 um	18 A	UNFILTER 0.4 UM	
1	Sol	5.875	3.006-03		7.448-01			1.742+00				
•	Sol.	4.430	2.006-03		8,54E-01			2.57E+09				ľ
	Rod		7.00E+02		<4.50E+00			2.336+01			3.338+02	
15	501	4.210	2.000-03		1.13E+00			2.70E+00				1
30	<b>S</b> ol	4.311	2.00E-03		4.952+00			4,41E+00				
30	Rod		(2.00E-07		<4.50E+00			3.11E+01				
60	Sol	4.205	3.000-03		8.11E+00			1.49E+01				
40	Rod		7.10E-02		2.25E+00			5.43E+01				
90	Bol	4.137	2.00E-03		1.220+01			2.212+01				
120	\$-01	4.085	2.00E-03		1.44E+01			2.57E+01				
120	Red		<1.00E-02		7.216+00			8.11E+01				
150	Sol	5.898	4.00E-03		1.53E+01			2.528+01				
180	Sol	4.140	3.000-03		1.748+01			2.97E+01				
180	Rod		2.000-02		8.546+00			8.422+01				
210	Sal	5.435	2.006-03		2.03E+01			3.15€+01				
252	Sol	4.054	2.000-03 (1.000-03	CL 005-03	1.946+01	1.985+01	1.67E+01	3.048+01	7.935+01	2.436+01	(9.00E-01 (9.00E-0	
252	Rod		2.000-03	· · · · · · · · · · · ·	1.35E+01			1.110+02				1 (7.000-
252	Strip		\$.00E-03		1.53E+00			1.582+01			7.44E+01 1.53E+01	
			TEST RESTARTED IN P	RESH DETONT								
15	Rod		2.300-01		4.50E+00			3.42E+01			3.878+01	
15	Sol	6.034	1.306-02 3.006-03	3.00E-03	3.15E+00	2.70E+00	1.35E+00	1.00E+01	4.500+00	2.236+00		0 (9.00E-
70	Rod		1.106-01		3.15E+00			7.645+01			6.312+01	
70	\$o1	4.185	1.106-02 4.006-03	2.000-03	4.31E+00	4.950+00	3,150+00	1.47E+01	7.445+00	4.752+00	5.41E+00 9.01E-0	1 10 000-
128	Sol	5.439		2.00E-03		4.31E+00		4.41E+00			<1.40E+00 +1.40E+0	
128	Rod		8.70E-02		3. 92E+00			7.12E+01			3.74€+01	
128	Strip		<2.000-03		4.05E-01			3.24E+00			2.702+00	

	SAFLE		Co~é0			_======		R	u-106		Ce-144	
DAY	TYPE	рн	UNFILTER 0.4 w	- 18 A	UNFILTER	0.4 um	18 A	UNFILTER	0.4 um	18 A	UNFILTER 0.4 um	18 A
1	<b>5</b> o1	5.875	8.33E+02									
	8o1	4.430	1.12E+03									
6	Rod		(4. BOE+02									
15	Sol	4.210	1.07E+03									
20	Sol	4.311	1.07E+03	•								
30	Rod											
60	So1	4.205	9.91E+02									
60	Rod		46.30E+02									
90	Sol	4.137	1.07E+03									
120	Sol	4.085	1.10€+03									
120	Rod		<4.30E+02									
150	Sol	5.870	0.83E+02									
180	5o1	6.140	1.146+03									
180	Rod		(6.30E+02									
210	So1	5.935	1.012+03									
252	Sol	4.054	8.928+02 1.028	E+03 1.58E+02	7							
252	Rod		<1.00E+03		-							
252	Strip		<1.00E+02									
				-								
			TEST RESTARTED I	TH ANDERN DETON	NILED WATER							
15	Rod											

15 15 128 129 129 Rod Sol Sol Rod Strip 1.53E+02 1.24E+02 (1.20E+02 2.73E+02 1.44E+02 (1.00E+02 (1.00E+03 (1.00E+02

4.054 3.459

UNITS: Solution samples (Bol) in pCI/al for all but Uranium, ug/al for Uranium. Rod samples in pCI/rod for all but Uranium, ug/rod for Uranium. Strip in same units as solution samples, test vessel was stripped with 300 ml of 8 <u>H</u> HNO3.

..........

. -1-

TEST TYPE: UNDEFECTED

5

 $\gamma$ 

TEST IDENTIFICATION: H-4-1

-----

e 3-

	An-241	+Pu-238		Ae-241		C	n~244 <u></u>		C	**137		C	**134	
	UNFILTER	0.4 um	18 A	UNFILTER 0.4 um	18 A	UNFILTER	0,4 un	18 A	UNFILTER	0.4 um	18 A	UNFILTER	0.4 um	18 A
	1.745+00					5.848+01			3.216+03			2.958+02		
	2.57E+00					8.548-01			3.37E+03			3.775+02		
	3.330+01			7.336+07		0.11E+00			5.866+03			5.41E+02		
	2.700+00					7.210-01			3.05€+03			3.08E+02		
	9.91E+00					1.000+00			3.15€+03			3.06E+02		
	3.118+01					1.47E+01			8.568+02					
	1.476+01					1.17E+00			3.596+03			2.872+02		
	3.45E+01					3.300+01			<5.40E+02			<3.90E+02		
	2.21E+01					1.350+00			3.94E+03			3.486+02	•	
	2.57€+01					1.350+00			4.07E+03			3.57E+02	1	
	8.11E+01					4.036+01			(5.00E+02			<3.80E+02	2	
	2.526+01					9.018-01			3.73€+03			2.512+02		
	2.97E+01					1.BOE+00			4.2% +03			3.348+02	2	
	8.42E+01					4.37E+01			5.41E+02			<3.70E+02	2	
	3.150+01					4.50E-01			4,03E+03			3.012+02	2	
E+01		2.936+01	2.432+01	(*.00E-01 (*.00E-0	1 (9.000-01		(9,00E-0	1 (7,00E-01	2,150+03	2.150+0	3 1.00E+03	<1.40E+02		1.000
	1.11E+02			7.442+01		5.41E+01			1.00E+03			<4.30E+02	2	
	1.500+01			1.536+01		8.545+00			1.89E+02			(6.30E+01	l	
	3.42E+01			3.87E+01		2.07E+01			<6.30E+02			<4.30E+03		
E+00	1.00E+01	4.50E+00	2,250+00		0 49.00E+01	4.500+00	4.50E-0	1 4.508-01	3.32€+02	1.686+0	2 <1.00E+02		L (6.30E+01	1 < 6. BOE
	7.66E+01			4.31E+01		4.996+01			<1.30E+03			<1.20E+03		
E+00			4.95E+00	5.41E+00 4.01E-0		4.05E+00	3.15E-0	1 (9,008-01	6.76E+02		2 <3.20€+02		2 (2.60E+02	
E+00	4.41E+00	<b>W.46E+00</b>	7.218+00	<1.40E+00 +1.40E+0	0 <1.40€+00	<4.50E-01	<4.50E-0	1 (4.50E-01	4.090+02	2.496+0	2 2.56E+02	(8.10E+0	1 (8.90E+0	1 (6.30E
	7.12E+91			3.746+01		3.512+01			7.032+02			(6.30E+0)	2	
	3.24E+00			2.702+00		1.71E+00			4.22E+01			<4.30E+0	1	
	R	u-104		Ce-144		t	u-154		N	0-237			Tc-99	
	UNFILTER		18.4	UNFILTER 0.4 um	18 6	UNFILTER								
	ON ICIER	V. V UM		UN ILIER VIA UN		OW TO LEA	U.4 UA	18 A	UNFILTER	0.4 um	18 A	UNFILTER	0,4 um	18 A

<2.90E+02	<2.30E+00 <1.40E-02	<1.80E+01 <4.50E+00
<2.90E+03 (2.90E+02		
	<4,30E-01	(4.50E+00

0 al of 8 H HAD3.

متكافئة فكتال فالمقاد ومعادمهم والمعاد والمعالية فالمحالية والمحالية و

A-15

.

• •

• • • • • • •

• • • • • •

. ,. . .

### TEST TYPE: UNDEFECTED

### TEST IDENTIFICATION: H-6-24

			UU		Pu-23	**Pu-240		Ao-24	1+Pu-238			a-241	
DAY	SAMPLE TYPE	рн	INFILTER 0.4 un	18 A	UNFILTER	0.4	10 A -	UNFILTER	0.4 ya	18 A	UFILTER	0.4 um	10
1	Sol	3.322			8.31E+01			3.11E+02					
5	\$o1	3,027			4.44E+01			3.518+02					
3 5	Rod	3.044			1.30E+01			2.70E+01					
	1601	2.974											
6 13	101 101	2.922	1.902-01		8.380+01			3.45€+02					
30		2.922	1.400-01		8.51E+01			3.27E+02					
20	\$01	2.422	1.402-01		8.316.01								
10	Rod		43.00E-02		1.332+02			2.64E+02					
0	Sol	2.878	1.400-01		7.032+01			3.10E+02					
6	Rod		<2.00E-02		1.24E+02			2.55€+02					
ю	Sol	2.900	1.306-01		7.120+01			3.000+02					
0	Rod		44.00E-03		1.180+02			2.348+02					
20	Sol.	2.912	1.206-01		6.49E+01			3.02E+02			•		
120	Rod		<1.40E-03		1.712+02			3.300+02					
150	5o1	3.007	1.402-03		7.032+01			2.932+02					
	Rod	3.007	2.40E-02		2.000+02			4.772+02					
50 180		2.912			4.31E+01			2.750+02					
	501	2.712	1.205-01		0.31E+01								
io	So1	2.433	1.100-01		5.950+01			2.73E+02					
50	501	2.418		1.100-01	5.48E+01	5.84E+01	5.59E+01	2.662+02		1.442+02			
50	Rod		1.306-01		2.81E+02			5.40E+02					
271	Sol	2.956		1.100-01	5.45E+01	4.950+01	4.77E+01	2.41E+02	2.580+02	1.32€+02		1.27E+02	1 3
271	Strip		<1.00E-03		1.356+01			2.70E+01			<9.00E-01		
	SAPPLE					b-125	**	R	u-106		^c		
Åv	TYPE	рH	UNFILTER 0.4 um	18 A	UNFILTER	0.4 um	18 A	UNFILTER	0.4 um	LE A	UNFILTER	0,4 um	1
	5o1	3.322	1.036+04										
	Sol	3.029	1.046+04										
,	Rod	3.047	(6.80E+02										
5	501	2.922	<b>7.82E+03</b>										
õ	501	2.922	9.642+03										
	201	4.764	***********										
0	Rođ		<1.30E+03										
ò	Sol	2.878	2.326+04										
5	Rod		<1.40E+03										
5	501	2.900	1.042+04										
5	Rod		<7.20E+02										
		2.912											
<u>,</u>			<b>9.23E+03</b>										
20	501	4. 414											
20	Rod		1.00E+03		7.48€+02								
20 20 50	Rod	3.007	1.00E+03 8.67E+03		7.486+02								
20 20 50 50	Rod		1.00E+03		7.48E+02								

Sol Sol Rod Sol Strip

2.933 2.918

2.956

UNITS:

8.2*E+03 *.05E+03 <4.30E+03 8.42E+03 <1.00E+02

Solution samples (Sol) in pCi/sl for all but Uranium, ug/sl for Uranium. Rod samples in pCi/rod for all but Uranium, ug/rod for Uranium. Strip in same units as solution samples, test vessel was stripped with 300 ml of E M HND3.

8.24E+03 6.13E+05

7.880403 6.536+03

TEST IDENTIFICATION: H-6-24

	1+Pu-238			-241			-244	• • • •	c	8-137	• • • •	•••••C	•-134	
UNFILTER	0.4 um	18 A	UNFILTER	0.4 um	18 A	UNFILTER O	),4 um		UNFILTER	0.4 un 1	18 A	UNFILTER	0.4 um	18 A
3.118+02						1.236+02			2.156+04			2.146+03		
3.516+02						1.400+02			2.286+04			2,250+03		
2.70E+01						1,402,002			<3.70E+02			<3.90E+02		
3.456+02						1.436+02			2.20E+04			2.25€+03		
3.276+02						1.348+02			2.09E+04			2.300+03		
2.646+02						(9,00E+00			<7.20E+02			<7.20E+02		
3.180+02						1.396+02			4.732.04			4.956+03		
2.55€+02						3.156+00			<8.10E+02			(9,50E+02	•	
3.000 +02						1.33E+02			2.11E+04			2.02E+03		
2.348+02						4.05E+00			<5.00E+02			<4.30E+02		
3.026+02						1.328+02			1.872+04			1.826+03		
3.386+07						3.40€+00			<3.40E+02			<3.70E+02		
2.93E+02						1.256+02			1.67E+04			1.430+03		
4.77E+07						1.34E+02			<5.00E+02			<2************************************		
2.750+02						1.232+02			1,746+04			1.64E+03		
2.732+02	•					1.176+02			1.71E+04			1.47E+03	6	
1 2.44E+07		1.446+02				1.178+02	1.146+02	3.156+01	1.62E+04	1.70E+04	1.44E+04	1.250+03	1.19E+03	1.23E+03
5.48E+02						3.780+01			(3,20E+03			(6.30E+01		
1 2.412+02		1.326+02	1 545+07	1 275+07	2.7*E+01	1.136+02	1.125+02	2.972+01	1.492+04	1.520+04	1.456+04	1.08€+03		1.25E+03
2,700+01			(9.00E-01			7.64E-01			1.532+02			0.000+00		

Ru-104	Ce-144	Eu-134	Np-237	¹ c - <del>9</del> 9
UNFILTER 0.4 um 18 A				

<2.90E+02

(2.3)E+00 2.00E-02 (1.80E+01 9.01E+00

of 8 # 19403.

A-17

 $\gamma$ 

### TEST TYPE: UNDEFECTED

# TABLE A.9

### TERT IDENTIFICATION: J-8-12

	SAMPLE		^U			UNFILTER 0.4 um
r		рН	UNFILTER 0.4 um 18 A	UNFILTER 0.4 um 18 A	UNFILTER 0.4 um 18 A	
	Rod			(Alpha +11.7)		
		4.480		3. 000+00	1,17E+01	
	Sol	4.395		8.34E+00	3.062+01	
	Rod			1.172+00	1.71E+01	
5	Sol	4.417	1.00E-02	1.132+01	3.246+01	
•	501	6.740	1.405-02	2,300+01	3.34E+01	
÷	Rod		4,805-02	3,512+00	3,842+01	
0	Sol	4.055	4.00E-03	3,786+01	8.156+01	
0	Rod		3.905-01	1.986+02	<b>4.32E+02</b>	
0	501	6.586	6.00E-03	5.092+01	1.14E+02	+.31E+00
0	Rod		3.406-01	5.056+01	3.050+02	1.75€+02
ĩ	Strip #1		2.70E+00	1.47E+03	4.80E+03	2.316+03
ì	Strip #2		5.700+00	7.12E+02	4,73E+03	3.21E+03
i	Strip #3		5.306+00	2.680+03	1.34E+04	<b>1.32E+03</b>
				\$6-175	Ru- 106	Ce-144
NA V	SAMPLE	ън	UNFILTER 0.4 um 18 A	UNFILTER 0.4 u 18 A	UNFILTER 0.4 u 18 A	UNFILTER 0.4 UM
~ `		pro-				
	Rod		.7.20E+02			
	501	6.480	1.796+07			
	Sol	6.395	5.052+02			
	Rod		<7.20E+02			
5	501	6.419	6.98C+02			
	5o1	6.790	6.58E+02			
9	Rod		<6.80E+02			
•	Sol	6,055	7.520+02			
0	Rod					
0	Sol	6.584	9.376+02			
	Rod		16.30E+02			
Q.	Strip #1		<1.50E+03			
	Strip #2		+ 1.50E+04			
10 11 11			6.76[+1)3			
1						
1	Strip #3					

Solution samples (Sol) in pCi/ml for all but Uranium, ug/ml for Uranium. Rod samples in pCi/rod for all but Uranium, ug/rod for Uranium. Strip Bl in same units as solution samples, specimen pedestal, 50 ml of B M HNO3. Strip B2 in same units as solution samples, test vessel, 250 ml of 0.1 M HNO3. Strip B3 in same units as solution samples, test vessel, 25 ml of B M HNO3 following Strip B2.

المعادية المعادية المعادية المعادية المعادية والمعادية والمعادية والمعادية والمعادية والمعادية والمعادية والمعادية والمعادية

UNFILTER U.4 um

18 A

UNFILTER 0.4 un

18 A

_ _ __

8-12

An-241	Pu-238	Cn-244	Cs-137	C++134
UNFILTER 0.4 um 18 A	UNFILTER U.4 um 18 A	UNFILTER 0.4 um 18 A	UNFILTER 0.4 um 18 A	UNFILTER 0.4 um 18 A
			1.022+03	4.306+02
		4.950+00	8.296+02	1.236+02
		1.130+01	1.892+03	1.555+02
		1.356+01	<3.70E+02	14.30E+07
		8.11E+00	2.228+03	2.402+02
		5.846+00	3.000+03	2.635+02
		4.50E+01	<4.10E+02	4.106+02
		1.356+00	4.4BE+03	4.436+02
		3.546+02	2.306+04	2.436+03
6.315+00	1,080+02	2.256+00	5.016+03	5.546+02
1.958.02	1.116.03	1.732+07	1.08E+03	· 3.90E+02
2.316+05	4.506+03	2.100+03	1.342+05	1.696+04
	1.556+03	2.445+03	3.962+04	1.000+04
3.21E+03 9.32E+03	6.136.03	8.29E+03	2.066+03	2.096+04
4. J.E .03	8.12.03	6.212.03		
Cø+144	Eu-154	No-237	Tc-\$9	5r Y - 9U

UNFILTER 0.4 um

<4,10E+01	9.146+02
< 3. 60E+02	1 NAE + 03
(8,1)E+02	2.076+05
.B. 10E+03	2.866+04
<1,40E+03	2.126.05
	<pre>&lt;3.60E+02 &lt;8.10E+03</pre>

18

A-19

たいたいたけたりにいいたいはないたいというたいと