

ATONIC ENERGY OF CANADA LIMITED

1

7

NYDROGEN-INDUCED DELAYED CRACKING:

2. EFFECT OF STRESS ON MUCLEATION, GROWTH AND COARSENING OF EIRCONIUM HYDRIDE PRECIPITATES

M.P. Puls

Whiteshell Nuclear Research Establishment Pinawa, Manitoba ROE 110 1984 December

- 11 -

HYDROGEN-INDUCED DELAYED CRACKING: 2. EFFECT OF STRESS ON MUCLEATION, GROWTH AND COARSENING OF ZIRCONIUM HYDRIDE PRECIPITATES

by

H.P. Puls

ABSTRACT

There is strong motivation for understanding the factors controlling zirconium hydride reorientation under stress because of the important role this plays in hydrogen-induced crack wrowth and/or crack initiation in zirconium and its alloys, particularly und v thermal cycling conditions Following an approach developed by Sauthoff, an analysis of the orienting effect of external stress on the nucleation, growth and coarsening of "," and 6-zirconium hydride precipitates in zirconium and its alloys is presented. The analysis is based on a previous theoretical study of some of the factors affecting hydride solubility in stressed and unstressed solids. Expressions are derived for the effect of stress on nucleation, growth and coarsening. We conclude, on the basis of these that the preferential orientation of bydride precipitates under stress is most efficient during the nucleation stage. The reason for this is that the overall driving force for nucleation, for the chosen parameters and the usual experimental conditions, is fairly small. Therefore, the driving force for orientating under stress can be a substantial fraction of the overall driving force. The analysis shows that hydride growth is unlikely to play a role in preferential orientation; but coarsening could be important under carefully chosen experimental conditions, which may be relevant to the hydride-cracking process.

> Atomic Energy of Canada Limited Whiteshell Nuclear Research Establishment Pinawa, Manitoba ROE 110 1984 December

4

AECL-8381

- 13 -

strong hydride reorientation effect in Zircaloy-2 suggests that internal

INTRODUCTION

F

1

i,

5

There is strong motivation for understanding the factors controlling zirconium hydride reorientation under stress, because of the important role this plays in hydrogen-induced crack growth and/or crack initiation in zirconium and its alloys, particularly under thermal cycling conditions (for a recent review, see Fuls et al. [1]). Previously, Ells [2] studied this problem in an attempt to explain hydride reorientation in uniaxially stressed zirconium alloys cooled from a temperature at which hydrogen was mostly in solution. Considering only the nucleation and growth stages, he concluded that reorientation was governed mainly by stress-assisted pre-

fe ential nucleation. In a later study, however, Ells and Simpson [3] concluded that, under certain circumstances, growth could also be a governing factor in stress-assisted hydride reorientation. Recently, Sauthoff [4-6] presented a detailed theoretical and experimental analysis of the orienting effect of an external stress on the nucleation, growth and coarsening of tetragonally misfitting Au-rich plates in an Fe-Mo-Au alloy. For this aystem, Sauthoff demonstrated that under the chosen experimental conditions, coarsening was the rate-determining step.

In a previous report [7] and subsequent modifications [8,9], (hereinafter referred to as I) we presented a general theoretical analysis of some of the factors affecting hydride solubility in stressed and unatressed golids. In the following, we re-examine the problem, first considered by fils [2], of the factors influencing the orienting tendency of sizeonium hydride precipitates, by making use of the results developed in I combined with classical nucleation theory and the thermodynamics of sizewith and epartmening. We follow closely the methodology of Sauthoff, relevant to missifiling precipitates. Our objective is to determine whichof the three states, nucleation, growth or coarsening, is most effective in causing the stress-assisted orientation of hydrides, thereby silowing us to determine the conditions under which stress orientation can be achieved, or avoided.

- 15 -

Defining

The paper is organized as follows. In the next section we present the general relations developed to describe homogeneous and heterogeneous nucleation in solids, and derive specific relations relevant to sirconium hydrides in stressed and unstressed solids. Next, we make use of the solubility studies carried out in I to determine whether, in these cases, hydrides precipitated homogeneously or heterogeneously. The values of certain important parameters are determined on the basis of this analysis. These parameters are used in a subsequent section to evaluate the stressreorienting potency of the nucleation stage. The following two sections apply the same considerations to the growth and coarsening stages, respectively. Finally, we consider the results in relation to hydride distributions in sirconium-based reactor pressure-tube material.

2. NUCLEATION

GENERAL

€.,

đ

In this section we present some general relations derived to deacribe classical homogeneous and heterogeneous nucleation in solids [10]. The steady-state nucleation rate is given by

(1)

(2)

J = ZB_kC⁰

where J is the number of nuclei formed per unit volume and unit time, S_k is the rate at which atoms are added onto the critical nucleus, and Z is the Zeldovich factor. This latter factor is typically around G.I and accounts for the fact that some supercritical nuclei decompose and that, in addition; we do not actually have a metastable equilibrium concentration of critical nuclei, as given by C_k^0 . The metastable equilibrium concentration C_k^0 is given by

 $G_{k}^{o} \left(\frac{W_{o}}{\hat{C}_{H}} \right) exp \left(-\Delta G_{k} / kT \right)$

we require an increase in the mean particle radius by a factor $4^{1/3} = 1.6$. Thus, an increase by 60% of the mean particle radius will result in com-

- 16 -

where \hat{C}_{H} is the atom fraction of solute (hydrogen) in the critical nucleus, and ΔG_{k} is the free energy of formation of a critical nucleus. For homogeneous nucleation, N_{O} is the number of atom sites per unit volume, whereas for heterogeneous nucleation it is the number of heterogeneous nucleation sites per unit volume. Typically, the number of heterogeneous nucleation sites is many orders of magnitude less than the number of atom (homogeneous) sites-

Usually, the free energy of nucleus formation, AG_k , is made up of three terms: the chemical free energy to form the nucleus from solid solution, the interfacial energy and the elastic strain and interaction energies. (Explicit expressions for 6-hydride plates and Y-hydride needles are derived in Appendix A.) The difference between homogeneous and heterogeneous nucleation resides mainly in the relative contributions to the total free energy of the last two anergies mentioned above. Thus, for heterogeneous nucleation on, for instance, grain boundaries, the interfacial energies will be greatly reduced. On the other hand, nucleation on dislocations generally reduces the contribution due to the elastic strain energy. A reduction in NG usually increases J more than a reduction in nucleation sites decreases it, and thus, except for exceptionally large undercooling, heterogeneous nucleation is favoured in most polycrystalline solids.

The kinetic factor, s_k, depends on the shape of the critical nucleus and the type of nucleation. For the disc- and needle-shaped precipitates considered here, we have the following expressions (to simplify the expressions, we have assumed that discs are equivalent to plates) [10]:

14 needles (homogeneous nucleation)

- 17 -

as the sample would have to be held at just below the nucleation tempera-

2) discs (homogeneous nucleation)

$$\mathbf{h}_{\mathbf{k}} = 2\pi \mathbf{e}_{\mathbf{k}}^{\mathbf{Z}} \cdot \mathbf{\bar{C}}_{\mathbf{H}} \cdot \mathbf{H}_{\mathbf{0}} \cdot \frac{\mathbf{D}_{\mathbf{H}}}{\mathbf{d}}$$

3) discs on a grain boundary (heterogeneous nucleation)

$$f_k = 2\tau \ a_k \ \cdot \ \tilde{C}_H \ \cdot \ H_0 \ \cdot \ D_H^{gb}$$

where c_k and a_k are the critical dimensions of the nucleus defined in Appendix A, \bar{C}_{H} is the concentration of hydrogen in the supersaturated solution, D_{H} and D_{H}^{gb} are, respectively, the diffusion coefficients of hydrogen in the bulk and in the grain boundaries of the zirconium matrix, and d is the jump distance for H in the Zr lattice. In Equation (5) N₀ takes the value for homogeneous nucleation.

As derived in Appendix A, the critical nucleation energy for 8-hydride plates is given by

$$=\frac{2}{3} = \frac{\tilde{\gamma}_p^3}{\left[\epsilon(\Delta g_{chem} - A_1 - \epsilon A_2 - \Delta g_{int})\right]^2}$$

and for y-hydride needles by

ACL

$$IG_{k} = \frac{16\pi}{3} \frac{\overline{v_{n}}^{3}}{e(Ag_{chem} - Ag_{strain} - Ag_{int})^{2}}$$

with $e = c_k/a_k$ being the ratio of the critical dimensions determined from Equations (A.19-A.20) and (A.27-A.28), respectively, while Ag_{chem} , $A_1 = cA_2$, Ag_{strain} , Ag_{int} , $\bar{\gamma}_p$ and $\bar{\gamma}_n$ are defined in Appendix A. It is evident that AG_k is a sensitive function of both $\bar{\gamma}$, the effective surface energy of the nucleus and, to a lesser extent, the difference between the chemical driving force and the strain and interaction energy terms.

[26,27]. Moreover, there are recent suggestions [20] that many of the hydrides nucleate near existing ones, in an autocatalytic fashion. The

- 18 -

(4)

(6)

(7)

2.2 EFFECTS OF EXTERNAL STRESS

The above results include the contributions due to both accommodation (internal) and applied (external) stress on hydride nucleation. When the external stress effects are small compared to the other terms, it is possible to derive an approximate relation that shows the effect of external stress on hydride nucleation more clearly, as follows.

The interaction energy per unit volume of a hydride under an external stress is given generally by [7-8]

(8)

 $\Delta g_{int} = \begin{pmatrix} -\sigma_{ij} \\ ij \end{pmatrix} \begin{pmatrix} e_{ij} \\ e_{ij} \end{pmatrix}$

where σ_{ij}^{A} are the applied stresses (positive when tensile) and e_{ij}^{A} the transformation or stress-free misfit strains of the hydride, as defined in T. In Equation (8), summation over repeated indices is implied, with the indices 1; j ranging from 1 to 3. Generally, we are interested in situations where the stresses in one direction are larger than those in the others, such as when applying a uniaxial tensile stress. In this case, for instance, the δ -hydrides, because their misfits are anisotropic, will have a greater negative interaction energy if they line up with their plate normals parallel to the direction of the applied stress. We call hydrides that do this "aligned", and those that do not, and are at 90° to this direction, "non-aligned". Assume for simplicity that hydrides in a poly-crystalline solid, because of texture effects, can only be found in these two directions. We now wish to determine the difference in nucleation trauency between "aligned" and "non-aligned" hydrides.

It will be convenient to define a quantity B given by

- 19 -

energing from this analysis, not considered in the aread

which is positive when both strasses and misfits are positive, as is the case for mirconium hydrides under tensile loadings. Separating out the contribution due to the external stress in Ag_{chem} by writing

$$a_{chem} = a_{chem} - (\pi/\bar{v}_{hyd}) p\bar{v}_{H}$$

where Ag_{chem} is the chemical driving force at sero stress, and the remaining symbols are as defined in Appendix A, we can express the critical nucleation energy (using Equation (A.22)) by

$$\Delta G_{k} = \frac{2}{3} \times \frac{\overline{v_{p}}}{\left\{ c \left[\Delta E_{chem} - A_{1} - cA_{2} + B - (\pi/\overline{v}_{hyd}) p\overline{v}_{H} \right] \right\}^{2}}$$

When $|B - (x/\bar{V}_{hyd}) p\bar{V}_{H}| \ll |Ag_{chem} - A_1 - cA_2|$, we can approximate AG_k by

$$\Delta G_{k} = \frac{2}{3} \times \frac{\overline{v}_{p}^{3}}{\left[\epsilon \left(\Delta R_{chem} - A_{1} - cA_{2}\right)\right]^{2}} \left\{1 - \frac{2\epsilon \left[B - \left(\pi/\overline{v}_{hyd}\right)p\overline{v}_{H}\right]}{\epsilon \left(\Delta g_{chem} - A_{1} - cA_{2}\right)}\right\}$$
(10)

This can be written

. . 5.

$$C_{k} = \frac{7}{3} + \frac{\bar{v}_{p}^{3}}{\left[c(\Delta g_{chem} - A_{1} - cA_{2})\right]^{2}} - \frac{4}{3} + \left\{\frac{e\left[B - (\pi/\bar{v}_{hyd}) p\bar{v}_{H}\right] \bar{v}_{p}^{3}}{\left[c(\Delta g_{chem} - A_{1} - cA_{2})\right]^{3}}\right\} (11)$$

In terms of the critical nucleus volume at zero stress, $V_k^0 = \frac{4}{3\tau} c(a_k^0)^3$,

- 20 -

A feature of stress orienting during the nuclestion state is that.

with a given by Equation (A.21) as

$$k = \frac{\gamma_p}{\epsilon(\Delta g_{chem} - A_1 - \epsilon A_2)}$$

e obtain

7.

$$L = \Delta G_{k}^{0} = V_{k}^{0} [B - (x/\bar{V}_{hyd}) p \bar{V}_{H}]$$

where ΔG_k^0 is the critical nucleus energy at zero external stress. The nucleation rate can, consequently, be written

(13)

=
$$J_{exp} \{ V_{k}^{0} [B - (x/\bar{V}_{hyd}) p\bar{V}_{H} \} \}$$

where Jo is the nucleation rate at zero external stress. Thus, the nucleation gate when external stresses are acting on the sample is simply the nucleation rate at zero stress modified by the exponential factor. A similar result was derived by Ells [2] and (Sauthoff [5] except for the term (x/V_{hyd}) pV_{H} , which was incorrectly omitted by both authors. Note that if the hydride misfit were impropic and there were no additional strains in converting a solution of zirconium and hydrogen to hydride (i.e., the molal volumes of hydrogen in zirconium and hydride are the same), then the effect of a uniform stress would be zero. Thus, stress can only affect the nucleation if the hydride misfft is anisotropic (which it is) and/or if the molel volume of hydrogen in zirconium differs from that in hydride. Recent re ults [11] indicate that the latter condition may not be the case, and hence only the inisotropic component of the misfit contributes to the effect of stress on hydride nucleation. The potency of the effect of external stress on nucleation at a particular temperature thus depends on the magnitude of V_k^0 and the term $E = (x/\bar{V}_{hyd}) p\bar{V}_H$. Large values of both quantities would enhance the drienting effect of stress during nucleation. The value of $B = (x/\overline{v}_{hyd}) p\overline{v}_{H}$ is determined, in part, by the applied stress, whereas V_{k}^{O} is determined by the case with which hydride precipitates can

M.P. Puls, Atomic Energy of Canada Limited Report, AECL-6302 (1978).

21 -

nucleate. Favourable conditions (large undercooling, low interfacial energy and small strain energy) result in small values of ∇_k^0 , which would tend to reduce the orienting efficiency of the nucleation stage. ∇_k^0 is therefore critical in determining the orienting efficiency of the nucleation stage, and in the following section we present an analysis of relevant experimental data used to estimate this parameter.

ANALYSIS OF HYDRIDE PRECIPITATION DATA

••••••

2.3

٢.

In previous studies by Puls [8,9], it was argued that the terminal solid solubility (TSS), measured on cool-down from a temperature where all the hydrogen is in solution, determines the onset of hydride precipitation, i.e., the temperature (for a given hydrogen concentration) at which hydrides nucleate. It was further argued that the TSS determined on heat-up corresponds approximately to the stress-free, or chemical, solvus [9]. On the basis of these data, then, it is possible to calculate the undercool ng from the stress-free, or chemical, solvus required to initiate nucleation. This information will now be used to determine parameters in the nucleation rate expressions given in the previous section.

It is evident from a study of Table 2 in reference 8 that there was a large variation in the undercooling, which appears to depend on the material on which the measurements were made. In the following we have restricted ourselves to only two of these, spanning the range from the largest to the smallest undercooling (see Table 1). We have also reanalyzed the data to take account of the temperature dependence of Young's modulus [15]. This leads to a temperature-dependent accommodation strain energy. The reanalyzed data are presented in Table 2, which gives the undercooling from the constrained solvus. This provides the net chemical energy avaitable for mucleation of an elastically constrained nucleus. We note that the inclusion of a temperature-dependent accommodation strain for which we had previously obtained unphysical negative values. In addition, for both materials, the decrease in AT in going to higher temperatures is now less.

22. J.D. Boyd and R.B. Micholson, Acta Metall. 19, 1379 (1971).

- 22 -

Table 3 summarizes the critical nucleation energies determined using the data from Tables 1 and 2. The largest uncertainty in these calculations comes from the estimates of the interfacial energies Y, and γ_{e} . The choice of 0.02 J/m² for γ_{e} is about as low as is physically reasonable for a coherent interface [10], thus placing a lower limit on this value. A reasonable estimate for Y, is less certain, but the value chosen is assumed to be in the range applicable to homogeneous nucleation conditions. The calculations show that y-hydrides have critical nucleus energies more than an order of magnitude lower, and would be favoured as the nucleating phase. With the assumption chosen, the lower nucleation energy for y-hydrides is expected because of their lower strain energy compared to w-hydrides. Insertion of the 4C, values into Equations (1) and (2) shows nonetheless that "homogeneous" nucleation for either phase is not possible. Since hydrides are, however, observed to form (although it is not slways clear how they were nucleated), this result suggests that estimates for some of the physical constants are incorrect. (We assume the validity of the classical nucleation model).

The critical nucleation energy depends on the subs of the effective interfacial energy, $\bar{\gamma}$. Therefore $4G_{\rm h}$ is a very sensitive function of $\bar{\gamma}$, and even small changes in $\bar{\gamma}$ can have large effects on $4G_{\rm h}$ and, hence, the nucleation rate. Thus, heterogeneous grain boundary nucleation, produced by lowering $\bar{\gamma}$, seems likely to dominate at small undercooling [10,16]. In addition, the reduction of $4R_{\rm strain}$ by precipitation near dislocations or by the formation of a metastable phase with a lower strain energy can also increase the nucleation rate [16]. It was found that for the TSS data given in Table 3, lowering the value of $\bar{\gamma}$ (by lowering $\gamma_{\rm strain}$) is the most effective means of increasing the nucleation rate to the observable levels of, say, $10\frac{1}{7}$ nuclei/(m³.s). Reduction of the strain energy term to negligible levels is, by itself, not sufficient th obtain an observable nucleation rate, except for the case of γ -hydrides in firealoy-2,

In Table 5 we have summarized the values of the interfacial energy and the resulting critical nucleus dimensions and energies that give an acceptable nucleation rate around $10^{16} - 10^{17}$ nuclei/(m³.s). These values are meant to reflect lower limits for the nucleation rate, and hence upper

TABLE 1

SIBULARY OF TEE BATA FOR HANDOGEN IN TIBCONTING AND TRALLOW-3

- 23 -

limits for V_k^0 . Higher nucleation rates would correspond to smaller values of V_k^0 . Obviously, the choice of an acceptable nucleation rate is somewhat arbitrary, but fortunately large changes in this rate correspond to fairly small changes in V_k^0 . Thus, our estimate of V_k^0 is likely to be accurate within a factor of two. Note that to obtain acceptable nucleation rates from the data on pure zirconium, it was necessary to also reduce the strain energy of the nucleus by significant amounts. The analyses show that if δ -hydrides are the sucleating phase, the values of V_k^0 given in Table 4 range from 2.6 x 10⁻²⁷ to 5.5 x 10⁻²⁷ m³, whereas if y-hydrides are the nucleating phase, the V_k^0 values range from 2.6 x 10⁻²⁷ to 10.4 x 10⁻²⁷ m³.

EFFECT OF EXTERNAL STRESS ON HYDRIDE NUCLEATION

In Section 2.2 we showed that wim $B = (x/\bar{v}_{hyd}) p\bar{v}_{H}$ is much smaller than the difference between the chemical free energy at zero stress and the accommodation strain energy terms, the nucleation rate under external stress can be approximated by Equation (13),

(13)

(14)

 $J = J_{o} \exp \left\{ \overline{v}_{k}^{o} [B - (x/\overline{v}_{hyd}) p \overline{v}_{H}] / kT \right\}$

This relation can be used to determine the orienting efficiency due to external stress during the nucleation stage.

We wish to evaluate the results of tests done on samples cut from sirconium-based pressure tubes. To simplify the analysis, we assume that the crystallographic textures of the tubes are such that there are equal numbers of basal poles of the hexagonal-close-packed (hcp) Zr-matrix crystals pointing in the radial and tangential directions, and none in the longitudinal direction. We also assume that J = N, where N is the number of hydride precipitates observed, and that a uniaxial tensile stress is applied slong the tangential pressure-tube direction. Hence,

 $N_a^{\alpha} = N_o \exp \{ V_k^o [B_a - (x/\bar{V}_{hyd}) p \bar{V}_H] / kT \}$

- 24 -

ورف

$$\mathbf{x}_{na}^{\sigma} = \mathbf{x}_{o} \exp \{ \mathbf{v}_{k}^{o} [\mathbf{B}_{na} - (\mathbf{x}/\bar{\mathbf{v}}_{hyd}) \mathbf{p} \bar{\mathbf{v}}_{H}] / kT \}$$

where the subscripts a and na refer to "aligned" and "non-aligned" hydrides, respectively, as explained in Section 2.2. Defining (15)

(16)

(17)

$$R = \frac{R^{0}}{R^{0} + R^{0}}$$

1

then n=1 means complete alignment and n=1/2 means random alignment, i.e., equal numbers of hydrides in the two orientations. Equation (16) can be written

$$\frac{1}{1 + \exp[V_{L}^{O}AB/kT]}$$

where $\Delta B = B_{ma} - B_{a}$ and the isotropic term $(x/\bar{v}_{hyd})p\bar{v}_{H}$ has cancelled out. Multiplied by 100, n is equivalent to F, the percentage of hydrides whose trace is perpendicular to the applied stress. F is a constant that has been widely used in the literature [2] to characterize the hydride distribution.

As an application of Equation (17), we consider the case of an external uniaxial stress applied along the tangential (circumferential) direction of the pressure tube, with all other stresses equal to zero. The "aligned" hydrides are, therefore, those with their plate (or needle) norpals in the tangential direction (radial hydrides), whereas the "nonaligned" hydrides are those with their plate (or needle) normals in the radial direction (circumferential hydrides). The results are summarized in Table 5 for a series of applied stresses, assuming that the hydrides in the sample are s-hydride plates lying on basal planes. The calculations show that even at an applied stress of 50 MPa, stress-orienting effects should be observable. However, rather complete orienting does not occur until

TABLE 3

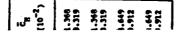
- 25 -

and

stresses of around 200 MPa are applied to the sample. It is also evident from Table 5 that there is not much difference in orienting tendency between hydrides in Zircaloy-2 and zirconium. Thus, it should be possible to observe a stress-orienting effect in zirconium if stresses around 100 MPa can be applied. This should be practical in zirconium containing sufficient amounts of dissolved oxygen, where the yield stress would be above 100 MPa [19].

The effect of a uniaxial atress on the orienting of t-hydride needles is more complicated, and could be zero because of the various (1120) directions that are available. That is, it depends on the orientstion of the hydrids's needle axis with respect to the applied stress, and on the grain orientation on which the hydride chooses to precipitate. The most favourable v-hydride case, "non-aligned" hydrides with their needle axes parallel, and "aligned" hydrides with their axes perpendicular to the applied stress, gives a stronger orienting effect than does the most favourable 4-hydride case, since the misfit difference involved (using the value derived by Carpenter [16]) is more than double that for 6-hydride. The results of these calculations have also been summarized in Table 5.

In pressure-tube material, a fabrication procedure has been chosen that results in a preferential ("circumferential") orientation of the hydrides. The present analysis suggests that this preferred orientation is the result of internal stresses. As pointed out by Peravic et al. [20], "the sign of these stresses is such that the basal planes are either under compression in grains where the c-axis is nearly parallel to the circumferential direction or are under tension in those grains where the c-axis is nearly parallel to the radial direction". It is found experimentally that the stress required to reorient most of the hydrides from the circumferential to the radial direction in one cycle requires a tensile stress in the citcumferential direction of about 400 MPs in cold-worked Zr-2.5 wrX Nb and about 200 MPa in Zircaloy-2 [21]. From the foregoing, assuming values of V for Ir-7.5 wil Hb similar to Zircaloy-2, we calculate that in Zr-2,5 wit Nb the magnitude of the internal stress is about 200 MPs. This would make the magnitude of the internal stress is about 200 MPs. be sufficient to give a strongly aligned hydride distribution in externally unstressed material, as observed. The smaller applied stress values for a



- 26 -

strong hydride reorientation effect in Zircaloy-2 suggests that internal stresses are much smaller in this material. According to Table 5, the internal stresses are likely to be less than 100 MPa. This is consistent with metallographic observations [21], which show that hydrides in Zircaloy-2 are less strongly aligned along the circumferential direction than those in Zr-2.5 wtX Wb.

- 13

. GROWTH

Hydride growth refers to the stage after the hydride precipitates have formed (nucleated), but when there is still a supersaturation of hydrogen in solution. The difference between the hydrogen concentration in the (supersaturated) matrix far from the hydride and the equilibrium concentration near the hydride provides the driving force for growth.

The average concentration of hydrogen in the matrix in the vicinity of a hydride particle is given by [8]

CH = CH exp[V hyd Ag_{strain}/xRT]exp[-V hyd B/xRT]exp[pV /RT] (18)

where we have rewritten the expression given in reference 8 in the notation of the present paper. Ag_{struin}, B, \overline{v}_{hyd} , \overline{v}_{H} , x and RT are as defined in previous sections. The ratio of equilibrium concentrations for "aligned" and "non-aligned" hydrides in a sample subjected to an external stress is given by

 $\frac{C_{H}^{\sigma_{1}con}(na)}{C_{H}^{\sigma_{1}con}(a)} = \exp[-\overline{v}_{hyd} \Delta B/xRT]$

(19)

For 8-hydrides and the uniaxially applied stresses of 50-300 NPa considered in Table 5, the ratio $C_{\rm H}^{\sigma,con}(ns)/C_{\rm H}^{\sigma,con}(s)$ ranges from 1.00003 to 1.0002.

- 27 -

Thus, there would be a negligible difference due to external stress, between the driving forces for the growth of "aligned" and "non-aligned" hydrides, for applied stresses of practical interest.

- 14 -

4. COARSENING

During particle coarsening the hydrogen concentration in the matrix is in the same range as the solubility of an individual hydride particle. The latter will depend on its size and orientation with respect to any applied stress. Large particles are favoured over smaller ones, and "aligned" particles over "non-aligned" ones. Sauthoff [5] has shown how to analyze such a situation and we follow his approach below.

By combining Equation (A.22) with Equation (A.6), an expression cun be obtained for the solubility of a 6-hydride precipitate as a function of its dimensions (particle radius a_1), as follows:

$$\frac{\mathbf{x}\mathbf{R}\mathbf{T}}{\bar{\mathbf{v}}_{hwd}}\ln\frac{\mathbf{C}_{\mathrm{H}}^{\mathrm{g}}(\mathbf{a}_{1})}{\mathbf{C}_{\mathrm{H}}^{\mathrm{g}}} = \frac{\bar{\mathbf{y}}}{\epsilon \cdot \mathbf{a}_{1}} + \mathbf{a}_{1} + \epsilon \mathbf{A}_{2} - \mathbf{B} + (\mathbf{x}/\bar{\mathbf{v}}_{hyd}) \mathbf{p}\bar{\mathbf{v}}_{\mathrm{H}}$$
(20)

From Equation (20), the ratio of the solubilities of two hydrides of identical orientations, but different radii a_1 and a_2 , is given by

$$\ln \frac{C_{\rm H}^{\rm e}(a_1)}{C_{\rm e}^{\rm e}(a_1)} = \frac{\bar{V}_{\rm hyd}}{\bar{X}RT} \frac{\bar{Y}}{e} \left(\frac{1}{a_1} - \frac{1}{a_2}\right)$$
(21)

The particle size difference, for differently oriented hydrides, that would give no solubility difference is

$$\frac{\overline{Y}}{e} \left(\frac{1}{a_{a}} - \frac{1}{a_{na}} \right) = -\Delta B$$

(22)

TABLE 6

Defining

$$\zeta = \frac{\alpha_{a}}{\alpha_{BA}}$$

Equation (22) can be rewritten

$$-\frac{eAB}{\pi}=\frac{1}{4\pi}(1-\xi)$$

This relation shows that an "aligned" particle of radius a_{a} has the same solubility (and therefore grows or shrinks at the same rate) as a "nonaligned" particle with radius a_{na} ($>a_{a}$). The constant 5 could, therefore, be considered an equivalent radius ratio, as it adjusts the size of the "aligned" particles to bring them to the same size scale as the "nonaligned" particles. That is, by setting

(23)

(24)

a_(adj) = -

where a (tadj) is the adjusted "aligned" particle radius, these adjusted particles can now be dealt with in the same way as the radii of the "nonaligned" particles, in investigating the coarsening kinetics.

During coarsening, the biggest particles grow fastest, whereas those having the mean radius, which is about half the maximum, are about to stop growing. Thus, choosing $\zeta = 1/2$, Equation (24) defines a minimum mean radius for a situation where even the biggest "non-aligned" hydrides will not grow any more. As an example, at an applied stress of 200 MPa, and choosing T = 567 K and $\bar{\gamma} = 0.041$ J/m² ($\gamma_{e} = 0.075$ J/m², c = 0.14), Equation (24) talls us that, when the mean particle radius for the distribution is > 2.794 x 10⁻⁸ m, all "mon-aligned" particles would stop growing.

To achieve complete orienting in the pressure-tube materials considered in the previous sections, all the "non-aligned" particles (half the total particles) would have to disappear, plus half the "aligned" ones. This factor-of-four decrease in the total number of precipitates means that

- 4-1 -

APPENDIX A

we require an increase in the mean particle radius by a factor $4^{1/3} = 1.6$. Thus, an increase by 60% of the mean particle radius will result in complete orienting of the particles under the influence of the stress, provided the particles are large enough, as given by Equation (24). If coarsening occurs during an earlier precipitation stage, where the mean radius is smaller than that given above, then, from Equation (24), ξ will be larger than 1/2, and more hydrides will have to dissolve to achieve complete orienting. This will, in turn, mean that the mean radius will have to increase by more than 60% for complete orienting.

To determine the time in which complète orienting can occur, an equation for the rate of increase of particle size during coarsening is required. Boyd and Wicholson [22] have derived such an expression for disc-shaped particles, based on the Lifshitz-Wagner solute diffusioncontrolled coarsening theory. They obtained the following expression for the increase in the mean particle radius a with time to

It is evident from Equation (25) that the coarsening rate is both a sensitive function of the mean particle radius (it increases as the cube of that radius) and the temperature at which the coarsening takes place (it decreases exponentially with temperature, through $P_{\rm H}C_{\rm H}^{\rm S}$). Therefore, large mean particle radii and/or low holding temperatures can result in negligible coarsening rates.

(25)

For the example chosen above, $\tau = 1.272 \times 10^{21} \text{ m}^3 \text{ m}^{-1}$; therefore to increase the minimum mean particle radius of 2.794 x 10^{-8} by a factor of 1.6 would take less than a second at 567 K. Therefore, reorientation by coarsening would be possible for such small hydride particle sizes. To obtain such small sizes, however, would be rather difficult experimentally,

 $\overline{a}^3 - \overline{a}^3_0 = \frac{t - t_0}{\tau}$

with

 $\frac{1}{T} = \frac{16}{9} \frac{\gamma_1 D_H C_H^{\$} \overline{V}_{H}}{e\pi RT}$

- 4-2 -

as the sample would have to be held at just below the nucleation temperature, and this temperature is not known accurately. Moreover, as examination of the precipitate distribution is generally carried out at room temperature, the final result could be obscured by subsequent additional nucleation and growth steps. More realistic holding temperatures and larger particle sizes give negligible coarsening rates, as summarized in Table 6.

5. DISCUSSION AND CONCLUSIONS

The foregoing analysis shows that the preferential orientation of hydride precipitates under stress is most efficient during the nucleation stage. The reason for this is that the overall driving force for nucleation, for the parameters and conditions chosen, is fairly small and therefore the driving force for orienting under stress can be a substantial fraction of the overall force. The analysis shows that hydride growth is unlikely to play a fole in preferential orientation, but coarsening could be important under carefully chosen experimental conditions. However, in the standard stress reorientation tests, where a sample is heated to above the TSS and then cooled to room temperature under stress, only the nucleation stage is likely to be effective in reorienting hydrides. It should be noted that the present treatment has been highly simplified and contains a number of unsupported physical assumptions.

The foremost assumption is the validity of homogeneous and heterogeneous classical nucleation theory, i.e., that nucleation proceeds wire a thermality activated critical clustering process. Such a theory may not be strictly applicable to the formation of precipitates involving structural as well as tompositional modifications, such as is the case for sircontum hydrides. It has been postulated [23,24,25] that the structural aspect of the formation of zirconium hydrides is similar to a martensitic type of transformation involving the shearing of the hcp lattice. Classical nucleation theory may not be applicable to such structural transformations, as has been found for the nucleation of martensite

where p is the hydrostatic stress, and \bar{v}_{H} the molal volume of hydrogen in zirconium. To simplify the subsequent expressions, we drop the superscript

- A-3 -

[26,27]. Moreover, there are recent suggestions [20] that many of the hydrides nucleate near existing ones, in an autocatalytic fashion. The quantitative implications of these mechanistic details have not been considered in the present treatment.

In addition to these difficulties, a large uncertainty in the application of the classical nucleation theory involves the choice of the interfacial energies, γ_1 and γ_c . As previously stated, the critical nucleation energy, and hence the critical nucleus volume, is 4 very sensitive function of the assumed interfacial energies. Based on the transformation mechanism postulated by Carpenter [24] and Weatherly [25], and the experimentally observed shapes of the hydrides, it seems reasonable to assume that the flat faces of the plate and the circular faces of the needle form coherent or semicoherent interfaces, whereas the edges or ends, respectively, form incoherent interfaces. Chursing a very low value for γ_c , we have adjusted the value for γ_1 to give an acceptable minimum nucleation rate. This has necessitated choosing fairly low values for γ_1 . We have, unfortunately, no independent way to determine whether the values chosen are reasonable for zirconium hydrides.

Other quantities that determine the critical nucleus in an important way are the chemical driving force and the accommodation and interaction energies. The chemical driving force depends on the correct choice of the nucleating temperature. We have determined this indirectly from experimental data on the cooling solvi measured by dilatometry. There is a certain amount of acatter in these data as well as in the corresponding heating solvi, and this will be reflected by some uncertainty in the calculated value of Ag_{chem}.

Possibly important uncertainties in the estimates of the accommodation and interaction unergies are the values of the misfit or transformation atrains. We have chosen to use those determined by Carpenter [18]; based on the difference in the crystal structure of the hydrides and the zircobium matrix. Somewhat different values for y-hydrides were deduced more recently [24], based on detailed arguments on the mechanism of y-hydride formation. A significant misfit component

constant eccentricity, by writing the volume of the precipitate in terms of

< and solving

- 1-4 -

emerging from this analysis, not considered in the previous study [18], is a large shear misfit. However, inclusion of a large shear strain into the expression for the accommodation strain energy results in very large strain energies. On the other hand, our recent analysis [9] shows that the calculated values, based on the misfit strains deduced by Carpenter [18], appear to be reasonable. Perovic et al. [20] have also suggested that 6-hydrides may form with a shape change similar to that of a martensitic transformation. They assume that all of the 17% volume misfit may be accommodated along the plate normal, while in addition there is a large shear parallel to the habit plane. Using these latter transformation strains, an accomposation strain energy is obtained that his close to the value obtained based on Carpenter's strains [18]. However, there would be an enormous difference in the orienting tendencies of the hydrides, depending on which set of transformation strains is used. The values suggested by Perovic et al. would give a significantly higher orienting energy (by a factor of more than six) under the influence of a uniaxial

The recent study by Puls [9] shows that there is a close relationship between the observed hysteresis in the TSS and the accommodation strain energy. Therefore, despite some uncertainties in the chosen transformation strains, the strain energies used in the present analysis appear to be fairly reliable. This leaves only the interfacial energies as uncertain parameters, and these we were able to determine by requiring that the model must give an observable nucleation rate, in agreement with the indirect experimental observations.

According to Equations (13) and (17), stress orientation during nucleation is enhanced when the critical nucleus volume is large. This is possible when i) the driving force for nucleation is small (i.e., small undercooling from the solvus; which is likely to occur during slow cooling), ii) the splied stresses are high and, iii) there is a large transformation strain anisotropy. As the transformation strain anisotropy is larger for whydrides as opposed to 6-hydrides, the former should exhibit a stronger orienting effect, assuming that they can be formed at slow cooling rates.

- 1-5 -

A feature of stress orienting during the nucleation stage is that, provided the applied stresses are high enough, complete orienting should not occur unless all the hydrides have been dissolved. This was confirmed experimentally by Hardie and Shanahan [28], thus providing an important test of the conclusion that orienting is governed by the nucleation stage. By assuming that hydride orientation would follow a dependence given by Equation (17), and fitting this to their experimental results, they deduced that the average value for the exponential term divided by the applied uniaxial tensile stress was 4.6 x 10⁻⁸ m²/H. Assuming a nucleation temperature of 573 K at a hydrogen concentration of 100 µg/g and a net misfit of 0.0262, we obtain a value of 13.883 x 10^{-27} m³ for V_L⁰. (Hardie and Shanahan [28] obtained a value of 7.450 x 10⁻²⁷ m assuming a larger net misfit of 0.05.) The v_k^0 value obtained from the experimental fit is about a factor of two larger than the estimated value given in Table 5. This agreement seems reasonable in view of the uncertainties mentioned in estimating the nucleation parameters and the misfit strains, and the difficulties in determining the internal stresses in the samples used.

REFERENCES

M.F. Puls, L.A. Simpson and R. Dutton, in Fracture Problems and Solutions in the Energy Industry, L.A. Simpson, ed., Pergamon Press, Oxford and New York, 1982, p. 13.

Z. C.E. Elle; J. Mucl. Mater: 35, 306 (1970).

1.

C.E. Ells and C.J. Simpson, in Hydrogen in Metals, (ASH Metals Park, Ohio, 1974), p. 345.

- 1-6 -

G. Sauthoff, Z. Metallkde. 66, 106 (1975).

G. Sauthoff, Z. Metallkde. <u>67</u>, 25 (1976).

G. Sauthoff, Z. Metallkde. 68, 500 (1977).

7.	N.P. Puls, Atomic Energy of Canada Limited Report, AECL-6302 (1978).
8.	N.P. Puls, Acta Natall. 29, 1961 (1981).
9.	N.P. Puls, Acta Netall. <u>32</u> , 1259 (1984).
10.	K.C. Russel, in "Phase Transformations", (ASM, Matals Park, Ohio, 1970), p. 219.
11.	C.E. Coleman, S.R. MacEwan and C.E. Ells, Personal communication,
	Chalk River Huclear Laboratories.
12.	J.J. Kearns, J. Hucl. Mater. <u>22</u> , 292 (1967).
13.	W.H. Erickson and D. Hardie, J. Hucl. Mater. 13, 254 (1964).
14.	G.F. Slattery, J. Inst. Metals <u>95</u> , 43 (1967).
15.	H.E. Rosinger, I.G. Ritchie and A.J. Shillinglaw, Atomic Energy of Canada Limited Report, AECL-5231 (1975).
16.	R.B. Wicholson, in "Phase Transformations", (ASM; Metals Park, Ohio, 1970), p. 269.
17.	A. Savatzky, J. Wucl. Mater. <u>2</u> , 62 (1960).
18.	G.J.C. Carpenter, J. Nucl. Mater. <u>48</u> , 264 (1973).
19.	D.G. Westlake, Trans. AIME 233, 368 (1965).
20.	V: Perovic, G.C. Weatherly and C.J. Simpson, Acta Metall. 31, 1381
	(1983).
21.	B.A. Cheadle, Chalk River Musiaar Lapousterises, 1982, private communication.
Q	
. •	

- 21 -

٠.

3_{Y4}

4.0

- 40

The .

-

- 4-7 -

(4.27)

22. J.D. Boyd and R.B. Micholson, Acta Hetall. 19, 1379 (1971).

- 22 -

23. J.S. Bradbrook, G.W. Lorimer and N. Ridley, J. Mucl. Mater. <u>42</u>, 142 (1972).

G.J.C. Carpenter, Acta Netall. 26, 1225 (1978).

G.C. Westherly, Acta Netall. 29, 501 (1981).

.24 .

25.

26. C.L. Mager, in "Phase Transformations", ASH (1970), p. 115.

27. M. Suezawa and H.E. Cook, Acta Netall. 28, 423 (1980).

28. D. Hardie and H.W. Shanahan, J. Hucl. Mater. 55, 1 (1975).

TABLE 1

- 23 -

SUMMARY OF TSS DATA FOR HYDROGEN IN ZIRCONIUM AND ZIRCALOY-2, USED TO DETERMINE THE CHEMICAL FREE ENERGY FOR NUCLEATION

Reference	Material	Method	Temperature Range (K)	Constants A Q (kJ/mol)
Kearns [12]	Zirceloy-2 and -4	Diffusion equilibrium (heating)	533-798	11.50 34.54
Kearns [12]	Zirconium	Diffusion equilibrium (heating)	533-798	11.78 36.47
Erickson and Hardie [13]	Zirconium	Dilatometry (cooling)	373-671	11.48 32.45
\$1attery [14]	Zircaloy-2	Dilatometry (cooling)	436-563	10.34 25.15

The data have been represented in the form of an Arrhenius equation: In $C_{\rm H} = A - Q/RT$; $C_{\rm H} =$ hydrogen concentration (ug/g); T = temperature (K)= R = gas constant.

TABLE 2

- 26 -

VALUES OF UNDERCOOLING FROM THE CONSTRAINED SOLVUS DERIVED FROM THE TSS DATA (SUMMARIZED IN TABLE 1) FOR ZIRCONIUM AND ZIRCALOY-2

з,

Reference	Material	Hydride Type::	Ē _H (µg/g)	4T (K)
Erickson and Hardie [13]	Zirconiun	6 6 7 7	100 400 100 400	6 5 10 10
Slattery [14]	Zircaloy-2	4 4 7 7	35 150 35 150	41 32 45 37

+ Using E = 97.08 - 0.058(T-273) GPa [15], v = 0.3, and the strain energies calculated by means of Equations (A.4) and (A.25). The numerical values of the strain energies used are given in Table 3. The final values have been reduced by 10Z as in reference 8 to take account of possible non-linear effects.

1

TABLE 3

CRITICAL HOMOGENEOUS NUCLEATION ENERGIES FOR 6- AND Y-HYDRIDES IN ZIRCALOY-2 AND ZIRCONIUM

Material	T _n (K)	Hydride Type	Ag _{chem}	^{Åg} strain A ₁ (10 ⁸ J/m ³	A ₂	40 ⁰ ∉ (J)
Zircaloy-2	567	6	4.020	2.290	2.278	2.578x10 ⁻¹⁷
		Υ.	2.514	1.283		1.194×10^{-19}
· · ·	446	6	5.176	2.766	2.753	1.317×10^{-17}
			3.237	1.396		5.339x10 ⁻¹⁹
Zirconium	711	1. 6	2.301	1.929	1.919	6.595x10 ⁻¹⁶
		Y	1.439	1.081		1.412×10^{-17}
	568	8	2.637	2.206	2.195	4.900×10^{-16}
	· .	Υ	1.649	1.236		1.061×10^{-17}

Assuming $\gamma_1 = 0.8 \text{ J/m}^2$, $\gamma_c = 0.02 \text{ J/m}^2$ + See footnote to Table 2

- 25 -

• •	VALUES	OF S	OME	PHYSICAL	CONSTANTS	AND	CRITICA	L NUCLEI	DIMENSION
۰.									· · · · ·
	THAT	GIVE	ACC	EPTABLE	NUCLEATION	RATI	ES AT ZE	RO EXTER	NAL STRESS

TABLE 4

NS

Material	Т _в (К)	Nydride Type	^Y i (J/m ²)	ck (10 ⁻¹⁰ m)	ak (10 ⁻⁹ 8)	· * •	46 <mark>6</mark> (10 ⁻¹⁹ J)	40 <mark>8</mark> /T (10 ⁻²² J/K)	J ^{of} (suclei/u ³ .)	V ^e k) (10 ⁻²⁷ u ³	D ₁₁) (10 ⁻¹⁰ m ² /s)	Ċ _₩ (10 ⁻²)
Zirceloy-2	567		0.075	2.924	2.071	0.14	3.700	6.526	\$.602x1016	5.253	1.267	1.368
	446	4	0.095	2.169	1.678	0.13	2.628	5.867	2.117x101/	2.559	0.1753	0.319
	567	Ŧ	0.2 .	4.874	5.734	0.085	3.512	6.194	5.225=1015	5.706	1.267	1.368
	446	۲	0.364	3.259	5.926	0.055	2.427	5.553	1.105x10 ¹⁷	2.636	0.1753	0.319
Zirconium	711	4	0.075*	3.08/	2.072	0.15	3.806	5.353	2.655x10,7	5.548	5.724	3.649
	568	4	0.085*	2.721	1.969	0.14	3.532	6.218	4.789x10 ¹⁷	4.419	1.267	0.912
	711	Ŧ	0.166	6.678	5.565	0.12	4.700	6.568	7.900x1016	10.395	5.724	3.649
	568	Ý	0.166	5.820	4.850	0.12	3.547	6.244	3.464x1010	6.880	1.267	0.912

* A1 reduced by 2/3 from value given in Table 3.

⁺ Ag_{strein} reduced by 1/2 from value given in Table 3. # Using N₀ = 4.325 $\times 10^{26}$ sites/m³, d = 4.5 $\times 10^{-10}$ m

** Using D_H = 2.17 x 10⁻⁷ exp[-35 100/RT] m²/s [17].

EFFECT OF A UNIAXIAL EXTERNAL TENSILE STRESS ON THE OBLEMTING TENDENCY OF y- AND 6-HYDRIDES DURING NUCLEATION, USING THE HYDRIDE MISFIT STRAINS DETERMINED BY CARPENTER [18]

TABLE 5

Naterial:	Zircal	cy-2	Zircal	.o y -2	Zirc	onium	Zirco	mium	Ľ
T _n (K):	567	567	448	446	711	711	568	568	1
v_k^o (10 ⁻²⁷ m ³):	5.253	5.706	2.559	2.636	5.548	10.395	4.419	6.880	
Hydride Type:	6	Y	8	۲.	6	۲	6	Y	
а ^А (NPa)				n					
				· · ·	,		1		1
50	0.707	0.888	0.632	0.771	0.677	0.953	0.677	0.924	
100	0.853	0.985	0.747	0.919	0.815	0.998	0.814	0.993	
150	0.933	0.998	0.836	0.975	0.902	1.000	0.902	0.999	
200	0.971	1.000	0.897	0.992	0.951	1.000	0.951	1.000	
250	0.988	1.000	0.938	0.998	0.976	1.000	0.976	1.000	
300	0.995	1.000	0.963	0.999	0.988	.1.000	0.988	1.000	

- 27 -

.

TABLE 6

TIME, At, TO INCREASE THE INITIAL MEAN 6-HYDRIDE RADIUS. a. BY 602 DURING COARSENING

T (K)	C _H (atomic fraction)	D _H (a ² /s)	т (в)	ā _c (11)	At (5)
448	8.455x10 ⁻⁴	1.753x10 ⁻¹¹	5.086x10 ²²	1x10 ⁻⁶	1.526x10 ⁵
373	1.310x10 ⁻⁴	2.636x10 ⁻¹²	1.817x10 ²⁴	1x10 ⁻⁶	5.45x10 ⁶
300	8.716x10 ⁻⁶	1.678x10 ⁻¹³	3.451x10 ²⁶	1x10 ⁻⁶	1.035x10 ⁹

- 28 -

1 9

APPENDIX A

- 1-1 -

EXPRESSIONS FOR THE CRITICAL NUCLEATION ENERGY FOR DELTA AND GAMMA HYDRIDE PRECIPITATES

. Delta Hydrides

We assume that the 6-hydrides precipitate as discs on the basal plane of the hcp zirconium lattice. For the purpose of calculating the strain energy, the plate is approximated by an oblate spheroid with major axis a and minor axis c. To simplify the calculation for the total interfacial energy, it is convenient to consider the plate as a disc of radius 'a' and thickness '2c'. It is then assumed that the face of the disc is coherent with the matrix, with a specific interfacial energy γ_c , whereas the sides are incoherent, with a specific interfacial energy γ_i . The total free energy for nucleation, AG, for the oblate spheroid having volume $V_{plate} = 4/3 \pm a^2c$ is given by

where Δg_{chem} is the absolute value of the Gibbs free energy of transformation per unit volume, excluding strain energy contributions (the chemical free energy), and Δg_{strain} and Δg_{int} are the self-strain and interaction energies per unit volume, respectively. In the notation of I,

Ag_{strain} : W^{inc}/V_{hyd}

Ag_{int} : ^{ga}/v_{hyd}

 $AG = \frac{4}{3} \pi a^2 c (Ag_{strain} + Ag_{int} - Ag_{chem}^6) + 2\pi a^2 \gamma_c + 4\pi ac \gamma_i$

(A.1)

(1.2)

The strain energies Ag_{strain} and Ag_{int} have been evaluated in I. For c/a << 1, Ag_{strain} is given by

 $Ag_{strain} = \frac{E}{1-v} A^2 + \frac{E}{1-v} \frac{\pi}{2} \frac{c}{a} [A \cdot \xi + \frac{1}{4(1+v)} \xi^2 + \frac{1}{8} \frac{(2-v)}{(1+v)} \xi^2] \quad (A.4)$

(A.5)

(A.6)

where E is Young's modulus, v is Poisson's ratio and A is the isotropic misfit strain; ξ is the misfit strain, in addition to A, in the direction of the plate normal; and s is the shear misfit in the plane of the plate. As shown in I, Ag_{int} depends on the applied stress. As an example, taking the simplest specific case of a uniaxial tensile stress, σ_{11} , applied in the direction of the plate-face normal, one obtains Mie^{-e} affreim

 $\Delta g_{int} = - (\Delta + \xi) \sigma_{11}$

The chemical free energy for delta hydrides is given by

$$\tilde{s}_{\text{chemi}}^{\delta} = \frac{\pi}{\bar{v}_{\text{hyd}}^{\delta}} \operatorname{RT}_{n} \ln \left(\frac{\bar{c}_{\text{H}}}{c_{\text{H}}^{\sigma}} \right)$$

where \overline{v}_{hyd}^{e} is the molal volume of 6-hydrides of composition ZrH_x, with x=1.66 for 6-hydrides; C_{H}^{σ} is the solubility of hydrogen in an externally stressed matrix in equilibrium with stress-free hydrides; \overline{C}_{H} is the solubility of hydrogen in the supersaturated matrix; T_{H} is the nucleation temperature, and R is the gas constant. It is assumed that the matrix is dilute in solute and that the nucleus has the composition given by the equilibrium phase diagram. The concentration C_{H}^{σ} in the externally stressed isolid is given in terms of C_{H}^{s} , the hydrogen concentration in the unstressed matrix (approximately given by the heat-up TSS [A.1]), by

$$C_{\rm H}^{\sigma} = C_{\rm H}^{\rm R} \exp[p \overline{V}_{\rm H}/RT]$$

40

where p is the hydrostatic stress, and $\overline{v}_{\rm H}$ the molal volume of hydrogen in zirconium. To simplify the subsequent expressions, we drop the superscript 4 in the following development.

- 4-3 -

To determine $4G_k$, the value for the critical nucleus in equilibrium with the supersaturated matrix, it is necessary to find the maximum of 4G as a function of c and a. In the following, we write the strain energy in the form

 $Ag_{\text{strain}} = A_1 + \frac{c}{a} A_2 \tag{A.7}$

and derive a number of approximate solutions.

The simplest approximate solution is obtained by assuming that

$$Ag_{strain} = A_1$$
 $(A_1 = \frac{E}{1-v} A^2)$ (A.8)

This is reasonable, as long as $c/a \ll 1$ and $A_2 \leq A_1$. Taking the derivatives

$$\left(\frac{\partial AC}{\partial a}\right)_{c} = 0$$
 and $\left(\frac{\partial AC}{\partial c}\right)_{a} = 0$ (A.9)

and solving for the critical radii a, and c, yields

$$\begin{array}{c} \begin{array}{c} \begin{array}{c} & 3\gamma_{i} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \begin{array}{c} a_{k} \end{array} \end{array} \end{array} \xrightarrow{3\gamma_{i}} \\ \hline \begin{array}{c} a_{g_{chem}} - A_{1} - Ag_{int} \end{array} \end{array} \end{array} and \begin{array}{c} c_{k} \end{array} = \begin{array}{c} \begin{array}{c} & 3\gamma_{c} \\ \hline \end{array} \\ \hline \begin{array}{c} (A.10) \end{array} \end{array}$$

Thus $c = c_k / s_k = \gamma_c / \gamma_f$

(A.11)

and the eccentricity of the plate is independent of particle dimension, and is determined solely by the ratio of the surface energies. This is as expected in this approximation, where the strain energy is not explicitly shape dependent. It is convenient to obtain a solution in terms of the constant eccentricity, by writing the volume of the precipitate in terms of c and solving

 $\frac{\overline{TP}}{2} = \frac{C(e^{\pm}a^{\pm}e^{-Yi})}{e^{\pm}e^{\pm}e^{\pm}a^{2Yi}}$ $= \frac{Te^{\pm}a^{2Yi}}{e^{\pm}e^{\pm}e^{-Yi}}$

- 311

3

(A.12)

(A.13)

(4.14)

$$\left(\frac{\partial C}{\partial a}\right)_{c} = 0$$

This yields

14-14 V 2.553F

$$a_{k} = \frac{\overline{v_{p}}}{c(4g_{chea} - A_{1} - 4g_{int})}$$

for the critical radius, with

$$\left(\overline{\bar{\gamma}_{p}} * \gamma_{c} + 2\epsilon \cdot \gamma_{1}\right)$$

and e given by Equation (A.11). The critical nucleation energy, AG_k, is therefore

$$\Delta G_{k} = \frac{2}{3^{\pi}} \frac{\frac{\bar{v}_{p}^{3}}{\left[c(\Delta g_{chem} - A_{1} - \Delta g_{ent})\right]^{2}}}$$
(A.15)

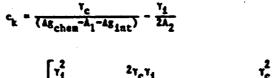
A more accurate solution can be obtained by including the c/a term in Ag_{strain}. According to Equations (A.4) and (A.7),

$$A_{2} = \frac{E}{1-\nu} \frac{\pi}{2} \left[4 \cdot \xi + \frac{1}{4(1+\nu)} \xi^{2} + \frac{1}{8} \frac{(2-\nu)}{(1+\nu)} s^{2} \right]$$
 (A.16)

with A_1 given by Equation (A.8). The total free energy of nucleation is

$$AG = -\frac{4}{3}\pi a^{2}c(Ag_{chem} - Ag_{int} - A_{1}) + \frac{4}{3}\pi ac^{2}A_{2} + 2\pi a^{2}\gamma_{c} + 4\pi ac\gamma_{i} \qquad (A.17)$$

Taking the derivatives as before (Equation $(\Lambda.9)$), and solving for the critical dimensions ak and ck, yields:



- 4-5 -

$$+ \left[\frac{\gamma_{i}^{2}}{4A_{2}^{2}} + \frac{2\gamma_{c}\gamma_{i}}{(4g_{chem} - A_{1} - 4g_{int})A_{2}} + \frac{\gamma_{c}^{2}}{(4g_{chem} - A_{1} - 4g_{int})^{2}} \right]^{1/2}$$

 $a_k = \frac{3\gamma_i + 2A_2c_k}{(4g_{chem} - A_1 - 4g_{int})}$

with the critical nucleation energy given by

$$\Delta G_{k} = -\frac{4}{3} \pi s_{k}^{2} c_{k} (\Delta g_{chem} - A_{1} - \Delta g_{int} - cA_{2}) + 2\pi s_{k}^{2} \overline{\gamma}_{p} \qquad (A.20)$$

Clearly, Equation (A.20) is not as transparent as the more approximate relation given by Equation (A.15).

A more transparent approximate expression can be obtained if we assume a size-independent eccentricity, as in the previous case. This gives

$$a_{k} = \frac{T_{p}}{c(\Delta g_{chem} - \Lambda_{1} - \Delta g_{int} - c\Lambda_{2})}$$

(A.21)

(A.18)

and

$$kC_{k} = \frac{2}{3} \pi \frac{\overline{\gamma_{p}}}{\left[s\left(Ag_{chem}-A_{1}-Ag_{int}-cA_{2}\right)\right]^{2}}$$

(A.22)

with \overline{y}_p defined by Equation (A.14). The above result differs from Equations (A.13) and (A.14) only by the addition of the cA₂ term. Note that with c determined from the solutions for c_k and a_k given by Equations (A.18-A.19), Equation (A.21) is equivalent to Equation (A.19), and Equation (A.22) to Equation (A.20).

A.2 Gamma Hydrides

We assume that the γ -hydrides precipitate as needles, with their long axes along the (1120) direction of the zirconium matrix. For the purpose of calculating the strain energy, the needle is approximated by a prolate spheroid with minor axis c and major axis a**. To calculate the interfacial energy, the needle is approximated as a cylinder of length 2a and radius c. We assume that the surface of the cylinder is coherent with the matrix and has a specific interfacial energy γ_c , whereas the two end faces are incoherent and have a specific interfacial energy γ_i . The total free energy for nucleation, AG, for the prolate spheroid of volume $V = 4/3 \operatorname{re}^2 a$ is then given by

$$AG = \frac{4}{3} \pi c^2 a (Ag_{strai} + Ag_{int} - Ag_{chem}^{V}) + 4\pi ca \gamma_c + 2\pi c^2 \gamma_i \qquad (A.23)$$

where

$$Ag_{strain} = \overline{u}_{t}^{inc} / \overline{v}_{hyd} = \frac{z}{1-v} \left\{ \frac{\Delta^{2}}{2(1+v)} \right\} \quad (a + e) \qquad (A.24)$$

$$Ag_{chem}^{\gamma} = \frac{zRT_{n}}{zv} \ln \left(\frac{\overline{C}_{H}}{zv} \right) \qquad (A.25)$$

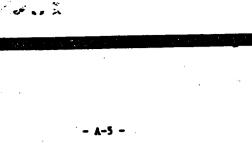
 $\overline{v}_{hyd}^{\gamma}$ = molal volume of γ -hydrides of composition ZrH_x

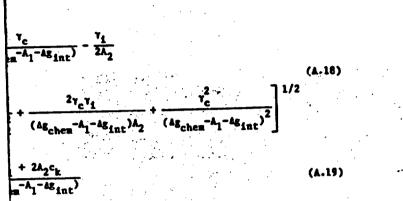
and all other symbols are as for the 8-hydride case and are defined in I. Following the same procedure as for the 8-hydrides, the critical dimensions are (to simplify the expressions, we drop the superscript y in all of the following)

hyd

x = 1

(1.26)





cleation energy given by

Yp Jem^{-A}1^{-Ag}int^{-cA}2)

- 3 yp c(Ag_{cheu}-A₁-Ag₁₋₁-cA₁)]²

 $a_{k}^{2}c_{k} (\Delta g_{chem}^{-A_{1}-\Delta g_{int}^{-cA_{2}}}) + 2\pi a_{k}^{2} \overline{\gamma}_{p} \qquad (A.20)$

.20) is not as transparent as the more approximate ustion (A.15).

sparent approximate expression can be obtained if we indent eccentricity, as in the previous case. This

(4.21)

۱

(1.22)

quation (A.14). The above result differs from (A.14) only by the addition of the ϵA_2 term. Note ed from the solutions for c_k and a_k given by Equations n (A.21) is equivalent to Equation (A.19), and Equation (A.20).

A.2 Gamma Hydrides

where

We assume that the Ylong sizes along the $\langle 1120 \rangle$ dir purpose of calculating the str prolate spheroid with minor ar interfacial energy, the needle and radius c. We assume that the matrix and has a specific faces are incoherent and have free energy for nucleation, At $V = 4/3 \ \pi c^2$ a is then given by

 $\Delta G = \frac{4}{3} \pi c^2 a \ (\Delta g_{strai})$

Ag_{strain} = W_t^{inc}/V_{hyd}

 $\Delta g_{chem}^{Y} = \frac{x R T_{n}}{\overline{v}_{hyd}^{Y}} \ln \left(\frac{\overline{c}}{c} \right)$

ΨY * molal volume

and all other symbols are as Following the same procedure are (to simplify the express following)

x = 1

 $c_k = \frac{3\gamma_c}{(\Delta g_{chem} - \Delta g_{stri})}$