## ATOMIC ENERGY OF CANADA LIMITED

# A CRITICAL COMPILATION AND REVIEW OF DEFAULT SOIL SOLID/LIQUID PARTITION

## COEFFICIENTS, K<sub>d</sub>, FOR USE IN ENVIRONMENTAL ASSESSMENTS

Ьy

D.H. Thibault, M.I. Sheppard and P.A. Smith

Whiteshell Nuclear Research Establishment Pinawa, Manitoba, Canada ROE 1LO 1990

AECL-10125

Legacy / Main - 20

## COMPILATION ET EXAMEN CRITIQUES DES COEFFICIENTS MANQUANTS DE PARTAGE, K<sub>a</sub>, SOLIDES/LIQUIDES DU SOL POUR EXPLOI EN ÉVALUATIONS ENVIRONNEMENTALES

par

D.H. Thibault, M.I. Sheppard et P.A. Smith

## RÉSUMÉ

Les évaluations en matière d'environnement du Concept canadien d'évacuation (stockage permanent) des dichets de combustible nucléaire en formations de roche plutonique demandent des analyses de la migration des nucléides d'une en einte d'évacuation à la biosphère. En analyses de la migration des nucléides entraînés par les eaux souterraines à travers la géosphère, les morts-terrains et le sol meubles, on se sert de modèles demandant des coefficients de partage (K<sub>d</sub>) solides/liquices pour décrire l'interaction des nucléides et des matières solides. Ce rapport présente des coefficients de partage solides/liquides spécifiques des éléments; les coefficients s'appuyent sur une étude bibliographique détaillée. Les valeurs pour les argiles le limon (silt), le sable et les sols organiques y sont résumés. Les coefficients de partage des éléments suivants y sont présentés: américium, antimoine, arsenic, baryum, bore, cadmium, calcium, carbone, cérium, césium, chrome, cobalt, cuivre, europium, iode, fer, plomb, lithium, manganèse, molybdène, septunium, nickel, niobium, palladium, phosphore, plutonium, polonium, radium, ruthénium, samarium, sélénium, argent, strontium, technétium, tellurium, terbium, thorium, étain, tritium, uranium, zinc et zirconium. On compare les valeurs compilées en cette étude avec les ensembles précédents de valeurs de K<sub>d</sub>; ces valeurs sont celles recommandées pour emploi avec les modèles de sol, sédiments à grande profondeur et morts-terrains de l'Étude d'Impact sur l'Environnement du Concept canadien d'évacuation des déchets de combustible nucléaire.

> Énergie atomique du Canada limitée Établissement de recherches nucléaires de Whiteshell Pinawa, Manitoba ROE 1LO 1990

## A CRITICAL COMPILATION AND REVIEW OF DEFAULT SOIL SOLID/LIQUID PARTITION COEFFICIENTS, K<sub>d</sub>, FOR USE IN ENVIRONMENTAL ASSESSMENTS

by

D.H. Thibault, M.I. Sheppard and P.A. Smith

## ABSTRACT

Environmental assessments of the Canadian concept for disposal 'f nuclear fuel waste in plutonic rock formations require analyses of the migration of nuclides from the disposal vault to the biosphere. Analyses of nuclide migration via groundwater through the geosphera, unconsolidated overburden and soil use models requiring solid/liquid partition coefficients (K<sub>d</sub>) to describe the interaction of the nuclides with the solid materials. This report presents element-specific soil solid/liquid partition coefficients based on a detailed survey of the literature. Values for clays, silt, sand and organic soils are summarized. Partition coefficients for the following elements are presented: americium, antimony, arsenic, barium, boron, codmium, calcium, carbon, cerium, cesiam, chromium, cobalt, copper, curium, europium, iodine, iron, lead, lithium, manganese, molybdenum, neptunium, nickel, niobium, pal adium, phosphorus, plutonium, polonium, radium, ruthenium, samarium, selenium, silver, strontium, technetium, tellurium, terbium, thorium, tin, tritium, uranium, zinc, and zirconium. The values compiled in this study are compared with earlier K<sub>d</sub> value compendiums and are the values recommended for use in the soil, deep sediment and overburden models for the Environmental Impact Statement on the concept for disposal of Canada's nuclear fuel waste.

> Atomic Energy of Canada Limited Whiteshell Nuclear Research Establishment Pinawa, Manitoba, Canada ROE 1LO 1990

> > AECL-10125

TABLE OF CONTENTS

|    |                                                                                   | Page |
|----|-----------------------------------------------------------------------------------|------|
| 1. | INTRODUCT] ON                                                                     | 1    |
| 2. | METHODS                                                                           | 1    |
| 3. | RESULTS AND DISCUSSION                                                            | 3    |
| 4. | CONCLUSIOUS                                                                       | 4    |
|    | REFERENCE:                                                                        | 4    |
|    | TABLES                                                                            | 6    |
|    | APPENDIX A ELEMENT REFERENCES                                                     | 19   |
|    | APPENDIX 3 DETAILS OF SOILS AND EXPERIMENTS FOR THE Kd VALUE DATABASE COMPILATION | 53   |
|    | APPENDIX : PREDICTION OF MISSING K <sub>d</sub> VALUES FROM CR VALUES             | 104  |

## 1. INTRODUCTION

Canada is considering geological containment in a vault deep in plutonic rock in the Canadian Shield as a method for disposal of its nuclear fuel waste. Assessment of the integrity of geological containment requires pathways analysis to determine the travel time from the vault to and through the biosphere of all the elements associated with the waste (Mehta and Goodwin 1988). The travel time and the predicted element concentrations in the biosphere will depend upon the interaction of the elements with their surroundings as they migrate. This interaction has been described using a solid/liquid partition coefficient, Kd, for unconsolidated regolith, soil and rock (Gillham et al. 1981a and 1981b, Vandergraaf 1982). This report documents Kd values for soil, according to the four major soil types found on the Canadian Shield. The Kd values are required for the soil, deep sediment and overburden assessment models used in the Canadian Nuclear Fuel Waste Management Program (Goodwin et al. 1987, Sheppard in preparation, Bird et al. in preparation).

Details of the chemistry of these elements can be found in the references listed in Appendix A. Details of the soils and experiments for the  $\zeta_d$  value database compiled mere are presented in table form in Appendix B.

## 2. METHODS

The data were extracted from the literature. The complete list of references are shown in Appendix A. The data were accumulated in a computerize: spreadsheet (Appendix B). Only one value was entered for each soil reported in the literature. For example, where K<sub>d</sub> values for a range of soil to solution ratios, competing cations, contact solution concentrations or pH values were reported for the same soil, the geometric mean of these results were recorded for that soil. Geometric as opposed to arithmetic means are required because K<sub>d</sub> values are lognormally distributed (Sheppard and Evenden 1989). The single values for each soil's values were used to obtain geometric means for each element and soil type.

The mineral soils were categorized by texture into sand, clay and loam. The soils that contained 2 70% sand-sized particles were classed as sand soils and those containing 2 35% clay-sized particles were classed as clay soils Loam soils had an even distribution of sand-, clay-, and silt-sized particles or consisted of up to 80% silt-size particles. Organic soils contained > 30% organic matter and were either classic peat or muck soils or the litter horizon of a mineral soil.

If no data existed in the literature for a given element, then the soil-to-plant concentration ratio CR) was used as an indicator of the element's bioavailability and a means to predict a default  $K_d$  value (Baes et al. 1984). The Ct values used for each element are from Baes et al. (1984), and are shown in Table 1. Because of the strong negative correlation between CR and  $K_d$  values, this technique is successful. The model used was

 $\ln K_d = a + stex + b (\ln CR).$ 

The values for the coefficients are

 $\ln K_d = [4.62 + stex - 0.56(\ln CR)]$ 

```
where, if the soil = sand, stex = -2.51,
    if the soil = loam, stex = -1.26,
    if the soil = clay, stex = -0.84, and
    if the soil = organic, stex = 0.
```

The regression analysis was carried out using the Reg procedure in SAS (Statistical Analysis Systems). The observed and predicted values and their residuals from the regression analysis are shown in Appendix C.

Appendices A, B and C can be obtained on diskette from the authors.

#### 3. RESULTS AND DISCUSSIONS

Baes and Starp (1983) compiled soil  $K_d$  values for several elements relevant to the nuclear industry (Table 2). Similarly, Coughtrey et al. (1985) have reported best estimates and ranges for soil  $K_d$  values (Table 3). Earlier, we compiled a literature search of data for the elements relevant to the Canadian Nuclear Fuel Waste Management Program for each of the four major soil types found on the Canadian Shield (Sheppard et al. 1984). This present compendium includes our earlier data and additional data obtained through a more recent literature search. The data are presented for each element by soil type in Tables 4 through 7, and the geometric mean  $K_d$  values are summarized by soil type in Table 8.

The data from our study and the studies of Baes and Sharp (1983), and Coughtrey et al. (1985) are shown in Table 9.

The database from Coughtrey et al. (1985) is not ver, complete and will not be discussed in detail. To compare Baes and Sharp (1983) with our study (Table 10), we used only our data for silt and clay, which tend to represent the agricultural soils of Baes and Sharp. Their best estimates (exp ( $\mu$ )) are generally lower than those in our study for silt and clay, except for Cr, Po, Pu, Sr, U and Th, which are higher. The use of the lower K<sub>d</sub> values of Baes and Sharp would lead to lower soil concentrations in assessment models, and might result in the underprediction of doses in some pathways. Table 11 compares the ranges of only the silt and clay values of our study with the ranges of Baes and Sharp (1983). This comparison clearly shows that even the range of values reported by Baes and Sharp is generally lower than the range of values in our study.

We grouped the elements by K<sub>d</sub> value and highlighted Tc, I, U and Np, some of the more mobile elements, to illustrate the dependence on soil type. Generally the K<sub>d</sub> values are lower in sandy soils than in either loam or clay soils. Iodine K<sub>d</sub> values are unaffected by mineral grain-size but increase dramatically as organic matter content increases. Other elements that have higher mean values for organic soils than for clay soils are Ag, Ni, Am, and Th.

## 4. CONCLUSIONS

This compendium updates our earlier study (Sheppard et al. 1984) and also that of Baes and Sharp (1985). It provides the latest K<sub>d</sub> data found in the international literature, including major studies carried out in the U.S., Europe and Asia since the 1950s. This database will be used for the Environmental Impact Statement on the concept for disposal of Canada's nuclear fuel waste.

### REFERENCES

- Baes III, C.F. and R.D. Sharp. 1983. A proposal for estimation of soil leaching and leaching constants for use in assessement models. J. Environ. Qual. 12(1), 17-28.
- Baes III, C.F., R.D. Sharp, A.L. Sjoreen and R.W. Shor. 1984. A review and analysis of parameters for assessing transport of environmentally released radionuclides through agriculture. Oak Ridge National Laboratory Report, ORNL-5780, Oak Ridge, TN.
- Bird, G.A., M. Stephenson and R.J. Cornett. In preparation. Lake submodel for the assessment of Canada's concept for nuclear fuel waste management. Atomic Energy of Canada Limited Report.
- Coughtrey, P.J., D. Jackson and M.C. Thorne. 1985. Radionuclide distribution and transport in terrestrial and aquatic ecosystems. A Compendium of Data. A.A. Balkema, Netherlands, Vol. 6.
- Gillham, R.W., L.E. Lindsay, W.D. Reynolds, T.J. Kewen, J.A. Cherry and M.R. Reddy. 1981a. Studies of cesium and strontium migration in unconsolidated Canadian geological materials. Atomic Energy Control Board Report, INFO-0049.
- Gillham, R.W., H.D. Sharma, M.R. Reddy, E.L. Cooper and J.A. Cherry. 1981b. Barium and radium vigration in un consolidated Canadian geological materials. Atomic Energy Control Board Report, INFO-0048.
- Goodwin, B.W., T.H. Andres, P.A. Davis, D.M. LeNeveu, T.W. nelnyk, G.R. Sherman and D.M. Wuschke. 1987. Postc osure environmental assessment for the Canadian Fuel Waste Management Program. Radioactive Waste Management and the Nuclear Fuel Cycle 8, 241-272.
- Mehta, K. and B. Goodwin. 1988. Unpublished memorandum on radionuclides relevant to the postclosure assessmen:. Memo #RARB-88-445, 26 October.

- Sheppard, M.I. In preparation. The soil submodel, SCEMR1, for the assessment of Canada's nuclear fuel waste management concept. Atomic Energy of Canada Limited Report, AECL-9577.
- Sheppard, M.I., D.I. Beals, D.H. Thibault and P. O'Connor. 1984. Soil nuclide distribution coeffients and their statistical distributions. Atomic Energy of Canada Limited Report, AECL-8364.
- Sheppard, S.C., and W.G. Evenden. 1989. Comparison of partition coefiicients for <sup>54</sup>Mn and soil-extractable Mn, including relationship to plant uptake. Can. J. Soil Sci. 69(2), 351-365.
- Vandergraaf, T.T. 1982. A compilation of sorption coefficients for radionuclides on granites and granitic rocks. Atomic Energy of Canada Limited Technical Record, TR-120\*.

한 구운!

ģi trasji ≉raj tr

•14 •15

\* Unrestricted, unrublished report available from SDDO, Atomic Energy of Canada Limited Research Company, Chalk River, Ontario, KOJ 1JO.

| Element | CR                     | Element | CR                     |
|---------|------------------------|---------|------------------------|
| Ac      | 8.8 x 10 <sup>-4</sup> | P       | 8.7 x 10 <sup>-1</sup> |
| Ag      | $1.0 \times 10^{-1}$   | Pa      | $6.3 \times 10^{-4}$   |
| Am      | $1.4 \times 10^{-3}$   | Pb      | $1.1 \times 10^{-2}$   |
| Be      | $2.5 \times 10^{-3}$   | Pd      | $3.8 \times 10^{-2}$   |
| Bi      | $8.7 \times 10^{-3}$   | Po      | $6.3 \times 10^{-4}$   |
| Br      | $3.8 \times 10^{-1}$   | Pu      | $1.1 \times 10^{-4}$   |
| С       | $1.4 \times 10^{-0}$   | Ra      | $3.3 \times 10^{-3}$   |
| Ca      | 8.8 x $10^{-1}$        | Rb      | $3.8 \times 10^{-2}$   |
| Cd      | $1.4 \times 10^{-1}$   | Re      | $3.7 \times 10^{-1}$   |
| Ce      | $2.5 \times 10^{-3}$   | Ru      | $1.9 \times 10^{-2}$   |
| Cm      | 2.1 x $10^{-4}$        | Sb      | $5.0 \times 10^{-2}$   |
| Со      | $5.0 \times 10^{-3}$   | Se      | $6.3 \times 10^{-3}$   |
| Cr      | $1.9 \times 10^{-3}$   | Si      | $8.8 \times 10^{-2}$   |
| Cs      | $2.0 \times 10^{-2}$   | Sm      | $2.5 \times 10^{-3}$   |
| Fe      | $1.0 \times 10^{-3}$   | Sn      | $7.5 \times 10^{-3}$   |
| Н       | $1.2 \times 10^{-6}$   | Sr      | $6.3 \times 10^{-1}$   |
| Hf      | 8.8 x $10^{-4}$        | Та      | $2.5 \times 10^{-3}$   |
| Но      | $2.5 \times 10^{-3}$   | Тс      | $2.4 \times 10^{-0}$   |
| I       | $3.8 \times 10^{-2}$   | Те      | $6.2 \times 10^{-3}$   |
| K       | $2.5 \times 10^{-1}$   | Th      | $2.1 \times 10^{-4}$   |
| Mn      | $6.3 \times 10^{-2}$   | U       | $2.1 \times 10^{-3}$   |
| Мо      | $6.3 \times 10^{-2}$   | Y       | $3.7 \times 10^{-3}$   |
| Nb      | $5.0 \times 10^{-3}$   | Zn      | $3.8 \times 10^{-1}$   |
| Ni      | $1.5 \times 10^{-2}$   | Zr      | $5.0 \times 10^{-4}$   |
| Np      | $2.5 \times 10^{-2}$   |         |                        |

## CONCENTRATION RATIO (CR) VALUES (WET WT. BASIS) USED TO ESTIMATE Kd VALUES FOR EACH ELEMENT<sup>A</sup>

TABLE\_1

<sup>a</sup> Derived from Baes et al. 1984 (Fig. 2.1) by dividing by four to get CR values on a wet weight basis.

,

## TABLE\_2

# ESTIMATES OF THE DISTRIBUTION OF K<sub>4</sub> FOR VARIOUS ELEMENTS IN AGRICULTURAL SOILS AND CLAYS OF pH 4.5 TO 9.0 (from Baes and Sharp, 1983, Table 4)

| Element     | Number of<br>Observations | μª   | σ <sup>ь</sup> | $exp(\mu)$<br>(0.50) <sup>c</sup><br>(L, kg <sup>-1</sup> ) |        | ved range<br>(L kg <sup>-1</sup> ) |                                    |
|-------------|---------------------------|------|----------------|-------------------------------------------------------------|--------|------------------------------------|------------------------------------|
| Αį          | 16                        | 4.7  | 1.3            | 110                                                         | 10     | to 1 000                           |                                    |
| An          | 46                        | 6.7  | 3.0            | 810                                                         | 1.0    | to 47 230                          |                                    |
| As (III)    | 19                        | 1.2  | 0.61           | 3.3                                                         | 1.0    |                                    | .3                                 |
| A: (V)      | 37                        | 1.9  | 0.52           | 6.7                                                         | 1.9    | to 18                              |                                    |
| CE.         | 10                        | 1.4  | 0.78           | 4.1                                                         | 1.2    |                                    | •8                                 |
| Cc          | 28                        | 1.9  | 0.86           | 6.7                                                         | 1.26   | to 26                              |                                    |
| Ce:         | 16                        | 7.0  | 1.3            | 1 100                                                       | 58     | to 6 000                           |                                    |
| Cn          | 31                        | 8.1  | 1.9            | 3 300                                                       | 93.3   | to 51 900                          |                                    |
| Co          | 57                        | 4.0  | 2.3            | 55                                                          | 0.2    | to 3800                            |                                    |
| Cr(II)      | 15                        | 7.7  | 1.2            | 2 200                                                       | 470    | to 150 000                         |                                    |
| Cr(VI)      | 18                        | 3.6  | 2.2            | 37                                                          | 1.2    | to 1800                            |                                    |
| Cs          | 135                       | 7.0  | 1.9            | 1 110                                                       | 10     | to 52 000                          |                                    |
| Cu          | 55                        | 3.1  | 1.1            | 22                                                          | 1.4    | to 333                             |                                    |
| Fe          | 30                        | 4.0  | 1.7            | 55                                                          | 1.4    | to 1 000                           |                                    |
| K           | 10                        | 1.7  | 0.49           | 5.5                                                         | 2.0    |                                    | .0                                 |
| Mg          | 58                        | 1.7  | 0.52           | 5.5                                                         | 1.6    | to 13                              |                                    |
| Mri         | 45                        | 5.0  | 2.7            | 150                                                         | 0.2    | to 10 000                          |                                    |
| Мо          | 17                        | 3.0  | 2.1            | 20                                                          | 0.37   | to 400                             |                                    |
| Nj>         | 44                        | 2.4  | 2.3            | 11                                                          | 0.16   | to 929                             | L                                  |
| Pb          | 125                       | 4.6  | 1.7            | 99                                                          | 4.5    | to 7 640                           |                                    |
| P++         | 6                         | 6.3  | 0.65           | 540                                                         | 196    | to 1 063                           |                                    |
| Pit         | 40                        | 7.5  | 2.3            | 1 800                                                       | 11     | to 300 000                         |                                    |
| Ru          | 17                        | 5.4  | 1.0            | 220                                                         | 48     | to 1 000                           |                                    |
| S:(IV)      | 19                        | 1.0  | 0.65           | 2.7                                                         | 1.2    |                                    | .6 <sup>c</sup> Percent cumulative |
| S           | 218                       | 3.3  | 2.0            | 27                                                          | 0.15   | to 3 300                           |                                    |
| Τ:          | 24                        | -3.4 | 1.1            | 0.033                                                       | 0.0029 |                                    | .28                                |
| T'ı         | 17                        | 11   | 1.5            | 60 000                                                      | 2 000  | to 510 000                         |                                    |
| U           | 24                        | 3.8  | 1.3            | 45                                                          | 10.5   | to 4 400                           |                                    |
| <b>Z</b> :1 | 146                       | 2.8  | 1.9            | 16                                                          | 0.1    | to 8 000                           |                                    |

• •

## TABLE 3

## BEST ESTIMATE AND CALCULATED RANGE OF Kd VALUES (from Coughtrey et al. 1985)<sup>a</sup>

-

| lement                  | Best Estimate<br>(L kg <sup>-1</sup> ) | Calculated Range                              |                           |
|-------------------------|----------------------------------------|-----------------------------------------------|---------------------------|
| Ag                      | ( <u>1, kg )</u><br>50                 | <u>(L kg<sup>-1</sup>)</u><br>ND <sup>b</sup> |                           |
| Am                      | ~ 2 000                                | 1 200 - 8 700                                 |                           |
| Br                      | < 2                                    | ND                                            |                           |
| Cd                      | 32 - 50                                | ND                                            |                           |
| Ce                      | ND                                     | ND                                            |                           |
| Cl                      | ND                                     | ND                                            |                           |
| Cm and higher actinides | ND                                     | 98 - 52 000                                   |                           |
| Со                      | ND                                     | ND                                            |                           |
| Cr                      | ND                                     | ND                                            |                           |
| Cs                      | 1000                                   | 1 000 - 10 000                                |                           |
| Fe                      | 9 (soluble form)                       | 4 - 9 (soluble f                              | orm)                      |
| I                       | ~`6                                    | ND                                            |                           |
| Lanthanides (other than | Ce) ND                                 | ND                                            |                           |
| Mn                      | 20                                     | 19 - 99                                       |                           |
| Мо                      | 9                                      | · ND                                          |                           |
| Na                      | ND                                     | ND                                            |                           |
| Nb                      | ND                                     | ND                                            |                           |
| Ni                      | ~ 20                                   | ND                                            |                           |
| Np                      | ~ 50                                   | 0.16 - 929                                    |                           |
| Pu                      | 5 000                                  | 18 - 10 000                                   |                           |
| Rb                      | ND                                     | ND                                            |                           |
| Ru                      | 1 - 20                                 | ND                                            |                           |
| S                       | ND                                     | ND                                            | * From section entitled   |
| Sb                      | ND                                     | N')                                           | "Invironmental data for   |
| Se                      | > 9                                    | NL                                            | radioisotopes. Para-      |
| Sn                      | ND                                     | ND                                            | meters for soils, plants  |
| Sr                      | ND                                     | ND                                            | and aquatic ecosystems".  |
| Тс                      | 0.11                                   | ND                                            |                           |
| Te                      | ND                                     | ND                                            | <sup>b</sup> ND = no data |
| Zn                      | <u>ک</u> 20                            | ND                                            |                           |
| Zr                      | ND                                     | ND                                            |                           |

5 (S.

,

| Blement | Number of<br>Observations | μ*               | ď   | exp (µ) <sup>c</sup> | 1    | Range |     |     |
|---------|---------------------------|------------------|-----|----------------------|------|-------|-----|-----|
| Ac      |                           | 6.1 <sup>d</sup> |     | 450                  |      |       |     |     |
| Ag      | 12                        |                  | • • |                      | 2.7  | to    | ,   | იიი |
| Am      | 29                        | 7.6              | 2.6 | 1900                 | 8.2  |       | 300 | 000 |
| Be      | 27                        | 5.5              | 2.0 | 250                  | 0.2  |       | 300 |     |
| Bi      |                           | 4.6              |     | 100                  |      |       |     |     |
| Br      |                           | 2.7              |     | 15                   |      |       |     |     |
| c       | 3                         | .1.1             | 0.8 | 5                    | 1.7  | to    |     | 7.1 |
| Ca      | •                         | 1.8              |     | 5                    |      | -     |     |     |
| Cd      | 14                        | 4.3              | ڌ.1 | 80                   | 2.7  | to    |     | 625 |
| Ce      | 12                        | 6.2              | 1.6 | 500                  | 40   | to    | 3   | 968 |
| Cm      | 2                         | 8.4              | 2.4 | 4000                 | 780  | to    |     | 970 |
| Co      | 33                        | 4.1              | 2.8 | 60                   | .07  |       |     | 000 |
| Cr      | 15                        | 4.2              | 2.1 | 70                   | 1.7  | to    |     | 729 |
| Cs      | 81                        | 5.6              | 2.5 | 280                  | 0.2  | to    |     | 000 |
| Fe      | 16                        | 5.4              | 2.6 | 220                  | 5    | to    |     | 000 |
| H       | 3                         | -2.7             | 0.4 | 0.06                 | 0.04 |       | -   | 0.1 |
| Ħf      | -                         | 6.1              | ••• | 450                  | •••• | ••    |     |     |
| Но      |                           | 5.5              |     | 250                  |      |       |     |     |
| I       | 22                        | 0.04             | 2.2 | 1.0                  | 0.04 | to    |     | 81  |
| ĸ       | ~-                        | 2.6              |     | 15                   |      | •••   |     |     |
| Mn      | 54                        | 3.9              | 1.4 | 50                   | 6.4  | to    | 5   | 000 |
| Мо      | 15                        | 2.0              | 1.1 | 10                   | 1.0  | to    | -   | 52  |
| Nb      |                           | 5.1              |     | 160                  |      |       |     |     |
| Ni      | 11                        | 6.0              | 1.5 | 400                  | 60   | to    | 3   | 600 |
| Np      | 16                        | 1.4              | 1.7 | 5                    | 0.5  | to    | -   | 390 |
| P       |                           | 1.8              |     | 5                    | •••  |       |     |     |
| Pa      |                           | 6.3              |     | 550                  |      |       |     |     |
| Pb      | 3                         | 5.6              | 2.3 | 270                  | 19   | to    | 1   | 405 |
| Pd      | -                         | 4.0              |     | 55                   |      | •••   | -   |     |
| Po      | 36                        | 5.0              | 1.6 | 150                  | 9    | to    | 7   | 020 |
| Pu      | 39                        | 6.3              | 1.7 | 550                  | 27   | to    |     | 000 |
| Ra      | 3                         | 6.2              | 3.2 | 500                  | 57   | to    |     | 000 |
| Rb      | •                         | 4.0              |     | 55                   | •••  | •••   |     |     |
| Re      |                           | 2.3              |     | 10                   |      |       |     |     |
| Ru      | 7                         | 4.0              | 1.4 | 55                   | 5    | to    |     | 490 |
| Sb      | 1                         | 3.8              |     | 45                   | -    | ••    |     |     |
| Se      | -                         | 5.0              |     | 150                  |      |       |     |     |
| Si      |                           | 3.5              |     | 35                   |      |       |     |     |
| Sm      |                           | 5.5              |     | 245                  |      |       |     |     |
| Sn      |                           | 4.9              |     | 130                  |      |       |     |     |
| Sr      | 81                        | 2.6              | 1.6 | 15                   | 0.05 | to    |     | 190 |
| Ta      | -                         | 5.4              | -   | 220                  |      |       |     |     |
| Tc      | 19                        | -2.0             | 1.8 | 0.1                  | 0.01 | to    |     | 16  |
| Te      | -                         | 4.8              |     | 125                  |      |       |     |     |
| Th      | 10                        | 8.0              | 2.1 | 3 200                | 207  | to    | 150 | 000 |
| U       | 24                        | 3.5              | 3.2 | -35                  | 0.03 | to    |     | 200 |
| Ŷ       | - •                       | 5.1              |     | 170                  |      |       | -   |     |
| Zn      | 22                        | 5.3              | 2.6 | 200                  | 0.1  | to    | 8   | 000 |
| Zr      |                           | 6.4              |     | 600                  |      |       | •   | ~~~ |

TABLE 4

SAND SOIL Ke VALUES (L kg<sup>-1</sup>)

Mean of the logarithms of the observed values.
 Standard deviation of the logarithms of the observed values.

<sup>c</sup> Geometric mean rounded to two significant digits. <sup>d</sup> Nuclides with no observations have predicted default values for  $\mu$  and exp ( $\mu$ ) using plant/soil concentration ratios (CRs).

Q

| Element | Number of<br>Observations | μª               | $\sigma^{\mathtt{b}}$ | exp (μ) <sup>c</sup> | R    | ange |      |       |
|---------|---------------------------|------------------|-----------------------|----------------------|------|------|------|-------|
| Ac      |                           | 7.3 <sup>ª</sup> |                       | 1 500                |      |      |      |       |
| Ag      | 4                         | 4.8              | 1.1                   | 120                  | 28   | to   |      | 333   |
| Am      | 20                        | 9.2              | 1.4                   | 9 600                | 400  | to   |      | 3 309 |
| Be      |                           | 6.7              | - · ·                 | 800                  |      |      |      |       |
| Bi      |                           | 6.1              |                       | 450                  |      |      |      |       |
| Br      |                           | 3.9              |                       | 50                   |      |      |      |       |
| c       |                           | 2.9              |                       | 20                   |      |      |      |       |
| Ca      |                           | 3.4              |                       | 30                   |      |      |      |       |
| Cd      | 8                         | 3.7              | 1.6                   | 40                   | 7.0  | to   |      | 962   |
| Ce      | 5                         | 9.0              | 1.5                   | 8 100                | 1200 | to   | 56   | 5 000 |
| Cm      | 4                         | 9.8              | 0.7                   | 18 000               | 7666 | to   |      | 260   |
| Co      | 23                        | 7.2              | 1.3                   | 1 300                | 100  | to   |      | 700   |
| Cr      | 4                         | 3.4              | 2.9                   | 30                   | 2.2  |      |      | 000   |
| Cs      | 54                        | 8.4              | 1.3                   | 4 600                | 560  | to   |      | 287   |
| Fe      | 18                        | 6.7              | 0.7                   | 4 800<br>800         |      | to   |      |       |
|         | 10                        | 3.0              | 0.7                   | 20                   | 290  | to   | 2    | 240   |
| H       |                           |                  |                       |                      |      |      |      |       |
| Hf      |                           | 7.3              |                       | 1 500                |      |      |      |       |
| Ho      | 22                        | 6.7              |                       | 800                  | ~ 1  |      |      |       |
| I       | 33                        | 1.5              | 2.0                   | 5                    | 0.1  | to   |      | 43    |
| K       |                           | ^.0              |                       | 55                   |      |      |      |       |
| Mn      | 38                        | 6.6              | 2.6                   | 750                  | 40   | to   | - 77 | 079   |
| Mo      |                           | 4.8              |                       | 125                  |      |      |      |       |
| Nb      |                           | 6.3              |                       | 550                  |      |      |      |       |
| Ni      |                           | 5.7              |                       | 300                  |      |      |      |       |
| Np      | 11                        | 3.2              | 1.2                   | 25                   | 1.3  | to   |      | 79    |
| Р       |                           | 3.2              |                       | 25                   |      |      |      |       |
| Pa      |                           | 7.5              |                       | 1 800                |      |      |      |       |
| РЪ      | 3                         | 9.7              | 1.4                   | 16 000               | 3500 | to   | 59   | 000   |
| Pd      |                           | 5.2              |                       | 180                  |      |      |      |       |
| Ро      | 13                        | 6.0              | 1.3                   | 400                  | 24   | to   |      | 830   |
| Pu      | 21                        | 7.1              | 1.2                   | 1 200                | 100  | to   |      | 933   |
| Ra      | 3                         | 10.5             | 3.1                   | 36 000               | 1262 | to   | 530  | 000   |
| Rb      |                           | 5.2              |                       | 180                  |      |      |      |       |
| Re      |                           | 3.7              |                       | 40                   |      |      |      |       |
| Ru      | 2                         | 6.9              | 0.0                   | 1 000                | 0    |      |      |       |
| Sb      |                           | 5.0              |                       | 150                  |      |      |      |       |
| Se      |                           | 6.2              |                       | 500                  |      |      |      |       |
| Si      |                           | 4.7              |                       | 110                  |      |      |      |       |
| Sm      |                           | 6.7              |                       | 800                  |      |      |      |       |
| Sn      |                           | 6.1              |                       | 450                  |      |      |      |       |
| Sr      | 43                        | 3.0              | 1.7                   | 20                   | 0.01 | to   |      | 300   |
| Ta      |                           | 6.8              |                       | 900                  | 0.01 |      |      | 200   |
| Tc      | 10                        | -2.3             | 1.1                   | 0.1                  | 0.01 | to   |      | 0.4   |
| Te      |                           | 6.3              |                       | 500                  | 0.01 | .0   |      | V.4   |
| Th      |                           | 8.1              |                       | 3 300                |      |      |      |       |
| Ŭ       | 8                         | 2.5              | 3.3                   | 15                   | 0.2  | +-   | L    | 500   |
| U<br>Y  | U                         | 6.6              | د.د                   |                      | 0.2  | to   | 4    | 500   |
| Zn      | 12                        | 7.2              | 2.4                   | 1 300                | 2 2  | +-   | 11   | 000   |
|         | 16                        | 7.7              | 4.4                   |                      | 3.6  | to   | 11   | 000   |
| Zr      |                           | 1.1              |                       | 2 200                |      |      |      |       |

TABLE 5

SILT SOIL K. VALUES (L kg<sup>-1</sup>)

<sup>a</sup> Mean of the logarithms of the observed values.
<sup>b</sup> Standard deviation of the logarithms of the observed values.
<sup>c</sup> Geometric mean rounded to two significant digits.
<sup>d</sup> Nuclides with no observations have predicated default values for µ and exp ( $\mu$ ) using plant/soil concentration ratios (CRs).

| Blement | Number of<br>Observations | μª   | σ <sup>b</sup> | $exp(\mu)^{c}$ | R      | ang | e   |                  |  |
|---------|---------------------------|------|----------------|----------------|--------|-----|-----|------------------|--|
|         |                           |      |                |                |        |     |     |                  |  |
| Ac      | -                         | 7.8ª |                | 2 400          |        |     |     | <b></b> '.       |  |
| Ag      | 5                         | 5.2  | 0.4            | 180            | 100    | to  |     | 300              |  |
| Am      | 11                        | 9.0  | 2.6            | 8 400          | 25     | to  | 400 | 000              |  |
| Be      |                           | 7.2  |                | 1 300          |        |     |     |                  |  |
| Bi      |                           | 6.4  |                | 600            |        |     |     |                  |  |
| Br      |                           | 4.3  |                | 75             |        |     |     |                  |  |
| C       |                           | 0.8  |                | 1              |        |     |     |                  |  |
| Ca      |                           | 3.9  |                | 50             |        |     | •   |                  |  |
| Cd      | 10                        | 6.3  | 0.9            | 560            | 112    | to  |     | 450              |  |
| Ce      | 4                         | 9.9  | 0.5            | 20 000         | 12 000 | to  | 31  | 623              |  |
| Cm      |                           | 8.7  |                | 6 000          |        |     |     |                  |  |
| Со      | 15                        | 6.3  | 1.8            | 550            | 20     | to  | 14  | 000              |  |
| Cr      |                           | 7.3  |                | 1 500          |        |     |     |                  |  |
| Cs      | 28                        | 7.5  | 1.6            | 1 900          | 37     | to  |     | 500              |  |
| Fe      | 7                         | 5.1  | 1.6            | 165            | 15     | to  | 2   | 121              |  |
| B       |                           | 3.3  |                | 30             |        |     |     |                  |  |
| Ħf      |                           | 7.8  |                | 2 400          |        |     |     |                  |  |
| Но      |                           | 7.2  |                | 1 300          |        |     |     |                  |  |
| I       | 8                         | 0.5  | 1.5            | 1              | 0.2    | to  |     | 29               |  |
| ĸ       | -                         | 4.3  |                | 75             |        |     |     |                  |  |
| Mn      | 23                        | 5.2  | 2.0            | 180            | 23.6   | to  | 48  | 945              |  |
| Mo      | 7                         | 4.5  | 1.2            | 90             | 13     | to  |     | 400              |  |
| Nb      | r                         | 6.8  |                | 900            |        |     |     |                  |  |
| Ni      | 10                        | 6.5  | 0.7            | 650            | 305    | to  | 2   | 467 <sup>.</sup> |  |
| Np      | 4                         | 4.0  | 3.8            | 55             | 0.4    | to  |     | 575              |  |
| P       | -                         | 3.5  | 5.0            | 35             |        | ••  | -   |                  |  |
| Pa      |                           | 7.9  |                | 2 700          |        |     |     |                  |  |
| Pb      |                           | 6.3  |                | 550            |        |     |     |                  |  |
| Pd      |                           | 5.6  |                | 270            |        |     |     |                  |  |
|         |                           |      |                |                |        |     |     |                  |  |
| Po      | 10                        | 8.0  | <b>•</b> 1     | 3 000          | 216    |     | 100 | 000              |  |
| Pu      | 18<br>8                   | 8.5  | 2.1            | 5 100          | 316    |     | 190 |                  |  |
| Ra      | 0                         | 9.1  | 1.3            | 9100           | 696    | to  | 20  | 000              |  |
| Rb      |                           | 5.6  |                | 270            |        |     |     |                  |  |
| Re      |                           | 4.1  |                | 60             | •      |     |     |                  |  |
| Ru      | 1                         | 6.7  |                | 800            | 0      |     |     |                  |  |
| Sb      |                           | 5.5  |                | 250            |        |     |     |                  |  |
| Se      |                           | 6.6  |                | 740            |        |     |     |                  |  |
| Si      |                           | 5.2  |                | 180            |        |     |     |                  |  |
| Sm      |                           | 7.2  |                | 1 300          |        |     |     |                  |  |
| Sn      | • •                       | 6.5  |                | 670            |        |     |     |                  |  |
| Sr      | 24                        | 4.7  | 2.0            | 110            | 3.6    | to  | 32  | 000              |  |
| Ta      |                           | 7.1  |                | 1 200          |        |     |     |                  |  |
| Tc      | 4                         | 0.2  | 0.06           | 1              | 1.16   | to  |     | 1.32             |  |
| Te      |                           | 6.6  |                | 720            |        |     |     |                  |  |
| Th      | . 5                       | 8.6  | 2.6            | 5 800          | 244    |     | 160 |                  |  |
| U       | 7                         | 7.3  | 2.9            | 1 600          | 46     | to  | 395 | 100              |  |
| Y       |                           | 6.9  |                | 1 000          |        |     |     |                  |  |
| Zn      | 23                        | 7.8  | 1.4            | 2 400          | 200    | to  | 100 | 000              |  |
| Zr      |                           | 8.1  |                | 3 300          |        |     |     |                  |  |

TABLE 6 CLAY SOIL Ka VALUES (L kg<sup>-1</sup>)

ģ.

.

<sup>a</sup> Mean of the logarithms of the observed values.
 <sup>b</sup> Standard deviation of the logarithms of the observed values.
 <sup>c</sup> Geometric mean rounded to two significant digits.
 <sup>d</sup> Nuclides with no observations have predicted default values for μ and exp (μ) using plant/soil concentration ratios (CRs).

÷ 4

3,5

Y

L 11 -

| Element | Number of<br>Observations | μ*               | ٥b  | exp (µ  | ) <sup>e</sup> Ran | ge          |
|---------|---------------------------|------------------|-----|---------|--------------------|-------------|
| Ac      |                           | 8.6 <sup>d</sup> |     | 5 400   |                    |             |
| Ag      | 4                         | 9.6              | 0.9 | 15 000  | 4 400              | to 33 000   |
| Am      | 5                         | 11.6             | 1.7 | 112 000 | 6 398              | to 450 000  |
| Be      | -                         | 8.0              |     | 3 000   |                    |             |
| Bi      |                           | 7.3              |     | 1 500   |                    |             |
| Br      |                           | 5.2              |     | 180     |                    |             |
| C       |                           | 4.2              |     | 70      |                    |             |
| Ca      |                           | 4.5              |     | 90      |                    |             |
| Cd      | 9                         | 6.7              | 2.3 | 800     | 23                 | to 17 000   |
| Ce      | 1                         | 8.1              |     | 3 300   | 0                  |             |
| Cm      | 1                         | 8.7              |     | 6 000   | 0                  |             |
| Co      | 6                         | 6.9              | 1.5 | 1 000   | 120                | to 4500     |
| Cr      | 4                         | 5.6              | 2.7 | 270     | 6.0                | to 2517     |
| Cs      |                           | 5.6              | 3.6 | 270     | 0.                 | to 145 000  |
| Fe      | 9.<br>1                   | 6.4              |     | 600     | 0                  |             |
| Н       | -                         | 4.3              |     | 75      |                    |             |
| Hf      |                           | 8.6              |     | 5 400   |                    |             |
| Но      |                           | 8.0              |     | 3 000   |                    |             |
| I       | 9                         | 3.3              | 2.0 | 25      | 1.4                | to 368      |
| ĸ       | -                         | 5.3              |     | 200     |                    |             |
| Mn      | 1                         | 5.0              |     | 150     | 0                  |             |
| Мо      | 3                         | 3.3              | 0.5 | 25      | 18                 | to 50       |
| Nb      | 5                         | 7.6              |     | 2 000   |                    |             |
| Ni      | 6                         | 7.0              | 0.9 | 1 100   | 360                | to 4700     |
| Np      | 6<br>3                    | 7.1              | 0.4 | 1 200   | 857                | to 1 900    |
| P       | 5                         | 4.5              |     | 90      | 007                |             |
| Pa      |                           | 8.8              |     | 6 600   |                    |             |
| Pb      | 6                         | 10.0             | 0.5 | 22 000  | 9 000              | to 31 590   |
| Pd      | ·                         | 6.5              |     | 670     |                    |             |
| Po      |                           | 8.9              |     | 7 300   |                    |             |
| Pu      | 7                         | 7.5              | 2.6 | 1 900   | 60                 | to 62 000   |
| Ra      | •                         | 7.8              |     | 2 400   | •••                |             |
| Rb      |                           | 6.5              |     | 670     |                    |             |
| Re      |                           | 5.0              |     | 150     |                    |             |
| Ru      | 5                         | 11.1             | 0.3 | 66 000  | 39 000             | to 87 000   |
| Sb      | •                         | 6.3              |     | 550     |                    |             |
| Se      |                           | 7.5              |     | 1 800   |                    |             |
| Si      |                           | 6.0              |     | 400     |                    |             |
| Sm      |                           | 8.0              |     | 3 000   |                    |             |
| Sn      |                           | 7.4              |     | 1 600   |                    |             |
| Sr      | 12                        | 5.0              | 1.8 | 150     | 8                  | to 4800     |
| Ta      | 16                        | 8.1              |     | 3 300   | 0                  | .0 4 000    |
| Tc      | 24                        | 0.4              | 1.8 | 1       | 0.02               | to 340      |
| Te      | 67                        | 7.5              |     | 1 900   | 0.02               |             |
| Th      | 3                         | 11.4             | 4.6 | 89 000  | 1 579              | tol3 000 00 |
| U       | 6                         | 6.0              | 2.5 | 410     | 33                 | to 7 35     |
| Y       | v                         | 7.9              | e   | 2 600   |                    |             |
| Zn      | 8                         | 7.4              | 1.6 | 1 600   | 70                 | to 13 00    |
|         |                           |                  |     |         |                    |             |
| Zr      |                           | 8.9              |     | 7 300   |                    |             |

ORGANIC SOIL Kd VALUES (L kg<sup>-1</sup>)

TABLE 7

<sup>a</sup> Mean of the logarithms of the observed values. <sup>b</sup> Standard deviation of the logarithms of the observed values.

<sup>c</sup> Geometric mean rounded to two significant digits. <sup>d</sup> Nuclides with no observations have predicted default values for  $\mu$  and exp ( $\mu$ ) using plant/soil concentration ratios (CRs).

| 21      |            |          | <u> </u> | 0              |
|---------|------------|----------|----------|----------------|
| Blement | Sand       | Silt     | Clay     | Organic        |
| Ac      | 450        | 1 500    | 2 400    | 5 400          |
| Ag      | 90         | 120      | 180      | 15 000         |
| Am      | 1900       | 9 600    | 8 400    | 112 000        |
| Be      | 250        | 800      | 1 300    | 3 000          |
| ы       | 100        | 450      | <i></i>  | 1 500          |
| Br      | 15         | 50       | 75       | 180            |
| С       | 5          | 20       | 1        | 70             |
| Ca      | 5          | 30       | 50       | 90             |
| Cd      | 80         | 40       | 560      | 800            |
| Ce      | 500        | 8 100    | 20 000   | 3 300          |
| Cm      | 4 000      | 18 000   | 6 000    | 6 000          |
| Со      | 60         | 1 300    | 550      | 1 000          |
| Cr      | 70         | 30       | 1 500    | 270            |
| Cs      | 280        | 4 600    | 1 900    | 270            |
| Fe      | 220        | 800      | 165      | 600            |
| Н       | J.         | 20       | 30       | 75             |
| Hf      | 450        | 1 500    | 2 400    | 5 400          |
| Ho      | 250        | 800      | 1 300    | 3 000          |
| I       | 1          | 5        | 1        | 25             |
| ĸ       | 15         | 55       | 75       | 200            |
| Mn      | 50         | 750      | 180      | 150            |
| Mo      | 10         | 125      | 90       | 25             |
| Nb      | 160        | 550      | 900      | 2 000          |
| Ni      |            |          |          |                |
|         | 400        | 300      | 650      | 1 100          |
| Np      | 5          | 25<br>25 | 55<br>25 | 1 200          |
| P       | 5          | 25       | 35       | 90             |
| Pa      | 550        | 1 800    | 2 700    | 6 600          |
| Pb      | 270        | 16 000   | 550      | 22 000         |
| Pd      | 55         | 180      | 270      | 670            |
| Po      | 150        | 400      | 3 000    | 7 300          |
| Pu      | 550        | 1 200    | 5 100    | 1 900          |
| Ra      | 500        | 36 000   | 9 100    | 2 400          |
| Rb      | 55         | 180      | 270      | 670            |
| Re      | 10         | 40       | 60       | 150            |
| Ru      | 55         | 1 000    | 800      | 66 000         |
| Sb      | 45         | 150      | 250      | 550            |
| Se      | 150        | 500      | 740      | 1 800          |
| Si      | 35         | 110      | 180      | 400            |
| Sm      | 245        | 800      | 1 300    | 3 000          |
| Sn      | 130        | 450      | 670      | 1 600          |
| Sr      | 15         | 20       | 110      | 150            |
| Га      | 220        | 900      | 1 200    | 3 300          |
| Гс      |            | J        | 1        | 1              |
| Ге      | 125        | 500      | 720      | 1 900          |
| Γĥ      | 3 200      | 3 300    | 5 800    | 89 000         |
| U       | 35         | 15       | 1 600    | 410            |
| Y       | 170        | 720      | 1 000    | 2 600          |
| Zn      |            | 1 300    | 2 400    | 2 000<br>1 600 |
|         | <i>200</i> |          |          |                |
| Zr      | 600        | 2 200    | 3 300    | 7 300          |

TABLE 8

SUMMARY OF GMª K, VALUES (L kg<sup>-1</sup>) FOR EACH BLEMENT BY SOIL TEXTURE

<sup>a</sup> GM = geometric mean rounded to two significant digits. <sup>b</sup> Values with italic bold numbering come from the *literature*.

Values with regular numbering are predicted using plant/soil concentration ratios (CRs).

ſ 13 ,

| TAB | LE | 9 |
|-----|----|---|
|     |    |   |

Ţ

| COMPARISON OF OUR COMPILATION WITH THOSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | F OF BARS AND SHADE |                                  | 1 (1000)  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|----------------------------------|-----------|
| Source and source and a source of the source | 2 UL DAFO VID SUVKL | <u>CI9651 AND COUGHTREY ET A</u> | L. (1985) |

| _      |        |            |        | This Study <sup>*</sup> |        |             | <u></u> | ·           | Agricultur<br>and cla | ys of      | Coughtr  | ev et al. <sup>c</sup> |
|--------|--------|------------|--------|-------------------------|--------|-------------|---------|-------------|-----------------------|------------|----------|------------------------|
| lement |        | Sand       |        |                         | C1     |             |         | anic        | pH 4.5                | to 9.0     |          |                        |
|        | exp(µ) | Range      | exp(#) | Range                   | exp(µ) | Range       | exp(µ)  | Range       | exp(µ)                | Range      | Best Est | imate Range            |
| Ac     | 450    |            | 1500   |                         | 2400   |             | 5400    |             |                       |            | 50       | ND <sup>d</sup>        |
| Ag     | 90     | 2.7-1000   | 120    | 28-333                  | 180    | 100-300     | 15000   | 4400-33000  | 110                   | 10-1000    | ~ 2000   | 1200-8700              |
| Am     | 1900   | 8.2-300000 | 9600   | 400-48309               | 8400   | 25-400000   | 112000  | 6398-450000 | 810                   | 1.0-47230  | 2000     | 1200-0700              |
| As(III | )      |            |        |                         |        |             |         |             | 3.3                   | 1.0-8.3    |          |                        |
| As(V)  |        |            |        |                         |        |             |         |             | 6.7                   | 1.9-18     |          |                        |
| Be     | 250    |            | 800    |                         | 1300   |             | 3000    |             |                       |            |          |                        |
| Bi     | 100    |            | 450    |                         | 600    |             | 1500    |             |                       |            |          |                        |
| Br     | 15     |            | 50     |                         | 75     |             | 180     |             |                       |            | < 2      | ND                     |
| С      | 5      | 1.7-7.1    | 20     |                         | 1      |             | 70      |             |                       |            | • -      |                        |
| Ca     | 5      |            | 30     |                         | 50     |             | 90      |             | 4.1                   | 1.2-9.8    |          |                        |
| Cd     | 80     | 2.7-625    | 40     | 7.0-962                 | 560    | 112-2450    | 800     | 23-17000    | 6.7                   | 1.26-26.8  | 32-50    | ND                     |
| Ce     | 500    | 40-3968    | 8100   | 1200-56000              | 20000  | 12000-31623 | 3300    | 0           | 1100                  | 58-6000    | ND       | ND                     |
| Cl     |        |            |        |                         |        |             |         |             |                       |            | ND       | ND                     |
| Cm     | 4000   | 780-22970  | 18000  | 7666-44260              | 6000   |             | 6000    | 0           | 3300                  | 93.3-51900 | ND       | 98-52000               |
| Co     | 60     | .07-9000   | 1300   | 100-9700                | 550    | 20-14000    | 1000    | 120-4500    | 55                    | 0.2-3800   | ND       | ND                     |
| Cr     | 70     | 1.7-1729   | 30     | 2.2-1000                | 1500   |             | . 270   | 6-2517      |                       |            | ND       | ND                     |
| Cr(II) |        |            |        |                         |        |             |         |             | 2200                  | 470-150000 |          |                        |
| Cr(VI) |        |            |        |                         |        |             |         |             | 37                    | 1.2-1800   |          |                        |
| Cs     | 280    | 0.2-10000  | 4600   | 560-61287               | 1900   | 37-31500    | 270     | .4-145000   | 1100                  | 10-52000   | 1000     | 1000-10000             |
| Cu     |        | E (000     |        |                         |        |             |         | •           | 22                    | 1.4-333    |          |                        |
| Fe     | 220    | 5-6000     | 800    | 290-2240                | 165    | 15-2121     | 600     | 0           | 55                    | 1.4-1000   | 9        | 4-9                    |
| H      | .06    | .041       | 20     |                         | 30     |             | 75      |             |                       |            |          |                        |
| Rf     | 450    |            | 1500   |                         | 2400   |             | 5400    |             |                       |            |          |                        |
| Но     | 250    |            | 800    | <b>•</b> • • •          | 1300   | a           | 3000    | 1 / 2/2     |                       |            |          |                        |
| I      | 1      | .04-81     | 5      | 0.1-43                  | 1      | .2-29       | 25      | 1.4-368     |                       |            | ~ 6      | ND                     |
| K      |        |            |        |                         |        |             |         |             | 5.5                   | 2.0-9.0    |          |                        |
| Mg     | 50     | C ( 5000   | 750    | 10 77070                | 100    | 00 6 400/F  | 160     | •           | 5.5                   | 1.6-13.5   |          |                        |
| Mn     | 50     | 6.4-5000   | 750    | 40-77079                | 180    | 23.6-48945  | 150     | 0           | 150                   | 0.2-10000  | 20       | 19-99                  |

continued...

TABLE 9 (concluded)

|         |        |            | 1      | This Study <sup>®</sup> |        | Baes & Sharp <sup>b</sup><br>Agricultural soils<br>and clays of<br>pH 4.5 to 9.0 |        | <u>Coughtrey_et_al.</u> |            |             |               |          |
|---------|--------|------------|--------|-------------------------|--------|----------------------------------------------------------------------------------|--------|-------------------------|------------|-------------|---------------|----------|
| 1       |        | Sand       | Silt   |                         | Clay   |                                                                                  |        | Organic                 |            |             |               |          |
| Element | exp(#) | Range      | exp(µ) | Range                   | exp(#) | Range                                                                            | exp(µ) | Range                   | $exp(\mu)$ | Range       | Best Estimate | Range    |
| Ma      | 10     | 1.(-52     | 125    |                         | 90     | 13-400                                                                           | 25     | 18-50                   | 20         | 0.37-400    | 9             | ND       |
| Mo      | 10     | 1.(-52     | 123    |                         |        |                                                                                  |        |                         |            |             | ND            | ND       |
| Na      | 140    |            | 550    |                         | 900    |                                                                                  | 2000   |                         |            |             | ND            | ND       |
| Nb      | 160    | 60-3600    | 300    |                         | 650    | 305-2467                                                                         | 1100   | 360-4700                |            |             | ~ 20          | ND       |
| Ni      | 400    | 0.1-390    | 25     | 1.3-79                  | 55     | .4-2575                                                                          | 1200   | 857-1900                | 11         | 0.16-929    | ~ 50          | 0.16-929 |
| Np      | 5      | 0.1-390    | 25     | 1.5-79                  | 35     |                                                                                  | 90     |                         |            |             |               |          |
| P       | 5      |            | 1800   |                         | 2700   |                                                                                  | 6600   |                         |            |             |               |          |
| Pa      | 550    | 10 1/05    | 16000  | 3500-59000              | 550    |                                                                                  | 22000  | 9000-31590              | 99         | 4.5-7640    |               |          |
| Pb      | 270    | 19-1405    | 18000  | 3300-37000              | 270    |                                                                                  | 670    |                         |            |             |               |          |
| Pd      | 55     | 0.000      | 400    | 24-1830                 | 3000   |                                                                                  | 7300   |                         | 540        | 196-1063    |               |          |
| Po      | 150    | 9-;020     | 1200   | 100-5933                | 5100   | 316-190000                                                                       | 1900   | 60-62000                | 1800       | 11-300000   | 5000          | 18-10000 |
| Pu      | 550    | 27-36000   | 36000  | 1262-530000             |        | 696-56000                                                                        | 2400   | •• •••                  |            |             |               |          |
| Ra      | 500    | 57-21000   | 180    | 1202-330000             | 270    | 070-20000                                                                        | 670    |                         |            |             | ND            | ND       |
| Rb      | 55     |            | 1000   | 0                       | 800    | 0                                                                                | 66000  | 39000-87000             | 220        | 48-1000     | 1-20          | ND       |
| Ru      | 55     | 5-490      | 1000   | 0                       | 800    | v                                                                                |        | •••••                   |            |             | ND            | ND       |
| S       |        |            | 150    |                         | 250    |                                                                                  | 550    |                         |            |             | ND            | ND       |
| Sb      | 45     |            | 150    |                         | 740    |                                                                                  | 1800   |                         |            |             | > 9           | ND       |
| Se      | 150    |            | 500    |                         | 740    |                                                                                  | 1000   |                         | 2.7        | 1.2-8.6     |               |          |
| Se(IV)  | )      |            |        |                         | 180    |                                                                                  | 400    |                         |            |             |               |          |
| Si      | 35     |            | 110    |                         |        |                                                                                  | 3000   |                         |            |             |               |          |
| Sm      | 245    |            | 800    |                         | 1300   |                                                                                  | 1600   |                         |            |             | ND            | ND       |
| Sn      | 130    |            | 450    |                         | 670    | 3.6-32000                                                                        | 150    | 8-4800                  | 27         | 0.15-3300   | ND            | ND       |
| Sr      | 15     | .05-190    | 20     | .01-300                 | 110    | 3.0-32000                                                                        | 3300   | 0-4000                  | 27         | 0.12-2200   | ND            | ND       |
| Ta      | 220    |            | 900    |                         | 1200   |                                                                                  | 3300   |                         |            |             | ND            | ND       |
| Te      |        |            |        | •• •                    |        | 1 16 1 20                                                                        | 1      | .02-340                 | .033       | .0029-0.28  | 0.11          | ND<br>ND |
| Tc      | .1     | .0]-16     | 0.1    | .014                    | 1      | 1.16-1.32                                                                        | 89000  | 1579-130000             |            | 2000-510000 |               | NU       |
| Th      | 3200   | 207-150000 | 3300   |                         | 5800   | 244-160000                                                                       | 410    | 33-7350                 | 45         | 10.5-4400   | 0             |          |
| U       | 35     | .03-2200   | 15     | .2-4500                 | 1600   | 46-395100                                                                        | 410    | 22-1220                 | 45<br>510* |             |               |          |
| Ŷ       |        |            |        | ·                       |        |                                                                                  | 1/00   | 70 12000                |            | 160-1640°   | <b>\ ^</b>    |          |
| Zn      | 200    | .1-8000    | 1300   | 3.6-11000               | 2400   | 200-100000                                                                       | 1600   | 70-13000                | 16         | 0.1-8000    | => 20         | ND       |
| Zr      | 600    |            | 2200   |                         | 3300   |                                                                                  | 7300   |                         |            |             | ND            | ND       |

From our study, Tables 4 to 7.
 <sup>b</sup> Baes and Sharp (1983).
 <sup>c</sup> Coughtrey et al. (1985).
 <sup>d</sup> No data available.
 From Baes et al. (1984, Table 2.13).

/

## TABLE 10

## GROUPING OF ELEMENTS BY K<sub>d</sub> AND SOIL TEXTURE USING GEOMETRIC MEAN K<sub>d</sub>'s FROM THIS STUDY AND HIGHLIGHTING MAJOR TRENDS IN THE DATA. PREDICTED VALUES NOT USED.

|                                  |                                    | This study                  |                              |                              | Baes and Sharp (1983)                               |  |  |  |
|----------------------------------|------------------------------------|-----------------------------|------------------------------|------------------------------|-----------------------------------------------------|--|--|--|
| K <sub>d</sub> Values<br>exp (μ) | Sand                               | Silt                        | Clay                         | Organic                      | Agricultural soils<br>and clays of pH<br>4.5 to 9.0 |  |  |  |
| < 1                              | H To*                              | Tc                          |                              |                              | Tc                                                  |  |  |  |
| 1-10                             | WMo Np                             | $\overline{\mathbf{V}}$     | Tc                           | Tc                           | Cd                                                  |  |  |  |
| 10-100                           | Ag,Cd,Co,<br>Cr,Mn,Ru,<br>Sr_U     | Cd, Cr Np<br>Sr             | Mo Np                        | ТИо                          | Co, Fe, Mo Np<br>Pb, Sr Zn                          |  |  |  |
| 100-1000                         | Ce,Cs,Fe,<br>Ni,Pb,Po,<br>Pu,Ra,Zn | Ag,Fe,Mn,<br>Po             | Ag,Cd,Co,<br>Fe,Mn,Ni,<br>Sr | Cd,Co,Cr,<br>Cs,Sr           | Ag,Am,Mn Po<br>Ru                                   |  |  |  |
| 1000-10 000                      | Am,Cm,Th                           | Am,Ce,Co,<br>Cs,Pu,Zn<br>Zn | Am,Cs,Ru,<br>Ra,Th           | Ni <mark>Np</mark> Pu,<br>Zn | Ce,Cm,Cs,Pu                                         |  |  |  |
| > 10 000                         |                                    | Cm,Pb,Ra                    | Ce                           | Ag,Am,Pb,<br>Ru,Th           | Th                                                  |  |  |  |

\* Tc, I, U and Np - highlighted to illustrate the dependence on soil type.

## TABLE 11

## COMPARISON OF RANGES OF Kd (FROM TABLE 9) OF BAES AND SHARP (1983) AND SILT AND CLAY SOILS FROM THIS STUDY

|                                                                                                    |               | T                                                                                                           | This Study |                                            |                                                                                                  |                                                                                                           | Baes and Sharp                                                                              |                                                     |                                                                                                              |  |                                                                                                                                                |  |  |
|----------------------------------------------------------------------------------------------------|---------------|-------------------------------------------------------------------------------------------------------------|------------|--------------------------------------------|--------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|-----------------------------------------------------|--------------------------------------------------------------------------------------------------------------|--|------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Elements                                                                                           | Silt and Clay |                                                                                                             |            |                                            |                                                                                                  | -                                                                                                         | icultu<br>nd Clay<br>4.5 to                                                                 | E                                                   | Rating of<br>Baes and Sharp<br>Data                                                                          |  |                                                                                                                                                |  |  |
| Ag<br>Am<br>Cd<br>Ce<br>Cm<br>Co<br>Cs<br>Fe<br>Mn<br>Mo<br>Np<br>Pb<br>Po<br>Yu<br>Sr<br>Tc<br>Th |               | 28<br>25<br>7<br>200<br>666<br>20<br>37<br>15<br>23.6<br>13<br>1.3<br>500<br>24<br>100<br>.01<br>.01<br>244 |            | 56<br>44<br>14<br>61<br>2<br>77<br>2<br>59 | 450<br>000<br>260<br>000<br>287<br>240<br>079<br>400<br>575<br>000<br>830<br>000<br>1.32<br>1.32 | 10<br>1<br>1.2<br>58<br>93.3<br>.2<br>10<br>1.4<br>.2<br>.3<br>.1<br>4.5<br>196<br>11<br>15<br>.0<br>2000 | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | 6<br>51<br>3<br>52<br>1<br>10<br>7<br>1<br>300<br>3 | 000<br>230<br>26.8<br>000<br>900<br>800<br>000<br>000<br>400<br>929<br>640<br>063<br>000<br>300<br>.2<br>000 |  | high<br>low<br>low<br>low & wider<br>low<br>equal<br>low<br>very low<br>equal<br>low<br>very low<br>low & narrow<br>high<br>very high<br>equal |  |  |
| U<br>Zn                                                                                            |               | .2<br>.2<br>3.6                                                                                             | ~          | 395<br>100                                 | 100                                                                                              | 10.5                                                                                                      |                                                                                             | 4                                                   | 400<br>000                                                                                                   |  | very high<br>very low<br>very low                                                                                                              |  |  |

## APPENDIX A

ELEMENT REFERENCES

(Arranged Alphabetically by Element Name)

Ţ

)

AMERICIUM - Am

- Allard, B., H. Kipatsi and J. Rydberg. 1977. Sorption of long-lived radionuclides in clay and bedrock. Par 1. Determination of distribution coefficients. KBS Technical Report 55.
- Ames, L.L. and D. Rai. 1978. Radionuclide interactions with soil and rock media. U.S. Environmental Protection Agency Report, EPA 520/6-78-007, Volume 1.
- Baes, C.F. III and R.D. Sharp. 1981. Predicting radionuclide leaching from root zone soil for assessment applications. Trans. Am. Nucl. Soc. <u>38</u>, 111-112.
- Billon, A. 1982. Fixation d'elements transuraniens a differents degres d'oxydation sur les argiles. In Env:ronmental Migration of Long-Lived Radionuclides. Proc. Int. Symp. on Migration in the Terrestrial Environment of Long-Lived Rad: onuclides from the Nuclear Fuel Cycle, Knoxville TN, pp. 167-176. IAEA-SM-257/32, International Atomic Energy Agency, Vierna.
- Erickson, K.L. 1980. Radionuclide sorption studies on abyssal red clays. In Scientific Basis for Nuclear Waste Management Vol. 2, pp. 641-646. Plenum Press, New York, ed. C.J.M. Northup.
- Glover, P.A., F.J. Miner and W.L. Polzer. 1976. Plutonium and americium behaviour in the soil/water environment. I. Sorption of plutonium and americium by soils. In Proc. Actinide-Sediment Reactions Working Meeting, Seattle, Washington, 1976 Feb. 10-11. Battelle Pacific Northwest Laboratories Report, BNWL-2117, pp. 225-254.
- Hamstra, J. and B. Verkerk. 1977. Review of Netherlands programme for geological disposal of radioactive waste. In Nuclear Power and its Fuel Cycle. Vol. 4, pp. 467-479. International Atomic Energy Agency, Vienna, IAEA-CN-36/289.
- Johnston, H.M. and R.W. Gillham. 1980. A review of selected radionuclide distribution coefficients of geologic materials. Atomic Energy of Canada Limited Technical Record, TR-90\*.
- Neiheisel, J. 1983. Prediction parameters of radionuclide retention at low-level radioactive waste sites. (ffice of Radiation Programs, U.S. Environmental Protection Agency, Washington DC, EPA 520/1-83-025.
- Nishita, H., A. Wallace, E.M. Romney and R.K. Schulz. 1979. Effect of soil type on the extractability of <sup>237</sup>Np, <sup>239</sup>Pu, <sup>241</sup>Am and <sup>244</sup>Cm as a function of pH. University of California, Los Angeles, Report NUREG/CR-0997, UCLA 12-1192.
- Nishita, H., A. Wallace, E.M. Romney and R.K. Schulz. 1981. Effect of soil type on the extractability of <sup>237</sup>Np, <sup>239</sup>Pu, <sup>241</sup>Am and <sup>244</sup>Cm as a function of pH. Soil Sci. <u>132</u> (1), 25-34
- Nowak, E.J. 1981. Composite backfill materials for radioactive waste isolation by deep burial in salt. In Scientific Basis for Nuclear Waste Management, Vol. 3, pp. 545-552. Edited by John G. Moore, Plenum Press, New York.

- Prins, M., R.M.J. Peniders and M.J. Frissel. 1986. Impact of environmental factors on the migration of Pu, Am, Np and Tc in geological systems. Report RIVM-248308001, National Institute of Public Health and Environmental Hygiene, Bilthoven, Netherlands.
- Rai, D., R.G. Strickert, D.A. Moore and R.J. Serne. 1981. Influence of an americium solid phase on americium concentrations in solutions. Geochim. Cosmochim. Acta. <u>45</u> (11), 2257-2265.
- Routson, R.C., G. Jansen and A.V. Robinson. 1975. Sorption of <sup>99</sup>Tc, <sup>237</sup>Np and <sup>241</sup>Am on two subsoils from differing weathering intensity areas. Battelle Pacific Northwest Laboratories Report, BNWL-1889.
- Schell, W.R., A.L. Sanchez and E.D. Thomas. 1986. Investigation of siting parameters for near surface disposal of low-level nuclear waste. Grad. School, Pittsburgh Univ., Pittsburgh PA, Report DOE/ID/12509-1.
- Sheppard, J.C., M.J. Campbell, J.A. Kittrick and T.L. Hardt. 1981. Migration of actinide elements in representative U.S. soils. Washington State Univ. Pullman, Dept. of Agronomy and Soils; Babcock and Wilcox Co., Lynchburg VA, Report DOB/EV/73012-3.
- Vandergraaf, T.T. 1982. A compilation of sorption coefficients for radionuclides on granites and granitic rocks. Atomic Energy of Canada Limited Technical Record, TR-120\*.

3 8

1.

#### ANTIMONY - Sb

- Hoeffner, S.L: 1985. Radionuclide sorption on Savannah River Plant burial ground soil: a summary and interpretation of laboratory data. Savannah Liver Laboratory, Du Pont de Nemours (E.I.) and Co. Aikens SC, Report DP-1702.
- Stone, J.A., S.B. Oblath, R.H. Hawkins, R.H. Emslie, S.L. Hoeffner and C.M. King. 1984. Radionuclide migration studies at the Savannah River Plant humid shallow land burial site for low-level waste. In Proc. Sixth Annual Participant's Information Meeting DOE Low-Level Waste Management Program, Denver, pp. 119-129, CONF-8409115.

#### ARSENIC - As

Haji-Djafari, S., P.H. Antommaria and H.L. Crouse. 1981. Attenuation of radionuclides and toxic elements by in situ soils at a uranium tailings pond in central Wyoming. In Permeability and Groundwater Contaminant Transport, ASTM STP 746, T.F. Zimmie and C.O. Riggs, Eds. American Society for Testing and Materials, pp. 221-242.

#### BARIUM - Ba

Eichholz, G.G. and J. Whang. 1987. Waste migration in shallow burial sites under unsaturated flow conditions. In Waste Management '87, Proc. Symp. Tucson AZ, Vol. 3, pp. 219-226. Kenna, B.T. 1981. Temperature and pH effects on sorption properties of subseabed clay. In Scientific Basis for Nuclear Waste Management. Vol. 3, pp. 491-497. Edited by John G. Moore, Plenum Press, New York.

<u>BORON – B</u>

- Gupta, I.C. 1980. Equilibrium adsorption of boron as affected by texture, salinity and alkalinity of soil. Ann. Arid Zone 19, 243-248.
- Keren, R. and G.A. O'Connor. 1982. Effect of exchangeable ions and ionic strength on boron adsorption by montmorillonite and illite. Clays & Clay Minerals 30, 341-346.

CADMIUM - Cd

÷.,

- Anderson, P.R. and T.H. Christensen. 1988. Distribution coefficients of cadmium, cobalt, nickel and zinc in soils. J. Soil Sci. 39 (1), 15-22.
- Bunzl, K. and W. Schimmack. 1988. Effect of microbial biomass reduction by gamma-irradiation on the sorption of <sup>137</sup>Cs, <sup>85</sup>Sr, <sup>139</sup>Ce, <sup>57</sup>Co, <sup>109</sup>Cd, <sup>65</sup>Zn, <sup>103</sup>Ru, <sup>95m</sup>Tc and <sup>131</sup>I by soils. Radiat. Environ. Biophys. <u>27</u> (2), 165-176.
- Christensen, T.H. 1984. Cadmium soil sorption at low concentration : I. Effect of time, cadmium load, pH and calcium. Water, Air, Soil Pollut. <u>21</u> (1-4), 105-114.
- Christensen, T.H. 1985. Cadmium soil sorption at low concentrations: IV. Effect of waste leachates on distribution coefficients. Water, Air, Soil Pollut. <u>26</u> (3), 265-274.
- Christensen, T.H. 1985. Heavy metal competition for soil sorption sites at low concentrations. In Heavy Met. Environ., Int. Conf., 5th, Volume 2, 394-396. Edited by T.D. Lekkas.
- Christensen, T.H. 1987. Cadmium soil sorption at low concentrations: V. Evidence of competition by other heavy metals. Water, Air, Soil Pollut. <u>34</u> (3), 293-303.
- Christensen, T.H. 1987. Cadmium soil sorption at low concentrations: VI. A model for zinc competition. Water, Air, Soil Pollut. 34 (3), 305-314.
- Garcia-Miragaya, J. 1980. Spec\_fic sorption of trace amounts of cadmium by soils. Commun. Soil Sci. Plant Anal. 11, 1157-1166.
- Garcia-Miragaya, J., R. Cardenas and A.L. Page. 1983. Sorption of cadmium and zinc on kaolinite and montmorillonite. In Heavy Met. Environ., Int. Conf., 4th, Vol. 2, 1244-1248.

- Gerritse, R.G., R. V:iesema, J.W. Dalenberg and H.P. De Roos. 1982. Effect of sewage sludge on trace element mobility in soils. J. Environ. Qual. 11, 359-364.
- Hendrickson, L.L. and R.B. Corey. 1981. Effect of equilibrium metal concentrations on apparent selectivity coefficients of soil complexes. Soil Sci. 131, 163-171.
- Navrot, J., A. Singe: and A. Banin. 1978. Adsorption of cadmium and its exchange characteristics in some Israeli soils. J. Soil Sci. 29, 505-511.
- Poelstra, P., M.J. Frissel and N. El-Bassam. 1979. Transport and accumulation of Cd ions in soils and plants. Z. Pflanzenernaehr. Bodenkd. <u>142</u>, 848-864.
- Rendell, P.S., G.E. Batley and A.J. Cameron. 1980. Adsorption as a control of metal concentrations in sediment extracts. Environ. Sci. Technol. <u>14</u>, 314-318.
- Schimmack, W., K. Bunzl and H. Bachhuber. 1987. Variability of the sorption of Cs, Zn, Sr, Co, Cd, Ce, Ru, Tc and I at trace concentrations by a forest soil along a transect. Environ. Int. 13 (6), 427-436.
- Tiller, K.G., J. Ger h and G. Bruemmer. 1984. The relative affinities of cadmium, nickel and zinc for different soil clay fractions and geothite. Geoderma <u>34</u> (1), 17-35.
- Wolf, A., K. Bunzl, '. Dietl and W.F. Schmidt. 1977. Effect of calcium ions on the absorption of lead (2+), copper (2+), cadmium (2+) and zinc (2·) by humic substances. Chemosphere <u>6</u>, 207-213.
- Wong, K.V., S. Senguota, D. Dasgupta, E.L. Daly, Jr., N. Nemerow and H.P. Gerrish. 1983. Heavy metal migration in soil-leachate systems. BioCyc. e 24, 30-33.

42

Zabowski, D. and R.J Zasoski. 1987. Cadmium, copper and zinc adsorption by a forest soil in the presence of sludge leachate. Water, Air, Soil Pollut. <u>36</u> (1-2), 103-113.

#### CALCIUM - Ca

)

- Graham, E.R. 1973. Selective distribution and labile pools of micro-nutrient elements as factors affecting plant uptake. Soil Sci. Soc. Amer. Proc. <u>37</u>, 70-74.
- Graham, E.R. and C.G. Silva. 1979. Labile pools and distribution coefficients for soil calcium, magnesium, and potassium determined with exchange equilibria and radioisotopes. Soil Sci. <u>128</u>, 17-22.
- Wong, K.V., S. Sengujta, D. Dasgupta, E.L. Daly, Jr., N. Nemerow and H.P. Gerrish. 1983. Heavy metal migration in soil-leachate systems. BioCycle 24, 30-33.

### CARBON - C

- Allard, B., B. Torstenfelt and K. Andersson. 1981. Sorption behaviour of <sup>14</sup>C in groundwater/rock and in groundwater/concrete environments. Report Prav 4.27.
- Andersson, K., B. Torstenfelt and B. Allard. 1982. Sorption behaviour of long-lived radionuclides in igneous rock. In Environmental Migration of Long-Lived Radionuclides. Proc. Int. Symp. on Migration in the Terrestrial Environment of Long-Lived Radionuclides from the Nuclear Fuel Cycle, Knoxville TN, pp. 111-131. IAEA-SM-257/20, International Atomic Energy Agency, Vienna.

Sheppard, M.I. 1989. "EPRI contract". Personal Communication.

## CERIUM - Ce

5

. ?

2

**N** 1

- Allard, B., H. Kipatsi and J. Rydberg. 1977. Sorption of long-lived radionuclides in clay and bedrock. Part 1. Determination of distribution coefficients. KBS Technical Report 55.
- Baes III, C.F., and R.D. Sharp. 1981. Predicting radionuclide leaching from root zone soil for assessment applications. Trans. Am. Nucl. Soc. <u>38</u>, 111-112.
- Bunzl, K. and W. Schimmack. 1988. Effect of microbial biomass reduction by gamma-irradiation on the sorption of <sup>137</sup>Cs, <sup>85</sup>Sr, <sup>139</sup>Ce, <sup>57</sup>Co, <sup>109</sup>Cd, <sup>65</sup>Zn, <sup>103</sup>Ru, <sup>95m</sup>Tc and <sup>131</sup>I by soils. Radiat. Environ. Biophys. <u>27</u> (2), 165-176.
- Bunzl, K., H. Bachhuber and W. Schimmack. 1984. Distribution coefficients of <sup>137</sup>Cs, <sup>85</sup>Sr, <sup>141</sup>Ce, <sup>103</sup>Ru, <sup>131</sup>I and <sup>95m</sup>Tc in the various horizons of cultivated soils in Germany. In Proc. International Symposium on Recent Investigations in the Zone of Aeration of the Soil, P. Udluft et al. (eds.), pp. 567-573. (Riza '84) Munich, FRG.
- Bunzl, K., H. Bachhuber and W. Schimmack. 1986. Vertical and horizontal variability of the distribution coefficients of several radionuclides in a cultivated field. In Application of Distribution Coefficients to Radiological Assessment Models, Proc. Int. Sem. Louvain-la-Neuve, Belgium, 1985, pp. 267-276. Elsevier Applied Science Publishers.
- Hoeffner, S.L. 1985. Radionuclide sorption on Savannah River Plant burial ground soil: a summary and interpretation of laboratory data. Savannah River Laboratory, Du Pont de Nemours (E.I.) and Co., Aiken SC, Report DP-1702.
- Nikula, A. 1982. Sorption in typical Finnish soils and some fracture filling of bedrock. (In Finnish). Ima:ra Power Company, Helsinki, Finland, Report YJT-82-60.
- Schimmack, W., K. Bunzl and H. Bachhuber. 1987. Variability of the sorption of Cs, Zn, Sr, Co, Cd, Ce, Ru, T: and I at trace concentrations by a forest soil along a transect. Environ. Int. <u>13</u> (6), 427-436.

- Schwarzer, K., J. Thelen and W. Katscher. 1983. Migration of concentrated radionuclide solutions in water-saturated soil -Investigation of a hypothetical high activity waste solution discharge accident. Nucl. Technol. <u>60</u> (1), 97-103.
- Vandergraaf, T.T. 1932. A compilation of sorption coefficients for radionuclides on granites and granitic rocks. Atomic Energy of Canada Limited Technical Record, TR-120\*.

CESIUM - Cs

- Aleksakhin, R.M. 1965. Radioactive contamination of soils and plants. U.S. Atomic Energy Commission Report, AEC-tr-6631.
- Allard, B., H. Kipatski and J. Rydberg. 1977. Sorption of long-lived radionuclides in clay and bedrock. Part 1. Determination of distribution coefficients. KBS Technical Report 55.
- Bachhuber, H., K. Burzl, W. Schimmack and I. Gans. 1982. The migration of <sup>137</sup>Cs and <sup>90</sup>Sr in multilayered soils: Results from batch, column and fallout investigations. Nucl. Technol. <u>59</u> (2), 291-301.
- Baes III, C.F., and R.D. Sharp. 1981. Predicting radionuclide leaching from root zone soil for assessment applications. Trans Am. Nucl. Soc. <u>35</u>, 111-112.
- Bell, J. and T.H. Bates. 1988. Distribution coefficients of radionuclides between scils and groundwaters and their dependence on various test parameters. Sci. Total Environ. <u>69</u>, 297-317.
- Bunzl, K. and W. Schultz. 1985. Distribution coefficients of <sup>137</sup>Cs and <sup>85</sup>Sr by mixtures of clay and humic material. J. Radioanal. Nucl. Chem. <u>90</u> (1), 23-37.

- Bunzl, K. and W. Schimmack. 1988. Effect of microbial biomass reduction by gamma-irradiation on the sorption of <sup>137</sup>Cs, <sup>85</sup>Sr, <sup>139</sup>Ce, <sup>57</sup>Co, <sup>109</sup>(d, <sup>65</sup>Zn, <sup>103</sup>Ru, <sup>95m</sup>Tc and <sup>131</sup>I by soils. Radiat. Environ. Biophys. <u>27</u> (2), 165-176.
- Bunzl, K., H. Bachhuter and W. Schimmack. 1984. Distribution coefficients of <sup>137</sup>Cs, <sup>85</sup>Sr, <sup>141</sup>Ce, <sup>103</sup>Ru, <sup>131</sup>I and <sup>95m</sup>Tc in the various horizons of cultivated soils in Germany. <u>In</u> Proc. International Symposium on Recent Investigations in the Zone of Aeration of the soil, P. Udluft et al. (eds.), pp. 567-573. (Riza '84) Munich, FRG.
- Bunzl, K., H. Bachhuler and W. Schimmack. 1986. Vertical and horizontal variability of the distribution coefficients of several radionuclides in a cultivated field. In Application of Distribution Coefficients to Radiological Assessment Models, Proc. Int. Sem., Louvain-la-Neuve, Belgium, 1985, pp. 267-276. Elsevier Applied Science Publishers.
- Carini, F., S. Silva and P. Fontana. 1985. Use of distribution coefficients for the evaluation of soils with regard to their radiological risk. Ann. Fac. Agrar. 25 (1), 79-96.

- Carlsen, L. and P. Bo. 1982. Sorption of radionuclides on clay materials. In Environmental Migration of Long-Lived Radionulides. Proc. Int. Symp. on Migration in the Terrestrial Environment of Long-Lived Radionuclides from the Nuclear Fuel Cycle, Knoxville, TN, pp. 97-109. IAEA-SM-257/82, International Atomic Energy Agency, Vienna.
- Eichholz, G.G. and J. Whang. 1987. Waste migration in shallow burial sites under unsaturated flow condition: . In Waste Management '87, Proc. Symp. Tucson AZ, Vol. 3, pp. 219-226.
- Elprince, A.M., C.I. Rich and D.C. Martens. 1977. Effect of temperature and hydroxy aluminum interlayers on the adsorption of trace radioactive cesium by sediments near water-cooled nuclear reactors. Water Resour. Res. <u>13</u>, 375-380
- Erten, H.N., S. Aksoyoglu and H. Gokturk. 1988. Sorption/desorption of cesium on clay and soil fractions from various regions of Turkey. Sci. Total Environ. <u>69</u>, 269-296.
- Essington, E.H., E.B. Fowler and W.L. Polzer. 1981. The interactions of low-level, liquid radioactive waste: with soils: 2. Differences in radionuclide distribution among four surface soils. Soil Sci. <u>132</u> (1), 13-18.

- Gee, G.W., D. Rai and R.J. Serne. 1983. Mobility of radionuclides in soil. In Chemical Mobility and Reactivity in Soil Systems, SSSA Special Publication, pp. 203-227. Madison, WI.
- Gillham, R.W., L.E. Lindsay, W.D. Reynolds, T.J. Kewen, J.A. Cherry and M.R. Reddy. 1981. Studies of cesium and strontium migration in unconsolidated Canadian geological materials. Atomic Energy Control Board Report, INFO-0049
- Hajek, B.F. and L.L. Ames, Jr. 1968. Strontium and cesium equilibrium distribution coefficients: Batch and column determinations. In Battelle Pacific Northwest Laboratory Report, BNWL-481-3, pp. 48-53.
- Hamstra, J. and B. Verkerk. 1977. Review of Netherland; programme for geological disposal of radioactive waste. In Nuclear Power and its Fuel Cycle. Vol. 4, pp. 467-479. International Atomic Energy Agency, Vienna, IAEA-CN-36/289.
- Hoeffner, S.L. 1985. Radionuclide sorption on Savannah River Plant burial ground soil: a summary and interpretation of laboratory data. Savannah River Laboratory, Du Pont de Nemours (E.I.) and Co., Aikens SC, Report DP-1702.
- Inoue, Y. and S. Morisawa. 1976. Distribution coefficient K<sub>d</sub> of radionuclides between sample soil and water. Atomic Energy Journal <u>18</u> (8), 52-62.
- Johnston, H.M., R.W. Gillham and J.A. Cherry. 1985. Distribution coefficients for strontium and cesium in overburden at a storage area for low-level radioactive waste. Can. Geotech. J. 22 (1), 6-16.
- Kenna, B.T. 1981. Temperature and pH effects on sorption properties of subseabed clay. In Scientific Basis for Nuclear Waste Management, Vol. 3, pp. 491-497. Edited by John G. Moore. Plenum, New York.

- Neiheisel, J. 1983. Prediction parameters of radionuclide retention at low-level radioactive waste sites. EPA 520/1-83-025. Office of Radiation Programs, U.S. Environmental Protection Agency, Washington DC.
- Nikula, A. 1982. So.ption in typical Finnish soils and some fracture filling of bedrock. (In Finnish). Imatra Power Company, Helsinki, Finland Report YJT-82-60.
- Nowak, E.J. 1981. Composite backfill materials for radioactive waste isolation by deep burial in salt. In Scientific Basis for Nuclear Waste Management 3, 545-552. Edited by J.G. Moore. Plenum Press, New York.
- Ohnuki, T. and Y. Wadachi. 1983. Migration of cesium-137 through sandy soil layer. Effect of fine silt on migration. Nippon Genshiryoku Gakkai-Shi. 25 (6), 486-493.
- Prout, W.E. 1959. Alsorption of fission products by Savannah River Plant soil. Savannah River Laboratory, E.I. du Pont de Nemours and Co., Report DP-394.

e 🗸

- Rançon, D. 1972. Practical utilization of the distribution coefficient for the measurement of the radioactive contamination of minerals in rocks, soil and subterranean water. Cadarache Nuclear CEA Research Center Report, ANL-trans-931, Report-R-4274.
- Rhodes, D.W. 1957. The effect of pH on the uptake of radioactive isotopes from solution by a soil. Soil Sci. Soc. Amer. Proc. 21, 389-392.
- Rogowski, A.S. and T. Tamura. 1965. Movement of <sup>137</sup>Cs by runoff, erosion and infiltration on the alluvial Captina silt loam. Health Phys. <u>11</u>, 1333-1340.
- Routson, R.C. 1973. A review of studies on soil-waste relationships on the Hanford Reservation from 1944 to 1967. Batelle Pacific Northwest Laboratory Report, BNWL-1464, UC-70.
- Schell, W.R., A.L. Sanchez and E.D. Thomas. 1985. Investigation of siting parameters for near surface disposal of low-level nuclear waste. (rad. School, Pittsburgh Univ., Pittsburgh PA, Report DOE/ID/12509-1.
- Schimmack, W., K. Burzl and H. Bachhuber. 1987. Variability of the sorption of Cs, Zn, Sr, Co, Cd, Ce, Ru, Tc and I at trace concentrations by a forest soil along a transect. Environ. Int. 13 (6), 427-436.
- Schmalz, B.L. 1972. Radionuclide distribution in soil mantle of the lithosphere as a consequence of waste disposal at the National Reactor Testing Station. U.S. Atomic Energy Commission Report, IDO-10049.
- Schwarzer, K., J. Thelen and W. Katscher. 1983. Migration of concentrated radionuclide solutions in water-saturated soil -Investigation of a hypothetical high activity waste solution discharge accident. Nucl. Technol. <u>60</u> (1), 97-103.

- Seeley, F.G. and A.D. Kelmers. 1984. Geochemical information for the West Chestnut Ridge central waste disposal facility for lowlevel radioactive waste. Report ORNL-6061, Oak Ridge National Laboratory, Oak Ridge, TN.
- Serne, R.J., D. Rai and S.J. Phillips. 1978. Monitoring and physical characterization of unsaturated zone transport: Laboratory analysis. In Nuclear Waste Management Quarterly Progress Report Oct.-Dec. 1977, Pacific Northwest Laboratory Report, PNL-2377-4, UC-70.
- Sheppard, M.I. 1989. BLG-4 year Kd results. Personal Communication.
- Sheppard, M.I., D.H. Thibault and J.H. Mitchell. 1987. Element leaching and capillary rise in sandy soil cores: Experimental results. J. Environ. Qual. 16 (3), 273-283.

Tymochowicz, S. 1981. Sorptive properties of mineral deposits occurring in Poland. Nukleonika 26, 595-599.

- Vandergraaf, T.T. 1982. A compilation of sorption coefficients for radionuclides on granites and granitic rocks. Atomic Energy of Canada Limited Technical Record, TR-120\*.
- Wildung, M.W. and D.W. Rhodes. 1963. Removal of radioisotopes from solution by earth materials from eastern Idaho. Atomic Energy Division, Idaho Falls, Report IDO-14624.
- Zelazny, L.W., D.C. Martens, A.M. El-Prince and C.I. Rich. 1978. Effect of temperature and hydroxy-aluminum interlayers on cesium selectivity and fixation in river suspensions and soils. Virginia Polytech. Inst. and State University, Report ORO-4851-2.

#### <u>CHROMIUM - Cr</u>

• • •

- Morell de Ramirez, L., J. Benitez Rodriguez and F. Barba. 1985. Heavy metal concentration in sludge-soil syst≥ms as a result of water infiltration. Trop. Hydrol. Caribb. Isl. Water Resour. Congr., Int. Symp. Edited by: Ferdinand Quin⊃nes and Ana V. Sanchez. Am. Water Resour. Assoc., Bethesda MD, pp. 20-25.
- Selim, H.M. and M.C. Amacher. 1988. A second-order kinetic approach for modeling solute retention and transport in soils. Water Resour. Res. 24 (12), 2061-2075.
- Sheppard, M.I. 1989. BLG-4 year Kd results. Personal Communication.
- Sheppard, M.I. and S.C. Sheppard. 1987. A soil solute transport model evaluated on two experimental systems. Ecol. Modelling <u>37</u>, 191-206.
- Sheppard, M.I., D.H. Thibault and J.H. Mitchell. 1987. Element leaching and capillary rise in sandy soil cores: Experimental results. J. Environ. Qual. <u>16</u> (3), 273-283.

- Stollenwerk, K.G. and D.B. Grove. 1985. Adsorption and desorption of hexavalent chromium in an alluvial aquifer near Telluride, Colorado. J. Environ. Qual. <u>14</u> (1), 150-155.
- Wong, K.V., S. Sengurta, D. Dasgupta, E.L. Daly, Jr., N. Nemerow, H.P. Gerrish. 1983. Heavy metal migration in soil-leachate systems. BioCycle 24, 30-33.

COBALT - Co

Anderson, P.R. and T.H. Christensen. 1988. Distribution coefficients of cadmium, cobalt, nickel and zinc in soils. J. Soil Sci. 39 (1), 15-22.

÷.,

<u>.</u>

- Bunzl, K. and W. Schimmack. 1988. Effect of microbial biomass reduction by gamma-irradiation on the sorption of <sup>137</sup>Cs, <sup>85</sup>Sr, <sup>139</sup>Ce. <sup>57</sup>Co. <sup>109</sup>Cd, <sup>65</sup>Zn, <sup>103</sup>Ru, <sup>95m</sup>Tc and <sup>131</sup>I by soils. Radiat. Environ. Biophys. 27 (2), 165-176.
- Carini, F., S. Silva and P. Fontana. 1985. Use of distribution coefficients for the evaluation of soils with regard to their radiological risł. Ann. Fac. Agrar. (Univ. Cattol. Sacro Cuore) 25 (1), 79-96.
- Hoeffner, S.L. 1985. Radionuclide sorption on Savannah River Plant burial ground soil: a summary and interpretation of laboratory data. Savannah liver Laboratory, Du Pont de Nemours (E.I.) and Co., Aiken SC, Report DP-1702.
- Inoue, Y. and S. Mor: sawa. 1976. Distribution coefficient K<sub>d</sub> of radionuclides between sample soil and water. Atomic Energy
  Journal <u>18</u> (8), !2-62.
- Jones, T.L., G.W. Ge, J.L. Swanson and R.R. Kirkham. 1983. A field and laboratory evaluation of the mobility of Cobalt-60/EDTA in an arid environment. Pacific Northwest Laboratory Report, PNL-SA-10780. Presented at Waste Management '83 Conference, Tucson AZ.
- Jones, T.L., S.J. Ph: llips and G.W. Gee. 1980. Characterizing radionuclide movement through sediments: Parameter estimations. Pacific Northwes Laboratory Report PNL-SA-8819. Presented at IAEA Meeting, Gotherburg, Sweden.
- Neiheisel, J. 1983. Prediction parameters of radionuclide retention at low-level radioactive waste sites. EPA 520/1-83-025, Office of Radiation Programs, U.S. Environmental Protection Agency, Washington DC.
- Nikula, A. 1982. Surption in typical Finnish soils and some fracture filling of bedrock. (In Finnish). Imatra Power Company, Helsinki, Finland, Report YJT-82-60.
- Schell, W.R., A.L. Sanchez and E.D. Thomas. 1985. Investigation of siting parameters for near surface disposal of low-level nuclear waste. (Frad. School, Pittsburgh Univ., Pittsburgh PA, Report DOE/ID/12509-1.

- Schimmack, W., K. Bunzl and H. Bachhuber. 1987. Variability of the sorption of Cs, Zn, Sr, Co, Cd, Ce, Ru, 2c and I at trace concentrations by a forest soil along a transect. Environ. Int. 13 (6), 427-436.
- Seeley, F.G. and A.D. Kelmers. 1984. Geochemical information for the West Chestnut Ridge central waste disposal facility for lowlevel radioactive waste. Report ORNL-6061, Oak Ridge National Laboratory, Oak Ridge, TN.
- Stone, J.A., S.B. Oblath, R.H. Hawkins, R.H. Emslie, S.L. Hoeffner and C.M. King. 1984. Radionuclide migrat on studies at the Savannah River Plant humid shallow land burial site for low-level waste. In Proc. Sixth Annual Low-Level Waste Management Program Participants' Information Meeting, Denver, pp. 119-129, CONF-8409115.

#### COPPER - Cu

- Wong, K.V., S. Sengupta, D. Dasgupta, B.L. Daly, Jr., N. Nemerow, and H.P. Gerrish. 1983. Heavy metal migra ion in soil-leachate systems. BioCycle 24, 30-33.
- Zabowski, D. and R.J. Zasoski. 1987. Cadmium, copper and zinc adsorption by a forest soil in the presence of sludge leachate. Water, Air, Soil Pollut. <u>36</u> (1-2), 103-113.

### CURIUM - Cm

- Adriano, D.C., J.J. Alberts and K.W. McLeod. 1981. Radioecology of the actinide elements. In Annual report of ecological research at the Savannah River Ecology Laboratory, University of Georgia, Report SRO-819-12, pp. 72-103.
- Nishita, H., A. Wallace, E.M. Romney and R.K. Schulz. 1981. Effect of soil type on the extractability of <sup>237</sup>Np, <sup>239</sup>Pu, <sup>241</sup>Am and <sup>244</sup>Cm as a function of pH. Soil Sci. <u>132</u> (1), 25-34.

#### EUROPIUM - Eu

• • •

- Carlsen, L. and P. Bo. 1982. Sorption of radionuclides on clay materials. In Environmental Migration of Long-Lived Radionuclides. Proc. Int. Symp. on Migration in the Terrestrial Environment of Long-Lived Radionuclides from the Nuclear Fuel Cycle, Knoxville TN, pp. 97-109. IAEA-SM-257/82, IAEA, Vienna.
- Kenna, B.T. 1981. Temperature and pH effects on sorption properties of subseabed clay. In Scientific Basis for Nuclear Waste Management 3, 491-497. Ed. by John G. Moore, Plenum Press, New York.
- Seeley, F.G. and A.D. Kelmers. 1984. Geochemical information for the West Chestnut Ridge central waste disposal facility for lowlevel radioactive waste. Report ORNL-6061, Oak Ridge National Laboratory, Oak Ridge TN.

IODINE - I

- Ames, L.L. and D. Rai. 1978. Radionuclide interactions with soil and rock media. U.S. Environmental Protection Agency Report, EPA 520/6-78-007, Volume 1.
- Boone, F.W., M.V. Kantelo, P.G. Mayer and J.M. Palms. 1985. Residence half-times of iodine-129 in undisturbed surface soils based on measured soil concentration profiles. Health Phys. <u>48</u> (4), 401-413.
- Bors, J., R. Martens and W. Kuehn. 1987. Retention of radioiodine in soils treated with artificial complexing agents. Int. Agrophys. 3 (3), 03-111.
- Bunzl, K. and W. Schiumack. 1988. Effect of microbial biomass reduction by gamma-irradiation on the sorption of <sup>137</sup>Cs, <sup>85</sup>Sr, <sup>139</sup>Ce, <sup>57</sup>Co, <sup>109</sup>Cc, <sup>65</sup>Zn, <sup>103</sup>Ru, <sup>95m</sup>Tc and <sup>131</sup>I by soils. Radiat. Environ. Biophys. <u>27</u> (2), 165-176.
- Bunzl, K., H. Bachhuber and W. Schimmack. 1984. Distribution coefficients of <sup>137</sup>Cs, <sup>85</sup>Sr, <sup>141</sup>Ce, <sup>193</sup>Ru, <sup>131</sup>I and <sup>95m</sup>Tc in the various horizons of cultivated soils in Germany. In Proc. of the International Symposium on Recent Investigations in the Zone of Aeration of the soil. P. Udluft et al. (eds.), pp. 567-73. (Riza '84), Munich, FRG.

Ŷ.

- Bunzl, K., H. Bachhub r and W. Schimmack. 1986. Vertical and Lorizontal variability of the distribution coefficients of several radionuclides in a cultivated field. In Application of Distribution Coefficients to Radiological Assessment Models, Proc. Int. Sem. Louvain-la-N uve, Belgium, 1985, pp. 267-276. Elsevier Applied Science Publishers.
- Carini, F., S. Silva and P. Fontana. 1985. Use of distribution coefficients for the evaluation of soils with regard to their radiological risk Ann. Fac. Agrar. 25 (1), 79-96.
- Eichholz, G.G. and J. Whang. 1987. Waste migration in shallow burial sites under unsaturated flow conditions. In Waste Management '87, Proc. Symp. 'Jucson AZ, Vol. 3, pp. 219-226.
- Gillham, R.W., L.E. L.ndsay, W.D. Reynolds, T.J. Kewen, J.A. Cherry and M.R. Reddy. 1981. Studies of cesium and strontium migration in unconsolidated Canadian geological materials. Atomic Energy Control Board Report, INFO-0049.
- Glover, P.A., F.J. Miler and W.O. Polzer. 1976. Plutonium and americium behaviour in the soil/water environment. I. Sorption of plutonium and americium by soils. In Proc. Actinide-Sediment Reactions Working Meeting, Seattle, Washington. Battelle Pacific Northwest Laboratories Report, BNWL-2117, pp. 225-254.
- Hoeffner, S.L. 1985. Radionuclide sorption on Savannah River Plant burial ground soil: a summary and interpretation of laboratory data. Savannah River Laboratory. Du Pont de Nemours (E.I.) and Co., Aiken SC, Report DP-1702.
- Johnston, H.M. and R.V. Gillham. 1980. A review of selected radionuclice distribution coefficients of geologic materials. Atomic Energy of Canada Limited Technical Record, TR-90\*.

- Jones, T.L., S.J. Phillips and G.W. Gee. 1980. Characterizing radionuclide movement through sediment: Parameter estimations. International Atomic Energy Agency Meeting. Gothenburg, Sweden. Pacific Northwest Laboratory Report, PNL-SA-8819.
- Juo, A.S.R. and S.A. Barber. 1970. The retention of strontium by soils as influenced by pH, organic matter and saturation cations. Soil Sci. 109, 143-148.
- Nowak, E.J. 1981. Composite backfill materials for radioactive waste isolation by deep burial in salt. In Scientific Basis for Nuclear Waste Management 3, 545-552. Ed. J.G. Moore, Plenum Press, New York.
- Routson, R.C. 1973. A review of studies on soil-waste relationships on the Hanford Reservation from 1944 to 1967. Battelle Pacific Northwest Laboratories Report, BNWL-1464, UC-70.
- Schimmack, W., K. Bunzl and H. Bachhuber. 1987. Variability of the sorption of Cs, Zn, Sr, Co, Cd, Ce, Ru, T: and I at trace concentrations by a forest soil along a transect. Environ. Int. <u>13</u> (6), 427-436.
- Seeley, F.G. and A.D. Kelmers. 1984. Geochemical information for the West Chestnut Ridge central waste disposal facility for lowlevel radioactive waste. Report ORNL-6061, Oak Ridge National Laboratory, Oak Ridge, TN.
- Sheppard, M.I. 1989. BLG-4 year Kd results. Personal Communication.

L.

- Sheppard, M.I. and D.H. Thibault. 1988. Migration of technetium, iodine, neptunium and uranium in the peat of two minerotrophic mires. J: Environ. Qual. 17 (4), 644-653.
- Sheppard, M.I., D.H. Thibault and J.H. Mitchell. 1987. Element leaching and capillary rise in sandy soil cores: Experimental results. J. Environ. Qual. <u>16</u> (3), 273-283.
- Sheppard, M.I., D.H. Thibault and P.A. Smith. 1989. Iodine dispersion and effects on groundwater chemistry following a release to a peat bog, Manitoba, Canada. Applied Geochem. 4, 423-432.
- Sheppard, S.C. and W.G. Evenden. 1988. The assumption of linearity in soil and plant concentration ratios: /n experimental evaluation. J. Environ. Radioactivity 2, 221-247.
- Uchida, S. and H. Kamada. 1983. Chemical behaviour of radioiodine in soils. I. Studies on the sorption and desorption of iodine on sandy soils. Hoken Butsuri 18 (4), 337-343.
- Vandergraaf, T.T. 1982. A compilation of sorption coefficients for radionuclides on granites and granitic rocks. Atomic Energy of Canada Limited Technical Record, TR-120\*.
- Wildung, R.E., R.C. Routson, R.J. Serne and T.R. Garland. 1974. Pertechnetate, iodide, and methyl iodide re ention by surface soils. Battelle Pacific Northwest Laboratory Report, BNWL-SA-5195.

### IRON - Fe

- Carini, F., S. Silva and P. Fontana. 1985. Use of distribution coefficients for the (valuation of soils with regard to their radiological risk. Ann. Fac. Agrar. (Univ. Cattol. Sacro Cuore) 25 (1), 79-96.
- Inoue, Y. and S. Morisawa. 1976. Distribution coefficient K<sub>d</sub> of radionuclides between sample soil and water. Atomic Energy
  Journal <u>18</u> (8), 52-62.
- Neiheisel, J. 1983. Prediction parameters of radionuclide retention at low-level radioactive waste sites. BPA 520/1-83-025, Office of Radiation Programs, U.S. Environmental Protection Agency, Washington DC.
- Sheppard, M.I. and S.C. Sheppard. 1987. A soil solute transport model evaluated on two experimental systems. Ecol. Modelling <u>37</u>, 191-206.
- Wong, K.V., S. Senguita, D. Dasgupta, E.L. Daly, Jr., N. Nemerow and H.P. Gerrish. 1983. Heavy metal migration in soil-leachate systems. BioCycle 24, 30-33.

<u>LEAD - Pb</u>

- Abd-Elfattah, A. and K. Wada. 1981. Adsorption of lead, copper, zinc, obalt and caumium by soils that differ in cation-exchange materials. J. Soil Sci. <u>32</u>, 271-283.
- Baes III, C.F., and R.D. Sharp. 1981. Predicting radionuclide leaching from root zone soil for assessment applications. Trans. Am. Nucl. Soc. <u>3</u>{i, 111-112.
- Gerritse, R.G., R. Vriesema, J.W. Dalenberg and H.P. De Roos. 1982. Effect of sewage sludge on trace element mobility in soils. J. Environ. Qual. 11, 359-364.
- Haji-Djafari, S., P.N. Antommaria and H.L. Crouse. 1981. Attenuation of radionuclides and toxic elements by in situ soils at a uranium tailings pond in central Wyoming. In Permeability and Groundwater Contaminant Transport, ASTM STP 746, T.F. Zimmie and C.O. Riggs, Eds. American Society for Testing and Materials, pp. 221-242.
- Sheppard, S.C. and W.G. Evenden. 1988. The assumption of linearity in soil and plant concentration ratios: An experimental evaluation. J. Environ. Radioactivity 7, 2/1-247.
- Sheppard, S.C., W.G. Evenden and R.J. Pollock. 1989. Uptake of natural radionuclides by field and garden crops. Can. J. Soil Sci. 69, 751-767.
- Soldatini, G.F., R. Aiffaldi and R. Levi-Minzi. 1976. Lead adsorption by soils. I. Adsorption as measured by the Langmuir and Freundlich isotherms. Water, Air, Soil Pollut. 6, 111-118.

. . .

ч.

Wolf, A., K. Bunzl, F. Dietl and W.F. Schmidt. 1977. Effect of calcium ions on the absorption of lead (2+), copper (2+), cadmium (2+), and zinc (2+) by humic substances. Chemosphere <u>6</u>, 207-213.

#### LITHIUM - Li

Knighton, R.E. and R.J. Wagenet. 1987. Simulation of ion movement in soil using a continuous-time Markov process. In Proc. Workshop on Modelling of Solute Transport in the Unsaturated Zone, Los Alamos, NM. NUREG/CR-4615-Vol. 2. pp. 37-81.

### MANGANESE - Mn

1

÷.,

Carini, F., S. Silva and P. Fontana. 1985. Use of distribution coefficients for the evaluation of soils with regard to their radiological risk. Ann. Fac. Agrar. (Univ. Cattol. Sacro Cuore) 25 (1), 79-96.

Inoue, Y. and S. Morisawa. 1976. Distribution coefficient K<sub>d</sub> of radionuclides between sample soil and water. Atomic Energy Journal <u>18</u> (8), 52-62.

Nikula, A. 1982. Sorption in typical Finnish soils and some fracture filling of bedrock. (In Finnish). Imatra Power Company, Helsinki, Finland, Report YJT-82-60.

Sheppard, S.C. 1989. Personal communication.

Wong, K.V., S: Sengupta, D. Dasgupta, E.L. Daly, Jr., N. Nemerow and H.P. Gerrish. 1983. Heavy metal migrat: on in soil-leachate systems. BioCycle 24, 30-33.

#### MOLYBDENUM - Mo

Inoue, Y. and S. Morisawa. 1976. Distribution coefficient K<sub>d</sub> of radionuclides between sample soil and water Atomic Energy Journal <u>18</u> (8), 52-62.

Sheppard, M.I. 1989. BLG-4 year K<sub>d</sub> results. Personal Communication.

Sheppard, M.I., D.H. Thibault and J.H. Mitchell. 1987. Element 'eaching and capillary rise in sandy soil cores: Experimental results. J. Environ. Qual. <u>16</u> (3), 273-283.

#### NEPTUNIUM - ND

Allard, B., H. Kipatsi and J. Rydberg. 1977. Sorption of long-lived radionuclides in clay and bedrock. Par: 1. Determination of distribution coefficients. KBS Technical Report 55.

- Ames, L.L. and D. Rai. 1978. Radionuclide interactions with soil and rock media. U.S. Environmental Protection Agency Report, EPA 520/6-78-007, Volume 1.
- Baes III, C.F., and R D. Sharp. 1981. Predicting radionuclide leaching from root zone soil for assessment applications. Trans. Am. Nucl. Soc. <u>38</u>, 111-112.
- Dahlman, R.C., E.A. Bondietti and L.D. Eyman. 1976. Biological pathways and chemical behavior of plutonium and other actinides in the environment. In Actinides in the Environment (ed. A.M. Friedman) ACS Symposium Series 35, 47-80.
- Fowler, S.W. and S.R. Aston. 1982. Application of <sup>235</sup>Np in experimental aquatic radioecology: Preliminary observations on neptunium behaviour in sea water, sediments and zooplankton. Health Phys. <u>42</u>, 515-520.
- Johnston, H.M. and R.V. Gillham. 1980. A review of selected radionuclide distribution coefficients of geologic materials. Atomic Energy of Canada Limited Technical Record, TR-90\*.

ĩ

1÷.,

- Nishita, H., A. Wallace, B.M. Romney and R.K. Schulz. 1979. Effect of soil type on the extractability of <sup>237</sup>Np, <sup>239</sup>Pu, <sup>241</sup>Am and <sup>244</sup>Cm as a function of pH. University of California, Los Angeles, Report NUREG/CR-0997, UCLA 12-1192.
- Nishita, H., A. Wallace, E.M. Romney and R.K. Schulz. 1981. Effect of soil type on the extractability of <sup>237</sup>Np, <sup>239</sup>Pu, <sup>241</sup>Am and <sup>244</sup>Cm as a function of pH. Soil Sci. <u>132</u> (1), 25-34.
- Prins, M., R.M.J. Peniders and M.J. Frissel. 1986. Impact of environmental factors on the migration of Pu, Am, Np and Tc in geological systems. Report RIVM-248308001, National Institute of Public Health and Environmental Hygiene, Bilthoven, Netherlands.
- Routson, R.C., G. Jansen and A.V. Robinson. 1977. <sup>241</sup>Am, <sup>237</sup>Np and <sup>99</sup>Tc sorption on two United States subsoils from differing weathering intensity areas. Health Phys. <u>33</u>, 311-317.
- Sheppard, J.C., J.A. (ittrick and T.L. Hart. 1976. Determination of distribution ratios and diffusion coefficients of neptunium, americium and curium in soil-aquatic environments. Richland Operations Office Contract Report, RLO-2221-T-12-2.
- Sheppard, M.I. 1989. BLG-4 year Kd results. Personal Communication.
- Sheppard, M.I. and D.H. Thibault. 1988. Migration of technetium, iodine, neptunium and uranium in the peat of two minerotrophic mires. J. Environ. Qual. <u>17</u> (4), 644-653.
- Sheppard, M.I., D.H. Thibault and J.H. Mitchell. 1987. Element leaching and capillary rise in sandy soil cores: Experimental results. J. Environ. Qual. <u>16</u> (3), 273-283.

Vandergraaf, T.T. 1982. A compilation of sorption coefficients for radionuclides on granites and granitic rocks. Atomic Energy of Canada Limited Technical Record, TR-120\*.

NICKEL - Ni

- Anderson, P.R. and T.H. Christensen. 1938. Distribution coefficien's of cadmium, cobalt, nickel and zinc in soils. J. Soil Sci., 39 (1), 15-22.
- Gerritse, R.G., R. Vriesema, J.W. Dalenberg and H.P. De Roos. 1982. Effect of sewage sludge on trace element mobility in soils. J. Environ. Qual. <u>11</u>, 359-364.
- Neiheisel, J. 1983. Prediction parameters of radionuclide retention at low-level radioactive waste sites. EFA 520/1-83-025. Office of Radiation Programs, U.S. Environmental Protection Agency, Washington DC.
- Reddy, M.R. and S.J. Dunn. 1986. Distribution coefficients for nickel and zinc in soils. Environ. Pollut., Ser. B, 11(4), 303-313.
- Swanson, J.L. 1981. Effect of organic complexants on the mobility of low-level waste radionuclides in soils: Status report. Pacific Northwest Laboratory Report, PNL-3927, UC-70.
- Tiller, K.G., J. Gerth and G. Bruemmer. 1984. The relative affinities of cadmium, nickel and zinc for different soil clay fractions and geothite. Geoderma <u>34</u> (1), 17-35.
- Wong, K.V., S. Sengupta, D. Dasgupta, E.L. Daly, Jr., N. Nemerow and H.P. Gerrish. 1983. Heavy metal migration in soil-leachate systems. BioCycle 24, 30-33.

### NIOBIUM - Nb

- 2-

- Allard, B., H. Kipatsi and J. Rydberg. 1977. Sorption of long-lived radionuclides in clay and bedrock. Part 1. Determination of distribution coefficients. KBS Technical Report 55.
- Rhodes, D.W. 1957. The effert of pH on the uptake of radioactive isotopes from solution by a soil. Soil Sc. Soc. Amer. Proc. 21, 389-392.
- Vandergraaf, T.T. 1982. A compilation of sorption coefficients for radionuclides on granites and granite rocl.s. Atomic Energy of Canada Limited Technical Record, TR-120\*.

#### PALLADIUM - Pd

F

Vandergraaf, T.T. 982. A compilation of sorption coefficients for radionuclides on granites and granitic rocks. Atomic Energy of Canada Limited Technical Record, TR-120\*.

PHOSPHORUS - P

Miyake, M. 1987. Considerations on the evaluation of the fertility of oxisols in Brazil. Chemical Geology 60, 351-359.

Miyake, M. 1979. Phosphate sorption by Indonesian paddy soils. Japanese Agric. Res. Quart. 13 (2), 145-148.

PLUTONIUM - Pu

Allard, B., H. Kipacsi and J. Rydberg. 1977. Sorption of long-lived ridionuclides in clay and bedrock. Part 1. Determination of distribution coefficients. KBS Technical Report 55.

- Baes III, C.F., and R.D. Sharp. 1981. Predicting radionuclide leaching from root zone soil for assessment applications. Trans. Am. Nucl. Soc. <u>18</u>, 111-112.
- Bell, J. and T.H. Bites. 1988. Distribution coefficients of radionuclides between soils and groundwaters and their dependence on various test parameters. Sci. Total Environ. <u>69</u>, 297-317.
- Billon, A. 1982. ?ixation d'elements transuraniens a differents degres d'oxydation sur les argiles. In Environmental Migration of Long-Lived Radionuclides. Proc. Int. Symp. on Migration in the Terrestrial Environment of Long-Lived Radionuclides from the Nuclear Fuel Cycle, Knoxville TN, pp. 167-176. IAEA-SM-257/32. IAEA, Vienna.
- Bondietti, B.A. and S.A. Reynolds. 1976. Field and laboratory observations on plutonium oxidation states. In Proc. Actinide-Sediment Reactions Working Meeting, Seattle, Washington. Battelle Pacific Northwest Laboratories Report, BNWL-2117, pp. 505-537.
- Bondietti, E.A., S.A. Reynolds and M.H. Shanks. 1976. Interaction of plutonium witl complexing substances in soils and natural waters. In Transuranium Nuclides in the Environment, Proc. Symp., International Atomic Energy Agency, IAEA-SM-199/51, pp. 273-287.
- Dahlman, R.C., E.A. Bondietti and L.D. Eyman. 1976. Biological pathways and chemical behavior of plutonium and other actinides in the environment. In Actinides in the Environment (ed. A.M. Friedman) ACS Symposium Series <u>35</u>, 47-80.
- Erickson, K.L. 1980. Radionuclide sorption studies on abyssal red clays. In Scientific Basis for Nuclear Waste Management Vol. 2., pp. 641-646, Plenum Press, New York, Ed., C.J.M. Northrup.

- Glover, P.A., F.J. Miner and W.O. Polzer. 1976. Plutonium and americium behaviour in the soil/water environment. I. Sorption of plutonium and americium by soils. In Proc. Actinide-Sediment Reactions Working Meeting, Seattle, Washington. Battelle Pacific Northwest Laboratories Report, BNWL-2117, pp. 225-254.
- Hamstra, J. and B. Verkerk. 1977. Review of Netherlands program for geological disposal of radioactive waste. In Nuclear Power and its Fuel Cycle. Vol. 4, pp. 467-479. International Atomic Energy Agency Vienna, IAEA-CN-36/289.
- Hoeffner, S.L. 1985. Radionuclide sorption on Savannah River Plant burial ground soil: a summary and interpretation of laboratory data. Savannah River Laboratory, Du Pont de Nemours (E.I.) and Co., Aiken SC, Report DP-1702.
- Jakubick, A.T. and L. Kahl. 1982. Limits to the use of transuranium sorption data in waste migration analyses. In Waste Isolation in the U.S. and elsewhere, Technical Programs and Public Communications, Proc. Symp. Waste Management '82, Tucson AZ. pp. 341-353.

<u>.</u>

· .....

- Johnston, H.M. and R.W. Gillham. 1980. A review of selected radionuclide distribution coefficients of geologic materials. Atomic Energy of Canada Limited Technical Record, TR-90\*.
- Miner, F.J., P.A. Evans and W.L. Polzer. 1982. Plutonium behavior in the soil/water environmen<sup>+</sup>. Part I. Scrption of plutonium by soils. Rockwell International Energy Systems Group, Rocky Flats Plant Report. RFP-2480, UC-70, DOE/TIC 4500, pp.1-12.
- Neiheisel, J. 1983. Prediction parameters of radionuclide retention at low-level radioactive waste sites. EIA 520/1-83-025. Office of Radiation Programs, U.S. Environmental Protection Agency, Washington DC.
- Nishita, H., A. Wallace, E.M. Romney and R.K. Schulz. 1979. Effect of soil type on the extractability of <sup>237</sup>Np, <sup>239</sup>Pu, <sup>241</sup>Am and <sup>244</sup>Cm as a function of pH. University of California, Los Angeles, Report NUREG/CR-0997, UCLA 12-1192.
- Nishita, H., A. Wallace, E.M. Romney and R.K. Schulz. 1981. Effect of soil type on the extractability of <sup>237</sup>Np, <sup>239</sup>Pu, <sup>241</sup>Am and <sup>244</sup>Cm as a function of pH. Soil Sci. <u>132</u>, 25-34.
- Nowak, E.J. 1981. Composite backfill materials for radioactive waste isolation by deep burial in salt. In Scientific Basis for Nuclear Waste Management 3, 545-552. Edited: J.G. Moore, Plenum Press, New York.
- Pillai, K.C. and E. Mathew. 1976. Plutonium in the aquatic environment: Its behaviour, distribution and significance. In Transuranium Nuclides in the Environment, International Atomic Energy Agency Proceedings, pp. 25-46, IAEA-SM-199/27.
- Polzer, W.L. and F.J. Miner. 1982. Plutonium behavior in the soil/water environment. Part II. Selected chemical and physical characteristics of aqueous plutonium and their effects on the sorption of plutonium by soils. Rockwell Int≥rnational Energy Systems Group, Rocky Flats Plant Report, RFP-2480, UC-70, DOE/TIC 4500, pp. 13-21.

- Prins, M., R.M.J. Peunders and M.J. Frissel. 1986. Impact of environmental factors on the migration of Pu, Am, Np and Tc in geological systems. Report RIVM-248308001, National Institute of Public Health and Environmental Hygiene, Bilthoven, Netherlands.
- Prout, W.E. 1959. Adsorption of fission products by Savannah River Plant soil. Savannah River Laboratory, E.I. du Pont de Nemours and Company, Report DP-394.
- Rhodes, D.W. 1957. The effect of pH on the uptake of radioactive isotopes from solution by a soil. Soil Sci. Soc. Amer. Proc. 21, 389-392.
- Senoo, M., K. Shirahishi, Y. Sakamoto, M. Konishi and N. Moriyama. 1988. The measurement of distribution coefficients of plutonium between subsurfa: soils and simulated groundwater. Japan Atomic Energy Res. Inst. Report, JAERI-M-88-038.

5

1.25

1 Sec.

- Tamura, T. 1972. Symption phenomena significant in radioactive waste disposal. In Underground Waste Management and Environmental Implications. Amer. Assoc. Pet. Geol. Mem. <u>18</u>, 318-330.
- Vandergraaf, T.T. 1982. A compilation of sorption coefficients for radionuclides on granites and granitic rocks. Atomic Energy of Canada Limited Technical Record, TR-120\*.

### POLONIUM - Po

- Baes III, C.F., and 3.D. Sharp. 1981. Predicting radionuclide leaching from root zone soil for assessment applications. Trans. Am. Nucl. Soc. 31, 111-112.
- Haji-Djafari, S., P.3. Antommaria and H.L. Crouse. 1981. Attenuation of radionuclides and toxic elements by in situ soils at a uranium tailings pond in central Wyoming. <u>In</u> Permeability and Groundwater Contaminant Transport, ASTM STP 746, T.F. Zimmie and C.O. Riggs, Eds., American Society for Testing and Materials, pp. 221-242.
- Hansen, W.R. 1970. Polonium-210 in soils and plants. Special Report on U.S. Atomic Energy Commission Contract, COO-1733-11.
- Hansen, W.R. and R.L. Watters. 1971. Unsupported <sup>210</sup>PoO<sub>2</sub> in soil: Soil adsorption and characterization of soil solution species. Soil Sci. <u>112</u>, 145-155.

#### RADIUM - Ra

- Allard, B., H. Kipatsi and J. Rydberg. 1977. Adsorption of long-lived radionuclides in clay and bedrock. Part 1. Determination of distribution coefficients. KBS Technical Report 55.
- Baes III, C.F., and R.D. Sharp. 1981. Predicting radionuclide leaching from root zone soil for assessment applications. Trans. Am. Nucl. Soc. 38, 111-112.

- Cochran, J.K. and S. Krishnaswami. 1980. Radium, thorium, uranium and lead-210 in deep-sea sediments and seciment pore waters from the north equatorial Pacific. Amer. J. Sci. 280, 849-889.
- Gillham, R.W., H.D. Sharma, M.R. Reddy, E.L. Cooper and J.A. Cherry. 1981. Barium and radium migration in urconsolidated Canadian geological materials. Atomic Energy Control Board Report, INFO-0048.
- Haji-Djafari, S., P.E. Antommaria and H.L. Crouse. 1981. Attenuation of radionuclides and toxic elements by in situ soils at a uranium tailings pond in central Wyoming. In Permeability and Groundwater Contaminant Transport, ASTM STF 746, T.F. Zimmie and C.O. Riggs, Eds., American Society for Testing and Materials, pp. 221-242.
- Johnston, H.M. and R.W. Gillham. 1980. A review of selected radionuclide distribution coefficients of geologic materials. Atomic Energy of Canada Limited Technical Record, TR-90\*.
- Landa, E.R. and D.F. Reid. 1983. Sorption of radium-226 from oil-production brine by sediments and soils. Environ. Geol. 5 (1), 1-8.
- Nathwani, J.S. and C.R. Phillips. 1979. Adsorption of <sup>226</sup>Ra by soils in the presence of calcium (2+) ions. Specific adsorption (II). Chemosphere <u>8</u>, 293-299.
- Sheppard, M.I. 1980. The environmental behaviour of radium. Atomic Energy of Canada Limited Report, AECL-6796.
- Vandergraaf, T.T. 1982. A compilation of sorption coefficients for radionuclides on granites and granitic recks. Atomic Energy of Canada Limited Technical Record, TR-120\*.

### RUTHENIUM - Ru

- Bell, J. and T.H. Bates. 1988. Distribution coefficients of radionuclides between soils and groundwaters and their dependence on various test parameters. Sci. Total Environ. <u>69</u>, 297-317.
- Bunzl, K. and W. Schimmack. 1988. Effect of microbial biomass reduction by gamma-irradiation on the sorption of <sup>137</sup>Cs, <sup>85</sup>Sr, <sup>139</sup>Ce, <sup>57</sup>Co, <sup>109</sup>Cd, <sup>65</sup>Zn, <sup>103</sup>Ru, <sup>95m</sup>Tc and <sup>131</sup>I by soils. Radiat. Environ. Biophys. <u>27</u> (2), 165-176.
- Bunzl, K., H. Bachhuber and W. Schimmack. 1984. Distribution coefficients of <sup>137</sup>Cs, <sup>85</sup>Sr, <sup>141</sup>Ce, <sup>103</sup>Ru, <sup>131</sup>] and <sup>95m</sup>Tc in the various horizons of cultivated soils in Germany. In Proc. International Symposium on Recent Investigations in the Zone of Aeration of the Soil, P. Udluft et al. (eds.) pp. 567-573. (Riza '84) Munich, FRG.
- Bunzl, K., H. Bachhuber and W. Schimmack. 1986. Vertical and horizontal variability of the distribution coefficients of several radionuclides in a cultivated field. In Application of Distribution Coefficients to Radiological Assessment Models. Proc. Int. Sem., Louvain-de-Neuve, Belgium, 1985, pp. 267-276. Elsevier Applied Science Publishers.

- Hoeffner, S.L. 1985. Radionuclide sorption on Savannah River Plant burial ground soil: a summary and interpretation of laboratory data. Savannah Fiver Laboratory, Du Pont de Nemours (E.I.) and Co., Aiken, SC. Roport DP-1702.
- Schell, W.R., A.L. Sanchez and E.D. Thomas. 1985. Investigation of siting parameters for near surface disposal of low-level nuclear waste. Grad. School, Pittsburgh Univ., Pittsburgh PA, Report DOE/ID/12509-1.
- Schimmack, W., K. Bunzl and H. Bachhuber. 1987. Variability of the sorption of Cs, Zn, Sr, Co, Cd, Ce, Ru, Tc and I at trace concentrations by a forest soil along a transect. Environ. Int. 13 (6), 427-436.
- Schwarzer, K., J. Thelen and W. Katscher. 1983. Migration of concentrated radionuclide solutions in water-saturated soil -Investigation of a hypothetical high activity waste solution discharge accident. Nucl. Technol. <u>60</u> (1), 97-103.

### SAMARIUM - Sm

Allard, B., H. Kipatsi and J. Rydberg. 1977. Sorption of long-lived radionuclides in clay and bedrock. Part 1. Determination of distribution coefficients. KBS Technical Report 55.

~2

- -

372

- Baes III, C.F. and R.D. Sharp. 1981. Predicting radionuclide leaching from root zone soil for assessment applications. Oak Ridge National Laboratory Report, CONF-810606-44.
- Vandergraaf, T.T. 1982. A compilation of sorption coefficients for radionuclides on granites and granitic rocks. Atomic Energy of Canada Limited Technical Record, TR-120\*.

#### SELENIUM - Se

- Elsokkary, I.H. 198(. Selenium distribution, chemical fractionation and adsorption in some Egyptian alluvial and lacustrine soils. Z. Pflanzenernaetr. Bodenkd. <u>143</u>, 74-83.
- Frost, R.R. and R.A. Griffin. 1977. Effect of pH on adsorption of arsenic and selenium from landfill leachate by clay minerals. Soil Sci. Soc. Amer. J. 41, 53-57.
- Sheppard, S.C. and W.J. Evenden. 1988. The assumption of linearity in soil and plant concentration ratios: An experimental evaluation. J. Environ. Radioactivity Z, 22<sup>-</sup>-247.
- Singh, M., N. Singh and P.S. Relan. 1981. Adsorption and desorption of selenite and selenate selenium on different soils. Soil Sci. <u>132</u>, 134-141.
- Vuori, E., J. Vääriskoski, H. Hartikainen, P. Vakkilainen, J. Kumpulainen, and K. Niinivaara. 1989. Sorption of selenate by Finnish agricultural soils. Agric. Ecosystems Environ. 25, 111-118.

- Gerritse, R.G., R. Vriesema, J.W. Dalenberg and H.P. De Roos. 1982. Effect of sewage sludge on trace element mobility in soils. J. Environ. Qual. 11, 359-364.
- Graham, E.R. 1973. Selective distribution and labile pools of micronutrient elements as factors affecting plant uptake. Soil Sci. Soc. Amer. Proc. <u>37</u>, 70-74.
- Inoue, Y. and S. Morisawa. 1976. Distribution coefficient K<sub>d</sub> of radionuclides between sample soil and water. Atomic Energy Journal <u>18</u> (8), 52-62.
- Wong, K.V., S. Sengupta, D. Dasgupta, E.L. Daly, Jr., N. Nemerow and H.P. Gerrish. 1983. Heavy metal migration in soil-leachate systems. BioCycle 24, 30-33.

#### STRONTIUM - Sr

3.

SILVER - Ag

- Allard, B., H. Kipatsi and J. Rydberg. 1977. Sorption of long-lived radionuclides in clay and bedrock. Part 1. Determination of distribution coefficients. KBS Technical Report 55.
- Aleksakhin, R.M. 1965. Radioactive contamination of soils and plants. U.S. Atomic Energy Commission Report, AEC-tr-6631.
- Amalraj, R.V.; H.N. Siriah and P. Sasidhar. 1983. Study on the movement of radionuclides in the ground using strontium-89 as a radioactive tracer. Proc. Nucl. Chem. Radiochem. Symp., Meeting 1981, pp. 419-429.
- Bachhuber, H., K. Bunzl, W. Schimmack and I. Gans. 1982 The migration of <sup>137</sup>Cs and <sup>90</sup>Sr in multi-layered soils: Results from batch, column and fallout investigations. Nucl. Tecinol. <u>59</u> (2), 291-301.
- Baes III, C.F., and R.D. Sharp. 1981. Predicting radionuclide leaching from root zone soil for assessment applications. Trans. Am. Nucl. Soc. <u>38</u>, pp. 111-112.
- Bell, J. and T.H. Bates. 1988. Distribution coefficients of radionuclides between soils and groundwaters and their dependence on various test parameters. Sci. Total Environ. <u>69</u>, 297-317.
- Bunzl, K. and W. Schimmack. 1988. Effect of microbial biomass reduction by gamma-irradiation on the sorption of <sup>137</sup>Cs, <sup>85</sup>Sr, <sup>139</sup>Ce, <sup>57</sup>Co, <sup>109</sup>Cd, <sup>65</sup>Zn, <sup>103</sup>Ru, <sup>95m</sup>Tc and <sup>131</sup>I by soils. Radiat. Environ. Biophys. <u>27</u> (2), 165-176.
- Bunzl, K. and W. Schultz. 1985. Distribution coefficients of <sup>137</sup>Cs and <sup>85</sup>Sr by mixtures of clay and humic material. J. Radioanal. Nucl. Chem. <u>90</u> (1), 23-37.

- Bunzl, K., H. Bachhuler and W. Schimmack. 1984. Distribution coefficients of <sup>137</sup>Cs, <sup>85</sup>Sr, <sup>141</sup>Ce, <sup>103</sup>Ru, <sup>131</sup>I and <sup>95m</sup>Tc in the various horizons of cultivated soils in Germany. In Proc. International Symposium on Recent Investigations in the Zone of Aeration of the soil, P. Udluft et al. (eds.) pp. 567-573. (Riza '84) Munich, FRG.
- Bunzl, K., H. Bachhuler and W. Schimmack. 1986. Vertical and horizontal variability of the distribution coefficients of several radionuclides in a cultivated field. In Application of Distribution Coefficients to Radiological Assessment Models, Proc. Int. Sem., Louvain-la-Neuve, Belgium, 1985, pp. 267-276. Elsevier Applied Science Publishers.
- Carlsen, P. and P. Bc. 1982. Sorption of radionuclides on clay materials. In Environmental Migration of Long-Lived Radionuclides. Proc. Int. Symp. on Migration in the Terrestrial Environment of Long-lived Radionuclides from the Nuclear Fuel Cycle, Knoxville, TN, pp. 97-109. IAEA-SM-257/82, IAEA, Vienna.

- - - -

- Gillham, R.W. and J.F. Cherry. 1983. Predictability of solute transport in diffusion-controlled hydrogeologic regimes. Symposium on Low-Level Waste Disposal: Facility Design, Construction and Operating Practices, Washington DC, 1982. NUREG/CP-0028-Vol. 3, pp. 379-410.
- Gillham, R.W., L.E. lindsay, W.D. Reynolds, T.J. Kewen, J.A. Cherry and M.R. Reddy. 1981. Studies of cesium and strontium migration in unconsolidated Canadian geological materials. Atomic Energy Control Board Report, INFO-0049.
- Hajek, B.F. and L.L. Ames, Jr. 1968. Strontium and cesium equilibrium distribution coefficients: Batch and column determinations. In Battelle Pacific Northwest Laboratories Report, BNWL-481-3, pp. 48-53.
- Hamstra, J. and B. Verkerk. 1977. Review of Netherlands programme for geological disposal of radioactive waste. In Nuclear Power and its Fuel Cycle. Vol. 4, pp. 467-479. International Atomic Energy Agency Vienna, IAEA-CN-36/289.
- Hoeffner, S.L. 1985 Radionuclide sorption on Savannah River Plant burial ground soil: a summary and interpretation of laboratory data. Savannah Liver Laboratory, Du Pont de Nemours (E.I.) and Co., Aiken SC, Report DP-1702.
- Inoue, Y. and S. Mor: sawa. 1976. Distribution coefficient K<sub>4</sub> of radionuclides between sample soil and water. Atomic Energy Journal <u>18</u> (8), 52-62.
- Johnston, H.M., R.W. Gillham and J.A. Cherry. 1985. Distribution coefficients for strontium and cesium in overburden at a storage area for low-level radioactive waste. Can. Geotech. J. 22 (1) 6-16.
- Jones, T.L., S.J. Ph: llips and G.W. Gee. 1980. Characterizing radionuclide movement through sediments: Parameter estimations. Pacific Northwes: Laboratory Report, PNL-SA-8819. International Atomic Energy Agency Meeting, Gothenburg, Sweden.
- Juo, A.S.R. and S.A. Barber. 1970. The retention of strontium by soil: as influenced by pH, organic matter and saturation cations. Soil Sci. <u>109</u>, 143-148.

- ---

- Kenna, B.T. 1981. Temperature and pH effects on sorption properties of subseabed clay. In Scientific Basis for Nuclear Waste Management 3, 491-497. Ed. John G. Moore. Plenum Press, New York.
- Keren, R. and G.A. O'Connor. 1983. Strontium adsorption by noncalcareous soils exchangeable ions and solution composition effects. Soil Sci. 135 (5), 308-315.
- Knighton, R.E. and R.J. Wagenet. 1987. Simulation of ion movement in soil using a continuous-time Markov process. In Proc. Workshop on Modelling of Solute Transport in the Unsaturated Zone, Los Alamos NM. NUREG/CR-4615-Vol. 2, pp. 37-81.
- Neiheisel, J. 1983. Prediction parameters of radionuclide retention at low-level radioactive waste sites. Office of Radiation Programs, U.S. Environmental Protection Agency, Washington DC. EPA 520/1-83-025.
- Nikula, A. 1982. Sorption in typical Finnish soils and some fracture filling of bedrock. (in Finnish). Imatca Power Company, Helsinki, Finland, Report YJT-82-60.
- Nowak, E.J. 1981. Composite backfill materials for radioactive waste isolation by deep burial in salt. In Scientific Basis for Nuclear Waste Management 3, 545-552. Edited by J.G. Moore. Plenum Press, New York.
- Palmer, D.A., S.Y. Shiao and R.E. Meyer. 1981. Adsorption of nuclides on mixtures of minerals. J. Inorg. Nucl. Chem. <u>43</u>, 3317-3322.
- Patterson, R.J. and T. Spoel. 1981. Laboratory measurements of the strontium distribution coefficient K<sub>d</sub><sup>sr</sup> for sediments from a shallow sand aquifer. Water Resour. Res. <u>17</u>, 513-520.
- Prout, W.E. 1959. Adsorption of fission products by Savannah River Plant soil. Savannah River Laboratory, E.I. du Pont de Nemours and Company, Report DP-394.
- Rançon, D. 1972. Practical utilization of the distribution coefficient for the measurement of the radioactive contamination of minerals in rocks, soil and subterranean water. Cardarache Nuclear CEA Research Center Report, ANL-trans-931, Report-R-4274.
- Rhodes, D.W. 1957. The effect of pH on the uptake of radioactive isotopes from solution by a soil. Soil Sci. Soc. Amer. Proc. 21, 389-392.
- Routson, R.C. 1973. A review of studies on soil-waste relationships on the Hanford Reservation from 1944 to 1967. Battelle Pacific Northwest Laboratories Report, BNWL-1464, UC-70.
- Routson, R.C., G.S. Barney and R.M. Smith. 1984. Radionuclide sorption on low-exchange capacity Hanford site soils. Commun. Soil Sci. Plant Anal. 15 (4), 375-400.

- Ryan, J.P. 1982. Batch and column strontium distribution coefficients with water-saturated soil strata from the Savannah River Plant burial ground. In Environmental Migration of Long-Lived Radionuclides. Proc. Int. Symp. pp. 133-145. Knoxville TN. IAEA-SM-257/69, JAEA, Vienna.
- Schell, W.R., A.L. Sinchez and E.D. Thomas. 1985. Investigation of siting parameters for near surface disposal of low-level nuclear waste. Grad School, Pittsburgh Univ., Pittsburgh PA, Report DOE/ID/12509-1.
- Schimmack, W., K. Bunzl and H. Bachhuber. 1987. Variability of the sorption of Cs, Zn, Sr, Co, Cd, Ce, Ru, Tc and I at trace concentrations by a forest soil along a transect. Environ. Int. 13 (6), 427-436.
- Schmalz, B.L. 1972. Radionuclide distribution in soil mantle of the lithosphere as a consequence of waste disposal at the National Reactor Testing Station, U.S. Atomic Energy Commission Report, IDO-10049.

Sec. 1

5

- Schwarzer, K., J. Thelen and W. Katscher. 1983. Migration of concentrated radionuclide solutions in water-saturated soil -Investigation of a hypothetical high activity waste solution discharge accident. Nucl. Technol. <u>60</u> (1), 97-103.
- Seeley, F.G. and A.D Kelmers. 1984. Geochemical information for the West Chestnut Ridge central waste disposal facility for lowlevel radioactive waste. Report ORNL-6061, Oak Ridge National Laboratory, Oak Ridge TN.
- Serne, R.J., D. Rai and S.J. Phillips. 1978. Monitoring and physical Characterization of unsaturated zone transport: Laboratory analysis. In Nu lear Waste Management Quarterly Progress Report 1977 Oct.-Dec. Pacific Northwest Laboratory Report, PNL-2377-4, UC-70.
- Sobolev, I.A., L.M. Lhomchik, E.M. Timofeev, A.S. Barinov and M.I. Ozhovan. 1985. Effect of high-power gamma-radiation on the <sup>90</sup>Sr distribution in he ground. Eng. Trans. of Atomnaya Energiya <u>59</u> (2), 697-699.
- Stone, J.A., S.B. Oblath, R.H. Hawkins, R.H. Emslie, S.L. Hoeffner and C.M. King. 1984. Radionuclide migration studies at the Savannah River Plant humid shallow land burial site for low-level waste. In Proc. of the Sixth Annual Participants' Information Meeting, DOE Low Level Waste Management Program, Denver, pp. 119-129, CONF-8409115.
- Tamura, T. 1972. Surption phenomena significant in radioactive waste disposal. In Underground Waste Management and Environmental Implications. Auer. Assoc. Pet. Geol. Mem. <u>18</u>, 318-330.
- Uchida, S. and H. Kauada. 1987. Sorption of strontium on soils in layered and aerated zones. Hoken Butsuri 22 (2), 179-187.
- Vandergraaf, T.T. 1'82. A compilation of sorption coefficients for radionuclides on granites and granitic rocks. Atomic Energy of Canada Limited Technical Record, TR-120\*.
- Wahlberg, J.S., J.H. Baker, R.W. Vernon and R.S. Dewar. 1965. Exchange adsorption of strontium on clay minerals. U.S. Geol. Surv. Bull., 1140-C, U.S. Government Printing Office, Washington.

#### TECHNELIUM - Tc

ζ,

- Baes III, C.F. and R.D. Sharp. 1981. Predicting radionuclide leaching from root zone soil for assessment applications. Trans. Am. Nucl. Soc. <u>38</u>, 111-112.
- Balogh, J.C. and D.F. Grigal. 1980. Soil chromatographic movement of <sup>99</sup>Tc through selected Minnesota soils. Soil Sci. <u>130</u>, 278-282.
- Bunzl, K. and W. Schimmack. 1988. Effect of microbial biomass reduction by gamma-irradiation on the sorption of <sup>137</sup>Cs, <sup>85</sup>Sr, <sup>139</sup>Ce, <sup>57</sup>Co, <sup>109</sup>Cd, <sup>65</sup>Zn, <sup>103</sup>Ru, <sup>95m</sup>Tc and <sup>131</sup>I by soils. Radiat. Environ. Biophys. <u>27</u> (2), 165-176.
- Bunzl, K., H. Bachhuber and W. Schimmack. 1984. Distribution coefficients of <sup>137</sup>Cs, <sup>85</sup>Sr, <sup>141</sup>Ce, <sup>103</sup>Ru, <sup>131</sup>I and <sup>95m</sup>Tc in the various horizons of cultivated soils in Germany. <u>In Proc. Int. Symposium on Recent Investigations in the Zone of Aeration of the Soil (Riza '84), P. Udluft et al. (eds.) pp. 567-573. Munich, FRG.</u>
- Bunzl, K., H. Bachhuber and W. Schimmack. 1986. Vertical and horizontal variability of the distribution coefficients of several radionuclides in a cultivated field. In Application of Distribution Coefficients to Radiological Assessment Models, Proc. Int. Sem., Louvain-la-Neuve, Belgium, 1985, pp. 267-276. Elsevier Applied Science Publishers.
- Franz, J.A., L.Y. Martin and D.J. Wiggins. 1982. Behavior of reduced <sup>99</sup>Tc and <sup>99</sup>Tc organic complexes on Hanford soil. Battelle Pacific Northwest Laboratory Report, PNL-4178, UC-70.
- Gee, G.W. and A.C. Campbell. 1980. Monitoring and physical characterization of unsaturated zone transport Laboratory analysis. Battelle Northwest Laboratory Report, PNL-3304.
- Hoeffner, S.L. 1985. Radionuclide sorption on Savannah River Plant burial ground soil: a summary and interpretation of laboratory data. Savannah River Laboratory, Du Pont de Nemours (E.I.) and Co., Aiken SC, Report DP-1702.
- Johnston, H.M. and R.W. Gillham. 1980. A review of selected radionuclide distribution coefficients of geologic materials. Atomic Energy of Canada Limited Technical Record, TR-90\*.
- Jones, T.L., S.J. Phillips and G.W. Gee. 1980. Characterizing radionuclide movement through sediments: Parameter estimations. IAEA Meeting, Gothenburg, Sweden. Pacific Northwest Laboratory Report, PNL-SA-8819.
- Mousny, J.M. and C. Myttenaere. 1981. Absorption of technetium by plants in relation to soil type, contamination level and time. Plant Soil <u>61</u>, 403-412.
- Nowak, E.J. 1981. Composite backfill materials for radioactive waste isolation by deep burial in salt. In Scientific Basis for Nuclear Waste Management 3, 545-552. Edited by J.G. Moore, Plenum Press, New York.

- Paquette, J., J.A.K. Reid and E.L.J. Rosinger. 1980. Review of technetium behavior in relation to nuclear waste dispsoal. Atomic Energy of Canada Limited Technical Record, TR-25\*.
- Prins, M., R.M.J. Pernders and M.J. Frissel. 1986. Impact of environmental factors on the migration of Pu, Am, Np and Tc in geological systems. Report RIVM-248308001, National Institute of Public Health and Environmental Hygiene, Bilthoven, Netherlands.
- Routson, R.C., G. Jarsen and A.V. Robinson. 1977. <sup>241</sup>Am, <sup>237</sup>Np, and <sup>99</sup>Tc sorption on two United States subsoils from differing weathering intensity areas. Health Phys. <u>33</u>, 311-317.
- Schimmack, W., K. Burzl and H. Bachhuber. 1987. Variability of the sorption of Cs, Zn, Sr, Co, Cd, Ce, Ru, Tc and I at trace concentrations by a forest soil along a transect. Environ. Int. 13 (6), 427-436.
- Seeley, F.G. and A.D. Kelmers. 1984. Geochemical information for the West Chestnut Ridge central waste disposal facility for lowlevel radioactive waste. Report ORNL-6061, Oak Ridge National Laboratory, Oak Ridge TN.

â.

- Serne, R.J., D. Rai and S.J. Phillips. 1978. Monitoring and physical characterization of unsaturated zone transport: Laboratory analysis. In Nuclear Waste Management Quarterly Progress Report 1977 Oct.-Dec., Pacific Northwest Laboratory Report, PNL-2377-4, UC-70.
- Sheppard, M.I. 1989. BLG-4 year Kd results. Personal Communication.
- Sheppard, M.I. and S.C. Sheppard. 1987. A soil solute transport model evaluated on two experimental systems. Ecol. Modelling <u>37</u>, 191-206.
- Sheppard, M.I., D.H. Thibault and J.H. Mitchell. 1987. Element leaching and capillary rise in sandy soil cores: Experimental results. J. Environ. Qual. <u>16</u> (3), 273-283.
- Sheppard, M.I., T.T. Vandergraaf, D.H. Thibault and J.A.K. Reid. 1983. Technetium and uranium: Sorption by and plant uptake from peat and sand. Fealth Phys. 44, 635-643.
- Sheppard, S.C., M.I. Sheppard and W.G. Evenden. 1989. A novel method used to examine variation in Tc sorption among 34 soils, aerated and anoxic. Personal Communication.
- Turcotte, M.S. 1982. Environmental behavior of technetium-99. Savannah River Laboratory, Du Pont de Nemeurs (E.I.) and Co. Aiken, SC, Report DP-1644, UC-11.
- Vandergraaf, T.T. 1982. A compilation of sorption coefficients for ralionuclides on granites and granitic rocks. Atomic Energy of Canada Limited Technical Record, TR-120\*.

- Wildung, R.E., R.C. Routson, R.J. Serne and T.R. Garland. 1974. Pertechnetate, iodide, and methyl iodide retertion by surface soils. Battelle Pacific Northwest Laboratories Report, BNWL-SA-5195.
- Wolfrum, C. and K. Bunzl. 1986. Sorption and desorption of technetium by humic substances under oxic and anoxic conditions. Jour. Radioanalytical and Nucl. Chem. <u>99</u> (2), 315-323.

### TELLURIUM - Te

Allard, B., H. Kipatsi and J. Rydberg. 1977. Adsorption of long-lived radionuclides in clay and bedrock. Par<sup>-</sup> 1. Determination of distribution coefficients. KBS Technical Report 55.

### TERBIUM - Th

- Allard, B., H. Kipatsi and J. Rydberg. 1977. Sorption of long-lived radionuclides in clay and bedrock. Part . Determination of distribution coefficients. KBS Technical Report 55.
- Baes III, C.F. and R.D. Sharp. 1981. Predicting radionuclide leaching from root zone soil for assessment appl: cations. Trans. Am. Nucl. Soc. <u>38</u>, 111-112.
- Vandergraaf, T.T. 1982. A compilation of sorption coefficients for radionuclides on granites and granitic rocl.s. Atomic Energy of Canada Limited Technical Record, TR-120\*.

#### THORIUM - Th

1

- Allard, B., H. Kipatsi and J. Rydberg. 1977. Sorption of long-lived radionuclides in clay and bedrock. Part . Determination of distribution coefficients. KBS Technical Report 55.
- Baes III, C.F. and R.D. Sharp. 1981. Predicting radionuclide leaching from root zone soil for assessment appl cations. Trans. Am. Nucl. Soc. <u>38</u>, 111-112.
- Bell, J. and T.H. Bates. 1988. Distribution coefficients of radionuclides between soils and groundwaters and heir dependence on various test parameters. Sci. Total Environ. <u>69</u>, 297-317.
- Dahlman, R.C., E.A. Bondietti and L.D. Eyman. 1976. Biological pathways and chemical behavior of plutonium and other actinides in the environment. In Actinides in the Environment (ed. A.M. Friedman) ACS Symposium Series 35, 47-80.
- Haji-Djafari, S., P.E. Antommaria and H.L. Crouse. 1981. Attenuation of radionuclides and toxic elements by in situ soils at a uranium tailings pond in central Wyoming. In Permeability and Groundwater Contaminant Transport, ASTM STP 746, T.F. Zimmie and C.O. Riggs, Eds., American Society for Testing and Materials, pp. 221-242.

- Johnston, H.M. and R W. Gillham. 1980. A review of selected radionuclide distribution coefficients of geologic materials. Atomic Energy of Canada Limited Technical Record, TR-90\*.
- Rançon, D. 1973. The behaviour in underground environments of uranium and thorium discharged by the nuclear industry. In Environmental Behaviour of Radionuclides Released in the Nuclear Industry. International Atomic Energy Agency Proceedings, pp. 333-346. IAEA-SM 172/55.
- Seeley, F.G. and A.D. Kelmers. 1984. Geochemical information for the West Chestnut Ridge central waste disposal facility for lowlevel radioactive waste. Report ORNL-6061, Oak Ridge National Laboratory, Oak Ridge TN.
- Sheppard, M.I. 1980 The environmental behaviour of uranium and thorium. Atomic Energy of Canada Limited Report, ABCL-6795.
- Sheppard, M.I. 1989 BLG-4 year Kd results. Personal Communication.
- Sheppard, M.I., D.H. Thibault and J.H. Mitchell. 1987. Element leaching and capillary rise in sandy soil cores: Experimental results. J. Env. ron. Qual. <u>16</u> (3), 273-283.
- Sheppard, S.C., W.G. Evenden and R.J. Pollock. 1989. Uptake of natural radionuclides by field and garden crops. Can. J. of Soil Sci. <u>69</u>, 751-767
- Vandergraaf, T.T. 1982. A compilation of sorption coefficients for radionuclides on granites and granitic rocks. Atomic Energy of Canada Limited Technical Record, TR-120\*.

12

#### <u>TIN - Sn</u>

Gerritse, R.G., R. V:iesema, J.W. Dalenberg and H.P. De Roos. 1982. Effect of sewage sludge on trace element mobility in soils. J. Environ. Qual. 11, 359-364.

### TRITIUM - <sup>3</sup>H

- Jones, T.L., G.W. Gea, J.L. Swanson and R.R. Kirkham. 1983. A field and laboratory realuation of the mobility of Cobalt-60/EDTA in an arid environmant. Pacific Northwest Laboratory Report, INL-SA-10780. Waste Management '83, Tucson AZ.
- Jones, T.L., S.J. Phillips and G.W. Gee. 1980. Characterizing radionuclide movement through sediments: Parameter estimations. Pacific Northwest Laboratory Report, PNL-SA 8819. International Atomic Energy Agency Meeting, Gothenburg, Sweden.

#### <u>URANIUM - U</u>

Allard, B., H. Kipatsi and J. Rydberg. 1977. Sorption of long-lived radionuclides in clay and bedrock. Part 1. Determination of distribution coefficients. KBS Technical Report 55.

- Baes III, C.F. and R.D. Sharp. 1981. Predicting radionuclide leaching from root zone soil for assessment applications. Trans. Am. Nucl. Soc. <u>38</u>, 111-112.
- Bell, J. and T.H. Bates. 1988. Distribution coefficients of radionuclides between soils and groundwaters and their dependence on various test parameters. Sci. Total Environ. <u>69</u>, 297-317.

Borovec, Z. 1981. The adsorption of uranyl species by fine clay. Chem. Geol. 32, 45-58.

- Dahlman, R.C., E.A. Bondietti and L.D. Eyman. 1976. Biological pathways and chemical behavior of plutonium and other actinides in the environment. In Actinides in the Environment (ed. A.M. Friedman) ACS Symposium Series <u>35</u>, 47-80.
- Erickson, K.L. 1980. Radionuclide sorption studies on abyssal red clays. In: Scientific Basis for Nuclear Was e Management Vol. 2., pp. 641-646. Plenum Press, New York ed. C.J.M. Northrup.
- Haji-Djafari, S., P.E. Antommaria and H.L. Crouse. 1981. Attenuation of radionuclides and toxic elements by in situ soils at a uranium tailings pond in central Wyoming. In Permeability and Groundwater Contaminant Transport, ASTM STP 7.6, T.F. Zimmie and C.O. Riggs, Eds., American Society for Testing and Materials, pp. 221-242.
- Harmsen, K. and F.A.M. de Haan. 1980. Occurrence and behaviour of uranium and thorium in soil and water. Neth J. Agric. Sci. 28, 40-62.
- Johnston, H.M. and R.W. Gillham. 1980. A review of selected radionuclide distribution coefficients of geologic materials. Atomic Energy of Canada Limited Technical Record, TR-90\*.
- Neiheisel, J. 1983. Prediction parameters of radionuclide retention at low-level radioactive waste sites. EPA 520/1-83-025, Office of Radiation Programs, U.S. Environmental Protection Agency, Washington DC.
- Rançon, D. 1973. The behaviour in underground environments of uranium and thorium discharged by the nuclear industry. In Environmental Behaviour of Radionuclides Released in the Nuclear Industry. International Atomic Energy Agency Proceedings, pp. 333-346, IAEA-SM-172/55.
- Seeley, F.G. and A.D. Kelmers. 1984. Geochemical information for the West Chestnut Ridge central waste disposal facility for lowlevel radioactive waste. Report ORNL-6061, Oak Ridge National Laboratory, Oak Ridge TN.
- Sheppard, M.I. 1980. The environmental behaviour of uranium and thorium. Atomic Energy of Canada Limited Report, AECL-6795.

Sheppard, M.I. 1989. BLG-4 year Kd results. Personal Communication.

51

Sheppard, M.I. and S.C. Sheppard. 1987. A soil solute transport model evaluated on two experimental systems. 1 cological Modelling 37, 191-206.

- Sheppard, M.I. and D.H. Thibault. 1988. Migration of technetium, iodine, neptunium and uranium in the peat of two minerotrophic mires. J. Environ. Qual. <u>17</u> (4), 644-653.
- Sheppard, M.I., D.H. Thibault and J.H. Mitchell. 1987. Element leaching and capillary rise in sandy soil cores: Experimental results. J. Environ. Qual. <u>16</u> (3), 273-283.
- Sheppard, S.C., W.G. Evenden and R.J. Pollock. 1989. Uptake of natural radionuclides by field and garden crops. Can. J. of Soil Sci. <u>69</u>, 751-767.
- Vandergraaf, T.T. 1982. A compilation of sorption coefficients for radionuclides on granites and granitic rocks. Atomic Energy of Canada Limited Technical Record, TR-120\*.

1 1

Yamamoto, T., E. Yunoki, M.Yamakawa and M. Shimizu. 1973. Studies on environmental contamination by uranium. 3: The effects of carbonate ion on uranium adsorption to and desorption from soils. J. Radiat. Res. <u>14</u>, 219-224.

#### <u>ZINC - Zn</u>

- Anderson, P.R. and T.H. Christensen. 1988. Distribution coefficients of cadmium, cobalt, nickel and zinc in soils. J. Soil Sci., 39 (1), 15-22.
- Bunzl, K. and W. Schimmack. 1988. Effect of microbial biomass reduction by gamma-irradiation on the sorption of <sup>137</sup>Cs, <sup>85</sup>Sr, <sup>139</sup>Ce, <sup>57</sup>Co, <sup>109</sup>Cd, <sup>65</sup>Zn, <sup>103</sup>Ru, <sup>95m</sup>Tc and <sup>131</sup>I by soils. Radiat. Environ. Biophys. <u>27</u> (2), 165-176.
- Christensen, T.H. 1987. Cadmium soil sorption at low concentrations: V. Evidence of competition by other heavy metals. Water, Air, Soil Pollut. <u>34</u> (3), 293-303.
- Christensen, T.H. 1987. Cadmium soil sorption at low concentrations: VI. A model for zinc competition. Water, Air, Soil Pollut. 34 (3), 305-314.
- Garcia-Miragaya, J., R. Cardenas and A.L. Page. 1983. Sorption of cadmium and zinc on kaolinite and montmorillonite. In Heavy Met. Environ., Int. Conf., 4th, Vol. 2, 1244-1248.
- Gerritse, R.G., R. Vriesema, J.W. Dalenberg and H.P. De Roos. 1982. Effect of sewage sludge on trace element mobility in soils. J. Environ. Qual. <u>11</u>, 359-364.
- Graham, E.R. 1973. Selective distribution and labile pools of micro-nutrient elements as factors affecting plant uptake. Soil Sci. Soc. Amer. Proc. 37, 70-74.

- Inoue, Y. and S. Morisawa. 1976. Distribution coefficient K<sub>d</sub> of radionuclides between sample soil and water. *I*.tomic Energy Journal <u>18</u> (8), 52-62.
- Nikula, A. 1982. Sorption in typical Finnish soils and some fracture filling of bedrock. (in Finnish). Imatra Power Company, Helsinki, Finland, Report YJT-82-60.
- Reddy, M.R. and S.J. Dunn. 1986. Distribution coefficients for nickel and zinc in soils. Environmental Pollution, Series B, 11 (4), 303-313.
- Schimmack, W., K. Bunzl and H. Bachhuber. 1987. Variability of the sorption of Cs, Zn, Sr, Co, Cd, Ce, Ru, Tc and I at trace concentrations by a forest soil along a transect. Environ. Int. 13 (6), 427-436.
- Tiller, K.G., J. Gerth and G. Bruemmer. 1984. The relative affinities of cadmium, nickel and zinc for differen: soil clay fractions and geothite. Geoderma <u>34</u> (1), 17-35.
- Wolf, A., K. Bunzl, F. Dietl and W.F. Schmidt. 1977. Effect of calcium ions on the absorption of lead (2+), cooper (2+), cadmium (2+), and zinc (2+) by humic substances. Chemosphere <u>6</u>, 207-213.
- Wong, K.V., S. Sengupta, D. Dasgupta, E.L. Daly, Jr., N. Nemerow and H.P. Gerrish. 1983. Heavy metal migration in soil-leachate systems. BioCycle 24, 30-33.
- Zabowski, D. and R.J. Zasoski. 1987. Cadmium, copper and zinc adsorption by a forest soil in the presence of sludge leachate. Water, Air, Soil Pollut. <u>36</u> (1-2), 103-113.

#### ZIRCONIUM - Zr

- Allard, B., H. Kipatsi and J. Rydberg. 1977. Sorption of long-lived radionuclides in clay and bedrock. Part 1. Determination of distribution coefficients. KBS Technical Report 55.
- Rhodes, D.W. 1957. The effect of pH on the uptake of radioactive isotopes from solution by a soil. Soil Sci. Soc. Am. Proc. 21, 389-392.
- Vandergraaf, T.T. 1982. A compilation of sorption coefficients for radionuclides on granites and granitic rock3. Atomic Energy of Canada Limited Technical Record, TR-120\*.
- \* Unrestricted, unpublished report available from SDDO, Atomic Energy of Canada Limited Research Company, Chalk River, Ontario KOJ 1JO.

### APPENDIX B

7.

•

DETAILS OF SOILS AND EXPERIMENTS FOR THE

K<sub>d</sub> VALUE DATABASE COMPILATION

LITERATURE SURVEY SUMMARIES

(The tables are arranged alphabetically by element name)

.

### AMERICIUM Ka VALUES

| ngye<br>Littil Lype                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | K<br>SAND                                                                                          | <b>\$</b><br>SIL •                                                         | S<br>CLAY                                                                        | 1)<br>FRG                                                    | \$ <del>pH</del> FH<br>CaCD3 SA1 PASTL (vi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | CEC<br>inng                                                          | 5 CELS<br>18100<br>(21)055                                                                                           | (0)<br>(A110)                                                                | S COMP<br>CATION | NICLIDE<br>CONCENTRATION | Kd<br>(ml /q)                                                                                                                                                                                               | SULL LOCATION<br>or DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | n #FR 14F0RHA110H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | PLIFREN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|----------------------------------------------------------------------------------|--------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|------------------|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 741     5.11.     loan       741     5.11.     loan       741     5.047     loan       741     5.011     loan       741     5.111     loan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 19<br>19<br>55<br>55<br>65<br>65<br>79<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70 | 56<br>56<br>33<br>33<br>33<br>39<br>39<br>20<br>20<br>58<br>58<br>50<br>30 | 25<br>25<br>12<br>12<br>2<br>37<br>37<br>2<br>37<br>2<br>5<br>15<br>15<br>0<br>0 | 2 8<br>2 7 4<br>2 7 4<br>5 7 6<br>0 6<br>4 4<br>40 8<br>40 8 | 5 9 5 4<br>6 55<br>5 3 4 29<br>5 1<br>5 0 4 58<br>6 17<br>7 8 7 12<br>8 04<br>6 0 5 71<br>6 7 5 12<br>6 7 6 12<br>6 98<br>7 7 6 14<br>7 54<br>Extrac<br>pli                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 20<br>20<br>15<br>15<br>15<br>30<br>30<br>15<br>15<br>25<br>60<br>60 | 1 29<br>1 29<br>1 65<br>1 65<br>1 57<br>1 57<br>1 20<br>1 20<br>5 29<br>5 29<br>2 41<br>2 41<br>2 41<br>1 57<br>1 57 | 0 06<br>0 06<br>0 05<br>0 04<br>0 04<br>0 04<br>0 04<br>0 04<br>0 04<br>0 04 |                  | <u>.</u> .               | 20800<br>17280<br>9635<br>9063<br>1549<br>182<br>35530<br>47230<br>21870<br>10660<br>23870<br>20210<br>20210<br>20210<br>20210                                                                              | Sharpuburg seria<br>Sharpuburg seria<br>Sharpuburg seria<br>Malbis (Louisianna)<br>Jyman (Maine)<br>Lyman (Maine)<br>Holyuile (calcarpous = 12% (aC(3)<br>Holyuile (calcarpous = 12% (aC(3))<br>Aiben (California)<br>Aiben (California)<br>Yolo (California)<br>Yolo (California)<br>Edbert                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | iab ?<br>E sain rigy ainergis<br>Soil properties nee Wal sce et al., 1979<br>Ninhita, 1981 (iab 1-p. 3). (Extract) chem. prop<br>Nishita, 1981 (iab 2 - uclide conc.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Arshita et af. 194<br>Nichita et af. 196<br>Nichita et af. 196<br>Nichita et af. 197<br>Nichita et af. 197                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| <ul> <li>loasy tand</li> <li>tend</li> <li>- tt loar</li> <li>loav sand</li> <li>s.it loar</li> <li>and</li> <li>tand</li> <lita< td=""><td>(89 4)<br/>(59 2)<br/>17 6<br/>76 0<br/>92 0<br/>94 6<br/>65 2<br/>47 6</td><td>10 1<br/>3 6<br/>6<br/>1 8<br/>21 0<br/>6<br/>1 9<br/>29 0<br/>39 4</td><td>05276877680<br/>276872880<br/>12088750</td><td>0.21</td><td>D P 7 0<br/>CO 7 5 1<br/>5 5 8<br/>6 5 7<br/>8 1<br/>6 5 7<br/>8 1<br/>8 1<br/>8 1<br/>8 1<br/>8 1<br/>8 1<br/>8 1<br/>8 1</td><td>4 9<br/>7 5<br/>16 mR<br/>5 94<br/>10 76<br/>6 14<br/>15 04</td><td>In:t-s1 leg A=<br/>(no:ex)11<br/>-6.75<br/>-7.32<br/>-7.52<br/>-7.52<br/>-7.52<br/>-7.52<br/>-7.52<br/>-7.52</td><td></td><td></td><td></td><td><math display="block">\begin{array}{c} 1 &amp; 6 &amp; 1045 &amp;0 &amp; 10 \\ 7 &amp; 3 &amp; 1065 &amp;1 &amp; 1 \\ 3 &amp; .1 &amp; -1045 &amp;1 &amp; 8 \\ 4 &amp; 5 &amp; 1045 &amp;1 &amp; 8 \\ \hline \\</math></td><td>Burbani (Wesh ; (subsol)<br/>S (arni 10 (subsol)<br/>Muscatine<br/>Burbani<br/>Hitzrile<br/>Fucusy (T3) South Carolina<br/>Hanford (MF-2)<br/>19tho Falls (10 2) Leignens Bog, MY<br/>5 (6 f cm) (1 3) Leignens Bog, MY<br/>5 (6 f cm) (1 3) Leignens Bog, MY<br/>5 (6 f cm) (1 3) Leignens Bog, MY<br/>6 (5-f cm) (15) J Leignens Bog, MY<br/>6 (5-f cm) (15) J Leignens Bog, MY<br/>- (6-B cm) (15) J Leignens Bog, MY<br/>- (70, 21 cm) (11) J Leignens Bog, MY<br/>4 (70, 21 cm) (14) Leignens Bog, MY<br/>3 (70, 21 cm) (14) Leignens Bog, MY<br/>3 (70, 21 cm) (15) J Leignens Bog, MY<br/>4 (6-B cm) (15) J Leignens Bog, MY<br/>3 (70, 21 cm) (10) J Surce Fists Bog, PA (contains ilite)<br/>4 (6-R cm) (10) J Surce Fists Bog, PA (contains ilite)<br/>3 (6-B cm) (10) J Surce Fists Bog, PA (contains ilite)<br/>3 (70, 72 cm) (10) J Surce Fists Bog, PA (contains ilite)<br/>3 (70, 72 cm) (10) J Surce Fists Bog, PA (contains ilite)<br/>3 (70, 72 cm) (10) J Surce Fists Bog, PA (contains ilite)<br/>3 (70, 72 cm) (10) J Surce Fists Bog, PA (contains ilite)<br/>3 (70, 72 cm) (10) J Surce Fists Bog, PA (contains ilite)<br/>3 (70, 72 cm) (10) J Surce Fists Bog, PA (contains ilite)<br/>3 (70, 72 cm) (10) J Surce Fists Bog, PA (contains ilite)<br/>3 (70, 72 cm) (10) J Surce Fists Bog, PA (contains ilite)<br/>3 (70, 72 cm) (10) J Surce Fists Bog, PA (contains ilite)<br/>3 (70, 72 cm) (10) J Surce Fists Bog, PA (contains ilite)<br/>3 (70, 72 cm) (10) J Surce Fists Bog, PA (contains ilite)<br/>3 (70, 72 cm) (10) J Surce Fists Bog, PA (contains ilite)<br/>3 (70, 72 cm) (10) J Surce Fists Bog, PA (contains ilite)<br/>3 (70, 72 cm) (10) J Surce Fists Bog, PA (contains ilite)<br/>3 (70, 72 cm) (10) J Surce Fists Bog, PA (contains ilite)<br/>3 (70, 72 cm) (10) J Surce Fists Bog, PA (contains i</td><td>(ref Sneugen et al., 3-77). () t cal from with/clay<br/>(ref Sneugen et al., 177). () t cal from with/clay<br/>(ref Sneugerd et al., 1975. Claver et al., 1977)<br/>(ref Sneugerd et al., 1976. Claver et al., 1977)<br/>(ref Sneugerd et al., 1976. Glaver et al., 1977)<br/>(ref Sneugerd et al., 1977)<br/>(ref Sneugerd et al., 1976. Glaver et al., 1977)<br/>(ref Sneugerd et al., 1977)<br/>(ref Sneugerd et al., 1976. Glaver et al., 1977)<br/>(ref Sneugerd et al., 1977)<br/>(ref Sneugerd et al., 1976)<br/>(ref Sneugerd et al., 1977)<br/>(ref Sneugerd et a</td><td>Rai et al., 1001           Rai et al., 1001           Pai et al., 1001           Pai et al., 1001           Pai et al., 1001           Pai et al., 1001           Scheli et al., 1001</td></lita<></ul> | (89 4)<br>(59 2)<br>17 6<br>76 0<br>92 0<br>94 6<br>65 2<br>47 6                                   | 10 1<br>3 6<br>6<br>1 8<br>21 0<br>6<br>1 9<br>29 0<br>39 4                | 05276877680<br>276872880<br>12088750                                             | 0.21                                                         | D P 7 0<br>CO 7 5 1<br>5 5 8<br>6 5 7<br>8 1<br>6 5 7<br>8 1<br>8 1<br>8 1<br>8 1<br>8 1<br>8 1<br>8 1<br>8 1 | 4 9<br>7 5<br>16 mR<br>5 94<br>10 76<br>6 14<br>15 04                | In:t-s1 leg A=<br>(no:ex)11<br>-6.75<br>-7.32<br>-7.52<br>-7.52<br>-7.52<br>-7.52<br>-7.52<br>-7.52                  |                                                                              |                  |                          | $\begin{array}{c} 1 & 6 & 1045 &0 & 10 \\ 7 & 3 & 1065 &1 & 1 \\ 3 & .1 & -1045 &1 & 8 \\ 4 & 5 & 1045 &1 & 8 \\ \hline \\$ | Burbani (Wesh ; (subsol)<br>S (arni 10 (subsol)<br>Muscatine<br>Burbani<br>Hitzrile<br>Fucusy (T3) South Carolina<br>Hanford (MF-2)<br>19tho Falls (10 2) Leignens Bog, MY<br>5 (6 f cm) (1 3) Leignens Bog, MY<br>5 (6 f cm) (1 3) Leignens Bog, MY<br>5 (6 f cm) (1 3) Leignens Bog, MY<br>6 (5-f cm) (15) J Leignens Bog, MY<br>6 (5-f cm) (15) J Leignens Bog, MY<br>- (6-B cm) (15) J Leignens Bog, MY<br>- (70, 21 cm) (11) J Leignens Bog, MY<br>4 (70, 21 cm) (14) Leignens Bog, MY<br>3 (70, 21 cm) (14) Leignens Bog, MY<br>3 (70, 21 cm) (15) J Leignens Bog, MY<br>4 (6-B cm) (15) J Leignens Bog, MY<br>3 (70, 21 cm) (10) J Surce Fists Bog, PA (contains ilite)<br>4 (6-R cm) (10) J Surce Fists Bog, PA (contains ilite)<br>3 (6-B cm) (10) J Surce Fists Bog, PA (contains ilite)<br>3 (70, 72 cm) (10) J Surce Fists Bog, PA (contains ilite)<br>3 (70, 72 cm) (10) J Surce Fists Bog, PA (contains ilite)<br>3 (70, 72 cm) (10) J Surce Fists Bog, PA (contains ilite)<br>3 (70, 72 cm) (10) J Surce Fists Bog, PA (contains ilite)<br>3 (70, 72 cm) (10) J Surce Fists Bog, PA (contains ilite)<br>3 (70, 72 cm) (10) J Surce Fists Bog, PA (contains ilite)<br>3 (70, 72 cm) (10) J Surce Fists Bog, PA (contains ilite)<br>3 (70, 72 cm) (10) J Surce Fists Bog, PA (contains ilite)<br>3 (70, 72 cm) (10) J Surce Fists Bog, PA (contains ilite)<br>3 (70, 72 cm) (10) J Surce Fists Bog, PA (contains ilite)<br>3 (70, 72 cm) (10) J Surce Fists Bog, PA (contains ilite)<br>3 (70, 72 cm) (10) J Surce Fists Bog, PA (contains ilite)<br>3 (70, 72 cm) (10) J Surce Fists Bog, PA (contains ilite)<br>3 (70, 72 cm) (10) J Surce Fists Bog, PA (contains ilite)<br>3 (70, 72 cm) (10) J Surce Fists Bog, PA (contains ilite)<br>3 (70, 72 cm) (10) J Surce Fists Bog, PA (contains i | (ref Sneugen et al., 3-77). () t cal from with/clay<br>(ref Sneugen et al., 177). () t cal from with/clay<br>(ref Sneugerd et al., 1975. Claver et al., 1977)<br>(ref Sneugerd et al., 1976. Claver et al., 1977)<br>(ref Sneugerd et al., 1976. Glaver et al., 1977)<br>(ref Sneugerd et al., 1977)<br>(ref Sneugerd et al., 1976. Glaver et al., 1977)<br>(ref Sneugerd et al., 1977)<br>(ref Sneugerd et al., 1976. Glaver et al., 1977)<br>(ref Sneugerd et al., 1977)<br>(ref Sneugerd et al., 1976)<br>(ref Sneugerd et al., 1977)<br>(ref Sneugerd et a | Rai et al., 1001           Pai et al., 1001           Pai et al., 1001           Pai et al., 1001           Pai et al., 1001           Scheli et al., 1001 |
| lo 243 Bantonite - brine B<br>In 243 105 Rentonite - sand -<br>los sand<br>In sand<br>Io sand<br>Io clayey sand<br>Io clayey sand                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | brine 8<br>99<br>91<br>83<br>58<br>58                                                              | 3<br>2<br>6<br>11                                                          | 8<br>7<br>15<br>36<br>21                                                         |                                                              | 7.3<br>73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                      |                                                                                                                      |                                                                              |                  |                          | °100<br>5 00<br>300,000 (140,000<br>250 000<br>100,000<br>55,000<br>65,000                                                                                                                                  | 1) Beatly I. Nerada<br>Beatly I. Nerada<br>Reatly S. Nerada<br>Berneril J. S. Carolina<br>Herneril I.S. S. Carolina                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (Tak 1: pit ofter agita ion)<br>• Ad cole borid on be Lonith moon - nisture of bentprit<br>charces), mordenite & stitemate : offective backfille of<br>Most : Rich represt in a saline Allurial Basin desposita h-<br>in contenerillenite of zeolites<br>Taul: Add sources of zeolites<br>Taul: Add sources of zeolites<br>surface area & clay n: comp. Takbe moist est & ann c<br>Table: Kod 6 radiowerlies - Rober toggen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | horst, 1980<br>, Noopt, 1980<br>550<br>gh Netherset, 1983<br>Netherset, 1983<br>Netherset, 1983                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

1

continued...

| TABLE B-1 | (continued) |
|-----------|-------------|
|-----------|-------------|

| COLL<br>Mak 10.0 Sype                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5 5 5<br>SAND 5111 CI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | S pH FH eng/<br>CuCOS SAT "ASTE (v) 10%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | arther curt                                                       | 1 rine<br>6 raijen | AN ICH SDF<br>CTINCS N TRA'T STIM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Kdj<br>(=L/g)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | CIVIL FOCATION<br>or DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| An clayer used<br>An 241 claurantic sand<br>An 242 clay<br>An clay | 1       2       6         01       2       6         01       2       6         01       2       6         01       2       6         01       2       6         01       2       6         01       2       6         01       2       6         01       2       6         01       2       6         01       2       6         01       2       6         01       2       6         01       2       6         01       2       6         01       2       6         01       2       6         01       2       6         01       2       6         01       2       6         01       2       6         01       2       6         01       2       6         01       2       6         01       2       6         02       3       6         12       3       6       12         3 | 6 0<br>0 0<br>0 0<br>0 0<br>0 0<br>0 0<br>0 0<br>0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                   |                    | 1 0 M<br>1 0 M<br>7 0 M<br>7 0 M<br>1 0 M<br>2 0 M<br>0 1 M<br>1 0 M<br>2 0 M<br>0 1 M<br>1 0 M<br>2 0 M<br>0 1 M<br>2 0 M<br>0 1 M<br>1 0 M<br>2 0 M<br>0 1 M<br>0 1 M<br>0 1 M<br>0 1 M<br>0 0 M<br>0 M | 130, 700, (172), 02<br>1005 A R<br>17800 A B<br>17800 A B<br>17800 A B<br>17800 A B<br>17800 A B<br>2100 AN-R<br>245 AN A<br>17300 AN-R<br>245 AN A<br>17300 AN-B<br>245 AN A<br>17300 AN-B<br>245 AN A<br>1740 AN-C<br>1550 AN-C<br>1550 AN-C<br>1550 AN-C<br>1605 AN-C<br>1605 AN-C<br>1605 AN-C<br>1605 AN-C<br>1605 AN-C<br>1605 AN-C<br>1605 AN-C<br>1605 AN-C<br>1600 (C)<br>13500 (C)<br>13500 (C)<br>13500 (C)<br>1300 (C)<br>23300 (C)<br>1300 (C)<br>23300 (C)<br>1300 (C)<br>23100 (C)<br>23100 (C)<br>23100 (C)<br>23100 (C)<br>2300 (C)<br>2005 (C)<br>20 | D) Garmen 1 14 S (archina<br>N   Notherlands<br>N   Notherlan | DHFR INFORMATION<br>(a)- Kd vs. norptive matricials<br>Kd calums = () + reducing conditions<br>(depends, 1)<br>(0, M = Pe-Me-Ic)<br>His remert is a problem - 1000's of Kd values<br>Kd's function of AM, Ch. M & time : assendances<br>Her s Aprobic<br>print () - initial pri<br>& sorobic - Kd calumn<br>M v anarchice - Kd calumn<br>M v anarchice - Kd calumn<br>C - column - Kd calumn<br>H a matricy - Rock salt (anhydrite)<br>-avolven salt down<br>C - contribution * - Kd calumn<br>tab S - As Kd<br>tab S - d -fluxion factor (N)<br>= Id = conclusion<br>(lab.2 = Am Kd) | Nr H.P.R.L         No Thermal 1 1993         Prima et al. 1996         Prima et al. 1996 |
| An fine sandy laya<br>An fine andy laya<br>An fine sandy laya<br>An fine gandy laya<br>An light laya<br>An light laya<br>An light laya<br>An An<br>An<br>An<br>An<br>An<br>An<br>An<br>An<br>An<br>An                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 76 21.2 2<br>91 7 7 9<br>91 5 4<br>94 5 1 6 3<br>65 7 79 5<br>93 5 17 6 3<br>47 6 39 4 1<br>60 4 19 4 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2 4<br>2 4<br>5 7<br>5.7<br>0.4<br>8 4<br>-<br>1 1 19<br>8 0 43<br>1 1 19<br>8 0 21<br>1 0 0 521<br>1 0 0 521<br>1 0 0 521<br>1 0 0 17<br>8 0 6<br>0.17<br>8 0 18<br>0.18<br>0 18<br>0.17<br>1 0 18<br>0 | 5 3 (4 32)       15         - 5 3 (5 71)       15         - 5 0 (6 17)       15         - 5 0 (6 17)       15         - 6 0 (5 71)       15         - 6 0 (6 72)       15         - 7 - 8       -         - 8 1       -         - 9 1       -         - 6 7       1 70         - 5 .2       0 1         - 6 7       1 70         - 5 .2       0 6         - 8 1       6 14         - 9 4       -         - 9 5 .2       0 701         - 7 7       -         - 9 4       -         - 9 4       -         - 9 4       -         - 9 4       -         - 9 4       -         - 9 4       -         - 9 4       -         - 9 4       -         - 9 4       -         - 9 4       -         - 7 7       -         - 7 7       -         - 7 7       -         - 7 7       -         - 7 7       -         - 7 7       -         - 7 7       -         - 7 7 </th <th>  65<br/>  55<br/>  57<br/>  57<br/>  57<br/>  57<br/>  57<br/>  57<br/>  5</th> <th>sat</th> <th>••••••••••••••••••••••••••••••••••••••</th> <th>9 635-1003<br/>8 043-1003<br/>1 549-1003<br/>2 87-1002<br/>2 187-1002<br/>2 187-1002<br/>4 1064-1074<br/>4 1002<br/>7 49-1012<br/>4 17-1002<br/>7 49-1012<br/>1 25-1012<br/>3 97-1073<br/>3 97-1073<br/>4 3 7-1044<br/>1 09-1074</th> <th>Malbas (Ioursiana)<br/>Malbas (Ioursiana)<br/>Malbas (Ioursiana)<br/>Lyman (Maina)<br/>Lyman (Maina)<br/>Aitan (California)<br/>(Michiand, Mashington)<br/>(Richiand, Mashington)<br/>Induay (Narowell, SC) (is c<br/>Ionuay (Narowell, SC) (is c<br/>Hanford A<br/>Manford B<br/>Idaho A<br/>Idaho B<br/>Idaho B</th> <th>then the value is bracketed, it is the pH of the estract</th> <th>B.dim., 1987<br/>Hishita et al., 1970<br/>Hishita et al., 1970<br/>Ames &amp; Hai, 1978<br/>Ames &amp; Hai, 1978</th> | 65<br>  55<br>  57<br>  57<br>  57<br>  57<br>  57<br>  57<br>  5 | sat                | ••••••••••••••••••••••••••••••••••••••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9 635-1003<br>8 043-1003<br>1 549-1003<br>2 87-1002<br>2 187-1002<br>2 187-1002<br>4 1064-1074<br>4 1002<br>7 49-1012<br>4 17-1002<br>7 49-1012<br>1 25-1012<br>3 97-1073<br>3 97-1073<br>4 3 7-1044<br>1 09-1074                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Malbas (Ioursiana)<br>Malbas (Ioursiana)<br>Malbas (Ioursiana)<br>Lyman (Maina)<br>Lyman (Maina)<br>Aitan (California)<br>(Michiand, Mashington)<br>(Richiand, Mashington)<br>Induay (Narowell, SC) (is c<br>Ionuay (Narowell, SC) (is c<br>Hanford A<br>Manford B<br>Idaho A<br>Idaho B<br>Idaho B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | then the value is bracketed, it is the pH of the estract                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | B.dim., 1987<br>Hishita et al., 1970<br>Hishita et al., 1970<br>Ames & Hai, 1978<br>Ames & Hai, 1978                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

continued...

- 55 -

### <u>TABLE B-1</u> (concluded)

| r. | sati<br>I <sup>1</sup> yar                 | S<br>SAND                              | <b>4</b><br>50 7                    | S<br>C AT                        | TIPC.                            | s<br>carna                     | eH<br>SAT MASTE                                 | F)+<br>Lv+                                 | CFC<br>men/<br>t0%                         | R. ERTE<br>TOMN<br>OVERES      | COMP<br>CATTIN                  | E FIND<br>CATERN | NECLEDE<br>CENCENERATION | Kd<br>(≠ /a)                                                                            | 1.1243) - 1244 (A.B.) (1.644)<br>(1.647) - 244 (1.644) (1.644)                                                                                     | 1114 N 149 (114A) 1-14                                                                                                                                                                                                             | 64 1 1 PM INC 8                                                                                                                                                                      |
|----|--------------------------------------------|----------------------------------------|-------------------------------------|----------------------------------|----------------------------------|--------------------------------|-------------------------------------------------|--------------------------------------------|--------------------------------------------|--------------------------------|---------------------------------|------------------|--------------------------|-----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    |                                            | 44<br>64<br>44<br>55<br>38<br>74<br>74 | 20<br>14<br>24<br>11 67<br>37<br>12 | 36<br>22<br>37<br>73<br>30<br>14 | 74<br>34<br>02<br>03<br>01<br>03 | 04<br>93<br>79<br>57<br>0<br>6 | 56<br>83<br>80<br>75                            | 2 41<br>57<br>0 43<br>0 47<br>0 45<br>0 43 | 20.9<br>17.5<br>13.9<br>9.2<br>17.5<br>6.4 |                                | • • • <del>• • •</del> • •      |                  |                          | 6 0+1082+-24<br>3 0+1082+ 10+<br>8 2+1082+ 43+<br>1 0+1084+-1 5+1084                    | Colorado A. (Porky Flata)<br>(ntorado B. (Sugar . naf)<br>(dano B.<br>Idaho n.<br>Idaho n.<br>Yaakiington A. (Hanford)<br>Waakiington B. (Hanford) | <ul> <li>Ref val. det. eith init for conc. of IDE IMmild<br/>en S. Carolina subsoil Val.ein. For Am ein t. calcium and<br/>sodium as competing ion. over 2 orders of pagnitude are<br/>reported in Royston et st. 1975.</li> </ul> | Clover et al., 1975<br>Glover et al., 1976<br>Glover et al., 1075<br>Glover et al., 1776<br>Glover et al., 1975<br>Glover et al., 1975<br>Glover et al., 1976<br>Glover et al., 1976 |
|    | Silty ilay Inan<br>Silty ilay Inan<br>Ioan | 78<br>49<br>82                         | 12<br>7<br>34 07<br>9               | 20<br>19<br>9                    | 01                               | 0.2<br>0 2<br>0 7              | 5 4                                             | 0 44<br>0 54<br>0 49<br>0 57               | 5 i<br>7 0<br>3 8<br>20<br>20              | 1 (*)<br>1 (*)<br>2 41<br>7 41 |                                 |                  |                          | 4 0=10E2+ 11+<br>3 9=10E2+ 20+<br>2 98+19E4<br>1 728+10E4<br>2 387+10E4                 | C randing (Rannest)<br>Nes Besing (Inn Alamps)<br>Antanasa B<br>Sharpshurg (Iosa)<br>Charneburg (Iosa)<br>Yolo (Cylifornia)                        | When the value is bracketed, it in the off the estract                                                                                                                                                                             | Clover et al., 1976<br>Clover et al., 1976<br>Nichita et al., 1978<br>Nichita et al., 1979<br>Nichita et al., 1979<br>Nichita et al., 1979<br>Nichita et al., 1973                   |
|    | loam<br>                                   | 15<br>9<br>31                          | 50<br>54<br>53                      | 34<br>37<br>16                   | 25<br>09<br>23<br>36<br>06       | 1 72                           | 67(698)<br>78<br>23<br>36<br>78(71?)<br>78(804) | 0 44<br>0 57<br>0 56                       | 25<br>15 5<br>16 7<br>17 4<br>10<br>30     | 7 41<br>1 2<br>1 2             |                                 |                  |                          | 2 021=10F4<br>5 9=10F3+-230+<br>1 8=10F3+<br>1 5=10F3+-190+<br>3 553=10F4<br>4 723=10F4 | Ynin (fa'ifernis)<br>Llahn A<br>Arsunge (<br> llinnis<br>Hnitouilla<br>Shitauilla                                                                  | - Hd val det with init. An conc. of 10F-10mp1/1<br>When the value is bracketed, it is the pelof she sutract                                                                                                                        | Clover et al., 1979<br>Clover et al., 1979<br>Clover et al., 1979<br>Nishita et al., 1979<br>Nishita et al., 1979<br>Nishita et al., 1979<br>Nishita et al., 1979                    |
|    | clay                                       | 5<br>37<br>32<br>10                    | 31<br>32<br>32<br>34                | 54<br>36<br>36<br>56             | 0 7<br>1<br>2 7<br>3 7           | 0<br>0.9                       | 7 9<br>49<br>54<br>52                           | 0 47<br>0 49<br>0 45<br>0 57               | 79 6<br>70 5<br>16 0<br>34 4               |                                | (105 nat.<br>nn fut ion         | 1                |                          | 2 6:10:3- 4/0-                                                                          | (Notherlands)<br>Culiosida F (Barby Flats)<br>Fanarsaa (Nab Ridge:<br>Maa Yosh (Nat Vallay)<br>Arbansa-A                                           | • Hd val det with init. Am come of 10£ 10mm1/8                                                                                                                                                                                     | Glaver et al., 1976<br>Claver et al., 1976<br>Disver et al., 1976<br>Claver et al., 1976<br>Frickan, 1980                                                                            |
|    | abusaal ood clay<br>abussal ood clay       |                                        |                                     |                                  |                                  |                                | 21<br>67                                        |                                            | •                                          |                                | 0.6P.mm/<br>Na(1)<br>0.6P.mm.i/ |                  |                          | 4.0+1055                                                                                |                                                                                                                                                    |                                                                                                                                                                                                                                    | Friday, 1980                                                                                                                                                                         |
|    | 059391C                                    |                                        |                                     |                                  | 40 8                             |                                | / 7 (/ 14)<br>/ 7 (/ 54)                        |                                            | 50<br>60                                   | 1 1 2                          | N+C1                            |                  |                          | 7 766+10H 1<br>5 527+10H 3                                                              | abert .                                                                                                                                            | when the value is bracheted, it is the pill of the extract                                                                                                                                                                         | Nichita et al., 1979<br>Nichita et al., 1979                                                                                                                                         |

TABLE B-2

ANTIMONY Ka VALUES

| NIC 15           |                                                                                        | 0 <u>11</u><br>y## | s<br>SMD | <b>8</b><br>SIL! | CLAY | y<br>Delli | (a | <b>1</b><br>103 | OH<br>(T PASTE       | FH<br>(v) | 100a | N FREE<br>JRON<br>DVLDES | Crime<br>CATTEN | K CIMP<br>CATION | NEXTL 12F<br>CONCENTRATION | Kal<br>(=4,/q)               |            | SOIL LOCATION<br>or DESCRIPTION                                                                   | 01+68 144 3441104                                                                                         |                                                            | REFERENCE |
|------------------|----------------------------------------------------------------------------------------|--------------------|----------|------------------|------|------------|----|-----------------|----------------------|-----------|------|--------------------------|-----------------|------------------|----------------------------|------------------------------|------------|---------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|------------------------------------------------------------|-----------|
| 56 175<br>56 125 |                                                                                        |                    |          |                  |      |            |    | 3               | 11                   |           |      |                          |                 |                  |                            | (10000-7<br>(10000-(1000     |            | Savannah River Mant<br>- Savannah River Plant                                                     | ाः ग्राट् 17 p.46 स.म/////)<br>at.pH 6 स.स.च. 600-40 स./.यू<br>nearly all Soir स्वरूप्रधानी गिरुक स्वार्ध | Horffner, 19<br>Høeffner, 19                               |           |
| 56 125<br>56 175 | SRP burial ara<br>SRP burial ara<br>SRP burial ara<br>SRP burial ara<br>SRP burial ara | und<br>und         |          |                  |      |            |    | - 4             | 4<br>7<br>9 3<br>7 2 |           |      |                          |                 |                  |                            | 54000<br>3600<br>2300<br>180 | SAP<br>SAP | - Savannah River Plant.<br>Savannah River Plant<br>Savannah River Plant.<br>Savannah River Plant. | ( <sup>1</sup> ab 1)                                                                                      | Stone et al.<br>Stone et al.<br>Stone et al<br>Stone et al | 1984      |

### ARSENIC Ka VALUES

| NLIC 158 | SDIL<br>Lype                  | sand | <b>1</b><br>5117 | S<br>CLAT | 1.<br>ORG | 5<br>CaC03 | SAT PAST | Ен<br>Г (+) | CEC<br>==q/<br>100q | S FRFE<br>INNO<br>Oxides | (IMP<br>(A1](N) | \$ ((M)<br>(A1)(M | NUCL 10F<br>CONCENTRATION | Kd<br>(=L/g) |                       | SOLL LOCATION<br>or DESCRIPTION | OTHER INFORMATION          | NEFEPENCE                      |
|----------|-------------------------------|------|------------------|-----------|-----------|------------|----------|-------------|---------------------|--------------------------|-----------------|-------------------|---------------------------|--------------|-----------------------|---------------------------------|----------------------------|--------------------------------|
|          |                               |      |                  |           |           |            |          | ~           |                     |                          |                 |                   |                           | 0            | Jeffrey City, Wyoming |                                 | (As) Tab 4                 | Haji Djafari et al., 3983      |
| As.      | fine sandstane and silty sans |      |                  |           |           |            | ~ ~      |             |                     |                          |                 |                   |                           | 25           |                       | ,                               | 226 - site eeology         | Huji Dyafari et al., 1981      |
| Aş.      | fine sandstone and silly sand |      |                  |           |           |            | • >      |             |                     |                          |                 |                   |                           | 200          |                       |                                 | 230 a split rock formation | Haji-Djafari et al., 1981      |
| An.      | fine handstane and silly hand |      |                  |           |           |            | 5 /5     |             |                     |                          |                 |                   |                           | 300          |                       | •                               |                            | Hajs-Djafars et al., 1901      |
| Ap.      | fine sandstone and silty sand |      |                  |           |           |            | 10       |             |                     |                          |                 |                   |                           | 300          |                       |                                 |                            | waji-ujarari et al., 1901 - 2. |

TABLE B-4

## BARIUM Ka VALUES

| Ba         Sand         74         3         4 781         4 285         0 4         Tab. 5n transport parameters & Kd         Erchh           Ba         Sand         4 781         4 285         0 4         1ab         5n transport parameters & Kd         Erchh           Ba         Sand         4 781         4 295         0 5         1ab         5n sol 1 to 4 - pt and Kd         Erchh           Ba         Sand         2 31         10         Erchh         Erchh           Ba         Sand         2 31         2 0         Erchh         Erchh           Ba         Sand         6 3         Erchh         Erchh         Erchh |                                                                                    |                       |            |   |      | <br> |                                            |               |     |      | <br> |                                  |                                                           |                                                                                                                              |                                  |                                                                                                               |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|-----------------------|------------|---|------|------|--------------------------------------------|---------------|-----|------|------|----------------------------------|-----------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|----------------------------------|---------------------------------------------------------------------------------------------------------------|
| NUC     150     type     SAMD     SILT     (AV     DRC     Lab. As hydralic conductivity     Cichl       Ba     Sand     74     3     4 781     4 265     0.4     Tab. 5n transport parameters & Kd     Eichh       Ba     Sand     74     3     4 781     4 265     0.5     Tab. 5n transport parameters & Kd     Eichh       Ba     Sand     4 781     4 277     0.5     Tab. 5n sol 1 to 4 - shi and Kd     Eichh       Ba     Sand     2.31     10     Eichh     Eichh       Ba     Sand     2.0     2.0     Eichh       Ba     Sand     6.3     2.0     Eichh                                                                               |                                                                                    | 5011.                 | 1          | 5 | 1    | 8    | 9 <sup>14</sup>                            | Đ.            | mq/ | (R(W |      | MICLIDE<br>CONCENTRATION         | Kd<br>(≪L/9)                                              |                                                                                                                              | OTHER INFORMATION                | 1 FERENCE                                                                                                     |
| Ba Sand 2.31 Eicht<br>Ba Sniution 1 4.04 6.3 Eicht                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Ba Sand                                                                            |                       | 5.MD<br>74 | 3 | - 3- | <br> | 4 781 4 2                                  | 9<br>97<br>97 |     |      | <br> |                                  | 04<br>04<br>05                                            | SE constal plain - a. In clay loam - SAUS                                                                                    | Tab.5: transport parameters & Kd | Eichholz & Whang, 1987<br>Eichholz & Whang, 1987<br>Eichholz & Whang, 1987<br>Eichholz & Whang, 1987          |
| Be Salution 3 10.40 11.0 10.1 10.40 11.44 (PC-2, Pacific Ocean, depth- 5871= (Bo) Batch (tab. 1: Kd vs. temp.). Smooth clay Kenny                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ba Sand<br>Ba Solution<br>Ba Solution<br>Ba Solution<br>Ba Solution<br>Ba Sanctite | 7<br>3<br>4<br>7 Clay |            |   |      |      | 2.31<br>4.04<br>6.95<br>10.40<br>7.5 - 7.8 |               |     |      |      | 1.7=10[/#Ho1/L<br>1.7=10[/#Ho1/L | 2 0<br>6 3<br>644 3<br>(9 3+-0 7)+10(4<br>(5 5+-0.3)+10E4 | e 20 degrees C. Core 1144 CPC-2, Pacific Dceam, depth- 5071m<br>e 60 degrees C. Core 1144 CPC-2, Pacific Dceam, depth- 5071m |                                  | Eichholz & Whang, 1987.<br>Eichholz & Whang, 1987.<br>Eichholz & Whang, 1987.<br>Renna, 1980.<br>Kenna, 1980. |

## CADMIUM Ka VALUES

| 158                                                | 501i<br>† ype                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | SAND                                                 | \$<br>511 T                                    | t<br>CLAY                                      | S<br>ORG.                                                                                          | S DH<br>Cacoj sat paste                                          | FN<br>5 (v) | CEC<br>=ea/<br>100g                                                                                              | 1: FREE<br>IRCN<br>0×10F5                                                                                                                                                                                                                                             | COMP<br>CATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | S COMP<br>CATTERN                                                                                                                                            | NICLIDE<br>CINCINTRALION | ≪d<br>(=4 /g)                                                                                                                                                                                                                                                | SPIL I OLATION<br>or DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 014FR 1460 HA110N                                                                                                                                                                                                                                                                                                                                                                                                       | REFERENCE                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|----------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|------------------------------------------------|------------------------------------------------|----------------------------------------------------------------------------------------------------|------------------------------------------------------------------|-------------|------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 109 k<br>109 k<br>109 k<br>109 k<br>109 k<br>109 k | nsay sand<br>pany beat<br>andy 'pam<br>andy loam<br>ease sand<br>loamy sand                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                      |                                                |                                                |                                                                                                    | 1 1 7 0<br>0.5 6 9<br>(100) 5 7<br>(63) 7 1<br>(5) 4 6<br>23 4 6 |             |                                                                                                                  |                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                              |                          | 100-1000<br><1000-31000<br>100<br>100<br>(1000<br>(1000                                                                                                                                                                                                      | 1) Cleysal<br>2) Sabric Histocol, strongiy huaidied<br>3) Cabisal broen soil fran loess<br>4) Cabisal broen soil<br>5) Acrisol, parabren soil, Ah<br>6) Acrisol, parabren soil, Ahborizon<br>8 Bentonite, Sud-Cheese AR Anchen<br>P) Sabo, pasit (high moor) Steinhuder Meer, "annover                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | - (d  ∮9] [1-q 2] - <sup>2</sup> log:8d<br>T₁q 4 ≵ 5                                                                                                                                                                                                                                                                                                                                                                    | Burgl and Schramsch 1988<br>Burgl and Schramsch 1988                                                                                                                                                                                                                                             |
| 5                                                  | iand 75<br>Band 758<br>Band 756<br>Band 756<br>Band 788<br>Band 786<br>Band 786<br>Band 786                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 87 3<br>86 5<br>86 3<br>83 6<br>98 0<br>93 4<br>72 2 | 8 4<br>7 2<br>7 7<br>7 5<br>4 2<br>2 9<br>13 3 | 6.6<br>2.7<br>5 3<br>4 9<br>6 1<br>7 9<br>11 2 | 77<br>16<br>74.0<br>17<br>83.3                                                                     | 4 9<br>5 0<br>4 7<br>4 8<br>5 1<br>5 1<br>4 9                    |             | 94<br>70<br>52<br>108<br>65<br>76<br>123                                                                         |                                                                                                                                                                                                                                                                       | (10E 24 Ca<br>(10E-24 Ca<br>(10E-24 Ca<br>(10E-24 Ca<br>(10E 24 Ca<br>(10E 24 Ca<br>(10E 24 Ca                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (C (2)<br>(C (2)<br>(C (2)<br>(C (2)<br>(C (2)<br>(C (2)<br>(C (2))<br>(C (2))                                                                               |                          | )1000<br>10-370<br>(sei Ph range<br>3 7 5 8)                                                                                                                                                                                                                 | P2 Sang, seat (high moor) Kenigsdorf,Bavaria                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | {abstract} (148.1 = soli prop -ther infe)<br>[tab ls*gotinterdats from Lamm,(C, 1971, lidsskrift for<br>plantawi /5,703] {frg ls*diso ube conc vs soll conc }<br>[frg 2*disolute conc vs sol rine ]<br>[frg didisolute conc vs soll comes son (2*di-Zn-Cr-Cu-Pbz<br>other metals compety for (d sortien sites) (frg 4*d vs p<br>9 solls) (conclusion s 307) 24 to 500 = toosoli<br>1160 to 1870 = subsoli (0 5 to i 0=) | Christensen, 1987<br>Christensen, 1987<br>Christensen, 1987<br>Christensen, 1987<br>Christensen, 1987<br>McChristensen, 1987<br>Christensen, 1987<br>Christensen, 1987                                                                                                                                                                                                                                                                                                   |
|                                                    | nand 508<br>nand 50C<br>sand 116C<br>sand 163C<br>sand 163C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 64 8<br>51 0<br>83 8<br>96 4<br>75 0                 | 177<br>235<br>09<br>09                         | 14 7<br>73 2<br>8 1<br>7 4<br>14 0             | 33<br>7.3<br>0.3<br>04<br>0.3                                                                      | 43<br>42<br>44<br>53<br>64                                       |             | 35<br>84<br>47<br>26<br>30                                                                                       |                                                                                                                                                                                                                                                                       | 10E-24 Ca<br>(10E-24 Ca<br>(10E-24 Ca<br>(10E-24 Ca<br>(11E-24 Ca<br>(10E-24 Ca                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | C 12)<br>C 12)<br>C 12)                                                                                                                                      |                          | 230-1/00<br>(Cd on ly)                                                                                                                                                                                                                                       | Al-Monteersiionste, Veracuiste, Vaossaste                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (a. Ni,Co,∑n Kdr3-14 times love-)<br>(abstract) - (Lab 1-soil prop. <`om fract on)                                                                                                                                                                                                                                                                                                                                      | Christensen, 1987<br>Christensen, 1987<br>Christensen, 1987<br>Christensen, 1987<br>Zaboumki and Zasoski, 198<br>Zaboumki and Zasoski, 198                                                                                                                                                                                                                                                                                                                               |
| Ċ                                                  | clay minerals (more silt and<br>sand than clay)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 24 5                                                 | 54 5                                           | 21 0                                           |                                                                                                    | 51                                                               | 70          | 115#Hc/Kg                                                                                                        | 13 3q/4g                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                              |                          | none given<br>? can catcutate<br>froe adsorption dat<br>(fig)                                                                                                                                                                                                | (EC = Mc/Kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (fig liansprotion rates)<br>(fig 2idifforence-NaM13 - sludo leach)<br>(fig 3 = metal adsorption in relation to metal ion activit                                                                                                                                                                                                                                                                                        | Zabovski and Zasoni . 198                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                    | clay minerals (more silt and<br>sand than clay)<br>clay minerals (more silt and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 27 5<br>50 5                                         | 47.5                                           | 0.06<br>11 0                                   |                                                                                                    | 53                                                               | 44<br>0 01  | 74mHc/Kq<br>###Hc/¥q                                                                                             | 17 1g/Kg<br>11 5g/Kg                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                              |                          |                                                                                                                                                                                                                                                              | C:Chlorite, Vermiculite, 111/1e, 111/te-Verm - Kaolimite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                         | Zabousk: and Zasosk:, 198<br>Zabousk: and Zasosk:, 198                                                                                                                                                                                                                                                                                                                                                                                                                   |
| •                                                  | clay minerals (more silt and<br>sand than clay)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 30 3                                                 | 36 3                                           | 13 0                                           |                                                                                                    | 6 2                                                              | 0.01        | 112                                                                                                              |                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                              |                          | 10-1000                                                                                                                                                                                                                                                      | Megn of 32 Danish soils                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (tab 3 : soil char - Kd corre <sup>1</sup> Lions)<br>[tab 4 : Regression coeff.]<br>[fie] : log Kd for Cd - funct in of s <sup>44</sup> )<br>[tab 2 : soil srop ) (onclusic is                                                                                                                                                                                                                                          | Anderson and Christenson<br>Anderson and Christensen<br>Anderson and Christensen<br>Anderson and Christensen<br>Anderson and Christensen                                                                                                                                                                                                                                                                                                                                 |
|                                                    | sand<br>sandy load                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 96 4<br>75.0                                         | 0 E<br>10 U                                    | 2 4<br>14.0                                    |                                                                                                    | 53<br>64                                                         |             | 76<br>80                                                                                                         |                                                                                                                                                                                                                                                                       | CaC:<br>CaCI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                              |                          | , ,                                                                                                                                                                                                                                                          | Se+1 §163C<br>Se+1 §167 C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Soridesth = 50-100 ca (fig ) 3 i Kid vs (a canc)<br>lab ] = Rid (Cd) - Rid (Cn), Krin – (Cancivsions)<br>Sorigeropufrog og 11-64-ctab 1 (inistemsen, 1987)<br>Kid columan () = Kid range Ta 1 = sori Prop                                                                                                                                                                                                               | Christensen, 1987<br>Christensen, 1987<br>Christensen, 1987<br>Schimmek et al., 1987                                                                                                                                                                                                                                                                                                                                                                                     |
| 109                                                | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 90                                                   | 17                                             | 3                                              |                                                                                                    | 0 37                                                             |             | 125 <del>m</del> /Kg                                                                                             |                                                                                                                                                                                                                                                                       | CaC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2                                                                                                                                                            |                          | 97 (42-222)                                                                                                                                                                                                                                                  | Aquad (N Germany), Org/Silicate Clay (OH 2 1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | tab.7 = Kd<br>tab 1 = seil prop - also miner legy of clay soil.CECX aH                                                                                                                                                                                                                                                                                                                                                  | Schimmer et al., 1987<br>5,77-fler et al., 1984                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                    | PA (0-30 cm)<br>PA (0-30 cm)<br>PA (0-30 cm)<br>LA (0-30 cm)<br>LA (0-30 cm)<br>EA (0-30 cm)<br>PEL (0-15 cm)<br>PEL (0-15 cm)<br>PEL (0-15 cm)<br>F45 (0-15 cm)<br>F45 (0-15 cm)<br>F45 (0-15 cm)<br>F45 (0-0 cm)<br>HN (40-60 cm |                                                      |                                                |                                                | 31 7<br>31.7<br>31.7<br>5<br>5<br>3.1<br>3.1<br>2.4<br>7.4<br>1.0<br>1.0<br>1.0<br>0.0<br>8<br>0.9 | 5675675675675                                                    |             | 134<br>134<br>65<br>65<br>69<br>99<br>99<br>99<br>99<br>90<br>70<br>70<br>70<br>70<br>53<br>53<br>53<br>24<br>24 | 0 98 {1 40<br>0 98 {1 40<br>0 98 {1 40<br>0 98 {1 40<br>1 18 {2 62<br>1 18 {2 62<br>0 45 {1 61<br>0 4 {2 61<br>4 {2 761<br>4 {2 761<br>9 9 {4 7 7<br>0 9 {4 7 7}}}} | 0         14         Cal           1         0         14         Cal           2         0         14         Cal           3         0         14         Cal           4         0         14         Cal           5         0         14         Cal           6         0         14         Cal           1         0         14         Cal           1         0         14         Cal           1         0         14         Cal           1         0         14         Cal           3         0         14         Cal | (H03)2<br>(H03)2<br>(H03)2<br>(H03)2<br>(H03)2<br>(H03)2<br>(H03)2<br>(H03)2<br>(H03)2<br>(H03)2<br>(H03)2<br>(H03)2<br>(H03)2<br>(H03)2<br>(H03)2<br>(H03)2 |                          | 0 67 (19-1)<br>1 67 (19-1)<br>5 01 (19-1)<br>0 10 (19-1)<br>1 .33 (19-1)<br>0 15 (19-1)<br>0 34 (19-1)<br>0 34 (19-1)<br>0 34 (19-1)<br>0 35 (19-1)<br>0 13 (19-1)<br>0 10 (19-1)<br>0 30 (19-1)<br>0 30 (19-1)<br>0 05 (19-1)<br>0 05 (19-1)<br>0 05 (19-1) | Aquad (N. Germany), Ura/Siticate Ciay (Ur. 1)<br>Aquad (N. Germany), Ura/Siticate Ciay (Ur. 2)<br>Aquad (N. Germany), Ura/Siticate Ciay (Nr. 2)<br>Adaif (N. Germany), Siticate Ciay (2)<br>Adaif (N. Germany), Siticate Ciay (2)<br>Pollustert, (Australia), Siticate Ciay (2)<br>Pollustert (Australia), Siticate Ciay (2)<br>Aqualf (N. Germany), Siticate Ciay (2)<br>Polluster(1) (K. Germany), Siticate Ciay (7 no oxide (1)/Fe)<br>Polluster(1) (K. Germany), Siticate Ciay (7 no oxide (1)/Fe) | ioning for Failen, ingrego Tab 2 : c sy ionnatitueetta<br>tab 5 : kol (ig:1), col-ki:7 an su stren conc:10 -6 molar<br>(0 N : Ni, Zn) (CEC used h 7)                                                                                                                                                                                                                                                                    | 1.11er et al., 1994<br>1.11er et al., 1994<br>1.11ar et al., 1994 |

continued...

### - 59 -

| TABLE B-5 | (concluded) |
|-----------|-------------|
|-----------|-------------|

| (4 )                                     | type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | SANG                                                                                 |                   | 4<br>11. ľ | CLAY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | S.<br>ORC.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5<br>CaC03 | SAT PASTE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | FH<br>(v) | CFC<br>***a/<br>100g                                                                                                             | S FRFE<br>190N<br>0x1DES                                                                                                                                                                       | CINP<br>CATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | S CUMP<br>CALLON                                                                                 | HUCLIDE<br>CONCENTRATION               | Kd<br>{=1./a}                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | SITE EDCATION<br>3+ DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | UTHER (MFORMATION                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|-------------------|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|----------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| C4 K C44 C44 C44 C44 C44 C44 C44 C44 C44 | thi (44 60 m)<br>thi (44 60 m)<br>thi (44 60 m)<br>75.8 (20-30 m)<br>75.8 (20-30 m)<br>75.8 (20-30 m)<br>75.8 (20-30 m)<br>10.15 | ,                                                                                    |                   |            | (2 v<br>(2 v)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1 0<br>1 0<br>1 0<br>0 0<br>0 0<br>0 0<br>4 9<br>4 9<br>4 9<br>1 1<br>1 1<br>1 5<br>16 5<br>16 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            | 5<br>67<br>56<br>75<br>67<br>56<br>7<br>56<br>7<br>5<br>67<br>7<br>5<br>67<br>7<br>5<br>67<br>7<br>5<br>67<br>7<br>5<br>67<br>7<br>5<br>67<br>7<br>5<br>67<br>7<br>5<br>67<br>7<br>5<br>67<br>7<br>5<br>67<br>7<br>5<br>67<br>7<br>5<br>67<br>7<br>5<br>67<br>7<br>5<br>5<br>67<br>7<br>5<br>5<br>67<br>7<br>5<br>5<br>67<br>7<br>5<br>5<br>67<br>7<br>5<br>5<br>67<br>7<br>5<br>5<br>67<br>7<br>5<br>5<br>67<br>7<br>5<br>5<br>67<br>7<br>5<br>5<br>67<br>7<br>5<br>5<br>67<br>7<br>5<br>5<br>67<br>7<br>5<br>5<br>67<br>7<br>5<br>5<br>67<br>7<br>5<br>5<br>67<br>7<br>5<br>5<br>67<br>7<br>5<br>5<br>67<br>7<br>5<br>5<br>67<br>7<br>5<br>5<br>67<br>7<br>5<br>5<br>67<br>7<br>5<br>5<br>67<br>7<br>5<br>5<br>7<br>5<br>5<br>7<br>5<br>5<br>7<br>5<br>5<br>7<br>5<br>5<br>7<br>5<br>5<br>7<br>5<br>5<br>7<br>5<br>5<br>7<br>5<br>5<br>7<br>5<br>5<br>7<br>5<br>7<br>5<br>7<br>5<br>7<br>5<br>7<br>5<br>7<br>5<br>7<br>5<br>7<br>5<br>7<br>5<br>7<br>5<br>7<br>5<br>7<br>5<br>7<br>5<br>7<br>5<br>7<br>5<br>7<br>5<br>7<br>5<br>7<br>5<br>7<br>5<br>7<br>5<br>7<br>5<br>7<br>5<br>7<br>5<br>7<br>5<br>7<br>5<br>7<br>7<br>5<br>7<br>7<br>5<br>7<br>7<br>7<br>5<br>7<br>7<br>7<br>5<br>7<br>7<br>7<br>5<br>7<br>7<br>7<br>5<br>7<br>7<br>7<br>5<br>7<br>7<br>7<br>5<br>7<br>5<br>7<br>7<br>5<br>7<br>7<br>5<br>7<br>7<br>5<br>7<br>7<br>7<br>5<br>7<br>7<br>7<br>5<br>7<br>7<br>7<br>5<br>7<br>5<br>7<br>7<br>5<br>7<br>5<br>7<br>7<br>5<br>7<br>7<br>7<br>5<br>7<br>7<br>5<br>7<br>7<br>5<br>7<br>7<br>5<br>7<br>7<br>7<br>7<br>5<br>7<br>7<br>7<br>5<br>7<br>7<br>5<br>7<br>7<br>5<br>7<br>7<br>5<br>7<br>7<br>7<br>5<br>7<br>7<br>7<br>7<br>7<br>5<br>7<br>7<br>7<br>5<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7 |           | 53<br>53<br>54<br>24<br>24<br>24<br>24<br>37<br>37<br>37<br>37<br>37<br>37<br>37<br>37<br>37<br>87<br>87<br>87<br>87<br>87<br>87 | 4 (2 26)<br>4 (7 75)<br>00 (4 79)<br>00 (4 79)<br>00 (4 79)<br>77 (19 3)<br>77 (19 3)<br>77 (19 3)<br>77 (19 3)<br>54 (6 0)<br>54 (6 0)<br>54 (6 0)<br>52 (7 37)<br>5 20 (7 37)<br>5 20 (7 37) | 0 [H (s(H)3)<br>0 [#                                                                                                                                                                                             | 2<br>?<br>?<br>?<br>?<br>?<br>?<br>?<br>?<br>?<br>?<br>?<br>?<br>?<br>?<br>?<br>?<br>?<br>?<br>? |                                        | <pre>/ 10 {1a-1} 0 3u {1a-1} 0 4f {1a-1} 0 4f {1a-1} 0 05 {1a-1} 0 03 {1a-1} 0 09 {1a-1} 0 09 {1a-1} 0 05 {1a-1} 0 4f {1a-1} 0</pre> | Aquaif (N Germany), Silicate clay (? 1)<br>Aquaif (N Germany), Silicate clay (? 1)<br>Aquaif (N Germany), Silicate clay (? 1)<br>Paleueralf (N Germany), Silicate clay from oxide (1 1/fe)<br>Paleueralf (N Germany), Silicate clay from oxide (1 1/fe)<br>Paleueralf (N Germany), Silicate clay from oxide (1 1/fe)<br>Napiohumas (Australia), Irom oxide/silicate clay (fe/1 1)<br>Mapiohumas (Australia), Irom oxide/silicate clay (fe/1 1)<br>Udbif (N Germany), Silicate clay/from oxide (2 1)<br>Udbif (N Germany), Silicate clay/from oxide (2 1)<br>Aquad (N Germany), Silicate clay/from oxide (2 1/fe)<br>Aquad (N Germany), Silicate clay/from oxide (2 1/fe)<br>Gaothite (lab pre) )<br>Geothite (lab pre) ]<br>Geothite (lab pre) ]<br>Birch Pit, Macen Georgia<br>Birch Pit, Macen Georgia | CEC : manufetg-2 (Cd (10720)2)<br>(0.10 : Zn) (fig 2.3 : 5d of Cd - Ze)                                                                                                                                                                               | ALFEAENCE<br>iiller et al. 1984<br>iiller et al. 1984 |
| Cel li<br>Cel s                          | loany sand<br>sandy loan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 86.3<br>69.5                                                                         | 12                |            | 62<br>10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.7<br>0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            | 5 0<br>- 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           | 75<br>175                                                                                                                        |                                                                                                                                                                                                | .001 N CaC12<br>.001 N CaC12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                  |                                        | na Kđ<br>na Kđ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Dennerk<br>Dennerk                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (Tab.2 = sori e-roe.) Betch. (Cd)<br>(Tab.2 = % Cd sorstion = 20h, 35 ok, 67 oks)                                                                                                                                                                     | Garcia-Hiragaya, 1983<br>Christensen, 1984                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                          | sand<br>aand<br>Sandy loan<br>Sandy loan<br>sand<br>sand<br>sand<br>sandy loan<br>sandy loan<br>sandy loan<br>sandy loan<br>sandy loan<br>sand<br>sandy loan<br>sand<br>sandy loan<br>sandy loan<br>sandy loan<br>sandy loan<br>sandy loan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 96 4<br>96 9<br>97 24 9<br>96 4<br>96 4<br>96 4<br>96 4<br>96 4<br>96 4<br>96 4<br>9 |                   |            | $\begin{array}{c} 2 & 4 \\ 14 & 0 \\ 14 & 0 \\ 2 & 4 \\ 14 & 0 \\ 2 & 4 \\ 14 & 0 \\ 2 & 4 \\ 14 & 0 \\ 2 & 4 \\ 14 & 0 \\ 2 & 4 \\ 14 & 0 \\ 14 & 0 \\ 14 & 0 \\ 14 & 0 \\ 14 & 0 \\ 14 & 0 \\ 14 & 0 \\ 14 & 0 \\ 14 & 0 \\ 14 & 0 \\ 14 & 0 \\ 14 & 0 \\ 14 & 0 \\ 14 & 0 \\ 14 & 0 \\ 14 & 0 \\ 14 & 0 \\ 14 & 0 \\ 14 & 0 \\ 14 & 0 \\ 14 & 0 \\ 14 & 0 \\ 14 & 0 \\ 14 & 0 \\ 14 & 0 \\ 14 & 0 \\ 14 & 0 \\ 14 & 0 \\ 14 & 0 \\ 14 & 0 \\ 14 & 0 \\ 14 & 0 \\ 14 & 0 \\ 14 & 0 \\ 14 & 0 \\ 14 & 0 \\ 14 & 0 \\ 14 & 0 \\ 14 & 0 \\ 14 & 0 \\ 14 & 0 \\ 14 & 0 \\ 14 & 0 \\ 14 & 0 \\ 14 & 0 \\ 14 & 0 \\ 14 & 0 \\ 14 & 0 \\ 14 & 0 \\ 14 & 0 \\ 14 & 0 \\ 14 & 0 \\ 14 & 0 \\ 14 & 0 \\ 14 & 0 \\ 14 & 0 \\ 14 & 0 \\ 14 & 0 \\ 14 & 0 \\ 14 & 0 \\ 14 & 0 \\ 14 & 0 \\ 14 & 0 \\ 14 & 0 \\ 14 & 0 \\ 14 & 0 \\ 14 & 0 \\ 14 & 0 \\ 14 & 0 \\ 14 & 0 \\ 14 & 0 \\ 14 & 0 \\ 14 & 0 \\ 14 & 0 \\ 14 & 0 \\ 14 & 0 \\ 14 & 0 \\ 14 & 0 \\ 14 & 0 \\ 14 & 0 \\ 14 & 0 \\ 14 & 0 \\ 14 & 0 \\ 14 & 0 \\ 14 & 0 \\ 14 & 0 \\ 14 & 0 \\ 14 & 0 \\ 14 & 0 \\ 14 & 0 \\ 14 & 0 \\ 14 & 0 \\ 14 & 0 \\ 14 & 0 \\ 14 & 0 \\ 14 & 0 \\ 14 & 0 \\ 14 & 0 \\ 14 & 0 \\ 14 & 0 \\ 14 & 0 \\ 14 & 0 \\ 14 & 0 \\ 14 & 0 \\ 14 & 0 \\ 14 & 0 \\ 14 & 0 \\ 14 & 0 \\ 14 & 0 \\ 14 & 0 \\ 14 & 0 \\ 14 & 0 \\ 14 & 0 \\ 14 & 0 \\ 14 & 0 \\ 14 & 0 \\ 14 & 0 \\ 14 & 0 \\ 14 & 0 \\ 14 & 0 \\ 14 & 0 \\ 14 & 0 \\ 14 & 0 \\ 14 & 0 \\ 14 & 0 \\ 14 & 0 \\ 14 & 0 \\ 14 & 0 \\ 14 & 0 \\ 14 & 0 \\ 14 & 0 \\ 14 & 0 \\ 14 & 0 \\ 14 & 0 \\ 14 & 0 \\ 14 & 0 \\ 14 & 0 \\ 14 & 0 \\ 14 & 0 \\ 14 & 0 \\ 14 & 0 \\ 14 & 0 \\ 14 & 0 \\ 14 & 0 \\ 14 & 0 \\ 14 & 0 \\ 14 & 0 \\ 14 & 0 \\ 14 & 0 \\ 14 & 0 \\ 14 & 0 \\ 14 & 0 \\ 14 & 0 \\ 14 & 0 \\ 14 & 0 \\ 14 & 0 \\ 14 & 0 \\ 14 & 0 \\ 14 & 0 \\ 14 & 0 \\ 14 & 0 \\ 14 & 0 \\ 14 & 0 \\ 14 & 0 \\ 14 & 0 \\ 14 & 0 \\ 14 & 0 \\ 14 & 0 \\ 14 & 0 \\ 14 & 0 \\ 14 & 0 \\ 14 & 0 \\ 14 & 0 \\ 14 & 0 \\ 14 & 0 \\ 14 & 0 \\ 14 & 0 \\ 14 & 0 \\ 14 & 0 \\ 14 & 0 \\ 14 & 0 \\ 14 & 0 \\ 14 & 0 \\ 14 & 0 \\ 14 & 0 \\ 14 & 0 \\ 14 & 0 \\ 14 & 0 \\ 14 & 0 \\ 14 & 0 \\ 14 & 0 \\ 14 & 0 \\ 14 & 0 \\ 14 & 0 \\ 14 & 0 \\ 14 & 0 \\ 14 & 0 \\ 14 & 0 \\ 14 & 0 \\ 14 & 0 \\ 14 & 0 \\ 14 & 0 \\ 14 & 0 \\ 14 & 0 \\ 14 & 0 \\ 14 & 0 \\ 14 & 0 \\ 14 & 0 \\ 14 & 0 \\ 14 & 0 \\ 14 & 0 \\ 14 & 0 \\ 14 & 0 \\ 14 & 0 \\ 14 & 0 \\ 14$ | D 4<br>C 3<br>C 4<br>C 4<br>C 3<br>C 3<br>C 3<br>C 4<br>C 3<br>C 3<br>C 3<br>C 3<br>C 4<br>C 3<br>C 3<br>C 3<br>C 3<br>C 3<br>C 3<br>C 3<br>C 3<br>C 3<br>C 3 |            | 6 65<br>5 5 6<br>5 6 5<br>5 6 5<br>5 6 5<br>5 5<br>6 6 5<br>5 5<br>6 6<br>5 5<br>6 6<br>5 5<br>6 5<br>5 5<br>6 5<br>5 5<br>6 5<br>5 5<br>6 5<br>5 6<br>5 5<br>6 5<br>5 6<br>5 5<br>6 5<br>5 6<br>5 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |           | 278822882288278877887680<br>6600660066006600                                                                                     |                                                                                                                                                                                                | 001 H (ac')<br>001 H (ac')<br>001 H (ac')<br>001 H (ac')<br>001 H (ac')<br>Compost A<br>(ameost A<br>(ameost A<br>Compost B<br>Compost B<br>Compost B<br>Compost B<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Slag<br>Sl | •                                                                                                | 20 = (d/L<br>800 uq (d/L               | 700<br>250<br>1700<br>225<br>1 2<br>5 5<br>4 9<br>1 1<br>3 3<br>10<br>10<br>10<br>26<br>10<br>20<br>10<br>20<br>10<br>20<br>10<br>20<br>10<br>20<br>10<br>20<br>10<br>20<br>10<br>20<br>10<br>20<br>10<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 163 *       C-hor:ron Denmarb         163 *       C-hor:ron Denmarb         167 *       C-hor:ron Denmarb         168 *       C-hor:ron Denmarb         163 *       C-hor:ron Denmarb         163 *       C-hor:ron Denmarb         163 *       C-hor:ron Denmarb         163 *       C-hor:ron Denmarb         165 *       C-hor:ron Denmarb         167 *       C-hor:ron Denmarb         168 *       C-hor:ron Denmarb         167 *       C-hor:ron Denmarb         167 *       C-hor:ron Denmarb         167 *       C-hor:ron Denmarb                                                                                        | (Fig 2 to 5 = seretion ingularos)<br>(Cd) (Fig 5 = soil prop) Batch<br>Tab 3 = Kd's<br>Tab 2 = Waste leachate characteriatics<br>Fig. 2 to 6 = sorption isotherms<br>(Cd) (Fig.3 = (d Kd vs In conc.)<br>(Fig. 6 + Add vs In conc.)                   | Christensen, 1984<br>Christensen, 1985<br>Christensen, 1985                                                            |
| Cd Pi<br>Cd Pi<br>Cd Pi                  | Hallandale fine sand<br>Plantation Huch - botto<br>Plantation Huch - niddl<br>Plantation Huch - top li<br>Plantation Huch - top li                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | layer<br>war                                                                         |                   |            | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 14 5g/Ka<br>27 9g/Kg<br>370 7g/K<br>105.2g/N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            | 8 20<br>7 30<br>7 20<br>7 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |           | 1.13uea/g<br>1.58uea/g<br>4.09uea/g<br>4.53uea/g                                                                                 |                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                  |                                        | 0 072 L/g<br>0 323 L/g<br>0 193 L/g<br>0 505 L/g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Pompano Beach, Florida<br>Pompano Beach, Florida<br>Pompano Beach, Florida<br>Pompano Beach, Florida                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (Fig. 1 & 2 = Sorgeion :sothere)<br>(ON = Zn)<br>Tab I = cations in soil Tab 2 = yeil charact<br>Tab 3 = heavy metals in soit Tab 4 = linear Kd (L/g)<br>Tab 5 = Langmur coeff Fig I & 2 = isotheres = Cr, Ni.<br>(D.N. = Cu, Zn, Pm, Ni, Fe, Cr, Ca) | Mong et al., 1983<br>Mong et al., 1983<br>Mong et al., 1983                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Cel Si                                   | Sand                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                      |                   |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            | 6 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |           | 31.6                                                                                                                             |                                                                                                                                                                                                | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | *********                                                                                        | ************************************** | 66 7-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Samdy toil (Braunschueig) 0-20 ca                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | es 1 week squilibration                                                                                                                                                                                                                               | Nong et al., 1983<br>Poelstra et al., 1979                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| -                                        | Sand<br>Sand                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                      |                   |            | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -<br>3.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            | 65<br>45 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | •         | 31 5<br>77                                                                                                                       | -                                                                                                                                                                                              | (Ca2+) =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                  |                                        | 47 6+<br>7 67+10E2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Sandy sail (Brounschweig) 30:40 cm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | •= 1 eeek squiisbration                                                                                                                                                                                                                               | Poelstra et al., 1979                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Cel Si                                   | Sand                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                      |                   |            | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            | 75-80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |           | 16                                                                                                                               |                                                                                                                                                                                                | 0-0 015 mm1/<br>[Ca7+1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | L                                                                                                |                                        | 5 0x10E2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Soil C, sandy soil<br>Soil D, sandy soit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                       | Gerritse et al . 1097                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Cđ F                                     | Fine sand                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                      |                   |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            | 82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |           | 11                                                                                                                               |                                                                                                                                                                                                | 0-0 015 -01/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | l I                                                                                              |                                        | 2 Office2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | soil U, sandy soil<br>Hatlandale fine sand                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                       | Cerritse et al . 1982                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Cer S<br>Cer C<br>Cer D                  | Silk<br>Clay<br>Angunic<br>Peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                      | c14<br>(74<br>(74 | -          | 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0 72<br>1 8<br>1 5<br>6<br>16 3<br>95<br>95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Lrace      | 8 4<br>6 0<br>5 8<br>7 4<br>5 2<br>5 L (H2D)<br>4 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |           | 60<br>25<br>24<br>33 8                                                                                                           | 1 07<br>1 D7<br>8 29                                                                                                                                                                           | [(a2-)<br>0 0 015 mai/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                  |                                        | /6<br>9 8<br>16<br>625+<br>23<br>3/(~<br>1 44+10£3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | marianosis in exam<br>Imeriai (Californis)<br>Olivenhaim (Californis)<br>Boewer (Californis)<br>(Velburg) 0-30 cm<br>organic<br>(Schooneheek), sest<br>So-I A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | es 1 wook equilibration<br>os 1 wook equilibration                                                                                                                                                                                                    | <pre>bong et al., 1983<br/>Garcia-Miragaya, 1980<br/>Garcia-Miragaya, 1980<br/>Garcia-Miragaya, 1980<br/>Poststra et al., 1070<br/>Garcia-Miragaya, 1980<br/>Poststra et al., 1970<br/>Poststra et al., 1970</pre>                                                                                                                                                                                                                                                                                                                                                              |
|                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                      |                   |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <b>390</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            | 4 to 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |           |                                                                                                                                  |                                                                                                                                                                                                | [Ca2+] -<br>0-0.015 mg1/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                  |                                        | 9 0=10E3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Post A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                       | Gerritae et al . 1987                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                          | •••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                      |                   |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ) <b>90</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            | 6.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |           |                                                                                                                                  |                                                                                                                                                                                                | [Ca?+] =<br>0 0 015 mm1/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                                                                                                |                                        | - 76×10E3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Seri B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                       | Cerritse et al , 1982                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Cel Si<br>Cel Si                         | Sphaqnum pest<br>Sphaqnum pest                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                      |                   |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            | 4 to 5<br>4 to 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -         | -                                                                                                                                | •                                                                                                                                                                                              | 0 025 🛶                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                  |                                        | . 7±10F4<br>3±10C1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Post.<br>Pest                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                       | Walf et al , 1977                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Cd P                                     | Plantation much                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                      |                   |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |           | 34                                                                                                                               |                                                                                                                                                                                                | (a?+/4L so)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                  |                                        | 341                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | average of S layers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                       | Welf et al . 1977                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

## TABLE\_B-6

### CALCIUM Ka VALUES

| NUC. 19  | STIL<br>SØ Lype<br>Hallandale fine sand                       | s<br>SAND S | ້<br>ແກ່ ແມ | 14 Sa/1            | 5<br>CaCO3 | SAT PASTE    | н •<br>(v) 1 | Ng Nx<br>vea/a | REF<br>RIN CUM<br>IDFS CATE | P \$ (294<br>(N CATLU | NUCLIDE<br>CINCENTRATIO | 1 11/ 1/9 | Pompano Brach, Florida                           | DER INFORMATION<br>Tab 1 - cations in coi Tab 7 - soit charact<br>tab 3 - heavy metals, coit tab 4 - timear Rd (L/n)<br>Tab 5 - tangeur coeff cig 1 & 2 - incheren - (r. Ni | RFFR[M'F<br>Vong et al , 1783<br>Vong et al , 1783<br>Vong et al , 1783<br>Vong et al , 1783<br>Vong et al , 1983 |
|----------|---------------------------------------------------------------|-------------|-------------|--------------------|------------|--------------|--------------|----------------|-----------------------------|-----------------------|-------------------------|-----------|--------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|
| Ğ        | Plantation Much - bottom layer                                |             |             | 27 99/1            |            | / 30<br>/ 20 |              | 01040<br>01070 |                             |                       |                         | 2 784 I/a | Pompano Beach, Florida<br>Pompano Beach, Florida | (0 N - Cu, 7n, No. N. Cd, Cr)                                                                                                                                               |                                                                                                                   |
| (a<br>(a | Plantation Much - middle layer<br>Plantation Much - top layer |             |             | 670 7g.<br>705.2g. |            | 7 10         |              | wea/q          |                             |                       |                         | 0 751 L/4 |                                                  |                                                                                                                                                                             |                                                                                                                   |
|          |                                                               |             |             |                    |            |              |              |                |                             |                       |                         |           |                                                  |                                                                                                                                                                             |                                                                                                                   |

,

۰ ۲

.

.

- 60 -

# CARBON\_K\_\_VALUES

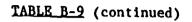
| 150            | SOIL<br>type | SAND               | \$<br>51LT | \$<br>( AY | %<br>DRG | 5<br>5×003 | DH<br>SAT FASTE  | FH<br>(v) | CEC<br>mea/<br>t00g | % FREE<br>IR(N<br>IXIDES | (1)<br>(14) | S COMP<br>CATION | NHELTOF<br>CONCENTRATION | K4<br>(4 /9)                 | SUIL LOCATION<br>or DESCRIPTION                                      |                                   | <b></b>                              |
|----------------|--------------|--------------------|------------|------------|----------|------------|------------------|-----------|---------------------|--------------------------|-------------|------------------|--------------------------|------------------------------|----------------------------------------------------------------------|-----------------------------------|--------------------------------------|
| sandy          |              | sandy m            |            |            |          |            | H14C03           |           |                     |                          |             |                  |                          |                              |                                                                      | OTHER INFORMATION                 | REFER                                |
| sandy<br>sandy |              | sandy m            |            |            |          |            | H14C03           |           |                     |                          |             |                  |                          | 1 1 + 10+3                   | 2) sandy moraine, Seeden<br>sandy moraine, Seeden                    | (contact time 3d)                 | Anderson et al .                     |
| sandy          |              | sandy m<br>sandy m |            |            |          |            | H14(03           |           |                     |                          |             |                  |                          | 2 6 + 10+3 *                 | sandy moraine, Sueden                                                | (contact time 5w)                 | Anderson et al                       |
| clay           |              | clayigh            |            |            |          |            | H14C03           |           |                     |                          |             |                  |                          | 2 2 + 10e3 *                 | sandy moraine, Smeden                                                | (contact time 5m)                 | Anderson et al .                     |
| clay           |              | clayish            |            |            |          |            | H14C03<br>H14C03 |           |                     |                          |             |                  |                          | 1 3 + 10e3 *                 | clay moraine, Sweden                                                 | (contact. t. me 3d)               | Anderson et. al .                    |
| clay           |              | clayish            |            |            |          |            | H14CD3           |           |                     |                          |             |                  |                          | 2 0 • 10e3                   | clay moraine. Sweden                                                 | (contact time [e]                 | Anderson et al ,                     |
| clay           |              | clayish            |            |            |          |            | H14C03           |           |                     |                          |             |                  |                          | 3 0 • 10e3 *<br>2 3 • 10e3 * | clay moraine, Sweden                                                 | (contact time 5w)                 | Anderson et al .                     |
| hand           |              | •                  |            |            |          |            |                  |           |                     |                          |             |                  |                          | 2.3 + 10+3 *                 | clay moraine, Sweden                                                 | (contact time 6m)                 | Anderson et al ,<br>Anderson et al , |
| sand           |              |                    |            |            |          |            |                  |           |                     |                          |             |                  |                          | 9 24                         | Almassippi, Core 10, Section 1                                       | Pers come Sections = 3.0 cm thick | Sheepard, 1989                       |
| bee            |              |                    |            |            |          |            |                  |           |                     |                          |             |                  |                          | 4 60                         | Almassippi, Core 10, Section 2<br>Almassippi, Core 10, Section 3     |                                   | Shepaard, 1989                       |
| sand<br>best   |              |                    |            |            |          |            |                  |           |                     |                          |             |                  |                          | 3 94                         | Almassippi, Core 10, Section 4                                       |                                   | Sheppard, 1989                       |
| sand           |              |                    |            |            |          |            |                  |           |                     |                          |             |                  |                          | 3 96                         | Almassippi, Core 10, Section 5                                       |                                   | Sheppard, 1989                       |
| sand           |              | •                  |            |            |          |            |                  |           |                     |                          |             |                  |                          | 1 20                         | Aimassion, Core 10. Section 6                                        |                                   | Sheppard, 1989                       |
| sand           |              |                    |            |            |          |            |                  |           |                     |                          |             |                  |                          | 5 74                         | Almensider, Core 10, Section 7                                       |                                   | Sheepard, 1999                       |
| sand           |              |                    |            |            |          |            |                  |           |                     |                          |             |                  |                          | 6 69                         | Almans-op: Core 10, Section 9                                        |                                   | Sheppard, 1989                       |
| sand           |              |                    |            |            |          |            |                  |           |                     |                          |             |                  |                          | 7 64                         | Alwassippi, Core 10, Section 10                                      |                                   | Sheppard, 1989                       |
| 3300           |              |                    |            |            |          |            |                  |           |                     |                          |             |                  |                          | 9.35                         | Almassioni, Core 10, Section 11                                      |                                   | Sheppard, 1989                       |
| sand           |              |                    |            |            |          |            |                  |           |                     |                          |             |                  |                          | 9.47                         | Alwarsippi, Core 10, Section 13                                      |                                   | Sheppard, 1989                       |
| sand           |              |                    |            |            |          |            |                  |           |                     |                          |             | •                |                          | 9 33<br>16 4/                | Almassippi, Core 10, Section 15                                      |                                   | Sheppard, 1989                       |
| sand           |              |                    |            |            |          |            |                  |           |                     |                          |             |                  |                          | 9.80                         | Almaxx.op., Core 10, Section 17                                      | · · ·                             | Sheppard, 1989<br>Sheppard, 1989     |
| beer           |              |                    |            |            |          |            |                  |           |                     |                          |             |                  |                          | 5 48                         | Alma- ppi, Core 10, Section 18                                       |                                   | Shepbard, 1989                       |
| Band           |              |                    |            |            |          |            |                  |           |                     |                          |             |                  |                          | 6 55                         | Almassippi, Core 12, Section 1                                       |                                   | Sheppard, 1989                       |
| sand           |              |                    |            |            |          |            |                  |           |                     |                          |             |                  |                          | 4 68                         | Almassippi, Core 12, Section 2<br>Almassippi, Core 12, Section 3     |                                   | Sheppard, 1989                       |
| sand           |              |                    |            |            |          |            |                  |           |                     |                          |             |                  |                          | 3 19                         | Almassippi, Core 12, Section 3                                       |                                   | Sheppard, 1989                       |
| baez<br>baez   |              |                    |            |            |          |            |                  |           |                     |                          |             |                  |                          | 1 24                         | Almansippi, Core 12, Section 5                                       |                                   | Sheppard, 1989                       |
| sand           |              |                    |            |            |          |            |                  |           |                     |                          |             |                  |                          | 8 39                         | Almassippi, Core 12, Section 6                                       |                                   | Sheppard, 1989                       |
| sand           |              |                    |            |            |          |            |                  |           |                     |                          |             |                  |                          | 7 95                         | Almassippi, Core 12, Section /                                       |                                   | Sheppard, 1989                       |
| sand           |              |                    |            |            |          |            |                  |           |                     |                          |             |                  |                          | 7 05                         | Alwassippi, Core 12, Jection 9                                       |                                   | Sheppard, 1989                       |
| sand           |              |                    |            |            |          |            |                  |           |                     |                          |             |                  |                          | 9 17                         | Almassimpl, Core 12, Section 10                                      |                                   | Sheppard, 1989                       |
| sand           |              |                    |            |            |          |            |                  |           |                     |                          |             |                  |                          | 5 93                         | Almassippi, Core 12, Section 11                                      |                                   | Sheppard, 1989                       |
| sand           |              |                    |            |            |          |            |                  |           |                     |                          |             |                  |                          | 3 43<br>6 53                 | Almassippi, Core 12, Section 13                                      |                                   | Sheppard, 1989                       |
| base           |              |                    |            |            |          |            |                  |           |                     |                          |             |                  |                          | 7 34                         | Almansippi, Core 12, Section 15                                      |                                   | Sheppard, 1989<br>Sheppard, 1989     |
| sand           |              |                    |            |            |          |            |                  |           |                     |                          |             |                  |                          | 6 54                         | Alwassippi, Core 12, Section 17<br>Alwassippi, Core 17, Section 18   |                                   | Sheppard, 1989                       |
| sand           |              |                    |            |            |          |            |                  |           |                     |                          |             |                  |                          | 0 25                         | Milner Ridge, Core 15, Section 18                                    |                                   | Sheppard, 1989                       |
| sand           |              |                    |            |            |          |            |                  |           |                     |                          |             |                  |                          | 0 27                         | Hilner Ridge, Core 15, Section 10                                    |                                   | Sheppard, 1989                       |
| bnez           |              |                    |            |            |          |            |                  |           |                     |                          |             |                  |                          | 0 37                         | Hilmer Hidge, Core 15. Section 12                                    |                                   | Sheppard, 1989                       |
| sand<br>sand   |              |                    |            |            |          |            |                  |           |                     |                          |             |                  |                          | 1 00                         | Hilner Ridge, Core 15, Section 13                                    |                                   | Sheppard, 1989                       |
| sand           |              |                    |            |            |          |            |                  |           |                     |                          |             |                  |                          | 1 12                         | Hilner Ridge, Core 15, Section 14                                    |                                   | Sheppard, 1989                       |
| sand           |              |                    |            |            |          |            |                  |           |                     |                          |             |                  |                          | 3.20                         | Hilner Ridge, Core 15, Section 15                                    |                                   | Sheppard, 1989                       |
| sand           |              |                    |            |            |          |            |                  |           |                     |                          |             |                  |                          | 4 37                         | Hilner Ridge, Core 15, Section 16                                    |                                   | Sheppard, 1989                       |
| sand           |              |                    |            |            |          |            |                  |           |                     |                          |             |                  |                          | 0 81                         | Hilner Ridge, Care 15, Section 17                                    |                                   | Sheppard, 1989                       |
| sand           |              |                    |            |            |          |            |                  |           |                     |                          |             |                  |                          | 141                          | Hilr. Ridge, Core 15, Section 18                                     |                                   | Sheppard, 1989                       |
| tand           |              |                    |            |            |          |            |                  |           |                     |                          |             |                  |                          | 2 61                         | Hilmer Ridge, Core 15 Section 19                                     |                                   | Sheppard, 1989<br>Sheppard, 1989     |
| sand           |              |                    |            |            |          |            |                  |           |                     |                          |             |                  |                          | 0.65                         | Heiner Ridge, fire 15, Section 20                                    |                                   | Sheppard, 1989                       |
| sand           |              |                    |            |            |          |            |                  |           |                     |                          |             |                  |                          | 0 53                         | Hilner Ridge, Cire 20, Section 3<br>Hilner Ridge, Core 20, Section 9 |                                   | Sheppard, 1989                       |
| sand           |              |                    |            |            |          |            |                  |           |                     |                          |             |                  |                          | 0 70                         | Hilmer Ridge, Core 20, Section 11                                    |                                   | Sheppard, 1989                       |
| sand           |              |                    |            |            |          |            |                  |           |                     |                          |             |                  |                          | 1 60                         | Hilner Ridge, Core 20. Section 12                                    |                                   | Sheppard, 1989                       |
| sand           |              |                    |            |            |          |            |                  |           |                     |                          |             |                  |                          | 1 37                         | Nilner Ridge, Core 20, Section 13                                    |                                   | Sheppard, 1989                       |
| sand           |              |                    |            |            |          |            |                  |           |                     |                          |             |                  |                          | 1 94                         | Hilner Ridge, Care 20, Section 14                                    |                                   | Sheppard, 1989                       |
| bnez<br>bnez   |              |                    |            |            |          |            |                  |           |                     |                          |             |                  |                          | 1 56                         | Milmer Ridge, Core 20, Section 16                                    |                                   | Sheppard, 1989                       |
| sand           |              |                    |            |            |          |            |                  |           |                     |                          |             |                  |                          | 1 66                         | Milner Ridge, Core 20, Section 17                                    |                                   | Sheppard, 1989                       |
| sand           |              |                    |            |            |          |            |                  |           |                     |                          |             |                  |                          | 1 13                         | Hilmer Ridge, Core 20, Section 18                                    |                                   | Sheppard, 1989                       |
| sand           |              |                    |            |            |          |            |                  |           |                     |                          |             |                  |                          | 4 11                         | Hilder Ridge Fore 20 Same in                                         |                                   | Sheppard, 1989                       |
|                |              |                    |            |            |          |            |                  |           |                     |                          |             |                  |                          | 7 03                         | Hilner Ridge, Core 20, Settion 20                                    |                                   | Sheppard, 1989                       |
| ·              |              |                    |            |            |          |            |                  |           |                     |                          |             |                  |                          |                              |                                                                      |                                   | Sheppard, 1989                       |

### CERIUM Ka VALUES

| NAK ISO SOLL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | SAND                             | <b>8</b><br>51(1                                   | S<br>CLAY                        | 8<br>080                                                     | \$<br>CaC03 | BH<br>SAT PASTE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | £н<br>(*) | CEC<br>mes/<br>DQ                                                                                               | R FPEE<br>IRIN<br>NYINES | ()MP<br>(A1)(N | & cour<br>Catton | MICI IDE<br>CONCIDITATION | Kd<br>(wi/q)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Shil IDCATION<br>or DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 01ME - 1MB (1949A 11)(204                                                                                                                               | REFFRENCE                                                                                                                                                                                                                                                                             |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|----------------------------------------------------|----------------------------------|--------------------------------------------------------------|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-----------------------------------------------------------------------------------------------------------------|--------------------------|----------------|------------------|---------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (* 130       Sand         (* 130       Dra         (* 143       SMP burist ground         (* 144       SMP burist ground         (* 144       SMP burist ground         (* 141       SMP burist ground         (* 141       C         (* 141       Ar         (* 141       Ar         (* 141       Ar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 59 7<br>80                       | 28 4<br>17                                         | 12 0                             | 1.19<br>1 15<br>1.01<br>0 75<br>0 14<br>0.02<br>2 41<br>0.71 | 07          | 6 8<br>5 7<br>4 6<br>6 (0 1NCaNo3)<br>6 (0 1NCaNo3)<br>7 (0 1NCaNo3)<br>3 95<br>4 12<br><br>4 29<br>6 7 CaC (2<br>3 7 CaC |           | 0 7 mag/g<br>7 1 mag/g<br>0 55 mag/g<br>8 7<br>16 4<br>17 7<br>16 2<br>R 4<br>0 7<br>8 7<br>9 5                 |                          |                |                  |                           | 1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>1000<br>1000<br>1000<br>1000<br>1000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>100000<br>10000<br>10000<br>10000<br>100000 | <ul> <li>i Gleynon</li> <li>2 Saprir Historolistronglu humified</li> <li>3 Cambird Historolistronglu humified</li> <li>3 Cambird Loron soit from toess</li> <li>4 Cambird Loron soit from toess</li> <li>5 Rerisoi Laraboron soit, J.</li> <li>5 Rerisoi Laraboron soit, J.</li> <li>6 Arrisoi Laraboron soit, J.</li> <li>6 Arrisoi Laraboron soit, J.</li> <li>6 Arrisoi Laraboron soit, J.</li> <li>7 Sahag past Steinhider Neer Handhen</li> <li>11 Sahag past, Steinhider Neer Historer</li> <li>75 Sohag past, Steinhider Neer Historer</li> <li>75 Sohag past, Steinhider Neer Historer</li> <li>75 Sohag past, Steinhider Neer Historer</li> <li>76 Sohag past, Steinhider Neer Historer</li> <li>78 Sohag past, Steinhider Neer Historer</li> <li>78 Sohag past, Steinhider Neer Historer</li> <li>79 Sohag past, Steinhider Neer Historer</li> <li>79 Sohag past, Steinhider Neer Historer</li> <li>70 Sohag past, Steinhider Neer Historer</li> <li>70 Sohag past, Steinhider Neer Historer</li> <li>71 Sahag past, Steinhider Neer Historer</li> <li>70 Sohag past, Steinhider Neer Historer</li> <li>71 Sohag past, Steinhider Neer Historer</li> <li>73 Sohag past, Steinhider Neer Historer</li> <li>73 Cantaborer (Basheriker 199, 127 cantaborer</li> <li>73 Cantaborer (Basheriker 199, 127 cantaborer</li> </ul> | Fig. 1<br>SRP - Savannah River Piant (burial ground)<br>Tab 7<br>( ) - in Kd col = equit ime in days<br>Kd:{ina N) (mean=0700)                          | $\begin{array}{c} hun_{2} \mid \Delta \ \ \ chi \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$                                                                                                                                                                                                |
| (e 141 BtA1<br>(e 141 A1Bt<br>(e 141 A1Bt<br>(e 141 Pt)<br>(e 141 Pt)<br>(e 141 Pt)<br>(e 141 heavy clay<br>(e 141 heavy c | 79<br>65<br>73<br>66<br>41<br>57 | 15<br>11<br>32<br>67<br>35<br>27<br>34<br>37<br>29 | 85<br>99<br>68<br>38<br>72<br>14 | 0 34<br>0 30<br>0 30<br>0 25                                 |             | $ \begin{array}{c} 7 \ 2 \ ( \text{solution}) \\ 6 \ 8 \ ( \text{solution}) \\ 6 \ 7 \ ( \text{solution}) \\ 6 \ 7 \ ( \text{solution}) \\ 6 \ 2 \ ( 7 \ 3 \ - \ 2) \\ 8 \ 4 \ ( 7 \ 3 \ - \ 2) \\ 8 \ 4 \ ( 7 \ 3 \ - \ 1) \\ 7 \ 0 \ ( 7 \ 3 \ - \ 1) \\ 6 \ 4 \ ( 7 \ 2 \ - \ 1) \\ 6 \ 8 \ ( 7 \ 6 \ - \ 1) \\ 6 \ 8 \ ( 7 \ 6 \ - \ 1) \\ 6 \ 7 \ ( 8 \ 4 \ - \ 1) \\ 9 \ 7 \ ( 8 \ 4 \ - \ 1) \\ 9 \ ( 8 \ 4 \ - \ 1) \\ \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |           | B 3<br>P 3<br>17 5<br>13 7<br>26 2<br>25 1<br>17 - 1<br>28 27<br>3 7 2<br>2 1 3<br>7 2<br>2 1 3<br>18 5<br>40 4 |                          |                |                  |                           | 2)0000<br>10000<br>10000<br>12000 - 1000<br>12000 - 1000<br>2/000 - 2000<br>2/000 - 2000<br>2/000 - 300<br>1200 - 300<br>1200 - 300<br>1200 - 300<br>56000 - 2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Parabrown (Eschweiter) (52-52 cm)<br>Parabromn (Eschweiter) (52 cm)<br>Faraphromn (Eschweiter) (73 cm)<br>Faraphromn (Eschweiter) (73 cm)<br>Faraphromn (Eschweiter) (79 H cm)<br>Iourica august Finiand (79 C4 3 J m)<br>(11-ituotu savi, Finiand (72 78 3 J m)<br>Lourism moseen, Finiand (72 78 3 J m)<br>Iourism moseen, Finiand (8 00 m)<br>Partata moseen, Finiand (8 5-4 0 m)<br>Partata moseen, Finiand (72 77 5 m)<br>Kabola kalitosavi, Finiand (72 77 5 m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (1ab [3 : Ce Kof - o+H)<br>pH in Lab 13 - () in pH - sluan<br>(DM = Sr-Ca-Ca-Ca-Mn-Zn)<br>in finnish with angligh ai umaary<br>(Figi8 = Ce )Kof va CEC) | Burylet.at., 1984<br>Burylet.at., 1984<br>Burylet.at., 1984<br>Burylet.at., 1984<br>Burylet.at., 1988<br>Micula, 1982<br>Nicula, 1982<br>Nicula, 1982<br>Nicula, 1982<br>Nicula, 1982<br>Nicula, 1982<br>Nicula, 1987<br>Nicula, 1987<br>Nicula, 1987<br>Nicula, 1987<br>Nicula, 1987 |
| Co candy subscrif                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                  |                                                    |                                  |                                                              |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |           |                                                                                                                 |                          |                |                  | 10E-419403                | 1100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (0 M = Sr. Cm, Ru)                                                                                                                                      | Nikula, 1982<br>Nikula, 1982<br>Schuarzer et al., 1982                                                                                                                                                                                                                                |

.

.


### CESIUM\_Ka\_VALUES

| SDL<br>C. 158 System                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | S S S S S S                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | CEC % FREE<br>may IRAN<br>100g DXIELS |                                                                                             | COMP NUCLIDY<br>11UN CONCENTRAT |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | SOIL LOCATION<br>or DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | DITHER INFORMATION                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|---------------------------------------------------------------------------------------------|---------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| sand           s         sand           s         sand           s         sand           s         137 clay           s         137 clay           s         137 clay           s         137 clay           s         137 sand           s         134 clay           s         134 clay           s         134 clay           s         138           s         140 sand           s         140 sand           s         140 sand           s         150 sand           s         150 sand           s         150 sand           s         150 sand                                | 74 3 23<br>74 3 23<br>74 3 73 | 5 60 (1 33)<br>5 60 (1 35)<br>5 60 (5 35)<br>6 0 -200 eV<br>6 0 -200 eV<br>7 1 (bare satu)<br>6 0 6 (bare catu)<br>6 0 6 (bare catu) |                                       | (O I N (a<br>n.trate)                                                                       |                                 | 404 8<br>416 /<br>401 /<br>3021<br>7500<br>7600<br>7600<br>7600<br>7600<br>7000<br>700<br>7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | St cannatal plain, sandy clay lass, (SP §3)<br>St canatal plain, sandy clay lass, (SP §3)<br>St canatal plain, andy clay lass, (SP §3)<br>sandy sait with fine sit<br>plains title<br>ind-course sand (C1 2)<br>medium sand<br>S2 we size<br>(2 we size<br>(2 we size)<br>S-bentamite, Sud-Chemie, AC Manchon<br>[montserilenite SOS and 105 kaplinite]<br>1 Claysi, persenant prasind<br>2 Peat land (sabric firston)[, stangly humitified<br>3 Cabinal, person soil from leass<br>4 Cambinal, person soil And<br>5 Acrisol, persbrow soil, Ah<br>6 Acrisol, persbrow soil, Ah                                                                                                                                                                                                                                                                                                                                                                                              | [Lab.]r smil propertion][Lab.d: hydroulic conductivity]<br>[eH in (]= final eH](Lab.S: transport_parameters + Hd]<br>[Lab.3]<br>[Lab.2] = CH communition] CHigroundwater<br>[Lab.2 = poil description]<br>[mod conclusions](Lab.Ashd's)<br>[Lab.3 = potivition (Bq))<br>[Lab.3 = potivition (Bq))<br>[Lab.3 = potivition (Bq))<br>[Lab.3 = potivition (Bq)]<br>[Ca-134] (= 101) = DIFFICLLT =<br>[? legendd]<br>[fig. 4-5 ] = b(an or | REFERENCE<br>Eschholr and Uhang, 100<br>Eschholr and Uhang, 100<br>Eschholr and Uhang, 100<br>Dhuli and Batas, 1070<br>Bell and Batas, 1070<br>Bell and Batas, 1070<br>Bell and Batas, 1070<br>Carleen and Bat, 1007<br>Carleen and Bats, 1007<br>Carleen and Bats, 1007<br>Bunzl and Schinmach, 10<br>Bunzl and Schinmach, 10 |
| 4         f ·bric ergenic           5         f ·bric ergenic           6         clay           7         cl |                               | 50       2         510       5         510       5         510       5         510       5         60       40         40       40         40       40         40       40         40       40         40       40         40       40         40       40         40       40         40       40         40       40         40       40         40       40         40       40         40       40         40       40         40       40         395       417         428       395         412       428                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ) 65 ma/ģ (l                          | 7 JN (+A03)<br>5 HY (+A03)<br>079 H N=C1<br>01 H N=C1<br>1 H N=C1<br>1 H N=C1<br>1 O H N=C1 |                                 | (29 + 10+400 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 + .00 | <ul> <li>(30 dwp) (4-8 cm) Lefgress Bag, iv</li> <li>(4 dwp) (20-21 cm) Lefgress Bag, HY</li> <li>(4 dwp) (20-21 cm) Lefgress Bag, HY</li> <li>(8 dwp) (20-21 cm) Lefgress Bag, HY</li> <li>(9 dwp) (20-21 cm) Lefgress Bag, HY</li> <li>(11 dwp) (20-21 cm) Lefgress Bag, HY</li> <li>(15 dwp) (20-21 cm) Lefgress Bag, HY</li> <li>(16 dwp) (5-8 cm) Seruce Flats Bag, FA</li> <li>(4 dwp) (6-8 cm) Seruce Flats Bag, FA</li> <li>(15 dwp) (6-8 cm) Seruce Flats Bag, FA</li> <li>(30 cm) (6-8 cm) Seruce Flats Bag, FA</li> <li>(30 cm) (6-8 cm) Seruce Flats Bag, PA</li> <li>(4 dwp) (20-27 cm) Seruce Flats Bag, PA</li> <li>(4 dwp) (20-27 cm) Seruce Flats Bag, PA</li> <li>(4 dwp) (20-27 cm) Seruce Flats Bag, PA</li> </ul> | (P1 and P2 = slightly decommond, shrodded 0.3-0.8 m)<br>(1-5) 0-20 cm and selved to 2mm, Freising, Bovaria<br>(Kd = from fig 2 = 208)<br>(better to refer to Relyag & Silva, 1981 PML-38900, Fig.2)<br>(tab.5c) (Cs-137) (Rd)<br>(tab.0 = comparison - Sibley, 1982) (1 = Eduil, time days in Rd column<br>(tab.7) (p 43) on see Co ac                                                                                                | Bunzi and Schinnach, 19<br>Bunzi and Schinnach, 19<br>Bunzi and Schinnach, 14<br>Bunzi and Schinnach, 16<br>Bunzi and Schinnach, 16<br>Geretal., 1983                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

.

.

continued...



| NUK 150<br>Ca 134 58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 501L<br>1 ype                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | SAND                                     | <b>8</b><br>511 7                                                                | S<br>CLAY                                                                        | 1.<br>URC                                            | ¶<br>(a(n)                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ғн<br>(т) | CFC<br>mrq/<br>1904g                                                                                  | S FREL<br>INTRE<br>FINITES | CIMP<br>CATION                                                                                                                                     | S. CLIMP<br>CATTIN | NUCL I DE<br>CRINCENTRATION                 | Kd<br>(wL/g)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | SOLL LOCATION<br>or DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | D.reć im injervilion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | REFERENCE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|----------------------------------------------------------------------------------|----------------------------------------------------------------------------------|------------------------------------------------------|----------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-------------------------------------------------------------------------------------------------------|----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|---------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| C+ C?<br>C+ C8<br>C+ C8<br>C+ C8<br>C+ C8<br>C+ C8<br>C+ C1<br>C+ C7<br>C+ C8<br>C+ C8 | 9<br>6<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 202832833286                             | 40. 7<br>38 7<br>35 8<br>35 8<br>35 8<br>36 9<br>4<br>38, 7<br>37 37<br>34 5<br> | 17 5<br>14 6<br>22 7<br>13 3<br>10 6<br>9 1<br>11 1<br>8 7<br>11 4<br>8<br>7<br> | 0 11<br>0 17<br>0 23<br>0 13<br>0 15<br>0 19<br>0 16 | 30<br>43<br>44<br>45<br>51<br>41<br>51<br>41<br>52<br>56<br>56<br>56<br>21 | 4 7%<br>7 10<br>7 10<br>7 10<br>7 2 8<br>5 7 5 4<br>5 7 5 4<br>7 99<br>9 10 (9 99)<br>9 8 31 (9 92)<br>8 31 (9 22)<br>8 31 (9 32)<br>8 31 (9 |           | 534<br>5590<br>720<br>700<br>700<br>700<br>700<br>700<br>700<br>700<br>700<br>900<br>0000<br>00000000 |                            | Gat 12<br>Gat 12 |                    | 5 - 107 4 H<br>5 - 172 - 5 H<br>5 - 105 R H | 3500 (7d)<br>10 >100 (eq<br>210 +100 (eq<br>210 +100 100 (eq<br>100 >1000 (eq<br>100 >1000 (eq<br>100 3000 (eq<br>100 300 (eq<br>300 300 300 (eq<br>300 300 300 (eq<br>370 300 300 (eq<br>370 300 (eq<br>370 300 (eq<br>370 300 (eq<br>370 300 (eq<br>100 (eq<br>10) (eq<br>10) (eq<br>10) (eq<br>10) (eq<br>10) (eq<br>10) | SAP       south - Savannah River Mant         SAP       south - Savanah River Mant         CH - SA       poet K         Ubort On-Ordered tott       10         Ubort On-Ordered tott       11         Iower Unweightered tott       11         Iower Unweightered tott       11         Iower Unweightered tott       11         Iower Unweightered tott <td< td=""><td><pre>(1+Cs conc ) +CU - groundwater (f to 14, p 51 - pH-Hd-conc Cs Storpland very desendent on pH (tab 15 p 53) tab 5 tab 7 good conclusions pH Col = storp sterpH in (gCl2 and (H2O) in brackets % organic = % carbonate of in (gCl2 and (H2O) in brackets % organic = % carbonate critent = lab.1 tab 1 = % used_ sile, clay = (LOO% tab 2 = chien prop tab 3 = CH -/ lab &amp; fie i pH </pre></td><td>Heeffer, 1985           Heeffer, 1985           Johnston et al. 1985           Johnston et</td></td<> | <pre>(1+Cs conc ) +CU - groundwater (f to 14, p 51 - pH-Hd-conc Cs Storpland very desendent on pH (tab 15 p 53) tab 5 tab 7 good conclusions pH Col = storp sterpH in (gCl2 and (H2O) in brackets % organic = % carbonate of in (gCl2 and (H2O) in brackets % organic = % carbonate critent = lab.1 tab 1 = % used_ sile, clay = (LOO% tab 2 = chien prop tab 3 = CH -/ lab &amp; fie i pH </pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Heeffer, 1985           Johnston et al. 1985           Johnston et |
| Ca c c c c c c c c c c c c c c c c c c c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | TBy a kalentanika<br>TBy a kalinika<br>TBy a kalinika<br>TBy a kalinika<br>MBUBY Jaam sand<br>Bystka Siti Jaam<br>Pro Jaam<br>Jya Sandy Joam<br>Print Lam<br>Muhatic Aardanika - 15 A<br>Muhatic Aardanika - 15 A<br>Muhatika - | 59 7<br>99<br>91<br>83<br>58<br>66<br>73 | 784<br>3<br>2<br>2<br>11<br>8                                                    | 12.0<br>7<br>15<br>36<br>71<br>19                                                | (.? 4                                                | 0 2                                                                        | 67<br>67<br>73<br>66<br>56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |           | ę 7                                                                                                   |                            | ( aC 12                                                                                                                                            |                    | ,                                           | no Kd<br>no Kd<br>no Kd<br>(5200-16500)<br>27<br>12000<br>74<br>115<br>3300 (4300)<br>4500<br>8700<br>8700<br>8700<br>3100<br>3100<br>(900)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Greadiye, Turkey<br>Greadiye, Turkey<br>Mihalice, Turkey<br>Sindingr, Turkey<br>Aure, Turkey<br>(An-horizon) plinois<br>(B-horizon) (Ilinois<br>(B-horizon) (Ilinois<br>(B-horizon) (Ilinois<br>(B-horizon) (Ilinois<br>(B-horizon) (Ilinois<br>(B-horizon) (Ilinois<br>(B-horizon) (Ilinois<br>(B-horizon) (Ilinois<br>(C-horizon) (Ilinois<br>(C-horizon) (Ilinois<br>(C-horizon) (Ilinois<br>(C-horizon) (Ilinois<br>(C-horizon) (Ilinois<br>(C-horizon) (Ilinois<br>Alfisol (Parahreen earth) (O-30 cm)<br>Bratty 7 Neusda<br>Branell 12, South (Sarolina<br>Barnell 14, South (Sarolina                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <pre>(a.295mdsarstian primpri v p gurfsce phenomenum } (fig:2maize) (tab.2,3man::/cation conc.] Canclusions. (tab.4 = 13 elements in d clays) (a 270-intre ) (tab.1=Cs conc 's) (a 250-intre ) (tab.1=Cs conc 's) (a 250-intre ) (tab.2=Cs conc 's) (a 250-intre ) (tab.2=Cs conc 's) (b 1=chen = physical pr - ) (tab 4 = %aorstion = Pu,A_U(Cs) (tab 3 = %d) (tab 1 = so 1 prop ) (tab 3 = %d) (tab 1 = so 1 prop ) (tab 3 = %d) (tab 1 = so 1 prop ) (tab 3 = %d) (tab 1 = so 1 prop ) (tab 3 = %d) (tab 1 = so 1 prop ) (tab 3 = %d) (tab 1 = so 1 prop ) (tab 3 = %d) (tab 1 = so 1 prop ) (tab 3 = %d) (tab 1 = so 1 prop ) (tab 3 = %d) (tab 1 = so 1 prop ) (tab 3 = %d) (tab 1 = so 1 prop ) (tab 3 = %d) (tab 1 = so 1 prop ) (tab 3 = %d) (tab 1 = so 1 prop ) (tab 3 = %d) (tab 1 = so 1 prop ) (tab 3 = %d) (tab 1 = so 1 prop ) (tab 3 = %d) (tab 1 = so 1 prop ) (tab 3 = %d) (tab 1 = so 1 prop ) (tab 3 = %d) (tab 1 = so 1 prop ) (tab 3 = %d) (tab 1 = so 1 prop ) (tab 3 = %d) (tab 1 = so 1 prop ) (tab 3 = %d) (tab 1 = so 1 prop ) (tab 3 = %d) (tab 1 = so 1 prop ) (tab 3 = %d) (tab 1 = so 1 prop ) (tab 3 = %d) (tab 1 = so 1 prop ) (tab 3 = %d) (tab 1 = so 1 prop ) (tab 4 = %d) (tab 1 = so 1 prop ) (tab 1 = %d) (tab 1 = so 1 prop ) (tab 1 = %d) (tab 1 = so 1 prop ) (tab 1 = %d) (tab 1 = %d) (tab 1 = so 1 prop ) (tab 1 = %d) (tab 1 = %d) (tab 1 = so 1 prop ) (tab 1 = %d) (tab 1 = %d) (tab 1 = so 1 prop ) (tab 1 = %d) (tab 1 = %d)</pre> | Johnston et al., 1985 (Cherry)<br>Erteen et al., 1989<br>Erteen et al., 1989<br>Erteen et al., 1989<br>Erteen et al., 1989<br>Erteen et al., 1981<br>Essingtem et al., 1981<br>Essingtem et al., 1981<br>Essingtem et al., 1981<br>Bunri et al., 1985<br>Norsk, 1980<br>Novak, 1980<br>Novak, 1980                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

.

continued...

## TABLE B-9 (continued)

.

1

1

|      | sote                                | SAND |          | <b>\$</b><br>11,1 | \$<br>(LA7 | 8<br>1 K |          | <b>K</b><br>CO3 | SAT 1      | H<br>PAS IF          | €H<br>(v) | CEC<br>==eq/<br>100g      | S FRF <u>F</u><br>IRTN<br>DVIDES | (())P<br>(A1)(N  | \$ (11P)<br>(ATTEN | NICLIDE<br>CINCLNIRATION | Kd<br>(=4 /g)                  | SOIL LOCATION<br>or DESCRIPTION                                                  | OTHER INFORMATION                                                                                | REFEREN                                                        |
|------|-------------------------------------|------|----------|-------------------|------------|----------|----------|-----------------|------------|----------------------|-----------|---------------------------|----------------------------------|------------------|--------------------|--------------------------|--------------------------------|----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|----------------------------------------------------------------|
| 150  | tym                                 |      |          |                   |            |          |          |                 |            |                      |           |                           |                                  |                  |                    |                          |                                |                                                                                  | (fig.1,2 : Kd vs (n conc.) Many fancy formulas<br>two soils - bentonite and humic                | Bunzl and Schultz,<br>Bunzl and Schultz,<br>Bunzl and Schultz, |
|      |                                     |      |          |                   |            |          |          |                 |            |                      |           |                           |                                  |                  |                    |                          | 43 8 ()                        | 0-4 cm                                                                           | Kel catuen: Leachate = no. [] GH = []                                                            | Sheppard et al., 19                                            |
|      | organic LFH-Ah                      |      |          |                   |            |          |          |                 | ?          |                      |           | 8) ?caol/kg<br>? 9caol/kg |                                  |                  |                    |                          | 37 4 (0.31                     | 4-15 cm                                                                          | (EC = cmp1/kg                                                                                    | Sheppard et al., 19                                            |
|      | sand Ar                             |      |          |                   |            |          |          |                 | 1          |                      |           | 2 1 cmo1/4g               |                                  |                  |                    |                          | 17 2 (- )                      | 15-45 cm                                                                         |                                                                                                  | Sheppard st. al., 1                                            |
|      | sand - Bfj-Bfjgj<br>sand C-Cgj      |      |          |                   |            |          |          |                 | 2          |                      |           | 1 7cm1/bg                 |                                  |                  |                    |                          | 6.5 (1 5)<br>310(- (9 5-10500) | )45 ce                                                                           | Kd column:( ): Kd range, (Cs-137)                                                                | Sheppard et al., 1<br>Schimmed et al.,                         |
|      | loany sand                          |      |          | 17                | 2          |          |          | 3               | 7          |                      |           | 125 mekg î                |                                  | CaC 12           |                    |                          | 3100. (4 3-10344)              |                                                                                  | Lab ] = soil prop. tab 2 + Kd                                                                    | Schomach et al.,                                               |
|      | -                                   |      |          |                   |            |          |          |                 |            |                      |           |                           |                                  |                  |                    |                          | 350                            | (O co) (C-1 Ki Ranber (Trebel), FRG                                              |                                                                                                  | Bachhuber et al.,                                              |
| 137  |                                     |      |          |                   |            | ï        | ,        |                 | 17         |                      |           |                           |                                  |                  |                    |                          | 120                            | (d cm) (C-1-K) Ranker (Trebel), FPG<br>(15 cm) (C-1-K) Ranker (Trebel), FRG      | Tab 1 = soil prop.<br>C = chlorite, 1 = ilite, 4 = baolinite                                     | Bachhuber et al.,                                              |
| 137  |                                     |      |          |                   |            | 5        |          |                 | 3          |                      |           | 26                        |                                  |                  |                    |                          | 840<br>320                     | () cm) (C-I-K) Komer (reber), rhu<br>() cm) (C-I-K) Fodsoi (Sorleber), fMG       | K z celorite, j z liticz, w z zaciwite<br>M z contacrillonite                                    | Bachhuber et al.,<br>Bachhuber et al.,                         |
| 137  |                                     |      |          |                   |            |          |          |                 | 0          |                      |           | -                         |                                  |                  |                    |                          | 70                             | (3 cm) ((-1-K) Fodsol (Gorlehen), FRC                                            | tab.2 = Kd + pH                                                                                  | Bachhuber et al.                                               |
| 137  |                                     |      |          |                   |            | Ē        |          |                 | 15         |                      |           | 78                        |                                  |                  |                    |                          | 90                             | (73 cm) (C-1-K) Fodso! (Gorleben) FRC                                            | tab 3 = water well, Ds = Dispersion length                                                       | Bachhuber et al.,                                              |
| 187  |                                     |      |          |                   |            | 2        | 1        |                 | 13         |                      |           | 58<br>307                 |                                  |                  |                    |                          | 34                             | (27 cm) (C-1-K) Podeol (Corleben), FRC                                           | Lab 4 + retardation factors                                                                      | Bachhuber et al.                                               |
|      | 7 Bh,fe<br>7 Bfa                    |      |          |                   |            | 1        |          |                 |            |                      |           | 48                        |                                  |                  |                    |                          | 120<br>700                     | (32 cm) (C-1-*) Padsol (Gorleber), FRG<br>(42 cm) (C-3-4) Podnol (Gorleben), FRG | tab.5 = migration rates<br>Fig.2 = breakthrough curves                                           | Bachhuber et al.,<br>Bachhuber et al.,                         |
| 137  |                                     |      |          |                   |            | . ÷.     |          |                 | 1.6        |                      |           | 26                        |                                  |                  |                    |                          | 1020                           | (100 cm) (C-1-K) Podsol (Corleben), FRC                                          | Fig.1 = soration isotherm                                                                        | Bachhuber et al.                                               |
| 137  |                                     |      |          |                   |            | _        |          |                 | 4 5        |                      |           | 7 Β                       |                                  |                  |                    |                          | 60                             | (0 cm)((-1-K-4) Aroon (Brunkendorf)                                              | Fig 3 = time intervals                                                                           | Bachhuber et al.,                                              |
| 137  | 7 Ah                                |      |          |                   |            | 2        |          |                 | 4 4        |                      |           | 30                        |                                  |                  |                    |                          | 200                            | (9 ce) ((-1-4-M) Grown (Brunkendorf)                                             | Fig 6 = comparisions of batch, column and fallout Kd's                                           | Bachhuber et al.                                               |
|      | 7 8-                                |      |          |                   |            | e .      | 3        |                 | 46         |                      |           | 4 7                       |                                  |                  |                    |                          | .360                           | (48 ca){C·1·K·M} Hrown (Brunkendurf)<br>(95 ca){C-1·K M} Brown (Brunkendurf)     | X-reference \$41-44                                                                              | Bachhuber et al                                                |
| 13/  | 1 BC                                |      |          |                   |            |          |          |                 | 63         |                      |           |                           |                                  |                  |                    |                          | 390<br>>10000                  | (0 22 cm) Auenrendzina (Biblis)                                                  | (tab 1)                                                                                          | BacMuber et al.,<br>Bunzi et al., 19                           |
|      | 7 Ap                                |      |          |                   |            |          | 19       |                 |            | olut :on)            |           | 16 4                      |                                  |                  |                    |                          | >10000                         | (22-30 cm) Augnrendzina (Biblis)                                                 | Fig.1.2 = Kd-soil herizon                                                                        | Bunzi et al., 196                                              |
|      | 7 6                                 |      |          |                   |            | 1        | 15       |                 |            | olut.con)            |           | 17 7                      |                                  |                  |                    |                          | >10000                         | (30-47 cm) Avanrendzina (Riblis)                                                 | Fig.3 = Kd vs. Co + Ka ions                                                                      | Bunzi et al , 196                                              |
|      | 7 Ce                                |      |          |                   |            |          | 03<br>25 |                 |            | olution]<br>olution] |           | 85                        |                                  |                  |                    |                          | 100000                         | (47-90 cm) Auenrendzina (Bibiis)<br>190-128 cm) Auenrendzina (Bibiis)            | Fig 4 = kd-comparison column = batch<br>Fig 5 = kd = 6 soils (A-horiz )                          | Bunzt et al., 19                                               |
|      | 1 16-Cc<br>17 216-                  |      |          |                   |            |          | 14       |                 |            | o lut ion            |           | 6.4                       |                                  |                  |                    |                          | 10000                          | (128-132 cm) Auenrendzina (Diblis)                                               | Fig. 6 = Kd - 5 socia (1 0 s)                                                                    | Bunzi et al., 198<br>Bunzi et al., 198                         |
|      | 17 3Cr                              |      |          |                   |            |          | 02       |                 |            | olution              |           | 0 ?                       |                                  |                  |                    |                          | (10000                         | (0-31 cm) Parabrown (Eschweiler)                                                 | Abstract                                                                                         | Bungl et al., 198                                              |
| 137  | 17 Ap                               |      |          |                   |            | -        | 41       |                 |            | o lution             |           | 87                        |                                  |                  |                    |                          | >10000                         | (31-52 cm) Parabrown (Eschwerter)                                                |                                                                                                  | Bunziet I, 196                                                 |
|      | 57 AL                               |      |          |                   |            |          | 71<br>34 |                 |            |                      |           | 83                        |                                  |                  |                    |                          | >10000                         | (52-62 cm) Farabroon (Eschweiler)<br>(62-73 cm) Q389/Parabroon (Eschweiler)      |                                                                                                  | Bunzl et al., 198                                              |
|      | 17 OLA1<br>17 AIOL                  |      |          |                   |            |          | 30.      |                 |            | olution              |           | 8 3                       |                                  |                  |                    |                          | >10000                         | (62-73 cm) user/rerection (Eschueiter)<br>(73-88 cm) Perabrown (Eschueiter)      |                                                                                                  | Bunzi et al., 198<br>Bunzi et al., 198                         |
|      | 37 BLI                              |      |          |                   |            |          | 30<br>25 |                 |            | e lut ion            |           | 12 5                      |                                  |                  |                    |                          | <100000                        | ()88 cm) Parabroon (Eschweiler)                                                  |                                                                                                  | Bunzi et al., 198                                              |
|      | 37 812                              |      |          |                   |            |          | 25       |                 | 62(1<br>54 | in lution            | )         | 13 2                      |                                  |                  |                    |                          | AV = 3 3 +3                    | Chestnut Ridge, OHM.                                                             | (Cs +) (Lab 10)                                                                                  | Seeley and keimer                                              |
| •    | red-brown clayey                    |      |          |                   |            |          |          |                 |            |                      |           |                           |                                  |                  |                    |                          | (H + 1 1 E4)                   |                                                                                  | (0 H. = U-Sr-Co-Eu-Th-1e-I)                                                                      | Seeley and keiner                                              |
|      |                                     |      |          | •                 |            |          |          |                 |            |                      |           |                           |                                  |                  |                    |                          | (L = 1 1 E2)<br>4700+-300      | Lovins Savi, Finland (9 (4 - 9 11 m)                                             | RS-5 mp Cs/L = conc Report has 100s of Kds<br>[Tab.1=soil prop + sH]                             | Seeley and kelmer                                              |
| 11   | 34 Heavy clay                       |      |          | 15                | #5         |          |          |                 |            | 5- 2)                |           | 26 - 2                    |                                  |                  |                    |                          | 4400- 100                      | Lovisa Sav., Finland (9 73 - 9 80 m)                                             | (Tab 9: Sr Kd + eH) (eH in Tab 9 - ( ) in eH column)                                             | Nikula, 1952<br>Nikula, 1962                                   |
| 13   | 34 Heavy slay                       |      |          | 19                | <b>9</b> 1 |          |          |                 |            | 4 ?)                 |           | 712                       |                                  |                  |                    |                          | 1400+-30                       | Olkilusta Savi, Finland (2 DR 2 15 =)                                            | (D H = Sr, Co, Mm, Zn, Co) Tab 7=CEC Tab 2=soil grop                                             | NiLuis, 1982                                                   |
| 13   | 34 Heavy clay                       |      |          | 11                | 89<br>68   |          |          |                 | 8 4(7      |                      |           | 5.1+-2                    |                                  |                  |                    |                          | 600+-40                        | Discluste Savi, Finland (2 49 2 56 m)                                            | Finnish with English summery Fig.11 + Cs Kd vs Rf                                                | Nibula, 1982                                                   |
|      | 34 Heavy clay                       |      |          | 32<br>32          | 68         |          |          |                 |            | 5 2)                 |           | 251                       |                                  |                  |                    |                          | 19000+-3000<br>6000400         | Sale Savi, Finland (6:28 - 6:35 =)<br>Jama Savi, Finland (2:24 - 3:31 =)         | Fig 2 = Cs Kel vs NaCl Fig, 5 = Cs Kel vs Cs conc.<br>Fig 7 = Cs Kel vs pH Fig.13 = Cs Kel vs Rf | Nikula, 1982                                                   |
| 13   | 34 Heavy clay<br>34 Silly clay loam |      |          | 62                | 39         |          |          |                 | 7.0(7      |                      |           | 17+-5                     |                                  |                  |                    |                          | 56020                          | Loviss moreen: Finland (4 m)                                                     | (pH in ( ) = Kd function of pH from lab 19)                                                      | Nikula, 1982<br>Nikula, 1982                                   |
|      | 34 Losay sand                       |      | 9        | 21                | 79         |          |          |                 | 6 4(7      |                      |           | 2 8 2<br>3 2 2            |                                  |                  |                    |                          | 2100+-100                      | Blk-luste apres , Finland (1.5 a)                                                |                                                                                                  | Nikula, 1982                                                   |
| - 11 | 34 Sandy loam                       |      | 5        | 35                | 65<br>73   |          |          |                 |            | 2+21<br>5+2)         |           | 2 1 3                     |                                  |                  |                    |                          | 200+-10                        | jugha moreens, Finland (3.5 - 4.6 m)                                             |                                                                                                  | Nikula, 1982                                                   |
|      | 34 Losay sand                       |      | 73<br>56 | 27                | 13         |          |          |                 |            | 9 1)                 |           | 2 3 - 3                   |                                  |                  |                    |                          | 560+-60<br>3600+-900           | Partala moreeni, Finland (2.2 -2 5 r)<br>Kakola Kalliosavi, Finland (44 m)       |                                                                                                  | Nikuta, 1982                                                   |
|      | 34 Sandy leam<br>34 Leam            |      | ,        | 37                |            |          |          |                 | 9 7(8      | 7 2)                 |           | 18- 5                     |                                  |                  |                    |                          | 970-90                         | Hetspere Lellosavi, Finland (24 m)                                               |                                                                                                  | Nikela, 1982                                                   |
|      | 34 Sandy loam                       |      |          | 29                | 14         |          |          |                 | 9 9 8      | 5+- 11               |           | 404                       |                                  | 01H Na           | 0                  |                          | 1300300                        | Diå i luadan sediment                                                            | Tab 14 ± Sr + Cs Kd = NaCi (H) Olhiluodon sediment                                               | N-kula, 1982<br>Nikula, 1982                                   |
| 11   | 34                                  |      |          |                   |            |          |          |                 |            |                      |           |                           |                                  | ORM No           |                    |                          | 38030                          | Oik i lundon sediment                                                            |                                                                                                  | Nikula, 1982                                                   |
|      | 34                                  |      |          |                   |            |          |          |                 |            |                      |           |                           |                                  | 5 M Na           | ć)                 |                          | 18010                          | Dikilyodon sediment<br>Dikilyodon sediment                                       |                                                                                                  | Nikula, 1982                                                   |
|      | 34                                  | -    |          |                   |            |          |          |                 |            |                      |           |                           |                                  | 1.0 H N          |                    |                          | 14010<br>3500300               | Lovisen sediment                                                                 | 7-5.15 = Sr + (s Kd + NaCl (M) Lavrison sediment                                                 | Nikula, 1982                                                   |
|      | 34                                  |      |          |                   |            |          |          |                 |            |                      |           |                           |                                  | (1# N:<br>05# Ni |                    |                          | 2800+-200                      | Lovisan sedment                                                                  | The second state of the fact the state of                                                        | Nikula, 1982<br>Nikula, 1982                                   |

continued...

٠.

| TABLE B-9 | (continued) |
|-----------|-------------|
|-----------|-------------|

| 5011<br>W.C. 159 Lyp+<br>(s. 134                                                                                                                                        | SAND                                                 | SILT                                                | S<br>CI AY                                          | s<br>(PG                                             | B pH<br>CaCR3 S41 PASTE                                                                                                       | £н<br>(+) | CEC<br>mea/<br>10Na                                                    | s frej<br>Iann<br>Uxtoes | COMP<br>CATEON | 5 CINP<br>CATION |                                                                                   | αd<br>(=L/g)                                                                          | SOLL LOCATION<br>n= DESCHIPTION                                                                                                                                                                                                  | 0.1459 18609847104                                                                                                                                                                                                | REFER INCE                                                                                                                                                       |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------|------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|-----------|------------------------------------------------------------------------|--------------------------|----------------|------------------|-----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Cs 134<br>Cs 134<br>Cs 134<br>Cs 134<br>Cs 134<br>Cs 134<br>Cs 134<br>Cs 134<br>Cs 134<br>Cs 134                                                                        | •                                                    |                                                     |                                                     |                                                      |                                                                                                                               |           |                                                                        |                          | I M NaCi       | ·                | 3 0x10L-7M Cx<br>3 1x10L-7M Cx<br>4 0x10E-7M Cx<br>1 3x10E-6M Cx<br>1 3x10E-6M Cx | 2100- 200<br>100100<br>2000- 6000<br>2000- 6000<br>2000- 3000<br>160003000<br>1300100 | Louinan sediment<br>Louison sediment<br>Salon savensa<br>Salon savensa<br>Salon savensa<br>Salon savessa<br>Salon savessa<br>Salon savessa                                                                                       | tah 17 = C4 conc. w k · w. Salan saveysa<br>Tab 19 = C5 Kd + pH · Loviisan savessa                                                                                                                                | Nibula, 1982<br>Nibula, 1982<br>Nibula, 1987<br>Nibula, 1987<br>Nibula, 1987<br>Nibula, 1987<br>Nibula, 1987                                                     |
| Ca 134<br>Ca 134<br>Ca 134<br>Ca 134<br>Ca 134<br>Ca 134<br>Ca 134<br>Ca 134                                                                                            |                                                      |                                                     |                                                     |                                                      | (3.6)<br>(4.7)<br>(5.6)<br>(6.4)<br>(7.1)<br>(7.2)                                                                            |           |                                                                        |                          |                |                  | }.0+10E-44 (n<br>] 0+10€ 3M (s                                                    | 226+-10<br>76+ 2<br>800+-130<br>810+-40<br>190+-10<br>990+-130<br>1040+-130<br>112040 | Salon savesa<br>Salon savesa<br>Lovisan savesa, Finland<br>Lovisan savesa, Finland<br>Lovisan savesa, Finland<br>Lovisan savesa, Finland<br>Lovisan savesa, Finland<br>Lovisan savesa, Finland<br>Lovisan savesa, Finland        | (lab 19 : Cs Kd + pH - Lavissan savessa)<br>(pH in ( ) i Kd func: on of pH from lab 19)                                                                                                                           | N (kuta, 1982<br>N (kuta, 1982<br>N (kuta, 1982<br>N (kuta, 1987<br>N (kuta, 1987<br>N (kuta, 1982<br>N (kuta, 1982                                              |
| (p. 134<br>(p. 137 Lose<br>(s. 137 Sandy Jose<br>(s. 137 Sandy Jose<br>(s. 137 City Jose<br>(s. 137 City Jose<br>(s. 137 City Jose<br>(s. 137 Sandy Jose                | 45 0<br>70 C<br>74 2<br>36 3<br>31 4<br>56 1         | 35 0<br>20.0<br>14 0<br>27 5<br>36 2<br>27 5        | 20 0<br>10 0<br>11.8<br>36 2<br>32.4<br>15.4        | 3,0<br>25<br>1,94<br>2,8<br>3,5<br>1,34              | (8 1)<br>(R 0)<br>7 7 (in H20)<br>7 8 (in H20)<br>7 8 (in H20)<br>7 7 (in H20)<br>7 9 (in H20)<br>7 9 (in H20)                |           | 30 9<br>7 7<br>6 3<br>32 3<br>39 3                                     |                          |                |                  |                                                                                   | 128040<br>133090<br>13310<br>1405<br>2971<br>19714<br>1 1/2                           | Loviisan savessa, Finiand<br>Loviisan savessa, Finiand<br>Facolta (F), Po Valley, Italy<br>Vercelli (V), Po Valley, Lury<br>Garqateen (G), Po Valley, Lialy<br>Villanova (Vi), Po Valley, Lialy<br>Saresto (S), Po Valley, Lialy | Conc =378 JJuCi/mg - same conc for other nuclides<br>(D N = Co.Mm.Fe.1) = ab 1 = soil prop<br>Tab 3 = Kd = 77 hour                                                                                                | Nibula, 1982<br>Nibula, 1987<br>Nibula, 1982<br>Corrin et al., 1985<br>Corrin et al., 1985<br>Carrin et al., 1985<br>Corrin et al., 1985                         |
| Cn 137 Sandy Jopa<br>Cn 137 Clay Jopa<br>Cn 137 Laga<br>Cn 137 Laga | 64 0<br>37 5<br>39 5<br>31 5<br>37 0<br>80 5<br>31 0 | 73 5<br>30.0<br>27.0<br>29 0<br>32 0<br>6 2<br>44 0 | 12 5<br>37 5<br>33.5<br>39.5<br>31.0<br>5.3<br>25 0 | 1 21<br>4 95<br>2 54<br>2 91<br>1 94<br>1 54<br>2 68 | 7 • 1 in H20)<br>6 8 (in H20)<br>7 6 (in H20)<br>7 9 (in H20)<br>7 7 (in H20)<br>6 4 (in H20)<br>7 5 (in H20)<br>7 9 (in H20) |           | 15 C<br>4 4<br>35 4<br>24 1<br>33 5<br>24 5<br>7 1<br>77 6             |                          |                |                  |                                                                                   | 5031<br>901 3<br>13089<br>14116<br>16212<br>1427<br>789 7                             | Montroelli (M) For Vairey, Italy<br>5 Por Valley, Italy<br>15 Por Valley, Italy<br>17 Por Valley, Italy<br>19 Por Valley, Italy<br>41 For Valley, Italy<br>55 For Valley, Italy                                                  |                                                                                                                                                                                                                   | Carini et al., 1985<br>Carini et al., 1985    |
| Ca 137 Sendy clay lean<br>Ca 137 Sendy lean<br>Ca 137 Lean<br>Ca 137 Lean<br>Ca 137 Lean<br>Ca 137 Clay<br>Ca 137 Sendy subsail                                         | 50 5<br>59 0<br>42 5<br>43 0<br>24.5                 | 19.5<br>70.0<br>43.5<br>27.5<br>24.5                | 30 0<br>19.0<br>14.0<br>29.5<br>51.0                | 4.08<br>1.67<br>1.67<br>6.3<br>3.85                  | 6 4 (in H20)<br>6 0 (in H20)<br>7 8 (in H20)<br>7.1 (in H20)<br>7.5 (in H20)                                                  |           | 77 6<br>75 8<br>13 5<br>23 2<br>34 9<br>35 1                           |                          |                |                  | 10E-44 HM13                                                                       | 7206<br>7298<br>1736<br>61287<br>9538<br>11521<br>25                                  | 61 Pertation, Italy<br>65 Pertaty, Italy<br>73 Pertaty, Italy<br>77 Pertaty, Italy<br>81 Fervation, Italy<br>93 Pertaty, Italy<br>64 Pertaty, Italy<br>64 Pertaty, Italy<br>65 Pertaty                                           | (0.N + Sr,Co.Ru)( <sup>C</sup> +, 384attd ve 14403-1444t sol )                                                                                                                                                    | Carini et al., 1995<br>Carini et al., 1995<br>Schwarzer et al., 1992 |
| Cs 137 Sand<br>Cs 137 Sith-clay<br>Cs 137 Sith-clay<br>C 137 Gravel-samd<br>Cn 137 Sith-clay<br>Cn 137 Sith-clay<br>Cs 137 Sith-cased<br>Cs 137 Gravel                  |                                                      |                                                     |                                                     |                                                      |                                                                                                                               |           | (11 3)<br>(241 7)<br>(55 6)<br>(69 5)<br>(167 9)<br>(47.8)             |                          |                |                  |                                                                                   | 500<br>5996<br>2500<br>3000<br>5000<br>1200                                           | #<br>E<br>C<br>E<br>F                                                                                                                                                                                                            | (Keivels franc Frant 1 & 17210/4) Starrautes<br>(Frant Stadeart - search Ade) MFEIScade<br>(Tab 2- seart typen 1 fab Str (EC + Kei) (in JAP)<br>(EE - { } uer/g = 0 tab, 3 franc<br>(O H = Str,Co.Hn Zn kg.Fo.mo) | Inque & Morigano 1976<br>Inque & Morigano 1976<br>Inque & Morigano 1976<br>Inque & Morigano 1976<br>Inque & Morigano 1975                                        |
| Gs 137 Site_ctsp<br>Gs 137 Site_ctsp<br>Gs 137 Site_ctsp<br>Gs 137 Fine_samd<br>Gs 137 Site<br>Gs 137 Site<br>Gs 137 Seret<br>Gs 137 Genest                             |                                                      |                                                     |                                                     |                                                      |                                                                                                                               |           | (28 9)<br>(117 9)<br>(147 5)<br>(746 0)<br>(60 3)<br>(149 0)<br>(74 3) |                          |                |                  |                                                                                   | 1000<br>300<br>1000<br>7000<br>200<br>900<br>1500                                     | C<br>41<br>J<br>41<br>L                                                                                                                                                                                                          |                                                                                                                                                                                                                   | Innue & Morissus, 1976<br>Innue & Morissus, 1975         |
| Cs 137 Fire sand<br>Ca 137 Fire sand<br>Ca 137 Silu-clay<br>Cs Smettle clay                                                                                             |                                                      |                                                     |                                                     | <u></u>                                              | 7.5 7 8                                                                                                                       |           | (27 1)<br>(122 0)<br>(38.6)<br>(200.1)                                 |                          |                |                  | 3×10k-7##0 i/k                                                                    | 300<br>3000<br>1500<br>2000<br>1180+-24                                               | N<br>D<br>F<br>Q<br>60 degrees C, Core LI 44-FPC-2 Facific Doean, depth- 5821a                                                                                                                                                   | (Autch) [Tab 1 - Wr va tomp degrees ()                                                                                                                                                                            | Indue & Morisana, 1976<br>Indue & Norisana, 1976<br>Indue & Morisana, 1976<br>Indue & Morisana, 1976<br>Indue & Morisana, 1976<br>Kanna, 1980                    |

continued...

| TABLE B-9 | (conclu | uded | I) |
|-----------|---------|------|----|
|-----------|---------|------|----|

| 154 | 501L<br>Lype 5                                        | sand     | ۲<br>SiL1 |          | 5<br>0 C    | 5<br>CarO3   | BH<br>SAT. PASTE                | £н<br>(▼) | CEC<br>****/<br>100g                              | S FR <u>EE</u><br>JPIN<br>OXIDES | CUMP<br>CATION             | S COMP<br>CATION | NUCLIDE<br>CONCENTRATION | Kd<br>(«L/g)           | SCIL LOCATION<br>or DESCRIPTION                                                                                                                                                                                                                                                                                  |                                                                                                                                                                    | ACTER                                                                               |
|-----|-------------------------------------------------------|----------|-----------|----------|-------------|--------------|---------------------------------|-----------|---------------------------------------------------|----------------------------------|----------------------------|------------------|--------------------------|------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|
|     | Smeetite clay<br>(fil-da)<br>Ae<br>Bfj=Bfjgj<br>C-Epj |          |           |          |             |              | 75-78<br>5'<br>5.1<br>5.7<br>62 |           | 8].2cm1/kg<br>2 9cm1/kg<br>2 1cm1/kg<br>1 7cm1/kg |                                  |                            |                  | 3x10E-7aHo1/L            | 50 90 6(0 201 5        | 20 degrees C. Core L144-CFC-2 Facific Ocean, deaths 5821m<br>0-4 cn Cleyed Dystric Brunisal<br>4-15 cm Cleyed Dystric Brunisal<br>7115-45 cm Cleyed Dystric Brunisal<br>7145 cm Cleyed Dystric Brunisal<br>7145 cm Cleyed Dystric Brunisal<br>5145 cm Cleyed Dystric Brunisal<br>5145 cm Cheved Dystric Brunisal | Smactite subsequed clay<br>Pers. comm (0 M - 1, Cr, Tc, U, Th, Mo, No1<br>Kds Leach = no (). Kds CM: ().<br>soit type, pH. CEC, soit desc. from BLC-11 (JE016(3)). | Renna, 1980<br>Shessard, 1989<br>Shessard, 1989<br>Shessard, 1989<br>Shessard, 1989 |
|     |                                                       | 100      | •••••     | •        | 0 03        | 41.3         | 8 3 (GC12)                      | •••••••   | 14                                                |                                  | 504 701                    | *********        |                          | 1 19+10E2<br>1 37+10E3 | Soil #4 (MARE)<br>Soil #6 (Lessington)                                                                                                                                                                                                                                                                           |                                                                                                                                                                    | Gillham et al., 19                                                                  |
|     |                                                       | 93       | 5         | 7        | 0 05        | 40.0         | 7 8 (CaC12)<br>6 3 (CaC12)      | :         | 17                                                | :                                | see ref                    |                  |                          | 7 4+10E1               | Soil #7 (CRML) Chalk River Nuclear Lab., Chalk River, Ontario                                                                                                                                                                                                                                                    |                                                                                                                                                                    | Gillham et al., 19<br>Gillham et al., 19                                            |
|     |                                                       | 52       | 45        | 3        | 0.00        | ŏ            | 5 0 (CaC12)                     | -         | 16                                                |                                  | see ref                    |                  |                          | 1+10E4<br>1=10E3       | Soil #B (North Bay)<br>Soil #10 (WMRE)                                                                                                                                                                                                                                                                           |                                                                                                                                                                    | Cillhau et al., 10                                                                  |
|     |                                                       | 59       | 24        | 17       | 1.4         | . 0          | 6 5 (Ca(12)                     | -         | 22                                                | •                                | see ref                    |                  |                          | 1+10€4                 | Soit (11 (MRE)                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                    | Gillhan et al., \$                                                                  |
|     |                                                       | 67       | 31        | 7        | 0 38        | 19 3<br>43 4 | 7.6 (CaC12)<br>8.0 (CaC12)      |           | 07                                                |                                  | see ref                    |                  |                          | 1 5+10E2               | Soil #12 (BMPD) - Bruce Nuclear Pover Development                                                                                                                                                                                                                                                                |                                                                                                                                                                    | Gillham at al., 1<br>Gillham at al., 1                                              |
|     |                                                       | 95       | 2         | ž        | .3          | 11 1         | 8 0 (CaC12)                     |           | 04                                                |                                  | see ref                    |                  |                          | 5=10E2<br>1+10E2       | Soil (13 (C.F.B. Borden)<br>Soil (16 (Alberta)                                                                                                                                                                                                                                                                   |                                                                                                                                                                    | Ciliban et al., 1                                                                   |
|     |                                                       | 60       | 22        | 18       | 2 05        | 71           |                                 | -         | 21 2                                              |                                  | see ref                    |                  |                          | 5-10F3320              | Sediment B (Solution 1)                                                                                                                                                                                                                                                                                          |                                                                                                                                                                    | Gillham et al., 1                                                                   |
|     |                                                       | 87       | 9         | 4        | • .1        | 0.07         | 0.23 (CaC12)                    | -         | 3                                                 | -                                | 504                        |                  |                          | 18                     | Iron and siltynde                                                                                                                                                                                                                                                                                                |                                                                                                                                                                    | Serne et al., 197<br>Tymocheeicz, 1981                                              |
|     | (<0 074am)                                            |          | 6         | •        | -           | -            | -                               | -         |                                                   |                                  | -                          |                  |                          | 9 5=10.2               | Composite soil<br>River sand                                                                                                                                                                                                                                                                                     |                                                                                                                                                                    | Schmilz, 1972                                                                       |
|     | river sand                                            |          | •         |          | -           | :            | 7 - 8                           | •         | ŝ                                                 | -                                | 9019NaCi so<br>4 mc1/1 Nai |                  |                          | 10<br>16 4             | Kiver sand                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                    | Hometra & Verkerk<br>Rhodes, 1957                                                   |
|     | subsoil sand                                          |          |           |          | -           | 2            | 8.6                             | :         |                                                   |                                  |                            |                  |                          | 4 7+10F3               | Clinostilolite (Idaho)                                                                                                                                                                                                                                                                                           |                                                                                                                                                                    | Vildung & Rhodes                                                                    |
|     | ciinootilolite<br>Burbank soil                        |          |           |          |             | -            | •                               | -         | -                                                 | -                                | eroundwat                  |                  |                          | 9±10€3<br>4.66±10£2    | Burbank soll<br>Burbank soll                                                                                                                                                                                                                                                                                     |                                                                                                                                                                    | Hajek & Ames, 19                                                                    |
|     | Burbank soit                                          |          |           |          | •           | •            | -                               | -         | •                                                 | •                                | 3 mo1/L Na<br>0 5mo1/L N   |                  |                          | 1.09#10E3              | Burbank soil                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                    | Hojek & Ames, 19<br>Hojek & Ames, 19                                                |
|     | Burbank sail<br>Burbank sail                          |          |           |          | :           | :            | -                               |           | -                                                 | 2                                | 25m1/L (a                  |                  |                          | 5 71=10F3              | Burbank sail                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                    | Hajek & Ames, 19                                                                    |
|     | Ditesus set                                           | 84       | 13        | 3        | 0 16        | 2.8          | -                               | -         | 51                                                | 0 63                             | 0 2mm1/t N                 | aC I             |                          | 7 40-10E3              | Burbank sand (average profile)                                                                                                                                                                                                                                                                                   |                                                                                                                                                                    | Routson, 1973                                                                       |
|     |                                                       | 63       | 37        | 5        | 0 21        | 1.36         |                                 |           | 53                                                | 1 07                             | 0.2mo1/L N                 | aC I             |                          | 3 51+10E3              | Eshrata sand (average profile)                                                                                                                                                                                                                                                                                   |                                                                                                                                                                    | Routson, 1973                                                                       |
|     |                                                       |          |           |          |             |              | 1.0                             |           |                                                   |                                  | see ref                    |                  |                          | 98.                    | Four alle creek                                                                                                                                                                                                                                                                                                  | value data for scription vs. pH, see reference                                                                                                                     | Zelarny et al . 1                                                                   |
|     | send                                                  |          |           |          | :           |              | 10                              |           |                                                   |                                  |                            |                  |                          | 84-                    | Pen Branch                                                                                                                                                                                                                                                                                                       | tererence                                                                                                                                                          | Zelazny et al.                                                                      |
|     | sand .                                                |          |           |          | -           | -            | 7 0                             | •         | •                                                 | •                                | ۰.                         |                  |                          | 40+<br>1.78±10E4       | Par Pond<br>Soit Al (NARE)                                                                                                                                                                                                                                                                                       |                                                                                                                                                                    | Zelarny et al.                                                                      |
|     | 5-16                                                  | 36       | 35        | 29       | 0 43        |              | 8 1 (CaC12)<br>8 1 (CaC12)      | -         | R 4<br>8 6                                        | :                                | 800 ref                    |                  |                          | 1 84+1064              | Soit (3 (MME)                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                    | Gillham et al.<br>Gillham et al.                                                    |
|     |                                                       | 34<br>20 | 35        | 31<br>31 | C 4<br>1 27 | 34.1<br>21.2 |                                 |           | 5 9                                               |                                  | see ref                    |                  |                          | 1.01+10E3              | Soil #5 (Lesnington)                                                                                                                                                                                                                                                                                             |                                                                                                                                                                    | Giftham et al                                                                       |
|     |                                                       | 12       | 55        |          | 0 35        | 0            | 6.7 (CaC12)                     | -         | 10.2                                              |                                  | See ref                    |                  |                          | 2=10E4<br>1=10E4       | Soil (North Bay)<br>Soil (14 (Alberta)                                                                                                                                                                                                                                                                           |                                                                                                                                                                    | Cillhom et al.,                                                                     |
|     |                                                       | 34       | 34        | 32       | 0 35        | 51           |                                 | •         | 32 7<br>12                                        | •                                | see ref                    |                  |                          | 1 35110644741          |                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                    | Gillhow et al.<br>Serne et al., 19                                                  |
|     |                                                       | 45       | 44        | 11       | 0 14        | 1.4          | 8 83 (CaC12)                    | :         |                                                   | -                                | -                          |                  |                          | 3+1064                 | Capting silt loss, Ap                                                                                                                                                                                                                                                                                            |                                                                                                                                                                    | Ropest & Jame                                                                       |
|     | allevial silt loam (Ap)<br>medium loam                |          |           |          |             |              | -                               | -         | •                                                 |                                  | 0 1=ol/L H                 | 403              |                          | 6 5×10E2<br>5 37×10E3  | Sodpodzelic soil<br>atluviat soil (Cadarache)                                                                                                                                                                                                                                                                    |                                                                                                                                                                    | Aleksakhin, 196                                                                     |
|     |                                                       | 31       | 69        | 0        | •           | •            | •                               | -         | 26                                                | :                                |                            |                  |                          | 9 55+10E3              | siluvial smit (Cadarache)                                                                                                                                                                                                                                                                                        |                                                                                                                                                                    | Rancon, 1972<br>Rancon, 1977                                                        |
|     |                                                       | 30<br>19 | 62<br>66  |          | :           | :            | :                               | -         | 6.3                                               | -                                |                            |                  |                          | 1 04=1064              | Vindobonian sed. (Cadarache)                                                                                                                                                                                                                                                                                     |                                                                                                                                                                    | Rancen, 1972                                                                        |
|     |                                                       | 40       | 45        | 15       |             | -            | -                               | -         | 1.8                                               |                                  |                            |                  |                          | 1.14±10E4<br>7.3±10F3  | Vindobanian sod. (Cadaracho)<br>Vindobanian sod. (Cadaracho)                                                                                                                                                                                                                                                     |                                                                                                                                                                    | Rancon, 1972                                                                        |
|     |                                                       | 34       | 57        | - 14     | •           | •            | -                               | -         | 49                                                |                                  | :                          |                  |                          | 6 2+10E3               | Vindebonian sed (Cadarache)                                                                                                                                                                                                                                                                                      |                                                                                                                                                                    | Rancon, 1972<br>Rancon, 1972                                                        |
|     |                                                       | 45       | 47        |          | :           | -            | :                               | -         | 4 7                                               |                                  | :                          |                  |                          | 2 07+10E4              | sandy-clay sed (Durance R )                                                                                                                                                                                                                                                                                      |                                                                                                                                                                    | Rancan, 1972                                                                        |
|     |                                                       | 18       | ň         | ni       | -           | -            | -                               | -         | 3 5                                               | •                                | -                          |                  |                          | 1 52±10E4<br>2.0±10E4  | sandy-clay sed (Durance R )<br>sandy-clay sed (Durance R )                                                                                                                                                                                                                                                       |                                                                                                                                                                    | Rancon, 1972                                                                        |
|     |                                                       | 3        | 96        | 1        | -           | -            | -                               | -         | 57                                                |                                  |                            |                  |                          | 3 0-10E3               | silty clay (Idaho)                                                                                                                                                                                                                                                                                               |                                                                                                                                                                    | Rancen, 1977<br>Vildeng & Rhades                                                    |
|     | silty clay, OI-3                                      |          |           | 3        | •           | -            |                                 | :         |                                                   |                                  | -                          |                  |                          | 2 7+1053               | silty clay (1daho)                                                                                                                                                                                                                                                                                               | -                                                                                                                                                                  | Vildung & Rhade                                                                     |
|     | sily clay, M ?                                        | 44       | 50        | 6        | e 23        |              |                                 |           | 11                                                | 1 21                             | 0 2m1/L                    |                  |                          | 3 96+10E3<br>1 0+10F4  | Ritzville silt (avg. profile)<br>Soil #15 (Alberta)                                                                                                                                                                                                                                                              |                                                                                                                                                                    | Routnen, 1973                                                                       |
|     | (lay<br>10% < 0.07 m                                  | 31       | 34        | 35       | 0 21        | 5 3          | 7 8 (C+C17)                     | -         | 31 5                                              | •                                | see ref                    |                  |                          | 3 15-1064              | very fine suspended sediments (Durance River)                                                                                                                                                                                                                                                                    |                                                                                                                                                                    | Cillham et al.,<br>Rancon, 1977                                                     |
|     |                                                       |          |           |          |             | :            | 7 8                             |           | • •                                               |                                  | QUE NaCI                   | ne i             |                          | 7+10E2                 | clay                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                    | Hamstra & Vereri                                                                    |
|     | clay<br>Savanah River and {()(0 wm)                   |          |           |          |             |              | -                               | -         |                                                   | •                                | NaCI                       |                  |                          | .5 (n=0)<br>130e       | Savannah Rivor sodiaente<br>Savannah Rivor clay                                                                                                                                                                                                                                                                  |                                                                                                                                                                    | Elprince et al .                                                                    |
|     | Savannah River ned ((101 un)                          |          |           |          |             |              | 10                              |           |                                                   |                                  |                            |                  |                          | 1.304                  | agrennen niver Clay                                                                                                                                                                                                                                                                                              | • Also data for sorption versus pli, see raf                                                                                                                       | itiarny et al .                                                                     |

### CHROMIUM\_Ka\_VALUES

| NIC 19                                  | 5011<br>54 type                                                                                                                                                                             | SAND                 | <b>s</b><br>S11 7 | \$<br>(1 A 1      | S.<br>NRC                                                              | <b>%</b><br>Ca(03 | SAT PAST                                                                              | E14<br>(*) | ) 1)<br>/ pen<br>2001                                                                                                                                     | \$ FPEE<br>190N<br>0210E5                  | (INI)<br>(A1]IN | S COM-<br>CATION | NECLIDE<br>CONCENTRATION | ¥d<br>[mi./g}                                                                                                                                                               | SULL LICATION<br>or DESCRIPTION                                                                                                                                                                                                                                                                                                                                        | 0 €# INFORMATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ALTERENCE                                                                                                                                                                                                                                              |
|-----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-------------------|-------------------|------------------------------------------------------------------------|-------------------|---------------------------------------------------------------------------------------|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|-----------------|------------------|--------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ( - ( - ( - ( - ( - ( - ( - ( - ( - ( - | lose<br>sand fr - LFH Ah<br>sand Ae<br>sand RfJ-PfJgj<br>seed - C-Cgj<br>nand<br>sand<br>sand                                                                                               | 95 7<br>95 7<br>95 7 | 3 3<br>3 3<br>3 3 | 1 0<br>1 0<br>1 0 | 6 1<br>0 1<br>0 1                                                      |                   | 5 ?<br>5 1<br>5 ?<br>6 ?<br>6 45 (paste<br>6 45 (paste<br>6 45 (paste                 | i -        | 60/: w1/kg<br>16 m3/kg<br>81 2cm3/kg<br>2 9cm3/kg<br>2 1-m3/kg<br>1 7.m3/kg                                                                               | 04.umm1/1,<br>1400.umm1/1,<br>2.25.emm1/Kg |                 |                  |                          | 1000<br>100<br>962 9 (6 0)<br>91 1 (35 0)<br>134 5 (160 2)<br>53 1 (8 9)<br>57 (8)<br>1 7 (8)<br>2 3 (C)                                                                    | Drific Black Chernager<br>Orthic Readist<br>(Orthic Readist<br>(FM Ah 0-4 ca Cleyed Dystric Brunish)<br>As Alls ca Cleyed Dystric Brunish<br>HJ:BY 135-45 ca Cleyed Dystric Brunish<br>(-Cay 345 ca Cleyed Dystric Brunish)<br>(-Cay 345 ca Cleyed Dystric Brunish)<br>Tailuride alluvium, Coincradh<br>Teiluride alluvium, Coincradh<br>Teiluride alluvium, Coincradh | <pre>(inb i) ((EC : mun) kg ') Kd column : no ( ) : is in thate Kd column : ( ) : grnun sater no:! type, pH. (EC &amp; no ! desc*:ption Cr (6) Allurisi aduife 8 foures : Calculate Kd's batch &amp; two column esp' % O = : ig Kg-1 (satis, g 450 C) (% S/S/C + calculated f on grain size distrib = 1ab 1) (G W pH = 6 8 : 1ab 3) R = Batch C + column ((CrMar conc.))</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Sheppard and Sheppard, 198<br>Sheppard and Sheppard, 198<br>Sheppard et al., 1987<br>Sheppard et al., 1987<br>Sheppard et al., 1987<br>Sheppard et al., 1987<br>Stollenverk and Grove, 198<br>Stollenverk and Grove, 198<br>Stollenverk and Grove, 198 |
| (•<br>(•                                |                                                                                                                                                                                             |                      |                   |                   |                                                                        |                   |                                                                                       |            |                                                                                                                                                           |                                            |                 |                  |                          | R 4<br>110 4                                                                                                                                                                | figysmn series<br>Toa series                                                                                                                                                                                                                                                                                                                                           | (Cr)<br>both series : prevalent crop land soils in Puerto Rico<br>(lab.) : CrKd Kd in 1 g : Batch<br>OCR8024 f/g<br>1104353 f/g<br>(fig.) : Lapidus-Amundi n linear isotherm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Ramirez et al., 1995<br>Rumirez et al., 1985                                                                                                                                                                                                           |
| *******                                 | LFH-Ah<br>Ae<br>Bfj-Rfjgj<br>C-(gj<br>Hallandale fine sand<br>Plantation Muck - bottoe laye<br>Plantation Muck - hiddle lave<br>Plantation Muck - top layer<br>clayey<br>fine silty<br>mred | •                    |                   |                   | 14 5g/kg<br>27 9g/kg<br>670 7g/kg<br>670 7g/kg<br>0 24<br>0 99<br>0 94 |                   | 5 2<br>5 1<br>5 2<br>6 2<br>8 20<br>7 30<br>7 20<br>7 20<br>7 20<br>5 1<br>6 4<br>5 4 |            | 81 2cmol/kg<br>2 9cmol/kg<br>2 1cmol/kg<br>1 7cmol/kg<br>1 33ura/g<br>1 58ura/g<br>4 59ura/g<br>4 59ura/g<br>3 72cmol-/Kg<br>8 31cmol-/Kg<br>1 20cmol-/Kg | 10 2<br>1 14<br>2 70                       |                 |                  |                          | 7417 ?1 7(-)<br>814 4-0 9(-)<br>475 3-0 4()<br>969 1-0 8(-)<br>1 ??0 1/a<br>0 865 L/g<br>2 905 L/g<br>2 905 L/g<br>2 905 L/g<br>3 800 707 8 6<br>800 707 8 6<br>800 707 2 2 | D. E. cm. Clayed Dyetric Brunisol<br>4-15 cm. Clayed Dyetric Brunisol<br>75-65 cm. Clayed Dyetric Brunisol<br>145 Clayed Dyetric Brunisol<br>Pampane Basch, Florida<br>Pampane Basch, Florida<br>Pampane Basch, Florida<br>Famane Basch, Florida<br>Cec.<br>Dliver                                                                                                     | <ul> <li>[1] J. L. Lap dust manifor in final statements</li> <li>[1] J. Lap dust manifor in final statements</li> <li>[1] J. Lap dust manifor in final statements</li> <li>[2] J. Lap dust maniform for the statement of the statem</li></ul> | Shappard, 1989<br>Sheppard, 1989<br>Sheppard, 1989<br>Wong et al., 1983<br>Wong et al., 1983<br>Wong et al., 1983<br>Selin & Amacher<br>Selin & Amacher<br>Selin & Amacher                                                                             |

.

### TABLE\_B-11

### COBALT Ka VALUES

| C - U         Description         Description <th< th=""></th<> |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| المعالية المع<br>المعالية المعالية المع<br>المعالية المعالية ال                                             |

.

continued...

.

# TABLE B-11 (concluded)

| AUC 154                                                                                                                                  |                                                                                                                                                                                                                                                                                                              | ¥<br>Sand                                                                                | <b>5</b> 11 1                                                                                                                        | s<br>(LAV                                                                                                                                   | S.<br>DRC | <b>5</b><br>C503 | DH<br>SAT PASTE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ₩<br>(∀) | ۲۴(<br>/وسم<br>۱۵ او                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | UAJIÉZ<br>1668<br>Ø 1.001 | CUMP<br>CATION | CATION<br>CATION | NUCLIDE<br>CONCENTRATION | kd<br>(≪L/q)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | COLE LE ATION<br>or DESERTETION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | OTHER IN AMATION REFE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|-----------|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|----------------|------------------|--------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| La<br>( c c c c c c c c c c c c c c c c c c c                                                                                            | Sand<br>Sand<br>Sand<br>Clayey Sand<br>Clayey Sand<br>Clayey Sand                                                                                                                                                                                                                                            | 87<br>91<br>83<br>58<br>68<br>73                                                         | 3<br>7<br>6<br>11<br>8                                                                                                               | 8<br>7<br>15<br>36<br>21<br>19                                                                                                              |           |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                           |                |                  |                          | 2600 (1800)<br>520<br>9000<br>96<br>1,36<br>24 (130)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Heally 1. Novada<br>Really 2. Novada<br>Heally 5. Novada<br>Rarmer 1' d. South Carcina<br>Barmer 1' d. South Carcina<br>Harmerl 1.2. South Carcina<br>Harmerl 1.3. South Carcina                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | () Freducing conditions flastly New, Rashmell SC, W. Valley, WWe have 1, 1963<br>(abst - Kds highest in shaline sligersh dassa dessats high Neckerse), 1993<br>in manteorillanite and zealiter) labit#dammeral phase char Neckerse), 1993<br>lab ?:relationshinstestyre.sur see area - (lay maneral come Neckerse), 1993<br>lab 4 - kd - 6 radionucides<br>Fig. 5 test diagram. (Fig. 7: kd vs. spretive minerals). Heckerse), 1993<br>Sig. 5 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| ic 57<br>fo ++<br>fo ++<br>fo ++                                                                                                         | Rød-brown clayey                                                                                                                                                                                                                                                                                             | 80                                                                                       | 17                                                                                                                                   | 13 Q<br>3                                                                                                                                   |           | с :              | 6 2<br>9 7 (CaC 17)<br>6 0- 1 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | I        | 117<br>75mma 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                           |                |                  |                          | 10 1000<br>41 (17-80)<br>(AV)1 6E3<br>(H)7 9F3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Mean of 32 - Danish soils<br>Chestnul Gidge, (BMR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Tab 3: Soil rhar - Keleorista, ma, Tab 4: Repression coeff Anderson & Chris<br>Fig I-lop Kelfor (d-function o' pH Tab.2: no-1 prop.<br>Kel colume t.): Kelenove lat i soil properties. Tab 2: Hel. Schinneck et al<br>Tah TR:Kel Report had 10% of id= 0% - Smg Co/I = conc. Seeley & Kelenove<br>(N = 41.5; (s.Eu. Th. [t]).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Cn 558 588 588 59 58 59 58 59 58 59 59 59 59 59 59 59 59 59 59 59 59 59                                                                  | Heavy clay - 1<br>Heavy clay 2<br>Heavy clay 3<br>Heavy clay 4<br>Heavy clay - 5<br>Softy clay logs - 6<br>Lossy sand - 9<br>Lossy sand - 9<br>Lossy sand - 9<br>Lossy sand - 9<br>Sandy logs - 17<br>Loss - 11<br>Sandy logs - 17<br>Sand<br>Lossy-Loss - 17<br>Sand<br>Lossy-Loss                          | 73<br>65<br>73<br>66<br>41<br>57<br>91 2<br>81 2                                         | 15<br>19<br>11<br>32<br>37<br>62<br>21<br>35<br>77<br>34<br>37<br>29<br>7<br>7                                                       | 85<br>81<br>69<br>68<br>58<br>38<br>22<br>14<br>1 8<br>1 8<br>3 8                                                                           |           |                  | 8 2(7 5 2)<br>8 2(7 3- 1)<br>8 4(7 3- 1)<br>8 4(7 3- 1)<br>8 0(7 3 1)<br>7 0(7 3- 1)<br>7 0(7 3- 1)<br>5 4(7 5- 1)<br>6 4(7 5- 1)<br>6 4(7 5- 1)<br>6 7(8 7- 1)<br>9 7(8 7- 1)<br>9 9(8 3 2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          | 262<br>21- 2<br>52<br>24-1<br>175<br>2 8- 2<br>3 5- 2<br>3 5- 3<br>5 3 3<br>( 3 3<br>15<br>40- 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                           |                |                  |                          | (1)7 1F1<br>2700-700<br>990<br>940<br>940-30<br>14000<br>4500-500<br>160-10<br>160-20<br>400-30<br>860<br>907-7,700<br>2907-7,700<br>2907-7,700<br>2907-100<br>100 -000<br>100 -00 | Lowinsa (see Finland (2.04 2.1) w)<br>Lowinsa (see Finland (2.2.3.0 RC n)<br>Diferitudo (Sarr, Finland (2.2.8) 2.15 m)<br>Salo (Sav, Finland (2.2.6 2.56 m)<br>Salo (Sav, Finland (2.2.4.3.3) m)<br>Lowinsa moreen, Finland (4.m)<br>Uit-lucto moreen, Finland (4.m)<br>Uit-lucto moreen, Finland (3.5.4.1) m<br>Augusta moreen (Finland (3.5.4.1) m<br>Augusta moreen (Finland (3.5.4.1) m<br>Ratio a moreen (Finland (2.6.m)<br>Mathematical (C.2.7.5.m)<br>mathematical (Finland (2.6.m)<br>Diference (Finland (2.6.m)<br>Diference (Finland (2.6.m)<br>Diference (Salo (2.6.m))<br>Ratio (Salo (2.6.m))<br>Ratio (Salo (2.6.m))<br>Diference ( | Als: Average, M: High, L: Low         Seelay & Keiners           (n 54)         N:buis, 1967           ("ab: 11: Ce Kd - pH)         (D. A, Sr., Mn., Zu., Ce)         N:buis, 1967           ["ab: 11: Ce Kd - pH]         (D. A, Sr., Mn., Zu., Ce)         N:buis, 1967           ["ab: 11: Ce Kd - pH]         (D. A, Sr., Mn., Zu., Ce)         N:buis, 1967           ["ab: 11: Ce Kd - pH]         (D. A, Sr., Mn., Zu., Ce)         N:buis, 1967           ["ab: 11: Ce Kd - pH]         (D. n. met corumn) (Fig. 31: a Co Kd ve, Pf)         N:buis, 1967           ["ab: 11: Ce Kd - pH]         (D. n. met corumn) (Fig. 31: a Co Kd ve, Pf)         N:buis, 1967           ["ab: 11: Ce Kd - pH]         (D. n. met corumn) (Fig. 31: a Co Kd ve, Pf)         N:buis, 1967           ["ab: 11: Ce Kd - pH]         (D. n. met corumn) (Fig. 31: a Co Kd ve, Pf)         N:buis, 1967           ["ab: 11: Ce Kd - pH]         (D. n. met corumn) (Fig. 31: a Co Kd ve, Pf)         N:buis, 1967           ["ab: 10]         (D. n. met corumn) (Fig. 31: a Co Kd ve, Pf)         N:buis, 1967           ["ab: 10]         (D. n. met corumn) (Fig. 31: a Co Kd ve, Pf)         N:buis, 1967           ["ab: 10]         (D. n. met corumn) (Fig. 31: a Co Kd ve, Pf)         N:buis, 1967           ["ab: 10]         (D. n. met corumn) (Fig. 31: a Co Kd ve, Pf)         N:buis, 1967           ["a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| (c) 58<br>(c) 58 | Losm<br>Sandy Insm<br>Sandy Losm<br>Ciay Iosm<br>Sandy Iosm<br>Sandy Iosm<br>Ciay Iosm<br>Ciay Iosm<br>Ciay Iosm<br>Ciay Iosm<br>Ciay Iosm<br>Sandy Ciay Iosm<br>Sandy Ciay Iosm<br>Losm<br>Losm<br>Losm<br>Ciay Iosm                                                                                        | 45 C C 74 2 36 31.4 2 33 31.4 35 1 1 4 37 5 31 5 31 5 31 5 31 5 50 5 50 5 50 5 42 5 43 0 | 35.0<br>20.0<br>14 0<br>27 5<br>23 5<br>27 5<br>23 5<br>27 0<br>57 0<br>57 0<br>57 0<br>19.5<br>27 0<br>44 0<br>19.5<br>27 5<br>27 5 | 20 0<br>10.0<br>11 E<br>36 2<br>32 4<br>16 4<br>17 5<br>33 2<br>37 5<br>33 2<br>39 5<br>31 0<br>5.2<br>25 0<br>19 0<br>19 0<br>14 0<br>29 5 |           | )<br>            | 7 7 (im H20)<br>7 8 (im H20)<br>7 8 (im H20)<br>7 8 (im H20)<br>7 8 (im H20)<br>7 9 (im H20)<br>7 9 (im H20)<br>7 9 (im H20)<br>7 5 (im H20)<br>7 7 (im H20)<br>7 7 (im H20)<br>7 9 (im H20)<br>7 |          | 307 623 3 0 4 4 1 5 5 1 6 8 5 7 1 6 8 5 7 1 6 8 5 7 1 6 8 5 7 1 5 5 7 1 3 5 4 4 1 5 5 7 5 8 5 7 5 8 5 7 5 8 5 7 5 8 5 7 5 8 5 7 5 8 5 7 5 8 5 7 5 8 5 7 5 8 5 7 5 8 5 7 5 8 5 7 5 8 5 7 5 8 5 7 5 8 5 7 5 8 5 7 5 8 5 7 5 8 5 7 5 8 5 7 5 8 5 7 5 8 5 7 5 8 5 7 5 8 5 7 5 8 5 7 5 8 5 7 5 8 5 7 5 8 5 7 5 8 5 7 5 8 5 7 5 8 5 7 5 8 5 7 5 8 5 7 5 8 5 7 5 8 5 7 5 8 5 7 5 8 5 7 5 8 5 7 5 8 5 7 5 8 5 7 5 8 5 7 5 8 5 7 5 8 5 7 5 8 5 7 5 8 5 7 5 8 5 7 5 8 5 7 5 8 5 7 5 8 5 7 5 8 5 7 5 8 5 7 5 8 5 7 5 8 5 7 5 8 5 7 5 8 5 7 5 8 5 7 5 8 5 7 5 8 5 7 5 8 5 7 5 8 5 7 5 8 5 7 5 8 5 7 5 8 5 7 5 8 5 7 5 8 5 7 5 8 5 7 5 8 5 7 5 8 5 7 5 8 5 7 5 8 5 7 5 8 5 7 5 8 5 7 5 8 5 7 5 8 5 7 5 8 5 7 5 8 5 7 5 8 5 7 5 8 5 7 5 8 5 7 5 8 5 7 5 8 5 7 5 8 5 7 5 8 5 7 5 8 5 7 5 8 5 7 5 8 5 7 5 8 5 7 5 8 5 7 5 8 5 7 5 8 5 7 5 8 5 7 5 8 5 7 5 8 5 7 5 8 5 7 5 8 5 7 5 8 5 7 5 8 5 7 5 8 5 7 5 8 5 7 5 8 5 7 5 8 5 7 5 8 5 7 5 8 5 7 5 8 5 7 5 8 5 7 5 8 5 7 5 8 5 7 5 8 5 7 5 8 5 7 5 8 5 7 5 8 5 7 5 8 5 7 5 8 5 7 5 8 5 7 5 8 5 7 5 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                           |                |                  |                          | 2495<br>2495<br>232 2<br>3859<br>3859<br>3859<br>3859<br>3859<br>1617<br>3204<br>5257<br>547 0<br>2391<br>540 3<br>701 3<br>2590<br>3701 3<br>2590                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <ul> <li>Type Francis (F) Po Valley, Italy</li> <li>Factita (F) Po Valley, Italy</li> <li>Vercei-1: (Y) Po Valley, Italy</li> <li>Garantane (G) Po Valley, Italy</li> <li>Senets (S) Po Valley, Italy</li> <li>Senets (S) Po Valley, Italy</li> <li>Fo Valley, Italy</li> <li>Fo Valley, Italy</li> <li>Po Valley, Italy</li> <li>Po Valley, Italy</li> <li>Fo Valley, Italy</li> </ul>                                                                                                                                                                                      | Hifton surface, Rupert sand (1 pic torrinsamment) Jones et al., 19<br>(0 N = 15, 15-34;<br>(0 N = 15, 15-34;<br>(0 N = 15, 15-34;<br>(1 N = 15, 15-34;<br>10 N = 15, 15-34;<br>(1 N = 15, 15-34;<br>10 N = 15, 15-34;<br>11 N = 15, 15-34;<br>11 N = 15, 15-34;<br>11 N = 15, 15-34;<br>12 N = 15, 15-34;<br>13 N = 15, 15-34;<br>14 N = 15, 15-34;<br>15 N = 15, 15-34; 15 N = 15, 15, 15-34;<br>15 N = 15, 15-34; 15 N = 15, 15, 15-34;<br>15 N = 15, 15-34; 15 N = 15, 15, 15-34;<br>15 N = 15, 15-34; 15 N = 15, 15, 15-34; 15 N             |
| 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                       | Sand<br>Silt.clay<br>Silt.clay<br>Silt.clay<br>Silt.clay<br>Silt.clay<br>Silt.clay<br>Silt.clay<br>Silt.clay<br>Silt.clay<br>Silt.clay<br>Silt.Sand<br>Crawel<br>Fine sand<br>Fine sand<br>Silt.clay<br>Silt.clay<br>Silt.clay<br>Sind.clay<br>Silt.clay<br>Silt.clay<br>Sind.clay<br>Silt.clay<br>Sind.clay | 24 5                                                                                     | 24.5                                                                                                                                 | 51.0                                                                                                                                        |           | 15               | 9.5 (in H2O)<br>8 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          | 35 1<br>(11 3)<br>(14 3)<br>(54 7)<br>(55 6)<br>(57 6)<br>(47 8)<br>(78 9)<br>(78 9)<br>(117 9)<br>(78 9)<br>(140 5)<br>(246 0)<br>(140 5)<br>(246 0)<br>(24 3)<br>(24 3)<br>(147 1)<br>(127.8)<br>(127.8)<br>(127.8)<br>(127.8)<br>(127.8)<br>(127.8)<br>(127.8)<br>(127.8)<br>(127.8)<br>(127.8)<br>(127.8)<br>(127.8)<br>(127.8)<br>(127.8)<br>(127.8)<br>(127.8)<br>(127.8)<br>(127.8)<br>(127.8)<br>(127.8)<br>(127.8)<br>(127.8)<br>(127.8)<br>(127.8)<br>(127.8)<br>(127.8)<br>(127.8)<br>(127.8)<br>(127.8)<br>(127.8)<br>(127.8)<br>(127.8)<br>(127.8)<br>(127.8)<br>(127.8)<br>(127.8)<br>(127.8)<br>(127.8)<br>(127.8)<br>(127.8)<br>(127.8)<br>(127.8)<br>(127.8)<br>(127.8)<br>(127.8)<br>(127.8)<br>(127.8)<br>(127.8)<br>(127.8)<br>(127.8)<br>(127.8)<br>(127.8)<br>(127.8)<br>(127.8)<br>(127.8)<br>(127.8)<br>(127.8)<br>(127.8)<br>(127.8)<br>(127.8)<br>(127.8)<br>(127.8)<br>(127.8)<br>(127.8)<br>(127.8)<br>(127.8)<br>(127.8)<br>(127.8)<br>(127.8)<br>(127.8)<br>(127.8)<br>(127.8)<br>(127.8)<br>(127.8)<br>(127.8)<br>(127.8)<br>(127.8)<br>(127.8)<br>(127.8)<br>(127.8)<br>(127.8)<br>(127.8)<br>(127.8)<br>(127.8)<br>(127.8)<br>(127.8)<br>(127.8)<br>(127.8)<br>(127.8)<br>(127.8)<br>(127.8)<br>(127.8)<br>(127.8)<br>(127.8)<br>(127.8)<br>(127.8)<br>(127.8)<br>(127.8)<br>(127.8)<br>(127.8)<br>(127.8)<br>(127.8)<br>(127.8)<br>(127.8)<br>(127.8)<br>(127.8)<br>(127.8)<br>(127.8)<br>(127.8)<br>(127.8)<br>(127.8)<br>(127.8)<br>(127.8)<br>(127.8)<br>(127.8)<br>(127.8)<br>(127.8)<br>(127.8)<br>(127.8)<br>(127.8)<br>(127.8)<br>(127.8)<br>(127.8)<br>(127.8)<br>(127.8)<br>(127.8)<br>(127.8)<br>(127.8)<br>(127.8)<br>(127.8)<br>(127.8)<br>(127.8)<br>(127.8)<br>(127.8)<br>(127.8)<br>(127.8)<br>(127.8)<br>(127.8)<br>(127.8)<br>(127.8)<br>(127.8)<br>(127.8)<br>(127.8)<br>(127.8)<br>(127.8)<br>(127.8)<br>(127.8)<br>(127.8)<br>(127.8)<br>(127.8)<br>(127.8)<br>(127.8)<br>(127.8)<br>(127.8)<br>(127.8)<br>(127.8)<br>(127.8)<br>(127.8)<br>(127.8)<br>(127.8)<br>(127.8)<br>(127.8)<br>(127.8)<br>(127.8)<br>(127.8)<br>(127.8)<br>(127.8)<br>(127.8)<br>(127.8)<br>(127.8)<br>(127.8)<br>(127.8)<br>(127.8)<br>(127.8)<br>(127.8)<br>(127.8)<br>(127.8)<br>(127.8)<br>(127.8)<br>(127.8)<br>(127.8)<br>(127.8)<br>(127.8)<br>(127.8)<br>(127.8)<br>(127.8)<br>(127.8)<br>(127.8)<br>(127.8)<br>(127.8)<br>(127.8)<br>(127.8)<br>(127.8)<br>(127.8)<br>(127.8)<br>(127.8)<br>(127.8)<br>(127.8)<br>(127.8)<br>(127.8)<br>(127.8)<br>(127.8)<br>(127.8)<br>(127.8)<br>(127.8)<br>(127.8)<br>(127.8)<br>(127.8)<br>(127.8)<br>(127.8)<br>(127.8)<br>(127.8)<br>(127.8)<br>(127.8)<br>(127.8)<br>(127.8)<br>(127.8)<br>(127.8)<br>(127.8)<br>(127.8)<br>(127.8)<br>(127.8)<br>(127.8)<br>(127.8)<br>(127.8)<br>(127.8)<br>(127.8)<br>(127.8)<br>(127.8)<br>(127.8)<br>(127.8)<br>(127.8)<br>(127.8)<br>(127.8)<br>(127.8)<br>(127.8)<br>(127.8)<br>(127.8)<br>(127.8)<br>(127 |                           |                |                  |                          | 4510<br>100<br>150<br>150<br>250<br>350<br>270<br>270<br>270<br>150<br>150<br>150<br>150<br>100<br>80<br>400<br>270<br>150<br>100<br>80<br>400<br>400<br>275<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ΦΣ - Po Valloy, Italy<br>9<br>9<br>C<br>D<br>E<br>F<br>C<br>M<br>1<br>1<br>J<br>J<br>N<br>N<br>C<br>P<br>Q<br>Q<br>O<br>S<br>O - Manford a to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (1sb 2- sn.i type) (1sb 3- CE( - Nd) (-n JAP) Iroue & Morisave<br>(EC: () - eva/a Inoue & Morisave<br>(0 N ± Sr.(a, Mn, 2n, Ag.fr, Mo) Inoue & Morisave<br>9 Teb 3.Fig Inoue & Morisave<br>1 noue & Morisave<br>1 nou |
| 60<br>60<br>60                                                                                                                           | 587dy                                                                                                                                                                                                                                                                                                        |                                                                                          |                                                                                                                                      |                                                                                                                                             |           |                  | R O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                           |                |                  |                          | 10(01)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Co/EDTA - Monford aite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (Cn - 60 and Co - 60ED1A)(1ab ): atch + soil a Kd)(0 N ≠3H) Jones et al., 13<br>{} - in Kd columon: Cri weth di Batcht 7 days Jones et al., 13<br>[rig 1: Co voi coil cleath Fig. Cn 60ED1A vs 3H mability<br>Fig 3: Cn - 60ED1A vs 3 soils                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

# COPPER Ka VALUES

|                                                                                      |                                                                                                                            |                           |           |                                   |             |                              |      | _                                              |                          |                 |                  |                       |                                                  |                                                                                                                                       |                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                             |
|--------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|---------------------------|-----------|-----------------------------------|-------------|------------------------------|------|------------------------------------------------|--------------------------|-----------------|------------------|-----------------------|--------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                      | SML 1                                                                                                                      | 1 B<br>0 SIL <sup>1</sup> | S<br>CLAY | S<br>DRC                          | \$<br>(aCD3 | sat pastr                    | EH . | ([(<br>ma/<br>100g                             | S FREE<br>IRIN<br>OXIDES | (1117<br>(1117) | S CUNF<br>CATION | WELIDE<br>CONCENTRATI | Kd<br>(W (= /a)                                  | SOLLOCATION<br>or DESCRIPTION                                                                                                         | DIACK INLONARLIQN                                                                                                                                                                                         | RUTURINE                                                                                                                                                                                                                                                                                                    |
| NUC 15<br>Cu<br>Cu<br>Cu<br>Cu<br>Cu<br>Cu<br>Cu<br>Cu<br>Cu<br>Cu<br>Cu<br>Cu<br>Cu | Hallandale fine sand<br>Plantation Much bollar layer<br>Plantation Much - ordefir layer<br>Plantation Much - ordefir layer |                           |           | 14 50/70<br>77 90/80<br>670 70/80 |             | 8 20<br>7 30<br>7 70<br>7 10 | 11   | Jueq/q<br>Bueq/g<br>Bueq/g<br>Jueq/g<br>Jueq/g |                          |                 |                  |                       | 0 206 L/g<br>0 766 L/g<br>0 076 L/g<br>0 249 L/g | Al<br>Al<br>B7<br>C<br>C<br>C<br>Pompano Brach, Florida<br>Fompano Brach, Florida<br>Fompano Brach, Florida<br>Fompano Brach, Florida | lah ] r cationn in nail - lah 7 - nail charact<br>lah 3 - heavy metals in soil - Tah 4 r linsor Kd (L/g)<br>lah 5 r Landmuir coeff - Fig 1 & 7 v isotherma v (r, Ni<br>10 H = In, Fe, Hm, Ni, (d, (r, (s) | Zabaushi and Zanaki, 1987<br>Zabaushi and Zanaki, 1987<br>Wong et al., 1983<br>Wong et al., 1983 |

•

.

.

.

#### CURIUM Ka VALUES

| 10¢ type<br>10¢ type               | s<br>Sand | <b>8</b><br>511 1 | (LAY | 2<br>CRC |                            |              | ŧ≠<br>(ν} | (f)<br>10-00<br>10-01 | 9, 1793<br>1606<br>19108 (- | اليون <u>ي</u><br>A 111N | ¶, (that<br>Cata an | NUCLEM<br>CONCENTRATEON | •d<br>(=i /g)                    |                              | SDE LOCATION<br>of DESCRIPTION | U Int. 6. [M. UMA', J UM            | PTTPLK                                     |
|------------------------------------|-----------|-------------------|------|----------|----------------------------|--------------|-----------|-----------------------|-----------------------------|--------------------------|---------------------|-------------------------|----------------------------------|------------------------------|--------------------------------|-------------------------------------|--------------------------------------------|
| 244 Killy Joan                     | 19        | 4                 | 25   | 7 8      |                            | 5 41         | · ·       | 70                    | : :0                        |                          | , ńŕ                | • •                     | 7:350                            | harpsburg tertes             |                                | Santer'au minerale tat ?            | highits et at 1991                         |
| 744 sandy form                     | 55        | 33                | 15   | 24       | 5.3                        | 6 56<br>4 39 |           |                       |                             |                          |                     |                         | 13069                            |                              |                                | Comp Cation MediaMMS estract        | Nishita et al., 1981                       |
| 44 sandy foam                      |           |                   |      | • •      | 2.2                        | 5 71         |           | :5                    | : 64                        |                          | (* .16              |                         | 95.23                            | Ha'to a applea               |                                | Walface et al. 1474 unil properties | Aushita et al , 1981                       |
| 44 azardu linza<br>44 azardu linza | 65        | 33                | ?    | 5.7      | F 0                        | 4 4 9        |           |                       | • 49                        |                          |                     |                         | 6809                             |                              |                                | Netita, 1981                        | Nichita et al. 199                         |
| l4 clay team                       |           |                   |      |          | -                          | 6 17         |           |                       | •.                          |                          | 0.04                |                         | 1374<br>195                      | Lyman spries                 |                                | (lat 1 r ft) (Extract) chem prop    | Nishita et al., jon                        |
| 4 ciay loam                        | 70        | 30                | 32   | 06       | 78                         | 7 17 *       |           | 30                    | 1.70                        |                          | 0.04                |                         | 36620                            | Helty the ser or             |                                | (Tat Courted come )                 | NishiLa et al., 198                        |
| 4 sandy loan                       | 70        | 28                | •    | 84       |                            | 6 04         |           |                       |                             |                          |                     |                         | 51900                            | "faterreaus 10 % Cath        | 31                             |                                     | Nichita et al . 198<br>Nichita et al . 198 |
| 4 sandy loam                       |           | 20                | 1    | 84       | + 0                        | · /1         |           | 15                    | r 10                        |                          | 3,12                |                         | 30920                            | Aibon sprips                 |                                |                                     | Nishita et al., 196                        |
| 4 silt lose                        | 71        | 49                | 15   | 2.5      | 6/                         | 6 12         |           | 24                    |                             |                          |                     |                         | 15020                            |                              |                                |                                     | Nichita et al., 10                         |
| a sitt toam<br>A much              |           |                   | •    | • •      | • • •                      | 6 98         |           | 25                    | 2.41                        |                          | (* <b>1</b> 49      |                         | 17090                            | Tota Server                  |                                |                                     | Nishita et al. 109                         |
| d nuch                             | 70        | 30                | 0    | 40 A     | 1 :                        | 7 14         |           | 60                    | 1.17                        |                          | 2.16                |                         | 17090                            | *                            |                                |                                     | Nishita et al., 198                        |
|                                    |           |                   |      |          |                            | 7 54         |           |                       | • •                         |                          |                     |                         | 6772<br>5056                     | Cohert nerver                |                                |                                     | Nishita et al., 198                        |
|                                    |           |                   |      |          |                            | Extract      |           |                       |                             |                          | M -0(73             |                         | 4. 15                            |                              |                                |                                     | Nishita et. al. 199                        |
|                                    |           |                   |      |          |                            | <b>PH</b>    |           |                       |                             |                          | ta eact             |                         |                                  |                              |                                |                                     |                                            |
| 4 apriment.                        |           |                   |      |          | 3.0                        |              |           |                       |                             |                          |                     |                         |                                  |                              |                                |                                     |                                            |
| lå nødiment<br>lå nødiment         |           |                   |      |          | 30<br>30                   |              |           |                       |                             |                          |                     |                         | 1730 (f-Itered)                  |                              |                                | flat.rh                             | Adriano, D.C., et a                        |
| A and man'                         |           |                   |      |          | 3.0                        |              |           |                       |                             |                          |                     |                         | 1070 (dialysed)                  |                              |                                | tap 4 Frank                         | Adriano, D.C., et a                        |
| lå sediment.                       |           |                   |      |          | 3 0                        |              |           |                       |                             |                          |                     |                         | 1750 tdekon zedu<br>940 (filtil) |                              |                                | SPD - Savanna River Plant           | Adriano, D.C., et a                        |
| 4 second                           |           |                   |      |          | 30                         |              |           |                       |                             |                          |                     |                         | ofn (distys )                    |                              |                                |                                     | Adriane, D.C., et a<br>Adriano, D.C., et a |
| 4 sediment                         |           |                   |      |          | 30<br>30<br>30<br>50<br>50 |              |           |                       |                             |                          |                     |                         |                                  |                              |                                |                                     | Adriano, D.C., et a                        |
| 4 sed ment                         |           |                   |      |          | 50                         |              |           |                       |                             |                          |                     |                         | 3/400 (1/11)                     |                              |                                |                                     | Adriano, D.C., et a                        |
| dd epgiment                        |           |                   |      |          | 50                         |              |           |                       |                             |                          |                     |                         | 17500 (draive)<br>74500 (deine   | Par Fond SPP<br>Tar fond SPP |                                |                                     | Adriano, D.C., et a                        |

#### TABLE B-14

#### EUROPIUM\_K\_\_VALUES

|                                              |                                        | R FREE                                                   |                                                                                                                                                                                             |                    |                                                                    |
|----------------------------------------------|----------------------------------------|----------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|--------------------------------------------------------------------|
| NUC 158 5011 \$                              | STLT CLAY DRG CaCO3 SAT PASTE (V) 100g | TREN ("WE & "FAIT MICLINE<br>DRIDES CATION (ENCENTRATION | ikd 5051 (0€47)m<br>(miza) e∽ DESCRIPTION                                                                                                                                                   | Danke lakuda aalim | FFFRENCE                                                           |
| Eu 154 Clay<br>Eu 154 Red-braw -layey        | 5 0+-0 7                               |                                                          | approv 10 Vive Kije specifie<br>S Asing 3 - Jup Kije specifie<br>AV : A Chestrut Ridge (BMR)<br>(M : 6 (F4)                                                                                 | 1 fifficial :      | Carison & Rc. 1982<br>Larison & Ro. 1982<br>Sealey & Heiners, 1984 |
| Fu 154 Smeet te riay<br>bu 154 Smeet-te clay | 7578<br>75-78                          |                                                          | in : η (ra)<br>(ε : 6.451)<br>(1+ Ο 21+104 1 - 20 degrees 1 - Core LL44 CPC 2, Pacific Doean, depth - 5821s<br>(± 1++Ο 31+1087 - 60 degrees C. Core 1±44 CPC 2: Pacific Doean, depth: 5821s |                    | Kenna, 1980<br>Renna, 1980                                         |

### - 72 -

# - 73 -

### TABLE B-15

IODINE Ka VALUES

-

| 501).<br>If 15≬ kyer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | SAND                                         | <b>\$</b><br>\$11.7           | 5<br>(1 \r | s<br>ORG                                                             | \$<br>(6(13 | BH<br>SAT FASTE                                                                                                                                                                                                     | (FC<br>{H ==ca/<br>(+) 100a                                                                                                                                                                                                           | \$, FR[E<br> RIN<br> H[H 5 | (1105<br>(11]196                 | s, com<br>Cation | NLC: 10°<br>CONCENTRATION | ≼त<br>(=i/q)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | SOTE LOCATION<br>or DESCATFILM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 014ER 100 00441100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | PETER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|-------------------------------|------------|----------------------------------------------------------------------|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|----------------------------------|------------------|---------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1 173<br>1 177 'Fit Ak<br>1 177 Ac<br>1 177 Ac<br>1 177 CGy<br>1 177 CGy<br>1 131 Ac<br>1 131 Ac<br>1 131 C<br>1 131 C<br>1 131 C<br>1 131 C<br>1 131 C<br>1 131 C<br>1 131 Ac<br>1 131 Ac | Sand<br>Land<br>Sond<br>BO                   | <b>1</b> 7                    | 1          | 1 19<br>1 15<br>1 01<br>0 75<br>7 41<br>0 34<br>0 30<br>0 30<br>0 25 | σ           | 4 2<br>5 1<br>5 2<br>6 7<br>3 7<br>8 3 (solution<br>8 3 (solution<br>8 2 (solution<br>8 2 (solution<br>8 2 (solution<br>7 4 (solution<br>7 4 (solution<br>6 9 (solution<br>6 9 (solution<br>6 9 (solution<br>5 80 6 | Pl 7-mo1/<br>7 Grant/<br>1 root/<br>1 root/<br>164<br>164<br>177<br>162<br>85<br>64<br>07<br>85<br>64<br>07<br>85<br>64<br>07<br>85<br>64<br>07<br>85<br>64<br>07<br>85<br>63<br>102<br>112<br>112<br>112<br>112<br>112<br>112<br>112 | τς<br>τε<br>ις             | ( 4( 17                          |                  |                           | Here         Data           36/ H         [196] (1)           90 / (197)         0           0 5 (0 2)         30(17-56)           30(17-56)         10           10         10           √10         10           10         10           10         10           10         10           10         10           11         0           10         1           0         1           0         1           0         1           0         1           0         1           0         1           0         1           0         1           0         1           0         1           0         1           0         1           0         1           0         1           0         1           0         1           0         1           0         1           0         1           0         1           0         1           0         < | 1 4 rm<br>4 15 rm<br>15 45 rm<br>15 45 rm<br>15 45 rm<br>(0.22rm) Auenrendzins (Biblin), FRG<br>(77:30cm) Auenrendzins (Biblin), FRG<br>(30:42rm) Auenrendzins (Biblin), FRG<br>(47 90cm) Auenrendzins (Biblin), FRG<br>(70:129cm) Auenrendzins (Biblin), FRG<br>(129:139cm) Auenrendzins (Biblin), FRG<br>(129:139cm) Auenrendzins (Biblin), FRG<br>(129:139cm) Auenrendzins (Biblin), FRG<br>(131:52cm) Farabron (Escherier), FRC<br>(131:62rm) Farabron (Escherier), FRC<br>(138:62m) Farabron (Escherier), FRC<br>(138:62m) Farabron (Escherier), FRC<br>(138:62m) Farabron (Escherier), FRC | 1.120 Hd : Tormain p 410<br>1.127 Hd : Tormain p 410<br>1.127 I bb 1: soil properties.<br>() in Hd column : cround maker (C W )<br>rn (] in Hd column : sechate (L)<br>CCC - cont/Ka I bb.fr Hd comp field = batch.<br>Hd col. ():Hd range I bb.[: soil prop. Inb.2: Hd<br>(1.131) Fun 12: W - soil borron<br>Fun 3: Hd v: cas: is interron<br>Fun 3: Hd : concrisen column = batch<br>Fun 5: Hd - 6 soils (1.00).<br>Abstract<br>ist 18: Hd Fesort = ad 100's of Kds<br>(0 M = 11.5r.(s (s.5.1.5.)) | Reserve et al., 1987<br>Stepsord et al., 1987<br>Bunzi et al., 1988<br>Bunzi et al., 1984<br>Bunzi et al., 1984<br>Sunzi et al., 1984 |
| I sand<br>sand<br>sand<br>organic<br>organic<br>organic<br>clay<br>i clay<br>sand<br>clay sit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 74<br>14<br>74<br>84 7                       | 3<br>3<br>3<br>10 0<br>7; 9   | 333        | 14                                                                   |             | 5 65 (5 21)<br>5 65 (5 39)<br>7 65 (5 24)<br>28-0 1<br>6 10-0 04<br>5 74 to 6 87<br>7 28-0 08<br>6 5                                                                                                                |                                                                                                                                                                                                                                       |                            | #C]<br>#C]                       |                  |                           | [L = 1 4E-2]<br>36<br>55<br>45<br>3 1 5 4 3 8<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | SE Coastal Plann (Sandy clav Inam) (SP83)<br>SE Coastal Plann (Sa dy clav Inam) (SP83)<br>SE Coastal Plann (Sandy clay Ioam) (SP83)<br>Sebagnum peat. (A dyce)<br>sphagnum peat. (A0.By.)<br>rendysedge peat (0-26 cm)<br>(SCE) >Socm<br>Podsol<br>Chernozem                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | PS - Sagij/Liscov<br>Ree (Cs/1) (Pa/1)<br>() in přídoluvat, i finjipři<br>(lab.4rcompare insitu & iab Kd)(Vildung et al. 1974)<br>Yd column: a 651<br>(lab. 1)<br>in 3- NIA vs. Kd values in androl - chernorem                                                                                                                                                                                                                                                                                      | Seriey & Keiners, 1984<br>Seriey & Keiners, 1984<br>Erchheiz & Mang, 1987<br>Erchheiz & Mang, 1987<br>Shespard, DH1, 1988<br>Shespard, DH1, 1989<br>Shespard, DH1, 1989<br>Bors et al, 1987                                                                                                                                                                                                                                                                                                                                                                   |
| 1 131 loamy send<br>1 131 loamy sent<br>1 131 sandy loam<br>1 131 sandy loam<br>1 133 sandy loam<br>1 133 loamy sand<br>1 133 clay<br>1 33 clay<br>1 34 clay<br>1 35 clay<br>1 35 clay<br>1 37 clay<br>1                                             |                                              |                               |            |                                                                      | 1 1<br>C 5  | 70<br>57<br>45<br>46<br>60<br>70                                                                                                                                                                                    | 0 '7aca<br>? 1aca<br>0 65ma                                                                                                                                                                                                           | /9                         | 0 100500<br>0 100500<br>0 100500 | 3                | 5. 98+ ]<br>50 pp= ]      | (16 (1000 lot<br>(10-(1000 lot<br>)1-)100 log<br>10-(1000 log<br>10-(100 log<br>10-(100 log<br>2000 log<br>2000 log<br>10 0 log<br>10 0 log<br>5 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2 Sapric Histocol, Strongly humified<br>3 Cambiaol, brown soil from ioesa<br>4 (ambiaol<br>5 Arrisol, barabrown soil, Ahihorizon<br>6 Arrisol, barabrown soil, Chinrizon<br>8 - Bentonite, Sud-Cham e AC Manchen<br>19 Pl - Sahag beat (high moor), Steinhuder Meer, Mannover<br>Pr Sahag beat (high moor), Kinigdorf, Bavaria<br>SRP - Savannah River Plant soil: burial ground<br>SRP - Savannah River Plant soil: burial ground                                                                                                                                                                                                                                                                                                                                   | (1ab 14) (p. 50) (1-127)<br>(aiso, Stone et al., 1384. See Co/1 (1-77))                                                                                                                                                                                                                                                                                                                                                                                                                              | Buryl & Schiamach, 1900<br>Buryl & Schiamach, 1900<br>Husffner 1905                                                                                                                                                                                                                                                                                              |
| I 127 SR <sup>0</sup><br>I 127 SR <sup>0</sup><br>I 131 Ap-herizon<br>I 179 Charcosiji - Brine A<br>I 179 Charcosiji - Brine A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <u>59</u> 7                                  | 7R 4                          | 1. 0       |                                                                      | C 2         | 67<br>66<br>65                                                                                                                                                                                                      | # 7                                                                                                                                                                                                                                   |                            | CaC 12                           |                  | 500 pp= 1                 | 35<br>53<br>18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | SR® = Savarnah River Plant soil - burial ground<br>3 = (0-30cm) Alfisol (parabrown earth)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (1-131) see (s/4 Kd = ?logN CEC= 87 meg/Kg<br>J-129 (?sb ?) see Pu/2                                                                                                                                                                                                                                                                                                                                                                                                                                 | Hoeffner 1985<br>Burzi et af ,1985<br>Novat,1980<br>Novat,1980<br>Novat,1980                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 1     1°0 (narcesiβ3 - βrine A       1     1°0       1     1°0       1     1°0       1     1°5       1     1°5       1     1°5       1     1°5       1     1°5       1     1°5       1     1°5       1     1°5       1     1°5       1     1°5       1     1°5       1     1°5       1     1°5       1     1°5       1     1°5       1     1°5       1     1°5       1     1°5       1     1°5       1     1°5       1     1°5       1     1°5       1     1°5       1     1°5       1     1°5       1     1°5       1     1°5       1     1°5       1     1°5       1     1°5       1     1°5       1     1°5       1     1°5       1     1°5       1     1°5       1     1°5       1     1°5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 91 2<br>31 2<br>81 2<br>81 2<br>45 0<br>70 0 | 7<br>15<br>15<br>35 0<br>27 0 |            | 3 O<br>2 5                                                           |             | 7 7 (in H20)<br>6 0 (in H20)                                                                                                                                                                                        | 30° 5<br>1 2                                                                                                                                                                                                                          | 9                          |                                  |                  |                           | Ho Kd<br>Ho Kd<br>(C 5- 0 2<br>(14 10 50 4<br>06 (0 70 3<br>- (0 20 1<br>34 94<br>21 97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | B - Rupert sand<br>A - from Ringold formation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (Tab Insort properties) (Fig.1:breakthrough curves)<br>(Fig.2:breakthrough curves)(Fig.3:baredistribution curves)<br>[c.a.5:regulterus period) Materact [defineship]<br>Tab 5: Rdi columnin (1) + batch(not in ())<br>Teo thenford each events 3: A form Ringoid geological formation<br>Re from surface, Rupert sand (typic terripsament)<br>(P N = Tc.1.5.3H<br>(conc +378 33:u (:/mg - same came, for other nuclides)<br>(P N = Co.(Mm.Fe) Tab. Is sail properties                                | Uchida & Kanada, 1983<br>Uchida & Kanada, 1983<br>Uchida & Kanada, 1983                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

continued...

# TABLE B-15 (concluded)

| 501)<br>158 - Lype                    | K 1<br>SAND SIL                         | <b>s</b><br>L1 | 5<br>(LAY    | s<br>DRG     | <b>%</b><br>((13 | PAN<br>SAT P       |        | CE(<br>111 me<br>(v) 101 | / 141   | N . | COMP<br>(A110N | S COMP<br>CATION | NECE THE<br>CONCENTRATION | ात<br>(ब./q)                | SOIL LOCATION<br>or DESCRIPTION                                           | ODER INTERNATION                                                                           |                                                                   |
|---------------------------------------|-----------------------------------------|----------------|--------------|--------------|------------------|--------------------|--------|--------------------------|---------|-----|----------------|------------------|---------------------------|-----------------------------|---------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|-------------------------------------------------------------------|
| 175 Sandy Loam                        | 74 7 14                                 |                | 11.8         | 1.94         |                  | 78 (in             |        |                          |         |     |                |                  |                           | 74 64<br>31 93              | Garoatano (G), Po Valley, Italy<br>Villanova (V.), Po Valley, Italy       | tat 3 = Kd - 72 hours                                                                      | Carini et al., 1985<br>(arini et al., 1985<br>Carini et al., 1985 |
| 125 Clay loam<br>125 Clay loam        | 36 3 27<br>31 4 36                      |                | 36 2<br>32 4 | 2 B<br>2 5   |                  | 78(+               |        | 35                       |         |     |                |                  |                           | 36 37                       | Sarmato (S). Po Valley, Italy                                             |                                                                                            | Carini et al., 1985                                               |
| 125 Sandy loam                        | 56 1 27                                 | 5              | 16.4         | 1 34         |                  | 79 (in             | H201   | 15                       |         |     |                |                  |                           | 18 01<br>9 86               | Monticelli (M), Fo Valley, Italy<br>5 - Po Valley, Italy                  |                                                                                            | Carini et al., 1985<br>Carini et al., 1985                        |
| 125 Sandy Joan<br>125 Clay Joan       | 64 0 23<br>32 5 30                      |                | 17 5         | 1 21         |                  | 68 (in<br>76 (in   |        | 4 4                      |         |     |                |                  |                           | 32 54                       | 15 Fo Valley, Italy                                                       |                                                                                            | Carini et. al., 1985                                              |
| 175 Clay loan                         | 39 5 27                                 | 0              | 33 5         | 7 54         |                  | 7 8 (              | H20)   | 24                       | 1       |     |                |                  |                           | 21 89<br>25 59              | 17 – Po Valley, Italy<br>19 – Po Valley, Italy                            |                                                                                            | Carini et al., 1985                                               |
| 125 Clay Joan<br>125 Clay Joan        | 31 5 29<br>37 0 32                      |                | 395<br>310   | 2 91<br>1 94 |                  | 77 (in<br>64 (in   |        | 33<br>74                 |         |     |                |                  |                           | 11 56                       | 41 Po Valley, Italy                                                       |                                                                                            | Carini et al , 1985<br>Carini et al , 1985                        |
| 125 Clay 100*                         | 370 32<br>985 5                         |                | 5.3          | 1.54         |                  | 75 1.1             |        | 1                        | -       |     |                |                  | •                         | 73 16<br>34 58              | 55 Fo Valley, Italy<br>61 Po Valley, Italy                                |                                                                                            | Carini et al , 1985                                               |
| 125 Lose                              | 31 0 44                                 |                | 25.0         | 2 69         |                  | - 7 9 jun          |        |                          |         |     |                |                  |                           | 20 00                       | 65 Po Valley, Italy                                                       |                                                                                            | Carini et al., 1985<br>Carini et al., 1985                        |
| 125 Sandy clay loam<br>125 Sandy loam | 50 5 19<br>59 0 22                      |                | 30 0<br>19 0 | 4 09         |                  | 64 ( in<br>60 ( in |        | 26<br>13                 |         |     |                |                  |                           | 9 12                        | 73 Po Valley Italy<br>77 Po Valley Italy                                  |                                                                                            | Carini et. al., 1985                                              |
| 125 Loam                              | 47 5 43                                 | 5              | 14 0         | 1 67         |                  | 78 ( 10            | H201   | 73                       | ?       |     |                |                  |                           | 1* 95<br>42 37              | 77 – Po Vallev, Italy<br>81 – Po Valley, Italv                            |                                                                                            | Carini et al., 1985<br>Carini et al., 1985                        |
| 125 Loam<br>115 Clay                  | 43 0 27<br>74 5 74                      | 5              | 29 5<br>51 0 | 6.3<br>3 85  |                  | /)(+*<br>/5(+*     |        | 34                       |         |     |                |                  |                           | 29 11                       | Q3 Fo Valley, Italy                                                       | (Kd f-or abit )"Cwr groundwale ). labir Kd as depth & d                                    |                                                                   |
| Graanie                               | /4 5 /4                                 | 2              | 51.0         | 100          |                  | 63 (0              |        |                          | ,       |     | 6= K!          |                  |                           | 1 36 L/kp                   | Sphagnue peat Ü.R.L., Lac du Bonnet, Manitoba<br>Commercial Sphagnue peat | (Tat 6) (Fig 12+ log Kd vs log CR)                                                         | Sheppard & Evenden.                                               |
| Dreamin                               |                                         |                |              |              |                  | 4.8                |        |                          |         |     |                |                  |                           | 137(rainfalli<br>49(Fall 1) | Commercial Sphagnum prat                                                  | (N - Se ( . Pb.U)                                                                          | Sheppard & Evender,<br>Sheppard, 1989                             |
| Drgan+c<br>[fH-Ah                     |                                         |                |              |              |                  | 49                 |        | 81 7cm                   | 1/Kg    |     |                |                  |                           | (1 9? 0)                    | B.4 cm Cleved Dystric Brunisol                                            | Fore Comm (1) No Nr. (r. (e., c. U. Th. Ho)<br>Nd: Leachate = no ( ) Nd- Gr. ndwater = ( ) | Sheepard, 1989                                                    |
| Ar                                    |                                         |                |              |              |                  | 5.1                |        | 2 94.                    | 1/hg    |     |                |                  |                           | (0 1 0 7)<br>- ( 06 - 0 4)  | a 15 cm Gleyed Dystric Brunisol<br>15 45 cm Gleyed Dystric Brunisol       | Soil type, Ph. CEC & soil jesc from BLG-17(JEQ16(3))                                       | Sheppard, 1989<br>Sheppard, 1989                                  |
| Bfj-Bfjaj<br>(-Caj                    |                                         |                |              |              |                  | 5 ?<br>6 2         |        | 2 1r=<br>1 7c=           | 1/+0    |     |                |                  |                           | ( 04+ 0 4)                  | At the Charles of Durations Based and                                     | ,                                                                                          | *********************                                             |
|                                       | *************************************** | *****          | •••••        | 0 39         | *******          |                    | ****** | •••••••                  | ******* |     |                |                  |                           | 0 23                        | So I I II (VMRE)                                                          |                                                                                            | Gillham et. al., 1981<br>Gillham et. al., 1981                    |
| 30-10                                 | 3                                       | 30<br>30       | é            | 0 33         |                  |                    |        |                          |         |     |                |                  |                           | 0 28                        | Soil # 12 (8440)<br>Si # 16 (Alberta)                                     |                                                                                            | Gillham et a1 , 1981                                              |
|                                       |                                         | ?              | 10           | 2.05         |                  |                    |        |                          |         |     |                |                  |                           | 0 2                         | Hanford A                                                                 |                                                                                            | Ames & Rav, 1978<br>Ames & Rav, 1978                              |
|                                       |                                         | 20<br>24       | 5 P<br>18    | 0 45         |                  |                    |        |                          |         |     |                |                  |                           | C 55                        | Idaho A                                                                   |                                                                                            | Clover et al . 1976                                               |
|                                       |                                         |                | 22.4         | 0.98         |                  |                    |        |                          |         |     |                |                  |                           | 07                          | ldaho D<br>Colorado A                                                     |                                                                                            | Clover et al., 1976                                               |
| Silt                                  |                                         | 20             | 36<br>34     | 24           |                  |                    |        |                          |         |     |                |                  |                           | 1                           | Idaho A                                                                   |                                                                                            | Clover et al . 19/6<br>Clover et al . 1976                        |
| 2.74                                  |                                         | ù.             | 37           | 73           |                  |                    |        |                          |         |     |                |                  |                           | 1 73                        | Arkansas (<br>  Lingus                                                    |                                                                                            | Ginver et at , 1976                                               |
|                                       |                                         | 53             | 16           | 36           |                  |                    |        |                          |         |     |                |                  |                           | 0 03                        | Soil # 1 (MARE)                                                           |                                                                                            | G.Itham et al., 198<br>G.Itham et al., 198                        |
|                                       |                                         | 35<br>36       | 74<br>79     | 0 43         |                  |                    |        |                          |         |     |                |                  |                           | 0.82                        | So-1 (2 (MAR))                                                            |                                                                                            | Gilliam et al , 198                                               |
|                                       |                                         | 34             | 31           | 0.4          |                  |                    |        |                          |         |     |                |                  |                           | 0.00                        | Sail # 3 (MPE)<br>Sail # 5 (Lemington)                                    |                                                                                            | Giltham et al., 198                                               |
|                                       |                                         | 41             | 31<br>33     | 1 77         |                  |                    |        |                          |         |     |                |                  |                           | 0 93                        | Se.1 # 9 (Nert+ Rav)                                                      |                                                                                            | Gillham et al , 198<br>Gillham et al , 198                        |
|                                       |                                         | 77<br>34       | 37           | 0.95         |                  |                    |        |                          |         |     |                |                  |                           | 0.94                        | Seit § 14 (Atberta)<br>Aromaston witt (average profile)                   |                                                                                            | Jun & Barber, 1970                                                |
|                                       |                                         |                | 20 1         | 11           |                  |                    |        |                          |         |     |                |                  |                           | 15                          | Hitzelle silt                                                             |                                                                                            | Routson, 1973<br>Cillham et al., 198                              |
| ( lav                                 |                                         | 50<br>34       | 6<br>34      | 0 23<br>0 M1 |                  |                    |        |                          |         |     |                |                  |                           | 1 07                        | Soul # 15 (Atherta)                                                       |                                                                                            | Giover et al . 1976                                               |
| · • •                                 |                                         | 37             | 36           | i            |                  |                    |        |                          |         |     |                |                  |                           | 1 0/                        | lennesser (Dak Fidge)<br>New York (West Valley)                           |                                                                                            | Clover et al . 1976                                               |
|                                       |                                         | 37<br>34       |              | 2 2          |                  |                    |        |                          |         |     |                |                  |                           | 1 63                        | Areanses A                                                                |                                                                                            | Glover et al , 1976                                               |

.

*i* .

# IRON Ka VALUES

| C 150                   | SOIL.                                                                                                                                                                                                                                    | SAND                                                                                                       | sn 1                                                                                                                  | 8<br>(1 AV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | S<br>DRC                                                                                                                       | <b>%</b><br>(a(03 | PH<br>SAT PASTE                                                                                                                                                                                                                                                                                                                                | <u>н</u> | CEC<br>₩9/<br>100p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | S FREE<br>IRON<br>(1x1DES | CIMP<br>CATION | S COMP<br>CATION | NUCLIPE<br>CONCENTRATION | Kđ<br>(mi/q)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | SOIL LOCATION<br>or DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | OTHER INFORMATION                                                                                                                                                                                                                                                                                                                                                                                          | REFERENCE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|-------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|----------------|------------------|--------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| •                       | Sand<br>Sand<br>Sand<br>Clayey Sand<br>Clayey Sand<br>Clayey Sand                                                                                                                                                                        | 89<br>91<br>83<br>58<br>68<br>73                                                                           | 3<br>2<br>2<br>6<br>11                                                                                                | 8<br>7<br>15<br>36<br>21<br>19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                |                   |                                                                                                                                                                                                                                                                                                                                                |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                           |                |                  |                          | 1200 (800)<br>6000<br>1800<br>6000<br>6000<br>6000<br>600 (690)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Beatly 1, Nevada<br>Reatly 2, Nevada<br>Reatly 5, Nevada<br>Barneelt 4, South Carolina<br>Barneelt 12, South Carolina<br>Barneelt 14, South Carolina                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Bestty, Nevada Barmell, S. Carolina. West Valley, M.Y.<br>(shet = Kds highest in alkaline Alluvial Basin deposits high<br>in montamy:llonite & realites)<br>lab laKdraineral phase char. Kd col.=( }:reducing candition<br>lab2rRelationshipstesture.surface area & clay mineral comp<br>lab & Soil text. & mineral comps. Tab.daKds radionuclide<br>Fig Srtast., diagram. Fig.7aKd vm. surptive minerals. | Mechennel, 1983<br>Neiheinel, 1983<br>Meiheinel, 1983<br>Mecheinel, 1983<br>Neiheinel, 1983<br>Neiheinel, 1983                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                         | Losm<br>Sandy Losm<br>Sandy Losm<br>Sandy Losm<br>Clay Losm<br>Losm<br>Losm<br>Losm<br>Losm<br>Losm<br>Losm<br>Losm | 45 0<br>74 2<br>36 3<br>31 4<br>56 0<br>32 5<br>33 5<br>31 5<br>31 5<br>31 5<br>31 5<br>31 5<br>31 5<br>31 | 35 0<br>20.0<br>14 0<br>27 5<br>36 2<br>27.5<br>30.0<br>29 0<br>37.0<br>6 2<br>44 0<br>5<br>22.0<br>5<br>22.5<br>24.5 | 20 0 0<br>11 8<br>36 4<br>16 4 5<br>37 5<br>33 5<br>33 5<br>33 5<br>35 3<br>25 0 0<br>19 0<br>10 0 | 3.0<br>2.5<br>1.94<br>2.8<br>3.5<br>1.31<br>4.96<br>2.54<br>2.91<br>1.94<br>2.91<br>1.54<br>2.54<br>0.0<br>1.67<br>5.3<br>3.85 |                   | 7 7 (.n H20)<br>5.0 (.n H20)<br>7 8 (.n H20)<br>7 8 (.n H20)<br>7 9 (.n H20)<br>7 9 (.n H20)<br>7 9 (.n H20)<br>7 1 (.n H20)<br>7 7 8 (.n H20)<br>7 5 (.n H20)<br>7 5 (.n H20)<br>7 9 (.n H20)<br>7 9 (.n H20)<br>7 1 (.n H20) |          | 00+00 1/kg<br>16 mm0 1/kg<br>16 mm0 1/kg<br>17 7<br>6 3<br>37 7<br>6 3<br>37 3<br>37 3<br>37 3<br>4 4<br>37 4<br>37 5<br>7 1<br>4 4<br>37 5<br>7 1<br>4 4<br>37 5<br>7 1<br>26 8<br>13 5<br>7 7<br>1<br>27 8<br>13 7<br>26 8<br>13 5<br>23 7<br>1 1<br>33 7<br>26 8<br>13 5<br>27 1<br>(11 3)<br>(24 7)<br>(147 9)<br>(147 9)<br>( |                           |                |                  |                          | 490<br>515.5<br>794.4<br>375.1<br>1259<br>1154.<br>8290.5<br>1195<br>2078<br>2078<br>2078<br>2078<br>2078<br>2078<br>2078<br>2078<br>2078<br>2078<br>2078<br>2078<br>2078<br>2078<br>2078<br>2078<br>2078<br>2078<br>2078<br>2078<br>2078<br>2078<br>2078<br>2078<br>2078<br>2078<br>2078<br>2078<br>2078<br>2078<br>2078<br>2078<br>2078<br>2078<br>2078<br>2078<br>2078<br>2078<br>2078<br>2078<br>2078<br>2078<br>2078<br>2078<br>2078<br>2078<br>2078<br>2078<br>2078<br>2078<br>2078<br>2078<br>2078<br>2078<br>2078<br>2078<br>2078<br>2078<br>2078<br>2078<br>2078<br>2078<br>2078<br>2078<br>2078<br>2078<br>2078<br>2078<br>2078<br>2078<br>2078<br>2078<br>2078<br>2078<br>2078<br>2078<br>2078<br>2078<br>2078<br>2078<br>2078<br>2078<br>2078<br>2078<br>2078<br>2078<br>2078<br>2078<br>2078<br>2078<br>2078<br>2078<br>2078<br>2078<br>2078<br>2078<br>2078<br>2078<br>2078<br>2078<br>2078<br>2078<br>2078<br>2078<br>2078<br>2078<br>2078<br>2078<br>2078<br>2078<br>2078<br>2078<br>2078<br>2078<br>2078<br>2078<br>2078<br>2078<br>2078<br>2078<br>2078<br>2078<br>2078<br>2078<br>2078<br>2078<br>2078<br>2078<br>2078<br>2078<br>2070<br>2005<br>500<br>500<br>500<br>500<br>500<br>500<br>5 | Arthic Rigck Chernores<br>Urthic Regensi<br>Facitis (F), Po Valley, Italy<br>Verrelli (V), Po Valley, Italy<br>Careatame (C), Po Valley, Italy<br>Sarmata (S), Po Valley, Italy<br>Monticelli (W), Po Valley, Italy<br>Sormata (S), Po Valley, Italy<br>5 Po Valley, Italy<br>17 Po Valley, Italy<br>19 Po Valley, Italy<br>41 Po Valley, Italy<br>55 Po Valley, Italy<br>51 Po Valley, Italy<br>55 Po Valley, Italy<br>55 Po Valley, Italy<br>56 Po Valley, Italy<br>57 Po Valley, Italy<br>58 Po Valley, Italy<br>59 Po Valley, Italy<br>50 Po Valley, Italy<br>51 Po Valley, Italy<br>52 Po Valley, Italy<br>53 Po Valley, Italy<br>54 Po Valley, Italy<br>55 Po Valley, Italy<br>56 Po Valley, Italy<br>57 Po Valley, Italy<br>58 Po Valley, Italy<br>59 Po Valley, Italy<br>50 Po Valley, Italy<br>50 Po Valley, Italy<br>51 Po Valley, Italy<br>52 Po Valley, Italy<br>53 Po Valley, Italy<br>54 Po Valley, Italy<br>55 Po Valley, Italy<br>55 Po Valley, Italy<br>56 Po Valley, Italy<br>57 Po Valley, Italy<br>58 Po Valley, Italy<br>59 Po Valley, Italy<br>50 Po Valley, Italy<br>50 Po Valley, Italy<br>50 Po Valley, Italy<br>50 Po Valley, Italy<br>51 Po Valley, Italy<br>52 Po Valley, Italy<br>53 Po Valley, Italy<br>54 Po Valley, Italy<br>55 Po Valley, Italy<br>56 Po Valley, Italy<br>57 Po Valley, Italy<br>58 Po Valley, Italy<br>59 Po Valley, Italy<br>50 Po Valley, Italy<br>51 Po Valey, Italy<br>51 Po Vale | <pre>(lab 1) (EEx =moltg=1)<br/>(Conc = 378.33 wCi/mg - same concentration for ().N.)<br/>(D N = Co.(cs,Mn,1)<br/>lab.ls exil properties<br/>lab 3: Kd = 72 hours<br/>(lab 7: =oil type) (lab 5: CEC = Kd) (in JAP)<br/>CEC = () = men/g. 9 tables, 3 figures.</pre>                                                                                                                                       | Sheppard & Sheppard, 10<br>Sheppard & Sheppard, 10<br>Carini et al., 1995.<br>Carini et al., 1 |
| Fe 59<br>Fe Fe<br>Fe Fe |                                                                                                                                                                                                                                          |                                                                                                            |                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 14.5g/<br>27.9g/<br>670./g<br>705.2g                                                                                           | ka<br>/ha         | 8.20<br>730<br>720<br>710                                                                                                                                                                                                                                                                                                                      |          | (200.1)<br>1 13uea/g<br>1 58uea/g<br>4 09uea/g<br>4 53uea/g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                         |                |                  |                          | 0 616 t./q<br>0.159 K/g<br>1 127 L/g<br>0.521 L/g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Pompano Beach, Florida<br>Pompano Beach, Florida<br>Pompano Beach, Florida<br>Pompano Beach, Florida                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Tab 1 = cations in soil. Tab 2 s soil charact.<br>Tab 3 = heavy metals in soil. Tab 4 = linear Kd (L/g).<br>Tab 5 = langmuir coff. Fig 1 & 2 = isotherms = Cr. Ni.<br>(D N = Cu. Zn. Mn. Ni. Cd. Cr. Ca)                                                                                                                                                                                                   | Incue & Morisses, 197<br>Wong et al., 1983<br>Wong et al., 1983<br>Wong et al., 1983<br>Wong et al., 1983<br>Wong et al., 1963                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

.

.

# LEAD Ka VALUES

| NIC 15#                                      | SUIL<br>type                                                                                                                                                                             | \$<br>SAND | <b>8</b><br>511,1 | S<br>CI AY    | N<br>DRC      | \$<br>(aff3 | PH<br>SAT PAS                                 | ен<br>Ле (у |                  | \$ FREE<br>1RDN<br>OX10F5 | CIMP<br>CALLEN         | & COMP<br>CATION | NLCL INF<br>CONCENTRATION | Kd<br>(≈L/q)                                                                   |                                                                                                 | STIL LOCATION<br>or DESCRIPTION | DTHEP INFORMATION                                                                                                                                                                                                                                                                                                                                                                                                                                                   | REFEDENCE                                                                                                                                                                                                                                                  |
|----------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-------------------|---------------|---------------|-------------|-----------------------------------------------|-------------|------------------|---------------------------|------------------------|------------------|---------------------------|--------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|---------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Pb 210<br>Pb 210<br>Pb 730<br>Pb<br>Pb<br>Pb | Time sandstone - silty sand<br>fine sandstone - silty sand<br>fine sandstone - silty sand<br>fine sandstone - silty sand<br>organic<br>Loam<br>Medium sand<br>Organic<br>Fine sandy Joan |            |                   | 15<br>2<br>(1 | 100           |             | 20<br>45<br>575<br>70<br>48<br>73<br>49<br>55 |             | 17<br>5 8<br>120 |                           |                        |                  |                           | 20<br>100<br>1500<br>4000<br>9000 (#11)<br>21000 L/Kg<br>19 L/Kg<br>30000 L/Kg | comercial aphagnum prat<br>? Port Hope, Onlario<br>3 Port Hope, Onlario<br>4 Port Hope, Onlario |                                 | (Pb         710)         1ab         4           p         226         5:1: revolagy         5:2: revolagy           p         230 :=         Salit         Rock Formation           (Pb)         (1ab 6)         (fig 12 :=         Lao Kd vs. log cr)           1ab 6 - Kd :         CM (accometric mean)         (n N = 1, U)         Price Hope soils           (N = 1b, U)         Charles Lab 11: Kd (L/Kg)         4 soils, resender, MD         (diversion) | Maji-Djafari et si , 198<br>Maji-Djafari et si , 198<br>Maji-Djafari et si , 198<br>Maji-Djafari et si , 198<br>Shessard and Evenden, 198<br>Shessard and Evenden, 198<br>Shessard, WCE & RJP, 198<br>Shessard, WCE & RJP, 198<br>Shessard, WCE & RJP, 198 |
| *******                                      | send sandy rose                                                                                                                                                                          | ********   |                   | 11            | *******       |             | ) 4<br>                                       | *******     | ę 7              | *********                 |                        |                  |                           | 59000 L/ha                                                                     | 5 Port Hope Interic                                                                             |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Sheppard, WCE & RUP, 1989                                                                                                                                                                                                                                  |
| Ph                                           | 3646                                                                                                                                                                                     | •          | •                 | 0             | 35            | -           | 45.50                                         | ، I         | 27               | •                         | {Carrel<br>0.0.015 mol |                  |                           | 2 8+10E2                                                                       | Sevit C                                                                                         |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Gerritse et al , 1987                                                                                                                                                                                                                                      |
| Pis<br>Pis                                   |                                                                                                                                                                                          | •          | •                 | 0             | 35            |             | 45-50                                         | r i         | 77               |                           | (ca2+) .               | -                |                           | 1 3+1083                                                                       | Sect C                                                                                          |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Corritae et al , 1982                                                                                                                                                                                                                                      |
| Pb<br>Ph                                     |                                                                                                                                                                                          | -          | •                 | 20            | 2.5           |             | 7.5 - 8 0                                     |             | 16               |                           | 0 0 015 mol<br>[(a2+)  |                  |                           | 3.5+10F3                                                                       | 5e++ 0                                                                                          |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Gerritae et al., 1982                                                                                                                                                                                                                                      |
| Ph                                           | Unpolluted organic soil                                                                                                                                                                  |            |                   |               | 90            |             | 45                                            |             |                  |                           | 0.0.015                | /i               |                           | 2 52+10#4                                                                      | So-1 A                                                                                          |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Gerritse et al . 1982                                                                                                                                                                                                                                      |
| Pb                                           | Impolluted peat                                                                                                                                                                          |            |                   |               | <b>&gt;90</b> |             | 4 - 5                                         |             |                  |                           | [[+7+] -               |                  |                           | 1 8-1062                                                                       | Peal A                                                                                          |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Gerritse et al., 1982                                                                                                                                                                                                                                      |
| Pb<br>Ph                                     | Unsolivited pest                                                                                                                                                                         |            |                   |               | >90           |             | 4 - 5                                         |             |                  |                           | 0-0.015 mot            | 1                |                           |                                                                                |                                                                                                 |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                            |
| <b>'b</b>                                    | #=++ + - +                                                                                                                                                                               |            |                   |               |               |             | •••                                           | -           |                  | ·                         | [(a2-1-<br>0-0 (1)     |                  |                           | 6 3.                                                                           | Pest A                                                                                          |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Corritae at al., 1982                                                                                                                                                                                                                                      |
| 26<br>26                                     | fatluted peat<br>Sphagnum peat<br>Sphagnum peat                                                                                                                                          |            |                   |               | >90<br>-<br>- |             | 62<br>4-5<br>4-5                              |             | :                |                           | 0 075 mg               |                  |                           | ? 34+10F4<br>6+10F4<br>7+10E2                                                  | 50 <sup> </sup> 8                                                                               |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Gerritae et al., 1982<br>Wolf et al., 1977<br>Wolf et al., 1977                                                                                                                                                                                            |

.

### TABLE B-18

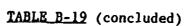
### LITHIUM Ka\_VALUES

| NUC 158     | 501L<br>Lyne          | \$ 5<br>5AND 51 | T CLAY | s.<br>(IRC | %<br>CaC03 | PH<br>SAT PASTE | сн<br>(v) | (EC<br>mea/<br>100m | N FREE<br>TRIN<br>DYTOPS | (1947)<br>(41][9] | % (D4<br>(A1)/N | NUCLIDE<br>CENCENTRATION | ×d<br>(mL/g) | SCIL FOCATION<br>or DESCRIPTION | (1)4€= <b>45,08447,104</b>                                                 | REFERENCE                |
|-------------|-----------------------|-----------------|--------|------------|------------|-----------------|-----------|---------------------|--------------------------|-------------------|-----------------|--------------------------|--------------|---------------------------------|----------------------------------------------------------------------------|--------------------------|
| L's Bandet. | er tuff (silicic glas | s)              |        |            |            |                 |           |                     |                          | A 19 N (ACT       | ι,              |                          |              |                                 | Wn Kd's determined<br>weed Kd - 0.04 in mode' cs. ulations<br>(13 figures) | Reighton & Wagenet, 1985 |

.

/

.


### TABLE\_E-19

#### MANGANESE\_Ka\_VALUES

| 501L<br>158 type                                                                                                                         | R<br>SAND                            | SILT                                | *<br>•A_                   | 18.<br>URC.                                | CaCOS SAT PASTE                                                                    | (F)* ****a/<br>(*) 100g                   | t FR <u>FI</u><br>IRTN<br>OxIDES | COMP<br>CATION | S COMP<br>CATTON                              | NUCLIDE<br>CONCLIMINATION | Kd<br>(=L/9)                                    | SOIL LOCATION<br>or DESCRIPTION                                                                                                                                                                                                                | OTHER INFORMATION                                                                                                                                                                                                              | REFERENCE                                                                                                                      |
|------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|-------------------------------------|----------------------------|--------------------------------------------|------------------------------------------------------------------------------------|-------------------------------------------|----------------------------------|----------------|-----------------------------------------------|---------------------------|-------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|
| A Heavy clay -1<br>A Heavy clay -3<br>JA Heavy clay -3<br>JA Heavy clay -4<br>JA Heavy clay -5<br>JA Sity clay leas -6<br>Jacoby sand -7 | 79                                   | 15<br>11<br>37<br>37<br>67<br>21    | 85<br>89<br>68<br>68<br>38 |                                            | 8.2(7 1- 2)<br>8.4(7 3 7)<br>8.3(7 1- 2)<br>8.0(7 0 1)<br>7.0(7 2 1)<br>6.4(7 1 1) | 26+-2<br>2142<br>5 7+-2<br>25+-1<br>17+-5 | ,<br>,                           |                | <u>, , , , , , , , , , , , , , , , , , , </u> |                           | 100° 700<br>96 1<br>34 5<br>4100 1200<br>430 70 | (9 04 - 9 11 a) Lorital sari, Finland<br>(7 08 - 7 15 a) Oli-lucto Sari, Finland<br>(7 49 - 7 56 a) Oli-lucto Sari, Finland<br>(6 29 - 6 35 a) Salo Sari, Finland<br>(7 24 - 6 35 a) Salo Sari, Finland<br>(7 24 - 3 31 a) Jamas Sari, Finland | (Mn-54) (Tab.10 = Mn Kd + pH)<br>(pH in Tab.10 - () in pH column)<br>(D N = 5×.5x.5c.7x.6v) (Fig. 11 = Mn Kd vs. Rf)<br>Soif Lyse classified by DHT from texture triangle.                                                     | Nikula, 1997<br>Nikula, 1987<br>Nikula, 1987<br>Nikula, 1987                                                                   |
| Sandy lasa -8<br>Loony usad -9<br>Sandy lasa -10<br>Lasa -11                                                                             | 65<br>73<br>66<br>41                 | 21<br>25<br>27<br>34<br>37          | 77                         |                                            | 6 4(7 1++ 1)<br>6 4(7 3++ 2)<br>6 8(7 0+- 1)<br>6 7(7 0+- 1)<br>9 7(8,3+ 2)        | 2 8+-<br>3 2+-<br>2 1+-<br>2 3+-<br>18+-  | 2 .<br>3 .<br>3                  |                |                                               |                           | 96+-3<br>43<br>160+-10<br>130+-10<br>4300+-300  | <ul> <li>(4 m) Lovins apreni, Fieland</li> <li>(3 5 - 4 0 m) Juki moreeni, Fieland</li> <li>(3 5 - 4 0 m) Juuks moreeni, Fieland</li> <li>(7 7 - 2 5 m) Partals moreeni, Fieland</li> <li>(44 m) Kabola Kallionsovi, Fieland</li> </ul>        |                                                                                                                                                                                                                                | Nihula, 1987<br>Nihula, 1987<br>Nihula, 1987<br>Nihula, 1987<br>Nihula, 1987                                                   |
| Sandy lean -12<br>Lean<br>Sandy lean<br>Sandy Lean                                                                                       | 57<br>45 0<br>70 0<br>74.2           | 29<br>35.0<br>20 0<br>14.0          | 14<br>0.0<br>0 0<br>1 8    | 3.0<br>2.5<br>1.94                         | 9 9(8,1,2)<br>7.7 (in H20)<br>6 0 (in H20)<br>7 8 (in H20)                         | 404<br>30 9<br>7 2<br>6 3                 |                                  |                |                                               |                           | 2700100<br>16851<br>106 1<br>11002              | (24 m) Metazara Salingstov, finland<br>(24 m) Metazara Salingstov, finland<br>Facolta (F), Po Valley, italy<br>Vercell, (V), Po Valley, italy<br>Cargetamo (C), Po Valley, italy                                                               | (Nn-54)<br>(Conc = 328 33wCi/mg = same conc. for other elements)                                                                                                                                                               | Nibula, 1992<br>Nibula, 1992<br>Carini et al. 1995<br>Carini et al., 1985                                                      |
| Clay loam<br>Clay loam<br>Sandy loam<br>Sandy loam                                                                                       | 36.3<br>314<br>56.1<br>54.0          | 27.5<br>36 2<br>27.5<br>23.5        | 6.2<br>2 4<br>6 4<br>2.5   | 2.8<br>3 5<br>1.34<br>1.21                 | 7 8 (in H20)<br>7 7 (in H20)<br>7 9 (in H20)<br>6 8 (in H20)                       | 32 3<br>39 3<br>15 0<br>4 4               |                                  |                |                                               |                           | 54118<br>37370<br>24325<br>573 4                | Villanova (Vi). Po Valley, Italy<br>Sarmato (S). Po Valley, Italy<br>Monticelli (M). Po Valley, Italy<br>5 Po Valley, Italy                                                                                                                    | (0.N = (s, (s, Fe, 1) tab. 1 = soil properties<br>Tab 3 = Rd = 72 hours                                                                                                                                                        | Carini et al., 1985<br>Carini et al., 1985<br>Carini et al., 1985<br>Carini et al., 1985                                       |
| Clay loom<br>Clay loom<br>Clay loom<br>Clay loom<br>Sand                                                                                 | 82.5<br>39.5<br>31 5<br>87.0<br>89 5 | 30.0<br>27.0<br>29.0<br>37.0        | 7.5<br>3.5<br>9.5<br>1.0   | 4 96<br>2 54<br>2 91<br>1 94<br>1 54       | 7.5 (in H20)<br>7 8 (in H20)<br>7 7 (in H20)<br>6 4 (in H20)                       | 35 4<br>24 1<br>33 5<br>24 5              |                                  |                |                                               |                           | 57215<br>1929                                   | 15 Po Valley, It 'v<br>17 Po Valley, Italy<br>19 Po Valley, Italy<br>41 Po Valley, Italy                                                                                                                                                       |                                                                                                                                                                                                                                | Carini et al., 1985<br>Carini et al., 1985<br>Carini et al., 1985<br>Carini et al., 1985                                       |
| Sandy clay lose<br>Sandy clay lose<br>Sandy lose<br>Lose                                                                                 | 31.0<br>50.5<br>59.0<br>42.5         | 6.7<br>44 0<br>19.5<br>22 0<br>43.5 | 53<br>50<br>90<br>40       | 2.60<br>4.08<br>1.67<br>1.67               | 7 5 (in H20)<br>7 9 (in H20)<br>6.4 (in H20)<br>6 0 (in H20)<br>7 8 (in H20)       | 7 1<br>22 6<br>26 9<br>13 5<br>23 2       |                                  |                |                                               |                           | 3513<br>33726<br>457 2<br>523 6                 | 55 Po Valley, Italy<br>61 Po Valley, Italy<br>65 Po Valley, Italy<br>73 Po Valley, Italy                                                                                                                                                       |                                                                                                                                                                                                                                | Carini et al , 1985<br>Carini et al , 1985<br>Carini et al , 1985<br>Carini et al , 1985                                       |
| Loom<br>(Jay<br>Sand<br>Silt-clay                                                                                                        | 43.0<br>24.5                         | 27.5<br>24 5                        | 45<br>1.0                  | 6 3 85                                     | 7.1 (in H20)<br>7.5 (in H20)                                                       | 34 9<br>35.1<br>(11.2<br>(74)             |                                  |                |                                               |                           | 47950<br>486 9<br>48945<br>150                  | 77 Po Valley, Italy<br>91 Po Valley, Italy<br>93 Po Valley, Italy<br>A                                                                                                                                                                         | (0 N = Sr. Cs. Co. 2n. Ap. Fe. No). (in JAP)                                                                                                                                                                                   | Carini et al., 1985<br>Carini et al., 1985<br>Carini et al., 1985<br>Carini et al., 1985                                       |
| Silt-clay<br>Gravel-gand<br>Silt-clay<br>Silt-clay                                                                                       |                                      |                                     |                            |                                            |                                                                                    | (55 (<br>169 )<br>(167 )<br>(47 )         | á<br>                            |                |                                               |                           | 2100<br>250<br>5000<br>10000<br>30              | 8<br>C<br>D                                                                                                                                                                                                                                    | lab 7: soil type Tab 5: CEC + Rd<br>CEC - () = meg/g<br>+ : Mn-56 was used instead of Mn-54, - = not determined.                                                                                                               | Inoue & Morisson, 1976<br>Inoue & Morisson, 1976<br>Inoue & Morisson, 1976<br>Inoue & Morisson, 1976                           |
| Gravel<br>Silt-Clay<br>Silt-Clay<br>Silt-Clay                                                                                            |                                      |                                     |                            |                                            |                                                                                    | (28<br>(117<br>(140<br>(246)              | )<br>}                           |                |                                               |                           | 500<br>700<br>70                                | с<br>н<br>1                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                | Inous & Morisaus, 1976<br>Inous & Morisaus, 1976<br>Inous & Morisaus, 1976<br>Inous & Morisaus, 1976<br>Inous & Morisaus, 1976 |
| Fine sand<br>Silt<br>Sand<br>Gravel                                                                                                      |                                      |                                     |                            |                                            |                                                                                    | (60 :<br>(149 (<br>(24 :<br>(27 :         | i)<br>1)                         |                |                                               |                           | 50<br>250<br>14 •<br>800                        | и<br>К<br>И<br>И                                                                                                                                                                                                                               |                                                                                                                                                                                                                                | Inder & Morisses, 1976<br>Inder & Morisses, 1976<br>Inder & Morisses, 1976<br>Inder & Morisses, 1976<br>Inder & Morisses, 1976 |
| Fine sand<br>Fine sand<br>Sitt-clay<br>Hallandale fine sand                                                                              |                                      |                                     |                            | 14.5g/Xg                                   | <b>6</b> 20 .                                                                      | (122 )<br>(38 )<br>(200 )<br>1 13urg      | n)<br>i)<br>i)                   |                |                                               |                           | 2000<br>70<br>100<br>.071 L/g                   | n<br>D<br>P<br>Q<br>Pompano Beach flerida                                                                                                                                                                                                      | tak ta antara sa sa sa sa                                                                                                                                                                                                      | Indee & Horisses, 1976<br>Indee & Horisses, 1976<br>Indee & Horisses, 1976<br>Indee & Horisses, 1976<br>Indee & Horisses, 1976 |
| Flantation Muck - bottom fayer<br>Plantation Muck - middle layer<br>Plantation Muck - top layer                                          | <b>88</b> .03                        | <b>8</b> 67                         | 3.3                        | 27 9g/Kg<br>670.7g/Kg<br>705.2g/Kg<br>1 41 | 7 70<br>7 10<br>6 1                                                                | 1 58urg<br>4 09urg<br>4 53urg             | 's<br>'9                         |                |                                               |                           | 195 L/g<br>036 L/g<br>226 L/g<br>24 95324       | Pompano Besch, Florida<br>Pompano Besch, Florida<br>Pompano Besch, florida<br>I Norfolk County, Untaric                                                                                                                                        | Tab 1 = cations in soil. Tab 2 = soil charact.<br>Tab 3 · heavy m tals in soil. Tab 4 + linear Kd (L/g).<br>Tab 5 = Longour coeff Fig 1 & 2 + isotherms = Cr. Ni.<br>(0 N = (u, 2n, Fe, Ni, Cd, Cr. (b))<br>d(u, 2n) = (u, 2n) | Mong et al., 1983<br>Mong et al., 1983<br>Mong et al., 1983<br>Mong et al., 1983                                               |
|                                                                                                                                          | 93.94<br>90<br>92.09<br>83.49        | 10.91<br>6 66<br>5 41<br>9.9        | 1.75<br>1.33<br>2.5<br>6.6 | 1 21<br>1.34<br>1 61<br>3.5                | 6 8<br>6 9<br>6 3<br>5 2                                                           |                                           |                                  |                |                                               |                           | 29 86283<br>30 39695<br>18 18357<br>34 38714    | 7 Deford County, Ontario<br>3 horfolis County, Ontario<br>4 Norfolis County, Ontario<br>5 Norfolis County, Ontario                                                                                                                             | Kd = linkd (Pers communication)<br>Kd = linkd (Pers communication)<br>Kd = linkd (Pers communication)<br>Rd = linkd (Pers communication)<br>Kd = linkd (Pers.communication)                                                    | Sheppard, 1989<br>Sheppard, 1989<br>Sheppard, 1989<br>Sheppard, 1989                                                           |
| <u></u>                                                                                                                                  | 90 44                                | 6.73                                | ) 32                       | 2.02                                       | 1.2                                                                                |                                           |                                  |                |                                               |                           | 41 89678                                        | 6 (Dendaue 878114)                                                                                                                                                                                                                             | Rd = 1:nKd (Firs. comunication)                                                                                                                                                                                                | Shepsard, 1989<br>Sheppard, 1989                                                                                               |

.

continued...



| 154 | SOIL<br>Lype | SAND           | SIL1           | S<br>CLAY     | T.<br>ORC    | в <sub>рн</sub><br>CaCO3 SAT PASTF | FH<br>(v) | CEC<br>=== q/<br>100g | S FREI<br>IRUN<br>OXIDES | (CMP<br>CATION | S COMP<br>CATION | NUCLIDE<br>CONCENTRATION | Kd<br>{=L/g)         | SOTI LOCATION<br>or DESCRIPTION                              | OTHER INFORMATION                                                    |                        | REFERENCE |
|-----|--------------|----------------|----------------|---------------|--------------|------------------------------------|-----------|-----------------------|--------------------------|----------------|------------------|--------------------------|----------------------|--------------------------------------------------------------|----------------------------------------------------------------------|------------------------|-----------|
| · · |              | 89 49<br>90.37 | 5 47           | 5.05          | 2 15         | 7.2                                |           |                       |                          |                |                  | <u></u>                  | 35.07696             | 7 Norfold County, Unterio                                    | Kd = linKd (Pers. comunication)                                      | Sheppard.              |           |
|     |              | 81 98          | 9.64           | 8.38          | 3.9          | 7 1                                |           |                       |                          |                |                  |                          | 21 73977<br>75.07942 | 8 Norfolk County, Ontaria<br>9 Norfolk County, Ontario       | Kd = linKd (Pers_communication)<br>Kd = linKd (Pers_communication)   | Sheppard,<br>Sheppard, |           |
|     |              | 90 95          | 5.75           | 3.79          | 2 55         | 56                                 |           |                       |                          |                |                  |                          | 14 41441             | 10 Norfoli County, Onterio                                   | Kd = linKd (Pers communication)                                      | Sheppard.              |           |
|     |              | 68.7<br>82.68  | 24 53<br>16.47 | 6.77          | 0 87         | 6                                  |           |                       |                          |                |                  |                          | 6 436572             | 11 Norfolk County, Ontario                                   | Kd = linkd (Pers. communication)                                     | Sheppard,              | 1989      |
|     |              | 98.9           | 4.88           | 1.22          | 1.75         | 6.2<br>6 1                         |           |                       |                          |                |                  |                          | 15 52034             | 12 Norfelk County, Ontario                                   | Kd = finkd (Pers. comunication)                                      | Shepperd.              |           |
|     |              | 91 39          | 4.92           | 3 69          | 1.98         | 6 5                                |           |                       |                          |                |                  |                          | 14 53838<br>30 49643 | 13 Norfolk County, Ontario<br>14 Brant County, Ontario       | Kd z linKd (Pers. communication)<br>Kd z linKd (Pers. communication) | Sheppard,<br>Sheppard, |           |
|     |              | 89.3           | 5 76           | 4 94          | 2 08         | 5 8                                |           |                       |                          |                |                  |                          | 18 27498             | 15 Brant County, Ontario                                     | Kd = linkd (Pers. communication)                                     | Sheppard,              |           |
|     |              | 99.12          | 9.42           | 2.46          | 1 68         | 6 7                                |           |                       |                          |                |                  | •                        | 29 74582             | 16 Brant County, Ontario                                     | Kd = linkd (Pers communication)                                      | Sheppard               |           |
|     |              | 61.2<br>89.56  | 20.26<br>5.43  | 18.54         | 6 59<br>2 62 | 6 8                                |           |                       |                          |                |                  |                          | 72 45494             | 17 Kent County, Ontario                                      | Kd = linKd (Pers. communication)                                     | Sheppard,              |           |
|     |              | 86.83          | 9.06           | 4 12          | 3 5          | 7167                               |           |                       |                          |                |                  |                          | 43 39133             | 18 Elgin County, Ontario                                     | Kd = linKd (Pers communication)                                      | Shepperd,              |           |
|     |              | 88 96          | 8.54           | 2 45          | 1 48         | 64                                 |           |                       |                          |                |                  |                          | 29 17709<br>16 17499 | 19 Hiddleser County, Ontario<br>20 Hiddleser County, Ontario | Kd = FinKd (Pers. communication)<br>Kd = TinKd (Pers. communication) | Sheppord,              |           |
|     |              | 75 \$7         | 14 95          | 9 68          | 13.18        | 6                                  |           |                       |                          |                |                  |                          | 94 174               | 2) Middleser County, Ontario                                 | Kd = linkd (Pers. communication)                                     | Sheppard,<br>Sheppard, |           |
|     |              | 71 93          | 21.59          | 6 49          | 5 51         | 1                                  |           |                       |                          |                |                  |                          | 210.94               | 72 Hiddleses County, Onlario                                 | Kd + linkd (Pers communication)                                      | Shepeard               |           |
|     |              | 93.04<br>93.99 | 4 91 6.32      | 705<br>169    | 1 48         | 6 5                                |           |                       |                          |                |                  |                          | 39 3532              | 73 Middleses County, Ontario                                 | Kd = linKd (Pers_communication)                                      | Sheppord.              | 1989      |
|     |              | 91 07          | 4 17           | 4 06          | 1 14         | 6 5<br>6                           |           |                       |                          |                |                  |                          | 37 26716             | 24 Hiddleses County, Onlario                                 | Kd = linKd (Pers communication)                                      | Sheppard,              |           |
|     |              | 95.8           | 2 99           | 1 71          | 2 49         | 69                                 |           |                       |                          |                |                  |                          | 31 91192             | 25 Elgin Comty, Ontario                                      | Kd = linKd (Pers. communication)<br>Kd = linKd (Pers. communication) | Shepperd,              |           |
|     |              | 20.98          | 33 34          | 45 68         |              | 6                                  |           |                       |                          |                |                  |                          | 74 02016<br>46 53332 | 26 Elgin County Ontario<br>27 Elgin County, Ontario          | Kd = linkd (Pers communication)<br>Kd = linkd (Pers communication)   | Shepperd,<br>Shepperd, |           |
|     |              | 83.64          | 11 74          | 4.61          | 1 82         | 71                                 |           |                       |                          |                |                  |                          | 45 09788             | 78 Elgin County, Ontario                                     | Kd = linKd (Pers communication)                                      | Sheppard,              |           |
|     |              | 84 68<br>91 78 | 9.52           | 5.8           | 4 3          | 6 6                                |           |                       |                          |                |                  |                          | 88 09434             | 29 Kent County, Datario                                      | Kd = linkd (Pers communication)                                      | Sheppord,              |           |
|     |              | 30.89          | 3.7<br>73.21   | 4 57<br>45.91 | 2 89<br>5.78 | 6 1                                |           |                       |                          |                |                  |                          | 72 65781             | 30 Rent County, Onter io                                     | Kd = linkd (Pers communication)                                      | Sheppard,              |           |
|     |              | 69 4           | 17 67          | 12.93         |              | 7 1 6 6                            |           |                       |                          |                |                  |                          | 68 22906             | 31 Kent County, Untario                                      | Ed = linkd (Pers communication)                                      | Sheppard,              |           |
|     |              | 91.39          | 5.74           | 2 87          | 1 68         | 6 1                                |           |                       |                          |                |                  |                          | E /496/1             | 37 Kent County, (Intar in<br>33 Elgin County, Ontar io       | Kd = in#d (Pers. communication)<br>Kd = in#d (Pers. communication)   | Sheppord,<br>Sheppord, |           |
|     |              | 22 09          | 49 55          | 28 37         |              | 7 1                                |           |                       |                          |                |                  |                          | 54 29927             | 34 Bruce County, Ontario                                     | Kd = linKd (Pers communication)                                      | Shepperd.              |           |
|     |              | 39.59          | 40.84          | 19.57         |              | 75                                 |           |                       |                          |                |                  |                          | 60 6383              | 35 Kent County, Litario                                      | Kd = linkd (Pers. communication)                                     | Sheppard               |           |
|     |              | 92.95<br>91.51 | 3.32           | 3.73          | 1 68         | 57                                 |           |                       |                          |                |                  |                          | 13 09019             | 36 Elgin County, Ontario                                     | Kd x linkd (Pers. communication)                                     | Shepperd,              |           |
|     |              | 88 47          | 7.84           | 3 69          | 2.82         | 67<br>68                           |           |                       |                          |                |                  |                          | 19 89193             | 37 Elgin County, Untario                                     | Hd = LinKd (Pers. communication)                                     | Sheppard,              |           |
|     |              | PR . 86        | 7.02           | 4 13          | 0            | č                                  |           |                       |                          |                |                  |                          | 56 76449<br>19.71843 | 38 Norfolk County, Onterio<br>39 Norfolk County, Onterio     | Kd = linkd (Pers_communication)<br>Kd = linkd (Pers_communication)   | Sheppard,<br>Sheppard, |           |
|     |              | 91.01          | 5.72           | 3.27          | 1.95         | 56                                 |           |                       |                          |                |                  |                          | 13 7643              | 40 Elgin County, Ontario                                     | Kd = linKd (Pers communication)                                      | Sheppard.              |           |
|     |              | 82.42<br>61.94 | 8.79           | 8.79          | 5.78         | 1.2                                |           |                       |                          |                |                  |                          | 74 79869             | 4) Elgin County, Ontaria                                     | Kd = linkd (Pers. communication)                                     | Shappard,              |           |
|     |              | 63 77          | 75 23<br>10.4  | 12 93         | 4 64 3 74    | 6 7                                |           |                       |                          |                |                  |                          | 37 05058             | 47 Deford County, Ontario                                    | Kd x linkd (Pers. compenication)                                     | Sheppard,              | 1469      |
|     |              | 20.38          | 53.39          | 26.23         |              | 63<br>68                           |           |                       |                          |                |                  |                          | 34 08741             | 43 Oxford County, Ontario                                    | Rd = 1-nRd (Pers communication)                                      | Sheppard,              |           |
|     |              | 83.56          | 45.44          | 21            | 4.98         | 66                                 |           |                       |                          |                |                  |                          | 71.2223              | 44 Oxford County, Ontario<br>45 Difere County, Ontario       | Kd = linKd (Pers. comminication)<br>Kd = linKd (Pers. comminication) | Shepeard,              |           |
|     |              | 28.29          | 37.83          | 33 🛤          |              | 1                                  |           |                       |                          |                |                  |                          | 147 235              | 46 Waterloo County, Ontario                                  | Kd - linkd (Pers comunication)                                       | Sheppard,<br>Sheppard, |           |
|     |              | 19.11          | 43.36          | 37.53         |              | 7 1                                |           |                       |                          |                |                  |                          | 56 73789             | 47 Wellington County, Ontario                                | Kd = Linkd (Pers. communication)                                     | Sheppard               |           |
|     |              | 91,33<br>21,25 | 4 95<br>28 06  | 3.72<br>50.69 | 2 77         | <u>?</u> }                         |           |                       |                          |                |                  |                          | 46 84659             | 48 Elgin County, Ontaria                                     | Kd z linKd (Pers communication)                                      | Sheppard,              | 1989      |
|     |              | 28.05          | 33.04          | 38 9          |              | 55                                 |           |                       |                          |                |                  |                          | 73 57529             | 49 Eases County, Ontario                                     | Kd = linkd (Pers communication)                                      | Sheppard,              |           |
|     |              | 3 91           | 50 73          | 45.37         |              | 74                                 |           |                       |                          |                |                  |                          | 46 88911<br>74 83125 | 50 Eases County. Ontario<br>51 Kent County. Ontario          | Kd = linKd (Pers. communication)<br>Kd = linKd (Pers. communication) | Shepperd,              |           |
|     |              | 60.17          | 75             | 14.93         | 4.64         | 7 2                                |           |                       |                          |                |                  |                          | 67 35673             | 57 Wellington County, Ontarin                                | Kd : limKd (Pers communication)                                      | Sheppard,<br>Sheppard, |           |
|     |              | 49 59          | 87 51          | 17 5          | 9 28         | 7.3                                |           |                       |                          |                |                  |                          | 137 347              | 53 Dufferin County, Ontario                                  | Kd = linkd (Pers. communication)                                     | Sheperd.               |           |
|     |              | 24.35<br>23.92 | 49.15          | 26.5          | 5.85         | 7.4                                |           |                       |                          |                |                  |                          | R7 9041              | 54 Dufferin County, Ontario                                  | Kd = linkd (Pers communication)                                      | Sheppard.              |           |
|     |              | 23 V2<br>56.60 | 54.64<br>30 82 | 16 39<br>12.5 | 834<br>309   | 13                                 |           |                       |                          |                |                  |                          | 250 5596             | 55 Grey County, Untarin                                      | Kd = linKd (Pers communication)                                      | Sheppord,              |           |
|     |              | 23 99          | 36 71          | 39.3          | 7.66         | 66                                 |           |                       |                          |                |                  |                          | 68 42676<br>3 44772  | 56 Grey County, Ontar a<br>57 Bruce County, Ontar a          | Kd = linMd (Pers. communication)<br>kd = linKd (Pers. communication) | Sheepard,              |           |
|     |              | 38.73          | 41.21          | 20.06         |              | 12                                 |           |                       |                          |                |                  |                          | 85 66531             | 58 Perth Courts, Ontario                                     | Kd z linkd (Pers. communication)                                     | Shappard,<br>Shappard, |           |
|     |              | 29 85          | 49 11          | 21 05         | 3 5          | ;                                  |           |                       |                          |                |                  |                          | 42 01284             | 59 Perth County, Onter 10                                    | hd = linkd (Pers communication)                                      | Sheppard,              |           |
|     |              | 24 6<br>26.53  | 58 2           | 17.7          | 3.83         | 1                                  |           |                       |                          |                |                  |                          | 77 14479             | 60 Huron County, Ontario                                     | Rd = linKd (Pers communication)                                      | Sheppard,              |           |
|     |              | 70.53<br>74.84 | 45.97          | 27.5          | 12 91        | 1.2                                |           |                       |                          |                |                  |                          | 116 4787             | 61 Huron County, Ontario                                     | Rd = linkd (Pers communication)                                      | Sheppard,              | 1989      |
|     |              | 14 99          | 38.49          | 39 45         |              | / 5                                |           |                       |                          |                |                  |                          | 49 45202             | 67 Huran Courty, Ontario                                     | Rd + linkd (Pers communication)                                      | Sheppord,              | 1464      |
|     |              | 29 85          | 33 84          | 36 31         |              | 67                                 |           |                       |                          |                |                  |                          | 63 69554<br>75 61/93 | 63 Leabton County, Ontario                                   | ud = linkd (Pers communication)                                      | Sheppard,              |           |
|     |              | 37 58          | 39 6           | 2: 87         |              | 1 3                                |           |                       |                          |                |                  |                          | 66 58294             | 64 Lambton County, Intaria<br>64 dellington County, Ontaria  | Kd s finhd (fers. communication)                                     | Sheppord,              |           |
|     |              | 43 57          | 27.98          | 28 46         | 0            | 0                                  |           |                       |                          |                |                  |                          | 346 4575             | 54 Wellington County Intario                                 | Rd = Linkd (Pers. comminication)<br>Rd = Linkd (Pers. comminication) | Sheppard,              |           |
|     |              | 40 37<br>49,54 | 38 03          | 21 6          | 0            | 0                                  |           |                       |                          |                |                  |                          | 23P 8713             | 67 Wellington County, Unterin                                | kd z finkd (Pers comunication)<br>kd z finkd (Pers, comunication)    | Shappard,<br>Shappard, |           |
|     |              | 89.13          | 29.45<br>6.69  | 20.9          | 5.24         | 12                                 |           |                       |                          |                |                  |                          | 40.17307             | 68 Wellington County, Untario                                | Rd = finkd (Pers, communication)                                     | Sheppard,<br>Sheppard, |           |
|     |              | WT.10          | 0.04           | 4.10          | • 1          | 58                                 |           |                       |                          |                |                  |                          | 24 92567             | 69 Esses County, Ontario                                     | Kd = linkd (Pers. communication)                                     | Sheppard,              |           |

# TABLE\_B-20

#### MOLYBDENUM Ka VALUES

| RK 150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SOIL<br>Lype | 5440 | <b>5</b> | a, | 2<br>(197) | \$<br>CaC03 | SAL                       | PASIT | ۲۳<br>(۳) | CEC<br>mea/<br>100g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | % FREE<br>1ron<br>fix1des | C(MP<br>CATION | \$ (04P<br>(A1)(N | NRCL 10F<br>CONCENTRATION | ×đ<br>(mi/q)                                                                                                                                                                                               | SALL LOCATION<br>or DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | OTHER INFORMATION                                                                                                                                                                                                                                                                                                                                                                                                        | REFERENCE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|------|----------|----|------------|-------------|---------------------------|-------|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|----------------|-------------------|---------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Imp         [FH-Ah           No         Ap           No         Bj-Rfjgj           No         C-Gp           No         Q           No         Q <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>571557<br/>512567<br/>51277</td> <td></td> <td></td> <td>1 2cm/ia-1<br/>2 4cm/ia-1<br/>2 4cm/ia-1<br/>1 fcm/ia-1<br/>1 fcm/</td> <td></td> <td></td> <td></td> <td></td> <td>50 3 (20 8)<br/>26 1 (15 8)<br/>51 9 (7 7)<br/>14 2 (14 2)<br/>140<br/>40<br/>6<br/>150<br/>650<br/>5<br/>13<br/>400<br/>200<br/>200<br/>270<br/><br/>1 3<br/>40<br/>18 30 7(-)<br/>10 2-0 7(-)<br/>5 1-(- 3(-)<br/>13 3-0 8(-)</td> <td>0.4 cm Cleyed Dystric Brunisol<br/>1.5 cm Cleyed Dystric Brunisol<br/>1.5 cm Cleyed Dystric Brunisol<br/>A<br/>A<br/>C<br/>D<br/>E<br/>C<br/>H<br/>H<br/>N<br/>D<br/>-4 cm Cleyed Dystric Brunisol<br/>0.4 cm Cleyed Dystric Brunisol<br/>1.5 cm Cleyed Dystric Brunisol<br/>1.5 ds cm Cleyed Dystric Brunisol</td> <td>Tab 1: soit prop. BLC-1Y         Nd: Losch := no (). Nd: CM: ()         CEC: conting-1         (No-99) Tab.2 : soit type         Tab.5 := CEC &amp; Nd         (TON : C (a, C (M, Zn, Ag, Fe))         CFC := () : weg/g (:n JAP)         9 Tabe. 3 fig         Pers Comm (D N : Ne, T, Cs, Cr, Tc, U, Th)         Nd: Loschste := ne () N de Croundester : ()         Soit type, Ph. CEC &amp; soil desc from BLC-1Y(JED16(31))</td> <td>Sheppord et al. 1987<br/>Sheppord et al. 1987<br/>Sheppord et al. 1987<br/>Sheppord et al. 1987<br/>Sheppord et al. 1987<br/>Inoue and Horisses, 11<br/>Inoue and Horisses, 1<br/>Inoue and Horisses, 1<br/>Sheppord, 1980<br/>Sheppord, 1980</td> |              |      |          |    |            |             | 571557<br>512567<br>51277 |       |           | 1 2cm/ia-1<br>2 4cm/ia-1<br>2 4cm/ia-1<br>1 fcm/ia-1<br>1 fcm/ |                           |                |                   |                           | 50 3 (20 8)<br>26 1 (15 8)<br>51 9 (7 7)<br>14 2 (14 2)<br>140<br>40<br>6<br>150<br>650<br>5<br>13<br>400<br>200<br>200<br>270<br><br>1 3<br>40<br>18 30 7(-)<br>10 2-0 7(-)<br>5 1-(- 3(-)<br>13 3-0 8(-) | 0.4 cm Cleyed Dystric Brunisol<br>1.5 cm Cleyed Dystric Brunisol<br>1.5 cm Cleyed Dystric Brunisol<br>A<br>A<br>C<br>D<br>E<br>C<br>H<br>H<br>N<br>D<br>-4 cm Cleyed Dystric Brunisol<br>0.4 cm Cleyed Dystric Brunisol<br>1.5 cm Cleyed Dystric Brunisol<br>1.5 ds cm Cleyed Dystric Brunisol | Tab 1: soit prop. BLC-1Y         Nd: Losch := no (). Nd: CM: ()         CEC: conting-1         (No-99) Tab.2 : soit type         Tab.5 := CEC & Nd         (TON : C (a, C (M, Zn, Ag, Fe))         CFC := () : weg/g (:n JAP)         9 Tabe. 3 fig         Pers Comm (D N : Ne, T, Cs, Cr, Tc, U, Th)         Nd: Loschste := ne () N de Croundester : ()         Soit type, Ph. CEC & soil desc from BLC-1Y(JED16(31)) | Sheppord et al. 1987<br>Sheppord et al. 1987<br>Sheppord et al. 1987<br>Sheppord et al. 1987<br>Sheppord et al. 1987<br>Inoue and Horisses, 11<br>Inoue and Horisses, 1<br>Inoue and Horisses, 1<br>Sheppord, 1980<br>Sheppord, 1980 |

-

,

#### NEPTUNIUM Ka VALUES

| 14 (1986)                                     | SAND         | 541.1      | CLAY       | S IRG      | S pH<br>Carua sat Pi | 14<br>1511 (* | rec<br>Verez/<br>Vittig   | 1740M<br>1740M<br>UKTOK 2 | ZOMP<br>CATION        | % (IMP<br>(A1)[N | CONCOLUMN TON | ¥d<br>(4 /q)               | SABL LERATOR<br>an DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | €1114€R 1.04 (DRMAT) [DM                                                      | REP F PL NCF                                    |
|-----------------------------------------------|--------------|------------|------------|------------|----------------------|---------------|---------------------------|---------------------------|-----------------------|------------------|---------------|----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|-------------------------------------------------|
| 23/ sill team                                 | 13           | <u>4</u>   |            | 7 A<br>7 B | 5 7 (5 1<br>(5 115)  | 31            | 20                        | 1 20                      | W, AM                 | 06               |               | <u>1</u>                   | Sharpsburg arrives, Imenir Typic Arguudalia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | No 237 (Lab 2)                                                                |                                                 |
| 737 namely inam<br>237 namely lease           | 55           | 33         | 12         | 24         | 5.3 (4 (             | 1 <b>9</b> 1  | 15                        | 1.65                      | 19833<br>86 - 44      | ~                |               | 0r                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | in pli column ( ) - extract 4                                                 | Nichits et al 1981<br>Nichits et al 1981        |
| 237 sandy lease                               | 64           |            |            | 2.4        | (5 Si)               |               | 1.                        | 1 1                       | 14403                 | 05               |               | 3                          | Malkis verves, (Plinthir Falendulty)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Scil properties, bli CEC fr a Wallace at al 1979                              | Munhala at al 1000                              |
| 737 sandy loam                                | ~            | 33         | ,          | 57         | 5.0 (4.4             | 123           | 15                        | 1 52                      | No. 44                | 04               |               | 3                          | Lyman serves, (Typic Haptorthods)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Sort type and \$ main clay a nerals from Nishita, 1981(1                      | 215)Nishika et al. 1981                         |
| 237 clay loom                                 | 29           | 37         | 32         | 06         | (5.05)<br>7 P (7 5   | <b>10</b> 1   |                           |                           | 100123                |                  |               | 37                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                               | Nichita et al 1991                              |
| 23/ clay loam                                 |              |            |            | 0 6        | (1 28)               | (4)           | 30                        | 1 20                      | Mr 844<br>686(13      | <b>N4</b>        |               | 41                         | Hullowille (rafesenus:128 Ca(113), (typic Incrifluvent)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                               | Nubits et al 1981<br>Nichits et al 1981         |
| 737 sandu loam<br>737 sandu loam              | 70           | 28         | 2          | 84         | 60 (5)               | <b>(</b> 5)   | 15                        | 5 79                      | Me 14                 | 10               |               | 24                         | Albon series, (Xeric Haplehumulta)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                               | Nishita et al 1981                              |
| 737 will loam                                 | 21           | 50         |            |            | (6.57)               |               | -                         | •                         | UND:                  | 10.              |               | 108                        | Title Parine' (valid utblaunentis)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                               | Nishita et al 1303                              |
| 737 witt loss                                 |              | - 11       | 15         | 2.5        | 67 (6                | (3)           | 74                        | 2 4)                      | Mby 4M                | 0P               |               | 57                         | Ynla serves, flypic Yerortheits)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                               | Numera et at 1981                               |
| 237 mich                                      | 70           | 30         | 6          | 40 8       | (6.93)<br>7.2 (6 )   |               |                           |                           | LINE 1                |                  |               | H1                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                               | Nishita et al 1991<br>Nishita et al 1981        |
| 137 much<br>137 organic                       |              |            | ·          | 40 8       | (7 25)               |               | 60                        | 1.57                      | 1945 - 444<br>1997 13 | 10               |               | 285                        | Educationary (Missional) (not classified)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                               | Nichita et al. 1981                             |
| 737 erganic<br>737 erganic                    |              |            |            |            | 6 28 (0              | 1)            |                           |                           | HINK CI               |                  |               | 979<br>1000(+-700)         | F(f (9 40 cm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                               | Nonhola et al. 1981                             |
| 237 1100015                                   |              |            |            |            | 6 09(0 1             |               |                           |                           |                       |                  |               | 1000(- 400)                | 1°C1 (17) 4°C7 (11)<br>1°C1 (40 RO ∠m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10 661) (no Lab ) ("A) - +/                                                   | Shoppard and Thibault, 1                        |
| Litter = LFH Ah                               |              |            |            |            | 5 94(7 :             | <b>19</b> )   |                           |                           |                       |                  |               | 30                         | SCE (9 40cm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                               | Sheppard and Thibault, 1                        |
| Ap = Ap                                       |              |            |            |            | 51                   |               | P1 7cms1/kg<br>2 9cms1/kg |                           |                       |                  |               | · ( )                      | 0 - 4 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | lah 1 soil prop CEC: mol/Kol                                                  | Sheppard and Thibautt,<br>Sheppard et al., 1987 |
| tin B⊢ PrjArjaj<br>Lov B≠C Coj                |              |            |            |            | 5 2                  |               | 7 Irmn1/kg                |                           |                       |                  |               | 4 7 (5 B)                  | 4 15 cm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | to in ( ) (W, Fenchalie on ( )                                                | Cheppard of al., 1987                           |
| Los B = C Coj<br>37 Glauconste mend           | <b>.</b> .   |            |            |            | 6 7                  |               | 1 Trani/ka                |                           |                       |                  |               | 1 5 (0 9)<br>5 6 (0 5)     | 35 45 cm<br>345 cm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                               | Sheppard et al . 1987                           |
| 3/ Glauconite sand                            | 91 1         | 29         | 60         |            | 66(5)                | 394           | AV 3 /                    |                           |                       |                  | 1 1           | 13 7 (A B)                 | (30 gambs) N.E. Nutherlands                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                               | Sheppard et al., 1987                           |
| 37 Glauconite sand                            | 91           | 29         | 6.0<br>6.0 |            | 6 6 (5)              | 389           |                           |                           |                       |                  | 1 .           | 12 6 (A E)                 | [30 weeks] N [ hether jands                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (%r 537) (Annondia 3) (N 4 Am Fujic)<br>Shis report, is a problem - Kd-1000's | Fries et al., 1986                              |
| 37 Glaunumits sand                            | 91 1         | 29         | 6 0        |            | 6 5 (5)<br>E 5 (6)   | 396<br>397    |                           |                           |                       |                  | 2 H           | 15 6 (4 1)                 | (30 verbs) N E Netherlands                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Kds function of pit, the time - APPINDICES                                    | Print et al . 1986                              |
| 37 Gisuconite sand                            | 91 1         | 29         | 6 Ö        |            | 7 0 (6)              | 391           |                           |                           |                       |                  | 1 *           | 3/ 3 (4 P)                 | (30 weeks) N.E. Netherlands                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Ann Annahar pillin ( ) and al pil                                             | Prime et al., 1986<br>Prime et al., 1986        |
| 37 Glauconite send<br>37 Glauconite send      | 91 1         | 29         | 5 0        |            | 6 9 (6)              | 3R4           |                           |                           |                       |                  | 1 #           | 14 4 (A D<br>25 7 (A L)    | (30 uppha) N E hotherlanda<br>(30 uppha) N E Notherland                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | In Rid culumn, & permise, as anaermbic, Br hatch for e                        | funnfring at at. 1986                           |
| 37 Clauronite and                             | 71.1<br>91.1 | 29         | 60         |            | 5 8 (5)              | 13            |                           |                           |                       |                  | í.            | 2 9 (AN-B)                 | (fraeeka) W [ Nethorignda                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | M. Aciarity Rock salt (a hydrite)<br>Invention - salt done                    | Frins et al., 1986                              |
| 37 Glaucenite sand                            | <b>9</b> 1 1 | 29         | 60         |            | 5 9 (5)<br>5 9 (5)   |               | eV 37                     |                           |                       |                  | i •           | 1 4 (AN-B)                 | ( 6 verbs) N E Netherlands                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Invelues - salt dene                                                          | Prins et al., 1986                              |
| 37 Glauconite sand                            | 91.1         | 2 9        | 6 Ŏ        |            | 6 4 (6)              |               | ₩ 37                      |                           |                       |                  | 2 M           | 1 6 (AN-B)                 | (6 usebs) NE Notherlands                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                               | Prins et al., 1986<br>Prins et al., 1986        |
| 37 Glauconite sand<br>37 Glauconite sand      | 41 1         | 29         | 60         |            | 6 5 (6)              | 21            |                           |                           |                       |                  | 1 4           | R 0 (AN-B)<br># H (AN-B)   | (6 vooks) Nf Notherlands                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                               | Print et al., 1986                              |
| 37 Glauconite sand                            | 91.1         | 2 9        | 6 0        |            | 67 (6)               |               | •V 37                     |                           |                       |                  | 2 8           | 4 6 (AN-(5)<br>5 7 (AN-(5) | ( 6 verks) N E Notherlands<br>( 6 verks) N E Notherlands                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                               | Fring et al., 1996                              |
| 37 Cipyconste and                             | 91 1<br>93 1 | 7 9<br>7 9 | 60         |            | 5 5 (5)              | 138           |                           |                           |                       |                  | j #           | 1 4 (AH-C)                 | (85 weeks) NE Netherlands                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                               | Prims et al., 1986                              |
| 37 Gisuconite sand                            | 91 1         | 29         | 60         |            | 5 7 (5)<br>5 8 (5)   | 114           |                           |                           |                       |                  | 1 M           | 1 2 (AN-C)                 | (B & wooks) NE Notherlands                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                               | Prinn et al., 1986                              |
| AT Glavronite and                             | 91 1         | 2 .        | 5 Ö        |            | 5 4 (5)              | 75            |                           |                           |                       |                  | 2 M           | 1 2 (MI-C)                 | (PS wooks) NE Notherlands                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                               | Prins et al., 1986                              |
| 37 Glavconite sand<br>37 Glavconite sand      | <b>91 1</b>  | 29         | 60         |            | 6 7 (6)              | 101           |                           |                           |                       |                  | 1             | 3 7 (AN C)                 | (85 proba) NE Notherlands                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                               | Prins et al., 1986<br>Prins et al., 1986        |
| 37 Sand, Cohe 1012                            | 9] ]         | 29         | 6 0        |            | 6 3 (5)              |               | W 3/                      |                           |                       |                  | 24            | 8 8 (AN-C)<br>6 6 (AN C)   | { P 5 weeks} = N E Netherlands<br>{ B 5 weeks} = N E Netherlands                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                               | Frink et al , 1986                              |
| 37 Sand, Goby 1017                            |              |            |            |            | (5)                  |               | NV 155/Ca                 |                           |                       |                  | 017*          | (AN (1)                    | ( 6 verts) Gorishen, FRC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                               | Print et al . 1986                              |
| 37 5and, Goby 1012                            |              |            |            |            | 7 5 (7)<br>6 0 (5)   |               | eV 155/5a++               |                           |                       |                  |               | 25 R (AN B)                | ( S seeks) Corlober, FRC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                               | Frins et al., 1986                              |
| 3' Sand, Coby 1012                            |              |            |            |            | 5 9 (5)              |               | ■¥ 155/Ca<br>●¥ 1 103/Ca  |                           |                       |                  | 05 H          | 30 5 (AN II)               | ( foreks) Garlebon, FRG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                               | Prins et al. 1986                               |
| 37 Sand, Goby 2120<br>37 Sand, Goby 2120      |              |            |            |            | 7 4 16 1             |               | W 1 183/(                 |                           |                       |                  | 1 14          | 59 0 (AN-B)                | ( 6 oreks) Garloben, FRG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                               | Prins et al., 1986<br>Prins et al., 1986        |
| 13 - 5844, Gony 2020<br>137 - Sand, Gony 2120 |              |            |            |            | 5 4 (5)              | 21            | W 1 183/(a++              |                           |                       |                  | 258           | 55 0 (AN B)<br>32 0 (AN B) | ( 6 verxs) - Corleben, fRG<br>( 6 verbs) - Carleben, fRG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                               | Prins at. af . 1000                             |
| LEN-AN                                        |              |            |            |            | 75 (6)               | טן וי         | ev 1 183/Care             |                           |                       |                  | 5 K #         | 3R 0 (AN R)                | (freeks) Corleben FRC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                               | Prine et al . 1986                              |
| Ap                                            |              |            |            |            | 52                   |               | 81 Zemilika               |                           |                       |                  |               |                            | 0-4 cm Cleved Dunkric Brunispl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Pers Come (D.N. J. Co., r. Tr. U. Th. No)                                     | Prins et al , 1986                              |
| Prj Brjaj                                     |              |            |            |            | 51                   |               | 2 9 mo1/kg                |                           |                       |                  |               | 17 30 91                   | 4-15 cm Glaved Dystric Brunisol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | "I itschalt no () Mr. Crowedentee ()                                          | Sheppard, 1989                                  |
| C·Cqi                                         |              |            |            |            | 6 7                  |               | 7 lean1/kg<br>1 7cms1/kg  |                           |                       |                  |               | 1 84-0 411 54 0            | 4) 15 45 cm Gleved Dystrie Brunisni                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Smill type, Ph. Cff & soil less from BLC 1V(JEQ16(3))                         | Sheppard, 1989<br>Sheppard, 1989                |
| 737 (lay (fraction)                           |              |            |            |            | 6.5                  |               |                           |                           | See 15 (1033)         | ,                |               | 120                        | 9) 244 cm Clound Avatere Brunian(<br>17 um Frantinn (clay) of a 12 Jaam                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                               | Sheppard, 1980                                  |
|                                               |              | ********   |            | *******    |                      |               |                           |                           |                       |                  |               |                            | and the second second for the second s | Ne(5) 237 Jah2- 4d (6 d x Fe, th, U)                                          | Dahiman et al 1976                              |

continued...

# TABLE\_B-21 (concluded)

| ығ <u>1</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10.1<br>54 1 999                                                                                                                                                              |        | t<br>SMP   | \$<br>\$11 * | \$<br>([ A*         | 9<br>2411                                                           | s<br>Carte | ен<br>3 541 газ                                                                                                                                                            | F10<br>11 F10              |                                                            | 및 1943<br>[편:4]<br>(D):[41]                          | (A1104                                                                                                                       | \$ ((M)<br>(A*)th | NICI INI<br>CINCI NIRATIFIN | Kđ<br>(at /q)                                                                                                       | us (N 24.8 Julion<br>Unit Fixey, 100                                                                                                                                                                                                                                                                                                                                                                             | . Dire in Incomercia                                                                   | 875578()¥                                                                                                                                                                                                                                                                                                                                                                                                                               |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|------------|--------------|---------------------|---------------------------------------------------------------------|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|------------------------------------------------------------|------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|-------------------|-----------------------------|---------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ne<br>Ne<br>Ne<br>Ne<br>Ne<br>Ne<br>Ne<br>Ne                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | free gandy lease<br>free gandy lease<br>free gandy lease<br>free gandy lease<br>light leas<br>hand<br>and<br>gand<br>gand<br>gand<br>gand<br>clay<br>gandy clay<br>gandy clay | • • •• | )k<br>94 6 |              | · · ·<br>2 8<br>3 8 | 2 4<br>2 4<br>5 7<br>5 7<br>8 4<br>8 4<br>0 43<br>0 23              |            |                                                                                                                                                                            |                            | 14<br>14<br>15<br>15<br>15                                 | 1 65<br>1 65<br>1 59<br>1 57<br>5 29<br>5 29         | 0.005-ee-1/1. (a<br>0.5-ee-1/1. (a<br>3.0-ee-1/1. No<br>3.0-ee-1/1. No<br>5.5-ee-1/1. No<br>3.0-ee-1/1. No<br>3.0-ee-1/1. No | 1                 |                             | 3<br>18<br>3<br>37<br>75<br>109<br>2 37<br>0 35<br>3 9<br>3 7<br>0 75<br>0 16<br>0 7<br>0 4<br>15 4<br>15 4<br>37 4 | Halber (Louisiana)<br>Halber (Louisiana)<br>Halber (Louisiana)<br>Lysan (Haine)<br>Lysan (Haine)<br>Auben (california)<br>Auben (california)<br>Burbank (Wesh-ingLon)<br>Burbank (Wesh-ingLon)<br>Burbank (Wesh-ingLon)<br>Burbank (Wesh-ingLon)<br>Burbank (Arelina<br>South Carolina<br>South Carolina<br>South Carolina<br>South Carolina<br>Burbank (Richland, KachingLon)<br>Fuguar (S. 61 rel<br>Louisian) | then value is bracketed it in sutract of                                               | Nichila et Bi, 1979<br>Nichila et Bi, 1977<br>Roustan et Bi, 1977<br>Auna Bis, 1978<br>Auna Bis, 1978 |
| Heren and Andrew Andr | aand<br>a-lig clay Inam<br>a-lig clay Inam<br>inga<br>inga<br>inga<br>inga<br>clay<br>clay<br>clay<br>clay<br>clay<br>clay<br>clay<br>cla                                     |        | 17 6       | 54 B<br>54   | 71 A<br>1?          | 0.39<br>22,25<br>2,25<br>2,25<br>2,25<br>2,25<br>2,25<br>2,25<br>2, |            | P 1<br>5 9 (5 83)<br>5 9 (6 85)<br>6 7 (6 13)<br>6 7 (6 13)<br>5 3<br>6 5<br>7 8 (7 79)<br>7 1 7 7<br>1 7 7 (5 74) | () vat<br>() vat<br>() vat | 70<br>75<br>75<br>76<br>16 RH<br>10 / /6<br>30<br>30<br>40 | 1 20<br>1 20<br>2 41<br>2 41<br>1 20<br>1 20<br>1 57 |                                                                                                                              |                   |                             | 399- 16<br>35<br>95<br>57<br>81<br>1 77<br>70 7<br>41<br>117<br>175-0 310<br>370-0 840<br>186<br>977                | H [ ]rich ra Sediment<br>Sharphing [losa]<br>Sharphing [losa]<br>Yolo [California]<br>Mincoltine<br>Ritzville<br>Nitiville<br>Nitiville<br>Nitiville<br>NY Pediterraneau nea sediment<br>M Hediterraneau nea sediment<br>[abert                                                                                                                                                                                  | Wen value in brackstod ik in extract pH<br>Wen value in brackstod ik in extract pH<br> | feeler & Achton, 1987<br>Nichita et al., 1977<br>Nichita et al., 1979<br>Nichita et al., 1979<br>Nichita et al., 1970<br>Anes & Rai, 1978<br>Anes & Rai, 1978<br>Nichita et al., 1979<br>Nichita et al., 1979<br>Feeler & Achton, 1987<br>Nichita et al., 1979<br>Nichita et al., 1979<br>Nichita et al., 1979                                                                                                                          |

### TABLE\_B-22

### NICKEL\_Ka\_VALUES

| 15 |                                      |              | 0 | \$<br>511.7 | CLAY | S.<br>DRC    | \$ pH<br>CaCO3 SAT PAS | हम<br>१९ (च) | (*<br>100g      | S FREE<br>IREN<br>ENTOES | Crime<br>CATION            | S LOWP          | NRICLIDI<br>CONCENTRATION | ×d<br>(≈ /q:               | SPTE LOCATEON<br>or DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 014£R #[[MMA*]][M                                                                                            | REFERENCE                                    |
|----|--------------------------------------|--------------|---|-------------|------|--------------|------------------------|--------------|-----------------|--------------------------|----------------------------|-----------------|---------------------------|----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|----------------------------------------------|
|    | wand                                 | 61<br>10     |   | 2           |      |              |                        |              | • •             |                          | · ···· <u>-</u>            | · · · • · · · • |                           |                            | Healty I hevada                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (Abat- kde higher in alkali - Allivial Banin Deposits hi                                                     |                                              |
|    | sand                                 | 83           |   | 2           | 15   |              |                        |              |                 |                          |                            |                 |                           | 3200                       | Healty 2, Nevada                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | in montmorillonite & reolite lable Kd- mineral phase cha                                                     | r Nethersel, 1983                            |
|    | clayry sand                          | .4           |   | 6           | 36   |              |                        |              |                 |                          |                            |                 |                           | 3600                       | Heatly h. Hevada                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | lab7-Relationshipstevture, a face area & clay mineral co                                                     | no Nethersel, 1983                           |
|    | clayey sand<br>clayey sand           | 68           |   | 11          | 21   |              |                        |              |                 |                          |                            |                 |                           | 115                        | Barneeil 4, Snuth Carnlina                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | lab3s soil text & minerals, lab4s Kds 6 radionuclides                                                        | Neiheisel, 1983                              |
|    | C. BALL BRAND                        | 73           |   | 8           | 19   |              |                        |              |                 |                          |                            |                 |                           | 120                        | Barnwell 12, South Carolina                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | fig6: text diagram fig7 K vs sorptive minerals                                                               | Nethersel, 1983                              |
|    | ·                                    |              |   |             | 13   |              | £. ?                   |              | 117             |                          |                            |                 |                           | 116 (150)                  | Harnweil 14, South Carolina<br>mean of 31 Danish solis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                              | Nethersel, 1983                              |
|    |                                      |              |   |             |      |              |                        |              |                 |                          |                            |                 |                           | 10 1000                    | maran n. 3. Danien entie                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Tab 3- Soil char - Hd correl Jonn Tab 47 Regress coeff                                                       |                                              |
|    | elay.                                | 40           | 1 | 16.3        | 11 4 | 2 00         |                        |              |                 |                          |                            |                 |                           |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Figl=log Kd fir (d-function - of lab?=soil area CONCLUS<br>(XR=32-44-Inat included in Filt) lable, (d-Ca-za) | Anderson and Dunn, 19                        |
|    |                                      |              | • | 10.0        | 43 0 | 2 00         | 6 70                   |              | 16 89           |                          | 15 9                       |                 |                           | 389                        | Harklenberg clay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (Tab 1 = nort prop ) (Tab 3 - Kd)                                                                            | Anderson and Sunn 19<br>Reddy and Sunn, 1986 |
|    | foam                                 | 45 (         |   | 34 6        | A 91 | 2 75         | <b>₹ 80</b>            |              |                 |                          |                            |                 |                           |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (100 t = 401 prop t (100 h = 40)                                                                             | Reddy and Dunn, 1986                         |
|    | sand                                 | 63 /         | 4 | 21.5        | 15 2 | 2 68         | 4 67                   |              | 17 51           |                          | 11.7                       |                 |                           | 771                        | Wilkes inam                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (Fig. 3,4 - Kd us metal energy                                                                               | Feddy and Dunn, 1995                         |
|    |                                      |              |   |             | -    |              | •.                     |              | <del>9</del> 07 |                          | 5.1                        |                 |                           | 152                        | Tredell sandy loan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (Tab 4 = regression analysis equat )                                                                         | Feddy and Dunn, 1986                         |
|    | PA (0-30 cm)                         |              |   |             |      |              |                        |              |                 |                          |                            |                 |                           |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Abstr and Conclusions                                                                                        | Reddy and Dunn, 1985                         |
|    | PA (0-30 cm)                         |              |   |             |      | 31 7         | 4                      |              | 134             | 0 89 11 401              | 0 14 Ca/NO3                | 12              |                           | 0.77 (in 1)                | An order of the second to be a second to the second to be a |                                                                                                              | Reddy and Dunn, 1986                         |
|    | PA (0-30 cm)                         |              |   |             |      | 31 7         | 4                      |              | 134             | 0 88 (1 40)              |                            |                 |                           | 1 69 (ia 1)                | Aquod (n. Germany) Org/silicate clas (OM/2-1)<br>Aquod (n. Ge-many) Org/silicate clas (OM/2-1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Tab 5 Yd(lo.1) Yd, N., Ze slutine                                                                            | Tiller et al , 1984                          |
|    | LA (0-30 cm)                         |              |   |             |      | 31 7         | 1                      |              | 134             | 0 88 (1 40)              | 0 14 Ca (NO3               |                 |                           | 4 97 (10 1)                | Aguod (n. Germany) Org2n://cate_clay_(OM/2_1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (Kref - (d. 7-) Tat 2- clay constituents                                                                     | Tiller et al 1984                            |
|    | LA (0-30 cm)                         |              |   |             |      | 2            | 5                      |              | 65              | 1 16 (2 62)              |                            |                 |                           | 0 17 (10 1)                | Adalf IN Germanyl Schicate eta (21)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Tab 1= soil propriation miner logy of clay soil, CEC,<br>pH 5 & /                                            | Tiller et al , 1984                          |
|    | ŪA (0-30 cm)                         |              |   |             |      | 2            | Ę                      |              | 65              | 1 18 (2 62)              |                            |                 |                           | 0 48 (tg-1)                | Adalf (N. Germany) Silicate clay (2.1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                              | filler et al , 1984                          |
|    | PEL (7-15 cm)                        |              |   |             |      | 1            | ź                      |              | 65              | 1 19 (2 62)              |                            |                 |                           | 1 89 (19 1,                | Adalf (N. Germany) Silicate stay (2-1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                              | Tiller et pl., 1984<br>Tiller et pl., 1984   |
|    | PEL (0-15 cm)                        |              |   |             |      |              |                        |              | 43              |                          | 0 14 Ca (NO3               |                 |                           | 0 15 (19 1)                | Fellustert (Australia) and inte clay 17 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                              | Triler et al., 1984                          |
|    | PTL (0-15 cm)                        |              |   |             |      | 3 1          | ,                      |              | 93              | 0 45 (1 61)              | 0 14 CalN03<br>0 14 CalN03 |                 |                           | 0.34 (19.1)                | Pellustert (Australia) wit rate clay (2-1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                              | 1.11er et al . 1984                          |
|    | E46 (0-15 cm)                        |              |   |             |      | 24           | i,                     |              | 20              | 0.9 (0.55)               |                            |                 |                           | ( 180 ( ia 1)              | follostert (Australia) silirate clay (2-1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                              | Tiller et al 1984                            |
|    | E46 (0-15 cm)<br>E46 (0-15 cm)       |              |   |             |      | 2.4          | ŕ                      |              | 70              |                          | 0 14 CarNO3                |                 |                           | C 25 (19 1)                | 1. loverers (Auntralia) silica - riay (21)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                              | 1   e- et al , 1984                          |
|    | KN (40-60 cm)                        |              |   |             |      | 24           | 7                      |              | 70              | 0 9 (0 55)               |                            |                 |                           | 0.51 (ie.1)<br>1.11 (ie.1) | Polinierert (Australia) silicate ciay (2-1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                              | liller et al , 1984                          |
|    | KN (40-60 cm)                        |              |   |             |      | 10           | 5                      |              | 53              | 4 (2 26)                 | 0 14 Ca (NO3               |                 |                           | 075 (is i)                 | Polloverent (Australia) & Trate clay (2.3)<br>Anualf (% Germany) sclicate clay (2.3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                              | 7:11er et pl , 1984                          |
|    | KN (42-60 cm)                        |              |   |             |      | 10           | 6                      |              | 53              | 4 (2 76)                 | 0 14 Ca (NO3               |                 |                           | C 21 (1a-1)                | Agualf (N. Germany) silicate clay (2.1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                              | liler et al., 1984                           |
|    | P5 8 (20-30 cm)                      |              |   |             |      | 1.0          | 1                      |              | 53              | 4 (2 26)                 | 0 14 CarNO2                | 2               |                           | 0 68 (10 1)                | Adualf (N. Germany) silicate clay (2.1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                              | 1-11er et al., 1984                          |
|    | P5 8 (20-30 cm)                      |              |   |             |      | 08           |                        |              | 24              | 07 (4 79)                |                            |                 |                           | 009 (10-1)                 | Patereralf (N. Germany) silicate clay/iron number (1.1/Fat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                              | 1-lier et al., 1984                          |
|    | P5 8 (20-30 cm)                      |              |   |             |      | 0 B          | ÷,                     |              | 24              | 09 (4 79)                |                            |                 |                           | 067 (lq-1)                 | Faleseralf (N. Germany) silicate clay/iron oxide (1.1/Fal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                              | Tiller et al . 1984<br>Tiller et al . 2984   |
|    | W (0 15 cm)                          |              |   |             |      | 49           |                        |              | 24<br>37        |                          | C 14 C # (NO3              |                 |                           | 101 (iq i)                 | Palesessif (N. Germany) 5-1-cate class/-ron paids (1.1/6-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                              | Tiller et al 1984                            |
|    | ¥ (0-15 cm)                          |              |   |             |      | 49           | i.                     |              | 37              | 77 (19 3)<br>77 (19 3)   |                            |                 |                           | 0 10 (la 1)                | Haplohumou (Australia) iron oxide/silicate clay (Fe/1 1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                              | 1-ller et al., 1984                          |
|    | ¥ (0-15 cm)<br>LB (30-50 cm)         |              |   |             |      | 4.9          | ī                      |              | 32              |                          | 0 1# CarNO3                |                 |                           | 0 40 (10-1)                | Hapiphumps (Australia) iron puide/siticate clay (fe/) 1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                              | Tiller et al., 1984                          |
|    | LB (30-50 cm)                        |              |   |             |      | 1.1          | 5                      |              | 53              | 54 (6 0)                 | 0 14 Ca(ND3                |                 |                           | 2 67 (lg 1)<br>025 (lg 1)  | Hapishumos (Australia) iron ouide/silicate clay (Fe/1 1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                              | 1.11er st p1., 1984                          |
|    | LB (30-50 cm)                        |              |   |             |      | 2.2          | £                      |              | 53              | 54 16 01                 | 0 14 (+1403                |                 |                           | 0)) (10))                  | Udelf (N. Germany) silicate clay/iron nuide (2.1/Fe)<br>tidalf (N. Germany) silicate clay/iron nuide (2.1/Fe)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                              | Tiller et al., 1984                          |
|    | PB (50-60 cm)                        |              |   |             |      | .11          | 1                      |              | 53              | 54 (6 0)                 | 0 1H Ca (NO3               |                 |                           | 0 79 (ig-1)                | Udalf (N. Germany) silicate clay/iron nuide (2.1/Fe)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                              | Tifler et al., 1984                          |
|    | PR (50-50 cm)                        |              |   |             |      | 16.5         | 5                      |              | 87              | 5 20 (7 37)              | 0 1H Ca(NO3                | 2               |                           | 053 (10-1)                 | Aquad (N. Germany) silicate clay/iron oxide (2 1/Fe)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                              | Tiller et al., 1984                          |
|    | PP (50-60 cm)                        |              |   |             |      | 16.5<br>16.5 | 5                      |              | 87              | 5 20 (7 37)              |                            |                 |                           | 0 41 (19.1)                | Aquad (N. Germany) silicate clay/iron oxide (2.1/Fa)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                              | Tiller et al 1984                            |
|    | Geethite (tab)                       |              |   |             |      | 10 2         | 4                      |              | 87              | 5 20 (7 37)              |                            |                 |                           | 3 70 (10-1)                | Acuad (N. Germany) silicate clay/iron oxide 12 1/Fa)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                              | Tiller et al , 1984                          |
|    | Genthite (12b)                       |              |   |             |      |              |                        |              |                 |                          | O IN CAINOS                |                 |                           | 0 23 (19-1)                | Groth-te (lab prep )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                              | Tiller et pl., 1984<br>Tiller et pl., 1984   |
|    | Geothite (lab)                       |              |   |             |      |              |                        |              |                 |                          | 0 14 Ca(NO3<br>0 14 Ca(NO3 |                 |                           | C 63 919-1)                | Geothite (lab prep )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                              | Tiller et al , 1984                          |
|    |                                      |              |   |             |      |              |                        |              |                 |                          | 0.14 (31403                | 4               |                           | 4 90 919-1)                | Geothice (isb prep ;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                              | Jeller et al . 1984                          |
|    |                                      |              |   |             |      |              |                        |              |                 |                          |                            |                 |                           |                            | 1) Gievani                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                              | Tiller et al . 1984                          |
|    | Hallandale fine :                    |              |   |             |      | 14.5g/kg     | 8.20                   | 1            | 1Jueg/g         |                          |                            |                 |                           | 0 604 1 '7                 | 1) Glevsol<br>Pompano Heach, Florida                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (F.q. 3)                                                                                                     | Bunzi and Schimmack,                         |
|    | Plantation Nucl -<br>Fiantation Nucl | bollo# iayer |   |             |      | 27 9g/Kg     | 7 30                   | i            | 58u+q/g         |                          |                            |                 |                           | 2 328 1                    | Pompano Brach, Florida                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Tab 1 - rations in soil - T b 2 a soil charact                                                               | Wring at al., 1983                           |
|    | Plantation Much                      | middle layer |   |             |      | 670 7g/kg    | <b>g</b> 7 20          | 4            | Uquea/g         |                          |                            |                 |                           | 1090 1/0                   | Fompano Beach, Fiorida                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | lab 3 - heavy metals in and lab 4 : linear Rd (L/g)                                                          | Mong et al., 1983                            |
|    |                                      | LOD Syst     |   |             |      | 705 29/4     | g 7.10                 |              | · 34+9/0        |                          |                            |                 |                           | 0 897 L/g                  | Foreand Beach, Florida                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Tat 5 - Landmur rooff - Fisit & 7 = isotherme = Cr. N.<br>(0 N = Cu. /n - Mn. N. (d. Ca)                     | Wong et al , 1983                            |

. . . . . .

#### PHOSPHORUS Ka VALUES

| NIC 150 | SOJL<br>Lepe | SANC SILT | S (LAY | 3<br>(RC ( | s<br>CaCD3 SA | PH<br>A1 PASIE | 1.4 . | LLC SFRE<br>+u/ IPTN<br>OCa OXIDE | (n <del>.</del>     | CTILIN<br>2 (LME) | NECLIDE<br>CONCENTRATION | Kd<br>(41,70) | STILL LICATION<br>or DESCRIPTION                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|---------|--------------|-----------|--------|------------|---------------|----------------|-------|-----------------------------------|---------------------|-------------------|--------------------------|---------------|------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| р<br>Г  |              |           | ,      |            | 7.6           | Ē. · · · ·     |       |                                   | 55<br>(NP-4) 2+P1-4 |                   |                          | APBPO: 24-150 | €1- Fed Yellow Latosnis & Regnsols.<br>62- Hars-Red Latosnis<br>63. Uari Ped Istonis I Terra Ross Legitima<br>64- Terra Rosa Estruturade | Concl. high correlation Mdr Sclay, SA1, Se & P. cont. in soilWiyake, 1987<br>1:g 2,3.4: soil fert diagram. Fig.5: Kd vs. Sclay<br>5:g 8:Kd vs. SA1 Fig.7: Nd vs. SFe<br>Fig.8:Kd vs. Lotal P. Good paper<br>81 sandy, 17-sandy (carbomated)<br>3344 clay i 300stay, 21.8:85; 434000/100g, 22mgSi02/100g, Kd 1000<br>Fig.1: Sclay vs. Proorbion coeff<br>Fig.8: Sv vs. Proorbion coeff<br>Fig.8: Vs. Proorbion coeff<br>Fig.8: Vs. Proorbion coeff<br>Fig.8: 1 Oppm P vs. 4000ppm P |

.

# PLUTONIUM Ka VALUES

| NIK 158 SOLL<br>VIK 158 type<br>Pu 739 sitt Joan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 8<br>Sang                                                                                          | <b>8</b><br>SI(1                                                           | ¢.          |                                        | s s<br>RG CaCN3                                                                                       |                                                                                                                                                                                  | EH<br>F (v)                                              | (FC<br>₩a/<br>106g               | % "REI<br>IRUN<br>UXIDES                                                                                                                          | СПНР<br>(А130N | 1. COMP<br>CATION                                                           | MICLINE<br>CONCENTRATION | 역년<br>(제 /a)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | SOLL LOCATION<br>or DESCRIPTION                                                                                                                                                                                                                                                                                                                                         | C -€R INFORMATION                                                                                                                                                                                                                                                              | RUTERINCE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|-------------|----------------------------------------|-------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-----------------------------------------------------------------------------|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Pu         2/3 sill loga           Pu         2/3 sill loga           Pu         2/3 sill loga           Pu         2/3 sill loga           Pu         2/3 sindy loga           Pu         2/3 sindy loga           Pu         2/3 sindy loga           Pu         2/3 sindy loga           Fu         2/3 sindy loga           Fu         2/3 sindy loga           Pu         2/3 sindy loga           Pu         2/3 sindy loga           Pu         2/3 sind loga           Pu         2/3 such                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 14<br>14<br>54<br>55<br>55<br>55<br>79<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70 | 46<br>56<br>33<br>33<br>33<br>39<br>39<br>28<br>28<br>58<br>58<br>30<br>30 | 3           | 57777777777777777777777777777777777777 | 2 0<br>7 8<br>7 4<br>7 4<br>5 7<br>5 7<br>5 7<br>5 7<br>8 4<br>9 4<br>2 5<br>2 5<br>2 5<br>0 8<br>0 8 | 5 9 (5 83)<br>(6 85)<br>5 3 (4 68)<br>5 5 (4 42)<br>(6 55)<br>7 8 (7 29)<br>(8 26)<br>6 0 (5 26)<br>6 0 (5 57)<br>6 7 (6 13)<br>(6 83)<br>7 2 (6 24)<br>(7 75)<br>F + trac<br>pH |                                                          | 15<br>15<br>30<br>15<br>25<br>30 | 1 29<br>1 65<br>1 52<br>1 20<br>5 29<br>7 41<br>2 57                                                                                              |                | 0 04<br>0 04<br>0 04<br>0 10<br>0 08<br>0 10<br>0 10<br>Mn 4 may<br>£+tract |                          | 6.307<br>3074<br>850<br>1515<br>958<br>33<br>744<br>361<br>6865<br>1357<br>443<br>845<br>438<br>4341<br>2951<br>1655                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Unsprucing series<br>Sharonburg series<br>Natons series<br>Natons series<br>Layman series<br>Layman series<br>Layman series<br>Layman series<br>Hittso He inseries<br>Calcareous 10% (2003)<br>Motton Series<br>Aiten series<br>Toto series<br>Toto series<br>Fighert series<br>Fighert series                                                                          | Rearn clay energin Ta te 2<br>to cap Mp/1 or<br>Michica, 1 215, 1001 (1 : 1 = 61)<br>(Entract), chee prop<br>(Tab 7 radiom room )<br>Wallace et al.,1979, MU [G/CR-0701 = sand/silt/clay                                                                                       | Mishita et al. 1981<br>Nichita et al. 1981<br>Mishita et al. 1981<br>Mishita et al. 1981<br>Michita et al. 1981<br>Nichita et al. 1981<br>Michita et al. 1981                                       |
| Pu ciay<br>Pu ciay<br>Pu ciay<br>Pu ciay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 11<br>11<br>11                                                                                     | 11<br>11<br>11                                                             | 7<br>7<br>7 | 6<br>6<br>6                            |                                                                                                       | 3-8<br>1-4<br>1-8                                                                                                                                                                |                                                          |                                  |                                                                                                                                                   |                |                                                                             |                          | 5 10000 Pu 131                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Savannah River Plant 30-1<br>Savannah River Plant 30-1<br>Savannah River Plant 30-1                                                                                                                                                                                                                                                                                     | Tab.1 e.10 (maybe that' al'that's needed for Hosffner 85)<br>fu soretion onto GPF no : decembent on pH and exidation<br>state of Pir and hoistor: content of sort)<br>moisture content (p.57 for faiture)p DRY sort,<br>fu Kd : 3000 to 6000 mis?<br>Fu Kd : 3000 to 6000 mis? | Highitz et al., 1981<br>Hoeffner, 1985<br>Hoeffner, 1985<br>Hoeffner, 1985<br>Hoeffner, 1985<br>Hoeffner, 1985                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Pu 230 (1 2 sand<br>Pu 230 (3 mand<br>Fu 239 (6 sand<br>Pu 239 sand                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                    |                                                                            |             |                                        | (Signiti<br>Joss)                                                                                     | 60<br>60<br>60<br>60<br>60                                                                                                                                                       | -200 (mv<br>-200 (mv<br>-200 (mv<br>-200 (mv<br>-200 (mv |                                  |                                                                                                                                                   |                |                                                                             |                          | 7600<br>1900<br>80<br>32<br>340                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | glacialitiil<br>frine-coarse sand (C1 2)<br>medium-coarse sand (C3)<br>coarse cand (C5)<br>medium sand                                                                                                                                                                                                                                                                  | (Tab.4 - Kd*4) (Pu-230<br>Tab.3* Of comp. Tab.2:                                                                                                                                                                                                                               | Maeffner, 1985<br>Bell and Bates, 1988<br>Bell and Bates, 1988<br>Bell and Bates, 1988<br>Bell and Bates, 1988<br>Bell and Bates, 1988                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Pu         humups           Pu         humups/sand           Pu         humups/sand           Pu         humup/sand           Pu         sand           Pu         sand           Pu         sand           Pu         sand           Pu         sand           Pu <td>and a brine A</td> <td></td> <td></td> <td></td> <td>1 74<br/>0 936<br/>2 11<br/>1 .094<br/>4 69<br/>1 261<br/>0 55<br/>0 058<br/>0 953<br/> 158<br/>2 413</td> <td>4-55<br/>35-6<br/>104<br/>35-6<br/>105<br/>105<br/>105<br/>105<br/>105<br/>105<br/>105<br/>105<br/>105<br/>105</td> <td></td> <td></td> <td>256      018       221      063       100      015       222      016       252      016       252      018       241      055       308      107</td> <td></td> <td></td> <td></td> <td><math display="block">\begin{array}{c} 107 \ 1 \ - \ 15 \ 4 \ 7 \\ 13 \ 4 \ - \ 2 \ 10 \\ 143 \ 0 \ - \ 5 \ 2 \ 7 \\ 100 \ 0 \ - \ 5 \ 9 \ 7 \\ 27 \ 6 \ - \ 2 \ 5 \\ 37 \ 6 \ - \ 2 \ 5 \\ 37 \ 6 \ - \ 7 \ 5 \\ 100 \ 7 \ - \ 7 \ 5 \\ 100 \ 7 \ - \ 7 \ 5 \\ 100 \ 7 \ - \ 7 \ 5 \\ 100 \ 7 \ - \ 7 \ 5 \\ 100 \ 7 \ - \ 7 \ 5 \\ 100 \ 7 \ - \ 7 \ 5 \\ 100 \ 7 \ - \ 7 \ 5 \\ 100 \ 7 \ - \ 7 \ 5 \\ 100 \ 7 \ - \ 7 \ 5 \\ 100 \ 7 \ - \ 7 \ 5 \\ 100 \ 7 \ - \ 7 \ 5 \\ 100 \ 7 \ - \ 7 \ 5 \\ 100 \ 7 \ - \ 7 \ 5 \\ 100 \ 7 \ - \ 7 \ 5 \\ 100 \ 7 \ - \ 7 \ 5 \\ 100 \ 7 \ - \ 7 \ 5 \\ 100 \ 7 \ - \ 7 \ 5 \\ 100 \ 7 \ - \ 7 \ 5 \\ 100 \ 7 \ - \ 7 \ 5 \\ 100 \ 7 \ - \ 7 \ 5 \\ 100 \ 7 \ - \ 7 \ 5 \\ 100 \ 7 \ - \ 7 \ 5 \\ 100 \ 7 \ - \ 7 \ 5 \\ 100 \ 7 \ - \ 7 \ 5 \\ 100 \ 7 \ - \ 7 \ 5 \\ 100 \ 7 \ - \ 7 \ 5 \\ 100 \ 7 \ - \ 7 \ 5 \\ 100 \ 7 \ - \ 7 \ 5 \ 100 \ 7 \ - \ 7 \ 5 \\ 100 \ 7 \ - \ 7 \ 1 \ 7 \ 7 \ 5 \ 100 \ 7 \ - \ 7 \ 10 \ 7 \ 7 \ 1 \ 7 \ 7 \ 1 \ 7 \ 7 \ 10 \ 7 \ 7 \ 7 \ 1 \ 7 \ 7 \ 1 \ 7 \ 7 \ 1 \ 7 \ 7</math></td> <td>(0-16 ce) brown<br/>(0-16 ce) Ranker<br/>(0-16 ce) Ranker<br/>(0-16 ce) Ranker<br/>(0-16 ce) Ranker<br/>(16-26 ce) brown<br/>(16-26 ce) Brown<br/>(16-26 ce) Ranker<br/>(16-26 ce) Ranker<br/>(16-26 ce) Ranker<br/>(16-26 ce) Brown<br/>(16-26 ce) Banker<br/>(26-48 ce) brown<br/>(26-48 ce) Brown<br/>(26-48 ce) Brown<br/>(26-48 ce) Brown<br/>(26-48 ce) Brown<br/>(26-48 ce) Brown</td> <td>Carbonate content in al profiles = negligible -<br/>(SHAND3 noil) (Sail provile according to Fig 3)<br/>(Jah 1 = 3 Fe - Jan in s 3)<br/>(Fig 4 5/2 - Kd) (con lusions)<br/>Brown/Bruhendorf<br/>Renker/Trebei<br/>Podzol/Corleben<br/>Pu (4) 73P (Jab ] = pt after soitstion)</td> <td>Jakubich and Kahl, 1982<br/>Jakubich and Kahl, 1982</td> | and a brine A                                                                                      |                                                                            |             |                                        | 1 74<br>0 936<br>2 11<br>1 .094<br>4 69<br>1 261<br>0 55<br>0 058<br>0 953<br>158<br>2 413            | 4-55<br>35-6<br>104<br>35-6<br>105<br>105<br>105<br>105<br>105<br>105<br>105<br>105<br>105<br>105                                                                                |                                                          |                                  | 256      018       221      063       100      015       222      016       252      016       252      018       241      055       308      107 |                |                                                                             |                          | $\begin{array}{c} 107 \ 1 \ - \ 15 \ 4 \ 7 \\ 13 \ 4 \ - \ 2 \ 10 \\ 143 \ 0 \ - \ 5 \ 2 \ 7 \\ 100 \ 0 \ - \ 5 \ 9 \ 7 \\ 27 \ 6 \ - \ 2 \ 5 \\ 37 \ 6 \ - \ 2 \ 5 \\ 37 \ 6 \ - \ 7 \ 5 \\ 100 \ 7 \ - \ 7 \ 5 \\ 100 \ 7 \ - \ 7 \ 5 \\ 100 \ 7 \ - \ 7 \ 5 \\ 100 \ 7 \ - \ 7 \ 5 \\ 100 \ 7 \ - \ 7 \ 5 \\ 100 \ 7 \ - \ 7 \ 5 \\ 100 \ 7 \ - \ 7 \ 5 \\ 100 \ 7 \ - \ 7 \ 5 \\ 100 \ 7 \ - \ 7 \ 5 \\ 100 \ 7 \ - \ 7 \ 5 \\ 100 \ 7 \ - \ 7 \ 5 \\ 100 \ 7 \ - \ 7 \ 5 \\ 100 \ 7 \ - \ 7 \ 5 \\ 100 \ 7 \ - \ 7 \ 5 \\ 100 \ 7 \ - \ 7 \ 5 \\ 100 \ 7 \ - \ 7 \ 5 \\ 100 \ 7 \ - \ 7 \ 5 \\ 100 \ 7 \ - \ 7 \ 5 \\ 100 \ 7 \ - \ 7 \ 5 \\ 100 \ 7 \ - \ 7 \ 5 \\ 100 \ 7 \ - \ 7 \ 5 \\ 100 \ 7 \ - \ 7 \ 5 \\ 100 \ 7 \ - \ 7 \ 5 \\ 100 \ 7 \ - \ 7 \ 5 \\ 100 \ 7 \ - \ 7 \ 5 \\ 100 \ 7 \ - \ 7 \ 5 \\ 100 \ 7 \ - \ 7 \ 5 \\ 100 \ 7 \ - \ 7 \ 5 \ 100 \ 7 \ - \ 7 \ 5 \\ 100 \ 7 \ - \ 7 \ 1 \ 7 \ 7 \ 5 \ 100 \ 7 \ - \ 7 \ 10 \ 7 \ 7 \ 1 \ 7 \ 7 \ 1 \ 7 \ 7 \ 10 \ 7 \ 7 \ 7 \ 1 \ 7 \ 7 \ 1 \ 7 \ 7 \ 1 \ 7 \ 7$ | (0-16 ce) brown<br>(0-16 ce) Ranker<br>(0-16 ce) Ranker<br>(0-16 ce) Ranker<br>(0-16 ce) Ranker<br>(16-26 ce) brown<br>(16-26 ce) Brown<br>(16-26 ce) Ranker<br>(16-26 ce) Ranker<br>(16-26 ce) Ranker<br>(16-26 ce) Brown<br>(16-26 ce) Banker<br>(26-48 ce) brown<br>(26-48 ce) Brown<br>(26-48 ce) Brown<br>(26-48 ce) Brown<br>(26-48 ce) Brown<br>(26-48 ce) Brown | Carbonate content in al profiles = negligible -<br>(SHAND3 noil) (Sail provile according to Fig 3)<br>(Jah 1 = 3 Fe - Jan in s 3)<br>(Fig 4 5/2 - Kd) (con lusions)<br>Brown/Bruhendorf<br>Renker/Trebei<br>Podzol/Corleben<br>Pu (4) 73P (Jab ] = pt after soitstion)         | Jakubich and Kahl, 1982<br>Jakubich and Kahl, 1982 |
| Pu 238 Rentonite in sand<br>Pu 238 Bentonite in sand<br>Pu 238 ICS bentonite is<br>Pu 238 Rentonite in sand<br>Pu 238 sand                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | B<br>and + brine B                                                                                 | 3                                                                          |             | P                                      | _                                                                                                     | 67<br>71<br>71<br>71<br>71                                                                                                                                                       |                                                          |                                  |                                                                                                                                                   |                |                                                                             |                          | 5200<br>300000<br>36000<br>36000<br>700 (16000)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Beatty 1. Nevada                                                                                                                                                                                                                                                                                                                                                        | (Kd calculated based on bentonite mesn) (mixture of<br>bentonite, charcoal, mc denite and Na Litanate = effective<br>backfill = p 550)<br>Heatty, Nevada Harneel , S (arolina                                                                                                  | Manual 1080                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

continued...

# TABLE\_B-24 (continued)

.

| MUC 258                                                       | 5011<br>Lype                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 8<br>5440                                                                       | <b>S</b><br>11,1                                                             | C. 47                                                      | ¥<br>DRC                               | \$<br>C=(113                                                                                     | BH<br>SAT PASTI                                                            | ГН<br>(*)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (F(<br>#ed/<br>190g                                | % FRLT<br>340N<br>OFTRES                                                     | CIMI.<br>CATITIN | S (INF)<br>CATION | NUCL THE<br>CONCENTRATION                                          | Kd<br>(=(/p)                                                                                                        | SOTE LOCATION<br>of DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | îîîn#R jurîskatjin                                                                                                                                                                                                                                                                                                                                                                                                                                    | NETENTINCE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|---------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|------------------------------------------------------------------------------|------------------------------------------------------------|----------------------------------------|--------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|------------------------------------------------------------------------------|------------------|-------------------|--------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Po 239 an<br>Po 239 se<br>Po 238 ch<br>Po 238 ch<br>Po 239 ch | nd<br>iayty sand<br>iayty sand                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 91<br>83<br>58<br>68<br>73                                                      | 2<br>7<br>6<br>11<br>8                                                       | /<br>5<br>6<br>1<br>9                                      |                                        |                                                                                                  |                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                    |                                                                              |                  |                   |                                                                    | \$000<br>1800<br>27500<br>3700<br>135 (12000)                                                                       | Beatly 2, Nevada<br>Peatly 5, Nevada<br>Rarnell 4 South Carolina<br>Barneell 12 South Carolina<br>Barneell 14, South Carolina                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Vent Valley, NY Jabet Kd's hiphest in altaline alluviat<br>basin deposits high in montantilionite and zeolites)<br>1481 = Kd. einerstinkase char.<br>tab 2: relationship - Lecture, surface area - riay<br>mineral come (Lab 4 = Kd = 5 redionuclides)                                                                                                                                                                                                | Netheisel, 1983<br>Netheisel, 1983<br>Netheisel, 1983<br>Thetheisel, 1983<br>Detheisel, 1983                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$         | ndy loga<br>indy loga<br>iay loga<br>iay loga<br>iay loga<br>iay loga<br>ity clay loga<br>ity clay loga<br>ity clay loga<br>ity clay loga<br>idy loga<br>idy loga<br>iay loga | 74<br>74<br>74<br>74<br>74<br>74<br>74<br>74<br>74<br>74<br>74<br>74<br>74<br>7 | 17 17 77 75 56 4 50 1 1 1 1 1 74 4 4 2 2 7 7 1 1 1 7 7 2 2 7 7 7 7 7 7 7 7 7 | 14 4 4 0,000 4 4 4 3,3 3 3 0,0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 00<br>00<br>00<br>00<br>00<br>00<br>00 | 0 2 2 2 0 0<br>0 0 0 4 4 4 3 3 3 0 0<br>0 0 0 4 4 4 4 3 3 3 0 0<br>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | ノフフラノモラフラネ、メタモノフフラフタちちちちそそ4456665599日 94 84 84 846888887572902990299057888 | $ \begin{array}{c} 0 & 43 \\ 0 & 42 \\ 0 & 44 \\ 0 & 43 \\ 0 & 43 \\ 0 & 44 \\ 0 & 44 \\ 0 & 44 \\ 0 & 44 \\ 0 & 44 \\ 0 & 44 \\ 0 & 44 \\ 0 & 44 \\ 0 & 44 \\ 0 & 44 \\ 0 & 44 \\ 0 & 44 \\ 0 & 44 \\ 0 & 44 \\ 0 & 44 \\ 0 & 44 \\ 0 & 44 \\ 0 & 44 \\ 0 & 44 \\ 0 & 44 \\ 0 & 44 \\ 0 & 44 \\ 0 & 44 \\ 0 & 44 \\ 0 & 44 \\ 0 & 44 \\ 0 & 44 \\ 0 & 44 \\ 0 & 44 \\ 0 & 44 \\ 0 & 44 \\ 0 & 44 \\ 0 & 44 \\ 0 & 44 \\ 0 & 44 \\ 0 & 44 \\ 0 & 44 \\ 0 & 44 \\ 0 & 44 \\ 0 & 44 \\ 0 & 44 \\ 0 & 44 \\ 0 & 44 \\ 0 & 44 \\ 0 & 44 \\ 0 & 44 \\ 0 & 44 \\ 0 & 44 \\ 0 & 44 \\ 0 & 44 \\ 0 & 44 \\ 0 & 44 \\ 0 & 44 \\ 0 & 44 \\ 0 & 44 \\ 0 & 44 \\ 0 & 44 \\ 0 & 44 \\ 0 & 44 \\ 0 & 44 \\ 0 & 44 \\ 0 & 44 \\ 0 & 44 \\ 0 & 44 \\ 0 & 44 \\ 0 & 44 \\ 0 & 44 \\ 0 & 44 \\ 0 & 44 \\ 0 & 44 \\ 0 & 44 \\ 0 & 44 \\ 0 & 44 \\ 0 & 44 \\ 0 & 44 \\ 0 & 44 \\ 0 & 44 \\ 0 & 44 \\ 0 & 44 \\ 0 & 44 \\ 0 & 44 \\ 0 & 44 \\ 0 & 44 \\ 0 & 44 \\ 0 & 44 \\ 0 & 44 \\ 0 & 44 \\ 0 & 44 \\ 0 & 44 \\ 0 & 44 \\ 0 & 44 \\ 0 & 44 \\ 0 & 44 \\ 0 & 44 \\ 0 & 44 \\ 0 & 44 \\ 0 & 44 \\ 0 & 44 \\ 0 & 44 \\ 0 & 44 \\ 0 & 44 \\ 0 & 44 \\ 0 & 44 \\ 0 & 44 \\ 0 & 44 \\ 0 & 44 \\ 0 & 44 \\ 0 & 44 \\ 0 & 44 \\ 0 & 44 \\ 0 & 44 \\ 0 & 44 \\ 0 & 44 \\ 0 & 44 \\ 0 & 44 \\ 0 & 44 \\ 0 & 44 \\ 0 & 44 \\ 0 & 44 \\ 0 & 44 \\ 0 & 44 \\ 0 & 44 \\ 0 & 44 \\ 0 & 44 \\ 0 & 44 \\ 0 & 44 \\ 0 & 44 \\ 0 & 44 \\ 0 & 44 \\ 0 & 44 \\ 0 & 44 \\ 0 & 44 \\ 0 & 44 \\ 0 & 44 \\ 0 & 44 \\ 0 & 44 \\ 0 & 44 \\ 0 & 44 \\ 0 & 44 \\ 0 & 44 \\ 0 & 44 \\ 0 & 44 \\ 0 & 44 \\ 0 & 44 \\ 0 & 44 \\ 0 & 44 \\ 0 & 44 \\ 0 & 44 \\ 0 & 44 \\ 0 & 44 \\ 0 & 44 \\ 0 & 44 \\ 0 & 44 \\ 0 & 44 \\ 0 & 44 \\ 0 & 44 \\ 0 & 44 \\ 0 & 44 \\ 0 & 44 \\ 0 & 44 \\ 0 & 44 \\ 0 & 44 \\ 0 & 44 \\ 0 & 44 \\ 0 & 44 \\ 0 & 44 \\ 0 & 44 \\ 0 & 44 \\ 0 & 44 \\ 0 & 44 \\ 0 & 44 \\ 0 & 44 \\ 0 & 44 \\ 0 & 44 \\ 0 & 44 \\ 0 & 44 \\ 0 & 44 \\ 0 & 44 \\ 0 & 44 \\ 0 & 44 \\ 0 & 44 \\ 0 & 44 \\ 0 & 44 \\ 0 & 44 \\ 0 & 44 \\ 0 & 44 \\ 0 & 44 \\ 0 & 44 \\ 0 & 44 \\ 0 & 44 \\ 0 & 44 \\ 0 & 44 \\ 0 & 44 \\ 0 & 44 \\ 0 & 44 \\ 0 & 44 \\ 0 & 44 \\ 0 & 44 \\ 0 & 44 \\ 0 & 44 \\ 0 & 44 \\ 0 & 44 \\ 0 & 44 \\ 0 & 44 \\ 0 & 44 \\ 0 & 44 \\ 0 & 44 \\ 0 & 44 \\ 0 & 44 \\ 0 & 44 \\ 0 & 44 \\ 0 & 44 \\ 0 & 44 \\ 0 & 44 \\ 0 & 44 \\ 0 & 44 \\ 0 & 44 \\ 0 & 44 \\ 0 & 44 \\ 0 & 44 \\ 0 & 44 \\ 0 & $ | 37 ()<br>37 ()<br>37 ()<br>37 ()<br>37 ()<br>37 () | 4 obcj<br>5 obcj<br>5 obcj<br>5 obcj<br>7 obcj<br>7 obcj<br>7 obcj<br>7 obcj |                  |                   | 1 N<br>1 N<br>2 N<br>1 N<br>1 N<br>1 N<br>2 N<br>1 N<br>2 N<br>1 N | 100<br>98<br>35<br>2000<br>1500<br>4000<br>5000<br>600<br>4100<br>4000<br>300<br>300<br>300<br>4000<br>1400<br>1400 | WA A NC (10-8)<br>• (10-7)<br>• (10-7)<br>• (10-7)<br>10 D Poist + series (10-8)<br>10 D Poist + series (10-7)<br>10 D Poist + series (10-6)<br>10 A Poist + series (10-6)<br>10 A Poist + series (10-8)<br>10 A Poist + series (10-8)<br>10 A Poist + series (10-8)<br>10 C Poist + series (10-8)<br>10 C Poist + series (10-8)<br>10 C Poist + series (10-8)<br>10 B Poist + series (10-7)<br>10 C C M (10-8)<br>Will M (10-6)<br>CC M (10-8)<br>Will M (10-8)<br>10 A lands series (10-7)<br>Sf Fucue series (10-7)<br>Sf Fucue series (10-7)<br>10 C A (MC) (10-8)<br>Th (MA) (10-7)<br>CD-8 (MA) (10-7)<br>M Fultam series (10-6)<br>M Fultam series | <pre>ria b : Lett diagram (Fig 7 = Kd vet sorptive minerals)<br/>bd column : { } : reducing conditions<br/>( ) initial Pu canc , M<br/>(b 4 - Tab. 1 = soit (set. ]<br/>(b 5 - Tab. 2 = chan and phys. arcs.)<br/>(c 17 A 10 - Tab. 1 &amp; 2 = Kd*)<br/>(TU A, TU - B, VA - B - 40 cs<br/>remaining Soils = 0-20 cv (surface)(subsurface))<br/>MC = not classified<br/>MA = not classified<br/>MA = not classified<br/>Summary and Conclusions</pre> | we house 1, 1983           Merkouse 1, 1983           Merkouse 1, 1983           Polzer and Miner, (2), 1982           Polzer a |

continued...

.

.

# TABLE\_B-24 (concluded)

| SDII<br>I'iệ type                                                                                                                                                                                                                                                      | SAND                                                 | \$<br>SIL1                                             | S<br>(LAY                                               | R<br>ORC                                                           | <b>E</b><br>CaCO3                                     | PH<br>SAT PASTE                                                                                                                                                                       | £н<br>(+)                                                                         | CEC<br>meg/<br>100g                                                          | S FRET<br>IPON<br>OXIDES                                  | CINF<br>CATILN                                                                                           | S CIMP<br>CATLIN | NECLIDE<br>CONCENTRATION                                                                                                         | Kd<br>(= /g)                                                                                                                                                        | SOLL COCATION<br>or DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 074 R [ <th>REFERENCE</th>                                                                                                                                                                                                                          | REFERENCE                                                                                                                                                                                                                                                                                          |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|--------------------------------------------------------|---------------------------------------------------------|--------------------------------------------------------------------|-------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|------------------------------------------------------------------------------|-----------------------------------------------------------|----------------------------------------------------------------------------------------------------------|------------------|----------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| elauconite sard<br>glauconite sand<br>glauconite sand<br>glauconite sand<br>glauconite sand<br>glauconite sand<br>glauconite sand<br>glauconite sand<br>sand, Cohy 1012<br>sand, Cohy 1012<br>sand, Cohy 1012<br>sand, Cohy 1012<br>sand, Cohy 1012<br>sand, Cohy 2120 | 91 1<br>91 1<br>91 1<br>91 1<br>91 1<br>91 1<br>91 1 | 2 9 9 9 9 9 9 9<br>2 7 2 7 2 7 7 7<br>7 7 7 7 7<br>7 7 | 6 0<br>6 0<br>6 0<br>6 0<br>6 0<br>6 0<br>6 0<br>6 0    | 0 0<br>0 0<br>0 0<br>0 0<br>0 0<br>0 0<br>0 0                      | 00<br>00<br>00<br>00<br>00<br>00<br>00                | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                  | 20 erV<br>38 mV<br>26 mV<br>9 erV 1                                               | 37 (<br>37 (<br>37 (<br>37 (<br>3 (<br>3 (<br>3 (                            | (7 oks)<br>(7 oks)<br>(7 oks)<br>(7 oks)                  |                                                                                                          |                  | 1 M<br>2 M<br>1 O M<br>7 M<br>1 D M<br>7 M<br>017 M<br>017 M<br>017 M<br>05 M<br>05 M<br>2 5 M                                   | 3515 (AN B)<br>1700-9000 (AN C)<br>1700-9000 (AN C)<br>1700-9000 (AN-C)<br>1700-9000 (AN-C)<br>1 10-9000 (AN C)<br>1 10-9000 (AN C)                                 | N E     Metherlands.       N E     Metherlands.       N F     Metherlands.       N E     Metherlands. | Aer Arnber<br>pH in (): initial pH<br>A arnberc - Kr column<br>AN : anarobic - Kr column<br>R : batch - Kr column<br>C : culumn - Kr column<br>M : mylerity : salt conc                                                                             | Prins et al. 1986<br>Prins et al. 1986 |
| 37 Clay (fraction)<br>Clay<br>Clay<br>Clay<br>Clay<br>Clay<br>Loom<br>Loom<br>Medium Sand<br>Medium Sand<br>Medium Sand                                                                                                                                                |                                                      |                                                        |                                                         |                                                                    |                                                       | 6.5<br>1 77<br>2 99<br>5 73<br>6 70<br>7 00<br>6 52 (5 0)<br>6 52 (5 1)<br>6 52 (5 7)<br>6 52 (5 9)                                                                                   |                                                                                   | 64 ?6<br>64 26<br>64 26<br>64 26<br>64 26<br>64 26<br>64 26                  |                                                           | 5##Ca(N03)2                                                                                              |                  | 6 45×10E 6M Pu (6)<br>6 44×10E-6M Pu (6)<br>6 42×10E-6M Pu (6)<br>6 42×10E-6M Pu (6)<br>6 41×10E-6M Pu (6)<br>6 40×10E-6M Pu (6) | 300000<br>2 4 log<br>2 0 log<br>2 4 log<br>2 1 log<br>4 1 log<br>2 4 r 10E3<br>4 6=10E3<br>1 9=10F3<br>9 7=10E2                                                     | (2 um fraction (clay) of silt loam<br>Bentonite<br>Bentonite<br>Bentonite<br>Bentonite<br>Bentonite<br>Johanimura, Naka gun, Ibaraki ken JAPAN<br>Johanimura, Naka gun, Ibaraki ken JAPAN                                                                                                                                                                                                 | Tab 2-Kd [D N 1h,U,Np) ?u(41-237<br>Pu(6) (1ab }-PuKd) (0 N = Au(3))<br>[Pu) (1at 3-Wd, 3 oku)(Tab 2: synthetic CM constituents)<br>[Fig 3-Hd between giass and liquid stage)<br>[Fig 4-Fu concentration from column]<br>pH = f) : pu after 3 weeks | Senon et al., 1988.<br>Senon et al., 1988.                                                                                                                                                                                                                                                         |
| Fine sandy ican<br>Fine sandy ican<br>Fine sandy ican<br>Fine sandy ican<br>Fine sandy ican<br>Light ican<br>Light ican<br>Coarse sand                                                                                                                                 | 1                                                    |                                                        |                                                         | 2.4<br>2.4<br>5.7<br>5.7<br>8.4<br>8.4                             | -                                                     | 5 3 (4 0R)<br>5 3 (5 57)<br>5 0 (4 42)<br>5 0 (6 CE<br>6 0 (5 56)<br>6 0 (6 57)<br>7-8                                                                                                | -<br>-<br>-<br>-                                                                  | 15<br>14<br>15<br>15<br>15<br>15                                             | 1 65<br>1 65<br>1 57<br>1 57<br>5 79<br>5 79              | Na (905 cat.                                                                                             | *******          |                                                                                                                                  | R 5=10E2<br>1 515=10E3<br>9 58=10E2<br>3 3=10E1<br>6 85=10E3==<br>1 357=10E3<br>7=10E2                                                                              | Malbie (Louisiana)<br>Malbie (Louisiana)<br>Lyman (Maina)<br>Lyman (Maina)<br>Aikan (Californa)<br>Aikan (Californa)<br>Aikan (Californa)<br>Aikan (Californa)                                                                                                                                                                                                                                                                                                                                                             | pH in ( ) = pr after 3 weeks                                                                                                                                                                                                                        | highits et al., 1970<br>Nighits et al., 1979<br>Hammtro & Verkeyet, 197                                                                                                    |
| Subaoti send<br>Subaoti send<br>Arity ciay Jaam                                                                                                                                                                                                                        | 44<br>64<br>66<br>38<br>74<br>74<br>79<br>48<br>82   | 20<br>14<br>24<br>11<br>32<br>12<br>12<br>2<br>34<br>9 | 36<br>22<br>33<br>30<br>14<br>14<br>14<br>20<br>18<br>9 | 2 4<br>3 4<br>0.2<br>0.3<br>0.1<br>0.3<br>0.1<br>0.7<br>0.7<br>0.7 | 0.3<br>7 9<br>5.2<br>0<br>0.6<br>0.2<br>0.7<br>2<br>7 | 8       3         8       0         7.5       5         8       2         5       4         6.4       4         8.6       (6.5)         8       6         8       6         9       3 | 0 41<br>0 52<br>0 43<br>0 47<br>0 45<br>0 43<br>0 44<br>0 54<br>0 49<br>0 57<br>- | 20<br>17 5<br>13 8<br>8 2<br>17 5<br>6 4<br>5 8<br>2 9<br>7<br>3 8<br>5<br>5 | -                                                         | solut.om)<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                               |                  |                                                                                                                                  | 7 7:10E3460-<br>7 0:10E274-<br>3 2:10E274-<br>6 4:10E276-<br>1 1:10E3640-<br>1 0:10E27-<br>4 3:10E27-<br>8 1:0E25-<br>8 0:10E13-<br>1 3:14:10E3<br>2 0:10E2-        | Colorado A (Racky Flats)<br>Colorado B (Sugar Loaf)<br>Idaho B<br>Idaho C<br>Idaho D<br>Vashington A (Manford)<br>Vashington B (Manford)<br>S Carolina (Barneell)<br>New Resico (Los Alaems)<br>Arkangas B<br>Manford                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                     | Clover et al., 1975<br>Clover et al., 1976<br>Clover et al., 1978<br>Rhodra, 1957                                                 |
| s /ly cigy isan<br>S ily cigy isan<br>S il - Isan<br>S il - Isan<br>S il - susended in sepuster<br>C isy                                                                                                                                                               | 16<br>9<br>31                                        | 50<br>54 9<br>53                                       | 34<br>37<br>16                                          | 2.8<br>2.5<br>2.5<br>0 9<br>2 3<br>3 6<br>0 5<br>0.6               | -<br>17 7<br>0.6<br>0 7                               | 5 9 (5.83)<br>5 9 (6.85)<br>6 7 (6.13)<br>6 7 (6.83)<br>7 9<br>2 3<br>3 6<br>-<br>7 8 (7.20)<br>7 9 (8.29)<br>7 9 (8.29)<br>7 9 (8.29)<br>7 9                                         | 0 44<br>0 57<br>0 56                                                              | 20<br>20<br>25<br>25<br>15<br>5<br>16<br>2<br>17<br>4<br>30<br>30            | 1 29<br>1 29<br>2 41<br>2 41<br>-<br>-<br>-<br>1 7<br>1 7 | -<br>-<br>Na (908 sat                                                                                    |                  |                                                                                                                                  | 6 307+10E3<br>3 074+10E3<br>4 03R+10E3<br>4 341+10E3<br>1 7+10E3-77-<br>4 3+10E2-73-<br>7<br>9+10E2-73-<br>9+10E2-73-<br>9+10E4<br>7 44+10E2<br>3 61+10E7<br>1+10E4 | Sharanburg (Tona)<br>Sharanburg (Tona)<br>Yola (Caiifarnia)<br>Yola (Caiifarnia)<br>Tafaha A<br>Arbanasa C<br>111 mais<br>Maitaiile<br>Maitaiile<br>Maitaiile                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                     | Rhodes, 1957<br>Nishita et al., 1979<br>Nishita et al., 1979<br>Nishita et al., 1979<br>Nishita et al., 1978<br>Glever et al., 1978<br>Glever et al., 1978<br>Clover et al., 1978<br>Pille & Mathew, 1976<br>Nishita et al., 1979<br>Nishita et al., 1979                                          |
| treated clay<br>Clay Fraction                                                                                                                                                                                                                                          | 5<br>32<br>32<br>10                                  | 31<br>32<br>37<br>34                                   | 64<br>36<br>36<br>56                                    | 0.7<br>1<br>2.1<br>3 7                                             | 0.9                                                   | 79<br>48<br>54<br>62<br>40                                                                                                                                                            | 0 42<br>0 49<br>0 45<br>0 57                                                      | 29 6<br>20 5<br>16<br>34 4                                                   | -<br>-<br>-<br>-                                          | sclution)<br>5 mmcl/( fa2<br>(fa White                                                                   |                  |                                                                                                                                  | 1 %+1003+ 110+<br>2 &+1073++640+<br>8 1+1062+-130+<br>7 1+1062+ 36+<br>1 9+1075                                                                                     | Artansas A<br>208 Fu/VI)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                     | Hamstra & Veriork, je<br>Clover et al., j976<br>Glaver et al., j976<br>Clover et al., j976<br>Glaver et al. j976<br>Bondietti & Reynolds,                                                                                                                                                          |
| Clay Fraction<br>Clay Fraction<br>Clay Fraction<br>abyers Fraction                                                                                                                                                                                                     |                                                      |                                                        |                                                         |                                                                    |                                                       | 65<br>65<br>64<br>77                                                                                                                                                                  | •                                                                                 | •                                                                            | -                                                         | 5 mm/1/( (a)<br>(fa ME3)?<br>5 mm/1/( (a)<br>(fa ME3)?<br>5 mm/1/( (a)<br>(fa mm/1/) (a)<br>0.65( mm/1/) | ••               |                                                                                                                                  | 1 04+10F5<br>1 68+10E5<br>7 5+10E4<br>3 16+10F2                                                                                                                     | 2370(19)<br>Casat whit clay fraction<br>2386(19)<br>Casat whit clay fraction<br>239(9)<br>Casat whit clay fraction                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                     | Bondietti et al., 1975<br>Bondietti et al., 1975<br>Bondietti et al., 1975                                                                                                                                                                                                                         |
| abuncal rad - vy                                                                                                                                                                                                                                                       |                                                      |                                                        |                                                         |                                                                    |                                                       | 5 Q                                                                                                                                                                                   |                                                                                   |                                                                              |                                                           | NaC<br>D 68N NaC I                                                                                       |                  |                                                                                                                                  | 3 16+10[7<br>: 5+10[3                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                     | Erickson, 1980                                                                                                                                                                                                                                                                                     |
| (inganic<br>Higanic<br>Higanic bone charcoal<br>Anganic cornist charcoal                                                                                                                                                                                               |                                                      |                                                        |                                                         | 40 8<br>40 9                                                       | •                                                     | 7 2 (6 24)<br>7 2 (7 25)<br>7 0<br>7 0                                                                                                                                                |                                                                                   | 60                                                                           | 1 57                                                      | salut os                                                                                                 |                  |                                                                                                                                  | 7 951=10f 3<br>1 655=10E 3<br>6 2=10f 4<br>2 5=10f 4                                                                                                                | Fabert.<br>Egbert                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                     | Erictson, 1980<br>Nishita et al., 1970<br>Nishita et al., 1970<br>Tamura, 1972<br>Tamura, 1972                                                                                                                                                                                                     |

# POLONIUM Ka VALUES

·. . .

| NUC. 15          |                                                                                                                                                        | SAND     | SILT     | S<br>CLAY | R<br>RRG | 4<br>(a(03 | SAT PAS                   | FH<br>IT (+) | €[[<br>==a/<br>100g | % FREE<br>IRON<br>OXIDES | (1141)<br>(1141) | s com<br>Catter | NISCLIDE<br>CENCENTRATIEN | Kd<br>(=L/p)       | SOIL LOCATION<br>or DESCRIPTION                                                          | () THEP INFORMATION                                                                         | REFERENCE                                            |
|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------|-----------|----------|------------|---------------------------|--------------|---------------------|--------------------------|------------------|-----------------|---------------------------|--------------------|------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|------------------------------------------------------|
| Po 210<br>Po 210 | fine sandstane & silty clay<br>fine sandstane & nity clay<br>fine sandstane & silty clay<br>fine sandstane & silty clay<br>fine sandstane & silty clay |          |          |           |          |            | 7 U<br>4 5<br>5 75<br>7 0 |              |                     |                          |                  |                 |                           | 0<br>12<br>75      |                                                                                          | (Po.210) Tab 4<br>9 726 : site Geology<br>9 730 : Split Rock formation                      | Maji-Djafari et al., 198<br>Haji-Djafari et al., 198 |
| Po<br>Fa         | Sand                                                                                                                                                   | 4?       | 32       | 26        | 6 1      |            | 7 6                       |              | 27 8                | ************             |                  | **********      | **********************    | 120+-5+            | Nunn s(lty clay loam (All)(Colorado)                                                     |                                                                                             | Haji-Ojafari et al. 198                              |
| Pa               |                                                                                                                                                        | -        |          | :         | :        | _          | •                         | •            | -                   | •                        | -                |                 |                           | 20322<br>31041     | Numn silty clay leam (A12) (Colorado)                                                    | <ul> <li>All error terms in this table are standard error of the<br/>mean (S E )</li> </ul> | Manaso & Watters, 1971                               |
| Po               |                                                                                                                                                        | -        | -        |           | -        | -          |                           |              | -                   |                          | -                |                 |                           | 766+-148           | Nunn sity clay leam (B1)(Celerado)<br>Nunn sity clay leam (B2t)(Celerado)                |                                                                                             | Hansen & Watters, 1971<br>Hansen & Watters, 1971     |
| Pa               |                                                                                                                                                        | -        | -        | -         | -        | •          | •                         | •            | •                   | -                        | -                |                 |                           | 1213186            | Numn silty clay ioam (B3Ca) (Colorado)                                                   |                                                                                             | Hansen & Walters, 1971                               |
| Fo               |                                                                                                                                                        | 40       | M        |           | -        | :          | 29                        |              | •                   |                          | •                |                 |                           | 643+-85<br>723+-83 | hunn silty clay loam (C Ca) (Colorado)                                                   |                                                                                             | Hunson & Watters, 1971                               |
| Po               |                                                                                                                                                        | 45       | 42       | 13        | 23       |            | 65                        |              | 54                  |                          | •                |                 |                           | 172 . 26           | Uinsdale silty clay lose (C) (lova)<br>Lapter lose (Ap) (Wisconsin)                      |                                                                                             | Hansen & Watters, 1971<br>Hansen & Watters, 1971     |
| Po<br>P-         |                                                                                                                                                        | 54       | 22       | 24        | -        |            | 67                        |              |                     |                          | -                |                 |                           | 20611              | Laper form (B21) (Visconsin)                                                             |                                                                                             | Hansen & Watters, 1971                               |
| Po               |                                                                                                                                                        | 59<br>62 | 20       | 21<br>23  |          | •          | 557                       | •            |                     |                          | •                |                 |                           | 508+-34<br>814+-47 | Laper loam (822) (Wisconsin)                                                             |                                                                                             | Hansen & Watters, 1971                               |
| Po               |                                                                                                                                                        | 72       | ii       | 10        |          | -          | 70                        |              | •                   |                          | :                |                 |                           | 2759               | Lapper loar (83) (Visconsin)<br>Lapper loan (C1) (Visconsin)                             |                                                                                             | Hansen & Watters, 1971<br>Hansen & Watters, 1971     |
| Pa               |                                                                                                                                                        | 95       | Ó        | 5         |          |            | 59                        |              | 30                  |                          |                  |                 |                           | 26 - 2             | Adamsville (A1) (Fiorida)                                                                |                                                                                             | Hansen & Watters, 1971                               |
| Fa               |                                                                                                                                                        | 84<br>05 | 2        | 10        | -        | •          | 54                        | •            | 26                  |                          |                  |                 |                           | 353                | Elanton (At) (Florida)<br>Lateland (At) (Florida)                                        |                                                                                             | Mansen & Watters, 1971                               |
| Po               |                                                                                                                                                        | 97       | i        | 2         | -        |            | šś                        |              | 15                  |                          | -                |                 |                           | 171                | Leon (Al) (Finrida)                                                                      |                                                                                             | Hunsen & Watters, 1971<br>Hunsen & Watters, 1971     |
| P.               |                                                                                                                                                        | •        |          |           | •        | •          |                           |              |                     |                          |                  |                 |                           | 150 6              | Leon (A2) (Fiorida)                                                                      |                                                                                             | Hansen & Watters, 1971                               |
| Po               |                                                                                                                                                        | -        | -        | :         | -        |            |                           |              |                     |                          |                  |                 |                           | 5517               | Leon (Bn) (Fiorida)<br>Leon (C) (Fiorida)                                                |                                                                                             | Hansen & Watters, 1971                               |
| r.               |                                                                                                                                                        | 96       | 2        | 2         |          |            | 56                        |              | 4.6                 |                          |                  |                 |                           | 17-1               | Fushin (A)) (Florida)                                                                    | •                                                                                           | Hansen & Watters, 1971<br>Hansen & Watters, 1971     |
| Po               |                                                                                                                                                        | 57       | 30       | 13        | • 1      |            | 55                        |              |                     |                          |                  |                 |                           | 13- 7              | Darling gravelly sandy loam (82) (Colorado)                                              |                                                                                             | Hansen & Watters, 1971                               |
| Po               |                                                                                                                                                        | 74       | 16       |           | -        |            | 57                        |              |                     |                          |                  |                 |                           | 307                | Darling gravelly sandy loam (82:r)(Colorado)                                             |                                                                                             | Hansen & Wallers 1071                                |
| Po               |                                                                                                                                                        | 74       | 27       | 4         | -        |            | 80                        | -            |                     |                          |                  |                 |                           | 75+-8              | Darling gravelly sandy loam (C1)(Colorado)<br>Darling gravelly sandy loam (C2)(Colorado) |                                                                                             | Hansen & Watters, 1971<br>Hansen & Watters, 1971     |
| Po               |                                                                                                                                                        | 49       | 39       | 12        | 4        | •          | 6 6                       | •            | 16 8                | •                        | •                |                 |                           | 254 - 22           | Coorbic sandy loam (A2)(Wisconsin)                                                       |                                                                                             | Hansen & Watters, 1971                               |
| Po               |                                                                                                                                                        | 57       | 30<br>29 | 24        | :        |            | 56                        |              | ·                   | •                        | -                |                 |                           | 37136<br>1375      | Gouebic sandy loam (Bir) (Visconsin)                                                     |                                                                                             | Hansen & Watters, 1971                               |
| Po               | Sand                                                                                                                                                   | 68       | 27       | 5         | -        |            | 5 4                       | -            | -                   | -                        | -                |                 |                           | 747+ 7             | Copebic sandy Joam (Rich) (Misconsin)<br>Copebic sandy Joam (R3) (Misconsin)             |                                                                                             | Hansen & Watters, 1971<br>Hansen & Watters, 1971     |
| Po               |                                                                                                                                                        | 46       | 44       | 10        | 24       | -          | 68                        | •            | 51                  |                          |                  |                 |                           | 277 - 20           | Onever fine sends foon (Ap) (Visconsin)                                                  |                                                                                             | Hansen & Watters, 1973                               |
| Fo               |                                                                                                                                                        | 46       | 43       | 11        | -        |            | 69<br>82                  |              |                     | -                        | •                |                 |                           | 412150<br>22481200 | (navay fine sandy loam (Birh) (Visconsii)                                                |                                                                                             | Mansen & Watters, 1971                               |
| Po               |                                                                                                                                                        | 67       | 20       | 13        |          |            | 84                        |              | •                   | -                        |                  |                 |                           | 7020+-3600         | Orsesy fine sandy loam (C1) (Wisconsin)<br>Unaway fine sandy loam (C2) (Wisconsin)       |                                                                                             | Hansen & Watters, 1971<br>Hansen & Watters, 1975     |
| Po               |                                                                                                                                                        | 82       | 5        | 13        |          | •          | 63                        |              | 21                  |                          |                  |                 |                           | 761                | Arite (A))(Alabama)                                                                      |                                                                                             | Mansen & Watters 1071                                |
| Fo               |                                                                                                                                                        | 91       | 0<br>27  | 10        | -        |            | 50                        | •            | 19                  | •                        | -                |                 |                           | 198+-15            | Independence (A) (Alabama)                                                               |                                                                                             | Mansen & Watters, 1971                               |
| Po               | 5.16                                                                                                                                                   | 11       | 60       | 21        | 3.8      | -          | 58                        |              | 25 2                |                          | -                |                 |                           | 103049             | Wichham (A))(Alabama)<br>Dinsdale silty clay loam (A)(lowa)                              |                                                                                             | Hansen & Watters, 1971                               |
| r.               |                                                                                                                                                        | 17       | 55       | 28        | -        | •          | 5.6                       |              |                     |                          | •                |                 |                           | 9/6+-127           | Dinsdale sity clay loam (B) (lows)                                                       |                                                                                             | Hansen & Watters, 1971<br>Hansen & Watters, 1971     |
| Pe               |                                                                                                                                                        | .3       | 73       | 24<br>29  | 4.5      | -          | 55                        | :            | 28 4                | •                        | -                |                 |                           | 1136118            | Muscatine silty clay loam () (lona)                                                      |                                                                                             | Mansen & Watters, 1971                               |
| Po               |                                                                                                                                                        | 10       | 65       | 24        |          |            | 78                        | •            | •                   | -                        | -                |                 |                           | 96832<br>1830210   | Muscatine silty clay loam (B) (lowa)<br>Muscatine silty clay loam (C) (lowa)             |                                                                                             | Hansen & Watters 1071                                |
| Po               |                                                                                                                                                        | 10       | 80       | 10        | 21       |            | 5 Q                       |              | 11 2                |                          |                  |                 |                           | 970+-160           | Fayette silt loam (Ap) (Visconsin)                                                       |                                                                                             | Hanse, & Watters, 1971<br>Hansen & Watters, 1971     |
| Po               |                                                                                                                                                        |          | 71       | 21<br>29  | -        | •          | 6 2                       |              | •                   |                          |                  |                 |                           | 122- 3             | Fayette silt icam (01) (Visconsin)                                                       |                                                                                             | Hansen & Watters 1071                                |
| Po               |                                                                                                                                                        | 2        | 66       | 32        | :        | -          | 61                        | •            |                     | :                        |                  |                 |                           | 923<br>59755       | Favette silt lose (821) (Visconsin)<br>Favette silt lose (822) (Visconsin)               |                                                                                             | Hansen & Watters, 1071                               |
| r.               |                                                                                                                                                        | ŝ        | 65       | 30        |          |            | 5 3                       |              |                     | -                        | •                |                 |                           | 80+-2              | Fayette silt loap (823) (Wisconsin)                                                      |                                                                                             | Hansen & Watters, 1971<br>Hansen & Watters, 1971     |
| Po               |                                                                                                                                                        | 5        | 66       | 20        |          | •          | 5 5                       |              |                     |                          |                  |                 |                           | 172 29             | Fayette silt loam (C1) (Wisconsin)                                                       |                                                                                             | Hansen & Watters, 1971                               |
| Po               |                                                                                                                                                        | 33       | 57<br>55 | 15<br>18  | 30       | -          | 5.5                       |              | 28 9<br>16 4        | :                        |                  |                 |                           | 24 )<br>405 28     | Dariing gravelly sandy loam (A1) (Colorado)<br>Congaree (A1) (Alabama                    |                                                                                             | Hansen & Watters 1971                                |
|                  |                                                                                                                                                        | • '      |          | •••       |          |            | <b></b>                   |              |                     | -                        |                  |                 |                           |                    | rouderes (utiluisesms                                                                    |                                                                                             | Hansen & Watters, 1971<br>Mansen & Watters, 1971     |

- 88 -

# <u>TABLE\_B-26</u>

#### RADIUM Ka VALUES

| <b>N.C</b> 1                                                                                                                                                                                                                                                                  | 5031<br>15# 1 vite                                                                                                                       | %<br>Sand                    | <b>%</b><br>511 1                  | CLAY                             | s.<br>DRC          | t<br>CaCN3 | SAT PASTE                              | 1H<br>(v) | (E(<br>#ea/<br>100g          | S FREE<br>IRON<br>OXIDES | (11)<br>(11)(11)                                                 | S. COMP<br>CATION   | NUCLIOF<br>CONCENTRATION | ₩d<br>(=L/g)                                                                              | SOLE LOCATION<br>or DESCRIPTION                                                                                                                                | DINER   FORMATION                                                                               | REFERENCE                                                                                                                                                                              |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|------------------------------------|----------------------------------|--------------------|------------|----------------------------------------|-----------|------------------------------|--------------------------|------------------------------------------------------------------|---------------------|--------------------------|-------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| -4°                                                                                                                                                                                                                                                                           |                                                                                                                                          |                              |                                    |                                  |                    |            |                                        |           |                              |                          |                                                                  | <b></b> .           |                          |                                                                                           |                                                                                                                                                                | Nn Kd reported, but \$ Ra sorb d in table 6<br>(including 14 soits + physic reportion) SEDIMENT | Landa and Raid, 198?                                                                                                                                                                   |
| Pa<br>Ra<br>Ra                                                                                                                                                                                                                                                                | 226 fine sandstone i silty sand<br>226 fine sandstone - silty sand<br>226 fine candstone - silty sand<br>226 fine candstone - silty sand |                              |                                    |                                  |                    |            | 20<br>45<br>575<br>70                  |           |                              |                          |                                                                  |                     |                          | 0<br>12<br>50<br>100                                                                      |                                                                                                                                                                | lab 4 p 226 = nite oeology<br>p 230 = spiit rock formation                                      | Haji-Djafari et al., 1981<br>Haji-Djafari et al., 1981<br>Haji-Djafari et al., 1981<br>Haji-Djafari et al., 1983<br>Haji-Djafari et al., 1983                                          |
| Ra                                                                                                                                                                                                                                                                            |                                                                                                                                          | 93                           | 5                                  | ?                                | C 05               | 40 8       | 7 8(CaC12)                             |           | 1 Ja                         | •••••                    | initial R<br>conc hefo<br>noil conta                             |                     |                          | 106+ 16                                                                                   | Leanington (6) medium sand                                                                                                                                     |                                                                                                 | Cillham et al , 1981b                                                                                                                                                                  |
| Ra<br>Ra<br>Ra                                                                                                                                                                                                                                                                | 5+H                                                                                                                                      | 91 1<br>91 1<br>35           | 68<br>68<br>36                     | 1 3<br>1 3<br>79                 | 3 1<br>3 1<br>0 41 |            | 5 2<br>5 2<br>8 5(CaC 12)              |           | 10 9<br>10 9<br>8 32         |                          | 1 6=106 5 m<br>La2+ 0 05mm<br>no (a<br>Initial R<br>conc. befo   | a/L<br>1/L<br>*     |                          | 4+10E3<br>3 P+10E4<br>1252+ 370                                                           | St Thomas<br>St Thomas<br>MRF(-(2) clav Toam                                                                                                                   |                                                                                                 | Nathean ( & Philips, 1979<br>Nathean ( & Philips, 1979<br>Gilles et a' ( 1981)                                                                                                         |
| Ra<br>Ra<br>Ra<br>Ra<br>Ra                                                                                                                                                                                                                                                    | ( lay                                                                                                                                    | 67<br>67<br>437<br>437<br>31 | 47 9<br>47 9<br>48 9<br>48 9<br>34 | 45 4<br>45 4<br>7 4<br>7 4<br>35 |                    | -          | 5 4<br>5 4<br>4 3<br>4 3<br>7 B(CaC1?) |           | 34 7<br>34 7<br>10 4<br>10 4 |                          | <pre>woll conta</pre>                                            | /L<br>↓/L<br>☆<br>> |                          | 1 1+1055<br>9 5+1055<br>7 0+1084<br>1 2+1085<br>696+-191                                  | bardnver<br>Wendover<br>Crimoby<br>Crimoby<br>Letta clay icam                                                                                                  |                                                                                                 | Nathean: & Philism, 1979<br>Nathean: & Philism, 1979<br>Nathean: & Philism, 1979<br>Nathean: & Philism, 1979<br>G ilham et al., 1981b                                                  |
| R.                                                                                                                                                                                                                                                                            | Clay                                                                                                                                     |                              |                                    |                                  |                    |            | 7 557                                  |           |                              |                          | conc beir<br>no+1 conta<br>3 7±10E-5 m<br>Na+ 289 m<br>Ca2+ 75 m | ict<br>10/1<br>1/1  |                          | 5 5±10F4                                                                                  | rlay, mud                                                                                                                                                      |                                                                                                 | Ailard et al., 1977                                                                                                                                                                    |
| 発き<br>開き<br>発き<br>発き<br>発き<br>発き<br>発き<br>発き<br>一<br>発き<br>一<br>発き<br>一<br>発き<br>一<br>発き<br>一<br>発き<br>一<br>発き<br>一<br>発き<br>一<br>発き<br>一<br>発き<br>一<br>発き<br>一<br>合<br>日<br>一<br>合<br>の<br>一<br>の<br>合<br>の<br>一<br>の<br>の<br>の<br>の<br>の<br>の<br>の<br>の<br>の<br>の<br>の<br>の | Clay sediment<br>Clay sediment<br>Clay sediment<br>Clay nediment<br>Clay mediment<br>Clay mediment                                       |                              |                                    |                                  | -<br>-<br>-        | -          |                                        | -         | •                            |                          | <b>182</b> • 75 m                                                | <i></i>             |                          | 13 3=10C3+<br>10 5+10E3+<br>8=10E3+<br>4 3=10E3<br>14 9=10E3+<br>14 9=10E3+<br>17 4+10E3+ | clay sediment (Facific)<br>clay sediment (Facific)<br>clay mediment (Facific)<br>clay mediment (Facific)<br>clay mediment (Facific)<br>clay mediment (Facific) | omin values repld à data bared on desoro<br>of deep sea clays                                   | Cochron & Krishnasowai, 190<br>Cochran & Arishnasowai, 190<br>Cochran & Krishnasowii, 190<br>Cochran & Krishnasowai, 190<br>Cochran & Krishnasowai, 190<br>Cochran & Krishnasowai, 190 |

.

# RUTHENIUM\_K\_\_VALUES

| wit 158 538+                                              | sand        | <b>8</b><br>511,1 | CI AV | X<br>NRC | \$ e <sup>11</sup><br>CuCN3 SAT PASTE | f H<br>[=]           | СЕС<br>мед/<br>10%д       | 8, CREV<br>1900<br>OV10ES | cium<br>Caterio | S COMP<br>CALIEN | NEL 301<br>CONCENTRATION | Kd<br>(41/q)                    | SOIL LOCATION                                                                               | 01+EE INFORMATION                                                                                                                            | REFERENCE                                          |
|-----------------------------------------------------------|-------------|-------------------|-------|----------|---------------------------------------|----------------------|---------------------------|---------------------------|-----------------|------------------|--------------------------|---------------------------------|---------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|
| R. 103 Inany said<br>Bro 103 Joany peat                   |             |                   |       |          | 11 70                                 |                      | • • • • • • • • • • • • • |                           |                 |                  |                          | log                             | 1) Cleyvol                                                                                  | (f a 3) (Ru103)                                                                                                                              | Bung I & Sch umoch . 1788                          |
| Ru 103 sandy loam                                         |             |                   |       |          | 05 68<br>2000 57                      |                      |                           |                           |                 |                  |                          | 10e1 - (10e3 h<br>>10e1 - (10e3 | log 2) Sapric Histocolistrongly humidied<br>log 2) Cambinst,brown golf from luess           |                                                                                                                                              | Bunzi & Schimmech, 1088                            |
| Ry 103 sandy leam                                         |             |                   |       |          | 2(63) 7 1                             |                      |                           |                           |                 |                  |                          | >30#3 < <10#3                   | too 4) Cambisol, brown noil                                                                 |                                                                                                                                              | Bunzi & Schrameh, 1988                             |
| Fu 103 loamy sand<br>Ry 103 loamy sand                    |             |                   |       |          | 7(5) 4 6                              |                      |                           |                           |                 |                  |                          | >10e1 ->10e2                    | ton 5) Acrival parabrown soil, Al                                                           |                                                                                                                                              | Bungi & Schimmeck, 1988<br>Bungi & Schimmeck, 1988 |
| Ru 103 clay                                               |             |                   |       |          | ?(:3) 4 6<br>P 0                      |                      | 0 / ma/a                  |                           |                 |                  |                          | >10e1 - (10e2<br>>10e3 (10e4    | iog 6] Arrivot, parabrown noil, D-horizon<br>iog 8: Bentonile Sud chemie AC Manchen         |                                                                                                                                              | Bungt & Schummet 1988                              |
| Nu 303 seat.                                              |             |                   |       |          | •••                                   |                      | 0.1                       |                           |                 |                  |                          | 10+7 (10+3                      | log P] Spag prat (high moor) Strinhuder Meer Hanaguer                                       |                                                                                                                                              | Bunzi & Schimmach, 1986                            |
| Nu 103 pest.<br>Ru 106 promis pest.                       |             |                   |       |          |                                       |                      |                           |                           |                 |                  |                          | (10+3 (aq                       | P7 Spag prat (high moor) Kenjandorf Bayaria                                                 |                                                                                                                                              | Bunzt & Schiumpch, 1988<br>Bunzt & Schiumpch, 1988 |
| Ru 106 nramic beat                                        |             |                   |       |          | 40                                    |                      |                           |                           |                 |                  |                          | 0.38 + 10+4 +                   | 07 (b 8 cm) (0 13 may) Lefarens Bog, NY<br>02 (6-8 cm) (1 day) Lefarens Bog, NY             | 1ah 5k (Rd) (Rv-106)                                                                                                                         | Schell et al., 1986                                |
| Fu 106 organic arat                                       |             |                   |       |          | 40                                    |                      |                           |                           |                 |                  |                          | 3 3 + 10+4 -                    | 9) (6-F CH)(5 SBY) Letgrens Bog, NY<br>9) (6-B CH)(4 days) Letgrens Bog, NY                 | (lab 8 z comparison - Sibley 82)                                                                                                             | Schell et al 1985                                  |
| Ris 106 organic peak                                      |             |                   |       |          | 4 0                                   |                      |                           |                           |                 |                  |                          | 68 - 10-4 -                     | 31 (6 P cm) (1f days) Leforens Bon NY                                                       |                                                                                                                                              | Schell et al 1985                                  |
| Ry 106 creatic peat<br>Ry 106 creatic peat                |             |                   |       |          | 4.0                                   |                      |                           |                           |                 |                  |                          | R C = 10e4 -                    | 1 P (6-R cm) (15 days) Lefgrens (ing. NY                                                    |                                                                                                                                              | Schell et al. 1985<br>Schell et al. 1985           |
| Fu 10b organic peat                                       |             |                   |       |          | 40                                    |                      |                           |                           |                 |                  |                          | R.5. + 10+4                     | (6-8 cm)(73 days) Lefgrens Bog Nº<br>1 ) (6-8 cm)(27 days) Lefgrens Bog NY                  |                                                                                                                                              | Schell et al. 1985                                 |
| Ry 106 crossic pest                                       |             |                   |       |          | 4 0                                   |                      |                           |                           |                 |                  |                          |                                 | (5 B cm) (30 days) Lefarens Roa, 47                                                         |                                                                                                                                              | Schell at at 1985                                  |
| Ru 106 organis peat                                       |             |                   |       |          | 4 0                                   |                      |                           |                           |                 |                  |                          | -                               | · (20-2) cm) (2 13 daws) Leforens Roo. NY                                                   |                                                                                                                                              | Schell et al. 1985                                 |
| Nu 106 organic peat                                       |             |                   |       |          | 4 ()<br>4 ()                          |                      |                           |                           |                 |                  |                          | 1 7 + 10+4 -                    | 07 120 71 ce)(1 day) Lefgrenr Bog, NY<br>1º (20-21 ce)(4 days) Lefgrens Bog, NY             |                                                                                                                                              | Schell et al. 1984                                 |
| Ru 106 organir prat                                       |             |                   |       |          |                                       |                      |                           |                           |                 |                  |                          | 4 3 . 10+4 .                    | 1 1 120-21 cm (10 dave) Lefgrens Bog, NV                                                    |                                                                                                                                              | Scheil et al. 1085                                 |
| Ru 106 organic peat                                       |             |                   |       |          | 4 0                                   |                      |                           |                           |                 |                  |                          | 59 + 10+4 -                     | 49 (20 7) rei(15 days) Leforens Bon MY                                                      |                                                                                                                                              | Schell et al 1985                                  |
| Ru 106 organic peat                                       |             |                   |       |          | 4 0                                   |                      |                           |                           |                 |                  |                          | e 2 e 10e4 -                    | 87 (20 21 cm 73 days) teforers Hog Nr                                                       |                                                                                                                                              | Schell et al. 1985                                 |
| Ru 106 croamir peat.<br>Ru 106 croamir peat               |             |                   |       |          | 4.0                                   |                      |                           |                           |                 |                  |                          |                                 | (20 21 cet/2/ days) tefgrens Bog, Ny<br>B4 (20-21 cm) (30 days) tefgrens Bog, Ny            |                                                                                                                                              | Schell et al. 1985<br>Schell et al. 1985           |
| Ry 106 mean r cest                                        |             |                   |       |          | 40                                    |                      |                           |                           |                 |                  |                          | 0 76 - 10-4 -                   | 05 16 8 cm110 13 dansi incuce flate from 14                                                 |                                                                                                                                              | Schellet at sons                                   |
| Fu 106 maanin peat                                        |             |                   |       |          | 4.0                                   |                      |                           |                           |                 |                  |                          | 2 5 # 10#4 *                    | 44 (6 B cm) (1 day) Snruce Flate Mon. PA                                                    |                                                                                                                                              | Schellet at 1004                                   |
| Ru 106 organic prat<br>Ru 106 organic prat                |             |                   |       |          | 40                                    |                      |                           |                           |                 |                  |                          | 4 ] • 10=4 •                    | 01 16 B cm1(4 days) Spruce Flats Bog, PA<br>13 (6-B rm)(10 days) Spruce Flats Bog, PA       |                                                                                                                                              | Schell et al. 1984<br>Schell et al. 1985           |
| Fu 106 prostir seat                                       |             |                   |       |          | 1                                     |                      |                           |                           |                 |                  |                          |                                 | - (6-9 cm)(15 days) Spruce Flats Bog, PA                                                    |                                                                                                                                              | Schell et al., 1985                                |
| Ru 106 organic past                                       |             |                   |       |          | 4.0                                   |                      |                           |                           |                 |                  |                          |                                 | (20 27 cm) (0 13 days) Spruce Flats Hon PA                                                  |                                                                                                                                              | Schell et al jogs                                  |
| Ru 106 organic peat<br>Ru 106 organic peat                |             |                   |       |          | 4.0                                   |                      |                           |                           |                 |                  |                          | ; ? • 10+4 -                    | C5 (20-22 cm) (1 day) Seruce Flats Bog, PA                                                  |                                                                                                                                              | Schell et al , 1985                                |
| Ru 106 province peat<br>Ru 106 province peat              |             |                   |       |          | 40                                    |                      |                           |                           |                 |                  |                          | 5 1 . 10.4 .                    | 37 (20-22 cm) (4 days) Spruce Flats Bog, PA<br>11 (20-22 cm) (10 days) Spruce Flats Bog, PA |                                                                                                                                              | Schell et al. 1985<br>Schelf et al. 1985           |
| Fu 106 organic peat                                       |             |                   |       |          | 4 0                                   |                      |                           |                           |                 |                  |                          | 5 4 + 10+4 +-                   | 54 (20-22 cm)(15 days) Spruce Flats Rog, PA                                                 |                                                                                                                                              | Schell et at 1985                                  |
| By 106 SRF sent thurst pr                                 | rdi         |                   |       |          | 3 95                                  |                      |                           |                           |                 |                  |                          | >63                             | SRF - Savannah River Plant                                                                  | leg time days (Ru 106) (Ru(13)                                                                                                               | Schall et al., 1985                                |
| Ris 106 SRF soit lourial gr<br>Ru 106 SRF soit tourial gr | rd)<br>- 4) |                   |       |          | 4 12                                  |                      |                           |                           |                 |                  |                          | >63<br>>63                      |                                                                                             | 2 eq time days (Tab 7, p 43)                                                                                                                 | Hoeffn,r, 3085<br>Hoeffner, 3985                   |
| Ru 106 SRF soil (burist gr                                | rd)<br>rd)  |                   |       |          | 4 29                                  |                      |                           |                           |                 |                  |                          | >63                             |                                                                                             | 4 eq. time days — also Stone et al., 1984 (1-77)<br>7 eq. time days                                                                          | Hoeffner, 1985                                     |
| Ru                                                        |             |                   |       |          |                                       |                      |                           |                           |                 |                  |                          | 100 500                         |                                                                                             | Lab conditions lupper limit, ph 4 to 5, Fig. 11)                                                                                             | Heeffner, 1985                                     |
| Ru 103<br>Ru 103 An (0.27 cm)                             | 90          | 17                | 3     | 1 19     | 0 37 10 612                           |                      | 125 mm ta 🗧               |                           |                 |                  |                          | 37 (14 73)<br>>100              | • •                                                                                         |                                                                                                                                              | Hoeffner, 1985                                     |
| Ru 103 Ap (0.27 cm)<br>Ru 103 ( 127-30 cm)                |             |                   |       | 1 15     | A 3 (solut<br>A 3 (solut              |                      | 15 4                      |                           |                 |                  |                          | >100                            | Auenrendzina (8-61is)<br>Auenrendzina (8-61is)                                              | 9.) # 2 = Kd so I herizon Fin & - Kd in Co. Ka                                                                                               | Schimmech et al., 1987<br>Bunzi et al., 1984       |
| Ru 103 (c (30-47 c=)                                      |             |                   |       | 1 01     | B 7 (solut                            |                      | 15 2                      |                           |                 |                  |                          | 5100                            | Austrand-ina (P-b1-n)                                                                       | Fig A = Ad - comparison column + batch<br>Fig 5 = Hd - 6 soils (A-horiz.)                                                                    | Bunzi at al., 1984                                 |
| Ry 103 F Gr (c (47 40 cm)                                 |             |                   |       | 0 25     | t 1 (unlut                            |                      | P 5                       |                           |                 |                  |                          | 1000                            | Avenrendzina (Biblis)                                                                       | fig 6 - Kd - 5 solis (I Ca) Abstract                                                                                                         | Bunzlet al 1984                                    |
| Ru 103 2 f Gr (90 128 cm)<br>Ru 103 3 Gr (128 132 cm)     | )           |                   |       | 0 14     | t 7 (splut<br>8 7 (splut              |                      | A 4<br>0 7                |                           |                 |                  |                          | 100                             | Auentendrins (U.b.i.s)<br>Auentendrins (B.b.i.s)                                            |                                                                                                                                              | Bunzt et at 1984                                   |
| Ru 103 Ap (0-31 cm)                                       |             |                   |       | 2 41     | 7 3 (solut                            |                      | 8 7                       |                           |                 |                  |                          | 100                             | Farabrown (Eschueiler)                                                                      |                                                                                                                                              | Bungleta', 1984<br>Bungleta, 1984                  |
| Ru 103 A1 (31 55 cm)                                      |             |                   |       | 0 /1     | 14 featur                             | onj                  | 95                        |                           |                 |                  |                          | 1000                            | Farabrown (Escheriler)                                                                      |                                                                                                                                              | Bungi et al , 1984                                 |
| Ru 103 BtA1 (57 67 rm)                                    |             |                   |       | 0 34     | 2.2 Jaciut                            | -07)                 | 63                        |                           |                 |                  |                          | 00010                           | Farabrown (Eachweiler)                                                                      |                                                                                                                                              | Bunzi vt al , 1984                                 |
| Ru 103 AtBt (62-73 cm)<br>Ru 303 BL3 (73-88 cm)           |             |                   |       | 0 30     | E A (solut.<br>E 7 (solut.            |                      | 83<br>175                 |                           |                 |                  |                          | >1000                           | Parabrown (Enchueiler)<br>Farabrown (Escheeiler)                                            |                                                                                                                                              | Bunzletal, 1984<br>Bunzletal, 1984                 |
| Ru 103 BL2 (> 80 cm)                                      |             |                   |       | C 25     | 6 7 (solut                            |                      | 13 2                      |                           |                 |                  |                          | >1000                           | Parabrown (Exchaniler)                                                                      |                                                                                                                                              | Bunzietal 1984                                     |
| Ru 106 clay                                               |             |                   |       |          | 60                                    | ·200(mv)             |                           |                           |                 |                  |                          | 800                             | ** see (s/1 **                                                                              | (Tab 4 - Kdn)(Tab 1 - CM composition)                                                                                                        | Bunziet bl., 1984                                  |
| Ru 106 C1 7 sand<br>Ru 106 C3 sand                        |             |                   |       |          | 6 C<br>6 C                            | -700(#v)<br>-700(#v) |                           |                           |                 |                  |                          | 440<br>82                       |                                                                                             | Fab 2 - Soil Description (Cool conclusion)                                                                                                   | Rell and Bates, 1988                               |
| Hu 10h C3 sand<br>hu 10h C5 sand                          |             |                   |       |          | 60                                    | -200(=+)             |                           |                           |                 |                  |                          | 87<br>34                        |                                                                                             | (lah 3 - Activition (Bq))                                                                                                                    | Bell and Bates, 1988<br>Bell and Bates, 1988       |
| Ru 105 sand                                               |             |                   |       |          | 60                                    | -2001++1             |                           |                           |                 |                  |                          | 5                               |                                                                                             |                                                                                                                                              | Bell and Bates, 1988                               |
| Fu 103 Ap-hor-zon                                         | 59 7        | 28 A              | 12 0  | 624      | 0.2 67 (CaC12)                        |                      | e,                        |                           |                 |                  |                          | 23 200                          | Alfinol (Parabrown parth) (0.30 cm)                                                         | ( gong line - del (h) + t del)                                                                                                               | Bell and Bales, 1988                               |
|                                                           |             |                   |       |          |                                       |                      |                           |                           |                 |                  |                          | (ice-N)<br>(Av 931              | •                                                                                           | ("ab 7 = 16", (FC, put by hor izon)                                                                                                          | Bunyletal 10,85                                    |
| Ru 105 Sandy subso-l                                      |             |                   |       |          |                                       |                      |                           |                           |                 |                  | 10E - 4HH MQ3            | 90                              | Corlehen site FRC                                                                           |                                                                                                                                              | Bunzletal 1985                                     |
|                                                           |             |                   |       |          |                                       |                      | ···.—                     |                           |                 |                  |                          |                                 |                                                                                             | (f) N. Sr. Cs. Co)(Kd values from Fig. 3.8.6)<br>(fis. 3.8.6 - kd vs. HND3-HMM sol 1(5.formulas)<br>(Fig. 5 - adders 8.desoro Kds) MPTS code | Bunzl et al , 1085<br>Schwarzar et al , 1082       |

#### TABLE\_B-28

| MIC 150                                   | SOII<br>type                                                                                                                                             | SAND SIL | T CLAY                                                                                                                     | a<br>Daul                            | <b>5</b><br>5 ( aCD3 | PH<br>SAT PAST                                                                                                           | ())<br>(*) | () (<br>-rs/<br>100g | 12 HQ J<br>  CRN<br>  DF S | COMP<br>CATION | \$ CIMP<br>CAT {N | NRCI IN<br>CONCENTRATION | Kd<br>(== /a)                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | SOLL ENCATION<br>of DESCRIPTION |                                                                                                                                                                                                                            | RFFFN NCE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|-------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------------------------------------------------------------------------------------------------------------------------|--------------------------------------|----------------------|--------------------------------------------------------------------------------------------------------------------------|------------|----------------------|----------------------------|----------------|-------------------|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2 * 5 * 8 * 8 * 8 * 5 * 5 * 5 * 5 * 5 * 5 | schagnup peat<br>schagnup peat<br>schagnup peat<br>schagnup peat<br>sand<br>sand<br>iapm<br>clay<br>clay<br>clay<br>clay<br>clay<br>clay<br>clay<br>clay |          | 12<br>15<br>19<br>28<br>30<br>31<br>31<br>34<br>39<br>42<br>47<br>47<br>47<br>47<br>47<br>49<br>49<br>56<br>72<br>84<br>87 | 337768076496743778076496743667497710 |                      | 4 8<br>4 8<br>4 8<br>4 8<br>4 8<br>3 6<br>6 3<br>4 4<br>5 4<br>4 4<br>5 5<br>4 4<br>5 5<br>4 4<br>5 5<br>5 6<br>6 3<br>7 |            |                      |                            |                |                   | <u> </u>                 | 105 T /Kq<br>110 1 /Kq<br>310 1 /Kq<br>7.0 1 /Ke<br>70<br>36<br>145<br>120<br>96<br>36<br>210<br>146<br>140<br>140<br>140<br>140<br>140<br>140<br>140<br>140 | Hann Fail           fail 1           fail 2           fail 3           Soil 1           Soil 1           Soil 2           Soil 5           Soil 6           Soil 8           Soil 9           Soil 10           Soil 9           Soil 11           Soil 12           Soil 13           Soil 14           Soil 15 |                                 | (1ab fi Kd, geom mean)<br>(*M 1, (*, 1*6, 14)<br>(Sphag neat Fibric Mening))<br>Table 1: physion - chem prop<br>tab 2 - sorgtion of nelengte - calc. Fi from this table<br>(oncentration of element - 5000 mg Selige) soil | Sheppard and Fuendan, 1988<br>Sheppard and Fuendan, 1989<br>Sheppard and Fuendan, 1989<br>Sheppard and fuendan, 1989<br>Vuent, et al. 1989<br>Vuert, et al. 1989 |

### TABLE B-2'

### SILVER Ka VALUES

| MIC 154                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | SOTI<br>Lype                                                                             | SAND | <b>%</b><br>511 1 | 5 CI AY | NRC                                                         | c.cn3 | AT PASTE                                                               | fн<br>(v) | CE(<br>=eq/<br>100g                                                                                                                                                            | UKIDER<br>JOUN<br>8. EBEE | CUMP<br>CATION                                                               | \$ c(wr<br>CA110N | NUC: IDF<br>CONCLIMINATION | ¥d<br>(mi/q)                                                                                                  | SOLL LOCATION<br>or DESCRIPTION                                                                                                                                                       | () IVE R INF (RMAT) (DH                                                                                                    | REFERENCE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|------|-------------------|---------|-------------------------------------------------------------|-------|------------------------------------------------------------------------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|------------------------------------------------------------------------------|-------------------|----------------------------|---------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ag 110m 5:10.<br>Ag 110 | clay<br>I-sand<br>clay<br>sand<br>I<br>clay<br>clay<br>clay<br>sand<br>t<br>sand<br>sand |      |                   |         |                                                             |       |                                                                        |           | (11 3)<br>(741 7)<br>(55 6)<br>(69 5)<br>(47 8)<br>(47 8)<br>(77 9)<br>(140 5)<br>(746 0)<br>(746 0)<br>(746 0)<br>(746 0)<br>(74 3)<br>(77 1)<br>(127 8)<br>(38 6)<br>(200 1) |                           |                                                                              |                   |                            | 75<br>100<br>300<br>200<br>350<br>10<br>170<br>200<br>200<br>200<br>100<br>300<br>400<br>60<br>80             | 8<br>6<br>7<br>7<br>7<br>7<br>8<br>9<br>9<br>9<br>1<br>1<br>9<br>1<br>1<br>9<br>7<br>1<br>1<br>9<br>7<br>1<br>1<br>9<br>7<br>1<br>1<br>9<br>7<br>7<br>1<br>9<br>7<br>7<br>9<br>7<br>9 | [1267. 50 ' 1904] (1265. (17 - Kd)<br>(1) 47 : (r, 'n 46, (n ,46, (e ,40) ( :n ,147)<br>(1 ∟ : (uro/q) (Q Lables, 3 F ·g ) | I noue & Mor Issue, 1976<br>I noue & Mor Issue, 1975<br>I noue & Mor Issue, 1976<br>I noue & Mor Issue, 1975<br>I noue & Mor Issue, 1975<br>I noue & Mor Issue, 1976<br>I noue & Mor Issue                                   |
| Ag Sand<br>Ag<br>Ag Sili<br>Ag Sili<br>Ag Sili<br>Ag Organ<br>Ag Organ<br>Ag                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ·c                                                                                       | -    | •                 | 0 20 -  | 3 5<br>2 5<br>-<br>-<br>-<br>90<br>>90<br>>90<br>>90<br>>90 |       | 4 5-5 0<br>7 5 8 0<br>4 8<br>6 7<br>7 4<br>6 6<br>4 5<br>4 to 5<br>6 7 |           | 27<br>16                                                                                                                                                                       |                           | C Imn1/I CaC<br>C Imn1/I CaC<br>C Imn1/I CaC<br>C Imn1/I CaC<br>C Imn1/I CaC | 12                |                            | 1 6+105;<br>5 6+105;<br>7 7<br>33 0<br>29 8<br>7 9<br>333<br>4 4+105<br>3<br>7 7+1054<br>1 7+1054<br>3 3+1054 | Soul C<br>Soul D<br>Florids 1 - sand<br>Florids 2 - sand - organic matter<br>Wissour- 23<br>Hissour- 24<br>Hissour- 38<br>Soul A<br>Post A<br>Fest B<br>Soul B                        |                                                                                                                            | Gerribs et al. 1987<br>Gerribs et al. 1987<br>Graham, 1973<br>Graham, 1973<br>Graham, 1973<br>Graham, 1973<br>Graham, 1973<br>Graham, 1973<br>Gerribs et al., 1987<br>Gerribs et al., 1987<br>Gerrib |

SELENIUM\_Ka\_VALUES

# STRONTTUM Ka VALUES

.

| tra Stil<br>type<br>10 loss                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | T<br>Sand                                             | 511 7                                       | r Ay                                    | 1<br>(RG                                                     | tacn3                                               | SAT PA                         | ғн<br>517 гу)                                            | 1Rfm           | CDH                                                          | 144                                 | S COMP<br>CATION | WJCL 10Ł<br>CINCEN IRATTIN | Rd<br>(=1/g)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | SOL LOCATION<br>er DESCRIPTION                                                                                                                                                                             | DTHER JHF RENATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | REFERENCE                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|---------------------------------------------|-----------------------------------------|--------------------------------------------------------------|-----------------------------------------------------|--------------------------------|----------------------------------------------------------|----------------|--------------------------------------------------------------|-------------------------------------|------------------|----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 15 clay<br>15 sand<br>15 sand<br>15 sand<br>15 sand<br>15 sand<br>15 clay<br>15 | 72 6<br>5<br>96 0 0<br>96 0 0<br>80 0<br>80 0<br>80 0 | 17 4<br>57 5<br>7 1<br>1<br>7 1<br>1<br>7 1 | 000000000000000000000000000000000000000 | Dest<br>Dest<br>Dest<br>Dest<br>Dest<br>Dest<br>Dest<br>Dest | 1 1<br>0 5<br>7 (100)<br>7 (53)<br>7 (53)<br>7 (23) | 6 8<br>5 7<br>7.1<br>4 6       | -200 (<br>-200 (<br>-200 (<br>-200 (<br>-200 (<br>-200 ( | <br>a/q<br>a/y | C IN<br>C IN<br>C IN<br>C IN<br>C IN<br>C IN<br>C IN<br>C IN | CaNo3<br>(aNo3<br>(aNo3<br>2 p4 6 7 |                  |                            | 3000         -         78         [44]           3200         -         65         [84]           3300         -         65         [84]           3200         -         65         [84]           3200         -         65         [34]           3200         -         65         [34]           7300         -         15         [46]           -         711d         15         [40]           8000         -         1         [154]           900         -         1         15           4600         -         07         [114]           100         -         05         [320]           200         -         05         [154]           200         -         05         [154]           200         -         04         [306]           -         07         [114]         180         -           200         -         05         [154] | (6-8 cm) Spruce Flats Bog, PA<br>(6-8 cm) Spruce Flats Bog, PA<br>(20-22 cm) Spruce Flats Bog, PA | USA heavy-meraine ison (30% arg.)[[actous particles]<br>arre (1 un rear, kmolnits, montane.]]ionits, and hydronics<br>Nd values pffected by dose 3 done rates labi. Tahtrid<br>lab. 4<br>[Sr-00] (p 101] difficult<br>as see [s/1 as also see fig 4 ± 5<br>[tab ]) (selective coeff p.312) (good figures).01H [ac[12:pH]<br>[] brackets in Kd column z column breakthrough<br>Lefgroms 1 org. contant then PA (tab Su] (Rd) (Sr-05)<br>[tab Broomparison-Sibley B2]<br>Seruce Fists 1 inorganic content then MY<br>[tab Broomparison-Sibley B2] | Sobolov, 1985<br>Boll and Bates 1989<br>Boll and Bates 1989<br>Boll and Bates 1989<br>Boll and Bates 1989<br>Boll and Bates 1988<br>Boll and Bates 1988<br>Carlson and Bo, 1982<br>Carlson and Bo, 1982<br>Bunzl and Schamach, 1989<br>Bunzl and Schamach, 1989 |
| 15 sənd<br>15 sənd<br>15 sənd<br>15 sənd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 89<br>72                                              | 7<br>5                                      | 23                                      |                                                              |                                                     | 45<br>50<br>50 fina<br>50 fina |                                                          |                | 2 54±10<br>254±30                                            |                                     |                  |                            | 2 8<br>9 3<br>26<br>23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Seil 2 (#-101)<br>Seil 2 (bilend 40.481)<br>SRP Seil<br>SRP Seil                                                                                                                                           | p.25 (Lab.8)<br>{Lab.8} os see (p.m.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Schell et al., 1985<br>Schell et al., 1985<br>Hoeffner, 1985<br>Hoeffner, 1985                                                                                                                                                                                                                                                                                                                                                                                      |

continued...

| TABLE B-30 (continued) | LE B-30 (con | tinued) |
|------------------------|--------------|---------|
|------------------------|--------------|---------|

| 501L<br>158 Lypr             | \$<br>SAND   | R<br>SII T | S<br>CLAY      | 16<br>697 Ç. | \$<br>C+CD3 | 94 EH<br>SAT PASTI (+)     | CEC<br>===q/<br>100q | S FREE<br>IRCN<br>OXIDES | COMP<br>CATION                      | S COMP<br>CATION | NUCLIDE<br>CONCENTRATION | Kd<br>(=L/g)     | STIL LOCATION<br>or DESCRIPTION                  | OTH + INFINIATION                                                                                              |                          | REPERK                                          |
|------------------------------|--------------|------------|----------------|--------------|-------------|----------------------------|----------------------|--------------------------|-------------------------------------|------------------|--------------------------|------------------|--------------------------------------------------|----------------------------------------------------------------------------------------------------------------|--------------------------|-------------------------------------------------|
| R5 sand                      |              |            |                |              |             | 5 0 final<br>5.0 final     |                      |                          | 2 5Hs (CE 4HsHE)<br>25Hs (CE 4HsHE) |                  |                          | 24               | SHE Seri                                         | result of pH changes                                                                                           | Haelfner,                |                                                 |
| #5 sand                      |              |            |                |              |             | 50 final                   |                      |                          | 2 SH+10E4KC1                        |                  |                          | 72               | SRP Soil<br>SRP Soil                             |                                                                                                                | Hoeffner,                |                                                 |
| 85 sand<br>85 sand           |              |            |                |              |             | 4.7                        |                      |                          | 75H+10E4KC1                         |                  |                          | ~,               | SR* Sail                                         |                                                                                                                | Hoeffmer.                | 1985                                            |
| 85 sand :<br>85 sand         |              |            |                |              |             | 50                         |                      |                          | 2 54+10E4KN03                       |                  | •                        | 21               | Ste Soil                                         |                                                                                                                | Heeffner                 |                                                 |
| 85 sand                      |              |            |                |              |             | 4.0                        |                      |                          | 25H, 10F 40003                      |                  |                          | -;               | SAP Soil                                         |                                                                                                                | Heeffner,<br>Hoeffner,   |                                                 |
| 85 wend                      |              |            |                |              |             | 5.0                        |                      |                          | ne salt.                            |                  |                          | 77               | SHP Seit                                         |                                                                                                                | Hoeffner                 | 1442                                            |
| P5 sand                      |              |            |                |              |             | 4 9 Final                  |                      |                          | 2 5Mii 10E4MpC I                    |                  |                          | 75               | SMP Seil                                         |                                                                                                                | Heeffner                 |                                                 |
| US sand                      |              |            |                |              |             | 4.6 final<br>4.8 final     |                      |                          | 254+11E #hoC 12                     |                  |                          | 5                | SRP Seril                                        |                                                                                                                | Hoeffner                 |                                                 |
| 85 sand                      |              |            |                |              |             | 4.8 final                  |                      |                          | 2 54-1% #hg (HC)                    |                  |                          | 14               | SNP Soil                                         | (tab \$) Kd equ: zone day                                                                                      | Hoeffner                 |                                                 |
| 85 sand                      |              |            |                |              |             | 4 8 final                  |                      |                          | 75H=10F 4Hq (HO3                    |                  |                          | 6                | SRP Soil                                         | (20-200 som Fe decreased in Kd=15-2 ml/g)                                                                      | Heeffner                 |                                                 |
| 85 sand                      |              |            |                |              |             | 4 6 final                  |                      |                          | 2 541+10F4C+C1                      |                  |                          | 17               | SRP Soli<br>SRP Soli                             | ro fez(Kd-25):tau 9                                                                                            | Heeffner                 | 1985                                            |
| 85 sard                      |              |            |                |              |             | 5 2 final                  |                      |                          | 25H=10E4CaC12                       |                  |                          |                  | SRP Soul                                         |                                                                                                                | Hoeffner, '              |                                                 |
| 25 same                      |              |            |                |              |             | 5 2 final                  |                      |                          | 2 544+10E4Na250                     |                  |                          | 57               | SRP Soul                                         |                                                                                                                | Hoeffner,                |                                                 |
| 25 sard                      |              |            |                |              |             | 4 9 final                  |                      |                          | en sait                             | •                |                          | 870<br>16        | SRP Seil                                         |                                                                                                                | Hneffner,                |                                                 |
| Bh sand<br>Bh sand           |              |            |                |              |             | 2-1                        |                      | (HCO-3 & OH-)            |                                     |                  |                          | 2-1100           | 347 3011                                         | Fig 4 (offect of prior Sr Kd)                                                                                  | Hoeffner,                | 1985                                            |
| 90 44                        |              |            |                |              |             | 2-7                        |                      | (H .Co & Hg)             |                                     |                  |                          | 2-1100           |                                                  | Fig. 9 (effect of K, Ca or Ng on Sr Kd)                                                                        | Hneffne-                 | 1985                                            |
| 90 AB                        | 29 7         | 40.2       | 17.5           | 0.17         | 395         | 7.81 (0.50) water          | 53                   |                          | CaC12                               |                  |                          | 10.6             | Upper Davdized Till                              | fantastic paper for info                                                                                       | Haeffner,                |                                                 |
| 10 11                        | 37 6<br>28 4 | 34 7 38 2  | 14.6           | 0.2          | 435         | 7 99 (8 60) ester          | 34                   |                          | CaC12                               |                  |                          | 6.6              | Unper David-zed Till                             | (Sr-90) (Lab )-physical rep )                                                                                  | Johnston e<br>Johnston e |                                                 |
| 0 A12                        | 37 5         | 35.8       | 22.2           | 0.29         | 438         | 7 89 (8.45)                | 6 2                  |                          | Eacin                               |                  |                          |                  | Upper Deidized Till                              | sand-s-it-clay does not a wal 100%                                                                             | Johnston e               |                                                 |
| IO A23                       | 32 0         | 32 0       | 11.9           | 0.21         | 44          | 8 08 (8 78)<br>8 08 (8 82) | 25                   |                          | C=C12                               |                  |                          |                  | Lover investmened Tuli                           |                                                                                                                | Johnston e               |                                                 |
| ND 422                       | 36.1         | 35.0       | 10.5           | 0.20         | 45          | 8 V# (8.82)<br>8 14 19,901 | 28                   |                          | CaC12                               |                  |                          | 4 1              | Lower Unwesthered 1:11                           |                                                                                                                | Johnsten e               |                                                 |
| FEA OI                       | 36.1<br>35.7 | 31.2       | 91             | 0 18         | 73          | 8 20 (8 98)                | 2022                 |                          | C=C12                               |                  |                          | 4 4              | Lover Unweathered 1,11                           | (tab.) give Calcite - (, omite a WCarb.)                                                                       | Johnston e               |                                                 |
| WD 014                       | 37.8         | 36 9       | - <u>11.</u> i | 0.27         | 39          | <b>8</b> 10 (8 70)         | <b>3</b> 1           |                          | CaC12                               |                  |                          | 5 6              | Lower Unwesthered E-II                           | 1 (a)02                                                                                                        | Johnston +               |                                                 |
| 90 D23                       | 36.6         | 43 8       |                | 0.24         |             | 0 18 (0.92)                | 21                   |                          | CaC 17                              |                  |                          | 4 0              | Lover Unwesthered 1.11                           | itab 2 = chem prop , cat ons, CEC)                                                                             | Johnsten e               |                                                 |
| 90 C2E                       | 37 8         | 38 7       | 11 4           | 0.23         | 42          | 8 30 (8,93)                | 21                   |                          | CaC 12                              |                  |                          | 4 0              | Lower Unwesthered 1,11<br>Lawer Unwesthered 7,12 | et a' z chorry                                                                                                 | Johnston e               |                                                 |
| 90 033                       | 36 9         | 37 7       | 11.1           | 0 16         | 40          | 8 30 (8 95)                | 20                   |                          | CaC12<br>CaC12                      |                  |                          | 3 2              | Lower Unweathered 1:11                           | (tab 3: aroundwater cation:/aniana, lab - field pH)                                                            | Johnsten e               | tal 🕻 3                                         |
| 90 D3P                       | 36.3         | 34 5       | 4.8            | 0 11         | 51          | 8.31 (9.02                 | 63                   |                          | ()()?                               |                  |                          | 36               | Lower Unesathered Till                           | to be the second se | Johnsten e               | st 11. 1                                        |
| 10 82-26<br>10 CC-22         | _            |            |                | 0 17         | 43          | 7 75 (8 69)                | õ ii                 |                          | C+C12                               |                  |                          | 25               | Sand                                             | (Lab Solid synthet.c su: Go)                                                                                   | Johnston e               | s <b>6 81., 1</b>                               |
| NO CR                        |              |            |                | 0.23         | 52          | 7 92 (8.54)                | Óê                   |                          | CaC12                               |                  |                          | 2 4              | Sand                                             | good conclusions                                                                                               | Johnston e               |                                                 |
| 0 . C10 .                    | _            |            |                | 0 13         | 65          | 0.23 (B 97)                | 0 9                  |                          | CaC 12                              |                  |                          | 20               | Sand                                             | ** see (s **                                                                                                   | Johnston e               |                                                 |
| 0 612                        | _            |            |                | 0.15         | 58          | 0 28 0.75                  | 09                   |                          | CaC12                               |                  |                          | 13               | Sand                                             |                                                                                                                | Johnston e               |                                                 |
| 0 017                        |              |            |                | 0 19         | 56          | 8 05 8 70                  | 07                   |                          | CaC 12                              |                  |                          | 26               | Sand<br>Sand                                     |                                                                                                                | Johnston e               |                                                 |
| 0 ¥77                        |              | ••••       |                | 0 16         | 61          | 8 14 8 72                  | 0.8                  |                          | CaC12                               |                  |                          | 21               |                                                  |                                                                                                                | Johnston e               | <b>L B</b> 3                                    |
| S Ap toriyan                 | 597          | 28.4       | 12.0           | 0 72         | 21          | 8 15                       | 0 9                  |                          | Car 12                              |                  |                          | 14               | Sand                                             |                                                                                                                | Johnston e               |                                                 |
|                              | 54.7         | /0 •       | 12.0           | C12 4        | V.2         | 6 7 (CaCi2)                | 87                   |                          | CaC 12                              |                  |                          | 20-25            | {O-30 cm} Alfisol (Parabrown earth)              | lab 3= Kd Tab 1= soil t op Tab 2= %C,CEC,pH by herizen                                                         | Johnsten e<br>Bunzlet a  |                                                 |
| 85 Sodium Litanate - brine A |              |            |                |              |             | 6.7                        |                      |                          |                                     |                  |                          | (log-N*) (AV-29) |                                                  |                                                                                                                |                          |                                                 |
| 15 Sed-um titanate + 15 A    |              |            |                |              |             | 12                         |                      |                          |                                     |                  |                          | 175              |                                                  |                                                                                                                | Norgh, 198               | 10                                              |
| 15 Sodium Litenate - brine B |              |            |                |              |             | 7 2.7.5                    |                      |                          |                                     |                  |                          | 100,000          |                                                  | (Lot 3)                                                                                                        | Sec. 198                 | in .                                            |
| 90 SAF                       |              |            |                |              |             | 3.4                        |                      |                          |                                     |                  |                          | 15               | SRP=Savannah River Plant - burial ground soil    | see Pu/2sodium tit: ste, synthetic inorganic exchange                                                          | rlicest, 198             | 0                                               |
| 10 SRP<br>10 SRP             |              |            |                |              |             | 47                         |                      |                          |                                     |                  |                          | 55               | SRP2Savannah River Plant - burial ground soil    | <b>FD 56</b> 41 4 44                                                                                           | Stone et a               |                                                 |
| 10 S#*<br>10 S#*             |              |            |                |              |             | 53                         |                      |                          |                                     |                  |                          | 38               | SRP2Savannah River Plant - burial ground snit    | 58-90 (tab 1)                                                                                                  | Stone et a               |                                                 |
| - clayey sand                |              |            |                |              |             | 1.2                        |                      |                          |                                     |                  |                          | 3000             | SPP=Savannah River Plant - burial ground soil    |                                                                                                                | Stone et a               |                                                 |
| Clayey sand<br>fine sand     |              |            |                | 0 607        |             |                            | 0 665                |                          | CaC 12                              |                  |                          | 25 7             | T-1 : 0-45 cm. Toka:                             |                                                                                                                | Stone et a               |                                                 |
| sardy clay                   |              |            |                | 0.607        |             |                            | 0 665                |                          | CaC 12                              |                  |                          | 21 3             | 1-5 = 205 cm, Tokai                              | (Lob ] = Soul depth + type)                                                                                    | Uchida and               | Kamada,                                         |
|                              |              |            |                | 0.607        |             |                            | 0 665                |                          | CaC17                               |                  |                          | 32 8             | 1 11 - 403-420 cm, toka-                         | (Lab 4 : Nel + Ca(12 + Ca                                                                                      | Uchida and               |                                                 |
| clayey sand                  |              |            |                | 0.607        |             |                            | 0 665                |                          | C+C12                               |                  |                          | 110 F            | 1 17 - 650-700 cm, Toka-                         | (GV - ground water)                                                                                            | Uchida and               |                                                 |
| - fire and                   |              |            |                | 0.607        |             |                            | 0 665                |                          | ĊW                                  |                  |                          | 26.4             | 1-1 = 0-45 cm Tokai                              | Abstract. Good saper                                                                                           | Uchida and<br>Uchida and |                                                 |
| sandy clay                   |              |            |                | 0.607        |             |                            | 0 665                |                          | ~                                   |                  |                          | 21 3             | 1-5 : 205 cm, loka :                             | lab 2 = chen prop at 4: a depth                                                                                | Uchida and               |                                                 |
| 1934                         |              |            |                | 0.607        |             |                            | 0 665                |                          | ,                                   |                  |                          | 33 1             | 7 11 - 405-420 cm, Toka-                         | Fig 2-3= Sr in soil vs S in sol for Tokai -                                                                    | Uchida and               | 7 11 <b>11 11 11 11 11 11 11 11 11 11 11 11</b> |
| feery sand                   |              |            |                | 0.691        |             |                            | 0 665                |                          |                                     |                  |                          | 99 3             | 1-17 - 650 700 cm, Taka-                         | konno soils                                                                                                    | Uchida and               | i Kamada                                        |
| - loany sand                 |              |            |                | 0.691        |             |                            | 0.897                |                          | Car 2                               |                  |                          | 169 B            | Ya-) + 0-20 cm, Kibune                           | Fig. 4-5s variation of N. vs exchange                                                                          | Uchida and               | i Kamada                                        |
|                              |              |            |                | A 941        |             |                            | 0.64                 |                          | Car 2                               |                  |                          | 89 3             | Ya-3 = 40-60 cm, kibune                          | Tob 5 = correlation of R                                                                                       | Uchida and               |                                                 |

-- .

continued...

.

# TABLE\_B-30 (continued)

.

| SOIL<br>ISE Lype           | SAND | SILT | ¥<br>AT        |                |                | CEC<br>EH mra/<br>{v} 100g | S FREE<br>TRON<br>DXIDES | COMP<br>CATION   | S CIMP<br>CATLIN | NUCY INF<br>CONCENTRATION | #d<br>{#i /a} | SOIL LICATION<br>or DESCRIPTION                        | OTHER INFORMATION                                                                                                | REFERENCE                                        |
|----------------------------|------|------|----------------|----------------|----------------|----------------------------|--------------------------|------------------|------------------|---------------------------|---------------|--------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|
| issay gravel               |      |      |                | 0.691<br>0.691 |                | 0 978<br>0 998             |                          | Cal 12<br>Cal 12 |                  |                           | 111 0<br>4H Q | Y8-7 - 120-140 cm K bune<br>Ya 14 - 500-570 cm, M bune | Fiple Follow seel et.                                                                                            | Uchida and Kamada, 198                           |
| icany sand<br>loany sand   |      |      |                | 0 691          |                | 0 998                      |                          | CW               |                  |                           | 173 5         | Ya-1 - 0.70 ce, Kibune                                 |                                                                                                                  | Lichida and Kamada, 198                          |
| loany gravel               |      |      |                | 0 691          |                | 0 898                      |                          | CW               |                  |                           | 79 5          | Ya 3 - 40-60 cm, bibuna                                |                                                                                                                  | Uchida and Kanada, 198                           |
| Gravel                     |      |      |                | 0.691          |                | 0 898                      |                          | CW               |                  |                           | 95 9          | Ya 7 = 120-140 cm Kibune                               |                                                                                                                  | Ucheda and Kamada, 198                           |
| humus loam                 |      |      |                | 0 166          |                | 0 898<br>0 294             |                          | CAC 12           |                  |                           | 42 3<br>83 5  | Ya-14 = 500-520 cm, # ibune                            |                                                                                                                  | Uchida and Kamada, 1981                          |
| clayey loan                |      |      |                | 0 166          |                | 0 294                      |                          | CAC12            |                  |                           | 83 D<br>29 (1 | Yb 1 (0-20 cm), Konno                                  |                                                                                                                  | Uchida and Kamada, 198                           |
| sandy lean                 |      |      |                | 0.166          |                | 0 291                      |                          | (4(12)           |                  |                           | 37 4          | Yb-5 (80-100 cm), Kanna<br>Yb-70 (380-400 cm), Kanna   |                                                                                                                  | Uchida and Kamada, 198                           |
| sandy loan                 |      |      |                | 0 166          |                | 0 294                      |                          | CACIZ            |                  |                           | 128 1         | Yb-27 (520-540 cm), Konno                              |                                                                                                                  | Uchida and Kamada, 198                           |
| Tuffy loam                 |      |      |                | 0 166          |                | 0 294                      |                          | AC 12            |                  |                           | 77 6          | Yb 37 (760-780 cm), Konno                              |                                                                                                                  | Lichida and Kamada, 198                          |
| hutus loan                 |      |      |                | 0 166          |                | 0 294                      |                          | Cw               |                  |                           | 130 2         | Yb } 10 20 cm), Konno                                  |                                                                                                                  | Uchida and Famoda, 198                           |
| crayey loam                |      |      |                | 0 166          |                | 0 794                      |                          | ĊŴ               |                  |                           | 71 0          | Vo 5 (20 100 cm), Konno                                |                                                                                                                  | Uchida and Kamada, 198                           |
| sandy loam                 |      |      |                | 0 166          |                | 0 294                      |                          | Ċw               |                  |                           | 45.9          | Yb 20 (380 400 cm) Kgmng                               |                                                                                                                  | Uchida and Kamada, 198<br>Uchida and Kamada, 198 |
| sandy lose                 |      |      |                | 0 166          |                | 0 794                      |                          | C's              |                  |                           | 227 6         | Yb-27 (520-540 cm) Konno                               | ·                                                                                                                | Uchids and Kamada, 198                           |
| Tuffy town                 |      |      |                | 0 166          |                | C 294                      |                          | Cw               |                  |                           | 107 3         | 76 37 (760-780 cm ), Konno                             |                                                                                                                  | Uchida and Kameda, 198                           |
| sand                       | 84   | 3    | 8              |                |                |                            |                          |                  |                  |                           | 100 (157)     | Bratty 1, Nevada                                       |                                                                                                                  | Uchide and Kameda, 198                           |
| sand                       | 91   | ?    | .!             |                |                |                            |                          |                  |                  |                           | 8.            | Beatty 2. Nevada                                       | Bankta Ha Banavall C.C. (a)                                                                                      | Neiheinel 1983                                   |
|                            | 83   | 7    | 15             |                |                |                            |                          |                  |                  |                           | 150           | Beatly 5. Nevada                                       | Beatty, Ny., Barnwell, S.C. (Abst. = Kon highest in alka)<br>Allyvial Basin deemsits buch in matematikis to alka | ine Neiheinel, 1983                              |
| crayey sand<br>crayey sand | 58   | 6    | 36             |                |                | •                          |                          |                  |                  |                           | 82            | Barnwell 4, South Carpling                             | Tab 1- Kdy managed share the Tit a security a reality                                                            | es Nechersel, 1983                               |
| Clavey sand                | 73   | 11   | 21             |                |                |                            |                          |                  |                  |                           | 142           | Barneell 12, South Carolina                            | Tab Peretat machine testing of the test, & win ci                                                                | we beinet, 1983                                  |
|                            | 13   | •    | 14             |                |                |                            |                          |                  |                  |                           | 190 (115)     | Barnwell 14, South Carolina                            | Tab datides endurante idea for the City Bin comp                                                                 | bs. Neiheisel, 1983                              |
|                            |      |      |                |                |                |                            |                          |                  |                  |                           | ,             |                                                        | Fig 7= Vd us scentius since in the state                                                                         | Neiheisel, 1983                                  |
|                            |      |      |                |                |                |                            |                          |                  |                  |                           |               |                                                        | Fig 3,4 Kd va Sr conc. Two so itasbenton ite -                                                                   |                                                  |
|                            |      |      |                |                |                |                            |                          |                  |                  |                           |               |                                                        | humic Many fancy formulas                                                                                        | Bunzi and Schultz, 198                           |
| 85                         | 80   | 17   | 3              |                | 3.7            | 125                        |                          | Cat 12           |                  |                           | 44 (2 5-80)   |                                                        |                                                                                                                  | f                                                |
|                            |      |      |                |                |                |                            | -                        |                  |                  |                           |               |                                                        | Kd ( )= range<br>(1ab.1=seil prop.)(1ab.2=Kd)(Kd in ( ) = range)                                                 | Schimmack et al., 1987                           |
| 85 C<br>95 AF              |      |      | -1-K           |                |                | ••                         |                          |                  |                  |                           | •             | (O cm) Ranker (Trebei)                                 |                                                                                                                  |                                                  |
| 95 At                      |      |      | -]-K           |                |                |                            |                          |                  |                  |                           | 30            | (4 cu) Ranher (Trebel)                                 | Jab 1: soil prop. Jab 2: Kd - pH.                                                                                | Backhuber et al. 1982                            |
| 85 C<br>95 D               |      |      | -1-K           | 04             |                | 26                         |                          |                  |                  |                           | 0.*           | (15 cm) Ranher (Trebel)                                | Cachiorita, lailite, Kabalimite, Mamontmorilionite.<br>Tob.3: ester vel., Ds. dispersion length                  | Bachhuber at al 1982                             |
| 85 AA                      |      |      | ]-[-K<br> -]-K | T.             |                | ۲.                         |                          |                  |                  |                           | 31            | (O cm) Padual (Garleban)                               | lab Arretardation factors. lab.Samigration rotes.                                                                | Bachhuber at al. 1982                            |
| 15 E                       |      |      |                |                |                | 70                         |                          |                  |                  |                           | 80            | (3 cm) Padeo 1 (Gorteben)                              | Fig 2= breakthrough curves. Fig 1= sorption rates.                                                               | Bachhuber et al 1982                             |
| 45 8h,fe                   |      |      | -1-K           | 2.1            | •              | 5.8                        |                          |                  |                  |                           |               | (23 cr) Padsal (Gorieben)                              |                                                                                                                  | Bachhuber et al. 1982                            |
| \$5 Bre                    |      |      | -1-6           | 1.6            | •              | 30 2<br>4 5                |                          |                  |                  |                           | ×.            | (27 cm) Padsal (Corleben)                              | Fig &r comparisons of batch, c-lumns, and failout Kds                                                            | Bachhuber et al. 1982                            |
| 45 K                       |      |      | -1-4           | 0.2            |                | 76                         |                          |                  |                  |                           | อ่จ           | (32 cm) Podeni (Corleben)<br>(42 cm) Podeni (Corleben) | X-ref \$41-66                                                                                                    | Bachhuber et al 1987                             |
| 85 8C<br>85 C              |      |      | -1-6           |                |                | 20                         |                          |                  |                  |                           | 06            | (100 cm) Podsol (Gorleben)                             |                                                                                                                  | Bachhuber et al 1987                             |
| 85 Ah                      |      |      | J-K-H          | 2.4            |                | 78                         |                          |                  |                  |                           | 110           | (0 cm) Broom (Corlegen)                                |                                                                                                                  | Bachhuber et al. 1982                            |
| 85 B.                      |      |      | 1-K-N          |                |                | 30                         |                          |                  |                  |                           | 3             | (9 cm) Brown (Brunkendorf)                             |                                                                                                                  | Bachhuber at a1, 1987                            |
| 45 K                       |      |      |                | 0.05           |                | 4.2                        |                          |                  |                  |                           | 14            | (48 cm) Brown (Brunkendarf)                            |                                                                                                                  | Bachhuber et al. 1982                            |
| 15 C                       |      |      | - 1-K-H        |                |                |                            |                          |                  |                  |                           | 16            | (95 c=) Brown (Brunkendorf)                            |                                                                                                                  | Bechhuber et al. 1982                            |
| 85 Ap                      |      |      |                | 1.19           | B.3 (solution) | 16 4                       |                          |                  |                  |                           | >10           | (0-22 cm) Avenrendzins (Riblis)                        | 14 AZ.                                                                                                           | Bachhuber et al. 1982<br>Bachhuber et al. 1982   |
| 05 C                       |      |      |                | 1.15           | 8 3 (solution) | 17.7                       |                          |                  |                  |                           | >10           | (22-30 cm) Avenrendzing, (Biblig)                      | (585)                                                                                                            | Bunzlet al 1982                                  |
| 85 Ce                      |      |      |                | 1.01           | 8.2 (solution) | 16.2                       |                          |                  |                  |                           | >10           | (30-47) Avennendring, (Biblis)                         | Fig 1822 Kd - soil horizons                                                                                      |                                                  |
| 85 force                   |      |      |                | 0.25           | El (selution)  | 8.5                        |                          |                  |                  |                           | >10           | (47-90) Averrendring, (Riblin)                         | Fig.3r Kd vs. Ca + Ka ions.                                                                                      | Bunzt et al., 1984<br>Bunzt et al., 1984         |
| 65 7'Gr                    |      |      |                | 0.34           | 8 2 (salution) | 6.4                        |                          |                  |                  |                           | >10           | (90-178 cm) Avenendzina, (Riblis)                      | Fig.4v 4d - comparison column and batch                                                                          | Bunzi et al., 1984<br>Bunzi et al., 1984         |
| 85 30-                     |      |      |                | 0 07           | 8 2 (solution) | 07                         |                          |                  |                  |                           | 1             | (120-132 cm) Avenrendzina, (Bibiis)                    | " 18 74 58 - D SA)[k (Asharisan)                                                                                 | Bunzi et al. 1984                                |
| 85 Au<br>85 Al             |      |      |                | 2 4)           | 7 3 (solution) | 97                         |                          |                  |                  |                           | >10           | (0.3) cm) Parabruan, (Eachus (ar)                      | Fig St Kd - 5 soils (1.0m)<br>Abstract                                                                           | Bungt et al., 1984                               |
| 45 A]<br>85 BtA1           |      |      |                | 0 71           | 7.4 (solution) | 9.5                        |                          |                  |                  |                           | >10           | (31-52 cm) Parabroon, (Enchaeiler)                     |                                                                                                                  | Bunzi et al. 1984                                |
| 43 0541<br>85 A19t         |      |      |                | 0.34           | 7.7 (selution) | 83                         |                          |                  |                  |                           | >10           | (57-62 ch) Parabroon, (Eschueiler)                     |                                                                                                                  | Bunzi et al., 1984                               |
| 85 A19t<br>85 Bt 1         |      |      |                | 0 30           | 60 (solution)  | 8.3                        |                          |                  |                  |                           | >10           | (62-73 cm) Parabrown, (Eschweiler)                     |                                                                                                                  | Bunzi et al., 1984                               |
| *5 BL?                     |      |      |                | 0 30           | f 7 (solution) | 12 5                       |                          |                  |                  |                           | >10           | (73-88 cm) Parabrown, (Eschweiler)                     |                                                                                                                  | Bunzi et al., 1984                               |
| es p.:2                    |      |      |                | 0 75           | 6 2 (selution) | 13 7                       |                          |                  |                  |                           | >10           | () 88 cm) Parabroon, (Eschueiler)                      |                                                                                                                  | Bunzi et al., 1984                               |
| 40                         |      |      |                |                |                |                            |                          |                  |                  |                           |               |                                                        | Good usper, presents arguments                                                                                   | Bunzles al. 1984                                 |
| -                          |      |      |                |                |                |                            |                          |                  |                  |                           |               |                                                        |                                                                                                                  |                                                  |

continued...

# TABLE B-30 (continued)

.

| 15               | \$01L<br>1. <del>ya</del> +   | SAND     | 51LT         | CLAY       | s<br>(RC      | 1<br>(4)     | K<br>(U3 S                                     | pH<br>IAT FASTI        | <u>(</u> 4) | /EC<br>== a/<br>100a     | S FREE<br>SR(M<br>OXIDES | (04F)<br>(41]TN                | CATION | NUCLIDE<br>CONCENTRATION | Kd<br>(=L/q)              | SOIL LOCATION<br>or DESCRIPTION                                                 | DINE INCOMMITON                                                                                                      | REFERENCE                                       |
|------------------|-------------------------------|----------|--------------|------------|---------------|--------------|------------------------------------------------|------------------------|-------------|--------------------------|--------------------------|--------------------------------|--------|--------------------------|---------------------------|---------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|
|                  | Bandelier tuff (silicic glass | i)       |              |            | • • • • • • • |              |                                                |                        |             |                          | C 01N                    | (#(1?                          |        |                          |                           |                                                                                 | good for formulas, intrad, Lion, discussions<br>No Kd's determined Used #1:0 00 in model<br>talculation (13 figure ) | Knighton and Vagenet, 19                        |
|                  | Leamy sand<br>Leamy sand      |          | 10 1         | 0.5        |               |              | a/a) 1                                         |                        |             | (pH7 0)4 9               |                          | 2 OM NaNES<br>1 SM NaNES       |        |                          | 0 49<br>0 6               | Burbank, Hanford subsoni<br>Burbank, Hanford subsoni                            | (Sr-90) Tab Izwa+I reop. ab 2∞Nd vs. (M)<br>Tab. 4 - Nd of well wedimit z not weed.                                  | Reuston et al., 1984<br>Reuston et al., 1984    |
| 90               | Losay sand                    |          | 10.1<br>10 1 | 0.5        |               | 0 9(=        | 9/9) 7<br>9/9) 7                               | 0                      |             | (#H7 0)4 9<br>(#H7 0)4 9 |                          | 0 15 NaM03                     |        |                          | 56                        | Burbank, Hanford subso:1<br>Burbank, Hanford subso:1                            | Box Behnker method<br>p. 381 Batch, sol-to-soil .1)                                                                  | Rouston et al., 1984<br>Rouston et al., 1984    |
| 90<br>90         | Leany sand                    |          | 10 1<br>10 1 | 0.5        |               | 0.8(m        | 9/9) 7<br>9/9) 7                               | 0                      |             | (pH7 0)4 9<br>(pH7 0)4 9 |                          | C (M NoNCS)<br>C (CM NoNCS)    |        |                          | 39 4                      | Burbank, Hanford subsoil                                                        |                                                                                                                      | Royston et al., 1984<br>Royston et al., 1984    |
| 90<br>90         | Loamy sand<br>Loamy sand      |          | 10 1<br>10 1 | 05         |               | 0.8(=        | 9/9) 7<br>9/9) 7                               | 0                      |             | (pH7 C)4 9<br>(pH7 0)4 9 |                          | 0 01H NaH03<br>0015H NaH03     |        |                          | 173 0                     | Burbank, Hanford subsoil<br>Burbank, Hanford subsoil                            |                                                                                                                      | Rouston et al , 1984                            |
| 90               | Loany sand<br>Sandy Joan      |          | 10 1 29 5    | C 5        |               | 0 8(=        | ng/g) 7<br>ng/g)8                              | ¢.                     |             | (p47 0)4 0<br>(pH7 0)4 0 |                          | 0014 NaNO3                     |        |                          | 0 73                      | Burbank, Hanford subso:1<br>Tank Farn, Hanford subso:1                          |                                                                                                                      | Royston et al , 1984                            |
| 90               | Sandy loan                    |          | 29 5         | 4.9        |               | 26 0(        | mg/g)8                                         | .0                     |             | (p47 D)4 0               |                          | 1 5M NaM03                     |        |                          | 1.42                      | lank fare, Hanford Subsoil<br>Tank fare, Hanford Subsoil                        |                                                                                                                      | Rouston et al . 1984<br>Rouston et al., 1984    |
| 90<br>90         | Sandy løs=<br>Sandy løs=      |          | 29 5<br>29 5 | 4 9<br>4 9 |               |              | mg/g)8                                         |                        |             | (pH7 014 0<br>(pH7 0)4 0 |                          | 0 15 NaMO3<br>0 14 NaMO3       |        |                          | 6.74                      | lank fare, Hanford subsoil                                                      |                                                                                                                      | Rouston et al., 1984<br>Rouston et al., 1984    |
| - 90<br>- 90     | Sandy loan<br>Sandy loan      |          | 29.5<br>29.5 | 49         |               |              | (mg/g)9<br>(mg/g)9                             |                        |             | (pH7 0)4 0<br>(pH7 0)4 0 |                          | C 054 NaND3<br>C 014 NaND3     |        |                          | 55.4                      | Tank fare, Hanford subsoil<br>Tank fare, hanford subsoit                        |                                                                                                                      | Fouston et al , 1984                            |
| 90<br>90         | Sandu loan<br>Sandu loan      |          | 29.5         | 49         |               | 26 01        | (•p/g)8<br>(•g/g)₹                             | .0                     |             | (p47 0)4 0<br>(p47 0)4 0 |                          | 0015-WaN03<br>0014 NaN03       |        |                          | 146.0                     | Tani farm, Hanford Subabil<br>Tani farm, Hanford Subabil                        |                                                                                                                      | Rouston et al., 1984<br>Rouston et al., 1984    |
| - 90             | Leany sand                    |          | 10 1         | 0 5        |               | 0 8          | (***)7                                         | 0                      |             | (047 0)4 0               |                          | 24Ca(NO.112                    |        |                          | 0 64                      | Burbank, Hanford subsoil<br>Burbank, Hanford subsoil                            |                                                                                                                      | Rouston et al., 1984<br>Rouston et al., 1984    |
| 90<br>90         | Losay sand                    |          | 10 1<br>10,1 | 0.5        |               | 0.0          | (=a/g)7<br>(=a/g)7                             | .0                     |             | (pH7 0)4 0<br>(pH7 0)4 0 |                          | 1#Ca(NO3)2<br>05#Ca(NO3)2      |        |                          | 19                        | Burbank, Hanford subscil<br>Burbank, Hanford subscil                            |                                                                                                                      | Rowston et al , 1984<br>Rowston et al , 1984    |
| 90<br>90         | Loomy sand<br>Loomy sand      |          | 10 1         | 0.5        |               |              | (m/a)7<br>(m/a)7                               |                        |             | (eH7 0)4 (eH7 0)4 1      |                          | 01#C+{403}7<br>0054C+(403)7    |        |                          | 11 4                      | Burban, Hanford subsoil                                                         |                                                                                                                      | Rouston et al., 1984<br>Rouston et al., 1984    |
| - 90<br>- 90     | Losey sand<br>Sandy lose      |          | 10 1 29 5    | 0.5        |               | 0 8          | (-9/9)7<br>(-9/9)                              | .0                     |             | (pH7 U)4 (<br>1pH7 0)4 ( |                          | 0002HCa1N0312<br>2HCa1N0312    | 2      |                          | 13 3<br>0 43              | Burbank, Hanford subsnil<br>Tank fare, Hanford subsnil                          |                                                                                                                      | Rouston et al., 1984                            |
| 90<br>90         | Sandy loam<br>Sandy loam      |          | 29 5<br>29.5 | 4 9        |               | 26 0         | (mg/g)1                                        | 0                      |             | (#H7 0)4 (<br>(#H7 0)4 ( | )                        | 14C = (NO312<br>054C = (NO3)2  |        |                          | 1 24                      | lark farm, Hanford subsoil<br>lank farm, Hanford subsoil                        |                                                                                                                      | Rouston et al., 1984<br>Rouston et al., 1984    |
| - 90             | Sandy loam                    |          | 29 5         | 4.9        |               | 26.0         | (~g/g)<br>(~g/g)                               | 1.0                    |             | (#17 014 1               | 3                        | 01M( = (NO3)2                  |        |                          | 5 85                      | Tank farm, Hanford subsoil<br>Tank farm, Hanford subsoil                        |                                                                                                                      | Rouston et al , 1994<br>Rouston et al , 1984    |
| - 90<br>- 90     |                               |          | 29 5<br>29 5 | 49         |               | 26.0<br>26.0 | ( <del>4</del> 9/9) (<br>( <del>4</del> 9/9) ( | 0                      |             | (pH70)4<br>(gH7C)4       |                          | 005MC# (N03)2<br>002MC# (N03)2 |        |                          | 26 4                      | Tani fare, herford subsol                                                       | (5) (Tab 18) see U/2 Report has hundrods of Kd's                                                                     | Rouston et al., 1984<br>Seeley & Keimers, 1984. |
| · ··             |                               |          |              |            |               |              |                                                | 5 00 6                 |             |                          |                          |                                |        |                          | AV = 6 962<br>(H = 1 662) | (hesthut Hidge, Unnt                                                            | (0 W =U,Cs,Co,Es,Th,Tc,I)                                                                                            | Seeley & Kelmers, 1984.                         |
| - 85             | Heavy clay -1                 |          | 15           | 85         |               |              |                                                | .2(7.6                 | 71          | 26 7                     |                          |                                |        |                          | (L 1 2 0E2)<br>653        | (9 (14 - 9 1) m) Loviesa Savi, Finland                                          | RS = 5mm Sr/L = conc<br>(Sr-85) flab 1 = soil pr p + pM)                                                             | Seeley & Keimers, 1984.<br>Nikula, 1982         |
| r 85             | Heavy clay -2                 |          | 19           | 01         |               |              |                                                | 1.2(7.7                | .2)         |                          |                          |                                |        |                          | 54}<br>8 5 1              | (9 73 - 9 80 m) Lovies Savi, Finland<br>(2 08 - 2 15 m) Disilusto Savi, Finland | (Tab. R : Sr. Kd + pH) (D. N. ± (S. Co, Mn. Zn, Co)<br>In Finnish with English & maary 13 figures                    | Nikula, 1982<br>Nikula, 1982                    |
| r 65 '           | Heavy clay -4                 |          | 11<br>32     | 68         |               |              |                                                | 8 4(7 5+-              | .1)         | 21+-2<br>5 2+-2          |                          |                                |        |                          | 3 61                      | (2 89 - 2 56 a) Olk I usto Savi, Finland<br>(6 28 - 6 35 a) Salo Savi, Finland  | (pH in 1ab 0 - ( ) in pH column)(Fig.11 = Sr Kd vs Rf)<br>(Fig.3 - Sr Hd vs. NaCl) - Fig.d = Sr Kd vs. Sr conc.)     | Nikula, 1982<br>Nikula, 1982                    |
| · 85.<br>· 85    |                               |          | 32<br>67     | 68<br>38   |               |              |                                                | 8.0(7 3<br>7 Q(7 5     |             | 251<br>175               |                          |                                |        |                          | 471                       | (? 24 - 3 31 m) Jamaa Savi, Finland                                             | (F.g. 6 = Sr Kd vs pH) (F.g. 4 & 10 = Sr Kd vs CEC)                                                                  | Nikula, 1982                                    |
| * 115<br>* 185   |                               | 79<br>65 | 21<br>35     |            |               |              |                                                | 6.4(7.1+-<br>6.4(7.2+- |             | 2 8 2<br>3 7 2           |                          |                                |        |                          | 24+ 5<br>13+ 1            | (4 e) Lorrisa moreeni, Finland<br>(1 5 m) Alkiluoto moreeni, Finland            | (Fig. 12 = Sr. Kd. vs. Rf)<br>{lab. 14 = Sr Cr. Kd. vs. NaCt. Dikilwodon mediment)                                   | Nikula, 1982<br>Nikula, 1982                    |
| * 85<br>* 85     | Losmy sand -9                 | 73<br>66 | 27           |            |               |              |                                                | 6 8(7 5+-<br>6 2(7 0-  | -11         | 2 1 3 2 3 3              |                          |                                |        |                          | 13+-1                     | (3.5 - 4.0 m) Junka moreeni, Finland<br>(2.7 - 2.5 m) Partala moreeni, Finland  | (Tab 15 = Sr - Cs 4d vs MaCl o Loviisan sodiaent)<br>(Tab 16 = Sr conc 14) vs 8d v Salan savessa)                    | Nikula, 1982<br>Nikula, 1982                    |
| 85               | Loam -11                      | 41       | 37           | 22         |               |              |                                                | 9 7(8 7                | - tj        | 105                      |                          |                                |        |                          | 15010                     | (dé al kakola Kalliosavi, Finland<br>(24 v) Rebaaro kallosavi, Finland          | (Tab.18 = Sr Kd vs. pH vs. Lavvisan saveesa.)<br>(pH in ( ) = Kd function -f pH from Tab. 18)                        | Nikula, 1982<br>Nikula, 1982                    |
| r 85<br>r 85     | .,                            | 57       | 79           | 14         |               |              |                                                | 9 9/R 3                | 21          | 40+-4                    |                          | OIM NaCI                       |        |                          | 75- 1                     | Gli-luodon sediment, Finland<br>Dli-luodon sediment, Finland                    | Soil # 1 te 4 = bottom seliment<br>Soil # 11 and 12 = fract, e filling                                               | Nikula, 1982<br>Nikula, 1982                    |
| ir 65<br>ir 65   |                               |          |              |            |               |              |                                                |                        |             |                          |                          | OBM NaCI                       |        |                          | 6 0 4<br>3 1 7            | Oliciusdon sediment, Finiand                                                    | Sour & IT sum It a regift & firring                                                                                  | Nikels, 1982                                    |
| 57 85<br>57 85   |                               |          |              |            |               |              |                                                |                        |             |                          |                          | 1 OM NaC 1<br>01M NaC 1        |        |                          | 0 5 A<br>635              | Olkiluodon sediment, Finland<br>Louissan sediment, Finland                      |                                                                                                                      | Nikula, 1982<br>Nikula, 1982                    |
| r 85             |                               |          |              |            |               |              |                                                |                        |             |                          |                          | DSM NaC'                       |        |                          | 414<br>301                | Low isan sediment, Finland<br>Lowissan sediment, Finland                        |                                                                                                                      | Nikula, 1982<br>Nikula, 1982                    |
| 5r 185<br>5r 185 |                               |          |              |            |               |              |                                                |                        |             |                          |                          | SM NaCi                        |        |                          | 61                        | Lowissan sediment, Finland<br>Salan savessa, Finland                            |                                                                                                                      | Nitula, 1987                                    |

continued...

### TABLE B-30 (continued)

.

.

| N.C 15                                                   | SOli<br>Soli                                                                                                                                                                                      | S S<br>Sand Silt                                                        | 8<br>, A <sup>1</sup> | R<br>ORC                                | 5<br>CaCN3                               | H<br>SAT PASTE                                                                                                             | (4)<br>(4)                                | (EC<br>mea/<br>100p                                                                                                                                | S FRFE<br>ISON<br>NYINES | COMP<br>CATEON                                                                       | \$ ((MP<br>(ATION | NEEL IDE<br>CONCENTRATION                                                                                | #d<br>(=L/g)                                                                                                                                  | SO11 LOCATION<br>or DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                       | OTHER INFORMATION                                                                                                  | REFERENCE                                                                                                                                                                                                                                                                                                                                                                                                                    |
|----------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|-----------------------|-----------------------------------------|------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|--------------------------------------------------------------------------------------|-------------------|----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 55555555555555555555555555555555555555                   |                                                                                                                                                                                                   | <b>01</b> <i>2</i> 7<br><b>01</b> <i>2</i> 7                            | 1 1                   |                                         |                                          | (4 0)<br>(5 5)<br>(6 7)<br>(6 8)<br>(7 7)<br>(7 6)<br>(7 6)<br>(7 8)<br>(8 6)                                              |                                           | 741<br>25- 1                                                                                                                                       |                          |                                                                                      |                   | 1 0+101 / M S+<br>1 0+101 / M S+<br>1 0+104 / M S+<br>1 0+102 + M S+<br>1 0+102 + M S+<br>1 0+102 / M S+ | 044<br>097<br>1007<br>1001<br>101<br>101<br>11.77<br>12.17<br>13.34<br>17.97<br>14.35<br>14.35<br>14.51<br>5<br>(5.01<br>0)<br>R (1.0-0<br>2) | Salen savesa, Finland<br>Salen savesa, Finland<br>Salen savesa, Finland<br>Salen savesa, Finland<br>Salen savesa, Finland<br>Lovisa, savesa, Finland<br>Rapert sand<br>Rapert sand | labhr Md- col.+ batch Md ir ()r batch, not in ()r col<br>Tog Hanford sediments Afron Ringold geological forestion, | Nikula. 1982<br>Nikula. 1982<br>Dense et al. 1980                                                                                                                                                                            |
| 899<br>89988999<br>55555555555555555555555555            | Sandy subsorf<br>Sand<br>Silt-clay<br>Silt-clay                                                                                                                                                   |                                                                         |                       |                                         |                                          |                                                                                                                            |                                           | (11 3)<br>(241 7)<br>(55 6)<br>(69 5)                                                                                                              |                          |                                                                                      |                   | 10E 4 <del>***</del> 03                                                                                  | 87 5569 12<br>108 74-71 46<br>196 064 67<br>23 55-10 0<br>63 19-41 9<br>164 34-72 10<br>0 6<br>12<br>30<br>40<br>40<br>55                     | (n Kd:20) Site ] 1 ft droth Bhabha, India<br>(n Kd:20) Site ] 3 ft droth Bhabha, India<br>(n Kd:20) Site ] 5 ft droth Bhabha, India<br>(n Kd:10) Site ? 5 ft droth Bhabha, India<br>(n Kd:4) Site ? 3 ft oroth Bhabha, India<br>(n Kd:4) Site ? 5 ft droth Bhabha, India<br>Gorfeben wite, FRG<br>A<br>B<br>C<br>D                                                                                                                    | $ \begin{array}{llllllllllllllllllllllllllllllllllll$                                                              | Ams(raj et al. 1981)<br>Ams(raj et al. 1981)<br>Ams(raj et al. 1981)<br>Ams(raj et al. 1981)<br>Ams(raj et al. 1982)<br>Ams(raj et al. 1982)<br>Schearzer et al. 1982)<br>Schearzer et al. 1982<br>Schearzer et al. 1982<br>Schearzer et al. 1982<br>Inoue & Morisane, 1976<br>Inoue & Morisane, 1976<br>Inoue & Morisane, 1976                                                                                              |
| 99999999999999999999999999999999999999                   | Sitt-clay<br>Sitt-smod<br>Grawt<br>Sitt-clay<br>Sitt-clay<br>Sitt-clay<br>Sitt-clay<br>Sitt-clay<br>Sitt<br>Sand<br>Sand<br>Fine sand<br>Fine sand<br>Fine sand<br>Fine sand<br>Sitt-clay<br>Clay |                                                                         |                       |                                         |                                          | 75-7∎<br>75-7∎                                                                                                             |                                           | (167 9)<br>(47 6)<br>(78 9)<br>(117 9)<br>(140 5)<br>(246 0)<br>(246 0)<br>(149 0)<br>(149 0)<br>(149 0)<br>(27 1)<br>(127 8)<br>(38 6)<br>(200 1) |                          |                                                                                      |                   | 7010€-7 athol/L<br>710€-7 athol/L                                                                        | 700<br>45<br>40<br>270<br>10<br>500<br>25<br>15<br>15<br>155<br>70<br>75<br>70<br>1264<br>17021                                               | E<br>F<br>G<br>H<br>I<br>J<br>K<br>K<br>U<br>M<br>N<br>N<br>P<br>Q<br>QQu() Core 1144-CPC 2, Pacific Dream, depth- 5821 m<br>(FQu() Core 1144-CPC 2, Pacific Dream, depth- 5821 m                                                                                                                                                                                                                                                     | Batch (tab.j= Rd vs tows.)<br>swettie subsraped cigy                                                               | Inour & Morisses, 1976<br>Inour & Morisses, 1976 |
| 55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55 | C lay<br>Sand                                                                                                                                                                                     | 100<br>95 5<br>96 4<br>59 22<br>67 33<br>96 22<br>80 22<br>87 9<br>94 4 |                       | 0 03 0 05 0 05 0 05 0 05 0 05 0 05 0 05 | 413<br>408<br>0<br>0<br>183<br>111<br>71 | B 3(CaC12)<br>7 0(CaC12)<br>6 3(CaC12)<br>6 3(CaC12)<br>6 5(CaC12)<br>6 5(CaC12)<br>7 6(CaC12)<br>0 0(CaC12)<br>7 8(CaC12) | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | 14<br>12<br>11<br>16<br>19<br>22<br>04<br>2:2<br>50                                                                                                |                          | see ref<br>see ref<br>see ref<br>see ref<br>see ref<br>see ref<br>see ref<br>see ref |                   |                                                                                                          | 2 0x10k1<br>2.5<br>2 0x10K1<br>1 0x10E7<br>7 5x10E1<br>5 0x10E1<br>1 0x10E1<br>5 0x10E1<br>1 14x10E79<br>2 4x10E1                             | Sori # 4 (WARL)<br>Sori #6 (Lazeranton)<br>Sori #6 (Lazeranton)<br>Sori #7 (CARL)<br>Sori #10 (WARL)<br>Sori #10 (WARL)<br>Sori #13 (C F B Rorden)<br>Sori #13 (C F B Rorden)<br>Sori #13 (C F B Rorden)                                                                                                                                                                                                                              |                                                                                                                    | Kenna, 1980<br>Grifham et al., 1981a<br>Grifham et al., 1981a<br>Serne et al., 1978                                                                                                                                                                                                             |

- 95 -

# TABLE B-30 (concluded)

١

| 58                         | SAIL<br>Lynt | SAND     | <b>\$</b><br>511 T | CL AY      | S<br>NRC | s<br>Calna | DH<br>Sat Pastr    | (+)<br>(+) | CEC<br>940/<br>360g | <b>K FRFJ</b><br>IRON<br>OXIDES | C()HP<br>( & 13()N           | S COMP<br>CATION | NICLIDE<br>CONCENTRATION | Kd<br>(= /9)                 | SOLL INCATION<br>or DESCRIPTION                               | U Ini 5 THE UPON () DH                                                                                                 | REFERON                                    |
|----------------------------|--------------|----------|--------------------|------------|----------|------------|--------------------|------------|---------------------|---------------------------------|------------------------------|------------------|--------------------------|------------------------------|---------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|
| river sand                 |              |          |                    |            | -        | ·          | 7 - 0              | · · ·      |                     |                                 | 90% Na( I                    |                  |                          | :                            | River sand                                                    |                                                                                                                        | Hamstra & Verkerk, 1                       |
| subsoil san                |              |          |                    |            | •        | 7          | 6                  |            | 5                   |                                 | 4 mol/i Na+<br>0.01mol/L PD4 |                  |                          | 1 2+1001                     | Hanford subsort                                               |                                                                                                                        | Rhodes, 1957                               |
| sand                       | 10           |          |                    | 20         | 2.9      | ?          | A<br>6             |            | 19 2                |                                 | 3=106-3=01/L                 |                  |                          | 8.0+10£1<br>10               | Manford subsort<br>Sidett sand                                |                                                                                                                        | Rhodes, 1957                               |
| Burbank so.                |              |          |                    |            |          |            |                    |            | ••••                |                                 | Sec 12<br>groundwater        |                  |                          | 4 R-10F1                     | Burbark soul                                                  |                                                                                                                        | Juo & Barber, 3970                         |
| Burbank so:<br>Burbank so: |              |          |                    |            | •        |            |                    |            |                     |                                 | 3401/L NaNO3                 |                  |                          | 2 1                          | Burbank soll                                                  |                                                                                                                        | Hajek & Ames, 1968                         |
| Burbank so                 |              |          |                    |            | -        | •          |                    | •          |                     |                                 | 0 Smol/L Na()                |                  |                          | 2.3                          | Burbank soil                                                  |                                                                                                                        | Hajek & Ames, 1968<br>Hajek & Ames, 1958   |
|                            |              | 84       |                    |            | - i-     |            |                    |            |                     |                                 | 3mo1/L NaDAr                 |                  |                          | 7 73                         | Burbank so I                                                  |                                                                                                                        | Hajek & Ames, 1968                         |
|                            |              |          | 13                 | 3          | 0 16     | 2.8        | •                  |            | 5 1                 | 0 63                            | 0 2mp1/L NaCI                |                  |                          | 1 62+10E1                    | Ruchant sand (average profile)                                |                                                                                                                        | Routsor, 1973                              |
|                            |              | 63       | 32                 | 5          | 0.21     | 1 36       | ·                  |            | 53                  | : 07                            | 0 2mp1/L NaC1                |                  |                          | 1 6+10E E                    | Ephrata sand (average profile)                                |                                                                                                                        | Routson, 1973                              |
| aquifer san<br>aquifer san |              |          |                    |            | •        |            | 5 5                |            | 0 25-0 0            |                                 | see ref<br>see ref =         |                  |                          | 1 42+10E1                    | Challe River (CR) aggifer sand                                | · Data available for colleting cations modium, potassium                                                               |                                            |
| age fer san                |              |          |                    |            | -        | -          | 5.5                |            | 0 25-0 9            |                                 | nee ret a                    |                  |                          | 9.2                          | Chalk River (RA) acuifer wand                                 | ragnesium, cal um, barium and hydrogen                                                                                 | . Fatterson & Spoel,<br>Fatterson & Spoel. |
| adu fer san                | d            |          |                    |            | •        | 2          | 5 5                |            | 0 25 0 9            |                                 | see ref a                    |                  |                          | 7 8                          | Chalb River (Q) adulfer sand                                  |                                                                                                                        | Fatterson & Spoel                          |
| aquifer sam                |              |          |                    |            | -        | •          | 55                 |            | 0 25 0 9            |                                 | see ref a                    |                  |                          | 1 67+10(1                    | Chalk River (SB) sourfer sand                                 |                                                                                                                        | Patterson & Spoel                          |
| aou fer san                | <b>প্ৰ</b>   |          |                    |            |          |            | 55                 |            | 0 25 0 9            |                                 | nee r f a<br>nee ref a       |                  |                          | 1 13-1011                    | Chalb River (K) agu fer sand<br>Chalb River (HA) agu fer sand |                                                                                                                        | Patterson & Socel                          |
| Silt                       |              | 35       | 35                 | 29         | 0 43     |            | 8 1 (CaC12)        |            | 8.4                 |                                 | 540 -41                      |                  |                          | 7 0., 1                      | Sn-181 (WRF)                                                  |                                                                                                                        | Patterson & Socel,                         |
|                            |              | 35       | 35                 | 29         | 0.41     | 33 8       | B 1(CaC12)         |            | 83                  |                                 | see ref                      |                  |                          | 2 0-1041                     | Snif 12 WAPE)                                                 |                                                                                                                        | Gifthan et al., 196                        |
|                            |              | 34       | 35                 | 31         | 0.4      | 34 1       | 8 1(CaC12)         |            | 66                  |                                 | See ref                      |                  |                          | 2 0-10L1                     | So IF #3 (WNRE)                                               | •                                                                                                                      | Gillham et al . 19                         |
|                            |              | 28       | 41                 | 31         | 1 27     |            | 7 7 (CACL2)        |            | 59                  |                                 | see ref                      |                  |                          | 1 0+10(1                     | Soit 45 (Leamington)                                          |                                                                                                                        | Gillham et al., 19                         |
|                            |              | 12<br>34 | 55<br>34           | 33         | 0 35     | 0          | 6 7 (CACL2)        |            | 10 2                |                                 | see ref                      |                  |                          | 1 0+1062                     | Soli #9 (North Bay)                                           |                                                                                                                        | Gillham et al., 10<br>Gillham et al., 19   |
|                            |              | 45       | 34                 | 32         | 0 85     |            | 7 7 (CACL2)        | •          | 32 7                | •                               | *** ** <sup>6</sup>          |                  |                          | 6 0                          | Sni <sup>1</sup> #14 (Alberta)                                |                                                                                                                        | Gillham et al., 196                        |
| medium loan                | •            |          | ••                 | 11<br>31 6 | 0.14     | 1.4        | 8.93(C4CL2)<br>6.6 | •          | 12.0                |                                 | nee ref                      |                  |                          | 1 12=10621                   | Sediment A (Solution 1)                                       |                                                                                                                        | Serne et al. 1978                          |
| - nedium lagn              | •            |          |                    | 41 6       | 1.28     | -          |                    | •          | 10 6                |                                 |                              |                  |                          | 3 0=10F2- 6C<br>1 7=10E2- 30 | ine ash podrofic (0.01 mm)<br>Serorem (0.01 mm)               |                                                                                                                        | Aleisakhin, 1965                           |
|                            |              | 31       | 69                 | 0          | -        | -          | •                  |            | 26                  |                                 |                              |                  |                          | 1 4+10E1                     | alluviai soi' (Cadarache)                                     |                                                                                                                        | Aleksakhin, 1965                           |
|                            |              | 38       | 62                 | Ó          | -        | -          | •                  |            | 27                  |                                 |                              |                  |                          | 7 3+10E1                     | elluviai soit (Cadarache)                                     |                                                                                                                        | Rancon, 1972                               |
|                            |              | 18       | 66                 | 16         | -        | -          | •                  |            | 6 3                 |                                 |                              |                  |                          | 1 8+10+1                     | Vindobonian sed (Cadarache)                                   |                                                                                                                        | Rancon, 1972                               |
|                            |              | 40<br>34 | 45                 | 15         | -        | •          |                    |            | 10                  |                                 |                              |                  |                          | 1 6-10L1                     | Vindebonian sed (Cadarache)                                   |                                                                                                                        | Aancon, 1972<br>Rancon, 1972               |
|                            |              | 45       | 52<br>47           | 14         | -        | •          | •                  | •          | 4 9                 |                                 | •                            |                  |                          | 1 6+10E1                     | Vindobonian sed (Cadarache)                                   |                                                                                                                        | Rancon, 1972                               |
|                            |              | 1        | 97                 |            | -        | •          | -                  |            | 15                  |                                 | •                            |                  |                          | 1 4+10E1                     | Vindobenian sed (Cadarache)                                   |                                                                                                                        | Rancon, 1972                               |
|                            |              | 18       | ñ                  | 11         |          | -          |                    |            | 4235                | •                               |                              |                  |                          | 2 2+10E1<br>1 6+10E1         | sandy-clay sed (Durance R )                                   |                                                                                                                        | Rancon, 1972                               |
|                            |              | 3        | 96                 |            | -        |            | -                  |            | 5 2                 |                                 |                              |                  |                          | 1 6=10E1                     | sandv-clay sed (Durance R )<br>øandy-clay sed (Durance R )    |                                                                                                                        | Rancon, 1972                               |
| sill                       |              |          |                    | 29.1       | 7.1      | -          | 6                  |            | 30 4                |                                 | 3.10(-3mm1/L                 |                  |                          | 5 0+10E1                     | Brookston silt                                                | A Network Alabert and a second second                                                                                  | Rancon, 1972                               |
|                            |              | 44       | 50                 | 6          | 0.23     | 38         |                    |            | 11 0                |                                 | 5+C12+<br>0 2mm1/LNaC1       |                  |                          |                              |                                                               | <ul> <li>Data available for cereting cations sodium, potassium<br/>magnesium, calrium, barium and hydrogen.</li> </ul> | . Juo & Barber, 1970                       |
| Clay                       |              | 31       | 50<br>34           | 35         | 0 91     |            | -<br>7 8(CaC 12)   |            | 31 5                | 1 21                            | see ref                      |                  |                          | 2 47+10E1                    | R+tzville sitt (avg. profile)<br>Soil 815 (Alberta)           |                                                                                                                        | Routson, 1973                              |
| heavy loan                 |              |          | -                  | 53 4       | 2 04     |            | F 6                |            | 26 1                |                                 |                              |                  |                          | 5 7+10E2                     | Chestnut (0 01 mm)                                            |                                                                                                                        | Gillham et al., 19                         |
| heavy loam                 |              |          |                    | 46 6       | -        |            | 67                 |            | 30 4                |                                 |                              |                  |                          | 1 15+1063+-140               |                                                               |                                                                                                                        | Aleksakhin, 1965                           |
| heavy loam<br>clay         |              |          |                    | 67.0       | 4 87     |            | 80                 |            | 32 9                |                                 |                              |                  |                          | 4 3+1CE2+-30                 | Southern Chernozen (0 D1 mm)                                  |                                                                                                                        | Alekuakhin, 1965                           |
| c                          |              |          |                    | 60 7       | 6 96     | -          | 60                 |            | 32 2                |                                 | •                            |                  |                          | 4 9+10E2+-50                 | Thick Chernozen (f) 01 mm)                                    |                                                                                                                        | Aleksahhin, 1965                           |
|                            |              |          |                    | 100        | •        | •          |                    | •          | 35                  |                                 | •                            |                  |                          | 4 7±10E1                     | very fine suspended sediment                                  |                                                                                                                        | Aleksakhin, 1965                           |
| Organic mu                 | ch           |          |                    |            | 49.8     | •          | 70                 |            | 70 O                |                                 | 3+10E-3+n1/L                 |                  |                          | 1 5+1062                     | (Durance Fiver) (c0 02 mm)<br>Much                            |                                                                                                                        | Rancon, 1972                               |
|                            |              |          |                    |            |          |            |                    |            |                     |                                 | · 12                         |                  |                          |                              |                                                               |                                                                                                                        | Juo & Barber, 1970                         |

- 96 -

#### TECHNETIUM\_Ka\_VALUES

| 151                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 201.                                                                                                  | 8                                                    | \$<br>511 <sup>-</sup>                               | <b>8</b>       | S<br>ORC                                                           | 5<br>(                                         | ₽#4<br>5&1 FA5.1F                                                                                                                                                                                                                                                                                                          | FH<br>(+)                                                                                  | 785<br>mers/<br>109a                                           | 191N<br>191N<br>MC1045 | r ni jini                                                               | 8 799F<br>141398 | NEXT THE WAYDOW                 | ≠d<br>(n;/q)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | as al creterius<br>col: fucerius                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | UI-E INLINIA-IUN                                                                                                                                                                                                                                                                         | REFERENCE                                                                                                                                                                                                                    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|----------------|--------------------------------------------------------------------|------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|----------------------------------------------------------------|------------------------|-------------------------------------------------------------------------|------------------|---------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 956 Leany San<br>956 Firganic<br>956 Sandy Ios<br>956 Sandy Ios<br>956 Leany San<br>956 Leany San                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ingny yegi<br>ge<br>ge<br>nd                                                                          |                                                      |                                                      |                |                                                                    | 1 1<br>c 5<br>7(100)<br>7(63)<br>7(5)<br>7(23) | 7 C<br>6 B<br>5 7<br>7 1<br>4 6                                                                                                                                                                                                                                                                                            |                                                                                            | 0 Imais                                                        |                        | (n 1mc ano3)                                                            |                  |                                 | >1->10(img)<br>>10->100(img)<br>>0 1 (1(img)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1 Clepsol<br>2 Sapric Historol, strongly humified<br>3 Cabigol<br>5 Acrisol parabreen soil, Ak horizon<br>6 Acrisol, parabreen soil, Ak horizon<br>8 Acrisol, parabreen soil, Ak-horizon<br>8 - Bentonite, Sud Chame AC Manchen<br>PJ - Sahagana past (Hindy word), Steinbuder Meer, Hannwar                                                                                                                                                                                                                         | ₩ 76,5r,2e,7n,7d,7n,8u,81                                                                                                                                                                                                                                                                | Runzi & Schimmert, 1086<br>Runzi & Schimmert, 1086<br>Runzi & Schimmert, 1088<br>Bunzi & Schimmert, 1088<br>Runzi & Schimmert, 1089<br>Runzi & Schimmert, 1080<br>Bunzi & Schimmert, 1080<br>Bunzi & Schimmert, 1080         |
| 95a Fibric ()<br>91in Fibric ()<br>94i SRP<br>99 SRP<br>99 SRP<br>99 SRP<br>99 SRP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                       |                                                      |                                                      |                |                                                                    |                                                | 6.0<br>7 0                                                                                                                                                                                                                                                                                                                 |                                                                                            | 7 læta/q<br>2 læta/a                                           |                        | (0 19(296-3)<br>(0 19(296-3)                                            |                  |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | P2 Subageur best (high earn), Konigederf, Bavaria<br>SPP-Saranah River Plant soil<br>SPP-Saranah River Plant soil<br>SPP-Saranah River Plant soil<br>SPP-Saranah River Plant soil<br>SPP-Saranah River Plant soil<br>SSP-Saranah River Plant soil<br>SSP-Saranah River Plant soil<br>SSP-Saranah River Plant soil                                                                                                                                                                                                    | (TcO4)(lah 7 Kd correlation with clay content)                                                                                                                                                                                                                                           | Runzi & Schimmuch, 1989<br>Hoeffner, 1985<br>Hoeffner, 1985<br>Hoeffner, 1985<br>Hoeffner, 1985<br>Hoeffner, 1985<br>Hoeffner, 1985<br>Hoeffner, 1985                                                                        |
| 00 SRP<br>Ohn Ap-heriz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | per (0-30er)                                                                                          | 50 <u>*</u>                                          | 28 4                                                 | 17 0           |                                                                    | 07                                             | 61                                                                                                                                                                                                                                                                                                                         |                                                                                            | R 7                                                            |                        | CaC 12                                                                  |                  |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Alf-50 (Parabroom earth)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (Kd:?lea-N)[lab]= so:1 prop ) (lab2= %, (EC, pH)<br>{lah 2) (lc0 -99)                                                                                                                                                                                                                    | Bunzl et al., 1985<br>Novak, 1980<br>Novak, 1980                                                                                                                                                                             |
| 09 (harrea <sup>1</sup><br>70 Lobe<br>00 Sand<br>99 (FH-Ah<br>70 Ar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 181 - Brine A<br>181 - Reine R                                                                        |                                                      |                                                      |                |                                                                    |                                                | 66<br>57<br>51<br>52                                                                                                                                                                                                                                                                                                       |                                                                                            | (600%)<br>(16)<br>1. 2cm/Hg<br>2. 9cm/Hg<br>2. 3cm/Hg          | 1                      |                                                                         |                  |                                 | 08/<br>()<br>73()<br>14()<br>01(07)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Orthic Black Chernozem<br>Orthic Robinol<br>6 deg Glevel Dystein Promisiol<br>4 Jacm Glevel Dystein Brunisiol<br>JS-Stom Glevel Dystein Heunisiol<br>Jácm Glevel Dystein Heunisiol                                                                                                                                                                                                                                                                                                                                   | (Taht) (CFC-ono) ka:t)<br>Tah T-an-I proc., CFC-root kg t<br>I-Toart S: (CV) in Kd co)<br>RLG IV                                                                                                                                                                                         | Sheepard & Sheepard 19<br>Sheepard & Sheepard 19<br>Sheepard et al , 1987<br>Sheepard et al , 1987<br>Sheepard et al , 1987<br>Sheepard et al , 1987                                                                         |
| 973 (L]973<br>(C]973<br>(Sha<br>Sha<br>Sha<br>Sha<br>Ofan (C<br>Sha<br>Cfor(C<br>Sha<br>Sfor<br>(C)<br>Sha<br>Sfor<br>(C)<br>Sha<br>Sfor<br>(C)<br>Sha<br>Sfor<br>(C)<br>Sha<br>Sfor<br>(C)<br>Sha<br>Sfor<br>(C)<br>Sha<br>Sfor<br>(C)<br>Sfor<br>(C)<br>Sfor<br>(C)<br>Sfor<br>(C)<br>Sfor<br>(C)<br>Sfor<br>(C)<br>Sfor<br>(C)<br>Sfor<br>(C)<br>Sfor<br>(C)<br>Sfor<br>(C)<br>Sfor<br>(C)<br>Sfor<br>(C)<br>Sfor<br>(C)<br>Sfor<br>(C)<br>Sfor<br>(C)<br>Sfor<br>(C)<br>Sfor<br>(C)<br>Sfor<br>(C)<br>Sfor<br>(C)<br>Sfor<br>(C)<br>Sfor<br>(C)<br>Sfor<br>(C)<br>Sfor<br>(C)<br>Sfor<br>(C)<br>Sfor<br>(C)<br>Sfor<br>(C)<br>Sfor<br>(C)<br>Sfor<br>(C)<br>Sfor<br>(C)<br>Sfor<br>(C)<br>Sfor<br>(C)<br>Sfor<br>(C)<br>Sfor<br>(C)<br>Sfor<br>(C)<br>Sfor<br>(C)<br>Sfor<br>(C)<br>Sfor<br>(C)<br>Sfor<br>(C)<br>Sfor<br>(C)<br>Sfor<br>(C)<br>Sfor<br>(C)<br>Sfor<br>(C)<br>Sfor<br>(C)<br>Sfor<br>(C)<br>Sfor<br>(C)<br>Sfor<br>(C)<br>Sfor<br>(C)<br>Sfor<br>(C)<br>Sfor<br>(C)<br>Sfor<br>(C)<br>Sfor<br>(C)<br>Sfor<br>(C)<br>Sfor<br>(C)<br>Sfor<br>(C)<br>Sfor<br>(C)<br>Sfor<br>(C)<br>Sfor<br>(C)<br>Sfor<br>(C)<br>Sfor<br>(C)<br>Sfor<br>(C)<br>Sfor<br>(C)<br>Sfor<br>(C)<br>Sfor<br>(C)<br>Sfor<br>(C)<br>Sfor<br>(C)<br>Sfor<br>(C)<br>Sfor<br>(C)<br>Sfor<br>(C)<br>Sfor<br>(C)<br>Sfor<br>(C)<br>Sfor<br>(C)<br>Sfor<br>(C)<br>Sfor<br>(C)<br>Sfor<br>(C)<br>Sfor<br>(C)<br>Sfor<br>(C)<br>Sfor<br>(C)<br>Sfor<br>(C)<br>Sfor<br>(C)<br>Sfor<br>(C)<br>Sfor<br>(C)<br>Sfor<br>(C)<br>Sfor<br>(C)<br>Sfor<br>(C)<br>Sfor<br>(C)<br>Sfor<br>(C)<br>Sfor<br>(C)<br>Sfor<br>(C)<br>Sfor<br>(C)<br>Sfor<br>(C)<br>Sfor<br>(C)<br>Sfor<br>(C)<br>Sfor<br>(C)<br>Sfor<br>(C)<br>Sfor<br>(C)<br>Sfor<br>(C)<br>Sfor<br>(C)<br>Sfor<br>(C)<br>Sfor<br>(C)<br>Sfor<br>(C)<br>Sfor<br>(C)<br>Sfor<br>(C)<br>Sfor<br>(C)<br>Sfor<br>(C)<br>Sfor<br>(C)<br>Sfor<br>(C)<br>Sfor<br>(C)<br>Sfor<br>(C)<br>Sfor<br>(C)<br>Sfor<br>(C)<br>Sfor<br>(C)<br>Sfor<br>(C)<br>Sfor<br>(C)<br>Sfor<br>(C)<br>Sfor<br>(C)<br>Sfor<br>(C)<br>Sfor<br>(C)<br>Sfor<br>(C)<br>Sfor<br>(C)<br>Sfor<br>(C)<br>Sfor<br>(C)<br>Sfor<br>(C)<br>Sfor<br>(C)<br>Sfor<br>(C)<br>Sfor<br>(C)<br>Sfor<br>(C)<br>Sfor<br>(C)<br>Sfor<br>(C)<br>Sfor<br>(C)<br>Sfor<br>(C)<br>Sfor<br>(C)<br>Sfor<br>(C)<br>Sfor<br>(C)<br>Sfor<br>(C)<br>Sfor<br>(C)<br>Sfor<br>(C)<br>Sfor<br>(C)<br>Sfor<br>(C)<br>Sfor<br>(C)<br>Sfor<br>(C)<br>Sfor<br>(C)<br>Sfor<br>(C)<br>Sfor<br>(C)<br>Sfor<br>(C)<br>Sfor<br>(C)<br>Sfor<br>(C)<br>Sfor<br>(C)<br>Sfor<br>(C)<br>Sfor<br>(C)<br>Sfor<br>(C)<br>Sfor<br>(C)<br>Sfor<br>(C)<br>Sfor<br>(C)<br>Sfor<br>(C)<br>Sfor<br>(C)<br>Sfor<br>(C)<br>Sfor<br>(C)<br>Sfor<br>(C)<br>Sfor<br>(C)<br>Sfor<br>(C)<br>Sfor<br>(C)<br>Sfor<br>(C)<br>Sfor<br>(C)<br>Sfor<br>(C)<br>Sfor<br>(C)<br>Sfor<br>(C)<br>Sfor<br>(C)<br>Sfor<br>(C)<br>Sfor<br>(C)<br>Sfor<br>(C)<br>Sfor<br>(C)<br>Sfor<br>(C)<br>Sfor<br>(C)<br>Sfor<br>(C)<br>Sfor<br>(C)<br>Sfor<br>(C)<br>Sfor<br>(C)<br>Sfor<br>(C)<br>Sfor<br>(C)<br>Sfor<br>(C)<br>Sfor<br>(C)<br>Sfor<br>(C)<br>Sfor<br>(C)<br>Sfor<br>(C)<br>Sfor<br>(C)<br>Sfor<br>(C)<br>Sfor<br>(C)<br>Sfor<br>(C)<br>Sfor<br>(C)<br>Sfor<br>(C)<br>Sfor<br>(C)<br>Sfor<br>(C)<br>Sfor<br>(C)<br>Sfor<br>(C)<br>Sfor<br>(C)<br>Sfor<br>(C)<br>Sfor<br>(C)<br>Sfor<br>(C)<br>Sfor<br>(C)<br>Sfor<br>(C)<br>Sfor<br>(C)<br>Sfor<br>(C)<br>Sfor<br>(C)<br>Sfor<br>(C)<br>Sfor<br>(C)<br>Sfor<br>(C)<br>Sfor<br>(C)<br>Sfor<br>(C)<br>Sfor<br>(C)<br>Sfor<br>(C)<br>Sfor<br>(C)<br>Sfor<br>(C)<br>Sf | <b>εφ</b>                                                                                             | F7                                                   | 17                                                   | 3              | 1 19<br>1 15<br>1 01<br>0 75<br>14<br>07<br>2 41<br>71<br>34<br>30 | 0                                              | 6 2<br>3 7 ((a <sup>c</sup> i?))<br>8 3 (solution<br>8 2 (solution<br>8 2 (solution<br>8 2 (solution<br>8 2 (solution<br>7 3 (solution<br>7 4 (solution<br>7 2 (solution<br>6 8 (solution<br>6 7 1 solution<br>7 3 (solution<br>7 2 (solution<br>7 3 (solution<br>7 3 (solution<br>7 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 8 A F A A A A A A A A A A A A A A A A A                                                    | ] 7 rmn 1Kg<br>  175mrKg -                                     | 1                      | faCIT.                                                                  |                  |                                 | 16 (* 7 43)<br>50 1<br>50 3<br>50 1<br>50 1<br>50 1<br>50 1<br>60 1<br>60 1<br>60 1<br>60 1<br>60 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (D. 27:e) Auenrendrine (Riblis), FPC<br>(27:30:ca) Auenrendrine (Riblis), FRC<br>(37:30:ca) Auenrendrine (Biblis), FRC<br>(47:90:ca) Auenrendrine (Biblis), FRC<br>(47:90:ca) Auenrendrine (Biblis), FRC<br>(70:178:ca) Auenrendrine (Biblis), FRC<br>(178:137:ca) Auenrendrine (Biblis), FRC<br>(131:52:ca) Auenrendrine (Biblis), FRC<br>(131:52:ca) Parabreen (Fischeriter), FRC<br>(52:52:ca) Parabreen (Fischeriter), FRC<br>(33:53:ca) Parabreen (Fischeriter), FRC<br>(34:80:ca) Parabreen (Fischeriter), FRC | Kelenium (j-Helerange, ibs.it sori properties, ibb 2; Kel<br>(lab 1) ieg 1 & 7: Kel-sori horrpon<br>Fra 3: Yelvs (a: Kariens<br>Fra 4: Kel-comparison column - batch<br>Fra 4: Kel-comparison column - batch<br>Fra 5: Hel-S soria (Alboritron)<br>Fra 6: Kel-7 soria (I 0m)<br>Abstract | Schimmett, et al., 197<br>Bunzi et al., 1976<br>Bunzi et al., 1976<br>Bunzi et al., 1974<br>Bunzi et al., 1984<br>Bunzi et al., 1974<br>Bunzi et al., 1974<br>Bunzi et al., 1974<br>Bunzi et al., 1974<br>Bunzi et al., 1974 |
| QSn RL1<br>Ofm RL2<br>OSn Sphagnu<br>OSn Sphagnu<br>OSn Sphagnu<br>OSn Sphagnu<br>QSn Sphagnu<br>Red bro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | un pest<br>un pest<br>un pest<br>un pest                                                              |                                                      |                                                      |                | .30<br>75<br>100<br>100<br>100<br>100<br>100                       |                                                | 6 7 (solut. 4<br>6 2 (solut. 4<br>5 3 5 4                                                                                                                                                                                                     |                                                                                            | ? 1=q/a<br>7 1=q/a<br>? 1=q/a<br>? 1=q/a<br>? 1=q/g<br>? 1=q/g |                        | 0 146a613<br>0 146a613<br>0 146a613<br>0146a613<br>0146a613<br>0146a613 |                  |                                 | (01<br>17 7-07<br>109-03<br>58-07<br>410-70<br>710-09<br>97-09<br>47-04<br>47 = 0<br>(M - 15)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ()88(cs) Parabrow [f4(her/47], PRC<br>0 5(d/ssolved (0*eq/403)<br>4 6(d/ssolved (0*eq/403)<br>8 4(d/ssolved (0?eq/403)<br>0 5(d/ssolved (0?eq/403)<br>4 6(d/ssolved (0?eq/403)<br>8 4(d/ssolved (0?eq/403)<br>8 4(d/ssolved (0?eq/403)<br>(hestmut Ridge, (RM)                                                                                                                                                                                                                                                       | Tab 1-Kd ve (17 dissolved Fig 1rKd ve Tc conc<br>Anthone referred to us in this apper. H Phy 1983<br>Sobognie Beak, Steinhader Never near Hangver<br>p 314 = off 1 6,2 7,4 6,5 4 v No effect on Kd<br>lab 18 eee 11/2 (fl N -U.Sr.(e.fu.th.1))<br>Re See 11/2 (conc                      | Bungl et al., 1944<br>Weifrum & Bungl, 1986<br>Weifrum & Bungl, 1986<br>Seeley & Kelmers, 198<br>Seeley & Kelmers, 198   |
| 99 Clauch<br>99 Clauch<br>99 Clauch<br>199 Clauch<br>99 Clauch<br>99 Clauch                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | in ite samd<br>in ite samd<br>in ite samd<br>in ite samd<br>in ite samd<br>in ite samd<br>in ite samd | 0]  <br>0] ]<br>0] ]<br>0] [<br>0] 1<br>0] 1<br>0] 1 | 7 9<br>7 9<br>7 9<br>7 9<br>7 9<br>7 9<br>7 9<br>7 9 | 60<br>60<br>60 |                                                                    |                                                | 5<br>5<br>6<br>6<br>5 (5 8)<br>5 (5 4)                                                                                                                                                                                                                                                                                     | 438 (=V)<br>436 (= )<br>448 (=V)<br>415 (=V)<br>435 (=V)<br>421 (=V)<br>7/ (=V)<br>65 (=V) | 3.1<br>3.7                                                     |                        |                                                                         |                  | 1 #<br>7 #<br>1 #<br>2 #<br>1 # | (1 - 1 0)<br>(2 (A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A-B)<br>(A | (10 uks ) N E Netherlands<br>(10 uks ) N E Netherlands<br>(31 uks ) N E Netherlands<br>(7 uks ) N E Netherlands<br>(7 uks ) N E Netherlands                                                                                                                                                                                                                                                                                   | (Appendix d) (f) N - Am, No, Pu)<br>This report is a problem - Rele(1070).<br>Relefunction of pH, Eh, N - Line - AMTRO(CES.<br>Apr - Aprobic pH in ( )- initial pH<br>A: aprobic, AN: anorobic, f) balch, C: column and<br>N molarity - sait concentration.                              | Seeiry & Kolmers, 1984<br>Prins, et al., 1986<br>Prins, et al., 1985<br>Prins, et al., 1985<br>Frins, et al., 1986<br>Prins, et al., 1986<br>Prins, et al., 1986<br>Prins, et al., 1986                                      |

)

continued...

# TABLE B-31 (continued)

| 501)<br>158 - Eyon               | S.<br>CAND   | <b>8</b><br>5103 | R<br>CI AY | 5<br>(RC    | S pH<br>CaCD3 SAT PASH | f H<br>(*)          | (Fr<br>                | N FREF<br>TRIM<br>DETPES | CATTER<br>CATTER | ng internet<br>nangine | NECE IN<br>CONCENTRATION | ⊭d<br>(≈(/e)              | Santa Lan Antana<br>Ang Da Sentan Inter                                                   | (1)478 (M-11)                                                         | IN:FE IN NCE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|----------------------------------|--------------|------------------|------------|-------------|------------------------|---------------------|------------------------|--------------------------|------------------|------------------------|--------------------------|---------------------------|-------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Glauconite sand                  |              | • • • •          | 60         |             | 5 (5 5)                | 41 (+V)             | 3 (                    |                          |                  |                        | ?                        | 3 4 (AN-R)<br>4 0 (AN B)  | (7 obs.) N.F. Berkerlands.<br>(7 obs.) N.F. Scherlands.                                   |                                                                       | Frins, et al., 1986<br>Frins, et al., 1986                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Claurente sand<br>Claurente sand | 91 5<br>91 1 | 20               | 60         |             | 6 (E 5)                | 319 (=V)<br>15 (=V) | 37                     |                          |                  |                        | 1 4                      | 3 0 (AN-FI)               | (1 obs. ) N.I. Notherlands                                                                |                                                                       | Frins, et al., 1985<br>Frins, et al., 1986                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Claucentie and                   | 91.1         | 29               | 6 0<br>6.0 |             | 6 (6 6)<br>6 (6 5)     | ·2(#V)              | 31                     |                          |                  |                        | 2 M                      | 3 1 (AN H)                | (2 abs ) 4 F Botherlands                                                                  |                                                                       | Frink, et al., 1986                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Giauconite sand                  | 91.1         | 79               | 6.0        |             | 5 (5 6)                | 1%((=V)             | 37                     |                          |                  |                        | 1 14                     | 7 (AV-C)<br>7 (AV-C)      | (7 uto ) N ( Notherlands<br>{7 uto ) N ( Notherlands                                      |                                                                       | Frins, at al., 1986                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Glaucon ite sand                 | 91 1         | 29               | 6.0        |             | 5 (5 7)                | 17H (#V)            | 37                     |                          |                  |                        | 1 #                      | 7 (AN C)<br>7 (AN C)      | {7 she, } he   Netherlands                                                                |                                                                       | Pring, et. al., 1986<br>Pring, et. al., 1986                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Glaucorite sand<br>Goby 1012     | 91.1         | 29               | 6 0        |             | 5 (5 1)                | 158 (mV)            | 3/                     |                          |                  |                        | 012 #                    | 44 (MI C)                 | (forba) Cortaban IRC                                                                      |                                                                       | Prins, et al., 1986                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Geny 1612                        |              |                  |            |             | 5 (6 2)<br>7 (7 6)     |                     | 155(Ca+-)<br>155(Ca++) |                          |                  |                        | 012 1                    | 69 (AH-C)                 | (f. wh- ) Constation (FPC                                                                 |                                                                       | Frins, et al., 1986                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Goby 1017                        |              |                  |            |             | 5 (6.1)                | 7 (=V)              | 155(Ca++)              |                          |                  |                        | 05 H                     | 10C (AN C)                | (f. obs. ) Cortebra (FRG.<br>(f. obs. ) Cortebra (FRG.                                    |                                                                       | Prins, et. al., 1986                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Coty 1017                        |              |                  |            |             | 7 (7 8)                |                     | 155(Ca++)              |                          |                  |                        | 1.0 #                    | 54 (AN 2)<br>535 (AN-C)   | (6 ats ) Corleben (PC                                                                     |                                                                       | Prins, et al., 1986<br>Prins, et al., 1986                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 2 Cashy 2120<br>2 Cashy 2120     |              |                  |            |             | 6 0 (7 3)<br>5 (5 R)   |                     | 183(Ca++<br>183(Ca++   |                          |                  |                        | 100                      | AFS (AN C)                | (f. ob- ) Corlabon (FRC                                                                   |                                                                       | Fries, et al., 1996                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Geny 2120                        |              |                  |            |             | 6 8 (7 7)              |                     | 103((                  |                          |                  |                        | 258                      | 500 (AN C)                | (f. ile.) Corlaber, IRS                                                                   |                                                                       | Prins, et al. 1986                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 9 Cohy 7120                      |              |                  |            |             | 5 (5 7)                |                     | 183((+                 |                          |                  |                        | 254                      | 775 (AN /)                | (6 win ) Gorishen FRG                                                                     | tab 5-Kd-relyan + hatch Kd in ( - hatch Kd ant in ( )rcof             | Jones et al., 1980                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| En Sand                          | 91 2         | 1                | 1.0        |             |                        |                     |                        |                          |                  |                        |                          | 03-01(3:0+2:0             | () B Rupert, sand<br>A Free Rings1d formation                                             | Inn Hanford rediments A-from Rincold dealogical formation.            | Jones et al., 1980                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Sm Loamy sand                    | £1 2         | 15               | 3.6        |             |                        |                     |                        |                          |                  |                        |                          | 0-(7                      |                                                                                           | 11 from surface, hupert sand (lys r torrepsament)                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                  |              |                  |            |             |                        |                     |                        |                          |                  |                        |                          |                           |                                                                                           | {i1 N = Co.1.5r.3H)<br>Fers former (Ω N = Ne. 1, Co. Fr. 11, Th. Mo.) | Sheppard, 1989                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| O IFH AN                         |              |                  |            |             | 5 2                    | A1                  | 2cm lKg                | 1                        |                  |                        |                          |                           | 0 d. ca Gleved Fysteic Brunisol<br>4.15 ca Gleved Pysteic Brunisol                        | nd-ioachato z nn ( ) Kd- Grour Juator - ( )                           | Sheppard, 1987                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 7 40                             |              |                  |            |             | 5.1                    |                     | 9cm IVg                |                          |                  |                        |                          |                           | 15-45 on Gleved Dystric Prunish                                                           | Soul Lepe Phy LEF & neul dear of row RLG-1Y(JED16(3))                 | Sheppard, 1989                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| e erj.erjaj                      |              |                  |            |             | 5 2                    |                     | lemiks                 |                          |                  |                        |                          |                           | 145 cm Cloved Synta e Aruninol                                                            |                                                                       | Sheppard, 1089<br>Sheppard, HIS & WCE, 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 9 €€ntj<br>9 Denamii:            |              |                  | _          | -           | 67                     |                     | /reg Kg                | 1                        |                  |                        |                          | 131/Ka                    | 1 Brynisol profile (H                                                                     | tab 1 - spil properties<br>Tab 2 - gene wean gerobie 4d foi 34 soils  | Sheppard, HIS & VCE, 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 9 Sand                           | 45           | 3                | 2          | 64          | 4.6                    |                     |                        |                          |                  |                        |                          | 0 21 1 /*0                | 2 Brunisch profilie An<br>3 Brunisch profilie (Bf.)/Bf.)a)                                | Kigt to \$12 refer to sample numbers of Koch and Kay (1987).          | Sheppord, MIS & WCF, 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| o Šand                           | 10           | ĩ                | 2          | 0 1         | 4.6                    |                     |                        |                          |                  |                        |                          | C () 1 /4a<br>- 0 C5 L/4a | 4 Reposal under bores forest                                                              | collected at 9 wites in Ontarin                                       | Shoppard, HIS & MCE, 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 10 Sand                          | -0           | 29               | 11         | 01          | 3 9                    |                     |                        |                          |                  |                        |                          | ·C 7 L/*3                 | hernozes. Ap                                                                              |                                                                       | Sheppard, MIS & WCE, 19<br>Sheppard, MIS & WCE, 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 19 Losm<br>19 Organic            | 15           | 31               | 54         | 7 6<br>83   | 7345                   |                     |                        |                          |                  |                        |                          | 771/×e                    | 5 die profile - surface D-15 rm<br>7 Sedae profile - well humified 15-30 rm               |                                                                       | Sheppard, MIS & WCF, 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| N Organic                        | 20           | 40               | 31         | 4 1         | 56                     |                     |                        |                          |                  |                        |                          | -0 2 L/Mg                 | / Sedge profile - sell hymitisc 12-3" rm<br>8 Sedge profile - clay minera' subsnil        |                                                                       | Sheppard, HIS & WCE, 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| R Clay                           | 40           | 34               | 25         | 24          | 5 5                    |                     |                        |                          |                  |                        |                          | -0 1 L/Mp<br>0 97 L/Mp    | 9 Senagnum profile A-surface 0-20 cm                                                      |                                                                       | Sheppard, HIS & WCE, 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 19 Organir                       | -            | •                | •          | <b>26</b> . | 4.6                    |                     |                        |                          |                  |                        |                          | 3 0 L/Ka                  | 10 Sehannum profile & humified 20:40 cm                                                   |                                                                       | Sheppard, HIS & WCC, 1<br>Sheppard, HIS & WCC, 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 29 jeggnir<br>29 Veggnir         |              | -                | -          | 94          | 46<br>37               |                     |                        |                          |                  |                        |                          | 1 P L/Mg                  | 11 Sphageum profile R - 0 29 rm                                                           |                                                                       | Shepperd, HIS & VCE, 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| P2 Organic                       |              |                  |            |             | 3 9                    |                     |                        |                          |                  |                        |                          | 2 9 L/Kg<br>-0 7 L/Kg     | 17 Sehagnum profile 8 - 20-40 cm<br>13 Sehagnum profile 8 - 40-60 cm                      |                                                                       | Sheppard, HIS & WCE, 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 19 flegance                      |              | -                |            | 01          | 4 2                    |                     |                        |                          |                  |                        |                          | 0,85 L/Kg                 | 14 Sphagnamernfile B 60 R0 cm                                                             |                                                                       | Sheppard, HIS & VCE, 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 27 Arganic<br>29 Arganic         | -            | •                | -          | 61          | 4.3                    |                     |                        |                          |                  |                        |                          | 0 40 L/hg                 | 15 Sphagnum profile B 90 100 cm                                                           |                                                                       | Shepoord, MIS & WGE, 1<br>Shepoord, MIS & WGE, 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 99 Dreamic<br>99 Dreamic         | -            | •                | •          | 74          |                        |                     |                        |                          |                  |                        |                          | 1 3 L/Ke                  | 16 Sohagnur ernfile B 100 120 rm                                                          |                                                                       | Shepperd, MIS & WCE, 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 13 (irganic                      | •            |                  | -          | 78          |                        |                     |                        |                          |                  |                        |                          | 0 62 1./*e<br>0 93 1 /*e  | 17 Sphagnum profile 8 - 120-140 cm<br>18 Sphagnum profile 8 - 140 160 cm                  |                                                                       | Sheppard, HIS & VOE, 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| PG firgan (C                     |              | •                | •          | 48          | 4 7                    |                     |                        |                          |                  |                        |                          | -0 CR L/Kg                | 19. Sakagnum profile B minerai subsort                                                    |                                                                       | Sheepard, HIS & WCE, 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 19 Organic                       | 96           | 10               | 10         | 78          | 5 3                    |                     |                        |                          |                  |                        |                          | -0.1 L/kg                 | 20 Sphagnum synface                                                                       |                                                                       | Sheppard, HIS & WGE, 1<br>Sheppard, HIS & WGE, 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 19 Greenic<br>19 Dreenic         | -            |                  |            | 44.         | 4 7                    |                     |                        |                          |                  |                        |                          | 1 3 1 /Ka                 | 21 Sehagnum-well humified<br>22 Geganic Fissure infill on autorop                         |                                                                       | Sheppard, MIS & WOS, 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| M Drganic                        | •            |                  | -          | 19          | 3 8                    |                     |                        |                          |                  |                        |                          | 14 L/Kg<br>070 L/Kg       | 77 Breanic Fissure Infill on outcrop<br>73 BKB1 Site B1 Sphagnum 40 BC cm                 |                                                                       | Shennard, HIS & VCE, 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 19 Arganic                       | -            |                  |            | 39          | 38                     |                     |                        |                          |                  |                        |                          | 0.07 L/Ke                 | 24 KK82 Site \$1 grave and Sphagnum 14 24 cm                                              |                                                                       | Shepnard, MIS & WCE, 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 19 Organic                       | -            |                  | •          | 20.         | 3 .                    |                     |                        |                          |                  |                        |                          | ? 1 L/#q                  | 76 Refs Sile \$7 forested Schemmer 105 174 cm                                             |                                                                       | Sheppard, MIS & WCE, 1<br>Sheppard, MIS & WCE, 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 79 Urganic<br>47 Organic         | -            |                  | :          | 85          | 31<br>48               |                     |                        |                          |                  |                        |                          | -031/Kp                   | 26. WVB4 Site 84 forested prostic 40 FD pm<br>27. KK45 Site 84 forested prostic 40 50 pm  |                                                                       | Sheppard, HIS & WCF, 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 03 Organic                       | -            | -                |            | 61          | 5.4                    |                     |                        |                          |                  |                        |                          | -0 03 1/×e<br>-0 03 1/×e  | 77 KKS Site is forested arganic at the ce                                                 | 1                                                                     | Sheppard, HIS & VCE, 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 33 Drasnic                       | -            |                  | •          | 57.         | 4.8                    |                     |                        |                          |                  |                        |                          | 0 52 1/kg                 | 29 KK#7 Site #5 Sphagnum 60 R9 cm                                                         | ,                                                                     | Sheppard, HIS & WCL. 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 99 Deganie                       | -            | •                | •          | 90          | 3.4                    |                     |                        |                          |                  |                        |                          | -0.003 t /Ka              | 30 KKSP Site #7 Invested ormanic 10-20 cm                                                 |                                                                       | Sheppard, MIS & WCE, 1<br>Sheppard, MIS & WCE, 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 99 Organic<br>99 Organic         |              | •                | -          | 71.<br>51   | 4756                   |                     |                        |                          |                  |                        |                          | -9 4 L/Ka                 | 31 KK\$9 Site \$7 forested organic 10-20 cm                                               |                                                                       | Sheppard, HIS & WCC, Sheppard, |
| 99 (Irganic                      | -            | •                | :          | 51<br>60    | 3 D<br>4 U             |                     |                        |                          |                  |                        |                          | -031/Kg                   | 37 HK#10 Site #P grane and series 15-50 cm<br>37 HK#11 Site #9 forest and series 10 25 cm |                                                                       | Sheppard, MIS & WCE,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 97 Deganic                       | -            |                  | -          | 61          | 57                     |                     |                        |                          |                  |                        |                          | 0 40 L/kg                 | 34 WAIT Site \$3 Forested organic 35.60 cm                                                |                                                                       | Sheppard, MIS & VCI .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 97 Broanic                       | •            |                  |            | 67          | 5 M                    |                     |                        |                          |                  |                        |                          | 171/Ka                    | De le fit fuite fa consecti producto a la com-                                            |                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

continued...

¥

•

# TABLE B-31 (concluded)

| 58 | SOII<br>Lype     |   | N<br>SAME | <b>8</b><br>511 † | 8<br>1 A 1 | R<br>CNRC | R<br>Carris | M<br>Cat Past | ₹₩<br>(+)  | CEC<br>***a/<br>100g | S FREE<br>TRON<br>DATOTS                | CINF<br>CATION                         | 8. (1940)<br>1. A13100 | NLICE INF<br>CONCENTRALS | #d<br>(94 (=i/g)  |                                | STIL LOCATION<br>of DESCRIPTION | 01466 18642644130N                                                                                               | PETTALACL                                |
|----|------------------|---|-----------|-------------------|------------|-----------|-------------|---------------|------------|----------------------|-----------------------------------------|----------------------------------------|------------------------|--------------------------|-------------------|--------------------------------|---------------------------------|------------------------------------------------------------------------------------------------------------------|------------------------------------------|
| 5  | hand             |   | #?<br>#7  | 9                 | •          | 01        | 0 07        | 8 23          |            | 4 11                 | • • • • • • • • • • • • • • • • • • • • | 800 -01                                |                        |                          | 0 (7-0 37         | Sediment P (solution 1)        |                                 | والمركز المركز |                                          |
|    |                  |   | 87        | 9                 | •          | 01        | 0 07        | 8 7           | be of ored | 50                   |                                         | Na3 Coleate<br>Cot/Te Molar<br>Ratio:0 |                        |                          | G 32 (5+10 9mp1/1 | Ictianford snil                |                                 |                                                                                                                  | Serve et al., 1978<br>Franz et al., 1982 |
|    |                  |   | 87        | 9                 | 4          | 01        | 0.07        | 10 1          | reduced    | 4.0                  |                                         | Na3 Citrate                            |                        |                          | 52 (5+)0-9milA 1  | c)Haeford soul                 |                                 |                                                                                                                  | ···                                      |
|    |                  |   |           |                   |            |           |             |               |            |                      |                                         | Cit/le Holar<br>Ratin - O              |                        |                          |                   |                                |                                 |                                                                                                                  | Franz et al., 1982                       |
|    |                  |   | 87        | 9                 | 4          | 01        | 0.07        | 10-1          | reduced    | 5.0                  |                                         | Na3 (strate                            |                        |                          | 388(5+:0 9mp1/1 1 | clHanford sevi                 |                                 |                                                                                                                  |                                          |
|    |                  |   |           |                   |            |           |             |               |            |                      |                                         | Cil/le Holar<br>Ratio - 1-1            |                        |                          |                   |                                |                                 |                                                                                                                  | Franz et al., 1982                       |
|    |                  |   | 53        | 35                | 17         | 3         |             | 5.4           |            | 15.2                 | 11                                      | • • • •                                |                        |                          | 0 155             | Anuir Pragiochrept (A) AC)     |                                 |                                                                                                                  |                                          |
|    |                  |   | <u>95</u> | 3                 | 2          | 0.7       |             | 57            |            | 3 2                  | 0.6                                     |                                        |                        |                          | 0 051             | Alfie Utipsampel ((1)          |                                 |                                                                                                                  | Balagh & Grigal, 19                      |
|    |                  |   | 40        | 38                | 71         | 28        |             | 6             | •          | 20 4                 | 6.7                                     |                                        |                        |                          | 0.078             | Ager Haplash 1 (Ap)            |                                 |                                                                                                                  | Balogh & Grigal, 19                      |
|    |                  |   | 11<br>59  | n                 | 17         | 1.8       |             | R 1           |            | 11 /                 | 07                                      |                                        |                        |                          | 0 000             | Aquic Haptohonell (Ap)         |                                 |                                                                                                                  | Balagh & Crimal, 19                      |
|    |                  |   | 59        | 4                 | 37         |           | 10.5        | 5.1           |            | 25                   |                                         | 0.007 1/1                              |                        |                          | -0 010- 0 06      | South Carolina aubanil         |                                 |                                                                                                                  | Balagh & Grigal, 19                      |
|    |                  |   | 50        |                   | 37         |           |             |               |            |                      |                                         | NaHE (13                               |                        |                          |                   |                                |                                 |                                                                                                                  | Reutson et al , 197                      |
|    |                  |   | 24        | •                 | 31         |           | <b>(0 2</b> | 5.1           |            | 25                   |                                         | 0 00H mo1/L                            |                        |                          | 0 057+-0 01       | South Carolina subsoil         |                                 |                                                                                                                  | _                                        |
|    |                  |   | 59        |                   | 37         |           | 0 2         |               |            |                      |                                         | Natil 113                              |                        |                          |                   |                                | •                               |                                                                                                                  | RowLumn et al , 197                      |
|    |                  |   |           | •                 | 31         |           |             |               |            | 2 5                  |                                         | 0.02% mil/t<br>NatiC03                 |                        |                          | 0 033+-0 01       | South Carolina sub ait         |                                 |                                                                                                                  | -                                        |
|    |                  |   | 50        | · •               | 37         | •         | (0.2        |               |            | 25                   |                                         | 0.200 mp1/(                            |                        |                          | +0 010+-0 D4      | • • • • • •                    |                                 |                                                                                                                  | Routson et al , 197                      |
|    |                  |   | •         |                   |            |           |             | •             |            | • •                  |                                         | Nation3                                |                        |                          | +0 010+-0 m       | South Carelina subspil         |                                 |                                                                                                                  | Routson et. st., 197                     |
|    |                  |   | 45        | 44                | 11         | 0.14      |             | A A           |            |                      |                                         |                                        |                        |                          | 0.04              | unsaturated column             |                                 |                                                                                                                  | HUNCHER PT. 31 , 197                     |
|    |                  |   | ₩2        | e e               | 4          | 01        |             | 82            |            |                      |                                         |                                        |                        |                          | 0 03              | unsaturated column             |                                 |                                                                                                                  | Gee & Campbell, 198                      |
|    | cases sand       |   |           |                   |            |           | P 2         | B 4 feater)   |            | 1 2                  | 1392(ug/g)                              | A                                      |                        |                          | 0 (194            | and                            |                                 |                                                                                                                  | Gre & Cnubbell, 198                      |
| 5  | 5.11             |   | 45        | 44                | 11         | 0 14      | 2.4         | * 8           |            | 17                   |                                         | see ret                                |                        |                          | 2 17. 0 23+       | Sediment A (solution 1)        |                                 |                                                                                                                  | Sheppard et al. 19                       |
|    | •                | - | 16        | 52                | 37         | 03        |             | 16            |            | 21                   | 0.4                                     |                                        |                        |                          | 0 07#             | Cumpter Haptaquell             |                                 |                                                                                                                  | Serne et al., 1979                       |
|    |                  |   | 3         | RU                | 17         | 73        |             | 5.5           |            | 11.3                 | 14                                      |                                        |                        |                          | 0 058             | Type Butroberalf (A2)          |                                 |                                                                                                                  | Halogh & Crigel, 19                      |
|    |                  |   | 4         | 64                | 21         | N 4       |             | :1            |            | 16.9                 | 0 1                                     |                                        |                        |                          | 0 11#             | Acric Calcismun 11 (4))        |                                 |                                                                                                                  | Uniogh & Grigal, 19                      |
|    |                  |   | 4         | 52                | 34         |           |             | 11            |            | 34 4                 | 0.5                                     |                                        |                        |                          | 0 110             | Complex Haplaquell (Ap)        |                                 |                                                                                                                  | Balagh & Crigal, 19                      |
|    |                  |   | M         | 33                | 30         | 7.3       |             | / P           |            | 47.5                 | 0.3                                     |                                        |                        |                          | 0 0/6             | Synsy Haptaquell (A1)          |                                 |                                                                                                                  | Balagh & Gright, 19                      |
|    |                  |   | 27        | 40                | 30         | 2.4       |             | * 7           |            | 19-3                 | 0.9                                     |                                        |                        |                          | 0 011             | Agust Hamlude 17 (A1)          |                                 |                                                                                                                  | Baloph & Grigal, 11                      |
|    | Irman - charces! |   |           | M0                | 37         | 3.1       |             | 6.6           |            | 74 H                 | 1 ?                                     |                                        |                        |                          | 0.000             | the Hapinberell (Ap)           |                                 |                                                                                                                  | Balagh & Grigat, 14                      |
| T  | leganic charces? |   |           |                   |            |           |             | 63 61         |            |                      |                                         | NoCl brine                             |                        |                          | 340               | activated "Nichar"             |                                 |                                                                                                                  | Helpph & Grigal, ju                      |
| ,  | · • -            |   |           |                   | -          | 23.3      |             |               |            |                      |                                         | the ref                                |                        |                          |                   |                                |                                 |                                                                                                                  | Newal, 1981                              |
|    |                  |   |           |                   | 3          |           |             | 4.5           |            | 4#                   | 0 44                                    | UPL NE D DS                            |                        |                          | 0 24              | four sould meet (Nethor lands) |                                 |                                                                                                                  |                                          |
|    | and an an an an  |   |           |                   |            | 30        |             | 3 B (water)   |            | 64 7                 |                                         |                                        |                        |                          |                   |                                |                                 |                                                                                                                  | Monore & Myttensore                      |
|    |                  |   |           |                   |            | ••        |             |               |            | 194 V                | 1050(w#/#)                              |                                        |                        |                          | 15.0              | sphagnor prot                  |                                 |                                                                                                                  | Chepparel et. al., 19                    |

1

#### - 100 -

#### TABLE\_B-32

#### THORIUM Ka VALUES

| -                                       | -                                                             | 501 <u>1</u><br>1980                                                                     | t<br>Santi                    | s<br>Sil' | \$<br>(L#* | S<br>ORC | ي<br>دەرەع                   | SAT PAST                  | (Ek<br>E : (v)                                           | CEC<br>maa/<br>100p                                   | K FREE<br>IRIN<br>INIDES | (1)#F<br>(A1]!%                | (4)](#<br># (0m) | *#10;10 <del>1</del><br>CIM_LN*RA*_,# | t<br>(= 4)                                   | 501, LOCATION<br>or (25(4):1104                                                                                                                                           | O'ME (MURMATION                                                                                                                                    | PCTEPENCE                                                                                                            |
|-----------------------------------------|---------------------------------------------------------------|------------------------------------------------------------------------------------------|-------------------------------|-----------|------------|----------|------------------------------|---------------------------|----------------------------------------------------------|-------------------------------------------------------|--------------------------|--------------------------------|------------------|---------------------------------------|----------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|
| 16<br>76<br>76<br>76<br>76              | CTE clav<br>CTC sand<br>C3 sand<br>C3 sand<br>C5 sand<br>sand |                                                                                          |                               |           |            |          | •••••                        | 60<br>60<br>61            | -200 (mv<br>-200 (mv<br>-200 (mv<br>-200 (mv<br>-200 (mv |                                                       |                          |                                |                  |                                       | 24(40)<br>54(4)<br>740<br>54(0)<br>240       | p-sciel tri<br>fine course sand<br>medium : ince sand<br>coarse sand<br>medium : and                                                                                      | (lab i ad's' (1-273)<br>(lab : Ca compet ) (lat ' son' descrip )<br>and (MALUSIANS (lab : Activities)                                              | Be'l and Bates, 1998<br>Bell and Bates, 1998<br>Bell and Bates, 1999<br>Bell and Bates, 1999<br>Bell and Bates, 1998 |
| 16<br>16<br>16<br>76                    | (fu-Ar<br>Ae<br>Bfj-Afjg:<br>C-Cgj                            |                                                                                          |                               |           |            |          |                              | 5.2<br>5.1<br>5.2<br>6.2  | •                                                        | 8] 2cmc1/Kg<br>2 9cmc1/Kg<br>2 icmc1/Kg<br>1 icmc1/Kg |                          |                                |                  |                                       | 1928 6 (- )<br>1271 0 (-)                    | 0-4 cm Clayed Nestric Bruniso'<br>4-15 cm Clayed Pystric Aruniso'<br>15-45 cm Clayed Pystric Aruniso'<br>245 cm Clayed Pystric Bruniso'<br>245 cm Clayed Pystric Bruniso' | Kd-leach-ne() Kd Gw (1                                                                                                                             | Shepmand et al., 1987<br>Shepmand et al., 1987<br>Shepmand et al., 1987<br>Shepmand et al., 1987                     |
| 76<br>76<br>76                          | fine sands<br>fine sands<br>fine sands                        | tone and silty clay<br>tone and silty clay<br>tone and silty clay<br>tone and silty clay |                               |           |            |          |                              | 2 0<br>4 5<br>5,75<br>7 0 |                                                          |                                                       |                          |                                |                  |                                       | 15<br>5075<br>11 / M<br>15000                | Jeffrey City, braning<br>Jeffrey City, Wroming<br>Jeffrey City, broming<br>Jeffrey City, broming                                                                          | (Th-230) fab d<br>r 2765 site geology<br>p 730: Split Rock formation                                                                               | Haji-Djafari et al., 1981<br>Haji-Djafari et al., 1981<br>Haji-Djafari et al., 1981<br>Haji-Djafari et al., 1981     |
| Th                                      | 4. red-broen                                                  | clayey                                                                                   |                               |           |            |          |                              | 4007                      | ,                                                        |                                                       |                          |                                |                  |                                       | AV<br>(* 1 1 1 4)<br>(1 - 5 4 EO)            |                                                                                                                                                                           | /lh.4-) (lab.18 kd)<br>Fesort has 101k of Kds<br>(1% U, Sr.(s.00.5u, lc., l)<br>RS - Simp Thil cont                                                | Seeley and Keiners, 1984                                                                                             |
| 16<br>Th<br>Th<br>Th                    | LFH=Ah<br>A≠<br>Afj=Afjqj<br>C-Cpj                            |                                                                                          |                               |           |            |          |                              | 52<br>51<br>52<br>62      |                                                          | B) (cmo)/Ka<br>2 9cmo)/Ka<br>2 icmo)/Ka<br>1 /cmo)/Ka |                          |                                |                  |                                       | 1862 51 216000                               | 145 cm Gleyed Dystric Brunisol                                                                                                                                            | Fern (comm (f)N = Np, ], (e. (r. Mm, Ic, 3)<br>Kd: !earbate - ns ( ] Kd: Groundwater = -}<br>Soil Lyne, Ph, (EC & noil dean from HLC-] (JEQ16(3))  | Shepopard, 1989<br>Shepopard, 1989<br>Shepopard, 1989<br>Shepopard, 1989                                             |
| Th<br>Th<br>Th<br>Th                    | medium san<br>organic<br>ciay (frac                           | -                                                                                        |                               |           | ?<br>(i    |          |                              | 4 9<br>5 5<br>6 5         |                                                          | 5 Bicmail/kg<br>170cmil/kg                            |                          | 5##Cp (%93)                    |                  |                                       | (19407/2+0)<br>35/1/0<br>13000/1/0<br>160000 | Port Hope, Untar o<br>Fort Hope, Ontar o<br>(2um fraction (clavi of sill loam                                                                                             | (DNU:178) Part Hone on In <sup>5</sup> 1ab 1 soil cha act. Pers. com<br>lab 11 Vd(:/Kg) 2 rectoring, other 7: 3<br>Tab 2 bd (DN Pr.U.be) Th(4) 234 | Sheepard, MCE & RUP, 1989<br>Dahiman et al. 1976                                                                     |
| 1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | Sand                                                          |                                                                                          | 45                            | ********  | 30         | { }      | 25<br>Scarbonal              |                           |                                                          |                                                       |                          | In Conc<br>[] a/L <sup>1</sup> |                  |                                       | 1.541065                                     | (adarache sediment                                                                                                                                                        |                                                                                                                                                    | Rancon, 1973                                                                                                         |
| ik                                      | Clay                                                          |                                                                                          | 40                            |           | 60         | 0        | 0                            | 3 2                       |                                                          |                                                       |                          | In Corr                        |                  |                                       | P                                            | clay schist                                                                                                                                                               |                                                                                                                                                    | Rancon, 1973                                                                                                         |
| 76                                      |                                                               |                                                                                          | (% Si02)<br>40                |           | 60         | 0        |                              | 48                        |                                                          |                                                       |                          | 11 Q.L.)                       |                  |                                       | 1+1015                                       | clay achist                                                                                                                                                               |                                                                                                                                                    | Rancer, 1973                                                                                                         |
| 76<br>16                                | Organic                                                       |                                                                                          | (\$ 5102)<br>5                | -         | 17         | 60       | Scarbonal<br>23              | 6 /                       |                                                          | -                                                     |                          | (C ! e/1)<br>16 Conc           | •                |                                       | 8+10 4                                       | river peat                                                                                                                                                                |                                                                                                                                                    | Rancon, 1973                                                                                                         |
| 1h<br>1h                                |                                                               |                                                                                          | (\$ \$+07)<br>5<br>(\$ \$+07) | -         | 17         | 60       | Scarbonal<br>23<br>Scarbonat | 74                        |                                                          |                                                       |                          | (1 e/i)<br>Th Conc<br>{(1 e/i) |                  |                                       | 1 5+10F4                                     | river beal                                                                                                                                                                |                                                                                                                                                    | Kancen, 1973                                                                                                         |

#### TABLE B-33

### TRITIUM Ka VALUES

| SOL<br>NUC 158 Lyne                                                                     | S S S S S<br>Sant Silt (Lay Drg                                      | (트로<br>동 2월 5년 프로미/<br>CaCN3 SAT PASTE (v) 100g |                                                                                                                                                                        | LICATION<br>SCRIPTION DIVE, INFORMATION                                                                                                                                                                                                                                               | REFERENCE                                |
|-----------------------------------------------------------------------------------------|----------------------------------------------------------------------|-------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|
| H 3 sand<br>H 3 sand<br>H 3 loasy sand<br>H 3 loasy sand<br>H 3 loasy sand<br>J 3 sandy | 61 2 7 1 6<br>91 2 7 1 6<br>91 2 7 1 6<br>91 2 15 3 6<br>81 2 15 3 6 | 80                                              | 05 (2 1 - 2 5) 5 Expert sand<br>04 (2 1 - 0 3) Program sand<br>05 - 1 + 0 - 3 Area Ringold formation<br>(C 1 + 0 4) 4 from Ringold formation<br>0 1 (0 C) Hanford soll | (H 3) (Lis bird) (N 4) (Lis Ce, [r. ], Sr)<br>hd not in (Lis collier A in (Lis batch<br>"ne Hanferd sedients A in (Birbald geological format<br>fis from surface, Ruperisan (Tippic torripasement)<br>(2011 Tat (Surth Cellium Kd<br>Ko in (Lisce) wethod Bat hiddys FigisCove col de | Jones et al., 1980<br>Jones et al., 1983 |

~

ŧ

# TABLE\_B-34

# URANIUM Ka VALUES

| NUC. 154                   | SOIL,<br>type                                                                                                                                                                                                                                            | R<br>SAMD                        | \$<br>STLT                  | 5<br>(LAY                                   | S<br>ORC                                                                                           | \$<br>C=C03                           | BH<br>SAT PASTE                                                    | Ен<br>(v)     | دور<br>سوم/<br>100g                                                                                                                         | S FREE<br>IRON<br>CXIDES | rijup<br>Catlina                                            | S (IMP)                | MUCLICH<br>CONCENTRATION | Kd<br>(≪L/g)                                                                                                                          | SOIL LOCATION<br>or description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | OTHER REPRESENCE                                                                                                                                                                                                                                                                                                                                                                                                           | REFERENCE                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|-----------------------------|---------------------------------------------|----------------------------------------------------------------------------------------------------|---------------------------------------|--------------------------------------------------------------------|---------------|---------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|-------------------------------------------------------------|------------------------|--------------------------|---------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0<br>0<br>0<br>0<br>0<br>0 | clay<br>C1:2 sand<br>C3 sand<br>G5 sand<br>sand<br>arganic<br>organic<br>organic<br>organic<br>organic<br>clay                                                                                                                                           | -                                | -                           |                                             |                                                                                                    |                                       | $\begin{array}{c} 6 \\ 6 \\ 6 \\ 6 \\ 6 \\ 6 \\ 6 \\ 6 \\ 6 \\ 6 $ | 4<br>6 ·<br>2 |                                                                                                                                             |                          |                                                             |                        |                          | 46<br>46<br>900<br>550<br>550<br>6200 (1300)<br>8500 (1300)<br>8500 (2000)<br>2500 (2000)<br>740 (870)                                | FCE (0 4C cm)<br>PCE (40-80 cm)<br>SCE (1-10 cm)<br>SCE (10-30 cm)<br>SCE (30-40 cm) (clay)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (Lab 4 - Kd) (Tat 1- CW componition)<br>(Tab 2- soil descr.) (good COWCLUS[CMS)<br>(Tab.3- Activities (Bd))<br>(Lab 4 - in situ - Tab - Kd comparison)                                                                                                                                                                                                                                                                     | Bell and Bates, 1988<br>Bell and Bates, 1989<br>Bell and Bates, 1989<br>Bell and Bates, 1989<br>Shessard and Thubuit, 1988<br>Shessard and Thubuit, 1988<br>Shessard and Thubuit, 1988<br>Shessard and Thubuit, 1988                                                                                                                                                                                                                               |
| U<br>U<br>U<br>U<br>U      | sand<br>sand<br>clayry sand<br>clayry sand<br>clayry sand<br>clayry sand                                                                                                                                                                                 | 91<br>93<br>50<br>60<br>73       | 3<br>2<br>7<br>6<br>11<br>8 | 8<br>7<br>36<br>21<br>19                    |                                                                                                    |                                       |                                                                    |               |                                                                                                                                             |                          |                                                             |                        |                          | 2 (-)<br>1<br>3<br>750<br>750<br>550 (-)                                                                                              | Beatly 1. WV<br>Beatly 2. WV<br>Beatly 5. WV<br>Barneel 4. SC<br>Barneel 14. SC<br>Barneel 14. Sc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | () = reducing conditions<br>firstly, Mereds Berneell, S Carelina<br>West Valley, NY (abst.:Kd/s highest in alkaline alluvial<br>basin deposita high in contervillenite and sealites)<br>i31 = Kd = sineral phase char.<br>tab.2 = relationship = testure, gurface area - clay<br>anneral comp (tab 4 = Kd = 6 radionuclides)<br>Fig 6 = test. disoram [Fig.7 = Kd wa sorptive minerals)<br>bd column = ()ducing conditions | He-he-sel, 1983<br>He-he-sel, 1983<br>He-he-sel, 1983<br>He-he-sel, 1983<br>He-he-sel, 1983<br>He-he-sel, 1983<br>Re-he-sel, 1983                                                                                                                                                                                                                                                                                                                  |
| U 73<br>U 73<br>U 73       | ican<br>sand<br>litter, LFH-A<br>AL<br>UB-B, Bfj-Afjaj<br>low-P, C-Cgj<br>B fine sandstone and silty sand<br>B fine sandstone and silty sand<br>B fine sandstone and silty sand<br>- red-brown clayey                                                    |                                  |                             |                                             |                                                                                                    |                                       | 57<br>51<br>57<br>67<br>20<br>45<br>575<br>75<br>56 - 10           |               | (600)<br>(16)<br>81 2cmoi/kg<br>7 9cmoi/kg<br>7 1cmoi/kg<br>1 7cmoi/kg                                                                      |                          |                                                             |                        |                          | 2-73<br>0-01<br>()<br>(171 B)<br>(276 2)<br>19 B (69 7)<br>100<br>2000<br>2000<br>2000<br>AV : 3 2 +3<br>(M : 2 5 +4)<br>(L : 2 5 +7) | Orthic Black Chernozen<br>Drthic regosol<br>D-4 co Cleyed Dystric Brunisol<br>4-15 cm Cleyed Dystric Brunisol<br>15-45 cm Cleyed Dystric Brunisol<br>145 cm Cleyed Dystric Brunisol<br>Chestmut Ridge, DRML                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (Lub 1) (CEC = cmo' Kg -1)<br>BLC-Y1.<br>in Kd column, no () = teach () = Cw<br>s 226 = site geelogy<br>s 230 = spitt rock formation<br>(U-238) tab 4<br>(U-6) (tab 18 = Kd)<br>report had 100's of Kds<br>(0 N = 5 K-C-C_e-Lu-1A-1C-1)                                                                                                                                                                                    | Shoppard and Shoppard, 1987<br>Shoppard and Shoppard, 1987<br>Shoppard et al., 1987<br>Shoppard et al., 1987<br>Shoppard et al., 1987<br>Haj:-Djafar: et al., 1981<br>Haj:-Djafar: et al., 1981<br>Haj:-Djafar: et al., 1981<br>Haj:-Djafar: et al., 1981<br>Seciej and Kelmers, 1984                                                                                                                                                              |
|                            | L <sup>FH-ab</sup><br>Ae<br>BJ_BJgj<br>C-Gg<br>Silty loom clay<br>Loom<br>Redium sand<br>Organic<br>Fine gandy loom<br>Fine gandy loom |                                  |                             | 36<br>15<br>2<br>10<br>11<br>10<br>10<br>10 |                                                                                                    |                                       | 5527395445515<br>71270395446515                                    |               | 81 2cmp1/kg<br>2 9cmp1/kg<br>7.1cmp1/kg<br>1./cmp1/kg<br>1./cmp1/kg<br>1.7<br>5 8<br>17<br>5 8<br>120<br>9 1<br>8.7<br>10 8<br>12 6<br>13 4 |                          | 5=44€a (140                                                 | 1)?                    |                          | 294 91 3(26 5- 1<br>160- 0 8(15 8- C                                                                                                  | 2) D-4 cm Cleyed Dystric Brunisol, S Manitoba<br>114-15 cm Cleyed Dystric Brunisol, S.E. Manitoba<br>9) 15-45 cm Cleyed Dystric Brunisol, S.E. Manitoba<br>2) 145 cm Cleyed Dystric Brunisol, S.E. Manitoba<br>2) 145 cm Cleyed Dystric Brunisol, S.E. Manitoba<br>2) Part Hope, Dutario<br>3. Part Hope, Dutario<br>4. Part Hope, Obtario<br>5. Part Hope, Obtario<br>5. Part Hope, Obtario<br>7. Part Hope, Dutario<br>8. Part Hope, Dutario<br>9. Part Hope, Dutario | in-high Lelos RS-5 mg U/L s'conc. Av:suerage<br>Fors Come (D N - 1, Cs. (C - 1, E, U, Th. Mo)<br>Rd+ Leachate = nn () Rd+ Groundwater = ()<br>Soil type, Ph. CEC & mail desc from ELC-17(JEO16(3)).<br>(D N.= Th. Pb) Port Hope soils Tab.1 = soil charact.<br>Tab 7: Kd (L/Kg) O mails Pers. comm.                                                                                                                        | Shappard, 1989<br>Shappard, 1989<br>Shappard, 1989<br>Shappard, 1989<br>Shappard, 1989<br>Shappard, WGE & RJP, 1989 |
| U<br>U<br>U<br>U<br>U      | Sand<br>Sand<br>Silk - alluvial sait<br>Clay<br>Abyssal red clay<br>Abyssal red clay                                                                                                                                                                     | 45<br>(\$ 5:0)<br>40<br>(\$ 5:0) | <b>n</b>                    | 30<br>6C                                    | < 1<br>-<br>-<br>0<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | 25.<br>Scarbona<br>-<br>0<br>Scarbona | (7<br>ite<br>-<br>-<br>-<br>-<br>-                                 |               | -<br>-<br>-<br>-                                                                                                                            |                          | 4 3ug((132<br>4 3ug(032<br>1 6Paci/<br>0 6Paci/<br>0 6Paci/ | -/=1.<br>-/=1_<br>NaCl |                          | 16<br>0 13<br>0 25<br>270<br>200<br>7 9+10E5<br>33                                                                                    | (adarache sediment<br>aitered schist<br>ordanic peal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                            | Rancon, 1973<br>Yamamoto et al., 1973<br>Yamamoto et al., 1973<br>Rancon, 1973<br>Erictison, 1980<br>Erictison, 1980                                                                                                                                                                                                                                                                                                                               |

#### ZINC Ka VALUES

|   | M.K. 15(                                        | SOII<br>J Jype                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5440                                 | <b>8</b><br>511.1                   | ¢<br>CLAV                           | e<br>FRG     | t<br>(+r03 | ndi<br>SAT PASTE                                                                                                                                         | ғн<br>(+)        | rer<br>~a/<br>10%                                                                                                      | DATDI .<br>TRUN<br>K EREF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ((M)<br>(A1)N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | \$ ( <b>P</b><br>(ATID                                      | NUCLIDL<br>COMPLNIANION | Kđ<br>(=L/g)                                                                                                                                           | SATI INSATION<br>5° DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | DI+-CP_INFOPHA1]/N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | REFERENCE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|---|-------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|-------------------------------------|-------------------------------------|--------------|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   | 77.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7        | (Janu yan)<br>(Janu yan)<br>(Janu yan)<br>yandy (Jan<br>Josey vand<br>(Jan<br>Clay<br>f Jaric organic<br>Clay energin<br>Clay energin<br>Clay mergin<br>Clay mergin<br>Clay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 24 5<br>77 5<br>50 5                 | 54 5<br>47 5<br>38 5                | 30 0<br>11 0<br>13 0                |              | 0.5        | 7 0 (base satu)<br>6 8 (base satu)<br>5 7 (base satu)<br>1 1 (base satu)<br>4 6 (base satu)<br>4 6 (base satu)<br>6 0<br>7 0<br>5 1<br>5 1<br>5 3<br>5 7 | 70<br>44<br>0 01 | 0.9 meg/g<br>21 meg/g<br>0.65 meg/g<br>15mtr/kg<br>74mtr/kg<br>44mtr/kg<br>11?                                         | 15 3a-6a<br>17 1a/ka<br>13 4a/ka                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (0 14 ra403<br>(0 14 ca403<br>(0 14 ca403<br>(0 14 ca403                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                                           |                         | 10+3 10+4 (ing)<br>10+3 10+4 (ing)<br>10+7 10+4 (ing)<br>10+7 10+4 (ing)<br>10+7 (ing)<br>10+7 (ing)<br>10+7 (ing)<br>10+7 (ing)<br>10+1000            | Creptol, persanet grassand<br>Station (spectrum) (stangly humified<br>Station) (brow soul from loss<br>4 Cabicol, brow soul from loss<br>4 Cabicol, brow soul from loss<br>5 Arcisol, paraboun soil ( Norigan<br>6 Arcisol, paraboun soil ( Norigan<br>6 Bentonie, Sud Clear & Manneten<br>11, Sphan beat (h at mort), ite-induct. Meer, Hannover (1.36% ach<br>72, Sphag beat (hom mort), Mangdor, Basaria, 1.0% ach<br>41 Montorillente, Vermiturise, haolinise<br>60 Vermitulite, Cline te<br>6 Shire te, Vermitulite, 111:re, 111:re Vermi Haotinite<br>Hean of 32 Datish souls | (1.6) 0.20 cm and server a 2mm, fre-simp, Bavaria<br>(Abstract)(fab 1: soil are, 20mm, fre-simp, Bavaria<br>(abstract)(fab 1: soil are, 20mm, fre-simp, 20mm, 2 | Bunzi and schimaget 1989<br>Bunzi and schimaget 1988<br>Bunzi and Schimaget 1988<br>Augest and Schimaget 1988<br>Augest at Schimaget 1989<br>Anderson & Casona 1989                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|   | 2n<br>2n<br>2n<br>7n<br>2n                      | Liay<br>Loam<br>Sand<br>Sandy Ioam                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 40 1<br>45 9<br>63 4<br>95 4<br>75 0 | 16 3<br>34 6<br>71 5<br>0 8<br>17 9 | 43 6<br>19 6<br>15 7<br>7 4<br>14 0 | 2 75<br>2 68 |            | 67<br>68<br>587<br>53<br>64                                                                                                                              |                  | 15 89<br>10 51<br>6 02<br>2 6<br>8 0                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 15 5<br>11 7<br>Caf 17<br>Caf 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                             |                         | 644<br>644<br>140                                                                                                                                      | Mech lembers - ray<br>bGan - rag<br>Jeneral 1. sandy - Ingu<br>Surt § 1832<br>Surt § 1832                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Conclusions<br>Table soil prop. Table 3: ij Fig. 3,42 Kd vs. metal conc<br>Tab 4: represence analys : equat<br>Abstract and Conclusions<br>Xoil prop.: from (hristerion, 1007: 5011-44 + Table<br>Soil depth=50-100cm Fig. 1,34 Kd vs. 2n conc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Reddy and Dunn, 1986<br>Beddy and Dunn, 1986<br>Peddy and Dunn, 1986<br>Christensen, 1987<br>Christensen, 1987                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|   | ひしいたいたい しょうしん しんしん しんしん しんしん しんしん しんしん しんしん しんし | P4 (0.30 cm)<br>P4 (0.30 cm)<br>P4 (0.30 cm)<br>P4 (0.30 cm)<br>P4 (0.30 cm)<br>P51. (0.30 cm)<br>P51. (0.15 cm)<br>P51. (0.15 cm)<br>P51. (0.15 cm)<br>P51. (0.15 cm)<br>P51. (0.15 cm)<br>P51. (0.15 cm)<br>P53. (0.15 cm)<br>P54. (0.15 cm)<br>P54. (0.15 cm)<br>P5. B (20.30 cm)<br>P5. B (20.50 cm | BO                                   | 17                                  | (? ••                               |              | D          | 37 (Cac(2)<br>56<br>7567567567567567567567567567567567567567                                                                                             |                  | 134<br>134<br>64<br>65<br>65<br>99<br>99<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70 | $\begin{array}{c} c \ m (1 \ ac) \\ c \ m (1 \ ac) \ m (1 \ ac) \\ c \ m (1 \ ac) \ m (1 \ ac)$ | 9 14 Cartol<br>9 14 Cartol<br>9 18 | 122<br>1122<br>1122<br>1122<br>1122<br>1122<br>1122<br>1122 |                         | 3 44 {10-11<br>0 23 {10-11<br>1 23 (10-11)<br>8 24 (10-11)<br>0 17 {10-11<br>9 86 (10-11)<br>9 86 (10-11)<br>0 17 {10-11<br>0 17 {10-11<br>2 19 910-11 | Aqued (N Germany)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | inb 1: keCd - Kd/-, K/- Conclusions.<br>Kd cnlum: () + Kd rampe Tab ) = sorigenen tab 2- Kd<br>Lab 1 = sorigenen also enerstangrof clay sori.(CECK get 5,<br>Lab 5 = Kd (ig:1), cd:4: [n golyten conc:10 - 6 motar<br>(0 H = H:, 2-) (CEC used get 7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Shammerk et al. 1987.<br>7 Tiller et al. 1984<br>Tiller et al. 1984 |
| - | 70 65                                           | Heavy clay - 1<br>Heavy clay - 1<br>Heavy clay - 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                      | 15<br>19                            | (2 yr<br>85<br>81                   | •            |            | B 7(7 2 1)<br>B 7(7 3 2)                                                                                                                                 |                  | 860emo1/kg<br>26+ 7                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1M NaM13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                             |                         | 15000+-1000<br>14200+-300                                                                                                                              | taton, Wyoning<br>(9.04 - 7.11 o) Lovista Savi, Finland<br>(9.73 - 9.80 o) Lovista Savi, Finland                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | CEC : semalotypi] {/n (NC  2)<br>(0 H + 2n) (fig:7,3 Kd of Cd + 2n)<br>(2n=65){laob 12: 2ntd - p: }<br>{0.H ∈ Cs,Co,Hm,Sr,Ce}(o) in 1ob 12 - ( ) in pH col }                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Garcia-Miragaya, 1903<br>Garcia-Hiragaya, 1903<br>Nibula, 1907<br>Nibula, 1907                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

continued...

# TABLE B-35 (concluded)

| H.C 158                    | SDU<br>Lete                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | SAND                                 | \$<br>5B 1                                                 | 5<br>C AY | R<br>ING                         | 1<br>(a(113 | nii<br>Sat Pasti                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | FM<br>1+3 | 287<br>100g                                                                                                                                                | 5 ( H) (<br>1919)<br>() = ((+ 1) | Ç <b>rmi</b> r<br>ÇATŞIM                                                                               | S (IMP<br>CATION     | NICL 114<br>CONCENTRATION | 84<br>fat /o}                                                                                                                                                                                                               | SDLL_LOCATION<br>ev DESCRIPTEN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | DTHER INFORMATION | REFERENCE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|------------------------------------------------------------|-----------|----------------------------------|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|--------------------------------------------------------------------------------------------------------|----------------------|---------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| かったたいでいたれたなかかいできるのできるのです。  | Heavy clay 2<br>Heavy clay 4<br>Heavy clay 4<br>Heavy clay 5<br>Sifty clay lass 6<br>Loady sand 7<br>Sandy loas 8<br>Loady sand - 0<br>Loady sand - 0<br>Loady sand - 0<br>Sandy loas 10<br>Loady - 11<br>Sandy loas - 10<br>Sandy loas 5<br>Sand - 12<br>Sandy loas 5<br>Sand - 12<br>Sift-clay 5<br>Sift-clay 5<br>Sift-clay 5<br>Sift-clay 5<br>Sift-clay 5<br>Sift-clay 5<br>Sift-clay 5<br>Sand - 5<br>Sand - 5<br>Fine sand 7<br>Fine sand 6<br>Fine sand 7<br>Fine sand 6<br>Fine sand 7<br>Fine sand 6<br>Fine sand 7<br>Fine sand 6<br>Fine sand 7<br>Fine | 79<br>64<br>41<br>57<br>74 9<br>74 9 | 11<br>37<br>67<br>37<br>37<br>37<br>37<br>37<br>29<br>10 8 |           | 14 5q/Kq<br>27 9g/Kg<br>570 7g/K |             | #         1/         4.1         1/           #         3.1         1/         7.1         1/           #         0.1         7.1         1/         1/         1/           #         0.1         7.2         1/         1/         1/         1/         1/         1/         1/         1/         1/         1/         1/         1/         1/         1/         1/         1/         1/         1/         1/         1/         1/         1/         1/         1/         1/         1/         1/         1/         1/         1/         1/         1/         1/         1/         1/         1/         1/         1/         1/         1/         1/         1/         1/         1/         1/         1/         1/         1/         1/         1/         1/         1/         1/         1/         1/         1/         1/         1/         1/         1/         1/         1/         1/         1/         1/         1/         1/         1/         1/         1/         1/         1/         1/         1/         1/         1/         1/         1/         1/         1/         1/< |           | $\begin{array}{c} \hline 71 - 2 \\ 5 & 7 - 7 \\ 5 & 7 - 7 \\ 75 - 1 \\ 17 - 5 \\ 7 & 7 - 7 \\ 7 & 7 - 7 \\ 7 & 7 & 7 \\ 7 & 7 & 7 \\ 7 & 7 & 7 \\ 7 & 7 &$ |                                  | ( 4* 12<br>( 4* 15                                                                                     |                      | 26 vg/n/L<br>HOG vg/n/L   | LR77: 1:40<br>2007: Hu0<br>2007: Hu0<br>2007: Hu0<br>2007: Hu0<br>2007: 100<br>2700: 100<br>3700: 100<br>3700: 200<br>10000: 100<br>80<br>40<br>40<br>40<br>40<br>40<br>1000<br>200<br>200<br>200<br>200<br>200<br>200<br>2 | 17 06 77 14 w, 11k + Louis Sav. 1 + Heind<br>(2 49 2 56 e) (11k + Louis Sav. 1 + Heind<br>(17 74 3 31 m) amount is the stand<br>(17 74 3 31 m) amount is the stand<br>(18 m) (11k + Louis amoreon is heiland<br>(18 m) (11k + Louis amoreon is heiland<br>(17 m) (11k + Louis amoreon is heiland<br>(18 m) (18 m) (18 m) (18 m)<br>(18 m) (18 m) (18 m) (18 m)<br>(18 m) (18 m) (18 m) (18 m)<br>(18 m) (18 m) (18 m)<br>(18 m) (18 m)<br>(18 | $F_{ij}$          | Nituis, 1987<br>Nituis, 1987<br>Nitui |
| Zn                         | Sand                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                      |                                                            | ••••      | 3 5                              |             | 45.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           | 7?                                                                                                                                                         |                                  | [(a-7]<br>0 0 015 m                                                                                    |                      |                           |                                                                                                                                                                                                                             | 3614 (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                   | Gerritse et al , 1982                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 2.                         | sand                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                      |                                                            |           | 25                               | •           | 75-80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           | 16                                                                                                                                                         |                                  | (s?+) =<br>0-0 015 mm                                                                                  |                      |                           | 2 12.103                                                                                                                                                                                                                    | So. I D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                   | Cerritse et al , 1982                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| in<br>In<br>In<br>In<br>In | fine sand<br>silt, loge<br>silt, loge<br>organic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                      |                                                            |           | 14                               | :           | 4 8<br>6 2<br>8 2<br>5.0<br>7 4<br>4 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -<br>-    |                                                                                                                                                            | -                                | 0 ]mo1/L Cat<br>0 1mo1/L Cat<br>0 1mo1/L Cat<br>C 1mo1/L Cat<br>C 1mo1/L Cat<br>(Ca2+] ><br>0 0 015 mo | C 12<br>C 12<br>C 12 |                           | 0 1<br>50<br>870<br>3 6<br>100<br>1 8%10E3                                                                                                                                                                                  | Flor-da 1<br>Flor-da 2<br>Haliandare Fine sand<br>Histouri 23<br>Histouri 24<br>Soit A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                   | Graham, 1973<br>Graham, 1973<br>Vong et al., 1983<br>Graham, 1973<br>Graham, 1973<br>Gereitae et ai., 1992                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| In<br>In                   | 0703010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                      |                                                            |           | >90                              | •           | 4-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -         |                                                                                                                                                            | •                                | [(a7-] =<br>0-0 0:5 =0                                                                                 | • -                  |                           | 6 3-1023                                                                                                                                                                                                                    | Peat A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                   | Cerritse et al., 1982                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Zn<br>Zn                   | arganıc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                      |                                                            |           | >90                              |             | 6 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                                                                                                                                                            |                                  | (Ca?+) =<br>0-0.015 ==                                                                                 |                      |                           | 2 89+10E3                                                                                                                                                                                                                   | Soul D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                   | Cerritse et al , 1992                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 2n<br>2n                   | sphagnum prat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                      |                                                            |           |                                  | :           | 4-5<br>4-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | :         |                                                                                                                                                            |                                  | 0 075 -                                                                                                |                      |                           | 1 3=10E4<br>7 0=10E1                                                                                                                                                                                                        | Peat<br>Peat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   | Wolf et al , 1977                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Z=                         | sphagnup peat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                      |                                                            |           | -                                | •           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |           | -                                                                                                                                                          |                                  | (a?./4 so                                                                                              |                      |                           |                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   | Wolf et al., 1977                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

,

#### APPENDIX C

#### PREDICTION OF MISSING Kd VALUES FROM CR VALUES

This appendix provides the input file containing the recommended CR values (Baes et al. 1984) for SAS<sup>\*</sup> regression analysis, and the output file showing the predicted  $K_d$  values for each nuclide for each soil. A plot of predicted  $K_d$  values versus ln CR values is also shown.

\* SAS User's Guide, Statistics, Version 5, SAS Institute Inc. Cary, North Carolina, 1985.

data trnsfl; input element \$ Bvi 19-21 el 25-26 sakd sikd clkd orkd; \*\*\*\*these kd values are in-transformed means, not GM\*\*\*\*\*; array string(4) sakd sikd clkd orkd; Bvi=Bvi\*10\*\*e1; lcr=log(Bv1); do i=1 to 4; sand=0: ilt=0; clay=0; org=0; if i=1 then sand=1; if i=2 then silt=1; if i=3 then clay=1; if i=4 then org=1; kd=string[1];output;end; cards; λc 8.8x10-4 7.6 9.0 11.6 1.4x10-3 9.2 λm Be 2.5x1C-3 : . . . Br C 3.8x10-1 • . ..1 7.0 1.4x10-0 • 0.8 Ca E.8x10-1 7.5 . . 4.3 Cđ 1.4x10-1 3.7 6.3 6.7 4.2 3.4 Cr 1.9x10-3 . 7.5 5.6 Cs 2.0x10-2 5.6 -2.6 н 1.2x10-0 Нf . . 3.3 8.8x10-4 • 2.5x10-3 Но . 0.5 I 3.8x10-2 .04 1.5 2.0 • Mo 6.3x10-2 4.5 3.3 Nb 5.0x10-3 . €.0 . 7.0 . Nı 1.5x10-2 6.5 . Np 2.5x1C-2 1.4 3.2 4.0 7.1 6.3x10-4 : Fa . Fb 1.1x10-2 5.6 9.7 10. Pd 3.8x10-2 . 6.3 6.2 . 7.1 10.5 8.5 Pu 1.1x10-4 7.5 Ra 3.3x10-3 9.1 . Rb 3.8x10-2 • . . • Sb 5.0x10-2 • • . Se 6.3x1C-3 . . . . 51 8.8x10-2 • . • • 2.5x10-3 7.5x10-3 Sm • • • • Sn . . -2.0 Tc 2.4x10-0 -2.3 0.2 0.4 8.0 3.5 . 2.5 8.6 11.4 Th 2.1x10-4 υ 2.1x10-3 Zr 5.0x1C-4 • • . . 8.7x1C-1 2.5x1C-3 P • . • Ta . • • . Бl £.7x16-3 . . 6.3x1C-4 6.3x1C-1 5.0 Fo 6.0 . 4.7 5.2 Sr 2.6 4.5 3.0 5.0 9.6 6.9 1.0.10-1 4.8 λç 7.2 C: Fe 5.0x10-3 4.1 6.3 1.0x10-3 5.1 5.2 6.4 5.0 5.4 Mn 6.3x10-2 3.9 6.6 Ru Ce 1.9x10-2 4.0 6.9 6.7 11.1 2.5x10-3 6.2 5.3 9.0 7.2 9.9 7.8 8.1 7.4 2n 3.8x1C-1 Сп 2.1x10-4 8.3 9.8 8.7 ٠ : ĸ 2.5x10-1 • . • Re 3.7x10-1 . . . • • . 3.7x10-3 Y . . . . proc reg; model kd=sand silt clay or lcr; output out=try predicted=ykd residual=rkd; proc print: proc plot: plot kd\*lcr=: ykd\*lcr='\*'/overlay hpos=90 vpos=25;

SAS

11:14 WEDNESDAY, JULY 26, 1989 1

.

DEP V/RIABLE: KD

• ,

ANALYSIS OF VARIANCE

|         |      | SUM OF       | MEAN        |         |        |
|---------|------|--------------|-------------|---------|--------|
| SOURCE  | DF   | SQUARES      | SQUARE      | F VALUE | PROR>F |
| MODEL   | 4    | 358.02417509 | 89.50604377 | 16.466  | 0.0001 |
| ERROR   | 87   | 472.91382056 | 5.43579104  |         |        |
| C TOTAL | 91   | 830.93799565 |             |         |        |
| ROOT    | MSE  | 2.331478     | R-SQUARE    | 0.4309  |        |
| DEP 1   | 1EAN | 5.679783     | ADJ R-SQ    | -0.4047 |        |
| c.v.    |      | 41.04872     |             |         |        |

NOTE: MODEL IS NOT FULL PANK. LEAST SQUARES SOLUTIONS FOR THE PARAMETERS ARE NOT UNIQUE. SOME STATISTICS WILL BE MISLEADING. A REPORTED DF OF 0 OR B MEANS THAT THE ESTIMATE IS BIASED. THE FOLLOWING PARAMETERS HAVE BEEN SET TO 0, SINCE THE VARIABLES ARE A LINEAR COMBINATIO. OF OTHER VARIABLES AS SHOWN.

ORG =+1\*INTERCEP-1\*SAND -1\*SJLT -1\*CLAY

.

#### PARAMETER ESTIMATES

| VARIABLE | DF | PARAMETER<br>ESTIMATE | STANDARD<br>ERROR | T FOR HO:<br>Farameter=0 | PROB > [T] |
|----------|----|-----------------------|-------------------|--------------------------|------------|
| INTERCEP | 13 | 4.40136442            | 0.61670053        | 7.137                    | 0.0001     |
| SAND     | ก  | 2.70113               | 0.66172013        | 4.087                    | 0.0001     |
| SILT     | В  | -1.27478              | 0.70415839        | -1.810                   | 0.0737     |
| CLAY     | в  | 0.955709              | 0.70409181        | -1.357                   | 0.1782     |
| ORG      | 0  | 0                     | •                 | •                        |            |
| LCR      | 1  | 0.616477              | 0.0897167         | -6.871                   | 0.0001     |

11:14 WEDNESDAY, JULY 26, 1989 2

| OBS | ELEMENT | BVI     | E1  | SAKD   | SIKD | CTRD | OFKD | LCR       | I | SAND   | SILT | CLAY | ORG | ĸp           | ¥KD.     | RKD        |
|-----|---------|---------|-----|--------|------|------|------|-----------|---|--------|------|------|-----|--------------|----------|------------|
| 1   | Ac      | 0.00088 | - 4 |        |      |      |      | -7.0356   | 1 | 1      | 0    | 0    | 0   |              | 6.03452  |            |
| >   | ٨ς      | 0.00088 | 4   |        |      |      |      | -7.0356   | 2 | 0      | 1    | 0    | 0   |              | 7.46387  |            |
| 1   | Ac      | 0.00088 | - 4 |        |      |      |      | .7,0156   | 3 | 0      | 0    | 1    | n   |              | 7.78294  |            |
| 4   | Ac      | 0.00088 | - 4 |        |      |      |      | .7.0.56   | 4 | 0      | 0    | 0    | 1   |              | 8.73865  |            |
| 5   | Am      | 0.00140 | 3   | 7.60   | 9.2  | 9.0  | 11.6 | 6.5713    | 1 | 1      | 0    | 0    | 0   | 7.60         | 5.74829  | 1.8517     |
| 6   | Am      | 0.00140 | - 3 | 7.60   | 9.2  | ۹.0  | 11.5 | -6.5713   | 2 | 0      | 1    | 0    | 0   | 9.20         | 7.17764  | 2.0224     |
| 7   | Am      | 0.00140 | . 3 | 7.60   | 9.2  | ۷.0  | 11.6 | -6.5713   | 3 | 0      | 0    | 1    | 0   | 9.00         | 7.49670  | 1.5033     |
| 8   | λm      | 0.00140 | - 3 | 7.60   | 9.2  | 9.0  | 11.6 | .6.5713   | 4 | 0      | 0    | 0    | 1   | 11.60        | 8.45241  | 3.1476     |
| 9   | Re      | 0.00250 | - 3 |        |      |      |      | -5.9915   | 1 | 1      | 0    | 0    | 0   |              | 5.39084  |            |
| 10  | Be      | 0.00250 | - 3 |        |      |      |      | .5.9915   | 2 | 0      | 1    | 0    | 0   |              | 6.82019  |            |
| 11  | Be      | 0.00250 | - 3 |        |      |      |      | -5.9915   | 3 | 0      | 0    | 1    | 0   |              | 7.13926  |            |
| 12  | Be      | 0.00250 | - 1 |        |      |      |      | . 5. 9915 | 4 | 0      | 0    | 0    | 1   |              | 8.09497  |            |
| 13  | Pr      | 0.38000 | - 1 |        |      |      |      | -0.9676   | 1 | 1      | 0    | 0    | 0   |              | 2.24373  |            |
| 14  | Bt      | 0.38000 | · 1 |        |      |      |      | .0.9676   | 2 | 0      | 1    | 0    | 0   |              | 3.72308  |            |
| 15  | Br      | 0.38000 | · 1 |        |      |      |      | -0.9676   | 3 | 0      | 0    | 1    | 0   |              | 4.04215  |            |
| 16  | Bı      | 0.38000 | - 1 |        |      |      | •    | -0.9676   | 4 | 0      | 0    | 0    | ĩ   |              | 4.99786  |            |
| 17  | c       | 1.40000 | Ō   | 1.10   |      | 0.8  |      | 0.3365    | 1 | i      | õ    | õ    | 0   | 1.10         | 1.48981  | . 2. 3898  |
| 18  | c       | 1.40000 | 0   | 1.10   |      | 0.8  |      | 0.3365    | 2 | 0      | 1    | õ    | Ő   |              | 2.91916  |            |
| 19  | с       | 1.40000 | Ô   | 1.10   |      | 0.8  |      | 0.3365    | 3 | Ö      | 0    | 1    | 0   | 0.80         | 3.23823  | - 2.4382   |
| 20  | Ċ       | 1.40000 | 0   | 1.10   |      | 0.8  |      | 0.3365    | 4 | õ      | ō    | ō    | 1   | 0.00         | 4.19394  | .2.4502    |
| 21  | Сa      | 0.88000 | - 1 | 7.00   | •    |      | 7.5  | 0.1278    | i | 1      | õ    | ŏ    | ò   | 7, 10        | 1.77605  | 5.2240     |
| 22  | Ca      | 0.88000 | i   | 1.00   | •    |      | 7.5  | .0.1278   | ż | 0      | ĩ    | ŏ    | Ő   |              | 3.20539  |            |
| 23  | Ca      | 0.88000 | - 1 | 7.00   |      |      | 7.5  | 0.1       | 3 | 0      | 0    | 1    | 0   | •            | 3.52446  | •          |
| 24  | C 4     | 0.88000 | ī   | 7.00   | •    |      | 7.5  | 0.1278    | 4 | ŏ      | ŏ    | 0    | 1   | 7.50         | 4.48017  | 3.0198     |
| 25  | ca      | 0.14000 | - 1 | 4.30   | 3,1  | 6.3  |      | 1.9661    | 1 | 1      | 0    | õ    | 0   | 4.30         |          |            |
| 26  | ca      | 0.14000 | - 1 | 4.30   | 3.7  | 6.3  | 6.7  | -1.9661   | 2 | 0      | 1    | õ    | 0   |              | 2.90930  | 1.3907     |
| 27  | Cd      | 0.14000 | -1  | 4.30   | 3.7  | 6.3  | 6.7  | -1.9661   | 3 | 0      | 0    | 1    | 0   | 3.70         | 4.33865  | -0.6387    |
| 28  | ca      | 0.14000 | 1   | 4.30   | 3.7  | 6.3  | 6.7  | 1.9661    | 4 | 0      | ő    | 0    | 1   | 6.30<br>6.70 | 4.65772  | 1.6423     |
| 29  | Cr      | 0.00190 | 3   | 4.20   | 3.4  |      | 5.6  | -6.2659   | 1 | 3      | 0    | 0    |     |              | 5.61343  | 1.0866     |
| 30  | Ct      | 0.00190 | - 3 | 4.20   | 3.4  | ·    | 5.6  |           | ; | ,<br>, | 1    | -    | 0   | 4.20         | 5.54003  | -1.3600    |
| 31  | Cr      | 0.00190 | - 3 | 4.20   |      | •    | 5.6  | -6.2659   |   | 0      | 0    | 0    | 0   | 1.40         | 6.98938  | - 3.5894   |
| 32  | CT      | 0.00140 | - 3 |        | 3.4  | ·    |      | -6.2659   | 3 | -      | 0    | 1    | 0   |              | 7.30844  | •          |
| 33  | C 5     |         |     | 4.20   | 3.4  | · .  | 5.6  | -6.2659   | 4 | 0      | 4    | 0    | 1   | 5.60         | 8.26415  | -2.6642    |
| 34  | Cs      | 0.02000 | - 2 | 5.60   | 8.4  | 7.5  | 5.6  | 3.9120    | 1 | 1      | 0    | 0    | 0   | 5.60         | 4.10891  | 1.4911     |
| 34  |         | 0.02000 | - 2 | 5.60   | 8.4  | 7.5  | 5.6  | -3.9120   | 2 | 0      | 1    | 0    | 0   | 8.40         | 5.51826  | 2.8617     |
| 36  | C 5     | 0.02000 | - 2 | 5.60   | 8.4  | 1.5  | 56   | 3,9120    | 3 | 0      | 0    | 1    | 0   | 7.50         | 5.85733  | 1.6427     |
| 37  | Cs<br>H | 0.02000 | - 2 | 5.60   | 8.4  | 7.5  | 5.6  | 3.9120    | 4 | 0      | 0    | 0    | 1   | 5.60         | 6.81304  | -1.2130    |
|     |         | 1.20000 | 0   | -2.60  | •    | •    | •    | 0.1823    | 1 | 1      | 0    | 0    | 0   | -2.60        | 1.58484  | -4,1848    |
| 38  | H       | 1.20000 | 0   | -2.60  | •    | •    | •    | 0.1823    | ? | 0      | 1    | 0    | 0   |              | 3.01419  | •          |
| 39  | н       | 1.20000 | Ô   | - 2.60 | •    | •    |      | 0.1823    | 3 | 0      | 0    | 1    | Û   |              | 3, 13326 | •          |
| 40  | н       | 1.20000 | 0   | -2.60  | •    | •    | •    | 0.1823    | 4 | 0      | 0    | 0    | 1   |              | 4.28897  | •          |
| 41  | Hf      | 0.00088 | - 4 | •      | •    | •    |      | -7.0356   | 1 | 1      | 0    | 0    | 0   |              | 6.03452  | •          |
| 42  | Hſ      | 00008   | - 4 |        |      | •    |      | .7.0356   | 2 | 0      | 1    | 0    | 0   |              | 7.46387  |            |
| 43  | Rf      | 0.00088 | 4   |        |      |      |      | 7.0356    | 3 | 0      | ŷ    | 1    | n   |              | 7.79294  | •          |
| 44  | Hf      | 0.00088 | - 4 |        |      |      |      | 7.0356    | 4 | 0      | 0    | n    | 1   |              | 8.73865  |            |
| 45  | Ho      | 0.00250 | - 3 |        |      |      |      | -5.9915   | 1 | 1      | 0    | 0    | 0   |              | 5.39084  |            |
| 46  | Ho      | 0.00250 | - 3 |        |      | •    |      | -5.9915   | 2 | 0      | 1    | 0    | 0   |              | 6.82019  | •          |
| 47  | Но      | 0.00250 | - 3 |        |      |      |      | -5.9915   | 3 | 0      | 0    | 1    | n   |              | 7.11926  |            |
| 48  | Ho      | 0.00250 | - 3 |        |      |      |      | 5.9915    | 4 | 0      | 0    | 0    | 1   |              | 8.09497  |            |
| 49  | 1       | 0.03800 | - 2 | 0.04   | 1.5  | 0.5  | 3.3  | -3.2702   | 1 | 1      | 0    | 0    | n   | 0.04         | 3.71322  | . 3 . 6732 |

SAS

)

.

•

,

.

•

.

•

-

•

11:14 WEDNESDAY, JULY 26, 1989 3

.

| 085 | ELEMENT | BVI     | El  | SAKD | SIKD | CLKD | ORKD  | LCR      | I | SAND | SILT   | CLAY | ORG     | KD         | ŸKD              | PKD           |
|-----|---------|---------|-----|------|------|------|-------|----------|---|------|--------|------|---------|------------|------------------|---------------|
| 50  | I       | 0.03800 | · 2 | 0.04 | 1.5  | 0.5  | 3.3   | -3.2702  | 2 | 0    | 1      |      | 0       | 1.50       | 5.14257          | - 3.6426      |
| 51  | T       | 0.03800 | - 2 | 0.04 | 1.5  | 0.5  | 3.3   | -3.2702  | 3 | 0    | 0      | 1    | Ō       | 0,50       | 5.46164          | -4.9616       |
| 52  | I       | 0.03800 | - 2 | 0.04 | 1.5  | 0.5  | 3.3   | -3.2702  | 4 | 0    | 0      | 0    | 1       | 3.30       | 6.41735          | -3,1174       |
| 53  | Mo      | 0.06300 | 2   | 2.00 |      | 4.5  | 3.3   | 2.7646   | 1 | 1    | 0      | 0    | Ô       | 2.00       | 3.40157          | -1.4016       |
| 54  | Mo      | 0.06300 | - 2 | 2.00 | •    | 4.5  | 3.3   | -2.7646  | S | 0    | 1      | 0    | 0       | •          | 4.83091          | .1.4016       |
| 55  | Mo      | 0.06300 | - 2 | 2.00 |      | 4.5  | 3.3   | .2.7646  | ? | 0    | 0      | 1    | 0       | 4.50       | 5.1.998          | .0.6500       |
| 56  | Mo      | 0.06300 | - 2 | 2.0  |      | 1.5  | 3.3   | .2.7646  | 4 | 0    | 0      | 0    | 1       | 3.3        | 6.1057           | -2.8057       |
| 57  | Nb      | 0.00500 | • 3 |      |      |      |       | -5.2983  | ł | 1    | 0      | ō    | 0       |            | 4.9635           | -2.005/       |
| 58  | Nb      | 0.00500 | - 3 |      |      |      |       | -5.2983  | 2 | Ó    | 1      | ō    | 0       |            | 6, 1079          | •             |
| 59  | Nh      | 0.00500 | - 3 |      |      |      |       | - 5.2983 | 3 | 0    | Ō      | 1    | ő       |            | 6,7119           | •             |
| 60  | NÞ      | 0.00500 | .3  |      |      |      |       | 5.2983   | 4 | 0    | 0      | ō    | 1       |            | 7.6617           | •             |
| 61  | NI      | 0.01500 | .2  | 6.0  |      | 6.5  | 7.0   | 4.1997   | 1 | 1    | Ō      | ō    | 0       | 6.0        | 4.2863           |               |
| 62  | Nt      | 0.01500 | - 2 | 6.0  |      | 6.5  | 7.0   | 4.1997   | 2 | Ō    | 1      | õ    | ő       |            | 5.7156           | 1.7137        |
| 63  | NI      | 0.01500 | · 2 | 6.0  |      | 6.5  | 7.0   | 4.1997   | 3 | 0    | 0      | 1    | Ö       | ۰<br>۴.5   | 6.0347           |               |
| 64  | Ni      | 0.01500 | - 2 | 6.0  |      | 6,5  | 7.0   | 4.1997   | 4 | 0    | 0      | ō    | 1       | 7.0        | 6.9904           | 0.4653        |
| 65  | Np      | 0.02500 | - 2 | 1,4  | 3.2  | 4.0  | 7.1   | 3.6889   | 1 | 1    | 0      | ŏ    | 0       | 1.4        |                  | 0.0096        |
| 66  | Np      | 0.02500 | - 2 | 1.4  | 3.2  | 4.0  | 7.1   | -3.6889  | 2 | ō    | 1      | 0    | ŏ       | 3.2        | 3.9713<br>5.4007 | -2.5713       |
| 67  | Np      | 0.02500 | - 2 | 1.4  | 3.2  | 4.0  | 7.1   | -3.6889  | 3 | Ō    | 0      | 1    | õ       | 4.0        | 5.4007           | -2.2007       |
| 68  | Np      | 0.02500 | - 2 | 1.4  | 3.2  | 4.0  | 7.1   | -3.6889  | 4 | 0    | 0      | ō    | ĩ       | 7.1        |                  | -1.7198       |
| 69  | . Га    | 0.00063 | - 4 |      |      |      |       | -7.3698  | 1 | 1    | ō      | Ő    | Ó       |            | 6.6755           | 0.4245        |
| 70  | Гa      | 0.00063 | - 4 |      |      |      |       | -7.3698  | 2 | ō    | i      | ő    | õ       |            | 6.2405           | •             |
| 71  | Pa      | 0.00063 | - 4 |      |      |      | •     | -7.3698  | 3 | 0    | o<br>o | ĩ    | 0       | •          | 7.6699<br>7.5290 | •             |
| 72  | Fa      | 6.00063 | - 4 |      |      |      |       | -7.3698  | 4 | 0    | ō      | ō    | 1       | •          | -                | •             |
| 73  | Pb      | 0.01100 | - 2 | 5.6  | 9.7  |      | 10.0  | 4.5099   | 1 | 1    | ō      | ő    | 0       | 5.6        | 8.4.47           | • • • • • • • |
| 74  | гь      | 0.01100 | - 2 | 5.6  | 9.7  |      | 10.0  | 4.5099   | 2 | 0    | 1      | õ    | õ       | 9.7        | 4.4775           | 1.1225        |
| 75  | Рb      | 0.01100 | - 2 | 5.6  | 9.7  |      | 10.0  | -4.5099  | 3 | ō    | ō      | 1    | 0       |            | 5.9068           | 3.7932        |
| 76  | гь      | 0.01100 | - 2 | 5.6  | 9.7  |      | 10.0  | 4.5099   | 4 | õ    | õ      | 0    | 1       |            | 6.2259           | •             |
| 77  | Pð      | 0.03800 | - 2 |      |      |      | ••••• | - 3.2702 | i | 1    | ŏ      | ő    | 0       | 10.0       | 7.1816           | 2.8184        |
| 78  | Pđ      | 0.03800 | - 2 |      |      |      |       | - 3.2702 | 2 | 0    | 1      | ŏ    | 0       | •          | 3.7132           | •             |
| 79  | Pd      | 0.03800 | - 2 | •    |      |      |       | -3.2702  | 3 | ò    | 0      | 1    | ő       | •          | 5.1426           | •             |
| 80  | Pd      | 0.03800 | . 2 |      |      |      |       | - 3.2702 | 4 | 0    | ō      | 0    | 1       | -          | 5.4616           | •             |
| 81  | Pu      | 0.00011 | - 4 | 6.3  | 7.1  | 8.5  | 7.5   | -9.1150  | i | 1    | ō      | ő    | 0       | ċ,         | 6.4174           | •             |
| 82  | Fu      | 0.00011 | - 4 | 6.3  | 7.1  | 8.5  | 7.5   | -9.1150  | 2 | ō    | 1      | ő    | 0       | 6.3<br>7.1 | 7.3164           | -1.0164       |
| 83  | Fu      | 0.00011 | - 4 | 6.3  | 7.1  | 8.5  | 7.5   | -9.1150  | 3 | õ    | ò      | 1    | 0       | 8.5        | 8.7458           | 1.6458        |
| 84  | Pu      | 0.00011 | - 4 | 6.3  | 7.1  | 8.5  | 7.5   | .9.1150  | 4 | õ    | ŏ      | ō    | 1       | 7.5        | 9.0649           | -0.5649       |
| 85  | Ra      | 0.00330 | - 3 | 6.2  | 10.5 | 9.1  |       | -5.7138  | 1 | 1    | ō      | ő    | ō       | 6.2        | 10.0206          | ·2.5206       |
| 86  | Ra      | 0.00330 | - 3 | 6.2  | 10.5 | 9.1  |       | -5.7138  | 2 | ۰°   | ĭ      | ŏ    | ō       | 10.5       | 5.2197           | 0.9803        |
| 87  | Ra      | 0.00330 | .3  | 6.2  | 10.5 | 9.1  |       | -5.7138  | 3 | õ    | 0      | 1    | 0<br>0  |            | 6.6490           | 3.8510        |
| 88  | Ra      | .00330  | - 3 | 6.2  | 10.5 | 9.1  |       | 5.7138   | 4 | 0    | õ      | ō    | ĩ       | 9.1        | 6.9681           | 2.1319        |
| 89  | ЯÞ      | 0.03800 | - 2 |      | •    |      |       | 2702     | 1 | 1    | õ      | 0    | 1<br>(1 | •          | 7.9238           | •             |
| 90  | Rb      | 0.03800 | - 2 |      |      |      |       | 3.2702   | ž | ō    | 1      | õ    | 0       | •          | 3.7132           | •             |
| 91  | Rb      | 0.03800 | - 2 |      | •    |      |       | -3.2702  | 3 | ŏ    | 0      | 1    | 0       | •          | 5.1426           | •             |
| 92  | Rb      | 0.03800 | - 2 |      |      |      |       | -3.2702  | 4 | ő    | ŏ      | 0    | 1       | •          | 5.4616           | •             |
| 93  | Sb      | 0 05000 | - 2 |      |      |      |       | .2.9957  | i | 1    | ŏ      | ő    | 0       | •          | 6.4174           | •             |
| 94  | Sb      | 0.05000 | - 2 | •    |      |      | •     | -2.9957  | 2 | 0    | 1      | 0    | 0       | •          | 3.5440           | •             |
| 95  | Sb      | 0.05000 | - 2 |      |      | •    | •     | -2.9957  | 3 | 0    | ů<br>O | 1    | 0       | •          | 4.9734           | •             |
| 96  | 56      | 0.05000 | - 2 |      |      | •    | •     | -2.9957  | 4 | 0    | 0      | 0    | -       | •          | 5.2925           |               |
| 97  | · Se    | 0.00630 | . 3 |      | •    | •    | •     | -5.0672  | 1 | 1    | 0      | 0    | 1       | •          | 6.2482           | •             |
| 98  | Se      | 0.00630 | - 3 | -    | •    | •    | ·     | -5.0672  | 2 | 0    | 1      | 0    |         | •          | 4.8211           | •             |
| 97  | Se      | 0.00630 | . 3 |      | •    | •    | •     | 5.0672   | - | õ    | 0      | 1    | 0       | •          | 6.2504           | •             |
|     |         |         | •   |      | •    | •    | •     |          | • | 0    | U      | 1    | 0       | •          | 6.5695           | •             |

.

|     |         |         |            |      |       |      |      |            |   |      |        |        |        |      |          | · - • - |
|-----|---------|---------|------------|------|-------|------|------|------------|---|------|--------|--------|--------|------|----------|---------|
| OBS | ELEMENT | AVI     | El         | SAKD | SIKD  | CLKD | ORKD | LCR        | τ | SAND | SILT   | CLAY   | ORG    | KÐ   | YKD      | F (D    |
| 100 | Se      | 0.00630 | - 3        |      | · ·   |      | •    | -5.0672    | 4 | 0    | 0      | 0      | 1      |      | 7.5252   | •       |
| 101 | Si      | 0.08800 | - 2        | •    |       | •    | •    | -2.4304    | 1 | 1    | 0      | 0      | 0      | •    | 3.1955   |         |
| 102 | Si      | 0.08800 | - 2        | •    | •     |      | •    | 2.4304     | 2 | 0    | 1      | 0      | 0      |      | 4.6249   | ,       |
| 103 | Si      | 0.08800 | - 2        | •    | •     |      |      | -2.1304    | 3 | 0    | 0      | 1      | 0      |      | 4.9440   |         |
| 104 | 5 i     | 0.08800 | 2          | •    |       |      |      | 2.4304     | 4 | 0    | 0      | 0      |        |      | 5,8997   |         |
| 105 | Sm      | 2.00250 | - 3        | •    | •     |      |      | -5.9915    | 1 | 1    | 0      | 0      | 0      |      | 5.3908   | •       |
| 106 | Sm      | 0.002 0 | - 3        |      | •     |      |      | -5.9915    | 2 | 0    | 1      | 0      | 0      |      | 6.8202   |         |
| 107 | Sm      | 0.00250 | - 3        | •    |       |      |      | -5.9915    | 3 | 0    | 0      | 1      | 0      |      | 7.1393   |         |
| 108 | Sm      | 0.00250 | - 3        | •    |       |      |      | 5.9915     | 4 | 0    | 0      | 0      | 1      |      | 8.0950   |         |
| 109 | Sn      | 0.00750 | - 3        | •    |       |      |      | 4.8929     | 1 | 1    | 0      | 0      | 0      |      | 4.7136   |         |
| 110 | Sn      | 0.00750 | - 3        |      | •     |      |      | -4.8929    | 2 | 0    | 1      | 0      | 0      |      | 6.1429   |         |
| 111 | Sn      | 0.00750 | - 3        |      |       |      |      | -4.8929    | 3 | 0    | n      | 1      | 0      |      | 6.46193  |         |
| 112 | Sn      | 0.00750 | - 3        |      |       |      | . •  | 4.8929     | 4 | 0    | 0      | 0      | 1      |      | 7.41770  |         |
| 113 | To      | 2.40000 | 0          | -2.0 | - 2.3 | 0.2  | 0.4  | 0.8755     | 1 | 1    | 0      | 0      | 0      | -2.0 | 1.15753  | - 3.15  |
| 114 | T.      | 2.40000 | 0          | -2.0 | 2.3   | 0.2  | 0.4  | 0.8755     | 2 | 0    | 1      | 0      | 0      | -2.3 | 2.58688  | -4.38   |
| 115 | Τc      | 2.40000 | 0          | 2.0  | -2.3  | 0.2  | 0.4  | 0.8755     | 3 | 0    | 0      | 1      | 0      | 0.2  | 2.90595  | 2.70    |
| 116 | Τc      | 2.40000 | 0          | 2.0  | .2.3  | 0.2  | 0.4  | 0.8755     | 4 | 0    | 0      | 0      | 1      | 0.4  | 3.86166  | 3.16    |
| 117 | Th      | 0.00021 | . 4        | 8.0  |       | 8.6  | 11.4 | -8.4684    | 1 | 1    | 0      | 0      | 0      | 8.0  | 6,91782  | 1.08    |
| 118 | Th      | 0.00021 | - 4        | 8.0  |       | 8.6  | 11.4 | -8.4684    | 2 | Ó    | 1      | 0      | 0      |      | 8. 11717 |         |
| 119 | Th      | 0.00021 | - 4        | 8.0  |       | 8.6  | 11.4 | 8.4684     | 3 | 0    | 0      | 1      | 0      | 8.6  | 8 66623  | 0.36    |
| 120 | Th      | 0.00021 | 4          | 8.0  |       | 8.6  | 11.4 | 8.4684     | 4 | 0    | 0      | 0      | 1      | 11.4 | 9.67194  | 1.77    |
| 121 | U       | 0.00210 | - 3        | 3.5  | 2.5   | 7.3  | 6.0  | 6.1658     | i | 1    | 0      | 0      | 0      | 3.5  | 5.49833  | -1. 39  |
| 122 | 11      | 0.00210 | . 3        | 3.5  | 2.5   | 7.3  | 6.0  | -6.15      | ž | 0    | 1      | 0      | Ő      | 2.5  | 6.47768  | -4.12   |
| 123 | U U     | 0.00210 | . 1        | 3.5  | 2.5   | 7.3  | 6.0  | -6.1658    | 3 | Ő    | 0      | 1      | 0      | 1.3  | 1.24674  | 0.)5    |
| 124 | ŧI      | 0.00210 | 3          | 3.5  | 2.5   | 7.3  | 6.0  | -6.1658    | 4 | õ    | v      | °.     | 1      | 6.0  | 8,20245  | 2.20    |
| 125 | Zr      | 0.00050 | 4          |      |       |      |      | 7.6009     | i | 1    | 0      | ů<br>0 | 0      |      | 6.38302  |         |
| 126 | 21      | 0.00050 | . 4        | •    | •     | •    | •    | -7.6009    | ź | ò    | 1      | õ      | 0      | •    | 7.81237  | •       |
| 127 | Zr      | 0.00050 | - 4        | •    | •     | •    | •    | -7.6009    | 3 | Ő    | 0      | ĩ      | ő      | •    |          | •       |
| 178 | Zr      | 0.00050 | - 4        | •    | •     | •    | •    | .7.6009    | 4 | 0    | 0      | 0      | 1      | •    | 8.13144  | •       |
| 129 | P       | 0.87000 | 1          | •    | •     | •    | •    | -0.1393    | 1 | 1    | õ      | 0      | 1<br>0 | •    | 9.08/15  |         |
| 130 | P       | 0.87000 | - 1        | •    | •     | •    | •    | 0.1393     | 2 | 0    | 1      | 0      | 0      | •    | 1.78309  |         |
| 131 | P       | 0.87000 | -1         | •    | •     | •    | •    |            | 3 | 0    | -      | 1      | •      | •    | 3.21244  | •       |
| 132 | P       | 0.87000 | - 1        | •    | •     | •    | •    | -0.1393    | 4 | 0    | 0<br>U | -      | 0      | •    | 3.53151  | •       |
| 133 | Ta      | 0.00250 | .3         | •    | •     | •    | •    | -0.1393    | - |      |        | 0      | 1      | •    | 4.48722  | •       |
| 134 | Ta      | 0.00250 |            | •    | •     | •    | •    | -5.9915    | 1 | 1    | 0      | 0      | 0      | •    | 5.39084  |         |
| 135 | Ta      | 0.00250 | · 3<br>- 3 | •    | •     | •    | •    | -5.9915    | 2 | 0    | 1      | 0      | 0      | •    | 6,82019  |         |
| 136 | Ta      | 0.00250 |            | •    | ·     | •    | •    | -5.9915    | 3 | 0    | 0      | 1      | 0      | •    | 7.13926  |         |
| 137 | Bi      | -       | - 3        | •    | •     | •    | •    | -5.9915    | 4 | 0    | 0      | 0      | 1      | •    | 8.09497  |         |
| 138 |         | 0.00870 | - 1        | •    | •     |      | •    | - 4 , 7444 | 1 | 1    | 0      | 0      | 0      | •    | 4.62207  |         |
| 130 | R)      | 0.00870 | . 3        | •    | •     | •    | •    | 4.7.44     | 2 | 0    | 1      | 0      | 0      | •    | 6.05142  |         |
|     | B 1     | 0.00870 | 3          | •    | •     | •    | •    | 4.7444     | 3 | 0    | 0      | 1      | 0      | •    | 6.37049  |         |
| 140 | B1      | 0.00870 | . 1        |      | •     | •    | •    | -4.7444    | 4 | 0    | 0      | 0      | 1      | •    | 1.32620  |         |
| 141 | Po      | 0.00063 | - 4        | 5.0  | 6.0   | •    | •    | .7.3698    | 1 | 1    | 0      | 0      | 0      | 5.0  | 6.24055  | -1 24   |
| 142 | Fo      | 0.00063 | - 4        | 5.0  | 6.0   | •    | •    | -7.3698    | 2 | 0    | 1      | 0      | 0      | 6.0  | 7.66990  | -1.66   |
| 143 | Fo      | 0.00043 | - 4        | 5.0  | 6.0   | •    | •    | 7.3698     | 3 | 0    | 0      | 1      | 0      |      | 7.98897  |         |
| 144 | Po      | 0.00063 | - 4        | 5.0  | 6.0   | •    | •    | -7.3698    | 4 | 0    | 0      | 0      | 1      |      | 8.94467  |         |
| 145 | Sr      | 0.63000 | - 1        | 2.6  | 3.0   | 4.7  | 5.0  | -0.4620    | 1 | 1    | 0      | 0      | 0      | 2.6  | 1.98207  | 0 61    |
| 146 | Şr      | 0.63000 | - 1        | 2.6  | 3.0   | 4.7  | 5.0  | -0.4620    | 2 | 0    | 1      | 0      | 0      | 3.0  | 3.41142  | -0 41   |
| 147 | Sr      | 0.63000 | - 1        | 2.6  | 3.0   | 4.7  | 5.0  | 0.4620     | 3 | 0    | 0      | 1      | 0      | 4.7  | 3.73049  | 0 96    |
| 148 | Sr      | 0.63000 | · 1        | 2.6  | 3.0   | 4.7  | 5.0  | -0.4620    | 4 | 0    | 0      | 0      | 1      | 5.0  | 4.68620  | 0 31    |

SAS

1

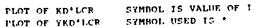
.

.

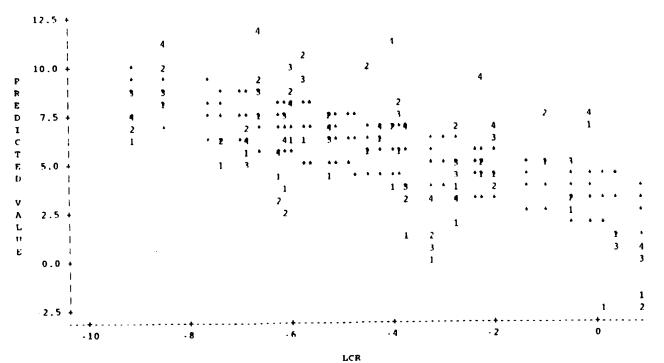
.

÷

. 4


•

| OB   | ELEMENT  | BVI                | El         | SAED | 51KD | CURD | OBRD         | LCR          | I | SAND | <b>.</b> |      |     |      |         | 11 24, 1404 |
|------|----------|--------------------|------------|------|------|------|--------------|--------------|---|------|----------|------|-----|------|---------|-------------|
| 14'  | λg       | 0.10000            | - 1        |      |      |      |              |              |   |      | SILT     | CLAY | OPG | KD   | YKD     | RKD         |
| 15   | Âg       | 0.10000            | -1         | 4.5  | 4.8  | 5.2  | 9.6          | -2.3026      | 1 | 1    | 0        | 0    | 0   | 4.5  | 3.11673 | 1.3833      |
| 15   | Ag       | 0.10000            |            | 4.5  | 4.8  | 5.2  | 9.6          | -2.3026      | 2 | 0    | 1        | 0    | 0   | 4.8  | 4.54608 | 0.2539      |
| 15   | Ag       | 0.10000            | 1          | 4.5  | 4.8  | 5.2  | 9.6          | 2.3026       | 3 | 0    | 0        | 1    | ŋ   | 5.2  | 4.86515 | 0.3349      |
| 15;  | 60<br>Co | 0.00500            | · 1<br>3   | 4.5  | 4.8  | 5.2  | 9.6          | -2.3026      | 4 | 0    | 0        | 0    | 1   | ٩.6  | 5.82086 | 3.7791      |
| 151  | Co       |                    |            | 4.1  | 7.2  | 6.3  | 6.9          | 5.2983       | 1 | 1    | 0        | 0    | 0   | 4.1  | 4.96353 | 0.8635      |
| 15;  | C0       | 0.00500            | - 3        | 4.1  | 7.7  | 6.3  | 6.9          | 5.2983       | 2 | n    | 1        | 0    | 0   | 7.7  | 6.39288 | 0.8071      |
| 15;  | Co       | 0.00500<br>0.00500 | - 3        | 4.1  | 7.2  | 6.3  | 6.9          | 5.2983       | 3 | 0    | 0        | 1    | 0   | 6.3  | 6.71195 | -0.4119     |
| 157  | Fe       | 0.00300            | - 3        | 4.1  | 7.2  | 6.3  | 6.9          | -5.2983      | 4 | 0    | 0        | 0    | 1   | 6.9  | 7.66766 | -0.7677     |
| 153  | Fe       | 0.00100            |            | 5.4  | 6.7  | 5.1  | 6.4          | -6.9078      | 1 | 1    | 0        | 0    | 0   | 5.4  | 5.95571 | -0.5557     |
| 15)  | fe       | 00100.0            | 3          | 5.4  | 6.7  | 5.1  | 6.4          | -6.9078      | 2 | 0    | 1        | 0    | 0   | 6.7  | 7.38506 | 0.6851      |
| 16)  | Fe       | 0.00100            | - 3        | 5.4  | 6.7  | 5.3  | 6.4          | -6.9078      | 3 | 0    | 0        | 1    | 0   | 5.1  | 7.70413 | -2.6041     |
| 141  | Mn       | 0.06300            | - 3        | 5.4  | 6.7  | 5.1  | 6.4          | -6.9078      | 4 | 0    | 0        | 0    | 1   | 6.4  | 8.65984 | - 2.2598    |
| 162  | Mn       | 0.06300            | · 2<br>• 2 | 3.9  | 6.6  | 5.7  | 5.0          | 2.7646       | 1 | 1    | 0        | 0    | n   | 1.9  | 3.40157 | 0.4984      |
| 1/3  | Mn       | 0.06300            |            | 3.9  | 6.6  | 5.2  | 5.0          | -2.7646      | 2 | 0    | Ļ        | 0    | 0   | 6.6  | 4.83091 | 1.7691      |
| 164  | Mn       | 0.06300            | - 2<br>2   | 3.9  | 6.6  | 5.2  | 5.0          | -2.7646      | 3 | 0    | 0        | 1    | 0   | 5.2  | 5.14998 | 0.0500      |
| 165  | Ru       | 0.01900            |            | 3.9  | 6.6  | 5.2  | 5.0          | 2.7646       | 4 | 0    | 0        | 0    | 1   | 5.0  | 6.10569 | 1.1057      |
| 116  | Ru       |                    | - 2        | 4.0  | 6.9  | 6.7  | 11.1         | -3.9633      | 1 | 1    | 0        | 0    | 0   | 4.0  | 4.14053 | -0.1405     |
| 117  |          | 0.01900            | - 2        | 4.0  | 6.9  | 6.7  | 11.1         | 3.0433       | > | Û    | 1        | 0    | 0   | 6.9  | 5.56988 | 1.33012     |
| 11 8 | Pu       | 0.01900            | - 2        | 4.0  | 6.9  | 6.1  | 11.1         | . 1 . 96 3 3 | 3 | 0    | ŋ        | 1    | 0   | 6.7  | 5.88895 | 0.81105     |
| 119  | Ru       | 0.01900            | • ?        | 4.0  | 6.9  | 6.7  | 11.1         | 3,9633       | 4 | 0    | 0        | 0    | 1   | 11.1 | 6.84466 | 4.25534     |
|      | C e      | 0.00250            | - 3        | 6.2  | ٩.٥  | 0.9  | 8.1          | .5.9915      | t | 1    | 0        | 0    | 0   | 6.2  | 5.39084 | 0.80916     |
| 10   | Ce.      | 0.00250            | - 3        | 6.2  | 9.0  | ۹.9  | ۴ <u></u> ,۱ | - 5.9915     | 7 | 0    | 1        | 0    | 0   | 9.0  | 6.82019 | 2.17981     |
| 1.1  | Ce<br>-  | 0.00250            | - 1        | 6.2  | 9,0  | 0.9  | 8.i          | . 5. 9915    | 3 | 0    | 0        | 1    | 0.  | 9.9  | 7.13926 | 2.76074     |
| 12   | Ce       | 0 00250            | . 3        | 6.2  | 9.0  | 9.9  | 8.1          | 5.9915       | 4 | 0    | 0        | 0    | I   | 3.1  | 8.09497 | 0.00503     |
| 13   | Zn       | 0.38000            | - 1        | 5.3  | 7.2  | 7.8  | 7.1          | 0.9676       | 1 | 1    | 0        | 0    | 0   | 5.3  | 2.29373 | 3.00627     |
| 14   | Zn       | 0.38000            | - 1        | 5.3  | 1.2  | 7.8  | 7.4          | 0.9676       | 2 | 0    | 1        | 0    | 0   | 1.2  | 3.72308 | 3.47692     |
| 15   | 7.n      | 0.38000            | - <b>i</b> | 5.7  | 7.2  | 7.8  | 7.4          | 0.9676       | ٦ | 0    | 0        | 1    | n   | 7.8  | 4.04215 | 3.75785     |
| 1 '6 | Zn       | 0.38000            | 1          | 5.1  | 7.7  | 7.8  | 7.4          | 0.9676       | 4 | 0    | 0        | 0    | 1   | 7.4  | 4.99786 | 2.40214     |
| 1 '7 | Cm       | 0.00021            | - 4        | 8.3  | 9.8  | •    | 8.7          | -8.4684      | 1 | 1    | 0        | 0    | 0   | 8.3  | 6.91782 | 1.38218     |
| 1 '8 | Cm       | 0.00021            | - 4        | 8.1  | ۹.8  |      | 8.7          | 8.4684       | 2 | 0    | 1        | 0    | 0   | 9.8  | 8.34717 | 1.45283     |
| 1 19 | Cm       | 0.00021            | - 4        | 8.3  | 9.8  |      | 8.7          | -8.4684      | 3 | 0    | 0        | 1    | 0   |      | 8.66623 | 1.45205     |
| 1 10 | Cm       | 0.00021            | 4          | 8.3  | 9.8  |      | 8.7          | - 8.4684     | 4 | 0    | 0        | 0    | 1   | 8.7  | 9.62194 | .0.92194    |
| 111  | ĸ        | 0.25000            | · 1        | •    |      |      |              | -1.3863      | 1 | 1    | 0        | 0    | 0   |      | 2.55186 |             |
| 112  | ĸ        | 0.25000            | 1          | •    |      |      |              | -1.3863      | 2 | 0    | 1        | 0    | 0   |      | 3.98121 | •           |
| 133  | ĸ        | 0.25000            | - 1        |      |      |      |              | -1.3863      | 3 | 0    | 0        | 1    | 0   |      | 4.30027 | •           |
| 134  | ĸ        | 0.25000            | - 1        |      |      |      | •            | -1.3863      | 4 | 0    | 0        | 0    | 1   | •    | 5.25598 | •           |
| 115  | Re       | 0.37000            | - 1        | •    |      |      |              | -0.9943      | 1 | 1    | 0        | 0    | 0   |      | 2.31017 | •           |
| 136  | R#       | 0.37000            | - 1        |      |      | •    | •            | -0.9943      | 2 | 0    | 1        | 0    | 0   |      | 3.73952 | •           |
| 137  | Re       | 0.37000            | - 1        |      |      |      |              | 0,9943       | 3 | 0    | 0        | 1    | 0   |      | 4.05859 | •           |
| 138  | Ke       | 0.37000            | - 1        |      | •    |      |              | 0.9943       | 4 | 0    | 0        | 0    | 1   |      | 5.01430 | •           |
| 189  | Te       | 0.00620            | - 3        | •    |      |      |              | -5.0832      | 1 | 1    | 0        | 0    | 0   |      | 4.83092 | •           |
| 190  | Te       | 0.00620            | - 3        |      |      | •    | •            | -5.0832      | ) | 0    | 1        | 0    | 0   |      | 6.26027 | •           |
| 191  | Te       | 0.00620            | - 3        |      | •    |      |              | -5.0832      | 3 | 0    | 0        | 1    | 0   |      | 6.57934 | •           |
| 192  | Te       | 0.00620            | - 3        | •    |      |      | -            | 5.0832       | 4 | 0    | 0        | 0    | 1   | •    | 7.53505 | •           |
| 193  | Y        | 0.00370            | • 3        |      |      |      | •            | 5.5994       | 1 | 1    | 0        | 0    | ō   |      | 5.14916 | •           |
| 194  | Ÿ        | 0.00370            | - 3        |      |      |      |              | - 5.5994     | 2 | 0    | 1        | 0    | 0   |      | 6,57851 | •           |
| 195  | Y        | 0.00370            | - 3        |      |      |      | •            | -5.5994      | 3 | 0    | 0        | 1    | õ   | •    | 6.89757 | •           |
| 196  | Y        | 0.00370            | - 3        |      |      |      | •            | 5.5991       | 4 | 0    | 0        | 0    | 1   | •    | 7.85328 |             |
|      |          |                    |            |      |      |      |              |              |   |      |          |      | -   | •    |         | •           |


•

SAS

· · ·



SAS



NOTE: 104 OBS HAD MISSING VALUES 87 OBS HIDDEN

•