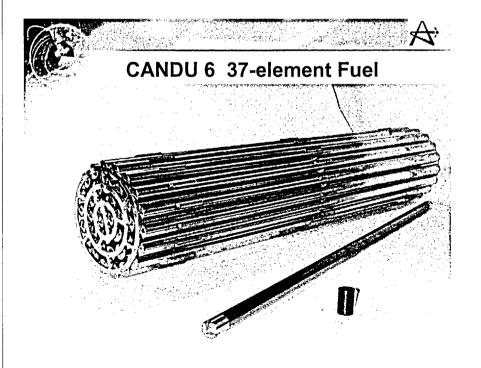




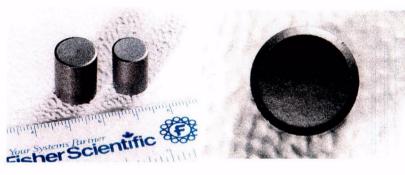

Washington D.C. January 13, 2004

#### Outline


Pg 2

- Introduction to CANDU fuel
- ACR fuel design
- Experience relevant to ACR fuel
  - CANFLEX
  - extended burnup experience
  - low void reactivity fuel
- ACR fuel qualification




### **Characteristics of CANDU Fuel**

- Small, simple, light-weight
  - 20" length, 4" dia, 50 lb / bundle
- CANFLEX has only 8 components
- Inexpensive
  - low fuel cycle costs (dollars/unit energy)
- Efficient
  - good use of uranium
- Excellent performance
  - ~ 2 million bundles fabricated; ~ 2 clad defects per million elements
  - on-power defect detection, location and removal
- Easy to manufacture and localize
  - CANDU fuel is manufactured domestically in 7 countries
  - CANDU (and its fuel) licensed in many different regulatory jurisdictions



### UO<sub>2</sub> Pellets

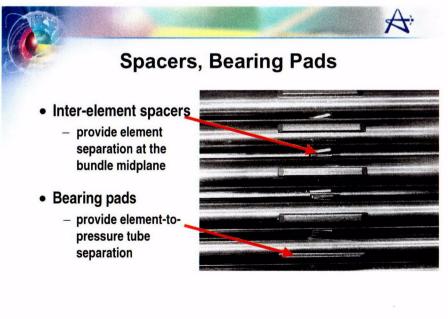
- UO<sub>2</sub>, high density (for dimensional stability)
- Chamfers and end-dishes (reduce inter-pellet stresses on clad, volume for fission gas)




Py 5

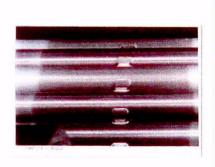
Pe

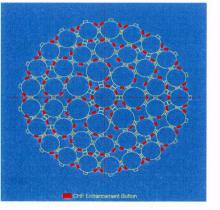
A


### Clad, CANLUB, Endcaps, Endplates

- Clad
  - thin, collapsible (~0.016")
  - excellent heat transfer to coolant
  - low neutron absorption, Zr-4
- CANLUB
  - graphite coating applied to inside of clad provides protection against power ramp failures
- Endcaps
  - seal the fuel element
  - thin to reduce neutron absorption, good heat transfer
  - profiled to interact with fuel channel and fuel handling components
- Endplates
  - thin to minimize neutron absorption
  - flexible to accommodate fuel element differential expansion
  - strong and ductile to provide structural support and element separation  $p_{g, 6}$




A?


A



### **CHF-Enhancing Buttons (CANFLEX)**

• Appendages are attached on the 1/4 and 3/4 bundle planes





Pg 8

### **ACR Fuel Design**

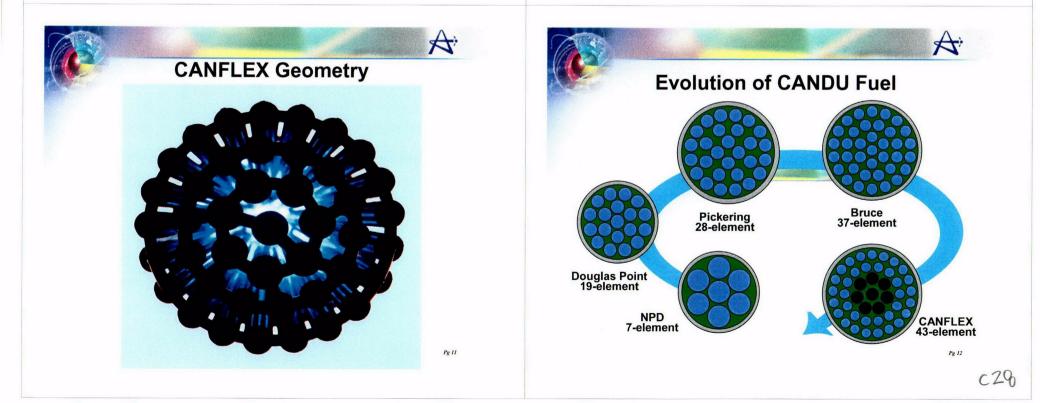
- · Evolutionary extension of current fuel
  - extensive experience base on underlying technologies
- Based on 3 underlying technologies
  - CANFLEX geometry
  - low void reactivity fuel
  - extended burnup
- Key design features
  - 2.1% U<sup>235</sup> in outer 42 elements
  - 7.5% Dy in nat. UO<sub>2</sub> in central element
  - 21 MWd/kg burnup



A

Pg 9




#### **CANFLEX Geometry**

- ACR fuel based on CANFLEX Mk IV geometry
  - 43 elements, 2 element sizes
  - greater "subdivision" reduces ratings and facilitates achievement of higher burnup
  - "buttons" increase CHF
  - qualified for NU fuel
  - higher bearing pads further improve CHF compared to Mk IV



A

Pg 10



#### **Other Design Features**

A

Po 13

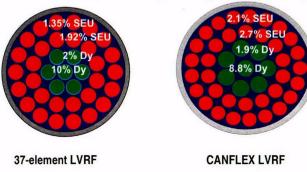
A

Pg 15

- · Optimized pellet design
  - in smaller elements (highest ratings)
    - · larger chamfers, deeper dishes, shorter pellets
    - more internal void for accommodating fission gas release
    - · reduces inter-pellet clad strain
- · Slightly thicker clad
  - to accommodate higher coolant pressures and temperatures

#### Summary of CANFLEX NU Qualification

- Design requirements documented in Design Requirements, Design Verification Plan
- Tests and analysis confirmed that CANFLEX met all requirements
  - strength
  - impact and cross-flow
  - fueling machine compatibility, endurance
  - sliding wear
  - fuel performance (NRU irradiations)
  - CHF thermal hydraulic
- Demonstration Irradiation (DI) in Point Lepreau 1998 to 2000
  - 2 channels, 24 bundles
  - irradiation of 24 bundles currently taking place in Wolsong 1
- Design qualification program documented in Fuel Design Manual
- Ready for commercial implementation in CANDU 6 reactor


Pg 14

A

At?

### Experience with Low Void Reactivity Fuel

- ACR fuel is variant of LVRF
- Generic testing done for
  - 37-element LVRF (NU burnup, with negative void reactivity in CANDU 6)
  - CANFLEX LVRF (3x NU burnup, with negative void reactivity in CANDU 6)

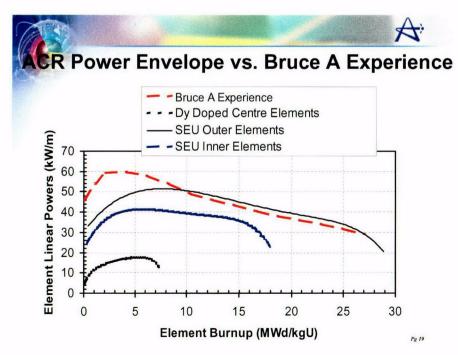


#### **Overview of LVRF Testing**

- Dy<sub>2</sub>O<sub>3</sub> -UO<sub>2</sub> pellet fabrication
  - measurement of thermal properties
  - corrosion behavior of UO<sub>2</sub>
- Bundle fabrication
- Irradiation testing in NRU & PIE
  - Dy-doped demountable elements with Dy levels of 1 to 15%
  - prototype bundles

- Reactor physics
  - ZED-2 measurements
    - void reactivity
    - fine structure
  - WIMS validation
- Thermalhydraulics
  - measurements
  - modeling
- Safety experiments
  - interactions with Zircaloy
  - grain-boundary inventory
- CANFLEX LVRF currently being qualified for Bruce Power implementation
  - enrichment, Dy content tailored to meet station needs
  - synergistic with ACR fuel qualification

Pg 16


#### Extended Burnup Irradiation Experience


- Power reactor experience
  - >230 37-element bundles achieved burnups > 17 MWd/kg in Bruce A
- Research reactor experience
  - >24 bundle and element irradiations in NRU > 17 MWd/kg
    - · 15 irradiations with burnups greater than 21 MWd/kg
  - 10 of 24 irradiations also experienced power ramps
  - several irradiations ongoing
- Qualified irradiated fuel databases
  - 28-element, 37-element and CANFLEX
- Good confidence in ACR fuel performance based on our experience
  - ACR power envelope is below the high power envelope for which we have experience
  - ACR fuel pellet design is optimized for extended burnup, based on our experience base and assessments

Pg 17

A







#### **ACR Fuel Qualification**

- Will ensure ACR has full thermal integrity, structural integrity, and compatibility with interfacing systems
- · Comprehensive, integrated set of in-reactor tests, outreactor tests, and analyses
- · Qualified computer facilities, codes, and staff
- US fuel consultants providing guidance

Pg 18

A

#### Approach

- Systematically evaluate impact of all significant operating and damage mechanisms, individually and in combination
- Confirm consequences are within acceptable limits via combination of
  - in-reactor tests
  - out-reactor tests
  - analyses, and
  - engineering judgment
- Envelope all permitted operational and design configurations
- Ensure sufficient margins exist that account for burnup, peak element rating, coolant temperature and flow rate

The the first set of the set of t

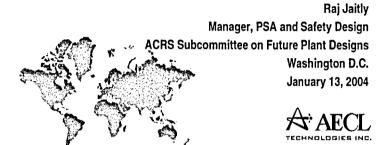
Pg 21

Po 23



### and a second second

#### Summary


- ACR fuel builds on an extensive experience base
  - CANFLEX geometry
  - low void reactivity fuel
  - enriched fuel (extended burnup performance)
- ACR fuel qualification will be facilitated through recent AECL experience in fuel qualification
  - CANFLEX Mk IV fuel with natural uranium
  - current qualification of CANFLEX-LVRF for Bruce Power
- ACR fuel qualification will entail out-reactor tests, in-reactor tests, and analyses
- Numerous background papers on CANDU fuel have been sent to US
   NRC
- ACR fuel report, summarizing ACR fuel design, experience base, fuel design requirements, and qualification plan will be sent to US NRC shortly

the term for the the Con-

Fg 22



### **ACR PRA Methodology**



### Historical Perspective of AECL's PRA Projects

- AECL brings many insights of their long PRA experience to the ACR PRA:
  - SDMs 1978-1983: CANDU 6 and Ontario Hydro's NPPs
  - CANDU 600 Probabilistic Safety Study March 1988
  - Wolsong 2/3/4 PRA March 1995
  - KEPRI- Wolsong 2/3/4 Level 2 PRA Review 1997
  - Qinshan CANDU Unit 1 and 2 PRA May 2001
  - Generic Level 2 PRA for internal and external events 2002
  - Pickering A Return to Service PRA Review 1999
  - Lepreau Refurbishment Project Level 2 PRA ongoing
  - Preliminary PRAs for CANDU 3 and CANDU 9 (1994, 1997)

Pg 2

#### ACR PRA Scope

- Level 2 PRA covers:
  - Internal events, fires/floods
  - PRA based Seismic Margin Assessment (SMA)
  - Shutdown state PRA
- PRA Targets:
  - ACR summed severe core damage frequency is less than 1E-05/yr
  - ACR summed large release frequency target is less than 1E-06/yr
  - Seismic margin target of the plant high confidence of low probability of failure (HCLPF) is 0.5g based on a 0.3g Design Basis Earthquake (DBE)



#### Level 2 PRA Objectives

- Design assist role confirm adequacy of redundancy, separation of safety systems (design assist PRA for internal events already completed)
- Estimate severe core damage and large release frequency for comparison with international goals
- Provide a basis for risk informed / risk based regulation
- Provide input to optimize test and maintenance programs
- Identify risk-dominant sequences for development of severe accident management guidelines
- Provide a basis for development of a tool in future to support decisions on plant maintenance activities

#### Main Elements of Level 1 PRA

- Identification of initiating events (internal and external)
- Event tree analysis
- Fault tree analysis
- Common Cause Failure analysis (CCFs)
- Human Reliability Analysis (HRA)
- Accident Sequence Quantification (ASQ)
- Uncertainty and sensitivity analysis
- Recovery analysis

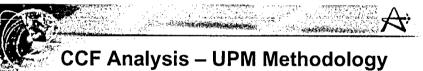
(CAFTA + FORTE Package of PRA Codes being used)

18 5

17 7



### \_\_\_\_\_


#### ACR PRA Models

- Initiating Events
  - Systematic plant review for initiating events identification
  - Frequencies based on CANDU or international NPP operating experience
- Event Trees
  - Small to medium size event trees with post-IE operator explicitly modeled
- Fault Trees
  - Reliability data
    - Components failure data based on CANDU experience
    - Human Reliability Analysis based on ASEP (NUREG 4772)
    - Common Cause Failure Data UPM (partial beta) model

Pg 6

## Human Reliability Analysis

- HRA approach is based primarily on ASEP (NUREG-4772)
- Pre Accident
  - Calibration, test, maintenance errors
  - Dependency effects
- Post Accident Errors
  - Errors of diagnosis + execution
- Risk Dominant Sequences use THERP (NUREG 1278) Handbook



- Why UPM:
  - CANDU CCF data has not been collected
  - Extent of generic data applicability and availability for CANDU components and configurations is an issue
  - UPM criteria can fulfill a design audit role, providing designers with an indication of best practices and their quantitative impact
  - AECL has applied this methodology on Generic CANDU 6 and CANDU 9 PRAs; it has also been committed for the Point Lepreau Refurbishment PRA

128

#### **CCF Analysis – Evaluation Criteria**

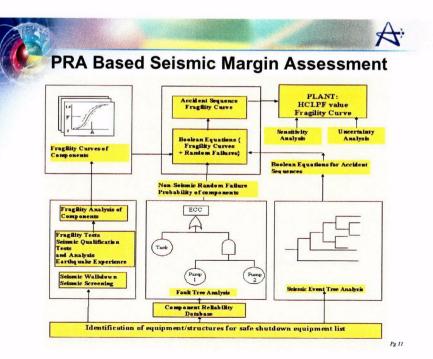
- Eight evaluation criteria:
  - Redundancy and diversity
  - Separation
  - Level of understanding (years of operation, complexity, etc.)
  - Prior analysis of system (fault tree)
  - Man-machine interface
  - Safety culture
  - Control of operating environment
  - Environmental testing



A

Pg 9

#### Steps of PRA-Based SMA


- · Review internal events PRA model and results
- · Select structures / components for seismic capacity analysis
- Perform seismic capacity analysis
- Identify seismically induced initiating events. Develop seismic event trees for these initiating events
- Develop seismic Fault Trees (FTs) (based on internal event FTs)
- Generate minimal cutsets for seismic-induced core damage sequences
- Calculate the HCLPF (High Confidence Low Probability of Failure) value for each seismic core damage sequences

The plant HCLPF is the lowest sequence HCLPF

Pg 10

A

A





- Identify ignition sources: Fire Hazard Analysis for ACR and/or C-6 equipment data base where applicable
- Estimate fire frequency: CANDU fire data base
- Identify PRA-credited equipment: C-6 equipment data base and train/channel based assumption for the cables
- · Perform screening analysis to identify potential significant fire areas
- Evaluate fire growth and propagation: COMPBRN IIIe or hand calculation
- Develop fire scenarios including fire detection and suppression probability
- · Estimate conditional core damage probability for each fire scenarios
- Estimate Core damage frequency by combining the fire scenario frequency and conditional core damage probability
- · Sensitivity analysis and insights for risk management

Pg 12

#### Flooding PRA Approach

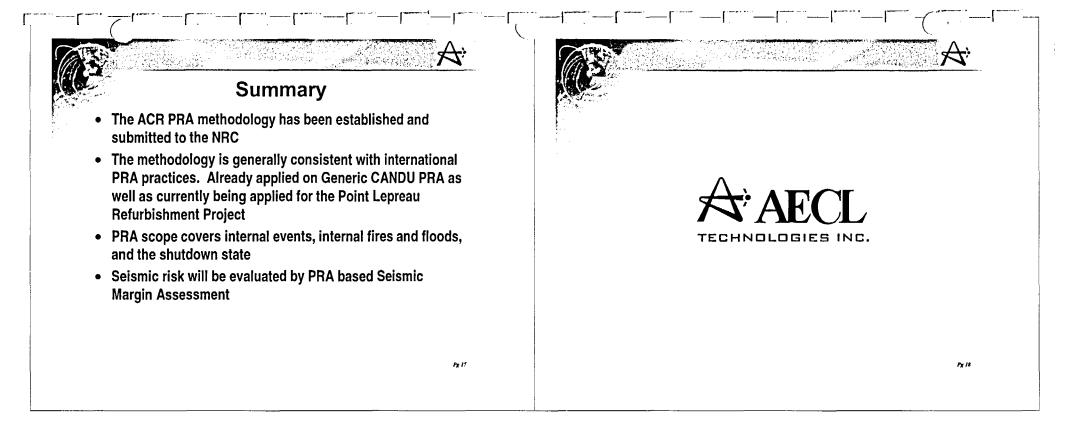
- Identify flooding sources in each flooding area
- Identify PRA-credited equipment in the areas of concern
- Perform screening analysis to identify Potential significant flooding areas
- Estimate flooding frequencies
- Evaluate flood growth and flood propagation: flood flow rate, floodable volume, flood barrier, etc.
- Develop flood scenarios considering flood protection design features and operator intervention
- Estimate conditional core damage probability for each flood scenarios
- Estimate Core damage frequency by combining the flood scenario frequency and conditional core damage probability
- Sensitivity analysis and insights for risk management

Pg 13

Pv 15

### Main Elements of Shutdown State PRA

- Systematically identify low power and planned outage configurations
- In consultations with Operations group, identify/establish maintenance restrictions
- Modify system fault trees to account for system / equipment outage
- Detailed HRA since most mitigation actions need operator action
- Event tree analysis for the postulated events
- Recovery analysis
- Uncertainty and sensitivity analysis


Pg 14

#### Level 2 PRA

- Studies for severe accident progression and consequential challenges to containment
- Core damage states to be analyzed include:
  - Moderator ultimate heat sink + existing impairment of containment functions
  - Fuel debris (corium) <u>in</u> vessel + containment failure assessment
  - Fuel debris (corium) <u>ex</u> vessel + containment failure assessment
- Analysis to be performed by MAAP4 CANDU that is part of the Industry Standard Toolset
- · Containment reliability assessment by containment event tree

Containment Reliability

- The following containment functions (dormant and mission) are modeled:
  - Airlocks
  - Containment isolation
  - Hydrogen control
  - Reactor building cooling



## **ACR-700 Pre-Application Review**

1 chip and and



## January 13, 2004 ACRS Future Plant Subcommittee Briefing

### Belkys Sosa, Project Manager

Office of Nuclear Reactor Regulation

## **Planned Pre-Application Review Process**

- The approach and criteria to be applied in the review of the ACR-700 are in some cases different from those applied to conventional LWRs because of the unique features and design characteristics of the ACR-700
- The review will identify where new staff positions, regulations and regulatory guidance is needed to address the unique characteristics of the design; such as:
  - Pressure tubes and fueling machine as Reactor Coolant System (RCS) components
  - On-power fueling
- In the application of existing regulations and guidelines, the staff may need to interpret the guidance developed for LWRs for application to non-LWR concepts and issues under review
  - The approach is directed toward ensuring an equivalent level of safety as that of current-generation LWRs

## Pre-Application Review Scope Focus Topics (FT)

- Class 1 pressure boundary design
- Design basis accidents and acceptance criteria
- Computer codes and validation adequacy
- Severe accident definition and adequacy of supporting R&D
- Design philosophy and safety-related systems
- Canadian design codes and standards
- Distributed control systems and safety critical software
- On-power fueling
- Confirmation of negative void reactivity
- Preparation for Standard Design Certification Docketing
- ACR PRA Methodology
- ACR Technology Base
- <u>Fuel design</u>

## **Pre-Application Review Status**

## Phase 1 completed - July 31, 2003

 Staff participated in a series of familiarization meetings and tours of AECL facilities designed to provide a general overview of the ACR design

### Phase 2 on-going – September 30, 2004

- Detail Meetings on each key focus topic to discuss technical issues
- PIRT Panels on Thermal hydraulics, Severe Accidents, and Neutronics
- Staff review of technical information provided by AECL
- Staff is requesting clarification and additional information to resolve issues
- Schedule for Safety Assessment Report (SAR)
  - NRC Issue SAR: September 2004
  - Staff plans to forward draft SAR to ACRS in July 2004 to support September 2004 ACRS Full Committee meeting

## ACR Pre-Application Phase 2 - Discussions

- Pressure tubes and fueling machine as Reactor Coolant System (RCS) components
  - Design codes and standards
- Definition of design basis accidents and acceptance criteria
- Severe accidents definition for ACR
- Safety analysis computer codes
- On-power fueling
- PRA Methodology
- Quality Assurance (QA)

## ACR Pre-Application Review Product Safety Assessment Report (SAR)

### Review Scope

 Discuss what was reviewed and what guidance it was reviewed against, to the extent that the guidance exists.

### Technical Issues

 Discuss technical issues identified that will require further data, tests, inspections, analyses, or codes.

### Regulatory Issues

 Discuss regulatory issues, such as rules, rulemaking, or exemptions that will need to be resolved.

### Policy Issues

 Discuss policy issues that will need upper management or Commission guidance for resolution.

### Conclusion

Discuss the feasibility of successfully completing the review.

### Schedule and Resources

 Provide an estimate of the resources required and schedule for completing the review of the specific focus topic area.

## NRC STAFF REVIEW OF CLASS 1 PRESSURE BOUNDARY DESIGN (PBD) AECL Focus Topic #1



## January 13, 2004 ACRS Future Plant Subcommittee Briefing

Edmund Sullivan NRR/DE/EMCB

## **Pre-Application Review**

- Review of Class 1 PBD being performed by Materials and Chemical Engineering and Mechanical and Civil Engineering Branches in NRR
- With assistance from the Materials Engineering Branch in RES

# Documents submitted for review include

- Technology of CANDU Fuel Channels AECL
- Procedures for In-Service Evaluation of Zirconium Alloy Pressure tubes in CANDU Reactors - CANDU Owners Group
- Canadian Standards Association (CSA) standards applicable to CANDU nuclear components
- Published Technical Papers on Fuel Channel Behavior
- Technology of On Power Fueling

## Methodology for pre-application review

- Acquire familiarity with ACR-700 design Phase 1 of preapplication review
- Develop understanding of differences between ACR-700 and plants already operating or reviewed
- Identify where there are existing regulations that may not be met by the ACR-700
- Identify where new regulations may be needed to ensure adequate protection provided by the ACR-700 design

## **Pre-application Review**

- Scope primarily fuel channel design. Will extend into other areas of Class 1 PB, as resources and available information permit
- Thrust of focus topic review is to identify significant challenges to reviewing actual application
- Approach is to identify concerns not to try to resolve issues
- Technical interactions planned with the Canadian Nuclear Safety Commission

## **Pre-application Review**

Review to the depth necessary to identify

- documentation needed by staff to complete preapplication review,
- regulatory requirements that may not be satisfied by ACR-700,
- need for new regulatory requirements,
- safety issues or technical approaches that the staff may have difficulty finding acceptable, and policy issues.

Safety Assessment for Pre-application Review

- Review scope,
- Safety/technical issues,
- Regulatory issues,
- Policy issues,
- Conclusions regarding feasibility of successfully completing review, and
- Schedule and resource estimate required for completing review of focus topic

## **Potential Issues**

- Basis for fatigue design curves,
- Basis for governing creep equations,
- Sagging of pressure tubes and hydride blister formation,
- Effect of large number of bent pipes >> erosion corrosion, SCC,
- Effect of irradiation damage, aging and embrittlement,
- Effect of dissimilar metal contacts in typical ACR-700 environment,
- Design of rolled joints,
- Canadian design and inspection codes,
- Code classification of components,

## Potential Issues (Cont'd)

- Inspectability of components,
- Scope, methods and frequency of inspection,
- Testability of components,
- Scope, methods and frequency of testing,
- Leak-before-break approach and adequacy of leak detection capability,
- On power fueling as an extension of the Class 1 pressure boundary,
- Design of transport mechanisms in Class 1 component support structure, and
- Component material behavior under severe accident conditions.

## **NRC STAFF REVIEW OF ACR-700 PIRT**



## January 13, 2004 ACRS Future Plant Subcommittee Briefing

Jack Rosenthal, Chief Safety Margins and Systems Analysis Branch Office of Nuclear Regulatory Research

## ACR-700 PIRT

- Objective: Develop initial PIRTs for neutronics, severe accidents and thermal hydraulics
- Purpose: Guide requirements for code modeling and help determine experimental data requirements
- This is a research program to develop infrastructure to support the forthcoming design certification effort

## Panel Members

| Neutronics     | Thermal<br>Hydraulics | Severe Accidents  |
|----------------|-----------------------|-------------------|
| David Diamond  | Samim Anghaie         | Michael Corridini |
| Thomas Downar  | Sanjoy Banerjee       | Robert Henry      |
| Ron Ellis      | Peter Griffith        | Salomon Levy      |
| Farzad Rahnema | Yassin Hassan         | Dana Powers       |
| Paul Turinsky  | Pradip Saha           | Karen Vierow      |
|                | Novak Zuber           |                   |

## **PIRT** Operations

- BNL is the contractor with support from Brent Boyack and Gary Wilson
- CNSC also participating in the PIRT effort
- PIRT process benefiting by extensive support by AECL
- AECL has provided large number of documents, as well as presentations on ACR-700 design, and staff support to answer questions

## Thermal Hydraulics

- Specified scenario is a "critical break," defined as the break size leading to early flow stagnation in the core
- This break is ~25% located the a feed header
- Figure of merit is fuel time-temperature history
- Event is divided into two phases: blowdown and reflood
- Plant is decomposed into: systems/components
- Each component is ranked in importance
- Phenomena within each component are identified and ranked by: importance and by state of knowledge, using a scale of high, medium, or low

## Neutronics PIRT

- Specified scenario is the large break of an inlet or outlet header, voiding all fuel channels within 1 to 3 seconds
- Figure of merit is Coolant Void Reactivity: CVR = k(voided) k(cooled)
- Initial PIRT considers only the equilibrium core because initial and transitional cores have yet to be designed
- PIRT tables are organized according to the three main elements of CVR calculation (operating conditions, lattice physics, core simulation) to address fundamental physics as well as safety analysis methods
- "Phenomena" (i.e., parameters and models as well as nuclear reactions, etc) are identified and ranked by importance on a scale of High, Medium, or Low
- The knowledge level of each phenomenon's impact on CVR is assessed as Known, Partially known, or Unknown

## Severe Accidents

- Specified scenarios are: 1) single channel event, either critical break in a single feeder pipe or a flow blockage; or 2) whole core event initiated by LOCA or station blackout
- Figure of merit for single channel is potential for damage progression to lower neighboring channels
- Figure of merit for whole core event is debris coolability and containment integrity

## Status

- Effort began in September 2003
- Two PIRT meeting held, on October 30-31 and on December 11-12
- Third PIRT meetings to be held in January, 2004 for neutronics and in February, 2004 for thermal hydraulics and severe accidents
- PIRT report due in May 2004

### NRC STAFF REVIEW OF COMPUTER CODES AND VALIDATION ADEQUACY AECL Focus Topic #3



## January 13, 2004 ACRS Future Plant Subcommittee Briefing

Walton Jensen NRR/DSSA/SRXB

# **Review Objectives**

**AECL Desired Outcome** - The NRC staff accepts the computer codes used in the ACR safety analysis and the adequacy of their validation as sufficient for the purpose of providing a safety analysis for the ACR in the US.

#### **NRC Staff Objectives** -

- Scoping review to determine code strengths and weaknesses including areas where additional work or experimental verification is needed.
- Identify additional information requirements.
- Identify any "show stoppers" that would prevent the codes from being used for ACR-700 safety analysis.
- Identify any regulatory or policy issues that will need to be resolved.
- Develop independent capability to audit ACR-700 safety analyses when they are submitted with the DCD.

## Scope of Staff Review ACR-700 Thermal-Hydraulic

#### **Regulatory Standards**

- Draft Regulatory Guide DG-1120 "Transient and Accident Analysis Methods"
- Draft Standard Review Plan Section 15.0.2 "Review of Analytical Computer Codes"

#### Documents to be reviewed

- CATHENA Theoretical Manual
- CATHENA Thermal/Hydraulic Validation Manual
- CATHENA Fuel and Fuel Channel Thermal/Mechanical Validation Manual
- ACR-700 CATHENA Input and Calculational Notes

## Resources ACR-700 Thermal-Hydraulic

- Technical manuals and presentations by AECL
- CATHENA code with preliminary ACR-700 input operational at NRC
  - Currently evaluating a large break in an inlet header
- Preliminary RELAP5 model for comparison with CATHENA results
  - almost complete
- Insights from the PIRT panels
  - phenomena which are important but may be difficult to model
- Input from RES on the adequacy of AECL experimental facilities for code validation
  - Spring 2004

### ACR-700 Neutronics Scope Anthony Attard (NRR/DSSA/SRXB)

#### **Regulatory Standards**

- Draft Regulatory Guide DG-1120 "Transient and Accident Analysis Methods"
- Draft Standard Review Plan Section 15.0.2 "Review of Analytical Computer Codes"

#### **Documents to be reviewed**

- Code theory manuals for:
  - RFSP neutron diffusion code for 3D power distribution and burnup
  - WIMS 2D lattice physics code to generate fuel neutron cross sections for RFSP
  - DRAGON 3D lattice code to generate cross section data of control devices for RFSP
- Neutronics code validation manuals and data for: RFSP; WIMS and DRAGON
- Neutronics code user manuals for: RFSP; WIMS and DRAGON
- Neutronics code Input and Calculational Notes

## **Resources ACR-700 Neutronics**

- Technical manuals and presentations by AECL
- ACR-700 Neutronics codes operational at NRC for sensitivity evaluations
- Contractor assistance in place to review theory of codes and available data base
  - Brookhaven
- Insights from the PIRT panels
  - Significant phenomena which may not be modeled correctly
- Input from RES on the adequacy of AECL experimental facilities for code confirmation and validation
  - Spring 2004

### Schedule for Thermal/Hydraulics and Neutronics

RAIs to AECL by March 31, 2004

Safety Assessment Report July 31, 2004

#### CONFIRMATORY ANALYSIS OF ACR-700 COOLANT VOID REACTIVITY (AECL Focus Topic #9)



### January 13, 2004 ACRS Future Plant Subcommittee Briefing

### Donald E. Carlson RES/DSARE/REAHFB

### NRC Confirmatory Analysis of ACR-700 Coolant Void Reactivity

#### AECL Focus Topic #9 Confirmation of Negative Void Reactivity

- AECL Desired Outcome: Staff confirmation that the Coolant Void Reactivity (CVR) is negative over range of operating conditions
- Void reactivity is key to evaluating the design in relation to GDC-11, Reactor Inherent Protection
- Void reactivity effects can significantly impact the progression of analyzed transients and accidents

### **Confirmatory Analysis of CVR Key Observations**

- AECL's nominal value of CVR is:
  - only slightly negative (e.g., k(v) k(c) = -0.007 = -7 mk)
  - a combination of positive and negative nuclear effects
  - sensitive to core design and operating parameters
- Evaluation of bias and uncertainty in the calculated CVR predictions (i.e., validation) will figure prominently in staff conclusions
  - In-reactor measurements of CVR are difficult and not planned by AECL
  - Validation of computed CVR predictions will be based on ACR-specific benchmark measurements in AECL's ZED-2 critical facility
  - Validation question: When code calculations predict a small negative CVR, how confident are we that the actual CVR will indeed be negative in view of prediction bias and uncertainty?

### **Confirmatory Analysis of CVR Ongoing and Planned Activities (1 of 3)**

#### **Significant Result from Phase 1 Pre-application Activities:**

In June 2003, AECL changed the fuel design to make CVR more negative

#### **Pre-application interactions on CVR:**

- Technical exchanges on CVR analysis and validation, including facility tours of ZED-2
- First RAIs submitted in March 03; AECL responses and supporting documents provided in June and Nov 2003
- Status report on RES in-house CVR analysis activities provided in Sep 2003
- NRC PIRT activities started in Sep 2003, including presentations by AECL and participation by CNSC staff
- CVR is initial focus of Neutronics PIRT to be completed in March 2004

### **Confirmatory Analysis of CVR Ongoing and Planned Activities (2 of 3)**

#### **Completing Phase 2 Pre-application Activities on CVR:**

- RES to provide input on status, initial results, and plans for CVR confirmatory analysis (Focus Topic #9) in May 2004
- RES to provide initial report on related PIRT results in April 2004
- RES to provide related input on status, initial insights, and plans for assessing neutronics validation data for CVR, etc (also part of Focus Topic #3) - in May 2004
- RES to provide related input on estimated resources and schedules for CVR confirmatory analysis and validation, including related work to establish core models (PARCS code) for audit analysis of ACR-700 transients and accidents – in June 2004

### **Confirmatory Analysis of CVR Ongoing and Planned Activities (3 of 3)**

#### CVR Confirmatory Analysis and Related Work for Design Certification Phase:

- Independent static calculations of nominal CVR values using detailed models with existing state-of-the-art methods (MCNP)
  - MCNP modeling and analysis with RES in-house cross-checking against MONK
  - MCNP analysis will reflect and supplement phenomenology insights from PIRT
  - Detailed MCNP modeling studies will help qualify the more approximate models and methods to be used by NRC nuclear code suite for reactor transient analysis (SCALE+PARCS)

#### Validation benchmark analysis to evaluate CVR bias and uncertainty

- Adapt and apply sensitivity and uncertainty analysis methods to (a) assess applicability and coverage of semi-prototypic ZED-2 benchmarks and (b) derive CVR bias and uncertainty
- Review and assess ZED-2 measurement techniques for ACR
- Identify potential needs for additional integral and/or differential data early emphasis

## Provide SCALE lattice data and PARCS core models for simulating ACR-700 operations and transients

- Adapt and apply SCALE to model ACR-700 fuel lattice and transverse reactivity devices
- Adapt and apply PARCS to model ACR-700 core with lattice data from SCALE
- Integrate and test SCALE data and PARCS models and coupling with TRACE T/H
- Analyze impacts of CVR variations on ACR-700 reactivity transients

#### NRC STAFF REVIEW OF ON-POWER REFUELING AECL Focus Topic #8



### January 13, 2004 ACRS Future Plant Subcommittee Briefing

Steven Jones NRR/DSSA/SPLB

## OBJECTIVE

On-Power Refueling Not Previously Licensed in the U.S.

- Establish Feasibility of Design Certification
  - Regulatory Issues Possible Exemptions from Existing Regulations or Rulemaking
  - Policy Issues New Criteria for Evaluation of Design and New Classes of Design-Basis Events
  - Technical Issues New Methods of Review or Analysis
- Develop Regulatory and Policy Framework to Support Design Certification

## **REGULATORY ISSUES**

**Comparison of Basic Design Against Regulations** 

- Review of 10 CFR Parts 50 and 52
- Identify Applicable Regulations For Example:
  - 10 CFR 50.68 Criticality accident requirements
  - 10CFR 50.55a Codes and standards (Division of Engineering)
- Identify Need for Exemptions or Rulemaking to Support Design Certification

## POLICY ISSUES

Comparison of Basic Design Against General Design Criteria

- Review of General Design Criteria and Proposed ACR-700 Design Criteria
- Select Applicable Design Criteria for Functional Capability
  - Criticality Prevention
  - Fuel Cooling/Residual Heat Removal
  - Mechanical Handling of Fuel
  - Instrumentation
  - Emergency Cooling
  - Containment
- Identify Policy Issues Involving New Design Criteria or Different Application of Existing Criteria

### **POLICY ISSUES** Evaluation of Proposed Design Basis Events

- Review of Proposed Design Basis Events Against CANDU Reactor Fuel Handling Operating Experience and Failure Mode Analysis of Basic Design
- Establish Scope of Credible Design Basis Events and Acceptance Criteria for Fuel Handling Accident Analyses
- Identify Policy Issues Involving New Design Basis Events or Different Acceptance Criteria

## **TECHNICAL ISSUES** Evaluation of Methods of Review and Analysis

. ()

- Review of Proposed Methods of Review and Analysis Against Existing NRC Regulatory Guidance for Similar Events
- Identify Technical Issues Involving Different Methods of Review or Analysis for Resolution

#### NRC STAFF REVIEW OF ON-POWER FUELING AECL Focus Topic #8



### January 13, 2004 ACRS Future Plant Subcommittee Briefing

Patrick Sekerak NRR/DE/EMEB

#### AECL Report, "The Technology of On-Power Fueling"

- What it provides
- What it does not provide

#### **CONTENT FOR DESIGN CERTIFICATION (10 CFR 52.47)**

- Quality Group Classification of Systems and Components
- Dynamic Analysis & Testing Methods
- Service Loading Combinations
- Service Stress Limits
- Design Transients
- Special Analytical Methods
- Experimental Stress Analysis
- Computer Codes Used
- ITAAC

#### **POLICY ISSUE**

- Acceptance Criteria
- CSA Standards as Proposed Alternatives to 10 CFR 50.55a
- Reconciliation of CSA Standards with ASME III, XI, and O/M Codes

#### NRC STAFF REVIEW OF PROBABILISTIC SAFETY ASSESSMENT AECL Focus Topic #11



### January 13, 2004 ACRS Future Plant Subcommittee Briefing

Martin Stutzke NRR/DSSA/SPSB

## **Presentation Outline**

- Describe the plan for conducting the preapplication review of the ACR-700 PSA
- Review objectives
- Review guidance
- Review assignments and schedule
- Describe a potential policy issue involving the risk acceptance guideline for coredamage frequency

# Review Objectives (1 of 2)

- Determine if the AECL PSA methodology will produce a PSA with adequate scope, level of detail, and technical acceptability to satisfy regulatory needs
- Identify potential issues
- Technical
- Regulatory
- Policy

# Review Objectives (2 of 2)

- Develop a schedule and resource estimate for reviewing the PSA submitted with the standard design certification application
- Learn about the ACR-700 design
- Plant layout, construction, systems, etc.
- Accident phenomenology and progression

# Review Guidance (1 of 3)

General:

- 51 FR 24643, July 8, 1986, NRC Policy Statement on Regulation of Advanced Nuclear Power Plants
- NUREG-1226, May 1988, Development and Utilization of the NRC Policy Statement on the Regulation of Advanced Nuclear Power Plants
- 10 CFR Part 52.47(a)(v)

**Risk Acceptance Guidelines:** 

- SECY-90-16, June 26, 1990, Evolutionary Light Water Reactor (LWR) Certification Issues and Their Relationships to Current Regulatory Requirements
- SECY-93-087, July 21, 1993, Policy, Technical, and Licensing Issues Pertaining to Evolutionary and Advanced Light-Water Reactor (LWR) Designs

# Review Guidance (2 of 3)

## PRA Quality:

- Regulatory Guide 1.174, An Approach for Using Probabilistic Risk Assessment in Risk-Informed Decisions on Plant-Specific Changes to the Licensing Basis
- Standard Review Plan, Chapter 19, Use of Probabilistic RISK Assessment in Plant-Specific, Risk-Informed Decision making: General Guidance
- Standard Review Plan, Chapter 19.1, Determining the Technical Adequacy of Probabilistic Risk Assessment Results for Risk-Informed Activities

# Review Guidance (3 of 3)

## PRA Quality (continued):

- ASME RA-S-2002, Standard for Probabilistic Risk Assessment for Nuclear Power Plant Applications
- Regulatory Guide 1.200 (for Trial Use), An Approach for Determining the Technical Adequacy of Probabilistic Risk Assessment Results for Risk-Informed Activities
- ANSI/ANS-58.21-2003, External-Events PRA Methodology

### PRA Methodology

- NUREG-1335, IPE Submittal Guidance
- NUREG-1407, IPEEE Submittal Guidance
- NUREG/CR-3485, PRA Review Manual

# Assignments and Schedule (1 of 2)

| Who  | When     | Done | What                                                                                                                                                                                                                 |
|------|----------|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SPSB | 12/23/03 | ~    | Issue RAI concerning PSA quality                                                                                                                                                                                     |
| SPSB | 12/29/03 | V    | Issue advice on PSA quality expectations                                                                                                                                                                             |
| SPSB | 12/31/03 | ~    | Compile review references and matrix                                                                                                                                                                                 |
| SPSB | 1/9/04   | ~    | Issue RAI concerning PSA methodology                                                                                                                                                                                 |
| PRAB | 3/5/04   |      | <ul> <li>Issue draft report on review of:</li> <li>91-03660-AR-001, Generic CANDU PSA<br/>Methodology</li> <li>91-03660-AR-002, Generic CANDU PSA Analysis</li> <li>108-03660-AB-001, ACR PSA Methodology</li> </ul> |

# Assignments and Schedule (2 of 2)

| Who  | When    | Done | What                                                                                                                                                                                                                 |
|------|---------|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PRAB | 4/16/04 |      | <ul> <li>Issue final report on review of:</li> <li>91-03660-AR-001, Generic CANDU PSA<br/>Methodology</li> <li>91-03660-AR-002, Generic CANDU PSA Analysis</li> <li>108-03660-AB-001, ACR PSA Methodology</li> </ul> |
| SPSB | 5/14/04 |      | <ul> <li>Complete review of:</li> <li>108-03660-AB-001, ACR PSA Methodology</li> <li>108-03660-AB-003, Phenomenology for Limited and Severe Core Damage Accidents in the ACR</li> </ul>                              |
| SPSB | 5/28/04 |      | Complete schedule and resource estimate                                                                                                                                                                              |
| SPSB | 6/25/04 |      | Issue Focus Topic #11 deliverable                                                                                                                                                                                    |

# Potential Policy Issue (1 of 4)

- The SRM on SECY-90-16 specifies a core-damage frequency goal of 1E-4/year for evolutionary and advanced reactor designs
- For the ACR-700, AECL has defined two types of coredamage accidents:
  - Limited core damage accidents:
    - Accident progression is arrested within the fuel channels
    - No equivalent in LWRs
  - Severe core damage accidents:
    - Corium is formed, which may change its geometry, location, composition and state during an accident
    - Similar phenomenology to severe accidents in LWRs, although the accident progression is different

# Potential Policy Issue (2 of 4)

- AECL has defined 10 plant damage states (PDS) that, with one exception, map to either the limited or severe core-damage categories
- The exception, PDS9 pertaining to tritium releases, does not involve any fuel damage
- The staff will ask AECL to determine the frequency of each PDS, including uncertainties

# Potential Policy Issue (3 of 4)

- Question #1: How should the staff interpret the core-damage frequency risk acceptance guideline specified in the SRM on SECY-90-16 with respect to the ACR-700?
  - If the guideline applies only to the severe coredamage frequency, should a guideline pertaining to limited core- damage frequency be developed?
  - If the guideline applies to the total (limited and severe) core- damage frequency, should a guideline that limits the severe core-damage frequency to a certain percentage of the total core-damage frequency be developed?

# Potential Policy Issue (4 of 4)

Question #2: Should a guideline pertaining to the frequency of accidents that potentially involve a release but no fuel damage (e.g., tritium release - PDS9) be developed?

### **ACR-700 Pre-Application Review**

٩



### January 13, 2004 ACRS Future Plant Subcommittee Briefing

James Kim NRR/RNRP

- 8 - Y - **(** 

## **ACR-700 Pre-Application Schedule**

Phase 1

**ACR Submittals** 

**Requests for Additional Information** 

Phase 2

**ACRS Information Briefing** 

**AECL RAI Responses** 

**ACRS Subcommittee Meetings** 

**Draft SAR to ACRS** 

**ACRS Full Committee Meeting** 

June 2002 – July 2003

**December 2002 – March 2004** 

May 2003 – March 2004

August 2003 – September 2004

January 2004

June 2003 – April 2004

April - June 2004

**July 2004** 

September 2004