
Software Audit
Observer Training

Version 1.0

Prepared by the
Center for Nuclear Regulatory Waste

Analyses
Quality Assurance

1110(

Software Observer Auditor
Training - Course Agenda

* Life Cycle Models
* Design, Development and Testing
* Peer Reviews
* Configuration Management
* Validation
• Risk Management
* Maintenance

Version 1.0 2/loi

About Your Instructor
Randy Folck

* Consultant: process improvement
Lead Auditor: Telecom, Aerospace,
Automotive, Commercial Nuclear E

Nine years software QA
University instructor S-,
Twenty five years quality
management system experience

Version 1.0 3Ito

Myths or Facts?
• Quality means goodness; it cannot be

defined.
* Because it cannot be defined, quality cannot

be measured.
* The trouble with quality is that workers don't

really care.
* Quality is fine, but we can't afford it.
* Data Processing is different, error is

inevitable.

Version 1.0

Software Quality Defined
* The degree to which software meets 0

specified requirements.
* The degree to which software meets

customer or user needs or expectations.

[IEEE-STD-610] 0

Version 1.0 5 Ile Il

Is Satisfying Requirements
Software Quality?

a? * Getting the requirements right
fb> . Getting the right requirements

Version 1.0

What is software 'quality'?
- . Reasonably bug-free software

_ Meets requirements and
expectations

m Maintainable

Quality may be defined by a set
of attributes!

Version 1.0 7 Ito

I Software Quality as Atti butes
* Quality is the degree of excellence of 0

something.
* We measure the excellence of software via a

set of attributes.

[Glass, Robert L., Building Quality Software, Prentice
Hall, Englewood Cliffs, NJ, 1992]

0

Version 1.0

LQuality Attributes
* Portability
. Reliability

*K iEfficiency
W | * User Friendliness

* Testability
m Understandability
. Modifiability

Version 1.0 9 la]

If quality is made up of
attributes then...

I <

How do we achieve them? 0

• Trade-off analysis
* Prioritized list of attributes

* Testing, testing, testing
. Focus on satisfying

requirements

Version 1.0 10 1j 0

c Questions?

C=X Kl;

Version 1.0 11 o

Software Lifecycle
Development Models
* The Waterfall Software Development Model
* The Iterative Software Development Model
* The Prototype Development Model
. Others

Version 1.0 12 /ot

Waterfall Model

Version 1.0 13 L/o (

Iterative Model

Analysis

Design

Product -0.Product -+ Iteration Final
Development Integration Release Delivery

Version 1.0 14 ItW

I Prototype Model
0

General
Concepts

Traditional
Development

End Project

15 110

S

Version 1.0

W Questions?
. 0

Version 1.0 16 Ita

I
-

4 Questions About a Process
triEs Skills Methods

With hich methods,

whi a is tehc iques and
iveness ssessed? proce is the

process controlled?

0

With
effect

Inputs
What is
needed?

skills and

What

What are tl

Version 1.0 17 /101

I
-

Software Analysis & Design
Metrics Skils I Methods I

rnber ~Analysis and Inspections & Tcnqe
mnber XDesign Walk-throughs tTechniques
fects Tools Asractionemn
bed to \ Refinement

sign Defect Type \ Modularity

Application Inspection Procedures &
.a\ main Standards

Nui
Del

Trac
De

NL imber Serious
Defects

An. .._s .. .

Solving

Inputs R AssessmOutput
* Technical Risk Assessment Design That

Requirements Meets
* Software Expectations

Requirements
/ / ~~~~~~Resource

Design Tools Configuration /Management
Design Tools / Management Peer Review

Hardware
Risk

Management
Bug Tracking Corrective

Action

| Tools] | |Support Processes|

version 1.0 18f,1V

lAnalysis and Design Methods
* Structured Analysis and Design
* Functional Decomposition
m Object-oriented Analysis and Design
. Others

Version 1.0

Structured Analysis & Design
* Systems with stable requirements
* Complex systems
m Concurrent systems

Version 1.0 20 /

Functional Decomposition
* Distinct input-process-output view of a

Requirements
• Top-down decomposition
* Systems with stable requirements
* Small systems
• Systems with simple interfaces

Version 1.0 21 /tLIO.

I
Object-Oriented Analysis &
Desig n
m Uses an object model with classes and

objects, attributes, operations, and messages
m Dozens of object-oriented analysis & design

methods
* Prototypes, iterative systems, and

evolutionary systems
* Data-intensive systems

Version 1.0 22/+
lot

(261

I A Word About Requirements
* Requirements analysis will

not "how," i.e. what data,
what interfaces, and what
Requirements should be:

* Feasible and appropriate
* Clear and properly stated
* Proper level

. Testable

focus on "what",
what functions,
constraints.

Version 1.0 23 /(�Yf

11Questions?

Version 1.0 24 / (,

L Code and Unit Test
Metrics Skills Methods

Test Desig Inspections & Walk
Test Cases throughs

Percent Test Ax Rework Effort Boundary
Coverage ~ ~ ~ ~ ~ ~ .Path

Coverage \ Problem Solving \ Data 4- Coding Standards
Control Flow

Number SchedulError Type Plan ing & Regression Tests
Serious Defet Number Tests Lnug

Completed - Language

Inputs Application Output
• Requiremen Domain \ Software that* Requirements *

* Design Implements the
* Risk Information Audit Design

Code Analysis Tools Rtement
Configuration Management

Software Management Peer Review

Hardware
Risk

/ / ~~~~~Management
Bug Tracking Corrective

/ ~~Corrective /

Action

Support Processes

Version 1.0 25

Coding Standards
* What is a coding standard?

3 . Conventions for use and formats
. Not required by the computer

language
. Benefits the human
X Rules and Recommendations
. How to write code: descriptions and

examples

Version 1.0

I What's in a Coding Standard?

* Typical table of contents
* File formats,comments, header

information
m Spacing and indentation, brace

style
m Names, declarations,

statements
* Classes, methods, fields

Version 1.0 27 /101

Unit Level Testing (White Box)

* Test cases are derived from knowledge of the
internal structure of the module or unit

* Test cases can be derived to exercise:
Independent paths within a unit
Logical decisions on their true and false bounds
Loops at their boundaries and within their
operational bounds

* Also termed logic-driven or glass box testing

Version 1.0 28)&01

White Box Testing Methods
Static Analysis

Used to identify potential errors such as
unreachable code, uninitialized variables, unused
variables, etc.

Loop Testing
To force loops to execute a varied numbers of
iterations.

Data Flow Testing
To exercise all instructions that define or use a
particular variable.

Version 1.0

Basis Path Testing
A strategy for generating test cases that can
achieve 1000/0 path (code) coverage for a
single module.

A way to ensures that all statements within
a module are exercised at least once and all
logical decisions are exercised on their true
and false sides.

Version 1.0

Basis Path Testing Approach
* Determine the cyclomatic complexity of a

module
* Determine a basis set of independent paths

through the module
* Preparing test cases that will force execution

of each path in the basis set

Version 1.0 311o0,

Cyclomatic Complexity Metric,
LV(G)

Defines the number of independent paths
through a module/program

* V(G) = number of regions in a decision-to-decision
graph

* V(G) = number of predicates (decisions) + 1

Determines the maximum number of tests
that must be conducted to ensure that all 0
statements have been executed at least
once in a given module/program

Version 1.0 32

Example #1
(Simple Compare Program)

BEGIN
1. READ X AND Y (Both defined as signed integers)
2. IFX>Y
3. THEN print "X is bigger"
4. ELSE print "X is not bigger"
5. ENDIF

END

1 92

Version 1.0 33

I
Example #1 continued
(Skeletal Decision Table)

Test Case Test Case
1 2 0

Inputs X XI X 2

Y
Decisions X > Y? yes no
Expected Message "X is yes no
Outputs bigger"

Message "X is no yes
not bigger"

Skeletal means that input values have not been selected
for the test case.

What is the significance of having two (2) test cases?

Version 1.0 34 It (3 (

Example #1 continued
(Skeletal Decision Table)

• Inputs include variable names (X, Y) and the 0
test case conditions (X > Y?)

• Each case in one column, covering one path
through program
• Test Case 1 covers path 1-2-3-5
* Test Case 2 covers path 1-2-4-5 0

Version 1.0 35 ba I

Basis Path Testing
I Example #2

11
A

\-.Z

Version 1.0 36 //61

Basis Path
I

Testi ng
2Example #

. Complexity:_

* Number of independent paths:

* Number of test cases to ensure 100% code

0

coverage, i.e. every (reachable) statement is
executed at least once:

Version 1.0 37// (i

, Questions?

Version 1.0 38

Version 1.0 38 /(O

I Peer Review
Risk Identification

Process
Review Process

Defect TypesNm
\ Numbe

Defi

Number Work
Products -\

Reviewed

Inputs
* Requirements
* Plans
* Procedures
* Standards
* Reports
* Code Hardware

Bug Tracking
Software /

or Major
acts

Application
Domain

Software Review Procedures
& Plans

4- Leadership
Risk Mitigation

Process

Process
Output

Early Detection of
Major Defects

Training

Action
Code

Analysis
Software

Resource

Risk Management

Version 1.0 39 /I d (

Types of Reviews
Status Reviews

* Project Issues
. (Schedules, problems, resources)

* Product Issues
. (Progress, problems)

Peer Reviews
* Product and Process Issues

. (Quality of work products)

Version 1.0 40/ o(

I Status Revi ews
* B leader(s) or team member(s)
. For leader(s) or buyer(s)
. Examples

* Design reviews
* Customer interface meetings
m Development team meeting

Version 1.0 41 /(O(

Peer Reviews
"The purpose of Peer Reviews is to remove
defects from the software work products
early and efficiently. An important
corollary effect is to develop a better
understanding of the software work products
and of defects that might be prevented.
Peer Reviews involve a methodical
examination of software work products by the
producers' peers to identify defects and
areas where changes are needed."

SET CMM, V. 1.1

Version 1.0 42 /1,

Commonly Reviewed Work
Products

* Software plans
m Requirements specifications
* Design documents
* Test plans and procedures
* Code
* Procedures and Methods

Version 1.0 43 Ito(

Informal Peer Reviews
• Poorly defined review process
* Unspecified reviewer responsibilities
* Used for:

* Low risk products
• Small products
* Products of low complexity

• No Follow-up

Version 1.0 44/ (or

Formal Peer Reviews
* Well-defined "visible" review process
* Specified reviewer responsibilities
* Written records
* Used for:

* Risky products
* Large and/or complex products
* Early work products

. Follow-up

Version 1.0

I Formal Peer Review Process
1. Plan

-Identify risks
-Identify reviewers
-Assemble package
-Schedule review

2. Brief
-Present objectives
-Get background
-Detailed overview
-Assign roles
-Establish schedule

3. Examine
-Identify defects
-Document issues

4
6. Verify

-Check all changes
-Create summary
report

5. Rework
-Fix/negotiate "majors"
-Document differences
-Document new
version

4. Discuss
-Present defects
-Detect "group" defect!p

Version 1.0 46 Ito(

Defect Categories
Major defect 0

* Potential to cause "big" failure or costly to fix
. Seriously impairs maintainability
. Fails to satisfy a requirement
* Inaccurate statements
• Exclusion of vital information
* 0

Minor defect
* Defect that is not a major

Version 1.0 47 l e

I Types of Defects
. Ambiguous
. Unnecessary
. Untestable
U

U

N

. Missing

. Inconsistent

. Nonconforming

. Incorrect

. Unclear

.

U

Version 1.0 48 / (01

I Issues

m Any issue requiring effort outside the peer 0
review process:

* Problems with the standard
* Problems with the process
m Problems with a specification

Version 1.0 49 I,,(

I Why Do Peer Reviews?
m Find Problems in

the short run
* Prevent problems

in the long run
m Better technical

work

m Detect Defects
Early resulting in:

0

* Lower costs
* Lower risk
* Higher quality

. Communicate
technical information

. Educate
participants

Version 1.0 50 16i

Questions?

0

Version 1.0 5/1

Version 1.0
51 /l ot

I
-

NL
Ch

OVE

Configuration Management
Metrics Skills Methods

\dentifi \tio Configuration Audit

imber SCM Standards-\ System
anges ~
ar Time \ Usg SCM Procedures &Time Usage \ \Plans

\ SCM Methods
\umber Application

Numbera Domain Change Control
Release -\\ ~
Problems Complaints & Process Rekease Process

Problems Status R
Inputs Accounting Output
* Code Independent eible
* Documents - Ad Configuration of
* Reports Audit Cof igur a of
* 'r-ot r--- 0 Software Products
. Test Results

Library System

Change X

Control
Software

Resource
ManagementCorrective

Action

Replication

Hardware

Version 1.0 52 /10,

Configuration Management
The process used during software development

and maintenance to identify, control, and
report functional and physical configurations
of software products (e.g., source code,
executable code, databases, test scenarios
and data, and documentation).

Version 1.0 53

Components of Configuration
IManagement

. Identify

. Control
. Status
* Audit

I- 0

Version H i0 54 II a r

Version 1.054l

Baseline
A particular version of a document, software
release, or system configuration which status
and content are known, which is
reproducible, and which has some particular
and specified designation or reason for
existence. For example, a software baseline
might be a release incorporating some set of
new features that the previous release did
not have.

Version 1.0 5 5 It(,

C; onfiguration Identification
The selection of configuration items (CI)
The issuance of numbers and other identifiers
affixed to the CO's and to the technical
documentation that defines the CO's
configuration
The release of CO's and their associated
configuration documentation 0

The establishment of configuration baselines
for CO's

[MIL-STD-973]

Version 1.0 56//

Configuration Control
The systematic proposal, justification,
evaluation, coordination, and approval or
disapproval of proposed changes, and the
implementation of all approved changes in
the configuration of a Configuration Item (CI)
after establishment of the baseline(s) for the
CI. 0

[MIL-STD-973]

Version 1.0 57

Status Accounting
The recording and reporting of information S
needed to manage configuration items (CI)
effectively, including:
• A record of the approved configuration

documentation and identification numbers.
• The status of proposed changes, deviations, and

waivers to the configuration. 0

* The implementation status of approved changes.
• The configuration of all units of the CI in the

operational inventory.
[MIL-STD-973]

Version 1.0 58/ 5

Audit
m An independent examination of a work

product or set of work products to assess
compliance with specifications, standards,
contractual agreements, or criteria.

(CMU/SEI-93-TR-25, IEEE-STD-610)

Version 1.0 59 /to i

I Questions?

Version 1.0 60 // of

Software Validation

Metrics Skills Methods

Test Cases Inspections & Walk
Boundary throughs

Test Design * v Guerrilla -\

Percent Test * Load \
Coverage Usability Test Procedures &

Plans
Error Type Planning &

Number Serious
Defects Number Tests Test Plans

Completed\
Inputs Independent &
e Scope Fair Output
e Requirements Validated Software
* Code
* Risk Information Resource

/ / ~~~~~Management
Test Coverage M a m

Configuration
Management

Hardware

Bug Tracking M anagem ent
Bug Tracking t Corrective

Action /

| sSupport Processes

Version 1.0 61

The Goal of Software Testing
How do the following statements "add
value?"

• Testing is the process of demonstrating that errors
are not present.

• The purpose of testing is to show that a program
performs its intended function correctly.

* Testing is the process of establishing confidence
that a program does what it is supposed to do.

* Testing is the process of executing a program with
the intent of finding errors.

Version 1.0 62

Software Testing Defined
Software testing is the
process of executing a
softwa re system:

* In order to identify errors

• To verify conformance to
requirements

Version 1.0 63

0

L Defect Density Over Time
0

0

Version 1.0 64 /

WTesting Concepts
Testing is the process of executing a program *
with the intent of finding error.
A good test case is one that has a high
probability of detecting an as-yet
undiscovered error.
A successful test case is one that detects an
as-yet undiscovered error.
If defects are present, debugging
determines where and why.

Myers, Glenford J., The Art of Software Testing, John Whiley & Sons, Inc.. New York,
1979.

Version 1.0 65

The (Potential) Cost of
Inadequate Testing

, Loss of Life 0
I/ \1m Property damage

I^ * .Loss of business
* Lost opportunity
X Reduced market share
. Cost of repairi
J Any others?

Version 1.0 66 //10

I

Exhaustive Testing
Ideally, testing should
exhaustively exercise all
program logical paths by
invoking the system with all
possible input values and
combinations.

To achieve 100 percent
confidence through exhaustive
testing is impossible.

Version 1.0 67/

I
Exhaustive Testing
Example #1
* Program analyzes string of ten

alphabetic characters.
uppercase

. Exhaustive testing entails 2610 = 1.4 x 1014

combinations
* Would take 4,500 years at one millisecond per test

Learning Tree International, course number 316, p. 316-1-7

Version 1.0 68/10(

Exhaustive Testing
Example #2

Unit has 10 - 20 statements with a DO loop
that iterates up to 20 times and 4 nested IF
statements

* The number of unique logic paths is 1014 = 520 + 519
+ .+ 51

Exhaustive testing would take about 1 billion years
at one test case developed per five minutes

Myers, Glenford J., The Art of Software Testing, p. 10

Version 1.0 69

L Exhaustive esting
0

Testing can be used to show the presence of
defects, but never their absence!

0

Version 1.0 70 0

Characteristics of a
"Good" Software Tester

. Attitude 0
m What am I going to break today?

. Creativity
* Derive those corner cases.

, Interpersonal Skills
. A team player.

_ Tenacity
J Don't give up.

- Technical skills
* Product, testing techniques and tools.

Version 1.0 71 /

I %6

Testing Benefits and Costs
A software development organization can
expend between 30 and 40 percent of the
total project effort on testing.*
Testing of life critical software can cost three
to five times as much as all other software
engineering activities combined.*
If earlier development phases slip, extend
delivery date to enable full testing and
reevaluate costs as appropriate

*Pressman, Roger S., Software Engineering A Practitioner's Approach, p.
448

Version 1.0 72

Cost of Finding and Fixing
Software Errors

0

0~~~~~~~~~

Time

Version 1.0 73 /la(

Software Testing - Black Box
You cannot see into it. 0
Test cases can be derived to determine:

* If the software is particularly sensitive to certain
input values

* What data rates and data volume can the
software tolerate

* What effect will specific combinations of data
have on the software operation

Also called data-driven or input/output-driven
testing.

Version 1.0 74 I
74o

Equivalence Classes
If you expect the same result from two tests, !
you consider them equivalent.
• They all test the same thing
* If one test catches a bug the others should
* If one test does not catch a bug the other

probably won't

Valid input conditions must be documented in
a specification.

Version 1.0 75 Ito

Equivalence Partitioning
How do you pick the input values for a
specific test case?

* Identify an input condition from the SRS, SDD,
etc.

• Partition the input condition into two or more
groups, the equivalence classes.

* Use one test case to represent an equivalence
class.

Note that there are two types of equivalence
classes, valid and invalid.

Version 1.0 761X

I Equivalence Classes
* Valid equivalence classes represent valid

inputs to the software
* Invalid equivalence classes represent all

other inputs (e.g., erroneous input values)

Version 1.0 77 /101

Equivalence Classes (Guidelines)

* A test of one input value in an equivalence
class represents the class

* Should yield results that represent
responses to all class members

* For any input from a valid equivalence class the
software should produce a normal, correct
output 0

• For any input from an invalid equivalence class
the software should generate an error or incorrect
output

Version 1.0 7 8 / /(,

I Equivalence CIasses Example 1)

m If an input condition specifies a member of a
set, identify one valid equivalence class and
one invalid equivalence class
Example:
Valid class:
Invalid class:

Set = {EG6334 students}
{... Clem, Bobbie, ... }
{...anything else...}

0

Version 1.0 79/10 a

I Equiva lence Classes (Example #2)

* If a must be condition is required, identify
one valid equivalence class and one invalid
class
Example: First character in a PIN must be an

numeric
Valid class:
Invalid class:

{O, 1,2,3,4,5,6,7,8,9}
{.. .not numbers... }

Version 1.0 80 // (S (

I Equivalence Classes (Example
i~- _N1 I A.;

#3)

m If an input condition specifies a range of
values select one valid equivalence class
and two invalid class
Example: The item count can be 1 to 999
Valid Class: 1 < item count < 999)

& item countInvalid Class: Item count <
999).

1

Version 1.0 81 /I M

I
-

Equivalence Classes (Example #4)

* If an input condition specifies the number of *
permissible values select one valid
equivalence class and two invalid classes
Example: One through six owners can be

listed for the automobile
Valid Class:
Invalid Class:

(1 < = owners < = 6)
(Owners = 0 and owners > 6)

Version 1.0 82/1(3 (

I Boundary Value Analysis
Assumes that the greater number of errors
tend to occur at the boundaries of the input
domain than at the center.
Tests special case input conditions around the
edges of equivalence classes with the
probability of invoking seldom-executed
special case code.

Coded (a + b >= c) rather than (a + b > c).
Refines the input selection process for
equivalence partitioning.
Generally intuitive to most developers.

Version 1.0 83 / ,% II, (

Boundary Value Analysis(Guidelines)
• If an input condition specifies a range 0

bounded by values a and b, test cases should
be designed with values a and b and with
values just above and just below a and b.

* If an input condition specifies the number of
permissible values, test cases should be
designed to exercise the minimum and
maximum numbers and with values just
above and just below the minimum and
maximum.

Version 1.0 84

Boundary Value Analysis
(Guidelines)

* If an output condition is a table, test cases
should be designed to create an output report
that produces the maximum and minimum
number of allowable table entries.

• If internal program data structures have
prescribed boundaries (e.g. array with a
defined limit of 100 entries), test cases
should be designed to exercise the data
structure at its boundaries.

Version 1.0 85

I
Boundary Value Analysis
(Guidelines)

0
Input Valid Invalid

Condition Equivalence Equivalence
Class Values Class Values

1 to 999 1 and 2 0

998 and 999 1000
1 through 6 1 and 2 0

_5 and 6 7

Version 1.0 86 It,

Cause-Effect Graphing
Test cases are generated based on 0
combinations of conditions

Example: X is negative & Y is positive in the
compare program.

Equivalence partitioning and boundary value
analysis do not address combinations of
input values.
All test cases derived from equivalence
classes for input values A and B pass without
error but their product exceeds some limit,
e.g. memory.

Version 1.0 87

Questions?
S

X ~~~~~S

Version 1.0 88 // {

I RRIsk Manage ment
Risk Identification

Process
Risk Methodolgy

Top 10 Risks
Number New

Risk
Risk Management

ProceduresSoftware
Development

Unresolved
Risks

Application
Domain Risk Mitigation

ProcessNumber Risks
ResolvedInputs

* Requirements
* Test Results -
* Plans
* Status Reports
* Regulatory

Concerns

Process

Training

Action

4- Risk Table Resource
Management

Risk Tracking
Software Mnagement Review

Version 1.0 89 /1,3 (

Risk Management
A process of identifying risks and mitigating
their effects before these risks disrupt
program activities.

* Risk Identification and Analysis
* Assigning Risk Criticality
* Risk Action Planning

Version 1.0 90

Risk Identification and
Analysis
* Technical Risks

* Ambiguous, incomplete requirements

m Environment Risks
* Training, communication

* Program Constraint Risks
* Costs, schedule

Version 1.0 91]to (

I Assigning Risk Criticality
. Impact * Probability

. Negligible

. Marginal

. Critical
. Catastrophic

* Very high
. High
. Medium
. Low
* Very low

Version 1.0 92 /1,0 f

M Risk Action Planning
* Act Immediately 0
. Watch
. Transfer
. Delegate
. Strategize

9

Version 1.0 9 tt

INQuestions?

Version 1.0 /

A Word About
Software Maintenance
* Change in software is 0

inevitable
Hardware deteriorates
because of a lack of
maintenance

*Software deteriorates
because of maintenance

Version 1.0 95 tIoI

What is Software
Ma inenance
.What does it mean to you? 0

* What does it mean to your organization?
* Is it necessary?
* Are product "versions" defined by

maintenance cycles?
* Who should do maintenance?

Version 1.0 96

Kinds of Maintenance
. Adaptive 0

* Environmental (hardware changes)

. Corrective
* Fixing errors

. Perfective
* Making enhancements X

Version 1.0 97 1l,

nMaintenance Cycle
Understand the change: 15%
Tracing logic: 25%
Implementing change: 20%
Testing and debug: 30%
Reviewing/Updating documentation: 10%

Percentages represent time in phase.
Note similarity to development life cycle!

Version 1.0 981 i1o

b uestions?
~~~~~~~~~~~~~~~~~~~~_ .......... ., ... I' .i:

Version 1.0 99 /~~~~~~~~~~~~~~~~~~~~~~~sg

Version 1.0 99 11,5(~~~~~~~~~/



Further Reading
Software Engineering Institute, Capability
Maturity Model, Peer Reviews
Software Quality Engineering, Technical
Reviews & Inspections, Version 4.1
F.A. Ackerman et al, "Software Inspections:
An Effective Verification Process," IEEE
Software, May, 1989.

* M.E. Fagan, "Advances in Software
Inspections," IEEE Transactions on Software
Engineering, July, 1996.

Version 1.0 100



I Further Reading
. M.E. Fagan, "Design and Code Inspections to

Reduce Errors in Program Development," IBM
Systems Journal, vol. 15, no. 3, 1979.

* D.P. Freedman and G.M. Weinberg,
Handbook of Walkthroughs, Inspections, and
Technical Reviews, Dorset House Publishing,
1990.

. W.S. Humphrey, A Discipline for Softwa re
Engineering, Addison-Wesley Publishing,
1995.

Version 1.0 101/1


