Software Audit
Observer Training

Version 1.0

Prepared by the

Center for Nuclear Regulatory Waste
Analyses

Quality Assurance

10\

Software Observer Auditor
Training - Course Agenda

Life Cycle Models

Design, Development and Testing
Peer Reviews

Configuration Management
Validation

Risk Management

Maintenance

Version 1.0 2/[ox

About Your Instructor
Randy Folck

= Consultant: process improvement

a Lead Auditor: Telecom, Aerospace,
Automotive, Commercial Nuclear

= Nine years software QA
s University instructor

= Twenty five years quality
management system experience

Version 1.0

361

Myths or Facts?

= Quality means goodness; it cannot be
defined.

= Because it cannot be defined, quality cannot
be measured.

= The trouble with quality is that workers don't
really care.

= Quality is fine, but we can't afford it.

» Data Processing is different, error is
inevitable.

Version 1.0 4 I/o |

Software Quality Defined

= The degree to which software meets
specified requirements.

= The degree to which software meets
customer or user needs or expectations.

[IEEE-STD-610]

Version 1.0 5 /,0;

Is Satisfying Requirements
- Software Quality?

= Getting the requirements right @
s Getting the right requirements

Version 1.0 6 /(o

What is software 'quality'?

= Reasonably bug-free software ®

= Meets requirements and
expectations

= Maintainable

Quality may be defined by a set e
of attributes!

Version 1.0 7 /{0!

= Quality is the degree of excellence of
something.

s We measure the excellence of software via a
set of attributes.

@
[Glass, Robert L., Building Quality Software, Prentice

Hall, Englewood Cliffs, NJ, 1992]

Version 1.0 8/,01

Quality Attributes

Version 1.0

Portability
Reliability
Efficiency

User Friendliness
Testability
Understandability
Modifiability

9 |91

If quality is made up of
attributes then...

How do we achieve them?

» Trade-off analysis
= Prioritized list of attributes

s Testing, testing, testing

= Focus on satisfying
requirements

Version 1.0 10 /(0\

Version 1.0 11/

Software Lifecycle
Development Models

= The Waterfall Software Development Model
= The Iterative Software Development Model
= The Prototype Development Model

s Others

Version 1.0 12 [1o4

Analysis ———1
A
Design I

Code and

Unit Test __l

Validation

Testing I
Delivery —-1

Maintenance

Version 1.0 13 //ot

[terative Model |

Analysis ——l

#

Design

R

Product
Development

Product
Integration

Iteration
Release

—

Final

Delivery

T

Version 1.0

14,1

Prototype Model

: N
General Qmpk > Prototype —» Review > End Project
Concepts Design

Yes

Traditional
Development

Version 1.0 15 [61

Version 1.0 16 [/o1

With which i
effectiveness

ssessed?
process controlled?

What training, skills and
knowledge are needed?

Inputs Output
What is » What should be
delivered?

needed?

What tools/(hardware,

processes?

Support Processes J

Version 1.0

17/

{ ot

Software Analysis & Design

Metrics |

Analysis and

Number Design \I,\r;s;:(ectlons & Techniques
Defects Tools alk-throughs - Abstraction

Traced to + Refinement
Design Defect Type

. Modularity

Inspection
Application Procedures &
Number Serious Domain Problem Standards
Defects Design Rework Solving
Effort
Inputs Methodology out 1
. utpu
: Risk Assessment ——» i
* Technical .| Design That
Requirements » Meets
e Software E tati
Requirements Xpectations
Resource
i i Management
Design Tools ——», Configuration

Management .
Peer Review

Hardware
Risk
| Management
Bug Tracking Corrective

Action

| Support Processes

Version 1.0 18 (

{01

Analysis and Design Methods

Structured Analysis and Design

= Functional Decomposition

= Object-oriented Analysis and Design
a Others

Version 1.0 19 /{o [

Structured Analysis & Design

= Systems with stable requirements
s Complex systems
s Concurrent systems

Version 1.0 20 /{ 5

Functional Decomposition

= Distinct input-process-output view of
Requirements

s Top-down decomposition

= Systems with stable requirements
= Small systems

= Systems with simple interfaces

Version 1.0 21 /m

Object-Oriented Analysis &
Design

= Uses an object model with classes and o
objects, attributes, operations, and messages

= Dozens of object-oriented analysis & design
methods

= Prototypes, iterative systems, and
evolutionary systems

s Data-intensive systems

Version 1.0

A Word About Requirements

= Requirements analysis will focus on "what", ®

not "how," i.e. what data, what functions,
what interfaces, and what constraints.
Requirements should be:

» Feasible and appropriate

« Clear and properly stated

= Proper level

» Testable

Version 1.0 23 [o1

Version 1.0 24 / (ot

Test Design
Test Cases
. Boundary

Percent Test \+— Rework Effort

Inspections & Walk
throughs

Coverage) gatth
Problem Solving —) Cﬁn"’;rol Flow «— Coding Standards
Planning &

Serious Defect Number Tests

<+—— Language

Regression Tests

Completed
Application
Inputs %pomain
* Requirements >
Design

* Risk Information

Resource

Code Analysis Tools —— M
anagement

Configuration

Management

Software Peer Review

Hardware Risk

is
| Management
Bug Tracking Corrective

Action

| Support Processes

Version 1.0

Output
Software that
Implements the
Design

Coding Standards

» What is a coding standard?
= Conventions for use and formats

= Not required by the computer
language

» Benefits the human

=« Rules and Recommendations

= How to write code: descriptions and @
examples

Version 1.0 26/1 ol

What's in a Coding Standard?

= Typical table of contents

» File formats,comments, header
information

» Spacing and indentation, brace
style

= Names, declarations,
statements

» Classes, methods, fields

Version 1.0 27 / (ol

“Unit Level Testing (white Box)

= Test cases are derived from knowledge of the @
internal structure of the module or unit

m Test cases can be derived to exercise:
- Independent paths within a unit
- Logical decisions on their true and false bounds
- Loops at their boundaries and within their
operational bounds

= Also termed logic-driven or glass box testing

Version 1.0 28 //aw

White Box Testing Methods

a Static Analysis

» Used to identify potential errors such as
unreachable code, uninitialized variables, unused
variables, etc.

= Loop Testing

= To force loops to execute a varied numbers of

iterations.
= Data Flow Testing

= 10 exercise all instructions that define or use a
particular variable.

Version 1.0 29/”‘

Basis Path Testing

s A strategy for generating test cases thatcan @

achieve 100% path (code) coverage for a
single module.

= A way to ensures that all statements within
a module are exercised at least once and all
logical decisions are exercised on their true g
and false sides.

Version 1.0 30/ [0

Basis Path Testing Approach

= Determine the cyclomatic complexityofa @
module

= Determine a basis set of independent paths
through the module

= Preparing test cases that will force execution
of each path in the basis set

Version 1.0 31/(0‘

Cyclomatic Complexity Metric,
V(G)

» Defines the number of independent paths @
through a module/program
= V(G) = number of regions in a decision-to-decision

graph

= V(G) = number of predicates (decisions) + 1

s Determines the maximum number of tests
that must be conducted to ensure that all
statements have been executed at |east
once in a given module/program

Version 1.0 32 /{ o

Example #1

(Simple Compare Program)

BEGIN
1. READ X AND Y (Both defined as signed integers)
2. IFX>Y
3. THEN print “X is bigger”
4, ELSE print “X is not bigger”
5. ENDIF

Version 1.0

33 /04

Example #1 continued
(Skeletal Decision Table)

Test Case | Test Case
Inputs X X1 X5
Y Y, Y,
Decisions X >Y? yes no
Expected |Message "X is yes no
Outputs bigger”
Message “X is no yes
not bigger”
Skeletal means that input values have not been selected ®

for the test case.

What is the significance of having two (2) test cases?

Version 1.0 34 //o(

Example #1 continued
_(Skeletal Decision Table)

= Inputs include variable names (X, Y) andthe @
test case conditions (X > Y?)

= Each case in one column, covering one path
through program
« Test Case 1 covers path 1-2-3-5
» Test Case 2 covers path 1-2-4-5

Version 1.0 35 /(0!

Basis Path Testing
- Example #2

Version 1.0 36
/0l

Basis Path Testing
Example #2

s Complexity:
= Number of independent paths:

s Number of test cases to ensure 100% code
coverage, i.e. every (reachable) statementis @
executed at least once:

Version 1.0 37//0,

Version 1.0 38

(ot

Risk Identification
Process

Risk Analysis
Process

Software
Development

Review Process
Defect Types

Review Procedures
& Plans

Number Major
Defects

Application

Number Work Domain

Risk Mitigation

Proqucts «+— Leadership Process
Reviewed
Risk Classification

inputs Process
* Requirements Interest OUtpu_t
e Plans »| Early Detection of
* Procedures Audit Major Defects
e Standards A Training
* Reports Hardware Corrective
e Code a Action

AS;(;;S Resource

Software Management

Bug Tracking

i t
Software «— Risk Managemen

| Support Processes

Version 1.0 39//0(

_Types of Reviews

s Status Reviews

« Project Issues
« (Schedules, problems, resources)

= Product Issues
= (Progress, problems)
s Peer Reviews

= Product and Process Issues
« (Quality of work products)

Version 1.0 40// o

Status Reviews

= By leader(s) or team member(s)
= For leader(s) or buyer(s)

s Examples
»« Design reviews
« Customer interface meetings
« Development team meeting

Version 1.0 4 // of

Peer Reviews

= The purpose of Peer Reviews is to remove @
defects from the software work products
early and efficiently. An important
corollary effect is to develop a better
understanding of the software work products
and of defects that might be prevented.

» Peer Reviews involve a methodical ®
examination of software work products by the
producers' peers to identify defects and
areas where changes are needed.”

SEICMM, V. 1.1

Version 1.0 42 / o

Commonly Reviewed Work
Products

= Software plans

s Requirements specifications
= Design documents

= Test plans and procedures
n Code

= Procedures and Methods

Version 1.0 43 /{m

Informal Peer Reviews

= Poorly defined review process
» Unspecified reviewer responsibilities

s Used for:
= Low risk products
« Small products
= Products of low complexity

= No Follow-up

Version 1.0 44/(or

Formal Peer Reviews

» Well-defined “visible” review process
» Specified reviewer responsibilities
= Written records

= Used for:
= Risky products
= Large and/or complex products
« Early work products

= Follow-up

Version 1.0 45 / Lot

Formal Peer Review Process

1. Plan 2. Brief 3. Examine
-ldentify risks -Present objectives -ldentify defects
-ldentify reviewers -Get background -Document issues -
-Assemble package -Detailed overview
-Schedule review -Assign roles
-Establish schedule

v
6. Verify 5. Rework 4. Discuss
-Check all changes -Fix\negotiate "majors" -Present defects
-Create summary - -Document differences, -Detect "group'" defects, |
report -Document new
version

Version 1.0 46 ,

I

Defect Categories

= Major defect

» Potential to cause “big” failure or costly to fix
= Seriously impairs maintainability

Fails to satisfy a requirement

Inaccurate statements

Exclusion of vital information

= Minor defect
« Defect that is not a major

Version 1.0 47 / Lo

Types of Defects

= Ambiguous
= Unnecessary
= Untestable

Version 1.0

Missing
Inconsistent
Nonconforming
Incorrect
Unclear

48,0

Issues

= Any issue requiring effort outside the peer ®
review process:
= Problems with the standard
» Problems with the process
« Problems with a specification

Version 1.0 49 /

{ o¢

Why Do Peer Reviews?

» Find Problems in x Detect Defects

the short run Early resulting in:
= Prevent problems = Lower costs
in the long run = Lower risk
= Better technical = Higher quality
work

» Communicate
technical information

s Educate
participants

Version 1.0

50/

[ot

Version 1.0 o1 /,o'

«+— Configuration Audit

SCM Standards —» Identification

SCM Procedures &
Plans

<+— Rekease Process

Output
Reliable
Configuration of

Software Products

Number System
Changes
Over Time « Usage
<+— SCM Methods
N b Application
urmber Domain
Release —_» Change Control
Problems Complaints & Process
Problems Status
Inputs Accounting
e Code Independent —»
* Documents
* Reports Audit
* Test Cases
e Test Results Resource
; Corrective Management
Library System —» Action
Replication
Change <+—— Software &
Control Hardware
Software
] Support Processes
Version 1.0

52/

[01

Configuration Management

The process used during software development @
and maintenance to identify, control, and
report functional and physical configurations
of software products (e.g., source code,
executable code, databases, test scenarios
and data, and documentation).

Version 1.0 >3 /{o/

Components of Configuration
Management

s Identify
s Control

s Status
s Audit

Version 1.0 >4 /1 !

Baseline

= A particular version of a document, software @
release, or system configuration which status
and content are known, which is
reproducible, and which has some particular
and specified designation or reason for
existence. For example, a software baseline
might be a release incorporating some set of @
new features that the previous release did
not have.

Version 1.0 55 /01

Configuration Identification

= The selection of configuration items (CI) ®

m The issuance of numbers and other identifiers
affixed to the CI's and to the technical
documentation that defines the CI's
configuration

a The release of CI's and their associated
configuration documentation

= The establishment of configuration baselines
for CI's

[MIL-STD-973]
Version 1.0 56 /{ st

Configuration Control

= The systematic proposal, justification,
evaluation, coordination, and approval or
disapproval of proposed changes, and the
implementation of all approved changes in
the configuration of a Configuration Item (CI)
after establishment of the baseline(s) for the
CI. ®

[MIL-STD-973]

Version 1.0 57 /{ o

Status Accounting

. The recording and reporting of information ®
needed to manage configuration items (CI)
effectively, including:

= A record of the approved configuration
documentation and identification numbers.

»« The status of proposed changes, deviations, and
waivers to the configuration. ®

= The implementation status of approved changes.

« The configuration of all units of the CI in the
operational inventory.

[MIL-STD-973]
Version 1.0 >8 / [o1

e AUIL

= An independent examination of a work
product or set of work products to assess
compliance with specifications, standards,
contractual agreements, or criteria.

(CMU/SEI-93-TR-25, IEEE-STD-610)

Version 1.0 59 /

[ot

Version 1.0 60 // of

Percent Test
Coverage

Error Type

Number Serious
Defects

Inputs
*» Scope

Test Design ———

Number Tests
Completed

Independent &

Test Cases

. Guerrilla
. Load
. Usability

Planni

Fair

. Boundary

Scheduling

Test Plans —»

ng &

Inspections & Walk
throughs

Test Procedures &
Plans

Regression Tests

Requirements
Code
Risk Information

Test Coverage —»

Bug Tracking

Configuration
Management

Hardware

Corrective
Action

y

Output
Validated Software

Resource

Management

Risk
Management

Support Processes

Version 1.0

61(

(o1

The Goal of Software Testing

= How do the following statements “add
value?”

» Testing is the process of demonstrating that errors
are not present.

= The purpose of testing is to show that a program
performs its intended function correctly.

= Testing is the process of establishing confidence @@
that a program does what it is supposed to do.

= Testing is the process of executing a program with
the intent of finding errors.

Version 1.0 62 /(o(

Software Testing Defined

» Software testing is the
process of executing a
software system:

« In order to identify errors

= T0 verify conformance to
requirements

Version 1.0 63 /(o(

. Defect Density Over Time

Version 1.0 64 /(y

Testing Concepts

m Testing is the process of executing a program @
with the intent of finding error.

= A good test case is one that has a high
probability of detecting an as-yet
undiscovered error.

n A successful test case is one that detects an
as-yet undiscovered error.

» If defects are present, debugging

determines where and why.

Myers, Glenford J., The Art of Software Testing, John Whiley & Sons, Inc.. New York,
1979.

Version 1.0 65 / .

The (Potential) Cost of
Inadequate Testing

s Loss of Life

= Property damage

» Loss of business

= Lost opportunity

= Reduced market share
= Cost of repair

= Any others?

Version 1.0

66//0(

Exhaustive Testing

= Ideally, testing should
exhaustively exercise all
program logical paths by
invoking the system with all
possible input values and
combinations.

= T0 achieve 100 percent
confidence through exhaustive
testing is impossible.

Version 1.0

, §

67/(6(

Exhaustive Testing
Example #1

= Program analyzes string of ten uppercase
alphabetic characters.

1 Exhaustive testing entails 2610 = 1.4 x 1014
combinations

1 Would take 4,500 years at one millisecond per test

Learning Tree International, course number 316, p. 316-1-7

Version 1.0 68 / (ol

Exhaustive Testing
+. Example #2

W = Unit has 10 - 20 statements witha DO loop @

that iterates up to 20 times and 4 nested IF
statements

1 The number of unique logic paths is 1014 = 520 + 519
+... + 51

1 Exhaustive testing would take about 1 billion years ®
at one test case developed per five minutes

Myers, Glenford J., The Art of Software Testing, p. 10

Version 1.0 69 //oc

Exhaustive Testing

Testing can be used to show the presence of
defects, but never their absence!

Version 1.0 70 / [o

Characteristics of a

Good” Software Tester

Version 1.0

Attitude
« What am I going to break today?

Creativity

« Derive those corner cases.
Interpersonal Skills

= A team player.
Tenacity

« Don't give up.

Technical skills

» Product, testing techniques and tools.

7L,

‘Testing Benefits and Costs

= A software development organization can ®
expend between 30 and 40 percent of the
total project effort on testing.*

m Testing of life critical software can cost three
to five times as much as all other software
engineering activities combined.*

» If earlier development phases slip, extend ®
delivery date to enable full testing and
reevaluate costs as appropriate

*Pressman, Roger S., Software Engineering A Practitioner’s Approach, p.
448

Version 1.0 72 // of

Cost of Finding and Fixing
Software Errors

Cost

Time

Version 1.0 73 /(ot

Software Testing - Black Box

= YOU cannhot see into it.

m Test cases can be derived to determine:

» If the software is particularly sensitive to certain
input values

= What data rates and data volume can the
software tolerate

« What effect will specific combinations of data ®
have on the software operation

= Also called data-driven or input/output-driven
testing.

Version 1.0 74 /[o

Equivalence Classes

= If you expect the same result from two tests, ®
you consider them equivalent.
« They all test the same thing
» If one test catches a bug the others should
« If one test does not catch a bug the other
probably won't
= Valid input conditions must be documented in
a specification.

Version 1.0 75 /{O(

Equivalence Partitioning

= How do you pick the input values for a
specific test case?

» Identify an input condition from the SRS, SDD,
etc.

= Partition the input condition into two or more
groups, the equivalence classes.

« Use one test case to represent an equivalence
class.

= Note that there are two types of equivalence
classes, valid and invalid.

Version 1.0 76 / [ol

Equivalence Classes

» Valid equivalence classes represent valid ®
inputs to the software

= Invalid equivalence classes represent all
other inputs (e.g., erroneous input values)

Version 1.0 77 /,m

Equivalence Classes (Guidelines)

= A test of one input value in an equivalence @
class represents the class

= Should yield results that represent
responses to all class members

« For any input from a valid equivalence class the
software should produce a normal, correct
output

« For any input from an invalid equivalence class
the software should generate an error or incorrect
output

Version 1.0 78 /

Ol

. Equivalence Classes (Example #1)

= If an input condition specifies a member of a @
set, identify one valid equivalence class and
one invalid equivalence class

Example: Set = {EG6334 students}
Valid class: {...,Clem, Bobbie, ...}
Invalid class: {...anything else...}

Version 1.0 79 /Io(

. Equivalence Classes (Example #2)

= If 3 must be condition is required, identify ®
one valid equivalence class and one invalid

class

Example: First character in a PIN must be an
numeric

Valid class: {0,1,2,3,4,5,6,7,8,9}

Invalid class: {...not numbers...}

Version 1.0 80 //q(

_ Equivalence Classes (Example #3)

» If an input condition specifies a range of
values select one valid equivalence class
and two invalid class

Example: The item count can be 1 to 999
Valid Class: 1 < itemcount < 999)
Invalid Class: Item count < 1 & item count >
999). ®

Version 1.0 81 /, 4

Equivalence Classes (Example #4)

= If an input condition specifies the number of @
permissible values select one valid
equivalence class and two invalid classes

Example: One through six owners can be
listed for the automobile
Valid Class: (1 <= owners <= 6)
Invalid Class: (Owners = 0 and owners > 6) ®

Version 1.0 82 / ol

= Assumes that the greater number of errors @
tend to occur at the boundaries of the input
domain than at the center.

m [ests special case input conditions around the
edges of equivalence classes with the
probability of invoking seldom-executed
special case code.

=« Coded (a + b >= ¢) rather than (a + b > ¢).
s Refines the input selection process for
equivalence partitioning.
= Generally intuitive to most developers.

Version 1.0 83 / [ol

Boundary Value Analysis
(Guidelines)

= If an input condition specifies a range o
bounded by values a and b, test cases should
be designed with values a and b and with
values just above and just below a and b.

= If an input condition specifies the number of
permissible values, test cases should be
designed to exercise the minimum and ®
maximum numbers and with values just
above and just below the minimum and
maximum.

Version 1.0 84 /4,

Boundary Value Analysis
(Guidelines)

= If an output condition is a table, test cases o
should be designed to create an output report
that produces the maximum and minimum
number of allowable table entries.

s If internal program data structures have
prescribed boundaries (e.g. array with a
defined limit of 100 entries), test cases
should be designed to exercise the data
structure at its boundaries.

Version 1.0 85 /{o(

- (Guidelines)
Input Valid Invalid
Condition | Equivalence | Equivalence
Class Values | Class Values
1 to 999 1and 2 0
998 and 999 1000
1 through6 |(1and 2 0
5and 6 7/

Version 1.0

Cause-Effect Graphing

= Test cases are generated based on
combinations of conditions
« Example: X is negative & Y is positive in the
compare program.
= Equivalence partitioning and boundary value
analysis do not address combinations of
input values.

= All test cases derived from equivalence
classes for input values A and B pass without
error but their product exceeds some limit,
e.g. memory.

Version 1.0 87 / {81

88/10(

?

10NS

Version 1.0

. Quest

Risk Identification

i i Process
Risk Methodolgy R'Spkr;‘:;‘l'é’s's -
Top 10 Risks

Number New
Risk

Risk Management

Software Procedures

Development

Unresolved Application
Risks Domain Risk Mitigation
Number Risks Risk Classification Process

Inputs Resolved Process

P . insight —» OUtplCIt
* Requirements Early Risk
* Test Results . “| Identification &
* Plans Audit Mitigation
¢ Status Reports «— Training g2t
* Regulatory Corrective

Concerns Action

Resource

«<+—— Risk Table Management

Risk Tracking

Software <— Senior Mnagement Review

| Support Processes

(o1

Version 1.0 89 /

Risk Management

= A process of identifying risks and mitigating @
their effects before these risks disrupt
program activities.
» Risk Identification and Analysis
= Assigning Risk Criticality
= Risk Action Planning

Version 1.0 90 //o(

Risk Identification and
|, Analysis

m Technical Risks

= Ambiguous, incomplete requirements
= Environment Risks

« [raining, communication

= Program Constraint Risks
» Costs, schedule

Version 1.0 Mo

_Assigning Risk Criticality

= Impact = Probability
= Negligible = Very high
« Marginal « High
= Critical = Medium
» Catastrophic « Low
« Very low
Version 1.0

92/

(of

Risk Action Planning

S

s Act Immediately
s Watch
n [ransfer

= Delegate
= Strategize

Version 1.0

931“\

uestions?

Version 1.0 94 /1«'(

A Word About
Software Maintenance

= Change in software is
inevitable

s Hardware deteriorates
because of a lack of
maintenance

s Software deteriorates
because of maintenance

Version 1.0 95 /

(Of

What is Software
Maintenance?

= What does it mean to you?
= What does it mean to your organization?
m IS it necessary?

» Are product “versions” defined by
maintenance cycles?

s Who should do maintenance?

Version 1.0 %6 (/0 {

Kinds of Maintenance

= Adaptive

« Environmental (hardware changes)
as Corrective

« FiXing errors

» Perfective
» Making enhancements

Version 1.0 97 /104

Maintenance Cycle

= Understand the change: 15%

m Tracing logic: 25%

= Implementing change: 20%

= Testing and debug: 30%

= Reviewing/Updating documentation: 10%

Percentages represent time in phase.
Note similarity to development life cycle!

Version 1.0 %8 / [0

Version 1.0 .

Further Reading

» Software Engineering Institute, Capability ®
Maturity Model, Peer Reviews

= Software Quality Engineering, Technical
Reviews & Inspections, Version 4.1

= F.A. Ackerman et al, "Software Inspections:
An Effective Verification Process," IEEE
Software, May, 1989.

= M.E. Fagan, "Advances in Software
Inspections,” IEEE Transactions on Software
Engineering, July, 1996.

Version 1.0 100 //0(

Further Reading

= M.E. Fagan, "Design and Code Inspectionsto @
Reduce Errors in Program Development," IBM
Systems Journal, vol. 15, no. 3, 1979.

= D.P. Freedman and G.M. Weinberg,
Handbook of Walkthroughs, Inspections, and
Technical Reviews, Dorset House Publishing,
1990. e

= W.S. Humphrey, A Discipline for Software
Engineering, Addison-Wesley Publishing,
1995.

Version 1.0 101/

lof

