February 20, 2004

EA-03-009

Holders of Licenses for Operating Pressurized Water Reactors as listed in Attachment to the Enclosed Order

SUBJECT: ISSUANCE OF FIRST REVISED NRC ORDER (EA-03-009) ESTABLISHING INTERIM INSPECTION REQUIREMENTS FOR REACTOR PRESSURE VESSEL HEADS AT PRESSURIZED WATER REACTORS

The Nuclear Regulatory Commission (NRC) has issued the enclosed First Revised Order Modifying Licenses that modifies the current license for your facility. This Order supercedes the original NRC Order Modifying Licenses (Effective Immediately), dated February 11, 2003. Any inspection activities performed under the original Order shall be considered effectively meeting the requirements of this Order. This Order applies to all Addressees listed in the Attachment to the enclosed Order.

Since the issuance of the original Order Modifying Licenses, many requests for relaxation have been reviewed and granted by NRC staff. Common issues have emerged in numerous relaxation requests which provide reasonable assurance of the structural integrity of the reactor pressure vessel head (RPV), associated nozzle penetrations, and J-groove welds. As a result, it is appropriate to revise certain inspection aspects of the original Order. This Order addresses revisions to bare metal visual inspections, penetration nozzle inspection coverage, flexibility in combination of non-destructive examination methods, flaw evaluation, and requirements for plants which have replaced their RPV head.

The licensees' actions under the original Order, to date, have provided reasonable assurance of adequate protection of public health and safety for the near-term operating cycles. The long-term resolution of this issue is expected to involve changes to Title 10 of the Code of Federal Regulations (10 CFR) Section 50.55a, "Codes and standards." The development of the NRC regulations will likely benefit from additional operating experience, continuing assessments, and research being conducted by the NRC and the Materials Reliability Program.

The original Order established a clear regulatory framework pending the revision of 10 CFR 50.55a. The enclosed Order continues to impose requirements for pressurized water reactor licensees to inspect RPV heads and related penetration nozzles pending the revision of 10 CFR 50.55a. The requirements of this revised Order are expected to remain in place until superceded by changes to 10 CFR 50.55a.
The enclosed Order requires responses and actions within specified time frames. Please contact your Licensing Project Manager regarding any issues related to the requirements in the enclosed Order.

The enclosed Order has been forwarded to the Office of the Federal Register for publication.

Sincerely,

/RA/

R. William Borchardt, Acting Director
Office of Nuclear Reactor Regulation

Enclosure: Order

cc w/encl: See next page*

* For a complete listing of all parties who received courtesy copies, see ADAMS Accession number ML040410492. In order to reduce size and weight of documents mailed, the enclosed plant mailing list is that associated with the specific facility noted.
The enclosed Order requires responses and actions within specified time frames. Please contact your Licensing Project Manager regarding any issues related to the requirements in the enclosed Order.

The enclosed Order has been forwarded to the Office of the Federal Register for publication.

Sincerely,

/RB/

R. William Borchardt, Acting Director
Office of Nuclear Reactor Regulation

Enclosure: Order

cc w/encl: See next page*

* For a complete listing of all parties who received courtesy copies, see ADAMS Accession number ML040410492. In order to reduce size and weight of documents mailed, the enclosed plant mailing list is that associated with the specific facility noted.

DISTRIBUTION: See attached page

<table>
<thead>
<tr>
<th>OFFICE</th>
<th>DLPM/PM</th>
<th>DLPM/LA</th>
<th>OE*</th>
<th>OGC</th>
</tr>
</thead>
<tbody>
<tr>
<td>NAME</td>
<td>SBloom</td>
<td>CHawes</td>
<td>JLuehman</td>
<td>GML for DDamby</td>
</tr>
<tr>
<td>DATE</td>
<td>1/22/04</td>
<td>1/23/04</td>
<td>1/27/04</td>
<td>2/5/04</td>
</tr>
<tr>
<td>OFFICE</td>
<td>DE/D*</td>
<td>ADPT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NAME</td>
<td>RBBarrett</td>
<td>BSheron</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DATE</td>
<td>1/7/04</td>
<td>2/13/04</td>
<td></td>
<td>2/20/04</td>
</tr>
</tbody>
</table>

OFFICIAL AGENCY RECORD
Letter to Holders of Licenses for Operating Pressurized Water Reactors as listed in Attachment to the Enclosed Order EA-03-009

Dated: February 20, 2004

DISTRIBUTION:
PUBLIC
DLPM Reading File
RidsNrrOd (JDyer)
RidsEdoMailCenter (WKane/SRosenberg)
RidsOeMailCenter (FCongel)
RidsNrrAdpt (BSheron)
RidsNrrAdip (RBorchart)
RidsNrrDlpm (LMarsh/ELeeds)
RidsNrrDe (RBarrett)
RidsNrrDeEmcb (BBateman)
RidsOgcMailCenter
RidsAcrsAcnwMailCenter
RidsSecyMailCenter
RidsNrrPMSBloom
S. Burnell (SRB3)
G. Hill
FIRST REVISED ORDER MODIFYING LICENSES

I.

The Licensees identified in the Attachment to this Order hold licenses issued by the Nuclear Regulatory Commission (NRC or Commission) authorizing operation of pressurized water reactor (PWR) nuclear power plants in accordance with the Atomic Energy Act of 1954 and Title 10 of the Code of Federal Regulations (10 CFR) Part 50.

II.

The reactor pressure vessel (RPV) heads of PWRs have penetrations for control rod drive mechanisms and instrumentation systems. Nickel-based alloys (e.g., Alloy 600) are used in the penetration nozzles and related welds. Primary coolant water and the operating conditions of PWR plants can cause cracking of these nickel-based alloys through a process called primary water stress corrosion cracking (PWSCC). The susceptibility of RPV head penetrations to PWSCC appears to be strongly linked to the operating time and temperature of the RPV head. Problems related to PWSCC have, therefore, increased as plants have operated for longer periods of time. Inspections of the RPV head nozzles at the Oconee Nuclear Station, Units 2 and 3 (Oconee), in early 2001 identified circumferential cracking of the nozzles above the J-groove weld, which joins the nozzle to the RPV head. Circumferential
cracking above the J-groove weld is a safety concern because of the possibility of a nozzle ejection if the circumferential cracking is not detected and repaired.

Section XI of the American Society of Mechanical Engineers Boiler and Pressure Vessel Code (ASME Code), which is incorporated into NRC regulations by 10 CFR 50.55a, “Codes and standards,” currently specifies that inspections of the RPV head need only include a visual check for leakage on the insulated surface or surrounding area. These inspections may not detect small amounts of leakage from an RPV head penetration with cracks extending through the nozzle or the J-groove weld. Such leakage can create an environment that leads to circumferential cracks in RPV head penetration nozzles or corrosion of the RPV head. In response to the inspection findings at Oconee and because existing requirements in the ASME Code and NRC regulations do not adequately address inspections of RPV head penetrations for degradation due to PWSCC, the NRC issued Bulletin 2001-01, “Circumferential Cracking of Reactor Pressure Vessel Head Penetration Nozzles,” dated August 3, 2001. In response to the bulletin, PWR licensees provided their plans for inspecting RPV head penetrations and the outside surface of the heads to determine whether any nozzles were leaking.

In early March 2002, while conducting inspections of RPV head penetrations prompted by Bulletin 2001-01, the licensee for the Davis-Besse Nuclear Power Station (Davis-Besse) identified a cavity in the RPV head near the top of the dome. The cavity was next to a leaking nozzle with a through-wall axial crack and was in an area of the RPV head that the licensee had left covered with boric acid deposits for several years. On March 18, 2002, the NRC issued Bulletin 2002-01, “Reactor Pressure Vessel Head Degradation and Reactor Coolant Pressure Boundary Integrity,” which requested PWR licensees to provide information on their RPV head inspection and maintenance programs, the material condition of their reactor vessel heads, and their boric acid inspection programs. In their responses, the licensees provided information about their boric acid inspection programs and their inspections and assessments to ensure
that their respective plant did not have reactor vessel head degradation like that identified at Davis-Besse.

The experience at Davis-Besse and the discovery of leaks and nozzle cracking at other plants reinforced the need for more effective inspections of RPV head penetration nozzles. The absence of an effective inspection regime could, over time, result in unacceptable circumferential cracks in RPV head penetration nozzles or in the degradation of the RPV head by corrosion. These degradation mechanisms increase the probability of a more significant loss of reactor coolant pressure boundary through ejection of a nozzle or other rupture of the RPV head. The NRC issued Bulletin 2002-02, “Reactor Pressure Vessel Head and Vessel Head Penetration Nozzle Inspection Programs,” dated August 9, 2002, requesting that licensees provide information about their inspection programs and any plans to supplement existing visual inspections with additional measures (e.g., volumetric and surface examinations). Licensees have responded to Bulletin 2002-02 with descriptions of their inspection plans for at least the first refueling outage following the issuance of Bulletin 2002-02 or with a schedule to submit such descriptions before the next refueling outage. Many of the licensees’ responses to Bulletin 2002-02 did not describe long-term inspection plans. Instead the licensees stated that they would follow guidance being developed by the industry-sponsored Materials Reliability Program.

Inspections performed at several PWR plants in late 2002 found leakage and cracks in nozzles or J-groove welds that have required repairs or prompted the replacement of the RPV head. In addition, as discussed in NRC Information Notice 2003-02, “Recent Experience with Reactor Coolant System Leakage and Boric Acid Corrosion,” issued January 16, 2003, leakage has recently occurred at some plants from connections above the RPV head and has required additional assessments and inspections to ensure that the leakage has not caused significant degradation of RPV heads.
The NRC issued an Order Modifying Licenses (Effective Immediately) (EA-03-009), dated February 11, 2003, (Order) to establish required inspections of RPV heads and associated penetration nozzles at PWRs. These requirements were necessary to provide reasonable assurance that plant operations did not pose an undue risk to the public health and safety. The requirements of that Order were expected to remain in effect pending long-term resolution of RPV head penetration inspection requirements, which is expected to involve changes to the NRC regulations, specifically 10 CFR 50.55a. Research being conducted by the NRC and industry is increasing our understanding of material performance, improving inspection capabilities, and supporting assessments of the risks to public health and safety associated with potential degradation of the RPV head and associated penetration nozzles. These research activities are important to the long-term development of revisions to the NRC regulations.

III.

Revising the NRC regulations will take several years. The licensees’ actions to date in response to the NRC bulletins and the February 11, 2003, Order have provided reasonable assurance of adequate protection of public health and safety. That Order required inspections of RPV heads and associated penetration nozzles at PWRs which were necessary to provide reasonable assurance that plant operations do not pose an undue risk to the public health and safety.

Since the issuance of that Order, the NRC staff has reviewed and granted many requests for relaxation thereof. The arguments in the relaxation requests provide reasonable assurance of the continued structural integrity of the RPV head, and the associated nozzle penetrations and J-groove welds. As a result, it is appropriate to revise that Order with respect to bare metal visual inspections, penetration nozzle inspection coverage, flexibility in combining
nondestructive examination (NDE) methods, flaw evaluation, and requirements for plants which have replaced their reactor pressure vessel head.

It is appropriate and necessary to the protection of public health and safety to establish a clear regulatory framework, pending the incorporation of revised inspection requirements into 10 CFR 50.55a. To provide reasonable assurance of adequate protection of public health and safety for the interim period, all PWR Licenses identified in the Attachment to this Order shall be modified to include the inspection requirements for RPV heads and associated penetration nozzles identified in Section IV of this Order. The NRC requirements imposed by this Order are based on the body of evidence available through December 2003. Continuing research and operating experience may support future changes to the requirements imposed through this Order.

IV.

Accordingly, pursuant to Sections 103, 104b, 161b, 161i, 161o, 182, and 186 of the Atomic Energy Act of 1954, as amended, and the Commission’s regulations in 10 CFR 2.202 and 10 CFR Part 50, IT IS HEREBY ORDERED THAT ALL LICENSES IDENTIFIED IN THE ATTACHMENT TO THIS ORDER ARE MODIFIED AS FOLLOWS:

A. To determine the required inspection(s) for each refueling outage at their facility, all Licensees shall calculate the susceptibility category of each RPV head to PWSCC-related degradation, as represented by a value of effective degradation years (EDY) for the end of each operating cycle, using the following equation:
\[\text{EDY} = \sum_{j=1}^{n} \left\{ \Delta \text{EFPY}_j \exp \left[- \frac{Q_i}{R} \left(\frac{1}{T_{\text{head, } j}} - \frac{1}{T_{\text{ref}}} \right) \right] \right\} \]

where

- \(\text{EDY} \) = total effective degradation years, normalized to a reference temperature of 600 °F
- \(\Delta \text{EFPY}_j \) = operating time in years at \(T_{\text{head, } j} \)
- \(Q_i \) = activation energy for crack initiation (50 kcal/mole)
- \(R \) = universal gas constant (1.103 \times 10^{-3} \text{ kcal/mole °R})
- \(T_{\text{head, } j} \) = 100 percent power head temperature during time period \(j \)
 \(\left(\circ R = \circ F + 459.67 \right) \)
- \(T_{\text{ref}} \) = reference temperature (600 °F = 1059.67 °R)
- \(n \) = number of different head temperatures during plant history

This calculation shall be performed with best estimate values for each parameter at the end of each operating cycle for the RPV head that will be in service during the subsequent operating cycle. The calculated value of EDY shall determine the susceptibility category and the appropriate inspection for the RPV head during each refueling outage.

B. All Licensees shall use the following criteria to assign the RPV head at their facility to the appropriate PWSCC susceptibility category:
This Order imposes additional inspection requirements. Licensees are required to address any findings from these inspections (i.e., perform analyses and repairs) in accordance with existing requirements in the ASME Code and 10 CFR 50.55a. The NRC has issued guidance to address flaw evaluations for RPV head penetration nozzles (see letter dated April 11, 2003, from R. Barrett, NRC, to A. Marion, Nuclear Energy Institute, ADAMS Accession No. ML030980322) and will, as necessary, issue revised guidance pending the updating of the NRC regulations.

The requirements of this Order are generally consistent with inspection plans that the NRC staff accepted in letters to some Licensees regarding their responses to Bulletin 2002-02. If the NRC staff has already accepted a specific variation from the requirements of this Order (e.g., inspections to less than 2 inches above the J-groove weld), the Licensee may continue with the previously accepted inspection plan for the first refueling outage after February 11, 2003, provided that in its response to this Order the Licensee identifies all discrepancies between the requirements of this Order and the previously accepted inspection plan. Licensees proposing to deviate from the requirements of this Order for subsequent refueling outages shall seek relaxation of this Order pursuant to the procedure specified at the end of this section.

C. All Licensees shall perform inspections of the RPV head using the following frequencies and techniques:

<table>
<thead>
<tr>
<th>High</th>
<th>(1) Plants with a calculated value of EDY greater than 12, OR (2) Plants with an RPV head that has experienced cracking in a penetration nozzle or J-groove weld due to PWSCC.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moderate</td>
<td>Plants with a calculated value of EDY less than or equal to 12 and greater than or equal to 8 AND no previous inspection findings requiring classification as High.</td>
</tr>
<tr>
<td>Low</td>
<td>Plants with a calculated value of EDY less than 8 AND no previous inspection findings requiring classification as High.</td>
</tr>
<tr>
<td>Replaced</td>
<td>Plants with a replaced RPV head AND with a calculated value of EDY less than 8 AND no previous inspection findings requiring classification as High.</td>
</tr>
</tbody>
</table>

1 This Order imposes additional inspection requirements. Licensees are required to address any findings from these inspections (i.e., perform analyses and repairs) in accordance with existing requirements in the ASME Code and 10 CFR 50.55a. The NRC has issued guidance to address flaw evaluations for RPV head penetration nozzles (see letter dated April 11, 2003, from R. Barrett, NRC, to A. Marion, Nuclear Energy Institute, ADAMS Accession No. ML030980322) and will, as necessary, issue revised guidance pending the updating of the NRC regulations.

2 The requirements of this Order are generally consistent with inspection plans that the NRC staff accepted in letters to some Licensees regarding their responses to Bulletin 2002-02. If the NRC staff has already accepted a specific variation from the requirements of this Order (e.g., inspections to less than 2 inches above the J-groove weld), the Licensee may continue with the previously accepted inspection plan for the first refueling outage after February 11, 2003, provided that in its response to this Order the Licensee identifies all discrepancies between the requirements of this Order and the previously accepted inspection plan. Licensees proposing to deviate from the requirements of this Order for subsequent refueling outages shall seek relaxation of this Order pursuant to the procedure specified at the end of this section.
(1) For those plants in the High category, RPV head and head penetration nozzle inspections shall be performed using the techniques of paragraph IV.C.(5)(a) and paragraph IV.C.(5)(b) every refueling outage.³

(2) For those plants in the Moderate category, RPV head and head penetration inspections shall be performed such that at least the requirements of paragraph IV.C.(5)(a) or paragraph IV.C.(5)(b) are performed each refueling outage. In addition the requirements of paragraph IV.C.(5)(a) and paragraph IV.C.(5)(b) shall each be performed at least once over the course of every 2 refueling outages.

(3) For those plants in the Low category, RPV head and head penetration nozzle inspections shall be performed as follows. An inspection meeting the requirements of paragraph IV.C.(5)(a) must be completed at least every third refueling outage or every 5 years, whichever occurs first. If an inspection meeting the requirements of paragraph IV.C.(5)(a) was not performed during the last refueling outage prior to February 11, 2003, the Licensee must complete an inspection meeting the requirements of paragraph IV.C.(5)(a) within the first 2 refueling outages after February 11, 2003. The requirements of paragraph IV.C.(5)(b) must be completed at least once prior to February 11, 2008, and thereafter, at least every 4 refueling outages or every 7 years, whichever occurs first.

³ For repaired RPV head penetration nozzles that establish a new pressure boundary, the ultrasonic testing inspection shall include the weld and at least 1-inch above the weld in the nozzle base material. For RPV head penetration nozzles or J-groove welds repaired using a weld overlay, the overlay shall be examined by either ultrasonic, eddy current, or dye penetrant testing in addition to the examinations required by paragraph IV.C.(5)(a) and paragraph IV.(C).(5)(b).
(4) For those plants in the Replaced category, no RPV head and head penetration nozzle inspections shall be required during the outage for which the RPV head was replaced. Thereafter, until the replacement RPV head in accordance with paragraph IV.A reaches 8 EDY, RPV head and head penetration nozzle inspections shall be performed as follows. An inspection meeting the requirements of paragraph IV.C.(5)(a) must be completed at least every third refueling outage or every 5 years, whichever occurs first. The requirements of paragraph IV.C.(5)(b) must be completed at least every 4 refueling outages or every 7 years, whichever occurs first.

(5) Inspections of the RPV head shall be performed as directed in paragraphs IV.C.(1), IV.C.(2), IV.C.(3) and IV.C.(4) using the following techniques:

(a) Bare metal visual examination of 100 percent of the RPV head surface (including 360° around each RPV head penetration nozzle). For RPV heads with the surface obscured by support structure interferences which are located at RPV head elevations downslope from the outermost RPV head penetration, a bare metal visual inspection of no less than 95 percent of the RPV head surface may be performed provided that the examination shall include those areas of the RPV head upslope and downslope from the support structure interference to identify any evidence of boron or corrosive product. Should any evidence of boron or corrosive product be identified, the licensee shall examine the RPV head surface under the support structure to ensure that the RPV head is not degraded.

(b) For each penetration, perform a nonvisual NDE in accordance with either (i), (ii) or (iii):
(i) Ultrasonic testing of the RPV head penetration nozzle volume (i.e., nozzle base material) from 2 inches above the highest point of the root of the J-groove weld (on a horizontal plane perpendicular to the nozzle axis) to 2 inches below the lowest point at the toe of the J-groove weld on a horizontal plane perpendicular to the nozzle axis (or the bottom of the nozzle if less than 2 inches [see Figure IV-1]); OR from 2 inches above the highest point of the root of the J-groove weld (on a horizontal plane perpendicular to the nozzle axis) to 1.0-inch below the lowest point at the toe of the J-groove weld (on a horizontal plane perpendicular to the nozzle axis) and including all RPV head penetration nozzle surfaces below the J-groove weld that have an operating stress level (including all residual and normal operation stresses) of 20 ksi tension and greater (see Figure IV-2). In addition, an assessment shall be made to determine if leakage has occurred into the annulus between the RPV head penetration nozzle and the RPV head low-alloy steel.

(ii) Eddy current testing or dye penetrant testing of the entire wetted surface of the J-groove weld and the wetted surface of the RPV head penetration nozzle base material from at least 2 inches above the highest point of the root of the J-groove weld (on a horizontal plane perpendicular to the nozzle axis) to 2 inches below the lowest point at the toe of the J-groove weld on a horizontal plane perpendicular to the nozzle axis (or the bottom of the nozzle if less than 2 inches [see Figure IV-3]); OR from
2 inches above the highest point of the root of the J-groove weld (on a horizontal plane perpendicular to the nozzle axis) to 1.0-inch below the lowest point at the toe of the J-groove weld (on a horizontal plane perpendicular to the nozzle axis) and including all RPV head penetration nozzle surfaces below the J-groove weld that have an operating stress level (including all residual and normal operation stresses) of 20 ksi tension and greater (see Figure IV-4).

(iii) A combination of (i) and (ii) to cover equivalent volumes, surfaces and leak paths of the RPV head penetration nozzle base material and J-groove weld as described in (i) and (ii). Substitution of a portion of a volumetric exam on a nozzle with a surface examination may be performed with the following requirements:

1. On nozzle material below the J-groove weld, both the outside diameter and inside diameter surfaces of the nozzle must be examined.

2. On nozzle material above the J-groove weld, surface examination of the inside diameter surface of the nozzle is permitted provided a surface examination of the J-groove weld is also performed.
Figure IV-1: Inspection Area Using Ultrasonic Inspection Technique Without Stress Analysis
(Nozzle area in black to be volumetrically inspected.)
Figure IV-2: Inspection Area Using Ultrasonic Inspection Technique With Stress Analysis
(Nozzle area in black to be volumetrically inspected. Nozzle area in grey requires volumetric inspection only if applied stress is ≥20 ksi in that specific area.)
Figure IV-3: Required Wetted Surface Inspection Area Without Stress Analysis (The penetration nozzle and J-groove weld surface areas in black require surface inspection.)
Figure IV-4: Required Wetted Surface Inspection Area With Stress Analysis (The penetration nozzle and J-groove weld surface areas in black require surface inspection. Nozzle area in grey requires surface inspection only if applied stress is \(\geq 20 \) ksi in that specific area.)
D. During each refueling outage, visual inspections shall be performed to identify potential boric acid leaks from pressure-retaining components above the RPV head. For any plant with boron deposits on the surface of the RPV head or related insulation, discovered either during the inspections required by this Order or otherwise and regardless of the source of the deposit, before returning the plant to operation the Licensee shall perform inspections of the affected RPV head surface and penetrations appropriate to the conditions found to verify the integrity of the affected area and penetrations.

E. For each inspection required in Paragraph C, the Licensee shall submit a report detailing the inspection results within sixty (60) days after returning the plant to operation. For each inspection required in Paragraph D, the Licensee shall submit a report detailing the inspection results within sixty (60) days after returning the plant to operation if a leak or boron deposit was found during the inspection.

F. In the response required by Section V of this Order, all Licensees shall notify the Commission if (1) they are unable to comply with any of the requirements of Section IV or (2) compliance with any of the requirements of Section IV is unnecessary. Licensees proposing to deviate from the requirements of this Order shall seek relaxation of this Order pursuant to the procedure specified below.

Project Directors or higher management positions in the Division of Licensing Project Management of the Office of Nuclear Reactor Regulation may, in writing, relax or rescind any of the above conditions upon demonstration by the Licensee of good cause. A request for relaxation regarding inspection of specific nozzles shall also address the following criteria:

1. The proposed alternative(s) for inspection of specific nozzles will provide an acceptable level of quality and safety, or
(2) compliance with this Order for specific nozzles would result in hardship or unusual difficulty without a compensating increase in the level of quality and safety.

Requests for relaxation associated with specific penetration nozzles will be evaluated by the NRC staff using its procedure for evaluating proposed alternatives to the ASME Code in accordance with 10 CFR 50.55a(a)(3).

V.

In accordance with 10 CFR 2.202, the Licensee must, and any other person adversely affected by this Order may, submit an answer to this Order, and may request a hearing on this Order, within 20 days of the date of this Order. Where good cause is shown, consideration will be given to extending the time to request a hearing. A request for extension of time in which to submit an answer or request a hearing must be made in writing to the Director, Office of Nuclear Reactor Regulation, Nuclear Regulatory Commission, Washington, DC 20555, and must include a statement of good cause for the extension. The answer may consent to this Order. Unless the answer consents to this Order, the answer shall, in writing and under oath or affirmation, specifically set forth the matters of fact and law on which the Licensee or other person adversely affected relies and the reasons as to why the Order should not have been issued. Any answer or request for a hearing shall be submitted to the Secretary, Office of the Secretary of the Commission, Nuclear Regulatory Commission, ATTN: Rulemakings and Adjudications Staff, Washington, DC 20555. Copies shall also be sent to the Director, Office of Nuclear Reactor Regulation, U. S. Nuclear Regulatory Commission, Washington, DC 20555; to the Assistant General Counsel for Materials Litigation and Enforcement at the same address; to the Document Control Desk at the same address; to the Regional Administrator for NRC Region I, II, III, or IV, as appropriate for the specific plant; and to the Licensee if the answer or
hearing request is by a person other than the Licensee. Because of possible disruptions in delivery of mail to United States Government offices, it is requested that answers and requests for hearing be transmitted to the Secretary of the Commission either by means of facsimile transmission to 301-415-1101 or by e-mail to hearingdocket@nrc.gov and also to the Assistant General Counsel for Materials Litigation and Enforcement either by means of facsimile transmission to 301-415-3725 or by e-mail to OGCMailCenter@nrc.gov. If a person other than the Licensee requests a hearing, that person shall set forth with particularity the manner in which his interest is adversely affected by this Order and shall address the criteria set forth in 10 CFR 2.714(d).

If a hearing is requested by the Licensee or a person whose interest is adversely affected, the Commission will issue an Order designating the time and place of any hearing. If a hearing is held, the issue to be considered at such hearing shall be whether this Order should be sustained.

In the absence of any request for a hearing, or written approval of an extension of time in which to request a hearing, the provisions specified in Section IV above shall be effective and final 20 days from the date of this Order without further order or proceedings. If an extension of time for requesting a hearing has been approved, the provisions specified in Section IV shall be final when the extension expires if a hearing request has not been received.

FOR THE NUCLEAR REGULATORY COMMISSION

/R. William Borchardt, Acting Director
Office of Nuclear Reactor Regulation

Dated this 20th day of February, 2004.
<table>
<thead>
<tr>
<th>Facilities</th>
<th>Addressee</th>
</tr>
</thead>
</table>
| Beaver Valley Power Station, Units 1 and 2
Docket Nos. 50-334 and 50-412
License Nos. DPR-66 and NPF-73 | Mr. L., William Pearce
Vice President
FirstEnergy Nuclear Operating Company
Beaver Valley Power Station
Post Office Box 4
Shippingport, PA 15077 |
| Calvert Cliffs Nuclear Power Plant,
Units 1 and 2
Docket Nos. 50-317 and 50-318
License Nos. DPR-53 and DPR-69 | Mr. George Vanderheyden, Vice President
Calvert Cliffs Nuclear Power Plant, Inc.
Calvert Cliffs Nuclear Power Plant
1650 Calvert Cliffs Parkway
Lusby, MD 20657-4702 |
| R. E. Ginna Nuclear Power Plant
Docket No. 50-244
License No. DPR-18 | Dr. Robert C. Mecredy
Vice President, Nuclear Operations
Rochester Gas and Electric Corporation
89 East Avenue
Rochester, NY 14649 |
| Indian Point Nuclear Generating,
Units 2 and 3
Docket Nos. 50-247 and 50-286
License Nos. DPR-26 and DPR-64 | Mr. Michael R. Kansler
President
Entergy Nuclear Operations, Inc.
440 Hamilton Avenue
White Plains, NY 10601 |
| Millstone Power Station, Units 2 and 3
Docket Nos. 50-336 and 50-423
License Nos. DPR-65 and NPF-49 | Mr. David A. Christian
Sr. Vice President and Chief Nuclear Officer
Dominion Nuclear Connecticut, Inc.
Innsbrook Technical Center
5000 Dominion Boulevard
Glen Allen, VA 23060-6711 |
| Salem Nuclear Generating Station,
Units 1 and 2
Docket Nos. 50-272 and 50-311
License Nos. DPR-70 and DPR-75 | Mr. Roy A. Anderson
President & Chief Nuclear Officer
PSEG Nuclear LLC - X04
Post Office Box 236
Hancocks Bridge, NJ 08038 |
| Seabrook Station, Unit 1
Docket No. 50-443
License No. NPF-86 | Mr. Mark E. Warner, Site Vice President
c/o James M. Peschel
Seabrook Station
PO Box 300
Seabrook, NH 03874 |
| Three Mile Island Nuclear Station, Unit 1
Docket No. 50-289
License No. DPR-50 | Mr. Christopher M. Crane, President and
Chief Executive Officer
AmerGen Energy Company, LLC
4300 Winfield Road
Warrenville, IL 60555 |
<table>
<thead>
<tr>
<th>Plant Name</th>
<th>Person Name</th>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>Catawba Nuclear Station, Units 1 and 2</td>
<td>Mr. Dhiaa Jamil</td>
<td>Site Vice President</td>
</tr>
<tr>
<td>Docket Nos. 50-413 and 50-414</td>
<td>Duke Energy Corporation</td>
<td>4800 Concord Road York, South Carolina 29745-9635</td>
</tr>
<tr>
<td>License Nos. NPF-35 and NPF-52</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crystal River Nuclear Power Plant</td>
<td>Mr. Dale E. Young, Vice President</td>
<td>Crystal River Nuclear Plant (NA1B)</td>
</tr>
<tr>
<td>Docket No. 50-302</td>
<td>Duke Energy Corporation</td>
<td>15760 W. Power Line Street Crystal River, Florida 34428-6708</td>
</tr>
<tr>
<td>License No. DPR-72</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Joseph M. Farley Nuclear Plant, Units 1 and 2</td>
<td>Mr. L. M. Stinson</td>
<td>Vice President - Farley Project</td>
</tr>
<tr>
<td>Docket Nos. 50-348 and 50-364</td>
<td>Southern Nuclear Operating Company, Inc.</td>
<td>Post Office Box 1295 Birmingham, Alabama 35201-1295</td>
</tr>
<tr>
<td>License Nos. NPF-2 and NPF-8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shearon Harris Nuclear Power Plant, Unit 1</td>
<td>Mr. James Scarola, Vice President</td>
<td>Shearon Harris Nuclear Power Plant Carolina Power & Light Company</td>
</tr>
<tr>
<td>Docket No. 50-400</td>
<td></td>
<td></td>
</tr>
<tr>
<td>License No. NPF-63</td>
<td></td>
<td></td>
</tr>
<tr>
<td>William B. McGuire Nuclear Station, Units 1 and 2</td>
<td>Mr. G. R. Peterson</td>
<td>Vice President, McGuire Site</td>
</tr>
<tr>
<td>Docket Nos. 50-369 and 50-370</td>
<td>Duke Energy Corporation</td>
<td>12700 Hagers Ferry Road Huntersville, NC 28078-8985</td>
</tr>
<tr>
<td>License Nos. NPF-9 and NPF-17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>North Anna Power Station, Units 1 and 2</td>
<td>Mr. David A. Christian</td>
<td>Senior Vice President - Nuclear</td>
</tr>
<tr>
<td>Docket Nos. 50-338 and 50-339</td>
<td>Virginia Electric and Power Company</td>
<td>5000 Dominion Blvd. Glen Allen, Virginia 23060</td>
</tr>
<tr>
<td>License Nos. NPF-4 and NPF-7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Surry Power Station, Units 1 and 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Docket Nos. 50-280 and 50-281</td>
<td></td>
<td></td>
</tr>
<tr>
<td>License Nos. DPR-32 and DPR-37</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plant Name</td>
<td>License Numbers</td>
<td>Contact Person</td>
</tr>
<tr>
<td>--</td>
<td>-----------------------</td>
<td>---</td>
</tr>
</tbody>
</table>
| Oconee Nuclear Station, Units 1, 2 and 3 | Docket Nos. 50-269, 50-270 and 50-287 | Mr. Ronald A. Jones
 License Nos. DPR-38, DPR-47 and DPR-55 | Vice President, Oconee Site
 Duke Energy Corporation
 7800 Rochester Highway
 Seneca, SC 29672 |
| H. B. Robinson Steam Electric Plant, Unit 2 | Docket No. 50-261 | Mr. J. W. Moyer, Vice President
 License No. DPR-23 | Carolina Power & Light Company
 H. B. Robinson Steam Electric Plant
 Unit No. 2
 3581 West Entrance Road
 Hartville, South Carolina 29550 |
| St. Lucie Nuclear Plant, Units 1 and 2 | Docket Nos. 50-335 and 50-389 | Mr. J. A. Stall
 License Nos. DPR-67 and NPF-16 | Senior Vice President, Nuclear and
 Chief Nuclear Officer
 Florida Power and Light Company
 P.O. Box 14000
 Juno Beach, Florida 33408-0420 |
| Turkey Point Nuclear Generating Station, Units 3 and 4
 Docket Nos. 50-250 and 50-251
 License Nos. DPR-31 and DPR-41 | Mr. J. A. Scalise
 Chief Nuclear Officer and
 Executive Vice President
 Tennessee Valley Authority
 6A Lookout Place
 1101 Market Street
 Chattanooga, Tennessee 37402-2801 |
| Watts Bar Nuclear Plant, Unit 1 | Docket No. 50-390 |
 License No. NPF-90 |
| Virgil C. Summer Nuclear Station, Unit 1 | Docket No. 50-395 | Mr. Stephen A. Byrne
 License No. NPF-12 | Senior Vice President, Nuclear Operations
 South Carolina Electric & Gas Company
 Virgil C. Summer Nuclear Station
 Post Office Box 88
 Jenkinsville, South Carolina 29065 |
| Vogtle Electric Generating Plant, Units 1 and 2 | Docket Nos. 50-424 and 50-425 | Mr. J. T. Gasser
 License Nos. NPF-68 and NPF-81 | Vice President - Vogtle Project
 Southern Nuclear Operating
 Company, Inc.
 Post Office Box 1295
 Birmingham, Alabama 35201-1295 |
<table>
<thead>
<tr>
<th>Location</th>
<th>License Details</th>
<th>Contact Person</th>
</tr>
</thead>
<tbody>
<tr>
<td>Braidwood Station, Units 1 and 2</td>
<td>Docket Nos. STN 50-456 and STN 50-457 License Nos. NPF-72 and NPF-77</td>
<td>Mr. Christopher M. Crane, President Exelon Nuclear Exelon Generation Company, LLC 4300 Winfield Road Warrenton, IL 60555</td>
</tr>
<tr>
<td>Byron Station, Units 1 and 2</td>
<td>Docket Nos. STN 50-454 and STN 50-455 License Nos. NPF-37 and NPF-66</td>
<td>Mr. A. Christopher Bakken III, Senior Vice President and Chief Nuclear Officer Indiana Michigan Power Company Nuclear Generation Group 500 Circle Drive Buchanan, MI 49107</td>
</tr>
<tr>
<td>Donald C. Cook Nuclear Plant, Units 1 and 2</td>
<td>Docket Nos. 50-315 and 50-316 License Nos. DPR-58 and DPR-74</td>
<td>Mr. Lew W. Myers Chief Operating Officer FirstEnergy Nuclear Operating Company Davis-Besse Nuclear Power Station 5501 North State Route 2 Oak Harbor, OH 43449-9760</td>
</tr>
<tr>
<td>Davis-Besse Nuclear Power Station, Unit 1</td>
<td>Docket No. 50-346 License No. NPF-3</td>
<td>Mr. Thomas Coutu Site Vice President Kewaunee Nuclear Power Plant Nuclear Management Company, LLC N490 State Highway 42 Kewaunee, WI 54216-9511</td>
</tr>
<tr>
<td>Kewaunee Nuclear Power Plant</td>
<td>Docket No. 50-305 License No. DPR-43</td>
<td>Mr. Daniel J. Malone Site Vice President Palisades Nuclear Plant 27780 Blue Star Memorial Highway Covert, MI 49043</td>
</tr>
<tr>
<td>Palisades Plant</td>
<td>Docket No. 50-255 License No. DPR-20</td>
<td>Mr. Gary Van Middlesworth Acting Site Vice President Point Beach Nuclear Plant Nuclear Management Company, LLC 6610 Nuclear Road Two Rivers, WI 54241-9516</td>
</tr>
<tr>
<td>Point Beach Nuclear Plant, Units 1 and 2</td>
<td>Docket Nos. 50-266 and 50-301 License Nos. DPR-24 and DPR-27</td>
<td>Mr. Joseph M. Solymossy Site Vice President Prairie Island Nuclear Generating Plant Nuclear Management Company, LLC 1717 Wakonade Drive East Welch, MN 55089</td>
</tr>
<tr>
<td>Plant Name and Units</td>
<td>License Nos.</td>
<td>Contact Person</td>
</tr>
<tr>
<td>----------------------</td>
<td>--------------</td>
<td>----------------</td>
</tr>
<tr>
<td>Arkansas Nuclear One, Units 1 and 2</td>
<td>DPR-51 and NPF-6</td>
<td>Mr. Jeffrey S. Forbes</td>
</tr>
<tr>
<td>Callaway Plant, Unit 1</td>
<td>NPF-30</td>
<td>Mr. Garry L. Randolph</td>
</tr>
<tr>
<td>Comanche Peak Steam Electric Station, Units 1 and 2</td>
<td>NPF-87 and NPF-89</td>
<td>Mr. Michael R. Blevins</td>
</tr>
<tr>
<td>Diablo Canyon Power Plant, Units 1 and 2</td>
<td>DPR-80 and DPR-82</td>
<td>Mr. Gregory M. Rueger</td>
</tr>
<tr>
<td>Fort Calhoun Station, Unit 1</td>
<td>DPR-40</td>
<td>Mr. R. T. Ridenoure</td>
</tr>
<tr>
<td>Palo Verde Nuclear Generating Station, Units 1, 2 and 3</td>
<td>NPF-41, NPF-51 and NPF-74</td>
<td>Mr. Gregg R. Overbeck</td>
</tr>
<tr>
<td>San Onofre Nuclear Station, Units 2 and 3</td>
<td>NPF-10 and NPF-15</td>
<td>Mr. Harold B. Ray</td>
</tr>
<tr>
<td>Nuclear Station</td>
<td>Contact Person</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---------------------------------</td>
<td></td>
</tr>
<tr>
<td>South Texas Project Electric Generating Station,</td>
<td>Mr. James J. Sheppard</td>
<td></td>
</tr>
<tr>
<td>Units 1 and 2</td>
<td>President and Chief Executive</td>
<td></td>
</tr>
<tr>
<td>Docket Nos. 50-498 and 50-499</td>
<td>Officer</td>
<td></td>
</tr>
<tr>
<td>License Nos. NPF-76 and NPF-80</td>
<td>STP Nuclear Operating Company</td>
<td></td>
</tr>
<tr>
<td></td>
<td>South Texas Project Electric</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Generating Station</td>
<td></td>
</tr>
<tr>
<td></td>
<td>P. O. Box 289</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Wadsworth, TX 77483</td>
<td></td>
</tr>
<tr>
<td>Waterford Steam Electric Generating Station, Unit</td>
<td>Mr. Joseph E. Venable</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Vice President Operations</td>
<td></td>
</tr>
<tr>
<td>Docket No. 50-382</td>
<td>Entergy Operations, Inc.</td>
<td></td>
</tr>
<tr>
<td>License No. NPF-38</td>
<td>17265 River Road</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Killona, LA 70066-0751</td>
<td></td>
</tr>
<tr>
<td>Wolf Creek Generating Station, Unit 1</td>
<td>Mr. Rick A. Muench</td>
<td></td>
</tr>
<tr>
<td>Docket No. 50-482</td>
<td>President and Chief Executive</td>
<td></td>
</tr>
<tr>
<td>License No. NPF-42</td>
<td>Officer</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Wolf Creek Nuclear Operating</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Corporation</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Post Office Box 411</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Burlington, KS 66839</td>
<td></td>
</tr>
</tbody>
</table>