
10, I 0 0 ~~~~~CNWRA91

I)

- U~~~~~~~~~~~~I

- - -

e -

Prepared for

Nuclear Regulatory Commission
Contract NRC-02-88-005

Prepared by

Center for Nuclear Waste Regulatory Analyses
San Antonio, Texas

April 1991

CNWRA 91-003 -?

preFOR: A PRE-PROCESSOR
FOR FORTRAN FILES

USER'S MANUAL

Prepared for

Nuclear Regulatory Commission
Contract NRC-02-88-005

Prepared by

R. W. Janetzke
B. Sagar

Center for Nuclear Waste Regulatory Analyses
San Antonio, Texas

April 1991

-3

TABLE OF CONTENTS

Page

LIST OF FIGURES .. ii

LIST OF TABLES .. iii

1. INTRODUCT ION . .. 2

2. INSTRUCTIONS FOR USING preFOR 2

3. USE OF preFOR COMMANDS 3

4. DIMENSION PARAMETER OF preFOR 7

5. PERFORMANCE OF preFOR 8

6. SUMMARY AND CONCLUSIONS 8

7. CONTACTS 8

8. APPENDIX: preFOR SOURCE CODE 15

a 0

LIST OF FIGURES

Page

1. Data Flow Diagram for preFOR 9

2. Sample preFOR VAX interactive session 10

3. Example showing use of preFOR commands 11

4. preFOR output of example shown in previous figure 12

.

-. 5,

LIST OF TABLES

Page

1. Commands of preFOR 3

2. Explanation of Character Codes in figures 3 &4.......................... 13

Hii

preFOR: A PRE-PROCESSOR FOR FORTRAN FILES

USER'S MANUAL

ABSTRACT

preFOR is designed to process code written in FORTRAN in which preFOR commands have
been embedded. The output of the processing will be a standard FORTRAN file that can be
compiled like an other FORTRAN file. The preFOR commands allow the programmer
significant flexibility in coding. preFOR commands include creation of code blocks that can be
inserted at appropriate places. These insertions can be made conditional on use of a particular
central processing unit (CPU), thus increasing code portability. In addition, the preFOR utility
provides other features such as numbering of lines in the code, deletion of comments, and
trimming of trailing characters in lines of code. preFOR is written in ANSI standard
FORTRAN 77.

ACKNOVLEDGMENT

The authors thank Paul Eslinger for providing the UPDATE program on which the preFOR
program is based. They also are thankful to Rawley Johnson and Wes Patrick for their reviews
of this document.

1

preFOR

1. INTRODUCTION

The preFOR computer program described in this report was developed to automate inclusion of
certain desirable features in FORTRAN programs. Thus, preFOR can be regarded as a utility
to pre-process FORTRAN files. The automated features include line numbering and addition
of specified blocks of code at appropriate locations in the overall code. For example, with the
aid of the preFOR utility, common blocks can be inserted at appropriate locations in various
subroutines. Other functions will be explained in the following.

The preFOR program was obtained by modifying an earlier program named UPDATE which
was developed by Dr. P. W. Eslinger of Battelle Pacific Northwest Laboratory (personal
communication between Drs. Sagar and Eslinger). The preFOR utility is expected to provide
desired code transportability of the total system performance assessment code that is currently
under development jointly by the Center for Nuclear Waste Regulatory Analyses (Center) and
the Nuclear Regulatory Commission (NRC).

The preFOR program is written in ANSI standard FORTRAN 77 language. A listing of the
source program is provided in the appendix.

2. INSTRUCTIONS FOR USING preFOR

The preFOR program needs to be used only if preFOR commands are used in the development
of the source code. These preFOR commands are described in the next Section. A distinctive
extension to the source code file name may be used to distinguish it from standard FORTRAN
files. While any extension may be used, the extension .PRE is recommended. In the following,
for illustration, the source code containing one or more of the preFOR commands is named
SOURCE.PRE. When invoked, preFOR will process SOURCE.PRE to create a compilable
standard FORTRAN file (see Figure 1). The user can choose any name for this standard
FORTRAN file but for illustration purposes, it will be called SOURCE.FOR. The
SOURCE.FOR file is then ready for compilation like any other FORTRAN file.

The preFOR is fully interactive. When invoked the program will prompt for an input file name.
At this prompt, the user should provide the name of the file that contains the source code with
embedded preFOR commands, e.g., SOURCE.PRE. By default, preFOR assumes that the input
file name has an extension .PRE. That is, if the user types a file name without an extension,
e.g., SOURCE; preFOR automatically appends .PRE to it and looks for a file named
SOURCE.PRE. However, the user may provide any file name with any extension including no
extension at all. For the latter, the file name must end with a period (.), e.g., (SOURCE.).

2

y~

preFOR

preFOR checks for an extension simply by looking for a period (.) anywhere in the file name.
If one is found the .PRE extension is not added to the input string. It is recommended that the
full name of the source file (including extensions) be typed.

The program will then prompt for an output file name. This output file is the compilable
FORTRAN file that will be created by the preFOR program. At this prompt, the full name that
the user wishes to assign to the compilable FORTRAN file should be typed. While any
extension may be used, the extension .FOR is recommended. Thus, if the input file name was
SOURCE.PRE, the output file may be named SOURCE.FOR. If a name without any extension
is typed, preFOR will automatically add the .FOR extension to the typed name. If no extension
is desired, the file name must end with a period (.). Typing of full output file name including
extension is recommended.

If the output file name is identical to the input file name then an error condition is identified and
processing is stopped. preFOR is designed to not overwrite over existing files. When an output
file name is provided, preFOR checks to see if a file with the same name already exists. If no
such file exists, processing proceeds. However, if such a file is found, then a prompt asks the
user whether the existing file should be deleted. If the user types YES at this prompt, then the
existing file is deleted and the processing continues. On the other hand, if the user types NO,
further processing is halted.

A sample printout of the prompts and user responses is shown in Figure 2.

3. USE OF preFOR COMMANDS

The preFOR commands that can be used for developing FORTRAN source programs are
described in Table 1. below. All preFOR commands begin with an asterisk (*) in column 1.
In the following, capital letters are used for that part of the command that must be used exactly
as stated while lower case letters are used to indicate variable names to be provided by the user.

Table 1. Commands of preFOR

Command Description

*CPU cpu The 'cpu' parameter specifies the name of the CPU (or machine
such as IBMPC, CRAY, VAX etc.) that indicates that certain
processing by the preFOR is conditional on matching the CPU

3

9.

preFOR

name on the *INSERT/cpu command.
should be the first executable preFOR
code.

This command, if used,
command of the source

The cpu name is used only for comparisons and has no other
meaning. The *CPU command is superfluous unless there exists
an *INSERT/cpu command somewhere following it in the file.

Examples:

*cPU XYZ
*CPU CRAY

*FRAGMEN name
or

*COMDECK name

This command is used to define the beginning of a code fragment
and to associate the fragment with a name. The parameter 'name'
is a user selected identifier for the fragment which is used to
establish a temporary file for storage of the fragment. A fragment
can be any FORTRAN compilable block of code such as
FORTRAN lines, common blocks, system commands etc. While
this command can be used anywhere in the code, generally all
fragments are assembled at the beginning of the code.

There is no default value for 'name', it must be supplied.

Examples:

*FRAGMENT ABCD
Y = X**2 + Z

*FRAGMENT SIZE
COMMON/ VOLUME / V(100)
COMMON/ AREA / A1(50)

*FRAGMENT STIME
CALL TIME(I,J,K)

, A2(50)

*INSERT name
or

*CALL name

This command can be used to insert the named code fragment
anywhere in the source code. The code fragment is given a name
by using the commands *FRAGMENT or *COMDECK (see
above). above). A code fragment may be anything that a
FORTRAN compiler will process, e.g., set of FORTRAN lines,
system commands, common blocks etc..

preFOR processes this command by searching for the named

4

preFOR

fragment and replacing the *INSERT statement with the contents
of the fragment. If the named fragment is not found, an error is
printed and further processing is stopped.

If line numbering is enabled (see *DECK/NUMBER command) the
first 4 characters of the parameter 'name' will be used for the
inserted lines.

Examples:

*INSERT ABCD
*INSERT SIZE

*INSERT/cpu name Inserts the named fragment only if value of 'cpu' matches
value of the 'cpu' parameter in the *CPU command.
*INSERT for more information.

the
See

Examples:

*INSERT/XYZ SIZE
*INSERT/VAX STIME

*COMMENTS/DELETE

*COMMENfTS/KEEP

Inhibits the writing of comment lines to the output file. This
includes any lines encountered as a result of the *CALL or
*INSERT command. This can significantly reduce the size of a
heavily commented source file. If line numbering is invoked (see
*DECK/NUMBER command), comment lines will be ignored for
numbering purposes. That is, the resulting file will be numbered
consecutively with no gaps indicating the missing comments. This
command can be used any number of times in conjunction with the
*COMMENTS/KEEP command to toggle the comment processing
on and off. In the absence of *COMMENTS/DELETE, comments
will be retained.

Returns comment processing to the state it was in before the
*COMMENTS/DELETE command occurred. It can be used any
number of times in conjunction with the *COMMENTS/DELETE
command to toggle the comment processing on and off. Because
preFOR uses *COMMENTS/KEEP as default, this command need
not be used if all comments are to be retained.

5

It
.

preFOR

*COMMENTS/UPPER

*COMMENTS/NOUPPER

*DECK name

*DECK/NUMBER name

Converts comment lines to upper case. This is important
especially if the 'c' in column one is lower case, since
FORTRAN 77 requires an uppercase 'C'. The effect of this
command is reversed with the /NOUPPER switch.

This command negates the *COMMENTS/UPPER command.
Under default conditions comments are not shifted to upper case.

This command turns the line numbering off. It can be used in
conjunction with the *DECK/NUMBER command to toggle line
numbering on and off. This command will also terminate the
processing of a *COMDECK or *FRAGMENT command. The
value of the 'name' parameter usually refers to the current
subroutine name, but may be blank.

Invokes numbering of the deck with only the first 4 characters of
'name' concatenated with a 4 digit number in columns 73-80.
*DECK/NUMBER may be abbreviated to *DECK/N. The value
of the 'name' parameter is used until another *DECK command is
encountered. If line numbers are requested without replacing tabs
with spaces, they may be artificially shifted to the right when
viewed with compilers which honor tabs in their listings. Under
default conditions line numbering is not enabled.

Example:

*DECK/NUMBER TPA

*INPUT/WIDTH = n Limits the input to the first n columns, the remaining columns are
ignored. The only practical values for the parameter 'n' at this
time are 72 and 80. With a value of 72, a program which was
received with line numbers in columns 73-80 can be processed to
produce a much compressed source with line numbers and trailing
blanks removed. The default value of n is 80.

*NOTE This command does not change the values of any preFOR
parameters, but will terminate the processing of *COMDECK and
*FRAGMENT commands. It is provided as a convenience for
commenting the preFOR process.

6

/A

preFOR

*OUTPUT/TRIM

*OUTPUT/NOTRIM

*OUTPUT/WIDTH=n

*TAB/KEEP

*TAB/REPLACE

This command trims trailing blanks and tabs, thus producing a
compressed source code. This is the default mode.

This command negates the *OUTPUT/TRIM command.

Limits the output width to columns 1-n. The only practical values
for the parameter 'n' at this time are 72 and 80. This command
can process a file that was received in extended column format,
that is valid FORTRAN code in columns 73-80, and generate a file
which is compatible with FORTRAN 77. This is done by taking
the information in 73-80 and wrapping it around to the next line,
with a continuation mark in column 6 as required. preFOR wraps
both code and comment lines. The new lines thus generated
receive unique line numbers if line numbering is enabled. This
command is ignored if line numbering is enabled and wrapping is
done automatically. Wrapping is not done if
*INPUT/WIDTH=72 is used. The default value for n is 80.

Keeps tabs as they appear in the input file. Can be used in
conjunction with the *TAB/REPLACE command to toggle the tab
processing on and off. This is the default mode.

Replace tabs with blanks as specified with the fixed values
9,17,25,33,41,49,57,65,73. These are coincident with VT100
compatible editors.

An example of use of these commands is provided in Figure 3.

4. DIMENSION PARAMETER OF preFOR

preFOR puts each fragment into a temporary file. The parameter MXCOM defines the
maximum number of temporary files allowed to be generated by preFOR. The default value of
MXCOM in the current version of preFOR is 250. This parameter declares the array space for
the temporary file names of the code fragments. If the number of code fragments exceeds
MXCOM it should be increased to match or exceed the number of fragments.

7

13

preFOR

5. PERFORMANCE OF preFOR

Eighty column/notrim mode is the fastest processing mode for preFOR, but it also creates the
largest files. Restricting the input width to 72 columns adds about 5 % in time. Generating line
numbers adds about 46%. Shifting comments to uppercase adds about 12%. A straight file (no
preFOR commands) will run with the default parameters and add about 160%, but the resulting
file will be the smallest because trim mode is enabled by default.

6. SUMMARY AND CONCLUSIONS

The preFOR computer program is a pre-processor for FORTRAN files. Its commands can
provide flexibility in creating a FORTRAN source code. Specifically, code lines that are
specific to different computer systems can be programmed as fragments. Using the *CPU and
*INSERT/cpu commands, only the applicable fragments will be inserted into the FORTRAN
code prior to creating the compilable file. This provides easy maintenance of the source code
since machine dependent versions need not be maintained in separate files.

Common blocks which are used in many subroutines can also be coded as fragments and inserted
when needed. Any change in a common block, thus needs to be made at only one place. This
minimizes chances of errors in defining common blocks.

Other features such as inserting line numbers can help in better maintenance of the source code
also.

7. CONTACTS

For any problems related to the use of preFOR or to provide any suggestions for its
improvement, contact Dr. Budhi Sagar at (512)522-5252 or Mr. Ron Janetzke at (512)522-3318.

8

lVS 0

preFOR

Figure 1. Data Flow Diagram for preFOR.

l

SOURCE.PRE

preFOR
(Executable)

SOURCE.FOR

9

15S
preFOR

Figure 2. Sample preFOR VAX interactive session.

$ RUN PREFOR
preFOR 2.0 26 October 1990 Ron Janetzke
CONVERT A preFOR FILE TO A FORTRAN COMPILE FILE

ENTER THE UPDATE/preFOR SOURCE FILE NAME
PATH NAMES UP TO 64 CHARACTERS ARE ALLOWED
source.pre

ENTER OUTPUT (COMPILE) FILE NAME
PATH NAMES UP TO 64 CHARACTERS ARE
source.for

ALLOWED

THE REQUESTED COMPILE FILE ALREADY EXISTS

FILE = SOURCE.FOR

DO YOU WISH TO DELETE IT ?
y

1 DECKS PROCESSED
0 INSERT DECKS PROCESSED
98 EXECUTABLE LINES IN THE COMPILE FILE
90 COMMENT LINES IN THE COMPILE FILE

188 TOTAL LINES IN THE COMPILE FILE
FORTRAN STOP
$

10

preFOR

Figure 3. Example showing use of preFOR commands

*NOTE This is a sample input file to
*NOTE be processed by preFOR. The A
*NOTE resulting output file is shown
*NOTE below.
*CPU VAX }B
*FRAGMENT 1STBLOCK C
c

c this is code fragment 1 to be
c inserted in the output. D
c

COMMON /BLOCK/ ONE
*FRAGMENT 2ND BLOCK } E
c

c this is code fragment 2 to be
c inserted in the output. F
c

COMMON /BLOCK/ TWO
*FRAGMENT 3RD BLOCK } G
c
c this is code fragment 3 to be
c inserted in the output. H
c

COMMON /BLOCK/ THREE
*DECK }I
CCCCCC
C The main code comments.
CCCCCC
*insert 1ST BLOCK }
*insert/vax 2ND BLOCK } L
*insert/cray 3RDBLOCK M

x=sub(l)
stop N
end

*comments/upper }
function sub(x) } P

*insert 1ST BLOCK I Q
*comments/delete R
*insert/vax 2ND BLOCK }
*insert/cray 3RD BLOCK T

sub = x
return U
end

11

/70
preFOR

Figure 4. preFOR output of example shown in previous figure.

CCCCcc
C The main code comments.
CCCCCC
c
c this is fragment 1 to be
c inserted in the output.
c

COMMON /BLOCK/ ONE
C
c this is fragment 2 to be
c inserted in the output.
c

COMMON /BLOCK/ TWO
x=sub(l)
stop
end
function sub(x)

C
C THIS IS FRAGMENT 1 TO BE
C INSERTED IN THE OUTPUT.
C

COMMON /BLOCK/ ONE
COMMON /BLOCK/ TWO
sub = x
return
end

. From J

From D

I From F

From N

From P

* From D

I
From F

From U

For an explanation of the sections identified with a bold character see Table 2.

12

preFOR

Table 2. Explanation of Character Codes in figures 3 & 4.

A - These lines are for commenting purposes only and are not written to the output file.

B - This command selects the CPU identifier which will permit the object of an insert
command to be written to the output file.

C - This command defines the beginning of the first code fragment.

D - These lines are written to a temporary file. Nothing is written to the FORTRAN output
file at this time.

E - This command defines the end of the first fragment and the beginning of the second
fragment.

F - This is the body of the second code fragment.

G - This command defines the end of the second fragment and the beginning of the third
fragment.

H - This is the body of the third code fragment.

I - This command defines the end of the third fragment and the beginning of the main
FORTRAN code.

J - Initial comments of the main code.

K - Retrieve the contents of the first fragment and write them to the FORTRAN output file.
This insertion is done regardless of the CPU specified in the CPU command.

L - Retrieve the contents of the second fragment if the CPU identifier is VAX.

M - Retrieve the contents of the third fragment if the CPU identifier is CRAY.

N - Executable section of the main program.

O - This command converts all comment lines to upper case from this point on.

(continued)

13

/f

preFOR

Table 2. Explanation of Character Codes in figures 3 & 4. (continued)

P - Initial line of a FORTRAN subprogram.

Q - Retrieve the contents of the first fragment and convert any comments to uppercase as they
are written to the FORTRAN output file.

R - This command inhibits the writing of any comment lines to the FORTRAN output file.

S - Retrieve the contents of the second fragment and write it to the FORTRAN output file if
the current CPU identifier is VAX. However, no comment lines will be written to the
FORTRAN output file.

T - Retrieve the contents of the second fragment and write it to the FORTRAN output file if
the current CPU identifier is CRAY. However, no comment lines will be written to the
FORTRAN output file.

U - Body of the subprogram which is written as shown to the FORTRAN output file.

14

S c0?O0

preFOR

APPENDIX: preFOR SOURCE CODE

15

preFOR

PROGRAM preFOR
CCCCCC
C ACKNOWLEDGMENT
C
C
C Paul Eslinger is acknowledged as the grandfather of preFOR by virtue
C of his authorship of the precursor program called UPDATE. Virtually
C all of his original code remains in this version in various forms.
C
C ============== = -=====-… =…

C
C* NAME: preFOR
C*

C* PURPOSE:
C*

C* THE PURPOSE OF THIS PROGRAM IS TO PROCESS FORTRAN SOURCE
C* FILES WHICH ARE WRITTEN IN UPDATE FORMAT AND WRITE A SOURCE
C* FILE SUITABLE FOR SUBMITTING TO A FORTRAN COMPILER.
C The main feature of preFOR is to allow a code fragment to be
C placed automatically at various points in the file. Other
C features include line numbering, line truncation, CPU specific
C fragment handling, FORTRAN comment line processing, and tab
C handling.
C
C When defining a code fragment or COMDECK no other preFOR commands
C may be included within the fragment. This implies, and correctly so,
C that the preFOR commands are not recursive and cannot be nested.
C
C USAGE:
C
C This program is intended for interactive use. Since most of the
C default control parameters are set at 'safe' values, a standard
C program file (i.e. one without preFOR commands), when processed
C by preFOR and compiled, should give an object file that is identical
C to the original compilation. This point is not significant except for
C users of UPDATE who would expect an error when submitting standard
C FORTRAN program file as input. preFOR will, under default
C conditions, process a valid FORTRAN program without changing it. No
C practical use has been found for this feature however. The only
C commands that should change the resulting program object file are
C *COMDECK, *FRAGMENT, *CALL, and *INSERT (and maybe INPUT/WIDTH=72). A
C test can be made of the behavior of all the other commands by using
C them as desired, compile the code, and compare the resulting
C object file to an original. The object files should be the same.
C*
C* CONVENTIONS:
C*
C* UPDATE/preFOR DIRECTIVE CARDS
C * _____________________
C* *DECK name DEFINES A DECK (PROGRAM, SUBROUTINE, FUNCTION,
C* ETC.). THE CURRENT DECK IDENTIFICATION CONTINUES
C* UNTIL A NEW UPDATE/preFOR DIRECTIVE CARD IS ENCOUNTERED.
C* *COMDECK name DEFINES A COMDECK (INSERT DECK) UNTIL A NEW
C* UPDATE/preFOR DIRECTIVE CARD IS ENCOUNTERED.
C* *CALL name SYNTAX TO CAUSE INSERTION OF THE COMDECK WITH

16

4?p?S 0

preFOR

c* NAME name AT THE LOCATION OF THE *CALL CARD.
*COMMENTS/DELETE Delete all comment lines from the output file

before the lines are numbered. Can be used
to cancel the effect of the *COMMENTS/KEEP
command.

*COMMENTS/KEEP Does not delete comment lines from the output
file. Can be used many times in an input deck.
(Default)

*COMMENTS/UPPER Converts all comment lines to upper case.
*COMMENTS/NOUPPER Negates the *COMMENTS/UPPER command. (Default)
*CPU cpu Specifies the name of the CPU to honored during

the processing of *INSERT/cpu commands.
*DECK/NUMBER name Invokes numbering of the deck with 'name' and 4

digit numbers in columns 73-80. Only the first
4 characters of 'name' are used.

*FRAGMENT name Specifies the name of the code fragment which is
copied from the input until the next preFOR
command. Alias for *COMDECK.

*INPUT/WIDTH=n Limits the input to the first n columns, the
remaining columns are ignored. (n=[72,80])
(Default=80)

*INSERT name Inserts code fragment corresponding to the name
provided. Alias for *CALL.

*INSERT/cpu name Inserts the named fragment only if 'cpu' matches
the name in the *CPU cpu command.

*NOTE This line is ignored by preFOR and is not output.
A convenience for commenting the preFOR input.

*OUTPUT/TRIM When line numbering is not requested this command
removes trailing blanks and tabs before writing
a line to the output file. (Default)

*OUTPUT/NOTRIM Negates a previous *OUTPUT/TRIM command.
*OUTPUT/WIDTH=n Limits the output width to columns 1-n. Output

is truncated at column n. This command is ignored
if *DECK/NUMBER is in effect. (n=[72,80])
(Default=80)

*TAB/KEEP Keeps tabs as they appear in the input file. (Default)
*TAB/REPLACE Replace tabs with blanks. Tabs are assumed to be

set at: 9, 17, 25, 33, 41, 49, 57, 65, 73.

C*
C
C
C*
C*
C
C
C
C*

cpu Denotes an 8 character or less alphanumeric identifier.
n A positive integer, usually 2 digits.
name DENOTES AN 8 CHARACTER OR LESS ALPHABETIC IDENTIFIER

Future commands could include blank line processing, comment
line custom styling, and string replacement.

RESTRICTIONS:

1. A MAXIMUM OF MXCOM (=250) FRAGMENTS (COMDECKS) CAN BE DEFINED.
THERE MUST BE ENOUGH DIRECTORY ENTRIES AVAILABLE ON THE USER'S DISK TO
ALLOW A SCRATCH FILE FOR EACH FRAGMENT (COMDECK). THE SCRATCH FILES

17

preFOR

C* ARE NAMED WITH THE CONVENTION THAT THE FILE FOR *COMDECK name
C* and *FRAGMENT name IS CALLED name.UUU.
C*

C* 2. THE *COMDECK or *FRAGMENT CARD FOR THE *INSERT DECK name MUST
C APPEAR IN THE INPUT FILE BEFORE IT IS REFERENCE BY A *CALL or
C *INSERT CARD.
C*

C EXTERNAL REFERENCES:
C
C cname
C strail
C upcase
C upstrg
C writer
C*

C* VARIABLE DEFINITIONS:
C*
C* NAMEDK : CHARACTER*8 NAME OF THE CURRENT DECK BEING PROCESSED
C* NAMECM : CHARACTER*8 NAME OF THE CURRENT COMDECK BEING PROCESSED
C* LDNAME : LENGTH OF THE DECK NAME (WITHOUT EXTENSION)
C* LCNAME : LENGTH OF THE COMDECK NAME (WITHOUT EXTENSION)
C LCPUNM : Length of the CPU name.
C* MXCOM : PARAMETER VALUE FOR MAXIMUM NUMBER OF COMDECKS ALLOWED
C* DECKCD : LOGICAL FLAG THAT IS FALSE UNTIL THE FIRST *DECK CARD
C* IS ENCOUNTERED IN THE SOURCE FILE
C* COMFIL : CHARACTER*12 CURRENT NAME OF THE SCRATCH COMDECK FILE
C* CFILES : CHARACTER*12 ARRAY OF ALL THE NAMES FOR SCRATCH COMDECK
C* FILES --- ALL THESE FILES WILL BE DELETED ---
C* INFILE : CHARACTER*64 NAME FOR SOURCE FILE
C* OUTFIL : CHARACTER*64 NAME FOR COMPILE FILE
C* NUUU : COUNTER FOR THE NUMBER OF *COMDECK DEFINITIONS
C* NDDD : COUNTER FOR THE NUMBER OF *DECK DEFINITIONS
C* NUMDCK : COUNTER FOR THE LINE NUMBER IN THE CURRENT DECK
C* NWRITE : COUNTER FOR TOTAL NUMBER OF OUTPUT LINES
C* NCMWRT : COUNTER FOR NUMBER OF OUTPUT COMMENT LINES
C* NUMEXE : COUNTER FOR NUMBER OF OUTPUT EXECUTABLE LINES
C* NUMCOM : COUNTER FOR THE LINE NUMBER ON THE CURRENT COMDECK
C* CARD : CHARACTER*80 INPUT CARD IMAGE
C* LINE : LOGICAL FLAG .TRUE. = WRITE LINE NUMBERS
C* .FALSE. = DON'T WRITE LINE NUMBERS
C CPUSWI : CHARACTER*8 cpu name provided in the *INSERT/cpu command.
C CPUNAM : CHARACTER*8 cpu name provided in the *CPU cpu command. This
C is to be matched with CPUSWI.
C LCMKP : LOGICAL KEEP COMMENTS FLAG.
C LCMIND : LOGICAL INDENT COMMENTS FLAG.
C INDENT : INTEGER CURRENT INDENT COLUMN.
C LCMUP : LOGICAL SHIFT COMMENTS TO UPPER CASE FLAG.
C INPWID : INTEGER INPUT WIDTH IN NUMBER OF COLUMNS
C OUTWID : INTEGER OUTPUT WIDTH IN NUMBER OF COLUMNS.
C LTRIM : LOGICAL TRIM OUTPUT FLAG.
C LTABKP : LOGICAL KEEP TABS FLAG.
C LTABIN : LOGICAL INSERT TABS FLAG.
C TABS : INTEGER TAB SETTINGS, 9 MAX.
C*

18

S 0

preFOR

c*

c*

c*
c*

c*

c*

c*

c*

HISTORY:

As UPDATE
PAUL W. ESLINGER :
PAUL W. ESLINGER :

PAUL W. ESLINGER :

24 OCTOBER 1986 : VERSION 1.0
1 JUNE 1987 : VERSION 1.1
FIX A BUG ON MAXIMUM NUMBER OF COMDECK
FILES THAT ARE ALLOWED.

10 JUNE 1987 : VERSION 1.3
CHANGE MESSAGES TO THE SCREEN

C

C
C I
C I
C
CCCCCC

IE

C
C

C

A. preFOR
Ron Janetzke
Ron Janetzke

: 10-26-90
: 04-22-91
Clean up

: Version 2.0
: Version 2.1
for distribution.

?ARAMETER (MXCOM = 250)

CHARACTER*80
CHARACTER*1
CHARACTER*1
CHARACTER*8
CHARACTER*8
CHARACTER*12
CHARACTER*64
CHARACTER*80

UPSTRG
UPCASE
ANS, BLANK, TAB
cpunam, cpuswi
NAMEDK, NAMECM
COMFIL, CFILES(MXCOM)
INFILE, OUTFIL
CARD

integer
integer
integer
integer
integer

C
I

C

I
I
I
c

CCC

CCCCCC

LOGICAL
logical
logical
logical
logical
logical
Logical

strail
indent
inpwid
outwid
tabs (9)

THERE, DECKCD, LINE
lcmkp
lcmind
lcmup
ltabkp
ltabin
ltrim

DATA BLANK
DATA DECKCD
)ATA CFILES
lata tabs

/I' 'I/
/ .FALSE. /
/ MXCOM * '
/ 9, 17, 25, 33, 42, 49, 57, 65, 73/

C
CCCCCC

Start here.

TAB - CHAR(9)
lcmkp = .true.
lcmind = .false.
lcmup = .false.
ltabkp = .true.
ltabin = .false.
ltrim = .true.
indent = 7
inpwid = 80

19

preFOR

outwid = 80
line = .false.
NWRITE = 0
NCMWRT = 0
NDDD = 0

C
C *** GET THE INPUT FILE NAME
C

WRITE(*,100)
100 FORMAT(

* ' preFOR 2.0 26 October 1990 Ron Janetzke'/
* ' CONVERT A preFOR FILE TO A FORTRAN COMPILE FILE'//
* ' ENTER THE UPDATE/preFOR SOURCE FILE NAME'/
* ' PATH NAMES UP TO 64 CHARACTERS ARE ALLOWED >>
READ(*,110) INFILE

110 FORMAT(A64)
C
C Add the extension .PRE to the input file name if no extension was
C given on input.
C

if (index(infile,'.') .eq. 0) then
infile (len(infile)-strail(infile)+l:) = '.PRE'

end if
C
C *** CHECK TO SEE IF THE INPUT FILE EXISTS
C *** OPEN THE FILE IF IT EXISTS
C

INQUIRE(FILE=INFILE,EXIST=THERE)
IF(THERE) THEN
OPEN(7,FILE=INFILE,STATUS='OLD')

ELSE
WRITE(*,120) INFILE

120 FORMAT(' THE REQUESTED UPDATE/preFOR SOURCE FILE DOES NOT',
& ' EXIST'/
* ' FILE = ',A64/
* ' CHECK YOUR DIRECTORY AGAIN')

STOP
ENDIF

C
WRITE(*,130)

130 FORMAT(' ENTER OUTPUT (COMPILE) FILE NAME'/
* ' PATH NAMES UP TO 64 CHARACTERS ARE ALLOWED >>
READ(*,l10) OUTFIL

CCCCCC
C Add output file suffix if it was omitted from the input.
CCCCCC

if (index(outfil,'.') .eq. 0) then
outfil (len(outfil)-strail(outfil)+l:) = '.FOR'

end if
C
C *** CHECK FOR THE SAME NAME
C

infile = upstrg (infile)
outfil = upstrg (outfil)
IF(INFILE .EQ. OUTFIL) THEN
WRITE(*,140)

20

preFOR

140 FORMAT(/' THE INPUT AND COMPILE FILE NAMES WERE IDENTICAL'/
* ' ABORTING preFOR ... ')

STOP
ENDIF

C
C *** OPEN THE COMPILE FILE IF IT DOES NOT EXIST
C *** IF THE FILE ALREADY EXISTS, MAKE THE USER DELETE IT
C

INQUIRE(FILE=OUTFIL,EXIST=THERE)
C

IF(THERE) THEN
WRITE(*,150) OUTFIL

150 FORMAT(' THE REQUESTED COMPILE FILE ALREADY EXISTS'/,/
* ' FILE = ',A64/,/
* ' DO YOU WISH TO DELETE IT ?')

READ(*,160) ANS
160 FORMAT(A1)

IF(ANS.EQ.'Y' .OR. ANS.EQ.'y') THEN
OPEN(8,FILE=OUTFIL,STATUS='OLD')
CLOSE(8,STATUS='DELETE')
OPEN(8,FILE=OUTFIL,STATUS='NEW')

ELSE
WRITE(*,165)

165 FORMAT(/' STOPPING preFOR ... ')

STOP
ENDIF

ELSE
OPEN(8,FILE=OUTFIL,STATUS='NEW')

ENDIF
C
C *** WRITE ONE BLANK LINE TO THE SCREEN
C

WRITE(*,166)
166 FORMAT(/)

C
C *** TOP OF LOOP ON READING CARDS FROM THE SOURCE FILE
C

NUUU = 0
10 CONTINUE

C
READ(7,500,END=60) CARD

500 FORMAT(A80)
C

20 CONTINUE
CCCCCC
C Check for NOTE command. (No action)
CCCCCC

IF (CARD(1:5).EQ.'*NOTE' .OR. CARD(1:5).EQ.'*note') go to 10
CCCCCC
C *** CHECK FOR ACTION ON AN UPDATE/preFOR DIRECTIVE
C
C We can remove the column position restriction for the DECK name imposed
C by UPDATE if we search for the first non-blank character and pick up
C the name from that point for the next 8 contiguous non-blank characters.
C
C NOTE: The last four characters of NAMEDK are not used by preFOR. The

21

S
preFOR

C main purpose of supplying a name via the DECK command is line
C identification in columns 73-76 with numbers in columns 77-80.
CCCCCC
C Check for DECK command.
CCCCCC

IF (CARD(1:5).EQ.'*DECK' .OR. CARD(1:5).EQ.'*deck') then
if (CARD(6:6) .NE. '/') THEN
line = .false.
LDNAME = 0

CCCCCC
C Build deck name.
CCCCCC

DO 5 IDN = 7,80
IF(CARD(IDN:IDN) .NE. BLANK .AND. CARD(IDN:IDN)

& .and. LDNAME .LT. 8) THEN
LDNAME = LDNAME + 1
NAMEDK(LDNAME:LDNAME) = CARD(IDN:IDN)

ELSE IF (LDNAME .GT. 0) THEN
Stop building the DECK name at the first blank
GO TO 6

ENDIF
5 CONTINUE

.NE. TAB

character.C

CCCCC
C
CCCCC

C

CCCCC
C
CCCCC

ICC

CC
Check for DECK/NUMBER command.

else if (card(6:7) .eq. 'IN' .or. card(6:7) .eq. '/n') then
line = .true.
Skip any trailing characters on the /NUMBER switch. (i.e.
do 7 idn = 8,13
nstart = idn

if (card(idn:idn) .eq. blank .or. card(idn:idn) .eq. tal
& then

go to 8
end if

continue

'umber')

,b)

IC Build name for DECK.

8 continue
LDNAME = 0
DO 9 IDN = nstart,80

IF(CARD(IDN:IDN) .NE. BLANK .AND. CARD(IDN:IDN)
& .and. LDNAME .LT. 8) THEN

LDNAME = LDNAME + 1
NAMEDK(LDNAME:LDNAME) = CARD(IDN:IDN)

ELSE IF (LDNAME .GT. 0) THEN
Stop building the DECK name at the first blank
GO TO 6

ENDIF
9 CONTINUE

END IF

.NE. TAB

character.C

6 CONTINUE
DECKCD = .TRUE.
NUMDCK = 0
NDDD - NDDD + 1

22

S
preFOR

CCcccc
C
CCCCC

Notify user of current deck name.

WRITE(6,665)
665 FORMAT('+ PROCESSING DECK:

WRITE(6,666) (NAMEDK(II:II),II=1,LDNAME)
666 FORMAT('+ PROCESSING DECK: ',7A1)

GO TO 10
ENDIF

CCCCCC
C Check for *COMMENT commands.
CCCCCC

if (card(1:10) .eq. '*COMMENTS/' .or.
& card(1:10) .eq. '*comments/,) then

card = upstrg (card)
C Test for KEEP.

if (card(11:11) .eq. 'K') lcmkp = .true.
C Test for DELETE.

if (card(11:11) .eq. 'D') lcmkp = .false
C Test for INDENT. (Not supported at this t

if (card(11:11) .eq. 'I') lcmind = .true.
C Test for UPPERcase.

if (card(11:11) .eq. 'U') lcmup = .true.
C Test for NOUPPERcase.

if (card(11:13) .eq. 'NOU') lcmup = .fal
go to 10
end if

ime.)

se.

CCCCCC
C Check for *INPUT/WIDTH=n command. (72 or 80 are the only practical
C values for 'inpwid'.)
CCCCCC

if (card(1:12) .eq. '*INPUT/WIDTH' .or.
& card(1:12) .eq. '*input/width') then

read (card,'(13x,i2)') inpwid
inpwid = max(min(inpwid,80),72)
go to 10

end if
CCCCCC
C Check for *OUTPUT/WIDTH=n command. (72 or 80 are the only practical
C values for 'outwid'.)
CCCCCC

if (card(1:13) .eq. '*OUTPUT/WIDTH' .or.
& card(1:13) .eq. '*output/width') then

read (card,'(14x,i2)') outwid
outwid = max(min(outwid,80),72)
go to 10

end if
CCCCCC
C Check for *OUTPUT/TRIM command.
CCCCCC

if (card(1:12) .eq. '*OUTPUT/TRIM' .or.
& card(1:12) .eq. '*output/trim') then

ltrim = .true.
go to 10

end if
CCCCCC

23

preFOR

C Check for *OUTPUT/NOTRIM command.
CCCCCC

if (card(1:12) .eq. '*OUTPUT/NOTR' .or.
& card(1:12) .eq. '*output/notr') then

ltrim = .false.
go to 10

end if
CCCCCC
C Check for *TAB/ commands.
CCCCCC

if (card(1:5) .eq. '*TAB/' .or.
& card(1:5) .eq. '*tab/') then

card = upstrg (card)
C Test for KEEP.

if (card(6:6) .eq. 'K') ltabkp = .true.
C Test for REPLACE. (Not supported at this time.)

if (card(6:6) .eq. 'R') ltabkp = .false.
C Test for INSERT. (Not supported at this time.)

if (card(6:6) .eq. 'I') ltabin = .true.
go to 10
end if

CCCCCC
C Check for FRAGMENT command.
CCCCCC

IF(CARD(1:8).EQ.'*COMDECK' .OR. CARD(1:8).EQ.'*comdeck' .or.
& CARD(1:9).EQ.'*FRAGMENT'.OR. CARD(1:9).EQ.'*fragment') THEN

NUUU = NUUU + 1
IF(NUUU .GT. MXCOM) THEN
WRITE(*,170) mxcom

170 FORMAT(/' ONLY',i4,' *fragment or *COMDECK CARDS ARE',
& ' ALLOWED --- STOP'/
& ' Check MXCOM parameter in the preFOR program.')

STOP
ENDIF

C
C *** OPEN THE COMFILE
C

CALL CNAME(CARD, COMFIL, LCNAME
CFILES(NUUU) - COMFIL
OPEN(9,FILE-COMFIL,STATUS='NEW')
WRITE(*,200) COMFIL

200 FORMAT('+WRITING FILE: ',A12)
C
C *** READ THE COMDECK AND WRITE TO THE TEMPORARY FILE
C

30 CONTINUE
READ(7,500) CARD

C
C *** CHECK IF THE INPUT CARD CONTAINS AN UPDATE/preFOR DIRECTIVE
C

IF(CARD(1:1) .EQ. '*') THEN
CLOSE(9)
GO TO 20

ELSE
WRITE(9,500) CARD
GO TO 30

24

preFOR

ENDIF
C

ENDIF
CCCCCC
C Check for CALL or INSERT command.
CCCCCC

IF(CARD(1:5).EQ.'*CALL' .OR. CARD(1:5).EQ.'*call' .or.
& CARD(1:7).EQ.'*INSERT' .OR. CARD(1:7).EQ.'*insert') THEN

CCCCCC
C Check for INSERT/cpu command.
CCCCCC

If (card(8:8) .eq. '/' .and. card(9:9) .ne. blank
& .and. card(9:9) .ne. tab) then

lcpusw = 0
cpuswi - blank
do 29 i=9,16

if (card(I:I) .eq. blank .or. card(I:I) .eq. tab) then
go to 35

else
lcpusw = lcpusw + 1
cpuswi(lcpusw:lcpusw) = upcase(card(I:I))

end if
29 continue

C End of do.
35 continue

CCCCCC
C If cpu name does not match, then skip this insert request.
CCCCCC

if(cpuswi .ne. cpunam) go to 10
end if

C
C *** OPEN THE COMFILE

C
CALL CNAME(CARD, COMFIL, LCNAME
NAMECM = COMFIL(1:LCNAME)
OPEN(9,FILE=COMFIL,STATUS='OLD')

C
C *** READ THE COMDECK AND WRITE TO THE COMPILE FILE
C

NUMCOM 3 0
CCCCCC
C If nddd = 0 then no DECK commands have been found to this point.
C So set nddd = 1 to keep the counter correct as the counter is only
C updated when processing an explicit DECK command.
CCCCCC

if (nddd .eq. 0) nddd = 1
40 CONTINUE

CCCCCC *************************
C READ and WRITE loop.
CCCCCC *************************

READ(9,500,END=50) CARD
NUMCOM = NUMCOM + 1
CALL WRITER(CARD, NAMECM, LCNAME, NUMCOM, LINE, lcmkp, lcmind,

& indent, lcmup, inpwid, outwid, ltrim,
& ltabkp,ltabin,tabs)

NWRITE = NWRITE + 1

3eG

25

preFOR

C WRITE(*,190) NAMECM(1:LCNAME), NUMCOM, NWRITE
190 FORMAT('+',A8,lX,I4,' LINES',2X,I5,' TOTAL LINES')

CCCCCC
C Only increment the comment line counter if COMMENT/KEEP is enabled.
CCCCCC

IF ((CARD(1:1).EQ.'C' .OR. CARD(l:l).EQ.'c') .and. lcmkp)
& NCMWRT = NCMWRT+1

GO TO 40
CCCCCC ***************************
C End of READ and WRITE loop.
CCCCCC ***************************
C
C * CLOSE THE COMFILE
C

50 CONTINUE
CLOSE(9)
GO TO 10

ENDIF
CCCCCC
C End of INSERT or CALL processing.
CCCCCC
C Check for CPU command.
CCCCCC

if (card(1:5) .eq. '*CPU ' .or. card(1:5) .eq. '*cpu ') then
C Find the cpu name.

lcpunm = 0
cpunam = blank
DO 39 I = 5,80

IF (lcpunm .le. 0) then
if (card(I:I) .eq. blank .or. card(I:I) .eq. tab) then

GO TO 39
else

lcpunm = lcpunm + 1
cpunam(lcpunm:lcpunm) = upcase(card(I:I))
if (lcpunm .ge. 8) go to 55

end if
ELSE

if (card(I:I) .eq. blank .or. card(I:I) .eq. tab) then
GO TO 55

else
lcpunm = lcpunm + 1
cpunam(lcpunm:lcpunm) = upcase(card(I:I))
if (lcname .ge. 8) go to 55

end if
END IF

39 CONTINUE
C

55 CONTINUE
go to 10

end if
CCCCCC
C End of CPU command processing.
CCCCCC
C
C *** WRITE THE CARD IMAGE TO THE COMPILE FILE
C

26

preFOR

CCCCCC
C If nddd = 0 then no DECK commands have been found to this point.
C So set nddd = 1 to keep the counter correct as the counter is only
C updated when processing an explicit DECK command.
CCCCCC

if (nddd .eq. 0) nddd = 1
NUMDCK = NUMDCK + 1

C Line removed.
C CALL WRITER(CARD, NAMEDK, LDNAME, NUMDCK, LINE

CALL WRITER(CARD, NAMEDK, LDNAME, NUMDCK, LINE, lcmkp, lcmind,
& indent, lcmup, inpwid, outwid, ltrim,
& ltabkp,ltabin,tabs)

NWRITE = NWRITE + 1
C WRITE(*,190) NAMEDK(1:LDNAME), NUMDCK, NWRITE

IF ((CARD(1:l).EQ.'C' .OR. CARD(l:l).EQ.'c') .and. lcmkp)
& NCMWRT = NCMWRT+1

GO TO 10
C
C *** END OF FILE
CC

60 CONTINUE
C
C *** CLEAN. UP THE *COMDECK SCRATCH FILES
C

DO 70 I = 1, MXCOM
IF(CFILES(I) .NE. ') THEN
WRITE(*,210) CFILES(I)

210 FORMAT('+DELETING FILE: ',A12)
OPEN(9,FILE=CFILES(I),STATUS='OLD')
CLOSE(9,STATUS='DELETE')

ENDIF
70 CONTINUE

C
C *** FINAL MESSAGES
C

NUMEXE = NWRITE - NCMWRT
WRITE(*,220) NDDD, NUUU, NUMEXE, NCMWRT, NWRITE

220 FORMAT('+
* I ',I3,' DECKS PROCESSED'/
* ' ',I3,' INSERT DECKS PROCESSED'/
* ' ',I5,' EXECUTABLE LINES IN THE COMPILE FILE'/
* ' ',I5,' COMMENT LINES IN THE COMPILE FILE'/
* ' ',I5,' TOTAL LINES IN THE COMPILE FILE')

C
STOP
END

CC
SUBROUTINE CNAME(CARD, COMFIL, LCNAME

CCCCCC
C NAME: CNAME
C*
C* PURPOSE:
C*
C* THIS SUBROUTINE WILL GET THE COMDECK FILE NAME FROM THE CARD
C* IMAGE AND STORE IT IN THE VARIABLE COMFIL
C*

27

0 330r

preFOR

c*
C* VARIABLE DEFINITION=
C*

C* CARD : CHARACTER1
C* START EITI
C* THE CALLI]
C* COMFIL : CHARACTER1
C* LCNAME : LENGTH OF
C*

C*

C* CONVENTION:
C*

C* IF THE CARD IMAGE S'
C* VARIABLE COMFIL WILl
C* THAN 8 CHARACTERS V
C*
CCCCCCC

CHARACTER*1 blank
CHARACTER*1 tab
CHARACTER*12 COMFIL
CHARACTER*80 CARD

CCCCCC
C Start here.
CCCCCC

blank = '

tab = char(9)

5I:

'*80 INPUT CARD IMAGE. THIS IMAGE SHOULD
HER WITH *COMDECK OR *CALL. THE LOGIC IN
RG ROUTINE SHOULD TAKE CARE OF THIS.
1*12 FILE NAME FOR THE COMDECK
THE COMDECK NAME (WITHOUT EXTENSION)

TARTS WITH *COMDECK name OR *DECK name, THE
L CONTAIN 'name.UUU'. IF name IS LONGER
r WILL BE TRUNCATED TO 8 CHARACTERS.

C
C
C

*** FIRST BLANK THE COMDECK FILE NAME

COMFIL =
C
C *** IF THE CARD IMAGE STARTS WITH *COMDECK, *DECK or *FRAGMENT, EXTRACT THE
C *** NAME AND PUT IT IN THE FIRST PART OF COMFIL. A MAXIMUM OF 8
C *** CHARACTERS ARE ALLOWED, AND TRAILING BLANKS ARE REMOVED.
C *** EMBEDDED BLANKS ARE TREATED AS TERMINATING THE NAME.
C
C NOTE: preFOR only uses the first 4 characters for line numbers.
C
C *** IOFF - OFFSET IN NUMBER OF CHARACTERS TO REACH THE START
C *** OF THE COMDECK NAME.
C

IF(
IF(
IF(
IF(
IF(

CARD(1:8).EQ.'*COMDECK'
CARD(l:9).EQ.'*FRAGMENT'
CARD(1:5).EQ.'*CALL'
CARD(1:8).EQ.'*INSERT '
CARD(1:8).EQ.'*INSERT/'

.OR.

.OR.

.OR.

.OR.

.OR.

CARD(1:8).EQ.'*comdeck') IOFF=9
CARD(l:9).EQ.'*fragment')IOFF=1O
CARD(l:5).EQ.'*call') IOFF=6
CARD(l:8).EQ.'*insert ') IOFF=9
CARD(1:8).EQ.'*insert/') then

CCCCCC
C Find the end of the *insert/x... command.
CCCCCC

do 8 i-9,16
ioff = i
if (card(I:I) .eq. blank .or. card(I:I) .eq. tab) go to 9

8 continue
end if

9 continue
C

28

a 4',

preFOR

C Allow the file name to start in any column after IOFF.

lcname = 0
DO 10 I = 1OFF, 80

IF (lcname .le. 0) then
if (card(I:I) .eq. blank

GO TO 10
else

lcname = lcname + 1
COMFIL(lcname:lcname)
if (lcname .ge. 8) go

end if
ELSE

if (card(I:I) .eq. blank
GO TO 20

else
lcname = lcname + 1
COMFIL(lcname:lcname)
if (lcname .ge. 8) go

end if
END IF

10 CONTINUE

.or. card(I:I) .eq. tab) then

= CARD(I:I)
to 20

.or. card(I:I) .eq. tab) then

= CARD(I:I)
to 20

20 CONTINUE

*** PUT ON THE SCRATCH FILE EXTENSION

I = LCNAME + 1
J = I + 3
COMFIL(I:J) = '.UUU'

RETURN
END

--

CCCCCC
C
C
C
C
C
C
C
C
C
CCCCCC

C

C

FUNCTION strail (c)

PURPOSE: strail finds the number of trailing blanks and tabs
in the string c.

ARGUMENTS:

c = CHARACTER*(*) input string to be analyzed.

HISTORY:
1.00 11-02-90 Ron Janetzke Original text.

character*(*) c
character*l blank
character*l tab

integer stend
integer i
integer length
integer strail

data blank /I' '/

29

preFOR

cccccc
C Start here.
CCCCCC

tab = char(9)
length = len(c)
stend = 0

CCCCCC
C If the string length is 0, skip processing and return.
CCCCCC

if (length .le. 0) go to 999
C

do 199 i-length,0,-1
stend = i
if (c(i:i) .ne. blank .and. c(i:i) .ne. tab) go to 999

199 continue
C

999 continue
strail = length - stend
return
end

CC
SUBROUTINE tabfix (card, tabs)

CCCCCC
C PURPOSE: tabfix removes the tabs from string card and replaces them
C with spaces as defined by the array of tab stops given in
C 'tabs'.
C
C ARGUMENTS:
C
C input:
C card = CHARACTER*(*) string to be modified.
C tabs = INTEGER array of tab stop values
C
C output:
C card = CHARACTER*(*) string with tabs removed.
C
C HISTORY:
C 1.00 11-02-90 Ron Janetzke Original text.
CCCCCC

character*(*) card
integer tabs(9)

C
integer cend
integer por
integer i
integer j
integer nblank

C
character*l tab
character*80 blanks

C
data blanks /' '/

CCCCCC

C Start here.
CCCCCC

C Look for a tab in CARD. If no tabs are found then 'return'.

30

preFOR

CCCCcc
tab = char(9)
if (index(card, tab) .eq. 0) return

C
cend = len(card)
poo = 0

CCCCCC
C Loop through characters to end of card.
CCCCCC

do 299 i=l,cend
C Do not go past column 80.

pos = min(80,pos + 1)
C Look for tabs.

if (card(pos:pos) .eq. tab) then
do 199 j=1,9

if (po0 .lt. tabs(j)) then
nblank = tabs(J) - pos
go to 200

end if
199 continue

CCCCCC End of do.
200 continue

CCCCCC Insert from 1 to 8 blanks into 'card'.
if (pos .gt. 1) then

card = card(l:pos-l)//blanks(l:nblank)//card(pos+l:cend)
else

card = blanks(l:nblank) // card(pos+l:cend)
end if
pos = pos - 1 + nblank

end if
299 continue

return
end

cc
FUNCTION upcase (c)

CCCCCC
C NAME: upcase
C
C PURPOSE: Change the case of any lower case alphabetic character to
C upper case.
C
C ARGUMENTS:
C input:
C c = CHARACTER*1 to be used for possible upshift.
C
C output:
C upcase = CHARACTER*1 return value.
C
C EXAMPLE 1:
C c = 'a'
C upcase - 'A'
C
C REFERENCES:
C none
C
C CHANGES:

31

r 0 37

preFOR

C
C
CCCCCc

CccCCC
C
CCCCCC

C

1.00 08-25-90
Original text.

Ron Janetzke

CHARACTER*1 upcase
CHARACTER*1 c

Start here.

if (ichar(c).ge.ichar('a') .and. ichar(c).le.ichar('z')) then
upcase = char(ichar(c)-32)

else
upcase = c

end if

return
end

- - _ _ _ _ _ _ _ _

CcccccccccccCcc CCccccccccccccCccccccccccccccccccccccCCccccccccccccccccCCCcccC
FUNCTION upstrg (c)

CCCCCC
C PURPOSE: upstrg converts the input string to uppercase.
C
C ARGUMENTS:
C
C c = input, CHARACTER*(*) string to be converted.
C
C EXTERNAL REFERENCES:
C
C upcase
C
C HISTORY:
C 1.00 11-02-90 Ron Janetzke Original text.
CCCCCC

character*(*) upstrg
character*(*) c
character*l upcase

C
integer i
integer length

C
CCCCCC
C Start here.
CCCCCC

length = len(c)
upstrg - c

CCCCCC
C Skip processing if string length is 0.
CCCCCC

if (length .le. 0) go to 999
C

do 199 i-llength
upstrg (i:i) = upcase(c(i:i))

199 continue
C

999 continue
return
end

32

*

preFOR

CcCCCCCCCCCCCCCCCCCCCCcCcCCCCCccCCCCCCCCCccccccCCCCCCccC CCCCCCCCccCCCCcCCC
SUBROUTINE WRITER(CARD, NAME, LCNAME, NUM, LINE, lcmkp, lcmind,
& indent, lcmup, inpwid, outwid, Itrim,
& ltabkp, ltabin, tabs)

CCCCCC
C NAME:
C
C writer
C
C* PURPOSE:
C*
C* THIS SUBROUTINE PRINTS THE CURRENT CARD IMAGE TO THE OUTPUT
C* FILE. THE CARD IMAGE IS PRINTED EITHER WITH OR WITHOUT DECK
C* IDENTIFIERS AND LINE NUMBERS.
C*
C NOTE: Indent processing is not implemented, but the variables
C exist for future enhancement.
C*
C* Argument DEFINITIONS:
C*
C* CARD : CHARACTER*80 CARD IMAGE
C* NAME : CHARACTER*8 DECK IDENTIFIER, only the first 4 are used.
C* NUM : INTEGER LINE NUMBER COUNTER IN THE DECK OR COMDECK
C* LCNAME : LENGTH OF THE COMDECK NAME (WITHOUT EXTENSION)
C* LINE : LOGICAL FLAG
C* .TRUE. = PRINT DECK IDENTIFIER AND LINE NUMBERS
C* WITH THE CARD IMAGE
C* .FALSE. = PRINT ONLY THE CARD IMAGE
C lcmkp : LOGICAL keep comments flag.
C lcmind : LOGICAL indent comments flag.
C indent : INTEGER column number for indents.
C lcmup : LOGICAL shift comments to upper case flag.
C inpwid : INTEGER number of columns to accept as input width.
C outwid : INTEGER maximum number of columns to output.
C ltrim : LOGICAL trim output flag.
C ltabkp : LOGICAL keep tab characters flag.
C ltabin : LOGICAL insert tabs flag.
C tabs(9) : INTEGER tab setting array.
C blank : CHARACTER*1 storage area for blank.
C
C EXTERNAL REFERENCES:
C
C upcase
C upstrg
C strail
C tabfix
C
C HISTORY:
C 1.00 11-02-90 Ron Janetzke Original text.
CCCCCC

character*l blank
character*l upcase
CHARACTER*8 NAME
CHARACTER*80 CARD
CHARACTER*80 upstrg

C

33

0 3f

preFOR

integer
integer
integer
integer
integer
integer
integer

C

C

CCCCCC
C
CCCCCC
C
CCCCCC

CCCCCC
C
CCCCCC

CCCCCC
CccccCCCCCC

C

CCCCCC
C
C
C
C
CCcc~CCCCCC

CCCCCC
C

;I

Logical
Logical
Logical
Logical
Logical
Logical
Logical
Logical
.OGICAL

crdlen
strail
indent
inpwid
num
outwid
tab. (9)

lcmind
lcmkp
lcmup
lcomnt
ltabrp
ltabkp
ltabin
ltrim
LINE

data blank /' '/

Start here.

Set card length to its trimmed length or else its actual length.

if (1trim) then
crdlen - len(card) - strail(card)

else
crdlen = len(card)

end if

This will cause columns 73-80 to be skipped if inpwid=72.

if (crdlen .gt. inpwid) then
card = card(l:inpwid)
crdlen = inpwid

end if

Process comments.

if (card(1:1) .eq. 'C' .or. card(l:l) .eq. 'c') then
Check flag to keep comments.
if (lcmkp) then

Check for upper case request.
if (lcmup) then

card = upstrg(card)
end if

Possible code for indenting comments.

if (lcmind) then
call cindnt (card, indent)

end if

else

Skip card and remove comment card count from deck number.

34

a .
. A

preFOR

CCCCC(

CCCCC(
C
CCccc(

CCcccc
C
C
C
C
C
CCCCCc

C
c ***
C ***
C
C

C
CCCCCc
C
CCcCc
C

num - num - 1
go to 999

end if
end if

Process tabs.

if (.not. ltabkp) then
call tabfix (card, tabs)

end if

Possible code for inserting tabs.

if (ltabin) then
call tabadd (card)

end if

IF(LINE) THEN

WRITE THE CARD IMAGE AND APPEND THE DECK IDENTIFIER AND
LINE NUMBERS IN COLUMNS 73 THROUGH 82

Period fill names shorter than 4 characters.
if (lcname .eq. 1) name(2:4) =
if (lcname .eq. 2) name(3:4) =
if (lcname .eq. 3) name(4:4) =

Write card to output file.

C

C

C

WRITE(8,801) CARD(1:72), NAME(1:4), NUM
801 FORMAT(A72,A4,I4.4)

if (crdlen .gt. 72) then
We will need to wrap this card to the nest one.
num = num + 1
if (card(1:1) .ne. 'C' .and. card(l:l) .ne. 'c') then

Wrap non-comment.
write (8,802) (card(L:L),L-73,crdlen),

&
&

802

(blankL-crdlen-72,65),
name(1:4), num

&',66a1,a4,i4.4)

C

&
&

803

format ('
else

Wrap comment.
write (8,803)

format ('C
end if

end if
RETURN

(card(L:L),L=73,crdlen),
(blank,L-crdlen-72,65),
name(1:4), num
',66a1,a4,i4.4)

CCCCCC
C
CCCCCC

Check for card exceeding output width limit.

35

t X .Iv lb, 0 Yf/
1 A

preFOR

C
C

C

C

C
C
C

C

C

else if (crdlen .gt. outwid) then
This should only be true if outwid<80, so we will need to
wrap these lines also, if it is true.
write (8,810) (card(L:L),L=1,outwid)
num - num + 1
Wrap comment.
if (card(1:1) .eq. 'C' .or. card(1:1) .eq. 'c') then

write (8,808) (card(L:L),L=outwid+1,crdlen)
808 format ('C ',66al)

else
Wrap non-comment.
write (8,809) (card(L:L),L=outwid+1,crdlen)

809 format (' &',66al)
end if

ELSE

*** PRINT WITHOUT ADDING THE DECK IDENTIFIER AND LINE NUMBERS.

if (ltrim) then
WRITE(8,810) (CARD(L:L),L=1,crdlen)

else
if (outwid .eq. 80) write (8,'(80a)') card(1:80)
if (outwid .eq. 72) write (8,'(72a)') card(1:72)

end if
810 FORMAT(80A1)

ENDIF

999 continue
RETURN
END

36

