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ABSTRACT

Total system performance assessment (TSPA) is playing an increasingly important role in regulatory
decision-making. Within the U.S. Nuclear Regulatory Commission (NRC) high-level waste program, TSPA
studies are being performed to refocus the resource-constrained activities of the NRC Key Technical Issues
(KTIs), to evaluate the significance of anticipated changes to the NRC and U.S. Environmental Protection
Agency (EPA) regulations, to evaluate the hypotheses of the U.S. Department of Energy (DOE) Waste
Containment and Isolation Strategy, and prepare for the NRC review of the DOE viability assessment
(VA) for the Yucca Mountain (YM) site.

Conducting a TSPA for the proposed repository site involves the application of a total-system model that
simulates the processes affecting repository performance including propagation of the uncertainties
associated with model parameters, conceptual models, and future system states. The simulation process,
which implements a probabilistic framework, integrates a broad spectrum of site-specific data and
information, and produces estimates for a set of regulatory-based performance measures. Building on the
previously developed NRC assessment methodology, a new Total-system Performance Assessment (TPA)
code, designated TPA Version 3.0 code, was developed for use by the NRC and Center for Nuclear Waste
Regulatory Analyses (CNWRA) staff in the planned NRC KTI sensitivity analyses and in assessing the
assumptions and models in the forthcoming DOE TSPAs such as the DOE TSPA-VA for the YM site.

The TPA Version 3.0 code is designed to estimate performance measures expected to be specified in NRC
and EPA standards. The TPA Version 3.0 code is a combination of an executive driver, a set of
consequence modules, and a library of utility modules. The executive driver controls the probabilistic
sampling of input parameters, the calculational sequence and data transfers among consequence modules,
and the generation of output files. The various output files will be used in parameter importance analyses,
post processing of time-dependent risk curves, and synthesis of statistical distributions [e.g., cumulative
distribution functions (CDFs) and complementary cumulative distribution functions (CCDFs)] for
appropriate performance measures. Consequence modules simulate physical processes and events such as
unsaturated zone infiltration, evolution of the near-field thermal-hydrologic environment, corrosion of
waste packages, dissolution and release of waste, transport of waste in the groundwater system, extraction
of groundwater and consumption of groundwater which if contaminated causes dose to future populations.
In addition, disruptive processes such as climate change, faulting, seismicity, and volcanism are modeled.
Utility modules ensure the consistency of algorithms and data sets that are used repeatedly by various
consequence modules.

This report has been prepared to facilitate the use of the TPA Version 3.0 code by a broad spectrum of
users at the NRC and CNWRA. It contains descriptions of:

* Overall TSPA methodology
* Executive or main program controlling overall execution of the code
* Utility modules for general data manipulation and enhancing computational capabilities
* Consequence modules that simulate physical processes and events that affect the release,

transport, and evolution of the waste
* Contents and format of the input file (with an example)
* Contents and format of output files
* Regulatory performance measures
* Instructions for program installation and execution
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FOREWORD

In accordance with the provisions of the Nuclear Waste Policy Act of 1982, as amended, the Nuclear
Regulatory Commission (NRC) has the responsibility of evaluating a license application for any geological
repositories constructed for emplacement of high-level nuclear waste (HLW). This act was amended in
1987 to designate one site in the unsaturated region of tuffaceous rocks of Yucca Mountain in southern
Nevada for detailed characterization. The Center for Nuclear Waste Regulatory Analyses (CNWRA) at
Southwest Research Institute is a Federally Funded Research and Development Center created to support
the NRC in its mission of evaluating and licensing the proposed HLW repository. To meet its licensing
function, the NRC will review the application submitted by the U.S. Department of Energy (DOE). One
critical section of the license application will deal with the assessment of the future isolation performance
of the repository system, which has to achieve certain minimum standards established by federal
regulations.

To develop capabilities to review the Total System Performance Assessment (TSPA) in the DOE license
application, the NRC and CNWRA are developing and applying performance assessment methods and
models using existing site data. Later, at the time of license application review, these methods will be used
to conduct an independent TSPA. Because of the large space and time scales involved in estimating
repository performance, mathematical models implemented as computer codes are the primary tools for
assessing long-term isolation performance. The repository system consists of designed (or engineered)
barriers embedded in the natural geological setting. Assessing performance of the total system requires
that the behavior of individual barriers be projected for a range of possible future conditions. This
assessment process is a complex task that requires a variety of calculations. The Total-system Performance
Assessment (TPA) computer code, Version 3.0, is the latest manifestation of software developed for these
calculations.
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1 INTRODUCTION

The Total-system Performance Assessment (TPA) code, designated as Version 2.0 (Sagar and Janetzke,
1993), was developed for, and extensively used in, the Nuclear Regulatory Commission/Center for Nuclear
Waste Regulatory Analyses (NRC/CNWRA) Iterative Performance Assessment (IPA), Phase 2, of the
proposed high-level waste (HLW) repository at Yucca Mountain (YM), Nevada. This document describes
the new TPA code, Version 3.0, which is intended for use in future evaluations of the proposed HLW
repository site. The new TPA Version 3.0 code simulates the processes affecting repository performance
taking into account the uncertainties in model parameters, conceptual models, and future system states.
The simulation process, which integrates a broad spectrum of site specific data and information (e.g., site
characterization data, engineered barrier designs, and biosphere data), produces probabilistic estimates for
regulatory-based performance measures.

The TPA Version 3.0 code was developed within the NRC/CNWRA Total System Performance
Assessment and Integration (TSPAI) Key Technical Issue (KTI). However, the knowledge base and models
produced by other KTIs have been integrated into the code. In addition, the new TPA code accommodates
updated aspects of the repository program such as (i) the latest U.S. Department of Energy (DOE)
repository layout, waste package (WP) and emplacement design; (ii) current and anticipated standards
(release-based and risk-based); and (iii) arbitrary compliance period (thousands to hundreds of thousands
of years). The TPA Version 3.0 code is expected to be used across the NRC HLW program to:

* Determine the relative importance of individual KTIs to total-system performance
* Examine implementability of anticipated changes to the NRC regulations and

U.S. Environmental Protection Agency (EPA) standards
* Evaluate the hypotheses of the DOE Waste Containment and Isolation Strategy

(U.S. Department of Energy, 1996)

In addition, the TPA Version 3.0 code will be used in probing the vulnerabilities of future DOE TSPAs
such as the forthcoming viability assessment (TRW Environmental Safety Systems, Inc., 1996) for the YM
site.

This document was prepared to facilitate the use of the TPA Version 3.0 code by a broad spectrum of
NRC and CNWRA staff. The report contains descriptions of the various modules, keywords used in
preparing the input file, instructions on code installation and execution, and an example input file.

1.1 REGULATORY BASIS AND PERFORMANCE MEASURES

A specific regulatory purpose for conducting a Total System Performance Assessment (TSPA)
is to determine whether the proposed repository system complies with the applicable environmental
standards. This regulatory determination is generally the result of a complex and highly intricate
engineering analysis that ultimately culminates in comparing the results of performance measure
calculations with the regulatory standards. The TPA Version 3.0 code is designed to estimate performance
measures that are currently or expected to be specified in NRC regulations and EPA standards, including
(i) container lifetime, (ii) release rate from the engineered barrier, (iii) groundwater travel time, (iv)
cumulative release, and (v) peak dose to an individual. In addition, the TPA Version 3.0 code will permit
the performance assessment (PA) analyst to ascertain the dependence of the performance measures on
individual repository components and site characteristics, and model abstractions.
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The primary regulations applicable to the proposed geological repository for HLW were

promulgated by the NRC in 10 CFR Part 60-Disposal of High-Level Radioactive Wastes in Geologic

Repositories. Two sections of 10 CFR Part 60 pertain specifically to postclosure performance. These

sections are 10 CFR 60.112-Overall System Performance Objective for the Geologic Repository after

Permanent Closure; and 10 CFR 60.113-Performance of Particular Barriers after Permanent Closure.

Section 60.112 makes reference to satisfying the generally applicable environmental standards for

radioactivity established by the EPA (e.g., 40 CFR Part 191). Performance measures used in 10 CFR

60.113 to define performance of individual barriers (in contrast to the total system) are: (i) life of the WP

must exceed specified limits [10 CFR 60.113(a)(ii)(A)-Substantially Complete Containment

Requirement], (ii) release from engineered barriers must be less than specified limits [10

CFR 60.113(a)(1)(ii)(B)- Groundwater Release Requirement], and (iii) groundwater travel time must be

greater than specified limits [10 CFR 60.113(a)(2)-Groundwater Travel Time Requirement].

In the Energy Policy Act of 1992, the U.S. Congress directed the National Academy of Sciences

(NAS) to make recommendations about an environmental standard for the proposed geologic repository

at YM. In its recommendations (National Academy of Sciences, 1995), the NAS proposed that the new

environmental standard, to be issued by the EPA, be based on peak risk to the average member of a small,

critical group. The NRC is currently enhancing its capability to evaluate the DOE TSPAs (including the

expected in 1998 and license application in 2002) by developing the TPA Version 3.0 code.

1.2 BACKGROUND AND PURPOSE OF THE TOTAL-SYSTEM
PERFORMANCE ASSESSMENT VERSION 3.0 CODE

One of the purposes of conducting a TSPA is to secure a detailed understanding of: (i) the key

factors controlling the degradation of the engineered barrier system (EBS), (ii) release of the waste from

the repository, (iii) subsequent transport of the waste through various environmental pathways, and

(iv) possible human exposure at the location(s) of the critical group. To achieve this understanding, the

total repository system is modeled in a probabilistic manner (Thompson and Sagar, 1993) that considers

significant physical and chemical processes, phenomenological interactions and couplings, and potentially

disruptive events and processes. This probabilistic approach, although computationally intensive, yields

a range of potential future evolutions of the repository system. In addition, this approach is widely favored

because it avoids many of the technical shortcomings associated with completely deterministic

scenario-based assessments (Thompson, 1988).

Two NRC TSPAs for YM have been completed to date using the probabilistic approach. The

first TSPA, referred to as IPA Phase 1 (Codell et al., 1992), was conducted to assemble and demonstrate

the NRC assessment methodology. The second TSPA, designated as IPA Phase 2 (Wescott, et al., 1995),

broadened the assessment framework, produced the initial version of the TPA code, and yielded

considerable insight into processes influencing repository performance. In IPA Phase 3 (Manteufel et al.,

1995), emphasis was placed on updating and advancing the NRC TSPA capability for future use in the

review of the DOE TSPA-VA (TRW Environmental Safety Systems, Inc., 1996) as well as for focusing

the NRC HLW program activities on technical issues of critical importance to repository performance.

Consistent with the recommendations of IPA Phase 2 (Wescott, et al., 1995), the new TPA

Version 3.0 code was developed to include: (i) updated abstractions for process and consequence modules,

(ii) improved capabilities for parameter importance analysis and ranking, (iii) site specific data and bases

for consequence modules, (iv) streamlined methodology for data transfers between the executive and
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consequence modules, (v) more flexible design to accommodate future code modifications, and
(vi) improved computational algorithms to the extent practical. Because regulations governing disposal are
still under development, site data continue to be acquired, and the DOE repository design is evolving, it
was deemed vital to develop the TPA code with the flexibility to:

* Increase or decrease the time period of interest (TPI)
* Use finer spatial discretizations of the repository layout
* Use finer time discretizations with uniform or nonuniform steps
* Specify different areal mass loading (AML)
* Assess the effect of various disruptive scenarios
* Calculate time-dependent dose rate at a compliance point (CP)
* Calculate peak dose rate at a CP in the specified TPI
* Assess the impact of radionuclide dilution in the saturated zone (SZ)
* Accommodate the current in-drift emplacement design
* Assign statistical distributions to uncertain model parameters
* Assess different model abstractions in the consequence modules
* Evaluate alternative repository and waste package design features

The TPA Version 3.0 code is a combination of an executive driver, a set of consequence
modules, and a library of utility modules. The executive driver controls the probabilistic sampling of input
parameters, the calculational sequence and data transfers between modules, and the generation of output
files. Various output files are generated for later use in parameter importance analyses, post-processing
of time-dependent risk curves, and synthesis of statistical distributions [e.g., cumulative distribution
function (CDF) and complementary cumulative distribution functions (CCDFs)] for appropriate
performance measures. Utility modules ensure that consistent data sets are used by all consequence
modules and facilitate the discretization of the repository system and surrounding geologic media.

1.3 TRANSITION FROM TPA VERSION 2.0 TO 3.0

The TPA computer code designated as Version 2.0 (Sagar and Janetzke, 1993) was developed
in 1993 for the NRC/CNWRA IPA Phase 2 exercise (Wescott et al., 1995) of the proposed YM repository
site. The TPA Version 2.0 code was designed to calculate the performance measures specified in NRC
10 CFR Part 60 (i.e., container lifetime, release rate from the EBS, and groundwater travel time) and EPA
40 CFR Part 191 (i.e., cumulative release for 10,000 yr). Additionally, the code calculated the integrated
population dose over 10,000 yr. Since its initial development, extensive experience has been gained while
using and attempting to adapt the code to changing regulatory and programmatic environments. Specific
recommendations in IPA Phase 2 were made for improving the TPA code (Wescott et al., 1995),
including:

* Software quality assurance (QA) requirements need to be more prominent in module
development

* Future IPA development will require more model abstractions and efficient computing
techniques

* The TPA code must be easily upgraded

In developing the TPA Version 3.0 code, considerable effort was devoted to implementing these
recommendations, particularly to those related to software QA, addition of new modules, uniform
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interfaces between modules, and uniform coding practices among modules. With regard to the third

recommendation, Wescott et al. (1995) recommended that the TPA system code be considered a dynamic
entity, to be upgraded in future IPA iterations.

Major revisions to the TPA executive and consequence modules have been made, hence the

designation of a new version number. These revisions were required not only from a software viewpoint,

but also because the regulatory environment has changed in recent years. Specifically, code changes have

been incorporated to address: (i) recommendations of the NAS (National Academy of Sciences, 1995) to

the EPA to develop new performance criteria for YM, (ii) substantial changes in the DOE repository and

WP design concepts (U.S. Department of Energy, 1996), (iii) expanded knowledge base, improved models,

and additional data compiled by both DOE- and NRC-funded investigations, and (iv) increased needs by

the NRC staff to perform KTI specific sensitivity analyses.

The NAS recommendations have necessitated TPA code changes involving: (i) addition of a new

performance measure (individual annual dose), (ii) addition of variable compliance period (i.e., time to

peak dose not necessarily 10,000 yr), (iii) separate treatment of human intrusion by drilling (i.e., not to

be considered as part of the main compliance determination; this feature may be added to be able to

explore the impact of proposed changes to EPA HLW standards and NRC HLW regulations), and

(iv) incorporation of more appropriate representations of the environmental pathways and biosphere.

Recent changes in the DOE repository and WP design concepts have also necessitated updating
the TPA Version 3.0 code to account for. (i) larger WPs, (ii) in-drift emplacement, (iii) higher areal mass

loading, (iv) changing location and footprint of the repository, (v) changing drift support and backfill

emplacement concepts, and (v) prolonged operational time period prior to permanent closure of the

facility. The NRC staff have a regulatory interest in assessing the impact of these design changes from

a total-system perspective; consequently, these features need to be a part of the TPA code.

Concurrent with changes in design, ongoing site characterization and research programs have

provided new data and models, as well as an improved understanding of the YM site. Specifically, new

models have been realized in the areas of infiltration, deep percolation, and unsaturated zone flow

(e.g., Stothoff et al., 1996). More current field data and conceptual models have been employed to

dynamically simulate these processes. Technical contributions from the various KTIs have been

instrumental in enhancing models in the new TPA Version 3.0 code. Some of the noteworthy contributions
include:

* New WP failure and source term models from the Container Lifetime and Source Term
(CLST) KTI

* Improved technical basis for the probability and scenario characteristics for volcanic activity
from the Igneous Activity (IA) KTI

* Updated estimates of elemental solubilities and sorption coefficients (Kd) from the
Radionuclide Transport (RT) KTI

* Improved hydrostratigraphic model and technical specification for a new faulting disruptive

consequence modules from the Structural Deformation and Seismicity (SDS) KTI
* Improved capability to predict time-dependent temperature and relative humidity for use in

the source term module from the Thermal Effects on Flow (TEF) KTI
* Estimates of groundwater chemical composition from the Evolution of the Near-Field

Environment (ENFE) KTI
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* Improved modeling capability for a new seismic consequence module from the Repository

Design and Thermal-Mechanical Effects (RDTME) KTI
* Improved information on climate and the distribution of infiltration over the repository area

from the Unsaturated and Saturated Flow under Isothermal Conditions (USFIC) KTI

The intended use and anticipated users of the new TPA Version 3.0 code also have changed.

Unlike the TPA Version 2.0 code which was difficult for a new user to grasp and master, the TPA

Version 3.0 code was designed to provide a more intuitive input structure and input file error traps, as well

as a capability to provide helpful diagnostics to the user. The overall code has been designed to be much

more transparent (i.e., easy to understand and to follow the coding logic), so that it can be used in planned

KTI sensitivity studies by non-TPA developers. The code architecture permits the user to easily understand

the data and calculational flow between modules and allows the user direct access to inputs and outputs

for the conduct of sensitivity analyses.

In summary, the basic rationale for creating a new version of the TPA code was: (i) the need

for a code suitable for use by a wide variety of users, (ii) the requirement to accommodate expected

changes to the applicable regulations, (iii) the need to accommodate substantial changes in the repository

and WP design concepts, and (iv) the need for flexibility to incorporate new and improved data and

models. Because the TPA code is to serve a broad spectrum of users, the new version of the code has been

designed to be highly transparent with regard to its functionality, significantly easier to modify and use,

and computationally more efficient. In developing the TPA Version 3.0 code, the consequence modules

relevant to the new regulatory requirements have been placed under a new and more compact executive

program. The consequence and utility modules that have been developed or modified have undergone basic

software QA testing.

1.4 REPORT CONTENT

A brief description of the executive module is contained in chapter 2. The various utility modules

are described in chapter 3, while the consequence modules are presented in chapter 4. Chapter 5 describes

the input files and parameters for the TPA Version 3.0 code, and chapter 6 describes the outputs. Program

installation and execution are described in chapter 7, while chapter 8 lists the references. The original

software requirements description (SRD) for the TPA Version 3.0 code is included in appendix A. An

example input file is contained in appendix B and documentation of the utility module functions and

subroutines is provided in appendix C.
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2 MODEL DESCRIPTION

2.1 OVERVIEW

The TPA Version 3.0 code implements the NRC TSPA methodology presented by Wescott
et al. (1995) and outlined in figure 2-1. There are four major components of the TSPA methodology:

* System characterization
* System models for anticipated processes and events
* Disruptive models for processes initiated by external events
* Subsystem performance measures
* Total system performance and regulatory compliance assessment

2.1.1 System Description

A TSPA analysis starts with system characterization and ends in the assessment of subsystem
performance and regulatory compliance determination. System characterization is a continual process that
involves gathering data for site characteristics, waste form properties, waste package design, repository
design, and biosphere characteristics. Examples of system characterization include:

* Representation of YM region hydrostratigraphy
* Determination of properties for distinct hydrothermal and hydrostratigraphic units
* Characterization of saturated zone flow rates, direction, and dispersion
* Identification and characterization of fault zones in the YM region
* Characterization of past volcanic events in the YM region
* Characterization of past seismic events in the YM region

The HLW constitutes the hazard associated with the disposal facility and needs to be
characterized. Examples of waste property characterization include:

* Total amount of waste for disposal [e.g., 70,000 metric tons of uranium (MTU)]
* Variety of waste sources [e.g., from commercial Boiling Water Reactors (BWR), from

commercial Pressurized Water Reactors (PWR), and from defense weapons production
reactors and the subsequent extraction of fissile material]

* Waste forms (e.g., intact spent fuel assemblies and vitrified waste)
* Age of waste from the reactor to repository emplacement
* Bumup of waste (in the case of spent nuclear fuel)
* Inventory of key radionuclides in the waste that pose long-term health hazards

The radioactive waste will be emplaced using disposal packages designed to contain the waste
for extended periods of time following emplacement. Recently, the WP design has evolved and changed
substantially. For example, in the Site Characterization Plan (SCP) (U.S. Department of Energy, 1988),
the concept was to use thin-walled stainless steel containers that each hold about 2.5 MTU of waste.
Current designs (U.S. Department of Energy, 1996) include larger packages that contain about 8.8 MTU
of waste and have two thick walls of 10-cm outer corrosion allowance material (carbon steel) and 2-cm
inner corrosion resistance material (stainless steel). Because long-term containment of the waste in
engineered packages, potentially exceeding 10,000 yr (e.g., TRW Environmental Safety Systems,
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Inc., 1995) will be postulated, characterization of the waste package design is important to a TSPA.
Examples of the waste package design characterization include:

* Dimensions of the package
* Properties (e.g., thermal, mechanical, and corrosion resistance) and thickness of the walls of

the package
* Payload of the package (e.g., 8.8 MTU)

Similarly, the DOE repository design concept has changed significantly over the past few years.
Many of these changes were motivated to control the anticipated thermal-hydrologic-mechanical-chemical
(THMC) environment of waste packages. The near-field environment can have a strong influence on the
waste package lifetime. In the SCP (U.S. Department of Energy, 1988), the packages were to be placed
in vertical boreholes beneath the floor of emplacement drifts. The new repository concept includes in-drift
emplacement of the waste packages (U.S. Department of Energy, 1996). Examples of the repository design
characterization include:

* Orientation and location of WPs at emplacement
* Drift and WP spacing [this affects the areal mass loading (AML) of the waste]
* Use of concrete inverts, and steel or concrete drift supports
* Potential use of ventilation during the operational time period of the facility
* Potential emplacement of a backfill material after the operational time period
* Location and permanent sealing of shafts, ramps, and boreholes following the operational

time period

Another component of the system to be characterized is the biosphere. Previously, EPA
regulations were based on a cumulative release standard derived from generic considerations of biosphere
models. Recently, the NAS (National Academy of Sciences, 1995) has recommended that the regulatory
standards applicable to YM be changed from a release-based standard to a risk-based standard. Although
new regulations have not been promulgated, these recommendations are expected to be adopted. To
compute risk, it is necessary to model the biosphere and estimate health effects, which are frequently
expressed in terms of annual dose. Characterization of a biosphere model at YM has many factors,
including:

* Population locations (i.e., designated critical groups)
* Land-type and use (e.g., farming, ranching)
* Availability of groundwater for domestic and agricultural use
* Agricultural plant and animal types
* Human exposure pathways

In conducting a TSPA, one must integrate a wide variety of site, waste type, package design,
repository design, and biosphere characteristics. The goal of a TSPA, however, is to focus on a subset of
the most important characteristics. Much national (e.g., Davis et al., 1990) and international [e.g., the
Performance Assessment Advisory Group (PAAG) of the Nuclear Energy Agency (NEA) of the
Organization for Economic Cooperation and Development (OECD)] effort has been devoted to developing
systematic procedures in which a wide spectrum of experts representing a diversity of disciplines can
develop and agree on a balanced subset of important characteristics that should be included in a TSPA.
For waste properties and WP and repository designs, this subset of characteristics is more easily
established. For site characteristics associated with low-probability disruptive events, methods for scenario
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identification have been developed (e.g., Cranwell et al., 1990). In the two previous NRC TSPA exercises
(Codell et al., 1992; Wescott et al., 1995), a scenario selection methodology was employed and found to

be adequate for these exercises; however, scenario assumptions should continually be reviewed and refined

to ensure that all important features, events, and processes have been considered (Bonano and Baca, 1994).

2.1.2 System and Disruptive Models

Closely related to system characterization is model development. For analysis purposes, models

have been classified into those for either anticipated processes (also called base-case processes) or

disruptive processes. The primary distinction is the source which causes a response in the system. If the

source is the emplaced HLW, then the processes are anticipated. If the source is external then the process
is classified as disruptive. An example of an anticipated process is the thermal-hydrologic response caused

by the emplacement of heat-dissipating waste. An example of a disruptive process is seismic activity

caused by regional tectonic and geologic processes not related to the repository.

In figure 2-1, the system model has several major process models, including:

* Unsaturated zone flow and near-field environment of the EBS
* Corrosion and other anticipated failure mechanisms of the EBS containment
* Groundwater flow and radionuclide transport in the unsaturated zone below the proposed

repository and into the saturated zone
* Groundwater flow and radionuclide transport in the saturated zone below the proposed

repository to a compliance point (CP) or boundary
* Radionuclide transport in the biosphere through the groundwater pathway that ultimately

results in a dose to humans

Specific implementations of these process models are described in chapter 4 of this report, hence, they are

only mentioned here.

The disruptive models include:

* Climate change leading to changes in groundwater percolation rates at YM
* Faulting leading to disruption of emplacement drifts and alterations along fault zones
* Seismicity leading to rockfall and disruption of emplacement drifts
* Volcanism leading to magma contacting WPs and depositing contents on the ground surface

Climate change, faulting, seismicity, and volcanism can lead to earlier failures of the EBS containment

and alter the character of the natural system. In the case of volcanism, radionuclides may be released

directly into the biosphere through extrusive events that disperse contaminated volcanic ash over the

ground surface.

2.13 Regulatory Compliance

The ultimate goal of a TSPA is to gain insights into the important characteristics and processes

that influence system compliance with regulatory standards. Currently, this understanding includes

calculating the cumulative release of radionuclides (at a compliance boundary) and assessing dose-based

risk to critical population groups. In addition, numerous subsystem performance measures have been used
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and are expected to continue to be used by the NRC to develop a more in-depth understanding of the

repository system performance. These subsystem performance measures include groundwater travel time,
waste package lifetime, and nuclide release rates from the EBS.

2.2 THE EXECUTIVE PROGRAM

The Executive (EXEC) or main program controls the overall code execution, including reading

the input data file, controlling the flow of data between various modules, sampling of input parameters,
identifying and initiating consequence modules, and generating output data. The EXEC controls the
execution of numerous subroutines and simulation codes that are categorized as either utility modules or
consequence modules. Utility modules provide general data storage and retrieval capabilities, as well as

generic computational capabilities. This modularization is consistent with the software design principles
of decomposition and abstraction (Liskov and Guttag, 1986). Many benefits result from having utility

modules, including improved code utilization and reliability. The primary motivation for utility modules
is to minimize the potential for errors in common calculations (e.g., reading input data, adding arrays,

solving equations, calculating radionuclide inventories, and sampling parameters). Consequence modules
simulate the physical processes and events that lead to release, transport, and evolution of the waste.

Briefly summarized, consequence modules simulate physical processes specific to the YM repository
system using the utility modules as needed. The utility modules are described in chapter 3, and the
consequence modules are described in chapter 4 of this report. The software requirements description that
originally outlined the TPA Version 3.0 code design is provided in appendix A.

Through the use of utility modules, the EXEC controls the spatial discretization of the proposed
repository (i.e., number of subareas), the distance from the proposed repository to the CP or boundary

(e.g., 5, 20, 25, or 30 km), the temporal discretization scheme (e.g., output every 200 yr), and the time
period of interest (e.g., 10,000 yr). These data, as well as other data, are specified by the user in the
tpa.inp file. An example of a tpa.inp file is provided in appendix B.

As illustrated in figure 2-2, the EXEC controls the flow of data to and from the consequence
modules. The EXEC begins the simulation by using the READER utility module to read the tpa.inp file.
The information in the tpa.inp file can be extensive because it is designed to be the sole source of user
specified data for the entire TPA Version 3.0 code. User input data are those data that may be changed
by the user for a given application. In contrast, static data refers to fixed parameter values set within the
TPA Version 3.0 code. For example, the digitized elevation of the ground surface in the vicinity of YM
is stored in a static data file. The static data file is archived so that it is part of the TPA library, just like
utility and consequence modules. Hence, static data are a part of the TPA Version 3.0 code.

The READER needs to be called only once during a run to read the dynamic data from the
tpa.inp file. Having read and stored the input parameters, the EXEC continues by executing consequence
modules. The process modules include: UZFLOW, NFENV, EBSFAIL, EBSREL, UZFT, SZFT, and

DCAGW. During the run, all the process consequence modules are executed. Based on input specified in
the tpa.inp file, the EXEC also controls which disruptive consequence modules will be executed. The
disruptive modules include: CLIMATO, FAULTO, SEISMO, VOLCANO, ASHPLUMO, ASHRMOVO,
and DCAGS.

The EXEC interfaces with each of the consequence modules using a subroutine call statement
which has explicit input and output expectations. This convention places very few restrictions on the
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Figure 2-2. Flow diagram for TPA Version 3.0 code
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internal structure and functionality of individual consequence modules, yet greatly enhances the modularity
of the code. The parameters and the arrays being passed in the call statement have been specified for each
of the consequence modules. This is consistent with the software design principle of procedural abstraction
(Liskov and Guttag, 1986). Only the input and output expectations for each module are explicitly
specified, and module developers can implement the most appropriate models for their intended purpose
as long as the specifications are upheld.

The primary inputs and outputs associated with the process modules are illustrated in figure 2-3.
The input and output variables in the illustration have names that are as descriptive as possible. The inputs
and outputs are the primary time-dependent data expected to change from realization to realization.
Typically the output of one module is input to the next module in the calculational process, yet certain
output may be required by more than one module. As shown figure 2-3, the calculational process starts
with the UZFLOW module, which is expected to return the time-dependent flow rate into a particular
subarea per WP in the subarea. The units of the output are cubic meters of water per year. These results
are the input to the NFENV module, which outputs time-dependent solutions for. (i) flow rate into the
subarea that does not contact the WP, (ii) flow rate into the subarea that contacts the WP, (iii) temperature
of the rock wall near the WP, (iv) temperature of the WP surface, (v) maximum temperature of the spent
fuel in the WP, (vi) relative humidity at the WP surface, (vii) pH of the ground water contacting the WP
(single value assumed), and (viii) chloride concentration in the ground water contacting the WP. This
information is required by the EBSFAIL code, which then predicts the time-dependent percent corrosion
failure of the WP. Transferring data between the EXEC and consequence module in this manner is very
efficient because in the FORTRAN language when an array is passed, only the identification (i.e., pointer)
is actually passed. The last consequence module is DCAGW, which calculates the annual total effective
dose equivalent per nuclide in the groundwater pathway in units of rem.

Many viable implementations can be used within a consequence module, but only three distinct
approaches have been used in the TPA Version 3.0 code. The first implementation is a simple one in
which the consequence module reads from one or more static data files. Figure 2-4(a) illustrates this
implementation. It is commonly referred to as "table-lookup" and is often used when a stand-alone
program requires excessive computing times to yield results. In this situation the stand-alone program is
run off-line and the results are stored in a static lookup file. An example of the use of table-lookup is the
abstraction of numerical results from UDEC (Itasca Consulting Group, Inc., 1996) simulations for the
SEISMO module. The program UDEC requires many hours to complete one dynamic simulation of an
emplacement drift subjected to a seismic load. Consequently, the results of many simulations have been
stored in a static data file, so that these results can be retrieved and used within the TPA code.

The second method of implementation illustrated in figure 2-4(b) is the use of one or more
subroutines. Here, calculations are performed without reliance on static data files or stand-alone programs.
The module consists of a suite of numerical models in subroutines that the analyst has selected to use.
Examples of this approach include DCAGW and ASHRMOVO. These modules were created specifically
for the TPA Version 3.0 code, and have incorporated specific conceptual and mathematical models.

The third approach of implementation illustrated in figure 2-4(c) is execution of a stand-alone
computer program. The consequence module usually writes (or modifies) one or more input files required
by the stand-alone program. Then, a nonstandard FORTRAN call is made within the module to spawn an
external process that runs the stand-alone program. Although this feature is nonstandard FORTRAN, it
is provided in many compilers, including those on Sun computers (SunSoft, Inc., 1996). This feature
appears to be unavailable on compilers for personal computers using DOS or Windows operating systems.
If this feature is not available, then the TPA Version 3.0 code will not be able to be run on those

2-7



I"FlowRatelntoSAperWP[mA3/yr]"

IIFlowRatelntoSAperWP[MA3/yr]" *

"FlowRatel ntoSAperWPMissWP[mA3/yr]' NFENV
"FlowRatel ntoSAperW PHitWP[mA3/yr]"

"TemperatureOfNFRock[C]"
"TemperatureOfWPSurface[C]"

"MaximumTemperatureOfSpentFuel[CI"
"RelativeHumidityAtWP", "pHofGWHitWP"

"ChlorideConcentrationinGWHitWP[mole/liter]"

"FlowRateperSAperWPHitWP[mA3/yr]"
"TemperatureOfWPSurface[C]"

"RelativeHumidityAtWP", "pHofGWHitWP"
"ClorideConcentrationinGWHitWP[mole/liter]l' EBSFAIL

"PercentCorrosion FailureOfWP"

"FlowRateperSAperWPH itWP[mA3/yr]"
EXEC "TemperatureOfWP[C]" EBSREL

"FlowRateperSAperWPfromWP[mA3/yr]"
"NuclideReleaseRatefromWP[Ci/yr]"

"FlowRateperSAI ntoLowerUZlmA3/yr]'"
"NuclideFlowRateperSAlntoLowerUZ[Ci/yr]"

UZFT
"FlowRateperSAFrom LowerUZ[mA3/yr]''

"NuclideFlowRateperSAFromLowerUZ[Ci/yr]"

"FlowRateiAIISAlntoSZ[mA3/yr]fl
"NuclideFlowRateAlISAIntoSZ[Ci/yr]"

SZFT

"NuclideConcentrationl nGWatCP[Ci/mA3]'I

"NuclideConcentrationlnGWatCP[Ci/mA3]I DA
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Figure 2-3. Main input(s) and output(s) associated with process modules
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Figure 2-4. Examples of the three consequence module implementations used in TPA Version 3.0
code: (a) table-lookup, (b) subroutine(s), and (c) external stand-alone program
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platforms, and portability will not be possible. This restriction is not, however, a consequence of the
overall design of the TPA Version 3.0 code or the EXEC, but it is a consequence of choosing this
implementation for the consequence modules. Currently, it appears the TPA Version 3.0 code will be
restricted to applications on computers with UNIX operating systems. This same restriction also existed
for the TPA Version 2.0 code (Sagar and Janetzke, 1993) because it also spawned jobs to execute
stand-alone computer programs.

After the stand-alone program completes its execution, control returns to the consequence
module, which resumes execution. Normally the module then reads an output file created by the
stand-alone program. The output is read into the appropriate arrays and returned to the EXEC. This style
of execution is currently used in modules such as EBSREL, UZFT, SZFT, and ASHPLUME (described
in chapter 4). EBSREL executes the release portion of the EBSPAC code (Mohanty et al., 1996) and both
UZFT and SZFT execute the NEFrRAN program (Olague et al., 1991). ASHPLUMO executes the
ASHPLUME program (Jarzemba et al., 1997). This method is also employed in the SAMPLER utility
module. When the option for using Latin Hypercube Sampling is selected, the program by Iman and
Shortencarier (1984) is executed. A summary of the current implementation for consequence modules is
provided in table 2-1. Some modules have attributes of more than one style of implementation. For
example, the NFENV module uses analytical equations to calculate temperatures, relative humidity (RH),
and groundwater flow rates. It uses table-lookup for the chemical composition of the groundwater. The
predominant implementation is based on subroutines, as indicated in table 2-1.

In summary, the EXEC controls the execution and flow of data between consequence modules,
and utility modules such as READER and SAMPLER (described in chapter 3) as well as the generation
of output files. The output files can be used for parameter importance analyses, generation of time-
dependent risk curves, and generation of complementary cumulative distribution functions for cumulative
release of radionuclides and peak dose. Utility modules are used to read the input file, control the
sampling and distribution of sampled parameters, ensure a consistent description of the repository system
and provide generic computational algorithms that all consequence modules can access. The consequence
modules embody the conceptual and mathematical models of the features, events, and processes deemed
important for conducting a TSPA. The utility modules and consequence modules are described in more
detail in the next two chapters.
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Table 2-1. Current implementation for consequence modules in the TPA Version 3.0 code

External
Consequence Standalone

Module Table-Look Up Subroutine(s) Program

UZFLOW X

NFENV X

EBSFAIL X

EBSREL X

UZFr X

SZFT X

DCAGW X

CLIMATO X

FAULTO X

SEISMO X

VOLCANO X

ASHPLUMO X

ASHRMOVO X

DCAGS X
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3 UTILITY MODULES

The TPA Version 3.0 code performs various initializations, input and output processing, and intermediate
calculations, There are six primary utility modules consisting of: READER, SAMPLER, MODULE
VARIABLE, INVENT, SUBAREA, and ARRAY. Each of these utility modules is composed of a variety
of subroutines and function routines that provide centralized support to the algorithms in the consequence
modules. Descriptions of these utility modules and their support functions are presented in this section.
In appendix C, more detailed information is provided about specific functions and subroutines for each
utility module.

3.1 READER

READER is a utility module that preprocesses the data from the tpa.inp file and is the only
subroutine that reads the tpa.inp file. The tpa.inp file contains data specific for the TPA code execution
as well as all probability density function (PDF) definitions for parameters that will be provided to the
consequence modules. Additional discussion on the specific input parameters and format requirements are
provided in chapter 5.

One significant feature of READER is that it has a large number of error traps that detect
problems with the input data and provide specific error messages directing the analyst to the problem. This
is a feature that did not exist in the TPA Version 2.0 code. Based on experience exercising the earlier
version of the code, it was considered highly desirable to have a READER with numerous built-in error
traps. Examples of error traps include:

* Checking for two title lines
* Checking for blank tide lines
* Checking for appropriate parameter ranges for PDFs
* Checking keywords such as aqueousnuclides, subarea, and title are not used more than once
* Checking that sufficient repository area is specified to dispose of 70,000 MTU

Most error traps also identify the line number of the tpa.inp file where the error was detected.
Below are a number of errors and the error messages generated by READER.

READER will enter an error trap if the user has only one title line in the tpa.inp file. Below is
an example of a title being defined, but the second title line is missing:

**

title
Only one title line supplied

**

The asterisks (**) are comment lines that help the user visually block the input data into groups. The error
generated by READER is as follows:

***>>> Error in Reader <<<***
Second line of title is blank or comment line
title line is:

**

Look on Line Number = 4
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The error message prints the second line of the title (which is a comment line) and the line number of the
tpa.inp file where the error was detected.

Another error trap example is when a flag value is set to a value other than zero or one:

**

if lag
Seismic disruptive scenario flag (yes=l, no=0)
5
**

The resulting error message is:

***>>> Error in Reader <<<***
(iflag .ne. 0) .and. (iflag .ne. 1)
iflag = 5
Look on Line Number = 16

Another example is when the user specifies that zero time steps are to be used:

**

iconstant
NumberOfTimeSteps
0
**

then the following error message is provided by READER:

***>>> Error in Reader <<<***
NumberOfTimeSteps .le. 1
needs to be >= 2

The last example is when the user specifies a uniform distribution but the lower limit is greater than the
upper limit:

**

uniform
GroundwaterPercolationRate[mm/yr]
2.5, 2.0
**

READER generates the following error message:

***>>> Error in Reader <<<***
for uniform distribution
name = GroundwaterPercolationRate[mm/yrr]
xmax .le. xmin
xmax = 2.0000000000000
xmin = 2.5000000000000
Look on Line Number = 176
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The description of keywords recognized by READER are described in chapter 5. The above examples only
highlight that READER has many error traps to assist the analyst in developing an acceptable input file
for the TPA Version 3.0 code.

3.2 SAMPLER

The SAMPLER utility module dynamically stores and retrieves information for model input
parameters with assigned statistical distributions. PDFs are read from the tpa.inp file during program
execution. SAMPLER also supports either Monte Carlo sampling or Latin Hypercube Sampling (LHS).
The user selects the sampling scheme in the tpa.inp file. If Monte Carlo is selected, then samples are
drawn from the various distributions using well established algorithms (e.g., Press et al., 1986; Ripley,
1987; Ang and Tang, 1984). If LHS is selected, then the program by Iman and Shortencarier (1984) is
used. The statistical distributions included in the SAMPLER utility module are:

* Constant
* Uniform
* Loguniform
* Normal
* Lognormal
* Triangular
* Logtriangular (currently not supported when using LHS)
* Beta (currently not supported when using LHS)
* Logbeta (currently not supported when using LHS)
* Exponential (currently not supported when using LHS)
* Finite exponential (currently not supported when using LHS)

In addition, two other options exist which allow sampling from user supplied data and forcing a correlation
between parameters.

* User data (currently not supported when using LHS)
* Correlate inputs

These distributions are discussed in the following sections.

3.2.1 Constant

A parameter may be specified as a constant such that it remains at a fixed value for the
simulation. The constant can be described as a PDF consisting of a Dirac delta function located at the
value of the constant [see Boyce and DiPrima (1977) for a discussion of the Dirac delta function].
However, this mathematical complexity is not needed for this discussion.

3.2.2 Uniform Distribution

The PDF for the uniform distribution is:
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f(x) (B-A'1 A<x<B (3-1) U

The mean of the uniform distribution is:

(A + B) (3-2)

2

and the variance is defined as:

2 (B - A)2 (3-3)

12

To assign the uniform distribution to an input parameter, the user must specify the endpoints A and B.

An example is shown in figure 3-1 where the end points are A=1.2 and B=2.45.

3.2.3 Loguniform Distribution

The loguniform distribution is a variation of the uniform distribution, and is built upon calling

the uniform distribution. The actual end points of the loguniform distribution are (ab). The endpoints

passed to the uniform distribution are the log transformation of the actual end points, [e.g., A=log(a),

B=log(b)]. The exponential of the sampled value returned from the uniform distribution, is then returned

as the value from the loguniform distribution.

3.2.4 Normal Distribution

The PDF of the normal distribution is:

f W e1 x (X - 1.1)2] -O~xo (3-4)
f ax = ePi 2 I2

Where p and a are the mean and standard deviation of the distribution, respectively. SAMPLER

generates samples having standard normal distribution (mean of 0.0 and standard deviation of 1.0) with

lower and upper cut-off A and B. Sampling from the normal PDF is based on the algorithm described by

Press et al. (1986) when Monte Carlo sampling is selected, and when LHS is specified the algorithm in

the code by Iman and Shortencarier (1984) is used. SAMPLER requires specification of A and B at the

0.001 and 0.999 quantiles of the normal distribution:

P(x<A) = 0.001 (3-5)

and

P(x>B) = 0.999 (3-6)

The mean of the normal distribution is:
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A + B (37)
2

and the variance of the normal distribution is:

a2 (B -A) (3-8)
6.18)

An example of a normal distribution with a mean of 2.0 and standard deviation of 3.5 is shown
in figure 3-2. With this mean and standard deviation the 0.001 and 0.999 quantiles are A=-8.816 and
B=12.816, respectively.

3.2.5 Lognormal Distribution

The lognormal distribution is built upon using the normal distribution. Here, the logs of the
0.001 and 0.999 quantiles [e.g., A=log(a), B=log(b)] are used as inputs to sample from the normal
distribution. The exponential of this value is returned as the final sampled parameter value.

3.2.6 Triangular Distribution

The triangular distribution is described by a minimum value (A), maximum value (C) and a
mode or peak value (B). The PDF of the triangular distribution is:

f~x) 2(x - A)
(C - A)(B - A) A<x<B (3-9)

- 2(C - x) , B<x<C

(C - A)(C - B)

The mean of the triangular distribution is:

A+B+C (3-10)
3

and the variance is defined as:

0 2 = A(A - B) + B(B - C) + C(C - A) (3-11)

18

An example triangular distribution is shown in figure 3-3. Here the lower limit, the location of
the peak, and upper the limit are A=-2, B=4, and C=14, respectively.
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3.2.7 Logtriangular Distribution

The logtriangular distribution is based on using the triangular distribution. The minimum,
peak, and maximum locations (a,b,c) are transformed by taking their logs [e.g., A=log(a), B=log(b), and
C=log(c)]. The sample is drawn from the triangular distribution. The exponential of this sample is then
returned from the logtriangular distribution.

3.2.8 Beta Distribution

The PDF of the beta distribution within 0 and I (standard beta distribution) is:

fAY) = r(ot + A) ya-l (1 - y)PO1 , O<y<l (3-12)
r(an)F)

where a and P are positive, shape parameters of the distribution and 17() is the Gamma function which
is defined as:

ron) = f z'n 1 e -Z (3-13)

0

where z is a dummy variable. The mean and variance of the standard beta distribution are:

a (3-14)

a + ,

and

a2 = a p (3-15)
(a + p)2 (a + 0 + 1)

The general beta distribution with lower and upper bounds A and B (i.e., A<x<B) may be obtained from
mapping the standard beta distribution:

x = A + y (B - A) (3-16)

where y corresponds to the sample from the standard beta distribution. When Monte Carlo sampling is
selected, the algorithm by Ang and Tang (1984) is employed. When LHS sampling is selected, the beta
distribution can not be used because it is not currently working in the code by Iman and Shortencarier
(1984). An example of a beta distribution is shown in figure 3-4 where the shape parameters are a=2 and

=6, and the lower and upper limits are A=-3 and B=6, respectively.

3.2.9 Logbeta Distribution

The logbeta distribution uses the beta distribution. The upper and lower bounds are transformed
by taking the logarithm [e.g., A=log(a), B=log(b)]. The sample is then drawn from the beta, and the
exponential of the sample is returned from the logbeta.
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3.2.10 Exponential Distribution

The PDF of an exponential distribution is:

f(x) = Xe -AX, O<x (3-17)

where X is the recurrence probability. The exponential distribution frequently is used to describe the time

of the next event such as faulting, volcanism, or seismic activity. In these cases, X is the annual recurrence
probability which is the reciprocal of the return period. The mean of the exponential distribution is:

=1 (3-18)

and the variance is:

2= (+) (3-19)

An example of an exponential distribution is shown in figure 3-5. Here, the recurrence probability is equal
to 0.4. The figure also illustrates that x is restricted to be positive.

3.2.11 Finite Exponential Distribution

The PDF for the finite exponential distribution:

f(X) = A ) -;x O•A<x<B (3-20)
e-L-e -;L

The PDF is equal to zero outside the range from A to B. When the return period is long
compared to (B-A), the finite exponential is approximately a uniform distribution.

An example of a finite exponential distribution is shown in figure 3-6. Here the recurrence
probability is 0.4, and the lower and upper limits are A=2 and B=5, respectively.

3.2.12 User-Defined Distribution

SAMPLER also allows the input of user-supplied data for sampling an empirical distribution.
For instance, suppose the information for an input variable is only available in the form of sample data.
The user-defined distribution option provides the means to accommodate this data and sample from it. This
is accomplished by sampling directly from the empirical distribution function formed from available data.

For example, suppose that there are eight equally probable sample data points: 0.3, 0.7, 1.3, 1.8,
2.0, 2.6, 3.0, 3.3. The cumulative distribution function (CDF) for these example data is shown in
figure 3-7. The step heights (probabilities) are all the same and in this case equal 1/8. Samples from this
distribution will be one of the eight input values, and neither interpolation nor extrapolation of the data
is performed. Hence, the CDF has a stair-step profile.

3-9



0.5

: 0.4
.°
0
C

LL

g 0.3
.2

.0

D 0.2

.0

(o 0.1

0.0

0

0 5 10 15

Parameter, x

Figure 3-5. Example of exponential distribution

0.7

x- 0.6
e

0 .cQ 05
LL

.° 0.4

h 0.3
._

.0
D0

0.1

0.0
10

Parameter, x

Figure 3-6. Example of finite exponential distribution

3-10



1.00

U-

cF 0.800

U_CI

2 0.60
.0

._-

o 0.40
.a,)

E
E 0.20

0.00
0 1 2 3

Parameter, x

Figure 3-7. Example of user-defined distribution

4 5

3-11



3.2.13 Specified Correlation

SAMPLER utility also contains a correlation feature that samples two variables to introduce a

user specified correlation. The correlation coefficient (p) is specified for the rank transformation of the

inputs. When p =0, the two variables are independent. When p = 1, there is a perfect positive correlation

and when p = -1, there is a perfect negative correlation. The algorithm for correlating inputs is described

on page 321 of Benjamin and Cornell (1970). The algorithm was initially established for two normal (or

Gaussian) distributions but has been generalized in SAMPLER for any two distributions. The algorithm

begins by assuming the first parameter is independent and the second parameter is sampled to enforce the

correlation. A random sample is taken from the standard normal distribution (e.g., mean=O, standard

deviation =1).

z, = N(0,1) (3-21)

The value of z, influences the distribution of the second variable, such that:

z, = N(p z1, /p2) (3-22)

The mean of the second distribution is equal to the product of the correlation coefficient (p) and

the value of the first sample (zl). The standard deviation of the second example is a function of the

correlation coefficient. When p=0, the second distribution is the same as the first. When IP 1, then the

standard deviation of the second distribution is very small.

These results can be generalized to any distribution. First, the z's from the normal distribution

are transformed to u's for a uniform distribution. These u's are the quantiles of the parameter distributions.

This transformation is performed by computing the CDF of the normal distribution using z, and z2. This

yields:

u, = F(z) (3-23)

u2 = F(z 2) (3-24)

where F(z) is the CDF for the standard normal distribution, N(O,1). The u's are then used to invert the

CDF of the respective distributions to obtain parameter values.

xI = Fj (u1 ) (3-25)

X2= F(U 2) (3-26)

In general, the CDFs of each parameter are unique, hence the subscript has been used on the F's. When

using the LHS module option, an alternative algorithm has been implemented by Iman and Shortencarier

(1984). The alternative algorithm is not described here. Because it is much more complex to implement

a matrix of correlations between multiple parameters and because the code by Iman and Shortencarier

handles this case, the analyst should select the LHS scheme when a matrix of correlations is specified.
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An example of a user specified correlation is shown in figure 3-8. On the left side, scatter plots

of the z's, u's, and x's are shown between two parameters when p=0.0 (i.e., no correlation). On the right

side, similar scatter plots are shown for p=0.9 (parameters highly correlated with positive correlation).
These plots visually demonstrate how the algorithm correlates the z's (samples from unit normal
distributions), transforms them into u's (quantiles), and then transforms these into x's (sampled values).
The first parameter has a normal distribution which is the same as shown in figure 3-2. The second
parameter has a beta distribution which is the same as shown in figure 3-4.

3.3 MODULE VARIABLE

The MODULE VARIABLE utility module consists of subroutines for storing values computed
by consequence modules. MODULE VARIABLE provides a database for storing consequence module
results (i.e., subsystem and system performance measures) and provides a special index to identify each
parameter value. This procedure provides data security, such that only the routine that introduced the data
knows the index for a given parameter and may change its value within the database. Other modules
within the TPA Version 3.0 code are allowed to query the value; however, they are unable to change the
value in the database.

MODULE VARIABLE provides the analyst using the TPA Version 3.0 code with a tool for
storing parameter values for later correlation with the output. For example, the analyst may decide to save
the time for each faulting event to assess the sensitivity of the resulting dose to the event time. Examples
of the types of variable information generally saved to the MODULE VARIABLE utility module include:

* WP Failure Time (yr)
* Fractional Release Rate (1/yr)
* Time of Peak Annual Dose (yr)
* Magnitude of Peak Annual Dose (rem/yr)
* Cumulative Normalized Release

3.4 INVENT

INVENT is a utility module that centralizes the computation and storage of radionuclide
inventory data for use throughout the TPA Version 3.0 code. This module builds upon and extends the
work of Lozano et al. (1994). The subroutines provide the inventory (in Ci/MTU) of 43 radionuclides for
times up to and beyond one million years, accounting for chain decay and ingrowth of daughters.
Information for half-life, specific activity, and the EPA release limit are also available for each
radionuclide. Thermal output of the average HLW (MTU weighted average of BWR and PWR spent
nuclear fuel) is also provided by the INVENT module.

During the execution of the TPA Version 3.0 code, radionuclide inventories must repeatedly be
calculated and queried. For example, in the IPA Phase 2 exercise (Wescott et al., 1995) the inventories
of 20 radionuclides were tracked from 10 yr out-of-core (assumed age at emplacement) up to 10,000 yr.
From experience with the TPA Version 2.0 code, computation of the nuclide inventories were centralized
to ensure data consistency between modules, allow for the variability of the initial nuclide inventories due
to prolonged aging of the waste from reactor to repository, and possibly change the composition of the
waste. The INVENT utility module was developed to centralize the calculation of radionuclide inventories
for the spent nuclear fuel and to create an efficient storage and retrieval interface for other modules to
access this information.
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The governing ordinary differential equation for predicting radionuclide inventories as a function
of time is:

d-Ni(t) = XPI- Ni l(t) - A, Ni(t) - Ri
dt i

(3-27)

where

Ni 1(t) = the parent radionuclide population as a function of time [mol]

Ni(t) = the radionuclide population as a function of time [mol]

x -l = the physical (radioactive) decay constant for the parent radionuclide [1/yr]

= the physical (radioactive) decay constant for the radionuclide [1/yr]

= the total removal constant, which is a combination of physical decay and any other removal
processes whose rate of removal is proportional to the population of the nuclide

The analytic solution to the above differential equation is:

E la1 (TERM.) (NnO +RJXD)
n=1 =1

Ni(t) = E
j=1

exp(-IX1 t)

Ii i-1
E II ( TERM. ) Ru

i T
llxq

q=1

(3-28)

II (XT _ )x
k*
k=l

where

'rERM T TTERMm = n-r n

=m

TERMS = k

m<n

m!n

s<u

s s-u

NnO = the initial population of radionuclide

In the current implementation of the INVENT utility module, the Ri terms are universally equal
T Pto zero and XA is equal to Xi for all radionuclides. The above solution was originally derived for

calculating radionuclide leaching from contaminated volcanic ash blankets. The full derivation of these
equations will be the subject of a future paper on this topic.

The initial inventories in the INVENT utility module are based on calculations using the
ORIGEN2 code (Croff, 1983; Ludwig and Renier, 1989). The INVENT module waste inventories are
based on the default assumptions of an average of 65 percent PWR waste with a 42 GWd/MTU burnup
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yr (i.e., default value), unless specified otherwise in the tpa.inp file. INVENT uses this information to

determine the activity of each of the 43 radionuclides of interest in the HLW projected to the time of

interest. The set of 43 radionuclides was selected after reviewing the literature and finding 43 is the largest

set of radionuclides being considered in other TSPA efforts (Barnard et al., 1992; Wilson et al., 1994;

TRW Environmental Safety Systems, Inc., 1995). The NRC IPA Phase 2 effort tracked 20 radionuclides,

hence the database has been expanded.

The 43 radionuclides considered in the INVENT module contain four major actinide element

decay chains. These chains are shown in figures 3-9, 3-10, 3-11, and 3-12. The specific nuclides being

tracked are boxed in the decay chains. Additional radionuclides are tracked in the INVENT module which

are not chain decay members, and are handled through simple decay equations. These radionuclides are

typically fission or activation products and include: 232U, '51 Sm, 137Cs, '35Cs, 129I, 126Sn, 12 'mSn, 1°8mAg,
'""Pd, 99Tc, 93Mo, 94Nb, 93Zr, 9Sr, 79Se, 63Ni, 59Ni, 36CI, and '4C.

Radionuclide inventory calculations performed by INVENT have been verified by comparing

the results with other published results, and plotting the inventories for times from 10 to 1,000,000 yr

(figures 3-13a, 3-13b, 3-13c, and 3-13d). The trends in the inventories were compared with those

published elsewhere (e.g., Roxburgh, 1987). As expected, most radionuclide inventories decrease with

increasing time, some remain relatively constant over long periods of time (those with long half-lives),

and others increase with time (daughters in a decay chain). For example, 238Pu has an 87.7 yr half-life, and

its inventory can be observed to continuously decrease with time. Another example is 234U, which has a

244,500 yr half-life, and remains relatively constant up to about 100,000 yr. An example of daughter

ingrowth can be seen with 23OTh, 226Ra, and 210 Pb, which are in the 24rCm decay series of radionuclides (see

figure 3-12). Hence, the inventories of these daughters increase with time. In summary, the INVENT

module was developed to facilitate the calculation of radionuclide inventories and thermal output of the

HLW which are used by various consequence modules of the TPA Version 3.0 code.

3.5 SUBAREA

SUBAREA is a utility module that performs storage and retrieval of repository subarea

information. The data are read in the READER utility module, and stored for use by all modules. The

consequence modules can acquire information about the subarea discretization, but are not allowed to

change (i.e., inadvertently corrupt) the information.

The subareas are defined in the tpa.inp file by providing Universal Transverse Mercator location

coordinates for the vertices of quadrilateral elements. The SUBAREA utility module has subroutines to
query (or determine):

* Footprint area of subarea
* MTU of waste in subarea
* Number of WPs in subarea
* Subarea vertice coordinates
* Total number of subareas
* Coordinates of a subarea midpoint
* If a point is located within a specified subarea
* If a circle is located within a specified subarea
* If a line is located within a specified subarea
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For example, figure 3-14 shows four line segments which may represent faults or volcanic dikes

that may intersect a given subarea. Subroutines in SUBAREA are currently being called in the FAULTO

and VOLCANO modules for just such calculations. SUBAREA takes as input the coordinates of the end

points of a given line segment and the vertices of a quadrilateral emplacement region. The routine then

uses each segment of the boundary of the emplacement area, checks if there is a real intersection, and

calculates the intersection point. SUBAREA then checks to determine if both ends of the line fall within

the given region. If both ends of the line are within the given region, then the intersection length is the

length of the line. If one end or both ends fall outside the given region, then SUBAREA determines the

intersection point(s) of the line with the sides of the quadrilateral region. There will be one or two real

intersection points, depending on whether one or two end points fall outside the region. The intersection

length for the first case is the distance between the real intersection point and the end point of the line that

falls within the region. The intersected length for the second case is the distance between the two

intersection points. In figure 3-14, for example, the intersection length of line 1 would be the full length,

line 2 intersection length would be AB (need to find B only), and lines 3 and 4 the intersection lengths

would be AB (need to find both A and B). SUBAREA calculates the intersection lengths of the lines in

this example.

3.6 ARRAY

The ARRAY utility module contains 16 subroutines for the manipulation of various data types
(i.e., floating point, integer, and character). These subroutines can be called by other modules to perform
routine functions. The functionality of those subroutines range from ARRAY initialization, vector

operations, variance calculations, index mapping, and sorting. The subroutines called by the ARRAY

utility module are identified and described in table 3-1. In appendix C, more detailed information is

provided for the specification of the subroutine calls.
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Figure 3-14. Subarea intersection example
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Table 3-1. Standard subroutines located in the ARRAY utility module 0
Subroutine Operational Description

zero zeros out a vector

zeroi zeros out integer vector

clearchar clears character string

transpose transposes the contents of a matrix

scale scales a vector

scopy scales and copies a vector

acopy copies vector and adds a constant to each entry

ascopy add, scale and copy vector

addto adds one vector to another

isoneofset determines if an integer is part of an integer set

ainterl linearly interpolates in list of {time, value:} data to find value at time of
interest

avar calculates variance of an array of values

amean calculates mean of an array of values

checkinorder determines if array of values are in order, either ascending or descending

sortqr sorts based on pointers to array of values - sorts from smallest to largest

value

maplist maps data in first list into second list given the first set of {x,y} and the

second set of {x}, and finds the second set of {y}
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4 CONSEQUENCE MODULES

This chapter briefly describes each of the consequence modules associated with TPA Version 3.0 code.
Each section contains a short explanation of the purpose of the module, the physical basis of the models
encompassed by the module, and details on where to find more complete information on the given module.
Two types of consequence modules are incorporated in the TPA Version 3.0 code: (i) flow, transport, and
dose assessment modules and (ii) disruptive scenario modules. The former model releases from the
repository to the CP, while the latter model disruptive scenarios. Some modules utilize both table-lookup
and subroutines. A good example is NFENV. It uses semi-analytical solutions for temperatures and RH,
but uses table-lookup for pH and chloride concentration based on MULTIFLO results.

4.1 UZFLOW

The unsaturated zone flow (UZFLOW) module, a set of TPA subroutines, calculates
time-dependent unsaturated zone percolation flux into each subarea of the repository (see figure 4-1).
UZFLOW uses a time history of mean annual precipitation (MAP) and mean annual temperature (MAT)
generated by CLIMATO (the climate simulator described in section 4.8) to modify the mean annual
infiltration (MAI) occurring under current and postulated future climatic conditions. Assuming that no
lateral diversion occurs from the ground surface to the water table, and that the flow field in YM is in
equilibrium, MAI can be equated to areally averaged deep percolation. This is a conservative formulation
of deep percolation. It will be modified in the future to account for lateral flow. Accordingly, the areal
average of MAI over a subarea is used for deep percolation. The calculated flux history is returned to
EXEC which then passes this information to NFENV (the near-field environment module) and UZFT (the
unsaturated zone flow and transport module).

UZFLOW discretizes each repository subarea into pixels (i.e., areas of 30 by 30 m). A digital
elevation model (DEM) is used to assign elevation and soil depth to each pixel. Based on elevation, soil
depth, soil and bedrock properties, and climatic variables, the MAI is estimated for each pixel, using an
empirical relationship appropriate to YM (Stothoff et al., 1997). The empirical relationship was derived
by analyzing the MAI generated from nearly 200 iD bare-soil simulations with various combinations of
MAP, MAT, solar aspect, soil depth, soil hydraulic properties, and bedrock soil properties. The empirical
relationship is appropriate for shallow bare soil overlying an open fracture in an impermeable bedrock.

The empirical relationship assumes that MAI can be parameterized as a function of the input
variables (e.g., MAP, MAT, soil depth). A simple perturbation approach is used with a base set of the
input variables to calculate a base value for MAI with a 1D simulation. Additional simulations were run,
perturbing one or more input variables, to build up the response of MAI to the input variables. A
simplified version of the empirical relationship derived by Stothoff et al. (1997) is used in UZFLOW for
each pixel in a subarea:
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Figure 4-1. Example repository discretization into subareas
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log1 0 ( 0.77A) = -0.005 + 0.307 MAV

+ 1.63 P - 12.6 T - 1.73 p 2 + 38.0 P T +141 T2 (4-1)
+ 1.77 P3 - 44.2 p2 T - 328 P T 2 - 2710 T 3

- 0.77 (15 b)-v'

where

MAI = mean annual infiltration [mmlyr]
MAP = mean annual precipitation [mm/yr]
MAT = mean annual temperature [C]
MAV = mean annual vapor density [gm/cmA3]
P = ln(MAP/162.8)
T = [(MAT + 255.77)/290.53)] - 1
b = soil depth [m]

The constants in the relationship account for representative YM soil and bedrock properties.

Under current climatic conditions, UZFLOW calculates MAP, MAT, and MAV for each pixel
using regressed relationships (Stothoff et al., 1997):

MAP = exp (4.26 + 0.000646 Z) (4-2)

MAT = 25.83 - 0.00840 Z (4-3)

MAV = exp (-11.96 - 0.000341 Z) (4-4)

where

Z = ground surface elevation above sea level [ml

Ground surface elevation is supplied as a DEM in the static file entitled ymelev.dem; a DEM with the
same discretization, soildep.dem, provides soil depths.

Climatic change, calculated by CLIMATO, is used to alter the value of MAP and MAT by
changing the value of the parameter for each pixel by the same amount (e.g., if CLIMATO calculates that
MAT is 1 C less than present, all pixels use a value of MAT that is 1 C cooler than calculated by
Eq. 4-3). It is assumed that MAV remains unchanged from current conditions.

CLIMATO generates a sequence of MAP and MAT at uniform time steps. For each CLIMATO
time step, UZFLOW uses the corresponding MAP and MAT to calculate MAI for each pixel within the
subarea and averages all pixels to obtain an areal-average MAI, yielding a time history of MAI for each
subarea. Cumulative MAI over time is interpolated to the time instants required by the user, yielding an
average MAI between user time instants. Finally, each value of MAI in the time history is normalized to
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match the average value of MAI over the repository footprint existing under current climatic conditions
(input by the user).

4.2 NFENV

The near-field environment (NFENV) module calculates the time-dependent hydrothermal

environment of the WP such as:

* Average repository-horizon rock temperature
* WP surface and spent fuel temperatures
* RH at the WP surface
* Flow rate of groundwater onto the WP
* pH and chloride concentrations of groundwater flowing onto the WP

The NFENV module requires as input the incoming water flow rate which is provided by the

UZFLOW module. The temperatures, RH, dripping water flow rate, and chemical composition of the water
are calculated and provided to the EBSFAIL and EBSREL modules.

The repository-horizon average rock temperature is computed using an analytic conduction-only
model for mountain-scale heat transfer. The model is based on a heated rectangular region residing in a

semi-infinite medium. The modeled repository region has been divided into 12 rectangular subregions to
cover the proposed upper block of the repository. This discretization is shown in figure 4-2. The heated

rectangular region is at a depth of H below the ground surface, and has width and length dimensions of
2B and 2L as shown in figure 4-3. Because more than one rectangular region exists, the temperature

increase in the semi-infinite medium is the sum of contributions from each heated region. The general
solution for the temperature increase at any point in space and time is given by (Claesson and Probert,
1996; Carslaw and Jaeger, 1959), and is:

T(xyzt=,F aq/ep(t/) 1 [ed L-x + ( L+x Al (4-5)

0 4kr F4a(t -t/) L 4 1a (t -t) t^4a(t -t/))

B-y +er4 B+y Alexp( 2z dtexp( dtX

L 4 a 4(t-t) t ;4 a (t -t/) t~ ~40~-t0) 4a(t-t' )

where

AT(x,y,z,t) = increase in temperature at any time at any point in space and time in the semi-infinite
medium due to one heated rectangular region [C]

q W/(t) = time-dependent repository heat flux evaluated [W/m2]

a = thermal diffusivity of the semi-infinite medium [m2/sIl

k = thermal conductivity of the semi-infinite medium [W/(m-C)]

L = half length of the heated rectangular region [m]

B = half width of the heated rectangular region [m]
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Figure 4-2. Discretization of repository upper block into twelve rectangular regions for the
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H = depth of the heated region below the ground surface [m]
t = actual time after activation of heat flux [s]

t / = time of integration [s]
xyz = location of interest [in]

The ground surface is assumed to be exposed to atmospheric conditions and has a constant
temperature (currently not affected by climate change). The analytic equation is valid below the ground
surface, z<H. The repository heat flux is related to the AML and heat output per MTU of waste:

qrep(t) = AML*Qper mtu(t) (4-6)

Likewise, the thermal output for a single WP is related to the WP payload:

Qn(t) = MWUWp Qper mtu(t) (4-7)

where

AML = areal mass loading [MTU/m2 ]
MTUWp = metric tons of uranium [MTU] in a representative WP

Qper mtu(t) = time-dependent heat output per MTU of waste [W/MTU]

The time-dependent heat output of the waste per NnU [Qper mtu(t)] is available using a function subroutine
in the INVENT utility module.

The repository upper block has been discretized into 12 rectangular subregions to cover the
extent of the proposed upper block, as shown in figure 4-2. Waste is assumed to be emplaced uniformly
throughout the rectangular subregions, so there is no spatial variation in the waste heat output. This
assumption should be re-evaluated in the future to explore the effects of spatially varying thermal loads.
The temperature increase at any point is due to the contribution from all subregions. The average rock
temperature is computed at an elevation of half the drift diameter at the center of each of the subareas.
The subareas should not be confused with the NFENV rectangular regions. The rectangular regions are
used by the NFENV module to predict only the temperatures in the subareas. The analytic mountain-scale
conduction model predicts the rock-wall temperature (Trock) as a function of time. Having computed Trock
for the subarea, the WP temperature can be calculated.

A multimode (i.e., conduction, convection, and radiation) heat transfer model is used for
modeling drift-scale heat transfer. A simplified thermal network is shown in figure 4-4 for heat transfer
from the waste to the drift rock wall. The network consists of four temperature nodes and five thermal
conductance linkages (conductance is the reciprocal of resistance). The thermal network is used to predict
the WP surface temperature and the maximum spent fuel temperature given Trock (from the mountain-scale
model described above) and Qwp(t).

The method used to solve the thermal network problem is to progressively solve each of the
three unknown temperatures. The first is the WP surface temperature (Tw surf) then the inner wall surface
temperature (Tnsurf) and finally the maximum spent fuel temperature (Tmaxsf). The heat is transferred
by both thermal radiation and natural convection in the unbackfilled region above a WP and by conduction
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Figure 4-4. Thermal network used to predict the maximum spent fuel temperature

through the package support and floor material, and can be expressed as:

QwP = (Grd + Gcon, + Gcond) (Twpmff - Trok)

where

Twp sarf V= WP surface temperature [C]
Tck = near-field rock temperature [C]
QWP = time dependent heat output for a WP [WI
Grad = effective thermal conductance for radiative heat transfer [W/C]
Gconv = effective thermal conductance for convective heat transfer [W/C]
Gcond = effective thermal conductance for conduction [W/C]

(4-8)

Equation (4-7) is used to solve for WP surface temperature, given the rock temperature, thermal

output of the WP and conductances (Gs). The thermal conductance for radiative transfer above the WP

is based on a linearization of the Stefan-Boltzmann law, and accounts for the emissivity of the WP and
drift rock wall (Incropera and DeWitt, 1990):
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where

a = Stefan-Boltzmann constant [=5.67 10-8 W/(m 2-K4 )]
ewp = emissivity of the WP surface [unitless]

Erw = emissivity of the drift rock wall surface [unitless]

Fwp rW = radiative view factor from the WP to the rock wall (=1) [unitless]

DWP = diameter of the WP [m]

DrW = diameter of the rock wall [m]

LWP = length of the WP [m]

LrW = length of drift wall per WP drift [ml (estimated to be -18 m for 80 MTU/acre, -25 m for

40 MTU/acre, and -30 m for 25 MTU/acre)

The top three-quarters of the WP is available for the radiative/convective heat transfer and the
bottom quarter of the package participates in conduction through the pedestal/floor. The thermal
conductances for convective transfer above the WP and conductive transfer below the package are
computed from:

Gc, 034 27keff r(2LWP) (4-10)
4) ln(Drw/Dwp)

G( 1 ( 2) 27rk L.) (411)

where

keffair = effective thermal conductivity of buoyant air which has been estimated to be 30 times the
stagnant air conductivity [W/(m-C)] (Manteufel, 1997)

kfloor = thermal conductivity of the concrete pedestal/floor material [W/(m-C)]

The effective axial length for conductive and convective transfer from the WP to the drift wall
should be larger than the length of the WP and smaller than the package spacing length within a drift. A
reasonable value for this length is two times the WP length, and this value is used in the preceding
equations. For the case of backfilled drifts, heat transfer through the top three quarters is predicted using
an effective conductivity for the crushed, backfill material.
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where

Gbf = effective thermal conductance for backfill region [W/C]

keff bf = effective thermal conductivity of backfill material [W/(m-C)]

After computing the outer WP surface temperature, the inner surface temperature of the wall is
calculated. The wall of the WP consists of two cylindrical layers for the inner and outer overpacks. The
thicknesses and properties of the walls are specified as sampled parameters in the input file. The inner wall
temperature is related to the WP heat according to:

Qp = Gshell (T f - TPu-) (4-13)

where

Gshell = thermal conductance for WP shell [W/C]

Timsurf = inner surface temperature of the package wall [C]

The shell conductance consists of a contribution from the outer carbon steel and inner stainless
steel layers.

LWsP
G shell = __ _ _ _ __ _ _ _

G lze = tCS (4-14)
+ c

7rDssksn -nDcskc,

where

tSS = thickness of the inner stainless steel layer [m]

tCS = thickness of the outer carbon steel layer [m]

DSS = diameter of the inner stainless steel layer [m]

DCs = diameter of the outer carbon steel layer [m]

k55 = thermal conductivity of stainless steel [W/(m-C)]

kcs = thermal conductivity of carbon steel [W/(m-C)]

Using the inner surface temperature, the maximum spent fuel temperature is calculated using a
conduction shape factor formula which accounts for the volumetric heat generation in the interior region
of the package (Manteufel and Todreas, 1994).

Q, = Gint (Tmcsf - T. smf) (4-15)

where the conductance of the cylindrical interior region is computed from:
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where

S = conduction shape factor for a heated cylindrical region [= 4n]
ksf = effective thermal conductivity of basket and spent fuel in the package [W/(m-C)]

The effective thermal conductivity of the spent fuel accounts for the region between the inner
wall and the basket material, the basket material, and the individual assemblies. There are multiple modes
of heat transfer, including thermal radiation, buoyant convection primarily in the larger void regions, and
conduction in the basket material, the fuel rods, and regions with primarily stagnant gas. At high
temperatures, the heat transfer is dominated by radiative transfer. At lower temperatures, heat transfers can
be dominated by conduction. The effective thermal conductivity is a function of temperature and increases
with higher temperatures. In this work, the effective thermal conductivity is a sampled parameter and is
specified in the tpa.inp file. In future work, a temperature dependent model should be included in NFENV.

In addition to the thermal calculations, NFENV provides estimates of groundwater infiltration
rates and chemical composition (i.e., pH and chloride concentration) for the flow onto WPs. The pH and
chloride concentrations are based on table-lookup using results from the MULTIFLO code (Lichtner and
Seth, 1996). The groundwater flow rates onto a WVP are internally calculated in the NFENV module.
MULT1IFLO results are multiplied by a factor which is a sampled parameter to represent uncertainties in
the data.

NFENV uses the time-dependent temperature profiles generated by these heat transfer models,
along with time-dependent water flux (qnf1j), to calculate time-dependent water flux (qdnip) dripping onto
a WP. In the development of qdra, NFENV considers (i) the time-dependent amount of perching due to
thermal pulsing, (ii) time-depenSent refluxing of liquid and vapor, and (iii) drift-scale variability of
hydraulic properties and fluxes.

The thermohydrologic conceptual model implemented in NFENV assumes that there are both
matrix and fracture flow continua. It is assumed that a condensate zone layer exists at a temperature above
the boiling point Tboil isotherm with a thickness dependent upon qinfil, as shown in figure 4-5. Below the
Tboil isotherm is a reflux zone with thickness Lreflux' Above the Tboil isotherm, liquid is supplied to the
fractures at a rate proportional to the thickness of the condensate zone layer. In the reflux zone, liquid
from the condensate zone flows down through fractures and is vaporized (since T > Tboil). The vapor rises
to the top of the boiling zone and condenses back to liquid in the condensate zone. The thickness of the
reflux zone is dependent on qinfl, and the local heat flux, that is, the temperature gradient. When the value
of Lrefl. subtracted from the elevation of the Tboil isotherm, Zboil, is below the elevation of the top of
the drift, water begins to drip into the drift. Any liquid passing below the level of the repository is
assumed to continue to the water table, and the thickness of the perched zone is decreased accordingly.

The near-field thermal response to the heat pulse is assumed to be dominated by conduction heat
transfer and the near-field hydrology response is dominated by the temperature distribution. It is also
assumed that the near-field moisture distribution reaches equilibrium rapidly relative to changes in the
temperature field. Three input variables are required: (i) qi 1, the infiltration flux into the subarea,
(ii) Zboil, the elevation of the boiling isotherm above the repository, and (iii) qheat, the thermal flux at

Zboil.
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A mass balance model is used to model the thickness of the perched water zone:

(03 -Or) at qinM - qpe (4-17)(6 -- = -r)pat

where

0 = moisture content [unitless]
or = residual moisture content [unitless]

Lp = thickness of the perched zone [m]

qperc = percolation flux at the repository level [m/yr]

t = time [yr]

After it is determined that dripping in a drift can occur (i.e., Zboil - Lreflux < Zdrift), the dripping
flux is calculated. Since flow in the unsaturated zone is considered to be primarily through fractures but
not all fractures have flow, flocal is defined as the fraction of a subarea having fracture flow. As WPs
cannot be dripped on if there is no flow, the fraction of drifts in which dripping occurs is also represented
by focal. The estimated value of volumetric flux of water into a drift given that dripping occurs
(E[qdiplqdnp >0]) is therefore represented as:

E [qd.pl4qdp > 0] o (4-18)
loscal

where q rc is the percolation volumetric flux through the unsaturated zone above the drift as determined
by the I¶ZFLOW module.

In drifts with qdi >0 water can (i) drip on a WP or (ii) drip elsewhere, missing emplaced WPs.
The fraction of qd,,p that drips on a WP is represented by fhit, a sampled parameter that represents the
fraction of the dripping flux which will enter the WP after it fails. EBSREL further partitions the flow
contacting WPs into the portions contacting failed WPs and contacting WPs that have not failed, while
EBSFAIL determines the fraction of WP that has failed due to corrosion. For release of contaminants from
WP modeled by EBSREL, the volume of water available for dissolving radionuclides is then:

qdup = E[qdnpIqdnp > 0] x fbit (419)

In summary, NFENV provides temperature, RH, groundwater flow rate, and chemical properties
information for determination of corrosion rates and WP failures. It also provides the flow rate of water
onto a WP to the EBSREL module for dissolution of the WP contents following WP failure.
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4.3 EBSFAIL

The engineered barrier system failure (EBSFAIL) module calculates the failure time of the EBS
due to various modes of degradation similar to the SOTEC code (Sagar et al., 1992) used in IPA Phase 2.
EBSFAIL executes the stand-alone FAILT program which is a part of the engineered barrier system
performance assessment codes (EBSPAC) by Mohanty et al. (1996). These modes of degradation include
dry oxidation, uniform corrosion, localized (pitting and crevice) corrosion, and fracture failure. Other
degradation modes that may become important under certain conditions, such as stress corrosion cracking
and microbially influenced corrosion, are not currently considered in EBSFAIL. Inputs required by
EBSFAIL include the chemical composition of the fluid in contact with a WP and information on the
temperature and RH as a function of time and position in the EBS (all of this information is calculated
by NFENV). The output of EBSFAIL is the WP corrosion failure time history which is provided to
EBSREL.

Three different types of WP failure are considered in EBSFAIL (i) initial failure, (ii) disruptive
scenario failure, and (iii) corrosion and mechanical failures. These failures are referred to as Type 1, Type
2, and Type 3 failures, respectively. In Type 1 failure, a portion of the WPs in a cell is specified to have
failed at time t = 0 yr as a result of initial defects produced before repository closure. These WPs are
assumed to have been defective or damaged prior to or during emplacement and are specified in the input
data as a fraction of the total containers in a cell. In Type 2 failure, WI's fail as a result of some disruptive
event. The timing and number of WPs affected by Type 2 failure are calculated by other consequence
modules (e.g., FAULTO, SEISMO, VOLCANO).

All WPs in a subarea that have not undergone Type 1 and 2 failures are potentially subjected
to corrosion and mechanical (Type 3) failures. This assumption implies that corrosion or mechanical
failure affects all WPs equally in a cell so that when one WP fails, then all WPs in the same cell that have
not already failed under Type 1 and 2 modes will fail simultaneously. For simplicity, failure of the WP
is defined as the through-wall penetration of the outer and inner overpacks by a single pit or by uniform
corrosion. Failure can also occur by brittle fracture due to mechanically dominated processes. No
allowance is given to the protection ability of the multipurpose container (MPC) or the fuel cladding
against corrosion or mechanical failure. After the outer and inner overpacks are penetrated or failed by
fracture, the spent fuel (SF) is considered to be completely exposed to the near-field environment.

Two types of near-field environments are considered, leading to different corrosion processes.
One is hot dry air that promotes oxidation of the outer steel overpack, and the other is humid air at a high
RH that induces aqueous corrosion. The presence of Cl- in the environment may promote localized
corrosion under slightly alkaline conditions (pH>8.0).

Water condensation begins when the temperature at the WIP surface decreases to a value at
which the RH of the environment surrounding the WP reaches a threshold or critical RH. The thickness
of the condensed liquid layer is assumed to be the same regardless of the presence or absence of backfill
material around the WP and the nature of the contact between particles of backfill and the WP surface.
It is assumed that the wettability of this surface is such that water droplets impinging on it or condensing
nuclei of water vapor can spread immediately to form a layer of uniform thickness. The water layer is thin
and defined by an arbitrary, specified thickness on the order of a few mm.
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At every time step, a calculation is performed to determine if the RH has reached the critical
value. The environment surrounding the WP is treated as dry air if the RH is lower than the threshold,
and an amount of outer overpack material consumed by dry oxidation is calculated to determine the
penetration of the oxidation front. In the same time interval, a mechanical failure test is conducted for the
new thickness resulting from metal oxidation to evaluate if failure due to mechanical fracture occurs. If
the WP does not fail by fracture, then the time is advanced, and the same test is repeated. If at any time
step water condensation takes place, then the calculation of oxidation in dry air is interrupted, and the
aqueous corrosion calculation is initiated. The mechanical failure test is performed at all time intervals
until failure occurs, regardless of whether the WP is undergoing dry oxidation or aqueous corrosion.

Aqueous corrosion could be uniform or localized. If it is localized because the corrosion potential
is above the critical potential for the initiation of localized corrosion, the calculation of penetration is
initiated immediately in the form of pit growth without assuming an initiation or induction time. When
the depth of the pit is greater than the initial thickness of the WP outer overpack, the potential of the
galvanic couple formed by the outer and inner container is calculated. If the corrosion potential of the
couple or galvanic potential is lower than the critical potential for localized corrosion of the inner
container, penetration of the inner container is computed as uniform corrosion under passive conditions.
Otherwise, pit growth of the inner overpack begins and continues until the depth of the pit becomes equal
to the inner overpack wall thickness.

4.3.1 Dry Air Oxidation

Oxidation of steel can take place under relatively dry conditions in the presence of air at relative
humidities lower than 70 percent and temperatures ranging from ambient up to 250 'C. The oxide layers
formed at such temperatures are considered to protect the container against further oxidation. However,
the possibility exists that oxide growth may become localized. Localized dry air oxidation may lead to a
deeper oxidation that may adversely affect the long-term container integrity in a dry air environment.

Localized dry oxidation includes internal oxidation and intergranular oxidation. In the case of
internal oxidation, the oxide forms as islands in the metal underneath the uniform oxide layer. In
intergranular oxidation, the oxide forms preferentially along grain boundaries. Localized dry oxidation
takes place by mass transport through short-circuit diffusion paths, such as interfaces between metal and
oxide (or other inclusions and precipitates) or grain boundaries. Therefore, localized dry oxidation can
penetrate into the metal deeper than uniform dry oxidation.

For the calculations of intergranular oxide formation, a mathematical model developed by Oishi
and Ichimura (1979) is used, in which oxygen diffusion in the matrix and along the grain boundary in an
infinite one-dimensional (iD) body is calculated simultaneously. The main assumptions in the calculations
are (i) negligible effects of external oxide, (ii) diffusion of oxygen into metallic phases (near the interface
between grain boundary oxide and metal), and (iii) diffusion of oxygen into metallic matrices (from grain
boundaries). The distance of oxygen penetration in the metal is then represented by:
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where

Yp = penetration distance by intergranular oxidation [cm]

Di = matrix diffusivity [cm 2/s]

Dg = grain boundary diffusivity [cm2/s]

8 = the thickness of grain boundary [= 0.7x10 7cm , based on Lobnig et al., 1992]

rg = the grain radius [_lx10-3 cm for cast steel, based on Alm and Soo, 1983; 1984]

t = time [s]

Equation (4-19) yields penetration distance of oxygen along grain boundaries and is being used

as a surrogate for oxide formation.

4.3.2 Aqueous Corrosion

Aqueous corrosion takes place only when the metal surface is covered by a water film. Water

can be physically adsorbed to the metal surface in molecular form or it can be chemically bonded in a

dissociated form, which results in the formation of metal-hydroxyl bonds (Leygraf, 1995). As shown in

table 4-1, RH determines the characteristics and thickness of the water film. The critical RH above which

atmospheric corrosion of most metals occurs, closely coincides with the RH necessary for the formation

of multiple water monolayers and the liquid film behaves in a manner similar to bulk water. Under these

conditions, corrosion is governed by the same electrochemical laws applicable to corrosion of metals

immersed in an aqueous electrolyte.

Several factors can decrease the critical RH required to form a multilayer surface water film.

Particulate matter from the air can deposit on the surface and promote the adsorption of water (a similar

effect can be expected from particles of backfill material). Similarly, the deposition of hygroscopic salts

on the metal surface can substantially decrease the critical RH necessary to form a water film or capillary

condensation of water can occur in the pores of a thick oxide layer. These lower order processes are not

considered in TPA Version 3.0 code.

Iron and steel exhibit a primary critical RH of around 60 percent, similar to most metals (Fyfe,

1994). Above 60 percent RH, corrosion proceeds at a slow rate, but at 75-80 percent RH the corrosion

rate sharply increases. This secondary critical RH is attributed to capillary condensation of water in the

pores of the solid corrosion products. The water films that form on the metal surface usually contain a

variety of contaminants, including trace amounts of CF- and other soluble species such as CO2 that

increase the electrical conductivity and decrease the pH of the film, and lead to an increase in the

dissolution of the iron or steel (Leygraf, 1995).

Below a critical value of RH, air oxidation of steel is modeled as the dominant corrosion process

for the steel overpack. If the RH is higher than the critical value, the occurrence of aqueous corrosion of
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Table 4-1. Approximate number of water monolayers versus relative humidity (Leygraf,
1995)

RH (percent) Number of Water Layers .

20 1

40 1.5-2

60 2-5

80 5-10

the steel overpack is evaluated. No distinction is made between humid air corrosion and aqueous corrosion
because both processes are governed by the same electrochemical kinetics mechanisms.

In the presence of an aqueous phase, corrosion of steel is an electrochemically controlled process.
This process could be relatively uniform (as active dissolution at pH lower than neutral) or localized
(under slightly alkaline conditions) promoting passivity in the presence of aggressive anions such as CIF.
The corrosion process at any given time depends on the corrosion potential and the critical potential
required to initiate a particular localized corrosion process. In this analysis, the repassivation potential,
ET is conservatively adopted as the critical potential for the initiation of localized corrosion. The same
approach is applied to the outer and inner containers assuming that steel behaves as a corrosion-resistant
alloy in alkaline, passivating environments. If the corrosion potential is higher than the repassivation
potential, it is assumed that localized corrosion is initiated without an induction time; if not, uniform
corrosion under passive conditions takes place. The corrosion models calculate the penetration or
remaining thickness at each time step using rates of uniform and localized corrosion.

The corrosion models calculate the rates of uniform wet corrosion and localized corrosion (pitting
corrosion) following the approach adopted previously in the SCCEX code (Cragnolino et al., 1994). The
dominant corrosion process at any given time is dictated by the corrosion potential and the appropriate
critical potential for that process. The corrosion potential is the mixed potential established at the
metal/solution interface when a metal is immersed in a given environment. Corrosion potentials are
calculated on the basis of kinetic expression for the cathodic reductions of oxygen and water and the
passive current density for the anodic oxidation of the metals. If the corrosion potential exceeds the critical
potential for pit initiation, pits are assumed to initiate and grow without an initiation time. If the corrosion
potential falls below the repassivation potential, previously growing pits are assumed to cease growing and
the material passivates, corroding uniformly at a very low rate through a passive film.

Empirically derived equations are used in EBSFAIL for the dependence of critical potentials on
environmental parameters. The pit initiation and repassivation potentials are assumed to depend only on
the chloride concentration and temperature. The dependence of the critical potential on chloride
concentration and temperature is given by:
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E.nt = E' (T) + BCF) log [Cl-] (4-21)

where the quantities EC't(T) and B(T), are linear functions of temperature and dependent on the material.

It should be noted that ECf(T) is the value of Ecfit(T) for a Cr- concentration equal to 1 M. Both Ert(T)

and B(T) were evaluated for A516 steel and Alloy 825 from literature and CNWRA data for initiation

and repassivation potentials for both pitting and crevice corrosion (Sridhar et al., 1993; Dunn et al., 1996).

Following penetration of the outer container, electrical contact of the inner and outer container

through the presence of an electrolyte path (such as that provided by modified groundwater) promotes

galvanic coupling, assuming that metallic contact always exists between both containers. The galvanic

coupling model evaluates whether penetration of the inner container by localized corrosion is possible; if

not, uniform corrosion or mechanical fracture becomes the predominant failure mechanism because the

inner container becomes protected against localized corrosion.

The effect of galvanic coupling between the inner and the outer overpacks on the failure time

of the WP is evaluated by a simplified approach. The corrosion potential of the galvanic couple formed

when the wall of the outer container is penetrated by a pit, E wp , is estimated using experimentally

measured values of the potential bimetallic couple, Ecouple, for a well-defined area ratio between both

components. If E wp is greater than the repassivation potential of the inner overpack material, localized

corrosion occurs. Otherwise, uniform corrosion takes place. The E wp is determined through a linear

combination of Ecoff of the inner overpack, in the absence of galvanic coupling at the time of the through-

wall penetration of the outer overpack, and Ecouple according to the following assumed empirical

expression:

Ew' = (1-11) Ecrr + T1 Ecoupe (4-22)

where 1 is the efficiency of the galvanic coupling with the condition 0•1•1l. A value of Ecouple equal

to -O.4 6VSHE (volts referenced to standard hydrogen electrode scale) was adopted on the basis of results

reported by Scully and Hack (1984) for a galvanic couple made of steel and alloy 625 (a nickel-base alloy

similar in electrochemical behavior to Alloy 825) with an area ratio 1:1 and exposed to sea water. The

values adopted for the different parameters needed to calculate Ecoff and those establishing the dependence

of the critical potentials with chloride concentration and temperature are reported elsewhere (Mohanty et

al., 1996).

4.3.3 Fracture Failure

The possibility of mechanical failure as a result of thermal embrittlement of the steel promoted

by long-term exposure to temperatures above 150 0C is evaluated at each time step. Fracture, as a result

of thermal embrittlement of the steel overpack, is an important failure mode to be considered for any WP

4-18



design, particularly for high thermal loadings. Thermal embrittlement of low-alloy steels occurs as a
consequence of prolonged exposure at elevated temperatures and results in a substantial degradation of
specific mechanical properties.

One of the important mechanical properties required for a WP material is toughness, which is
the ability to absorb energy in the form of plastic deformation without fracture. However, toughness is
significantly affected by thermal embrittlement, a phenomenon closely related to temper embrittlement.
This type of embrittlement is characterized by an upward shift in the ductile-brittle transition temperature,
measured by the variation of the impact fracture energy for notch specimens as a function of test
temperature (Vander Voort, 1990). Segregation of impurities, such as Sb, P, Sn, and As, along prior
austenite grain boundaries is the main cause of temper embrittlement (Briant and Banerji, 1983). The
segregation of P, which in the case of commercial steels is the predominant impurity, promotes fracture
of notched specimens upon impact and leads to a change in the low-temperature fracture mode from
transgranular cleavage to intergranular fracture.

Mechanical failure of WP in the EBSFAJL module is considered to be the result of fracture of
the outer steel overpack. As a first approximation, other mechanical failure processes such as buckling or
yielding are not considered plausible for the current design of the WP due to the relatively large thickness
of the container wall. It should be noted that active uniform corrosion of the carbon steel overpack is not
expected under the passivating conditions prevailing in the near-field environment and therefore, failure
modes such as buckling or yielding that would require significant generalized thinning of the container
wall in the presence of external loads were not included in the analysis.

A simple fracture model, based on a generalized expression for the stress intensity factor (K1)
developed on the basis of linear-elastic fracture mechanics, is used in EBSFAIL. For the case of a cylinder
with a surface flaw located on its outer surface, the following equation is applicable:

K! = Y a (,a)O (4-23)

where

KI = stress intensity factor for the crack opening mode (I), [IPam0-5]
Y = geometry factor to account for the shape of the crack and the load configuration [unitless]
a = applied stress [MPa]
a = depth of crack [m]

It is assumed that applied stresses are due only to residual stresses associated with the
circumferential weld used for overpack closure. Following a commonly accepted criterion, it is assumed
that the maximum value attainable by residual stresses produced by welding is the yield strength of the
material (currently set in the FAILT stand-alone code to 205 MPa). The depth of the crack increases with
time as a result of localized corrosion in the form of a pit, which is conservatively assumed to be
equivalent to a crack. Values of Y are calculated as presented by Rolfe and Barson (1977). The factorY
corresponds to a part-through thickness thumbnail crack with a length 2c equal to two times its depth a

afor a hollow cylinder of wall thickness t in which the crack shape parameter Q is a function of _.A
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magnification factor MK varying from 1.0 to 1.6 was introduced for deep cracks with depths ranging fromt/2

to t. The Y factor is defined using the nomenclature of Rolfe and Barson (1977) as Y =MkQ -05. For

simplicity, the WP is considered to be composed of a single shell with the added thickness of both the
outer and the inner overpack but with the mechanical properties of the outer overpack.

In addition, a safety factor of 1.4 was applied to calculate the value of K, by assuming that the

yield strength of the material in the vicinity of the welds is higher than the base material. This value is

compared at each time step with the critical stress intensity or fracture toughness of the material, KIjc to

determine if failure by fracture takes place. By definition, fracture occurs instantaneously if K, is greater

than KIC. Due to the lack of data, no decrease in the value of KIC with time is assumed in the present

analysis, which may be the case if thermal embrittlement of the steel occurs due to prolonged exposure
(thousands of years) to temperatures above 250 IC.

4.4 EBSREL

The engineered barrier system release (EBSREL) module calculates the time-dependent release
of radionuclides after the EBSFAIL module determines the WP has been breached, using temperature,
chemical composition of the fluid, and liquid flow rate information provided by NFENV. EBSREL
executes the RELEASET stand-alone program which is part of EBSPAC (Mohanty et al., 1996). EBSREL
takes into account radionuclide decay, generation of daughter products in the chains, temporal variation
of inventory in the WP, and spatial variations in the properties of the surrounding material. Two conditions
must be satisfied for a release: (i) a WP must fail and (ii) a liquid environment must be available around
the WP at temperatures below the boiling point of water. Time-dependent release rates are calculated for
each radionuclide and this is provided to UZFT. EBSREL considers only radionuclide releases from SF.
Since the WPs are assumed to contain only SF, no consideration of radionuclide release from glass waste
form is made in this module.

The first step in the calculation of liquid releases is to determine if a liquid release is possible
at a given time. The release calculation at every time step includes die computation of the radionuclide
inventory in the solid mass, radionuclide releases from the solid mass into the liquid surrounding the WP,
the generation of the new radionuclide inventory in the liquid due to radioactive ingrowth, convective
release of mass from inside to the outside of the WP, and diffusive losses into the surrounding medium
outside the WP.

At each time step, the inventory of the radionuclides in the water inside the WP is computed,
and the radioelement inventory is computed as the sum of mass of all the isotopes. If the concentration
of that radioelement in the WP water exceeds its solubility limit, then the calculated concentration value
is discarded, and the solubility limit is assigned to the concentration at that time step. At any given time,
the concentration of a nuclide in the WP water is calculated by dividing the element inventory by the
volume of water in the WP. The release of an individual nuclide occurs at a rate that is proportional to
the mass fraction of all the isotopes of the radioelement.

At the end of this calculation, the cumulative release is recorded for each nuclide. After
advancing the time, the calculation is repeated for the next time step. The calculation continues until all
radionuclides are depleted from the solid SF and the water in the \VP or the end of the simulation is
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reached, whichever comes first. Since release calculations focus on release from a single WP, to obtain
the total release in the final calculations, the release from one WP is multiplied by the total number of
wetted WPs for each failure type in a subarea.

It is assumed that at the failure time there are at least two pits acting as conduits in a
horizontally emplaced WP, which are located such that water enters through one pit and exits through the
other one. Another assumption is that one of the pits is located on the side of the WP at a level lower than
that of the water entrance pit, which is situated at the top of the horizontally emplaced WP. After the
water level in the WP rises to the specified outflow position (a sampled parameter), water begins to flow
from the WP along with the dissolved radionuclides.

Figure 4-6 presents a schematic representation of a horizontally emplaced WP with conduits,
representing the inlet and outlet. In this schematic, the conduit for liquid entry is shown on the upper half
of the WP, and the conduit for the liquid exit is shown on one of the sides. Liquid water will accumulate
between the SF rods and in the pore space until its level rises to the level (solid parallelogram) of the exit
conduit (dashed parallelogram). Thus, in the bathtub model, the maximum volume of water available for
U02 matrix dissolution is the level shown by the dotted parallelogram. All SF above this level is assumed
to remain dry and contributes to gaseous releases.

When liquid water enters into the WP following its failure, the mass balance model for the
radionuclide inventory in liquid water contacting a failed WP is:

am. 4-4

at WU- M - Wci - Wdi(t) - i k + mAi Xi-l (4-24)

where

mi = amount of radionuclide i in the WP water at time t [mol]

wli = rate of transfer from the solid fuel into the resident water in the WP due to leaching of the

SF [mol/yr]
wCi = rate of advective transfer out of the WP [mol/yr]

wdi = rate of diffusive transfer out of the WP [mol/yr]

Xj = decay constant of radionuclide i [l/yr]

mi-1 = amount of the parent at time t [mol]

Xi- 1 = decay constant of the parent [l/yr]

The product, mi Xi, is the amount lost due to decay, and mi-. Xi-, represents amount generated by the
decay of the parent radionuclide.

The advective mass transfer out of the WP can be represented by (Wescott et al., 1995):
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Figure 4-6. Illustration of spent fuel dissolution in a failed waste package

wd,(t) = (21(t) qat(t) (4-25)

and

out)= qin(t) kq (V -(26)

where

C1 = concentration of radionuclide i in the WP water [mourn3]

V = volume of water in the WP at time t [in3 ]

Vma = maximum volume of water that the WP can hold before water ovefflow [in3]

kq = weir coefficient [unitless]

in = water entering into the WVP at time t [m 3/yr]

qot = water leaving the WP at time t [m3/yr]
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The Weir coefficient is a damping factor that allows a transient flow system to reach steady state
according to its magnitude. Advective mass transfer is considered to occur from the inside to the outside
of the WP and instantaneously through a fracture connecting the outside surface of the WP with the
EBS-host rock interface, see figure 4-7. Diffusive loss from the fracture (nearly 1.6 m long) is not
accounted for in the calculations.

Diffusive mass transfer takes place through the medium surrounding the WP, as shown
schematically in figure 4-7. After the water leaves the WP, it is assumed to envelope the whole outer
surface of the WP. As a result, the radionuclides are present in uniform concentration. Then, assuming that
the WP can be represented by a sphere with equal surface area, the diffusive loss due to the molecular
diffusion of a radionuclide into the porous medium can be represented by:

ac
wdi(t) = 4n r2 + D C (4-27)

ar r = r.

where
D = diffusion coefficient of the radionuclide in the medium surrounding the WP [m2/yr]
r = radius of the medium surrounding the WP [m]
* = porosity of the medium surrounding the WP [unitless]

The inventory in the failed WP is monitored by performing material balance calculation at
specified time steps. The mass balance calculation includes depletion due to decay, generation of daughter
products, and mass depletion from diffusive and advective releases. For the case in which

W1i(t) = Wci(t) = wdi(t) = 0, Eq. (423) reduces to:

an~-
_ = _mi Xi + mi- Xil (4-28)

at

Mlt=o =M1 iO (4-29)

These differential equations are solved to determine the remaining solid mass of the radionuclides in a
chain at a given time t . The analytical solution (Bateman, 1910) to this initial value problem is given by:

j-1 e -N t

Ni = NiO HIXk E
k=1 1=1 J (4-30)

mII.( -m x1)

m*1
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Figure 4-7. Schematic drawing for advective and diffusive mass transfer from the waste package
to the host rock

0
where

Nij

Nio

j.

= contribution from the ith chain member to the jth chain member [mol]

= initial mass of ith member of chain [mol]

= decay coefficient of jth member of the chain [l/yr]

The total amount of the jth chain member at any time is:

i

i=1

(4-31)

In the above equations, mj = Ni except that Ni is used to represent radionuclide mass under conditions

in which no injection or production of mass occurs, except due to its own decay. In summary, EBSREL
provides time dependent release rate in cilyr to UZFT for all radionuclides and calculates the fractional
release rate.
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4.5 UZFT

The unsaturated zone flow and transport (UZFT) module describes the temporal and spatial
variation of deep percolation and radionuclide transport from the repository horizon to the water table. The
flow model is based on assuming that gravity drainage occurs in each matrix block, with flow
preferentially partitioned into the matrix up to a limiting saturation. Interaction between matrix and fracture
is assumed to occur only at hydrostratigraphic interfaces. It is assumed that the flow system is in a quasi-
steady state, so that climatic change quickly propagates to depth. Radionuclide transport is simulated using
the NEFTRAN II computer program (Olague et al., 1991) and is assumed to occur in ID flow tubes. The
incoming radionuclide concentrations are provided by the EBSREL module. The resulting radionuclide
concentrations at the water table are then provided to the SZFT module for the saturated zone transport
calculations.

The flow in the unsaturated zone between the repository and the water table is assumed to be
primarily in the vertical direction. Thus the flow representation for the unsaturated zone was assumed to
be ID. The hydrogeologic sequences associated with repository subareas define the flowpaths that are to
be analyzed. These flowpaths are described as ID segments because, in part, of the ID nature of the flow
and a need for efficient calculational approaches suitable to the numerous simulations required for
sensitivity and uncertainty analyses. Each of the hydrogeologic sequences can be either matrix or fracture
flow controlled, but not both. The NEFTRAN II (Olague et al., 1991) computer code was selected to
simulate liquid flow and radionuclide transport, because of its relatively high computational speed.

The UZFT module contains a preprocessor which prepares the NEFTRAN II input file.
Information for the construction of the NEFTRAN II input file is obtained from other TPA modules, such
as UZFLOW. For instance, UZFLOW calculates the percolation fluxes for ID columns in equilibrium with
climatic conditions. In addition, sampled parameter values are obtained from the SAMPLER utility
module. The preprocessor in UZFT determines the areal flux, fracture flow, and retardation factors.

UZFT provides the unsaturated flow field in terms of flowpaths (migration legs) and pore
velocity. NEFTRAN II is operated in the distributed velocity model (DVM) mode for transport
calculations. Convective transport is simulated by moving groups or packets of particles (representing
dissolved radionuclides) along the flow field over each time step. Dispersion is simulated by allowing the
packets to spread simultaneously with convective transport. Thus, DVM is similar to particle tracking
methods or the method-of-characteristics. NEFIRAN II is based upon the following convective-dispersion
transport equation in one dimension (Olague et al., 1991):

ap = D Pv - +S (4-32)
at &2 ao

where

p = particle density [mol/m 3]

v = average particle velocity [m/yr]
D = dispersion coefficient [m2/yr]
S = volumetric source/sink [mol/(m3 -yr)]
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Figure 4-8 illustrates the use of the NEFTRAN II to represent a iD unsaturated zone flow path for a

subarea of the repository. The UZFT module provides the radionuclide concentrations at the water table

for discrete times. This information is then used by the SZFl module for the SZ transport calculations.

A more detailed description of the NEFTRAN II program can be found in Olague et al. (1991).

4.6 SZFT

The saturated zone flow and transport (SZFT) module describes radionuclide transport in the SZ,

from the location at which radionuclides enter the water table immediately below the repository, to

receptor sites in the Amargosa Desert. The SZFT module obtains radionuclide input rates to the water

table beneath the repository from the UZFT1 module and calculates the radionuclide release rates at the

compliance boundary which is then used by the DCAGW module. The SZ transport model consists of an

array of iD streamtubes originating at the water table below the repository and terminating at one or more

radionuclide receptor locations. Radionuclide transport in the SZFT module is simulated using the

NEFTRAN II code (Olague et al., 1991) which calculates the radionuclide groundwater concentration
(pCi/L) at the down gradient receptor location.

In the UZFT module, the repository area is divided into a specified number of subareas. In each

subarea, a lD model is used to simulate radionuclide transport from the repository to the water table. In

the SZFT module, there are an equal number of SZ strearntubes each connecting to one UZ streamtube.

Radionuclides reaching the water table via a iD unsaturated zone transport column (i.e., UZFT module)

are then input to the streamtube defined by the SZFT module and mixed at their point of entry within the

streamtube cross section. Figure 4-8 illustrates the method used to represent a streamtube assuming iD

flow in the SZ.

Data and assumptions used in determining the streamtube geometries, seepage velocities, and

longitudinal dispersivities are described in Baca et al. (1996). These authors performed a series of 2D

computer simulations of groundwater flow and radionuclide transport to assess groundwater dilution and

its dependence on the hydrogeologic characteristics of the YM setting. A 2D representation of planar flow

from the repository site to the Amargosa Desert (i.e., the potential location of a farmer/rancher critical

group) (LaPlante et al., 1995) was considered to assess the extent of hydrodynamic dispersion that may

occur as contaminant plumes move through relatively long, heterogeneous flow paths.

Conceptualization of lateral flow used by Baca et al. (1996) was based largely on information

from previous DOE modeling studies (Czarnecki and Waddell, 1984; Wilson et al., 1994) and existing

field data. The lateral flow model consisted of a 580-km2 flow tube extending from the repository site

south to Amargosa Desert. A subdomain of the Czarnecki and Waddell (1984) regional flow model was

selected by tracing selected streamlines west and east of the proposed repository. Locations of the upper

and lower boundaries of this streamtube were taken coincident with head contours of 800 and 675 m,

respectively, as estimated from available field measurements. The streamtube, shown in figure 4-9, was

divided into seven distinct material types or zones. In addition, Baca et al. (1996) investigated the effects

of the Ghost Dance and Bow Ridge fault zones on the lateral and vertical flow models.

4.7 DCAGW

The dose conversion analysis for groundwater (DCAGW) module calculates the individual annual

total effective dose equivalent (TEDE) from radioactive contamination in the groundwater based on
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groundwater nuclide concentrations calculated by SZFt. The DCAGW module contains two databases of
dose conversion factors (DCFs) designed to calculate the annual TEDE for two different receptors:
(i) located less than 20 km from the repository and whose exposure is due solely to the consumption of
contaminated groundwater, and (ii) located 20 kIn or more from the repository and whose exposure is due
to consumption of contaminated crops, animal products, and groundwater as well as direct exposure and
inhalation. The hypothetical receptor at less than 20 km from the repository is assumed to consume water
at a rate of 2 liters per day pumped from a groundwater well. The receptor located 20 km or more from
the repository also drinks 2 liters per day but also is assumed to be involved in farming activities. The
farmer grows alfalfa, for beef and milk cow feed, grows vegetables, fruits, and grain for personal
consumption. Drinking and irrigation water is assumed to be pumped from a groundwater well at the
farmer's residence. The exposure pathways considered in the farming scenario are illustrated in figure 4-
10. LaPlante et al. (1995) provides a more detailed discussion of the methods and assumptions used to
calculate the DCFs for the farming scenario.

The ingestion DCFs are based on published values (U.S. Environmental Protection Agency,
1988) for the selected 43 radionuclides. The calculation of TEDEs for the fanning scenario (i.e., located
at 20 km or more) is based upon a stochastic simulation performed with the GENII-S code (Leigh et al.,
1993; Napier et al., 1988) using unit radionuclide concentrations in the groundwater and sampling 43
biosphere and exposure pathway input parameters. While the NRC has documented acceptable values for
generic input parameters (Kennedy and Strenge, 1992; Nuclear Regulatory Commission, 1994; Daily et al.,
1994), site specific parameters were used where applicable (LaPlante et al., 1995).

Agricultural information (e.g., U.S. Department of Commerce, 1989; Nevada Agricultural
Statistics Service, 1988) was collected by LaPlante et al. (1995) for southwestern Nevada. South of YM
no farms sell food crops, but some farms raise livestock using both pasture land and feed crops. The
predominant livestock in Nye county is beef cattle, with some hogs, chickens, and milk cows. Feed crops
are predominantly hay (e.g., alfalfa) with limited amounts of grain. Pasture land is also used for livestock.

Livestock, as well as humans, consume well water. Local water permit information was obtained
from the Nevada Division of Water Resources (1995) confirming water use assumptions used in IPA
Phase 2 (Wescott et al., 1995) and adding more detailed information of water use in the area. Soil
characteristics information for selected farms in the Amargosa Desert area was obtained from local and
national offices of the Soil Conservation Service. Resuspension information applicable to the Nevada Test
Site provided information for modeling doses from contaminated soil resuspension (Anspaugh et al., 1975;
Otis, 1983; Breshears et al., 1989). Crop interception factors were obtained from recent international
efforts (International Atomic Energy Agency, 1994) as well as earlier studies (Nuclear Regulatory
Commission, 1977; Baes et al., 1982; Hoffman et al., 1982; Snyder et al., 1994).

The unit concentration-based TEDEs (i.e., DCFs) were calculated by execution of GENII-S
outside of the TPA code. The arithmetic mean TEDE for each radionuclide formed the basis for the unit
groundwater concentration DCFs in the DCAGW module. For each TPA realization, DCAGW multiplies
each DCF with the corresponding radionuclide groundwater concentration generated from the SZFT
module. For each time-step, the products of each radionuclide concentration and DCF are then summed
to calculate a total dose from all radionuclides.
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4.8 CLIMATO

The climate (CLIMATO) module is used to analyze effects of climate change on release and
transport of radionuclides from the repository. Outputs from CLIMATO are used by UZFLOW as
described in section 4.1. A time-series process is used to generate a climatic record with deterministic
climate variation sequence and regularly spaced perturbations (e.g., changes from century to century). An
input file specifying functions of full-glacial MAP and MAT at particular points in the future is supplied,
with enough points to define climatic variation. These values can be based on expert elicitation data
(DeWispelare et al., 1993) within 10,000 yr or on Milankovich cycles or Devils Hole data for longer
intervals. Linear interpolation of the statistical parameters is used to define the parameters at intermediate
times. In CLIMATO, six parameters can be sampled from specified distributions:

* Mean of MAP at full glacial maximum
* Mean of MAT at full glacial maximum
* Standard deviation of MAP within the climate time period
* Standard deviation of MAT within the climate time period
* Correlation between MAP and MAT within the climate time period
* Index into static file containing distributed perturbations

IPA Phase 2 behavior can be modeled by specifying that both standard deviations are zero and providing
an input file with all zeros for the fraction of full-glacial maximum.

The time-history values are normalized to the sampled values for full glacial conditions. It is
assumed that there is no correlation between perturbations in successive climate time periods. For a time
period k, perturbations are generated using:

Xkj " (4-33)

where

j = MAP or MAT

Xkj = a vector of correlated perturbations
Ei = a vector of independent normally distributed perturbations

Pij = a correlation matrix

Variables MAP and MAT are calculated from perturbations by using the time-varying mean and
standard deviations:

Vk = Xk k + mk (434)

where

vk = value of MAP or MAT at time k

oUk = standard deviation of MAP or MAT (constant in time)
Mk = mean of MAP or MAT at time k
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CLIMATO supplies these MAP and MAT values for any point in the TPI to UZFLOW for calculation
of MAI rates.

4.9 FAULTO

The faulting (FAULTO) module is used for evaluating the potential of direct disruption of WPs
due to fault displacement in the proposed repository block at YM. Potential effects of seismic shaking are
addressed in a separate module (SEISMO). In this module, faulting is treated as an external event that
occurs in a block containing the repository without regard for tectonic mechanisms responsible for driving
the faulting process. This module uses published field data to simulate timing and amount of both largest
credible and cumulative displacements along existing (but not adequately characterized) faults and new
faults within the proposed HLW repository at YM. For a fault displacement, the FAULTO module
calculates the percentage of repository area and the number of WPs disrupted and timing of disruption,
if it occurs. FAULTO does not evaluate indirect effects of faulting (e.g., possible effects of fault
displacement on groundwater hydrology and flow pathways).

While it is reasonable to assume that WPs will be emplaced in the potential repository in
accordance with a prescribed setback distance from known and well-characterized faults, there are
uncertainties related to consequences of displacement along yet unknown fault zones (including faults not
distinguished or adequately characterized, and possible new faults). Considering the complex nature of
faults mapped in the proposed repository block (Spengler et al., 1994) relative to possible widths of the
fault zones, occurrence of multiple slip surfaces, and lack of data on amount and timing of displacement,
it may be difficult to distinguish and adequately characterize a wide fault zone transecting volcanic rock
units. If fault zones penetrating subsurface excavations is not adequately characterized, then these zones
may not be recognized and an appropriate setback may not be applied. It is also uncertain whether new
faults may develop over the TPI. The FAULTO module provides a tool for evaluating the potential
consequences of fault displacement in the proposed repository block and analyzing sensitivity of faulting
consequence to uncertainties of input parameters.

Fault displacement is generated in FAULTO along a located fault zone inside the simulation area.
These randomly generated fault zones represent those that are known to exist but are not adequately
characterized, as well as new faults that may develop in the future during the time frame of regulatory
interest.

Because of the abundance of faults in and around the potential repository site at YM (Scott and
Bonk, 1984; Scott, 1990; Spengler et al., 1994), and evidence of Quaternary displacement on many of
these faults, faulting processes are potentially important considerations for the performance of the proposed
repository. Faults in and around the proposed repository site at YM constitute two dominant sets, one
consisting of northwest-trending faults and the other consisting of north-northeast-trending faults. Faults
in the north-northeast-trending fault system in the vicinity of YM have long been interpreted to exhibit
Quaternary displacement (Swadley et al., 1984). Northwest-trending faults have also been mapped in and
north of the repository block (Scott and Bonk, 1984; Scott, 1990; Spengler et al., 1994).

It is assumed that the computer generated fault zones possess attributes similar to those of Ghost
Dance and Sundance Faults, which have been mapped in the proposed repository block. However, because
PDFs are used to generate the characteristics of faulting, these values can be easily modified to incorporate
new values as detailed mapping of the repository block becomes available and accepted. Strike direction
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is either northwest or north-northeast commensurate with the frequency and orientation of mapped fault
trace orientations observed in the field at and near YM. Considering the relatively small diameter of
emplacement drifts (-5 m) and the steep (6090°) dip of most near-surface faults at YM, it is assumed
that local variation in fault dip has little influence on number of WPs disrupted. In this sense, the model
is 2D (plan view) in the plane of emplacement horizon. Whether a fault intersects the potential repository
depends on its location, orientation, and trace length within the simulation area.

Based on published field data, the following variables for the fault zone are selected randomly
from ranges of possible values represented as PDFs. The sampled variables for FAULTO are location,
orientation, geometry (fault length, dip, and width), fault activity, time of largest credible event,
cumulative displacement, magnitude of largest credible displacement, and rate of cumulative displacement.
The possibility WP disruption depends upon fault displacement exceeding a threshold value governed by
repository and WP design and WP emplacement geometry. If the threshold displacement is exceeded by
either largest credible displacement in a single event or by cumulative displacement due to fault creep,
the number and locations of WPs intersected and disrupted are calculated based on length of intersection
of the fault zone within the repository and corresponding fault zone width.

Preliminary field data from Ghost Dance and Sundance Faults provide the information base for
describing faulting events in the vicinity of the proposed repository. Data uncertainty is represented using
probability distributions. The following variables are considered for describing faults and faulting events
in the proposed repository block (Ghosh et al., 1997):

* Fault zone location
* Fault zone trace orientation (north-northeast or northwest)
* Fault zone geometry (i.e., strike, dip, trace length, width, and number and location of multiple

slip surfaces)
* Fault activity (active or inactive)
* Number of largest credible displacement faulting events over TPI
* Time of occurrence of largest credible displacement faulting events
* Amount of largest credible displacement per faulting event
* Amount of cumulative displacement
* Time cumulative displacement exceeds threshold displacement

A threshold fault displacement is specified by the user, and if the fault displacement exceeds this
threshold then the packages are assumed to fail.

4.10 SEISMO

The seismic (SEISMO) module calculates WP disruptions caused by repeated seismic motion.
The module predicts seismic events that lead to rock fall onto WPs, which causes stress and deformation
of the WP. SEISMO estimates effects from comparatively small magnitude repeated seismic motions and
less frequent large magnitude earthquakes.

SEISMO requires a "history" of seismic events over the TPI. Therefore, the seismic history will
have numerous events of relatively small magnitude (<0.4 g) and a lesser number of larger magnitude
(>0.4 g) earthquakes. The frequency of seismic events is correlated with the magnitude of the events,
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typically by using a seismic hazard curve. The hazard curve gives the annual probability (likewise the
return period) for events larger than a given magnitude.

For use in the TPA code, the seismic hazard curve is discretized into groups with increasing
return period. For example, one discretization of a hazard curve may yield three levels for 0.1, 0.3 and
0.6 g events that have return periods of 100, 1,000, and 10,000 yr, respectively. The history of seismic

events is generated by sampling from an exponential distribution using the largest annual probability level
(e.g., 100-yr return period has an annual probability of 0.01/yr). This value yields the time of the first
event. The type of event (i.e., 0.1, 0.3 or 0.6 g magnitude) is then determined. The key to determining
event magnitude is understanding that the seismic hazard curve is cumulative. The return period of 100
yr is for events of 0.1 g or larger magnitude. Hence, it includes the 0.3 and 0.6 g magnitude events. The
probability of the event being of magnitude 0.1, 0.3 or 0.6 g is based on the return periods of each. The

probability that the event is 0.6 g will be 100/10,000, the probability that the event is 0.3 g will be
(100/1,000 - 100/10,000), and the probability that the event will be 0.1 g is (1 - 100/1,000 - 100/10,000).
This probability is conditioned on the fact that the event is of magnitude 0.1 g or greater.

The process is repeated to generate a full history of events. The next event is independent of

previous events, and the exponential distribution is used again to get the time between events. The total
time to the next event is the sum of the time of the last event plus the time lag between events. This
process is continued until the time of the event is beyond the TPI. This method was used by Ahola et al.
(1995). The SEISMO module does not perform the stochastic generation of these seismic events. Instead
the generation is controlled by the EXEC module and performed with the SAMPLER utility module,
which performs sampling of all parameters.

Using the seismic event history developed as described above, SEISMO determines effects on
WPs emplaced in the drift assuming:

* Emplacement drift is unbackfilled
* Dynamic vibration of the WP and its support system is negligible
* Thermally weakened rocks of the emplacement drift roof, once loosened by seismic shaking

fall due to only gravity
* The surface of the rock falling on the WP is flat

Rocks falling from the roof of an emplacement drift can strike WPs. The dynamic or impact
force as a result of this strike is approximated using the principle of conservation of energy assuming the
following idealized assumptions (Popov, 1970):

* A WP can be treated as an equivalent linear elastic spring with a spring constant k
* No energy dissipation takes place at the point of impact due to local inelastic deformation

of the WP material
* The deformation of WPs is directly proportional to the magnitude of the impact force
* The inertia of the WP resisting an impact may be neglected.

It is assumed that a WP can be treated as an equivalent spring with a spring constant k. The
spring constant, k, is defined as the force required to deflect or deform the spring one unit. When this
spring is subjected to a static weight of W [kg m/s2], the static deflection/deformation of this spring can
be determined as:
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W (4-35)
st k

where Ast [m] is the spring deflection/deformation. Similarly, the maximum impact deflection/deformation,

A,, [m] is:

pi _ PI (4-36)
I-k

where PI is the impact force experienced by the spring. By replacing the spring constant in Eq. (4-35)
with the spring constant in Eq. (4-34), the impact force can be related to the weight of the falling rocks:

PI = (AIW (4-37)

t ̂ sty

At the instant the WP is deflected/deformed to its maximum amount, all energy of the falling weight is
transformed into strain energy of the WP, and can be represented by:

W(h + AI) = 1 PI A, (4-38)

where h is the total falling distance [m]. With further manipulation the effective impact force PI is:

p= W1 + (1 + 2hk) ] (4-39)

The weight of rock, W, falling on the WP will be estimated from the results of a drift stability analysis
using the computer code UDEC (Itasca Consulting Group, Inc. 1996). The effects of this impact force on

the WP deformation a and stress q. are calculated, as follows (Timoshenko and Goodier, 1987):

3 2 2
a_= | 9s2 PI (k1 + k2) (4-40)

16 R

where

a = a measure of WP deformation [m]

qO = stress on WP [MPa]
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q0 13 16P1 1 (4-41) W

2Tc 9rr2 ( + k2 )2 R.

R, = radius of WP [m]

1 _p2
k -= l for WP [1/MPa]

7tE1

k2 = -- for falling rock [1/MPa]

El = modulus of elasticity of WP [MPa]

Pil = Poisson's ratio of WVP [unitless]

E2 = modulus of elasticity of falling rock [MPa]

112 = Poisson's ratio of falling rock [unitless]

Equations (4-39) and (4-40) are used to estimate the percentage of WP failure at a given time.

SEISMO provides the fraction of packages affected and timing of WP disruptions to the EXEC
which, through the use of several other modules described herein, calculates the release inventory,
transport, and dose from WP disruptions.

4.11 VOLCANO

The volcanic (VOLCANO) module provides an estimate of the amount of waste entrained during
a volcanic eruption and available for transport to the surface. This estimate is based, in turn, on estimates
of: (i) the probability of volcanic eruptions within a subregion encompassing the proposed repository,
(ii) dike length and orientation, (iii) area disrupted during flow of magma through a conduit, and
(iv) distribution of WPs in the repository. The VOLCANO module uses sampled parameters to simulate
the locations of volcanic events within a subregion including the repository. The output of the VOLCANO
module consists of the amount of waste available for transport to the surface. This output from
VOLCANO module is used by the ASHPLUMO module to estimate disposal and deposition of ash and
incorporated SF over the land surface.

Volcanic hazards at the YM site are related to the proximity of YM to small-volume basaltic
cinder cones. In general, cinder cones form during single episodes of activity and erupt over relatively
brief periods of time, on the order of days to years. Renewed volcanism normally involves the formation
of new cinder cones. Over time, this type of volcanic activity results in dispersed cinder cones which
comprise a volcanic field. In general, volcanic fields are characterized by relatively low recurrence rates

of volcanic activity compared with large central volcanoes, such as composite cones and calderas, but are
also often characterized by greater longevity of the magmatic system. The most active basaltic volcanic

fields in continental settings have recurrence rates of volcanism on the order of hundreds of years.
However, most volcanic fields are characterized by recurrence period on the order of l03_106 yr.

Individual volcanic fields may remain active for periods of 10 -10 yr and eventually consist of tens to
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hundreds of cinder cones and their associated lava flows. Thus, the primary hazard associated with
volcanism in the YMR is related to the formation of a new volcanic center, a style of activity typical for
the region during the last 10 Ma, rather than reactivation of a pre-existing volcanic center.

Cinder cones are the surface manifestations of igneous activity. At depth, basaltic igneous
activity is characterized by dike injection and the formation of conduits that are roughly circular to oblate
in shape. Mapping in eroded volcanic fields indicates that dike injection always accompanies cinder cone
formation. Dikes are roughly planar features, usually 1 to 5 m in width and several kilometers in length.
At shallow depths, dikes are usually found in dike zones or dike swarms consisting of numerous closely
spaced dikes injected during a single episode of volcanism (Delaney and Gartner, 1995). Flow generally
localizes along a short segment of a dike or dike swarm as an eruption proceeds. This localization leads
to the formation of a conduit, generally less than 100 m in diameter, through which magma flow is
sustained for the duration of the eruption (Delaney and Gartner, 1995; Hill, 1996). This localization may
occur anywhere along the length of the dike and at several locations, as observed during past eruptions
at Paricutin, Mexico, Jorullo, Mexico, and Tolbachik, Russia.

The goal of the VOLCANO module is to abstract this complex geometry in a simple form that
captures the essential aspects of this type of igneous activity for risk assessment. In this simplified
geometry, it is assumed that single dikes occur during volcanic events. The probability of an igneous event
is the probability that the center of this dike will fall within a subregion about the repository. This
subregion is 36 1=2. It is assumed that (i) the probability of an igneous event is uniform within the
subregion, (ii) volcanic events centered outside this area will not affect repository performance by direct
disruption. (iii) the conduit and cinder cone associated with this dike injection form at the center of the
dike, and (iv) only one conduit forms with a given dike. The dike length, width, orientation, and diameter
of the conduit are based on sampled parameters.

Only extrusive igneous events are considered in the current VOLCANO abstraction because the
purpose of the module is to provide a value for the total amount of waste available for transport in the
ASHPLUMO module, described in the following section. Secondary effects of volcanism, such as
disruption of canisters in sections of the dike far from the conduit, additional thermal loading on canisters
due to dike injection, and changes in the level of the groundwater table due to dike injection are not
considered in the current VOLCANO module. Coupled processes, such as the occurrence of volcanic
earthquake swarms during dike injection (Tokarev, 1983; Yokoyama and De la Cruz-Reyna, 1990; Connor
et al., 1993), are not considered in the VOLCANO module.

In VOLCANO, Monte Carlo sampling is used to generate random events corresponding to the
center of the dike and the location of the conduit in the rectangular region surrounding (and including)
the repository horizon. Estimates of the area of the repository impacted by a dike and the conduit are
calculated by the TPA Version 3.0 utility module SUBAREA. From the area of intersection, the number
of WPs damaged and the quantities of radionuclides available for transport in the conduit are calculated
using the initial inventory of the repository.

VOLCANO simulates a random volcanic event within the subregion. This volcanic event occurs
at a time chosen randomly within a specified time period (e.g., between 200 yr and 10,000 yr after
closure). The procedure for estimating the locations of igneous events can be summarized as:

Locate the center of the event within the square subregion, corresponding to the conduit
location
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* Determine the geometry parameters (e.g., dike length, dike width, dike orientation, and
conduit radius)

* Calculate the area in each repository zone overlapped by the dike and conduit and calculate
the numbers of WPs affected

* Calculate the MTUs of waste available for transport to the surface

The probability of volcanic events in the subregion of interest and the diameter of magma
conduits formed during these events are critical parameters in determining the amount of waste available
for transport to the surface. Based on the general characteristics of basaltic volcanic fields in and the
site-specific geology of the Yucca Mountain Region (YMR), probability models for volcanic disruption
of the candidate repository need to consider several basic features:

* Cinder cones of the YMR are part of a larger magmatic system (Yogodzinski and Smith,
1995; Hill and Connor, 1996). It is unlikely that a major change in the recurrence rate of
volcanic activity within this magmatic system will occur during the next million years, or
during the performance period for the radioactive waste repository, although basaltic
volcanism during this period may be strongly episodic.

* Small-volume basaltic volcanoes are clustered within this magmatic system.These clusters are
areas within which volcanism has recurred at much greater than average rates during the last
6-8 Ma. YM is located very close to one of the most active of these clusters: the Amargosa
Valley-Crater Flat cluster, which consists of numerous Pliocene and Quaternary cinder cones
[Connor and Hill (1995)].

* Volcanic eruptions occurred within Amargosa Valley-Crater Flat cluster at 3-4 Ma, with the
eruption of basalts both in Amargosa Valley and Crater Flat, about 1.0 Ma, with the
formation of five cinder cones in Crater Flat, and about 0.1 Ma, with the formation of
Lathrop Wells cinder cone. This recurrence rate, and comparison with activity in the
magmatic system as a whole, provides strong indication that future volcanism can recur in
the Amargosa Valley-Crater Flat cluster.

* Individual cinder cones in Crater Flat form vent alignments that are coincident with the trends
of mapped faults in the YM block and adjacent areas (Connor et al., 1997). Thus structural
control on dike propagation, and regional and local stress orientations, must be considered
in estimates of the probability of volcanic disruption (Conway et al., 1997). The occurrence
of basaltic ash along shallowly buried fault planes in the YMR provides additional indication
of the linkage between structure and volcanic activity in the region.

Numerous studies have been conducted to estimate the probability of future volcanism in the

YMR and at the candidate repository site in particular (Crowe et al., 1]982; 1992; Ho et al., 1991; Smith
et al., 1990; Ho, 1991; Sheridan, 1992; Connor and Hill, 1993, 1995; Geomatrix, 1996). Each of these
studies reflects varying assumptions inherent in probability models of volcanic disruption of the proposed
repository site, but nearly all rely on the distribution and ages of existing volcanic vents to provide some
indication of the recurrence rate.
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Crowe et al. (1982) introduced spatially and temporally homogeneous Poisson models to the
volcanic hazard assessment at YM, assuming that volcanism is spatially distributed in a uniform random
manner over some area. This approach has been adopted in many studies (e.g., Ho et al., 1991; Margulies
et al., 1992; Geomatrix, 1996), but the definition and extent of the bounded area within which volcanism
may occur vary widely. Smith et al. (1990) and Ho et al. (1991), for example, have suggested that Lathrop
Wells cinder cone is the first cone in a developing alignment of volcanic vents. They propose that a
conservative model is one in which a narrow bounded area, perhaps as little as 75 km2, extending from
Lathop Wells through the repository, parallel to alignments that have formed in the region previously.
Assuming a regional recurrence rate of 3-10x106 events/yr, the probability of disruption is on the order
of 2-8xlO07/yr for a 5.5 km2 repository design. This probability estimate does not consider dike length
in the calculation. Conversely, Crowe et al. (1992) have suggested several models that exclude YM from
the area within which volcanism may occur, based on the idea that volcanism is limited to Crater Flat, and
a zone extending north of this valley. Thus, homogeneous Poisson models have been used to produce a
broad range of probability estimates that depend on the bounded area chosen and, to a lesser extent, the
assumed regional recurrence rate of volcanism. These source zone models are not readily evaluated in the
current formulation of the VOLCANO module because most of the variation in probability estimates in
these source zone models occurs across boundaries that are generally drawn within the 35 km2 subregion
(e.g., Geomatrix, 1996). Under these circumstances, the assumption that probability is uniform across the
subregion is not appropriate.

Connor and Hill (1993; 1995) used three nonparametric models to estimate the probability of
a volcanic disruption of the proposed repository site. These models include (i) a spatio-temporal nearest
neighbor model that treats volcanism as a marked point pattern process, (ii) a kernel method, by Lutz and
Gutmann (1995) that treats volcanism as a point process within a specified spatial and temporal bandwidth,
and (iii) a hybrid nearest neighbor model that combines aspects of the other two models. Condit and
Connor (1996) have tested the nearest-neighbor model using data from the much more active Springerville
Volcanic Field, Arizona, and found that application of this spatio-temporal model was more successful at
forecasting the locations of subsequent volcanic events than using average recurrence rates, because of the
clustered nature of small-volume basaltic volcanism.

The probability that the center of a volcanic event occurs within the 36 km2 subregion given a
volcanic event in the map area, is 0.02. For the full range of models reported in Connor and Hill (1995),
the probability of a volcanic event within the subregion, given a volcanic event within the map region,
ranges from about 0.01 to 0.025. Connor et al. (1996) and Hill et al. (1996) discussed several ways of
incorporating structural control on volcanic events directly into probability models and concluded that
incorporating structure tends to increase probability slightly. For these structural models, the probability
of a volcanic event within the subregion, given volcanism in the map region, ranges from 0.01 to 0.04.

Ranges of recurrence rates of volcanism in the YMR have been discussed in Ho (1991), Connor
and Hill (1993) and Geomatrix (1996). These ranges are generally reported to be between about 4
volcanoes per million years and 10 volcanoes per million years. Hidden events, such as unrecognized
volcanic eruptions or dikes without an extrusive component, are not considered in this recurrence rate.
This range indicates that the recurrence rate of a volcanic event centered within the subregion is between
4xlO 8/yr and 4xlO 7/yr. In some calculations, features like the 12-kin alignment of five Quaternary cones
in Crater Flat are considered to be one event. This consolidation results in a lower recurrence rate and
greater dike lengths, with more than one extrusive event associated with an individual volcanic event.
Because these alignments are long, consideration of this type of event would require a larger subregion
than 36 km2.
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Determining the disrupted subsurface for a basaltic volcano is an important parameter in

calculating the amount of high-level radioactive waste that can potentially be transported into the

accessible environment (Hill, 1996). Although there is evidence that some Quaternary YMIR volcanoes

disrupted anomalously large amounts of subsurface rock, the volume of disruption cannot be calculated

directly. An analog volcanic eruption at Tolbachik volcano in Kamchatka, however, provides critical

constraints on the subsurface area potentially disrupted by basaltic cinder cones. During a 12-h period of

the 1975 Tolbachik eruption, 2.8x106 m3 of subsurface rock was brecciated and ejected from the volcano.

Using geologic and geometric constraints, this volume represents a circular diameter of disruption of

49±7 m.

An unusual type of volcanic bomb was produced during this disruptive event, which contains

multiple subsurface rock types that each show a range in thermal effects. These bombs represent the

mixing of different stratigraphic levels and significant distances outward from the conduit during a single

event. The same type of unusual volcanic bombs are found at Lathrop Wells and Little Black Peak

volcanoes in the YMR. In addition, Lathrop Wells and, to a lesser extent, Little Black Peak have

anomalously high subsurface rock-fragment abundances and are constructed of loose, broken tephra. These

characteristics strongly suggest that subsurface disruptive events analogous to that at 1975 Tolbachik

occurred at these YMR volcanoes. Rock fragment types, stratigraphic relationships, and geophysical data

indicate Lathrop Wells disrupted a 0.5-2-km-thick crustal section, which is comparable to the thickness

disrupted at 1975 Tolbachik. The volume of Lathrop Wells is nearly identical to 1975 Tolbachik.

Because the volume of disrupted subsurface rock is probably directly related to eruption volume,

Lathrop Wells likely disrupted a subsurface volume similar to 1975 Tolbachik. Thus, the subsurface

conduits of future YMR basaltic eruptions may have the potential to widen on the order of 49±7 m in

diameter. Conduit responses to stress anisotropy in the disturbed geologic setting of the proposed

repository site may result in an ellipsoidal cross-sectional area with major axis lengths greater than

49±7 m.

4.12 ASHPLUMO

The ashplume dispersion (ASHPLUMO) module is used to evaluate consequences of extrusive

volcanic events in the vicinity of YM. Specifically, ASHPLUMO calls the stand-alone program

ASHPLUME (Jarzemba et al., 1997) that evaluates dispersion and deposition of ash and incorporated SF

particles resulting from these events. The ASHPLUME code calculates the areal density of SF (in grams

of SF per cm2) at points on the surface of the earth after an extrusive volcanic event penetrates the

repository and exhumes SF. Using published data for wind velocity at the YM site and the estimate of

pertinent volcanic parameters of events similar to those that may have occurred at YM in the past, the

ASHPLUME code simulates the transport of contaminated particles (composed of SF and ash) to surface

points downwind. The SF concentration from deposition can then be used to calculate the dose to members

of the local population.

Basaltic volcanism can encompass a variety of eruption styles, depending on the eruption energy.

The energy of basaltic eruptions varies from effusive activity, where the predominant product is lava

flows, to explosive activity, resulting in fragmentation of the magma into scoria fragments and transport

of scoria in the atmosphere as pyroclasts. This latter style of activity generally results in the formation of

cinder cones, such as those found in the YMR. Explosive volcanic activity of this kind has the potential

to cause dispersal of radionuclides through the biosphere. This dispersion of radionuclides resulting from
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volcanic activity is modeled in the ASHPLUME code using approaches originally developed to model the
dispersal of ash after volcanic eruptions (Suzuki, 1983).

Figure 4-11 shows the exposure scenario investigated with the ASHPLUME code. The exposure
scenario analyzed can be divided into four subprocesses:

(i) magma enters the repository and becomes contaminated with SF particles

(ii) tephra forms from the magma and SF is incorporated into tephra (Jarzemba and
LaPlante, 1996)

(iii) eruption column and contaminant plume form and produce fallout at various
distances downwind from the volcano (Suzuki, 1983; Jarzemba, 1996)

(iv) radionuclide contamination causes doses to be inciurred at receptor locations
(LaPlante et al., 1995; Jarzemba and LaPlante, 1996)

To assess the hypothetical radiation doses that would occur after a basaltic eruption, the
distribution of radionuclides in the biosphere after such an event needs to be estimated. It is assumed that
the ash particles from the eruption are the carrier of the radionuclides. Methods used previously to estimate
radionuclide dispersal by volcanism (Wescott, et al., 1995) theorize that the ash cloud travels in a Gaussian
plume, released at a stack height of one half of the volcanic column height. Application of the Gaussian
plume model presumes that a plume of contaminants travels in the same direction as the prevailing wind
(x direction), but may be somewhat depressed toward the earth's surface due to gravitational settling.
Contaminants in the plume follow a Gaussian distribution in the dimensions perpendicular to the direction
of travel (y and z directions).

The Gaussian plume model is suitable for modeling airborne and ground concentrations of
contaminants for a point source release of contaminants above the surface of the earth (i.e., the stack
height). A point source approximation may not be appropriate for a volcanic eruption because a volcanic
eruption column is a line source of contaminants in the upward direction. Also, the Gaussian plume model
does not accurately account for the effects of gravitational settling of volcanic particles with large
diameters (i.e., centimeters). This shortcoming may lead to the gaussian plume model predicting much
greater particle ranges than would be the case in reality and hence wider radionuclide distributions than
would normally be expected after a basaltic eruption. This wider distribution of radionuclides may tend
to underestimate the radiation exposure of persons in a critical group. The critical group is defined as a
small, homogenous group (generally ones to several tens of people) who are at the highest risk of
incurring additional health effects from the proposed repository. This approach has recently been
recommended as the standard of measuring compliance for YM (National Academy of Sciences, 1995).

Models to predict the distribution of ash after an eruption have been developed with the intention
of relating eruption magnitude to ash dispersion (Suzuki, 1983; Hopkins and Bridgeman, 1985; Glaze and
Self, 1991). The ASHPLUME code uses the model described in Suzuki (1983) that relates eruption
magnitude to ash distribution, which is modified to relate eruption magnitude to SF distribution for YM
based on a few simple assumptions. The model uses Monte Carlo sampling to determine the power and
duration of the eruption, along with other properties of the ash particulates, and develops a SF distribution
from those sampled parameters. The SF distribution can be translated into the radionuclide distribution
which can then be used to model dose to man.
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Figure 4-11. Volcanic scenario implemented in the ASHPLUMO module
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The model described in Suzuki (1983) can be summarized by the equation that describes the
areal density of accumulated ash on the earth surface after an eruption:

P, H 5QP(z)f(p) [5{(x - Ut? +y2(
X (X,y) f f t t 52exp dpz (4-42)

P=Pi Z=O 87C(t+tC)5l L 8C(t +ts)5/2I

where

X(x,y) = mass of ash per unit area accumulated at location (x,y) [g/cm2]
p = common logarithm of particle diameter d [where d is in cm]

Pmin = minimum value of p

Pmax = maximum value of p

z = vertical distance from the ground surface [1am]

H = height of the eruption column above the vent [Iam]

x = x coordinate on the surface of the earth [cm]; coordinate oriented in the same direction as the
prevailing wind

y = y coordinate on the surface of the earth [cm]; coordinate oriented perpendicular to the
direction of the prevailing wind

Q = total quantity of erupted material [g]
P(z) = function for particle diffusion at height within dz about z [unitless]

f(p) = distribution function for particles with a log-diameter within dp about p normalized per unit
mass [unitless]

C = constant relating the eddy diffusivity and the particle fall time [cm 21s5/2]

t = particle fall time [s]

ts = particle diffusion time in the eruption column [s]

u = wind speed [cm/s]

The assumptions used in Suzuki (1983) to derive Eq. (4-43) are (i) erupted material consists of
a finite quality of volcanic particles, (ii) the distribution of the diameter of the released particles has a
single mode, (iii) all particles fall at the terminal velocity and finally accumulate on the ground, and
(iv) the particles have a probability to diffuse out of the eruption column during their upward travel in the
column. These assumptions are more realistic for modeling volcanic releases of radionuclides than the
assumptions used in the Gaussian plume model (i.e., a point source of radionuclides released at a single
height above the vent) provided that the ash particles are the carrier media for the released radionuclides.

For calculation of dose, the necessary quantity to track is the mass of SF per unit area as a
function of position after ash, released from the eruption that penetrates the proposed repository, settles
on the surface of the earth. To calculate this quantity, a model for SF incorporation into ash was created.
This model requires the introduction of a new function to determine the mass of fuel per unit mass of
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volcanic ash as a function of the log-diameter of the ash after the ash has been contaminated with SF,

FF(pa). The volcanic ash mass is assumed to be distributed lognormally:

f(Pa) = 1 exp(-(P Pa) (4-43)

k d d a

where

pa = log-diameter of ash particle size [particle size in cm]

p a = mean of the log-diameter of ash particle size [particle size in cm]man

ad = standard deviation of the log particle size

f(p a) = normalized (per unit mass) probability distribution of ash mass as a function of pa

To determine FF(pa) the fuel fraction (ratio of fuel mass to ash mass) as a function of pa, one

must consider that all fuel particles of size smaller than (pa-pC) have the ability to simultaneously be

incorporated into volcanic ash particles of size pa or larger, where P. is the incorporation ratio. The fuel

fraction as a function of pa is determined by summing all the incremental contributions of fuel mass to

the volcanic ash mass from fuel sizes smaller than (pa - PC) An expression for the fuel fraction is given

as:

;FF(pa) = U f P=P - PC) dp (4 )
Q P=- 1 -F(p)

where

Q = total mass of ash ejected in the event [g]

U = total mass of fuel ejected in the event [g]

F(pa) = cumulative distribution of ash mass with pa, f (pa)

m(p - PC) = normalized probability distribution of fuel mass with (P - PC)

This equation assumes the resulting contaminated particles follow the same size distribution as

the original volcanic ash particles. This assumption seems reasonable since, for most events sampled in

these analyses, the total mass of volcanic ash is on the order of 1013 to 1015 g and for most events, only

several WPs are disrupted (107 g of fuel each). For each simulation, Eq. (4-45) is numerically integrated
to calculate the distribution of the SF and volcanic ash on the earth's surface resulting from a basaltic
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eruption that is assumed to disrupt the repository. The integrand of Eq. (4-45) is multiplied by FFgpa) and

then recalculated to find the SF density at location (x,y).

The model developed by Suzuki (1983) is appropriate for particles of mean diameter greater than
about 15 to 30 micrometers. This cutoff is generally accepted to be the lower limit for the importance of
gravitational settling of particles (Cember, 1983; Heffter and Stunder, 1993). For particle sizes less than
about 15 micrometers, atmospheric turbulence is great enough to keep the particle aloft for a longer time
than would be predicted by the model. Since the typical mean diameter of ash particles after an eruption
is generally much larger than 15 micrometers (Suzuki, 1983), this model is useful for calculating the
distribution for the vast majority of ash and, hence, radionuclides released. Jarzemba and LaPlante (1996),
Jarzemba (1996), and Jarzemba et al. (1997) contain more complete descriptions of the derivation,
structure, and use of the ASHPLUME code and its algorithms.

4.13 ASHIRMOVO

The ash removal (ASHRMOVO) module models the time-dependent radionuclide areal densities
of contaminated soil surface layers subject to removal by leaching, erosion, and radioactive decay.
ASHRMOVO is used in concert with ASHPLUMO, which establishes initial radionuclide areal densities
for extrusive volcanic events at the time of the event that intersects the waste repository. ASHRMOVO
uses the INVENT utility module to decay the inventory for succeeding times. The subsequent time
"history" of radionuclide surficial contamination is converted to dose by the DCAGS module.

ASHRMOVO uses generalized analytical solutions to calculate dynamic serial radioactive decay,
including nonradioactive decay losses by leaching or erosion. For the volcanic exposure scenario
previously described in ASHPLUMO, ASHRMOVO calculates the time history of radionuclide surficial
contamination following the event by using analytical solutions to the following differential equations (i.e.,
INVENT utility modules):

d-Ni(t) = ).PNi-,(t) - XiN.(t) - X'N.(t) - XBNi(t)
dt 1- dt ~~~~~~~~~~~~~~~~~~(4-45)

= i l(t) - ,XNi(t)

where
N1(t) = time-dependent areal density of radionuclide i [mol/m2]

Ni l(t) = time-dependent areal radionuclide density of the parent [mol/m2]

T P + L + XB

P = removal (or generation) of a contaminant through radioactive decay [l/yr]

L relative leach rate of radionuclide i from the ash blanket [l/yr]Xi~~~~~~~~~~~~~~~~~~~~[/r
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XB = bulk removal of the blanket due to surface erosion [1/yr]

X = total loss rate of radionuclide i from physical decay, leaching, and surface erosion [1/yr]

The relative leach rate of radionuclide i is based on Eq. 4.6.3 of Napier et al. (1988). The

relative leach rate has an upper limit, L", that is dependent on the solubility limit of the radionuclide

and the amount of radionuclide present. When the processes are leach rate limited, the relative leach rate

of radionuclide i is given by:

L Ima Sf *Ra
xi = xi N.< *Ra (4-46)

and when they are solubility limited it is given by:

SL = *R a S*R- Ni>-zeta (4-47)

where

Si = solubility limit of radionuclide i [mol/m3]

Ra = areal recharge of water [m3/(m 2-yr)]

Ni = average radionuclide areal density over the time-step [nolm 2]

The bulk removal rate of the blanket, XB, is a constant value of 0.001 per yr based on
preliminary estimates of ash blanket lifetimes, but may be sampled by specifying a distribution in the
tpa.inp file.

4.14 DCAGS

The dose conversion analysis for ground surface pathways (DCAGS) module calculates dose to
humans from exposure to radionuclides in surface soil. The annual TEDE is calculated for 43
radionuclides for each TPA realization and at each time-step. The module utilizes databases of DCFs that
convert unit radionuclide areal densities to TEDE (i.e., rem/yr per p('i/m2).

Like the DCAGW module, the DCAGS module is designed to calculate the annual TEDE for

two different dose receptors: (i) located at a distance less than 20 km from the proposed repository whose
exposure is due solely to inhalation and direct exposure, and (ii) located at a distance 20 km or more
whose dose is due to ingestion, inhalation, and direct exposure. At this time, the analyses of direct
exposure and inhalation from resuspension of contaminated ash are premature, thus the database of dose
conversion factors for the closer-in receptor location is universally zero. For the further-out receptor, dose
is dominated primarily by ingestion, thus preliminary estimates for doses due to inhalation and direct
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exposure are included in calculating the DCFs. Also like the DCAGW module, the databases contain mean
values of 125 GENII-S runs for the 43 important radionuclides. Jarzemba and LaPlante (1996) list those
values for the further-out receptor. The characteristics of this receptor are also contained in LaPlante et al.
(1995).

For each TPA realization, DCAGS multiplies each DCF with the corresponding radionuclide
concentration generated. For each time-step the products of each radionuclide concentration and DCF are
then summed to calculate a total dose from all radionuclides.
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5 INPUT DATA

The TPA Version 3.0 code is executed in file batch mode using one main input file: tpa.inp. The TPA
code writes output information and simulation results to a set of files for subsequent post-processing
(i.e., plotting or importance analyses). The file interfaces are described in the following sections.

5.1 INPUT TO TOTAL-SYSTEM PERFORMANCE ASSESSMENT CODE

All the input data for the TPA Version 3 code are contained in the tpa.inp file. No other external
files or input affect the code calculations. Auxiliary data files are used by some consequence modules;
however, these files are static. The tpa.inp file contains all the information necessary to describe the
scenario and the number of realizations requested as well as all of the sampled parameters. The tpa.inp
file contains two comment lines that the analysts should use to describe the type of run being performed.
These lines are read as Character*80 and echoed at the top of all output files.

5.2 FLOW OF DATA BETWEEN MODULES

EXEC controls data flow by passing data in the subroutine call statement to each module. EXEC
does not use common blocks or disk files for data transfer between itself and consequence modules.
Within a consequence module, common blocks or files can be used. To ensure a modular design, data is
not passed directly between consequence modules. Each module is called only by EXEC and not by other
modules. For efficiency and implementation purposes, the modules can consist of more than one
subroutine, may call TPA code utility subroutines (e.g., INVENT), or may call stand-alone programs
(e.g., NEFTRAN). Individual modules pass information only to EXEC to control the simulation process.

The overall sequence of execution and flow of data is shown in figure 2-2. Here, EXEC starts
the simulation by reading the tpa.inp file through the READER routine. The READER module is called
only once during a run. Having determined the parameters that describe the system, the EXEC continues
by calling component-specific consequence modules. Some modules are called only once per realization,
while others will be called many times. Modules being called once include SAMPLER, DCAGW and
DCAGS. The modules CLIMATO, UZFLOW, NFENV, EBSFAIL, EBSREL, UZFT, and SZFT are called
once for each subarea and each realization. If disruptive scenarios are being analyzed, the FAULTO,
SEISMO, VOLCANO, ASHPLUMO, ASHRMOVO, and DCAGS modules are called directly by EXEC
once during a realization. These disruptive modules are used either to cause earlier failure of the EBS or
provide a more direct pathway for radionuclides into the biosphere (e.g., VOLCANO through
ASHPLUMO). If desired in the future, disruptive scenarios can be designed or modified to affect
groundwater flow and transport of radionuclides.

The computational scheme for the TPA Version 3.0 code is shown in figure 2-3. Each module
is called by the EXEC module with some inputs and then returns some outputs to the EXEC through the
call statement. Consequence modules do not call each other directly. There is a clear expectation of inputs
and outputs between the EXEC and each module. In most cases, the output of one module is used to
provide input to the next module. The EXEC has two main loops for the number of realizations and the
number of subareas.
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5.3 DEVELOPMENT OF INPUT FILE tpa.inp

The tpa.inp file is keyword oriented. A keyword is located on a line by itself. Subsequent lines

(one or more) describe the data more fully. There are currently a total of 21 keywords available to the

user (i) title, (ii) iflag, (iii) subarea, (iv) aqueousnuclides, (v) constant, (vi) iconstant, (vii) uniform,

(viii) loguniform, (ix) iuniform, (x) normal, (xi) lognormal, (xii) beta, (xiii) logbeta, (xiv) triangular,

(xv) logtriangular, (xvi) exponential, (xvii) finiteexponential, (xviii) hazardcurve, (xix) userdistribution,

(xx) correlateinputs, and (xxi) endoffile. All keywords are case sensitive and should be lower case. Some

of these keywords are optional, and may never be needed in a run, while others are required. Numerous

error traps in the READER utility module help detect problems with the input data and provide helpful

comments to the analyst. The tpa.inp file has all of the description required to execute the TPA code. This

file is designed to be the only source of input information. Because duplicate sources of the same data can

become a problem in any large TSPA, the tpa.inp file is designed to accommodate the wide variety of data

needing to be input. Although this file is expected to be the only input data file for the TPA code, other

static data files such as the digital elevation maps for the ground surface are more conveniently stored in

archived files elsewhere. These archival files represent data that are not changeable for an application.

Comments can be added to the input file for the benefit of the analyst. The comment line begins

with the first character being "*". Comment lines should be placed between groups of input data. For

example, three lines may be required to describe one input parameter, and another three for the second

parameter. Comment lines should be used after the first parameter is fully described and before the second

is described.

A number of the keywords are specific to the EXEC, but most are generic and used by the

consequence modules. For example, the title, subarea, and aqueousnuclides are required and used by the

EXEC. The other keywords are more generic and used by the consequence modules as well as the EXEC.

These keywords typically assign values (or statistical distributions) to parameters. The parameters are

introduced in the tpa.inp file, expecting to be needed in the EXEC or consequence modules. Each

parameter has a name which is of character type and up to length 60. The name of each parameter must

be unique otherwise, the SAMPLER will produce an error message and stop execution if a parameter is

defined twice. The module developer who introduces the parameter and assigns the name will use the

name to query the value from within the code of a consequence module. Hence, the module developer that

has introduced the parameter must also query the value using precisely the same name. In this way, the

SAMPLER allows the values of parameters to be obtained by consequence modules. Each keyword is

described in the following subsections.

5.3.1 title

The analyst is required to provide a two-line title that uniquely identifies the simulation case.

This requirement is both common analysis practice and provides useful QA documentation. The

description should be sufficiently specific to describe the particular problem being analyzed. The format

for the title line is the keyword title, a character string of length 5. The next two lines contain the two

80 character long titles. Below is an example of title for a code run:
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**

title
This is the test file for TPA 3.0 BETA version
which is being supplied to NRC on January 31, 1997.
**

The "**" indicates a comment line, one above and one below the two title lines. The two title lines cannot
be separated by comments.

5.3.2 iflag

The keyword iflag is set to either 0 (indicating no or not active) or I (indicating yes or active).
The flag is used to select an option. For example, the scenarios have been modeled using flags that
determine if the disruptive event/process occurs during the time period of interest. For scenarios, this use
of flags forces the disruption to occur. The analyst can force the disruption to occur and then weight the
predicted consequences by the probability that the disruption occurs. Determining which disruptions will
occur and their respective probabilities is performed by the analyst(s) prior to making the runs and external
to the TPA Version 3.0 code. This procedure is describe in Chapter 3 of NRC/CNWRA IPA Phase 2
report (Wescott et al., 1995). Below is an example of the use of iflag:

**

iflag
Volcanism disruptive scenario flag (yes=l, no=O)
1
**

iflag
Faulting disruptive scenario flag (yes=l, no=O)
1
**

iflag
Seismic disruptive scenario flag (yes=l, no=O)
1
**

The above example would run the VOLCANO, FAULTO, and SEISMO consequence modules in the set
of runs.

The iflag keyword can also be used to pass information to the EXEC and other consequence
modules. This use of iflag makes the most sense when the user has a choice between two options. A good
example is the use of the LHS scheme, which is illustrated as shown below:

**

iflag
LatinHypercubeSampling (yes=l, no=O)
1
**

The EXEC module will check to see if the parameter name "LatinHypercubeSampling (yes=1,
no=0)" has been defined in the tpa.inp file. If it has, the EXEC will query the integer flag value and it
will use LHS if the value is 1 or Monte Carlo random sampling if the value is 0. The above example has
been implemented in the default tpa.inp file provided to new users of the code. The iflag keyword is also
available for the analyst developing a consequence module.
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5.3.3 subarea

The analyst is required to specify the total number and locations of the repository subareas using

the subarea keyword. A subarea is represented by a quadrilateral and defined by specifying the coordinates

of the four vertices. An example of a six subarea discretization of the repository is provided as an example

(these six subareas are plotted in figure 4-1):

**

subarea
6
ZONE T="Upper Block-NW",F=POINT
547615.8 4079673.8
548118.7 4079465.4
548033.3 4079140.2
547460.1 4079328.2
57615.8 4079673.8
ZONE T="Upper Block-NE',F=POINT
548118.7 4079465.4
548621.6 4079257.1
548606.6 4078952.2
548033.3 4079140.2
548118.7 4079465.4
ZONE T="Upper Block-W",F=POINT
547460.1 4079328.2
548033.3 4079140.2
547933.5 4077770.0
547323.9 4077962.2
547460.1 4079328.2
ZONE T="Upper Block-E',F=POINT
548033.3 4079140.2
548606.6 4078952.2
548543.1 4077577.8
547933.5 4077770.0
548033.3 4079140.2
ZONE T="Upper Block-SW",F=POINT
547323.9 4077962.2
547933.5 4077770.0
547997.4 4076342.2
547660.3 4076451.5
547323.9 4077962.2
ZONE T="Upper Block-SE",F=POINT
547933.5 4077770.0
548543.1 4077577.8
548335.5 4076236.8
547997.4 4076342.2
547933.5 4077770.0
**

The first line of the example contains the keyword subarea. The second line contains the number

of subareas being defined, which affects the number of subsequent lines. Currently, a recommended

discretization of six subareas has been provided in the example file shown here. The six subareas overlay

the southern most portion of the upper block, which is sufficiently large to accommodate 70,000 MTU

of waste at an areal mass loading of 83 MTU/acre. The DOE also has extended the northern boundary of

this zone for an additional emplacement area if it is needed. If all this area were filled at 83 MTU/acre,

then more than 70,000 MTU of waste would be emplaced. The added space in the northern portion of the

repository is not needed if the bottom six subareas are filled at 83 MTU/acre.
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Following the number of subareas (six in this example), the location of each subarea is then

provided. The format for the subarea vertices is based on the plotting software TECPLOT (Amtec

Engineering, Inc., 1993). The next 36 lines of input data are exactly the same lines used in the input file

for plotting and visually checking the coordinate locations and repository outline. Although the above

format appears awkward, it avoids the error prone process of reformatting or retyping the coordinate data.

The format consists of six lines for each subarea. The first and last line are ignored. The first line is

specific to the post-processor TECPLOT (defining a zone, with a name, and by points in floating point

format). The last lines is a repeat of the second line (which closes the box drawn by connecting points).

The second through fifth lines define the coordinates of the vertices in Universal Transverse Mercator

coordinates. Easting is the first, and Northing is the second coordinate, and both are in units of meters.
Another example is provided below:

**

subarea
1
Zone T="Upper Block-NW",F=POINT
547615.8 4079673.8
548118.7 4079465.4
548033.3 4079140.2
547460.1 4079328.2
547615.8 4079673.8
**

This example defines one rectangular subarea large enough to accommodate 70,000 MTU at 83

MTU/acre. This example is often useful in testing consequence modules, where the looping over the

number of subareas is minimized (will do only one loop) before going to the next realization.

5.3.4 aqueousnudlides

The analyst is required to specify the number and names of radionuclides to be considered in

the groundwater pathway during the run. The TPA code presently supports up to 43 different radionuclides

(see section 3.2 on INVENT). The INVENT utility module recognizes the specific nuclides and has stored

information for each nuclide such as half-life, specific activity, and possible participation in radionuclide

decay chains. As such, the user does not need to provide data on half-life, specific activity, or definition

of decay chains. The analyst needs only to specify the number and names of nuclides to be modeled. If
the analyst specifies a nuclide not in the list of 43 recognized by INVENT, an error message will be
printed and the code will stop. An example of the aqueousnuclides keyword is provided below:

**

aqueousnuclides
21
Cm246
U238
Cm245
Arn241
Np237
Am243
Pu239
Pu240
U234
Th230
Ra226
Pb210
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Cs137
Cs135
I129
TC99
Ni59
C14
Se79
Nb94
Cl36
**

The first line contains the keyword aqueousnuclides. The second line contains the number of

nuclides being selected. The selection of nuclides to be tracked is not a trivial exercise, and several

considerations lead to selecting these 21 [based on Wescott et al. (1995) with the addition of 36CI due to

its importance in DOE's TSPA-95, e.g. TRW Environmental Safety Systems, Inc. (1995)] from the full

set of 43. Unless the analyst has a clear rationale to do otherwise, the default list of 21 nuclides provided

in the example input file (shown above) should be used. After the number of nuclides has been

established, each nuclide is identified on a separate line. All names are provided in the first six spaces of

each line, and are right justified on the sixth space.

5.3.5 constant

The constant keyword has a wide variety of uses and is one of the simplest inputs. Only three

lines are required to define a constant parameter. The first line has the keyword constant. The second line

has a name for the parameter which is at most of character length 60. The third line has the value of the

constant. FORTRAN distinguishes between integer and real types of data, hence the value is a real

(floating point) number. The analyst can view the constant as a delta function PDF. In the future, the

analyst may want to use a uniform or normal distribution to describe the range of the parameter. It is

straight forward to transform a parameter from type constant to another type between runs by editing the

tpa.inp file. Below are two examples of specific constants currently being used:

**

constant
ElevationOfRepositoryHorizon[m]
1072.0
**

constant
WastePackagePayload[MTU]
8.8
**

The first value is used in the NFENV module and shows that the elevation of the upper block

of the repository is 1,072 meters above sea level. The second constant is used in the EBSREL consequence

module and indicates that the average WP has a waste payload of 8.8 MTU.

5.3.6 iconstant

The iconstant keyword is the same as the constant keyword, except that the value must be of

type integer, instead of real. Some compilers are more forgiving and will read non integer numbers then

convert them into integer values. For example, the SUN FORTRAN compiler (SunSoft, 1996) will read

the number 200.5 as 200 and will read the number 2.34e3 as 2340, although neither are originally in

integer format. The user is encouraged to only use integers to avoid input problems. The user is also
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encouraged to check the output files (especially cp.tpa which is described in section 6.3) to verify the data

was read properly. Examples of the use of iconstant are:

**

iconstant
NumberOfRealizations
200
**

iconstant
NumberOf TimeSteps
201
**

The first example is currently being used to specify the number of realizations (the number of

realizations and number of vectors are synonymous). The second example is used to dictate the number

of time steps to be used by the EXEC to synchronize the transfer of data between consequence modules.

5.3.7 uniform

The uniform keyword specifies the uniform distribution type of PDF for a parameter. This

requires three lines consisting of the keyword uniform, the unique name of the parameter, and the lower
and upper limits of the uniform distribution. The value of the parameter has zero probability outside this

range and uniform probability within this range. The TPA code includes many error checking routines

such as checking that the minimum value is less than the maximum value. Examples of uniform

distributions include:

**

uniform
GroundwaterPercolationRate [mm/yr]
0.5, 2.0
**

uniform
WellPumpingRateAtCriticalGroup [gal/day]
1.0e7, 1.0e8
**

The first example currently is being used by UZFLOW to vary the ground water percolation rate
into the repository horizon. The second example currently is being used in the SZF1' module to account

for borehole dilution and is used to predict the radionuclide concentration in the well water.

5.3.8 loguniform

The loguniform keyword starts the definition of a lognormal PDF for a parameter. The full

description requires three lines as shown:

**

loguniform
name
xiow, xhigh
**
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The first line contains the keyword loguniform. The second contains the unique name of the

parameter. The third contains the lower and upper limits of the loguniform distribution. The original values

of the lower and upper limits are used, not the log transformed values. As with the uniform PDF, xlow

must be less than xhigh. There is no current example of the use of this distribution in the TPA code,

although it was used in IPA Phase 2 [see qinfil in appendix A of Wescott et al. (1995)].

5.3.9 iuniform

The iuniform keyword starts the definition of the integer uniform PDF for a parameter. The full

description of the parameter and PDF requires three lines. The first line contains the keyword iuniform.

The second contains the unique name of the parameter, using up to 60 characters. The third line contains

two integer values representing the low and high values, inclusively. The low value must be less than the

high. Each value beginning with the low and including the high are equally probable. An example of the

use is provided below:

**

iunif orm
RandomNumberToSelectlofl25GENIIRealizations
1, 125
**

This example was used in an earlier version of DCAGW in which one of the 125 stored results for DCFs

is selected and used for the realization.

5.3.10 normal

The normal keyword is used to assign the normal PDF to a sampled parameter. Use of this

keyword requires three lines. The first line contains the keyword normal. The second line contains the

unique name of the parameter, using up to 60 characters. The third line contains two values used to

describe the normal PDF. Frequently, analysts use the mean and standard deviation to describe the normal

PDF, but not here. For this keyword the normal distribution is described by the value at 3.09 standard

deviations below the mean and 3.09 standard deviations above the mean. Another way of describing this

distribution is that the corresponding CDF has a value of 0.001 (0.1 percent quantile) and 0.999 (99.9

percent quantile). This method of describing normal distributions is a continuation of that used by Iman

and Shortencarier (1984). Below is an example of a normal distribution being assigned to a parameter.

**

normal
ThermalConductivityofYMRock[W/(m-K)]
1.8, 2.2
**

This parameter is currently being used by the NFENV module. The thermal conductivity of the

rock at YM has a mean of 2.0 with a standard deviation of about 0.0647 W/(m-K).

5.3.11 lognormal

The lognormal keyword starts the definition of the lognormal PDF for a parameter. Use of this

keyword requires three lines as shown:
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**

lognormal
name
v001, v999
**

The first line contains the keyword lognormal. The second line contains the unique name of the
parameter, using up to 60 characters. The third line contains two values used to describe the lognormal
PDF. The two values represent the parameter values where the CDF has a value of 0.001 (0.1 percent
quantile) and 0.999 (99.9 percent quantile). This method of describing lognormal distributions is a
continuation of that used by Iman and Shortencarier (1984).

5.3.12 beta

The beta keyword starts the definition of the beta PDF for a parameter. This definition requires
three lines as shown:

**

beta
name

a, c , xmin, xmax
**

The first line contains the keyword beta. The second line contains the unique name of the
parameter, using up to 60 characters. The third line contains four values used to describe the beta PDF.

The first two input values (a, a) control the shape of the beta distribution, and the last two control the
range of the parameter. The parameter has zero probability of having a value less than xmin or greater
than xmax. Below is an example.

**

beta
MaxtixPorosityOfTopopahSpringWelded[from pg 7-11 of SNL TSPA-93]
3.934, 29.567, 0.000, 1.000
**

This example is not currently being employed in the simulations of the proposed repository. It
is based on data in the Sandia National Laboratories (SNL) TSPA-93 report (Wilson et al., 1994) for the
matrix porosity of Topopah Spring Welded rock unit near the repository horizon.

5.3.13 logbeta

The logbeta keyword starts the definition of the logbeta PDF for a parameter. This keyword
requires three lines as shown:

**

logbeta
name

a, 1, xmin, xmax
**
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The first line contains the keyword logbeta. The second line contains the unique name of the

parameter, using up to 60 characters. The third line contains four values used to describe the logbeta PDF.

The first two values (a, A) control the shape of the distribution, and the last two control the range of the

parameter. The parameter has zero probability of having a value less than xmin or greater than xmax. The

values of xmin and xmax are not log transformed values, but the original values. Below is an example.

**

logbeta
MaxtixSaturatedHydraulicConductivityOfTSw[from SNL TSPA-93]
0.980, 1.875, 2.88e-13, 1.07e-8
**

This example is not currently being used in the simulation of the proposed repository, but is

based on data in the SNL TSPA-93 report (Wilson et al., 1994) for the matrix saturated hydraulic

conductivity of Topopah Spring Welded rock unit near the repository horizon.

5.3.14 triangular

The triangular keyword starts the definition of the triangular PDF for a parameter. This

description requires three lines. The first line contains the keyword triangular. The second line contains

the unique name of the parameter, using up to 60 characters. The third line contains three values used to

describe the triangular PDF. The values represent the minimum, peak, and maximum parameter values.

An example is shown below:

**

triangular
SolubilityNp[mole/liter]
5.0e-6, 1.4e-4, 1.0e-2
**

This example is being used in the EBSREL module for the solubility of Np. Based on

experimental observations, geochemists have estimated the solubility ranges from 5.0e-6 to 1.Oe-2

moles/liter with a peak at about 1.4e-4 moles/liter. The distribution is approximated by a triangular

distribution.

5.3.15 logtriangular

The logtriangular keyword starts the definition of the logtriangular PDF for a parameter. To use

this keyword, the user must specify three lines. The first line contains the keyword logtriangular. The

second line contains the unique name of the parameter, using up to 60 characters. The third line contains

three values used to describe the logtriangular PDF. The values represent the minimum, peak, and

maximum parameter values. These values are not log transformed. An example is shown below:

**

logtriangular
ParticleSizeinAshPlume[mm]
0.5, 55.0, 125.5
**

This example is being used in the ASHPLUME module.
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5.3.16 exponential

The exponential keyword starts the definition of the exponential PDF for a parameter.
Specifications for keyword consists of three lines as shown:

**

exponential
name
lambda
**

The first line contains the keyword exponential. The second line contains the unique name of
the parameter, using up to 60 characters. The third line contains one value used to describe the exponential
PDF. The values represent the decay or proportionality constant.

**

exponential
TimeOfNextVolcanicEventinRegionOfInterest[yr]
1.Oe-8
**

This example could be used to generate the time of the next volcanic event in the region of
interest, given its annual probability to be one in a hundred million. The time of the next event ranges
from zero to infinity.

5.3.17 finiteexponential

The finiteexponential keyword starts the definition of the finiteexponential PDF for a parameter.
Three lines, as shown below, are required to use this keyword option:

**

finiteexponential
name
lambda, tmin, tmax
**

The first line contains the keyword finiteexponential. The second line contains the unique name
of the parameter, using up to 60 characters. The third line contains three values used to describe the
finiteexponential PDF. The first value represents the decay or proportionality constant (this is the same
for the exponential PDF). The next two values represent the minimum and maximum acceptable time, such
that the sampled time will always be between these two values. The finiteexponential has the advantage
of forcing an event to occur within a TPI, yet the PDF retains the exponential shape. Below is an example.

**

finiteexponential
TimeOfNextVolcanicEventinRegionOfInterest[yr]
l.Oe-8, 100.0, 10000.0
**

This example could be used to generate the time of the next volcanic event in the region of
interest, given its annual probability to be one in a hundred million and also requiring that the event occur
after 100 yr and before 10,000 yr.
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5.3.18 hazardcurve

The hazardcurve keyword starts the definition of the hazardcurve that is used to generate a time

series of events. This description requires at least five lines as shown:

**

hazardcurve
name
n
mag(l), period(l)
mag(2), period(2)

mag(n), period(n)
**

The first line contains the keyword hazardcurve. The second line contains the unique name of

the parameter, using up to 60 characters. The third line contains one integer value used to describe the

number of intervals into which the hazardcurve has been discretized. Following are that same number of

lines, each having a magnitude and return period. The only requirements for these values are that the

periods are in ascending order, and the magnitudes be monotonic. Below is an example.

**

hazardcurve
SeismicHazardCurveforSEISMO
3
0.10 100.0
0.30 1000.0
0.60 10000.0
**

This example is used to generate a history of seismic events over the TPI for the SEISMO

module. The seismic history will have numerous events of the smallest magnitude (0.1 g) and a few of

the higher magnitudes. There are only three magnitudes of events that will be generated in the seismic

history (0.1, 0.3, and 0.6 g). The return periods for these events is 100, 1,000, and 10,000 yr.

5.3.19 userdistribution

The userdistribution keyword starts the definition of the user supplied discrete PDF. Use of this

keyword option requires at least five lines as shown.

**

userdistribution
name
n
v(1)
v(2)

v(3)
v(n)
**

5-12



The first line contains the keyword userdistribution. The second line contains the unique name
of the parameter, using up to 60 characters. The third line contains one value used to describe the number
of user-supplied values. Each subsequent line contains one of the user-supplied values. The values all have
equal probability. Below is an example.

**

userdistribution
ParticleSizeinAshPlume[mm]
3
0.1
1.0
10.0
**

In this example, the ash plume particle size is either 0.1, 1.0, or 10.0 mm.

5.3.20 correlateinputs

The correlateinputs keyword is used to introduce correlations between two input parameters. The
correlation is based on the rank transformed parameters. This description requires four lines as shown:

**

correlateinputs
namel
name2
corr
**

The first line contains the keyword correlateinputs. The second line contains the unique name
of the first parameter, using up to 60 characters. The third line contains the unique name of the second
parameter, using up to 60 characters. Both the first and second parameter must be defined elsewhere in
the input file. The fourth line contains one value representing the rank correlation between input
parameters. Below is an example.

**

correlateinputs
MatrixPorosityLayerl
MatrixPermeabilityLayerlr[m2]
0.1
**

This example specifies a rank correlation of 0.1 between the matrix porosity and permeability for the first
hydrostratigraphic layer.

5.3.21 endoffile

The endoffile keyword is used to indicate the last line in the input file. The analyst must specify
this keyword once and only once. If it is used more than once, an error message will be printed and the
code will stop.
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6 DESCRIPTION OF OUTPUTS

6.1 OVERVIEW

The TPA Version 3.0 code generates a number of output files for later use in sensitivity analyses,
evaluation of subsystem performance measures, and total-system performance measures. These output files
are summarized in table 6-1. The files, which are in ASCII format, contain data about sampled parameters,
constant parameters, module variables, compliance with the EPA release standard, and time-dependent
annual doses. The name and a brief description of each file are provided in table 6-1. A more in-depth
description of the files is provided later in this section.

The first five lines of each output file are standardized and have the format:

titlel
title2
code version, time and date of start of run
description of file data, first line
description of file data, second line

The first two lines are the title lines defined in the tpa.inp file. These lines are of character type
and 80 characters in length. The third line contains the name of the code and version of the code being
used, followed by the time and data of the start of the run. The fourth and fifth lines contain brief
descriptions of the contents of the file. Subsequent lines contain the data. Examples of the output files are
presented in the following sections in which file contents are described in more detail.

6.2 SAMPLED PARAMETERS

Model input parameters with statistical distributions (i.e., sampled parameters) are designated by
the user in the tpa.inp file using PDFs such as uniform, normal, lognormal, beta, etc. These parameters
are sampled within the SAMPLER utility module once for each realization. The EXEC module writes the
values of each sampled parameter for each realization to the file sp.tpa. An example of the first few lines
of a sp.tpa file are shown below:

This is the test file for TPA 3.Obeta version
which is being supplied to NRC on February 26, 1997.
TPA 3.0, Job started: Fri Feb 28 15:53:25 1997
Sampled Parameters for each realization
Sampled Parameters change each realization

0 58
GroundwaterPercolationRate[mm/yr]
WellPumpingRateAtCriticalGroup[gal/day]
TimeOfNextFaultingEventinRegionOfInterest[yr)
XLocationOfFaultingEventInRegionOfInterest[m]
YLocationOfFaultingEventInRegionOfInterest[m]
....etc....

1 58
0.1448943E+01
0.6308013E+04
0.4199900E+04
0.5496345E+06
0.4076762E+07

.... etc....
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Table 6-1. Summary of output files generated by TPA Version 3.0 code 0
File Name Description

sp.tpa sampled parameters for each realization of the simulation

cp.tpa constant parameters for the simulation

mv.tpa module variables (which are scalar) for each realization of the
simulation, used to report subsystem performance measures such as
waste package lifetime, groundwater travel time, etc.

epaccdf.tpa EPA-summed normalized cumulative release for the time period of
interest (for assessing compliance with the remanded 40 CFR Part 191)

rgwnr.tpa time-dependent annual effective dose equivalent (EDE) from the
groundwater pathway, for each nuclide for each realization

rgwsr.tpa time-dependent annual EDE from the groundwater pathway, summed
over all nuclides for each realization

rgwna.tpa time-dependent annual EDE from the groundwater pathway, for each
nuclide, averaged over all realizations

rgwsa.tpa time-dependent annual EDE from the groundwater pathway, summed
over all nuclides, averaged over all realizations

rgsnr.tpa time-dependent annual EDE from the ground surface pathway, for each
nuclide for each realization

rgssr.tpa time-dependent annual EDE from the ground surface pathway, summed
over all nuclides for each realization

rgsna.tpa time-dependent annual EDE from the ground surface pathway, for each
nuclide, averaged over all realizations

rgssa.tpa time-dependent annual EDE from the ground surface pathway, summedl
over all nuclides, averaged over all realizations

rgwgssa.tpa time-dependent annual EDE from both groundwater and ground surface
pathways summed over all nuclides, averaged over all realizations
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The first five lines of the example sp.tpa are consistent with the general format described
previously. The sixth line contains two numbers, the first is the realization count (being initially zero) and
the second being the number of sampled parameters. In this example, the number of parameters is 58.
Next, the name of each sampled parameter is output, one name per line. These names are the same as
given in the tpa.inp file. Next is a line having two integer numbers representing the realization number
and the number of sampled parameters. The second number is the same as provided prior to the listing
of names. It is provided again as a helpful reminder to the user. Next, the numeric information is provided
for that parameter for that realization. This is a column of 58 numbers representing a vector of sampled
parameters for the first realization. The line with two integers (indicating realization number and total
number of sampled parameters) follows with the next vector of sampled parameters, etc. This information
is repeated for the total number of realizations.

6.3 CONSTANT PARAMETERS

Constant model parameters are specified by the user in the tpa.inp file using keywords such as
constant, iflag, and iconstant. These parameters are not sampled within the SAMPLER utility module, and
the values remain fixed for all realizations in the simulation. The EXEC module writes the values of each
constant parameter for the run to the file cp.tpa. An example of the first few lines of a cpapa file are
shown below:

This is the test file for TPA 3.Obeta version
which is being supplied to NRC on February 26, 1997.
TPA 3.0, Job started: Fri Feb 28 15:53:25 1997
Constant Parameters for the run
Constant Parameters do not change during run

1 = Volcanism disruptive scenario flag (yes=l, no=0)
1 = Faulting disruptive scenario flag (yes=1, no=0)
1 = Seismic disruptive scenario flag (yes=l, no=O)

0.188910E+09 = SeedForRandomNumber
0 = LatinHypercubeSampling (yes=l, no=0)

10 = NumberOfRealizations
0.100000E+05 = MaximumTime[yr]

The first five lines are consistent with the general format described previously. Next, are the
values and the names of each of the constant parameters. Both the value and the name are on one line.
These names are the same as given in the tpa.inp file.

It should be noted that the distinction between a constant parameter and a sampled parameter
is helpful for the analyst who desires to perform a sensitivity analysis. The constant parameters have not
been included with the truly sampled parameters. If constants were included in the sp.tpa file, then its size
would be greatly increased. The analyst may change how the parameter is described in the tpa.inp file.
For example, in one run the parameter may be a constant; in another run, it may be described by a
uniform PDF (for example). EXEC would then write the same parameter to either the cp.tpa file (if it is
a constant) or to the sp.tpa (if described by a PDF). By separating the cp.tpa and sp.tpa, the file sizes are
reduced significantly.
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6.4 MODULE VARIABLES (SUBSYSTEM PERFORMANCE MEASURES)

Module variables are introduced by the code developers and are almost always used to report

subsystem performance measures. These variables are identified within the consequence modules and

represent important output information useful for sensitivity and importance analyses. The module

variables are calculated by the consequence modules for each realization and are stored in the MODULE

VARIABLE utility module. The EXEC then prompts the MODULE VARIABLE utility module to print

the values at the end of each realization to the file mv.tpa. An example of the first few lines of a mv.tpa

file are shown here:

This is the test file for TPA 3.Obeta version
which is being supplied to NRC on February 26, 1997.
TPA 3.0, Job started: Fri Feb 28 15:53:25 19I97
Module Variables for each realization
Module Variables are stored for each realization

13
WPCorrosionFailTime[yr]
Magn of Peak Annual Dose [rem/yr]
Time of Peak Annual Dose [yr]
Magn of Peak Annual Dose from Am243 [rem/yr]
....etc.....

1 13
0.21977E+04
0.26855E-05
0.10000E+05
O.OOOOOE+00
.... .etc....

The first five lines are consistent with the general format described previously. Next, the number

of module variables is specified. In this example, the number of variables is 13. The names of the module

variables follow, one per line. These names are the same as introduced by the consequence modules. The

next line has two integer values for the realization number and the number of variables (the number of

module variable remain the same during a run). The specific values for the variables follows, one per line.

6.5 EPA SUMMED NORMALIZED CUMULATIVE RELEASE

The summed normalized cumulative release of radionuclides at the designated compliance

boundary is calculated for the run and written to the file epaccdfitpa. This information is normally plotted

as a complementary cumulative distribution function (CCDF), hence the name of the file. The first five

lines of the file are consistent with the general format described previously. On each subsequent line, the

realization number and the summed normalized cumulative release are output, as shown below:

This is the test file for TPA 3.Obeta version
which is being supplied to NRC on February 26, 1997.
TPA 3.0, Job started: Fri Mar 7 07:00:48 1.997
Summed Normalized Release over 10,000 years
This is remanded EPA 40 CFR Part 191 Standard

1 0.63141E+01
... etc ...
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6.6 TIME-DEPENDENT ANNUAL EFFECTIVE DOSE EQUIVALENT

A number of files output time-dependent annual effective dose equivalent at the compliance
point, including:

rgwnr.tpa
rgwsr.tpa
rgwna.tpa
rgwsa.tpa
rgsnr.tpa
rgssr.tpa
rgsna.tpa
rgssa.tpa
rgwgssa.tpa

These files are briefly described in table 6-1 which is discussed in the beginning of this section.
The files break down as shown in figure 6-1. The files represent the pathway (either groundwater, ground
surface, or both), the realization (either per realization or averaged over all realizations), and the nuclide
(either per nuclide or summed over all nuclides).

The format of the files varies because of the need to report data per realization (or averaged over
all realizations) and data per nuclide (or summed over all nuclides). The first few lines of the rgwsa.tpa
file are shown below as an example:

This is the test file for TPA 3.0 BETA version
which is being supplied to NRC on January 31, 1997.
TPA 3.0, Job started: Tue Feb 25 17:19:44 1997
AEDE[rem/yr], GroundWater Pathway
summed over all nuclides, averaged over all realizations

0.231E+01 0.100E-14
0.467E+01 0.100E-14
0.709E+01 0.lOOE-14
0.957E+01 0.lOOE-14
... etc ...

The data have two columns, representing the time and the annual dose. The first few lines of
this example file show no annual dose (the value has been set to a very small value of 10`5 so this data
can be plotted using a log scale).
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Pathway Nuclide Realization File

0

Groundwater summed ove all averaged over all rgwgssa.tpa
| Groundsurface | rI nuclides | realizations

Figure 6-1. Summary of output files for annual effective dose equivalent
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7 PROGRAM INSTALLATION AND EXECUTION

The TPA Version 3.0 code was developed on a Sun Microsystems, Inc. SPARC 20 Workstation. This
platform uses a Sun Microsystem UNIX Operating System. This section describes the basic steps in the
installation and execution of the TPA code.

7.1 INSTALLING SOURCE CODE FROM AN 8-MM TAPE

Because of the size of the source code, the TPA Version 3.0 code is generally supplied for
installation on an 8-mm data cartridge tape that has been created using the tar command in the UNIX
operating system environment. A 8-mm tape is a standard medium for archiving or transferring electronic
data, especially between UNIX-based workstations. The FORTRAN source code, associated data files, and
stand-alone programs have been written to the tape. The following command (possibly with some small
variation) has been used to prepare the tape:

% tar cvf /dev/rstO tpa

This command copies the tpa directory with all its files and subdirectories onto the tape. At the
site where the program is to be installed, the user will type the following command (possibly with some
small variation that depends on the specific system) to install the code:

% tar xvpf /dev/rmt/ln

This command unloads the tape and creates the tpa directory with all the necessary files,
subdirectories, and programs starting at the location where the command is executed.

7.2 CUSTOMIZING THE CODE FOR THE USER'S UNIX
OPERATING SYSTEM

If the user first installs the TPA Version 3.0 code or moves the source code and data files to
another computer, then the user must modify the file path.i, which points to the archived source codes,
data files, and stand-alone programs. Currently, the path.i file is as shown:

character*17 path
data path / '/uOl/tpaarch/tpa/' /

The path.i file may need to be changed to something such as the following:

character*25 path
data path / '/datax/home/nmss2/ymipa3/' /

If the path is changed, all the object files should be deleted, and the Makefile executed to
generate a new TPA Version 3.0 code executable. This procedure is described in the next section.

7.3 PROGRAM EXECUTION

The TPA Version 3.0 code is written in FORTRAN 77 and designed to run under the Sun
Microsystems, Inc. UNIX operating system. The UNIX operating system supports many features to assist

7-1



code developers. One feature is the Makefile, which allows the developer to automatically link the objects

of many subroutines that reside in more than one file. An example of a Makefile is shown below (and also

provided on the 8-mm tape):
0

OBJECTS = array. o
condxyzt.o
dcagw.o
dcags.o
ebsfailg.o
ebsfail.o
ebsrel.o
faulto.o
fileunit.o
findelev.o
invent.0
mv.0
nfenv.o
numrecip.o
ran.o
reader.o
sampler.o
seismo.o
subarea.0
szft.o
uzflow.o
uzft.o
volcano.o

tpa : $(OBJECTS)
f77 exec.f -o tpa.e $(OBJECTS)

After unloading the TPA Version 3.0 code from the tape and modifying the path.i file, the user

can generate an executable version of the code by typing:

% make tpa

This command will prompt the UNIX system to compile the execf file and link with the 23

listed object files. The Makefile also has the handy feature of ensuring the object files are up to date. The

Makefile will check the time and date of the last change made to the 23 FORTRAN source code files used

to create the object files. If any of the FORTRAN source code files have been changed since the object

files were made, then the object files are considered out of date. The Makefile initiates a compilation of

the FORTRAN source code to generate a new object file. This procedure is performed on a file-by-file

basis, making it an efficient process. Only the files that have been changed are compiled. The Makefile

then generates an executable file named tpa.e. To execute the code, the user then would type:

% tpa.e

The TPA Version 3.0 code will open and read the file tpa.inp, so it must reside where the user

is executing tpa.e. The TPA Version 3.0 code requires only the dynamic input data file. The TPA code

will generate a number of output files that all end with .tpa. These files are discussed in chapter 6 of this

report.

7-2



Some consequence modules spawn jobs that execute stand-alone programs (e.g., NEFTRAN).
The source code for these stand-alone programs is provided in the subdirectory standalonecodes. The user
may need to compile these programs using a command such as:

% f77 -r8 -C nefmks97.f -o nefmks.e

The user is cautioned not to make changes to the stand-alone source code files, because these
are part of the TPA Version 3.0 code. If changes are needed, these need to be coordinated with the
software QA code custodian.

7.4 PORTABILITY LIMITATION OF TPA VERSION 3.0

The TPA code is written in FORTRAN 77 as implemented in the Sun compiler version 4.2
(SunSoft, 1996). The subroutines have been designed and written to be as portable as possible, recognizing
that some nonstandard FORTRAN features are supported on many computer platforms, while some
features are not supported on a wide variety of platforms. For example, the time and date functions are
nonstandard FORTRAN 77, but are required for QA documentation purposes. Fortunately, many
FORTRAN compilers on a wide variety of computer platforms have the built-in nonstandard feature of
time and date. Similarly, many compilers support the use of variable and array names longer than six
characters, so in the TPA code, long variable names are used to help add clarity to the source code.

One nonstandard feature, considered essential by consequence module developers is the spawning
(i.e., running) of external stand-alone programs such as NEFTRAN. To implement this program, the
operating system must support the capability to spawn external jobs. This feature is not widely supported
among computer system, especially on the IBM PC platforms. At this time, the need to spawn external
programs prevents the TPA Version 3.0 code from being easily converted to run on platforms using
Windows or DOS Operating Systems (this includes most personal computers). This portability limitation
also applied to the TPA Version 2.0 code, because it also spawned jobs to non external programs.

7.5 USER SUPPORT

For technical assistance, users may contact:

S. Mohanty
Center for Nuclear Waste Regulatory Analyses
Southwest Research Institute
P.O. Drawer 28510
San Antonio, TX 78228-0510
(210) 522-5185

or

R.G. Baca
Center for Nuclear Waste Regulatory Analyses
Southwest Research Institute
P.O. Drawer 28510
San Antonio, TX 78228-0510
(210) 522-3805
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7.6 SOFTWARE QUALITY ASSURANCE

Software QA has been an integral part of the TPA Version 3.0 code development process. Many

of the software QA recommendations made in Wescott et al. (1995) were implemented in developing the

TPA Version 3.0 code. This testing process was conducted in an independent manner by staff that did not

contribute to the module development. Module testing was performed not only to probe for the correct

implementation and determine the limitations of computational algorithms, but also to assess code

capabilities to detect user input errors. The executive, consequence, and utility modules were put through

a broad spectrum of tests considered appropriate for the specific module. Specific types of tests performed

included:

* Verification of utility modules through comparisons with calculations made with MCAD

(Mathsoft Inc., 1994) and Mathematica (Wolfram, 1991)

* Verification of module outputs through comparison of results from the stand-alone module

and the same module integrated into TPA Version 3.0 code

* Verification of selected modules through hand calculations and published results, where

deemed feasible
* Line-by-line checking of libraries containing static data for parameters such as radionuclide

half-lives, specific activities, inventories, and EPA limits

* Line-by-line checking of selected consequence modules (e.g., NFENV), where deemed

feasible
* Compilation of module source code using different FORTRAN compilers

In addition, full runs were made with the TPA Version 3.0 code and the results (i.e., subsystem and total-

system performance measures) checked for reasonableness.

The major part of the module testings has been captured in notebooks for the software QA

record. In addition, the 8-mm tape provided with the source code contains a directory with: (i) README

text files that contain summaries of the module testing, (ii) source code for the drivers and input files used

to test the modules, and (iii) output files of the test results. These are provided in the event that additional

testing is warranted to check module modifications made in the future.

Because of the size and complexity of the TPA Version 3.0 code, further testing is planned and

will be conducted prior to use of the code in reviewing the DOE TSPA-VA and license application. The

TPA Version 3.0 code is currently being placed under software configuration in accordance with the

CNWRA Technical Operating Procedure, TOP-018.
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ORIGINAL SOFTWARE REQUIREMENTS DESCRIPTION
FOR TPA VERSION 3.0 CODE

1 INTRODUCTION

This software requirements description is the first step in updating the Total Performance Assessment
(TPA) code from version 2.0 to 3.0. The TPA code Version 2.0 (Sagar and Janetzke, 1993) was used in
the Nuclear Regulatory Commission/Center for Nuclear Waste Regulatory Analyses (NRC/CNWRA)
Iterative Performance Assessment (IPA) Phase 2 exercise. The TPA code is an executive module and a
set of consequence modules that simulate the performance of a geologic repository of nuclear high-level
waste (HLW) at Yucca Mountain (YM), Nevada. The executive module controls the flow of data and
execution between the process/component-specific consequence modules that simulate major safety
components of the repository system. The TPA code integrates geologic site characterization data,
proposed repository and waste package (WP) engineered designs, and biosphere data. The consequence
modules are designed with input from materials engineers, hydrogeologists, seismologists, volcanologists,
rock mechanicians, and health physicists. Recent developments in the proposed YM repository necessitate
a new version of TPA code. These developments include (i) new repository, WP, and emplacement
designs, (ii) changing regulatory standards (from release-based to dose-based), and (iii) potentially longer
time periods of concern (to hundreds of thousands of years). Numerous improvements will be incorporated
that reflect knowledge and data gained in recent years of site characterization and laboratory studies, as
well as other total system performance assessments (TSPA). The TPA code will have the capability to
assess the compliance of the proposed YM repository with regulatory requirements using a probabilistic
approach to account for uncertainties.

2 SOFTWARE FUNCTION

The TPA code is a combination of an executive module and a set of consequence modules that
stochastically assess the overall performance of the proposed YM HLW repository with applicable
regulatory standards. The executive driver controls the probabilistic sampling of input parameters, the
calculational flow process between modules, and the generation of output files. Output files can be used
for parameter importance analyses, generation of time-dependent risk curves, and generation of
complementary cumulative distribution functions for cumulative release of radionuclides. Utility modules
ensure a consistent description of the proposed repository system and flow of data between consequence
modules. Examples include the spatial and temporal discretizations (i.e., subarea (SA) discretization of the
proposed repository and time stepping scheme). In the NRC/CNWRA IPA Phase 2 exercise, there were
7 SAs and 50 time steps of 200 yr each. The number of SAs in the TPA code will be based on the latest
proposed repository design and reflect near-field thermal-hydrologic-mechanical-chemical (OHMC)
environments in the proposed repository as well as hydrostratigraphy. The time stepping will be variable
over the simulation as well as the total time period of interest (TPI).

3 TECHNICAL AND COMPUTATIONAL APPROACHES

The overall conceptual approach of a TSPA is outlined in figure 1. Data flow from the system
characterization to final regulatory compliance determination (shown as either a cumulative release or
dose). The bulk of the modeling effort is in the consequence modules that include both anticipated
processes (also called base-case processes) and disruptive processes. The base-case system has seven major
subsystem models:
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* groundwater flow from the ground surface to the proposed repository,
* near-field THMC environment of the engineered barrier system (EBS),
* corrosion and other anticipated failure mechanisms of the EBS containment,
* release of radionuclides from the EBS into geologic setting,
* groundwater flow and radionuclide transport in the unsaturated zone below the proposed

repository and into the saturated zone,
* groundwater flow and radionuclide transport in the saturated zone below the proposed

repository to a compliance point (CP) or boundary, and
* transport of radionuclides in the biosphere through the groundwater pathway that leads to

dose to humans.

The disruptive system has faulting, seismicity, volcanism and climate change that cause earlier failures
of EBS containment. In the case of volcanism, radionuclides may be released directly into the accessible
environment and at the CP through the ground surface pathway.

A number of utility modules will be used to provide general data and generic capabilities that more than
one module may need. For example, the initial radionuclide inventory will be calculated in a module so
this information can be provided to other modules.

The TPA code will control the spatial discretization of the proposed repository (i.e., number of SAs), the
distance from the proposed repository to the CP (e.g., 5, 20, 25, or 30 km), the temporal discretization
scheme (e.g., output every 200 yr), and the TPI (e.g., 100,000 yr).

Major analysis improvements in the TPA code include the ability to

increase or decrease the TPI
evaluate finer time discretizations using nonuniform time steps
evaluate finer repository spatial discretizations

* evaluate different areal mass loading
calculate time-dependent dose rate at a CP

* calculate peak dose rate at a CP in the TPI
evaluate dilution in saturated zone
evaluate in-drift emplacement design
add or remove sampled parameters

The TPA code Version 3.0 will also include:

updated consequence models
improved parameter importance analysis capabilities
streamlined scope for consequence modules
streamlined methodology for data transfer between consequence modules
more flexible design to accommodate changes in consequence modules
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4 USER INTERFACE AND DATA FLOW

The TPA code will be executed in file batch mode using one main input file: "tpa.inp." The TPA code

reads data from this one input file only. The TPA code writes output data into a set of files for plotting

or importance analyses. The file interfaces are described here.

4.1 INPUT TO TOTAL PERFORMANCE ASSESSMENT CODE

All of the input data for the TPA code is contained in the "tpa.inp" file. No other files/input will

have an effect on the TPA executive (EXEC) calculations. Auxiliary files for data may be needed for

consequence modules, however, these files should be "static" and the "tpa.inp" file should be used for

parameter descriptions that change from run to run. The "tpa.inp" file contains all parameters necessary

to describe the scenario and the number of realizations requested. The "tpa.inp" file starts with two

comment lines that the analysts should use to describe the type of run being performed. These lines will

be read as Character*80 and echoed at the top of all output files.

4.2 FLOW OF DATA BETWEEN MODULES

EXEC controls data flow by passing data in the subroutine call statement to each module. EXEC

does not use common blocks or disk files for data transfer between itself and consequence modules.

Within a consequence module, common blocks or files can be used. EXEC does not permit that data be

passed directly between consequence modules. Each module is to be called only by EXEC and not by

other modules. For efficiency and implementation purposes, the modules can consist of more than one

subroutine, may call TPA code utility subroutines (e.g., INVENT), or may call stand alone programs (e.g.,

NEFTRAN). But modules are to pass information only to EXEC to control the simulation process.

The overall sequence of execution and flow of data is shown in figure 2. Here, EXEC starts the

simulation by reading the "tpa.inp" file through the READER routine. The READER module need only

be called once during a run. Having determined the parameters that describe the system, the EXEC

continues by calling component specific consequence modules. Some modules will only be called once

during one realization, while others will be called many times. Modules being called once include

SAMPLER, SZFT, DCAGW and DCAGS. The modules UZFLOW, NFENV, EBSFAIL, EBSREL, and

UZFT will be called once for each SA for each realization. If disruptive scenarios are being analyzed, the

FAULTING, SEISMO, VOLCANO, ASHPLUME, and DCAGS modules will be called directly by EXEC

once during a realization. These disruptive modules will be used to either cause earlier failure of the EBS

or provide a more direct pathway for radionuclides into the biosphere (e.g., VOLCANO through

ASHPLUME). If desired in the future, disruptive scenarios can be designed or modified to affect

groundwater flow and transport of radionuclides.

The computational scheme for the TPA code is shown in figure 3. Each module is called by the

EXEC module with some inputs and then returns some outputs to the EXEC through the call statement.

Consequence modules do not call each other directly. There is a clear expectation of inputs and outputs

between the EXEC and each module. In most cases, the output of one module is the input to the next

module. The EXEC has two main loops for the number of realizations and the number of SAs.

The utility modules and consequence modules are discussed next.
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Figure 2. TPA flow diagram
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1e UZFLOW
llFlowRatelntoSAperWP[mA3/yr]Ul -

llFlowRatel ntoSAperWP[MA3/yr] " - *0

"FlowRatel ntoSAperWPMissWP[mA3/yr]" NFEW
"FlowRatelntoSAperWPHitWP[mA3/yr]"

"TemperatureOfWPSurface[C]"
"RelativeHumidityAtWP", "pHofGWHitWP"

"ClorideConcentrationinGWH itWP[mole/liter]"

"FlowRateperSAperWPHitWP[mA3/yr]"
"TemperatureOfWPSurface[C] "

"RelativeHumidityAtWP", "pHofGWHitWP"
"ClorideConcentrationinGWHitWP[mole/liter"I EBSFAIL

"PercentCorrosionFailureOfWP" -

"FlowRateperSAperWPHitWP[mA3/yrIl"
XEC "TemperatureOfWP[C]" EBSREL

_ "FlowRateperSAperWPfromWP[mA3/yr]"
"NuclideReleaseRatefromWP[Ci/yr]"

"FlowRateperSAI ntoLowerUZ[MA3/yr]'I
"NuclideFlowRateperSAI ntoLowerUZ[Ci/yr]'I

UZFT
"FlowRateperSAFromLowerUZ[MA3/yr]J

"NuclideFlowRateperSAFromLowerUZ[Cifyr]"

"FlowRateiAIISAtntoSZ[mA3/yr]'"
"NuclideFlowRateAIISAI ntoSZ[Ci/yr]"

SZFT

"NuclideConcentrationinGWatCP[Ci/mA3]"I

"NuclideConcentrationInGWatCPtCi/rnA3]II

4- "AnnualEDEperNuclideGWpathway[rem/yr]"

Figure 3. Main input/output associated with base-case flow and transport
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4.3 UTILITY MODULES

4.3.1 Reader

READER is a utility module that preprocesses the data from the "tpa.inp" file. This is the only
subroutine that reads the "tpa.inp" file. This module is similar to that already existing in the TPA code
Version 2.0. The "tpa.inp" file will contain data specific for the TPA code execution as well as all
probability distribution function (PDF) definitions for parameters that will be provided to the consequence
modules.

4.3.2 Sampled Parameter

This module dynamically stores and retrieves information associated with parameter probability
density functions (PDFs). PDFs are read from the "tpa.inp" file during run time. The number of
distributions includes: CONSTANT, UNIFORM, LOGUNIFORM, NORMAL, LOGNORMAL, BETA,
LOGBETA, TRIANGULAR, LOGTRIANGULAR, and EXPONENTIAL. In addition joint PDFs relating
two parameters will be supported using a correlation matrix approach. All PDFs will be sampled for each
of the realizations required in the simulation.

4.3.3 Invent

INVENT is a utility module that allows centralized computation and storage of radionuclide
inventory data. This module is a set of subroutines based on the subroutines described in Lozano et al.
(1994). The subroutines provide the inventory (in Ci/MTU) of 43 radionuclides for times to one million
years.

4.3.4 Subarea

SUBAREA is a utility module for the storage and retrieval of repository SA information. The
database is created once in the READER module and then the information will be available to all other
modules. The consequence modules can acquire information about the SA discretization, but not change
the information.

4.4 CONSEQUENCE MODULES

The main consequence modules in the TPA code are UZFLOW, NFENV, EBSFAIL,
FAULTING, SEISMO, VOLCANO, EBSREL, UZFT, SZFT, ASHPLUME, DCAGW, and DCAGS. These
modules will interface with EXEC using a subroutine call statement. The parameters and arrays being
passed in the call statement are negotiated between the EXEC and each of the modules. Consistent with
the software design principle of procedural abstraction, the EXEC does not need to know how the
calculations are performed in the consequence modules. There are at least four ways of doing the
calculations: abstraction of results (i.e., table look-up), abstraction of models, incorporation of the main
calculational routines from an existing code, or spawning an independent process that executes a stand
alone code. Previously, the EXEC explicitly called routines and spawned processes. In the new EXEC,
main consequence modules are called directly and the 11O between EXEC and modules need not be
changed in the future if the implementation in the module changes.
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Because the TPA code simulates the time-dependent response of the proposed repository, it

decides the overall time discretization to be used for all consequence modules. The time discretization is

intended to synchronize input and output between modules and should not be confused with timesteps used

in solving transient problems in various modules. The time discretization can and will often be

nonuniform, especially for simulations out to hundreds of thousands of years. An example of a time

discretization is {0, 10, 25, 50, 75, 100, 125, 150, 200, 250, 300, ..., 9,500, 10,000} yr. All of the time-

dependent inputs and outputs for the consequence modules must be provided at these time steps.

The UZFLOW module will provide estimates of percolating flow rates into the near-field of the

proposed repository. Separate flow rates will be estimated for each of the proposed repository SAs. For

example, if six SAs are used for the proposed repository, then UZFLOW will be called six times to

provide estimates of flow into the near-field. The flow rates are time-dependent and need to be predicted

for the times provided by the TPA code. This module may account for long-term trends that affect

percolation (e.g., climate changes) or short-term changes (e.g., abnormal wet period). Output data from

the UZFLOW module will be input to the NFENV module.

The NFENV module will provide estimates of near-field conditions for each proposed repository

SA. The NFENV module should account for the location of the SA (interior or edge regions). The output

of the NFENV module is the near-field rock temperature, WP surface temperature, spent fuel temperature,

relative humidity at the WP, flow rates into the EBS, and geochemical condition of groundwater flowing

into the EBS. All of this output will be time-dependent. These data will be provided to EBSFAIL module.

The EBSFAIL module uses the output of the NFENV module to predict failure of the EBS to

contain waste. Failure can be the result of corrosion, as well as other anticipated causes. Examples of

anticipated causes of failure include initial defects, thermal-induced stresses in the WP, and anticipated

seismic activity. A separate SEISMO module will also evaluate the consequences of seismic activity. At

this time, EBSFAIL should account for the numerous small magnitude events while SEISMO should

evaluate low-probability, high-consequence events. Possibly, EBSFAIL should evaluate activity with
recurrence intervals of up to 500 - 1,000 yr, and SEISMO should evaluate stronger events that have longer

recurrence intervals. EBSFAIL and SEISMO analysts need to negotiate this detail. Low-probability, high-

consequence disruptive causes of failure are not considered in EBSFAIL. The primary output of EBSFAIL

will be a time-dependent fraction of EBS failure to contain the waste. The fraction may start at a nonzero
value due to initial defects and may not reach 100 percent within maximum simulation time.

The FAULTING, SEISMO, and VOLCANO modules each predict failure of the EBS due to

disruptive processes and events or additional mechanical loads for the WP that accelerate failure of the

EBS. These modules are called only for disruptive scenarios and not for the base-case scenario. Each

module generates a time-dependent failure curve for WPs in each realization. These failures are combined

by the TPA code with the EBSFAIL failures to have an overall percent failure.

The EBSREL module predicts the transient release rate [Ci/yr] of each radionuclide per WP in

the SA. The radionuclides are released from the EBS and into the lower unsaturated zone region that

extends from below the proposed repository to above the water table,

The UZFT module predicts release [Ci/yr] of each radionuclide from the unsaturated zone into

the saturated zone. The module simulates gravity-driven percolating flow and radionuclide transport in the

fractured, stratified hydrogeology. The module accounts for the retardation of nuclides. The sum of the

releases from all SAs is then provided to the SZFT module.
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The SZFT module predicts the transient groundwater source [Ci/mA3] of each radionuclide at
the CP which may be a well located 5, 20, 25 or 30 km away from the proposed repository. The module
accounts for the retardation of nuclides, plume dilution, and dilution due to the pumping rate at the well.

The ASHPLUME module provides an extra pathway for radionuclides to be transported into the
biosphere. This pathway is due to extrusive volcanic events that entrain waste in the magma and spread
the waste in the volcanic ash plume. After VOLCANO is called, ASHPLUME will be called to evaluate
this pathway for waste.

The DCAGW module simulates the biosphere and computes dose rates [rem/yr] from the
groundwater pathway. DCAGW uses the output of SZFT. The DCAGW module is based on the GENII
code which has been applied to YM biosphere conditions.

The DCAGS module simulates the biosphere and computes annual doses [rem/yr] from ground
surface pathways. DCAGS uses output from ASHPLUME. The DCAGS module is based on the GENII
code which has been applied to YM biosphere conditions.

4.5 OUTPUT FROM TOTAL PERFORMANCE ASSESSMENT CODE

The TPA code will generate results that can be used in importance analyses and in assessment
of proposed repository compliance with either dose, risk, or release-based standards. The output files
generated are listed here:

sp.dat = input values sampled for each R from PDFs described in "tpa.inp"

mv.dat = constant (e.g., not time- or nuclide-dependent) module variables for each module for each
R/SA that will be used for importance analyses

uzflow.dat = output values for each R/SA from the UZFLOW module

nfenv.dat = output values for each R/SA from the NFENV module

ebsfail.dat = output values for each R/SA from the EBSFAIL module

ebsrel.dat = output values for each R/SA from the EBSREL module

uzft.dat = output values for each R/SA from the UZFT module

szft.dat = output values for each R from the SZFT module

dcagw.dat = output values for each R from the DCAGW module

dcags.dat = output values for each R from the DCAGS module

doseavg.dat = annual effective dose equivalent at CP
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ccdf.dat = data used to generated complementary cumulative distribution function for Environmental

Protection Agency normalized release to accessible environment located at 5 km from the

proposed repository over a 10,000 yr time period

The first two lines of any output file will echo the first two lines of the "tpa.inp" file. The third

line of any output file will provide the version number of the TPA code being used and the time and date

of the run. Data will follow on subsequent lines depending on the specific file.

5 PROGRAMMING LANGUAGES

The TPA code is written in FORTRAN 77 as implemented in the SUN SPARCompiler, Version 2.0. The

length of variable names will not be restricted to seven or less characters, but will be as long as needed

to readily identify the variable. In addition, some compiler specific calls for date and time will be used.

Although not recommended, modules can be written in languages other than FORTRAN 77 or can be

standalone computer programs. In these cases, the responsible programmers must provide a FORTRAN

77 interface subprogram consistent with the TPA-module interface described in the previous section.

6 HARDWARE PLATFORMS

The TPA code will be developed for execution on SUN machines using the UNIX operating systems. The

code will be designed such that it will also run on other operating systems to the extent practical, such

as the CRAY computer.

7 GRAPHICS OUTPUT

No special graphics devices will be supported. Output will be in the form of ASCII files written in a

format that can be read by spreadsheet programs, analysis software, and plotting packages.

8 PRE AND POST-PROCESSOR

No pre or post-processor is required or supported by the TPA code. The output files generated by the TPA

code will be designed so that they can be read easily by spreadsheet programs, analysis software, and

plotting packages.
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APPENDIX B

EXAMPLE INPUT FILE: tpa.inp



Example Input File: tpa.inp

**

title
This is the test file for TPA 3.Obeta version
which is being supplied to NRC on February 26, 1997.

**

iflag
Volcanism disruptive scenario flag (yes-1, no=0)
0
**

iflag
Faulting disruptive scenario flag (yes-1, no=0)
0
**

iflag
Seismic disruptive scenario flag (yes-1, no-0)
0
**

** Number and Location Of SubAreas[mi Based On Fig3.4-1 in TSPA95
subarea
1
ZONE T="ONE RECTANGULAR ZONE SUBAREA", F=POINT

547400.0 4076200.0
548600.0 4076200.0
548600.0 4079040.0
547400.0 4079040.0
547400.0 4076200.0

**

** ZONE T-"Upper Block-NW",F-POINT
** 547615.8 4079673.8
** 548118.7 4079465.4
** 548033.3 4079140.2
** 547460.1 4079328.2
** 547615.8 4079673.8
** ZONE T="Upper Block-NE",F=POINT
** 548118.7 4079465.4
** 548621.6 4079257.1
** 548606.6 4078952.2
** 548033.3 4079140.2
** 548118.7 4079465.4
** ZONE T="Upper Block-W",F-POINT
** 547460.1 4079328.2
** 548033.3 4079140.2
** 547933.5 4077770.0
** 547323.9 4077962.2
** 547460.1 4079328.2
** ZONE T='Upper Block-E",F=POINT
** 548033.3 4079140.2
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**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

548606.6
548543.1
547933.5
548033.3

ZONE T="Upper
547323.9
547933.5
547997.4
547660.3
547323.9

ZONE T='Upper
547933.5
548543.1
548335.5
547997.4
547933.5

4078952.2
4077577.8
4077770.0
4079140.2

Block-SW",F=POINT
4077962.2
4077770.0
4076342.2
4076451.5
4077962.2

Block-SE",F=POINT
4077770.0
4077577.8
4076236.8
4076342.2
4077770.0

0

**1

** ZONE T="ONE RECTANGULAR ZONE SUBAREA", F=POINT
** 547400.0 4076200.0
** 548600.0 4076200.0
** 548600.0 4079040.0
** 547400.0 4079040.0
** 547400.0 4076200.0
**

**ZONE T="Upper Block-NW7",F=POINT
** 547742.9 4080134.0
** 548197.2 4079988.0
** 548118.7 4079465.4
** 547615.8 4079673.8
** 547742.9 4080134.0
** ZONE T='Upper Block-NE8",F=POINT
** 548197.2 4079988.0
** 548650.6 4079842.8
** 548621.6 4079257.1
** 548118.7 4079465.4
** 548197.2 4079988.0
**

0

** Number and Names of Nuclides to be Tracked for Aqueous Pathway
**aqueousnuclides
**5s

** Am243
** Np237
** I129
** Tc99
** C136
**

**Number and Names of Nuclides to be Tracked for Aqueous Pathway
aqueousnuclides
21
Cm246
U238
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Cm245
Am241
Np237
Am243
Pu239
Pu240
U234

Th230
Ra226
Pb210
Cs137
Cs135
I129
Tc99
Ni59
C14

Se79
Nb94
C136

constant
SeedForRandomNumber
188910405.0
**

iflag
LatinHypercubeSampling (yes=l, no=0)
0
**

iconstant
NumberOfRealizations
10
**

constant
MaximumTimefyr]
le4
**

iconstant
NumberOfTimeSteps
201
**

constant
RatioOfLastToFirstTimeStep
100.
**

constant
ArealMassLoading[MTU/acre]
83.0
** 25.0
** 87.2
**

constant
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WastePackagePayload[MTUI
8.8
**

constant
AgeOfWaste[yr]
26.0
**

constant
BumupOfWaste[GWd/MTUI
38.5
**

** Parameters used in NFENV
**

constant
ElevationOfRepositoryHorizon[m]
1072.0
**

** Gives Avg. Repository Depth of 328 [m] below ground surface
**

constant
ElevationOfGroundSurface[m]
1400.0
**

uniform
GroundwaterPercolationRate[mm/yr]
0.5, 2.0
**

constant
DistanceToCriticalGroup[km][should be 5 or 30]
5.0
**

uniform
WellPumpingRateAtCriticalGroup[gal/dayI
1.0e3, 1.0e4
**

** Parameters used in FAULTING
**

uniform
TimeOfNextFaultingEventinRegionOflnterest[yr]
0.0, 10000.0
**

constant
ThresholdDisplacementforFaultDisruptionOfWPlm]
0.25
**

uniform
XLocationOfFaultingEventInRegionOflnterest[m]
545000.0, 551000.0
**

uniform
YLocationOfFaultingEventInRegionOflnterest[mI
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4076000.0, 4082000.0
**

** 25% of time Fault has NW orientation
** 75% of time Fault has NE orientation
uniform
RNtoDetermineFaultOrientation
0.0, 1.0
**

** for NW, between 25deg and 4odeg 90% of time
** for NE, between -Sdeg and 25deg 90% of time
** +- 1.65 standard deviation
**

normal
NWFaultStrikeOrientationMeasuredfromNorthClockwise[degrees]
-46.5, -18.5
**

normal
NEFaultStrikeOrientationMeasuredfromNorthClockwise[degrees]
-18.1, 38.1
**

uniform
NWFaultTraceLengthl[m]
2000.0, 10000.0
**

uniform
NEFaultTraceLength[m]
3000.0, 12000.0
**

logbeta
NWFaultZoneWidth[m]
1.5, 3.0, 0.5, 275.0
**

logbeta
NEFaultZoneWidth[m]
1.5, 3.0, 0.5, 365.0
**

iumiform
NumberOfFaultSlipSurfaces
1, 4
**

uniform
NWAmountOfLargestCredibleDisplacement[m]
0.045, 0.250
**

uniform
NEAmountOfLargestCredibleDisplacement[mI
0.060, 0.450
**

uniform
NWCumulativeDisplacementRate[mm/yr]
0.0, 0.00001
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**

uniform
NECumulativeDisplacementRate[mm/yrI
4.OE-8, 7.OE-6
**

finiteexponential
TimeOfNextVolcanicEventinRegionOflnterest[yr]
1.Oe-8, 100.0, 10000.0
**

uniform
XLocationInRegionOflnterest[m]
544000.0, 550000.0
**

uniform
YLocationInRegionOfInterest[m]
4076000.0, 4082000.0
**

uniform
RNtoDeterminelfExtrusiveOrIntrusiveVolcanicEvent
0.0, 1.0
**

constant
FractionOfTimeVolcanicEventIsExtrusive
0.999
**

uniform
AngleOfVolcanicDikeMeasuredFromNorthClockwise[degrees]
0.0, 15.0
**

uniform
LengthOfVolcanicDike[m]
1000.0, 4000.0
**

uniform
WidthOfVolcanicDike[m]
1.0, 10.0
**

uniform
DiameterOfVolcanicCone[m]
10.0, 50.0
**

uniform
AverageUndisturbedlnfiltration[mmm/yr]
0.5, 2.0
**

**iuniform
**RandomNumberToSelectl of 125GENIlRealizations
**,1 125
**

**

iconstant
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nsetUsedToPickTempRHDataSet

* *

**

**

* *

**

**

* *

**

**

**

2
3
4
5
6
7
8
9
10
11
12

Time
Time
Time
Time
Time
Time
Time
Time
Time
Time
Time
Time

Twp nv8Onb
Twp nv80yb
Twp cv80nb
Twp cv80yb
Twp nv40yb
Twp nv40nb
Twp cv40nb
Twp cv40yb
Twp nv20nb
Twp nv20yb
Twp cv20nb
Twp cv20yb

Tw nv80nb
Tw nv80yb
Tw cv80nb
Tw cv80yb
Tw nv40yb
Tw nv4Onb
Tw cv40nb
Tw cv40yb
Tw nv2Onb
Tw nv20yb
Tw cv2Onb
Tw cv20yb

RH nv8Onb
RH nv80yb
RH cv80nb
RH cv80yb
RH nv40yb
RH nv40nb
RH cv40nb
RH cv40yb
RH nv20nb
RH nv20yb
RH cv20nb
RH cv20yb

constant
WPLength[m]
5.682
**

constant
WPDiameter[m]
1.802
**

constant
EmplacementDriftDiameter[m]
5.0
**

constant
WPSpacingAlongEmplacementDrift[m]
19.0
**

constant
ThermalGridSize[m]
90.0
**

constant
AmbientRepositoryTemperature[C]
20.0
**

constant
AverageGroundSurfaceTemperature[C]
13.0
**

constant
AverageGeothermalGradient[C/kml
20.0
**

constant
MassDensityofYMRock[kg/m^3]
2580.0
**
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constant_
SpecificHeatofYMRock[J/(kg-K)]
840.0
**

uniform
ThermalConductivityofYMRock[W/(m-K)]
1.8, 2.2
**

constant
EmissivityOfDriftWall[-]
0.8
**

constant
EmissivityOfWastePackage[-]
0.7
**

constant
ThermalConductivityOfFloor[W/(m-C)]
0.6
**

constant
ThermalConductivityOfStagnantAir[W/(m-C)]
0.030
**

** Use keff = 30 * kair, from Manteufel (1996)
constant
EffectiveThermalConductivityOfUnbackfilledDrift[W/(m-C)]
0.900
**

constant
TimeOfBackfillEmplaced[yr]
100.0
**

constant
EffectiveThermalConductivityOfBackfill[W/(m-C)]
0.60
**

constant
ThermalConductivityOflnnerStainlessSteelWall[W/m-C]
15.0
**

constant
ThermalConductivityOfOuterCarbonSteelWall[W/m-CI
50.0
**

constant
EffectiveThermalConductivityOfBasket&SFinWP[W/(m-C)]
1.0
**

constant
InnerWPThickness[m]

B-8



0.02
**

constant
OuterWPThickness[m]
0.1
**

uniform
CriticalRelativeHumidity
0.60, 0.70
**

constant
ReferencepH
9.0
**

constant
BoilingPointofWater[C]
97.0
**

constant
ThicknessOfWaterFilm[m]
0.002
**

constant
OuterWPBetaKineticsParameterforOxygen
0.75
**

constant
OuterWPBetaKineticsParaineterforWater
0.50
**

constant
InnerWPBetaKineticsParameterforOxygen
0.75
**

constant
InnerWPBetaKineticsParameterforWater
0.50
**

constant
OuterWPRateConstantforOxygenReduction[coulomb m/mole/yr]
3.8e 12
**

constant
OuterWPRateConstantforWaterReduction[coulomb m/m'2/yr]
1.6e-1
**

constant
InnerWPRateConstantforOxygenReduction[coulomb m/mole/yr]
3.0elO
**

constant
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InnerWPRateConstantforWaterReduction[coulomb m/m^2/yr]
3.2_

constant
OuterWPActivationEnergyforOxygenReduction[J/mole]
37300.0
**

constant
OuterWPActivationEnergyforWaterReduction[J/mole]
25000.0
**

constant
InnerWPActivationEnergyforOxygenReduction[J/mole]
40000.0
**

constant
InnerWPActivationEnergyforWaterReduction[J/mole]
25000.0
**

constant
PorosityOfScaleonWP
1.0
**

constant
TortuosityforLiquidDiffusionofO2throughBoilerScale
1.0
**

constant
FractionalCouplingStrength
0.0
**

constant
MetalGrainRadius[micrometer]
5.0
**

constant
GrainBoundaryThickness[micrometer]
0.0007
**

constant
AboveBoilingChlorideConcentration[mole/liter]
0.3
**

constant
BelowBoilingChlorideConcentration[mole/liter]
0.003
**

constant
FractionOfFlowHittingWP
0.05
**
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** Solubility PDFs recommended by
** R. Pabalan & D. Turner in 10/18/96 memo
**

uniform
SolubilityAm[mole/liter]
I.Oe-10, 1.Oe-6
**

triangular
SolubilityNp[mole/liter]
5.0e-6, 1.4e-4, I.Oe-2
**

constant
Solubilityl[mole/liter]
1.0
**

constant
SolubilityTc[mole/literj
1.0
**

constant
SolubilityCl[mole/literl
1.0
**

constant
SolubilityC[mole/liter]
1.0
**

triangular
Solubility_.U[mole/liter]
1.Oe-8 3.2e-5 1.Oe-2
**

uniform
SolubilityCm[mole/liter]
1.Oe-10 1.Oe-6
**

uniform
SolubilityPu[mole/liter]
1.Oe-8 1.Oe-6
**

loguniform
SolubilityTh[mole/liter]
1.Oe-9 1.Oe-3
**

triangular
SolubilityRa[mole/literl
1.Oe-9 1.Oe-7 1.Oe-5
**

triangular
SolubilityPb[mole/liter]
I.Oe-8 3.le-7 I.Oe-5
**
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constant
SolubilityCsfmole/liter]
1.0
**

triangular
SolubilityNi[mole/literl
1.Oe-6 1.9e-3 1.Oe-1
**

constant
SolubilitySe[mole/literl
1.0
**

loguniform
SolubilityNb[mole/literl
1.Oe-9 I.Oe-7
**

**constant
* *MaximumNuclideReleaseRatefrom"WP[I/yrI
**I .Oe-5
**

hazardcurve
SeismicHazardCurveforSEISMO
3

0.10 100.0
0.30 1000.0
0.60 10000.0

** 6 // Number of Seismic bins
** 0.25 1000.0 1I Min Peak Acceleration for Bin, Return Period [yr]
** 0.4 2500.0 II Min Peak Acceleration for Bin, Return Period [yr]
** 0.5 4000.0 I Min Peak Acceleration for Bin, Return Period [yr]
** 0.7 16000.0 I Min Peak Acceleration for Bin, Return Period [yr]
** 0.9 30000.0 1I Min Peak Acceleration for Bin, Return Period [yr]

** 1.0 50000.0 II Min Peak Acceleration for Bin, Return Period [yr]
**

iuniform
RealizationforSEISMO
1, 4
**

constant
DefectiveFractionOfWP
0.00
**

constant
FunnelFactor
7.0
**

constant
FlowMultiplicationFactor
1.0
**

** See WastePackagePayload[MTU]
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** constant
** MassOfSpentFuelinWP[kgl
** 2800.0 <<<--- why not 8800 kg ???
**

iconstant
IndexForldentifyingLeachingRateModel
2
**

constant
DissolvedOxygenOverPressurefatm]
0.2
**

constant
CarbonateConcentration[moles/liter]
0.002
**

** Parameters for ASHPLUME
**

constant
DensityOfAirAtSTP[g/cm3]
0.00129
**

constant
ViscosityOfAirAtSTPl`[gfcm-si
0.00018
**

constant
ConstantRelatingFallTimeToEddyDiffusivity[cm2/s5/2]
400.0
**

constant
MaximunmParticleDiameterForParticleTransport[cm]
10.dO
**

**logtriangular
**ParticleSizeinAshPlume[mm]
**0.5, 55.0, 125.5
constant
MinimumFuelParticulateSize[cm]
0.01
**

constant
ModeFuelParticulateSize[cm]
0.1
**

constant
MaximumFuelParticulateSize[cm]
1.0
**

constant
MinimumAshDensityForVariationWithSize[glcm3]
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0.8_

constant
MaximumAshDensityForVariationWithSizelg/cm3I
2.5
**

constant
MinimumAshLogdiameterForDensityVariation
-2.0
**

constant
MaximumAshLogdiameterForDensityVariation
-1.0
**

constant
ParticleShapeParameter
0.5
**

constant
IncorporationRatio
0.3
**

constant
WindDirection[degrees]
-90.
**

constant
WindSpeed[cmls]
1000.0
**

constant
VolcanicEventDuration[s]
331785.0
**

constant
VolcanicEventPower[W]
2.21 18d12
**

constant
VolcanicColumnConstantBeta
0.02
**

constant
AshMeanParticleLogDiameter[d in cm]
0.1
**

constant
AshParticleSizeDistributionStandardDeviation
0.4
**

** Parameters for ASHREMOVE
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**

constant
RelativeRateOfBlanketRemoval[ I/yr]
0.001
**

constant
FractionOfPrecipitationLostToEvapotranspiration
0.5
**

constant
FractionOflrrigationLostToEvapotranspiration
0.5
**

constant
AnnualPrecipitation[niyr]
0.15
**

constant
Annuallrigation[ni/yr]
1.52
**

constant
FractionOfYearSoillsSaturatedDueToPrecipitation
0.054
**

constant
FractionOfYearSoillsSaturatedDueTolrrigation
0.2
**

constant
AshBulkDensity[g/cm3]
2.0
**

constant
AshVolumetricMoistureFractionAtSaturation
0.4
**

constant
TimeOfExtrusiveVolcanicEvent[yr]
3565.0
**

constant
DepthOfTheRootingZone[m]
0.15
**

constant
KdOflUraniumnnVolcanicAsh[m3/kg]
35.0
**

constant
KdOfCuriumlnVolcanicAsh[m3/kg]
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4000.0
**

constant
KdOfPlutoniumInVolcanicAsh[m3/kg]
550.0
**

constant
KdOfAmericiumInVolcanicAsh[m3/kg]
1900.0
**

constant
KdOfrhoriumInVolcanicAsh[m3/kg]
3200.0
**

constant
KdOfRadiumInVolcanicAsh[m3/kg]
500.0
**

constant
KdOfLeadlnVolcanicAsh[m3/kg]
270.0
**

constant
KdOfProtactiniumInVolcanicAsh[m3/kgI
550.0
**

constant
KdOfActiniumInVolcanicAsh[m3/kg]
450.0
**

constant
KdOfNeptuniumInVolcanicAsh[m3/kg]
5.0
**

constant
KdOfSamariumInVolcanicAsh[m3/kg]
245.0
**

constant
KdOfCesiumInVolcanicAsh[m3/kg]
280.0
**

constant
KdOfiodineInVolcanicAsh[m3/kgl
1.0
**

constant
KdOfTinInVolcanicAsh[m3/kg]
130.0
**

constant
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KdOfSilverInVolcanicAsh[m3/kg]
55.0
**

constant
KdOfPaladiumlnVolcanicAsh[m3/kg]
55.0
**

constant
KdOfTechnetiumInVolcanicAsh [m3/kg]
0.1
**

constant
KdOfMolybdenumInVolcanicAsh[m3/kgJ
10.0
**

constant
KdOfNiobiumInVolcanicAsh[m3/kgl
160.0
**

constant
KdOfZirconiumInVolcanicAsh[m3/kg]
600.0
**

constant
KdOfStrontiumInVolcanicAsh[m3/kg]
15.0
**

constant
KdOfSeleniumInVolcanicAsh[m3/kg]
150.0
**

constant
KdOfNickelInVolcanicAsh[m3/kg]
400.0
**

constant
KdOfChlorineInVolcanicAsh[m3/kg]
0.0
**

constant
KdOfCarbonInVolcanicAsh[m3/kgl
5.0
**

constant
SolubilityOfUraniumInVolcanicAsh[moles/literI
1.0
**

constant
SolubilityOfCuriumInVolcanicAsh[moles/liter]
1.0
**
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constant
SolubilityOfPlutoniumInVolcanicAsh[moles/literI
1.0
**

constant
SolubilityOfAmericiumInVolcanicAsh[moles/literI
1.0
**

constant
SolubilityOffhoriumInVolcanicAsh[moles/liter]
1.0
**

constant
SolubilityOfRadiumInVolcanicAsh[moles/liter]
1.0
**

constant
SolubilityOfLeadInVolcanicAsh[moles/liter]
1.0
**

constant
SolubilityOfProtactiniumInVolcanicAsh[moles/literI
1.0
**

constant
SolubilityOfActiniumInVolcanicAsh[moles/liter]
1.0 0
constant
SolubilityOfNeptuniumInVolcanicAsh[moleslliterI
1.0
**

constant
SolubilityOfSamariumInVolcanicAsh[moles/liter]
1.0
**

constant
SolubilityOfCesiumInVolcanicAsh[moles/liter]
1.0
**

constant
SolubilityOflodineInVolcanicAsh[moles/liter]
1.0
**

constant
SolubilityOtfinInVolcanicAsh[moles/literI
1.0
**

constant
SolubilityOfSilverInVolcanicAsh[moleslliter]
1.0
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**

constant
SolubilityOfPaladiumInVolcanicAsh[moles/liter]
1.0
**

constant
SolubilityOtTechnetiumlnVolcanicAsh[moles/liter]
1.0
**

constant
SolubilityOfMolybdenumInVolcanicAsh[moles/liter]
1.0
**

constant
SolubilityOfNiobiumInVolcanicAsh[moles/liter]
1.0
**

constant
SolubilityOfZirconiumInVolcanicAsh[moles/literI
1.0
**

constant
SolubilityOfStrontiumInVolcanicAsh[moles/liter]
1.0
**

constant
SolubilityOfSeleniumInVolcanicAsh[molestliter]
1.0
**

constant
SolubilityOfNickelInVolcanicAsh[moles/literI
1.0
**

constant
SolubilityOfChlorineInVolcanicAsh[moles/liter]
1.0
**

constant
SolubilityOfCarbonlnVolcanicAsh[moles/liter]
1.0
**

**

** Parameters for SZFT & UZFT
**

**

constant
WaterTableElevation[m]
880.0
**

constant
SaturatedZonePressureGradientLAF_
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3.0EE4

constant
SaturatedZonePressureGradientUAF_
3.OE-4
**

constant
SaturatedZonePressureGradientAV_
3.OE-4
**

constant
SaturatedZonePressureGradienttac_
3.OE-4
**

constant
SaturatedZonePressureGradientTCw_
3.OE-4
**

constant
SaturatedZonePressureGradientPTn_
3.OE-4
**

constant
SaturatedZonePressureGradientTSw_
3.OE-4
**

constant
SaturatedZonePressureGradientTSv_
3.OE-4
**

constant
SaturatedZonePressureGradientCHnv
3.OE-4
**

constant
SaturatedZonePressureGradientCHnz
3.OE-4
**

constant
SaturatedZonePressureGradientPPw_
3.OE-4
**

constant
SaturatedZonePressureGradientUCF_
3.OE-4
**

constant
SaturatedZonePressureGradientBFw_
3.OE-4
**

constant
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SaturatedZonePressureGradientTR_
3.OE-4
**

constant
SaturatedZonePressureGradientMCF_
3.OE-4
**

constant
MatrixLongitudinalDispersivity[FractionOfLayer]
0.1
**

constant
FractureLongitudinalDispersivity[FractionOfLayer]
0.01
**

constant
MatrixKDLAFAm
1.0
**

constant
MatrixKDUAFAm
1.0
**

constant
MatrixKDAVAm
1.0
**

constant
MatrixKDtacAm
1.0
**

constant
MatrixKDTCwAm
1.0
**

constant
MatrixKDPTnAm
1.0
**

loguniform
MatrixKDTSwAm
0.8 8.0
**

loguniform
MatrixKDTSvAm
0.8 8.0
**

loguniform
MatrixKDCHnvAm
0.8 8.0
**
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logunifonn
MatrixKDCHnzAm
0.17 17.
**

logunifonn
MatrixKDPPwAm
0.45 45.0
**

loguniform
MatrixKD_UCFAm
0.136 13.6
**

logunifonn
MatrixKDBFwAm
0.014 1.4
**

loguniform
MatrixKDTRAm
0.014 1.4
**

loguniforn
MatrixKDMCFAm
0.136 13.6
**

constant
MatrixKDLAFNp
1.0
**

constant
MatrixKDUAFNp
1.0
**

constant
MatrixKDAV_Np
1.0
**

constant
MatrixKDtacNp
1.0
**

constant
MatrixKDTCwNp
1.0
**

constant
MatrixKDPTnNp
1.0
**

loguniform
MatrixKDTSw-Np
4.e-4 4.e-2
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**

loguniform
MatrixKDTSvNp
4.e-4 4.e-2
**

loguniform
MatrixKDCHnvNp
4.e-4 4.e-2
**

loguniforn
MatrixKDCHnzNp
2.7e-4 2.7e-2
**

loguniform
MatrixKDPPwNp
0.00051 0.051
**

loguniforn
MatrixKDUCFNp
0.00022 0.022
**

loguniform
MatrixKDBFwNp
0.00051 0.051
**

loguniform
MatrixKDTRNp
0.00051 0.051
**

loguniform
MatrixKDMCFNp
0.00022 0.022
**

constant
MatrixKDLAFI
0.0
**

constant
MatrixKDUAFI
0.0
**

constant
MatrixKDAVI
0.0
**

constant
MatrixKDtacI
0.0
**

constant
MatrixKDTCwI
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0.0
**

constant
MatrixKDPTnI
0.0
**

constant
MatrixKDTSwI
0.0
**

constant
MatrixKDTSvI
0.0
**

constant
MatrixKDCHnvI
0.0
**

constant
MatrixKDCHnzI
0.0
**

constant
MatrixKDPPwI
0.0
**

constant
MatrixKDUCFI
0.0
**

constant
MatrixKDBFwI
0.0
**

constant
MatrixKDTRI
0.0
**

constant
MatrixKDMCFI
0.0
**

constant
MatrixKDLAFTc
0.0
**

constant
MatrixKDUAFTc
0.0
**

constant
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MatrixKDAVTc
0.0
**

constant
MatrixKDtacTc
0.0
**

constant
MatrixKDTCwTc
0.0
**

constant
MatrixKDPTnTc
0.0
**

constant
MatrixKDTSwTc
0.0
**

constant
MatrixKDTSvTc
0.0
**

constant
MatrixKDCHnvTc
0.0
**

constant
MatrixKDCHnzTc
0.0
**

constant
MatrixKDPPwTc
0.0
**

constant
MatnxKDUCFTc
0.0
**

constant
MatrixKDBFwTc
0.0
**

constant
MatrixKDTRTc
0.0
**

constant
MatrixKDMCFTc
0.0
**
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constant
MatrixKDLAFCI
0.0
**

constant
MatrixKDUAFCl
0.0
**

constant
MatrixKDAVCl
0.0
**

constant
MatrixKD_tacCl
0.0
**

constant
MatrixKDTCwCl
0.0
**

constant
MatrixKDPTnCl
0.0
**

constant
MatrixKDTSwCI
0.0
**

constant
MatrixKDTSvCI
0.0
**

constant
MatrixKDCHnvCl
0.0
**

constant
MatrixKDCHnzCl
0.0
**

constant
MatrixKDPPwCl
0.0
**

constant
MatrixKDUCF_CI
0.0
**

constant
MatrixKDBFwCI
0.0
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**

constant
MatrixKDTRCl
0.0
**

constant
MatrixKD MCF CI
0.0
**

constant
MatrixKDLAFCm
1.0
**

constant
MatrixKDUAFCm
1.0
**

constant
MatrixKDAVCm
1.0
**

constant
MatrixKDtacCm
1.0
**

constant
MatrixKDLTCwCm
1.0
**

constant
MatrixKDPTnCm
1.0
**

loguniforin
MatrixKD_TSw_Cm
4.e-2 4.5
**

loguniform
MatrixKDTSvCm
4.e-2 4.5
**

loguniform
MatrixKDCHnvCm
0.328 32.0
**

loguniform
MatrixKDCHnzCm
0.16 16.0
**

loguniform
MatrixKDPPwCm
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** 0
loguniform
MatrixKDUCFCm
0.132 13.2
**

loguniform
MatrixKDBFwCm
0.12 12.0
**

loguniform
MatrixKDTRCm
0.12 12.0
**

loguniform
MatrixKDMCFCm
0.132 13.2
**

constant
MatrixKDLAFU
1.0
**

constant
MatrixKDUAF_U
1.0
**

constant_
MatrixKDAV_U
1.0
**

constant
MatrixKDtacU
1.0
**

constant
MatrixKDTCwU
1.0
**

constant
MatrixKDPTnU
1.0
**

loguniform
MatrixKDTSwU
2.e-5 2.e-3
**

loguniform
MatrixKDTSvU
2.e-5 2.e-3
**

loguniform
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MatrixKDCHnvU
2.e-3 0.2
**

logunifonn
MatrixKDCHnzU
L.e-4 I.e-2
**

constant
MatrixKDPPwU
0.0
**

loguniform
MatrixKDUCFU
8.0e-5 8.0e-3
**

loguniform
MatrixKDBFwU
0.0002 0.02
**

loguniforn
MatrixKDTRU
0.0002 0.02
**

loguniform
MatrixKDMCFU
8.0e-5 8.0e-3
**

constant
MatrixKDLAFPu
1.0
**

constant
MatrixKD_UAF_Pu
1.0
**

constant
MatrixKDAVPu
1.0
**

constant
MatrixKDtacPu
1.0
**

constant
MatrixKDTCwPu
1.0
**

constant
MatrixKDPTnPu
1.0
**
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loguniform
MatrixKDTSwPu
.017 1.7
**

loguniforn
MatrixKDTSvPu
.017 1.7
**

loguniform
MatrixKDCHnvPu
.017 1.7
**

loguniform
MatrixKDCHnzPu
0.0066 .66
**

logunifonn
MatrixKDPPwPu
6.6e-3 .66
**

loguniform
MatrixKDUCFPu
0.0053 0.53
**

loguniform
MatrixKDBFwPu
0.0094 0.94
**

loguniform
MatrixKDTRPu
0.0094 0.94
**

loguniform
MatrixKDMCFPu
0.0053 0.53
**

constant
MatrixKDLAFTh
1.0
**

constant
MatrixKDUAFTh
1.0
**

constant
MatrixKDAVTh
1.0
**

constant
MatrixKDtacTh
1.0
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**

constant
MatrixKD_TCwTh
1.0
**

constant
MatrixKD PTn Th
1.0
**

loguniform
MatrixKDTSwTh
0.004 0.4
**

loguniform
MatrixKDTSvTh
0.004 0.4
**

loguniform
MatrixKDCHnvTh
0.03 3.40
**

loguniformn
MatrixKDCHnzTh
0.017 1.7
**

loguniform
MatrixKDPPwTh
0.012 1.2
**

loguniform
MatrixKDUCFTh
0.014 1.4
**

loguniforn
MatrixKDBFwTh
0.013 1.3
**

loguniforn
MatrixKDTRTh
0.013 1.3
**

loguniform
MatrixKDMCFTh
0.014 1.4
**

constant
MatrixKDLAFRa
1.0
**

constant
MatrixKDUAFRa
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1.0
**

constant
MatrixKDAVRa
1.0
**

constant
MatrixKDtacRa
1.0
**

constant
MatrixKDTCwRa
1.0
**

constant
MatrixKD_PTnRa
1.0
**

logunifonn
MatrixKDTSwRa
0.15 15.
**

logunifonn
MatrixKDTSvRa
0.15 15.
**

loguniform
MatrixKDCHnvRa
0.15 15.
**

loguniform
MatrixKDCHnzRa
0.15 15.
**

loguniform
MatrixKDPPwRa
0.15 15.0
**

loguniform
MatrixKDUCFRa
0.12 12.0
**

loguniform
MatrixKDBFwRa
0.5 50.0
**

logunifonn
MatrixKDTRRa
0.5 50.0
**

loguniform
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MatrixKDMCFRa
0.12 12.0
**

constant
MatrixKDLAFPb
1.0
**

constant
MatrixKDUAFPb
1.0
**

constant
MatrixKDAVPb
1.0
**

constant
MatrixKDtacPb
1.0
**

constant
MatrixKD TCw Pb
1.0
**

constant
MatrixKDPTnPb
1.0
**

loguniform
MatrixKDTSwPb
6.8e-4 .068
**

loguniform
MatrixKDTSvPb
6.8e-4 .068
**

logunifonn
MatrixKDCHnvPb
0.0049 0.49
**

loguniform
MatrixKDCHnzPb
0.0025 0.25
**

loguniform
MatrixKDPPwPb
0.0017 0.17
**

loguniform
MatrixKDUCFPb
0.0020 0.20
**
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logunifonn
MatrixKDBFwPb
0.0018 0.18
**

loguniforn
MatrixKD_TRPb
0.0018 0.18
**

loguniform
MatrixKDMCFPb
0.002 0.20
**

constant
MatrixKDLAFCs
1.0
**

constant
MatrixKD_UAFCs
1.0
**

constant
MatrixKDAVCs
1.0
**

constant
MatrixKD tac Cs
1.0
**

constant
MatrixKDTCwCs
1.0
**

constant
MatrixKDPTnCs
1.0
**

loguniform
MatrixKDTSwCs
0.036 3.6
**

loguniform
MatrixKDTSvCs
0.036 3.6
**

loguniform
MatrixKDCHnvCs
0.024 2.4
**

loguniform
MatrixKDCHnzCs
2.2 220.
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loguniform
MatrixKDPPwCs
0.22 22.0
**

loguniform
MatrixKDUCFCs
1.76 176.0
**

logunifonn
MatrixKDBFwCs
0.32 32.0
**

loguniform
MatrixKDTRCs
0.32 32.0
**

logunifonn
MatrixKDMCFCs
1.76 176.0
**

constant
MatrixKDLAFNi
1.0
**

constant
MatrixKDUAFNi
1.0
**

constant
MatrixKDAVNi
1.0
**

constant
MatrixKD tac Ni
1.0
**

constant
MatrixKDTCwNi
1.0
**

constant
MatrixKDPTnNi
1.0
**

loguniform
MatrixKDTSwNi
3.7e-4 0.037
**

loguniform
MatrixKDTSvNi
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3.7e-4 0.037
**

loguniform
MatrixKDCHnvNi
0.0027 0.27
**

loguniform
MatrixKDCHnzNi
0.0014 0.14
**

loguniform
MatrixKDPPwNi
0.0009 0.09
**

loguniforn
MatrixKDUCFNi
0.0011 0.11
**

loguniform
MatrixKDBFwNi
0.001 0.1
**

loguniform
MatrixKDTRNi
0.001 0.1
**

loguniform
MatrixKDMCFNi
0.0011 0.11
**

constant
MatrixKDLAFC
0.0
**

constant
MatrixKDUAFC
0.0
**

constant
MatrixKDAVC
0.0
**

constant
MatrixKDtacC
0.0
**

constant
MatrixKDTCwC
0.0
**

constant
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MatrixKDPTnC
0.0
**

constant
MatrixKDTSwC
0.0
**

constant
MatrixKDTSvC
0.0
**

constant
MatrixKDCHnvC
0.0
**

constant
MatrixKDCHnzC
0.0
**

constant
MatrixKDPPw_C
0.0
**

constant
MatrixKDUCFC
0.0
**

constant
MatrixKDBFwC
0.0
**

constant
MatrixKDTRC
0.0
**

constant
MatirixKDMCFC
0.0
**

constant
MatrixKDLAFSe
1.0
**

constant
MatrixKDUAFSe
1.0
**

constant
MatrixKDAVSe
1.0
**
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constant
MatrixKDtacSe
1.0
**

constant
MatrixKDTCwSe
1.0
**

constant
MatrixKDPTnSe
1.0
**

loguniform
MatrixKDTSwSe
2.6e-4 0.026
**

loguniforn
MatrixKDTSvSe
2.6e-4 0.026
**

loguniform
MatrixKDCHnvSe
3.e-4 0.03
**

loguniform
MatrixKDCHnzSe
4.5e-4 0.045
**

loguniform
MatrixKDPPwSe
0.00025 0.025
**

loguniform
MatrixKDUCFSe
0.00036 0.036
**

loguniform
MatrixKDBFwSe
0.0013 0.13
**

loguniform
MatrixKDTRSe
0.0013 0.13
**

loguniform
MatrixKDMCFSe
0.00036 0.036
**

constant
MatrixKDLAFNb
0.0
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constant
MatrixKDUAFNb
0.0
**

constant
MatrixKD AV Nb
0.0
**

constant
MatrixKDtacNb
0.0
**

constant
MatrixKDTCwNb
0.0
**

constant
MatnxKDPTnNb
0.0
**

constant
MatrixKDTSwNb
0.0
**

constant
MatrixKD TSv Nb
0.0
**

constant
MatnxKDCHnvNb
0.0
**

constant
MatrixKDCHnzNb
0.0
**

constant
MatrixKDPPwNb
0.0
**

constant
MatrixKDUCFNb
0.0
**

constant
MatrixKDBFwNb
0.0
**

constant
MatrixKDTRNb
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constant
MatrixKDMCFNb
0.0
**

constant
FractureRD_LAFAm
1.0
**

constant
FractureRDUAFAm
1.0
**

constant
FractureRDAVAm
1.0
**

constant
FractureRDtacAm
1.0
**

constant
FractureRDTCwAm
1.0
**

constant
FractureRDPTnAm
1.0
**

constant
FractureRDTSwAm
1.0
**

constant
FractureRDTSvAm
1.0
**

constant
FractureRDCHnvAm
1.0
**

constant
FractureRDCHnzAm
1.0
**

constant
FractureRDPPwAm
1.0
**

constant
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FractureRDUCFAm
1.0
**

constant
FractureRDBFwAm
1.0
**

constant
FractureRDTRAm
1.0
**

constant
FractureRDMCFAm
1.0
**

constant
FractureRDLAFNp
1.0
**

constant
FractureRDUAFNp
1.0
**

constant
FractureRDAV_Np
1.0
**

constant
FractureRDtacNp
1.0
**

constant
FractureRDTCwNp
1.0
**

constant
FractureRDPTInNp
1.0
**

constant
FractureRDTSwNp
1.0
**

constant
FractureRDTSv_Np
1.0
**

constant
FractureRDCHnvNp
1.0
**
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constant
FractureRDCHnzNp
1.0
**

constant
FractureRDPPwNp
1.0
**

constant
FractureRDUCFNp
1.0
**

constant
FractureRDBFwNp
1.0
**

constant
FractureRD_TRhNp
1.0
**

constant
FractureRD_MCF_Np
1.0
**

constant
FractureRD LAF I
1.0
**

constant
FractureRDUAFI
1.0
**

constant
FractureRDAVI
1.0
**

constant
FractureRDtacI
1.0
**

constant
FractureRDTCwI
1.0
**

constant
FractureRDPTnI
1.0
**

constant
FractureRDTSwI
1.0
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**

constant
FractureRDTSvI
1.0
**

constant
FractureRD_CHnvl
1.0
**

constant
FractureRD_CHnzI
1.0
**

constant
FractureRDPPwI
1.0
**

constant
FractureRDUCFI
1.0
**

constant
FractureRDBFwI
1.0
**

constant
FractureRD TR I
1.0
**

constant
FractureRDMCFI
1.0
**

constant
FractureRDLAFTc
1.0
**

constant
FractureRDUAFTc
1.0
**

constant
FractureRDAVTc
1.0
**

constant
FractureRDtacTc
1.0
**

constant
FractureRDTCwTc
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1.0
**

constant
FractureRDPTnTc
1.0
**

constant
FractureRDTSwTc
1.0
**

constant
FractureRDTSvTc
1.0
**

constant
FractureRDCHnvTc
1.0
**

constant
FractureRDCHnzTc
1.0
**

constant
FractureRDPPwTc
1.0
**

constant
FractureRDUCFTc
1.0
**

constant
FractureRDBFwTc
1.0
**

constant
FractureRDTRTc
1.0
**

constant
FractureRDMCFTc
1.0
**

constant
FractureRDLAFCl
1.0
**

constant
FractureRDUAFCl
1.0
**

constant



FractureRDAVCl
1.0
**

constant
FractureRDtacCl
1.0
**

constant
FractureRD_TCw_Cl
1.0
**

constant
FractureRDPTnCI
1.0
**

constant
FractureRDTSw_Cl
1.0
**

constant
FractureRDTSvCl
1.0
**

constant
FractureRDCHnvCI
1.0
**

constant
FractureRDCHnzCI
1.0
**

constant
FractureRDPPwCl
1.0
**

constant
FractureRDUCFCl
1.0
**

constant
FractureRDBFw_Cl
1.0
**

constant
FractureRDTRCl
1.0
**

constant
FractureRDMCFCl
1.0
**
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constant_
FractureRDLAFCm _

1.0
**

constant
FractureRDUAFCm
1.0
**

constant
FractureRDAVCm
1.0
**

constant
FractureRDtacCm
1.0
**

constant
FractureRDTCwCm
1.0
**

constant
FractureRD-PTnCm
1.0
**

constant
FractureRDTSwCm
1.0 _
**_

constant
FractureRDTSvCm
1.0
**

constant
FractureRDCHnvCm
1.0
**

constant
FractureRDCHnzCm
1.0
**

constant
FractureRDYPPwCm
1.0
**

constant
FractureRDUCFCm
1.0
**

constant
FractureRDBFwCm
1.0

B-46



**

constant
FractureRDTRCm
1.0
**

constant
FractureRD MCF Cm
1.0
**

constant
FractureRDLAFU
1.0
**

constant
FractureRDUAFU
1.0
**

constant
FractureRDAVU
1.0
**

constant
FractureRDtacU
1.0
**

constant
FractureRD TCw U
1.0
**

constant
FractureRDPTnU
1.0
**

constant
FractureRDTSwU
1.0
**

constant
FractureRDTSvU
1.0
**

constant
FractureRDCHnvU
1.0
**

constant
FractureRDCHnzU
1.0
**

constant
FractureRDPPwU
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1.0

constant
FractureRDUCFU
1.0
**

constant
FractureRDBFwU
1.0
**

constant
FractureRDTRU
1.0
**

constant
FractureRDMCFU
1.0
**

constant
FractureRDLAFPu
1.0
**

constant
FractureRDUAFPu
1.0
**

constant
FractureRDAVPu
1.0
**

constant
FractureRDtacPu
1.0
**

constant
FractureRDTCwPu
1.0
**

constant
FractureRDPTnPu
1.0
**

constant
FractureRDTSwPu
1.0
**

constant
FractureRDTSvPu
1.0
**

constant
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FractureRDCHnvPu
1.0
**

constant
FractureRDCHnzPu
1.0
**

constant
FractureRDPPwPu
1.0
**

constant
FractureRDUCFPu
1.0
**

constant
FractureRDBFwPu
1.0
**

constant
FractureRDTRPu
1.0
**

constant
FractureRDMCFPu
1.0
**

constant
FractureRDLAFTh
1.0
**

constant
FractureRDUAF_Th
1.0
**

constant
FractureRDAVTh
1.0
**

constant
FractureRDtacTh
1.0
**

constant
FractureRDTCwTh
1.0
**

constant
FractureRDPTnTh
1.0
**
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constant
FractureRDTSwTh
1.0
**

constant
FractureRDTSvTh
1.0
**

constant
FractureRDCHnvTh
1.0
**

constant
FractureRDCHnzTh
1.0
**

constant
FractureRDPPwTh
1.0
**

constant
FractureRDUCFTh
1.0
**

constant
FractureRDBFwTh
1.0
**

constant
FractureRDTRTh
1.0
**

constant
FractureRDMCFTh
1.0
**

constant
FractureRDLAFRa
1.0
**

constant
FractureRD UAF Ra
1.0
**

constant
FractureRDAVRa
1.0
**

constant
FractureRDtacRa
1.0

B-50



**

constant
FractureRDTCwRa
1.0
**

constant
FractureRDPTnRa
1.0
**

constant
FractureRDTSwRa
1.0
**

constant
FractureRDTSvRa
1.0
**

constant
FractureRD_CHnvRa
1.0
**

constant
FractureRDCHnzRa
1.0
**

constant
FractureRD PPw Ra
1.0
**

constant
FractureRDUCFRa
1.0
**

constant
FractureRDBFwRa
1.0
**

constant
FractureRDTRRa
1.0
**

constant
FractureRDMCFRa
1.0
**

constant
FractureRDLAFPb
1.0
**

constant
FractureRDUAFPb
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1.0

constant
FractureRDAVPb
1.0
**

constant
FractureRDtacPb
1.0
**

constant
FractureRDTCwPb
1.0
**

constant
FractureRDPTnPb
1.0
**

constant
FractureRD_TSwPb
1.0
**

constant
FractureRDTSvPb
1.0
**

constant
FractureRDCHnvPb
1.0
**

constant
FractureRDCHnzPb
1.0
**

constant
FractureRDPPwPb
1.0
**

constant
FractureRDUCFPb
1.0
**

constant
FractureRDBFwPb
1.0
**

constant
FractureRDTRPb
1.0
**

constant
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FractureRDMCFPb
1.0
**

constant
FractureRDLAFCs
1.0
**

constant
FractureRDUAFCs
1.0
**

constant
FractureRDAVCs
1.0
**

constant
FractureRDtacCs
1.0
**

constant
FractureRDLTCwCs
1.0
**

constant
FractureRDPTnCs
1.0
**

constant
FractureRDTSwCs
1.0
**

constant
FractureRDTSvCs
1.0
**

constant
FractureRDCHnvCs
1.0
**

constant
FractureRD_CHnzCs
1.0
**

constant
FractureRDPPwCs
1.0
**

constant
FractureRDUCFCs
1.0
**
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constant
FractureRDBFwCs
1.0
**

constant
FractureRDTRCs
1.0
**

constant
FractureRDMCFCs
1.0
**

constant
FractureRDLAFNi
1.0
**

constant
FractureRDUAFLNi
1.0
**

constant
FractureRDAVNi
1.0
**

constant
FractureRD tac Ni
1.0
**

constant
FractureRDTCwNi
1.0
**

constant
FractureRDPTnNi
1.0
**

constant
FractureRDTSw Ni
1.0
**

constant
FractureRDTSvNi
1.0
**

constant
FractureRDCHnvNi
1.0
**

constant
FractureRDCHnzNi
1.0
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**

constant
FractureRDPPwNi
1.0
**

constant
FractureRD UCF Ni
1.0
**

constant
FractureRDBFw Ni
1.0
**

constant
FractureRDTRNi
1.0
**

constant
FractureRDMCF Ni
1.0
**

constant
FractureRDLAFC
1.0
**

constant
FractureRD UAF C
1.0
**

constant
FractureRDAVC
1.0
**

constant
FractureRDtacC
1.0
**

constant
FractureRDTCwC
1.0
**

constant
FractureRDPTnC
1.0
**

constant
FractureRDTSwC
1.0
**

constant
FractureRDTSvC
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1.0
**

constant
FractureRDCHnvC
1.0
**

constant
FractureRDCHnzC
1.0
**

constant
FractureRDPPwC
1.0
**

constant
FractureRDUCFC
1.0

constant
FractureRD BFw C
1.0
**

constant
FractureRDTRC
1.0
**

constant
FractureRDMCFC
1.0
**

constant
FractureRDLAFSe
1.0
**

constant
FractureRDUAFSe
1.0
**

constant
FractureRDAVSe
1.0
**

constant
FractureRDtacSe
1.0
**

constant
FractureRDTCwSe
1.0
**

constant
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FractureRDPTnSe
1.0
**

constant
FractureRDTSwSe
1.0
**

constant
FractureRDTSvSe
1.0
**

constant
FractureRDCHnvSe
1.0
**

constant
FractureRDCHnzSe
1.0
**

constant
FractureRDPPwSe
1.0
**

constant
FractureRDUCFSe
1.0
**

constant
FractureRDBFwSe
1.0
**

constant
FractureRDTRSe
1.0
**

constant
FractureRDMCFSe
1.0
**

constant
FractureRD LAF Nb
1.0
**

constant
FractureRDUAFNb
1.0
**

constant
FractureRDAVNb
1.0
**
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constant
FractureRDtacNb
1.0
**

constant
FractureRDTCwNb
1.0
**

constant
FractureRDPTnNb
1.0
**

constant
FractureRDTSwNb
1.0
**

constant
FractureRDTSvNb
1.0
**

constant
FractureRDCHnvNb
1.0
**

constant
FractureRDCHnzNb
1.0
**

constant
FractureRDPPwNb
1.0
**

constant
FractureRDUCFNb
1.0
**

constant
FractureRDBFwNb
1.0
**

constant
FractureRDTRNb
1.0
**

constant
FractureRDMCFNb
1.0
**

constant
MatrixPerrneabilityLAFJm2]
0.0
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**

constant
MatrixPermeability-_UAFJm2I
0.0
**

constant
MatrixPermeability.AV_[m21
0.0
**

constant
MatrixPermeability-jacjm2l
0.0
**

constant
MatrixPermeability7Cwjm2j
0.0
**

constant
MatrixPermeability'Tnj[m2]
0.0
**

lognormal
MatrixPermeability-TSwj[m2I
2.6e-20 7.3e-17
**

lognormal
MatrixPermeability TSv_ [m2]
2.6e-20 7.3e- 17
**

lognormal
MatrixPermeability-CHnv[m2]
7.2e-19 1.6e-14
**

lognormal
MatrixPermeability_CHnz[m2]
1.3e-20 5.8e-17
**

lognormal
MatrixPermeability_PPwj[rn2]
I.Oe-18 2.3e-14
**

lognormal
MatrixPermeabilityUCFJm2]
1.8e-17 4.4e-15
**

lognormal
MatrixPermeabilityBFw_[m21
1.8e-18 2.le-16
**

lognormal
MatrixPermeabilityTR_[m2]
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1.8e-18 2.le-16

lognormal
MatrixPermeabilityMCFj[m2J
1.7e-17 4.4e-15
**

constant
MatrixPorosityLAF_
0.20
**

constant
MatrixPorosityUAF-
0.20
**

constant
MatrixPorosityAV_
0.20
**

constant
MatrixPorosity_:ac_
0.20
**

constant
MatrixPorosityffCw_
0.20
**

constant
MatrixPorosity_PTn_
0.40
**

uniform
MatrixPorosity-TSw-
0.05 0.22
**

uniform
MatrixPorosity-TSv-
0.05 0.22
**

uniform
MatrixPorosityCHnv
0.18 0.49
**

uniform
MatrixPorosityCHnz
0.22 0.39
**

uniform
MatrixPorosity_PPw_
0.15 0.44
**

uniform
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MatrixPorosity_UCF_
0.15 0.37
**

uniform
MatrixPorosityBFw-
0.08 0.25
**

uniform
MatrixPorosityjR_
0.08 0.25
**

uniform
MatrixPorosity-MCF-
0.15 0.37
**

constant
MatrixBetaLAF_
0.0
**

constant
MatrixBetaUAF_
0.0
**

constant
MatrixBetaAV_
0.0
**

constant
MatrixBeta-tac-
0.0
**

constant
MatrixBetaTCw_
1.607
**

constant
MatrixBeta_PTn_
2.223
**

uniform
MatrixBetaTSw_
1.16 2.71
**

uniform
MatrixBetaTSv_
1.16 2.71
**

uniform
MatrixBetaCHnv
1.05 7.05
**
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uniform
MatrixBetaCHnz
1.19 2.53
**

uniform
MatrixBetaPPw_
1.92 2.65
**

uniform
MatrixBetaUCF_
0.979 3.25
**

uniform
MatrixBeta BFw_
1.87 5.53
**

uniform
MatrixBetaTR_
1.87 5.53
**

uniform
MatrixBetaMCF_
0.978 3.23
**

constant
MatrixGrainDensityLAFjkg/m3]
2300.
**

constant
MatrixGrainDensityjUAFj[kg/m3]
2300.
**

constant
MatrixGrainDensity.AV_[kg/m3]
2300.
**

constant
MatrixGrainDensityjac[kg/m3]
2300.
**

constant
MatrixGrainDensity-TCw-[kg/m3]
2300.
**

constant
MatrixGrainDensityTn_[kg/m3I
1400.
**

constant
MatrixGrainDensity-TSw_[kg/m3]
2300.0
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**

constant
MatrixGrainDensity-TSv_[kg/m3]
2580.
**

constant
MatrixGrainDensitySCHnv[kg/m3]
2300.0
**

constant
MatrixGrainDensity-CHnz[kg/m3]
2300.0
**

constant
MatrixGrainDensity-PPw-[kg/m31
2590.0
**

constant
MatrixGrainDensityUCFj[kg/m3I
2270.0
**

constant
MatrixGrainDensityBFw_[kg/m3]
2630.0
**

constant
MatrixGrainDensityTR[kg/m31
2630.
**

constant
MatrixGrainDensity-MCFj[kg/m31
2630.0
**

constant
FracturePermeabilityLAF_[m2]
0.0
**

constant
FracturePermeabilityUAFJm2]
0.0
**

constant
FracturePerneability.AV_[m21
0.0
**

constant
FracturePermeabilityjacjm2]
0.0
**

constant
FracturePermeability-TCwj[m2]
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I.Oe-16
**

constant
FracturePermeability-PTn_[m2]
I.Oe- 15
**

lognormal
FracturePermeability-TSw_[m2I
I.Oe-12 I.Oe-1 l
**

lognormal
FracturePermeability_TSv_[m2]
I.Oe-12 I.Oe-I I
**

lognormal
FracturePermeability-CHnvtm2I
I.Oe- 13 l.Oe-I I
**

lognormal
FracturePermeability-CHnz[m 2 ]
1.Oe-13 1.Oe-I I
**

lognormal
FracturePermeabilityPPw-[m2]
1.Oe-13 1.Oe-1 l
**

lognormal
FracturePermeabilityjUCFj[m2l
1.Oe-13 1.Oe-1 l
**

lognormal
FracturePermeability-_BFwJrm2I
I.Oe-13 1.Oe-I I
**

lognormal
FracturePermeability.TR-[m2]
I.Oe-13 I.Oe-1 l
**

lognormal
FracturePermeabilityMCFm2]
l.Oe-13 1.Oe- l1
**

lognormal
FracturePorosityLAF_
3.0e-3 7.0e-2
**

lognormal
FracturePorosityUAF_
3.0e-3 7.0e-2
**

lognormal
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FracturePorosity.AV_
3.0e-3 7.0e-2
**

lognormal
FracturePorosity-jac_
3.0e-3 7.0e-2
**

lognormal
FracturePorosityfTCw-
3.0e-3 7.0e-2
**

lognormal
FracturePorosityYTn_
3.0e-3 7.0e-2
**

lognormal
FracturePorosityTSw_
3.0e-3 7.0e-2
**

lognormal
FracturePorosity-TSv-
3.0e-3 7.0e-2
**

lognormal
FracturePorositySCHnv
3.0e-3 7.0e-2
**

lognormal
FracturePorosity-CHnz
3.0e-3 7.0e-2
**

lognormal
FracturePorosityYPPw_
3.0e-3 7.0e-2
**

lognormal
FracturePorosity-yUCF-
3.0e-3 7.0e-2
**

lognormal
FracturePorosityBFw_
3.0e-3 7.0e-2
**

lognormal
FracturePorosityTR_
3.0e-3 7.0e-2
**

lognormal
FracturePorosityMCF_
3.0e-3 7.0e-2
**
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constant
FractureBetaLAF_
0.0
**

constant
FractureBetaUAF_
0.0
**

constant
FractureBetaAV_
0.0
**

constant
FractureBeta-tac_
0.0
**

constant
FractureBetaTCw_
0.0
**

constant
FractureBeta_PTn_
0.0
**

uniform
FractureBetaTSw_
1.45 12.3
**

uniform
FractureBetaTSv_
1.45 12.3
**

uniform
FractureBetaCHnv
1.45 12.3
**

uniform
FractureBetaCHnz
1.45 12.3
**

uniform
FractureBetaPPw_
1.45 12.3
**

uniform
FractureBetaUCF_
1.45 12.3
**

uniform
FractureBetaBFw_
1.45 12.3
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**

uniform
FractureBetaTR
1.45 12.3
**

uniform
FractureBeta MCF_
1.45 12.3
**

constant
InletArea_1 SubArea[m2]
5.4e5
**

constant
InletArea_2SubArea[m2]
5.4e5
**

constant
InletArea_3SubArea[m2]
5.4e5
**

constant
InletArea_4SubArea[m2]
5.4e5
**

constant
InletArea_SSubArea[m2]
5.4e5
**

constant
InletArea__6SubArea[m2]
5.4e5
**

constant
OutletArealSubArea[m2]
2.62e5
**

constant
OutletArea_2SubArea[m2]
2.62e5
**

constant
OutletArea_3SubArea[m21
2.62e5
**

constant
OutletArea_4SubArea[m2]
2.62e5
**

constant
OutletArea_SSubArea[m2]
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2.62e5

constant
OutletArea_6SubArea[m2]
2.62e5
**

constant
LAFThickness_ I SubArea[m]
0.0
**

constant
UAF_Thickness I SubArea[m]
0.0
**

constant
AVThickness I SubArea[m]
0.0
**

constant
tacThickness_1 SubArea[m]
0.0
**

constant
TCw_Thickness_ I SubArea[m]
0.0
**

constant
PTn_Thickness_1SubArea[m]
0.0
**

constant
TSw_Thickness_1 SubArea[m]
105.0
**

constant
TSv_Thickness_1 SubArea[m]
8.0
**

constant
CHnvThickness_1 SubArea[m]
90.0
**

constant
CHnzThickness_1 SubArea[m]
60.0
**

constant
PPw_Thickness_1 SubArealmi
90.0
**

constant
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UCFThickness_ ISubArea[m]
0.0
**

constant
BFw_Thickness_1 SubArea[m]
0.0
**

constant
TR_Thickness_1 SubArea[m]
0.0
**

constant
MCFThickness_lSubArea[mr
0.0
**

constant
LAF_Thickness_2SubArea[m]
0.0
**

constant
UAF_Thickness_2SubArea[m]
0.0
**

constant
AV__Thickness_2SubAreafm]
0.0
**

constant
tac_Thickness_2SubArea[m]
0.0
**

constant
TCw_Thickness_2SubArea[m]
0.0
**

constant
PTn_Thickness_2SubArea[m]
0.0
**

constant
TSwThickness_2SubArea[m]
116.0
**

constant
TSv_Thickness_2SubArea[m]
0.0
**

constant
CHnvThickness_2SubArea[m]
51.0
**
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constant
CHnzThickness_2SubArea[m]
138.0
**

constant
PPw_Thickness_2SubArea[mI
0.0
**

constant
UCF_Thickness_2SubArea[m]
0.0
**

constant
BFw_Thickness_2SubArea[mn
0.0
**

constant
TR__Thickness_2SubArea[m]
0.0
**

constant
MCFThickness_2SubArea[m]
0.0
**

constant
LAFThickness_3SubArea[m]
0.0
**

constant
UAF_Thickness_3SubArea[m1
0.0
**

constant
AV_Thickness_3SubArea[m]
0.0
**

constant
tac_Thickness_3SubArea[m]
0.0
**

constant
TCw_Thickness_3SubArea[mI
0.0
**

constant
PTnThickness_3SubArea[m]
0.0
**

constant
TSw_Thickness_3SubArea[ml
119.0
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**

constant
TSv_Thickness_3SubArea[m]
0.0
**

constant
CHnvThickness_3SubArea[m]
56.0
**

constant
CHnzThickness_3SubArea[m]
146.0
**

constant
PPw_Thickness_3SubArea[m]
0.0
**

constant
UCF_Thickness_3SubArea[m]
0.0
**

constant
BFw_Thickness_3SubArea[m]
0.0
**

constant
TR_Thickness_3SubArea[m]
0.0
**

constant
MCFThickness_3SubArea[m]
0.0
**

constant
LAF_Thickness_4SubArea[m]
0.0
**

constant
UAFThickness_4SubArea[m]
0.0
**

constant
AV_Thickness_4SubArea[m]
0.0
**

constant
tacThickness_4SubArea[m]
0.0
**

constant
TCwThickness_4SubArea[m]
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0.0
**

constant
PTn_Thickness_4SubArea[m]
0.0
**

constant
TSw_Thickness_4SubArea[m]
81.0
**

constant
TSv_Thicknessj4SubArea[m]
0.0
**

constant
CHnvThickness_4SubArea[m]
84.0
**

constant
CHnzThickness_4SubArea[m1
150.0
**

constant
PPw_Thickness_4SubArea[m]
0.0
**

constant
UCF_Thickness_4SubArea[m]
0.0
**

constant
BFw_Thickness_4SubArea[m]
0.0
**

constant
TR_Thickness_4SubArea[m]
0.0
**

constant
MCFThicknessj4SubArea[m]
0.0
**

constant
LAF_Thickness_5SubArea[m]
0.0
**

constant
UAFThickness.5SubArea[m]
0.0
**

constant
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AV_Thickness_5SubArea[m]
0.0
**

constant
tac_Thickness_5SubArea[m]
0.0
**

constant
TCw_Thickness_5SubArea[m]
0.0
**

constant
PTnThickness_5SubArea[m]
0.0
**

constant
TSwThickness_5SubArea[m]
124.0
**

constant
TSv_Thickness_5SubArea[m]
0.0
**

constant
CHnvThickness_5SubArea[m]
78.0
**

constant
CHnzThickness_5SubArea[mj
128.0
**

constant
PPwThickness_5SubArea[m]
0.0
**

constant
UCFThickness_5SubArea[m]
0.0
**

constant
BFwThickness_5SubArea[m]
0.0
**

constant
TR_Thickness_5SubArea[m]
0.0
**

constant
MCFThickness_5SubArea[m]
0.0
**
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constant
LAF_Thickness_6SubArea[m]
0.0

constant
UAF_Thickness_6SubArea[m]
0.0
**

constant
AV__Thickness_6SubArea[m]
0.0
**

constant
tac_Thickness_6SubArea[mj
0.0
**

constant
TCw_Thickness_6SubArea[m]
0.0
**

constant
PTn_Thickness_6SubArea[m]
0.0
**

constant
TSw_Thickness_6SubArea[m]
54.0 _

constant
TSv_Thickness_6SubArea[m]
0.0
**

constant
CHnvThickness_6SubArea[m]
79.0
**

constant
CHnzThickness_6SubArea[m]
191.0
**

constant
PPw_Thickness_6SubArea[m]
0.0
**

constant
UCF_Thickness 6SubArea[m]
0.0
**

constant
BFwThickness_6SubArea[m]
0.0
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**

constant
TR_Thickness_6SubArea[m]
0.0
**

constant
MCF_Thickness_6SubArea[ml
0.0
**

constant
SaturatedZoneSourceLength- SubArea[mI
150.
**

constant
SaturatedZoneThicknessLAFISubArea[mI
0.0
**

constant
SaturatedZoneThicknessUAF__1SubArea[m]
0.0
**

constant
SaturatedZoneThicknessAV 1 SubArea[m]
0.0
**

constant
SaturatedZoneThicknesstac_1 SubArea[m]
0.0
**

constant
SaturatedZoneThicknessTCw_lSubArea[m]
0.0
**

constant
SaturatedZoneThicknessPTn__1 SubArea[m]
0.0
**

constant
SaturatedZoneThicknessTSw__1 SubArea[m]
0.0
**

constant
SaturatedZoneThicknessTSv__1 SubArea[m]
0.0
**

constant
SaturatedZoneThicknessCHnvlSubArea[m]
0.0
**

constant
SaturatedZoneThicknessCHnz_1 SubArea[m]
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100.0
**

constant
SaturatedZoneThicknessPPw_1 SubArea[mI
400.0
**

constant
SaturatedZoneThicknessUCFI SubArea[m]
0.0
**

constant
SaturatedZoneThicknessBFw_1 SubArea[m]
2750.0
**

constant
SaturatedZoneThickness _TR ISubArea[m]
0.0
**

constant
SaturatedZoneThicknessMCFI SubArea[m]
1950.0
**

ENDOFFILE
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DOCUMENTATION OF FUNCTIONS
AND SUBROUTINES IN THE

UTILITY MODULES



Documentation of Functions and Subroutines
in the Utility Modules

C.1 READER utility module (file=readerf)

c --

subroutine reader( iunit, title1, title2,
& mxntime, ntim, tim,
& mxnnucl, nnucl, names)

c used to read data from ".inp" file
c called directly by EXEC
c by Randall D. Manteufel, January 27, 1997
C

c iunit = input, integer, unit number that has file "tpa.inp" opened
c and ready to read from
c titlel = output, character*80, first title line in tpa.inp file
c title2 output, character*80, second title line in tpa.inp file
c mxntime = input, integer, dimension for time array
c ntim output, integer, actual number of times used in time array
c tim(mxntime) - output, double precision, array of times
c mxnnucl = input, integer, maximum dimension for nuclide array
c nnucl - output, integer, actual number of nuclides used
c names(mxnnucl)= output, character*6, names of nuclides used
c
c this will INITIALIZE the following:
c sampled parameter database
c module variable database
c subarea database
c invent database
c

subroutine skipcommentline( iunit)
c
c read input file to skip comment lines that start with '

c
c iunit - input, integer, file unit number to read from
c

subroutine readname( iunit, name)

c read name of parameter from input file
c
c iunit = input, integer, file unit number to read from
c name - output, character*60, name
c
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C.2 FILE UNIT utility module (file=fileunit.f)

integer function igetunitnumber( name)

c get an open unit number to open file
c by Randall D. Manteufel, January 27, 1997
c

c name = input, character*8, name of subroutine that wants

c to open a file, hence needs a unit number. The
c name must be recognized by TPA, hence must be one

c of the following:
c { uzflow, nfenv, ebsfail, ebsrel, uzft, szft,
c dcagw, climato, seismo, volcano, faulto, ashplume,
c ashremove, dcags, exec, test, utility }
c igetunitnumber - output, integer, open unit number that can be used

c this unit number will be assigned only once

c If one requests more than "maxunit" numbers then
c an error will be printed and program stopped.
c

subroutine printfun()

c print names of file unit numbers currently being used,
c this will be printed to standard output, 6
c by Randall D. Manteufel, February 4, 1997
c
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C.3 ARRAY utility module (flle=array.f)

c array utility module
c by Randall D. Manteufel, January 27, 1997
c

C

subroutine zero( n, v)
C -

c zero-out vector
c

c n = input, integer, length of vectors
c v[n] - output, double precision, vector to have all values set -O.OdO
c
c

subroutine zeroi( n, iv)
c
c zero-out integer vector
c
c n = input, integer, length of vectors
c iv[n] - output, integer, vector to have all values set =0
c
c=_ _ __

subroutine clearchar( n, name)
c
c clear character array
c
c n - input, integer, dimension of array
c name = input/output, character*(n), array to be cleared, set -'
c
c

subroutine transpose(il, i2, nl, n2, a)
c
c transpose matrix
c

c il, i2 - input, integer, original dimensions of matrix
c nl, n2 - input, integer, actual dimensions of matrix
c a[il,i2] - input/output, double precision, matrix that
c on output is transposed
c Note: only transposes a(nl,n2) portion of matrix

subroutine scale(c, n, v)
c - - _-_ _-- -___

c scale vector
c
c c = input, double precision, scaling factor
c n = input, integer, length of vectors
c v[n] = input/output, double precision, first vector
c v(new) - c* v(original)
c
c -= - ___ _ _ _ = 3 _ _ _ __ _ _ = _ _
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subroutine scopy(c, n, vin, vout)

c scale and copy vector
c
c c = input, double precision, scaling factor
c n - input, integer, length of vectors
c vin[n] = input, double precision, first vector
c vout[n] = output, double precision, output vector
c vout = c* vin
c

subroutine acopy(c, n, vin, vout)

c copy vector and at same time add a constant to each entry

c
c c = input, double precision, factor to be added to each entry
c of vin
c n - input, integer, length of vectors
c vin(n) = input, double precision, first vector
c vout(n) = output, double precision, output vector
c vout(i) = c + vin(i)
c
c =___ _ __ _ _ _ _ _ _

subroutine ascopy(c, n, vinl, vin2, vout)

c add, scale and copy vector
c
c c = input, double precision, scaling factor
c n = input, integer, length of vectors
c vinl[n] = input, double precision, first vector
c vin2[n] = input, double precision, second vector
c vout[n] = output, double precision, output vector
c vout = c*( vinl + vin2)
c

subroutine addto(n, vinl, vin2)

c add one vector to another
c
c n = input, integer, length of vectors
c vinl[n] = input, double precision, first input vector
c vin2[n] = input/output, double precision, second vector
c vin2 = vinI + vin2
c
C= == === …-= = ==============…

subroutine isoneofset( iquery, nset, iset, index)

c determines if iquery is part of set iset, if so return index
c for example, if nset = 3, iset = { 5, 99, 301 } and iquery = 99,
c then index = 2
c for example, if nset = 5, iset = ( 1, 2, 8, 9, 11 } and iquery = 3,

0
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c then index = 0
C

c iquery = input, integer, integer value to be checked to see if in
c the integer set
c nset = input, integer, number of elements in the set
c iset(nset) = input, integer, set of integer values
c index = output, integer, index, or location, of iquery in the set,
c if iquery is not found in set, then index = 0.
c otherwise, I <= index <= nset
C

function pmean( n, x, m, y)
c-
c calculate "significance probability" (also known as p-value)
c to determine if mean(x) = mean(y)
c the smaller the p-value the stronger the indication that
c the means are truely different.
c
c Method outlined in Mathematical Statistics and Data Analysis,
c by J.A. Rice, 1988 pg 356, Wadsworth&Brooks/Cole publishers.
c this is for twosided test
c if pmean<O.05 then normally reject null hypothesis
c and claim difference truely exists
c
c n = input, integer, length of x-array values
c x[n] - input, double precision, array of values
c m = input, integer, length of y-array values
c y[m] = input, double precision, array of values
c pmean = output, double precision, p-value
c probability that mean(x) = mean(y)
c Note: 0 < pmean < 1
c

function ainterl( n, t, v, tin)

c LINEAR interpolation in list of (time, value} data
c to find value at given time.
c
c n = input, integer, length of array values
c t[n] = input, double precision, array of times,
c assumed to be in ascending order
c v[n] = input, double precision, array of values
c tin input, double precision, time at which interpolated
c value of "v" is requested
c ainterl = output, double precision, interpolated value
c if tin < t(l), then ainterl = v(l)
c if tin > t(n), then ainterl = v(n)
c

function avar( n, x)
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c calculate variance of array of values
C

c n = input, integer length of array values
c x[n] = input, double precision, array of values
c avar = output, double precision, variance of array of values

c

function amean( n, x)
C- =- = - == = - - -==_= -__ e

c determine mean of array of values
c
c n = input, integer length of array values
c x[nJ = input, double precision, array of values
c arnean = output, double precision, mean of array of values
c
C= - = = = -- = _ = = _ _ 9

subroutine checkinorder( n, x, icheck)

c determine if array of values are in order, either
c ascending or descending
c
c n = input, integer length of array values
c x(n) = input, double precision, array of values
c icheck = output, integer,
c = -I if in descending order
c = 0 if NOT in order
c = +1 if in ascending order
c

subroutine checkforduplicates( n, x, icheck)
c =

c determine if array of values has any duplicates
c assumes array already in ascending or descending order
c
c n = input, integer length of array values
c x(n) = input, double precision, array of values
c icheck = output, integer,
c = 0 if no duplicates found
c = +1 if duplicates found
c

subroutine icheckforduplicates( n, ix, icheck)

c determine if array of values has any duplicates
c assumes array already in ascending or descending order

c
c n = input, integer length of array values
c ix(n) = input, integer, array of values
c icheck = output, integer,
c = 0 if no duplicates found
c = +1 if duplicates found

C-6



c

subroutine sortqr(n, v, ipt)

c QUICK sort based on pointers to array of values
c sorts from smallest to largest
c

c n = input, integer, number of elements to sort
c v[n] = input, double precision, array of values to be sorted
c ipt[n] = input/output, integer, array of pointers
c On INPUT, in most cases, ipt[1=l, ipt[2]=2, etc. ipt[n]=n
c each pointer must point to one unique v, so that
c ipt[i] never equals ipt[j] except when i=j
c also 1 <= ipt[i] <- n for all i
c On OUTPUT, v[ipt[l]I is smallest, and
c v[ipt[n]] is largest
c

subroutine maplist(nl, xl, yl, n2, x2, y2)
c
c map data in first list into second list
c given the first set of {x,y}, and the second set of (x}, find the
c second set of {y}
c
c nI = input, integer, dimesion of first array lists
c xl [nl] - input, double precision, array of x-values in first list
c yl [nl] = input, double precision, array of y-values in first list
c n2 = input, integer, dimesion of second array lists
c x2[n2] = input, double precision, array of x-values in second list
c y2[n21 = output, double precision, array of y-values in second list
c values of y2 based on linear interpolation to of first list
c
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C.4 SAMPLER utility module (file-=sampler.f)

c SAMPLER utility module
c by Randall D. Manteufel, January 27, 1997

subroutine newspdb(

c initialize new database for sampled parameters
c this is called only once, and by "reader"
c user does not call this subroutine directly
c
c sampled parameters are constant only.
c

subroutine addconstantpdf( name, conval)
c ____=

c add constant PDF to sampled parameter database
c
c name = input, character*60, name of pdf
c conval = input, double precision, constant value of pdf
c
C= -A - = __== = = = = = = =

subroutine addiconstantpdf( name, iconval)
c=- _= __ - ==__=-=

c add integer constant PDF to sampled parameter database
c
c name = input, character*60, name of pdf
c iconval = input, integer, constant value of pdf
c

subroutine adduniformpdf( name, xmin, xmax)

c add uniform PDF to database
c
c name = input, character*60, name of pdf
c xmin = input, double precision
c xmax = input, double precision
c

subroutine addiuniformpdf( name, ixmin, ixmax)

c add integer uniform PDF to database
c
c name = input, character*60, name of pdf
c ixmin = input, integer
c ixmax = input, integer
c

subroutine addloguniformpdf( name, xmin, xmax)

c add LogUniform PDF to database
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C

c name = input, character*60, name of pdf
c xmin = input, double precision
c xmax = input, double precision
c

C===__

subroutine addnormalpdf( name,
& valueatOOlquantile, valueat999quantile)

c add normal PDF to database
C

c name = input, character*60, name of pdf
c valueatOOlquantile - input, double precision
c valueat999quantile - input, double precision
c

c

subroutine addlognormalpdf( name,
& valueatOOlquantile, valueat999quantile)

c add lognormal PDF to database
c

c name = input, character*60, name of pdf
c valueatOOlquantile - input, double precision
c valueat999quantile = input, double precision
c

subroutine addbetapdf( name,
& alpha, beta, xmin, xmax)

c add beta PDF to database
c

c name = input, character*60, name of pdf
c alpha - input, double precision
c beta = input, double precision
c xmin = input, double precision
c xmax = input, double precision
c
c

subroutine addlogbetapdf( name,
& alpha, beta, xmin, xmax)

c add logbeta PDF to database
c

c name = input, character*60, name of pdf
c alpha = input, double precision
c beta = input, double precision
c xmin = input, double precision
c xmax = input, double precision
c

subroutine addexponentialpdf( name, alamn)
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c add exponential PDF to database
c

c name = input, character*60, name of pdf
c alam = input, double precision
c

C= _

subroutine addfiniteexponentialpdf( name, alam, xmin, xmax)

c add finite exponential PDF to database
c

c name = input, character*60, name of pdf
c alam = input, double precision, decay constant in exponential
c xmin = input, double precision, lower cut-off
c xmax = input, double precision, upper cut-off
c

c
subroutine addtriangularpdf( name,

& xmin, xpeak, xmax)
c -
c add triangular PDF to database
c
c name = input, character*60, name of pdf
c xmin = input, double precision
c xpeak = input, double precision
c xmax= input, double precision
c
c _ _ _ _ c c _ _ _ =

subroutine addlogtriangularpdf( name,
& xmin, xpeak, xmax)

c add logtriangular PDF to database
c
c name = input, character*60, name of pdf
c xmin = input, double precision
c xpeak = input, double precision
c xmax = input, double precision
c

subroutine newrealization()

c Get new realization of inputs using random sampling
c

subroutine newlhssm( nbins)
c==--= ==-================= =-

c new latin hypercube sampled parameter matrix
c that is stored in common blocks included in "sampler.i"
c
c nbins = input, integer, number of realizations
c or LHS bins, or number of vectors

0
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c xlhs(nbin,nsp)
c

integer function ispquery( namin)

c Get index for sampled parameter with name=namin
c

c namin = input, character*60, name of sp as found in tpa.inp file
c consequence modules must match name exactly
c ispquery = output, integer, index of sampled parameter
c which must be used to obtain the value of the
c sample parameter. It is strongly suggested that
c this integer index be stored in common block so that
c this function need only be called once for each
c parameter inside a consequence module
c
c- -=_==_=- _

integer function ispquerynostop( namin)
c
c Get index for sampled parameter with name-namin
c if name not found, do NOT STOP, but return zero for index
c
c namin - input, character*60, name of sp as found in tpainp file
c consequence modules must match name exactly
c ispquerynostop = output, integer,
c -0 if not in database,
c =index if name in database.
c which must be used to obtain the value of the
c sample parameter. It is strongly suggested that
c this integer index be stored in common block so that
c this function need only be called once for each
c parameter inside a consequence module
c
c -

integer function isconstant( index)

c Query if parameter is a constant
c Parameter specified by index.
c
c index = input, index, index of sp found previously using ispquery
c
c isconstant - output, integer,
c -0 if not consant or iconstant or iflag
c =1 if YES is a constant
c
c- -- _ = =__ _ _ = _._

double precision function valuesp( ipdf)

c Get value of sampled parameter
c where ipdf is index
c

C-1I



c ipdf = input, integer, index of sampled parameter, this is

c obtained using function ispquery

c valuesp - output, double precision, numeric value of parameter

c value is changed ONLY when newrealization is called

c
CC -= _____=--- =_

integer function ivaluesp( ipdf)
C- - = 8 = =__-- -_=_======_c==

c Get integer value of sampled parameter
c where ipdf is index
c
c ipdf = input, integer, index of sampled parameter, this is

c obtained using function ispquery

c ivaluesp = output, integer, numeric value of parameter

c value is changed ONLY when newrealization is called

c

subroutine addhazardcurve( name, nbin, amag, period)

c-
c add HazardCurve to database
c
c name = input, character*60, name of hazard curve
c nbin = input, integer, number of hazard bins

c amag(nbin) = input, double precision, magnitude of events

c period(nbin) = input, double precision , return period

c in units of tyr] for events
c

subroutine samplehazardcurve( name, maxevents, timemax,

& numberofevents, timeofevents, typeofevents)

c draw realization of future events from HazardCurve

c
c name = input, character*60, name of hazard curve

c maxevents = input, integer, maximum number of events,

c used to dimension arrays
c timemax = input, double precision, time period of interest (TPI)

c numberofevents = output, integer, number of events

c NOTE: numberofevents <= maxevents

c if numberofevents = maxevents, then will print

c WARNING message that maxevents should be increased

c timeofevents(maxevents) = output, double precision, time [yr] of

c series of events
c typeofevents(maxevents) = output, double precision, type of

c (or magnitude of) events
c
c

subroutine Ihsnew( maxnbin, maxnsp, nbin, nsp, x)

c create new LHS quantile sampled matrix,
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c this subroutine is generic, and not an integral part of TPA 3.0
c Ex: it does not need or use "sampler.i" include file
c
c maxnbin = input, integer, maximum number of vectors or bins
c used in LHS, to dimension arrays
c maxnsp = input, integer, maximum number of sampled parameters
c used to dimension arrays
c nbin = input, integer, actual number of LHS bins
c nsp = input, integer, actual number of sampled parameters
c x(maxnbin,maxnsp) = input/output, double precision, array of
c quantiles sampled from U[0,1] that are randomized for LHS
c
c

subroutine printtitlessp( iunitcp, iunitsp)
co

c print names of constant & sampled parameters
c names are character*60 titles of parameters
c
c iunitcp = input, integer, unit number having open file to dump titles
c for constant parameters
c
c iunitsp - input, integer, unit number having open file to dump titles
c for sampled parameters
c

subroutine printvaluessp( iunit, ir)

c print values of all sampled parameters into file opened
c with unit number equal iunit
c
c this will print constants, iconstants, and iflag parameters
c as if they are sampled parameters
c
c iunit = input, integer, unit number having open file to dump titles
c ir = input, integer, realization number
c

subroutine writesnllhsinp( iunit)

c write input file for LHS program written by SNL
c
c iunit - input, integer, unit number having open file to write to
c

subroutine checkspname( name)
C====-_= _= _ = = _ _= = = = _ = = =

c check name to see if already defined in sampled parameter database
c
c name = input, character*60, name of pdf
c
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subroutine adduserdist( name, n, v )
C=--==-===5_:== ===

c add user-supplied data PDF to sampled parameter database

c

c name = input, character*60, name of pdf
c n = input, integer, number of user supplied data
c v(n) = input, double precision, values of user supplied data,

c all data is equal probability (p=l/n)
c
C-

subroutine addcorrel( nameli, name2i, c)

c add rank correlation for 2 sampled parameters

c

c nameli = input, character*60, name of first parameter
c name2i = input, character*60, name of second parameter

c c = input, double precision, rank correlation
c

0
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C.5 RAN utility module (file=ran.f)

c Group of random number subroutines used by sampled parameter
c utility module, by Randall D. Manteufel, January 27, 1997

subroutine setran( aseedl )

c set seed for random number generator
C

c aseedl - input, double precision, seed value
c recommend value for aseed be between l.Od8 and l.Od9 when
c working in double precision.
c if changed to single precision, recommend 1.e3 to L.eO
c
C=-___e_= __

function ranl()
c == _

c random number generator.
c based on congruential generator described in "Stochastic Simulation"
c by Brian D. Ripley, 1987, John Wiley & Sons
c see page 20, equation (1) and Table 2-4 on pg 39. Used 4th alogorithm
c in table.
C

c ranl - output, double precision, random number between 0.0 and 1.0
c
c __

function ranb(alpha,beta,xmin,xmax)
c =

c random sample from beta pdf
c Algorithm from: Probability Concepts in Engineering Planning and Design
c Volume I: Decision, Risk, and Reliability
c Alfredo H-S. Ang and Wilson H. Tang
c John Wiley & Sons, New York, 1984, pp. 285-287
c
c alpha - input, double precision, paramater in beta distribution
c beta - input, double precision, paramater in beta distribution
c xmin input, double precision, minimum value of sampled parameter
c xmax - input, double precision, maximum value of sampled parameter
c ranb = output, double precision, value of sampled parameter
c

function ranlb(alphabeta,xmin,xmax)
c -__ _

c random sample from logbeta pdf
c
c see description of ranb input/output parameters
c

function rant(xmin, xpeak, xmax)

c random sample from triangular pdf
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c
c xmin = input, double precision, minimum range of sampled parameter
c xpeak =input, double precision, value of sampled parameter where
c triangular pdf has peak
c xmax = input, double precision, maximum value of range of sampled parameter
c rant = output, double precision, value of sample parameter
c

function ranlt(xmin, xpeak, xmax)
c- - --- _==== 5 -

c random sample from logtriangular pdf
c
c see description of rant input/output parameters
c

function rane(alam)
c- ----- = - ____- ===__

c random sample from exponential
c pdf = alam* EXP( - alam * t)
c
c alam - input, double precision, input parameter for exponential pdf
c rane = output, double precision, sampled parameter from exponential pdf
c Note: 0.0 < rane < Infinity
c

function ranfe(alam, xmin, xmax)

c random sample from finite exponential
c pdf = alam* EXP( - alam * t)
c
c alam = input, double precision, input parameter for exponential pdf
c xmin = input, double precision, lower limit for exponential pdf
c xmax = input, double precision, upper limit for exponential pdf
c rane = output, double precision, sampled parameter from exponential pdf
c Note: xmin < rane < xmax
c

function ranu(xlow, xhigh)

c random sample from uniform pdf
c
c xlow = input, double precision, minimum range of pdf
c xhigh - input, double precision, maximum range of pdf
c ranu = output, double precision, random sampled parameter
c

function ranlu(xlow, xhigh)

c random sample from loguniform pdf
c
c see description of ranu input/output parameters

0
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c

function iranu(ilow, ihigh)
C---5 = === = = _ = = = = = =.. _:=_

c integer random sample from uniform pdf
c

c ilow = input, integer, low value of pdf
c ihigh = input, integer, high value of pdf
c iranu = output, integer, sampled value
c Note: ilow <= iranu <= ihigh
c

function rann( vOOlq, v999q)
C on = _ _ e _ = _ .= _ _ = -

c random sample from normal pdf
c

c vOOlq - input, double precision, x value at 0.001 quantile
c probability of cdf for normal distribution.
c This is -3.090232306167814 standard deviations below mean.
c v999q = input, double precision, x value at 0.999 quantile
c probability of cdf for normal distribution.
c This is +3.090232306167814 standard deviations above mean.
c rann = output, double precision, sampled value from normal pdf
c
c -_

function ranln( vOOlq, v999q)
c
c random sample from lognormal pdf
c
c see description of rann input/output parameters
c

function gasdev()
c =
c random sample from unit normal pdf
c having zero mean and unit variance
c from Numerical Recipes, W.H. Press, B.P. Flannery, S.A. Teukolsky
c and W.T. Vetterling. 1990. pg 203
c

c gasdev - output, double precision, sampled value from pdf
c

function quantu( al, ah, p)

c Obtain parameter by inverting CDF at given probability level
c
c al = input, double precision, low value for uniform distribution
c ah = input, double precision, high value for uniform distribution
c p = input, double precision, quantile level
c quantu = ouput, double precision, value between al (low) and ah (high)
c sampled at quantile level p
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c

function iquantu( ial, iah, p)
C==--= -- …====-=====-== c-========:====… - -_====…

c Obtain parameter by inverting CDF at given probability level

c

c ial = input, integer, low value for uniform distribution

c iah = input, integer, high value for uniform distribution
c p = input, double precision, quantile level
c iquantu = ouput, integer, value between ial (low) and iah (high)

c sampled at quantile level p
c

function quantl( n, x, iflag, ix, p)

c invert cdf at "p" probability (0<p<1)
c based on list of equal probability x-values,
c will interpolate between values of set, but will not extrapolate

c either above or below set.
c if p < 1/(2*n), then quantl=x(l)
c if p > I - 1/(2*n), then quantl=x(n)
c
c for example, if n=5, x={l,2,3,4,5},
c p=.50, then quantl=3.0

c p=.30, then quantl=2.0
c p=.25, then quantl=1.75

c p = 0.0001, then quantl=l
c for example, if n=4, x={1,2,3,4},
c p=0.50, then quantl=2.5

c p=.333, then quantl=1.832
c p=.125, then quantl=1.0

c p = 0.0001, then quantl=1
c for example, if n=4, x={l, 100, 200, 1000},

c p=0.50, then quantl=150

c p = 0.0001, then quantl=l

c
c n = input, integer, length of array values, must be >= 1
c x[n] = input, double precision, array of values
c values can be repeated
c iflag = input, integer, =0 if not sorted

c =1 if sorted
c if iflag = 1, then quantl believes the caller and

c will not check to be sure it is sorted

c if in doubt, set iflag =0
c ix[n] = integer, input, array used only if not SORTED

c p = input, double precision, quantile level, 0<p<1

c quantl = output, double precision, value from list (array) at quantile level

c

function ranset( n, x)
c--=======================-==========

0
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c randomnly select one value of a set of values
c all values have equal probability of being selected
c will return only values in the set
c set need not be sorted
c

c n = input, integer, length of array values
c x(n) = input, double precision, array of values
c ranset - output, double precision, random value from list (array)
c

function quantset( n, x, p)
c= .

c select one value of a set of values
c all values have equal probability of being selected
c will return only values in the set
c set need not be sorted
c
c n - input, integer, length of array values
c x(n) - input, double precision, array of values
c p = input, double precision, quantile level, O<p<l
c quantset - output, double precision, value from list (array)
c at quantile level p
c

function quantn( vOOlq, v999q, p)

c quantile of Normal distribution
c
c vOOlq - input, double precision, x value at 0.001 quantile
c probability of cdf for normal distribution.
c This is -3.090232306167814 standard deviations below mean.
c v999q = input, double precision, x value at 0.999 quantile
c probability of cdf for normal distribution.
c This is +3.090232306167814 standard deviations above mean.
c p = input, double precision, value of cdf, must be between 0 and I
c quantn = output, double precision, value of pdf at quantile-p
c
c- _ - _ __-=_- _=I _ _

function cdfn( amu, sig, x)

c Cumulative Distribution Function (cdf) for Normal distribution
c
c amu - input, double precision, mean of normal distribution
c sig = input, double precision, standard deviation
c x - input, double precision, value of parameter
c cdfn - output, double precision, value of cdf at parameter=x
c

function quantb( alpha, beta, xmin, xmax, p)

c quantile of beta distribution
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c

c alpha input, double precision, paramater in beta distribution
c beta 5 input, double precision, paramater in beta distribution
c xmin = input, double precision, minimum value of sampled parameter

c xmax = input, double precision, maximum value of sampled parameter
c p = input, double precision, quantile level at which to invert CDF

c quantb= output, double precision, value of sampled parameter at specified
c quantile level
c

function betacdf(a,b,x)

c evaluate CDF of standard beta function
c
c a = input, double precision, parameter in Beta Function
c b = input, double precision, parameter in Beta Function
c x = input, double precision, independent variable
c betacdf = output, double precision, CDF of beta fcn
c

function betaspecial(x)

C

function betapdf(ab,x)

c evaluate PDF of standard beta function
c
c a = input, double precision, parameter in Beta Function
c b = input, double precision, parameter in Beta Function
c x = input, double precision, independent variable
c betapdf = output, double precision, PDF of beta fcn
c

function quantlb( alpha, beta, xmin, xmax, p)

c quantile of log beta distribution
c
c alpha = input, double precision, paramater in beta distribution
c beta = input, double precision, paramater in beta distribution
c xmin = input, double precision, minimum value of sampled parameter

c xmax = input, double precision, maximum value of sampled parameter

c ranb = output, double precision, value of sampled parameter

c

function quantt(xmin, xpeak, xmax, p)

c quantile from triangular pdf
c
c xmin = input, double precision, minimum range of sampled parameter
c xpeak = input, double precision, value of sampled parameter where

c triangular pdf has peak
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c xmax - input, double precision, maximum value of range of sampled parameter
c p = input, double precion, quantile level
c quantt - output, double precision, value of sample parameter
c at quantile level of CDF
c

C 5--… =-==== - _ __

function quantlt(xmin, xpeak, xmax, p)

c quantile from log triangular pdf
c

c xmin - input, double precision, minimum range of sampled parameter
c xpeak = input, double precision, value of sampled parameter where
c triangular pdf has peak
c xmax - input, double precision, maximum value of range of sampled parameter
c p - input, double precion, quantile level
c quantdt = output, double precision, value of sample parameter
c at quantile level of CDF
c
c

function quantln( vOOlqin, v999qin, p)

c quantile from log normal pdf
c
c vOOlqin = input, double precision, x value at 0.001 quantile
c probability of cdf for normal distribution.
c This is -3.090232306167814 standard deviations below mean.
c v999qin - input, double precision, x value at 0.999 quantile
c probability of cdf for normal distribution.
c This is +3.090232306167814 standard deviations above mean.
c p - input, double precision, value of cdf, must be between 0 and 1
c quantln - output, double precision, value of pdf at quantile=p
c
c

function quante(alam,p)
c - _

c quantile from exponential
c pdf - alam* EXP( - alam * t ), range of t = (0, Infinity}
c cdf - 1.0 - EXP( -alam * t)
c
c alam = input, double precision, input parameter for exponential pdf
c p = input, double precision, quantile level
c quante = output, double precision, quantile from exponential pdf
c

function quantfe(alam, xminin, xmaxin, p)

c quantile from finite exponential
c pdf = alam* EXP( - alam * t)
c
c alam = input, double precision, input parameter for exponential pdf
c xminin = input, double precision, lower limit for exponential pdf
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c xmaxin = input, double precision, upper limit for exponential pdf

c p = input, double precision, quantile level

c quantfe = output, double precision, quantile from finite exponential pdf

c

function quantlu(xmin, xmax, p)

c quantile from log uniform pdf
C

c xmin = input, double precision, minimum range of sampled parameter

c xmax = input, double precision, maximum value of range of sampled parameter

c p = input, double precion, quantile level

c quantlu - output, double precision, value of sample parameter
c at quantile level of CDF
c
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C.6 MODULE VARIABLE utility module (file=mv.f)

c Module Variable utility module
c by Randall D. Manteufel, January 27, 1997

subroutine newmvdb()

c called only by TPA code
c

c initialize new database for module variables
c
c module variables can be only "constant"
c
c -

integer function iaddconsmv( name)
c- -___ _

c add constant variable to database
c NOTE: must call imvquery to get index number for this mv
c NOTE: must call setconsmv to set value of variable
c
c name - input, character*60, name of module variable
c iaddconsmv (=iowner) = output, integer, special index for module
c variable so that only the "owner" who knows this index
c can change the value of the variable.
c Others can query.
c
c _

integer function imvquery( name)
c
c Get index for module variable with "name"
c
c name - input, character*60, name of module variable as found in tpa.inp file
c consequence modules must match name exactly
c imvquery = output, integer, index of module variable
c which must be used to obtain the value(s) of the
c module variable. It is strongly suggested that
c this integer index be stored in common block so that
c this function need only be called once for each
c variable inside a consequence module
c
c - _

subroutine setconsmv( imv, iowner, consv)
c = ____

c set constant module variable to value=consv
c
c imv = input, integer, index to module variable
c iowner = input, integer, module index needed to setlchange value of
c module variable.
c Only the owner of variable can control the value of
c this variable.
c consv = input, double precision, constant value
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c
C===

function valueconsmv( imv )

c Get value of module variable
c where imv is index for module variable
c

c imv = input, integer, index of module variable, this is obtained using

c function "imvquery"
c valueconsmv = output, double precision, numeric value of module variable

c module variable is type = "constant"
c

subroutine printtitlesmv( iunit)
C -- - ---___* = e_ _ _

c print number of module variables, and their character*60 titles

c this will be printed into file opened with unit number equal iunit

c
c iunit = input, integer, unit number having open file to dump titles

c
c

subroutine printvaluesmv( iunit, ir)
C= -- -- - _ ec- _--

c print values of all module variables into file opened
c with unit number equal iunit
c
c iunit = input, integer, unit number having open file to dump values

c ir = input, integer, realization number
c
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C.7 INVENT utility module (file=invent.f)

c invent utility module
c by Randall D. Manteufel, January 27, 1997
c

subroutine setage( timeatemplacement)

c set age of HLW at time of emplacement.
c age is measured in [yr] for reactor to repository
c The age affects inventories of isotopes and
c thermal output of waste.
c
c timeatemplacement = input, double precision, time in years from
c reactor at which fuel is emplaced in repository
c all subsequent times are considered from emplacement
c Setage does not have to be called.
c If not called, then default age is 26 yr.
c The numerics are such that it can be called with age > 1 yr.
c

subroutine decay43mol( time, amolepermtu)
c_ _

c This subroutine returns all radioisotopes inventories [mole/MTU]
c at "time" [yr] after emplacement,
c assuming only decay [no release] of isotopes from source.
c
c time = input, double precision, time [yr] measured after emplacement
c amoleperntu(43) - output, double precision, inventory [mole/MTU]
c for each isotope at time
c
c (d N[i])/(dt) - -dldecay[i] * N[i]
c (d N[i+l])/(dt) - -dldecay[i+l] * N[i+l +dldecay[i) * N[i]
c (d N[i+2])/(dt) = -dldecay[i+2] * Nfi+2] +dldecay[i+l] * N[i+l]
c (d N[i+3])/(dt) - -dldecay[i+31 * N[i+3] +dldecay[i+2] * N[i+2]
c
c dldecay[i] = ln(2) / halflife(i)
c "d" = double
c '"" = lambda, transformation constant
c "decay" = due to radioactive decay
c
c Order of Nuclides:
c
c 1- U238
c 2- Cm246
c 3- Pu242
c 4- Am242m
c 5- Pu238
c 6- U234
c 7- Th230
c 8- Ra226
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c 9- Pb2lO
c 10- Cm243
c 11- Am243
c 12- Pu239
c 13- U235
c 14- Pa231
c 15- Ac227
c 16- Cm245
c 17- Pu241
c 18- Am241
c 19- Np237
c 20- U233
c 21- Th229
c 22- Cm244
c 23- Pu240
c 24- U236
c 25- U232
c 26- SmI51
c 27- Csl37
c 28- Cs135
c 29- 1129
c 30- Snl26
c 31- Snl2lm
c 32- AglO8m
c 33- PdlO7
c 34- Tc99
c 35- Mo93
c 36- Nb94
c 37- Zr93
c 38- Sr90
c 39- Se79
c 40- Ni63
c 41- Ni59
c 42- C136
c 43- C14
C

c The chains that need to be tracked are:
C

c Chain #1
c

c 2---3---1---6---7---8---9
c I

c 4---5---
c

c
c Chain #2
c
c 10--12--13--14--15
c I
c 11--/
c
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c

c Chain #3
C

c 16--17--18--19--20--21
C

C

c Chain #4
C

c 22--23--24
c

c Note: U-232 does not appear in any chain and is treated as
c Fission Product
c

subroutine decayremove43mol( dt, diremove, dntl, dnt2)

c Solves for inventories of 43 isotopes tracked in HLW
c accounting for both decay of isotopes and removal of isotopes
c [For example, release is a physical removal from waste packagel
c
c dt = input, integer, time step, = endtime - starttime [yr]
c dlremove(43) = input, double precision, array of physical
c removal constant,
c diremove has units of [1/yr]
c dntl(43) = input, double precision, array of initial inventories
c in units of [mole]
c dnt2(43) = output, double precision, array of final inventories
c in units of [mole]
c
c (d N[i])/(dt) = -dldecay[i] * N[i]
c -dlremove[i] * N[i]
c (d N[i+l])/(dt) = -dldecay[i+l] * N[i+l] +dldecay[i] * N[iI
c -dlremove[i+l] * N[i+l]
c (d N[i+2])/(dt) = -dldecay[i+21 * N[i+2] +dldecay[i+l] * N[i+l]
c -dlremove[i+2] * N[i+2]
c (d N[i+3])/(dt) = -dldecay[i+3] * N[i+3] +dldecay[i+2] * N[i+2]
c -dlremove[i+3] * N[i+3]
c
c

subroutine chains(maxnt, nt, time, dlt, dlr, dntl, dn )

c Solves for inventories of 43 isotopes tracked in HLW
c accounting for both decay of isotopes and removal of isotopes
c
c the decay accounts for chains
c maxnt = input, integer, maximum number of time to dimension arrays
c nt = input, integer, number of times
c time(nt) = input, double precision, array of times
c All times in units of [yr]
c to match units of dlt & dIr
c dlt(43) = input, double precision, array of total
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c total removal constant which equals SUM of
c (1) radioactive decay and
c (2) all sources of physical removal such as
c leaching into ground water
c dlt has units of [1/yr]
c dlr(43) = input, double precision, array of removal constants
c for radioactive decay,
c this is lambda = In(2) / halflife
c halflife in units of [yr]
c dntl(43) = input, double precision, initial amounts for each isotope
c in the chain , this is measured in units of [mole]
c dn(maxnt,43) = output, double precision, final amounts of isotopes
c in units of [mole] in chain at each time step
c Note: dn(l,inucs) = dntl(inucs)
c

subroutine chainsolver(len, maxnt, nt, tim, dntl, dit, dir, dn)

c solves for one chain of isotopes, accounting for radioactive decay
c and physical removal from system.
c
c solves for time-dependent isotope inventory
c when there is both physical removal and radioactive decay
c in a chain:
c
c (d N[i ])/(dt) = -dlt * N[i ]

c (d N[i+l])/(dt) = -dlt * N[i+l] + dlr * N[i ]

c (d N[i+2])/(dt) = -dlt * N[i+2] + dlr * N[i+l]

c etc.
c
c len = input, integer, the number of radioisotopes in the chain
c maxnt = input, integer, the maximum number of times that was
c used to dimension arrays
c nt = input, integer, the number of times to calculate inventory at
c tim(nt) = input, double precision, array of time values
c dntl(len) = input, double precision, the initial amounts
c for each isotope in the chain [mole]
c corresponds to time-tim(l)
c dlt(len) = input, double precision, the total removal rate
c for each isotope in the chain, has units [I/yr]
c Total = Physical + Radioactive

c dlr(len) = input, double precision, the radioactive decay
c rate for each isotope in the chain [I/yr]
c the 1st decays into the 2nd,
c the 2nd decays into the 3rd, etc
c dn(maxnt,len) = output, double precision, the inventories
c [mole] of each isotope in the chain at each time
c Note: dn(l ,len) = dntl (len)
c
c=======- ========= ============== =

double precision function dmyexp(x)
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C==== e -= _ _ =

c MY exponential function, so that will set
c exp( large negative number ) = 0.0
c and give Warning for exp( large positive number)
C

c This function is used to avoid underflow warnings from SUN Fortran
c compiler.
c

c x = input, double precision, input value
c dmyexp = output, double precision, output value
c

integer function indexperiso( name)

c returns index based on matching isotope "name"
c
c name = input, character*6, name of isotope
c indexperiso = output, integer, index used to identify isotope
c of interest
c

c- integer function indexperisonostop( name)

c returns index based on matching isotope "name"
c
c name = input, character*6, name of isotope
c indexperiso - output, integer, index used to identify isotope
c of interest
c Will not stop if "name" not found, but will return
c indexperisonostop - 0
c

character*2 function nameelem( index)
c - == -= _

c returns element name given isotope index,
c for example, will return 'Am'
c given index = either 4, 11, or 18
c corresponding to isotopes Am242m, Am243 or Am241
c
c index = input, integer, index to isotope of interest
c nameelem - output, character*2, name of element
c

character*6 function nameiso( index)
c = = - - - - - __ = - -- -- = = _ -__ _

c returns name of isotope
c
c index = input, integer, index to isotope of interest
c nameiso = output, character*6, name of isotope
c
c _ _ _ = = = = = = = = = = _ _ _
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function epalimperiso( index )

c get EPA normalizing limits for isotopes,
c this is for old 'release' limit
c

c index = input, integer, index to isotope of interest

c epalimperiso = output, double precision, EPA release limit

c for isotope, in [Ci/MTU]

c
c-_- --- _ = __= =__.= _ _ _ - _ = _

function activityperiso( index)
C- - ==--- =--=-----_-_ =e

c returns activity of isotope [Ci/mole]
c
c index = input, integer, index used to identify isotope

c of interest
c activityperiso = output, double precision,
c activity of isotope [Ci/mole]
c
c _ =_ __ =

function wmoleperiso( index)

c molecular weight of radioisotope [g/mol]
c
c index = input, integer, index used to quickly identify isotope

c of interest
c wmoleperiso = output, double precision, molecular weight

c of isotope [g/mol]
c

function halflifeperiso( index)
c- -- - = _ -__ _ ==

c return halflife of radioisotope [yr]
c
c index = input, integer, index used to quickly identify isotope

c of interest
c halflifeperiso = output, double precision, halflife [yr]

c
c
c Following is a comparison of the half-lives used in INVENT

c compared to the half-lives found in two references -

c 1992 Chart of the Nuclides - Strasbourg and the

c 1991-2 CRC Handbook of Chemistry and Physics

c Invent halflive values from DOE/SNL TSPA-93

c
c The comparison shows good agreement in halflife values

c and builds confidence in the data.
c
c Source
c
c 1992 chart of 1991-2 CRC Handbook
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c Number Nuclide nuclides
c I U238 4.468e9
c 2 Cm246 4753
c 3 Pu242 3.73e5
c 4 Am242m 142
c S Pu238 87.75
c 6 U234 2.455e5
c 7 Th230 7.54e4
c 8 Ra226 1600
c 9 Pb2lO 22.3
c 10 Cm243 28.5
c 11 Am243 7362
c 12 Pu239 2.42e4
c 13 U235 7.04e8
c 14 Pa231 3.282e4
c 15 Ac227 21.773
c 16 Cm245 8511
c 17 Pu241 14.353
c 18 Am241 432.1
c 19 Np237 2.14e6
c 20 U233 1.59e5
c 21 Th229 7686
c 22 Cm244 18.077
c 23 Pu240 6555
c 24 U236 2.342e7
c 25 U232 69.9
c26 SmISl 90
c 27 Cs137 30.254
c 28 Cs135 2.3e6
c 29 1129 1.6e7
c 30 Snl26 leS
c 31 Snl21m 55
c 32 AglO8m 127
c 33 PdlO7 6.5e6
c 34 Tc99 2.1eS
c 35 Mo93 3500
c 36 Nb94 2e4
c 37 Zr93 1.53e6
c 38 Sr9O 28.78
c 39 Se79 6.5e4
c 40 Ni63 99.6
c 41 NiS9 7.6e4
c 42 C136 3.01e5
c 43 C14 5730
C

INVENT of Chemistry + Physics
4.468e9 4.46e9
4731 4780

3.869e5 3.76e5
152 141

87.74 87.74
2.445e5 2.45e5
7.70e4 7.54e4
1600 1599

22.3 22.6
28.5 28.5
7380 7370

2.406e4 2.41 le4
7.038e8 7.04e8
3.277e4 3.25e4
21.77 21.77
8499 8530
14.40 14.4
432.2 432.2
2.14e6 2.14e6
1.585e5 1.59e5
7339 7900

18.11 18.11
6537 6537
2.341e7 2.34e7

72 68.9
89.99 90
30.0 30.3
2.3e6 2.3e6

1.57e7 1.7e7
leS leS
49.97 55
127 130

6.496e6 6.5e6
2.13e5 2.13e5

3498 3500
2.03e4 2.4e4
1.53e6 1.5e6

29.12 29.1
6.496e4 6.5e4
92 100
8.0e4 7.6e4
3.01e5 3.0le5
5729 5715

function alambdaperiso( index )
C=- 55== 5======__==-=_

c return 'lambda" radioactive decay transformation constant [1/yr]
c
c index = input, integer, index used to quickly identify isotope
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c of interest
c alambdaperiso = output, double precision, transformation constant

c [1/yr]
c

function cipermtuatlOperiso( index)
cc _ _= = = ===… ========= …=======

c return reference isotope inventory in units of [Ci/MTU] for

c representative waste at 10 yr from reactor
c "representative waste" is blend of spent fuel and other HLW

c and is discussed in report:
c
c INVENT: A Module for the Calculation of Radioisotope Inventories

c Software Descritpion, and User Guide. by A.S. Lozano, H. Karimi,

c J.P. Cornelius, R.D. Manteufel, and R.W. Janetzke. 1994.

c CNWRA 94-016.
c
c index = input, integer, index used to quickly identify isotope

c of interest
c cipermtuatlOperiso = output, double precision, reference

c inventory at 10 yr from reactor [Ci/MTU]

c

function amolepermtuatemplaceperiso( index)

c inventory of waste [mole/MTU] at time of emplacement
c time of emplacement is controlled by "setage"

c if setage not called, then default time from reactor to emplacement

cis 26 yr
c
c index = input, integer, index used to quickly identify isotope

c of interest
c amolepermtuatemplaceperiso = output, double precision, reference

c inventory at time of emplacement [mole/MTU]

c default is at 26 yr from reactor if setage not called

c

function cipermtuatemplaceperiso( index)

c inventory of waste [Ci/MTU] at time of emplacement

c time of emplacement is controlled by "setage"
c if setage not called, then default time from reactor to emplacement

c is 26 yr
c
c index = input, integer, index used to quickly identify isotope

c of interest
c cipermtuatemplaceperiso = output, double precision, reference

c inventory at time of emplacement [Ci/MTU]

c default is at 26 yr from reactor if setage not called

c
…== _ = = = c = = = = = = = = = = = = = = = = = = = = _ = =

0
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subroutine newinventdb(
C- -= - _=5=5==

c The USER should never call this subroutine.
c It will be called automatically when invent data is needed
c
c initialize new inventory database
c default age is 26 yr from reactor
c
C= _

function qpermtu( time)

c thermal output of blended HLW, in units of [W/MTU]
c
c time = input, double precision, time after emplacement
c measured in units of [yr]
c
c qpermtu = output, double precision, heat output of waste
c measured in units of [W/MTU]
c
c based on blend of 65% PWR with 42 GWd/MTU burnup
c 35% BWR with 32 GWd/MTU bumup
c
c therefore average bumup is 38.5 GWd/MTU
c
c

_ _S===5==5_55=5S
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C.8 SUBAREA utility module (file=subarea.f)

c subarea utility module
c by Randall D. Manteufel, January 27, 1997

subroutine ssadb( nsa, xy, amtupersa, nwppersa )
____________=_= ======. 5

cC - ~… --==-- = = e=== -==_,

c set (or initialize) entire subarea in database
c this is only called ONCE.
c

c nsa = input, integer, number of subareas in repository
c xy(2,4,nsa) = input, double precision, locations of vertices of
c quadrilateral subareas.
c All measurements in Universal Transverse Mercator (UTM)
c in units of [ml.
c x-direction: UTM Easting [ml
c y-direction: UTM Northing [ml
c amtupersa[nsa] = input, double precision, amount of MTU waste in
c each subarea
c nwppersa[nsa] = input, integer, number of WP in each subarea
c
c

subroutine gnsa( nsa)
c- _______=__ _

c get total number of subareas in database
c
c nsa = input, integer, total number for the subareas
c

subroutine gsarea( isa, area)
c
c get magnitude of area [mA2I of subarea
c
c isa = input, integer, number for the subarea
c area = output, double precision, area of subarea
c in units of [mA2]
c

subroutine gsaxy( isa, xy)

c get vertice locations for subarea number=isa
c
c isa = input, integer, number for the subarea
c xy[2,4] = output, double precision, locations of
c vertices of quadrilateral
c
c == = =_ = _ =_

subroutine gsaxym( isa, xymiddle)

c get location of middle for subarea number=isa
c
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c isa - input, integer, number for the subarea
c xymiddle[2] = output, double precision, location of
c center of quadrilateral
c

subroutine gsamtu( isa, amtupersa)

c get amount of waste [MTUI emplaced in subarea number-isa
c
c isa = input, integer, number for the subarea
c amtupersa = output, double precision, amount of MTU waste in subarea
c

subroutine gsanwp( isa, nwppersa)

c get number of WP emplaced in subarea number-isa
c
c isa = input, integer, number for the subarea
c nwppersa = output, integer, number of WP in subarea
c
c-

subroutine qphitsa( xyp, isa, iflag)
c
c query if point hits subarea
c
c xyp[2] - input, double precision, location of point
c isa = input, integer, number of subarea to be checked
c iflag - output, integer, =1 if point in or on edge of subarea,
c =O if not
c

subroutine qchitsa( xyp, radius, isa, iflag, areainsa)
c
c query if circle hits subarea
c Because circles are small in comparison with subarea, the center of
c the circle must be inside subarea.
c
c xyp[2] = input, double precision, location of center of circle
c radius = input, double precision, radius of circle
c isa = input, integer, number of subarea to be checked
c iflag = output, integer, =1 if hist subarea, =0 if not
c areainsa - output, double precision, area of subarea hit by circle,
c if iflag-1, areainsa = Pi radiusA2
c if iflag=O, areainsa = O.OdO
c
C=5==---=-- - --- =-= --- =_= _ _==

subroutine qlhitsa( xypl, xyp2, isa, iflag, alengthinsa)

c query if line hits subarea
c
c xypl [2] = input, double precision, first point on line
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c xyp2[2] = input, double precision, second point on line

c isa = input, integer, number of subarea to be checked
c iflag = output, integer, -1 if line hits subarea, =0 if not

c alengthinsa = output, double precision, length of line in subarea
c =O.OdO if iflag = 0
c

subroutine linehitline( xyplll, xyp2l1,
& xypll2, xyp2l2, cI, c2)

c determine if lines cross
c

c xyplll(2) = coordinates of Ist end point of Ist line
c xyp2l1(2) = coordinates of 2st end point of Ist line
c xypll2(2) = coordinates of Ist end point of 2st line
c xyp2l2(2) = coordinates of 2st end point of 2st line

c cl = parametrization value for where 1st line is hit by 2nd

c c2 = parametrization value for where 2nd line is hit by 1st

c

subroutine solve2x2( a, b, x)
c =- __ - == =

c solve 2x2 system of equations using Cramer's rule: [A] {x} - {b}

c

c a(2,2) = input, double precision, matrix
c b(2) = input, double precision, right hand side vector

c x(2) = output, double precision, solution vector
c

subroutine checkin( xyp, xy, iflag)

c This subroutine determines whether a point (xyp(l),xyp(2)) is
c inside a given region defined by [x(l),y(l)j,[x(2),y(2)j,
c [x(3),y(3)], and [x(4),y(4)].
c
c xyp[2] = input, double precision, location of point

c xy[2,4] = input, double precision, locations of comers of quadrilateral
c iflag = output, integer, =O if point outside region
c =1 if point inside region
c if point is on edge of box, it will say is inside region

c

double precision function fcnxy( n, i, c, xy)

c
c function used to determine {cl, c2} corrdinates of point {x,y}

c in coordiante system establised by quadrilateral element

c
c n = input, integer, =2
c i= input, integer ={1,2} indicating either x or y
c c(2) = input, double precision, local coordinates in

0
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c system for quad element
c xy(2,5) - input, double precision, global coordinates of
c 1) four points of quadrilateral element, AND
c 2) point for which c-coordinates are being sought
c hence there are 5 {x,y} data
c

subroutine root( n, x, eps, ifail, x2, f, df, fcn, dat,
& mknt, iknt)

c find root of system of equations using Newton-Raphson Iteration
c
c {f({x})} = {0}, where {O}, {x}, anmd {f} are vectors
c
c n = input, integer, number of unknown x's
c x(n) = input/output, double precision, initial guess at root of system
c and on OUTPUT is the solution
c eps = input, double precision, error tolerance, will stop
c iterating if absolute value of each component of f <- eps
c AND if most recent change in each component of x <= eps
c ifail - output, integer, flag indicating failure to converge
c -O if converged
c =1 if failed
c x2(n) = input, double precision, work space
c f(n) - input, double precision, work space
c df(n,n) - input, double precision, work space
c fcn - input, function, function subroutine that can be called
c too evaluate f(x) for specific equation
c used as:
c fcn(n, i, x, dat)
c where n = input, integer, number of unknowns
c i - input, integer, equation to be evaluated
c x(n) = input, double precision, x values
c dat = input, double precision, data passed into fcn
c where root only passes data
c fcn = output, double precision, i-th fcn value
c dat - input, double precision, generic data not used by root bu
c only passed to fcn
c can be any type, integer, double precision, etc
c mknt - input, integer, maximum iterations to find root
c iknt = output, integer, actual number of iterations used to find root
c

subroutine solvenxn( n, a, b, x)

c solve system of linear algebraic equations
c
c [Al {x} {b}
c
c n = input, integer, dimension of arrays
c a(n,n) = input, double precision, matrix
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c b(n) = input, double precision, RHS vector
c x(n) = output, double precision, solution vector
c
c= - ~ -___

subroutine triangle( xl, yl, x2, y2, x3, y3, area)

c This subroutine calculates the area of the triangle bounded by
c the points (xl,yl), (x2,y2), and (x3,y3).
c
c xl,yl,x2,y2,x3,y3 = inputs, double precision, vertices of triangle
c area = output, double precision, area of triangle
c

subroutine quadrilateral(xysaquadarea)

0

c
c
c
c
c

this subroutine calculates the area (quadarea) of a quadrilateral

xysa(2,4) = input, double precision, vertices of quadrilateral
quadarea = output, double precision, area of quadrilateral

0
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C.9 FIND SURFACE ELEVATION utility module (file=findelev.f)

subroutine findelev( xx, yy, ee)

c find elevation of ground surface a UTM coordinates {xx,yy}
c by Randall D. Manteufel, January 27, 1997
C

c xx = input, double precision, UTM Easting coordinate in [m]
c yy = input, double precision, UTM Northing coordinate in [m]
c ee = output, double precision, elevation of ground surface
c in units of [m] above sea level
c
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