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7.1 INTRODUCTION
In the case of a fractured rock medium where the discontinuities play a critical role

in determining the deformation and rigid body motion (Kana et al., 1991; Hsiung et al.,
1992a,b), the distinct element method (DEM) (Cundall and Hart, 1985; Applied Mechanics
Inc., 1985; Itasca, 1992; Cundall et al., 1978; Cundall, 1971; Itasca, 1989; Hart et al., 1988;
Williams and Mustoe, 1987) which uses the discontinuum modeling technique is a rational
method for modeling the medium. In this method, properties of both the joints and the intact
rocks are explicitly modeled. This is in contrast to continuum methods such as finite element
(Zienkiewicz and Morgan, 1983) and finite difference (Forsythe and Wasow, 1960) which,
in most cases, homogenize the properties of joints and intact rock into a pseudocontinuum.
The DEM has two distinguishing features compared to continuum methods: (i) the behavior
of the geologic system is described by both a continuum material description of the intact
rock and a discontinuum material representation for discontinuities (i.e., joints, faults, etc.),
and (ii) the deformation mechanisms include large displacement (i.e., joint slip and
separation) and block rotation. In both the DEM and the continuum methods, the problem
domain is- discretized into a system of solid elements (blocks). However, in the DEM, the
geometry of the blocks is generally constrained by the spacing and orientation of the
discontinuities in the rock mass, thereby allowing blocks to interact with (or disconnect from)
neighboring blocks. The DEM includes not only continuum theory representation for the
blocks but also force-displacement laws which specify forces between blocks and motion law
which specifies motion of each block due to unbalanced forces acting on the block.

Blocks may be treated as rigid or deformable in the DEM. The rigid block
formulation (Cundall, 1971) represents the medium as a set of distinct blocks bounded by the
joints in which the blocks do not change their individual geometries as a result of applied
loading and only the joints can deform (i.e., the blocks move relative to each other) (Itasca,
1989). Consequently, the formulation is most applicable to problems in which behavior of
the system is dominated by discontinuities and where the material elastic properties may be
ignored. Such conditions arise in low-stress environments and/or where the individual blocks
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Figure 7.1. Internal discretization of distinct element block into finite difference triangles.

The DEM is a subclass under the more general heading of discrete element
(discontinuum) methods, which consist mainly of the (i) DEM, (ii) modal method, (iii)
discontinuous deformation analysis method, and (iv) momentum exchange method
(Chowdhury et al., 1992). Programs based on the DEM (e.g., UDEC (Cundall, 1980; Itasca,
1992) and 3DEC (Hart et al., 1988; Itasca, 1990) use an explicit, time-marching scheme to
solve directly the equations of motion. As discussed earlier, bodies may be rigid or
deformable, and the contacts are taken to be deformable. The modal method is similar to the
DEM in the case of rigid bodies, but for deformable bodies, modal superposition is used
(Williams and Mustoe, 1987). In the discontinuous deformation analysis, contacts are rigid
and bodies may be rigid or deformable. The condition of no-interpenetration is achieved by

an iteration scheme. The body deformability is implemented by superposition of strain modes
(Shi and Goodman, 1988). Finally, in the momentum exchange method both contacts and the
bodies are rigid; momentum is exchanged between two contacting bodies during an
instantaneous collision (Hahn, 1988).

Of the four types of discrete element methods identified above, the literature
indicates that only the DEM has made significant progress toward adding thermal and
hydrological capabilities to mechanical analysis capabilities and consequently will be the
method focused on in this chapter. In codes utilizing the DEM (e.g., UDEC), the equations
governing the mechanical, thermal, and hydrologic response are not fully coupled. Rather,
the coupling is achieved within the solution process in which explicit or implicit time
marching is done on one process while the other is held fixed, and vice versa. For

mechanical processes, the governing equations are the equations of motion, while for
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Development of the DEM can be divided into the following three major phases: (i)
modeling of jointed rigid blocks, (ii) modeling of simply deformable discontinua, and
(iii) modeling of fully deformable discontinua. Modeling jointed rigid blocks was originally
proposed in a restricted form by Cundall (1971) which was later generalized by Cundall
(1974) and Cundall et al. (1978). It was developed for low-stress rock situations where
displacement due to joints far exceeds those of the intact rock blocks. The main assumption
in this approach is that the rock is rigid and only the joints can deform. A joint is regarded
as a boundary interaction between two blocks and is not represented as a separate element.
Joint properties may be specified with very general force-displacement relationships which
are possible in both the normal and shear directions. However, the underlying assumption is
that the compressive normal stiffness of a joint is very large compared to the joint shearing
stiffness and the tensile normal stiffness of the joint, i.e., the process of failure is brought
about by joint shearing or tensile separation.

Modeling jointed rigid blocks assumes that the geometry of block boundaries is not
changed by pressure between blocks in the normal direction and that normal force between
blocks is proportional to the linear overlap (Cundall, 1971) between blocks. As a result, this
formulation may not satisfy the compatibility of compression deformation of the two blocks
at the contact point, although deformation at the contact point may be small due to high
compressive normal stiffness of the joint.

Although in this modeling approach there is no limit to the amount of displacement
or rotation allowed for each block, its incremental response calculation is based on the small
incremental displacement within the time step. DEM uses the explicit time discretization and,
thereby, keeps the time step very small; i.e, smaller than some critical value which is a
function of the mass and stiffness of the rock components. However, care should be exercised
because the use of a small time step may not guarantee small displacement within the time
step, especially when elasto-plastic force-displacement relationships are used for joint
properties,

Modeling of simply deformable discontinua is an enhancement over modeling jointed
rigid blocks. Modeling the geologic medium as simply deformable discontinua is suitable for
representing rock systems where the rock matrix behavior, although affecting the mechanics
of the system, does not participate strongly enough for the more complex deformation modes
to contribute much of the overall deformation. This model gives, for example, each two-
dimensional block three degrees of freedom to deform internally, in addition to the three
rigid-body models already associated with each rock block of a jointed rigid block model.
The simplifications embodied in modeling simply deformable discontinua are only concerned
with the number of degrees of freedom associated with rock block deformations. Constitutive
laws of the rock blocks can be completely general and include plasticity and arbitrary
nonlinear behavior.
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A difference equation equivalent to (7.1) can be written as:

g(t4A-P2a (t-A2 F) g (t eA&2) + g(t~ -A2)j4.g (7.3)
At m 2

Note that the damping force in the equation is centered at time t.

Rearranging Eq. (7.3) yields:

2= [a(t./2)(l Cat) + +)t]A/(1 + uAt/2) (7.4)

With velocities stored at the half-timestep point, it is possible to express displacement as:

Uft + ̂ * = u (t) + (t +A t/2)A t (7.5)

Because the force depends on displacement, the force-displacement calculation is done at one
time instant. The acceleration is also given by the force at this time instant (i.e., t+At) and
the mass. Figure 7.2 illustrates the central difference scheme with the order of calculation
indicated by the arrows.

For blocks which are acted upon by several forces as well as gravity, the velocity equations
become:

i(t+t/2) = L(t) ( - ( + + At + aAt/2) (7.6)

where ui = velocity components of centroid in ith direction

E F(') = summation of forces acting on centroid in ith direction

Similiary, the equation of motion for rotation is given by:
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Ui Qah= u,(0 + (a +AV4rAt (7.9)

60 +tA = 0(0 + 6(t+,$ 42)At (7.10)

where e = rotation of block about centroid, and
u, = coordinates of block centroid

Thus, each iteration produces new block positions which generate new contact
forces. Resultant forces and moments are used to calculate linear and angular accelerations
of each block. Block velocities and displacements are determined by integration over
incremental timesteps. The procedure is repeated until a satisfactory state of equilibrium or
mode of failure results.

7.2.1.3 Explicit Solution Procedure
The DEM is based on an explicit solution procedure (Itasca, 1992). "Explicit" refers

to the nature of algebraic equation used in the numerical simulation of the physical system.
In the explicit method, all quantities on one side of all equations are known, and each
equation is simply evaluated to produce the result on the other side of the equation. Explicit
formulations differ from implicit formulations, where unknown quantities exist on both sides
of the equation; implicit formulations require the solution of simultaneous equations by some
technique such as transpose elimination or Gauss elimination.

The explicit formulation relies on the fact that it takes a finite time for effects to
propagate through a system of blocks. The interdependence of variables over a selected time
interval may be neglected if the time interval is small enough for effects to pass between
neighboring blocks at a speed greater than physically possible. In other words, the numerical
procedure is stable when the equations of motion for all blocks become uncoupled by
selecting a time interval between subsequent integration intervals which is smaller than that
required for adjacent blocks to communicate physically. The small timestep is the main
disadvantage of the explicit method. Determination of the required timestep is based on block
masses and stiffnesses present in the problem. An advantage of the explicit method is that,
because matrices are never formed, large displacements and non-linear or post-elastic
behavior are possible with no additional computing effort.

7.2.1.4 Interface Constitutive Relations
The deformability of the discontinuities or interface between blocks and the frictional

characteristics are represented in the DEM by spring-slider systems with prescribed force-
displacement relations which allow evaluation of shear and normal forces between blocks
(Itasca, 1992). In the model, spring-slider systems are located at contact points between
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where To is shear strength of the joint, a,, is normal stress across the joint, C is cohesion,

and O is friction angle. Once T0 is reached, the joint assumes a perfectly plastic deformation.
This equation suggests that the shear strength of a joint is the same in all directions. The joint
shear response is governed by a constant shear stiffness k,

As = k. Au,' (7.16)

where A 7 is incremental shear stress and Au,' is an elastic component of the incremental

shear displacement. Based on Eqs. (7.15) and (7.16), AT becomes zero after the condition
I r I = To is reached, where 7 is the shear stress on the joint. There is also a limiting tensile
strength of the joint. If the tensile stress across the joint exceeds this value, the joint fails in
tension and a,, equals zero.

The Mohr-Coulomb joint model in its basic form does not consider joint wear and
dilation behavior. However, the dilation behavior may be added to the joint behavior (Itasca,
1992). In UDEC, dilation is restricted such that the dilation angle 'p is zero until shear stress
has reached the shear strength of the joint; that is, joint dilation starts after the joint begins
to deform plastically. A constant dilation angle is assumed for joint dilation, which returns
to zero after a critical shear displacement is reached. Mathematically, the relation is (Itasca,
1992):

if [QI < T., then 0I=O (7.17)

and

if IT I = TO and I uI a u,, then 0J=O (7.18)

where u, is the joint shear displacement and uc, is the critical shear displacement. Eq. (7.18)
suggests that joint dilation should continue to increase even during reverse shearing (Itasca,
1992). -

7.2.1.6 Barton-Bandis Model
The Barton-Bandis model was proposed to take into consideration the effect of

various joint material properties as well as applied normal loading on joint deformation and
strength. The nonlinear joint strength criterion can be expressed as (Barton et al., 1985)

To = a,, tan kRC 1og10 ( ) + r] (7.19)

where JRC is joint roughness coefficient, JCS is joint wall compressive strength, and X, is
residual joint friction angle. Attrition of the surface roughness or reduction of the JRC is
represented in a piece-wise linear manner as shown in Figure 7.5. The table in the figure
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reduced from JRCp^, to JRCf. If, at this point, the direction of the shear is reversed, the
initial shear stress required for the joint to be sheared in the opposite direction is controlled
by the JRCf value, following Eq. (7.19), which serves as the maximum JRC in the reverse
direction. In other words, the Barton-Bandis model assumes that the shear strength at the
initiation of shear in the reverse direction is equal to the shear strength right before the
forward shearing stopped. Also, the data in the inset table in Figure 7.5 suggest that joint
wear will stop after the JRCmOb becomes zero. This condition will be reached when the ratio
of the actual shear displacement 5 to the shear displacement BP is greater than 100. Once the
JRC becomes zero, the joint shear essentially resumes the Coulomb model type of behavior.

The Barton-Bandis joint model (Barton et al., 1985) also recognizes the dilation of
joints and suggests that the angle of dilation should be a function of JRC value. The relation
between the JRC and dilation angle ,6 can be expressed in the following form

'p = 0.5 JRC logo (JCSJ (7.21)
a,,

This equation indicates that, as joint surface roughness wears, its angle of dilation decreases.
In other words, the rate of dilation becomes smaller as joint shearing progresses. The dilation
angle will eventually become zero, that is, there will be no further dilation as /5,P becomes
greater than 100. Judging from the nature of Eq. (7.21), 0' is always positive. Joint dilation
will continue to increase, although at a gradually slower rate, even after the direction of shear
has been reversed.

7.2.1.7 Continuously-Yielding Model
Numerical modeling of practical problems may take the joints through rather

complex load paths. Many empirical models only provide the response to simple loading
conditions. More general situations require either interpolation between curves or other
arbitrary assumptions. The Continuously-Yielding model (Cundall and Hart, 1984; Hart et
al., 1988; Itasca, 1992) is intended to simulate the intrinsic mechanism of progressive damage

of the joint under shear. The model provides continuous hysteretic damping for dynamic
simulations.

The response of a joint to normal loading is expressed incrementally as

A 8 =A e& u. (7.22)

where kn is the normal stiffness of the joint, given by kn = an , representing the observed

increase of stiffness with normal stress, where an and en are model parameters. In general,

zero tensile strength is assumed.
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shear strength [after Cundall and Hart (1984)].

4e =(L - 4) exp -!R' | , (7.29)

where u1P is the plastic shear displacement and the plastic shear displacement increment AusP
is given by

AUP = (1 - F)IAuI (7.30)

and 4 is the basic friction angle of the rock surface. R is a material parameter with a
dimension of length that expresses the joint roughness. A large value of R produces slower
reduction of <m and a higher peak. The peak is reached when the bounding strength equals
the shear stress. After the peak, the joint is in the softening region and the value of F
becomes negative.

Based on Eq. (7.28), joint bounding shear strength under a constant normal stress
condition depends solely on the friction angle, 0m. If a joint is sheared in one direction and
its friction angle Am is reduced from its initial value 4,o to Of, then at this point, if the
direction of the shear is reversed, the corresponding bounding shear strength in the reversed
direction, is controlled by the Of. In other words, the Continuously-Yielding model assumes
that the maximum bounding shear strength during reverse shearing is the same as the
bounding shear strength at the end of the forward shearing process.

The formulation of joint dilation angle in the Continuously-Yielding model is
expressed as (Hart et al., 1988)
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A r=XA E8 + 2>Aea (7.35)

where X, and u are the Lame's constants,

I& elj =are the elastic increments of the stress tensor
'ii

AE! = are the incremental strains

Ae, = (Ae11 + Ae22) is the increment of volumetric strain in two dimensions,

and

.ij = Kronecker delta function

7.2.1.9 Calculation Sequence
The calculations performed in the DEM (e.g., UDEC) alternate between application

of a force-displacement law at the contacts and Newton's second law of motion at the blocks.
The force-displacement law is used to find contact forces from displacements. Newton's
second law gives the motion of the blocks resulting from the forces acting on them. If the
blocks are deformable, motion is calculated at the gridpoints of the triangular finite-difference
(constant-strain) elements within the blocks. Then, the application of the block material
constitutive relations gives new stresses within the elements. Figure 7.7 shows schematically
the calculation cycle for the DEM.

This numerical formulation conserves momentum and energy by satisfying Newton's
laws of motion exactly. Although some error may be introduced in the computer programs
by the numerical integration process, this error may be made arbitrarily small by the use of
suitable timesteps.

7.2.2 Hydrologic Behavior
In many cases hydrologic flow through rock masses has been observed both in the

laboratory and field to be fracture dominated (Nitao et al., 1992). As the fractures or
discontinuities in a rock mass will be several orders of magnitude more permeable than the
rock matrix itself, the flow of fluid in a saturated rock mass can be expected to be
concentrated along the discontinuities. Thus, in distinct element formulations it is reasonable
to consider explicitly only fluid flow within the fractures, as is the case with UDEC. Flow
of fluid in an unsaturated rock mass may not be dominated by fractures, depending on the
infiltration, since the matrix suction (potential) would cause the fluid to avoid large
pores/fractures.

Flow in planar rock fractures is idealized as laminar viscous flow between parallel
plates. In this model, the flow rate per unit width, q, is given by
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q=Cas[ (7.36)

C- 1 (7.37)
12 R

where C is the fluid flow joint property which is assumed to remain constant

a is the joint hydraulic aperture

A is the dynamic viscosity of the fluid

ap is the change in pressure across a contact between adjacent domains, and
1 is the length assigned to the contact (see Figure 7.4)

The joint permeability can be defined as K = ga2 where g is the acceleration due

to gravity, v is the kinematic viscosity of the fluid.
The rate of fluid flow thus is assumed to be dependent upon the cubic power of the

aperture. In actual rock fractures, the fracture walls are far from smooth and Eq. (7.36) does
not truly represent the real case. The effect of roughness may cause a reduction in flow from
that predicted using (Eq. 7.36), however, this can be accounted for by applying an empirical
correction factor to Eq. (7.36) to account for fracture roughness (Louis, 1969). Witherspoon
et al. (1980) tested both open and closed joints and concluded that the cubic law is still valid
for the latter, provided that the actual mechanical aperture is used.

7.2.3 Thermal Behavior
Heat transfer can take place through either conduction, convection, or radiation.

Convection can take place within the rock mass via groundwater flow and redistribution due
to gravity, heating, or other mechanisms. This is discussed in more depth is Section 7.3.3.
Convection may also take place from a surface of, for example, a tunnel or waste canister
as a result of air circulation. Thermal radiation heat transfer can be the dominant heat transfer
mechanism from solid surface to solid surface within a spent fuel assembly (Manteufel, 1991)
and perhaps also important from the waste package to the surrounding borehole rock as well
as across tunnel openings (e.g., from hot floor to cool roof) depending on whether the
borehole/tunnel is backfilled or not. Within the rock medium, depending on amount of fluid
movement within the fractures, conductive heat transfer most often dominates. It has been
observed in studies that the existence of fractures can have some effect on conductive heat
transfer through the rock by lowering the thermal conductivity (Sandford et al., 1984).
However, such thermal properties (e.g., thermal conductivity and specific heat), can have a
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if k. and ky are constant. This is the standard two-dimensional heat diffusion equation.

The method suggested by St. John (1985) can be applied to determine the radius of
influence of a single heat source or waste container on rock temperatures as a function of
time in order to determine the size of the area required in a model for heat transfer analysis.
The equation for temperature change at a distance, R., from a decaying point source of initial
strength, Q., is given by Christianson (1979)

AT = Q0 exp(-At) exp(-R./4xt) Re w + O] (7.42)

where i = imaginary number IT
A = thermal constant

Ic = thermal diffusivity

t = time (s)

w(z) = complex error function in which z is the complex argument
Re() = real part of argument

It is seen that the temperature change decays from the point source approximately
proportional to

exp (-R 0
2/4it) (7.43)

St. John (1985) suggested that R 0
2/4xt = 4 is sufficient to ensure a small temperature

change. This expression requires that

R, ' 4VKi (7.44)

where t is time in years.

7.3 COUPLED PROCESSES

The response of a rock mass in a high-level nuclear waste (HLW) geologic
repository, geothermal reservoir, etc. is a coupled phenomenon involving thermal (T),
mechanical (M), hydrological (H), and chemical (C) processes (Wang et al., 1983; Tsang,
1987a,b; 1991; Manteufel et al., 1993). Coupled processes imply that one process affects
another and that rock mass response in a repository environment cannot be predicted by
considering each process independently. The importance of various processes will depend
upon the thermal loading of the repository, the design of the engineered barriers, properties
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-~j = Kronecker delta function

K = bulk modulus (N/m2)

ft = - volumetric thermal expansion coefficient (1/ 0C), and

,AT = temperature change

Note that jg = 3% where a is the linear thermal expansion coefficient.
Equation (7.45) assumes a constant temperature in each triangular zone which is

interpolated from the surrounding gridpoints. The incremental change in stress is added to
the zone stress state prior to application of the constitutive law. The procedure for running
a coupled thermomechanical simulation is shown in Figure 7.8. The fundamental requirement
in performing the simulation is that temperature increases between successive thermal
timesteps cause only "small" out-of-balance forces in blocks. Out-of-balance forces are small
if they do not adversely affect the solution. For nonlinear problems, some experimentation
may be necessary to obtain a sense of what small means in the particular problem being
solved. This is performed by trying different allowable temperature increases when running
the problem.

7.3.2 Two-Way Hydro-Mechanical Analysis for Fluid Flow In Fractured Media
Mechanical processes can affect the flow of fluids in the rock mass by changing the

joint aperture and the bulk porosity of the rock matrix. Changes in aperture, in turn, would
change the permeability of the joints. The change in joint aperture may be due to both normal
and shear displacements of the joints. Shear displacement causes dilation which increases the
joint aperture. The aperture of a joint also increases with the decrease of normal stress acting
on it.

Creation of an opening in the rock mass redistributes the in situ stress field. Stress
concentration around the excavation changes the apertures of the existing joints. Seismic
loading from earthquakes can also change the aperture of the joints. Change in apertures not
only changes the hydraulic conductivities of the rock but may also change the preferential
flow path.

Rock mass may fail due to displacements along the joints. Depending on the strength
of the rock, additional fractures can form which also change the hydraulic conductivities of
the rock mass surrounding the excavations. The method of excavation can create additional
fractures in the surrounding rock. These fractures reduce the load-bearing capacity and
increase the bulk hydraulic conductivities of the rock mass.

The state of stress in a rock mass is coupled to the flow of groundwater. Presence
of fluid in the rock can also change the mechanical properties. In unconfined compression
tests (Olsson and Jones, 1980), saturated samples of Grouse Canyon tuff, a volcanic rock
located at the Nevada Test Site, are 24 percent weaker than dry samples. Presence of water
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Vm (V + VO)/2
For small joint apertures the fluid appears to be a stiff spring, with a stiffness higher

than the typical joint stiffness. In an explicit algorithm, this implies that the mechanical
timestep must be reduced. The fluid timestep, which is calculated by

A tf = min [K 1](4
[Kw 4 K ] (7.47)

where V is the domain volume and the summation of permeability factors K is extended to
all contacts surrounding the domain, is inversely proportional to the bulk modulus and joint
conductivity. For typical joint apertures, fluid timesteps on the order of milliseconds are
obtained. Therefore, this current UDEC algorithm can only be applied to short-duration
simulations.

A new procedure was developed that appears to overcome the difficulties described
in the preceding dicussion. Before presenting this scheme, it is worthwhile to review the
essential characteristics of a fluid-rock system and the particular conditions to be modeled.
The characteristics of a rock-fluid system can be summarized as follows:

(1) There are two distinct difficulties that confront modelers:
(a) the fluid trapped in a joint appears to be very stiff, owing to the small

aperture; and
(b) permeability varies rapidly with changing aperture, owing to the cubic

term in the flow equation.
The two difficulties are separate and can be addressed individually: for
example, if the imposed pressure changes are small compared to the existing
pressures (and rock stresses), then item (b) is unimportant.

(2) It is rock, rather than the fluid, that determines fluid pressure. In a
conventional pipe network, for example, the fluid determines its own pressure,
via the flow and continuity equations. However, a typical rock block is so soft
compared to the fluid trapped in a joint (factors of 103 to 104 are common)
that significant changes in fluid volume hardly affect rock stresses. Since the
rock's normal stresses must balance the fluid pressure in the neighboring
joints, the fluid pressure is determined by the rock stress. It then follows that
spatial variations in rock stress are directly responsible for the direction and
magnitude of flow since flow occurs in response to pressure gradients.

(3) If the interest is in unsteady (but not dynamic) flow; i.e., the model must
accurately capture the transmission delay as pressure fluctuations migrate from
one part of the system to another, then inertial effects or wave propagation
effects can be neglected. We confine our attention to a liquid, such as water,
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Figure 7.9. Transient hydro-mechanical scheme computation algorithm for each fluid cycle.
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Figure 7.10. Transient hydro-mechanical scheme computation algorithm for each relaxation
cycle.
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7.3.3.3 Procedures for Introducing Thermal Convection into UDEC

7.3.3.3.1 Data Structure Modifications
UDEC requires data of different types. A distinction is made between those related

to the blocks: the nodes and corners (nodes at the boundary of the blocks) and those related
to the joints: the contacts (corner/corner c-c: between 2 corners, corner/edge c-e: between
a corner and an edge) and the domains (located between two or more contacts). Figure 7.12
shows the representation of notation used in UDEC (Version 1.8).

In order to discretize Eq. (7.50) through (7.53), the case of a domain defined
between two contacts shall be taken where each contact is defined between two corners (in
the case of contacts of the corner/edge or edge/corner type. An additional corner on the edge
where there is no corner shall be created. To simplify the problem, the domains involving
more than three contacts (areas of intersections between the joints) have (temporarily) been
set aside. Consider a domain, i, of length di, defined by the two contacts K1,i and K2,i where
the hydraulic apertures of the joint are ali and a2,i respectively. The contact K1,i is located
between corners C1,i and C/1 , iwhile K2,i is located between C 2,i and C'2 i(Figure 7-13). For
each domain, i, a heat transfer coefficient hi, a temperature Tif, and a velocity vi equal to the
mean of two velocities calculated in the two sections of the two contacts defining the domain
shall be assigned.

7.3.3.3.2 Assumptions

For introducing thermal convection into UDEC, two assumptions have been made:
- Since it can be assumed that the longitudinal temperature gradient is

low compared with the lateral gradient for fractures whose thicknesses
are small compared with their lengths, the conductive heat transfer
term between the two surfaces AB and CD can be neglected (Figure
7-11). The heat balance expressed in Eq. (7.53) becomes:

=dQt +dQ3 +dQ'3 (7354)

- The convective heat transfer is neglected for domains defined at joint
intersections. This has been assumed because of the very small areas
of those domains.

7.3.3.3.3 Discretization of the Heat Transfer Terms
Discretizing all the terms in the heat balance gives the following expressions:
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Figure 7.13. Discretization of the heat transfer at the interfaces of a domain in UDEC.

~AT{
m Cf Bi = AQ 1, + AQ3,i + (7.59)

When replacing each term by its value, we obtain the expression for the change in the

temperature in a domain, i, during a time step ht:

A7 = [T 2h, (TC + TU + TC/, + TU _f|

pa, C; ~~~~~~~~~~~~~~~(7.60)

( (~~(~'~TA) + T( Vk2 Vk)J]I

The temperature change in a corner related to a domain is given, here for example for corner

C1 i' by the following expression (already introduced into the UDEC code to model forced

convection as a boundary condition):

ATC = h ) - thmi At (7.61)Ij i ~2) TC~j) j

where thmcij is the thermal capacity of the corner C1i given as
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At cond: time step for conductive
calculations in the rock

At conv :time step for the convective
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circulation of the fluid in the fractures

.L

Figure 7.14. Conductive and convection timestep.

C r = 900 J/kg.K,p

f
c =4200 J/kg.K,

a = 10 3 m,

pr= 2760 kg/m3

f= 1000 kg/m3,

v = 2.778x1O-4Pa-s, so v = 2.778xlO07 m 2 /s

The initial temperatures of the rock and fluid are zero. The boundary conditions are shown
in Figure 7.16. A temperature difference of 100 'C and a pressure difference (for the fluid)

of Ap (10 MPa in the base case) are imposed between the left-hand and right-hand edges of
the model.
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Figure 7.16. Model geometry, mesh, and boundary conditions (545 nodes, 1024 elements,
16 domains).

Comparison of Figures 7.17(a) and 7.17(b) clearly shows the importance of thermal
convection: the isotherms are no longer lines perpendicular to the fracture surface, and they
are especially distorted in the vicinity of the fracture. They show the presence of two zones
in the rock:

- a zone of cooling: the fluid circulates, cooling the rock which releases its heat.
- a zone of heating: after flowing over a certain distance, the fluid provides the

rock the heat stored in the first zone.

7.3.3.4.3 Convection Sensitivity to Hydraulic Aperture, Flow Velocity, Fluid Viscosity
The importance of the hydraulic aperture, a, was investigated for four cases (a =

0.5; 1; 1.5; and 2 mm). Figure 7.18a shows the temperature profile in the rock along the
fracture in the different cases, and Figure 7.18b shows that of the fluid circulating along the
fracture.
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Figure 7.19. Discretization with a Finite Difference Scheme (FDS).

MATHEMATICA). This may be caused by the limited lateral dimension
(normal to the fracture) of the rock, between the top and the bottom, where
adiabatic boundary conditions are applied.

7.3.3.5 Estimation of the Importance of the Coupling Between Thermics and
Hydromechanics
In the previous section the consistency of the model for thermo-hydrological

computation was tested. The thermo-hydro-mechanical computation is now realized, allowing
the hydraulic aperture to vary with the block strain.

The computation algorithm is depicted in Figure 7.2 la. After realizing at first
successively a HM computation followed by a T conductive computation, EM computations
(using the steady-state algorithm) and T sequences (using the conductivetconvective algorithm
depicted in Figure 7.15) are alternated.

The realism of THM coupling simulations depends on the alternation number
between HM and T calculations. The effect of thermal sequence duration Dt on the
calculation (Dt is related to the thermal timesteps as follows: Dt = N 1/tcond = NlN 2 4t(onv)

was analyzed. Changing the sequence duration Dt it can be seen in Figure 7.21b that:
- long thermal sequences (up to 1,000 hours) are acceptable for steady-state

analysis,
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Figure 7.21. Estimation of the importance of the coupling between thermics and
hydromechanics.
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Figure 7.24. TMH process in UDEC with the transient HM analysis.

7.3.4.2 Approaches Toward Simplification of Complex Fracture Networks

The difficulty in the DEM arises when explicitly modeling a fractured rock mass

with a very large number of fractures, which exist in more or less a randomly oriented

distribution (i.e., no dominant joint sets exist). Although large numbers of fractures can be

modeled with UDEC, when coupling the mechanical behavior with the thermal and

hydrologic behavior of the system computational times can become exceedingly lengthy and

impractical for standard engineering analyses. Simplifications to the fracture network are thus

necessary in which one attempts to take into account only those fractures that are most

important-which, depending on the approach, could be those fractures that are the longest,

most open, or most connected. The relevance of such simplifications is discussed in the
following paragraphs.

In the case of Bench Mark Test 3 (BMT3), which is discussed in greater depth in

Chapter 12, various modeling teams of DECOVALEX took different DEM approaches to

simplify the 50x50-m domain containing approximately 6580 individual faures. In the case

of one modeling team (NERIS), two distinct geometries were chosen for the UDEC

simulation. For the first one, all the fractures within a 20x20-m window around the origin

of the BMT3 domain were included (Figure 7.25a). In the second model, only fractures with

a hydraulic aperture greater than 3.0 Am within this same subdomain were chosen (Figure

7.25b). The characteristics used for the two calculations are presented in Table 7.1, and the

results obtained from each UDEC analysis are given in Table 7.2. The results in Table 7.2

tend to indicate that the simplification is acceptable far from the gallery, but questionable
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when close to it. Indeed, one can notice the high variation of the flowrate into the gallery or
of the maximum displacement depending on the fracture geometry chosen.

A slightly different simplification approach was taken by one of the other
DECOVALEX modeling teams (CNWRA) in analyzing BMT3 using UDEC. In this
approach, the fracture network was simplified based on fracture length rather than fracture
aperture. Two geometries were analyzed as shown in Figure 7.26. Both cases assumed
vertical symmetry about the vertical z plane, which was somewhat justified by the problem
geometry and random nature of the fracture distribution, resulting in equivalent permeabilites
in both the x and z directions for the entire domain being approximately equal. Case A shown
in Figure 7.26a, consisted of an inner region (0.0S<xl0.O m, -l.Oz<S 10.0 m)
containing all fractures from the original fracture network greater than 2.0 m in length. The
remaining outer region (10.0 xc •25.0 m, 10.0: | z | 25.0 m) shown in Figure 7.26b was
modeled using an equivalent set of uniformly spaced joints to reduce the overall number of
fractures, but still allow hydraulic connectivity between the outer boundaries with specified
fluid pressure and the inner tunnel region. The spacing of the joints within the outer region
was arbitrarily set, however assumptions were made regarding the appropriate aperture to
assign these regularly spaced joints to maintain the same equivalent global permeability in the
x and z directions. For a system of joints with spacing S, the average permeability for an
equivalent continuum can be derived as (Itasca, 1992)

, P,, a 3 (7.67)
12p S

where k = permeability of equivalent continuum (m/s)

PW = density of water (kg/M3)
A = dynamic viscosity (N-s/mi)
a = aperture (m)

Table 7.1. Characteristics of the 2 INERIS models studied for the sequence 2 of BMT3

Model Fracture Number of Number of Number of Number of
aperture Fractures in Gridpoints intersections calculation
threshold the region A with the cycles

I (microns) tunnel

a 0 1,003 19,945 49 8,000,000

b _ 3 564 15,377 21 325,000
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Figure 7.27b. Comparison of normal stresses along horizontal line II (i.e., aryY) for the two
CNWRA UDEC cases after 4 yrs of heating.
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