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ABSTRACT

Physicochemical processes in the near-field region of a high-level waste repository may involve a diverse

set of phenomena including flow of liquid and gas, gaseous diffusion, and chemical reaction of the host

rock with aqueous solutions at elevated temperatures. This report develops some of the formalism for

describing simultaneous multicomponent solute and heat transport in a two-phase system for partially
saturated porous media. Diffusion of gaseous species is described using the Dusty Gas Model which

provides for simultaneous Knudsen and Fickian diffusion in addition to Darcy flow. A new form of the
Dusty Gas Model equations is derived for binary diffusion which separates the total diffusive flux into

segregative and nonsegregative components. Migration of a wetting front is analyzed using the
quasi-stationary state approximation to the Richards' equation. Heat-pipe phenomena are investigated for

both gravity- and capillary-driven reflux of liquid water. An expression for the burnout permeability is

derived for a gravity-driven heat-pipe. Finally an estimate is given for the change in porosity and

permeability due to mineral dissolution which could occur in the region of condensate formation in a
heat-pipe.
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1 INTRODUCTION

1.1 REGULATORY NEED

An important step in assessing the isolation performance of the proposed high-level radioactive

waste (HLW) repository at Yucca Mountain (YM), in southwest Nevada, is the estimation of the

postclosure hydrothermal conditions in the near-field. Recent theoretical studies of near-field
thermohydrologic processes in unsaturated tuff suggest that the dynamics of these hydrothermal conditions
may determine: (i) the minimum time that the waste packages remain dry during boiling conditions and

(ii) the rates of water reflux following return to sub-boiling conditions. These studies have led the U.S.

Department of Energy (DOE) to consider a thermal-loading strategy (Buscheck and Nitao, 1993) that
would have the advantages of:

* Extending the period of radionuclide containment in the engineered barrier system

* Delaying the period of controlled radionuclide release (and transport)

* Potentially reducing the sensitivity of total-system performance to hydrological variability

This thermal loading strategy is referred to as the "hot" or "extended-dry" repository concept. This

strategy has a number of implications regarding the issue of compliance with the Nuclear Regulatory

Commission (NRC) postclosure performance objectives of 10 CFR Part 60 (Nuclear Regulatory

Commission, 1992) and U.S. Environmental Protection Agency (EPA) containment requirements of 40

CFR Part 191 (Environmental Protection Agency, 1992).

With respect to 10 CFR Part 60, the extended-dry concept has implications regarding the two
performance objectives for the engineered barrier system (EBS) stated in 10 CFR 60.113(a)(1):
(i) containment requirement for the HLW packages, and (ii) radionuclide release rate limit from the EBS.
How well the EBS meets the first performance objective greatly depends on the hydrothermal conditions
because the canister corrosion processes are a direct function of the presence of liquid water. Similarly,
meeting the second performance objective will depend on the water flow rates past failed waste packages.

The extended-dry concept could potentially enhance the compliance margin with the current
cumulative radionuclide release requirements set in Table 1-1 of 40 CFR Part 191. A favorable
compliance margin may also exist even if the EPA standard is amended to include a numerical limit for

dose-to-man. Such compliance margins may indeed provide a degree of robustness that reduces the

sensitivity of total-system performance to spatial or temporal variations in the hydrological conditions in
the far field.

While a number of aspects of the extended-dry concept appear beneficial to subsystem and total-

system performance, detailed theoretical and experimental studies of this concept must be performed.
Additional justification for studying near-field thermohydrologic conditions is derived from the fact that

the NRC must be sufficiently knowledgeable about this strategy to conduct effective prelicensing
activities, such as commenting on: (i) the DOE Total-System Performance Assessments (TSPAs) for YM,
(ii) repository and EBS designs, and (iii) thermohydrologic field and laboratory experiments.
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1.2 TECHNICAL OBJECTIVES

The central purpose of this report is to document a detailed review of the theoretical basis of
currently available thermohydrologic computer codes that are being used in evaluations of the
extended-dry concept. Specific topics reviewed include the mathematical models of heat transfer, two-
phase fluid flow, and reactive transport. One aim is to derive the governing equations from the basic
conservation laws of continuum mechanics, established constitutive relations, and thermodynamic
equations of state. In addition, related topics are briefly discussed, such as: (i) the computational aspects
of thermohydrologic codes, (ii) simplifying assumptions aimed at reducing the computational time, (iii)
simple test cases considered useful for code verification and benchmarking, and (iv) methods of estimating
porosity and permeability changes as a function of pore fluid chemistry. All these topics were reviewed
with the intent of understanding the limitations and ranges of applicability of thermohydrologic codes to
unsaturated tuff.

1.3 CONSEDERATIONS OF NEAR-FIELD PHENOMENA

The near-field region of a HLW storage facility is characterized by large perturbations in
temperature, saturation, and chemical reactivity from ambient conditions. In the proposed unsaturated site
at YM, temperatures can reach as high as 100 'C in the presence of liquid water at approximately 1 bar
pressure. For a typical activation energy of 35 kJ mole-l for the kinetic rate constant, this activation
energy implies an increase in the rate constant at 100 'C by approximately a factor of 20 from its value
at 25 "C.

Of particular importance to the longevity of a HLW waste canister is the geochemistry of
near-field groundwater that could potentially come in contact with the container. Depending on the
composition of this fluid, the rate of corrosion and leaching of spent fuel could be greatly accelerated.
Unique to the unsaturated repository design concept is the formation of salts caused by evaporation of
water in the vicinity of waste canisters due to the elevated temperatures. The amount of water that can
be evaporated depends not only on the initial saturation of the pore spaces in the rock adjacent to the
canisters, but also on the flow of water toward the waste packages resulting from capillary forces and
gravity driven flow.

The extent of salt deposition due to evaporation is a function of the ionic strength of the
refluxing fluid as well as the length of time during which evaporation occurs. The greater the amount of
salt deposited, the greater is the possibility for increased concentration of dissolved solids contained in
fluid in the near-field region of the repository after it cools to levels below the boiling point of the salt
solution. It is possible that the composition of the fluid in the near-field could reach levels of brine
compositions for some period of time. Dilution occurs as the near-field becomes resaturated.
Concentration of solutes in the fluid would decrease due to mixing of condensate water vapor with the
ambient groundwater and mineral precipitation, and increase due to evaporation and mineral dissolution.

Formation of salts, such as halite (NaCl), will depend on the amount of chloride available since
it is not contained in the host rock minerals. Because of the high ionic strength solutions that can be
produced by evaporation, it is necessary to take into account activity coefficient corrections on the
concentrations of the solvent and solute species. The deposition of salts is expected to be a complicated
function of repository geometry and the presence or absence of fractures. Deposition of salt will raise the
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boiling point (lower vapor pressure) of the salt solution and could lead to wetting of the repository earlier

than suggested by the DOE analyses of the extended-dry concept.

At present, it is within the realm of powerful, modem computer workstations to perform the

necessary calculations to investigate the effects of liquid evaporation and condensation on the possibility

of brine formation in the near-field region of a HLW repository. Such calculations involve two-phase

fluid transport in a partially saturated porous medium coupled to multicomponent solute transport and

fluid/rock interaction.

1.4 REPORT ORGANIZATION

The work begins with definitions of field variables in various representations of concentration

variables followed by a derivation of the conservation equations for mass and heat including chemical

reactions involving mineral precipitation/dissolution, aqueous complexing reactions, gaseous reactions,

and ion-exchange. Attention is given to the water vapor-liquid phase transition. The next chapter presents

an outline of the dusty gas model for describing gaseous diffusion in a porous medium when the

molecular mean free path of the gas is on the order of or greater than the pore size dimension. Several

relations for the segregative and nonsegregative components of the diffusive flux are derived. This

discussion is restricted, however, to isothermal systems. The following section discusses the Richards'

equation, which describes how transport in a partially saturated porous medium is solved for both

transient and quasi-stationary state conditions using an adaptive gridding technique. The results are

compared for a wetting front penetrating into the YM tuff matrix. Two examples of one-dimensional (iD)

heat pipes are considered with both gravity- and capillary-driven mechanisms of liquid reflux. Finally,

estimates are given for changes in porosity and permeability under far from equilibrium conditions for

dissolution of a tuffaceous host rock. Precipitation of secondary minerals is not considered, however.

1-3



2 MULTICOMPONENT HEAT AND MASS TRANSPORT IN
PARTIALLY SATURATED POROUS MEDIA

This section provides a review of the basic equations used in numerical modeling codes involving heat
and multiphase fluid transport. Emphasis is placed on calculating rates of evaporation and condensation
of water vapor, which are important to describing the near-field environment of a HLW repository under
unsaturated conditions, fluid/rock interaction represented by mineral precipitation/dissolution reactions,
and ion-exchange.

2.1 DEFINITION OF FIELD VARIABLES

The quantitative description of the transport of fluids and their interaction with rocks is based
on a mathematical representation of the real physical system referred to as a continuum. In this theory,
the actual discrete physical system, consisting of aggregates of minerals, interstitial pore spaces, and
fractures, is replaced by a set of interacting continua coexisting at each point in space. Each continuum
represents a different phase of the system corresponding to a mineral, fluid, or gas. In the continuum
representation, the physical variables describing the system, which are discontinuous on a microscopic
scale as a consequence of the granular nature of rocks, are replaced by functions that are continuous on
a macroscopic scale, that is the scale of the representative elemental volume. Such variables include the
porosity, temperature, pressure, aqueous concentrations of solute species, and mineral modal abundances
and composition. These functions defined at each point in space and time are referred to mathematically
as fields. Thus, for example, the temperature T is represented by the function T(r, t) where the vector
r refers to a point in the rock with coordinates (x, y, z). The value of the temperature at the point r is
obtained by averaging the temperature over a representative element volume (REV) centered at r.
Similarly, the porosity, mineral modal abundance, and aqueous concentration are represented by the fields

*(r,t), 0,(rt), and C,(rt), respectively.

A rock consisting of an ensemble of mineral grains and pore spaces is referred to as a porous

medium. The total porosity, +, of the porous medium is defined as the fraction of volume of the rock
made up of pore space or voids. (The total porosity may be connected or disconnected, which would
consist of isolated pores.) To determine the porosity quantitatively, it is necessary to consider a
representative sample of rock that locally typifies the average characteristics of the mineral grain sizes
and pore spaces. This volume is referred to as representative elemental volume. A REV may be the size
of a hand sample collected by a geologist in the field, but it may also be much smaller, perhaps on the
order of tens of mineral grains or larger. For rocks exhibiting patterns such as reaction halos surrounding
fractures, care must be taken to choose the size of the REV smaller than the size of the structure being
observed. The REV should not be too small, however, since then it no longer provides an average
property of the rock. The REV is large compared to the pore volume, but small compared to the
characteristic length scale over which quantities of interest change. These items of interest include
temperature, pressure, solute concentration, mineral modal abundance, and other field variables that
describe the system. The essential feature of a REV is that it characterizes the properties of the system
locally. Covering the entire system with a connected set of REVs provides a global description of the
system. There is no guarantee that a single set of REVs is sufficient to characterize a rock. This
insufficiency is especially true of fractured rocks for which a primary and secondary porosity can be
defined. For such rocks, at least two sets of REVs are needed, one for the fracture system and the other
for the rock matrix. More generally a hierarchial porous medium may require many sets of REVs to be
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properly characterized (multiple continua). It is important to realize that a continuum theory can provide
only a macroscopic description of the properties of rocks and not a microscopic description. This is not
to say that microscopic properties are not important. In some cases, it is the microscopic properties
averaged over a REV that provide values for the macroscopic properties. However, usually such averages
are too difficult to perform mathematically, and we must let nature carry out the average for us. We may
therefore attempt to measure directly the macroscopic properties of a rock, such as its porosity, thereby
providing a phenomenological or empirical description. Even if it is not feasible to predict the values of
the various parameters entering a continuum theory of fluid/rock interaction from fundamental principles,
a phenomenological description can provide a first attempt to model such systems.

Mass conservation equations for energy and mass are referenced to a representative elemental
volume of a porous medium. The volume of the REV, denoted by VREV or simply V, is equal to the sum
of solid volume V5 and void, or pore, volume VP:

VREV = Vs + VP (2-1)

The solid volume is assumed to consist of an aggregate of minerals, each with volume V.. Likewise, the
pore or void space is occupied by a number of fluid phases, each with volume V.. The pore and solid
volumes may be further expressed in terms of the individual phases which occupy them:

P (2-2)
7C

and

V5= EV, (2-3)

where the subscripts n and m denote thefth fluid phase and mth mineral, respectively. The total porosity
* of the porous medium is defined by the ratio of the pore volume to the REV volume

Vp (2-4)

V

The saturation S, giving the fraction of the pore volume occupied by fluid phase it, is defined
by

S = .VW (2-5)
V

x f s t fp

It follows from the definition of S2 that
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S, = 1. (2-6)

2.1.1 Composition of a Phase

The composition of an arbitrary phase, 7t, is specified once the mole numbers n,' of each of

the constituent species is known within each REV. The phase ic may correspond to the aqueous solution,

gas phase, or an individual mineral. Equivalently, the masses mg may be substituted for the mole

numbers. A number of different concentration scales can be used to describe the composition of a phase.

The concentration (molarity) of the ith species in the n th fluid phase is given in the mole-representation
by

I

c, = , (2-7)

and in the mass-representation by

I -m, (2-8)
pi

The two concentration scales are related by the gram formula weight M, of the ith species:

Pi = Mic (2-9)

Additional variables used to describe a multicomponent system are mass and mole fraction. The mass

fraction w' is defined by

Wi C -r, (2-10)

with

m, = * x (2-11)
i

The mole fraction xi' is defined by
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x, (2-12)
xi?no,

with

nh= ,. (2-13)

The mole and mass fractions satisfy the relation

x = =1, (2-14)
Xi i

and, therefore, they are not independent variables. Consequently, mass and mole fractions do not provide
in themselves a complete description of the phase composition. By making use of the relation between

mass mi and mole number nx

1?

n, = i, (2-15)

the mole fraction x,' and mass (weight) fraction wx can be related by the expressions:

wi= M (2-16)

AdMl , Mp, x E Ma N

and

x,== n_ - M= m 1 M[- 1 (2-17)

1nI El W lml El MZ lWI

The intrinsic density of each phase can be expressed alternatively as

_ mg (2-18)
Ps v
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and

0 n. (2-19)

V,

in the mass and mole-number representations, respectively.

2.1.1.1 Molality

A measure of solute concentration of special importance for describing aqueous solutions is the

molality scale. Molality mi, moles of solute per kilogram of solvent, can be represented as

Mi = l (2-20)

mW MIX;l

where the subscript w denotes the solvent, or, alternatively, in terms of weight fractions as

m l= i i (2-21)

MiwW

For a sufficiently dilute solution, X «<x< -1 and

I Xi (2-22)

As the amount of solvent decreases for a fixed number of moles of solute, the molality increases,

eventually approaching infinity as all solvent evaporates. Such a process is caused by evaporation, for

example, and can lead to extremely saline solutions. The molality and molarity concentration scales are
related by the expression

pi 1 (2-23)

For a dilute solution

c piM (2-24)

The molarity concentration scale ci1 is related to the mole fraction scale by the equation

II l i0 X
cl= Pr Pni o xi(2-25)

XfMil n i, M X.i,
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obtained by using the relation

pVI = Mini' (2-26)

For dilute aqueous solutions this expression reduces to

I
cI Xi (2-27)

Summing, Eq. (2-25) over i yields

0

CZ= _ (2-28)
E MAx1

providing a relation between molar and mass density.

2.1.2 Solid Phase

In order to quantitatively describe the characteristics of a porous medium, it is necessary to
introduce a set of descriptive variables specifying the amount and composition of each mineral present
in a REV. There are a number of possibilities for introducing these variables, each with its own
advantages and disadvantages. In the following volume fraction, mass fraction and mass density are
discussed and their relation to each other derived. The variables {(,n}, {x,,, 0}, and (p., 4) defined
below, provide equivalent descriptions of the porous medium matrix.

2.1.2.1 Volume Fraction

The composition of the solid can be represented by the mineral volume fraction O., defined
by

4m = Vm (2-29)
V

Summing over all minerals in the REV yields the relation

S Am vE m S= V = 1- . (2-30)n Vm V
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Thus, the total porosity and mineral volume fractions are not independent. It is sufficient to know the
mineral volume fractions from which the porosity can be computed. Consequently, volume fractions are
a preferred set of variables to describe the composition of a porous medium.

2.1.2.2 Mass Fraction

The relationship between mass fraction and volume fraction can be obtained as follows. The

mass m, of the mth mineral is related to the volume V, occupied by the mineral according to

mm = MmTiVm Em0 (2-31)

where M. denotes the formula weight of the mth mineral in units of mol kg-1, and V,, denotes the

corresponding molar volume with the units cm3 mol-1. The molar volume is related to the intrinsic

mineral density po by the expression

P m - = M (2-32)
Pm MV

According to the definition of mass fraction, it follows that

w = MM Vm (2-33)

Em. "P /'m V.,e

Dividing numerator and denominator of this relation by the volume of the REV, yields the desired
relation in terms of volume fractions:

WM MmnV;;'4m (2-34)
m~ E -- 1,^,m

The mass fraction w, can be expressed in terms of the intrinsic mineral density according to

Wm = P;* (2-35)

Em' Pm/ A/

The inverse relation is given by

41m = ( 1 - *p ) ~m' (PM )WM- (2-36)

E /( P/) 1Wm /
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which involves the porosity of the porous medium. The quantity in the denominator in the equation for

w. is equal to the bulk rock density pr:

S O 4), Ms bulk (2-37)

where m, denotes the total mass of the rock contained in the REV. The bulk density is related to the

intrinsic rock density P, and porosity by the equation

Pslic = - m= V= = p,(1-_ , (2-38)

PS V Vs V

where the intrinsic rock density is defined by

Ps = MS (2-39)

The total porosity is related to the ratio of the bulk and intrinsic rock density by the expression

bulk

p, = 1--Ps-. (2-40)

Ps

From this relation it is possible to determine the total rock porosity from knowledge of both the bulk
density and intrinsic density of the rock.

The mass fraction can be expressed in the equivalent form

0
_P_____ (2-41)

(1 - C)PS

Dividing both sides of Eq. (241) by p°, and summing over m yields an equivalent expression for the
rock density in terms of mass fractions given by

M Wm ° = P 1 (2-42)

As pointed out above, knowing only the mass fractions wm is insufficient information to provide a
complete determination of the mineral volume fractions and thus to completely characterize the solid
composition of the porous medium. In addition, it is necessary to know the porosity of the porous
medium.

The volume fraction can be expressed in terms of the mass fraction and porosity by the inverse
relation
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m =-O (P1 -- ) Wm (243)
Pm

or in terms of the bulk density by the equation

bek

4)m = P Wm (2-44)
Pm

For the situation in which the intrinsic densities p3 are approximately independent of m, it follows that

W m __ (245)

Thus, in this approximation the mass fraction can be directly computed from the mineral volume fractions

and porosity. The condition po-p independent of m implies that p is equal to the density of the rock

according to

0 (2-46)
Pm P : - s P

as follows from Eq. (241).

2.1.2.3 Mass Density of Solids

Mass density, defined as the mass relative to the total solid volume, is related to mass fraction
by

PM = m," = M s = W S p (247)
V, Ms V,

The intrinsic rock density is equal to the sum of the individual mineral mass densities according to the
equation

Ps = Pin (248)

The volume fraction and mass density are related by the intrinsic density po. and the total porosity

according to the expression

Pm 1 __ (249)
PM _ __

1 - 4
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The volume fraction is obtained from the mass density by the inverse relation

Fizz (1 - zl))(Pm) Pm (2-50)

2.1.3 Gas Phase

It is generally possible to assume ideal gas behavior for the gas phase at low (e.g., atmospheric)
pressures, simplifying the calculations compared to real gases. For a mixture of ideal gases with
constituent mole-numbers nj, n2 ,... at temperature T and pressure p, the equation of state is represented
by the relation

V(T,p;n,,n2 ,...,nC) = RT E n, = Vi (2-51)

with

V.= n.V. = gnRT (2-52)
Up

The partial molar volume of an ideal gas is thus given by

Vi =-X (2-53)
Up

and is independent of the particular species i. Alternatively, the equation of state of an ideal gas can be
expressed as:

pV= NRT, (2-54)

where

N i- (2-55)

From this expression, the mole density of the gas is given by

N p (2-56)

V RT

For an ideal gas, the mass density can be expressed, alternatively, in terms of mole or weight fractions
as

P = RTS MIXi = P (2-57)
RT laR ElWW
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It follows that the pure mass density pj is equal to

pi= m - p = pMi (2-58)

Vi RT ni RT

For an ideal gas, the volume fraction b is equal to the mole fraction

V RT = x. (2-59)
V pV N

Consequently, the density of the mixture can be expressed as

P = E XiP = p, iWiPo , (2-60)
i i

where the weight factor fj is equal to

A -1 (2-61)
MiE, WZIW

This expression was given incorrectly by Nitao (1988), who omitted the weight factor fj. However,

examination of the V-TOUGH source code revealed that the correct equation, Eq. (2-61), is used in the
computer program.

Introducing the partial pressure Pi by the equation

piV= n 1RT, (2-62)

the total pressure of an ideal gas mixture is equal to

p =S pi . (2-63)

Accordingly, the mole fraction can be expressed in terms of partial pressures as

xi = n, Pi p'(2-64)

and
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The density of an ideal gas mixture can be expressed in terms of the partial pressures according to the
equation

P = E (2-6

2.2 CONSERVATION EQUATIONS IN A MULTIPHASE SYSTEM

Consider a system consisting of a number of fluid phases denoted by a and chemical
constituents denoted by the subscript i. Each fluid phase is represented by a equation of state V. of the
form:

V, = V,(Tp;nl ,n n (2-67)

in terms of mole-numbers, or equivalently

V, = Vg(Tp;mi ,m;,,m& )i (268)

in terms of masses of the individual constituents.

2.2.1 Chemical Reactions

Reactions of potential importance involving the geochemistry of the near-field environment of
a HLW repository are homogeneous complexing reactions within the aqueous phase; reactions with
minerals and solid compounds in the surrounding host rock, engineered barrier, including waste package
and waste form, and other engineering materials; reactions with 02Og,, C02g), H20, and other
components of air; and formation of H2W) resulting from anaerobic corrosion of the steel waste package.
The reactions are all formulated in terms of a complete set of primary species A>, with aqueous secondary

species As, minerals or solid compounds A. ,and gases Af. The primary species thus represent a set of
independent chemical components. The reactions can thus be expressed in the following general forms
for aqueous species, minerals, and gases:

E vA, --Ai, (i = 1, ... , N (2-69)
j=1
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p vJ,,zAJ-ims (m=, .,Na) (2-70)

j=1

and

S g g,(=,.,N~d *(2-71)

j=1

Here, N., denotes the number of primary species, N.*. the number of aqueous secondary species,N.

the number of minerals, and N. the number of gases. The stoichiometric reaction matrices Vfl, Vj, andvjl

give the number of moles of thejth primary species in one mole of the ith aqueous complex, mth mineral,
and ith gas, respectively. The corresponding rates of reaction, taken as positive for reaction to the right

and negative to the left, are denoted by I;, I., and If, respectively. In the system Na-Cl-H 20, examples

of primary and secondary species are the sets of species (Na+, H+, ClF, H20) and (NaCI, NaOH0 ,
OH-), respectively.

In addition, ion-exchange reactions may take place between the aqueous solution and solid
phases. The possible exchange reactions include exchange between primary and secondary species. The
different possibilities are shown in the Table 2-1. The exchange reactions may take place between primary
species

zjlAj + zjX2A -zA, + z.XA (1 - j'), (2-72)
jZj ii J ZI

primary and secondary species

Zs z.ZA, + , XzA £ zAg + ziz~ (j -i) , (2-73)

and secondary species

zA i + ziXz-A1 z1A,/ + zi/X"Ai (i i')* (2-74)

where solid exchange sites are denoted by the hypothetical species XV. The valence of the Ith species is

denoted by z, . For exchange of a species with valence z, X,' exchange sites are occupied. The respective

exchange rates are denoted by Ij,,I and I,'i. They satisfy the antisymmetry condition

I>, = - Is , (2-75)

with similar relations for Iout and I.,. Describing ion-exchange reactions in the presence of mineral

precipitation and dissolution reactions can become complicated because the surfaces on which exchange
reactions are taking place may be dissolving or forming new layers, for example.

2-13



Table 2-1. Possible exchange reactions involving primary and secondary species

Indices I Species Types

|j' Primary-primary

l___________________ ji Primary-secondary

|i Secondary-secondary

2.2.2 Sources and Sinks

Sources and sinks are provided by the chemical reaction rates I,, I,,, and If, and ion-exchange

rates Il,, Ip, and Iio. The rate of reaction may be surface controlled with the reaction in disequilibrium,
or transport controlled with the reaction representing conditions of local chemical equilibrium. For
transport controlled conditions, additional algebraic relations must be imposed on the system to represent
equilibrium replacing kinetic formulations.

2.2.2.1 Mass Conservation Equations for Reactive Transport

Mass conservation equations for each species - aqueous, mineral, and gas - can be written
taking into account the chemical reactions described above. The transport equations take the following
form for primary species

- (lSic,') + V *J > = - E Vii Ii - E VpM / E V- g

a U Zy I E E Zi la jltj t a i

(2-76)

for aqueous secondary species

" (41sicil + V. X =L + E E Z' SKI, +
a j a i'*i

(2-77)

for gases

a ($SgCig) -i V f* J=g =I (2-78)

and for minerals
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( 1M PM-') = IM (2-79)

For ion-exchanged primary species, the transport equations are given by

a ) u Ift , (2-80)

and for ion-exchanged secondary species by

( g ) S Zj ji + zili, * (2-81)

In these equations, C. represents the concentrations of primary and secondary aqueous species, Cit the

concentration of gaseous species, CJ represents the sorbed concentration of the subscripted species on

sites labeled a:, and Ji represents the flux of the it th species in the ith phase. The form of the flux term

is discussed next.

2.2.2.2 Flux Term

The flux consists of contributions from diffusion and advection represented by Darcy's law. The
Darcy flux (velocity) is given by

qx= kkr (Vp9 + psgz (2-82)

where k denotes the saturated permeability, kx denotes the relative permeability, p, denotes the

pressure, d. represents the viscosity and px the density of phase xr, g denotes the acceleration of

gravity, and f represents a unit vector in the vertical direction. The mass flux resulting from the Darcy
flow field can be expressed in either mass or mole units according to

tP = P 2WB qx s (2-83)

or

Ji C =C IC 2 (2-84)

respectively.

The diffusive flux may take several different forms depending on the phase and the pore
dimensions of the porous medium in question. For the aqueous phase with species-independent diffusion
coefficients and a sufficiently dilute solution, Fick's law may be used in the form

JD = -,DVCi, (2-85)
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where r denotes the tortuosity and D represents the diffusion coefficient in an aqueous solution. This
form becomes inadequate for more concentrated solutions and for the case when species-dependent
diffusion coefficients are important.

2.2.3 Initial and Boundary Conditions

The mass transport equations are subject to initial and boundary conditions. For example, for
a ID porous column of length L, the initial and boundary conditions have the form

Cj(O,t) = C.°, (-82

C (xO) = C;, (2-87)

and

8aj(L~t) = 0 (2-88)
ax

for aqueous species. In addition, the initial solid composition must be specified.

4m(xiO) = (2-89)

and

Cj'(xO) = C , (2-90)J ~~i

for primary species and a similar relation for secondary species

C, (xO) = C, (2-91)

2.2.4 Constitutive Relations

Various constitutive relations must be added to the transport equations to define the reaction
rates for minerals, secondary species, and gases. For minerals, it is usually necessary to assume kinetic
rate expressions, especially at lower temperatures. However, for aqueous complexes and gases, it is
customary to assume conditions of local equilibrium. In this latter case, algebraic relations given by the
corresponding mass action equations supplement the mass conservation equations. The mass action
equations relate the concentrations of secondary species and gases to the concentrations of primary
species. However, it should be noted that for redox reactions, in particular, the local equilibrium
approximation may not be valid.
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2.2.4.1 Aqueous, Mineral, and Gas Equilibria

The mass action equations corresponding to the chemical reactions appearing in Eqs. (2-69),

(2-70), and (2-71) have the following forms for aqueous secondary species:

C,'= (yi)-R K J (yjC) )j (2-92)
j=l

stoichicemetric minerals:

Npd 1V (yj~l 1 (2-93)

j=1l

and gases:

g = (yy, Kg H II ;jyl l , (2-94)

j=1

where y', y4 denote the activity and fugacity coefficients, respectively, of the kth species, and K. K.,

and KfR denotes the respective equilibrium constants for secondary aqueous species, minerals, and gases.

A special case of the latter reactions is the evaporation and condensation of water. The
assumption of local equilibrium implies the algebraic equilibrium constraint at the water-steam saturation
curve given by

1g(T~p) = P1(Tp), (2-95)

where p. and p, denote the chemical potential of the gas and liquid, respectively. This equation simply
specifies the pressure to lie along the saturation curve of pure water:

p, = ps(T), (2-96)

where p,, denotes the saturation pressure.

2.2.5 Reduced Mass Conservation Equations

The mass conservation equations may be simplified by eliminating those reaction rates that are
governed by conditions of local chemical equilibrium. Because the concentrations of species that are
assumed to be in local equilibrium can be computed directly from the concentrations of the primary
species, it is not necessary to know the rates at which these species are formed. For each such species,
there is one chemical reaction and associated rate representing its formation or depletion.
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For conditions of local equilibrium, the reaction rates of secondary species, I,, and gases, if
may be eliminated from the transport equations for primary species by substituting Eqs. (2-77) and (2-78)
into Eq. (2-76), resulting in the equation:

a J+[ 1t+ A) + Sgjg] } + V .(a' + 128) = _j V. I(2-97)

where the generalized concentration Fjx and flux Q7 are defined by

I~ = Cl + aVfici, (2-98)

YFj = g C , (2-99)

and

Qi=J., + V .-J! (2-100)

(g LvjiJ'i, (2-101)

and the ion-exchange concentration 'P' by

oj = S (¢ + S (2-102)

These equations are expressed entirely in terms of the concentrations of primary species alone. Combined
with the mineral mass transfer equations, Eq. (3-79) and the appropriate algebraic equations representing
the mass action equations of the eliminated reaction rates, these equations completely determine the time
evolution of the system. The number of partial differential equations necessary to solve has been reduced
to N,,+N... It should be noted that unlike the concentration Cj, the generalized concentration Yj may
take on positive or negative values.

If certain mineral reactions can be assumed to be in local equilibrium, their reaction rates can
be eliminated from the primary species transport equations and the mineral mass transfer equations
replaced by the corresponding mass action equations. Dividing the set of minerals into reversibly and
irreversibly reacting minerals with
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(2-103)

and eliminating the reversible rates from the primary species transport equations leads to an alternative
form of the primary species conservation equations given by

NZmat Tj i =1 ji i (2-104)

Nix

[ j J ] = vim
mn-l

where the only remaining reaction rates are those corresponding to irreversibly reacting minerals, all
other rates having been eliminated. These equations combined with the mineral mass transfer equations
for irreversibly reacting minerals and the appropriate constitutive relations for reversibly reacting
minerals, completely determine the time evolution of the system. If desired, the eliminated rates of
reaction of the reversible species (aqueous species, gases, and minerals) can be determined by
differentiation after the transport equations have been solved.

The reduction of the primary species transport equations may be taken one step further by
eliminating all mineral reaction rates on the right hand side of Eq. (2-97) by substituting the mineral mass
transfer equations given by Eq. (2-79) for the rates. This substitution results in the partial differential
equation

[S,(Ft + Of) + Sg'FJ'] + E vj.Vm Oin (2-105)

+ v* + 1f] =0,

in which all reaction rates have been eliminated. This form of the primary species transport equations may

offer some numerical advantages compared to the other forms when using operator splitting techniques
in solving these equations in two or three spatial dimensions.

2.2.6 Energy Conservation Single Fluid Phase

2.2.6.1 Energy Conservation Equation

The energy conservation equation has the form:

8 {(1-0) p C~kT + b} S, po uS + V * J = ° (2-106)
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where the heat flux term is given by

J = -YcVT + E hxJn , (2-107)

where ix denotes the effective thermal conductivity of the bulk medium saturated with liquid and gas at
local thermal equilibrium (Nield and Bajany, 1992). In general, the thermal conductivity is a function of

saturation. Note that the enthalpy occurs in the flux term rather than internal energy to account for pV
work in moving the fluid. This equation is based on the assumption that the rock and fluid are in thermal
equilibrium. Internal energy and enthalpy are related by the thermodynamic equation:

hA = U + P . (2-108)
0

pig

2.2.6.2 Sources and Sinks

In general, chemical reactions can contribute to the source of heat in addition to radioactive
waste. However, with the exception of evaporation and condensation of H2 0, contributions from chemical
reactions are expected to be minor by comparison and therefore are not considered firther.

2.2.7 Two-Phase Water-Steam Transport: Evaporation and Condensation

The chemical reaction of primary importance in the near-field environment of a HLW repository
is evaporation and condensation of water vapor described by the reaction

~20 (,) H20(g) * (2-109)

Denoting the rate of this reaction by IH6,, then IE60 > 0 refers to the rate of evaporation and I;o <0,

the rate of liquid condensation.

A mathematical description of evaporation and condensation of water for conditions of local
equilibrium follows directly from the mass and energy conservation equations with no additional
assumptions. The mass and energy conservation equations read for the vapor phase:

O+s P9 + V. =II, (2-110)

the liquid phase:

-10SIp, + V = -I
a~t (2-111)2
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and thermal energy:

a [(1 - +)Cp T + *(pwui+pgug)] (2-112)

+ V. (hJw. + hgJwg)-V-KVT = 0

In addition to these differential equations, the assumption of local equilibrium implies the algebraic
equilibrium constraint at the water-steam saturation curve given by Eq. (3-101). Together, these equations

provide four equations in the four unknowns: p, T, Sg, and JEI,0-

These equations may be simplified by adding Eqs. (2-110) and (2-111) to yield the single
equation

at[<P(SgPw + SIP,)I + V (4 + I= ° (2-113)

This equation coupled with the energy conservation equation gives two equations in the two unknowns

T and Sg, with the pressure fixed at the saturation curve: p1 = p,(T). This is the procedure used by the

computer code V-TOUGH (Nitao, 1990), in which local equilibrium of liquid and vapor is stipulated.
The relation between the independent field variables and the phase state of water is given in Table 2-2.

Once the transport equations have been solved the rate of condensation/evaporation can be
obtained by differentiation:

I;20 =-[ ISLP + V *JW = at SPgW +V* (2-114)

The evaporation rate has the units of kg m- 3 s 1.

A pseudo-kinetic description of condensation and evaporization is also possible in principal. In

this case, the rate IEto is expressed, for example, as

IH0= k[p, -pst(7] ] (2-115)

where k denotes an effective rate constant. The local equilibrium description is retrieved in the limit

k--a. This approach is apparently used in the computer code PORFLOW. However, in this case, the
unknown variables are p, T, and Sg. one more than in the local equilibrium case since pressure is no
longer fixed at the saturation curve, but instead must be solved for.

2.3 SIMPLIFIED SYSTEM: NaCl-H 2 0

It is instructive to write out the mass conservation equations explicitly for the simplified system
NaCl - H20, including precipitation and dissolution of halite. Three chemical reactions are considered:
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Table 2-2. Water-steam phase transition relations

l 1 Pressure-
Temperature Independent Field

Phase(s) Saturation State Relation Variables

Liquid S1=1, SR,=O p_>p__(7 T, P, SI

Gas Sj=O' SSf=j p<ptr(7) T. P. SC

Liquid+gas SI, SZ>O, Sl+Sf= I p=pd(7) T, S

water evaporation and condensation

H2OQ(,) H20(g), (2-116)

aqueous complexing

Na+ + C1 NaC1 0,

and precipitation and dissolution of halite

Na+ + Cl- 1 NaC1(,)

The mass conservation equations for H2 0, Na+, and Cl are given by

a[40(SsP9W + SIow')] + V * (oW9 + J)=°,at

at [+S(Cf + CNaC+°)] + v (NNa + N =0at NaNG + COa=l)]+ VaCN1+

and

a [IS(Cc1- + CNaClO)] + V (Nca- + N~aClo) = NaCiat NaI)=-NC(a)

(2-117)

(2-118)

(2-119)

(2-120)

(2-121)

where JQ' refers to the flux in mass units, and N. denotes the flux represented by mole units. The
equation for the solvent water is coupled to the solute transport equations through the molality of the
sodium and chloride species. For halite, one has the mass transfer equation
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a ~ s) ()(2-122)
at ONaCl,) VNaC )INaCL,) I

giving the amount of halite precipitated or dissolved as a function of time at each point in space.

2.3.1 V-TOUGH

The mass and energy conservation equations solved by V-TOUGH for species water (w), air
(a), and thermal energy have the form:

water:

at[4+(PISIW + pgSgwi )] (2-123)

+ V * (WWF 1 + wwgFg + Ff + F;) = Qw

air:

a [4O(PISI W+ PgS8 Wa )] (2-124)

+ V (w F + wgF, + F.' + F) Qa,

and thermal energy:

[(1 -+4)CmkT + i(pSu, + p 8Sgug)]

+ V. (-K kVT + hF, + hF + hgFf + hagFa) (2-125)

=Qro + hwQw + haQa

In these equations, the various Q-terms represent sources and sinks for the respective species and heat,
and F. denotes the flux of the respective species.

2.3.2 Comparison of V-TOUGH and PORFLOW

There is a discrepancy in the form of the energy balance equation used by different computer
codes. In the code PORFLOW (Runchal and Sagar, 1993), the enthalpy appears in the accumulation term
rather than the internal energy, whereas V-TOUGH uses internal energy. This could result in significant
differences between the two codes. The time derivative of the difference in internal energy and enthalpy
is noted here to be given by:
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4, - Uis)] =t) (2-126)

recalling that

ha = us +pV = +PX (2-127)

For the case that the pressure is the same for all fluid phases, this expression reduces to

a [hiE S, px(h -us] = a (2-128)

The use of enthalpy rather than internal energy in the time-derivative term is seen to affect only the
transient behavior of the system. The internal energy formulation would appear to be the correct form
of the energy balance equation, however.
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3 MULTICOMIPONENT DIFFUSION OF
GAS IN A POROUS MEDIUM

This chapter reviews the dusty gas model (DGM) for gaseous diffusion and presents a derivation of some
of the relevant equations. In particular, an explicit expression is derived for the diffusive flux for a binary
system.

For multicomponent gaseous systems at either low pressure or in small pores, Fick's law of diffusion is
generally inapplicable, and it is necessary to consider a more comprehensive theory that involves Knudsen
diffusion. In such circumstances, the mean free path of a gas molecule is long compared to the size of
a pore. Such a theory is provided by the so-called DGM developed by Mason and coworkers beginning
in the mid-1960s (Mason et al., 1967; Gunn and King, 1969; Cunningham and Williams, 1980; Mason
and Malinauskas, 1983; Thorstenson and Pollock, 1989a, b). The DGM receives its name from the
approach used to describe the solid phase portion of a porous medium as consisting of giant (compared
to the size of a molecule) motionless particles. This theory is based on a first-order perturbation analysis
of the Boltzmann equation. Diffusion can result in both segregation of the diffusing gas molecules, as in
the usual continuum theory of diffusion based on Fick's law, and bulk flow of gas-so-called diffusion
caused advection. The constitutive relations for the flux involve competition between Knudsen diffusion,
continuum or molecular diffusion, and bulk Darcy flow of gas in a porous medium.

An estimate of pore diameters for which Knudsen diffusion is expected to be important is provided by
the Knudsen number defined as the ratio of the molecular mean free path to the pore diameter. The mean

free path X of a gas molecule is defined as

(3-1)
Wan

where a denotes the collision cross section

a = n d 2 (3-2)

with d the diameter of the gas molecules, and n refers to the number density of the gas. For an ideal gas

N NAP (3-3)

V RT

where N is the total number of molecules and NA represents Avogadro's number. The Knudsen number
can be expressed as

Kil A (3-4)

for pore diameter I . The mean free path in air is 6 x 10-6 cm (Vincenti and Kruger, 1965).

Molecular diffusion dominates for Knc1, and Knudsen diffusion for Kns1. Knudsen diffusion may

become important for pore sizes less than a micrometer at atmospheric pressure. Ali et al. (1993) have
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concluded, based on measurements of the effective diffusion coefficient of CO2 gas in Yucca Mountain
tuff, that diffusive transport of CO2 through Topopah Spring tuffs may occur in the transition regime
between Knudsen and molecular diffusion.

Fick's law of diffusion and bulk flow resulting from diffusion (Bird et al., 1960), follow as limiting cases
of the DGM for high ambient pressure and large pore sizes. Numerical computer codes such as
V-TOUGH (Nitao, 1990) and PORFLOW (Runchal and Sagar, 1993) are based on a Fickian formulation
of the diffusive flux combined with Darcy's law. Use of Fick's law for diffusion of gas in porous media
with sufficiently low permeability, however, may underestimate evaporation rates by several orders of
magnitude.

3.1 REFERENCE FRAMES

A fundamental description of diffusion is based on transport relative to a frame of reference
moving with the bulk fluid velocity. For the case of diffusion of solute species in a solvent, such as water
in which the solvent provides a unique bulk fluid velocity, Fick's law is appropriate. However, in the
case of transport of gases, a unique definition of the bulk flow velocity may not exist, and a consistent
definition of diffusion must take this into account. Following Bird, et al. (1960), diffusive transport is
defined relative to the average bulk fluid velocity based on mass, mole-number or volume averages.

Consider a multiphase system with local velocity of the ith species in fluid phase a denoted by

vy". Then the average local velocity of the phase u can be expressed in various ways, depending on the
type of averaging employed (see Table 3-1 for notation). Three distinct average phase velocities may be

defined corresponding to mass, mole-number, and volume averages. The local mass average velocity v:
is defined by:

P _ pi v, (3-5)

PI

the mole-number average velocity by:

v c= ; *i, (3-6)

and the volume average velocity by the expression:

,*, E. V1 sv, (3)
VI VI__
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Table 3-1. Notation for the bulk fluid velocity in different representations of concentration variables

Representation Concentration Fractional Unit Bulk Fluid Velocity

Mass Pi _ _w__VP

Mole-number Cf Xi VC

Volume VI 0iV

In these expressions, po is the mass density, cX is the molar density of phase x , pi is the mass density,

and c1 ' the molar concentration of the ith species in phase 7r. The quantity V. denotes the volume of

a REV of phase x, and Vj' denotes the volume of the ith species in phase n related to the partial molar

volume V by the expression

Vi = n,=Vis * ~~~~~~~(3-8)

Introducing the species flux defined relative to a fixed coordinate system Ff, F', and Ft
defined by

FiP = V,

Fj' = c iv, (3-9)

Fif = VyV

where the superscript designating the phase u is dropped for convenience, the bulk fluid velocities can
be expressed as

VP = l FiP,
pa

V C = - E iF (3-10)
C

VV i

The mole-number and mass average bulk velocities are related by the expression

t = (3-11)

where the factor fAx is given by
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(I Xi Vi (1)(>fMjxiz) (3-12)

El MWxI vI
Z~~- " I E Mr3-2

El MI, wvI

(a Wi Vi ) aM W.

for different representations of mixed, mole-number, and mass, where xi' denotes the mole fraction and

wit denotes the mass fraction. The quantity fs clearly depends on the composition of the fluid phase x.

The volume average bulk velocity can be expressed in the form

va = L K X (3-13)

with

N : -1 it
xi = VM , pi

= pVMM-wi1 (3-14)
= R, V7 Ax,3

3.2 DIFFUSIVE FLUX

The diffusive flux is defined relative to a frame of reference that is at rest with respect to the
local bulk fluid velocity. This definition leads to the following expressions for the diffusive flux
corresponding to the different representations of the bulk velocity:

Ji = Pi (v -vP) = -DpVw,

JC = c1 (v,-vC) = -Dc Vcxi (3-15)

J4 = 4 (vi-v') = -DMVVj,

for mass, mole-number, and volume average bulk flow velocities, where D denotes the diffusion
coefficient which is the same for all representations. In this equation, it is assumed that the diffusion
coefficients are the same for all species for convenience.
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By definition

E jPC.V = 0 (3-16)

Many other representations are possible involving mixed mass, mole, and volume representations (Bird

et al., 1960). All these forms of the diffusive flux are equivalent, and any one may be used to describe

the system completely. To prove this statement, consider the mass and mole-number formulations. It
follows that

J -= F P - wi FI , (3-17)
l

and similarly

Jil = Ffc - x 1S F[ . (3-18)
I

Clearly

FP = MIFIC (3-19)

In addition, multiplying Eq. (3-17) by M, and subtracting Eq. (3-16) yields

MAJiC = +P + pi(VP -VC) (3-20)

Summing over i gives:

MA C= p(vP -vC) (3-21)
i

and the difference in the bulk flow mass and mole-number-based velocities can be expressed as

VP - v' = 1 E M-C (3-22)
Pi

It follows from Eq. (3-19) that Ji can be expressed as

ji= MAJ[ - pi(VP- ) ), (3-23)

= MSsti - W yMied t

Substituting for JIC yields the expression
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Ji= -cD (MivXt-w 1 S M1Vx1 ), (3-24)

= -pDVw,

as follows by differentiating Eq. (2-16) and using Eq. (2-28), for the relation between c and p proving
the desired result.

3.3 DUSTY GAS MODEL

In the DGM, the total flux F of a gas mixture in a porous media is represented as the sum of
two terms: the flux resulting from diffusion and the flux due to viscous forces (Gunn and King, 1969).
For the ith species, the total flux is defined according to the equation

Fi =_cvi=F +F (3-25)

The viscous flux FiV satisfies the relation

F V = xjFv, (3-26)

with F v represented by Darcy's law:

FV = -c k VP= _ kP VP, (3-27)
II RTp

where k represents the permeability of the gas mixture, p the viscosity, and P denotes the total fluid
pressure. The viscous flux is nonsegregative, that is, it acts on all species equally and does not lead to
a separation in concentration of the gas constituents.

According to the DGM, the constitutive relation for the diffusive flux FD, expressed in the
molecular representation of concentration, is given by the equation

-Vc1 = DCF' D- E (XiFjD - x F/') (3-28)

where Dir denotes the Knudsen diffusion coefficient, and DV denotes the continuum diffusion coefficient.
The continuum diffusion coefficient is symmetric:

Di = Djf (3-29)

The diffusive flux may be divided into segregative and nonsegregative contributions:

F = J. + FigN (3-30)
I
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where JI represents the segregative, and FfN the nonsegregative component. The pure diffusive

segregative flux is defined relative to the bulk fluid velocity:

.i = Ci(vi - V C), (3-31)

= Fi - xiF .

It follows that

it = O. (3-32)

The nonsegregative diffusive flux FN is then given by

F3V NXiF,= F -J,

= F/' - (Fi - xiF), (3-33)

= F/' - (Ff - x 1 FD) = XiFD-

The latter relation follows from the nonsegregative nature of the viscous flux. From this relation it
follows that

FiN =FN=FD (34)

i

The total flux F1 is the sum of the segregative pure diffusive flux J.Y, the nonsegregative diffusive flux

FrN, and the viscous Darcy flux Fiv:

Fi = FiD + x1 F V,

= Ji + x 3FN + xFv.

For a multicomponent system, the pure diffusive flux can be calculated from the total fluxes
using the expression

Ji= (xjF, - xiFj) = Fi - xiF

(3-36)

= S (xjFP - x 3FD),

where the latter expression follows because the viscous flux is nonsegregative and therefore cancels out.
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With these relations for the flux, it follows that the bulk fluid velocity has the form

C 1 C (3-37)

I1 FD + IFV

C C

The Darcy velocity is given by the second term on the right hand side of the last expression:

v - IFv= _ k v (3-38)
vDarc - F-P,(

C [L

and a diffusion velocity can be identified with the first term

V = IFD = EN, (3-39)
C C

which is a consequence of the nonsegregative contribution to the diffusive flux. Thus it follows that

VC = CD,9 + Cdi (3 40)

According to this result, it is apparent that it is not correct to set the bulk velocity equal to the Darcy
velocity alone, but an additional term results from diffusive processes. This formulation of diffusion is
independent of the particular representation used, as it must be.

It should be noted that the diffusive flux is not simply given by Fick's law of diffusion. It is a
much more complicated expression that reduces to Fick's law under the appropriate conditions discussed
below, but also provides for bulk fluid motion resulting from diffusion alone. In terms of individual
species fluid velocities, the diffusive flux J1 can be defined as above [see Eq. (3-30)], relative to a

coordinate system moving with the bulk velocity. But it is not possible, in general, to equate J, with
Fick's first law for diffusion as in Eq. (3-15).

The constitutive relations for the diffusive flux can be expressed in terms of the total and

viscous, F. and F1v, by writing

FjD = F 1 - xF , (3-41)

and noting that

FjD - xj FiD xiFj - xjF, (342)

to yield:
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- VC = 1 (F + xi VP) - E D (xF, - xF 1), (3-43)
Di'K RTpi joiD

where the explicit form of the viscous flux given by Eq. (3-27) has been inserted. Summing this
expression over i yields

-VE C,=E FK (3-44)

i * Di

This equation provides the basis for deriving Gramham's law of diffusion (Cunningham and Williams,

1980).

3.3.1 Explicit Form for the Diffusive Flux

Equation (3-28) forms the basis of the DGM applied to a system with walls, such as a porous
medium. To use this equation in conjunction with mass or energy conservation equations, it is necessary

to solve explicitly for the flux Ff . This can be done formally for an N-component system by writing

Eq. (3-28) in the form:

VCi=S1(1 +S X 8 X F~D
D~~ K I Du Du ~~~~(3-45)

where the matrix r. is defined by

rIV = ( 1 + E IV Xoy ~Di (3-46)

Provided the matrix rj is nonsingular, this equation can be inverted to give formally

FiD = _ (r- 1)yvcj. (347)

Although this equation appears to have the form of Fick's law, it is actually very different because of the

dependence of ron the concentration.

3.3.2 Binary Mixture

For a binary mixture, the equations for the DGM simplify greatly. In this case the DGM
constitutive relations for the diffusive flux reduce to
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1 D
-Vc1 = - F,I K

Di

-Vc2 = RKF
D2

- D (x1 F2 - X2 F I),

+ D (xlF2 - X2F1 ))-
D12

(348)

and

(3-49)

These equations coupled with mass conservation equations and Darcy's law for the viscous contribution
to the flux completely determine the evolution of the system. In matrix form, the DGM constitutive
relations become

1 + X2( D D,2)

X2

D12

-xi

D12

01 + X2

(DK Dl2

D)
Fj

D
�F� )

(VC1

'VC2

(3-50)

The determinant of the coefficient matrix is given by

detr = - 1
DKX K

1 +
x2 Dr + XAD2

D, )
(3-51)

For an ideal gas

and it follows that for an isothermal system

P
Ci ='T

(3-52)

Vc = P Vx. + ' VP.
= RT ' RT

In this case, explicitly solving for F1 and F2, yields

(3-53)

D D2 )VP

K I
A1

(3-54)

D12 + XAD2 + x2

and
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Kr 1~~~~~K
FD = D 2 D,2PVx2 + x2 (D12 + D1i)VP (3-55)

RT D12 + X1D2 + x 2Dj'

The total diffusive flux is equal to

D FD +D

1 D 12(Dt -DD)PVx I + [D, 2 +DK2(XiD2 + x2DK)]VP (3-563

RT D12 + XID2x + x 2Di

The pure segregative diffusive flux has the form:

D D

= _- 12 [(x2Dft + x 1D 2nPVx1 + X- D )VP] (357)

x (D 12 + xjD2 + x 2D 1I)

The nonsegregative diffusive flux is proportional to the total diffusive flux

N1 = xl F D (3-58)F1N = x 1 FD.

In the case where one of the gases is stagnant (e.g., F2 =0), a pressure gradient develops in the

absence of any external forces. For the case of ideal gases, the pressure gradient satisfies the equation

+ +D12 + xl + X2 'kP v = _Vx 2 , (3-59)

DI Di D2 DI D2 )L] Dix

with

F 2 = F2 ) + x 2 Fv = O. (3-60)

This equation has been applied by Onal (1987) to the system consisting of carbon dioxide diffusing
through stagnant nitrogen at 25 'C.

3.3.3 Two Limiting Cases

Two limiting cases of the constitutive relations can be identified for large and small pressure

based on the dimensionless ratio D12/D, . The Knudsen diffusion coefficient is independent of pressure,

whereas the continuum diffusion coefficient is inversely proportional to the pressure:
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D, - 1.12P (3-61)

Therefore, the two limiting cases correspond to D 2 <cDfI(P-o) and DlPDf (P-0). To analyze these
limiting areas, it is useful to write the total flux for species 1 and 2 as

and

F1 = - r 1 VC1 + X1 I F +

F2 = -- 1 D Vc2+x2 (1 1 +
l/D2K 1 1lD 2 V 1 +DI2 fD2

1 F ,

1+D '/D J

Il+D 2 I/D12 J

(3-62)

(3-63)

Case (i) Du > Df (P-0 ):

In this case, the flux becomes (free molecular limit):

F1 = -Di Vc 1,

which is just Fick's law with the Knudsen diffusion coefficient.

Case (i) D,2 c Dif(P-o):

In this case, the flux becomes (continuum limit):

F1 = -DI2 Vc1 + xF,

and

F2 = -DI2 Vc2 + x 2 F.

(3-64)

(3-65)

(3-66)

This latter relation has been discussed by Bird et al. (1960) and includes a diffusion-caused advection term
corresponding to the second term on the right hand side resulting in bulk fluid motion caused by
diffusion. Bird et al. (1960) apply these equations to the case where one of the gases is stagnant (e.g.,
F2 =0). The equations then reduce to

F1 = - D 12 VC1 ,

1 -xi

and the bulk velocity in the molecular representation is given by

(3-67)
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V = -F = _F = -- I .(3-68)
c c l1-xi

Fick's law can be retrieved in this case as follows from Eq. (3-56) which becomes for D,2cD,

DUPDx D D K _D2K) P
D P D12= P 12(i-X2 ( 2DVP (3-69)

RT RTTXID 2 K+ x2Dl

For equal Knudsen diffusivities, the pressure gradient term vanishes and Fick's law applies.

3.3.4 Equal Diffusion Coefficients

In this section the special case of equal continuum and Knudsen diffusion coefficients is
considered. Thus, it is assumed that:

Dij = D, (3-70)

and

D1 =DK. (3-71)

The constitutive relations, Eq. (3-42), become

-DVC, = (I+ D . FP + D PVPxF (3-72)

Summing over i gives the result

=_ + kP P (3-73)

RT RTp)

noting that

Vc, = V c = - VP. (3-74)
RT
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Substituting this result back into Eq. (3-72) and solving for F, yields

F -= - - 1 I DK + 1 + D kPvp+ DVcil (375)
i - 1 + D/DD lxLRT DK RTI.L

In this case, the diffusive flux J, is given by

J = DD 'r P VXi (3-76)
D +DK RT

similar to Fick's law, with an effective diffusion coefficient De given by the harmonic mean of the
Knudsen and binary diffusion coefficients

D DDK (3-77)

D+DK

For DeD, De =D, and Fick's law applies with the usual binary diffusion coefficient.
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4 PARTIALLY SATURATED POROUS MEDIA

4.1 RICHARDS' EQUATION

For an incompressible fluid, conservation of mass in a partially saturated porous medium in a

single spatial dimension is expressed by the equation

a (P s,) + a -(Pu) = ° (4-1)

where 4> denotes the porosity, S1 the liquid saturation index, p the density of water, and u the Darcy

velocity defined by

X =g~ose PgCs), (4-2)

where k denotes the absolute permeability, kr denotes the relative permeability, 1i denotes the dynamic

viscosity, p denotes the fluid pressure, and e denotes the angle between the direction of flow and the

vertical. The positive x-axis points downward. The pressure is defined in terms of the hydraulic head h

by the relation

p = pgh, (4-3)

where g denotes the acceleration of gravity. In terms of h and S, the transport equation becomes

a,(SI) - a Kk h ah = 0 (4-4)

referred to as the Richards' (1931) equation, where the hydraulic conductivity K is defined by

K = kpg (4-5)

Introducing the diffusivity D(S,), defined by

D(S1) = Kkr(S1) dS) , (46)

a positive quantity, the transport equation may be cast in the form

a a[I~s](4-7)a(4,) = ax]D(S')

valid for a homogeneous porous medium.
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The transport equation is solved subject to initial and boundary conditions. Several forms are possible.
In terms of the liquid saturation they are given by

S(x,O) = S., (4-8)

and

S(Ot) = SO * (4-9)

The flux boundary condition at the inlet is given by

JO = p UO= PQoX (4-10)

where A denotes the cross-sectional area of the porous medium normal to the direction of flow. Solving
for the pressure gradient yields the condition

(P a = pg cos 0 - ok (4-11)

4.1.1 Van Genuchten Constitutive Relations

Using the van Genuchten model for capillary pressure, saturation S, and capillary head h c are
related by the equation

S(h) = [1 + (ahC)O]_' (4-12)

with

(4-13)

and

S = Si Sr (4-14)
1 S.

where S is referred to as the effective saturation, and S. denotes the residual saturation of the porous
medium. The inverse relation is given by

hC(S) = 1 1 - VP (4-15)
a

The relative permeability is given by
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kr(hc) = {1 - (ahc)pP1 [l + (ahC)h) -'} 2 (4-16)

[1 + (ahc)p]"2

In terms of the effective saturation S, this expression reduces to

kr(S) = S [I - (1 S ) ] .(4-17)

It follows from Eq. (4-15) that eAh C/dS is equal to

dh = 1 (S-I/A -1 (4-18)

and

dik, [1~(i~~AV~ { 1 ()1 S ) [1-( 1 )A]+2 (S-VAI_1))-1} (4-19)

The Topopah Spring unit at YM is characterized roughly by the parameters for the rock matrix and
fracture network given in Table 4-1.

Table 4-1. Permeabilities, porosities, and van Genuchten parameters for the rock matrix and
fracture network characterizing the Topopah Spring unit at Yucca Mountain

I rK(m2) !o! (m_ _) __ x=i-A1 1/ ]

Matrix 1.9x10- 18 0.11 0.00567 1.798 0.443826

Fracture 1.0x 10'1 0.0018 1.2851 4.23 0.763593

4.2 QUASI-STATIONARY STATE TRANSPORT EQUATION

This section investigates the use of the quasi-stationary state approximation for solving the
Richards' equation in the case of a wetting front propagating through a partially saturated porous medium.
The quasi-stationary state transport equation is given by

d [(S)] = 0, (4-20)

in which the transient time derivative term is neglected compared to the other terms in the equation. Time

enters the equation as a parameter specifying the position of the wetting front 1(t). This equation has been

considered by Macey (1959) for various forms of the effective diffusion coefficient D. For the van

Genuchten relations, the effective diffusion coefficient D is given by
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D(S) = - D(S) = a_& [I - (l-S1I )] (Si/A - (421)

4.2.1 Solution to the Quasi-Stationary State Transport Equations

Integrating Eq. (4-20) leads to the expression

D(S) d = -Fo(t), (4-22)

where FO(t) is a (positive) constant of integration, which in this case also depends on the time t.
Integrating this equation with respect to distance gives

so

I(S) = f 1(S')dS' = F0 (t)x (4-23)
S(t)

It follows that if the liquid saturation vanishes at the wetting front 1(t), then

so

Io = fIf(S)S = FO(t)l(t) (4-24)
0

or

Fo(t) =- (4-25)
0 1(t)

Equation (4-23) defines the solution to the quasi-stationary state transport equations provided the wetting
front position 1(t) is known.

A somewhat more elegant alternative approach to solving the quasi-stationary state transport
equation is to introduce the variable y(S) defined by

so

Y(S) = fD(S )dS'. (4-26)
S

In terms of y, the transient transport equation becomes

a y = D[S(y) ] e y (4-27)

The advantage of this representation is that the diffusivity is moved out from under the differentiation
with respect to distance on the right-hand side of the equation. The quasi-stationary state transport
equation is simply:
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d 2y - O (4-28)
dx 2

with the immediate solution

y = ax + b, (4-29)

with a and b constants of integration. From the condition y(O)=O, it follows that b=O. Furthermore,

a = dy = D(S) dS. (4-30)
dx dx

The next step is to determine the position of the wetting front l(t) by the requirement of global mass
conservation.

4.2.2 Global Mass Conservation

The position of the wetting front l(t) in the quasi-stationary state approximation is determined
from the transient transport equation by demanding global mass conservation. Returning to the transient

mass transport equation, Eq. (4-7), and integrating over the entire spatial domain from x=O to x=",
yields

d D(S) K Fo(t) K lo
A f S(x~t)x A = DS _-____ (4-31)
dto 4 A X=° a PIX aPI +1(t)

Writing

dx =_ D(S) = _ D(S)1(t) (4-32)

dS FO(t) IO

by rearranging Eq. (4-22) and using Eq. (4-25), it follows that the left-hand side of the above relation
can be expressed alternatively as

d fSdS = MO dl(t) (4-33)

dt so dS Io dt

where

so

MO = fSb(S)dS. (4-34)
SI

Equating the right-hand sides of Eqs. (4-3 1) and (4-33) yields
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dl 2Ko
dt 1(t)

(4-35)

where

2

'0~
K

acc
(4-36)

Integrating Eq. (4-35) leads to the following expression for the position of the wetting front

1(t) = 2X t .

This result holds only for the case in which gravity is absent.

(4-37)

Substituting Eqs. (4-25), (4-36), and (4-37) into Eq. (4-23), the saturation state S(xt) is then
obtained, at any position x and time t, from the integral equation:

f 1(s')dS - -
S(x-0 ()

IOX
=X-

x 2$Mo K
2W t a£E

(4-38)

In the next section, this relation is evaluated for the case of constant diffusivity
transient solution is known.

for which the exact

4.2.2.1 Pure Diffusion with Constant Diffusivity

For the case of constant diffusivity, the transport equation becomes

G'C = D EC
At af2

(4-39)

This equation has the exact solution

C,,(x,t) = Coerfc( X (440)

for the initial and boundary conditions

CCX(x,O) = 0. (4-41)

and
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Cez (Olt) = C 0 , (442)

respectively. The quasi-stationary state approximation is given by

Cq(xxt) = CO 1 ' (443)

for xd(t), and 0 otherwise. The position of the wetting front l(t) is given by the equation

l(t) = 2Vt . (444)

The quasi-stationary state approximation is only approximately mass conserving as can be seen
by comparing the total mass of liquid in the system obtained at any time t with the exact solution. It
follows that for the exact case

MCX(t) = fC,(xt)dx = 2Co (4-4)
0

On the other hand, it follows that for the quasi-stationary state approximation

W

M, (t) = fC, S(xt) = CoaV-t (4-46)
0

Their ratio is given by

_ = 2 . 1.128, (4-47)

and is independent of time.

4.2.2.2 Advection-Diffusion

A similar comparison can be made for the advection-diffusion equation given by

a (C) = -D E u aC (4-48)

This equation has the well-known analytical solution
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C (x t) = 1 Co erfc( Xt) + eP(p x .)erf X+Jt)]
2 2vDt AD 25t

The quasi-stationary state approximation transport equation is given by

d Ca - dCqw = 0 ,
dx2 dx

(4-49)

(4-50)

with the solution

Cq(xt) = CO

1- ernUPX - I(t) ]

' 1 exl- UI(t)1
~ D]

(4-51)

From the requirement of mass conservation the wetting front l(t) can be shown to obey the integral
equation

1(t)

fdi' I1-UP I - = Ut
ul e l/(tD)- 4

(4-52)

For large t [and l(t)], the second term in the integral can be neglected and the front is given by

I(t) -vt . (4-53)

In the exact case, conservation of total mass yields the expression

Mar(t) = fC(xt)dx,
0

I

= co� W 1
2

+ erfd(V J I + 2 exp- V2t
4D)

(4-54)

+ erf
v riV 0 j
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In the limit t- -, it follows that asymptotically

Em M<=(t) = C 0vt. (4-55)

By contrast, the quasi-stationary state approximation yields the result

1(t)

Mqss(t) = f Cq,(xt)dx

= CO l(I D~ }C01(t)
°(1 - exp [vl(t)ID v - Clt

Therefore, for sufficiently long times, the exact result and quasi-stationary state approximation agree.

4.3 NUMERICAL RESULTS

In this section, a numerical example is presented describing propagation of a wetting front
migrating into a porous medium with an initial saturation of 10 percent. Comparison is made between
the quasi-stationary state approximation and the transient solution for fixed and adaptive grids. These
results are compared with the Philip solution (Philip, 1955). The adaptive grid algorithm used in the
calculations is described in the appendix.

The finite difference form of Richards' equation, Eq. (4-4), for variable grid spacing is written
as the fully backward form:

k+1 k+1 k+1 k+1

k+r hn+1 -h+- kr j2 hX n h-1k+1 k &X.1 -h57
Say, Ss5' K AsVXX, = (7

At 8Xn

for the k + 1 time step, with the finite difference grid defined by the nodal points (xa) , n =0 ,...,N, with

xO = 0 and XN = L with L the total length of the system. The operators A , V, and 5 are defined by:

A x. = x,, I xe, (4-58)

VXA = X - X 1,

8iX. = X I1 - X I (49
= 2 nl-- (4-59)

2 2

=(XX+ - XX1)
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= -1(AX. + VXn) (4-60)

For equal node spacing Ax, it follows that

Ax. = Vx. = 8x, = Ax. (4-61)

This form of the finite difference equation is mass conserving. Thus,

L -S = At (FO-F), (4-62)

where FO and FN denote the flux into and out of the system, respectively, defined by

k+1 k+1

F0 = Akxz 0h ho (4-63)
AxO

k+1 k+1

F = -KkN 1/2 hN+1 hN (4-64)
AxN

Figure 4-1 shows the liquid saturation profile of a wetting front plotted as a function of distance
for an elapsed time of 1 yr as predicted by the quasi-stationary state approximation, adaptive and fixed
grid finite difference solutions, and the exact Philip solution. As can be seen from the figure, the adaptive
grid solution gives much better agreement compared to the fixed grid solution with the Philip solution.
The quasi-stationary state approximation is seen to underestimate the wetting profile. The applicability
of the quasi-stationary state approximation could be improved by adding a boundary layer solution
following the work of Zimmerman and Bodvarsson (1990).
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Figure 4-1. Comparison of the quasi-stationary state approximation with transient solutions based on fixed and variable
grids for a wetting front propagating into a partially saturated porous medium with an initial saturation of 10 percent. Also
shown is the Philip solution. Circles give the positions of the node points used in the calculations for adaptive and fixed
grids, respectively. van Genuchten parameters corresponding to the Yucca Mountain Topopah Spring matrix were used
in the calculations.



5 STEADY-STATE HEAT-PIPE

Of special importance in the near-field region of a HLW repository is the possible formation of

heat-pipes, a thermalhydrologic process in which counterflow of liquid and vapor occurs. At the hot end

of the heat-pipe evaporation of liquid takes place, which condenses at the cold end located some distance

away. Recharge of liquid to the hot end of the pipe may occur by gravity or capillary forces. Because

the evaporation process leaves behind dissolved salts, the heat-pipe could be an important mechanism for

increasing the concentration of aqueous solutions present in the near-field after the repository has cooled
sufficiently for liquid water to become stable.

5.1 GRAVITY-NO CAPILLARY FORCES

Within the heat-pipe region, the temperature-pressure variation with depth is constrained by the

saturation curve of water separating liquid and vapor phases:

T(x) = T.[P,(x)]- (5-1)

The behavior of pressure with depth follows from the steady-state mass and heat transport equations for

the heat-pipe (Iurcotte and Schubert, 1982). Under steady-state conditions, mass conservation is described

by

F, + Fs = p1q, + pgqg = 0, (5-2)

and energy conservation by

h pjq, + hgpgqg = H. (5-3)

where H, a negative quantity if the vertical axis is taken as positive pointing downwards, denotes the heat

entering the heat-pipe from below. The Darcy flux of liquid water and water vapor are given by

q= kk p _g), (5-4)
Z 1s (dx 9)

qg k ( a- PA)

where the relative permeabilities are functions of saturation. Assuming they depend linearly on saturation

yields

k= Si, (5-6)

kg = S= 1 - SI, (5-7)
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assuming that

to + k= 1. (5-8)

These equations provide two independent equations in the two unknowns dp/dx and S1.

The energy conservation equation can be expressed in terms of the latent heat L according to

H = -plq1 L = pgqgL, (5-9)

where

L = - hi = hg,, (5-10)

by making use of the mass conservation equation. The Darcy flux for liquid and vapor then becomes:

H (5-1 1)
q1 H1L

and

qg (5-12)
pL

It follows that the pressure gradient can be expressed in the form:

kp kgpP

d) _ I P l1 (5-13)
dx kip, kk ,

from which the heat flux can be determined as

H = _ Lkk~kpP1 P1 PI 51

ILI )L

As noted by Turcotte and Schubert (1982), for a given permeability a maximum heat flux exists
above which burnout of the heat-pipe occurs. The maximum value occurs at a liquid saturation of
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pips RIPS

S = PUFF, Pl1 8 (5-15)

SI~ ~~9~

at a maximum heat flow rate expressed in terms of the dimensionless quantity r of

r,,, = ( }.2 (5-16)

where

r Hp$ (5-17)
kLgpg(pg P, )

Equating H with the heat produced from a waste canister allows the mininum permeability to be computed

below which burnout of the heat-pipe would occur. For example, for boiling of water at atmospheric

pressure taking the values Lg=1.25x10- 5 Pass, pL=2.84X10-4 Pars, pg=0.598 kg-m-3 ,

pi=103 kg.mM3 , L=2500x 103 J. kg-1 , and g=9.8 m s 2 , burnout occurs at permeabilities below

approximately 10-14 m2 for a heat flux of 10 W m- 2 .

In a HLW repository, for a heat generation rate of 114 kw/acre the corresponding heat-pipe
burnout permeability is approximately 10-12 M2. It should be noted, however, that for a partially

saturated porous medium, capillary forces are expected to dominate over gravity (Udell, 1983).

5.2 GRAVITY AND CAPIARY FORCES

In addition to gravity, the recharge of liquid water can also occur due to capillary effects. This
type of heat pipe has been studied extensively for partially saturated media (Udell, 1983, 1985; Doughty
and Pruess, 1988, 1990) and includes an air component (Doughty and Pruess, 1992). The results are only

briefly summarized here. Incorporating capillary forces leads to the Darcy flux of liquid water and water
vapor given by

q = - p g) (5-18)

= _ p g), (5-19)
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with different pressures pi and P, for the liquid and gas phases, respectively. They are related by the
capillary pressure p,, according to the equation

P" Pi =PC . (5-20)

From conservation of mass and energy it follows that

dpi eilff , pig (5-21)
dx pk,L+

and

dp peH + pg (5-22)
dx p,,M+L pg'

The gradient of the capillary pressure can be expressed as

4P= H Pi + "8 ) (pi Pi_)g . (5-23)dr U pk, pgJ

From this equation, the liquid saturation profile within the heat-pipe region can be obtained by expressing
PC in terms of S1. It follows that for a given functional relation

P,= P'(SI) (5-24)

that

dpe d I dS,1 (5-25)
dz dS, dr

Consequently, the liquid saturation profile within the two-phase heat-pipe zone can be expressed in terms
of the integral

SA1 dp,
f - dS, = -X ~~~~~~~~~~~(5-26)

s, HtL- Psd-

so H L + -At + (pi _ pS)g (52

The temperature profile is obtained from the Kelvin equation for vapor pressure lowering given by

P'C (5-27)

PI = Pde
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combined with the Clasius-Clapeyron equation

A =AS = AH p (5-28)
dT AV T RT

which gives

P.W t P ( - .).] (5-29)

with L = A H. Consequently the temperature in the heat-pipe region is given by

P+ '

71x) Lp= (5-30)

1 RTo I P1
L Pi
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6 ESTIMATING CHANGES IN POROSITY
AND PERMEABILITY

In this section, an attempt is made to estimate the maximum increase in porosity and permeability that

could occur in a system with refluxing fluid that is well-undersaturated chemically with respect to the host

rock minerals. This undersaturation could occur at the condensation region of a stationary heat-pipe, for

example. However, for these results to apply, the heat-pipe would have to remain stationary for a

relatively long time period of hundreds to several thousands of years which, is unlikely. The calculations

presented here do not take into account the possible formation of secondary mineral products that could

reduce the porosity and permeability.

To compute changes in porosity and permeability, it is necessary to calculate the rate at which the

minerals dissolve at the desired temperature, which in this exercise is assumed to be 100 0C, the

maximum temperature that can occur in a partially saturated porous medium at 1-bar pressure. Note,

however, that vapor pressure lowering due to capillary forces could result in substantially higher

temperatures. The mineral dissolution rate involves the kinetic rate constant, mineral surface area, and

chemical saturation state of the mineral in the aqueous solution in which it is reacting. The kinetic rate

constant is given as a function of temperature by the equation

AHI1 1

k(7 = ko Te R T To) (6-1)

TO

where ko denotes the rate constant at temperature To, AH is the enthalpy of activation, and R denotes

the gas constant. The rates of K-feldspar and cristobalite are plotted in Figure 6-1 as a function of

temperature using activation enthalpies of 35.3 and 75.3 LI mol 1, and rate constants of 3 x 10- 16 and

1.58 x 10-18 mol cm-2 sec-1 , respectively. The rate constant for cristobalite is derived from data of

Rimstidt and Barnes (1980) and the K-feldspar data from Helgeson et al. (1984). As can be seen from

the figure, the K-feldspar rate constant increases by approximately 1.3 and cristobalite by 2.75 log units

from 25 to 100 "C.

The maximum change in porosity and permeability can be calculated independently of the fluid flow

velocity by allowing the minerals in the rock to dissolve at the far from equilibrium dissolution rate. It

must be emphasized that this gives the maximum change possible for a given rate constant, and ignores

effects of the chemical saturation state on the dissolution rate, which would act to reduce the rate or even

change its sign. To calculate the dissolution rate, it is necessary to make some assumption regarding the

change in surface area with reaction progress. Fortunately, the final results should not differ greatly (less

than an order of magnitude) for different assumptions made. Clearly in the limit that a mineral grain

completely dissolves, the surface area must vanish. One possible form for the variation of mineral surface

area with dissolution is to assume a two-thirds dependence of the surface area on mineral volume fraction

according to the expression:
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Figure 6-1. Rate constants for K-feldspar and cristobalite plotted as a function of
temperature.

o(4 Mf3 (6-2)

where so and O° denote the initial surface area and volume fraction of the mth mineral. The initial
surface area taken to be proportional to the amount of the mth mineral present and inversely proportional
to the mineral grain size b,, is as follows

SM = am6 (6-3)
bm

where the factor 6 arises from the 6 faces of a cube. For far from equilibrium conditions, the change in
mineral volume fraction at a fixed point in space satisfies the differential equation
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a = Vikms(,0 , 2 (6-4)

where V, denotes the mineral molar volume. This equation has the solution (Helgeson et al., 1984)

,Om (t) = 4)o( 1 ° 1mk 3t (6-5)

The mineral completely dissolves when

0

t = 3- (6-6)
V1k 0

Viks

The time for the mineral volume fraction to change by a factor e denoted by te, is given by

_ 30

t 3¢m (1 - E) (6-7)
Vmkmsm

The quantity t, is plotted in Figure 6-2 as a function of temperature for K-feldspar and cristobalite for

e=0.9, that is, a 10-percent change in mineral volume fraction, using 44:=0.6, *,=0.3, and

s=36,000, s0 =18,000 cm-', that is, one-tenth of a millimeter-sized grain (Vcb=25.74,

Vr = 108.9 cm3 mol- 1). These values are representative of tuff at YM. With these values at 100 0C,

cristobalite takes approximately 2,400 yr and K-feldspar only 75 yr for the volume fraction to change by

10 percent, both well within the time span that a temperature of this magnitude can be maintained in a

HLW repository.

It should be kept in mind that the rate constants and surface areas may be uncertain by orders

of magnitude. It has been observed, for example, that the rate of quartz dissolution can increase by orders

of magnitude with the addition of alkali to the solution (Dove and Crerar, 1990). Therefore the value used

here for cristobalite may be too small, and hence the time for a 10 percent change in volume fraction too

long. However, the measured groundwaters at YM are supersaturated with respect to cristobalite

indicating the presence of a kinetic barrier at 25 'C. Furthermore, it has been tacitly assumed that water

is able to come in contact with the entire surface of a mineral grain. This assumption may be unrealistic,

and water may contact only a tiny fraction of any given grain.

The change in permeability can be estimated from a phenomenological equation of the form

= Kot i4 ) (6-8)
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Figure 6-2. Time required for the volume fractions of K-feldspar and cristobalite to change
by 10 percent plotted as a function of temperature from Eq. (6-7). See text for values of
parameters used in the calculation.

where iKo denotes the initial permeability of the porous medium. This equation represents the permeability
as the porosity raised to some power a. It gives the correct limiting value of the permeability of zero
for zero porosity. But it does not account for the change in permeability resulting from the change in
mineral texture, for example. If the porosity is related to the mineral volume fractions by the usual
equation

Em E4' (6-9)

which leads to the expression

K = (1 < )MJ (6-10)

The volume fractions of K-feldspar and cristobalite are plotted in Figure 6-3 as a function of
temperature for an elapsed time of 1,000 yr. K-feldspar is the first mineral to completely dissolve. The
ratio rc/i is plotted as a function of temperature in Figure 6-4 for different times of 100, 1,000, and
10,000 yr for a rock composed of 60 percent K-feldspar and 30 percent cristobalite with a porosity of
10 percent using the rates and surface areas given above.
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Figure 6-3. Volume fractions of K-feldspar and cristobalite for a tuffaceous rock initially

composed of 60-percent K-feldspar 30-percent cristobalite plotted as a function of

temperature for an elapsed time of 1,000 yr. The same values for the kinetic rate

constants, surface areas are used as in Figure 6-2.
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Figure 6-4. Changes in permeability x:xsr for a rock composed of 60-percent K-feldspar and

30-percent cristobalite plotted as a function of temperature for times of 100, 1,000, and

10,000 yr with a=3. The same values for values for the kinetic rate constants and surface

areas are used as in Figure 6-2.
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The plateau in the permeability curves occurs when K-feldspar completely dissolves. Note that
the largest possible increase in permeability occurs when the porosity is unity, which gives the result

a ~~~~~~~~~(6-11)
Fcie = tefi .gure.

For 4+0 = 0.1I and a = 3, xK/lKo = 1,000, consistent with the figure.

6-6



7 SUMMARY

Mass and energy conservation equations were formulated for multiphase-multicomponent transport in a

partially saturated porous medium. Included in the description were chemical reactions involving mineral

precipitation-dissolution reactions, aqueous complexing, ion pairing, dissociation of water, and adsorption

and ion-exchange. The DGM for transport of gases in low-permeable rocks characterized by molecular

mean free paths comparable to or longer than typical pore size dimensions was reviewed. Explicit

expressions were derived for the segregative and nonsegregative components of the diffusive flux.

Richards' equation was solved for both the transient and the quasi-stationary state solution, and the results

were compared for a wetting front imbibing into an unsaturated tuffaceous rock matrix using parameters

characteristic of the Topopah Spring member of YM. It was found that the position of the wetting front

as predicted by the quasi-stationary state approximation, lagged behind the solution to the full transient

equations. Burnout permeabilities for a LD heat pipe were estimated for gravity driven reflux of liquid.

Finally an estimate was presented for the change in porosity and permeability resulting from reaction of

a dilute aqueous solution with YM tuff at elevated temperatures. Significant changes were possible in time

spans of thousands of years or less.
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ADAPTIVE GRID

To solve the finite difference equations representing advective, diffusive and dispersive mass transport

in the presence of mineral reactions, it is may be necessary to include an adaptive grid to track sharp

reaction fronts. For a given concentration profile C(x) of some species, the problem is to obtain a

distribution of grid points that are "best' adapted to the profile. One equation for determining the

adaptive grid is given by the differential equation (Press et al., 1987, p. 608-611)

dx X0 (A-1)

dq G[x(q)]

where x(q) denotes the position of the qth grid point, with q= 1,..., N, and the constant X0 is fixed by

the normalization condition

L

X= f G(x)dx, (A-2)
N0

where L refers to the length of the system. The function G(x) is referred to as the grid-weighting function

and controls the density of grid points over the length of the system. The normalization condition ensures

that the grid points are distributed over the full length L. A geometrical interpretation of the weight

function can be obtained by noting that the area under the G(x) curve between any two neighboring grid

points is constant

| G(x)dx = xo (A-3)
zq- 1

Thus, the smaller G(x) throughout an interval, the greater is the grid spacing.

There are many possible prescriptions for G(x). Several expressions are given below. One involves the

logarithmic derivative of the function C:

G(x) = 1 +1 d InC (A4)

The quantity A gives the background density of grid points and 8 controls their distribution for a given

function C(x). The quantity a is a positive exponent usually taken less than one. It follows that

L

X= = 1 + 1 Id In C| ad (A-5)

assuming
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A L (A-6)
N

Another possibility involves the first, second, or higher derivatives of C, for example
Therefore, Xo0 :1.

Gg(X) = 4 + ±(duc)2 , (A-7)
A 2

or a combination thereof

I () = + 1 d 2C 2 (A-8)
A2 61 dx 6

2 dx)

A.1 NUMERICAL IMPLEMENTATION

Integrating the differential equation Eq. (A-1) for the adaptive grid location yields an integral
equation for determining the position of the adaptive grid point x(q):

I L

fG(x)dx = q fG(x)dx. (A-9)
0 N 0

To implement the adaptive gridding algorithm numerically, note that C(x) is known only approximately
and therefore also G(x) and X0. The scale factor XO is determined by numerically integrating the gridding
function over the x-axis:

L N

Xo= f fG(x)dx E (G. + G. 1 ) (x. -x.-) (A-10)
N0 2N=1

To evaluate the integral on the left-hand side of Eq. (A-9), note that it may be expressed in the form:

4qg)

f G(x)dx = W. + f 4 9)G(x)dx, (A-1)

where W,, denotes the partial sum over the gridding function
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W = fG(x)dx 1 -E (GI+G 1G ) (X,-X,1_) (A-12)

and where x(q) satisfies the inequality:

x,, x(q)sx.+1

The coordinate xn is determined by the requirement that

£34.1

W..1 = G(x)dx > qx0x (A-14)

0

a necessary and sufficient condition for Eq. (A-13) to hold.

The integral appearing in the second term on the right-hand side of Eq. (A-11) may be evaluated

by linearly interpolating the function G. Writing

x(q) 1

f G(x)dx = -{G(x3 ) + G [x(q)] } [x(q) - x](A-1
I~~~

and interpolating to obtain the value for G[x(q)] according to the expression

G[x(q)] - G(x,) + G l -G [x(q) - x.], (A-16)
xA+ -Xx

yields the following quadratic expression for the adapted grid point x(q):

x(q) = x,, + 2 (-B + B 2_- 4AC), (A-17)
2A

where

A = G+1 Gm (A-18)

x, - x,

B = 2G 3 . (A-19)

and
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C = 2(W -- qX()- (A-20)

This result is only useful if A * 0. Otherwise G is approximately constant in the neighborhood of x, and
a simpler procedure is possible. In this case,

x(q)

f G(x)dx = G(x3) [x(q)-x 3 ] , (A-21)
xX

and

x(q)= x, + (qX0 - Wn) (A-22)

Once a new gridding of the concentration profile is obtained, it may be necessary to refine the gridding
by iteration. The transient transport equations are solved on the new grid, but without taking a new time
step. With the newly obtained solution, the grid is re-calculated, and this process is repeated until the grid
becomes stable.

The disadvantage of any adaptive gridding scheme is the necessity to interpolate the solution
from one time step to the next resulting from the changing grid. As a consequence, if the spatial
separation of grid points becomes too large, mass will no longer be conserved in spite of the mass
conserving property of the finite difference scheme. Therefore, it is essential that over the region in which
the solution is changing, the grid spacing be kept sufficiently small to ensure that interpolation errors are
kept to a minimum.
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