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ABSTRACT

This report presents a suite of plausible methods and tools necessary for the realistic modeling and
analysis of the complex, heterogeneous flow and transport processes anticipated or hypothesized to occur
in the far-field of the proposed high-level waste (HLW) repository at Yucca Mountain, Nevada. More
specifically, a possible methodology to study and assess the variability in model parameters and the effect
of this variability on various performance measures is discussed. In this study, the detailed evaluation of
flow and advection-dispersion of solute in unsaturated, heterogeneous porous media is simulated to
understand transport processes in the far-field of a two-layer, faulted system analogous, in some respects,
to Yucca Mountain, Nevada.
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EXECUTIVE SUMMARY

The technical objective of the “Stochastic Analysis of Unsaturated Flow and Transport” Research Project,
hereafter called Stochastic Project, is to provide and document the methods and tools necessary for
realistic modeling and analysis of the complex, heterogeneous flow and transport processes anticipated
or hypothesized to occur in the far-field of the proposed high-level waste (HLW) repository at Yucca
Mountain, Nevada. These models and analyses will be necessary to predict the performance of the overall
system (10 CFR 60.112), the Geologic Setting (10 CFR 60.113), and to evaluate compliance with siting
criteria (10 CFR 60.122). The spatial variability of many processes and parameters affecting the
long-term behavior of the flow system at the scale of the Yucca Mountain site is poorly known. More
specifically, there is a lack of acceptable hydrogeologic parameters, theories, and conceptual and
mathematical models that are considered applicable or computationally feasible for the conditions
prevailing at Yucca Mountain. Even if such models are developed, there will be a variety of fundamental
questions regarding their applicability over the spatial scales of the subregional and regional hydrologic
systems. Moreover, some uncertainty will always remain in the value of hydrogeologic parameters
because only a limited amount of data can be collected.

The Stochastic Project aims to address issues related to the quantitative characterization of large-scale
flow and transport in unsaturated, highly fractured, heterogeneous rock. Information, methodologies, and
numerical tools developed within this project will be used to support specific portions of the License
Application Review Plan (LARP). Parameter heterogeneity effects on flow and transport at a scale similar
to that of Yucca Mountain provide knowledge relevant to the Description of the Individual Systems and
Characteristics of the Site (Sections 3.1.1, 3.1.2, and 3.1.3 of the LARP). Similarly, detailed numerical
analyses of the flow processes occurring in highly fractured, heterogeneous rock provide the necessary
framework for the development of the LARP specifically related to favorable hydrogeological conditions
(Sections 3.2.2.3, and 3.2.2.4) and potentially adverse hydrogeological conditions (Sections 3.2.2.9,
3.2.2.11, 3.2.2.12, and 3.3.4.2). More specifically, review plans that deal with “Assessment of
Compliance with the Groundwater Travel Time (GWTT) Performance Objective” and “Potentially
Adverse Condition: Perched Water Bodies” have been judged to require a Type 5 review, and thus
require independent research to resolve the following key technical uncertainties (KTUs): (i) uncertainty
in evaluation of the potential for formation of future perched water bodies at Yucca Mountain,
(ii) uncertainty in developing a unique conceptual groundwater flow model that is representative of the
Yucca Mountain flow system, and (iii) uncertainties associated with determining characterization

parameters.

Stochastic theory-based approaches provide a suitable platform to address issues related to the quantitative
characterization of large-scale flow and transport in unsaturated, highly fractured, heterogeneous rock.
Recent research demonstrating the applicability of stochastic theory approaches for addressing geologic
uncertainty evaluation in a regulatory environment includes, but is not limited to, the work of Rautman
and Treadway (1991), Rautman and Robey (1993), Tidwell et al. (1993), Robey (1993), Nichols and
Freshley (1993). These approaches allow one to study and assess the variability in model parameters and
the effect of the variability on various performance measures, such as GWTT. Tools to apply stochastic
methods in the form of numerical models and executive codes, are being developed to examine
compliance with the GWTT performance objective.

In this study, the detailed evaluation of flow and advection-dispersion of solute in unsaturated
heterogeneous porous media is simulated to understand transport processes in the far-field of a two-layer
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system analogous, in some respects, to Yucca Mountain, Nevada, the site of the proposed HLW
repository. Generation and subsequent analysis of flow fields obeying basic constitutive and conservation
laws in complex geologic media and an assessment of the impact of the flow field on solute transport is
performed with the executive numerical code named Stochastic Analysis of Unsaturated FLow And
Transport (SUFLAT) (Bagtzoglou et al., 1994a).

SUFLAT can be used to conduct large-scale, stochastic flow and transport simulations in order to assess
uncertainty in GWTT estimates due to variability in hydrogeologic properties. The executive numerical
code SUFLAT is capable of: (i) stochastically generating all appropriate three-dimensional (3D),
cross-correlated hydrogeologic property fields using the Turning Bands Method (TBM) (Tompson et al.,
1987a), as incorporated in the code MKPROP; (ii) solving the flow problem using the numerical code
BIGFLOW (Ababou and Bagtzoglou, 1993); (iii) post-processing all flow results in order to calculate flux
and velocity fields using the numerical code FLUX; and (iv) conducting particle transport simulations
with SLIM (Tompson et al., 1987b; Bagtzoglou et al., 1991). The particle tracking method of SLIM is
also used to study the impact of the complex flow fields (associated with highly heterogeneous hydraulic
properties) on the distribution of solute undergoing advection and local dispersion. The evolution of the
ensemble mean and variance of the concentration field is shown. All four of these activities are conducted
in a repeated-realization (Monte Carlo) mode and independently of each other.

The Stochastic Project has produced two final reports. The first addressed the issue of effective hydraulic
property calculations for unsaturated, fractured rock. A methodology was introduced, and advocated in
the work of Bagtzoglou et al. (1994b), to lump the effects of fractures and matrix heterogeneity into
spatially variable effective continuum parameters. This second of two final reports addresses the issue of
large-scale flow and transport in unsaturated, heterogeneous media and presents one possible methodology
for the assessment of the effects of model parameter variability on various performance measures, such
as GWTT. It is organized as follows. Chapter 1 constitutes an introduction to various stochastic methods
of unsaturated flow and transport. It continues with a description and a discussion of the Monte Carlo
approach, the method of choice for uncertainty propagation in the present work. Chapter 2 presents the
SUFLAT numerical code and discusses, in some detail: (i) generation of random hydraulic property
fields, (ii) solution of the unsaturated flow problem, and (iii) solution of the transport problem with
particle methods. Chapter 3 is a description of the specific flow and transport problem, tackled in the
present work. Chapters 4 and 5 present results of flow and transport simulations with, or without, the
presence of faulting under purely advective, or advective-dispersive, conditions for a heterogeneous
two-layered system. Finally, Chapter 6 of this report summarizes the findings and presents some
conclusions.

The primary findings of this study are: The interface between hydraulically distinct layers behaves, in
general, as a capillary barrier, even in the presence of strong intra-layer heterogeneity. Associated with
the capillary barrier is the existence of very strong, lateral flow velocities (in the order of 10 mm/yr).
The integrity of this capillary barrier, however, is breached in a very localized fashion. The locations of
the capillary barrier breaching regions depend greatly on the nature of the heterogeneity of the porous
medium and are closely related to the range of suction-based crossing points in the unsaturated
conductivity curves. The flow system behaves very differently in the presence of a persistent
discontinuity, such as a fault zone. The effects of the fault on the flow system are prevalent to a region
of at least 100 m around the fault zone. Furthermore, even though some recirculatory flow patterns are
perceptible, the flow is pretty much focused through the fault zone (velocities in the order of 10° mm/yr).
This work demonstrated that stochastic approaches can be readily used to infer the likelihood of perched
zone development. It was found that only 20 percent of our flow simulations exhibited characteristics
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associated with potential perched zone formation. The need to account for large variations in
concentrations in the assessment of contaminant transport predictions is emphasized. This effort
demonstrated that matrix-flow models lead to large travel times. However, these travel times are
associated with large uncertainties.
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1 STOCHASTIC METHODS OF FLOW AND TRANSPORT

1.1 HETEROGENEITY AND STOCHASTIC SIMULATION:
SOME PREVIOUS WORK

In recent years, these is an increasing awareness that the spatial variability of porous medium
properties has a significant impact on flow and transport within the medium. As an example, the saturated
hydraulic conductivity of porous materials can exhibit a coefficient of variation in the range of 90 to 240
percent (Harr, 1987) and routinely varies by five or six orders of magnitude at a site (Freeze, 1975).
Although other porous medium properties, such as porosity and compressibility are also variable, their
degree of fluctuation is much less than that for hydraulic conductivity; consequently, hydraulic
conductivity variation receives the most attention. Material variability translates to variability in
corresponding hydraulic behavior, directly affecting the predictions of flow and transport in porous
media. The irregularity and randomness of the aquifer skeleton makes a fully deterministic description
of the solute transport phenomenon impossible; thus, arguably the best approach is to consider all possible
displacements and their associated probabilities (Uffink, 1986). The performance assessment models,
currently used, do not resolve small-scale variability which according to Pruess and Tsang (1994)
“invariably lead[s] to localized ponding of water, and will cause water flow to be channelized....”

A useful representation of natural porous media involves a grid of macroscopic elements in
which the value of the hydraulic conductivity is defined by frequency distributions (Freeze, 1975). A
large number of investigators proposed a lognormal probability density function for hydraulic
conductivity, and a fair number of measurements supports this proposition (Freeze, 1975). Based on this
distribution, the expression for the hydraulic conductivity is given as:

K = exp(o, R, + py) (1-1)

where p, and oy are the mean and standard deviation of InK, and R, is a random number taken from
the zero-mean, unit variance normal distribution M(0,1). Depending on the porous medium, K can range
from 10~% to 10° m/day in various materials. Values for the standard deviation, oy, range typically

between 0.6 and 2.2 (Gelhar, 1986). Willardson and Hurst (1965), however, reported values of o, up
to 5.5 for some Imperial Valley, California soils.

As a preliminary, some definitions are now presented. Let Y(x) denote the value of a random
spatial variable, and let ( ) denote the expectation operator. A weakly stationary process is usually
assumed to govern the behavior of such a random variable. Processes of this type have: (i) a constant first
moment (mean) over the domain, independent of location x:

> = (12
and (ii) a constant second moment (autocovariance) given by:
<(Y(x1) - "Y)(Y fe) - “Y)> = COVy (x,,1,) (1)

over the domain, which depends not upon the location of the two points x,, and x, considered, but only
upon the separation vector or lag, givenby £ = x,-x,. That is:
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rp) = w){Te) - w)> = cov, &) (1-4)

where £ is the lag vector. By definition, COV, (0) is the variance oi. When the autocovariance depends
upon the locations of the two variables, the process is called nonhomogeneous. If it is unaffected by the
direction of the vector connecting these two points, the process is called isotropic. The semivariogram,
defined by (Gémez-Hernandez and Gorelick, 1989) as:

1,(£) = Cov (0) - cov ¢) (1-5)

is sometimes encountered, particularly when discussing kriging, a best linear unbiased estimate (BLUE)
interpolator for weakly stationary fields (de Marsily, 1986). For an isotropic exponential covariance
function, the correlation length is the distance at which the correlation between two points has been

reduced by a factor of Euler’s number, e. In a more general sense, the correlation length, A, is the
characteristic length over which variations of the log hydraulic conductivity are strongly correlated with

each other (Figure 1-1). Depending on the porous medium, A can range from 0.1 m to greater than
1,000 m (Gelhar and Axness, 1983). Most hydrogeologic properties are actually non-stationary. For
example, porosity and permeability are often found to decrease with depth. Hoeksema and Kitanidis
(1985) compiled and analyzed statistics of aquifer transmissivities, and found that the presumed stationary
correlation structure of porous formations is not well defined for certain sites and/or for certain scales
of observation. Since no satisfactory theory to deal with such variables is available, the assumption of
weak stationarity is typically made. It should also be noted that in the case of normally distributed
properties, weak stationarity is equivalent to strong (or strict) stationarity.

Warren and Price (1961) were the first to use a stochastic model of flow through porous media.
They studied the effects of three-dimensional (3D) heterogeneities on flow across a cube. Their approach
assumed that the hydraulic conductivity was lognormally distributed with a small variance and that it was
spatially uncorrelated. The major weakness of this study was the lack of spatial correlation. More
recently, a large number of studies on solute transport in saturated porous media have been reported.
Dagan (1987), interpreting the experimental results from various test sites, suggested that it is the
effective longitudinal dispersivity that dominates the spread of the solute body around its center of mass.
This macrodispersivity, associated with the field scale, is much larger than the pore-scale dispersion.
Dagan employed a Lagrangian representation, allowing a solute particle to move along a flow line. The
total displacement of a particle is decomposed into convection by the mean velocity, convection by the
velocity fluctuation, and a “Brownian motion” component (Dagan, 1987). Gelhar and Axness (1983) and
Gelhar (1986) developed a perturbation-based spectral approach to obtain explicit analytical results for
the head variance, effective hydraulic conductivity, and macrodispersivity. They reported that, in isotropic
media, the longitudinal dispersivity, A, increases directly with the variance of the log hydraulic
conductivity as follows:

11‘72’ 2 33 F’YT a

where A is the correlation length in the direction of the mean flow,a; and a, are the longitudinal and

2 2
a, = 4 —a, - 2 [1+fi’] (1-6)

transverse dispersivities, respectively, and y is the ratio of the effective conductivity to the geometric
mean of the conductivity, given by:
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Figure 1-1. Spatial variation of the log hydraulic conductivity. Dotted lines represents the mean or trend behavior (Adapted from
Tompson et al., 1987b).




2
Y = exp [%’] (1-7)

The macrodispersivity estimate given by Eq. (1-6) is identical to Dagan (1984) when y=1. It has also
been shown that for large-length scales, macrodispersion eventually becomes insensitive to the local
dispersivity, making the models of dispersion in porous media nonempirical (Chin, 1989).

Tang and Pinder (1977) used a semianalytical approach in which the medium parameters are
split into a mean and a perturbed part. The governing partial differential equation is then solved using
perturbation theory without relying on Monte Carlo analysis. A limitation of this method is that it can
treat only linearized equations with relatively low degrees of uncertainty. The effects of macroscopic
dispersion were simulated for uniform heterogeneous porous media subjected to one-dimensional (1D)
flow by Schwartz (1977), who used idealized media consisting of low-conductivity obstacles within a
higher-conductivity host medium. Schwartz found that when these inclusions are not arranged in a
statistically homogeneous fashion, a unique dispersivity could not be defined. Moreover, dispersivity
values decreased with decreasing conductivity contrast and regularization of the porous material structure.

Numerical work of a similar nature was performed by Smith and Schwartz (1980). In their
effort, the macroscopic dispersion is attributed to spatial heterogeneities in hydraulic conductivity. The
hydraulic conductivity field used in their work was generated as a two-dimensional (2D), spatially
autocorrelated, first-order, nearest-neighbor stochastic process. Analyzing the behavior of tracer particles
advected through this statistically homogeneous conductivity field, Smith and Schwartz (1980) concluded
that constant dispersivity values could not be obtained. Chu et al. (1987) concluded that contaminant
transport predictions are more sensitive to accurate estimation of transmissivity than to dispersivity
estimation. An alternate mathematical method for solving the stochastic transport problem employs an
ensemble approach that emphasizes the dispersion process and its direct relation to the spatial variation
of flow velocity. Simmons (1982) performed such an analysis in 1D. The flow velocity is decomposed
into a mean and a perturbed part:

Vi) =ul)+al (1-8)

where ( z(x) }=0. Then, assuming that the velocity fluctuation is weakly stationary with a known
covariance function, solute transport solutions can be computed in a straightforward manner.

Stochastic analyses of heterogeneous porous media have been extended to treat unsaturated flows
by Yeh et al. (1985a,b,c) who modeled 3D steady infiltration under the assumption of a lognormally
distributed saturated hydraulic conductivity. Other notable efforts are the works of Mantoglou and Gelhar
(1985; 1987a,b,c) and Polmann et al. (1988). More recently, Unlii et al. (1990) conducted Monte Carlo
numerical experiments to study the stochastic behavior of the 1D unsteady unsaturated flow. The saturated
hydraulic conductivity was assumed to be lognormal and to be derived from a statistically homogeneous
random field correlated in space via an isotropic exponential function. Finally, a series of simulations of
unsaturated flow and conservative transport in a heterogeneous soil at the Las Cruces trench site in New
Mexico was presented in the work of Rockhold (1993).

The moments of solute concentration are often calculated, since they are useful in interpreting
transport simulation results. The global moments of the concentration serve as physically meaningful
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descriptions of solute plume behavior. They are also quite easy to compute. Therefore, moment analysis
is a popular and useful tool in the analysis of stochastic behavior. In Cartesian coordinates, the zeroth

moment (Mooo) measures the total mass contained in the plume, the first moment (Mm) measures the
mean location of the plume in the x direction, and the second moment (Mzoo) measures the spreading of

the plume about its mean position in the x direction. The moments of mass in the fluid phase of a porous
medium of infinite extent can be defined as (Freyberg, 1986):

Myl = [ 7 [ [ T ne ryadetyst dx dy dz (19)

where ¢{x,y,z,?) is the concentration field and » is the porosity. The coordinates of the center of mass
of the plume, which are functions of time, are given by:

X = M100
[ Mooo
M

};c - 010 (1_10)
MOOO
Z = MOOl
[ Mom

The mean velocity vector is, then, written as:
d
Vg = [tV vl = g2 To2T) (-1

Freyberg (1986) and Giiven et al. (1984) applied the moment method of Aris and defined the 2D
(vertically-averaged) effective longitudinal dispersion coefficient, D,z as:

_1df2 -
D, +D, = 55(0"‘) (1-12)
where D_ is the effective molecular diffusion coefficient for the porous medium (assumed to be zero in

their works), and the macroscopically uniform flow is along the x direction. The variance (c:,)of the
depth-averaged concentration is:

2
2o My My (1-13)
” M000 MOOO

The rate of change of the mean particle position equals the mean longitudinal velocity, in
contrast to the particle position variance which depends on the size of the input zone (Valocchi, 1990).
In realistic field problems, overall spreading of a reactive solute plume will result from both
nonequilibrium and macrodispersive processes (Valocchi and Quinodoz, 1989). Consequently, for linear
kinetics, the overall longitudinal plume variance is given by:
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o} =Ko +Hg? (1-14)

where Koi represents the impact of kinetics on the longitudinal variance of the plume and ”0,2,

represents the variance due to the spatial heterogeneity of the hydraulic conductivity field.

Numerical simulations of the motion of inert solutes in 2D random lognormal conductivity fields
have been conducted by Salandin and Rinaldo (1990). They employed a finite element model to solve the
flow equation for each realization of the conductivity field and a particle-tracking method to solve the
transport equation. They used a range of lognormal variance of conductivity from 0.2 to 2.0, and
concluded that Dagan’s linear theory may yield acceptable results even in high degrees of heterogeneity.
Similar analyses were conducted by Bellin et al. (1992), who discuss the results of numerical simulations
of dispersion in 2D heterogeneous porous formations.

Typically, modelers of field-scale problems restrict the problem to include a certain number of
homogeneous zones which they treat as having constant hydraulic conductivities on either a node or an
element basis. Since nature seldom abides by this assumption, model solutions tend to exhibit an average
behavior on a scale larger than the scale of local variabilities. Thus, modelers using large grids may need
to consider the effects of averaging behavior of the type described above. In one such formulation, Naff
(1990) lumped the average variability in the concentration field into a global dispersive flux. Naff claimed
that, even if the resulting stochastic process is not strictly ergodic, inferences about how the concentration
is expected to behave can be made without sacrificing accuracy.

In assessing feasibility of waste disposal schemes in geologic media, the ultimate concern is the
possible exposure of human beings to toxic substances. This requires estimating contaminant
concentrations. The premise that the heterogeneity of the advective pathways will influence the assessment
of the solute transport is unambiguously clear from results of large-scale solute transport experiments.
In these experiments, hundreds of point measurements of concentrations were taken to construct 3D
snapshots of contaminant plumes in the saturated zone at the Borden site in Canada (Freyberg, 1986;
Sudicky, 1986), the Cape-Cod site in Massachusetts (LeBlanc et al., 1991; Garabedian et al., 1991), and
at the Columbus site in Mississippi (Boggs et al., 1992; Adams and Gelhar, 1992). These large-scale
experiments document the enhanced (compared to the laboratory scale) mass flux associated with transport
in 3D varying hydraulic conductivity fields, and the concomitant complex 3D spatial distributions of
solute concentration. The few large-scale experiments in unsaturated porous media (e.g., Butters and
Jury, 1989) show that the features of enhanced mass transport and rugged concentration distributions are
common to both the saturated and unsaturated zones.

An approach similar to the works of Salandin and Rinaldo (1990) and Bellin et al. (1992) is
followed in the present work. Stochastic realizations of hydraulic property fields will be obtained,
ultimately providing a stochastic velocity field which advects and disperses particles released at a point.
This approach, also known as geostatistical simulation (Journel, 1989; Journel and Alabert, 1989;
Rautman and Treadway, 1991), provides a powerful technique for quantifying the uncertainty associated
with numerical representations of geological processes. Gotway (1994) has also advocated the power of
stochastic simulation in association with nuclear waste site performance assessments. Under this approach,
uncertainty in the site description is propagated through the performance assessment models and produces
uncertainty in the modeled output (Rautman and Robey, 1994).



1.2 THE MONTE CARLO APPROACH

In various performance assessment methodologies, parameter uncertainty is treated by
propagating the uncertainty via model calculations in order to identify the effects of uncertainty in model
output (€.g., some performance measure). Extensive reviews of methods for the propagation of parameter
uncertainty through models are given by Kozak et al. (1993), Zimmerman et al. (1990), and Gutjahr and
Bras (1993). One limitation, perhaps the most important one, of stochastic models is that they are often
based on some form of perturbation analysis which assumes negligible or small input variances (Gutjahr,
1992). However, Dagan (1985) and Gutjahr (1984) showed that perturbation techniques are applicable
in certain cases even for large variances. Alternative methods, based on the limit-state formulation, have
been explored by Wu et al. (1993) and showed that they can reach convergence in approximately 10
percent of the iterations required by the Monte Carlo approach. It should be noted, however, that in their
analyses Wu et al. (1993) assumed a very modest coefficient of variation of 0.5 for all material
properties.

According to Zimmerman et al. (1990), there are five important reasons for using Monte Carlo
analysis in parameter uncertainty propagation: (i) it facilitates consistent propagation of uncertainties; (ii)
it can be applied to a series of linked models, such as cascaded vaults or layered geologic media; (iii) it
does not require extensive modifications to existing numerical codes; (iv) it is capable of handling large
uncertainties in the input variable parameter space; and (v) it is appropriate for use in association with
nonlinear models. Hopmans et al. (1988) classify the Monte Carlo approach as particularly attractive,
since no stationarity assumptions are required.

Under the Monte Carlo framework, the quantity of interest (e.g., one of the hydraulic properties
of the natural system) is considered to be a regionalized variable that is exhibiting spatially correlated or
uncorrelated variability. Thus, it is dealt with by using a probabilistic framework consisting of an
ensemble of realizations of equal probability. This ensemble of realizations constitutes a set of
equally-likely representations of nature, the one and only true, being unknown, realization (Follin, 1992).
Applications of Monte Carlo simulations to study the effect of heterogeneity on flow through
naturally-occurring porous media were first used by Warren and Price (1961). Since then, numerous
efforts have applied Monte Carlo techniques for parameter uncertainty propagation. Notable efforts
include, but are not limited to, the works of Freeze (1975), Smith and Freeze (1979a,b), Clifton et al.
(1985), Sagar and Clifton (1985), and Bonano et al. (1989). Recently, Nichols and Freshley (1993)
conducted Monte Carlo numerical simulations of 1D unsaturated flow in the Calico Hills nonwelded
zeolitic layer at Yucca Mountain, Nevada.

Monte Carlo analysis is criticized as being unrealistically excessive in its computational
requirements. This is especially true in the case of variably saturated flow whereby a large number of
internal nonlinear iterations are required for each time step. However, Monte Carlo analyses are
becoming increasingly more attractive, especially since computing costs are dropping dramatically. As
a result, the justifiable concerns regarding the feasibility of Monte Carlo analyses of variably saturated
flow and transport are diminishing (Kozak et al., 1993). Furthermore, according to Rautman and Flint
(1992), “layering corresponding to some degree of geologic subdivision almost certainly would be
retained as the logical representation of known deterministic geologic processes.” Having decoupled the
generation of hydraulic property fields from one layer to the rest renders the computational requirements
of Monte Carlo analysis of less importance, since information regarding the layering serves as a very
strong type of conditioning or constraining of the parameter space. This implies that if Monte Carlo
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analyses were to be conducted without the incorporation of any geological information (e.g.,
stratigraphy), the parameter sampling space would have to be drastically greater than in the case where
such information is incorporated. The incorporation of cross-correlation algorithms for the generation of
hydraulic properties, as it will be discussed in detail later, provides another very important and drastic
form of conditioning. The end product of both forms of conditioning is that the parameter sampling space
is drastically reduced, thereby limiting the need for extensive searches. Finally, prior experience with
Monte Carlo analysis of groundwater travel time seems to indicate that there is very little, if any,
statistically significant difference in the results obtained with 50 and 500 conditional simulations (Bonano
et al., 1989).
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2 THE STOCHASTIC ANALYSIS OF UNSATURATED FLOW AND
TRANSPORT EXECUTIVE SUITE OF NUMERICAL CODES

A description of the executive numerical code SUFLAT is presented in this chapter. SUFLAT can be
used in the conduct of large-scale, stochastic flow and transport simulations in order to assess uncertainty
in performance measures, such as the GWTT estimates, as manifested by variability in hydrogeologic
parameters. The executive numerical code SUFLAT is capable of: (i) stochastically generating all
appropriate 3D cross-correlated hydrogeologic property fields using the Turning Bands Method (TBM)
as incorporated in the module MKPROP, (ii) solving the flow problem using the numerical code
BIGFLOW, (iii) post-processing all flow results in order to calculate flux and velocity fields using the
module FLUX, and (iv) conducting particle transport simulations with the code SLIM. All four of these
activities are conducted in a repeated realization (Monte Carlo) mode. A schematic flowchart of SUFLAT
is depicted in Figure 2-1.

In this schematic, all links between the numerical modules are identified, together with a variety of data
files associated with the inputs and/or outputs of SUFLAT. In the next sections, a detailed description
of the three main components of SUFLAT is presented. These sections deal with: (i) random field
generation, (ii) solution of the flow problem, and (iii) solution of the transport problem. Some material
on the theoretical background of the methods involved is presented, followed with discussions justifying
the selection of particular conceptual models. For example, a discussion is presented on: (i) the issue of
preferring particle methods for the conduct of solute transport simulations; (ii) the use of the exponential
covariance model which some researchers consider physically meaningless; and (iii) the role of sub-scale
heterogeneity (e.g., micro-fracturing) and its numerical representation as a nugget effect, closely related
to a dispersion process in the solute transport context.

2.1 RANDOM HYDRAULIC CONDUCTIVITY FIELD GENERATION

Monte Carlo simulations of stochastic transport require that sample fields of log-conductivity
be developed. Numerous methods of random field generation exist and have been applied successfully.

Smith and Schwartz (1980) assume that hydraulic conductivity, K, is lognormally distributed. Then, the
nearest-neighbor autoregressive relation was given by:
)+ (¥, + Y

ij+1

+ Y,

i+l

);' = ax(yv

i-1j

) + €. (2-1)

y

where Y, is a random variable equal to In K, are autoregressive parameters expressing the degree

of spatial dependence of Y;; on its two neighbors in the x and y direction, respectively; and €; is a white
noise-like normal random variable uncorrelated in space. If a = o, the material is classified as
stochastically isotropic. Unlii et al. (1990) used a modified version of the nearest-neighbor model to
generate the second-order stationary soil hydraulic properties for a 1D study of flow in unsaturated soils.
Unfortunately, it is difficult to ensure that any specific autocovariance function is reproduced using the
nearest-neighbor approach (Tompson et al., 1987a). Clifton and Neuman (1982), and more recently Jones
(1990), performed Monte Carlo analysis for flow in random 2D aquifers. The variates of the
log-transmissivity for each simulation were generated using a method based on the decomposition of the
covariance matrix of ¥. Introduced by Matalas (1967), the decomposition method is convenient only if
the field to be generated is small, the computer being used has very large memory, or the covariance
matrix is sparse (i.e., the covariance is zero for most values of the lag vector). Given the autocovariance
function, the Fourier transform can be applied to obtain the spectrum of the autocovariance. Random
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fields can be constructed from the spectral properties of the autocovariance and then transformed from
Fourier to physical space. Multidimensional Fourier transforms are often used to accomplish this task.
Other methods include, but are not limited to, the sequential Gaussian simulation algorithm (Deutsch and
Journel, 1992; Rosenblatt, 1952) and the stochastic indicator techniques (Journel, 1983; Rautman and
Robey, 1994).

Another method, employed in this work, is the TBM. A thorough description of the method is
given by Mantoglou and Wilson (1982) and by Tompson et al. (1987a, 1989). Assuming the field to be
simulated is second-order stationary, a series of 1D simulations along numerous lines is performed. These
simulations use a uni-dimensional covariance function corresponding to the actual 2D or 3D behavior.
Once the series of simulations is completed, a weighted sum of the corresponding line process values
results in the stochastic field at each point of interest (Mantoglou and Wilson, 1982; Tompson et al.,
1989; Tompson and Gelhar, 1990). The computer program developed by Tompson et al. (1987a) is used

to generate 3D stochastic realizations of the conductivity field, assuming a lognormal X distribution and
an exponentially-decaying spatial covariance structure. The line processes are generated using the method
of Shinozuka and Jan (1972).

Kapoor (1993) presented an analysis of data collected on a cross-bedded sandstone from a
carboniferous outcrop in Scotland on a 1 mm scale. In the analysis by Kapoor, the autocorrelation
function of log-permeability is plotted against the separation distance. Kapoor indicated the “strikingly
unambiguous” upward convexity of the correlation function, a clear characteristic of a Gaussian
covariance model. Kapoor further pointed to the “zero microscale(s)” assumption, denying continuum
differentiability, associated with exponential correlation functions, and cautioned the reader of the upper
and lower bounds imposed on the wave numbers of the log-permeability spectra due to limited sampling,
that is lack of data at very fine or coarse scales. However, as discussed in Section 2.1.1 [for details one
can also refer to the work by Ababou et al. (1994)], it is precisely at very small separation lags that the
Gaussian model creates difficulties in the numerical solution process. Whether the popular exponential
covariance model’s unrealistic implication of a zero microscale has more deleterious effects than the very
large (theoretically infinite) condition number of a Gaussian covariance model is still unknown. This
work, especially since it deals with the generation of very large (tens of thousands) number of
computational nodes, assumes inherently that computational efficiency and accuracy outweighs possible
theoretical implications until such time when evidence to the contrary is made available.

The numerical implementation of geostatistical estimation and random field generation requires
solving dense linear systems involving a covariance matrix. The computational tractability of these
algebraic systems can be characterized by the condition number of the covariance matrix, which depends
on the underlying covariance structure and on the spatial configuration of measurements (location of data
points). The covariance matrix arises in the process of solving kriging systems for the posterior mean,
or BLUE, of a given set of geostatistical data. Essentially, kriging is a particular type of spatial
interpolation based on some assumed spatial structure. In ordinary kriging, the spatial structure is
characterized by a stationary mean and a stationary two-point covariance function, usually with the
implicit assumption that the observed variable has the statistical distribution of a Gaussian random field.
In the case of inherently positive variables such as conductivity, porosity, etc., a one-to-one transform

such as In(x) can be used to make the Gaussian assumption more realistic.

Kriging is also used for conditional simulation of random fields by a superposition method
(Delhomme, 1979; Journel and Huijbregts, 1978). The superposition method produces random fields
conditioned on a set of measurements by linearly combining unconditioned random fields with kriged
fields. As shown in the work of Ababou et al. (1994), kriging calculations involve the repeated solution
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of covariance matrix systems. This can be achieved by computing (only once) a triangular factorization
of the matrix and by using the triangular factors in a recursive backward-forward solution scheme for any
(of the many) right-hand side vector(s). Kriging or conditional simulation algorithms are not, at present,
included in the SUFLAT suite of codes.

Finally, one of the simplest methods for generating Gaussian random fields, although not
necessarily the most efficient one, is the “multivariate Gaussian method” which also requires factoring
a covariance matrix. Specifically, the method consists of factoring the covariance matrix into a product

of two triangular matrices M and M T The random field is then generated by multiplying M by a vector
of replicates of independent normalized Gaussian variables. The covariance matrix can be either the prior
covariances among all grid points (unconditional generation) or the posterior covariances among all
simulation points conditioned on measurement data where the “simulation points” do not include the data
points themselves (conditional generation). See Dagan (1982a) for an example of application of this
technique to stochastic subsurface hydrology.

Inasmuch as perfect knowledge of needed field data cannot be attained, linear estimation and
conditional simulation play an important role in processing, interpolating, and statistically interpreting
data. These methods are particularly important for spatially distributed models of hydrological processes,
such as space-time rainfall fields, and large-scale contaminant migration in heterogeneous geological
formations. In all the methods reviewed above, the feasibility of factorization (or inversion), and hence
the accuracy of the generated fields, depends on the covariance matrix being invertible. More precisely,
the numerical stability and accuracy of matrix factorization (or inversion) depend on the condition number
of the covariance matrix. The condition number ranges from one, for an identity matrix, to infinity, for
a noninvertible matrix. A large condition number means that the systems to be solved are very sensitive
to small perturbations, in which case the estimation or simulation procedures become impractical.

In geostatistics, the estimated field is usually obtained by solving a kriging system that contains
the covariance matrix as sub-matrix (Journel and Huijbregts, 1978; de Marsily, 1986; Isaaks and
Srivastava, 1989; O’Dowd, 1991). The latter author pointed out that the condition number of the kriging
matrix is always larger than, or at best equal to, the condition number of the prior covariance matrix.
The condition number of this matrix intrinsically characterizes the computational difficulty, and associated
errors, of the problem.

2.1.1 INI-Conditioning of Covariance Matrices

The spectral condition number of the covariance matrix can be used to characterize the
numerical feasibility of inversion or factorization algorithms required in the simulation and kriging

problems mentioned above. For a given matrix A, the spectral condition number x(A4) is defined as the
ratio of largest to smallest eigenvalues, each taken in absolute value (Golub and Van Loan, 1989, or Press
et al., 1986). That is:

_ Max | N\, (4) |

‘D Mm@

(2-2)

To be more specific, let us assume from now on that the prior covariance function of the spatial field
being simulated or estimated is stationary, that is C(x,,x,) =C(§) where {=x,-x, is the two-point

separation or lag vector, and has unit variance, that is C(0)=0%=1. The associated covariance matrix is
symmetric positive-definite. It turns out that x(4) can be quite sensitive to the shape of the covariance
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function C(£). Eckstrom (1973), Lewis (1987), Posa (1989), and O’Dowd (1991) all indicate (in different
ways) the ill-conditioned nature of Gaussian covariance systems in the context of linear estimation. Posa
(1989) computed the condition number of the kriging matrix numerically for Gaussian, exponential, and
spherical covariances, and concluded that the condition number of the Gaussian covariance was the worst,
for several configurations of the data points. Lewis (1987) and O’Dowd (1991) noticed that the
ill-conditioned nature of the Gaussian covariance matrix (and of the associated kriging matrix) is related
to the infinitely differentiable property of Gaussian covariance random fields. One curious consequence
of this property is that, given information on the random field and all its derivatives at only one point,
one can extrapolate the field with perfect accuracy to any other point (Yaglom, 1962). The extremely
smooth nature of this random field is related to the very fast Gaussian decay of its spectral density at
large wave numbers (high spatial frequencies). Based on these observations, it may be expected that under
certain conditions to be determined (e.g., oversampling), the discrete eigenvalue spectrum of the Gaussian
covariance matrix includes near-zero eigenvalues. These near-zero eigenvalues would lead to a very large
condition number according to Eq. (2-2). Qualitative arguments along these lines were developed in a
paper by Eckstrom (1973) for the case of numerical deconvolution of signals with highly continuous and
smooth kernels.

It should be noted that several random field simulation procedures do not depend on the
condition number of the covariance matrix. For instance, the multidimensional TBM of Mantoglou and
Wilson (1982) and Tompson et al. (1987a, 1989) generates stationary, unconditional random fields
without any matrix inversion. Indeed, the TBM is based on 1D Fourier transforms and multidimensional
projections, neither of which requires matrix inversion. On the other hand, as explained earlier, inversion
or factorization of a covariance matrix is required for: (i) random field generation by the multivariate
Gaussian method, (ii) conditional random field generation by the superposition method, and (iii)
geostatistical estimation or kriging. The inversion of covariance-type matrices is also required in signal
processing packages.

2.1.2 Covariance Functions and Spectral Density Functions

Figure 2-2 depicts different types of 1D covariance functions. The exponential covariance
corresponds to a first-order Markovian time process, and the linear-exponential corresponds to a
second-order Markovian process in 1D space (Vanmarcke, 1983). The exponential and Gaussian models
are frequently used in geostatistics and hydrology. There exist, however, a number of other covariance
models that have been extensively used in geostatistics. Examples are the triangular model, the spherical
model, and the cubic model which is parabolic at the origin and thus more robust than the Gaussian.

Multidimensional counterparts to these covariance functions can also be defined, although care
must be taken to satisfy certain admissibility conditions (Vanmarcke, 1983; Christakos, 1984). For
example, the ellipsoidal-anisotropic Gaussian covariance function is defined for any number of spatial

dimensions by:

I

= 18]
Cle) = JT exp) -5 | 7 (2-3)
m=1 m
where £ is the separation vector, D is the dimension of space (D=1, 2, or 3),and [, isa characteristic

fluctuation scale along direction x,. An alternative set of length scales, the integral correlation scales,
can be obtained by integrating the covariance function to infinity and dividing by the variance. Thus, the
one-sided integral correlation scale, A, is related to the defined fluctuation scales by the relation:
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However, the integral scales can vanish for other types of covariance functions. Therefore, we prefer to
use the fluctuation scales, I, rather than the integral correlation scales, A, as characteristic length
scales of heterogeneity.

The spectral density function can be obtained from the Wiener-Khintchine theorem (Yaglom,
1962) by computing the Fourier transform of the covariance function. In the case of the Gaussian
covariance, the spectral density is also Gaussian, that is

S(k) = o2 :1:‘[.11) [ ,/;i{] exp{—%(kmlm)z} (2-5)

where k represents the wave vector. Note in particular that both C(§) and S(k) must be even functions,
that is C(-£)=C(£) and S(-k)=S(k), regardless of the particular form of the covariance function at hand
(Vanmarcke, 1983).

The 1D covariance functions in Figure 2-2 are plotted as functions of the dimensionless lag, &/I.
Selected covariances are also given analytically in Table 2-1, along with the associated spectral densities.
Both were normalized for a unit-variance field and a unit fluctuation scale; to obtain dimensional

expressions, let £ - &/, k-Kl, C+02C and S+0?IS in Table 2-1. Important differences exist among the
five models. The hole-Gaussian and hole-exponential covariances exhibit negative correlation at

intermediate lags E=I, while the other functions exhibit positive correlations for all lags. The
hole-sinusoidal exhibits negative correlation at lags £>=n with the maximum negative correlation at
£=3m/2. Some functions decay to zero at large lags £>>I (Gaussian and hole-Gaussian). Other functions

decay quickly at small lags € <<l (exponential and hole-exponential). The linear-exponential covariance
decays slowly, both at small lags and large lags. These differences suggest that similar differences may
exist in the eigenvalue spectra and condition numbers of the corresponding covariance matrices.
Furthermore, the covariance structure is often corrupted in practice by the nugget effect or small-scale
noise. The effect of adding a nugget to the above covariance models will be examined briefly in terms
of conditioning in Section 2.1.3. A detailed analysis of the dependence of the condition number on the
covariance models and various parameters was conducted and results can be found in the paper by
Ababou et al. (1994). In what follows, a summary of some of the most important results is presented.

Results from these analyses are presented in Figure 2-3. Based on these results, the covariance
models listed in Table 2-1 were ranked as follows, from best to worst in terms of condition numbers:
(i) hole-exponential, (ii) exponential, (iii) linear-exponential, (iv) hole-Gaussian, and (v) Gaussian. This
ranking is based mainly upon condition number comparisons in the region of ill-conditioning, that is at
small-to-moderate sampling distances.



Table 2-1. One-dimensional covariance functions C(£) and spectral density functions S(k)
(dimensionless formulation)

Covariance Model Covariance Function Spectral Density Function
1. Hole-exponential (1-|£]) exp{-]E|} ) k2
= {Ler
2. Exponential exp{-|& [} 1 1
T 1+k2
3. Linear-exponential (1+|E]) exp{-|E|} 2 1
™ (1)
4. Hole-Gaussian (1-122)) exp{—l 1521} 1 2 exp{—l kz}
2 J2T 2
5. Gaussian oxp {_ 1 E2I} L o {_1 k2}
2 V2r 2

2.1.3 Nugget Covariance and Its Effect on the Condition Number

For any of the covariance models considered, a pure nugget covariance reflecting the presence
of small-scale noise can be added (Journel and Huijbregts, 1978). In terms of the random field itself, y(x)
corresponds to a decomposition into two independent fields, y(x)=y,(x) + y;(x). Here, y,(x) represents
the nugget effect or small-scale variability corresponding to measurement scale, assumed less than the
smallest measurement spacing being considered, and y,(x) represents larger scale variability. The

resulting covariance of y(x) can be expressed as:
cle) = Cule) + G, (8) 2-6)

where C,(§) is the covariance corresponding to large-scale variability with variance o*. The nugget

. . . . . 2 .
covariance C, (&) can be represented as a coarsened white noise with variance, o, as is usually done
in geostatistical applications:

_opfor [E]< ¢ 27
Coo(g)_oo for | £|> 1.’00 @7

where {, is the smallest measurement scale. In the limit, ¢, ~ O, as a pure white noise covariance with

. . 2
intensity, s :
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Co(t) = 55 8(¢) (2-8)

where &(E) is the Dirac function. It is important to recognize that there is a definite relation between the
two formulations which conveys the fact that Eq. (2-7) is a coarsened version of Eq. (2-8):

05 = so/(28,) 29

Therefore, for a given intensity, the apparent nugget variance depends in fact on the small scale ¢, (scale
of measurement). It is advocated here that one can view the nugget variance as a representation of
subscale heterogeneity, that is a form of noise resulting from variability at a scale smaller than the scale
of observation. Generalizing this argument, one can postulate the relationship between regionalized
variables, such as hydraulic conductivity or permeability, and a level of heterogeneity which is impossible
to account for (i.e., at a scale smaller than the sampling scale).

Fractures, which cannot be fully characterized are another form of such heterogeneity. Field
evidence at unsaturated fractured rock sites [e.g., the Apace Leap Tuff Site (ALTS)] and at saturated
nonfractured sites indicate that there exists a great deal of variability that current (or feasible) techniques
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cannot fully characterize; hence it is grouped all together in the form of a nugget variance. Guzman et
al. (1993) have presented ALTS data on log-permeability (air) semivariograms that clearly exhibit a
nested structure (i.e., prone to scale dependence) and a high (=2.5/6.6) degree of otherwise unclassified
variability. The recognition that the rock is fractured results in the postulation of a semivariogram which
is the summation of effects from two other regionalized variables: (i) the matrix, y,; and (ii) the

persistent or large fractures, ¥,. Faults are excluded from this concept, since there is no clear evidence
to justify their regionalized nature. All remaining variability is lumped under the nugget variance. As will
be demonstrated later, the subscale heterogeneity is very closely related to an apparent dispersivity
concept. Both concepts, however, contribute to a reduction in the amplification of uncertainty as it is
propagated through the physical system.

It could be expected intuitively that adding a small-scale variance to the diagonal of the
covariance matrix improves its condition number. Using the spectral (continuum) approximation presented
in Ababou et al. (1994) one confirms this is true at least in the case of monotonic covariance models.
Note that the Fourier Transform of the pure white noise is a constant. Thus, the spectral density is:

S(k) = S, (k) + S, (k) = _2f°_ + 5, (k) (2-10)

™
where Sy (k) and S,,(k) are the spectral densities corresponding to covariances Co&) and Cyy(§),

respectively. For monotonic models, Ababou et al. (1994) presented the following approximate expression
for the condition number (x):

ofi] . #aeli
= L = 0 (2'11)

For example, using the exponential covariance model:

-1
2
0 £,+| 1+ [%]
k(o) = _ 2-12)
2
0(2, Lo+ | 1+ [Z%]

Based on the above equations, the following remarks can be made regarding the condition number:

e x goes to unity in the limit of a pure nugget; thus, it tends to improve as the nugget
variance increases.
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¢ x increases to a finite value in the limit of infinite domain with fixed sampling density. This

result holds with and without a nugget, but it can be shown that the limit value of x is
smaller when a nugget is present.

e x increases to a finite value in the limit of infinite sampling density with fixed domain size
provided a nugget is present. If the nugget variance vanishes, then we obtain a condition
number that increases indefinitely as sampling density increases. The nugget, therefore,

eliminates this singular behavior of x.

These theoretically derived results can be verified numerically for the case of an exponential

covariance model with variance 6*>=1.0. A nugget variance C0=og of 0.1 and 1.0 is added to the main

1600
diagonal of the covariance matrix, and the condition number x is calculated. Then the ratio —L—]—C = is
[x]™
calculated as a function of mesh size, Ax. This result is depicted in Figure 2-4. As shown earlier, the
nugget variance improves the condition number of the covariance matrix, especially for small Ax. For
A, = 0.1, for example, the condition number of the exponential covariance model is three and twenty

times better for 0(2) =0.1 and 0(2, =1.0, respectively.

2.2 SOLUTION OF THE UNSATURATED FLOW EQUATION

Variably saturated flow in a heterogeneous porous medium is assumed to be governed at the
local scale by the mass conservation equation, and by the generalized Darcy or Darcy-Buckingham
equation relating flux to the pressure gradient. This relation is linear for saturated flow and nonlinear or
quasilinear for unsaturated flow. In both cases, the coefficient of proportionality is called the hydraulic
conductivity of the medium. Local mass conservation in a slightly compressible and variably saturated
porous medium without source/sink terms is expressed by the equation:

2 [min) + oln) ] - - g_z (i = 1,2,3) (2-13)

where ¢; is the flux vector or specific discharge rate (L/T) in the direction x;, h is the water pressure

head, 6(h) is the volumetric soil water content (L?/L’) relative to the incompressed soil matrix, and M(h)
is an elastic storage term (L*/L%) due to the combined compressibility of water and solid porous matrix.

This term may be assumed negligible for unsaturated flow (M=0 if h<0) and proportional to pressure
head for saturated flow (M=S.h if h >0, where S is the specific storage coefficient).

The generalized Darcy equation for variably saturated flow can be expressed in an arbitrary
(xl, X, x3) coordinate system as:
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Figure 2-4. Ratio of condition number without a nugget variance over condition number with a
nugget variance versus mesh size Ax in the case of a fixed domain for an exponential covariance.
Solid: Co=0'02=0.1; dash: C0=0'02=1.0.

g, = - K(n) (h +2) (2-14)

ax,

where implicit summation on repeated indices is used. In Eq. (2-14), K(h) is the unsaturated hydraulic
conductivity (L/T); and & is the water pressure head relative to atmospheric pressure, negative in the
unsaturated zone and positive in the saturated zone (L). Note that the water content 6(h) and the
conductivity K(k) are, in general, spatially variable functions of pressure head k.

Equations (2-13) and (2-14) are applicable in principle to the general case of variably saturated
flow. That is, they are applicable to the case where the flow domain is partially saturated and partially
unsaturated. However, the present discussion can be simplified by considering separately: (i) purely
saturated flow (k >0), and (ii) purely unsaturated flow (k <0). The assumption of purely unsaturated flow
is justified only if it can be shown that positive pressures do not appear at any time within the flow
domain. This is indeed the case for sufficiently low-rate infiltration in dry soils, even in the presence of
significant heterogeneity.
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Inserting the Darcy equation into the mass conservation equation yields the Richards’ equation
of unsaturated flow

CLICO R A L I @-15)
at ax, dax,  ox,

On the other hand, in the case of saturated flow (k >0), a new variable H for the total hydraulic potential
is introduced

H=h+7Z (2"16)

The actual numerical computations implemented in BIGFLOW are based on a single modularly structured
program that can either solve the general problem of transient variably saturated flow or more specialized
flow problems such as saturated and/or steady-state flows.

2.2.1 Finite Difference Discretization in Three-Dimensional Space

In the case of highly heterogeneous or random porous media, and in the case of highly nonlinear
flows, the fine details of the flow field must be adequately resolved in all three spatial dimensions in
order to obtain meaningful solutions. High-order discretization schemes such as pseudo-spectral methods,
spectral finite elements, and some other weighted residual schemes, may work well for relatively smooth
flow fields. In the heterogeneous case, however, fine grid resolution remains a necessary requirement
even when using high-order schemes; these schemes can therefore require a very significant increase of
computational work relative to lower-order schemes (for similar levels of accuracy).

The BIGFLOW code is based on a low-order, seven-point centered finite difference scheme in
space, and a fully implicit one-step (Euler backwards) finite difference scheme in time. The spatial mesh
can be rectangular but must be uniform along each direction. On the other hand, the time step can be
variable. The resulting coefficient matrix is symmetric and very sparse, having only seven nonzero
diagonals. The finite difference discretization scheme for both unsaturated and saturated flow is developed
in the following, keeping in mind that the latter can be obtained by specializing the former. The analogy
between saturated and unsaturated flow leads to the introduction of a single designation P for the pressure
head h and hydraulic head H=h+z. Indeed, this is the strategy adopted for implementing the
saturated-unsaturated equations in the BIGFLOW code. Accordingly, let P=h for unsaturated flow and

P=H for saturated flow. In addition, let the vector V designate the gradient operator

o) - [a(-), 3 a(-)] @-17)

dx, dx, 0x,

With these notations, the unsaturated flow Eq. (2-15) becomes

% v [kv(P)] - g V(&) =0 (2-18)

where in general 8=0(P,x), and K=K(P,x); and g is the unit vector for unsaturated flow, and zero for
saturated flow.
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Now, the seven-point centered finite difference approximation of Eq. (2-18) in 3D space will
be developed briefly. Start with the flux discretization. Recall that the first component of the flux vector
is given by the generalized Darcy equation

apP -
q, = - K(P’x) a_ + gl 2-19)
'xl
This flux component is now approximated by a two-point centered difference scheme as follows
P ™ Pija 2-20
T e R e o

where the pressure is evaluated at the nodes x(i,j,k) of the regular orthogonal finite difference grid, while
the flux and the conductivity are both evaluated at the mid-nodal points x(i+1/2,j,k), which define a
staggered grid distinct from the original grid (i, /, k). A similar scheme is used for discretizing the flux
divergence. For instance, dq,/dx, is approximated at the grid points by the two-point centered finite
difference

99, _ 4 (x"%-f"‘) 4 (x"%d"") (2-21)

%, (el = a%)

Using similar approximations for ¢,, g,, 84,/3x,, and 9q,/0x,, a seven-point finite difference
approximation of the spatial operators of Eq. (2-18) in terms of the nodal pressure P evaluated at the grid

points, x(i,j,k) is finally obtained. By the same token, the flux components g, , g, and g, are evaluated
on three different staggered grids, one for each flux component. Nevertheless, there is a provision in the
postprocessing modules for generating cell-averaged flux components. This alternative form of the flux
is useful for subsequent simulations of solute transport, for example, by particle tracking methods
(PTMs).

The boundary conditions implemented in BIGFLOW are of three types. The following
classification is based on physics (the mathematical classification is indicated in parentheses).

(i)  pressure condition (Dirichlet) — P=Pg(x) xel'|
(i) normal flux condition (Neumann) — gn=q,(x) xel,
(iii) gravity drainage or null pressure gradient (Neumann) — VPn=0 xel';

In these equations, n represents the vector normal to the boundary T, and I';+T,+T; = T' (the entire

boundary). Each I'; may consist of a disconnected set of boundary nodes. That is, the different types of
boundary conditions can co-exist on any of the six planar faces composing the boundary of the hexahedral
domain. In the case of unsaturated flow, note that the second and third types of conditions are nonlinear.
Since the boundary condition equations are eliminated by a process known as matrix condensation, they
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become part of the interior domain equations, which are thereafter linearized by Picard-type iterations.
In short, the implication is that the nonlinear boundary conditions are themselves linearized by the same
iterative process. Therefore, the correct solution of the original nonlinear boundary value problem is
obtained as the number of iterations increases, provided the Picard iterations do not diverge.

There is no particular difficulty in accommodating Dirichlet-type conditions in the above
equations, since fixed pressure conditions can be enforced exactly at the boundary nodes. However,
Neumann-type conditions (fixed flux or pressure gradient) must be approximated by using a centered
finite difference scheme. The order of accuracy of this approximation is the same as that in the interior
of the domain, provided that the physical boundary is assumed to be located precisely at a mid-nodal
point rather than at a node. The third type of condition, gravity drainage, is peculiar to unsaturated flow.
In BIGFLOW, it can be implemented only for the lower horizontal boundary. It was noted in the
literature (McCord, 1991) that BIGFLOW (Ababou, 1988; Ababou and Bagtzoglou, 1993) is one of a
few multidimensional flow codes which provide the gravity drainage condition.

The centered mid-nodal formulation of Neumann-type conditions has the advantage of preserving
the sparsity structure, symmetry, and positive definite characteristics of the finite difference system, as
obtained after elimination of boundary pressures from the system and linearization. More precisely, note
that the condensed matrix will be positive-definite if at least one boundary node is under fixed pressure.
It is worth noting this important algebraic property holds not only for saturated flow but also for
linearized unsaturated flow. More precisely, this is true in the case of a Picard-type nonlinear iterative
solver as used in BIGFLOW.

2.2.2 Time Discretization

Having developed the spatial discretization scheme, one can now proceed to discretize the
transient equation of unsaturated flow in time. A fully implicit one-step finite difference scheme known
to be first order accurate in time is implemented. From Egq. (2-18), this choice leads to the fully
discretized equation:

n+ n +1 n+1
o (P - 0F) g [xpjve] " - g-v [&(P)] <0 o)
n+l
where
At =1t -t (2-23)

is the variable time step. For clarity, the direct dependence of © and K on spatial location has been
omitted, as well as the discrete-space index (i,j, k). It is understood that, in general, 8=6(P,.J7c, x,.jk),

K=K(Pijk,xij ), and that P stands for P,.jk.

The fully implicit Euler backward scheme was selected among other one-step implicit schemes
in view of numerical experiments reported in the literature (e.g., Vauclin et al., 1979). The Euler forward
explicit scheme was ruled out because of the well known fact that it requires a stringent stability
condition, Az<2DAx? for the linear diffusion equation (a similar condition is likely required for the
nonlinear diffusion equation). In the case of unsaturated flow, the nonlinear soil moisture diffusivity
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D=K/C, where C is the soil moisture capacity, may become quite large in wet soils. Thus, the time step
may have to be dramatically small in order to satisfy the explicit scheme stability condition; there may
also be additional instabilities due to the nonlinear gravitational term.

On the other hand, it can be shown by Fourier analysis that implicit schemes are linearly stable,
regardless of time step size (unconditionally stable). However, for nonlinear diffusion problems, the proof
of unconditional stability is based on Fourier analysis assuming frozen coefficients. Due to this
approximation, one should keep in mind that the nonlinear stability of the implicit scheme is not truly
guaranteed for strongly nonlinear equations like unsaturated flow. It is nonetheless probable that the
implicit scheme allows larger time steps than the explicit scheme, as demonstrated experimentally by
Vauclin et al. (1979) and others.

2.2.3 Iterative Linearization

In the case of unsaturated flow, an approximate linearized solution method must be devised to
deal with the nonlinear system. For instance, implementing a Picard iteration scheme will transform the
sparse and symmetric nonlinear system into a more tractable sequence of equally sparse and symmetric
matrix systems. The question of solving large symmetric matrix systems and of coupling the matrix
solution process with the nonlinear iteration process will be discussed later. Here, the iterative
linearization approach that transforms the nonlinear system into a sequence of linear systems is developed.

The modified Picard iteration scheme defined in the following approximates the unsaturated flow

equation as a sequence of systems (k=0, 1,2....) where the unsaturated conductivities appear linearly at
each iteration level

0”‘1'21 —len‘l’k -V [ Krilky (Prnl.lul - P’l‘l-k) ] =
+

(2-24)
_ 0"‘;’; - 0" _ V (Kn+l,k VPn-'l,k) - g . V (K’Hl'k)

n+l

Note that k+1 represents the current iteration level, while n+1 represents the current time step. The
residual term on the right-hand side of Eq. (2-24) is known since it depends only on the previous iteration

level n+1,k. The spatial operator on the left-hand side operates on a pressure increment rather than
pressure itself. This incremental formulation, or modified Picard scheme, was obtained by subtracting
known quantities from both sides of the standard Picard equation. The modified Picard scheme is not only
more elegant but also computationally more stable than the standard Picard scheme with respect to
round-off errors (Ababou, 1988).

There remains a pressure-dependent moisture content in Eq. (2-24). To obtain a fully linear
system at each iteration level, the storage term is now linearized by using a first-order difference

approximation of the 8(P)-increment. Specifically, one may construct a chord-slope approximation of the
soil moisture capacity, C=008/0P, which is now inserted in a first order difference approximation of the
6(P)-increment
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o -0 _ C (P
At At

n+l n+t

Pkol - Pk) (2-25)

where all variables are implicitly taken at time level n+1, except for P® which is the pressure at iteration
level (0), that is the solution of the previous time step. Note the resulting finite difference system is a
discrete approximation of the mixed form equation, rather than the pressure-based Richards’ equation.
This mixed form is identical to that developed in Ababou (1988) and similar to that adopted by Bouloutas
(1989) and Celia et al. (1990).

In the case of unsaturated flow, let C be the diagonal matrix of specific moisture capacities, K
the matrix of unsaturated conductivities, 5p the vector of incremental pressures, and b the right-hand
side vector. The latter includes the residual term on the right-hand side, as well as additional terms
obtained after elimination of boundary values from the linearized system (matrix condensation). With
these notations, the iterative sequence of linearized unsaturated flow systems can be written equivalently
as:

At

n+l

[C“.,k . K"“"‘} ppn ekt < pre ik (2-26)

The case of saturated flow leads to a similar algebraic equation, with C a diagonal matrix of storativities
rather than moisture capacities, and K a matrix of saturated rather than unsaturated conductivities. The

more general case of variably saturated flow also leads to a similar equation, with C a diagonal matrix
containing both storativities and moisture capacities.

23 SOLUTION OF THE TRANSPORT PROBLEM WITH PARTICLE
TRACKING METHODS

2.3.1 Advection-Diffusion-Equation

Solute transport in porous media may be represented by the advection-diffusion-equation (ADE)

.3_(;+V-(vc)—V-(D-VC)=O 2-27)

where the porosity is constant, ¢ is the solute concentration, v is the flow velocity (Darcy flux divided
by porosity), and D is the anisotropic velocity-dependent dispersion tensor.

Over the years, this equation has been extensively investigated and numerically approximated
by numerous methods. It is conventionally solved by finite difference or finite element techniques. The
method of characteristics (MOC) is an Eulerian-Lagrangian method, treating advection by looking along
characteristics and diffusion by a conventional grid approach. This technique allows the diffusion-free
motion of the solutes to be represented accurately by tracking the flow lines. A disadvantage of the MOC
method is that it requires one to solve for the characteristics, which may be extremely difficult in 3D
problems. Allowing miniscule particles to follow the flow lines, one can bypass the problem of finding
the flow characteristics. Pinder and Cooper (1970) were among the first to apply a particle-oriented model
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in hydrological applications, and studied the transient position of the saltwater front in coastal aquifers.
A large collection of computer-generated particles, with each particle assigned a value of concentration,
moves along streamlines. These concentration values are mapped on a grid and a standard Eulerian
diffusion problem is solved via finite difference or finite element techniques. Practice has shown this
method often leads to mass conservation errors, especially during the first time increments. The method
is, also, extremely sensitive to the initial number of particles and the time step (Konikow and Bredehoeft,
1978), as there is no attempt to redistribute particles in the presence of diverging or converging flow
fields.

2.3.2 Origin and Applications of the Particle Tracking Method

According to Hockney and Eastwood (1988), the term particle models is generic and used for
the class of simulation models in which the discrete representation of physical phenomena involves the
use of interacting particles. Each particle may have a set of attributes such as mass, charge, position,
momentum, heat, or vorticity. The basic concept behind this method is to represent the distribution of
an extensive quantity (e.g., the mass of the solute species or a packet of water) as a large collection of
particles (Tompson and Dougherty, 1988). Each one of these particles can be translated by
diffusive-dispersive and/or advective driving forces over discrete time steps. The mass of each particle
or the number of particles can be altered depending on the reaction terms involved. Particle tracking
methods (PTMs) were originally introduced by Harlow in the 1950s to facilitate the solution of
complicated problems in fluid dynamics. PTMs have been used to solve partial differential equations in
various areas of application such as fluid dynamics involving large distortions of the fluid, supersonic
flow of gases past cylinders (Harlow, 1964), plasma gun simulations (Morse, 1970), and studies of spiral
structure in thin disk galaxies (Hockney and Eastwood, 1988).

Since Ahlstrom et al. (1977) first applied this technique to numerical investigations of
groundwater contaminant hydrology, many other investigators (Todorovic, 1970; Smith and Schwartz,
1980, 1981); Prickett et al., 1981; Schwartz et al., 1983; Uffink, 1986, 1987; Tompson et al., 1987b;
Tompson and Dougherty, 1988, 1992; Kinzelbach, 1988; Ackerer, 1988; Bagtzoglou and Dougherty,
1990; Dougherty and Tompson, 1990; Bagtzoglou et al., 1991, 1992a,b; and Andricevic and
Foufoula-Georgiou, 1990) have used particle methods with success. The PTM has also been effectively
applied to transport studies in fractured rock (Wollrath and Zielke, 1990), stratified formations (Cvetkovic
and Shapiro, 1989), and anisotropic heterogeneous aquifers (Dagan, 1988); bed sediment dispersion
studies in natural and/or artificial waterways (Todorovic, 1975); simulation of alluvial fan deposition
(Price, 1974); and studies of roughness of drainage networks (Seginer, 1969).

Unlike the conventional Eulerian methods, PTMs have no unacceptable grid Peclet numbers or
grid orientation effects and are traditionally considered well-suited for advection-dominated simulations
(Ahlstrom et al., 1977). The practical time step size is limited by the ability of the algorithm to accurately
track the flow characteristics.

2.3.3 The Random Walk Method and Its Application in Heterogeneous Fields
One of the more popular particle methods, which has been extensively applied in solute
transport in hydrology, is based on a random walk approach. The theoretical basis of the random walk

model has its origin in Einstein’s explanation of Brownian motion (Einstein, 1926) describing the motions
of suspended particles under the influence of a fluctuating force. The motion of a Brownian particle
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experiencing random changes in acceleration is described by the Langevin equation given by (Srinivasan
and Vasudevan, 1971)

m%‘; = — v+ Fl) (2-28)

where v is the velocity of the particle and m is the mass. The right-hand side of Eq. (2-28) represents
the influence of the surrounding medium, comprising a fluctuating force F(f) (random part) and a
dynamic friction -¢v (deterministic part). Eq. (2-28) can be written in terms of any state variable X(z)
which evolves probabilistically with time ¢z . Therefore, it can be rewritten in the form of a position
instead of a force balance equation. Then, changes of the variable X in time (i.e., the motion of the
particle, for X being the position vector) will be modeled by:

% - Alx.0) + B(X.1)- £l (2-29)

where E(f) is a Gaussian process. Assuming that B{f) varies very rapidly compared to X, the
Fokker-Planck equation (FPE) can be obtained (Haken, 1983; Gardiner, 1985)

f .v.ud —v.|v.[1p.87%] | - 2-30
= v - (4f) V[V[EBBf]:I 0 (2-30)

where f is some extensive quantity, A is a deterministic forcing vector, and B is a deterministic scaling
(square) matrix.

In order to make Eq. (2-30) analogous to Eq. (2-27), the following assignments have to be

made:
f = flx,fec (2-31)
A = Alx)ev + V-D (2-32)
(2-33)

B- BT = B(x,1}- BT(x,t)2D

Imposing Eq. (2-32) is necessary to correct the unrealistic/unreliable results obtained with commercially
used random walk models in regions of strong velocity gradients (Kinzelbach, 1989). Russo and Dagan
(1991) discussed the possibility of unsaturated transport variability being governed by similar laws as
saturated transport, and concluded that “Lagrangian analysis ... is of general nature and applies to
saturated and unsaturated flow as well.” In the case of unsaturated flow, Eq. (2-32) should have an extra
term added to the right-hand side, namely the moisture dependent term D-V(Iz68) which accounts for the
influence of moisture content variability. The effect of this term is small in most applications, except in
the case of steep wetting fronts and rapidly draining characteristic curves. The moisture content should

also be accounted for in the velocity term, that is v=q/0.
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The difference form of Eq. (2-29), over a time period At, takes the form (Sposito et al., 1986)

X(t + a9 - X0) = Axt)d] - ar + I[”NB[X(S),S] - £(s)ds (2:39)

With the understanding that the relaxation time At is very large compared with the time in which random
force fluctuations occur, the stochastic process described by a conditional probability function satisfying

the FPE is equivalent to the Jt6 stochastic differential equation (Bhattacharya and Gupta, 1983)

ax() = alx@)d] - ar + Blx().] - awiy (2-35)
where it was inherently assumed that
| “Blxs),s] - £(s)as - Bx().d [ &lslas=Blxt).] - aw) (2-36)
¢t 4
The above equation can be written in the form of the following discrete-step equation:
xm1 = X"+ Alxnr)ar + B(x) W) (2-37)

where the index n indicates time 7,; X is the particle position vector; A and B are as previously
described; x is the grid position vector; and W(t") is a random forcing vector given by W(tn) = Z"/At,
where Z" is a random number sampled from a normal distribution, at each time t,, with mean of zero

and unit variance.

Consider the case of a heterogeneous random formation (see Figure 2-5). A particle, which at
time =0 is located at X , moves to its new location X at time ¢ . This new location X can be considered

a random variable, and similarly the evolution of the trajectory X=X(X, t) that this particle followed is

a random process. According to Dagan (1982a,b), the random vector X is characterized by a probability
density function fx(X,t; X o) such that the probability for a particle, originally released from X, at =0,

to end up within the elementary volume dQ, surrounding X at ¢ is given by:

P-= J , fxd8 (2-38)

Then for the domain Q, at any time ¢

P-= Jnfx de =1 (2-39)

with
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Figure 2-5. Schematical representation of solute body transport: (i) homogeneous formation, uniform
flow; (ii) heterogeneous deterministic formation; (iii) various realizations for heterogeneous random
formation (Adapted from Dagan, 1982b). The circular body boundary represents the advection
influence, whereas the elliptical boundary represents the pore-scale dispersion influence.
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1

X,0;X) = 2-40
HXOX) = 57 (240)
for XeAV,, where AV, is the volume of particle release and

HX.0X) =0 (2-41)
for X elsewhere. Alternatively one can write

j S d@ =P (X e Q) (2-42)

and

Jn f,d@ =1 (2-43)

It follows that the solute concentration c(X,?) is also a random variable, and its probability
density function (pdf) f, is entirely determined in terms of f,. Dagan (1982b) and Dagan and Nguyen
(1989) prove that the expected value of concentration resulting from the release of mass M in an aquifer
of porosity » and initially at concentration O can be given by:

Cele)y = 2 f 1 x) (2-44)

Here, { ¢ ) is the expected value of the concentration field for a series of random hydraulic conductivity
field realizations. Equation (2-44) establishes the direct proportionality between ¢ ) (or { ¢ )/M) and
fx- Because of the interest in travel time estimation methodologies, note that the roles of concentration
and particle density can be reversed. That is, the pdf fy(X,t; X)) can be sought describing the probability
that a particle, originated at position X, at time ¢=0 is located at X after a time ¢ has elapsed. Soerjadi

(1981) was one of the first to make use of moving particle density functions and their relations as they
evolve in time.

The pdf f; may be interpreted as the concentration field arising from the release of a unit of
mass at X, at time 0. The pdf f; conversely, may be interpreted as the probability that a unit of mass,

which originated at time O from X, is observed at X at time ¢ . In each case, the variance of the pdf,
except possibly in initial short time intervals, increases as the amount of time from source (the term after
the semicolon) to the target (the term before the semicolon) increases. Smith and Schwartz (1981) have
implemented a similar approach and calculated regional probability plots for moving reference particles.

As became evident in the discussion of Section 2.1, microfracturing at a scale below detection
constitutes a white-noise type of variability which can often be lumped under a nugget variance effect.
It was also shown that this nugget has a very positive effect on the stability of the system (at least as far
as the condition number of the covariance matrix is concerned). One can also view this noise as an
indicator of lack of information. Obviously, if one could fully account for the geometric and hydraulic
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characteristics of fractured rock, then a semivariogram without the presence of a nugget would have been
obtained. Bagtzoglou et al. (1994b) presented examples of such variograms in the case of stochastically
generated, yet fully described, fracture networks. It has also been advocated by Neuman et al. (1987) and
Neuman (1990) that the effective dispersion coefficient is essentially an artifact of our lack of knowledge
even though this type of induced dispersion is a macroscopic one at a small scale. Nevertheless, one could
postulate the usage of such an effective dispersion as an analog to the mixing induced by microfracturing
at a scale smaller than that of dominant persistent features (e.g., layers and fault zones).

Smith and Schwartz (1993) presented analyses of results from numerical experiments of
transport in fractured media conducted by Robertson (1990). Figure 2-6 depicts results of a simulation
of solute mass distribution within a discrete fracture network comprising two vertical sets of fractures
with variable lengths and aligned to the cartesian coordinate system. Simulation time since a solute pulse
injection was 35 days, and the inferred longitudinal dispersivity was 0.44 m over 200 statistically equally
likely realizations. Smith and Schwartz (1993) commented on the uncertainties related to the prediction
of breakthrough curves by emphasizing that the simulation results are highly uncertain when the fracture
geometry “promote[s] relatively tortuous (indirect) connections across the network.” Similar observations
were made by Moreno (1985) who fitted curves produced by a hydrodynamic dispersion model and a
discrete fracture-channeling model with success. However, a word of caution on the lumping of
heterogeneity effects under the concept of dispersion coefficients was voiced by Rubin (1991) who
claimed that “the effects of local(ized) parameter configurations ... are consequential for less-than-ergodic
plumes.”

2.3.4 Computational Details
2.3.4.1 Moving Particles Around

Equation (2-37) can be used to move a particle, initially located at X, through space over small
discrete time steps, At, to its final position, X, (Figure 2-7). Each step consists of a deterministic
displacement A-A¢ and an independent, random displacement B-dW. If the experiment were to be
conducted N times, the same particle (located initially at X ) will end up at N locations, X, . Then, the
spatial density of the points, evaluated at ¢=¢,, will be f(X,?), the extensive quantity involved in the FPE.
The same results would be obtained if, instead, N particles all located at the same initial location X, at
time ¢=¢, were to independently move according to Eq. (2-37) up to time r=t, (Figure 2-8). This is the
approach employed by the SUFLAT numerical code.

2.3.4.2 Time Step Selection

In spatially varying flows, the choice of the time step is of importance. Selection of large time
steps may lead to overshoot errors, thus eventually distorting the results. This problem can be bypassed

if the time steps used force the Courant number C,=vAt/Ax to be less than one in any computational

cell. Selection of At small enough so that the Courant number is always less than 0.1 ensures that the
maximum overshoot is always less than 0.1Ax (Tompson et al., 1987b). This of course requires extensive
computations in order to move a single particle across a cell.
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Figure 2-6. Simulation of the mass distribution at t=35 days after injection within: (a) a discrete
fractured network, and (b) an equivalent porous medium (Adapted from Robertson, 1990)
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A.dt
x1,t1 H ® xn,in
Xo,to x'z,tz
x.3,t3 x'n’tn

Figure 2-7. Two realizations of one particle moving during N steps

Figure 2-8. Single realization of N particles moving during one step
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2.3.4.3 Inmitial and Boundary Conditions

Within the particle method framework, initial and boundary conditions are treated by
constraining either the number or the movement of particles. Instantaneous spills can be readily simulated
by introducing a certain number of particles within the domain. Dirichlet boundary conditions are

imposed by simply assigning a certain number of particles in each cell of a boundary layerQ1
(Figure 2-9) and letting them move under the influence of the velocity field. After all particle

displacements have taken place, a fresh batch of N, particles is reimposed within Q1 such that:
Nm “
Coy = ‘b, -

at

(2-45)

where ¢, , is the imposed concentration boundary condition; m, is the mass per particle; and Vy,, is the
volume of the boundary layer. Neuman boundary conditions can be imposed by forcing a certain number
of particles to enter the computational domain through the boundary over a discrete time step. No-flux
boundary conditions can be assigned by treating the boundary Q3 as a reflection plane (Figure 2-10)
where the particles bounce back into the domain in a billiard-ball fashion. Finally, infinite-domain
behavior can be simulated by treating the boundaries as absorbing and allowing particles to freely exit
the computational domain.

2.3.5 Accuracy of Particle Tracking Methods

2.3.5.1 Problem Specification

In this section we compare single-realization simulations using a PTM with six other methods.
Four classical methods are used: (i) centered finite difference (CFD), (ii) upwind finite difference (UFD),
(iif) Lax-Wendroff (LW), and (iv) Fromm (FR), all described by Roache (1976). In addition, two
nonlinear flux-limiting schemes are employed: piecewise parabolic method (PPM) (Collela and
Woodward, 1984), and flux-corrected transport (FCT) (Boris and Book, 1973). One widely used test
problem, the advancing front problem, was developed for the Convection-Dispersion Forum held at the
International Conference on Computational Methods in Water Resources (Baptista et al., 1988). The
problem is specified as follows:
dc , v _p¥c (2-46)

at 3x ax?

for O<x<e, and subject to

c(x,0) = 0 2-47)
c(O,t) =1
and
(2-48)
c(oo,t) =0
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Figure 2-9. Dirichlet boundary Q1 (Adapted from Tompson et al., 1987b)

The analytical solution for this problem is (Ogata and Banks, 1961; van Genuchten and Alves, 1982)

x-vt x+vt
V4Dt vaDt

The numerical simulations are performed on x€[0, 12,800] with a grid spacing Ax=200; a flow
velocity v=0.5; a time step Az=96; a total simulation time of 9,600; and a dispersion coefficient
D = 50. Thus, a grid Peclet number defined as:

clx,z) = % [erfc j| (2-49)

+ exp [%] erfc

P = vAx (2_50)

of 2 is considered. For spatially and temporally invariant v and D in 1D, Eq. (2-37) can be simplified
to:
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Figure 2-10. No-flux boundary 23 (Adapted from Tompson et al., 1987b)

X™ = X" + vAt + \2DAr Z" (2-51)
where all variables have been previously defined. The random forcing vector is usually sampled from a

uniform distribution, due to computing time requirements (Ackerer, 1988). Then, Eq. (2-51) can be
written as:

X™ = X" + vAt + J24DAz (0.5~ R") (2-52)
where R™ is a random number uniformly distributed between O and 1.

The second test problem under consideration is the rectangular wave propagation problem which
is governed by:

d , 0% _pdc _g (2-53)
ot ox ax?

with x€[-e,e] and initial and boundary conditions described by:

2-28



cfx,0) =0 v x < 1,400 and 2,600 < x
clx,0) = 1 v 1,400 < x < 2,600
c(oo,t) =0 vi>0

(2-54)

where v and D are constant. The parameters used in the simulations are similar to those used for the
advancing front problem. The analytic solution for this problem is given by (Neuman, 1981)

cled) = Llert [B2E 27| vt 2222 (2-55)
2 2/Dt 2/Dr

where 2b=(2,600-1,400) is the width of the rectangular wave initial condition. The subdomain considered
for numerical simulation is from 0 to 12,800.

Over the years, both problems have been extensively studied by numerous investigators. Stone
and Brian (1963) employed a cyclic use of a set of difference equations, which yielded wave propagation
rates with an optimum harmonic decay for linear problems. Konikow and Bredehoeft (1978) solved the
solute transport equation by approximating the convective transport via particle tracking and by a two-step
explicit procedure to solve the diffusion equation via finite-differences. Cheng et al. (1984) investigated
the applicability of an Eulerian-Lagrangian approach, a technique that Yeh (1990) enhanced with the use
of zoomable hidden fine-meshes. Celia et al. (1989) presented the application of algebraic theory to the
discretization of the spatial derivatives of the ADE and developed a semidiscrete system which was solved
by standard marching algorithms. Allen and Curran (1989) incorporated an adaptive grid refinement
procedure within the framework of a finite-element collocation solution of the advection-dominated solute
transport. Bentley et al. (1989) employed a least squares collocation Eulerian-Lagrangian method with
great success for purely advective flows. Similar work has been reported by Neuman (1981) who used
an Eulerian-Lagrangian method with conjugate space-time grids, and by Cady and Neuman (1985) who
combined a modified method of characteristics with a finite element formulation.

In this work, all seven numerical schemes mentioned earlier are applied to the advancing front
test problem, whereas only the particle tracking, PPM and FCT are tested for the rectangular wave
problem. A description of the seven numerical schemes can be found in Appendix A. For these flow and
discretization parameters the grid Courant number, C,=vA# Ax, is equal to 0.24. The particle method
does not involve repeated simulations. This is in order to make its results comparable to the single-run,
deterministic, standard numerical methods. The particle method simulations involve Np=400 particles,

and one grid cell as support for the particle-to-grid projection.
2.3.5.2 Discussion of Results

The analytical and numerical solutions to these standard test problems are shown in Figures 2-11
and 2-12 for the advancing front and rectangular wave propagation problems, respectively. For all tests,
the domain was evenly discretized into 65 nodes. The classical methods lead to excessive smearing of the
front and, especially for higher velocities, oscillations. The particle method, because of the finite number
of particles used (here 400), yields noisy solutions unless the diffusion is negligible. Note that the modern
methods provide excellent solutions. Implicit-in-time methods have not been considered here because it
is well known that they have high truncation errors for large time steps. Time steps that provide
sufficiently reduced truncation errors require more effort than explicit methods for this linear problem.
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Figure 2-11. Concentration versus distance for the advancing front problem. Smooth solid line:
analytical; noisy solid line; particle; (a) dashed line: CFD; dotted line: UFD; dashed-dotted line:
LW; and (b) dashed line: FR; dotted line: PPM; dashed-dotted line: FCT.
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Figure 2-12. Concentration versus distance for the rectangular wave propagation problem. Smooth
solid line: analytical; noisy dashed line: particle; dotted line: PPM; dashed-dotted line: FCT.

It should be noted that the stabilizing effect of the implicit method is often beneficial for nonlinear
problems.

One important and widespread use of solute transport models involves management decisions
when concentrations are at or near the maximum acceptable (or action) concentration level (MCL).
Management decisions are often controlled by the MCL and by predictions of the effects induced by a
number of possible clean-up methods on concentration. The latter are often obtained using numerical
models. Therefore, numerical errors committed for concentrations near the MCL have great impact on
the decision-making process. Dougherty and Bagtzoglou (1993) provide a discussion of this particular
issue in greater detail.

This perspective suggests that we revisit the results given in Figures 2-11 and 2-12. Consider
the difference between the numerical concentration and the analytical (true) concentration, relative to the

analytical concentration, at different spatial locations for time T. Figures 2-13 and 2-14 show this
error-to-signal (or noise-to-signal) ratio for the two test problems. The error-to-signal ratio is virtually

constant and negligible for a wide range of x. However, at large x, where the concentration ¢ is small,
the error grows in all classical methods to large values [the Random Walk Particle Method (RWPM) is
a special case due to its Lagrangian formulation]. It is clear from panels (a) and (b) of Figure 2-13 that
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Figure 2-13. Noise-to-signal ratio versus distance for the advancing front problem. Solid line:
particle; (a) dashed line: CFD; dotted line: UFD; dashed-dotted line: LW; and (b) dashed line: FR;
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Figure 2-14. Noise-to-signal ratio versus distance for the rectangular wave propagation problem.
Solid line: particle; dotted line: PPM; dashed-dotted line: FCT.

numerical modeling errors using classical methods are largest where concentrations are the lowest. This
implies that in regions of low dimensionless concentration, near the MCL, large relative errors can be

expected. Figure 2-14 shows that the same type of behavior occurs for receding fronts as well as
advancing ones.

Panel (b) of Figure 2-13 and Figure 2-14 also show that particle and modern methods provide
significantly better solutions near the MCL. As velocity becomes more dominant, the particle method is
better than ECT or PPM, as would be expected for a Lagrangian scheme. Since particle methods are also

found to be computationally efficient for 3D transport in heterogeneous formations, they are the method
of choice in this work.
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3 DESCRIPTION OF THE FLOW AND TRANSPORT PROBLEM

The SUFLAT methodology is applied to a hypothetical flow system analogous, in some respects, to the
Yucca Mountain site. Flow and transport simulations are conducted for a horizontal, two-layered system
with stochastically generated hydraulic properties, similar to the Topopah Spring welded (TSw) and
Calico Hills nonwelded-vitric (CHnv) interface. It is recognized that this two-layered representation is
far from the actual geostratigraphy of the site. However, it is very much relevant to the suite of pathways
a water particle may encounter between a release point in the vicinity of the host rock (TSw) and the
compliance boundary (CHnv), taken here to be the water table. Furthermore, our interest here is the
development and demonstration of a working methodology which can be applied at a later point in time
when more data are available as a result of comprehensive site characterization.

3.1 HYDROGEOLOGICAL PROPERTY DESCRIPTION

3.1.1 Characteristic Curves

In the stochastic approach, the heterogeneity of the porous medium may be represented by a
single realization of a statistically homogeneous random conductivity field in 3D space. Because

conductivity is necessarily non-negative, a log-normal probability distribution is assumed for K and,
accordingly, a Gaussian log-conductivity, InK_, is generated. The mean of this random field is constant
and its two-point covariance depends only on the separation vector; these statistical moments determine
entirely the spatial structure of the conductivity field. In practice, the TBM can be used to generate single
or multiple realizations of InK(x) with the desired statistical properties on the nodes of the numerical
grid. For a detailed discussion of the 3D TBM random field generator, see Tompson et al. (1989).

In the more general case of transient unsaturated flow, the governing equation is nonlinear and
depends on two constitutive relations, the moisture retention curve relating moisture content to pressure
head O(h) and the hydraulic conductivity curve relating conductivity to pressure head K(k). For a
heterogeneous medium, these are functions of both pressure and spatial location. In the following we
present the assumed analytical forms of these functional relationships used for the unsaturated flow
simulations presented in this report; other functional relationships are available in BIGFLOW as well.
Spatial dependence is modeled by taking some or all of the parameters in these nonlinear relations to be
spatially variable as desired.

The unsaturated conductivity-pressure relation is assumed to be a truncated exponential function
involving at most three spatially variable parameters, that is

K(h,x) = Ks(x) exp{a(x) [h - hb(x) ]} ifh < hb(x) 3-1)

K(n,x) = K (x) if h = hx)

5

The parameters are K, [saturated conductivity (L/T)], h, [bubbling pressure or air entry pressure head
(L)1, and o [scaling parameter, (L™Y]. Each or all of them can be taken spatially variable as desired in
three spatial dimensions.
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For a given length scale of interest, L, the product « L represents an advection/diffusion ratio.

The inverse @ '=A, is a moisture dispersivity length scale (Ababou, 1991). Alternatively, A4 can also
be interpreted as a pore size distribution index (Yeh et al., 1985a,b,c) or an equivalent capillary fringe
thickness (White and Sully, 1987). A survey of the literature indicates that the exponential conductivity
model is in good agreement with measured conductivity curves in a variety of soils, at least within a
moderate range of soil water pressures (Ababou 1981, Bresler 1978). In their stochastic solutions,

Mantoglou and Gelhar (1987a,b,c) used the exponential model with random K (x) and a(x), and zero
bubbling pressure (k,=0).

For the soil moisture retention curve 0(h,x), BIGFLOW allows a choice between several
functional forms, including the van Genuchten function (van Genuchten, 1980). These relations are also
allowed to accommodate spatially variable parameters. For instance, the van Genuchten function is
modified and generalized as follows to accommodate the case of spatially variable parameters

6, (x) - 6, x) , ifh <0

6 (x) = 0, (x) + -
{1 « |- 8lx) Al (X)} ") (3-2)

8 (h,x) = 0, (x) ifth =0

where n is a dimensionless shape factor (a real number, not an integer), B is an inverse pressure head
scale factor (L™, 0, is the saturated water content or effective porosity of the medium, and ©, is the

residual water content at very high or infinite negative pressure. Parameter 0, is an empirical adjustment
which is usually taken equal to zero unless a better fit to experimental data is obtained by using some
nonzero value. Finally, note that Egs. (3-1) and (3-2) are only meant to describe the nonlinear
relationships that were used in the particular applications discussed in this report. The numerical model
itself is by no means limited to these particular functional forms. In fact, more recent versions of
BIGFLOW incorporate a more extensive set of multiparameter, spatially variable, nonlinear relations

K{hx) and O(hx) in the form of additional modules.
3.1.2 Hydraulic Properties

A TSw/CHnv flow system, of size 250250 X500 m, is discretized in 18,081 computational
cells each with a grid block size of Ax=12.5 m. It is recognized that the proposed HLW repository
extends to an area much larger than the flow system studied in this work. Our work is based, among
other reasons, on the testing of the premise that the flow will be predominantly vertically oriented. If this
is indeed found to be the case, then compartmentalization of the repository area and independent 1D flow
simulations may be sufficient for the study of the site. If, on the other hand, the results of the simulations
presented in this work showed strong lateral or focused flow behavior, then a fully 3D representation and
simulation of the site will be required in the future. An exponential covariance spatial correlation is
assumed for all properties, and the correlation length is assumed isotropic in the horizontal directions
(A¢x=Ay=37.5 m). A correlation scale anisotropy of 3 is taken to represent a mild stratification, consistent
with the depositional nature of tuffaceous rocks (i.e., \,=12.5 m). This is based on the findings of Russo
and Bouton (1992), who studied soil cores and established statistical anisotropy in the covariance
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functions of log-saturated conductivity and the parameters of the Gardner-Russo and van Genuchten
models. The hydraulic properties used in this study, their distributions and cross-correlations (where
established and found to be statistically significant) are presented in Table 3-1. Data for matrix tuffaceous
materials were obtained from Peters et al. (1984) for samples taken from USW G-4 and USW GU-3
(Table A-2 of the report by Peters et al., 1984). The hydraulic properties for the fault zone were freely
assumed and modified from the work of Rockhold et al. (1992).

The isotropic discretization interval of 12.5 m yields three nodes and one node per correlation
scale in the horizontal and vertical directions, respectively. This discretization imposes a high-wave
number cutoff in the corresponding spectrum employed to generate the 3D properties in the TBM code
(Tompson et al., 1987a). Therefore, the actual stochastic description employed here does not have the
rich high-wave number characteristic of an exponential covariance function. This is, in part, a remedy
to the zero micro-scale assumption described in Section 2.1 [see Kapoor (1993) for a detailed discussion].
The large range of hydraulic-conductivity values encountered in this problem can be seen in Figures 3-1
and 3-2. These figures depict the sensitivity of InK(h) to various van Genuchten parameters, namely then

and p parameters for the TSw unit.

As is evident, the parameter P greatly affects the unsaturated hydraulic conductivity. In
simulations a Gardner model is assumed for the unsaturated hydraulic conductivity versus suction
relationship. Therefore, a linearization fitting process is implemented and the transformed (Figure 3-1
and 3-2) were analyzed further. A summary form of the range of unsaturated hydraulic conductivities,
spanned in our simulations, is depicted in Figure 3-3 for both the fault zone and TSw and CHnv units.

In this figure, the symbols “*” and “0” correspond to the hydraulic conductivity function for the mean K

and « parameters for the TSw and CHnv layers, respectively. The upper dashed line corresponds to aK
one standard deviation larger than its mean, and o one standard deviation smaller than its mean, for the
TSw unit. The lower dashed line corresponds to a K one standard deviation smaller than its mean, and &
one standard deviation larger than its mean, for the TSw unit. Similarly, the range of hydraulic
conductivity for the CHnv layer is bounded by the solid lines. Finally, the characteristic curve for the
fault zone is depicted by the “+” symbol. It is worthwhile noticing a number of crossing points in the
mean curves, and their associated bounds, of the fault zone and the TSw and CHnv units. This, as will
be seen later, affects greatly the flow behavior of the system in the case of faulting.

The hydraulic parameters used to describe the relation between unsaturated conductivity and

pressure, such as saturated conductivity, K, and slope of relative conductivity curve (Gardner «) are,
in general, significantly cross-correlated (Ababou, 1991; Ababou, 1993). Moderate coefficients of
variation in the Gardner a-parameter produce highly heterogeneous moisture plumes (as theoretically
predicted by Yeh et al. 1985b). Furthermore, GWTT estimates were found to exhibit a significant
dependence on the Gardner a-parameter for the case of persistent discontinuities (Bagtzoglou et al.,
1993). When the various hydraulic properties are uncorrelated, highly heterogeneous (perhaps even
physically unrealistic) moisture patterns develop (Yeh, 1989). It is, therefore, extremely important that,
when available or attainable, such property cross-correlations are taken into account for the generation
of physically meaningful stochastic representations of hydraulic parameter fields. Wang and Narasimhan
(1988) strongly advocated the use of such correlations, especially in the case of saturated hydraulic
conductivity and partially saturated characteristic parameters. Other similar efforts include the work of
Rautman and Robey (1993) who established cross-variable correlations between saturated conductivity,

K, and porosity, and the work of Robey (1993) who established such cross-correlations between: (i) K.,
porosity, and the average pore size; and (ii) the Brooks-Corey constant and porosity. In these efforts
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Table 3-1. Hydraulic properties used for modeling the faulted TSw/CHnv layered system and

their correlations with K, when found to be statistically significant

Property Distribution Mean Std. Deviation Correlation
Topopah Spring (Welded)

K (m/s) Lognormal —25.7000 1.3430 N/A
6, Normal 0.0925 0.0185 0.7350

a(m™) Lognormal —4.0300 0.5500 -

B (m™h Lognormal —4.9300 0.0045 —
n Normal 1.7664 0.2000 0.7100
0r Normal 0.0067 0.0011 —

Calico Hills (Nonwelded-Vitric)

K, (m/s) Lognormal —15.5000 3.1526 N/A
0 Normal 0.3950 0.0603 0.9690

a (m™) Lognormal —2.5400 0.7500 —

B (m™ Lognormal —3.8300 0.5041 —
n Normal 4.2028 0.7807 —
0, Normal 0.0316 0.0093 —

Fault Zone

K, (m/s) Constant —11.5000 N/A N/A
6 Constant 0.0750 N/A N/A

a(m™) Constant 0.1000 N/A N/A

B (m™ Constant 1.0000 N/A N/A
n Constant 5.0000 N/A N/A
0, Constant 0.0300 N/A N/A
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Figure 3-1. Sensitivity of unsaturated hydraulic conductivity on van Genuchten » for the TSw unit.
Range of n is + 3 standard deviations.

(Rautman and Robey, 1993; Robey, 1993), one-to-one singular behavior was avoided by adding a
spatially uncorrelated Gaussian random noise component to the value computed by the cross-correlation
relationships (Rautman and Robey, 1993).

In this work, spatially autocorrelated, and point-wise cross-correlated, hydraulic properties are
generated by considering them to be linearly dependent on the saturated hydraulic conductivity. Reasons
for doing so include: (i) the term InK; has been, by far, the primary variable of interest in all types of
research efforts, deterministic/stochastic or saturated/unsaturated; (ii) spatial variability and covariance
structure analyses of K have been routinely conducted over the years; and (iii) for ease of comparison,

since employing InKg is consistent with previously reported, related work (Yeh et al., 1985a,b,c;
Mantoglou and Gelhar, 1985, 1987a,b,c; and Yeh, 1989).

Thus, each hydraulic property is assumed linearly dependent on InKg and an independent
autocorrelated random field, suitably weighted, is used to produce the desired correlation coefficient. The
assumption of log-normality is made for properties such as the saturated hydraulic conductivity and the
Gardner o -parameter, as indicated in Table 3-1. This assumption is supported by the measurements of
White and Sully (1992). All of the input random fields are assumed to have the same spatial persistence
structure.
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Figure 3-2. Sensitivity of unsaturated hydraulic conductivity on van Genuchten g for the TSw unit.
Range of 8 is + 1 standard deviation.

3.1.3 Generation of Cross-Correlated Random Fields

In this study, a method of direct generation of spatially correlated, cross-correlated hydraulic
properties is employed, as advocated by Ababou (1993). Consider the random field parameters F(x) and

A(x), assumed to be, for example, jointly Gaussian random fields. Assume, further, that they both
correspond to lognormally distributed physical properties such as the saturated hydraulic conductivity and

the Gardner o-parameter. Therefore, F=In(K) and A=In(a). Decomposing each of the Gaussian random
fields as:

F(x)= {F) +F(x) (3-3)
and

A@)= A +A®x) (34)

where the symbols () and ~, associated with fields A and F, denote the ensemble mean and the
zero-mean random field perturbations. These perturbations have standard deviations o, and o,

respectively. Assume that the perturbation in field A is a linear combination of two independent replicates

3-6



T

C}fnv 1o blound

TSw 10 bound

I

_— -
b R
—

log K(h)

o : CHnv mean

b B
-—
_—
-

- -
-_— -

TSw 1o bound -

CHnv 1¢ bound .

60 80 100 120 140 160 180 200
Suction Head (m)

. Range of unsaturated hydraulic conductivities for the fault zone and the TSw and CHnv

3-7




of the perturbation in field F. Assume, further, that G(x) is a normally distributed zero-mean, unit-
variance random field, with the same structure as F{x). Then, the perturbations in fields F and A can
be constructed from two independent replicates of G(x), namely g,(x) and g,(x) as:

F(x)=0, g,(x) (3-5)
and

Ax)=0, [og,(x)+/1-0? g,(x)] (3-6)

where p is a measure of cross-correlation between A and F. By definition, the two random fields,A

and F, are jointly Gaussian. They also honor a cross-covariance tensor which can be expressed as
(Ababou, 1993):

e
R R 2 o,
R(§)= M) R | o e Red) 7
Re(E) Relt)| | pos
o

where £ is the distance between two space locations. Note that both random fields are defined fully based
on the spatial covariance of one of them, in this case Rg(£), the covariance of the saturated hydraulic

conductivity field. Furthermore, the correlation coefficient p establishes a unique cross-correlation
between the two random fields.

Figure 3-4 depicts a verification of this methodology, as implemented in the MKPROP module
of SUFLAT. The cross-correlation relationships were developed using the Las Cruces Trench data

(Wierenga et al., 1989) for saturated conductivity and van Genuchten P (also known as « in the
literature). All 27,000 nodal values generated by MKPROP are plotted together with the 410 experimental
data points. The statistical equivalence of the two data sets, as evidenced by the two indistinguishable best
linear fits, serves as a verification of the MKPROP generator. The approach to generate cross-correlated
property fields was applied to data of tuffaceous materials representative of Yucca Mountain, obtained
from Peters et al. (1984), and cross-correlations between various properties were investigated. In this
work the Gardner and van Genuchten models were assumed for the unsaturated hydraulic conductivity
and moisture retention relationship, respectively. For example, there is an excellent correlation (o =0.969)
between the saturated conductivity and porosity values for the CHnv unit. Similarly, a lack of any
significant correlation between the shape parameters of the van Genuchten model and saturated hydraulic
conductivity is evident for the same unit. This is consistent with observations made by Polmann (1990)
for Maddock soil. The relationship established for the means of porosity and saturated hydraulic
conductivity for the CHnv unit is:

65> =0.9439+0.03081n ( <K ) (3-8)

Rautman and Robey (1993) established a similar relationship based on data from drill holes N-54 and
N-55, augmented by surface transect data and other sources. Their relationship between porosity and
conductivity is:
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(85> =1.0275 + 0.0385 In (<K ) (3-9)

with a correlation coefficient of p=0.860. The similarity between Eqs. (3-8) and (3-9) is apparent.

Figure 3-5 presents a 3D perspective view of two vertical cross-sections in the logarithm of
saturated hydraulic conductivity and porosity fields. The two layers are clearly defined and the greater

variability in the CHnv unit is clearly perceptible due to a ratio in the values of o, of 2.34. Also

perceptible are the areas where high-hydraulic conductivity values coincide with high-porosity values.
This is more frequently observed in the CHnv unit as a consequence of the larger correlation coefficient

value ( p=0.969 versus 0.735 for the TSw unit).
3.2 FLOW AND TRANSPORT SYSTEM DESCRIPTION

The unsaturated flow problem, represented by Richards equation, is solved with the BIGFLOW
numerical code (Ababou and Gelhar, 1988; Ababou and Bagtzoglou, 1993). A detailed description can
be found in Section 2.2 and in the work of Ababou and Bagtzoglou (1993); however, a brief discussion
is included here for the sake of completeness. In BIGFLOW, an implicit, low-order, seven-point centered
finite difference scheme is implemented and steady-state solutions are attained by time-stepping to
sufficiently long times. In the simulations presented herein, the unsaturated conductivity-pressure relation
K{h,x) is assumed to be a truncated exponential function. For the soil moisture retention curve 6(hx) a
van Genuchten function is assumed. Both characteristic curves are allowed to include 3D spatially-variable
parameters.

The thicknesses of the TSw and CHnv layers are 350 m and 150 m, respectively. The
unsaturated flow problem is solved with the BIGFLOW numerical code, and steady-state solutions are
attained by time-stepping to sufficiently long times, or until some mass balance criteria are satisfied. The
SUFLAT methodology is implemented and multiple realizations of material properties and the
corresponding flow problem solutions are obtained. The lateral boundaries of the system are no-flow, the
bottom boundary is a water table condition, and the top boundary has a specified spatially uniform flux
of 0.5 mm/yr. The computational domain spans 7 correlation lengths in the horizontal direction and 40
in the vertical. The choice of a water table boundary condition at the bottom of the domain has been
questioned and subsequently investigated to determine whether it provides a free-drainage condition. This
issue is of importance, especially under heterogeneous conditions, since a localized area of positive
pressure immediately above the water table would result in a nonplausible, unrealistic blocking of water
pathways.

In order to address this question, a detailed flow simulation was conducted with hydraulic
properties characteristic of the TSw unit, which is substantially more prone to develop such a pressure
buildup. An extremely fine resolution was implemented and 144,648 computational cells were used. A
statistical analysis of the 1,681 (41x41) vertical transects revealed that this problem is very likely to
occur in the TSw unit. Figure 3-6 depicts results from this analysis. In this figure the ensemble mean (of
the 1,681 transects) and + three standard deviation bounds of pressure head are shown as dashed-dotted
and dashed lines, respectively. A typical realization (in this case the vertical transect in the middle of the
domain) is also depicted as the solid line. Also depicted in this figure are the USGS borehole UZ-16 data
within the TSw unit. These data were taken from the work of Wittmeyer et al. (1993) who determined
the van Genuchten model parameters for each set of water retention data, based on a
Levenberg-Marquardt nonlinear least squares procedure. Wittmeyer et al. (1993) mapped the van
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Genuchten model parameters to a 24-layer hydrostratigraphic description of UZ-16 by correlating
lithologic descriptions and porosity values. UZ-16 saturation values as a function of depth were also
provided by Mr. W. Ford of the NRC. From the saturation values, and based on the matrix hydraulic
parameters for the 24-layer UZ-16 model of Wittmeyer et al. (1993) and Baca et al. (1994), pressure head
values were calculated and plotted in Figure 3-6 as black dots. Note that in order to make the two data
sets comparable, the UZ-16 data points have been scaled, so that instead of spanning a distance of 309.5
m they now span a distance of 500 m. There are several observations that can be made: (i) there is a
good agreement between the vertical transect in the middle of the domain and the ensemble mean,
providing confidence that the simulations presented herein satisfy the ergodic hypothesis; (ii) there is a
substantial variability among the 1,681 vertical transects, as it is evident by the range of pressure heads
spanned by the three standard deviation bounds; (iii) the results of the simulations presented in this work
are in a fair qualitative agreement with the UZ-16 data, even though there exist data points which are
very much out of the three standard deviation bounds; (iv) for the majority of the ensemble of vertical
transects, the pressure head profile is very close to hydrostatic up to an elevation of 30 to S0 m above
the water table.

This last observation deserves some further discussion, the pertinent question being “what is

the probability of positive pressure heads developing at any given point within the layer?” Assuming that:
(i) a total of 1,681 vertical transects is a good statistical sample; and (ii) pressure head variations follow
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a normal distribution, then it is expected that within the three standard deviation bounds 99.87 percent
of variability is captured. With this premise, the probability of occurrence of a positive pressure head at
any arbitrary point along a vertical transect within the TSw unit can be estimated by the ratio of the area
corresponding to positive pressure heads over the area bounded by the three standard deviation bounds.
Using the data presented in Figure 3-6, this ratio is calculated to be 16.8 percent. As this represents an
extreme upper bound on the amount of positive pressure head occurrences that might be expected in the
CHnv unit, it is concluded that the water table boundary condition does not significantly contradict the
desired free-drainage property.

Transport of conservative species is simulated by particle tracking with the numerical code
SLIM (Tompson et al., 1987b). A large number of particles (10,000) is released instantaneously from
a single cell located at the layer of cells adjacent to the top boundary and approximately at the center of
the domain. Particle projection functions are used to obtain particle densities from particle cloud spatial
configurations (Bagtzoglou et al., 1992a). Steady-state flow results are used for particle transport for three
values of dispersivity; O for the purely advective case, and 0.1 m, and 1,0 m for the advective-dispersive
cases. Within the context of this work, local dispersion is viewed as the manifestation of subcontinuum
(grid block) variability, as it could be due to the presence of fractures in the rock. These values are in
qualitative agreement with the dispersivity value of 0.44 m calculated from the results presented by Smith
and Schwartz (1993) for flow and transport in saturated, discrete fracture networks. They are also
bounded by the asymptotic longitudinal dispersivity value of 2.2 m deduced by Neuman et al. (1985)
from the field results at the Oracle site. It should be noted that in the simulations presented in this work,
transport is always advection dominated, insofar as the horizontal correlation scale-based Peclet number

is 37.5, 375, and « for dispersivity of 1.0 m, 0.1 m, and 0, respectively.
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4 FLOW SIMULATION RESULTS

4.1 FLOW RESULTS FOR A TWO-LAYERED SYSTEM

Under the flow conditions described in Chapter 3 the steady-state pressure head solution is
attained after approximately 1.5 M yr when the initial condition is assumed to be hydrostatic. The suction
field obtained from the numerical simulations shows significant spatial variation. The impact of such
suction variation on the overall flux of moisture and solute transport is discussed in great detail by Gelhar
(1993), with a summary of analytical results and an overview of different approaches for analyzing
unsaturated flow and transport. In our multiple SUFLAT flow simulations, the suction head solution from
one realization is used as a wise initial guess for all subsequent simulations, yielding very rapid
steady-state convergence. Harter and Yeh (1993) have addressed this issue by employing approximate
spectral solutions as initial conditions to obtain fast convergence. The stochastic property fields are
generated in such a manner that the flow domain spans at least 7 to 14 correlation lengths in the
horizontal and vertical directions, respectively. Therefore, it is anticipated that all inherent variability in
the fields is reflected in the solution of the flow problem and, consequently, subsequent flow simulations
are closer, in an average sense, to their steady-state solution. To put this in perspective, one should note
that a representative simulation is attained after 6 k yr. Figure 4-1 depicts a global mass balance-based
steady-state convergence indicator as a function of time. It can be seen than for this particular realization
a mass balance error of less than 2 percent is achieved in 6 k yr.

The steady-state pressure head solution for a representative simulation is shown in Figure 4-2.
Several observations can be made: (i) the CHnv layer is predominantly under hydrostatic pressure
conditions, at least for the first 100 m above the water table level; (ii) a zone of very high suction is
formed at, or in the vicinity of, the interface, supporting the hypothesis of a capillary barrier existence;
and (iii) a wedge-like zone of almost zero suction is formed above the interface. This zone extends up
to a maximum of 30 m and is characterized by very high saturations, in the range of 95 to 98 percent.

These observations are very consistent with the results presented by Wittwer et al. (1993) who
conducted 2D numerical simulations using the TOUGH2 code. These researchers identified a low
capillary pressure zone (—22 bars) above the top layers of Calico Hills. They claim that “[fjhis low
capillary pressure zone is probably due to decreased vertical flow due to increased lateral flow in the
upper layers of the Topopah Spring unit.” The results presented in Figure 4-2 demonstrate the existence
of a similar region; however, a low capillary pressure zone of only — 16 bars was observed, possibly due
to the 3D nature of the simulations discussed herein. Agreement exists also in the high liquid saturations
estimated to occur in the Topopah Spring unit, which according to Wittwer et al. (1993) range between
0.78-0.93. These results are corroborated also by the work of Wittmeyer et al. (1993), who studied the
water content profiles for borehole USW UZ-16. Figure 4-3 depicts the measured saturation values. It
should be noted that the UZ-16 data are scaled in terms of depth in order to be comparable with the
results of the simulations presented here. From Figure 4-2b it is estimated that a zone of approximately
50 m in thickness is at saturations greater than 97 percent, in fair agreement with the 100 m-thick zone
of saturations greater than 93 percent of Figure 4-3.

The concept of extensive lateral unsaturated flow has not been investigated thoroughly to date
(Lehman, 1992). However, there has been some recent progress made on theoretical, laboratory, and field
studies of capillary barriers within the context of the soil physics literature. Zaslavsky and Sinai (1981),
Ross (1990), and Kung (1990a,b) have studied various aspects of development and characteristics of
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Figure 4-1. Global mass balance indicator as a function of time

capillary barriers. Oldenburg and Pruess (1993) conducted numerical modeling exercises, with careful
consideration of space discretization and grid orientation effects, on the issue of capillary barriers. They
performed an analysis of an idealized system, assuming the soils to have hydraulic conductivities which
follow an exponential function and homogeneous properties on a per-layer basis. They based their analysis
on a dimensionless index, equal to the ratio of the sorptive numbers of the fine over the coarse grained
layers, and presented flow results demonstrating the capillary diversion and subsequent leakage through

the barrier. The sorptive number (« ) used by Oldenburg and Pruess (1993) is identical to the Gardner-«
parameter used in the analyses presented herein. Therefore, the sorptive number ratio index is given by

a/a*, where a and a* correspond to the fine and coarse grained layer properties, respectively. As this
index decreased from 0.05 to 0.025, Oldenburg and Pruess found out that the flow break of the capillary
barrier became more apparent and preferential.

The results of the work presented herein are in agreement with the analysis by Oldenburg and
Pruess (1993). Figure 4-4 depicts the scalar magnitude of the water velocity. Notable is the overall
contrast between the two distinct layers, with the lower layer acting as a capillary barrier (natural
logarithm of velocity, in m/sec, is in the range of —45 to —39) as predicted by some U.S. Department
of Energy researchers (Loeven, 1993). The formation of capillary barriers when coarse “homogeneous”
porous media are overlain by fine “homogeneous” porous media is well known, and so is the existence
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Figure 4-2. Steady-state pressure head results for the hydraulic property fields of Figure 3-5,
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of the phenomenon of capillary barrier breaching by rapidly moving fingers of water (Baker and Hillel,
1990; and references therein). The work presented here demonstrates this phenomenon under the
influence of high degrees of porous media heterogeneity. Whether such a capillary barrier can
unequivocally maintain its integrity, thus diverting the flow laterally at infinite lengths, is a very
important question. This is of particularly great interest for heterogeneous media. Smith and Schwartz
(1981) presented a discussion on the subject of capillary barriers whereby the within-layer heterogeneities
may, when large compared to the layer contrast, reduce the effect of the layering induced capillary
barriers.

This is also consistent with the findings of Tchelepi et al. (1993) who studied numerically and
experimentally the development of viscous fingering. One of their most important conclusions is that
heterogeneities cannot be necessarily associated with the development of unstable displacements. As
Neuman (1994) points out, stability depends greatly on: (i) the pressure gradient developing immediately

above the wetting front; and (ii) the heterogeneity of the two media, as expressed by the variance o? and

correlation scale A . Based on theoretical and numerical (Monte Carlo) analyses, it is concluded that in
the case of unstable conditions (based on pressure gradients alone) a mild heterogeneity has a
“pronounced stabilizing effect,” whereas a “strong heterogeneity has a destabilizing effect.” A low
degree of heterogeneity may be enough to “dissipate the energy” trying to pass through the layer
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Figure 4-4. Steady-state magnitude of flow velocity, in In (m/sec), for typical realization (#5)

interface. A higher degree of within-layer heterogeneity can very well act as the instigating mechanism
for preferential flow pathways to develop, thus contributing to instabilities. This perception is in close
agreement with Neuman’s preliminary findings. Therefore, the breaching of a capillary barrier under the
presence of substantial within-layer heterogeneity is an issue which cannot be settled without explicitly
incorporating heterogeneity into the analysis. In this particular case, for example, the results demonstrate
that this breaching does exist. In Figure 4-4 one can see that high-velocity zones bypass the barrier in
some regions (velocity magnitude is approximately four orders of magnitude greater than those of the
surroundings). The locations of these regions are hypothesized to be determined by the nature of the
heterogeneity of the porous medium and are related to the range of suction-based crossing points in the
unsaturated conductivity curves (shown in Figure 3-3). Note that there exists a substantial range in the
suction head (greater than 80 m) over which the TSw layer property outliers are more conductive than
the CHnv layer average properties.

Moreover, the sorptive number ratio index is bounded by 2X10" 6 and 0.5 with an average value
of 0.224 for the simulations presented in this work. Therefore, these results are again in agreement with
Oldenburg and Pruess (1993) since there exists a plethora of potential barrier breaching points where the
sorptive number ratio index is near the 0.025 value which, in their calculations, was related to strongly
breaking flows. Finally, a more detailed representation of Figure 4-4 can be viewed in Figure 4-5, where
velocity vectors are depicted together with streamlines at 2 vertical plane of X=50 m. The very strong,
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lateral flow velocities (order of 10 to 20 mm/yr) and very localized breaching area are characteristic of
extensive lateral flow along the layer interface. Our results are a direct answer to the philosophical
questions asked by Pruess and Tsang (1994) as to whether existing performance assessment models are
unable to represent highly localized effects, including channelized flow along preferential paths.

4.2 FLOW RESULTS IN THE PRESENCE OF FAULTING

The exact mechanism through which fault zones convey water is unclear. It is hypothesized that
because fault zones are filled with highly fractured rocks they may act as preferential pathways for
groundwater. It has also been hypothesized that in some cases, when natural mineral cement is present,
they may inhibit water flow. Monastersky (1994) quotes R.W. Spengler, a United States Geological
Survey (USGS) scientist, as to a potential explanation of the hydraulic role of fault zones: “[t]he basic
question that remains unanswered is whether or not any of the faults are barriers to the transport of fluids
and gases or whether they are conduits.”

The significantly different behavior of the flow system in the presence of a persistent
discontinuity such as a fault zone was studied for a homogeneous layer case by Bagtzoglou et al. (1993).
In the work of Bagtzoglou et al. (1993), five layers of approximately equal thicknesses spanned a total
depth of 530 m, down to an assumed water table. The computational domain used in these simulations
had dimensions of 1,230 m, 80 m, and 530 m in the X-,Y- and Z-directions, respectively. The domain
was discretized into 7,830 nodes as shown in Figure 4-6. Also depicted in this figure is the location of
the fault zone arbitrarily modeled as a three-cell wide, YZ planar zone in the middle of the domain.
Figure 4-7 shows the velocity vectors and particle plots for two cases of contrast in the slope of the
unsaturated conductivity curve. When the fault conductivity slope is comparatively much larger than that

of the matrix (am=0.022 ml, @,=0.100 m'l), higher fluxes are observed in the matrix resulting in a
moisture front which lags within the fault zone. When the contrast is milder (a,=0.022 m™’,

uf=0.035 m™1), the opposite behavior is observed. The fluxes within the fault zone are greater, but they
point towards the matrix. This creates a frontal shape that continuously expands outwards from the fault
zone.

As an illustration of the effects of faulting, one realization of the material property fields is
modified to incorporate a highly conductive zone of Axx5Ay in areal extent, penetrating the full depth
of the domain. The hydraulic properties of the fault zone were described in Chapter 3. Figure 4-8 depicts
the steady-state pressure head solution, corresponding to Figure 4-2b, resulting from the superimposition
of a homogeneous fault zone on the realization depicted in Figure 3-5. The dramatic change in the flow
system behavior from Figure 4-3 to Figure 4-8 is apparent. Even though the fault zone extends only one
computational cell in the X-direction, its effect is felt over almost 100 m. Also, the fault reduces the
saturations along the layer interface. Bodvarsson et al. (1994) predicted similar behavior in their modeling
efforts, dealing with homogeneous layers. It is also very interesting to notice the variation of pressure
head along the fault between dry and wet conditions. This change occurs at approximate depths of
100, 170, and 290 m below the top of the domain (or at elevation of 400, 330, and 210 m above the
water table). This complex behavior occurs because the fault conductivity and the mean curves of the two
layers are nearly identical in the range of 60 to 160 m suction, while the layer property fields have
excursions above and below the fault’s properties.
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Similar observations are made for the velocity fields and streamlines. Figure 4-9 presents
velocity vectors and streamlines along a vertical plane at Y=150 m. Even though the capillary barrier
is still functioning, the flow is now pretty much concentrated through the fault zone (velocity of 670
mm/yr), with some recirculatory flow patterns being perceptible in the vicinity of the crossing-point
regions. These results are in disagreement with Tsang et al. (1993) who concluded that a “large saturated
permeability of the Ghost Dance fault will play little role in channeling water into the fault or in
enhancing the flow of water down the fault.” The results presented herein, however, are in good
agreement with Wittwer et al. (1993) who reported a very low-liquid saturation (3 percent) in the fault
zones as one very dominant feature of their simulations. The analyses presented here predict a maximum
saturation of 5 percent within the fault zone. Bodvarsson et al. (1994) estimate similar levels of saturation
in the immediate vicinity of the Ghost Dance fault zone; however, for uniform areal infiltration of
0.1 mm/yr they calculated the normalized vertical moisture fluxes (given as a percentage of the
infiltration at the ground surface) to be less than 290 percent. The apparent disagreement between the
results presented herein and the work of Bodvarsson et al. (1994) can be attributed to the fact that the
work of Bodvarsson et al. does not incorporate within-layer heterogeneity, and deals with an infiltration
signal five times less than the one used in the present study.
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5 TRANSPORT SIMULATION RESULTS

In this chapter, the detailed evaluation of advection-dispersion of solute in unsaturated heterogeneous
porous media is simulated to understand transport processes in the far-field of a two-layer system.
Velocity fields, used in the analyses, are obtained as described in Chapter 4. Conservative transport is
simulated by particle tracking with the numerical code SLIM. Ten thousand particles are released in
independent locations within a single cell, which is located in the layer of cells adjacent to the top
boundary, and approximately at the center of the domain for each of the 20 simulations conducted. This
could be envisioned to represent a potential repository location. Therefore, a total of 200,000 independent
particle flights contribute to the statistics. The mean and variance of the concentrations of solute
undergoing advection-dispersion in the flow fields are calculated. Moreover, particle breakthrough curves
at the bottom boundary, considered here as the compliance boundary water table, provide an elegant way
of presenting GWTT estimates. For example, the first particle to cross this boundary corresponds to the
GWTT. Other measures, such as the 50th percentile of particles crossing the boundary can be used as
well. Also, uncertainty in GWTT estimates can be readily calculated by performing statistical analyses
over the realization ensemble space. It is recognized that an ensemble of 20 different realizations is a
small statistical sample. However, our flow analyses involve quite a substantial amount of variability
(77 x40 correlation lengths), and the transport analyses involve a very large number of particles
(10,000) which, since they are released randomly over a prescribed finite volume, sample numerous
pathlines for every realization.

The SUFLAT methodology has been applied in the past for saturated systems (Bagtzoglou and Baca,
1994). Figure 5-1 depicts the cumulative distribution function for travel time for 200,000 particle flights
in a saturated medium. As discussed in Section 2.3, SUFLAT not only provides estimates of GWTT but
also measures of the uncertainty associated with these estimates. There exists a one-to-one relationship
between solute concentrations and particle density functions. Therefore, the use of either terminology is
a matter of semantics. What is important to keep in mind is that {c(x,?)), the expected value of the particle
density for a series of random hydraulic property field realizations, can be calculated readily. A particle
released at #=0 from within the release region has some probability ending up in any specific point within
a specific volume of interest. To account for the particle ending up at any possible point within the same
volume, one has to calculate the integral:

P(X e V)= j ) fX=T)av (5-1)

where, in the general case, V stands for the volume of interest.

As there may be considerable variation in the concentration field from realization to realization, the
important issue of quantifying this variability is raised. Kapoor (1993), Kapoor and Gelhar (1994a), and
Harter (1994) have defined a useful measure of inter-realization variability, the concentration coefficient
of variation (CV):

9
= (5-2)
VT

where o, and {¢) are the standard deviation and expected value of concentration at a particular point in
space.
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Figure 5-1. Cumulative distribution function for particle arrival time for ¢,=0.90, and 200,000
particle flights (from Bagtzoglou and Baca, 1994). Thick solid line: ensemble mean; solid line:
earliest particle arrival; dashed line: latest particle arrival.

5.1 ADVECTIVE TRANSPORT

Results from representative, purely advective transport simulations are depicted in Figures 5-2,
5-3, and 5-4 for the particle density mean, standard deviation, and CV, respectively. These figures show
snapshots of the aforementioned variables at time T'=100 and 300 k yr. There is a substantial amount
of information one can deduce from these plots. For example, at T =300 k yr one can estimate the most
probable location of the water particles to be at a depth 300 m below the top of the domain. However,
as is evident by some relatively high values in the mean particle density near the bottom of the domain,
there exist realizations that are very close in breaking through the water table. Finally, Figure 54
provides a measure of uncertainty in these predictions. Note for example, the most-probable ending
location for a particle is associated with a low (CV=1.0 to 1.5) coefficient of variation, indicating a
reliable prediction. This is in direct contrast to the high value (CV 23.0) associated with the perceptible
mean near the bottom of the domain. Note also the rapid increase in the values of the coefficient of
variation near the exterior boundary of the particle cloud. This result is very similar to the increase in
noise far from the mean values for the noise-to-signal ratio discussed in Section 2.3.5.2. Figure 5-5
presents results from breakthrough analyses at the bottom boundary. The number of particles exiting the
domain through this boundary is expressed as a percentage of the total number of particles released, and
plotted as a function of time. Only five of the twenty realizations have particles that break through the
bottom boundary within the prescribed time, thus providing a tremendous variability in the estimates of
first arrivals, as calculated from this graph.
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Figure 5-2. Mean particle density for advective transport at: (@ T=100 k yr, (b) T=300 k yr
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Figure 5-5. Cumulative distribution function of exiting particles at the bottom boundary for
advective transport. Only five out of twenty realizations break through the bottom boundary.

5.2 ADVECTIVE-DISPERSIVE TRANSPORT

The simulations presented in this section are identical to those in Section 5.1, except that
dispersive transport is implemented using the random walk process discussed in Section 2.3.3. Two
values of isotropic dispersivity are used, namely 1.0 and 0.1 m. It is worthwhile observing the coefficient
of variation results for these two levels of dispersion. Figures 5-6a and 5-6b depict the CV of

concentration at T=100 k yr for dispersivity values of 0.1 and 1.0 m, respectively.

Comparing Figures 5-6a,b and 5-4a, one can easily conclude that as the local dispersion is
increased, the level of certitude in our transport simulations improves. This is attributed to: (i) the

volumetric extent of the low CV region (e.g., CV <1.0), and (ii) the range of CV in the domain of
interest. For example, the minimum CV is 0.91, 0.87, and 0.49 for dispersivity of 0.0, 0.1, and 1.0 m,
respectively. One could challenge the validity of this assertion by posing the question: “How can a
random process, and its associated lack of information at a certain scale, render the transport simulations
more reliable?” The key in answering this question is to first perceive reliability as repeatability. This
is, at least under a Monte Carlo framework, relevant since the higher the frequency of an occurrence,
the more reliable is the prediction of this occurrence. Physically, reliability is very much related to the
results presented in Chapter 2 regarding the numerical stability of the covariance matrix systems.
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Figure 5-6. Coefficient of variation of concentration for advective-dispersive transport at
T=100 k yr for: (a) dispersivity of 0.1 m; (b) dispersivity of 1.0 m

5-7



Microvariability serves as an extra mechanism which “shepherds” solute through a greater variety of
pathways, thus sampling (on the average) more streamlines. Advective transport, on the other hand, is
much more preferential. From one realization of the ensemble space to the next, solute particles travel
through drastically different channels. Figure 5-7 presents results of the breakthrough analysis for the case
of dispersivity equal to 1.0 m. Only 10 out of the total of 20 connecting realizations are depicted in
Figure 5-7 for reasons of clarity. There is a much narrower envelope in the GWTT distribution (the
realizations with fastest and slowest first-particle arrivals are included in the ten realizations shown in
Figure 5-7) when compared to the purely advective transport case. To put this in perspective, note that
(even excluding the 15 realizations which did not break through), in the case of advective transport, a
mean GWTT of 546 k yr and a standard deviation in GWTT of 115 k yr are calculated. This is in
contrast to the GWTT mean and standard deviation of 310 and 85 k yr for the dispersive case. The
accelerated behavior of the GWTT (310 versus 546 k yr or 43 percent faster) for the dispersive case is
viewed as logical, since some degree of fracturing is expected to yield faster travel times.

In order to demonstrate the pronounced variability in the flow behavior of the system, some
results that deal with independent realizations are presented. One can visualize the actual tortuous
pathways followed by the solute as it travels downward while, at the same time, undergoing advection
and dispersion. These simulations correspond to the case of modest dispersivity (0.1 m). Figure 5-8

depicts a series of concentration snapshots at time T =50, 75, 100, 150, 200, and 250 k yr for the fifth
realization. The elevation above the water table of the centroid of the plume is also calculated and
presented. Several observations can be made. First, at early times (100 k yr) the particle cloud is impeded
by a zone of relatively small flow velocities (with a contrast of one order of magnitude) near the top of
the domain (see Figure 4-4). After some time, the solute plume finds its way around this obstacle and
continues its downward travel. Second, at some time before 200 k yr, the interface between the two
stratigraphic units is reached and a clear lateral movement is observed. This is consistent with the flow
velocity results presented in Chapter 4. Third, at time equal to 250 k yr, the plume continues to spread
laterally across the interface, consistent with observations by Yeh et al. (1994) who studied the wicking
effect in liner systems. However, finger-like plume patterns have developed and passed through the
interface. These patterns clearly serve to dispel the concept of an unequivocal and infinitely extensive
capillary barrier.

The variability from one realization to the next is demonstrated through Figures 5-9 and 5-10.
In Figure 5-9 the pressure head field at a vertical cross-section is depicted for the first realization. It is
worthwhile noticing (while comparing to Figure 4-2b) that there exists no zone of saturation immediately
above what appears to be a persistent zone of high suction at, or near, the layer interface. Figure 5-10
presents a series of concentration snapshots at time 7=50, 75, 100, 150, 200, and 250 k yr for the first
realization. When compared to Figure 5-8 one can quickly comprehend the tremendous variability
sampled in these simulations. One could also possibly speculate on the role of the close-to-saturation zone
above the interface and its effect on the overall transport phenomena occurring in the system. One should
note that the concentration plume travels downward at a much slower pace in realization 1
(close-to-saturation zone does not exist) than in realization 5 (close-to-saturation zone exists).

A simple statistical analysis of the breakthrough curves for the case of modest dispersivity
(0.1 m) resulted in a mean GWTT of 333 k yr and an associated standard deviation of 77 k yr. Additional
information on the behavior of the two cases is found in Figure 5-11. Shown in this figure is the number
of particles which have exited the domain through the bottom boundary as a function of time for the first
and fifth realization. After some initial time adjustments, the rate of particles exiting per unit time (i.e.,
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Figure 5-7. Cumulative distribution function of exiting particles at the bottom boundary for
advective-dispersive (dispersivity of 1.0 m) transport. All twenty realizations break through the
boundary; however, only ten are depicted for reasons of clarity.

the slope of the curve) becomes constant. It is clear from this figure not only that realization five
produces the fastest arrival, but also provides a flux of particles exiting the domain approximately 2.4
times greater than that of realization one (3.33 versus 1.39 particles per k yr).

Breakthrough curves provide a measure of the behavior of the entire system over time. More
detail on the spatial variability of the ensemble of realizations is found by considering the concentration
coefficient of variation. Figure 5-12 depicts the spatial distribution of the concentration CV at time

T = 250 k yr. The areas of the plot that are marked by light shades of gray-to-white correspond to a
relatively high degree of uncertainty compared to the zones in gray or black. Once again, it is important
to note that the persistence of the lateral movement across the interface is supported by the horizontal
dark area above the 150-m elevation. Relatively high degree of repeatability in capillary barrier breaching
is indicated by the coefficient of variation plot. Variations in concentration due to the complexity of the
flow fields are large and should be acknowledged in assessing contaminant concentrations. The transport
simulation results presented here support this very concept, first proposed by Russo (1991) for the case
of unsaturated flow. The concentration estimates calculated by any large-scale mean transport model,
neglecting advective heterogeneity, should have large error bars. The magnitude of the error bars, as a
multiple of the mean concentration, increases with a decrease in the local dispersion value. The
concentration CV keeps increasing with distance from the center of mass making the uncertainty around
mean concentration predictions increasingly large multiples of the mean. The jaggedness of plumes as a
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Figure 5-9. 2D cross-sectional view of steady-state pressure head results for realization #1, at
Y=125m

consequence of porous media heterogeneity needs to be appreciated in assessing contaminant exposure
levels. Finally, a summary of the coefficient of variation analysis is presented in Figure 5-13 for the pure
advection and the two advection-dispersion cases. This figure depicts the temporal evolution of the
minimum (spatial) concentration CV, as presented in Bagtzoglou and Kapoor (1994).

At early times the zero-local dispersion CV grows more rapidly than the advective-dispersive
cases. From a time of 150 k yr and on, in both advective-dispersive cases, the CV decreases with time.
This is especially pronounced in the case of the dispersivity being 0.1 m. In contrast with this behavior,
the zero-local dispersion case exhibits a mild increase in the CV with time from 150 to 300 k yr. This
behavior was analytically predicted by Kapoor (1993) and Kapoor and Gelhar (1994a,b) for transport in
3D heterogeneous saturated porous media, and was corroborated by field data from the Cape Cod site.
The numerical simulations presented here do not contradict their conclusion that some amount of
dispersion is required to bring about a decrease in the concentration CV at large times. The concentrations
derived from a zero-local-dispersion transport model are subject to unrealistically large relative degrees
of uncertainty; thus the zero-local dispersion model is of little value in predicting or interpreting the
asymptotic behavior of contaminant concentration in heterogeneous porous media.
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6 SUMMARY AND CONCLUSIONS

Modeling the flow and transport processes in the vadose zone at Yucca Mountain, Nevada, requires that
the effects of various types and levels of heterogeneity be accounted for. Some of the most important
geological features are stratification, faulting, and fractures. Bagtzoglou et al. (1994b) presented a review
of several approaches and advocated the use of a hybrid approach whereby heterogeneity is accounted
for in conjunction with the incorporation of persistent discontinuities in the conceptual models of flow.
There is field evidence to corroborate the existence of both preferential flow pathways through vertical
channels (fissures, faults, etc.) and extensive lateral spread along the interfaces of horizontal or dipping
strata. It is known that the hydraulic properties of unsaturated media are pressure-dependent. Moreover,
these properties become anisotropic as a function of moisture (Ababou, 1991). Detailed characterization
of unsaturated constitutive relationships is a daunting task, and it will be limited to selected locations.
Ababou (1991) strongly advocated cross-property correlations be used to ease the task of estimating the
spatial structure of material properties which are difficult or impossible to measure.

This approach has been implemented in the present work. A general purpose executive numerical code
has been developed and applied to the simulation of large-scale flow and transport. The code SUFLAT
provides for the generation of a suite of hydraulic property fields honoring certain geostatistical identifiers
[e.g., first two moments, variogram, layering (Deutsch and Journel, 1992)] in a manner that establishes
cross-correlations between properties, where available. Then, SUFLAT typically solves the unsaturated
flow equation, post-processes all outputs to calculate saturations and velocity fields and, finally, solves
the transport problem via particle tracking in a repeated mode. In the simulations presented in this work,
explicit incorporation of the effects of fractures on flow and transport is neglected. Microvariability was
shown to be related, in some respects, to the existence of fractures or sub-grid heterogeneity and its
effects were incorporated via dispersive transport. It is hypothesized that explicit representation of discrete
fractures, embedded in a matrix continuum (deterministic or stochastic), will have a profound effect on
the overall behavior of the system. However, such an endeavor was not a part of the research efforts
reported herein. SUFLAT is modular and, in principle, allows for specific modules to be interchanged,
upgraded, or substituted readily. As such, it is anticipated that this methodology will be modified in the
future so that some of its limitations be dealt with. Specifically, it is envisioned that conditional
simulations and multiphase flow processes will be incorporated within the SUFLAT methodology
structure.

This report presented a relatively thorough, but by no means exhaustive, literature review on the subject
of stochastic flow. It described, in some detail, the structure of SUFLAT and its components. Several
assumptions inherent in the application of the current version of the code were discussed and supported
by some auxiliary analyses (e.g., the choice of an exponential covariance structure and of particle tracking
methods for the solution of the transport problem). A description of the hydrogeologic parameters used
for the simulations presented in this report followed, and was supplemented by a verification of the
cross-correlation algorithm with data from the Las Cruces trench site. Flow and transport analyses with
and without the presence of a fault zone concluded the report.

This work demonstrated that stochastic-theory-based methodologies have real potential for application to
environmental impact assessments for real world waste disposal problems. A working methodology and
all associated numerical tools have been put to work to conduct large-scale flow and transport simulations
for a layered system analogous, in some respects, to Yucca Mountain. The results presented here serve
to accomplish the following. The unequivocal existence of a laterally-infinite diversive capacity for
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capillary barriers forming along strata interfaces is dispelled. It is shown that stochastic approaches
provide a natural platform to infer the likelihood of perched zone development. The need to account for
large variations in concentrations, due to the complexity of the unsaturated flow fields, in the assessment
of contaminant concentrations is emphasized. It is shown that matrix-flow conceptual models lead to large
travel times; however, these travel times are associated with large standard deviations, or uncertainties.
The results exemplify the very peculiar role of fault zones. Contrary to popular beliefs, vertical fault
zones are neither flow conduits nor barriers. Their behavior depends very much on the layering and the
within-layer heterogeneous, hydraulic properties of the surrounding material. The results shown here, for
example, indicate the existence of recirculatory flow patterns. The results also provide corroborating
evidence of the effect of heterogeneity on the development of capillary barrier breaches.
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APPENDIX A




A.1  Description of Numerical Schemes Used for Testing the Accuracy of the
Particle Tracking Method

Consider the problem of finding an approximate solution of the 1D advection-diffusion-equation
(ADE) at a point x; and time #,,, on a mesh that covers the domain of interest. We shall consider explicit
methods (in time) only. The centered finite difference (CFD) method uses second-order, centered
approximations for both the advection and diffusion operators. The resulting finite difference analog of
the ADE is, therefore:

n+l n n n
Ci__:_i_ - _ vcm - G . D (Ci’il — 2"+ cin—l) (A-1)
At 2Ax 2

where ¢” is the concentration at node i at time step n; v is the velocity; D is the dispersion coefficient;

and Ax, Ar are the grid node spacing and time step, respectively. This method is characterized by
extensive numerical smearing. When small timesteps are used, as a countermeasure, wiggles may appear
in the solution. The upwind finite difference (UFD) scheme employs backward difference approximation

in space for the advection term. The result is (assuming v>0)

ot - ¢ ¢ — o
i i ) i i-1 + D (ci’-lsl _ 2cin + Cin-l) (A-2)
At Ax Ax?

UFD resolves the oscillatory behavior problem, although it maintains numerical smearing in the solution.
The Lax-Wendroff (LW) and Fromm (FR) schemes are developed from the pure advection problem,
D=0, by examining the Taylor series for the derivative dc/dz. We start with the LW scheme. Including
only the first- and second-order terms of a Taylor series for the time derivative:

n n+l1 n
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The second-order temporal derivative can be written as:
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Exchanging the order of temporal and spatial differentiation, substituting in Eq. (A-3), and making use
of the centered, second-order finite difference approximation of the right-hand side, we get:

n n+l n
Ci -G 2 n n n -
ac _ VAt (c —2c" + Ci-:) (A-5)

= i+l

at At 2Ax?
Thus, a higher-order time-differencing scheme is being used.

The LW scheme employs a centered differencing approximation for the first-order spatial
derivative of concentration. When diffusion is nonzero, its form is:
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n+l
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Fromm’s scheme was developed by observing (using von Neumann analysis) that the LW scheme, D=0,
has a lag in the phase. An upstream-biased scheme,

has a leading phase error. A straightforward average of Eq. (A-6), with D=0, and Eq. (A-7), and then
adding the central approximation for the diffusion term, leads to the Fromm scheme:
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The piecewise parabolic method (PPM), presented by Collela and Woodward (1984), is a nonlinear high-
order Godunov method. It is based on the concept of representing the concentration (or any other attribute
involved in the advection equation) on a grid as a piecewise parabolic interpolant. Collela and Woodward
(1984) state that by using a parabolic interpolant a more correct representation of both steep and smooth
gradients of concentration can be obtained. Furthermore, a fourth-order approximation is attained when
sufficiently smooth initial conditions are imposed. The hyperbolic differential operator is approximated
as:

o=,
i i Y - f (A-9)
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where
f;’i% = (var) f;,}L (A-10)
and
a _ 1 %ty A-11
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is a measure of the mass flux in or out of each computation cell. The method ensures local monotonicity
and mass balance within a computational cell. The effects of diffusion are calculated subsequently using
a standard finite difference method according to the idea of operator splitting. A detailed description of
the algorithm can be found in Collela and Woodard (1984).

The flux-corrected transport (FCT) scheme is a nonlinear, second-order monotone method
presented by Boris and Book (1973). The FCT technique ensures positivity, mass conservation, and local
monotonicity, thus resolving the overshoot/undershoot problem. The scheme consists of two parts, a
numerically-diffusive convective step followed by an anti-diffusion correction part. In the latter step,

A-2



numerical smearing is limited by applying an anti-diffusion operator. For a uniform velocity field the
FCT finite difference scheme is described by:

¢ = - _gﬁ(c,-’il - c,-"_l) +w (c,»'i] -2+ ci"_l) (A-12)
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where o is the numerical diffusion coefficient and ¢,”"*' is the solution after the first step. To guarantee
stability and positivity, the numerical diffusion coefficient has to be bounded. Oran and Boris (1987) and
Boris and Book (1973) provide a detailed discussion of these bounding criteria. During the second part
of the FCT algorithm, excessive numerical diffusion is corrected by introducing numerical anti-diffusion
as follows:

G =G Y (Ci:xml “'261'-“1 + C.‘:;M) (A-13)

where p is a positive (or zero) numerical anti-diffusion coefficient. The anti-diffusion step should not

generate new extrema and should not amplify the values of existing extrema. It is, therefore, imperative
2

to limit the anti-diffusive fluxes. For the reference problem, p was chosen to be m-—zi =0.0984 . Here,

the effects of physical diffusion are introduced by augmenting the numerical diffusion coefficient, w, by
D. A detailed description of this limiting procedure can be found in Boris and Book (1973).



