Computer Codes and Validation Adequacy

David Richards

Manager, AECL Code Centre and Software Performance

ACRS Subcommittee on Future Plant Designs

Washington D.C.

January 13, 2004

Outline

- AECL Computer Code Software Quality Assurance (SQA) Program
- Validation Methodology
- Industry Standard Toolset and Key ACR Computer Codes
- Experimental Data for Thermal Hydraulics Validation
- Examples of CATHENA Validation

Computer Program Software Quality Assurance (SQA)

- Code Development and Qualification are conducted according to pre-defined QA procedures:
 - The Canadian Standards Association (CSA) published "Quality Assurance of Analytical, Scientific, and Design Computer Programs for Nuclear Power Plants", N286.7-99 in March 1999
 - AECL published 00-01913-QAM-003, "Quality Assurance Manual for Analytical Scientific and Design Computer Programs in September 1999, and revised the document in March 2001
- Compliance is verified through internal, 3rd-party and regulatory audits

Industry Standard Toolset (IST)

- Formal qualification of safety and licensing codes was recognized as requiring significant investment, and resulting in redundancies and inconsistencies if undertaken separately
- Canadian utilities and AECL worked together to qualify a standard set of computer programs (IST)
 - Agreed to common processes to meet CSA-N286.7-99
 - Shared effort on code development, qualification and support

Key ACR Computer Codes

A

CATHENA THERMALHYDRAULIC MODEL

- Non-equilibrium model
 - 2-velocities,
 - 2-temperatures
 - 2-pressures
 - plus noncondensables
- Flow regime dependent constitutive relations couple two-phase model
- CATHENA "interfaces" to other codes:
 - i.e, Fuel Behavior, Plant Control, Physics

A

CATHENA's Solid Heat Transfer Model

- Multiple surfaces per thermal hydraulic node
- Radial and circumferential conduction modeled
- Models heat transfer within bundles subjected to stratified flow
- Radiation heat transfer calculated
- Built-in temperature dependent material property tables
- Models deformed geometry and pressure / calandria tube contact

Code Validation Methodology

Technical Basis Document (TBD)

- For a given accident category, the TBD identifies:
 - The key safety concerns
 - The expected phenomena governing the behavior that evolves with time during identifiable phases of an accident
- The TBD establishes a relationship between technical disciplines, the safety concerns associated with a phase of an accident, the governing physical phenomena, and the relevant validation matrices
- Example:
 - Early in a LOCA, "Break discharge characteristics and critical flow" is a primary (high ranking of importance) phenomenon
 - During ECC injection, "Quench/rewet characteristics" becomes a primary phenomenon

Validation Matrices

- Identify and describe phenomena relevant to a discipline
- Rank the phenomena according to their importance in accident phases (consistent with PIRT-like process)
- Identify data sets and cross-reference to phenomena
 - Separate effects experiments, integral and/or scaled experiments, analytical solutions, inter-code comparisons
 - Includes CANDU-specific and otherwise

Thermal Hydraulics Phenomena, (first 10 of 23)

ID No.	Phenomenon	Large LOCA	LOCA/ LOECC	Small LOCA	LOF	LOR	Loss of Feed- water	Steam Line Break
TH1	Break Discharge Characteristics and Critical Flow	✓	~	✓			✓	~
TH2	Coolant Voiding	\checkmark	\checkmark	\checkmark	×	×		
TH3	Phase Separation	\checkmark	✓	\checkmark	\checkmark		\checkmark	\checkmark
TH4	Level Swell and Void Holdup	×	×	\checkmark				\checkmark
TH5	Pump Characteristics (Single & 2-Phase)	✓	✓	✓	~			~
TH6	Thermal Conduction	\checkmark	\checkmark	\checkmark	×	×		
TH7	Convective Heat Transfer	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
TH8	Nucleate Boiling			\checkmark	\checkmark			
TH9	CHF & Post Dryout Heat Transfer	×	×	\checkmark	\checkmark	\checkmark		
TH10	Condensation Heat Transfer	\checkmark		\checkmark	\checkmark		\checkmark	\checkmark

Test Data for Thermal Hydraulics Phenomena (sample)

ID#	Data Set Name	TH2 Coolant Voiding	TH3 Phase Separat.	TH6 Thermal Conduct.	TH7 Convect. Heat Tran.	TH16 Flow Oscillation
SE1	Edwards Pipe Blowdown					
SE5	Marviken Bottom Blowdown	0				
SE13	PT/CT Contact Heat Transfer Tests					
SE21	CWIT Flow Stratification Tests					
CO1	End Fitting Characterization Tests	0	0			
INT9	RD-14 Natural Circulation Tests		0			
INT14	Station Transients					
NUM6	Radial Conduction Test					

Experimental Data Base

- CANDU System Makes Use of International Data Sets:
 - Edwards Pipe Blowdown (Break Discharge)
 - Marviken Blowdown Tests (Break Discharge)
 - Dartmouth Air/Water Flooding in Straight Pipe (Counter Current Flow)
 - GE Large Vessel Blowdown Tests (Level Swell)
 - Christensen Power Void Tests (Coolant Voiding)
 - ….. and others

Experimental Data Base – CANDU Specific

- Can by subdivided into:
 - Small Scale Experiments
 - Component Experiments
 - Integral Experiments
 - CANDU Plant Transients
- The majority of existing data (supporting current CANDUs) can be used for validation of the ACR
- Where "gaps" exist (i.e., higher pressure and temperatures of the ACR), new experiments have been completed and others have been planned

- Small Scale Experiments, Examples:
 - Flooding downstream of an elbow (relevant to feeder)
 - Pressure Tube / Calandria
 Tube Heat Transfer
 Experiments
 - Horizontal Tube Rewetting / Refilling Experiments
 - Pressure Tube
 Circumferential
 Temperature Distribution

Experimental Data Base – CANDU Specific

- Full-Scale Component Experiments:
 - Feeder Refilling, Cold Water Injection Test Facility
 - Channel Stratification Studies, Cold Water Injection Test Facility
 - Header Studies, Large Scale Header Facility
 - Header Studies, Header Visualization Facility
 - Pump Characterization, CANDU Pump Facility
 - End Fitting Studies, End Fitting Characterization Facility

Cold Water Injection Facility (CWIT)

- Full-scale heated fuel channel with simulated fuel string
- CANDU representative feeders and End Fittings
- Designed to investigate feeder/channel refill performance, as well as flow stratification within CANDU bundle

RD-14M Integral Test Facility

- Full elevation changes between major components and full linear dimensions
- Reactor typical heat- and masstransfer rates
- Ten full length electrically heated channels (maximum of 11 MW)
- Simulation of all primary-side components channels, end-fittings, feeders, headers, and steam generators
- Full pressure and temperature conditions (current CANDUs and ACR)

Examples of Validation for CATHENA

- Component
 - Marviken tests, discharge characteristics
- RD-14M
 - Channel voiding
- CANDU Plant transient
 - Single-pump trip

TH1: Break Discharge Characteristics – 3

Pg 19

Single Pump Trip in a CANDU 6 Pump Run-down Speed

Pump Speed (RPM)

Conclusion

- ACR analysis codes are developed and qualified under a formal SQA program
- Validation methodology has been demonstrated, using thermal hydraulics as an example, and the CATHENA code
- A wide range of experimental databases is used in the validation process
- Examples of CATHENA validation are provided

