12-DEC-03

DISTRIBUTION CONTROL LIST

bcument Name: EMER PLAN

A045

Page:

-16

Entergy	IPEC SITE MANAGEMENT	QUALITY RELATED ADMINISTRATIVE PROCEDURE	IP-SMM-AD-103	Revision 0		
	MANUAL	INFORMATIONAL USE	Page 13	B of 21		
			<u> </u>			
ATTACHMENT 10.1	· .	SMM CONTROLLE	D DOCUMENT TRANS	MITTAL FORM		
SITE MANAG	EMENT MANUAL CONTI	ROLLED DOCUMENT TRANSMI Page 1 of 1	TTAL FORM - PRC	CEDURES		
Entergy CONTROLLED DOCUMENT TRANSMITTAL FORM - PROCEDURES						
TO: DISTRIBUTIC FROM: IPEC DO	ON DATE: 1	(Circle one)	MITTAL NO: 2890	• •		
receipt, incorporate t	the document(s) into your c	d for use. In accordance with IP-S controlled document file, properly d owledgement below within fifteen (isposition supersed			
AFFECTED DOCUMENT: EMERGENCY PLANNING IMPLEMENTATION PROCEDURES						
DOC#	REV#	TITLE	INSTRUCT			
DOC#	REV # E CURRENT INDEX W	· _ · · · · · · · · · · · · · · · · · ·	INSTRUCT			
DOC #	REV # E CURRENT INDEX W	TITLE	INSTRUCT			
DOC # NOTE: REPLACE	REV # E CURRENT INDEX W ***** FOLLOW ATT ***********************************	TITLE	INSTRUCT NDEX. ************************************	HAT ALL		

:

TO:

Nuclear Regulatory Commission Controlled Copy # 🖌

ROM: IPEC Emergency Planning

SUBJECT: Emergency Planning Document Update

Date: 12/18/03

Please update your controlled copy of the document listed below as specified with the copy(s) attached.

Document #	Document Name Emergency Plan Implementing Procedure	New Rev. #/ Date	Old Rev.#/ Date	Instructions
тос	Emergency Plan Implementing Procedures	12/18/03	12/10/03	Remove and Replace
IP-EP-360	Core Damage Assessment	Rev.0 12/18/03		Add New Procedure
IP-EP-310	Dose Assessment	Rev.3 12/10/03		Remove and Replace pages 9 - 18
	Unit 3 procedure holders			
JP-1028	Core Damage Assessment	VOID	Rev. 9 06/98	Remove from Binder
IP-1070	Inventory	VOID	Rev. 31 2/01	Remove from Binder

Indian Point Energy Center Emergency Plan Implementing Procedures Table of Contents

D

Procedure No.	Procedure Title	Rev. No.	Effective Date				
IPEC PROCEDURES							
IP-EP-115	Emergency Plan Forms	6	12/10/03				
IP-EP-120	Emergency Classification	0	11/06/03				
IP-EP-130	Emergency Notifications and Mobilization	1	12/10/03				
IP-EP-212	Unit 2 Control Room	0	12/10/03				
IP-EP-213	Unit 3 Control Room	0	12/10/03				
IP-EP-222	Unit 2 Technical Support Center	0	12/10/03				
IP-EP-223	Unit 3 Technical Support Center	0	12/10/03				
IP-EP-232	Unit 2 Operations Support Center	0	12/10/03				
IP-EP-233	Unit 3 Operations Support Center	0	12/10/03				
IP-EP-240	Security	· 0 ·	12/10/03				
IP-EP-250	Emergency Operations Facility	1	12/10/03				
IP-EP-251	Alternate Emergency Operations Facility	2	12/10/03				
IP-EP-260	Joint News Center	0	03/06/03				
IP-EP-310	Dose Assessment	3	12/10/03				
IP-EP-320	Radiological Field Monitoring	0	12/10/03				
IP-EP-330	Airborne Sample Analysis	0	12/10/03				
IP-EP-350	Emergency Contamination Control	0	12/10/03				
IP-EP-360	Core Damage Assessment	0	12/18/03				
IP-EP-410	Protective Action Recommendations	3	12/10/03				
IP-EP-430	Site Assembly, Accountability & Relocation of Personnel Offsite	1	12/10/03				
IP-EP-510	Meteorological, Radiological & Plant Data Acquisition System	2	12/10/03				
IP-EP-520	Modular Emergency Assessment & Notification System (MEANS)	2	12/10/03				
IP-EP-610	Emergency Termination and Recovery	1	03/06/03				
IP-EP-620	Estimating Total Population Exposure	. 1	03/06/03				
IP-EP-630	Onsite Medical Emergency	0	11/18/03				

Indian Point Energy Center Emergency Plan Implementing Procedures Table of Contents

	UNIT 3 PROCEDURES			
IP-1028	Core Damage Assessment	9	06/	98
IP-1052	Hazardous Waste	8	07/	02
IP-1055	Fire Emergency Response	15	04/	02
IP-1057	Natural Phenomena	8	10/	01
IP-1059	Air Raid Alert	7	05/	01
IP-1070	Inventory (Incorporated into AD6)		Vo	id
IP-2603	Corporate Support Group Manager	1	07/	02
				·

IP-1028 REV.9(VOID DATE 18-DEC-2003)

IS VOID

REASON FOR VOID: REPLACED BY IP-EP-360

IP-1070 REV.31 (VOID DATE 30-DEC-2003) IS VOID

REASON FOR VOID: REPLACED BY IP-EP-AD6

Entergy.

REFERENCE USE

1

of

19

CORE DAMAGE ASSESSMENT

CONTROLLED

COPY #

Prepared by:

C. Kelly Walker Print Name

C-VI Signature

4/9/07 Date

25

Approval:

Frank Inzirillo Print Name

for F. Ingerillo

16/03

Effective Date: 12-18-03

IP-EP-360 (Core) R0.doc

Enlergy.	IPEC EMERGENCY PLAN	NON-QUALITY RELATED PROCEDURE	IP-EP-360		Revision 0	
	IMPLEMENTING PROCEDURES	REFERENCE USE	Page	2	of	19

•

Table of Contents

1.0	PURPOSE	.3
	REFERENCES	
3.0	DEFINITIONS	.3
	RESPONSIBILITIES	
5.0	DETAILS	.4
6.0	NTERFACES	.7
7.0	RECORDS	.7
	REQUIREMENTS AND COMMITMENTS	
9.0	ATTACHMENTS	.7
9.	Attachment 1, Fuel Rod Clad Damage	8,
9.	Attachment 2, Fuel Overtemperature Damage1	13

REFERENCE USE

3

Page

CORE DAMAGE ASSESSENT

1.0 PURPOSE

This guideline provides a methodology for the assessment of:

- The degree of damage to the fuel rod cladding that results in the release of the fission product inventory in the fuel rod gap space.
- The degree of core overheating that results in the release of the fission product inventory in the fuel pellets.
- The appropriate Emergency Action Level for off-site radiological protective actions based on the degree of damage to the reactor core.

This guideline should be used when the reactor is shutdown and either:

- Core temperatures are at or above 700°F, or
- Containment radiation level is at or above 1 R/hr

2.0 **REFERENCES**

- 2.1 WCAP-14696-A, Westinghouse Owners Group Core Damage Assessment Guideline, Rev. 1
- 2.2 "Containment Radiation Level Using Core Damage Assessment Guideline, Revision
 1 (1996) For Specific Indian Point Unit 2 EAL Application: A Summary," by Dave
 Smith, 12/2000.
- 2.3 PGI-00467-00, 4/5/01 "Containment Radiation Monitor Response/Core Damage Assessment Procedure Support"
- 2.4 IP-CA-3, Hydrogen Flammability in Containment, Pg 2, Rev. 0

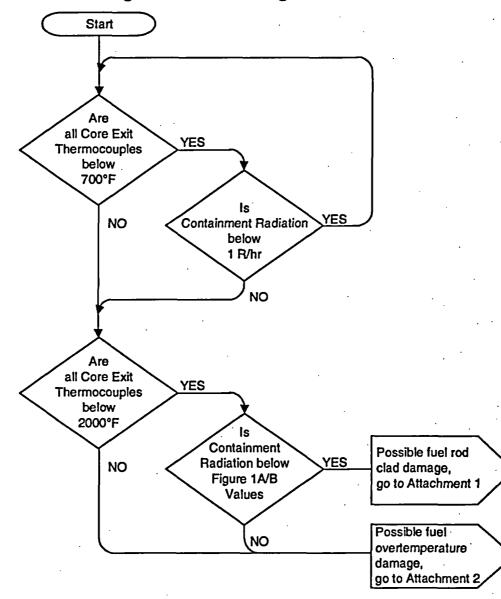
3.0 DEFINITIONS

None

4.0 **RESPONSIBILITIES**

- 4.1 Upon recognition of EITHER core exit thermocouple temperature(s) > 700 °F OR containment radiation levels > 1 R/hr, the Core Physics Engineer (Reactor Engineer) shall implement this procedure to assess the existence and extent of core damage.
- 4.2 The Core Physics Engineer (Reactor Engineer) shall immediately inform the Technical Assessment Coordinator /TSC Manager of the results of any core damage assessment performed.

REFERENCE USE


Page

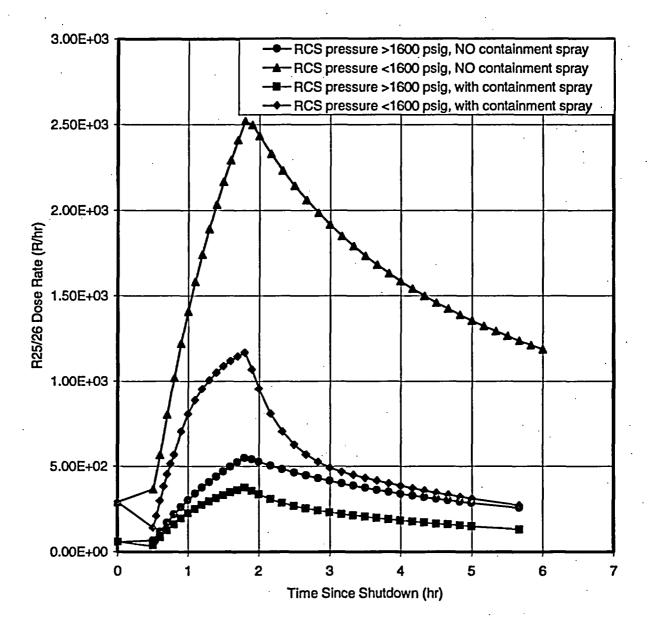
5.0 DETAILS

NOTE:

Core Damage Estimate may be base on historical monitor readings. For Example: If core thermocouple readings were high 4 hours into an event but are now off-scale or inoperable use values and time after shutdown for when readings were valid.

5.1 Determine the possible status of the reactor core using the following flowchart and perform the associated action.

High Level Core Damage Assessment Flowchart

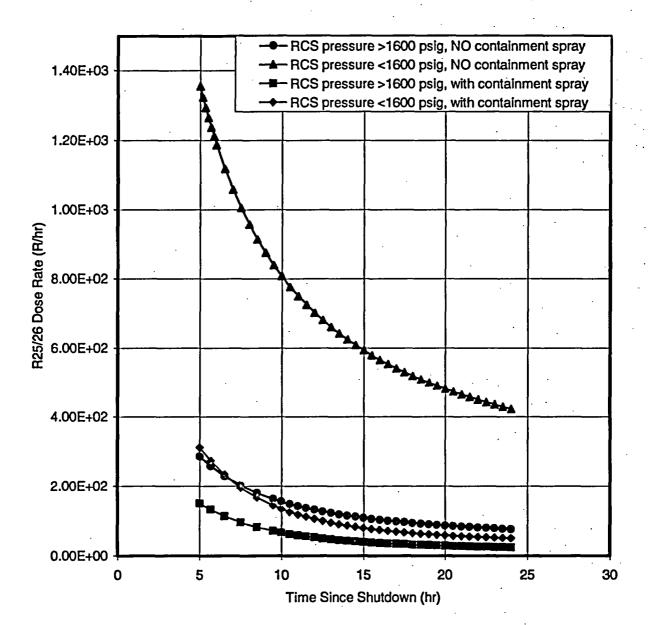

5

Page

of <u>19</u>

Figure 1A Containment Radiation Level for 1% Fuel Overtemperature Flowchart

(0 to 6 hours after shutdown)


Enlergy.

IPEC EMERGENCY PLAN IMPLEMENTING PROCEDURES

REFERENCE USE

Figure 1B Containment Radiation Level for 1% Fuel Overtemperature Release

(>5 hours after shutdown)

REFERENCE USE

Z

Page

6.0 INTERFACES

- 6.1 IP-EP-120, Emergency Classification
- 6.2 IP-EP-222, Unit 2 Technical Support Center
- 6.3 IP-EP-223, Unit 3 Technical Support Center

7.0 BECOBDS

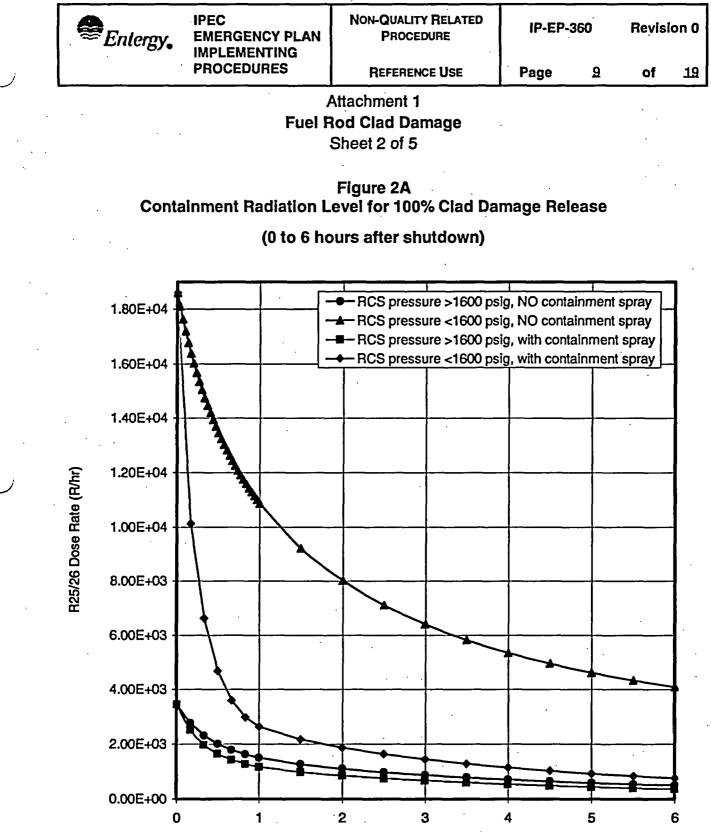
This procedure generates completed Fuel Rod Clad Damage (Attachment 1) and/or Fuel Overtemperature Damage (Attachment 2) worksheets.

8.0 **BEQUIREMENTS AND COMMITMENTS**

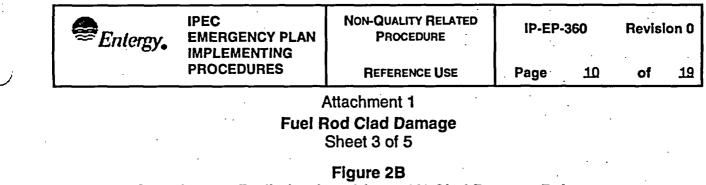
None

9.0 ATTACHMENTS

- 9.1 Attachment 1, Fuel Rod Clad Damage
- 9.2 Attachment 2, Fuel Overtemperature Damage

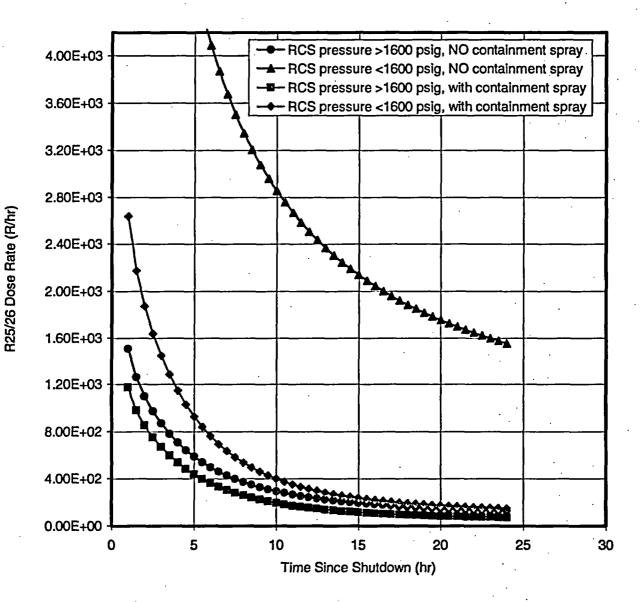

		ergy,	IPEC EMERGENCY PLAN IMPLEMENTING	NON-QUALITY RELATED PROCEDURE	IP-EP-(Revis	
			PROCEDURES	REFERENCE USE	Page	8	of	
			Fuel F	Attachment 1 Rod Clad Damage Sheet 1 of 5				
1.	. Est	mate f	uel rod clad damage	based on containment	radiation (C	CRM)	levels.	·
	.1.1	Det	ermine the following:	•				•
		•	Time since shutdown	ı (hr)	· .	<u> </u>		
		•	RCS pressure (psig)					<u>.</u>
			Containment sprays					
	1.2		-	nment radiation dose r	rates:			. •
			Containment radiatio 100% clad damage (I		А	= <u></u>		
				radiation level (R/hr)	В	=		
	1.3	Est	imate clad damage (9	%):		• •		
				B x 100			· ·	
			% Clad Damage d	сям = = А				
2.	Esti	mate f	uel rod clad damage	based on Core Exit Th	ermocouple	es (CE	Ts).	
	2.1	Det	ermine the following:					
			Total number of oper (Refer to PICS [Unit 2		D	=		
		• 1	Number of CETs at o	r above 1400°F	E	=		
		• 1	Number of CETs at o	r above1200°F	F	=	·	 :
	2.2	For	RCS pressure at or a	above 1600 psig:				
				E x 100			. •	
			% Clad Damage o	D				
	2.3	For	RCS pressure below	1600 psig::	•			
			• .	F x 100	•			
			% Clad Damage c	ET = = D		·		<u> </u>
				U				

.


•

· · ·

• . •



Time Since Shutdown (hr)

Containment Radiation Level for 100% Clad Damage Release

(> 1 hour after shutdown)

	Enter	rgy.	IPEC EMERGENCY PLAN	NON-QUALITY RELATED PROCEDURE	IP-EP-(960	Revisi	ion (
			PROCEDURES	REFERENCE USE	Page	11	of	19
			Fuel F	Attachment 1 Rod Clad Damage Sheet 4 of 5				
3.	Confi	irm re	easonableness of clad	d damage estimates.				
	3.1	Det	termine the following:	•				
	•	٠	Containment hydroge	en concentration (vol. %)			
		٠	RVILS reading (%)					
	•	•	RCS saturation temp	erature (°F)		•		
		٠	Hot leg RTD tempera	iture (°F)			<u>.</u>	
	3.2		mpare estimated clad owing questions (yes	damage to expected re /no)	sponse by	answ	ering th	ıė
		•	Is containment hydro	gen concentration less t	than 0.5%'	?		
	• •	•	Is RVLIS between 64	% and 47%?				
		•	Is hot leg RTD betwe	en T _{sat} and 650°F?				
			estimated containme	ence (% Diff) between nt radiation clad damage ermocouple clad damag		. <u></u>		
				amage _{сям} - % Clad dar				
		%) Diff _{diff} =	% Clad Damage свм		X 100		
	3.3			e questions in Step 3.2 ined; continue at Step 4		he ex	pected	
	3.4		not been obtained; c	stions in Step 3.2 is NO letermine if the deviation				
		3.4.	.1 Accident progress	sion:				
			Injection of	water to the RCS				
			Bleed paths	s from the RCS				

÷

• Direct radiation to the containment radiation monitors

	Enlergy.	IPEC EMERGENCY PLAN IMPLEMENTING	NON-QUALITY RELATED PROCEDURE	IP-EP-360		Revision 0	
Ì		PROCEDURES	REFERENCE USE	Page	12	of	<u>.19</u>

Attachment 1 Fuel Rod Clad Damage Sheet 5 of 5

3.4.2 Conservatisms in the predictive model:

- Fuel burnup
- Fission product retention in the RCS
- Fission product removal from containment

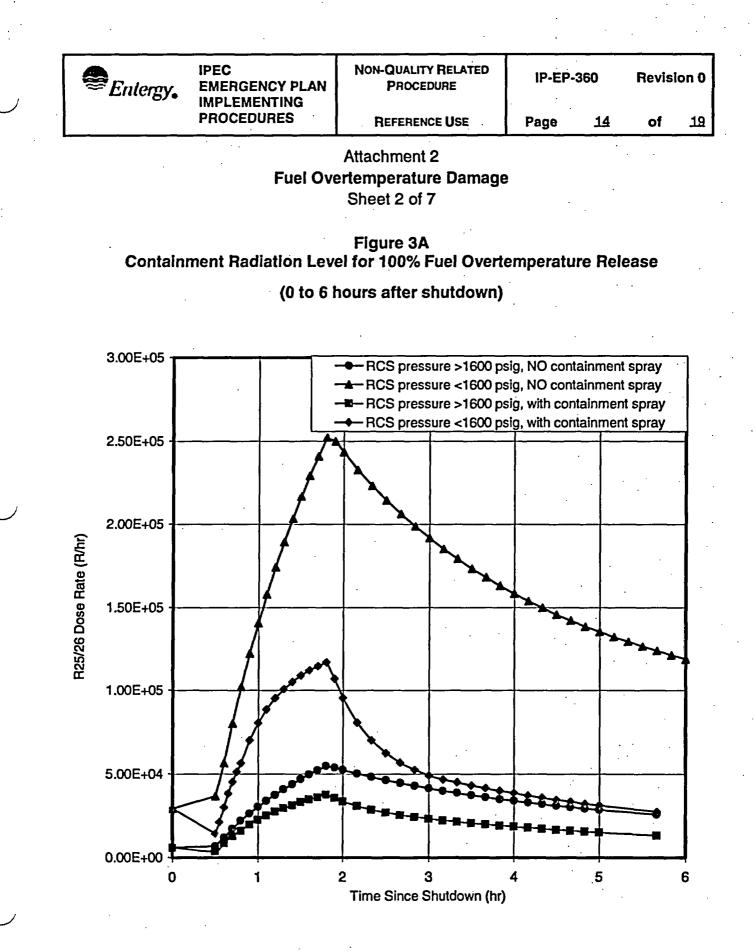
4. Report findings

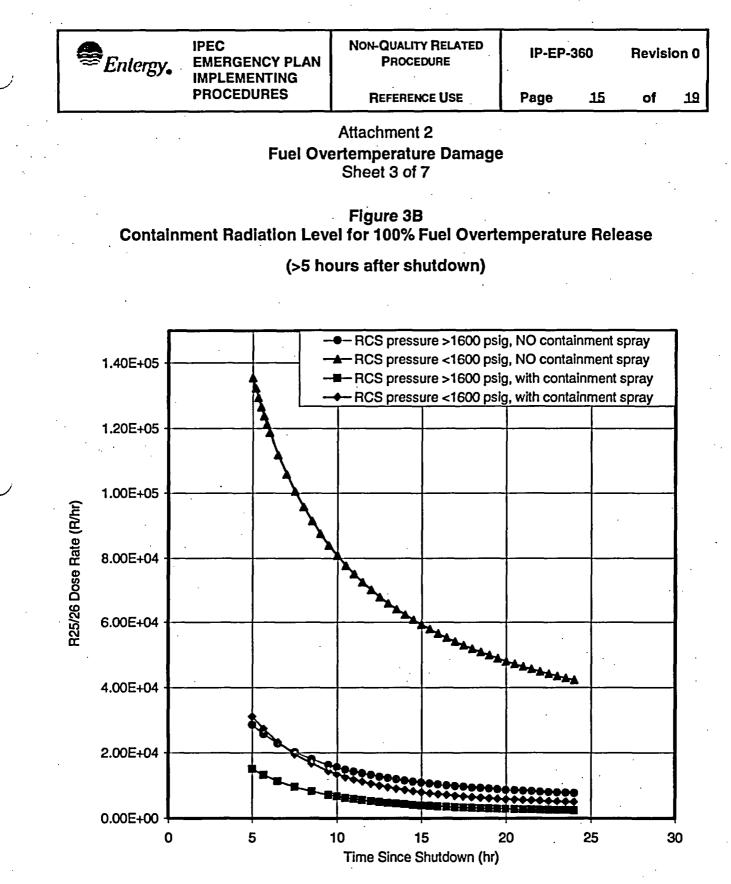
4.1 If clad damage estimates have increased by more than 1% in the past 30 minutes

OR

Estimates exceed 2% clad damage

Then report possible impact on emergency classification based upon Emergency Action Level thresholds to the Emergency Plant Manager/Plant Operations Manger.


4.2 Report clad damage estimate to the Technical Assessment Coordinator/TSC Manager.


5. Return to Step 5.1 of the procedure to continue assessment of the reactor core.

6	Enter	IPEC EMERGENCY PLAN IMPLEMENTING	NON-QUALITY RELATED PROCEDURE	IP-EP-3	360	Revisi	ion (
		PROCEDURES	REFERENCE USE	Page	13	of	19
· · · · · · · · · · · · · · · · · · ·		Fuel Ov	Attachment 2 ertemperature Damage Sheet 1 of 7				
1.	Estima Levels	ate Fuel Overtemperature 3.	e Damage Based on Cor	ntainment	Radiat	ion (CF	RM)
	1.1	Determine the following:					
		• Time since shutdown	ı (hr)				
		• RCS pressure (psig)					
		Containment sprays	operating (yes/no)				
	1.2	Find the following contai	inment radiation dose ra	tes:		• .	
		Containment radiatio 100% core overtemp	n level (R/hr) for erature damage (Figure	3A/B) G	=		
		Current containment	radiation level (R/hr)	. H	=		
	1.3	Estimate fuel overtempe	rature damage (%):				
:		% Core Damage	Н x 100 свм = = G				
2.	Estima	ate fuel overtemperature	damage based on Core	Exit Thern	nocoup	ole (CE	Ts)
	2.1	Determine the following:					
		• Total number of oper (Refer to PICS [Unit 2		J	=		
		• Number of CETs at o	r above 2000°F	ĸ	=		
	2.2	Estimate fuel overtempe	rature damage (%):				
		% Core Damage o	K x 100 cet = = J				
			· ·				

•••

•

Page

M =

Attachment 2 Fuel Overtemperature Damage Sheet 4 of 7

- Estimate fuel overtemperature damage based on containment hydrogen (Hyd) 3. concentration.
 - Determine the following: 3.1
 - **RCS** pressure (psig) •
 - Current containment hydrogen . concentration (vol. %)
 - Predicted containment hydrogen • concentration at 100% core overtemperature, Table 2 (vol. %)

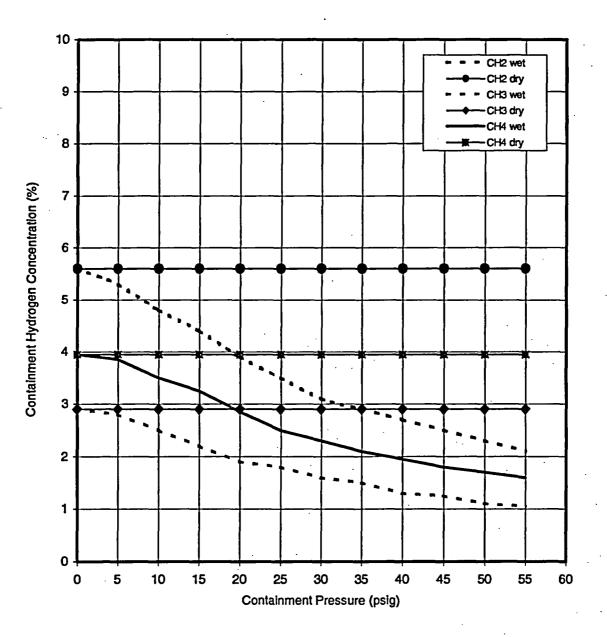
	Overtemperature ment Hydrogen Co	Estimate Based on oncentration
Pressure (psig)	Water Injection	Predicted Containmen

RCS Pressure (psig)	Water Injection into RCS?	Predicted Containment Hydrogen Concentration from Figure 4 (vol. %)
Below 1050	Yes	CH2
· · · ·	No	СНЗ
At or above1050	Yes	CH4
	No	СНЗ

Estimate fuel overtemperature damage (%): 3.2

L x 100

% Core Damage нуd = -


Μ

Enlergy.	IPEC EMERGENCY PLAN IMPLEMENTING	NON-QUALITY RELATED PROCEDURE	IP-EP-	Revision 0		
	PROCEDURES	REFERENCE USE	Page	17	of	19

Attachment 2 Fuel Overtemperature Damage Sheet 5 of 7

Figure 4 Predicted Containment Hydrogen Concentration for 100% Fuel Overtemperature

Note: The wet hydrogen curves are used when superheated conditions inside containment exist or when a manual sample is used.

		· ·	· ·			• •	•
			·				
	Enlerg	IPEC EMERGENCY PLAN IMPLEMENTING	NON-QUALITY RELATED PROCEDURE	IP-EP-3	60	Revis	ion _. 0
		PROCEDURES	REFERENCE USE	Page	18	of	19
		· .	Attachment 2			<u> </u>	
		Fuel Ov	ertemperature Damage Sheet 6 of 7	9			
4.	Confirm	n reasonableness of fus	N ovortomporaturo domo	an actimat	<u></u>		
4.	•		el overtemperature dama	ige estimat			
	4.1	Determine the following	•	• .			
		• RVILS reading (%)	,				
		Hot leg RTD temperative	ature (°F)				
		Compare estimated corr by answering the follow	e damage to expected re ing questions (yes/no)	esponse			. `
	•	 Is RVLIS below 47% 	?			: ·	
		● Is hot leg RTD at or	above 650°F?				
		containment radiatio	ence (% Diff) between e n core damage and estir ble core damage less tha	mated			
		i% Core D % Diff م نز =	amage _{свм} - % Core da	-	x 100		
			% Core Damage _{сям}				
	ſ		ence (% Diff) between e en core damage and esti ge less than 25%?		. •		
			amage _{Hyd} - % Core dan		x 100		
			% Core Damage Hyd				
	ſ	containment hydroge	ence (% Diff) between e en core damage and esti ble core damage less tha	imated		· ·	
			- Damage _{нуд} - % Core dar				
					v 100		

Enlergy.	Enlergy. IPEC EMERGENCY PLAN IMPLEMENTING	NON-QUALITY RELATED PROCEDURE	IP-EP-	Revision 0		
	PROCEDURES	REFERENCE USE	Page	19	of	19

Attachment 2 Fuel Overtemperature Damage Sheet 7 of 7

- 4.3 If all of the answers to the questions in Step 4.2 are YES, the expected response has been obtained; continue at Step 6.
- 4.4 If any answer to the questions in Step 4.2 is NO, the expected response has not been obtained; determine if the deviation can be explained from either:
 - 4.4.1 Accident progression:
 - Injection of water to the RCS
 - Bleed paths from the RCS
 - Direct radiation to the containment radiation monitors
 - Hydrogen burn in containment or affects of passive autocatalytic hydrogen recombination (Unit 2)

4.4.2 Conservatisms in the predictive model:

- Fuel burnup
- Fission product retention in the RCS
- Fission product removal from containment
- 5. Report fuel overtemperature estimate to the Technical Assessment Coordinator/TSC Manager.
- 6. Return to Step 5.1 of the procedure to continue assessment of the reactor core.

Enlerg	Enlergy, IPEC Enlergy, EMERGENCY PLAN IMPLEMENTING		Non-QUALITY RELATED PROCEDURE				IP-E	P-310	Revision 3	
	PROCEDU			REFER	ENCE USE		Pa	age <u>9</u>	of <u>18</u>	
				Attachment u/Q by Pasq tion from 210° Sheet 1 of	uill Stability – 339° or Wind	• •	/s)			
Sector	Wind From	Distance (Meters)			Pas	quill Categor	ries			
			Α	В	С.	D	E	F	G	
1*	169° to 190°	2977	5.5 E-7	9.0 E-7	5.7 E-6	2.1 E-5	4.3 E-5	1.1 E-4	2.0 E	
2*	191° to 213°	3234	5.2 E-7	1.0 E-6	5.0 E-6	1.9 E-5	3.9 E-5	9.6 E-5	1.8 E	
3	214° to 235°	716	3.6 E-6	2.0 E-5	5.3 E-5	1.5 E-4	2.7 E-4	4.9 E-4	7.1 E	
4	236° to 258°	701	3.7 E-6	2.0 E-5	5.4 E-5	1.6 E-4	2.7 E-4	5.0 E-4	7.2 E	
5	259° to 280°	762	3.2 E-6	1.8 E-5	4.8 E-5	1.4 E-4	2.5 E-4	4.7 E-4	6.8 E	
6	281° to 303°	625	4.7 E-6	2.5 E-5	6.4 E-5	1.8 E-4	3.1 E-4	5.5 E-4	7.9 E	
7	304° to 325°	610	4.9 E-6	2.6 E-5	6.6 E-5	1.9 E-4	3.2 E-4	5.6 E-4	8.0 E	
8	326° to 348°	701	3.7 E-6	2.0 E-5	5.4 E-5	1.6 E-4	2.7 E-4	5.0 E-4	7.2 E	
9	349° to 10°	1006	2.1 E-6	1.0 E-5	3.2 E-5	9.9 E-5	1.8 E-4	3.6 E-4	5.4 E	
10	11º to 33º	1006	2.1 E-6	1.0 E-5	3.2 E-5	9.9 E-5	1.8 E-4	3.6 E-4	5.4 E	
11.	34º to 55º	488	7.7 E-6	3.6 E-5	8.8 E-5	2.5 E-4	4.0 E-4	6.7 E-4	9.2 E	
12*	56° to 78°	2349	6.6 E-7	1.5 E-6	8.3 E-6	3.0 E-5	6.0 E-5	1.4 E-4	2.6 E	
13*	79° to 100°	1802	8.1 E-7	3.2 E-6	1.3 E-5	4.3 E-5	8.5 E-5	1.9 E-4	3.3 E	
14*	101º to 123º	1689	9.0 E-7	3.7 E-6	1.4 E-5	4.8 E-5	9.2 E-5	2.0 E-4	3.5 E	
15*	124º to 145º	1432	1.2 E-6	5.1 E-6	1.9 E-5	6.1 E-5	1.2 E-4	2.4 E-4	4.0 E	
16*	146º to 168º	1416	1.2 E-6	5.2 E-6	1.9 E-5	6.2 E-5	1.2 E-4	2.5 E-4	4.0 E	

* Plume for these sectors goes over the water before it touches public or private land. Site boundary in these cases is taken to be the landfall point at the sector center.

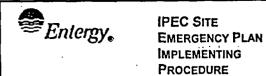
					(
Entergy.	IMPLEMENTING	Non-Quality Related Procedure	IP-EP-310		Revisio	on 3
	PROCEDURES		Page	<u>10</u>	of	<u>18</u>

Attachment 9.1 Sheet 2 of 2

Site Boundary Xµ/Q by Pasquill Stability Category Up Valley Plumes (wind speed <4 m/s) Wind Direction from 102° – 209°(1)

Pasquill Categories										
A	В	E	F	G						
5.2 E-7	5.2 E-7 1.0 E-6		1.9 E-5	3.9 E-5	9.6 E-5	1.8 E-4				

Site Boundary Xµ/Q by Pasquill Stability Category


Down Valley Plumes (wind speed <4 m/s) Wind Direction from 340° - 101°(2)

Pasquill Categories										
Α	В	С	D.	E	F	G				
3.7 E-6	1.0 E-5	3.2 E-5	9.9 E-5	1.8 E-4	3.6 E-4	5.4 E-4				

(1) Plume centerline will always cross the site boundary at sector 2. Therefore, the sector 2 Xµ/Q values are used.

(2) Plume centerline will cross the site boundary at either sector 8 (Pasquill category A) or sector 10 (for Pasquill category B – G)

Enter	別。 EMERGEN IMPLEMEN PROCEDU	NTING		Reference Us	SF		Page <u>11</u>	of <u>18</u>
· .					· <u> </u>		<u> </u>	
			Xμ/Q ^v	Attachment Values for othe Sheet 1 of	er Distances			
Sector	Distance	<u></u>		· · ·	asquill Categor	ies		·
	<u>(Meters)</u>	A	В	с	D	E	F	G
1.0	1608	9.5 E-7	4.0 E-6	1.5 E-5	5.0 E-5	9.0 E-5	۲ 2.1 E-4	3.4 E-4
1.5	2412	6.3 E-7	2.1 E-6	1.1 E-5	5.4 E-5	5.4 E-5	1.3 E-4	2.2 E-4
2.0	3216	5.2 E-7	8.3 E-7	5.0 E-6	1.9 E-5	3.9 E-5	9.6 E-5	1.8 E-4
2.5	4020	4.4 E-7	5.8 E-7	3.5 E-6	1.4 E-5	3.7 E-5	7.0 E-5	1.7 E-4
3.0	4824	3.6 E-7	5.0 E-7	2.8 E-6	1.0 E-5	2.2 E-5	5.7 E-5	1.3 E-4
3.5	5628	3.2 E-7	4.2 E-7	2.0 E-6	8.1 E-6	1.8 E-5	4.7 E-5	1.1 E-4
4.0	6432	2.8 E-7	3.7 E-7	1.6 E-6	6.8 E-6	1.5 E-5	4.0 E-5	9.4 E-5
4.5	7236	2.6 E-7	3.5 E-7	1.4 E-6	5.8 E-6	1.3 E-5	3.5 E-5	7.3 E-5
5.0	8040	2.4 E-7	3.2 E-7	1.2 E-6	5.1 E-6	1.1 E-5	3.1 E-5	6.7 E-5
5.5	8844	2.1 E-7	3.1 E-7	9.9 E-7	4.4 E-6	1.0 E-5	2.8 E-5	5.9 E-5
6.0	9648	2.0 E-7	2.7 E-7	8.3 E-7	3.8 E-6	9.1 E-6	2.5 E-5	5.4 E-5
6.5	10452	1.9 E-7	2.5 E-7	7.5 E-7	3.5 E-6	8.2 E-6	2.3 E-5	5.0 E-5
7.0	11256	1.8 E-7	2.4 E-7	6.7 E-7	3.2 E-6	7.5 E-6	2.1 E-5	4.7 E-5
7.5	12060	1.7 E-7	2.3 E-7	6.1 E-7	3.0 E-6	6.9 E-6	1.9 E-6	4.3 E-5
8.0	12864	1.6 E-7	2.2 E-7	5.5 E-7	2.7 E-6	6.3 E-6	1.8 E-5	4.1 E-5
8.5	13668	1.5 E-7	2.1 E-7	5.0 E-7	2.5 E-6	5.8 E-6	1.7 E-5	3.8 E-5
9.0	14472	1.5 E-7	2.0 E-7	4.6 E-7	2.3 E-6	5.5 E-6	1.6 E-5	3.6 E-5
9.5	15276	1.4 E-7	1.9 E-7	4.2 E-7	2.1 E-6	5.4 E-6	1.5 E-5	3.4 E-5
10.0	16080	1.4 E-7	1.8 E-7	4.0 E-7	2.1 E-6	5.3 E-6	1.5 E-5	3.4 E-5

Attachment 9.3 2, 5 and 10-Mile Xµ/Q Values Sheet 1 of 1

. •		<u>Χμ/Q</u>	
PASQUILL CATEGORY	2 MILE	5 MILE	10 MILE
A	5.2E-7	2.4E-7	1.4E-7
В	8.3E-7	3.2E-7	1.8E-7
C	5.0E-6	1.2E-6	4.0E-7
D	1.9E-5	5.1E-6	2.1E-6
Е	3.9E-5	1.1E-5	5.3E-6
F	9.6E-5	3.1E-5	1.5E-5
G	1.8E-4	6.7E-5	3.4E-5

 \bigcirc

Entergy.

IPEC SITE **EMERGENCY PLAN** IMPLEMENTING PROCEDURE

REFERENCE USE

<u>13</u> of

Page

<u>18</u>

Attachment 9.4 Reuter-Stokes Location Xµ/Q Values Sheet 1 of 1

				St	ability Cla	ass		
M	Sector Ionitor ance (m)	Α	B	С	D	E	F	G
1	3226	5.3E-7	8.4E-7	5.1E-6	1.9E-5	4.0E-5	9.8E-5	1.8E-4
2	3379	5.2E-7	8.3E-7	5.0E-6	1.8E-5	3.9E-5	9.7E-5	1.7E-4
3	2574	6.3E-7	1.2E-6	7.3E-6	2.6E-5	5.3E-5	1.2E-4	2.4E-4
4	1448	1.2E-6	4.6E-6	1.8E-5	6.1E-5	1.1E-4	2.4E-4	3.9E-4
5	1287	1.4E-6	6.4E-6	2.3E-5	7.3E-5	1.4E-4	2.8E-4	4.4E-4
6	643	4.3E-6	2.2E-5	6.0E-5	1.8E-4	3.0E-4	5.5E-4	7.7E-4
7	643	4.3E-6	2.2E-5	6.0E-5	1.8E-4	3.0E-4	5.5E-4	7.7E-4
8	804	2.9E-6	1.7E-5	4.5E-5	1.3E-4	2.4E-4	4.5E-4	6.6E-4
9	1126	1.8E-6	8.5E-6	2.6E-5	8.1E-5	1.5E-4	3.2E-4	4.9E-4
10	1287	1.4E-6	6.4E-6	2.3E-5	7.3E-5	1.4E-4	2.8E-4	4.4E-4
11	1287	1.4E-6	6.4E-6	2.3E-5	7.3E-5	1.4E-4	2.8E-4	4.4E-4
12	2494	6.4E-7	1.3E-6	7.5E-6	2.7E-5	5.6E-5	1.2E-4	2.4E-4
13	1870	8.0E-7	2.7E-6	1.2E-5	4.2E-5	8.1E-5	1.8E-4	3.2E-4
14	1870	8.0E-7	2.7E-6	1.2E-5	4.2E-5	8.1E-5	1.8E-4	3.2E-4
15	1648	9.4E-7	3.9E-6	1.5E-5	5.0E-5	9.7E-5	2.1E-4	3.6E-4
16	1770	8.4E-7	3.3E-6	1.3E-5	4.5E-5	8.8E-5	1.9E-4	3.4E-4

✤Entergy,	IPEC SITE Emergency Plan Implementing Procedure	Non-Quality Related Procedure	IP-EP-310 Revision 3			
		REFERENCE USE	Page	<u>14</u>	of	<u>18</u>

Attachment 9.5

Accident Monitoring of Noble Gas Concentrations in the Plant Vent

Sheet 1 of 2

NOTES

- 1. The Operations Support Center (OSC) H.P Team Leader / Rad. Protection Coordinator will determine which reading to obtain first; plant vent or back-up plant vent monitoring.
- 2. Locations and equipment may be different from Unit 2 to Unit 3
- 1.0 Radiation readings may be obtained on the plant vent by the following:
 - 1.1 Follow the provisions used by the OSC to plan and track team assignments.
 - 1.2 Use a telescoping radiation monitoring instrument (e.g. teletector or equivalent) to perform this function.
 - 1.3 AAs requested by OSC Health Physics (HP) Team Leader or Control Room (CR), REPORT radiation levels.
 - 1.4 Proceed to the Containment Airlock area.
 - **1.5** Using the fan-building wall for shielding, obtain radiation readings by Vapor Containment purge and exhaust ducts.

CAUTION

The door leading out to the plant vent area may lock when closed. To prevent being trapped in the plant vent area, BLOCK OPEN THE DOOR prior to going to the plant vent area.

- 1.6 Proceed through the door to the plant vent area.
- 1.7 Obtain radiation readings at the following locations:

1.7.1 6 feet from the plant vent 10 feet above the floor.

- 1.7.2 Contact with the plant vent 10 feet above the floor.
- **1.8** Notify the OSC or CR that radiation readings have been obtained and follow instructions as directed.

	Enlergy.		gy₀	IPEC SITE Emergency Plan Implementing Procedure	NON-QUALITY RELATED PROCEDURE	IP-EP-310	Revision 3				
					REFERENCE USE	Page <u>15</u>	of <u>18</u>				
				•	Attachment 9.5			-			
		Ac	cident l	•	e Gas Concentrations i Sheet 2 of 2	n the Plant \	/ent				
	2.0	Backup plant vent monitoring readings may be obtained by the following:									
		2.1 Follow the provisions used by the OSC to plan and track team assignments.									
		2.2	Proceed to the Auxiliary Building (PAB) Post Accident (PASS) Plant Vent Sample Cave								
		2.3	shield.								
		2.4									
		2.5	Ensure that detector is connected properly to meter with the cable run through the 1-inch hole in the top of the PASS plant vent shield.								
1 - J		2.6	Ensure that the meter is energized by A/C and the power is on.								
\bigcirc		2.7	With the shield door closed, Establish recirculation flow of plant vent gases through the Pass plant vent piping according to RE-CS-040.								
		2.8	After recirculation is equilibrated (about 5 minutes) Record backup plant vent readings from the RMS-2 monitor.								
		2.9									
		2.10	-	a hand held meter, ASS plant vent shiel	OBTAIN a background ra d.	adiation readi	ing outside o	e of			
		2.11	Repor directe	_	the OSC or CR and FO	LLOW instruc	ctions as				

.

.

 \bigcirc

. ..

. .

Entergy.	IPEC SITE Emergency Plan	Non-QUALITY RELATED PROCEDURE			on 3
	IMPLEMENTING PROCEDURE	REFERENCE USE	Page <u>1</u>	<u>6</u> of	<u>18</u>
	A	ttachment 9.6			. ,
· .		culation of Thyroid CDE			
		Sheet 1 of 1			
		DE) for Entergy personn ations and stay times.	el using act	ual or	
	<u> </u>	Calculation:			••
	e Conversion Factor dine concentration:	s should be used to det	ermine thyr	oid CDE	based
	MIX ¹	/DCF = 4.00E08 <u>mRem</u> µC	<u>hr</u> i/cc		
	ïl-131	DCF = 1.30E09 <u>mRem/</u> μC	hr i/cc		
	I-132	DCF = 7.50E06 <u>mRem/</u> μC	hr i/cc		
	l-133	DCF = 2.20E08 <u>mRem/</u> μC	hr i/cc		
	I-134	DCF = 1.30E06 <u>mRem//</u> μC	hr i/cc		
	I-135	DCF = 3.80E07 <u>mRem/</u> μC	<u>nr</u> i/cc	· .	
	is to be used for tim	r shutdown when the rac les greater than 24 hour			

.

18

Attachment 9.7 Discussion Sheet 1 of 2

The following instrumentation/methodology can be used to determine the noble gas release rate.

- Plant vent monitor-low range (Direct Readout)
- Plant vent monitor-high range (Direct Readout)
- Plant vent survey-hand held instrument or remote readout
- Isotopic analysis of sample taken from release point.
- Condenser air ejector monitor (Direct Readout).
- Main steam line monitors.
- Back calculating a release rate based on actual field radiological data.
- Containment radiation monitors R-25 and R-26 to measure the source term within containment and to estimate potential releases from containment.
 - Potential exposure to the population if a future release of the existing containment source term occurs, utilizing the following information:
 - 1. Containment pressure relief line contains three isolation valves (one in containment and two outside).
 - 2. Containment purge system contains two isolation valves on the Inlet Duct (one in containment and one outside).
 - 3. Containment purge system contains two isolation valves on the Exhaust Duct (one in containment and one outside).
 - 4. Weld Channel (WC) and Isolation Valve Seal Water System (IVSWS) are pressurized to ensure that during accident conditions a pressure build up to AT LEAST 50 psi in containment would NOT cause a leak of radioactive material to the environment as long as the isolation valves remained in the closed position.

Benlergy,	IPEC SITE Emergency Plan Implementing Procedure	NON-QUALITY RELATED PROCEDURE	IP-EP-310 Revision			ion 3
· · · · · · · · · · · · · · · · · · ·		REFERENCE USE	Page	<u>18</u>	of	<u>18</u>

Attachment 9.6 Discussion Sheet 2 of 2

- 5. <u>WITHOUT</u> WC <u>AND</u> IVSWS, <u>BUT</u> with isolation valves closed, the containment leak rate is expected to be <u>LESS THAN</u> 0.1% of the containment volume per day (Tech Spec) <u>WITH</u> a pressure buildup to 50 psi inside containment. At lower pressures the leak rate would be smaller, approaching zero as the pressure differential approaches zero.
- 6. Containment Volume = 2.6×10^6 ft³ = 7.4 x 10^{10} cc
- For IP2 and Post-Steam Generator Tube Rupture (SGTR) cooldown using blowdown situations, the determination of the gaseous release rate from the blowdown flash tank shall be accomplished by determining the noble gas concentration in the faulted SG blowdown (Chem sample μCi/cc) AND the blowdown rate (GPM).