CONTAINER LIFE AND SOURCE TERM

Presented by Gustavo A. Cragnolino Center for Nuclear Waste Regulatory Analyses (210) 522-5538 (gcragno@swri.edu)

Technical Contributors

D.S. Dunn, C. S. Brossia, Y.-M. Pan, O. Pensado-Rodriguez, S. Mohanty, N. Sridhar, J.Weldy, D. Pickett, C. Greene, and T. Ahn NRC KTI Lead

B.J. Davis

June 29, 1999 San Antonio, Texas 110th ACNW Meeting

ACNW Meeting, NS, June 29, 1999

INTEGRATED SUBISSUES (ISIs) AND CLST KEY TECHNICAL SUBISSUES

- WP corrosion (humidity, chemistry, and temperature)
 - Effect of corrosion on container lifetime
- Mechanical disruption of WPs
 - Effect of materials stability and mechanical failure on container lifetime
- Quantity and chemistry of water contacting WPs and waste form
 - Effect of corrosion on container lifetime
 - Rate of degradation of SF and HLW glass
- Radionuclide releases rate and solubility limits
 - Rate of degradation of SF and radionuclide release from SF
 - Rate of degradation of HLW glass and radionuclide release from HLW glass

RISK INSIGHTS FROM PERFORMANCE ASSESSMENT

÷

- Importance of initial failures
- Effect of design changes
 - Improved performance due to alloy C-22
 - Importance of passive corrosion rate
 - VA design vs. alternate designs
- Effect of fabrication processes
- Importance of near-field chemistry
- Importance of penetration location on release
- Effect of cladding
- Effect of WP internal environment on release

INITIAL FAILURES TPA vs. TSPA-VA

DOE TSPA-VA

- Subsumes a variety of processes and model uncertainties
 - Fabrication defects
 - Faulty emplacement
 - Faulting and seismic effects
- Assumed 1 in 10,500 waste packages (range of 1 to 10) with through-wall defect
- Assumed failure time to be 1000 years

NRC/CNWRA TPA

- Assumes that initial failure occurs due to
 - Fabrication defects
 - Unknown failure mechanisms
- Assumed failure probability of 10⁻² to 10⁻⁴ per subarea (Average of 35 out of 7000 containers)
- Assumed failure time at t=0

COMPARISON OF PERFORMANCE CALCULATIONS

- TPA 3.2 calculation using DOE and NRC initial failure rates
- Time to initial failure was at 0 years for both TSPA-VA and TPA data

NEED FOR A BETTER TECHNICAL BASIS FOR INITIAL FAILURES

- Initial failures based on experience in unrelated systems and applications
- Difficulty in separating mechanisms of initial failures
- Relationship to detectability of defects unclear
- The effect of experience on initial failure rate not considered

EFFECT OF CONTAINER MATERIAL SELECTION ON SYSTEM PERFORMANCE

ACNW Meeting, June 29, 1999; Page 7

WASTE PACKAGE LIFETIME USING TPA 3.2 CALCULATIONS AND CNWRA DATA

- A median WP failure time of 17,920 yr is calculated for TPA 3.2 base case assuming no welds
- Using uniform corrosion rates of alloy C-22 obtained in CNWRA experiments the median WP failure time increases to 59,709 yr
- The reverse VA WP design exhibits a slightly lower median failure time of 46,990 yr

WASTE PACKAGE LIFETIME USING TPA 3.2 CALCULATIONS AND DOE PARAMETERS

- Using the LLNL measured corrosion rates for alloy C-22 the median WP failure time is about 50,000 yr
- Using TSPA-VA range of uniform corrosion rates for alloy C-22, 80 percent of WPs exhibiting failure times longer than 100,000 yr

TECHNICAL APPROACH TO EVALUATE DOE WP DESIGNS AND MATERIALS

- Consider failure modes (corrosion, stress corrosion cracking, hydrogen embrittlement and mechanical failure) according to classes of materials (carbon and stainless steels, Ni-Cr-Mo alloys, Ti alloys)
- Evaluate a wide range of environmental conditions (i.e., anion concentrations, temperature, pH, redox potential) that can be expected for the water contacting WPs
- Develop abstracted models for performance assessment (PA) codes that can be supported by mechanistic models
- Gain confidence through focused laboratory measurements of important parameters

FACTORS AFFECTING THE PERFORMANCE OF CORROSION RESISTANT ALLOYS

- Temperature
 - What is the critical temperature for alloy C-22?
- Chemistry (especially chloride concentration)
 - What is the critical chloride concentration?
- Redox conditions (corrosion potential)
 - Does design change affect redox potential?
- Material microstructure (welding, heat treatment)
- Passive dissolution rate
- Active dissolution rate (pit growth rate)

METHODOLOGY APPLIED TO EVALUATE CORROSION OF WASTE PACKAGE MATERIALS

- Calculation of corrosion potential (E_{corr}) based on electrochemical kinetics laws and verify by experiments
- Experimental determination of repassivation potentials (E_{rp}) as a function of temperature (T), pH, and [CI⁻] with [CI⁻]> [CI⁻]_{crit}
- Experimental determination of stress corrosion cracking (SCC) susceptibility in terms of E_{rp} and critical stress intensity for SCC (K_{lscc})
- Experimental determination of uniform and localized corrosion rates and crack growth rates
- Experimental evaluation of the effect of welding or thermal treatments on some critical PA parameters (i.e., E_{rp}, K_{lscc}, corrosion rates)
- Fundamental modeling of passivity and localized corrosion processes

CONDITIONS FOR LOCALIZED CORROSION OF THREE CANDIDATE ALLOYS

- Repassivation potential (E_{rcrev}) used as a critical potential for the initiation of localized (crevice) corrosion in TPA 3.2 code
- Improved corrosion resistance in the order 825<625<C-22
- Critical chloride close to saturation of NaCl

CRITICAL TEMPERATURES FOR LOCALIZED CORROSION OF ALLOY C-22

- Tests performed using autoclaves to identify ranges of susceptibility below and above boiling point
- Sharp decrease in E_{rp} above 95°C
- Crevice corrosion observed in all environmental conditions except in 0.5 M NaCl at 95°C

ACNW Meeting, June 29, 1999; Page 14

EFFECT OF FABRICATION ON CORROSION OF ALLOY C-22

ACNW Meeting, June 29, 1999; Page 15

Localized Corrosion Propagation Rate for Corrosion Resistant Ni-Cr-Mo Alloys

- Pit growth rate controlled by diffusion
- A time-independent growth rate is currently used in TPA 3.2
- Assumed growth rate is not more conservative than observed rates
- In TSPA-VA the highest value of corrosion rate is 2x10⁻⁵ m/yr, but the median rate is 4x10⁻⁸ m/yr

UNIFORM CORROSION RATE OF ALLOY C-22 AND VALUES USED IN TPA 3.2

Starting Condition of Alloy C-22	[Cl ⁻], molar	pН	Temp, °C	Potential, mV _{SCE}	Anodic Current Density, A/cm ²	Corrosion Rate, mm/yr	Lifetime of 20 mm Thick WP Barrier, Years
As-received	0.028	8	20	200	2 × 10-9	2 × 10-5	1,007,455
As-received	0.028	8	95	200	3 × 10-8	3 × 10-4	67,163
As-received	0.028	0.7	95	200	7 × 10 ⁻⁸	7 × 10-4	28,784
As-received	4	8	95	200	3 × 10 ⁻⁸	3 × 10-4	67,163
As-received	4	8	95	400	4 × 10 ⁻⁸	4 × 10-4	50,372
TPA 3.2 Calculation Low Dissolution Rate					6 × 10-8	7 × 10-4	33,581
TPA 3.2 Calculation High Dissolution Rate					2×10^{-7}	2×10^{-3}	10,074

SUMMARY

- The approach used by NRC/CNWRA is flexible
 - Has accommodated DOE design changes
 - Has allowed for laboratory data to update models
 - Has allowed placing all experiences on a "performance map"
 - Is being adopted by DOE
- The sensitivity analyses have focused the detailed studies
- The assumptions made in container modeling are not unduly conservative

PATH FORWARD

¥

- Complete study of fabrication effects
- Study the most important of alternative designs
- Help better define near-field environmental conditions on WP surface (integrated activity with TEF and ENFE)
- Identify tools, techniques, and areas of performance confirmation testing