Near-Field Environments and Corrosion

v6-

Presented to Advisory Committee on Nuclear Waste 26 March 2003

By

Don L. Shettel, Ph.D. Prof. A. Barkatt & Dr. A. Pulvirenti: Catholic University of America Drs. J. Gorman & C. Marks: Dominion Engineering Dr. R. Staehle

> Geosciences Management Institute, Inc. 1000 Nevada Way, Suite 106 Boulder City, Nevada 89005 www.geomii.com

۰.

 $\tilde{\mathcal{L}}$

Yucca Mt. Water Types

- 1. Precipitation (rain and snow) dilute: Ca - HCO₃ (NO3 similar to S04 and Cl)
- 2. Fracture flow (vadose) water 3 shallow samples: Ca-Na-HCO3 to Na-HCO3 Composition is generally unknown
- 3. Matrix (pore) water in Vadose Zone shallow (above Repository Level): Ca - SO₄ + C deep (below Repository Level): Na - HCO₃
- 4. Refluxing Zone

Heated mixtures can evolve Mixtures of most types (except GW & perched) (from concentrated solutions to dilute condensates)

ACNW 3/26/03 - GMII - Shettel

In - Drift Processes

- Dripping / flowing vadose waters from fractures
- Temperature & Rel. Humidity variations
- * Dust & Evaporative salt build-up on EBS surfaces
- Rockfall
- Radiolysis
- Corrosion
- * Other man-made materials (corrosion products)
- *** Acid Volatilization**
- *** Hydrolysis of Salts**

ACNW 3/26/03 - GMII:Shettel

Acid Volatilization

- HNO₃, HCI, & HF vaporize from thermally evaporated solutions
- SO₄= in residual solution precipitates as Sulfates
- ***** Residual solutions lose "beneficial" inhibitors
- ***** Residual solutions and condensates become acidic with thermal evaporative concentration

ACNW 3/26/03 - GMII:Shettel

Hydrolysis of Salts

***** Hydrated salts form from thermal evaporation of dripping vadose water:

t

 \sim 100 \pm

Examples: tachyhydrite (CaMg₂CI₆•12H₂O) sinjarite (CaCI₂.2H₂O)

- ***** Deliquescence of salts causes accumulation of liquid on canisters
- ***** Salts are **hygroscopic,** absorb moisture from drift atmosphere, and form acid solutions
- ***** Brines are highly viscous and have low vapor pressure
- **During hydrolysis: HNO₃ vapor given off**

I ACNW 3/26/03 - GMHI:Shettel

C-22 Disk E34 in Wet Residual Paste at 144^oC for 29 days

Initial solution: 12L of 1243X UZ pore water

Paste $pH = 2.21$

Gen. Corrosion Rate = 678 microns / y (29.5 y for hole to develop in 2 cm. thickness of C-22)

Condensate liquid of $pH = -0.48$

General corrosion rate = 938 microns/y (21 y to penetrate 2 cm thickness)

 \cdot

Cross Section of Emplacement Drifts

Conclusions

* Vadose (fracture and pore) waters occur at and above repository level. (No groundwater)

* In-drift processes are more complicated than thus far admitted (by DOE).

Corrosion rates are significantly higher for evaporating solutions and their condensates (0.1-1.0 mm/y, up to 10).

* Sub-boiling, immersion testing of EBS materials in groundwater is BOTH unrealistic and non-conservative.

• Vadose Zone is NOT a good environment for a Repository?

Back Up Slides

For D. Shettel

Yucca M t.W ater Com positions

⁰ Cation Ternary of Piper Diagram

R.L. = Repository Level RGK = Rosenburg, Gdowski, & Knauss

> Data from: Harrar et al., (1990) Peterman & Marshall (2002) Sonnenthal et al. (1998) Shettel (unpublished) Yang et al. (1996, 1998)

> > I **NWTRB 1/28/03** - **GMII: Shenel**

I

Yucca M t.W ater Compositions (8 eqL)

Anion Ternary of Piper Diagram

R.L. = Repository Level RGK = Rosenberg, Gdowski, & Knauss, '01

> Data from: Harrar et al., (1990) Peterman & Marshall(2002) Sonnenthal et al. (1998) Shettel (unpublished) Yang et al. (1996, 1998)

> > | NWrRB **1/28/03** - **GMII: Shettel**

 \bullet

How Dry is the Repository?

There are 81 L of pore water per $m³$ in Topopah Spring tuff (TS tuff is \sim 300 m thick)

• 24,300 L of pore water in each $1m^2$ column of tuff

• Current Percolation Flux: avg. 5 mm/y/m² This is equivalent to 5 L/y/m^2 Spatial variability: 0-60 mm/y/m² Equivalent to 0 to 60 L/y/m² over repository.

• Long Term Average Percolation Flux (last 1-10k Years) Avg. 6 mm/y/m², OR 6 L/y/m² Range: 2-20 mm/y/m², OR 2 to 20 L/y/m²

Ref.: Peterman & Marshall, 2002; Yucca Mt. S&E Rpt.

Distillation of Components of UZ Pore Water

Distillation / Reflux Experiments

NOTES: 22-29 day tests. Corrosion rate based on weight loss, in micron/year.

Corrosion of Alloy 22 in Condensates

NOTES: 30 day immersion tests.

Corrosion rate based on weight loss, in microns/year.

Distillation / Reflux Experiments

(Microns/year)

4

Ti-7 in Residual solution

Importance of Solids

Solids that precipitate during distillations, including halite (NaCI), tachyhydrite (CaMg₂CI₆ \cdot 12H₂O), and basic Mg oxy salts, are porous and heterogeneous. When allowed to deliquesce as a paste, may become aggressive as well.

Sample of C-22 embedded in a moist paste of residual solids from a distillation of 1243x Pore Water showed signs of tarnishing after 8 weeks at room temperature.

b

Cross Section of Emplacement Drifts