SOURCE TERM OVERVIEW:

A CANADIAN PERSPECTIVE

Nava C. Garisto Beak Consultants Limited 14 Abacus Road Brampton, Ontario, Canada. L6T 5B7

€

Presentation to U.S. Nuclear Waste Technical Review Board Las Vegas, 14-15 October 1992

· · · · · · ·

- Source Term = flux of radionuclides at the exit from the engineered barriers, i.e., at the interface between the engineered barriers and surrounding geological medium
- Engineered = metallic containers, clay-based buffer and Barriers backfill layers

and the second second

•

TI CONTAINER FAILURE MODEL

•

· .

Assumption	Potential Improvement	Expected Impact of Improvement
Initial defects		
CC initiates on all containers (Ti - 2)	limited initiation (Ti - 12, Ti/Pd) (D, M)	lower dose
Sufficient O_2 present for unlimited CC propagation	include effect of O ₂ exhaustion (D)	lower dose
HIC present T <30°C	detailed HIC model (D)	small effect?
provides no	include mt resistance of failed container (D)	lower dose
No explicit microbial effects	include microbial effects (e.g., pH)	no effect
·····		
an a		

nian an ann

•

· · · · ·

SCOPE OF PRESENTATION

- Source-term model for the Canadian Concept:
 - container failure model (Ti, Cu)
 - release of radionuclides from used fuel
 - mass transport (buffer, backfill)
 - assumptions/improvements/limitations
- Issues re probabilistic properties of source term for risk assessment.

• Ways to enhance the credibility of a source-term model.

and the second second

Shamila and a call to the first week

Cu CONTAINER FAILURE MODEL

Assumption	Potential Improvement	Expected Impact of Improvement
General corrosion rate controlled by Cu ²⁺ mass transport	rate controlled by mass transport processes of Cu ²⁺ and oxidant (D, M)	lower long-t dose
No creep	include creep model (D)	?
No pitting	mechanistic pit model	no effect ?
		<u></u>
	e Courte de La tra Trois Phoi	
· - · ·		non a a a a a a a a a a a a a a a a a a

	for the Lipscheiter	۰		n de la des p erset L'Angel DA 10 1
	ייני אין אין אין אין אין אין אין אין אין אי		4 4 ·	,
. .	an a		. pr	. In the second second
	ria Marthelean (rimonala) • Charles (rimonala)			

RADIONUCLIDE RELEASE MODEL FOR SPENT FUEL

Assumption	Potential Improvement	Expected Impact of Improvement
Short t		
Instant-release for gap and grain-boundaries	kinetic model for grain boundaries (D, M)	lower dose
Zircaloy		
Zircaloy is not a barrier to release from fuel. Zircaloy sources are released congruently, controlled by	CC + uniform corrosion model for Zircaloy (D)	lower dose from fuel; increase dose from Zircaloy sources(?)
ZrO ₂ solubility		· · · · · · · · · · · ·
na sa	••• • • • • • • • • • • • • • • • • •	.
		÷

RADIONUCLIDE RELEASE MODEL FOR SPENT FUEL

Assumption	Potential Improvement	Expected Impact of Improvement
Long t		
Congruent release of radionuclides from a solubility-limited dissolving fuel matrix (UO_2/U_4O_4)	kinetic model for fuel dissolution accounting more fully for α - radiolysis (D, M)	increase long-t dose (?)

controlled by amorphous oxides. Diffusion- precipitation coupling is included	Solubility limits of secondary phases	crystalline oxides	lower long-t dose (especially Tc)
coupling is included precipitation coupling in glass	controlled by amorphous oxides		
precipitation coupling in glass	coupling is	i se de la composición	•
dissilution	precipitation		
	dissiliction	αραφαίας του που του του του του του του του του του τ	· · · · · · · · · · · ·

MASS TRANSPORT MODEL FOR SPENT FUEL

Assumption	Alternative	Expected Impact of Alternative
1-d analytical with sectors	2-d, 3-d (numerical)	small effect ?
Mass-transfer coefficient exit boundary condition	n-layer solution (numerical)	increase dose
Linear constant sorption	equilibrium or kinetic sorption model (numerical)	small effect for major radionuclides
All parameters are constant with time	t-dependent parameters (e.g., buffer degradation) (numerical) (D)	?
	Two-phase model (numerical) (D, M)	lower dose by expulsion of incoming water; increase dose by expulsion of contaminated water and gas transport?
		no effect w.r.t. two-phase model
	and a second and a s	u (175 8

×

 experimentalists theoreticians

) project team, under one roof

. .

• model developed and defended by both

)

.

Print and a second of the print of the second se

ISSUES RELATED TO THE PROBABILISTIC PROPERTIES OF A SOURCE TERM FOR RISK ASSESSMENT

GENERAL

- variability \neq uncertainty \neq probability
- time dependence \neq wide pdf
- consistent treatment of uncertainty is required in various component models
- simplified models may be required to get convergence of runs, given limited computer resources

SPECIFIC

• the probabilistic nature of the instant release inventories per container can be derived using fuel performance codes and the reactors power history

and and the manufacture of the providence of

网络科学会 医马马马马马氏 医白色

WAYS TO FURTHER ENHANCE CREDIBILITY OF SOURCE TERM MODELS

• benchmarking

- a wide scope program, but focused via both data and model sensitivity analysis
- better presentation methods

and the second second