EPRI

SOURCE TERM IN THE EPRI PERFORMANCE ASSESSMENT

Presented by Robert A. Shaw EPRI

To The Nuclear Waste Technical Review Board Las Vegas, NV. October 15, 1992

.۸.

Figure 15-13. Master logic tree.

Figure 8-2. Three alternative curves showing temperatures at the outer surface of a waste emplacement hole as functions of time.

Ta	bl	e	8-	2
----	----	---	----	---

.4.

SUMMARY OF TEMPERATURE SCENARIOS AND FRACTIONS OF REPOUTORY AREA FOLLOWING EACH TEMPERATURE CURVE

Scenario	Probability	Curve a	Curve β	Curve γ
1	0.6	0.9	0	0.1
2	0.3	0.1	0	0.9
3	0.1	0	1.0	0

٠...

:A.

Figure 15-8. Logic tree node for engineered barrier system.

Figure 16-8. Sensitivity of CCDF for ²³⁷Np to selection of EBS.

Figure 16-6. Sensitivity of CCDF for ²³⁷Np to repository temperature.

Figure 11-5. Schematic diagram of spent fuel showing different source regions with characteristic radionuclides (13).

. . .

. '

TABLE 11-2

ESTIMATED PERCENT OF TOTAL RADIONUCLIDE, INVENTORIES WITHIN THE SEPARATE REGIONS OF SPENT FUEL (1)

Nuclides	UO2 Matrix	Gap (+ Grain <u>Boundary)</u>	Cladding	Surface Layer
C-14	35	1	63	1
Se-79	98	2	•••	***
Tc-99	98	2	•••	
Sn-126	100	•••	•••	
1-129	98	2		
C3-135	98	2		***
U-234	100	• • •	•••	
U-238	100	•••	•••	•••
Np-237	100	•••	•••	•••
Pu-239	100	•••	•••	•••
Pu-240	ry 100	•••	•	•••
Pu-242	100	•••	•••	
Am-241	100	•••	•••	•••
Am-243	100	•••		•••
Cm-245	100		***	

Table 11-4

.*.

gm (10 15 0 ll 4.2× 10 mo ۲

r.5.6

-

SOLUBILITIES OF RADIOELEMENTS, IN gm/m³

C Se Tc Sn I Cs Ra U Np Pu Am Cm

Element

<u>Lo</u>	<u>w</u>	Moderate	<u>High</u>
1.0)	1.4	1.4x10 ²
7.9	x10 ²	7.9x10 ³	5.5x10 ^s
3.5	x10 ²	1.0×10^{2}	9.9x10 ^s
1.3	x10 ⁻⁴	3.2x10 ³	2.2x10 ²
1.0		3.9×10^2	1.0x10 ⁵
1.2	<u> </u>	3.9×10^{2}	2.1×10^{3}
1.0	x10 ⁻⁵	4.0x10 ⁻⁴	0.1
0.5	; ;	2.4	5.0x10 ¹
4.0	k10 ⁻⁴	3.6x10 ²	7.2×10^{2}
6.0	10 ⁵	9.6x10 ⁻⁴	4.3x10 ⁻¹
1.5	ix10 ⁷	9.6x10 ²	9.6x10 ¹
2.4	1x10°	9.6x10 ⁻²	9.6x10 ¹

SOLUBILITY AND DISSOLUTION RATE

.٩.

Figure 15-9. Logic tree node for solubility and dissolution rate.

Figure 16-9. Sensitivity of CCDF for ²³⁷Np to solubility and dissolution rate.

Fractions of Repository in Different Environments for APD=57 kW/acre

Conduction-dominated p=0.5

	α	β	γ	δ	Total
Dry	.7	.09	.06	0	.850
MoistContin.	.01	.002	.03	0	.042
Wet-Drip	.02	.004	.02	0	.044
Episodic	.02	.004	.04	0	.064
Total 💡	.75	.10	.15	0	1.0

High Permeability p=0.2

	α	β	γ	δ	Total
Dry	.32	.36	.07	0	.750
Moist- Contin.	.01	.01	.04	0	.060
Wet-Drip	.01	.015	.03	0	.055
Episodic	.06	.015	.06	0	.135
Total	.400	.400	.200	0	1.0

Water Mobile in Fractures p=0.3

	α	β	γ	δ	Total
Dry	.25	.04	.1	0	.390
Moist- Contin.	0	.025	.15	0	.175
Wet-Drip	.005	.03	.15	0	.185
Episodic	.045	.005	.2	0	.250
Total	.300	.100	.600	0	1.0

SITE UNCERTAINTIES

Infiltration

EPRI/NPD

10/92

- What is it at repository elevation?
- Degree of fracturing
 - Spacing, sizes, ...
- Coupling between fracture & matrix flow
- Permeability of fractures (connectedness)
- Lateral flow distribution
 - Impermeable layers

HLW/SFS

