
NEAR-FIELD DRIPPING AND THERMAL
MODELS

Presented by
Debra L. Hughson

210/522-3805 (dhughson@swri.edu)
Center for Nuclear Waste Regulatory Analyses

May 25, 1999

San Antonio, Texas

DOE/NRC Technical Exchange on
Total System Performance Assessments for Yucca Mountain

DOE/NRC Technical Exchange, May 25, 1999; Page 1



IMPORTANCE TO PERFORMANCE ASSESSMENT

* Differences in the Amount of Seepage Into the Emplacement
Drifts and Onto WPs Lead to Calculated Radionuclide
Releases That Vary by Several Orders of Magnitude.

* Seepage Into Drifts and Onto WPs Is a Complex Process
With Large Uncertainties. Both DOE and NRC Performance
Assessments Use a Much Simplified Approach to Seepage
Abstraction. Given the Large Uncertainties It Is Desirable to
Err on the Conservative Side.
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CONCERNS

* Data Needed to Characterize Heterogeneity Have Not
Been Collected in the Main Repository Block

* Existing Models Do Not Capture the Scales of Variability

* Degradation of Emplacement Drifts Is Neglected

* Several Thousands of Years of WP Performance Are
Gained by Assuming No Dripping Occurs During the
Thermal Period
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OUTLINE

* Seepage Into Drifts Process Model

- Model scales and fracture properties

- Drift degradation

* Thermal Abstraction

- Neglecting seepage during thermal period
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Figure 2-58b. Simulated Heterogeneous-Permeability Field for Vertical Slice 2 of the 3-D Block
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Figure 2-71 a. Calculated Saturation Profiles in Fracture Continuum on Slice 1 of the 3-0 Block at
t = t_ = 1 Year
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BASE CASE PARAMETERS AND PHYSICAL
INTERPRETATION
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BOUNDARY LAYER FORMED WITH MEDIAN

u = 9.7 x 10 Pa-1
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BOUNDARY LAYER FORMED WITH MAXIMUM

c= 3.3x 10-3pa-1
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COMMENTS ON SCALE AND HETEROGENEITY

* Model Scales and Fracture Properties

- Heterogeneity in the alpha 
boundary layer may be important

parameter within the

If the* Drift Degradation and Wall Irregularity: What Happens
Boundary Layer Shape Is Perturbed?
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MODEL SHAPES FOR DRIFT DEGRADATION
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FACTOR BY WHICH THRESHOLD PERCOLATION FLUX
IS DECREASED
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MODEL SHAPES FOR DRIFT DEGRADATION
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FACTOR BY WHICH THRESHOLD PERCOLATION FLUX
IS DECREASED
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FACTOR BY WHICH THRESHOLD PERCOLATION FLUX
IS DECREASED
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COMMENTS ON DRIFT DEGRADATION

Irregularities in the Range of 15 cm Can Result in Order of
Magnitude Decreases in Threshold Percolation Flux for s Less
Than 16. Note the Dramatic Increase in This Reduction Factor
With Increasing s. Larger s Corresponds to the Larger o, (i.e.,
smaller characteristic length scale, representative of the larger
vertical fractures.)
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THERMAL-HYDROLOGICAL CONCERNS IN TSPA-VA

* TH Processes on Seepage Are Required for the Entire
Repository Performance Period. TH Driven Flow Cannot
Be Neglected for the Initial 5,000 years After Waste
Emplacement

* Penetration of the Boiling Isotherm by Flow Down a
Fracture Is Omitted. The Assumption That Water Will Not
Contact the WP Until WP Temperature Decreases Below
Boiling Is Not Conservative.
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SUPPORTING TECHNICAL BASIS

* Theoretical Analysis, O.M Phillips

* Numerical Simulations, K. Pruess

* Laboratory Scale Heater Experiments, R. Green.

* Field Scale Observations in the G-tunnnel at Climax
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