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IMPORTANCE TO PERFORMANCE ASSESSMENT
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* Differences in the Amount of Seepage Into the Emplacement
Drifts and Onto WPs Lead to Calculated Radionuclide
Releases That Vary by Several Orders of Magnitude.

 Seepage Into Drifts and Onto WPs Is a Complex Process
With Large Uncertainties. Both DOE and NRC Performance
Assessments Use a Much Simplified Approach to Seepage
Abstraction. Given the Large Uncertainties It Is Desirable to
Err on the Conservative Side.
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CONCERNS
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Data Needed to Characterize Heterogeneity Have Not
Been Collected in the Main Repository Block

Existing Models Do Not Capture the Scales of Variability
Degradation of Emplacement Drifts Is Neglected

Several Thousands of Years of WP Performance Are
Gained by Assuming No Dripping Occurs During the
Thermal Period
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OUTLINE

e Seepage Into Drifts Process Model
— Model scales and fracture properties
— Drift degradation

e Thermal Abstraction

— Neglecting seepage during thermal period
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Figure 2-58b. Simulated Heterogeneous-Permeability Field for Vertical Slice 2 of the 3-D Block
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Figure 2-71a. Calculated Saturation Profiles in Fracture Continuum on Slice 1 of the 3-D Block at
t=t,=1Year
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BASE CASE PARAMETERS AND PHYSICAL

INTERPRETATION
gﬁiﬁ Fracture Permeability
g,z:? ks — 10-14, 10-13, 10-12 m2 M |
%Z;: Fracture Alpha Parameter M
© O'g?oaoo 10E03 20603 30E03 40E-03 o= 3'3E-4’ 9'7E-4’ 3'3E-3 Pa-1
TSPA alpha range
.k
Threshold Percolation Flux q = 7,7

U Is Dimensionless Potential, a Function of o and Drift Radius
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BOUNDARY LAYER FORMED WITH MEDIAN

_a=9.7x 1(ﬂPa'1

Saturation
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BOUNDARY LAYER FORMED WITH MAXIMUM
o=3.3x103 Pa’

Saturation
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COMMENTS ON SCALE AND HETEROGENEITY

* Model Scales and Fracture Properties

— Heterogeneity in the alpha parameter within the
boundary layer may be important

e Drift Degradation and Wall Irregularity: What Happens If the
Boundary Layer Shape Is Perturbed?
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MODEL SHAPES FOR DRIFT DEGRADATION
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FACTOR BY WHICH THRESHOLD PERCOLATION FLUX
IS DECREASED

=-.025 (.07 m)

3 m—— \| = 4

S (dimensionless)
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ho -0

FACTOR BY WHICH THRESHOLD PERCOLATION FLUX

IS DECREASED

14
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P ~ max

0=-.05 (.14 m)

—— M =4
*M:S
e \ = 16

e, M) = 32

S (dimensionless)
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MODEL SHAPES FOR DRIFT DEGRADATION

0 =.14m
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il

FACTOR BY WHICH THRESHOLD PERCOLATION FLUX

IS DECREASED

=-.05 (.14 m)

e W = .05 (.14 M)
m— v = .1 (.28 M)
e\ = .2 (.65 m)

S (dimensionless)
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FACTOR BY WHICH THRESHOLD PERCOLATION FLUX
IS DECREASED

| §=-05 (14 m)

61 et w=.05(14m)
w—e W = .1 (.28 M)

/8 °] ==—w=.2(55m)

S (dimensionless)
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COMMENTS ON DRIFT DEGRADATION
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Irregularities in the Range of 15 cm Can Result in Order of
Magnitude Decreases in Threshold Percolation Flux for s Less
Than 16. Note the Dramatic Increase in This Reduction Factor
With Increasing s. Larger s Corresponds to the Larger a, (i.e.,
smaller characteristic length scale, representative of the larger
vertical fractures.)
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THERMAL-HYDROLOGICAL CONCERNS IN TSPA-VA

TH Processes on Seepage Are Required for the Entire
Repository Performance Period. TH Driven Flow Cannot

Be Neglected for the Initial 5,000 years After Waste
Emplacement

Penetration of the Boiling Isotherm by Flow Down a
Fracture Is Omitted. The Assumption That Water Will Not
Contact the WP Until WP Temperature Decreases Below
Boiling Is Not Conservative.
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SUPPORTING TECHNICAL BASIS
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Theoretical Analysis, O.M Phillips
Numerical Simulations, K. Pruess
Laboratory Scale Heater Experiments, R. Green.

Field Scale Observations in the G-tunnnel at Climax
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