[6]



Studies

#### License Application Plan - Design Overview

Presented to: NRCDOE Technical Exchange License Application Plan

Presented by: Richard D. Snell Manger, Repository Design Program Management and Operating Contractor

September 16, 1998



U.S. Department of Energy Office of Civilian Radioactive Waste Management

Legoci Imain- X .

# Discussion and Example of Remaining Technical Work-Design

- Design Requirements
- Subsurface Design
- Waste Package Design
- Surface Design

# **Design Requirements**

- Define Systems Structures & Components of the Monitored Geologic Repository (61 Systems)
- Systems Engineering
  - Provide Definition and Criteria
  - Produce System Description Documents
- Determine Applicable Regulatory Requirements
  - Applicable Regulations, Codes and Standards
  - Test and Evaluation Programs for Post Closure Verification
  - Acceptance Criteria, Test, and Inspection

# **Design Development**

- Technical Guidance Document (TGD) Provides Overall Framework for License Application
- "Binning" Method Applies to All Work
- Bin 3 Elements (Important to Safety No Regulatory Precedent) Utilize Post-Closure Safety Case Priorities
- Bin 2 Elements (Important to Safety With Regulatory Precedent) Utilize Pre-Closure Safety Evaluation (Design Basis Events - DBEs)
- NRC KTIs/IRSRs Provide Specific Technical Guidance
- Other Technical Issues Resolution

### Design Development (continued)

- Design Development Includes Activities to Support the Licensing Process
  - Improved Performance
  - Licensability (Allocation of Performance, Reduced Complexity, Relevant Analogs, Reduction of Uncertainties)
  - Defense in Depth

### Design Development (continued)

- Typical Post-Closure-Related Systems
  Documentation
  - PA Analysis
  - Natural Environment Data
  - Layouts/Arrangement/Key Structural Elements
  - Engineered Materials Data/Key Components
    Design

# Design Development (continued)

 Major Design Inputs to Performance Assessment: VA to SR/LA

| Milestone Description                                | <u>Date</u> |
|------------------------------------------------------|-------------|
| Waste Form Characteristics Report                    | 12/98       |
| Waste Form Characteristics Report - Update           | 11/00       |
| Engineered Materials Report "design not just package | 12/98       |
| Engineered Materials Report - Update                 | 11/00       |
| Select Initial SR/LA Design and Options              | 5/99        |
| Design Verification for Performance Assessment       | 3/00        |

# **Design Development**

- Typical Pre-Closure-Related Systems
  Documentation
  - DBE Analysis
  - Natural Environment Data
  - Arrangements/Key Structural Elements
  - Systems Operating/Control Logic
  - Equipment Performance

#### Design Planned Technical Work -Subsurface

|                                                                             | 1. Expected Postclosure Perform                                                                       | 2. Design               | 3. Disrup-                     | 4. Natural            | 5. Perfor-                | Preclosure                 |                |
|-----------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|-------------------------|--------------------------------|-----------------------|---------------------------|----------------------------|----------------|
| Work Category<br>(Section of VA Vol. 4)                                     | Principal Factors                                                                                     | Priority<br>To<br>SR/LA | Margin/<br>Defense<br>in Depth | tive Proc./<br>Events | & Man-<br>Made<br>Analogs | mance<br>Confir-<br>mation | Safety<br>Case |
|                                                                             | S                                                                                                     | ubsurface               | Design                         | - L                   |                           |                            |                |
| Subsurface Facility (3.2.1.1)                                               | Effects of heat and excavation on                                                                     |                         |                                |                       |                           |                            |                |
| ,                                                                           | flow (mountain scale)<br>Humidity and temperature at the                                              |                         |                                |                       |                           |                            |                |
|                                                                             | waste package                                                                                         | 0                       |                                |                       |                           |                            |                |
| Ground Control (3.2.1.2)                                                    | Chemistry of water on waste<br>package<br>Formation and transport of<br>radionuclide-bearing colloids | 2                       | v                              |                       |                           |                            | ¥ ,            |
| Subsurface Ventilation<br>(3.2.1.3)                                         | Effects of heat and excavation on flow (drift scale)<br>Dripping on waste packages                    | 2                       | 1                              |                       |                           |                            | 1              |
|                                                                             | Humidity and temperature at the waste package                                                         | 2<br>0                  |                                |                       |                           |                            |                |
| Waste Emplacement<br>(3.2.1.4)                                              | Integrity of outer carbon steel waste<br>package barrier                                              | 1                       | 1                              |                       |                           |                            | ~ ~            |
|                                                                             | Integrity of inner corrosion-resistant<br>waste package barrier                                       | 3                       |                                |                       |                           |                            |                |
| Subsurface Safety and<br>Monitoring (3.2.1.5)                               | N/A                                                                                                   |                         | -                              |                       |                           |                            | 1              |
| Waste Retrieval (3.2.1.6)                                                   | N/A                                                                                                   |                         | 1                              |                       |                           |                            | 1              |
| Performance Confirmation<br>(3.2.1.7)                                       | N/A                                                                                                   |                         |                                |                       |                           | 1                          |                |
| Sealing and Closure (3.2.1.8)                                               | Formation and transport of<br>radionuclide-bearing colloids<br>Transport through and out of EBS       | 2                       |                                |                       |                           | 4                          |                |
| Subsurface Utilities (3.2.1.9)                                              | N/A                                                                                                   | 1                       |                                | <u> </u>              | <u> </u>                  |                            | 1              |
| Subsurface Integrated<br>Control Systems<br>(3.2.1.10)                      | N/A                                                                                                   |                         | V                              |                       |                           |                            | 7              |
| Radiological Safety<br>(3.2.1.11)                                           | N/A                                                                                                   |                         | 1                              |                       |                           |                            | V              |
| Engineered Barrier System<br>Performance Modeling<br>and Testing (3.2.1.12) | Effects of heat and excavation on flow (drift scale)<br>Dripping onto waste packages                  | 2                       | V                              |                       |                           |                            |                |
|                                                                             | Humidity and temperature at waste package                                                             | 2                       |                                |                       |                           |                            |                |
|                                                                             | Chemistry of water on waste<br>package                                                                | 0                       |                                |                       |                           |                            |                |
|                                                                             | Formation and transport of<br>radionuclide-bearing colloids                                           | 2                       |                                |                       |                           |                            |                |
|                                                                             | Fransport inrough and out of EBS                                                                      | 2                       |                                |                       |                           |                            |                |
|                                                                             |                                                                                                       | 1                       |                                |                       |                           |                            |                |

# Subsurface Design

- Examples of Planned Work
- Ground Support
  - Temporary (Development-Side) and Permanent (Emplacement-Side) Types
  - Alternate Concepts (Concrete, Unlined Drift, Size Variations)
  - Requirements Evaluation (Environmental, Seismic, Thermal) (Short Term/Long Term)
  - Materials Selections Analyses (Longevity, Input on Near Field and In-Drift Conditions, Maintenance Requirements)

#### Subsurface Design (continued)

- Subsurface Ventilation
  - Development and Emplacement Systems
  - Design and Performance Under Normal Conditions
  - Identification and Analysis of Accident Scenarios and Upset Conditions (Include Development/Emplacement Interactions)
  - Consideration/Evaluation of Potential Long Term Ventilation (Effects on Temperature, Humidity, Near Field Environment)

11

Preparation of P&IDs, Control Logic
 Arrangements and Equipment Performance
 Requirements

#### Subsurface Design (continued)

- Waste Retrieval
  - Analysis of "Normal" Retrieval (Emplacement Equipment/Systems Used for Retrieval)
  - Evaluation "Off-normal" Retrieval (Special Equipment/Systems)
  - Use of Demonstrated Technology
  - Develop Analysis and Design Documents for Feasible and Functional Systems

#### Design Planned Technical Work -Waste Package

| · · · · · · · · · · · · · · · · · · ·                                     | Elements of the Postclosure Safety Case                                                                                         |                                   |                                             |                                     |                                         |                                          | [                            |
|---------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|---------------------------------------------|-------------------------------------|-----------------------------------------|------------------------------------------|------------------------------|
| Work Category<br>(Section of VA Vol. 4)                                   | 1. Expected Postclosure Perfo<br>Principal Factors                                                                              | rmance<br>Priority<br>to<br>SR/LA | 2. Design<br>Margin/<br>Defense<br>in Depth | 3. Disrup-<br>tive Proc./<br>Events | 4. Natural<br>& Man-<br>Made<br>Analogs | 5. Perfor-<br>mance<br>Confir-<br>mation | Preclosure<br>Safety<br>Case |
|                                                                           | •                                                                                                                               | Waste P                           | ackage                                      |                                     |                                         |                                          |                              |
| Waste Package Designs for<br>Uncanistered Spent<br>Nuclear Fuel (3.2.2.1) | Integrity of outer carbon steel<br>waste package barrier<br>Integrity of inner corrosion–<br>resistant waste package<br>barrier | 1<br>3                            | 4                                           |                                     |                                         |                                          | ↓                            |
| Waste Package Designs for<br>Canistered Spent<br>Nuclear Fuel (3.2.2.2)   | Integrity of outer carbon steel<br>waste package barrier<br>Integrity of inner corrosion–<br>resistant waste package<br>barrier | 1<br>3                            |                                             |                                     |                                         |                                          | √                            |
| Waste Package Designs for<br>DOE Spent Nuclear Fuel<br>(3.2.2.3)          | Integrity of outer carbon steel<br>waste package barrier<br>Integrity of inner corrosion–<br>resistant waste package<br>barrier | 1<br>3                            | 1                                           |                                     |                                         |                                          |                              |
| Waste Package Designs for<br>High-Level Radioactive<br>Waste (3.2.2.4)    | Integrity of outer carbon steel<br>waste package barrier<br>Integrity of inner corrosion-<br>resistant waste package<br>barrier | 1<br>3                            | 1                                           |                                     |                                         |                                          |                              |
| Alternate Waste Package<br>Designs (3.2.2.5)                              | Integrity of outer carbon steel<br>waste package barrier<br>Integrity of inner corrosion<br>resistant waste package<br>barrier  | 1<br>3                            | 4                                           |                                     |                                         |                                          | 1                            |
| Disposal Container<br>Fabrication and Closure<br>Welding (3.2.2.6)        | Integrity of outer carbon steel<br>waste package barrier<br>Integrity of inner corrosion-<br>resistant waste package<br>barrier | 1<br>3                            | V                                           | 1                                   |                                         |                                          | V                            |
| Criticality Methodology<br>(3.2.2.7)                                      | Transport through and out of<br>EBS<br>Flow and transport in the<br>unsaturated zone                                            | 1<br>3                            | V                                           |                                     |                                         |                                          | 1                            |
| Waste Form Testing and<br>Modeling (3.2.2.8)                              | Integrity of spent fuel cladding<br>Dissolution of spent fuel and<br>glass waste forms                                          | 2<br>1                            | 1                                           |                                     |                                         |                                          |                              |
| Waste Package Materials<br>Testing and Modeling<br>(3.2.2.9)              | Integrity of outer carbon steel<br>waste package barrier<br>Integrity of inner corrosion-<br>resistant waste package<br>barrier | 1<br>3                            | V                                           |                                     |                                         |                                          | 1                            |

# Waste Package Design

- Examples of Planned Work
- Waste Package Design for
  - Uncanistered Spent Nuclear Fuel
  - Canistered Spent Nuclear Fuel
  - DOE Spent Nuclear Fuel
  - Spent Naval Fuel
  - Defense High Level Radioactive Waste

# Waste Package Design (continued)

- Disposal Container Fabrication and Closure Welding
- Criticality Methodology
- Waste Form Testing and Modeling
- Waste Package Materials Testing and Modeling
  - Short-term and Long-term Corrosion Testing (WP & WF)
  - Welded and Un-Welded Test Coupons
  - Accelerated/Aggressive Test Environments
  - All Candidate Materials (Steel, Nickel, Ti, Ceramics)

#### Design Planned Technical Work -Surface

|                                                               | Elements of the Postclosure Safety Case                  |                           |                                 |                                     |                              |                                |                              |
|---------------------------------------------------------------|----------------------------------------------------------|---------------------------|---------------------------------|-------------------------------------|------------------------------|--------------------------------|------------------------------|
| Work Category<br>(Section of VA Vol. 4)                       | 1. Expected Postclosure Perf<br>Principal Factors        | ormance<br>Priority<br>to | 2. Design<br>Margin/<br>Defense | 3. Disrup-<br>tive Proc./<br>Events | 4. Natural<br>& Man-<br>Made | 5. Perfor-<br>mance<br>Confir- | Preclosure<br>Safety<br>Case |
|                                                               | <u> </u>                                                 | SR/LA                     | in Depth                        |                                     | Analogs                      | mation                         |                              |
|                                                               | S                                                        | urface De                 | sign                            |                                     |                              |                                |                              |
| Surface Facilities (3.2.3.2)                                  | N/A                                                      |                           |                                 |                                     |                              |                                | √                            |
| Design Documentation and<br>Engineering Products<br>(3.2.3.3) | N/A                                                      |                           |                                 |                                     |                              |                                | V                            |
| Carrier Preparation Building<br>Design (3.2.3.4)              | N/A                                                      |                           |                                 |                                     |                              |                                | V                            |
| Waste Handling Building<br>Design (3.2.3.5)                   | Integrity of outer carbon steel<br>waste package barrier | 1                         |                                 |                                     |                              |                                | V                            |
|                                                               | Integrity of inner corrosion–<br>resistant waste package | 3                         |                                 |                                     |                              |                                |                              |
|                                                               | barrier<br>Integrity of spent fuel<br>cladding           | 2                         |                                 |                                     |                              |                                |                              |
| Waste Treatment Building<br>Design (3.2.3.6)                  | N/A                                                      |                           |                                 |                                     |                              |                                | 1                            |
| Sitewide Systems and<br>Support Design (3.2.3.7)              | N/A                                                      |                           |                                 |                                     |                              |                                | 1                            |
| Support Activities (3.2.3.8)                                  | N/A                                                      |                           |                                 |                                     |                              |                                | √                            |

# Surface Design

- Example of Planned Work
- Waste Handling Building
  - Analysis of Waste Handling and Waste Packaging Production (Throughput Requirements, Handling Systems, Welding/Assembly Systems and Equipment, Quality Control, Quality Assurance)
  - Building Arrangement, Structural Concepts, Critical Structural Details
  - Design Basis Accidents and Events (DBEs)
  - Internal Systems P&IDs, Electrical 1-Lines, Control Logic, Critical Equipment Performance

# **Design Selection**

- LA Plan Requirements for Alternative Evaluations
  - 10 CFR 60 Alternatives
  - Response to NWTRB and Other Reviewer Inputs
- Implementation of LA Plan Requirements Work to be Accomplished
  - Features/Alternatives Lrge
  - Criteria for Alternative Selection
  - Decision Methodology
  - Evaluations (Performance, Cost, Other Criteria)

# Design Selection (continued)

- Decision Methodology
- 2 Pass Approach
  - 1st Pass -



- Stripped Alternatives (Develop Analysis for 8 Criteria)
- Individual Features ( " " " " )
- Evaluate Post Closure Performance
- 2nd Pass Enhanced Design Alternatives
  Combine Features with Alternatives for:
  - Improved Performance
  - Licensability and Defense in Depth
  - Reduction of Uncertainty
  - Evaluate on All Criteria

# **Design Selection** (continued)

- Major Milestones/Activities
- Complete 1st Pass Analysis (12/98)
  - Determine "Complete" List of Features/Alternatives
  - Determine Decision Criteria/Weighting Factors
- Complete 2nd Pass Analysis (2/99)
  - Complete Determination of Enhanced Design Alternatives

# Design Selection (continued)

- Select Initial SR/LA Design (5/99)
  - Complete Comparison of Alternatives
  - M&O Management Review
  - DOE Review
- Design Verification for Performance
  Assessment (3/00)