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Scenario Screening Steps
* Initial igneous-activity FEP list from generalized

event trees (Barr et al. 1993)

* Mean probability of occurrence of volcanic
activity in the YM region 1.5xl0 8 /year

Therefore, igneous-activity scenario classes cannot be
excluded on probability arguments

* Consequences modeled for 3 sub-scenarios
Direct surface, direct subsurface, indirect

* Because probabilities <1, will be treated as
DFEPs
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Scenario Screening
* Scenarios Considered

- Direct surface releases with dispersal by ash plume

- Groundwater transport of magmatically enhanced
radionuclide source term

Indirect effects on groundwater flow and transport
of a dike intrusion outside the repository

* Scenarios not Considered
-Variants of direct-interaction

* Polycyclic events (unlikely, per PVHA experts)

* Dispersal by lava flows (less consequence than aerial)
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Logic Diagram for Igneous-
Activity Sub-scenarios
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Models for Direct Interactions
* Source Term

- Plumbing of intrusion

- Waste-package breach

Removal of contents (surface release)

Entrainment (surface release)

Dissolution/alteration of waste (enhanced source term)

* Dispersal/Transport/Doses
Eruption characteristics (surface release)

Waste-form degradation rate (enhanced source term)

- Groundwater transport (enhanced source term)
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Interaction of Dike with
Repository

* Intersection of dike with repository
footprint

- (length, azimuth) A

* Fragmentation depth

* Dike width/ conduit diameter

* Number of vents along dike occurring
inside repository
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Conditional Probability of
Intersection

* PVHA provides a
model for length of
dike into repository W

relative to point-
event location

* Parameters are dike
length, dike
azimuth, and
relative location of
point event (the
eruption center)
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Simulations of Dikes
Intersecting the Repository

* Annual frequency of intersection is function
of rate of volcanic events at point (xy) and
conditional probability that event centered
at (xy) intersects repository (per PVHA)

* Conditional probability is function of two
probability densities
-Length of dike at (xy) extends into repository

Azimuth of dike at (xy) points to repository
* Influences number of drifts intersected

* Summed over all locations
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Dike Orientation PDF
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Number of Eruptive Vents in
Repository

* PVHA experts provided assessments of number
of events represented by observed cones

Gives a distribution of number of separate cones per
event

* Assume cones are uniformly distributed along
dike length

* P(conelintersection) = P(intersectionlx,y)*P(cone)

* Vents inside repository required for waste release
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Dike Intersection with Drifts

5.3 m

7
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Example Dike-intersection
Parameters
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Intrusion Characteristics
Fragmentation depth

- Depth at which gasses
exsolve from liquid
magma and form
bubbles

- Determines whether
liquid magma or 16

ash/pryoclasts 14 liquid magma pyroclasts

intersect repository T12 
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Intrusion Dimensions
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Magma Ascent Velocity
* Liquid-magma ascent

velocity 4

A function of dike k
width
Range (0.2 20 m/s)

* Ash/pyroclast ascent
velocity
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Source Term Components

* Source term for surface releases
Plumbing of intrusion
Waste-package breach

Removal of contents
Entrainment
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Models for Waste-Package
Breach

* Mechanical Degradation
- Internal pressurization

Plastic deformation

* Chemical Degradation
Corrosion

* Environment is outside of specifications for
most materials

Temperature

Corrosive gasses
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Magmatic Environment in
Drifts

* Magma temperature: 1 0000,
- Contact cooling could reduce

# 8000C

- 12000 C

temperature to

* Magmatic gases contain 2% - 10% sulfur
compounds
-Up to 20% CO2

* HC1 and HF may be present
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Plastic Deformation of Waste
Packages

* At high
temperatures,
reduction of
strength of waste-
package materials
could result in
collapse (like a
toothpaste tube)
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Internal Pressurization of Waste
Packages

* Waste packages are initially filled with helium
at atmospheric pressure at room temperature

- CSNF rods are pressurized by inert gas and fission
product gasses

- Above -900C the rods can burst, releasing gas
into waste package

* At magmatic temperatures, gas pressure inside
waste package can range from 1 MPa to 1.8
MPa
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Waste-Package Overpressure
* Circumferential stress

is fairly low
(-35 - 65 MPa)

- For WP wall thinned
by 50%, stress is
doubled

- Approaches ultimate
tensile strength of
Alloy-22 at higher
temperatures
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Waste-Package Breach Model
* Temperature rise from magma contact is slow-

enough that overpressure gas explosion does not
occur
-Temperature is above annealing temperature for Alloy

22, but below solidus temperature

* Gas vents from waste package, but walls are
largely intact

* Depending on degree of prior corrosion, walls and
end-plates collapse to cause breach

For extensive corrosion, breach can occur within time
of active magma flow B y 4
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Source Term Components

* Source term for surface releases
Plumbing of intrusion

Waste-package breach

Removal of contents

Entrainment
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Ejection of Waste from Package
* Consider kinematic ejection, dissolution,

advection

* Kinematic effects occur when the ascending
magma is in ash/pyroclastic form

Elastic and inelastic interactions are considered
* Effect of scattering angle not considered - assumed to be

vertical exit direction

* Dissolution and advection can occur with
liquid magma

Approximately 20 - 40 wt.% U0 2 can dissolve in
basalt

Igneous. 125.NRC.PPT.10-1-98 2C 



Kinematic Ejection

* Density difference between U0 2 ( 11 g/cm 3 )
and ash (0.8 - 2.6 g/cm3 ) limit relative sizes
of ash and waste particles

- For elastic collisions, waste particle can be no
bigger than about 1/2 the size of the impinging
ash particle

- For inelastic collisions, waste particle can be no
bigger than the same size as the impinging ash
particle

- Calculations use average of ash-density range
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Source Term Components

* Source term for surface releases
Plumbing of intrusion

Waste-package breach

Removal of contents

-Entrainment
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Entrainment o W
* Model compares

settling velocity of
heavy waste with
ascent velocity of ash
or magma

* 10-cm waste particles
settle at -0.75 - 1.5
m/s (depending on
magma density)

* Therefore, most ascent
velocities will entrain
waste
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Example Particle Parameters
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Dispersion Model
* Eruptions

characterized by
volume, rather than
time

* ASHPLUME code
was slightly modified

- Eruption volume is
input

- Ash density is fixed

* Wind data are same
as CNRWA 1996
work

(Wind blowing to north)
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* Wind Speed (cm/s)
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AS HPLUME
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