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Scenario Screening Steps

Initial 1gneous-activity FEP list from generalized
event trees (Barr et al. 1993)

Mean probability of occurrence of VolcaniW .
activity in the YM region ~1.5x103%/year = & +%"

— Therefore, igneous-activity scenario classes cannot be
excluded on probability arguments

Consequences modeled for 3 sub-scenarios

— Direct surface, direct subsurface, indirect

Because probabilities <1, will be treated as
DFEPs




Scenario Screening

* Scenarios Considered
— Direct surface releases with dispersal by ash plume

— Groundwater transport of magmatically enhanced
radionuclide source term

— Indirect effects on groundwater flow and transport
of a dike intrusion outside the repository

e Scenarios not Considered

— Variants of direct-interaction
* Polycyclic events (unlikely, per PVHA experts)

* Dispersal by lava flows (less consequence than aerial)
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Logic Diagram for Igneous-
Activity Sub-scenarios
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Models for Direct Interactions

Source Term
— Plumbing of intrusion
— Waste-package breach
— Removal of contents (surface release)
— Entrainment (surface release)

— Dissolution/alteration of waste (enhanced source term)

Dispersal/Transport/Doses
— Eruption characteristics (surface release)
— Waste-form degradation rate (enhanced source term)

— Groundwater transport (enhanced source term)
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Interaction of Dike with
Repository

Intersection of dike with repository

footprint
— (length, azimuth)

. . - M /rM/L
Fragmentation depth -~ < £

Dike width/ conduit diameter

Number of vents along dike occurring
inside repository



Conditional Probability of

Intersection

« PVHA provides a
model for length of y;

dike into repository .4

relative to point- Py
event location r
o Parameters are dike
length, dike
azimuth, and
relative location of
point event (the
eruption center)

e
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Simulations of Dikes
Intersecting the Repository

e Annual frequency of intersection is function
of rate of volcanic events at point (x,y) and
conditional probability that event centered
at (x,y) intersects repository (per PVHA)

e Conditional probability 1s function of two
probability densities

— Length of dike at (x,y) extends into repository
— Azimuth of dike at (x,y) points to repository

* Influences number of drifts intersected

e Summed over all locations
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Dike Orientation PDF
e Joint W

probability
function for
length and
azimuth of

dike inside
repository
block

e Dikes are
strongly
oriented N-S
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Number of Eruptive Vents In
Repository

 PVHA experts provided assessments of number
of events represented by observed cones

— Gives a distribution of number of separate cones per
cvent

e Assume cones are uniformly distributed along
dike length

e P(conelintersection) = P(intersectionlx,y)*P(cone)

e Vents inside repository required for waste release
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Dike Intersection with Drifts

EDW = DW/cos(a) + 5.3*tan(x)
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Number of lhstances

Example Dike-Intersection
Parameters
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Intrusion Characteristics

* Fragmentation depth —  —

— Depth at which gasses o
exsolve from liquid |

—
magma and form S

bubbles
— Determines whether J

liquid magma or
ash/pryoclasts
intersect repository

16

—
N

liquid magma : pyroclasts

—_
N

—_
o

— Uncertainty/variability
in depth expressed as
uniform pdf from 100
- 400 m
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Intrusion Dimensions ﬂ
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Magma Ascent Velocity

e Liquid-magma ascent 4, “f
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Source Term Components

e Source term for surface releases
— Plumbing of intrusion
— Waste-package breach
— Removal of contents

— Entrainment
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Models for Waste-Package
Breach

Mechanical Degradation
— Internal pressurization
— Plastic deformation
Chemical Degradation
— Corrosion
Environment is outside of specifications for
most materials "
— Temperature

— Corrosive gasses
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Magmatic Environment In
Drifts

* Magma temperature: 1000° — 1200° C
— Contact cooling could reduce temperature to
~ 800°C
 Magmatic gases contain 2% — 10% sulfur
compounds

— Up to 20% CO,
* HC] and HF may be present



Plastic Deformation of Waste

Packages

* Athigh
temperatures,
reduction of
strength of waste-
package materials
could result in
collapse (like a
toothpaste tube)




Internal Pressurization of Waste
Packages

* Waste packages are initially filled with helium
at atmospheric pressure at room temperature

— CSNF rods are pressurized by inert gas and fission
product gasses

— Above ~900°C the rods can burst, releasing gas
into waste package

« At magmatic temperatures, gas pressure inside

waste package can range from ~1 MPa to ~1.8
MPa
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Waste-Package Overpressure

e Circumferential stress

iS falrly low T = End-Plate Stress
(~35 — 65 MPa) 700 | BRRERE ;’{i‘g‘ﬂg‘;”"s"e
[
— For WP wall thinned )
by 50%, stress 1s
doubled
— Approaches ultimate
tensile strength of [ v,
] 0 PN AU RN NS ST DR B
Alloy-22 at higher 0 200 400 600 800 1000 1200 140C
temperatures Temperature (°C)
P ol m5 P
- ﬂw&” ey oy W&ﬁw
e End-cap stress 1s o ST
Lot e

~400 MPa at 1000°C .
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Waste-Package Breach Model

* Temperature rise from magma contact 1s slow
enough that overpressure gas explosion does not
occur

— Temperature 1s above annealing temperature for Alloy

. 8.l S S
22, but below solidus temperature  ==“" "2 7"

* Gas vents from waste package, but walls are
largely 1ntact

* Depending on degree of prior corrosion, walls and
end-plates collapse to cause breach

— For extensive corrosion, breach can occur within time
5 /S /PO,
of active magma flow e oees 4
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Source Term Components

e Source term for surface releases
— Plumbing of intrusion
— Waste-package breach
— Removal of contents

— Entrainment
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Ejection of Waste from Package

* Consider kinematic ejection, dissolution,
advection

e Kinematic effects occur when the ascending
magma 1s 1n ash/pyroclastic form
— Elastic and inelastic interactions are considered

* Effect of scattering angle not considered - assumed to be
vertical exit direction

* Dissolution and advection can occur with
liquid magma
— Approximately 20 — 40 wt.% UQO, can dissolve in
basalt
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Kinematic Ejection

 Density difference between UO, (~11 g/cm?)
and ash (0.8 — 2.6 g/cm?’) limit relative sizes
of ash and waste particles

— For elastic collisions, waste particle can be no
bigger than about 1/2 the size of the impinging

7~ ash particle
b

Y — For 1nelastic collisions, waste particle can be no
bigger than the same size as the impinging ash
particle

— Calculations use average of ash-density range
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Source Term Components

e Source term for surface releases
— Plumbing of intrusion
— Waste-package breach
— Removal of contents
— Entrainment
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Entrainment of Waca{/gy

* Model compares
settling velocity of
heavy waste with
ascent velocity of ash
Or magma

* 10-cm waste particles
settle at ~0.75 - 1.5
m/s (depending on
magma density)

* Therefore, most ascent

velocities will entrain
waste
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Ash and waste-particle sizes
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Example Particle Parameters

| iquid

a B nimnn - Ash

Ascent velocities
cover wide range

Number of O ccurences

50

o 0.1 1 10 100 1000

Ascent Velocity (m/s)
= s s Waste
Waste-particle sizes
ol are bracketed by ash-
. s particle sizes

0.001 0.01 10
Particle Slze (cm)

N
©
T

w
()
I

Mumber of Occurences
N
()
I

r_'

Igneous.125.NRC.PPT.10-1-98



P

* Wind data are same

Dispersion Model

* Eruptions
characterized by
volume, rather than
time

* ASHPLUME code
was slightly modified

(Wind blowing to north)

— Eruption volume is
input
— Ash density is fixed

as CNRWA 1996

(Wind blowing to south)
work




Number of Occurences

-
o

0® = N ® H» OO N ®» ©
T

.01 0.1 1
Eruption Volume (km®)

12

All parameter ranges
derived from CNWRA
(1996) work

Number of Occurences

14

—_ [y
o N

Number of Occurences
(03]

0

200

400

ASHPLUI\/Ig Inputs

1

600 800 1000 1200 1400 1600

Eruption Duration (hrs)

Ash Density (g/cm®)

1.5

2

2.5
Igneous.125.NRC.PPT.10-1-98

32



