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Abstract

Sandia National Laboratories has completed the second iteration of the periodic total-system
performance assessments (TSPA-93) for the Yucca Mountain Site Characterization Project (YMP).
These analyses estimate the future behavior of a potential repository for high-level nuclear waste at
the Yucca Mountain, Nevada, site under consideration by the Department of Energy. TSPA-93
builds upon previous efforts by emphasizing YMP concerns relating to site characterization, design,
and regulatory compliance.

Scenarios describing expected conditions (aqueous and gaseous transport of contaminants) and
low-probability events (human-intrusion drilling and volcanic intrusion) are modeled. The
hydrologic processes modeled include estimates of the perturbations to ambient conditions caused by
heating of the repository resulting from radioactive decay of the waste. Hydrologic parameters and
parameter probability distributions have been derived from available site data. Possible future
climate changes are modeled by considering two separate groundwater infiltration conditions: “wet”,
with a mean flux of 10 mm/yr, and “dry”, with a mean flux of 0.5 mm/yr. Two alternative waste-
package designs and two alternative repository areal thermal power densities are investigated. One
waste package is a thin-wall container emplaced in a vertical borehole, and the second is a container
designed with corrosion-resistant and corrosion-allowance walls emplaced horizontally in the drift.
Thermal power loadings of 57 kW/acre (the loading specified in the original repository conceptual
design) and 114 kW/acre (a loading chosen to investigate effects of a “hot repository”) are considered.

TSPA-93 incorporates significant new detailed process modeling, including two- and three-
dimensional modeling of thermal effects, groundwater flow in the saturated-zone aquifers, and gas
flow in the unsaturated zone. The saturated-zone model is used to estimate travel times for con-
taminants through layered, dipping formations. Coupled calculations of gas and heat flow are used
to estimate travel times for gaseous CO2. Time-dependent temperature distributions in the rock
surrounding the potential repository are calculated, using the four repository layouts. A
phenomenological model for waste-package degradation is implemented; the model includes tem-
perature-dependent corrosion, fuel alteration, and dissclution.

Probabilistic analyses are performed for aqueous and gaseous flow and transport, human
intrusion, and basaltic magmatic activity. Repository performance estimates are sensitive to as-
sumptions made about unsaturated-zone water flow and contact with waste. Two conceptual models
of unsaturated-zone water flow are considered — the composite-porosity model, which treats fracture
and matrix flow as being strongly coupled; and the weeps model, which allows for flow only through
locally saturated zones. The weeps aqueous releases and the human-intrusion direct releases are
sensitive to the size of the waste packages that are affected: the larger horizontally-emplaced
containers produce greater releases. Releases are generally insensitive to repository thermal effects:
a hotter thermal loading protects parts of the repository from contact with liquid water, but other
parts experience enhanced water flow due to condensation and diversion. The volcanic scenario,
which investigates the effects of magmatic volatiles on the degradation of the waste packages, does
not contribute significantly to releases.

Results of the calculations done for TSPA-93 lead to a number of recommendations concerning
studies related to site characterization. Primary among these are the recommendations to obtain
better information on percolation flux at Yucca Mountain, on the presence or absence of flowing
fractures, and on physical and chemical processes influencing gaseous flow. Near-field thermal and
chemical processes, and waste-container degradation are also areas where additional investigations
may reduce important uncertainties. Recommendations resulting from TSPA-93 for repository and
waste-package design studies are: 1) to evaluate the performance implications of large-size
containers, and 2) to investigate in more detail the implications of high repository thermal power
output on the adjacent host rock and on the spent fuel.

If future repository performance regulations are based on individual dose rather than cumu-
lative release, results suggest that future site-characterization efforts should emphasize investi-
gations of groundwater contact with waste packages in the unsaturated zone and examinations of
saturated-zone flow paths. Because dose rates are dependent on the rate of radionuclide releases, it
would be useful to investigate container designs that fail “slowly” over long periods of time.
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Executive Summary

1 Introduction

Yucca Mountain is being investigated by the U.S. Department of Energy (DOE) as
the potential site for the permanent disposal of spent fuel from nuclear reactors and high-
level radioactive waste generated by the U.S. Department of Defense. Yucca Mountain is
located in a sparsely populated, arid region of the U.S., approximately 120 km northwest
of Las Vegas, Nevada, on the border of the DOE’s Nevada Test Site. To take advantage
of less groundwater, a potential repository at the site would be mined in the unsaturated
zone of the mountain, about 300 m below the surface, but over 200 m above the water table
(Figure ES-1).

Yucca Mountain

Geologic
Strata

Figure ES-1. Location of Yucca Mountain and a potential high-level radioactive-waste
repository.

A repository at Yucca Mountain will have to meet a number of Federal regulations, in-
cluding regulations concerning long-term waste isolation promulgated by the U.S. Environ-
mental Protection Agency (EPA) and the U.S. Nuclear Regulatory Commission. To determine
long-term waste isolation, the Yucca Mountain Site Characterization Project (YMP) of DOE
has begun a series of total-system performance assessments (TSPAs). The work described
in this report—TSPA-93—is part of the second full iteration in the series (Figure ES-2).
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Figure ES-2. Progression of TSPA analyses.

containers and different thermal loadings are evaluated.

ES-2

TSPA-93 differs from previous analyses in several important respects. Significant new
detailed modeling is undertaken, including three-dimensional geostatistical modeling of the
stratigraphy, three-dimensional modeling of the saturated zone, and modeling of repository
thermal effects. A phenomenological source term developed by Lawrence Livermore Na-
tional Laboratory (LLNL) and climate change extrapolated from the paleoclimatic record
are included in the probabilistic models. Several different repository designs with different

Two performance measures are considered in this TSPA iteration: normalized cumu-
lative release, as defined by the EPA in 40 CFR 191.13, and radiation dose to a maximally
exposed individual. The Energy Policy Act of 1992 dictates that 40 CFR Part 191 no longer




applies to Yucca Mountain, and sets a course of action for specifying a new standard. Indi-
vidual dose is examined in TSPA-93 to determine the potential impact of such a standard
on the performance assessment. To study the impact of longer time periods on repository
performance, both cumulative-releases and dose results were calculated for a million-year
time period in addition to the typical 10,000-year period.

In one respect, the results of TSPA-93 tend to confirm previous work: cumulative
releases from all investigated sources are generally below the EPA standard (40 CFR 191.13),
except for gaseous releases of 1¥C. However, a significant new result is that future peak doses
from drinking water in the area could be substantially above background radiation levels.
Also, some of the models indicate that larger containers (e.g., the multipurpose container)
and hotter repository configurations could lead to worse long-term performance, although a

great deal of uncertainty is associated with these results.

1.1 TSPA-93 purpose

The ultimate goal of the TSPA process is to determine compliance of a repository with
applicable regulations and to support a license application for construction and operation
of a repository. However, at this point in the process, the primary goal of TSPA-93 is to
provide feedback to YMP particpants on the significance of design and site-characterization
information to regulatory compliance. Secondary goals of TSPA-93 involve progress toward
performance assessments that are scientifically justified and acceptable for a license appli-
cation, including refinement of mathematical models of physical processes, features, and
events that could influence repository performance; consideration of an individual-dose per-
formance measure; and calculation of conditional estimates of compliance with performance
measures for scientific review. A final goal of TSPA-93 is to involve several different orga-
nizations within the project in production of a TSPA for Yucca Mountain. Table ES-1 shows
the participants who provided input to TSPA-93. In addition, researchers from the Waste
Isolation Pilot Project (WIPP) contributed to an independent review of this work.

1.2 Scenarios

A TSPA is based on a risk-assessment methodology that contains the following major
steps: (1) develop and screen scenarios, (2) develop models of important features, events, and
processes, (3) estimate parameter values and uncertainties, (4) make calculations using the
models and parameter values, and (5) interpret results. A summary of models, parameters,
and results is contained in the following sections. Development and screening of scenarios

are independent efforts and are described in separate documents; a brief disscussion follows.
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Table ES-1. Information sources for TSPA-93 analyses.

Component Contributors
Stratigraphy and Hydrogeologic LBL (C. Wittwer, G. Bodvarsson)
Parameters USGS (A. Flint, L. Flint, R. Spengler,

E. Weeks, R. Luckey, A. Geldon,
D. Appel, D. Hoxie)
SNL (A. Schenker, T. Robey, C. Rautman,

D. Guerin)
Climate Change USGS (A. Flint, L. Flint, D. Hobson,
R. Forester, Z. Peterman)
WIPP (P. Swift)
SNL (J. Gauthier, M. Wilson)
Geochemistry LANL (1. Triay, D. Morris, A. Meijer,
M. Ebinger)
SNL (M. Siegel)
Thermal Effects LLNL (G. Johnson, T. Buscheck, L. Lewis)
TRW (J. King)
B&W Fuel (T. Doering, R. Bahney,
A. Thompson)
SNL (E. Ryder, E. Dunn, J. Holland)
Saturated Zone USGS (R. Luckey)
SNL (G. Barr)
Gas Flow DSI (B. Ross, N. Lu)
SNL (M. Wilson)
Source Term and LLNL (A. Lamont, J. Gansemer,
EBS Processes ‘W. Halsey, L. Lewis, R. Stout,
D. McCright)
Iowa State University (D. Bullen)
ORNL (A. Croff)

SNL (R. Barnard, J. Gauthier, M. Wilson)

A scenario consists of an organized list of features, events, and processes (FEPs) that
could lead to releases of radionuclides to the accessible environment—either the ground
surface or a subsurface boundary 5 km from the repository. Scenario categories consist
of groupings of similar scenarios. The general scenario categories considered in TSPA-93
include cases with an undisturbed repository (the “nominal” case), and with a disrupted
repository (the “disturbed” cases).

For TSPA-93, the nominal case consists of a heat-generating repository that is subjected
to climate-dependent groundwater flow. Two alternative conceptual models of groundwater
flow in the unsaturated zone are considered. Waste containers within the repository de-
grade by a variety of mechanisms, but the most important mechanism is aqueous-induced
corrosion. If and when containers fail, radionuclides are available for gaseous or aqueous
transport to the accessible environment. For gaseous transport, radionuclides move upward

through the unsaturated zone to the ground surface. For aqueous transport, radionuclides
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move downward through the unsaturated zone, then laterally through the saturated zone
past the 5-km subsurface boundary. Radionuclides are tracked in terms of (1) cumulative re-
leases to the accessible environment and (2) the dose an individual might recieve by drinking
contaminated water pumped from the saturated zone at the accessible environment.

For TSPA-93, two disturbed cases are investigated: (1) inadvertant human intrusion by
exploratory drilling, and (2) volcanic activity that introduces corrosion-enhancing heat and
volatiles into the repository. For human intrusion, radionuclides exhumed with the drill
core and the drilling fluids contribute to releases. For indirect volcanic effects, magmatic-
induced corrosion of containers allows earlier releases of radionuclides that are transported
in groundwater flowing as described in the nominal case. (Direct volcanic releases were
evaluated in TSPA-91.)

2 Data development

2.1 Repository

The design limit for a repository at Yucca Mountain is 70,000 metric tons of radioactive
waste. The approximately 63,000 metric tons of spent fuel emplaced in the repository is con-
sidered to be aged 25 years, with burnups of 30,000 MWd/MTU for boiling-water-reactor fuel
and 40,000 MWd/MTU for pressurized-water-reactor fuel. The approximately 7,000 metric
tons of defense high-level waste is considered to have many of the heavy metal products
removed and to be encased in a vitrified waste form. A study performed in conjuction with
TSPA-93 examined the significance of each radionuclide contained in the wastes in terms
of its potential for contributing to contamination at the accessible environment. Based on
this study, the human-intrusion analyses in TSPA-93 consider a broad suite of 43 radionu-
clides. Nominal case and indirect volcanic effects consider 8 radionuclides, chosen for their
transport characteristics (low retardation) or their potential contribution to individual dose.

The waste forms are enclosed in containers; container designs have not been finalized,
but those investigated to date consist of cylindrical metal containers with gas-tight closures.
Two container types are considered in TSPA-93 (Figure ES-3): (1) a smaller, “vertically em-
placed” container proposed in the Site Characterization Plan (SCP) Conceptual Design of
1987, and (2) a larger, “in-drift” container which approximates the multipurpose container
(MPC) presently being considered by the Yucca Mountain Project. Vertically emplaced con-
tainers are modeled with a surrounding air gap that is sometimes filled with rubble. In-drift
containers are modeled with a surrounding backfill, provided to prevent drift collapse. (Con-
sequences of adding a backfill are an increased potential for water pathways to the waste

container, and higher container temperatures caused by the backfill acting as a thermal
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Figure ES-3. The two container types and emplacement strategies considered in TSPA-93.

insulator.) A 70,000-metric-ton repository requires the use of about 35,000 of the vertically
emplaced containers or about 8,500 of the in-drift containers.

The repository layout incorporated in TSPA-93 consists of a series of emplacement
drifts that run perpendicular to a main access drift. Length and proximity of the drifts
to one another depend on the rock mass and the thermal characteristics of the repository.
Decay of the radioactive waste produces heat: approximately 1 kW of heat for every metric
ton (at emplacement-—heat generation decreases over time). While the heat output depends
primarily on the spent-fuel burnup and on the waste-acceptance schedule, the temperatures
within the repository depend on the local areal power density (LAPD, expressed in terms of
kW/acre), which is primarily a function of the waste-container spacing. It has been proposed
that temperatures above boiling could produce a dry environment that would enhance the
long-term performance of the repository. The SCP Conceptual Design specified an LAPD of
57 kW/acre (Figure ES-4). More recently, LAPDs up to 114 kW/acre have been considered
by the YMP in order to attempt to induce a larger dryout zone.

Four combinations of container/thermal loadings are examined in TSPA-93. A 57-
kW/acre repository with vertically emplaced containers is the baseline analysis case for
TSPA-93, and most like the design described in the SCP and evaluated in TSPA-91. Also
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Figure ES-4. Repository layouts for the two thermal loadings considered in TSPA-93.

examined are a 114-kW/acre repository with vertically emplaced containers, a 57-kW/acre

repository with in-drift containers, and a 114-kW/acre repository with in-drift containers.

2.2 Stratigraphy

A fully three-dimensional stratigraphic model of the potential repository region is de-
veloped for TSPA-93. The model uses geostatistics to reduce dependeﬁce on qualitative
approaches by incorporating as much site-specific information as possible. The model was
developed with the long-term goal of determining whether the thicknesses of the strata at
the site are important to the modeled performance. For TSPA-93, probabilistic calculations
(see below) are conducted using a reference stratigraphy selected from 10 geostatistical sim-
ulations performed with this approach.

The model incorporates lithologic data from 22 deep drillholes within or near the po-
tential repository region in an indicator simulation to determine boundaries between welded
and nonwelded layers of tuff. More regular structures—the Topopah Spring vitrophyre and
the boundary between the vitric and zeolitized Calico Hills layers—are added separately.

Despite the welded/nonwelded indicator having horizontal correlation lengths on the
order of kilometers, significant variation is seen in the strata contacts within the repository
block for the 10 geostatistical outcomes. The implication is that the lithologic-data drillholes

are not spaced closely enough for accurate predictions.
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2.3 Hydrogeologic parameters

A performance-assessment data base is produced for TSPA-93 for the purpose of stan-
dardizing available data and generating probability distributions of parameters used in both
the detailed and the probabilistic models. Data are categorized for 15 hydrologic properties
(e.g., porosity, hydraulic conductivity, etc.) in 10 strata, both in the unsaturated and sat-
urated formations. Each of the 10 modeled strata is considered homogeneous, and one
probability density function (PDF) is developed for each hydrologic property in each layer.
Each PDF is either derived directly from available data (where data are abundant), or is
derived based on maintaining maximum informational entropy (where data are sparse), in
order to minimize the chance of biasing the results. PDF's are also adjusted from lab scale
to site scale to make them more representative.

A new accomplishment with this effort is the development of a method for deter-
mining fracture characteristics that are consistent with site data. Distributions of bulk-
permeability, fracture-frequency, and fracture-dip data from drillholes are used as input to
a parallel-plate model, allowing calculation of fracture apertures, hydraulic conductivities,

porosities, etc.

2.4 Climate change

Groundwater flow could be the most important process affecting the performance of a
repository at Yucca Mountain (analysis of TSPA-91 and TSPA-93 results show a significant
sensitivity to the groundwater-flux parameter). Although the present groundwater flow
through Yucca Mountain is thought to be relatively insignificant, few quantitative data are
available. The strategy for TSPA-93 is to examine the paleoclimatic record and data from
analog sites, then extrapolate future infiltration and percolation at Yucca Mountain. The
paleoclimatic record shows that an ice-age cycle of 100,000 years has existed during the
recent Pleistocene, and researchers have noted that Yucca Mountain experienced probably
40% but perhaps up to 200% more annual precipitation during the last ice age. Recent data
from the U. S. Geological Survey (USGS) has also indicated that the water table under Yucca
Mountain was higher by 85 m or more during the last ice age.

For TSPA-93, a series of “wet” (ice-age) and “dry” (interglacial) climates are speciﬁed,
with a cycle of 100,000 years, but with the dividing time between wet and dry selected at
random. Flow is modeled as a sequence of steady states. Infiltration rates average 10 mm/yr
for wet climates, and 0.5 mm/yr for dry climates. The water table is allowed to rise up to 120
m during wet climates. These values are greater than what often is believed for the region.
Percolation from meteoric sources is assumed to equal infiltration in the TSPA model that

describes groundwater flow in fractures (the weeps model) but, for the model that describes
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flow in both matrix and fractures (the composite-porosity model), percolation is reduced
to account for lateral diversion of flow above the repository. For TSPA-93, groundwater
mobilized by a repository thermal pulse (see below) is added onto the direct meteoric influx

and both are diverted around the dried region where temperatures are above boiling.

2.5 Solubility and sorption parameters

Distributions of solubility and sorption parameters for TSPA-93 were obtained through
elicitation of experts from Los Alamos National Laboratory (LANL) and Sandia National
Laboratories (SNL). Their decisions are based primarily on laboratory data, while keeping in
mind that solubility and sorption characteristics of radionuclides are especially dependent on
site-specific groundwater chemistry and somewhat dependent on temperature. The experts
reaffirmed that most of the actinides are relatively insoluble and highly sorbing in conditions
typical of Yucca Mountain. However, neptunium does not adsorb well to tuffs and under
oxidizing conditions is relatively soluble. The solubility and sorption values offered by the
experts resulted in neptunium often being a major contributor to aqueous releases and doses

for the nominal-case scenarios.
3 Detailed calculations

3.1 Thermal effects

It has become increasingly apparent over the last few years that heat generated by
radioactive decay within a repository will influence the environment around it. For TSPA-
93, thermal effects related to the thermal dryout, perturbation of the flow field, container
corrosion, and spent-fuel alteration are considered.

For TSPA-93, three-dimensional heat-flow calculations were performed to determine
parameters thought to be the most critical in defining the impact of the repository thermal
pulse. Only heat conduction was considered in the calculations; hydrologic and mechan-
ical effects were not explicitly modeled. All four repository configurations were explicitly
modeled, however, accounting for each container location, container thermal output, and
container emplacement time. In addition, LLNL supplied TSPA-93 with results of two-
dimensional hydrothermal calculations with a smeared heat source for comparison (see be-
low).

Critical parameters that are produced relate to the extent that the thermal pulse pro-
tects the repository from groundwater by forming a region above boiling temperature (called
the protected, or “dryout fraction,” of the repository), as well as the extent that it perturbs
the environment by displacing vaporized water (water is displaced from the “dryout volume”)

and diverting meteoric water. In addition, container-wall temperatures and internal waste
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tempertures are produced. The parameters are used in the probabilistic calculations to re-
distribute groundwater flow and to adjust the source term. For example, the source term
used in the probabilistic calculations allows aqueous corrosion of a container only when
liquid water is contacting the container and the container-wall temperature is below 100°C.

Some major results of the thermal modeling are as follows. The boiling isotherm,
and therefore the perturbation in the environment, reaches substantial proportions around
both the 57-kW/acre repositories and the 114-kW/acre repositories, although more so for the
higher thermal loading (Figure ES-5). (For a period, at 114-kW/acre, the entire repository is
dried out.) Comparison of the SNL and LLNL thermal modeling shows that repository ge-
ometry and the discrete nature of the heat sources are important: the center of 114-kW/acre
repositories drops below boiling at around 5000 years with a discretely modeled repository,
but at around 9000 years when the repository is modeled as a smeared heat source. Also,
the in-drift containers are large discrete heat sources that produce a nonuniform dryout
zone at early times. Thermal loading, backfill, and container size have a significant effect
on container temperatures: the in-drift containers could see temperatures well above 500°C
under certain conditions in a 114 kW/acre repository; the vertically emplaced containers

reach temperatures slightly above 200°C in a 57 kW/acre repository.

57 kW/acre repository 114 kW/acre repository

—
/\\/\ — ~

\

Max dryout volume 1.5 x 108 (2x 108 )m3 at 300 Max dryout volume 6 x 108 mS at 800 yr.
(1000) yr. Total collapse by 1300 (2500) yr. Total collapse by 5000 (9000 ) yr.

Figure ES-5. Extent and duration of the volume encompassed by the boiling isotherm (the
dryout volume). Where different, the values calculated with a smeared heat
source are shown in parentheses.

3.2 Saturated zone
A three-dimensional model of steady-state groundwater flow in the saturated zone is

constructed for TSPA-93. Geometry for the model consists of an approximately 8-km square
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section extending from the water table down 200 m. Five strata are included, which because
of the tilt of the units intersect the water table at an angle. Two different flow models are
superimposed on this geometry: nondiversionary flow, where all fluid entering the “high-
gradient region” (to the northeast of the repository block) in the tuff aquifers continues to
move through the tuff aquifers; and diversionary flow, where part of the fluid entering the
high-gradient region is diverted from the saturated tuff downward to continue its flow path
in the carbonate aquifers. Flow boundary conditions are taken from a regional saturated-
zone flow model. Both the nondiversionary and the diversionary models calibrate to within
a meter of water-table elevation at almost all drillholes.

Tracer transport times through the complicated three-dimensional structure are es-
timated for both models by transport calculations. The calculations involve a nonsorbing
tracer released at various points under the repository block. Transport-time distributions
are changed to velocity distributions for use in the probabilistic models.

Model calculations indicate that tracer transport times over the 5 km to the accessible
environment tend to be less than 1000 years, and they tend to be shorter for the diversion-
ary flow model than for the nondiversionary model. The short transport times, as well as
the structure exhibited by the tracer concentrations during transport, indicate that three-
dimensional modeling is important in the saturated zone. Accurate calibration of the flow
systems required that reduced hydraulic conductivities be assigned to the Solitario Canyon
fault and the Drill Hole Wash fault; these faults should be investigated for these properties.

3.3 Gas flow

A two-dimensional, nonisothermal, transient model of gas flow and 14CO; transport
provide gaseous-transport-time distributions for use in the TSPA-93 probabilitic models.
Geometry for the model is taken from three parallel east-west cross sections that incorporate
the latest information about site topography and stratigraphy. Only a 57-kW/acre repository
is considered. For each calculation, transport times are determined for gas particles traveling
from points distributed throughout the repository area to the ground surface. Transport-time
distributions for 1#CO; particles are output at 1000-year intervals.

Major results of the gas-flow calculations indicate that 1#CO; transport times are short
enough to have only marginal effect on cumulative releases. Gas flow depends primarily
on temperature and the bulk-permeability distribution within the mountain. Retardation
by exchange of 1#CO; with bicarbonate in the groundwater is included in the model, and
significantly slows transport—typically by an order of magnitude or more. Adsorption onto

minerals in the rock is not included, but is potentially important.
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4 Probabilistic modeling

The models for probabilistic analyses are abstractions of process models. The input pa-
rameters for these models come primarily from the data development and detailed modeling
activities discussed above. To address uncertainty in parameters, the probabilistic models
are used to perform thousands of calculations with parameters picked from probability dis-
tributions (the Monte Carlo method). To address uncertainty in models, two alternative
conceptual models of groundwater flow in the unsaturated zone are analyzed. To simplify
the process, aqueous, gaseous, human-intrusion, and basaltic-volcanism releases are mod-

eled separately.

4.1 Nominal-case models

Two alternative conceptual models of flow in the unsaturated zone form the founda-
tion of the nominal-case calculations. These two models were used in TSPA-91, but are
refined for TSPA-93 to include an abstracted thermal-effects model (based on the results
of the detailed thermal-effects calculations discussed above) and climate change. To calcu-
late aqueous releases and doses, each of these models incorporates: (1) a phemonenological
source-term model to calculate radionuclide releases from containers, (2) a transport model
to calculate spread of radionuclides through the groundwater, (3) a simplified saturated-zone
model (using parameters from the detailed saturated-zone calculations discussed above), (4)
a simple drinking-water-dose model, and (5) a simplified gas-flow model (based on the de-

tailed gas-flow modeling discussed above).

4.1.1 The composite-porosity model

The composite-porosity model (also known as the equivalent-continuum model) de-
scribes flow through an equivalent porous medium of matrix and fractures using Darcy’s
law. The major assumption in the model is that a local pressure equilibrium tightly cou-
ples flow in the matrix and flow in the fractures; thus, groundwater flow is dominated by
capillary forces and only occurs in the fractures when the matrix is saturated. The resuit
is a relatively uniform flow (Figure ES-6). Radionuclide transport also is modeled assuming
tight coupling between matrix and fracture transport; thus, when fracture flow does occur
in the calculations, diffusion of radionuclides into the matrix slows the transport consider-
ably. At the onset of a climate change, the water table is modeled to rise abruptly, and
all radionuclides in the inundated part of the unsaturated zone are transfered immediately
to the saturated zone, shortly thereafter forming a spike in the releases at the accessible

environment.
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Figure ES-6. The composite-porosity model (large-scale regular percolation).

For TSPA-93, flow and transport through the unsaturated zone is modeled in 8 (for
the 57-kW/acre repositories) or 5 (for the 114-kW/acre repositories) vertical flow tubes. Each
unsaturated-zone flow tube is matched with a horizontal flow tube in the saturated zone.

Calculations using the composite-porosity model indicate that a relatively uniform flow
pattern causes a large number of containers to be in a moist or a wet environment. Subse-
quent aqueous corrosion of these containers leads to widespread failure. (With the source-
term being used, most aqueous corrosion occurs during the collapse of the repository thermal
pulse, when water contacts containers that are near 100°C—see below.) Slow, constant per-
colation causes slow, constant leaching of waste from the failed waste containers. Long
travel times afforded by the slowly percolating water in the unsaturated zone limit cumula-
tive releases over 10,000 years, but are not sufficient to significantly limit peak doses that
could occur in a 1,000,000-year period.

The parameters most important to performance depend on the performance measure
applied, i.e., cumulative releases or individual dose. For the EPA measure from 40 CFR
191.13, percolation flux is the dominant parameter; when cumulative releases are measured
at 10,000 years, the leading edge of a long-term pulse of releases is being measured, and

the percolation flux determines how much of that leading edge crosses the boundary to
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the accessible environment within 10,000 years. For the individual-dose measure, without
any time limit, dilution in the environment is most important, but parameters relating to
releases from containers are also important. For example, backfill allows more water contact
with in-drift containers, causing a substantial number of failures and subsequent radioactive

releases.

4.1.2 The weeps model

The weeps model describes groundwater flow restricted to locally saturated fractures,
which only contact the repository at discrete points (Figure ES-7). Weep location in time
and space depends on thermal effects and climate change, and is treated as an inherently
probabilistic process. Degradation of containers and releases of radionuclides are limited to
the intersections of weeps and containers. Transport of radionuclides through the unsatu-
rated zone is assumed to be instantaneous. The saturated zone is modeled with a single
flow tube.

Weeps-model calculations indicate that flowing fractures contacting containers are rel-

atively rare occurrences, and that many containers within a repository remain relatively dry
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Figure ES-7. The weeps model (episodic pulses of flow in locally saturated zones, e.g. frac-
tures).
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and intact. In-drift containers present a larger cross section to vertical weeps than vertically
emplaced containers, and are more readily contacted. Most contacts occur because of the flow
perturbation from repository thermal effects or during a wet climate. Although it is typically
of shorter duration, the flow perturbation caused by thermal effects is more significant in
terms of releases than the increased flow caused by a wet climate. The reason is because
the waste containers are susceptible to corrosion primarily when their temperature is above
ambient (about 25°C), and especially when near 100°C, which occurs during the collapse
of the thermal pulse. At later times when climate change is most often modeled to occur,
container temperatures have fallen to levels where the corrosion rates are insignificant.
Releases during wet climates typically only occur from a few previously failed containers.
Consequently, peak doses occur most often within the first 20,000 years of repository life,

and cumulative releases do not increase much after this time.

4.1.3 Radionuclide source-term model

For TSPA-93, the YMIM source-term model, developed at LLNL, is directly incorpo-
rated into the nominal-case probabilistic models. YMIM is a phenomenological model that
calculates container corrosion (including oxidation, general aqueous corrosion, and localized
corrosion—pitting), oxidation alteration of spent fuel, and dissolution of radionuclides within
spent fuel. Temperature dependence of these processes is included in the model, although
the temperature dependence of solubility is not considered in TSPA-93. Inputs include
near-field hydrology, container and fuel-rod temperature, and water chemistry. Defective
or mechanically failed containers (known as juvenile failures) are consider probabilistically.
Several important processes (e.g., steam corrosion and cathodic protection of containers) are
not yet included in YMIM.

Use of YMIM within the composite-porosity and weeps models provides two important
results: (1) dry oxidation destroys the corrosion-allowance steel outer wall of the in-drift
containers during the high-temperature period following backfill, and (2) aqueous corrosion
is only significant while container temperatures are above ambient (about 25°C), and it can

be especially rapid while temperatures are near 100°C.
4.2 Disturbed-case models

4.2.1 Human intrusion

The human-intrusion analysis is based on a FEP sequence involving exploratory
drilling, waste container breakage, and radionuclide release via extracted drill core and
entrainment in the drilling fluid. Extraction of contaminated rock from a near miss of a

failed container is also considered. Present-day drilling technology is assumed. Drilling
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frequency is based on guidance given in 40 CFR Part 191. A more comprehensive source
term that distinguishes between spent-fuel and defense-high-level-waste containers is used
in TSPA-93 than was used in TSPA-91. The only performance measure calculated is nor-
malized cumulative release—individual doses are not considered.

Because of the more detailed source term, more variation is seen in the results when
compared with the results for TSPA-91. As with TSPA-91, drilling frequency is the most
important parameter (and one of the most difficult to predict). The in-drift containers, being
larger, are more often hit by drilling and lead to greater releases; however, if it is assumed
that only part of the container is exhumed commensurate with the size of the drill, then

releases from in-drift containers are similar to releases from vertically emplaced containers.

4.2.2 Indirect volcanic effects

For TSPA-91, direct releases of radionuclides caused by intrusion of a basaltic dike
into the repository were investigated; for TSPA-93, indirect releases are investigated. The
FEP sequence modeled addresses magma intruding rock units near the repository and accel-
erating waste-container degradation because of the effects of heat and aggressive volatiles.
These effects result in changes to the aqueous-transport source term. Dike length, loca-
tion, and thickness are calculated probabilistically. The temperature of rock adjacent to a
magmatic intrusion is calculated as a function of basaltic dike temperature and thickness,
distance into the rock, and time. Waste-container corrosion rates are adjusted 10* higher to
account for aggressive magmatic volatiles. This value is consistent with sulfidization rates.

Analysis results show penetration of heat from a dike only on the order of a few meters.
Magmatic volatiles are assumed to intrude only the same distance. Also, the probability of
magmatic intrusion, based on geologically realistic values for the volcanic recurrence rate
in the Yucca Mountain region and scaled for the two possible areas of the repository, is ex-
tremely low over 10,000 years (~10~* probability of occurrence), and even when extrapolated
to 1,000,000 years (~10~2 probability of occurrence). Thus, little contribution from indirect

volcanic effects to the nominal-case aqueous releases is observed.

5 Results

Results of the TSPA-93 probabilistic modeling are in the form of conditional comple-
mentary cumulative distribution functions (CCDFs). The CCDFs show the probability of
exceeding a given value of either the EPA sum (i.e., the cumulative release normalized as
specified in 40 CFR 191.13) or peak individual dose for a given realization of a probabilis-
tic model. The distributions are conditional because they do not as yet include all possible

scenarios.
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Figure ES-8 shows calculated CCDFs of 10,000-year normalized cumulative release
using the composite-porosity model, for all modeled release mechanisms. Only results for
a 57-kW/acre repository with vertically emplaced containers are shown; however, with the
composite-porosity model, all repository configurations produce similar results (see below).
Gaseous releases are predicted to be the most significant, exceeding the EPA standard.
Several factors contribute to the large gaseous releases: relatively uniform flow causes a
large number of containers to be contacted by water when they are warm (near 100°C) and
susceptible to corrosion; upon container failure, 1*CO; is readily released (there is a sizable
prompt fraction of 4C, but also, when temperatures are elevated, oxidation alteration of
spent fuel proceeds rapidly and allows 14C to escape); and 1*CO; has a short transport time to
the ground surface. Releases caused by human intrusion and nominal-case aqueous releases
are important, but do not violate the standard. Indirect releases caused by volcanism are
both few and low; direct releases caused by volcanism (a TSPA-91 result) are low primarily
because the probability of a basaltic dike intruding in the repository in 10,000 years is very
low.

As mentioned, the composite-porosity model predicts little influence of the four reposi-

tory designs on performance. Container size is immaterial because slow, uniform percolation
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Figure ES-8. Base-case normalized cumulative release predicted by the composite-porosity
model.
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of groundwater leads to widescale contact irrespective of size. A slight effect is seen in the
normalized cumulative releases over 10,000 years, where the dryout zone created by the
hotter repositories results in a several thousand year increase in container lifetime. But for
dose calculations over 1,000,000 years, container lifetime and thermal perturbations are too
short to make much difference.

The CCDF's of 10,000-year normalized cumulative release calculated using the weeps
model are shown in Figure ES-9. Normalized cumulative releases are predicted to be lower
for the weeps model than for the composite-porosity model (compare total releases in Figure
ES-8 with those shown in Figure ES-9). Releases caused by human intrusion are often
predicted to be greater than the nominal-case releases predicted by the weeps model. The
reason is that weeps rarely contact waste containers. And within 10,000 years, most weep
contacts are caused by groundwater shed around the dryout volume onto unprotected parts
of the repository (although many of the resulting contacts are for short periods of time).
Gaseous releases are greater than aqueous releases at the highest probabilities because
of juvenile failures that release 1COy without weep contact. Indirect releases caused by
volcanism are not calculated for the weeps model and do not appear in the figure. (This figure

only represents the base-case design; repository design does influence releases predicted by
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Figure ES-9. Base-case normalized cumulative release predicted by the weeps model.
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A comparison of peak individual doses for the two unsaturated-zone flow models is
shown in Figure ES-10. The doses shown are for drinking water only and are the peak doses
realized within a 1,000,000-yr period. The figure shows that both models predict doses from
the repository at levels above background dose (approximately 300 mrem/yr): over 90% of
the composite-porosity realizations and about 1% of the weeps model realizations exceed
background. These doses are primarily caused by neptunium. Peak doses predicted by
the composite-porosity model typically occur because of high percolation rates and water-
table rise of a wet climate; those predicted by the weeps model typically occur because of
water shed on easily corroded containers (the number of containers contacted by water is a
probabilistic result) as the repository thermal perturbation dissipates.

Because transport time is not an issue (except that some actinides decay away before
they reach the accessible environment), peak doses are primarily a function of radionuclide
release rate from the repository and dilution in the environment. Arid environments typ-
ically have little dilution. The release rate is greater, and thus the doses are greater, for
the composite-porosity model than for the weeps model because of the larger number of
containers that are contacted by water and fail.

Figure ES-11 presents weeps-model peak doses calculated for the four repository de-

signs. The weeps model predicts that larger containers, because of the larger cross section
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they offer for vertical weeps, have worse performance. A secondary effect is that hotter
repositories cause worse performance, because hotter repositories cause a greater pertur-
bation in groundwater flow and an increased probability of containers being contacted by
weeps. (These findings are predicated on a number of factors, including that the reposi-
tory drifts do not divert or concentrate weep flow, that flow returns to the dryout volume
coincident with its collapse, etc.) The weeps model predicts similar behavior with the EPA

performance measure, although none of the repository designs violate this standard.
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Figure ES-11. Peak doses for four repository configurations as predicted by the weeps model.

6 Conclusions and recommendations

The large difference in the results of the alternative conceptual models leads to ques-
tions about what model best approximates the behavior of the groundwater flow system.
Calculations of peak individual drinking-water dose over 1,000,000 years indicate that ra-
dionuclides released from a Yucca Mountain repository could experience little dilution, and
extremely low release rates from the repository—either from a highly engineered waste con-
tainer or a system for reducing water contact with containers—might be needed to achieve
low individual dose rates. Two possible impacts of repository design on long-term perfor-
mance are also identified: (1) larger containers could be more readily contacted by weeps and
drilling; (2) hotter repositories could cause a greater perturbation in the flow field, resulting

in more containers being contacted by weeps. Results from the composite-porosity model
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indicate that normalized cumulative releases and doses are relatively insensitive to thermal
loading and container size and emplacement. The YMIM corrosion models used by both the
composite-porosity model and the weeps model predict that most container failures signifi-
cant to performance occur during decay of the repository thermal pulse—within the first few
thousand years. A 10-cm corrosion-allowance overpack for in-drift containers is predicted
to be oxidized away within a few hundred years, with no contribution to performance. (The
overpack could be more important than indicated because of processes not included in the
models currently being used.) Indirect releases from volcanic activity are not found to be
significant contributors to overall releases.

Recommendations regarding site-data needs derive primarily from nominal-condition
results because human-intrusion results are largely site-independent and volcanism results
are comparatively insignificant. The following recommendations are made acknowledging
limitations and assumptions in the present models, as well as uncertainities in our knowl-
edge of physical conditions within Yucca Mountain and future events. It should also be
mentioned that data are being collected in a number of these areas and an effort is being
made to ascertain that the data are useful to determining long-term performance.

e Because of the substantial difference between the results of the two groundwater flow
models, the first priority should be the determination of the dominant flow mechanisms

(in both time and space) operating in the unsaturated zone at Yucca Mountain.

e Concerning gaseous releases, more data are needed on the spatial distribution of bulk
permeability throughout Yucca Mountain and on adsorption of CO2 to tuff.

e Concerning aqueous releases, characterization at the repository horizon of percolation-
flux magnitude and distribution (in both time and space) is a high priority.

e Concerning individual doses, a high priority is characterization of the amount of hori-

zontal and vertical dispersion (factors in dilution) in the saturated zone.

e Additional hydrogeologic data from new drillholes are also needed, as is research on
scaling of properties and hydraulic characterization of unsaturated fractures in the rock

matrix.

¢ Additional information is needed on heterogeneity and spatial correlations for geosta-

tistical modeling and on cross-correlations among parameters.

e Thermal and hydraulic properties of proposed backfill materials should be determined,
and fault-zone hydrogeologic properties should be characterized.

e To develop reliable models of near-field interactions, integrated testing is needed in the

areas of waste-container/groundwater contact, radionuclide transport from degraded
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containers, coupled thermal-mechanical-hydrologic-chemical processes, and the inter-

actions between natural and man-made system components.

s Further work is also recommended on waste-form alteration and container corrosion

under realistic conditions.

Repository design must meet a number of requirements, with long-term performance
being but one. Recommendations concerning long-term performance typically come from
models that contain a number of limitations. Acknowledging this situation, the following

design-related recommendations are made based on the TSPA-93 results.

e Calculated waste-container temperatures are very high for the in-drift cases, well above
the thermal goals defined in the SCP. To approach the thermal goals, any backfill used
with in-drift emplacement needs to be designed to allow for heat transfer.

¢ The biggest difference in the performance measures for the four repository configura-
tions that are considered is a result of the difference in container “target size.” Reduc-
tion in target size or engineered measures to reduce contact between containers and

weeps or drilling paths is recommended.

o Container emplacement should be designed to reduce moisture contact with contain-
ers (both weeps and uniformly percolating water). Borehole emplacement attempts to
achieve this reduction by specifying an air gap surrounding the container. For in-drift
emplacement, backfill or a system within the backfill could possibly be engineered to

control water contact.

Regulatory change could affect performance assessment for radioacti\}e-waste disposal.
If the radioactive-release standard changes to a measure based on individual dose rates over
a time period much longer than 10,000 years, significant changes in site-characterization pro-
gram priorities might be needed, with more emphasis on determining radionuclide release
rates. If the standard is changed to an individual-dose standard but the regulated time pe-
riod remains at 10,000 years, impact on the site-characterization needs would be lessened.
Dose calculations require more information than cumulative-release calculations and would
require additional characterization of the biosphere in the vicinity of Yucca Mountain. In-
formation extrapolated into the distant future will introduce additional uncertainty into the

calculations.
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