CRWMS/M&O

Non-Q Design Analysis Cover Sheet

Complete only applicable items.

!

MOL.19980216.0260

(1.) QA:

QA: N/A Page: 1 Of: 58

2. DESIGN ANALYSIS TITLE				
Criticality Analysis of Pu and	U Accumulations in a Tuff Frac	ture Network		
3. DOCUMENT IDENTIFIER (Inclu	5. TOTAL PAGES			
A0000000-01717-0200-0005	0 REV 00	···	REV 00	5658 SG 1111
6. TOTAL ATTACHMENTS	7. ATTACHMENT NUMBER	S - NO. OF PAGES IN EAC	CH 8. SYSTEM E	LEMENT
7	See Section 9 - Total Att	achment pages 30	<u>N/A</u>	
·	Print Name		Signature	Date
9. Originator	E. Tuttle	2 83	uttle	11-19-97
10. Checker	S. Goluoglu	J Set	lohyt	11/13/97
11. Lead Design Engineer	P. Gottlieb	P.M.	utich	11/19/97
12. Department Manager	H.A. Benton	7. 21	- For	1·29.98
13. Remarks			/	
· ·		· · ·		

NAP-MG-013 (Effective 09/08/95)

.

0642 (Rev. 08/16/95)

14

CRWMS/M&D	Non-Q Desi	ign Analysis Revision Record Complete only applicable items.	1. Page: 2 Of: 5	58
2. DESIGN ANALYSIS TITLE				٦
Criticality Analysis (of Pu and U Accumulations in Huding Rev. No.1	n a Tuff Fracture Network		_
A0000000-01717-0	200-00050 REV 00			
4. Revision No.		5. Description of Revision		
00	Issued for initial release	····		
GAP-3-8 (Effective 01/03/96)	•		5487 (Rev. 1	214/85

.

.

• ·

. -

• •

Wast	Waste Package Development Design Analy	
Title:	Criticality Analysis of Pu and U Accumulations in a Tuff France I dontificant A00000000 01717 0200 00050 REV 00	acture Network
Docu	nent identifier: A0000000-01/17-0200-00050 KE V 00	rage 5 01 56
	Table of Contents	
Sectio	n	Page
	Burnete	A
1.		
2.	Quality Assurance	
3.	Method	4
4.	Design Inputs	
••	4.1 Material Properties	
	4.2 Criteria	
	4.3 Assumptions	
	4.4 Codes and Standards	
5.	References	
6	Use of Computer Software	
		•••••••••••••••••••••••••••••••••••••••
7.	Design Analysis	9
	7.1 MCNP Model Description	
	7.2 Material Composition Description	
	7.3 MCNP Results for Fissile Mixtures with Water	
	7.3.1 Results for 0.1 cm Fracture Width	
	7.3.2 Results for 0.01 cm Fracture Width	
	7.3.3 Results for 0.005 cm Fracture Width	
	7.3.4 Results for 0.002 cm Fracture Width	
	7.3.5 Results for 0.001 cm Fracture Width	
	7.3.6 K_{eff} as a Function of Fracture Width	
	7.3.7 Fissile Weight Evaluations for a k_{eff} of 0.93	
	7.4 MCNP Results for Fissile Mixtures with Clayey Materi	ial
	7.4.1 Results for 0.1 cm Fracture Width	
	7.4.2 Results for 0.01 cm Fracture Width	
	7.4.5 Results for 0.005 cm Fracture Width	
	7.4.4 Results for 0.002 cm Fracture Width	
	7.4.5 Results for 0.001 cm Fracture Width	
	1.4.0 K _{eff} as a Function of Fracture Width	
8.	Conclusions	
9.	Attachments	

.

-- --

_

Waste Package Development	Design Analysis
Title: Criticality Analysis of Pu and U Accumulations in a Tuff Fracture	Network
Document Identifier: A00000000-01717-0200-00050 REV 00	Page 4 of 58

1. Purpose

The objective of this analysis is to evaluate accumulations within the thermally altered tuff surrounding a drift. The evaluation examines accumulation of uranium minerals (soddyite), plutonium oxide (PuO_2), and combinations of these materials. A hypothetical model of the tuff is used to provide insight into the factors that affect criticality for this near-field scenario. The factors examined include: the size of the accumulation, the fissile composition of the accumulation, the water or clayey material fraction in the accumulation and the water fraction in the tuff.

2. Quality Assurance

The Quality Assurance (QA) program does not apply to this analysis. The Waste Package Development Department responsible manager has evaluated this activity in accordance with QAP-2-0, Conduct of Activities. The Studies Not Supported by OCRWM (Ref. 5.1) activity evaluation has determined that work associated with the immobilized Pu task is not subject to Quality Assurance Requirements and Description (QARD; Ref 5.2) requirements.

3. Method

The solution method is to use the MCNP4A computer program (CSCI:30006 V4A) to calculate k-effective for criticality safety evaluations.

4. **Design Inputs**

4.1 Material Properties

The five materials considered in this evaluation are Topopah Spring Welded tuff, soddyite, plutonium oxide, clayey material from degraded HLW glass, and water. The physical parameters of these materials are listed in Table 4-1. It is noted that the weight percents for the tuff do not sum to 1.0. However, the difference is small and will have no significant effect on calculational results.

Waste Package Development

Design Analysis

Title: Criticality Analysis of Pu and U Accumulations in a Tuff Fracture NetworkDocument Identifier: A00000000-01717-0200-00050 REV 00Page 5 of 58

Table 4-1 Material Properties				
Compound Wt %				
Topopah Spring Welde	d Tuff (Ref. 5.3, p. I-9)			
Dry, ρ = 2	.247 g/cm ³			
SiO,	76.827			
Al ₂ O ₃	12.740			
Fe0	0.842			
CaO	0.560			
MgO	0.245			
TiO,	0.098			
Na ₂ O	3.593			
K ₂ O	4.930			
P ₂ O ₅	0.015			
MnO	0.067			
Total	99.917			
Soddyite (Ref. 5.4)				
ρ=4.7	/ g/cm ³			
(²³⁵ UO ₂) ₂ (SiO ₄):2H ₂ O	100.00			
Plutonium Ox	kide (Ref. 5.5)			
$\rho = 11.4$	6 g/cm ³			
²³⁹ PuO ₂	100.00			
Clayey Material	(Ref. 5.3, p. I-21)			
$\rho = 2.62 \text{ g/cm}^3$				
See Attachments VI and VII				
Water				
$\rho = 1.00 \text{ g/cm}^3$				
H,O	100.00			

4.2 Criteria

The Engineered Barrier Design Requirements Document (EBDRD; Ref. 5.10) contains several criteria which relate to criticality control. The "TBD" (to be determined) items identified in these criteria will not be carried to the conclusions of this analysis based on the rationale that the conclusions are for preliminary design, and will not be used as input to design documents supporting construction, fabrication, or procurement. A review of the EBDRD identified the following relevant

Waste Package Development	Design Analysis
Title: Criticality Analysis of Pu and U Accumulations in a Tuff Fracture	Network
Document Identifier: A00000000-01717-0200-00050 REV 00	Page 6 of 58

requirements:

The EBDRD requirements 3.2.2.6 and 3.7.1.3.A both indicate that a WP criticality shall not be possible unless at least two unlikely, independent, and concurrent or sequential changes have occurred in the conditions essential to nuclear criticality safety. These requirements also indicate that the design must provide for criticality safety under normal and accident conditions, and, that the calculated effective multiplication factor (k_{eff}) must be sufficiently below unity to show at least a five percent margin after allowance for the bias in the method of calculation and the uncertainty in the experiments used to validate the methods of calculation. The latter requirement contains a "TBD" at the end.

Controlled Design Assumptions document (CDA) assumption EBDRD 3.7.1.3.A (Ref. 5.11, p. 4-32) clarifies that the above requirement is applicable to only the preclosure phase of the MGDS, in accordance with the current DOE position on postclosure criticality. This assumption also indicates that for postclosure, the probability and consequences of a criticality provide reasonable assurance that the performance objective of 10CFR60.112 is met. While the Nuclear Regulatory Commission (NRC) has not yet endorsed any specific change for postclosure, they have indicated that they agree that one is necessary.

Finally, EBDRD 3.3.1.G indicates that "The Engineered Barrier Segment design shall meet all relevant requirements imposed by 10CFR60." The NRC has recently revised several parts of 10CFR60 which relate to the identification and analysis of design basis events (Ref. 5.12) including the criticality control requirement, which was moved to 60.131(h). These changes are not reflected in the current versions of the EBDRD or the CDA. The change to the criticality requirement simply replaces the phrase "criticality safety under normal and accident conditions" with "criticality safety assuming design basis events."

This analysis contributes to satisfying the above requirements by providing k_{eff} of degraded MIT and ORR fuel This analysis provides information which will be used in probabilistic analyses of postclosure criticality as part of Total System Performance Assessment (TSPA)-Viability Assessment (VA) to demonstrate compliance with the performance objective of §60.112 (or, as appropriate, other applicable performance objectives in effect or proposed by the NRC at the time the TSPA-VA analysis is performed).

Waste Package Development

Design Analysis

Title: Criticality Analysis of Pu and U Accumulations in a Tuff Fracture NetworkDocument Identifier: A00000000-01717-0200-00050 REV 00Page 7 of 58

4.3 Assumptions

. . .

- 4.3.1 Based on the inspection of ESF by P. Gottlieb, W. Davis and P. Cloke on July 23, 1997, the worst case fracture density in the walls of an emplacement drift is assumed to be the equivalent of parallel plane spacings of ~3cm in three dimensions. The entire model volume is one meter cube.
- 4.3.2 Only the principle fissile isotopes ²³⁵U and ²³⁹Pu are considered in the composition of the accumulation due to the scoping nature of this evaluation.

4.4 Codes and Standards

Not Applicable. Neutronic design of the waste package is not controlled by codes and standards.

5. References

- 5.1 QAP-2-0 Activity Evaluations, ID No. WP-30, Perform Criticality, Thermal, Structural, and Shielding Analyses as Required for DOE Spent Fuel Characterization, Dated 8/3/97, Civilian Radioactive Waste Management System (CRWMS) Management and Operating Contractor (M&O).
- 5.2 Quality Assurance Requirements and Description, DOE/RW-0333P REV 7, U.S. Department of Energy (DOE) Office of Civilian Radioactive Waste Management (OCRWM).
- 5.3 Evaluation of the Potential for Deposition of Uranium/Plutonium from Repository Waste Packages, DI Number: BBA000000-01717-0200-00050 REV. 00, CRWMS M&O.
- 5.4 Roberts, W.L., Rapp, G.R., Jr., and Weber, J., *Encyclopedia of Minerals*, van Nostrad, New York, 1974.
- 5.5 Handbook of Chemistry and Physics, 66th Edition, CRC Press, 1985
- 5.6 Material Compositions and Number Densities For Neutronics Calculations, DI Number: BBA000000-01717-0200-00002 REV 00, CRWMS M&O.
- 5.7 Wilson, M.L., et al., Total-System Performance Assessment for Yucca Mountain SNL Second Iteration (TSPA-1993), Volume 1, SAND93-2675, April, 1994.
- 5.8 MCNP-A General Monte Carlo N-Particle Transport Code, Version 4A, LA-12625-M, Los Alamos National Laboratory, November 1993.

Waste Package Development

Design Analysis

Title: Criticality Analysis of Pu and U Accumulations in a Tuff Fracture NetworkDocument Identifier: A00000000-01717-0200-00050 REV 00Page 8 of 58

- 5.9 Software Qualification Report for MCNP4A, CSCI: 30006 V4A, DI Number: 30006-2003 REV 02, CRWMS M&O.
- 5.10 Engineered Barrier Design Requirements Document, YMP/CM-0024, REV 0, ICN 1, Yucca Mountain Site Characterization Project.
- 5.11 Controlled Design Assumptions Document, Document Identifier (DI) Number: B00000000-01717-4600-00032 REV 04, ICN 01, CRWMS M&O.
- 5.12 10 CFR Part 60; Disposal of High-Level Radioactive Wastes in Geologic Repositories; Design Basis Events; Final Rule, U.S. Nuclear Regulatory Commission, Federal Register, Volume 61, Number 234, pp. 64257-64270, December 4, 1996.
- 5.13 Electronic Attachments for A00000000-01717-0200-00050 REV 00, Criticality Analysis of Pu and U Accumulations in a Tuff Fracture Network, Colorado Backup Tape, RPC Batch Number MOY-980129-02, CRWMS M&O.

6. Use of Computer Software

The calculation of effective multiplication factor was performed with the MCNP4A (Ref. 5.8) computer code, CSCI: 30006 V4A. MCNP4A calculates k_{eff} for a variety of geometric configurations with neutron cross sections for elements and isotopes described in the Evaluated Nuclear Data File version B-V (ENDF-B/V). MCNP4A is appropriate for the geometries and materials required for these analyses. The calculations using the MCNP4A software were executed on a Hewlett-Packard 9000 Series 735 workstation. The software qualification of the MCNP4A software, including problems related to calculation of k-effective for fissile systems, is summarized in the Software Qualification Report for the Monte Carlo N-Particle code (Ref. 5.9). The MCNP4A software used. Access to and use of the MCNP4A software for this analysis was granted by Software Configuration Management and performed in accordance with the QAP-SI series procedures. Inputs and outputs for the MCNP4A software are included as attachments (see Section 9.2) as described in the following design analysis.

The computation of number densities was performed with Microsoft Excel Version 7.0. Microsoft Excel 7.0 was executed on an IBM PC compatible personal computer. Microsoft Excel 7.0 was used simply to provide data manipulation for the analyses and is considered Computational Support Software. These files are included as attachments (see Section 9.3).

Waste Package DevelopmentDesign AnalysisTitle: Criticality Analysis of Pu and U Accumulations in a Tuff Fracture NetworkDocument Identifier: A00000000-01717-0200-00050 REV 00Page 9 of 58

7. Design Analysis

7.1 MCNP Model Description

Investigations of the thermally altered tuff around a drift indicate fracture spacings of -3 cm (centerto-center) in three dimensions. The maximum fracture aperture is expected to be about 0.1 cm. This fracture scenario is approximated with a cubical representation of the fractured tuff. A threedimensional array of cubes, 3 cm on a side, will represent the fracture area. The inner cube (a minimum of 2.900 cm on a side) is filled with porous tuff. The outer cubic shell represents the fracture filled with an aqueous or clayey material mixture of soddyite, PuO₂, or a 50/50 mixture of soddyite and PuO₂. The total fracture region is modeled as a one meter cube of cubic fractures surrounded by a one meter thick, cubic shell reflector of tuff with the same porosity and water content as the inner fractured tuff. The MCNP geometry is shown in Figure 7.1-1.

The evaluation examines material composition effects related to the moderator fraction in both the tuff and the fissile material. The evaluation also determines the effects of the size of the fracture aperture which range from 0.001 to 0.100 cm thick.

Figure 7.1-1. Illustration of Fracture Matrix Model

Waste Package Development	Design Analysis
Title: Criticality Analysis of Pu and U Accumulations in a Tuff Fracture	e Network
Document Identifier: A0000000-01717-0200-00050 REV 00	Page 11 of 58

7.2 Material Composition Description

The MCNP model used for this analysis assumes that the material specifications are in terms of elemental mass densities. Thus, the data in Table 4-1 must be manipulated into the correct format to characterize the addition of moderating material, i.e., water or clayey material, in various proportions. The generation of the elemental mass densities follows the methodology described in "Material Compositions and Number Densities for Neutronics Calculations" (Ref. 5.6). Table 7.2-1 lists the elemental mass densities for the compounds listed in Table 4-1, as well as their elemental weight fraction. The elemental densities in Table 7.2-1 are listed by compound for each material for both primary elements and oxide components. The elemental densities are obtained with the following formula:

$$(\rho_e)_i = \frac{(\rho_m)(w_c)(N_i * amu_i)}{\sum_{\rho_e \in c} \rho_e}$$

where,

 $(\rho_e)_i$ is the elemental density of element I in the compound, g/cm³,

 ρ_m is the material density, g/cm³,

w_c is the weight fraction of the compound in the material,

N_i is the number of atoms of the element I in the compound,

amu, is the atomic mass of the element I, and

 $\Sigma(\rho_{e})$ is the summation of all the elemental densities in the compound c.

For example, for the compound SiO_2 in tuff (see Table 7.2-1), the elemental densities are:

$$(\rho_e)_{si} = \frac{(2.247)(0.76827)(1*28.086)}{1*28.086+2*15.994915} = 0.807062 (\rho_e)_o = \frac{(2.247)(0.76827)(2*15.994915)}{1*28.086+2*15.994915} = 0.919240$$

The elemental weight fractions for a material are obtained by dividing the elemental density by the sum of the elemental densities of all compounds in the material, i.e.,

$$(W_e)_i = \frac{(\rho_e)_i}{\sum_{\rho_e \in m} \rho_e},$$

Waste Package Development	Design Analysis
Title: Criticality Analysis of Pu and U Accumulations in a Tuff Fracture	Network
Document Identifier: A0000000-01717-0200-00050 REV 00	Page 12 of 58

where W_e is the elemental weight fraction in the material m for element I. For example, the element weight fraction of silicon and oxygen in tuff is:

t .1	_	0.807062	_	0 359472
w _{si} =	-	2.245135	-	0.559412
T.7	_	1.105025	_	0 102186
<i>"</i> o	-	2.245135	-	0.492100,

where the values are obtained from Table 7.2-1. The elemental densities given in Table 7.2-1 are for pure quantities of the materials listed. For the MCNP evaluation, elemental densities of water contained in, or mixed with, the materials are desired. These quantities are obtained from the product of the elemental densities and the volume fractions of the components in the mixture. Results for tuff are listed in Table 7.2-2. It is noted that tuff is a porous material with a porosity of 0.139 (Ref. 5.7). The water that is mixed with the tuff is assumed to reside in the pores of the material. Thus, the elemental densities of the tuff remain at a volume fraction of 1.0 and water, up to a volume fraction of 0.139, can reside in the pores of the tuff. This increases the density of the tuff to the sum of the densities of tuff and the interstitial water in the pores. For this evaluation four volume fractions of water are examined: 0.13, 0.08, 0.04, and 0.00, i.e., dry tuff. For tuff and other materials, the elemental density is found from:

$$(\rho_{e,i})_m = (\rho_e)_i (V_f)_c$$

where,

 $(\rho_{e,i})_c$ is the elemental density of element I for compound c in the mixture, $(\rho_e)_i$ is the elemental density of the I-th element of compound c, $(V_f)_c$ is the volume fraction of compound c in the mixture.

The elemental densities are used in the input file for MCNP to characterize the material composition. It is noted that MCNP sums the elemental densities and normalizes the values to a total sum of 1.0 to obtain an elemental weight fraction. In addition, MCNP requires the specification of the density of the material. The density of the mixture, ρ_m , is just the sum of the elemental densities, i.e.,

$$\rho_{m} = \sum_{i} (\rho_{e,i})_{m}$$

Elemental densities for the mixtures of soddyite, plutonium oxide, and a 50/50 mixture of soddyite and plutonium oxide with water or clayey material were determined using Excel spreadsheets Tuff.Xls and Clay.Xls, respectively. The elemental densities for some configurations are shown in

Waste Package Development	Design Analysis
Title: Criticality Analysis of Pu and U Accumulations in a Tuff Fracture	Network
Document Identifier: A00000000-01717-0200-00050 REV 00	Page 13 of 58

Tables 7.2-2 thru 7.2.4.

Description of Tuff.Xls (spreadsheet for fissile mixtures in water)

1) determine no. of atoms of each element in each compound (soddyite, water and PuO_2)

2) multiply no. of atoms of each element by the atomic weight

3) determine atomic weight for each compound

4) determine volume fraction and density for each compound

5) calculate fractional density for each element in each compound: vol. fraction x density x weight percent of element in compound

6) sum fractional densities for each element - Note - MCNP input is in g/cc

<u>Description of Clay.Xls</u> (spreadsheet for fissile mixtures in clayey material)

1) determine no. of atoms of each element in clayey material

2) determine mass of each compound in clayey material

3) determine total volume of clayey material

4) determine atomic weight of each compound in clayey material

5) determine fractional density for each element in clayey material:

(no. of atoms x mass of compound / total vol. / atomic weight of compound x Avogadros number) for each compound containing that element

6) using Tuff.Xls, determine fractional densities for each element in 100% volume fraction soddyite and PuO_2 (no. of atoms x Avogadros number x density / atomic weight)

7) determine volume fraction for clayey material, soddyite and PuO_2

8) multiply volume fractions by fractional densities for each element - <u>Note</u> - MCNP input is in atomic units

In addition to the base fissile fractions of 0.1, 0.5. and 0.9, additional fractions are included that were necessary to estimate the fraction that would result in a k_{eff} of 0.93 for various mixtures.

Waste Package DevelopmentDesign ATitle: Criticality Analysis of Pu and U Accumulations in a Tuff Fracture NetworkDocument Identifier: A0000000-01717-0200-00050 REV 00Page Page 14 of 58

- - -

Table 7.2-1 Elemental Weight Percents						
Primary Element Oxygen Element Element						
Compound	Compound	Density (g/cm ³)	Element		Weight	
	<u>Wt %</u>		Density (g/cm ³)		Fraction	
		Tuff o-	2 247			
SiO.	$r_{011}, p=2.247$ SiO 76.827 0.807062 0.010240 Si 0.350					
	12 740	0 151527	0 134740	<u> </u>	0.067491	
FeO	0.842	0.014707	0.004212	Fe	0.006551	
	0.560	0.008994	0.003589	Ca	0.004006	
MgQ	0.245	0.003321	0.002185	Mg	0.001479	
TiO,	0.098	0.001320	0.000882	Ti	0.000588	
Na ₂ O	3.593	0.059898	0.020837	Na	0.026679	
K.O	4.930	0.091967	0.018810	K	0.040963	
P.O.	0.015	0.000147	0.000190	P	0.000066	
MnO	0.067	0.001166	0.000339	Mn	0.000519	
total	99.917	1.140109 1.105025		0	0.492186	
sum = 2.245135					1.000000	
		••••				
		Water, p	=1.000			
<u>H,O</u>	100	0.111915	0.888085	<u> </u>	0.111915	
total	100	0.111915 0.888085		0	0.888085	
		sum =	= 1.0	total	1.0	
		Soddyite.	ρ=4.7			
((²³⁵ UO ₂),	100	3.336704	0.454130	²³⁵ U	0.709937	
SiO ₄):2H ₂ O		0.199356	0.454130	Si	0.042416	
		0.028614	0.227065	Н	0.006088	
total	100	3.564674	1.135326	0	0.241559	
sum = 4			= 4.7	total	1.0	
BuQ 0-1146						
²³⁹ PuO.	100	10 107429 1 352571 ²³⁹ Pii 0 881075				
total	100	10.107429	1.352571	0	0.118025	
		sum =	11.46	total	1.0	

Waste Package DevelopmentDesign ATitle: Criticality Analysis of Pu and U Accumulations in a Tuff Fracture NetworkDocument Identifier: A00000000-01717-0200-00050 REV 00Page Page 15 of 58

Table 7.2-2 Soddyite/Water Mixture Elemental Densities							
Element	MCNP.ID		Elemental Density, g/cm ³				
Soddyite volum	e fraction =	1.0	0.1	0.5	0.9	0.35	0.36
²³⁵ U	92235.50C	3.336704	0.333670	1.668352	3.003034	1.167846	1.201213
Si	14000.50C	0.199356	0.019936	0.099678	0.179420	0.069774	0.071768
H	1001.50C	0.028614	0.002861	0.014307	0.025753	0.010015	0.010301
0	8016.50C	1.135326	0.113533	0.567663	1.021793	0.397364	0.408717
Water volume	fraction =	1.0	0.9	0.5	0.1	0.65	0.64
Н	1001.50C	0.111915	0.100723	0.055957	0.011191	0.072745	0.071626
0	8016.50C	0.888085	0.799277	0.444043	0.088809	0.577255	0.568374
H(total)	1001.50C		0.103585	0.070265	0.036944	0.082760	0.081927
O(total)	8016.50C		0.912809	1.011706	1.110602	0.974619	0.977092
Density =		1.370	2.850	4.330	2.295	2.332	

Table 7.2-2 (cont.) Soddyite/Water Mixture Elemental Densities								
Element	MCNP.ID	Elemental Density, g/cm ³						
Soddyite volu	ume fraction=	0.44	0.46	0.71	0.72	0.98		
²³⁵ U	92235.50C	1.468150	1.534884	2.369060	2.402427	3.269970		
Si	14000.50C	0.087716	0.091704	0.141543	0.143536	0.195369		
H	1001.50C	0.012590	0.013163	0.020316	0.020602	0.028042		
0	8016.50C	0.499543	0.522250	0.806081	0.817435	1.112620		
Water volun	ne fraction =	0.56	0.54	0.29	0.28	0.02		
H	1001.50C	0.062672	0.060434	0.032455	0.031336	0.002238		
0	8016.50C	0.497328	0.479566	0.257545	0.248664	0.017762		
H(total)	1001.50C	0.075263	0.073597	0.052772	0.051938	0.030280		
O(total)	8016.50C	0.996871	1.001816	1.063626	1.066099	1.130381		
Dens	sity =	2.628	2.702	3.627	3.664	4.626		

Design Analysis

Waste Package DevelopmentDesign ATitle: Criticality Analysis of Pu and U Accumulations in a Tuff Fracture NetworkDocument Identifier: A0000000-01717-0200-00050 REV 00Page Page 16 of 58

•

Table 7.2-3 Plutonium Oxide/Water Mixture Elemental Densities								
Element	MCNP.ID		E	lemental D	ensity, g/cm	13		
PuO, volun	ne fraction =	1.0 0.1 0.5 0.9 0.06 0.07					0.07	
²³⁹ Pu	94239.55C	10.107429	1.010743	5.053715	9.096686	0.606446	0.707520	
0	8016.50C	1.352571	0.135257	0.676285	1.217314	0.081154	0.094680	
H,O volum	ne fraction =	1.0	0.9	0.5	0.1	0.94	0.93	
Н	1001.50C	0.111915	0.100723	0.055957	0.011191	0.105200	0.104081	
0	8016.50C	0.888085	0.799277	0.444043	0.088809	0.834800	0.825919	
O(total)	8016.50C	0.934534 1.120328 1.306122 0.915954 0.920599						
	Density =		2.046	6.230	10.414	1.6276	1.7322	

Table 7.2-3 (cont.) Plutonium Oxide/Water Mixture Elemental Densities								
Element	MCNP.ID]	Elemental D	ensity, g/cm	3		
PuO, volun	ne fraction =	0.08	0.11	0.12	0.13	0.15	0.16	
²³⁹ Pu	94239.55C	0.808594	1.111817	1.212892	1.313966	1.516114	1.617189	
0	8016.50C	0.108206	0.148783	0.162308	0.175834	0.202886	0.216411	
H ₁ O volum	e fraction =	0.92	0.89	0.88	0.87	0.85	0.84	
Н	1001.50C	0.102962	0.099604	0.098485	0.097366	0.095128	0.094009	
0	8016.50C	0.817038	0.790396	0.781515	0.772634	0.754872	0.745991	
O(total)	8016.50C	0.925244	0.939179	0.943823	0.948468	0.957758	0.962403	
Der	nsity =	1.8368	2.1506	2.2552	2.3598	2.569	2.6736	

Т	Table 7.2-3 (cont.) Plutonium Oxide/Water Mixture Elemental Densities								
Element	MCNP.ID		Elemental Density, g/cm ³						
PuO, volume fraction = 0.31 0.32 0.38 0.39 0.63 0.6						0.64			
²³⁹ Pu	94239.55C	3.133303	3.234377	3.840823	3.941897	6.367680	6.468755		
0	8016.50C	0.419297	0.432823	0.513977	0.527503	0.852120	0.865645		
H ₂ O volum	e fraction =	0.69	0.68	0.62	0.61	0.37	0.36		
H	1001.50C	0.077221	0.076102	0.069387	0.068268	0.041409	0.040289		
0	8016.50C	0.612779	0.603898	0.550613	0.541732	0.328591	0.319711		
O(total)	8016.50C	1.032076	1.036721	1.064590	1.069235	1.180711	1.185356		
De	nsity =	4.2426	4.3472	4.9748	5.0794	7.5898	7.6944		

Waste Package DevelopmentDesign AnalysisTitle: Criticality Analysis of Pu and U Accumulations in a Tuff Fracture NetworkDocument Identifier: A00000000-01717-0200-00050 REV 00Page 17 of 58

.

Table 7.2-3 (cont.) Plutonium Oxide/Water Mixture Elemental Densities								
Element	MCNP.ID		H	Elemental D	ensity, g/cn	1 ³		
PuO, volum	ne fraction =	0.78	0.79	0.91	0.92	0.1162	0.1446	
²³⁹ Pu	94239.55C	7.883795	7.984869	9.197761	9.298835	1.174520	1.461477	
0	8016.50C	1.055005	1.068531	1.230839	1.244365	0.157174	0.195574	
H ₂ O volum	e fraction =	0.22	0.21	.0.09	0.08	0.8837964	0.8554057	
H	_1001.50C	0.024621	0.023502	0.010072	0.008953	0.098910	0.095733	
0	8016.50C	0.195379	0.186498	0.079928	0.071047	0.784886	0.759673	
O(total)	8016.50C	1.250384	1.255029	1.310767	1.315412	0.942060	0.955247	
Dei	nsity =	9.1588	9.2634	10.5186	10.6232	2.2155	2.5125	

Table 7.2-4 Soddyite, Plutonium Oxide, Water Mixture Elemental Densities								
Element	MCNP ID		Elemental Density, g/cm ³					
Soddyite volu	me fraction =	1.0	0.05	0.25	0.45	0.055	0.06	
²³⁵ U	92235.50C	3.336704	0.166835	0.834176	1.501517	0.183519	0.200202	
Si	14000.50C	0.199356	0.009968	0.049839	0.089710	0.010965	0.011961	
H	1001.50C	0.028614	0.001431	0.007154	0.012876	0.001574	0.001717	
0	8016.50C	1.135326	0.056766	0.283832	0.510897	0.062443	0.068120	
PuO, volum	e fraction =	1.0	0.05	0.25	0.45	0.055	0.06	
²³⁹ Pu	94239.55C	10.107429	0.505371	2.526857	4.548343	0.555909	0.606446	
0	8016.50C	1.352571	0.067629	0.338143	0.608657	0.074391	0.081154	
Water volun	ne fraction =	1.0	0.90	0.50	0.10	0.89	0.88	
Н	1001.50C	0.111915	0.100723	0.055957	0.011191	0.099604	0.098485	
0	8016.50C	0.888085	0.799277	0.444043	0.088809	0.790396	0.781515	
H(total)	1001.50C		0.102154	0.063111	0.024068	0.101178	0.100202	
O(total)	8016.50C		0.923671	1.066017	1.208362	0.927230	0.930789	
	Density =		1.708	4.540	7.372	1.779	1.850	

Waste Package DevelopmentDesign ATitle: Criticality Analysis of Pu and U Accumulations in a Tuff Fracture Network Document Identifier: A0000000-01717-0200-00050 REV 00 Page 18 of 58

Table 7.2-4	Table 7.2-4 (cont.) Soddyite, Plutonium Oxide, Water Mixture Elemental Densities							
Element	MCNP.ID		Elemental Density, g/cm ³					
Soddyite volum	e fraction =	0.065	0.105	0.11	0.125	0.13	0.27	
²³⁵ U	92235.50C	0.216886	0.350354	0.367037	0.417088	0.433772	0.900910	
Si	14000.50C	0.012958	0.020932	0.021929	0.024919	0.025916	0.053826	
Н	1001.50C	0.001860	0.003005	0.003148	0.003577	0.003720	0.007726	
0	8016.50C	0.073796	0.119209	0.124886	0.141916	0.147592	0.306538	
PuO, volume	fraction =	0.065	0.105	0.11	0.125	0.13	0.27	
²³⁹ Pu	94239.55C	0.656983	1.061280	1.111817	1.263429	1.313966	2.729006	
0	8016.50C	0.087917	0.142020	0.148783	0.169071	0.175834	0.365194	
Water volume	fraction =	0.87	0.79	0.78	0.75	0.74	0.46	
Н	1001.50C	0.097366	0.088413	0.087294	0.083936	0.082817	0.051481	
0	8016.50C	0.772634	0.701587	0.692706	0.666064	0.657183	0.408519	
H(total)	1001.50C	0.099226	0.091417	0.090441	0.087513	0.086537	0.059207	
O(total)	8016.50C	0.934347	0.962816	0.966375	0.977051	0.980610	1.080251	
Density	y =	1.920	2.487	2.558	2.770	2.841	4.823	

Table 7.2-	Table 7.2-4 (cont.) Soddyite, Plutonium Oxide, Water Mixture Elemental Densities								
Element	MCNP.ID		E	lemental D	ensity. g/cn	n ³			
Soddyite volu	me fraction =	0.275	0.33	0.335	0.39	0.395	0.49		
²³⁵ U	92235.50C	0.917594	1.101112	1.117796	1.301315	1.317998	1.634985		
Si	14000.50C	0.054823	0.065787	0.066784	0.077749	0.078745	0.097684		
H	1001.50C	0.007869	0.009443	0.009586	0.011160	0.011303	0.014021		
0	8016.50C	0.312215	0.374658	0.380334	0.442777	0.448454	0.556310		
PuO, volume	e fraction =	0.275	0.33	0.335	0.39	0.395	0.49		
^{2,39} Pu	94239.55C	2.779543	3.335452	3.385989	3.941897	3.992435	4.952640		
0	8016.50C	0.371957	0.446348	0.453111	0.527503	0.534265	0.662760		
Water volum	e fraction =	0.45	0.34	0.33	0.22	0.21	0.02		
Н	1001.50C	0.050362	0.038051	0.036932	0.024621	0.023502	0.002238		
0	8016.50C	0.399638	0.301949	0.293068	0.195379	0.186498	0.017762		
H(total)	1001.50C	0.058231	0.047494	0.046518	0.035781	0.034805	0.016259		
O(total)	8016.50C	1.083810	1.122955	1.126514	1.165658	1.169217	1.236831		
Densi	ity =	4.894	5.673	5.744	6.522	6.593	7.938		

Waste Package Development De	sign Analysis
Title: Criticality Analysis of Pu and U Accumulations in a Tuff Fracture Net	work
Document Identifier: A0000000-01717-0200-00050 REV 00 .	Page 19 of 58

••

·

Table 7.2-4 (cont.	Table 7.2-4 (cont.) Soddylte, Plutonium Oxide, Water Mixture Elemental Densities					
Element	MCNP.ID	Elemental Density, g/cm ³				
Soddyite vo	lume fraction =	0.087425	0.10875			
235U	92235.50C	0.291711	0.362867			
Si	14000.50C	0.017429	0.021680			
Н	_1001.50C	0.002502	0.003112			
0	8016.50C	0.099256	0.123467			
PuO, volu	me fraction =	0.087425	0.10875			
²³⁹ Pu	94239.55C	0.883642	1.099183			
0	8016.50C	0.118248	0.147092			
Water volu	me fraction =	0.82515	0.7825			
Н	1001.50C	0.092347	0.087573			
0	8016.50C	0.732803	0.694927			
H(total)	1001.50C	0.094848	0.090685			
O(total)	8016.50C	0.950308	0.965485			
der	nsity =	2.238	2.540			

· · · ·

.

•

•

.

.

Waste Package Development	Design Analysis
Title: Criticality Analysis of Pu and U Accumulations in a Tuff Fracture	Network
Document Identifier: A0000000-01717-0200-00050 REV 00	Page 20 of 58

7.3 MCNP Results for Fissile Mixtures with Water

The results for various fracture contents and widths are provided in this section for fissile mixtures with water. The results are categorized by fracture width and fracture content.

7.3.1 Results for 0.1 cm Fracture Width

Tables 7.3-1, 7.3-2, and 7.3-3 list the results for soddyite, plutonium oxide, and a 50/50 mixture of soddyite and plutonium oxide for fracture widths of 0.1 cm. The evaluation of the 50/50 mixture of soddyite and plutonium oxide in water provides results bracketed by those of soddyite and plutonium oxide. The tables cover a range of water volume fractions in the tuff for the fissile volume fractions required for a k_{eff} of 0.93. The results are fairly consistent for each fissile material with the volume fraction increasing as the amount of water in the tuff decreases. For soddyite they range from 3.1% to 3.8%, for plutonium oxide they range from .57% to .64% and for the 50/50 mixture of soddyite and plutonium oxide they range from .96% to 1.08%.

.

Waste Package DevelopmentDesign ATitle: Criticality Analysis of Pu and U Accumulations in a Tuff Fracture NetworkDocument Identifier: A00000000-01717-0200-00050 REV 00Page Page 21 of 58

	Table 7.3-1 Soddyite MCNP Results in 0.1 cm Wide Fracture							
Fissile Vol Frac.	²³⁵ U Mass, Kg	MCNP Case ID	k _{eff}	σ	Average Energy of Fission (MeV)	H/X Ratio		
		13 Volume Percent	Interstitial V	Vater in Tuf	ſ			
0.030	9.68	p87s03.o	0.9164	0.0021	0.0036	571.1		
0.031	10.00	p87s031.0	0.9270	0.0014	0.0036	553.9		
0.0312	10.07	linear interpolation	0.9300	•	•	-		
0.032	10.33	p87s032.0	0.9398	0.0018	0.0037	535.7		
0.040	12.91	p87s04.o	1.0266	0.0015	0.0044	426.8		
		8 Volume Percent I	nterstitial W	ater in Tuff				
0.030	9.68	p92s03.o	0.9023	0.0020	0.0039	449.2		
0.0322	10.39	linear interpolation	0.9300	•	-	-		
0.034	10.97	p92s034.o	0.9536	0.0020	0.0042	395.3		
0.035	11.29	p92s035.o	0.9571	0.0020	0.0046	384.8		
0.040	12.91	p92s04.o	1.0089	0.0017	0.0051	335.4		
		4 Volume Percent I	nterstitial W	ater in Tuff				
0.030	9.68	p96s03.o	0.8817	0.0019	0.0048	351.9		
0.0347	11.20	linear interpolation	0.9300	-	-	•		
0.035	11.29	p96s035.o	0.9322	0.0018	0.0053	301.2		
0.040	12.91	p96s04.o	0.9818	0.0026	0.0054	262.4		
0.050	16.13	p96s05.o	1.0592	0.0026	0.0064	209.0		
		0 Volume Percent I	nterstitial W	ater in Tuff				
0.030	9.68	p100s03.o	0.8527	0.0019	0.0054	254.7		
0.0380	12.26	linear interpolation	0.9300	-	-	-		
0.040	12.91	p100s04.o	0.9491	0.0021	0.0060	189.6		
0.050	16.13	p100s05.o	1.0157	0.0020	0.0070	150.7		

Waste Package DevelopmentDesign ATitle: Criticality Analysis of Pu and U Accumulations in a Tuff Fracture NetworkDocument Identifier: A0000000-01717-0200-00050 REV 00Page Page 22 of 58

	Table 7.3-2 Plutonium Oxide MCNP Results in 0.1 cm Wide Fracture						
Fissile Vol Frac.	²³⁹ Pu Mass, Kg	MCNP Case ID	k _{eff}	σ	Average Energy of Fission (MeV)	H/X Ratio	
		13 Volume Percent	Interstitial V	Vater in Tuf	F		
0.005	4.89	p87p005.o	0.8783	0.0016	0.0032	1161.0	
0.0057	5.57	linear interpolation	0.9300				
0.006	5.86	p87p006.o	0.9522	0.0020	0.0038	963.5	
0.010	9.77	p87p01.o	1.1388	0.0018	0.0056	579.9	
		8 Volume Percent I	nterstitial W	ater in Tuff			
0.005	4.89	p92p005.o	0.8719	0.0020	0.0039	915.2	
0.0058	5.67	linear interpolation	0.9300		l		
0.006	5.86	p92p006.o	0.9434	0.0019	0.0042	759.5	
0.010	9.77	р92р01.о	1.1184	0.0020	0.0057	456.9	
		4 Volume Percent I	nterstitial W	ater in Tuff			
0.005	4.89	p96p005.o	0.8631	0.0018	0.0043	718.9	
0.006	5.86	р96р006.0	0.9279	0.0023	0.0049	596.4	
0.00604	5.90	linear interpolation	0.9300				
0.007	6.84	р96р007.0	0.9793	0.0025	0.0048	512.4	
0.010	9.77	p96p01.o	1.0927	0.0020	0.0066	358.6	
		0 Volume Percent I	nterstitial W	ater in Tuff			
0.005	4.89	p100p005.o	0.8491	0.0016	0.0046	522.9	
0.006	5.86	p100p006.o	0.9129	0.0016	0.0054	433.7	
0.0064	6.26	linear interpolation	0.9300				
0.007	6.84	p100p007.o	0.9584	0.0017	0.0060	372.5	
0.010	9.77	p100p01.o	1.0634	0.0016	0.0070	260.5	

Waste Package DevelopmentDesign ATitle: Criticality Analysis of Pu and U Accumulations in a Tuff Fracture NetworkDocument Identifier: A00000000-01717-0200-00050 REV 00Page Page 23 of 58

Table 7.3-3 50/50 Mixture of Soddyite and Plutonium OxideMCNP Results in 0.1 cm Wide Fracture							
Fissile Vol Frac.	Fissile Mass, Kg	MCNP Case ID	k _{eff}	σ	Average Energy of Fission (MeV)	H/X Ratio	
		13 Volume Percent	Interstitial V	Vater in Tuf	f		
0.009	5.85	p87sp009.o	0.9061	0.0025	0.0034	969.8	
0.0096	6.24	linear interpolation	0.9300	-	-	-	
0.010	6.50	p87sp01.0	0.9483	0.0013	0.0038	867.0	
0.020	13.00	p87sp02.o	1.1945	0.0024	0.0061	431.7	
		8 Volume Percent I	nterstitial W	ater in Tuff			
0.009	5.85	p92sp009.o	0.8989	0.0020	0.0036	764.2	
0.0099	6.44	linear interpolation	0.9300	-	-	-	
0.010	6.50	p92sp01.o	0.9329	0.0018	0.0041	683.2	
0.020	13.00	p92sp02.o	1.1641	0.0015	0.0071	339.8	
		4 Volume Percent I	nterstitial W	ater in Tuff			
0.010	6.50	p96sp01.0	0.9207	0.0022	0.0043	536.3	
0.0102	6.63	linear interpolation	0.9300	-	•	-	
0.011	7.15	p96sp011.o	0.9590	0.0019	0.0049	487.4	
0.012	7.80	p96sp012.o	0.9856	0.0018	0.0051	446.6	
0.020	13.00	p96sp02.0	1.1336	0.0017	0.0075	266.4	
		0 Volume Percent I	nterstitial W	ater in Tuff			
0.010	6.50	p100sp01.0	0.9042	0.0022	0.0051	389.7	
0.0108	7.02	linear interpolation	0.9300	•	•	-	
0.011	7.15	p100sp0a.o	0.9351	0.0021	0.0060	354.1	
0.016	10.40	p100sp0f.o	1.0467	0.0020	0.0073	242.7	

Waste Package Development	Design Analysis
Title: Criticality Analysis of Pu and U Accumulations in a Tuff Fracture	Network
Document Identifier: A0000000-01717-0200-00050 REV 00	Page 24 of 58

7.3.2 Results for 0.01 cm Fracture Width

Tables 7.3-4, 7.3-5, and 7.3-6 list the results for soddyite, plutonium oxide, and a 50/50 mixture of soddyite and plutonium oxide for fracture widths of 0.01 cm. The tables cover a range of fissile mixtures with water and water in the tuff matrix.

The results for soddyite, Table 7.3-4, show a range of k_{eff} values from about 0.48 to 1.20 as the amount of soddyite increase from a volume fraction of 10% to 90% for a water volume fraction of 13% in the tuff. A similar range is seen for 8% and 4% water volume in the tuff with slightly lower k_{eff} values. For no water in the tuff, the k_{eff} 's are considerably lower, but the general trend is the same. To obtain a value of k_{eff} of 0.93, volume fractions about 0.355, 0.438 and 0.722 are required for tuff with 13%, 8% and 4% volume fraction water, respectively. For no water in the tuff, the maximum value of k_{eff} is about 0.705.

For plutonium oxide, the general trend is the same (see Table 7.3-5); however, the values of k_{eff} are significantly higher. They range from about 0.92 to 1.37 for 13% water, 0.91 to 1.28 for 8% water and 0.90 to 1.15 for 4% water. For no water in the tuff, the results are significantly lower. Volume fractions of about 0.062, 0.074 and 0.113 are required to produce a k_{eff} of about 0.93 for tuff water volume fractions of 13%, 8% and 4%, respectively. The case with no water in the tuff has a k_{eff} below 0.93 with a maximum k_{eff} of about 0.923 for 92% plutonium oxide volume fraction in the fracture.

For 50/50 mixture of soddyite and plutonium oxide (see Table 7.3-6) the k_{eff} values range from about 0.91 to 1.34 for a tuff water volume percent of 13% with slightly smaller values for 8% and 4%. For no water in the tuff, the k_{eff} is significantly lower. The fissile mixture volume percent required for a 0.93 k_{eff} are about 0.105, 0.125 and 0.195 for 13%, 8% and 4% tuff water volume fractions, respectively. Without water in the tuff, no values approaching 0.93 are possible.

The trend of decreasing k_{eff} with decreasing water in the tuff could be caused by leakage through the reflector in the model. To assess this possibility, an additional evaluation examined the effect of water in the reflector. Models with a 50/50 mixture of soddyite and PuO₂ fissile volume fraction of 11% and a tuff water volume fraction of 13% in the reflector were evaluated. The results are shown in Table 7.3-7. As is noted, there is no significant k_{eff} change over the cases with 8% and 0% water in the reflector. The small change is about what would be expected for the slight change in fissile volume fraction for the 8% and 0% tuff water fractions. Thus, the trend is controlled by the water content of the tuff within the fracture zone rather than leakage from the region.

Waste Package DevelopmentDesign ATitle: Criticality Analysis of Pu and U Accumulations in a Tuff Fracture NetworkDocument Identifier: A00000000-01717-0200-00050 REV 00Page Page 25 of 58

·	Table 7.3-4 Soddyite MCNP Results in 0.01 cm Wide Fracture							
Fissile Vol Frac.	²³⁵ U Mass, Kg	MCNP Case ID	k _{eff}	σ	Average Energy of Fission (MeV)	H/X Ratio		
		13 Volume Percent Int	erstitial Wa	ter in Tuff				
0.10	3.33	t87s10.0	0.4757	0.0010	0.0028	1082.4		
0.35	11.64	t87s35.0	0.9228	0.0016	0.0051	305.0		
0.355	11.81	linear interpolation	0.9300	-				
0.36	11.97	t87s36.0	0.9363	0.0013	0.0053	296.3		
0.50	16.63	t87s50.0	1.0438	0.0019	0.0067	211.7		
0.90	29.93	t87s90.0	1.2018	0.0022	0.0105	115.0		
		8 Volume Percent Inte	erstitial Wat	er in Tuff				
0.10	3.33	t92s10.0	0.4496	0.0014	0.0033	693.5		
0.438	14.57	linear extrapolation	0.9300		-	-		
0.44	14.63	t92s44.o	0.9316	0.0020	0.0079	153.0		
0.46	15.30	t92s46.0	0.9463	0.0025	0.0086	146.1		
0.50	16.63	t92s50.o	0.9694	0.0021	0.0085	134.0		
0.90	29.93	t92s90.o	1.1059	0.0024	0.0135	71.8		
		4 Volume Percent Inte	erstitial Wat	er in Tuff				
0.10	3.33	t96s10.0	0.4007	0.0010	0.0043	382.6		
0.50	16.63	t96s50.0	0.8540	0.0020	0.0110	71.8		
0.72	23.94	t96s72.0	0.9276	0.0027	0.0140	48.1		
0.722	24.01	linear interpolation	0.9300	-	-			
0.73	24.28	t96s73.0	0.9375	0.0026	0.0138	47.4		
0.90	29.93	t96s90.0	0.9689	0.0023	0.0168	37.3		
		0 Volume Percent Inte	erstitial Wat	er in Tuff				
0.10	3.33	t100s10.0	0.2823	0.0010	0.0068	72.4		
0.50	16.63	t100s50.o	0.6129	0.0019	0.0175	9.8		
0.90	29.93	t100s90.o	0.7022	0.0018	0.0266	2.9		
0.98	32.59	t100s98.o	0.7046	0.0024	0.0293	2.2		

Waste Package DevelopmentDesign ATitle: Criticality Analysis of Pu and U Accumulations in a Tuff Fracture NetworkDocument Identifier: A00000000-01717-0200-00050 REV 00Page Page 26 of 58

- ...

Т	Table 7.3-5 Plutonium Oxide MCNP Results in 0.01 cm Wide Fracture						
Fissile Vol Frac.	²³⁹ Pu Mass, Kg	MCNP Case ID	k _{eff}	σ	Average Energy of Fission (MeV)	H/X Ratio	
		13 Volume Percent Int	erstitial Wa	ter in Tuff			
0.06	6.04	t87p06.0	0.9196	0.0020	0.0047	606.1	
0.062	6.25	linear interpolation	0.9300	-	-	•	
0.07	7.05	t87p07.o	0.9727	0.0017	0.0052	519.1	
0.10	10.07	t87p10.o	1.0807	0.0024	0.0068	362.6	
0.50	50.37	t87p50.o	1.3393	0.0023	0.0277	70.4	
0.90	90.66	t87p90.o	1.3747	0.0024	0.0483	38.0	
		8 Volume Percent Inte	erstitial Wat	er in Tuff			
0.07	7.05	t92p07.o	0.9149	0.0023	0.0066	332.6	
0.074	7.45	linear interpolation	0.9300	•	•	•	
0.08	8.06	t92p08.o	0.9556	0.0017	0.0073	290.7	
0.10	10.07	t92p10.o	1.0118	0.0026	0.0081	232.1	
0.50	50.37	t92p50.o	1.2381	0.0029	0.0331	44.3	
0.90	90.66	t92p90.o	1.2805	0.0017	0.0602	23.4	
		4 Volume Percent Inte	erstitial Wat	er in Tuff			
0.10	10.07	t96p10.o	0.9034	0.0027	0.0109	127.8	
0.11	11.08	t96p11.o	0.9257	0.0023	0.0113	115.9	
0.113	11.38	linear interpolation	0.9300	-	-	•	
0.12	12.09	t96p12.0	0.9419	0.0023	0.0123	106.0	
0.50	50.37	t96p50.o	1.1080	0.0021	0.0410	23.4	
0.90	90.66	t96p90.o	1.1533	0.0025	0.0738	11.9	
		0 Volume Percent Inte	erstitial Wat	er in Tuff			
0.10	10.07	t100p10.o	0.6697	0.0022	0.0162	23.6	
0.50	50.37	t100p50.o	0.8625	0.0030	0.0630	2.6	
0.90	90.66	t100p90.o	0.9162	0.0029	0.1054	0.3	
0.91	91.67	t100p91.o	0.9230	0.0022	0.1074	0.3	
0.92	92.68	t100p92.o	0.9234	0.0023	0.1081	0.2	

Waste Package DevelopmentDesign ATitle: Criticality Analysis of Pu and U Accumulations in a Tuff Fracture NetworkDocument Identifier: A0000000-01717-0200-00050 REV 00Page Page 27 of 58

	Table 7.3-6 50/50 Mixture of Soddyite and Plutonium Oxide MCNP Results in 0.01 cm Wide Fracture						
Fissile Vol Frac.	Fissile Mass, Kg	MCNP Case ID	k _{eff}	σ	Average Energy of Fission (MeV)	H/X Ratio	
		13 Volume Percent Int	terstitial Wa	ter in Tuff			
0.10	6.70	t87sp10.0	0.9111	0.0018	0.0047	543.4	
0.105	7.03	linear interpolation	0.9300	<u> </u>	-	-	
0.11	7.37	t87sp11.0	0.9483	0.0019	0.0049	<u>493.7</u>	
0.50	33.50	t87sp50.o	1.2907	0.0030	0.0173	105.9	
0.90	60.30	t87sp90.0	1.3351	0.0023	0.0295	57.3	
		8 Volume Percent Inte	erstitial Wat	er in Tuff			
0.10	6.70	t92sp10.o	0.8589	0.0020	0.0054	348.0	
0.12	8.04	t92sp12.o	0.9187	0.0024	0.0063	289.4	
0.125	8.37	linear interpolation	0.9300	•	•	-	
0.13	8.71	t92sp13.o	0.9427	0.0025	0.0070	266.9	
0.50	33.50	t92sp50.0	1.1922	0.0023	0.0213	66.8	
0.90	60.30	t92sp90.o	1.2339	0.0022	0.0375	35.6	
		4 Volume Percent Inte	erstitial Wat	er in Tuff			
0.10	6.70	t96sp10.0	0.7765	0.0021	0.0071	191.8	
0.19	12.73	t96sp19.0	0.9247	0.0024	0.0116	99.3	
0.195	13.06	linear interpolation	0.9300	-	-	-	
0.20	13.40	t96sp20.0	0.9348	0.0020	0.0119	94.2	
0.50	33.50	t96sp50.0	1.0561	0.0021	0.0266	35.6	
0.90	60.30	t96sp90.0	1.0943	0.0039	0.0463	18.3	
		0 Volume Percent Inte	erstitial Wat	er in Tuff			
0.10	6.70	t100sp10.0	0.5819	0.0020	0.0112	35.9	
0.50	33.50	t100sp50.o	0.7937	0.0028	0.0418	4.4	
0.90	60.30	t100sp90.o	0.8419	0.0020	0.0692	94.0	
0.94	62.98	t100sp94.0	0.8527	0.0016	0.0712	0.8	
0.98	65.66	t100sp98.0	0.8533	0.0021	0.0732	0.6	

Waste Package Development	Design Analysis	
Title: Criticality Analysis of Pu and U Accumulations in a Tuff Frac	cture Network	
Document Identifier: A00000000-01717-0200-00050 REV 00	Page 28 of 58	
Table 7.3.7 50/50 Mixture of Soddvite and Plutaniu	m Ovido I	

.

Table 7.3-7 50/50 Mixture of Soddyite and Plutonium Oxide in 0.01 cm Wide Fracture with 11% Fissile Volume Fraction (7.37 kg Fissile Material)							
Reflector H ₂ O Vol %	MCNP Case ID	Vol % H ₂ O Central Region	k _{eff} .	σ	Average Energy of Fission (MeV)	H/X Ratio	
0	t87spy.o	13	0.9741	0.0019	0.0051	493.7	
8	t87spx.o	13	0.9533	0.0019	0.0049	493.7	
13	t87sp11.0	13	0.9483	0.0019	0.0049	493.7	
0	t92spx.o	8	0.9210	0.0020	0.0061	316.4	
8	t92sp11.o	8	0.8903	0.0020	0.0056	316.4	
13	t92spy.o	8	0.8886	0.0022	0.0062	316.4	

Waste Package Development	Design Analysis
Title: Criticality Analysis of Pu and U Accumulations in a Tuff Fracture	Network
Document Identifier: A00000000-01717-0200-00050 REV 00	Page 29 of 58

.

7.3.3 Results for 0.005 cm Fracture Width

The results for soddyite, plutonium oxide, and a 50/50 mixture of soddyite and plutonium oxide mixtures filling a 0.005 cm fracture are listed in Tables 7.3-8, 7.3-9, and 7.3-10. The general trend of the data is similar to that for the 0.01 cm wide fracture with higher fissile volume fractions for the same $k_{\rm eff}$.

	Table 7.3-8 Soddyite MCNP Results in 0.005 cm Wide Fracture						
Fissile Vol Frac.	²³⁵ U Mass, Kg	MCNP Case ID	k _{eff}	σ	Average Energy of Fission (MeV)	H/X Ratio	
		13 Volume Percent Int	erstitial Wa	ter in Tuff	·		
0.50	8.33	n87s50.o	0.8008	0.0014	0.0048	415.3	
0.71	11.83	n87s71.0	0.9283	0.0015	0.0057	290.7	
0.714	11.89	linear interpolation	0.9300	•	•	-	
0.72	11.99	n87s72.0	0.9325	0.0018	0.0055	286.6	
0.90	14.99	n87s90.0	1.0087	0.0021	0.0064	228.1	
		8 Volume Percent Inte	erstitial Wat	er in Tuff			
0.50	8.33	n92s50.o	0.7427	0.0019	0.0055	259.1	
0.899	14.97	linear interpolation	0.9300	-	-	•	
0.90	14.99	n92s90.o	0.9305	0.0021	0.0078	141.4	
		4 Volume Percent Inte	erstitial Wat	er in Tuff			
0.50	8.33	n96s50.0	0.6475	0.0016	0.0071	134.4	
0.90	14.99	n96s90.o	0.8085	0.0028	0.0102	72.1	
0.98	16.32	n96s98.0	0.8227	0.0021	0.0106	65.7	
		0 Volume Percent Inte	erstitial Wat	er in Tuff			
0.50	8.33	n100s50.o	0.4266	0.0018	0.0132	9.8	
0.90	14.99	n100s90.0	0.5390	0.0020	0.0180	2.9	

ŀ

Waste Package DevelopmentDesign ATitle: Criticality Analysis of Pu and U Accumulations in a Tuff Fracture NetworkDocument Identifier: A0000000-01717-0200-00050 REV 00Page Page 30 of 58

T	Table 7.3-9 Plutonium Oxide MCNP Results in 0.005 cm Wide Fracture						
Fissile Vol Frac.	²³⁹ Pu Mass, Kg	MCNP Case ID	k _{eff}	σ	Average Energy of Fission (MeV)	H/X Ratio	
		13 Volume Percent Int	erstitial Wa	ter in Tuff			
0.10	5.05	n87p10.o	0.8479	0.0017	0.0046	704.4	
0.12	6.05	n87p12.0	0.9143	0.0015	0.0051	586.4	
0.125	6.31	linear interpolation	0.9300	•	•		
0.13	6.56	n87p13.o	0.9448	0.0018	0.0055	541.2	
0.50	25.23	<u>n87p50.o</u>	1.2646	0.0019	0.0149	138.8	
0.90	45.41	n87p90.o	1.3231	0.0022	0.0252	75.9	
		8 Volume Percent Inte	erstitial Wat	er in Tuff			
0.10	5.05	<u>n</u> 92p10.o	0.8006	0.0018	0.0051	442.2	
0.15	7.57	n92p15.o	0.9259	0.0024	0.0075	293.9	
0.152	7.67	linear interpolation	0.9300	-	•	•	
0.16	8.07	n92p16.o	0.9484	0.0019	0.0074	275.4	
0.50	25.23	n92p50.o	1.1598	0.0026	0.0172	86.3	
0.90	45.41	n92p90.o	1.2151	0.0029	0.0306	46.8	
		4 Volume Percent Inte	erstitial Wat	er in Tuff			
0.10	5.05	n96p10.o	0.7194	0.0017	0.0067	232.7	
0.26	13.12	n96p26.o	0.9289	0.0020	0.0137	87.9	
0.262	13.22	linear interpolation	0.9300	-	-	-	
0.27	13.62	n96p27.o	0.9342	0.0019	0.0140	84.5	
0.50	25.23	n96p50.o	1.0176	0.0023	0.0230	44.4	
0.90	45.41	n96p90.o	1.0716	0.0024	0.0397	23.5	
		0 Volume Percent Inte	erstitial Wat	er in Tuff			
0.50	25.23	n100p50.o	0.7207	0.0021	0.0372	2.6	
0.90	45.41	n100p90.o	0.7892	0.0028	0.0624	0.3	

Design Analysis

Waste Package DevelopmentDesign ATitle: Criticality Analysis of Pu and U Accumulations in a Tuff Fracture NetworkDocument Identifier: A0000000-01717-0200-00050 REV 00Page Page 31 of 58

Table 7.3-10 50/50 Mixture of Soddyite and Plutonium Oxide MCNP Results in 0.005 cm Wide Fracture						
Fissile Vol Frac.	Fissile Mass, Kg	MCNP Case ID	k _{ett}	σ	Average Energy of Fission (MeV)	H/X Ratio
		13 Volume Percent Int	terstitial Wa	ter in Tuff		·
0.10	3.36	n87sp10.0	0.6478	0.0014	0.0034	1055.0
0.21	7.05	n87sp21.0	0.92319	0.00184	0.0052	500.6
0.214	7.18	linear interpolation	0.93	•	-	•
0.22	7.38	n87sp22.0	0.94253	0.00200	0.0051	477.6
0.50	16.78	n87sp50.o	1.17436	0.00234	0.0098	208.3
0.90	30.20	n87sp90.o	1.27168	0.00221	0.0160	114.2
	•	8 Volume Percent Inte	erstitial Wat	er in Tuff		
0.10	3.36	n92sp10.0	0.62067	0.00173	0.0037	662.5
0.25	8.39	n92sp25.0	0.91879	0.00166	0.0073	263.1
0.258	8.66	linear interpolation	0.93	•	•	-
0.26	8.72	n92sp26.0	0.93330	0.00216	0.0082	252.7
0.50	16.78	n92sp50.0	1.08224	0.00283	0.0118	129.8
0.90	30.20	n92sp90.o	1.16276	0.00260	0.0202	70.6
	· ·	4 Volume Percent Inte	erstitial Wat	er in Tuff		
0.10	3.36	n96sp10.0	0.56314	0.00160	0.0053	348.9
0.44	14.76	n96sp44.0	0.92732	0.00220	0.0137	76.6
0.444	14.90	linear interpolation	0.93	-	-	-
0.45	15.10	n96sp45.0	0.93410	0.00231	0.0135	74.9
0.50	16.78	n96sp50.0	0.95194	0.00228	0.0151	67.0
0.90	30.20	n96sp90.0	1.01926	0.00224	0.0257	35.7
		0 Volume Percent Inte	erstitial Wat	er in Tuff		
0.50	16.78	n100sp50.0	0.65109	0.00194	0.0262	4.4
0.90	30.20	n100sp90.0	0.72542	0.00147	0.0407	0.9

Waste Package Development	Design Analysis				
Title: Criticality Analysis of Pu and U Accumulations in a Tuff Fracture Network					
Document Identifier: A0000000-01717-0200-00050 REV 00	Page 32 of 58				

7.3.4 Results for 0.002 cm Fracture Width

For the 0.002 cm fracture width only plutonium oxide and a 50/50 mixture of soddyite and plutonium oxide cases were evaluated. Further, for these cases only the conditions for a tuff water fraction of 0.13, 0.08 and 0.04 and fissile volume fractions of 0.5 and 0.9 were evaluated. Results for these cases are listed in Tables 7.3-11 and 7.3-12. Due to lower possible fissile mass in the fracture, a significant reduction in k_{eff} is noted.

Table 7.3-11 Plutonium Oxide MCNP Results in 0.002 cm Wide Fracture						
Fissile Vol Frac.	²³⁹ Pu Mass, Kg	MCNP Case ID	k _{eff}	σ	Average Energy of Fission (MeV)	H/X Ratio
		13 Volume Percent Int	erstitial Wa	ter in Tuff		
0.31	6.26	h87p31.0	0.9204	0.0018	0.0050	-555.3
0.317	6.40	linear interpolation	0.9300		-	-
0.32	6.46	h87p32.o	0.9341	0.0021	0.0055	537.9
0.50	10.10	h87p50.o	1.0684	0.0018	0.0072	343.3
0.90	18.18	h87p90.o	1.2098	0.0023	0.0109	189.6
		8 Volume Percent Inte	erstitial Wat	er in Tuff		
0.38	7.68	h92p38.o	0.9232	0.0021	0.0074	279.9
0.388	7.84	linear interpolation	0.9300	-	•	•
0.39	7.88	h92p39.o	0.9320	0.0022	0.0078	272.6
0.50	10.10	h92p50.o	0.9938	0.0026	0.0093	212.1
0.90	18.18	h92p90.o	1.1073	0.0022	0.0144	116.7
4 Volume Percent Interstitial Water in Tuff						
0.50	10.10	h96p50.o	0.8719	0.0022	0.0121	107.3
0.72	14.54	h96p72.o	0.9273	0.0027	0.0151	73.7
0.723	14.61	linear interpolation	0.9300	-	-	-
0.73	14.75	h96p73.o	0.9358	0.0025	0.0151	72.6
0.90	18.18	h96p90.0	0.9575	0.0021	0.0174	58.4

Title: Criticality Analysis of Pu and U Accumulations in a Tuff Fracture NetworkDocument Identifier: A00000000-01717-0200-00050 REV 00Page 33 of 58

Table 7.3-12 50/50 Mixture of Soddyite and Plutonium Oxide MCNP Results in 0.002 cm Wide Fracture						
Fissile Vol Frac.	Fissile Mass, Kg	MCNP Case ID	k _{eff}	σ	Average Energy of Fission (MeV)	H/X Ratio
		13 Volume Percent Int	terstitial Wa	ter in Tuff		······
0.50	6.72	h87sp50.0	0.9055	0.0019	0.0049	514.5
0.54	7.25	h87sp54.0	0.9285	0.0017	0.0048	476.1
0.541	7.27	linear interpolation	0.9300	•	•	-
0.55	7.39	h87sp55.0	0.9404	0.0023	0.0050	467.4
0.90	12.09	h87sp90.0	1.0869	0.0021	0.0073	284.3
	8 Volume Percent Interstitial Water in Tuff					
0.50	6.72	h92sp50.o	0.8511	0.0021	0.0064	318.0
0.66	8.87	h92sp66.0	0.9290	0.0028	0.0078	240.1
0.662	8.89	linear interpolation	0.9300	•	-	-
0.67	9.00	h92sp67.0	0.9345	0.0021	0.0078	236.5
0.90	12.09	h92sp90.0	1.0055	0.0023	0.0093	175.2
4 Volume Percent Interstitial Water in Tuff						
0.50	6.72	h96sp50.0	0.7514	0.0024	0.0078	161.1
0.90	12.09	h96sp90.0	0.8775	0.0025	0.0121	88.0
0.98	13.17	h96sp98.0	0.8960	0.0031	0.0126	80.5

Waste Package DevelopmentDesign AnalysisTitle: Criticality Analysis of Pu and U Accumulations in a Tuff Fracture NetworkDocument Identifier: A00000000-01717-0200-00050 REV 00Page 34 of 58

7.3.5 Results for 0.001 cm Fracture Width

For a further reduction in the fracture width, 0.001 cm, with 13%, 8% and 4% water in the tuff a further reduction in k_{eff} is noted as shown in Tables 7.3-13 and 7.3-14.

Table 7.3-13 Plutonium Oxide MCNP Results in 0.001 cm Wide Fracture						
Fissile Vol Frac.	²³⁹ Pu Mass, Kg	MCNP Case ID	k _{en}	σ	Average Energy of Fission (MeV)	H/X Ratio
		13 Volume Percent Int	erstitial Wa	ter in Tuff		
0.63	6.37	k87p63.o	0.9234	0.0020	0.0053	542.8
0.638	6.45	linear interpolation	linear interpolation 0.9300 -			-
0.64	6.47	k87p64.o	0.9323	0.0020	0.0052	534.3
.0.90	9.09	k87p90.o	1.0399	0.0023	0.0069	379.2
8 Volume Percent Interstitial Water in Tuff						
0.78	7.88	k92p78.o	0.9258	0.0022	0.0075	269.6
0.784	7.92	linear interpolation	0.9300	•	•	-
0.79	7.98	k92p79.o	0.9350	0.0019	0.0071	266.1
0.90	9.09	k92p90.o	0.9646	0.0019	0.0084	233.3
4 Volume Percent Interstitial Water in Tuff						
0.90	9.09	k96p90.o	0.8464	0.0020	0.0106	116.7
0.98	9.90	k96p98.o	0.8601	0.0023	0.0111	106.9

Waste Package DevelopmentDesign AnalysisTitle: Criticality Analysis of Pu and U Accumulations in a Tuff Fracture NetworkDocument Identifier: A0000000-01717-0200-00050 REV 00Page 35 of 58

Table 7.3-14 50/50 Mixture of Soddyite and Plutonium Oxide MCNP Results in 0.001 cm Wide Fracture						
Fissile Vol Fissile MCNP Case ID k _{eff} σ Frac. Mass, Kg				Average Energy of Fission (MeV)	H/X Ratio	
		13 Volume Percent In	terstitial Wa	ter in Tuff		
0.90	6.05	k87sp90.o	0.8640	0.0017	0.0047 568.3	
0.98	6.59	k87sp98.0 0.8999		0.0020	0.0051	521.6
8 Volume Percent Interstitial Water in Tuff						
0.90	6.05	k92sp90.o	0.8115	0.0020	0.0065	349.8
0.98	6.59	k92sp98.o	0.8417	0.0016	0.0059	320.9
4 Volume Percent Interstitial Water in Tuff						
0.90	6.05	k96sp90.o	0.7145	0.0017	0.0077	175.2
0.98	6.59	k96sp98.0	0.7392	0.0024	0.0086	160.6

Waste Package Development	Design Analysis
Title: Criticality Analysis of Pu and U Accumulations in a Tuff Fracture	Network
Document Identifier: A0000000-01717-0200-00050 REV 00	Page 36 of 58

7.3.6 K_{eff} as a Function of Fracture Width

The results listed in the previous tables allow trending of the k_{eff} as a function of fracture width for plutonium oxide and a 50/50 mixture of soddyite and plutonium oxide for 90 volume percent fissile material in water and 13 volume percent water in the tuff. Table 7.3-15 lists the k_{eff} as a function of the fracture width. The trend of the data is illustrated in Figure 7.3-1. For the 50/50 mixture of soddyite and plutonium oxide, a fracture width of about 0.0013 cm is required to obtain a k_{eff} of 0.93. Due to the slope of the PuO₂ curve no estimate is made for the thickness required for a k_{eff} of 0.93 for plutonium oxide.

Table 7.3-15 Plutonium Oxide and 50/50 Mixture of Soddyite/PuO ₂ MCNP Results As a Function of Fracture Width for 90 Volume Percent Fissile Material and 13 Volume Percent Water in Tuff						
Fracture Width (cm)	Fissile Mass, Kg	MCNP Case ID	k _{ett}	σ		
		Plutonium Oxide				
0.001	9.09	k87p90.o	1.03986	0.00230		
0.002	18.18	h87p90.o	1.20977	0.00228		
0.005	45.41	n87p90.o	1.32308	0.00218		
0.010	90.66	t87p90.o	1.37472	0.00238		
50/50 Mixture of Soddyite/Plutonium Oxide						
0.001	6.05	k87sp90.o	0.86399	0.00166		
0.0013	-	linear interpolation	0.93	-		
0.002	12.09	h87sp90.0	1.08692	0.00208		
0.005	30.20	n87sp90.o	1.27168	0.00221		
0.010	60.30	t87sp90.o	1.33505	0.00232		
Waste Package DevelopmentDesign AnalysisTitle: Criticality Analysis of Pu and U Accumulations in a Tuff Fracture NetworkDocument Identifier: A00000000-01717-0200-00050 REV 00Page 37 of 58

Figure 7.3-1 K_{eff} as a Function of Fracture Width

Waste Package Development	Design Analysis				
Fitle: Criticality Analysis of Pu and U Accumulations in a Tuff Fracture Network					
Document Identifier: A00000000-01717-0200-00050 REV 00	Page 38 of 58				

7.3.7 Fissile Weight Evaluations for a keff of 0.93

The criticality safety criterion can be satisfied with a maximum k_{eff} from MCNP of about 0.93. This section presents an evaluation that determines the k_{eff} of fissile masses of both plutonium oxide and a 50/50 mixture of soddyite and plutonium oxide for a total fissile mass equal to the mass of soddyite that produces a k_{eff} of 0.93.

Table 7.3-16 lists results from a series of cases that examined an equivalent mass of fissile material. The fissile mass of plutonium oxide and the 50/50 mixture of soddyite and plutonium oxide was set equal to the mass of ²³⁵U required to give a k_{eff} of 0.93 (from linear interpolation) in tuff with both 13 and 8 volume percent interstitial water. As seen from the table, the equivalent mass of plutonium oxide is more reactive by about 19% or 16% Δk_{eff} for tuff with 13 and 8 volume fraction interstitial water, respectively. The 50/50 mixture of soddyite and plutonium oxide has Δk_{eff} values about 3% less than for the plutonium oxide mixture. Based upon these results, plutonium oxide mixtures provide the bounding material for the three fissile mixtures examined in this evaluation.

Table 7.3-16 Kerr for Equal Fissile Masses, 0.01 cm Fracture Width							
Material	Fissile Volume Fraction	Fissile Mass, Kg	MCNP Case ID k _{eff}		σ		
13 Volume Percent Interstitial Water in Tuff							
Soddyite	0.3520	11.71	Estimated	0.93	-		
Plutonium	0.1162	11.71	t87pue.o	1.12427	0.00192		
Mixture	0.17485	11.71	t87spue.o	1.09043	0.00174		
	8 Vol	ume Percent Int	erstitial Water in	Tuff			
Soddyite	0.4380	14.57	Estimated	0.93	-		
Plutonium	0.1446	14.57	t92pue.o	1.09287	0.00231		
Mixture .	0.2175	14.57	t92spue.o	1.06700	0.00222		

Waste Package Development	Design Analysis
Title: Criticality Analysis of Pu and U Accumulations in a Tuff Fracture	Network
Document Identifier: A0000000-01717-0200-00050 REV 00	Page 39 of 58

7.4 MCNP Results for Fissile Mixtures with Clayey Material

The results for various fracture contents and widths are provided in this section for fissile mixtures with clayey material. The results are categorized by fracture width and fracture content.

7.4.1 Results for 0.1 cm Fracture Width

Tables 7.4-1, 7.4-2, and 7.4-3 list the results for soddyite, plutonium oxide, and a 50/50 mixture of soddyite and plutonium oxide for fracture widths of 0.1 cm. The tables cover a range of water volume fractions in the tuff for the fissile volume fractions required for a k_{eff} of 0.93. The results for each fissile material show the volume fraction increasing as the amount of water in the tuff decreases. For soddyite they range from 3.89% to 27.1%, for plutonium oxide they range from .67% to 9.7% and for the 50/50 mixture of soddyite and plutonium oxide they range from 1.15% to 14.3%.

Design Analysis

Waste Package DevelopmentDesign ATitle: Criticality Analysis of Pu and U Accumulations in a Tuff Fracture NetworkDocument Identifier: A0000000-01717-0200-00050 REV 00Page Page 40 of 58

	Tat	ole 7.4-1 Soddyite Res	ults in 0.1 c	m Wide Fr	acture	
Fissile Vol Frac.	²³⁵ U Mass, Kg	MCNP Case ID	k _{eff}	σ	Average Energy of Fission (MeV)	H/X Ratio
		13 Volume Percent	Interstitial V	Vater in Tuff	f	
0.030	9.68	e87s03.o	0.8440	0.0020	0.0050	323.8
0.0389	12.55	linear interpolation	0.9300	•	•	-
0.039	12.58	e87s039.0	0.9310	0.0022	0.0056	249.1
0.040	12.91	e87s04.0	0.9428	0.0025	0.0058	243.5
0.100	32.27	e87s10.0	1.2023	0.0021	0.0111	98.0
		8 Volume Percent I	nterstitial W	ater in Tuff		
0.040	12.91	e92s04.o	0.8716	0.0017	0.0071	150.9
0.0498	16.07	linear interpolation	0.9300	•	•	
0.050	16.13	e92s05.o	0.9312	0.0018	0.0084	121.2
0.100	32.27	e92s10.o	1.1036	0.0022	0.0136	61.2
		4 Volume Percent I	nterstitial W	ater in Tuff		
0.070	22.59	e96s07.o	0.8917	0.0021	0.0136	44.3
0.080	25.81	e96s08.0	0.9258	0.0028	0.0140	39.1
0.082	26.46	linear interpolation	0.9300	-	-	•
0.090	29.04	e96s09.0	0.9497	0.0027	0.0157	35.0
0.100	32.27	e96s10.0	0.9641	0.0020	0.0171	. 31.8
0.500	161.34	e96s50.o	1.2021	0.0024	0.0674	7.9
		0 Volume Percent 1	Interstitial W	ater in Tuff		
0.27	87.12	e100s27.0	0.9283	0.0023	0.0557	2.1
0.271	87.44	linear interpolation	0.9300	-		-
0.28	90.35	e100s28.o	0.9409	0.0026	0.0569	2.1
0.29	93.57	e100s29.o	0.9475	0.0020	0.0591	2.1
0.34	109.71	e100s34.o	0.9807	0.0024	0.0667	2.1
0.50	_161.34	e100s50.o	1.0670	0.0031	0.0873	2.0

Design Analysis

Waste Package DevelopmentDesign ATitle: Criticality Analysis of Pu and U Accumulations in a Tuff Fracture NetworkDocument Identifier: A00000000-01717-0200-00050 REV 00Page Page 41 of 58

	Table 7.4-2 Plutonium Oxide MCNP Results in 0.1 cm Wide Fracture						
Fissile Vol Frac.	²³⁹ Pu Mass, Kg	MCNP Case ID	k _{err}	σ	Average Energy of Fission (MeV)	H/X Ratio	
		13 Volume Percent	Interstitial V	Vater in Tuf	f		
0.006	5.86	e87p006.0	0.8906	0.002	0.0049	558.0	
0.0067	6.55	linear interpolation	0.9300	-	-	-	
0.007	6.84	e87p007.o	0.9437	0.0017	0.0051	461.0	
0.010	9.77	e87p01.o	1.0475	0.0024	0.0064	321.3	
		8 Volume Percent I	nterstitial W	ater in Tuff			
0.007	6.84	e92p007.o	0.8755	0.0027	0.0063	284.2	
0.008	7.82	e92p008.o	0.9143	0.0022	0.0070	251.4	
0.0085	8.31	linear interpolation	0.9300	9	-	-	
0.009	8.80	e92p009.o	0.9434	0.0024	0.0082	225.4	
0.010	9.77	e92p01.o	0.9664	0.0023	0.0086	198.1	
0.020	19.55	e92p02.o	1.0993	0.0023	0.0152	99.0	
		4 Volume Percent I	nterstitial W	ater in Tuff	,		
0.010	9.77	e96p01.o	0.8446	0.0017	0.0106	99.7	
0.016	15.64	e96p016.0	0.9286	0.0021	0.0153	62.1	
0.0162	15.83	linear interpolation	0.9300	-	-	•	
0.017	16.62	e96p017.0	0.9364	0.0028	0.0161	58.7	
0.020	19.55	е9бр02.о	0.9621	0.0021	0.0183	49.8	
0.030	29.33	e96p03.o	1.0091	0.0024	0.0263	33.2	
		0 Volume Percent I	nterstitial W	ater in Tuff			
0.090	87.97	e100p09.o	0.9115	0.0023	0.1005	0.1	
0.097	94.81	linear interpolation	0.9300	-	-		
0.100	97.74	e100p10.o	0.9380	0.0022	0.1097	0.1	
0.200	195.49	c100p20.o	1.0866	0.0028	0.1827	0.1	

Waste Package DevelopmentDesign ATitle: Criticality Analysis of Pu and U Accumulations in a Tuff Fracture NetworkDocument Identifier: A0000000-01717-0200-00050 REV 00Page Page 42 of 58

	Table 7.4-3 50/50 Mixture of Soddyite and Plutonium Oxide MCNP Results in 0.1 cm Wide Fracture					
Fissile Vol Frac.	Fissile Mass, Kg	MCNP Case ID	k _{eff}	σ	Average Energy of Fission (MeV)	H/X Ratio
		13 Volume Percent	Interstitial '	Water in Tu	ff	
0.010	6.50	e87sp01.0	0.8812	0.0017	0.0050	491.5
0.011	7.15	e87sp011.0	0.9145	0.0019	0.0050	438.8
0.0115	7.48	linear interpolation	0.9300	-	-	-
0.012	7.80	e87sp012.o	0.9422	0.0017	0.0051	410.0
0.020	13.00	e87sp02.o	1.0946	0.0023	0.0077	241.0
		8 Volume Percent	Interstitial V	Vater in Tuf	f	-
0.014	9.10	e92sp014.o	0.9225	0.0022	0.0068	217.1
0.0144	9.36	linear interpolation	0.9300	-	-	-
0.015	9.75	e92sp015.o	0.9407	0.0025	0.0080	199.9
0.020	13.00	e92sp02.o	1.0075	0.0020	0.0096	148.8
		4 Volume Percent	Interstitial V	Vater in Tuf	ſ	
0.024	15.60	e96sp024.o	0.9114	0.0021	0.0143	62.8
0.0273	17.75	linear interpolation	0.9300	-	-	-
0.028	18.20	e96sp028.o	0.9339	0.0027	0.0171	54.1
0.030	19.50	e96sp03.o	0.9470	0.0024	0.0171	50.6
0.100	65.00	e96sp10.0	1.0908	0.0031	0.0487	15.4
0.200	130.01	e96sp20.o	1.1759	0.0026	0.0880	7.9
		0 Volume Percent	Interstitial V	Vater in Tuf	f	
0.100	65.00	e100sp10.o	0.8668	0.0024	0.0703	0.7
0.140	91.01	e100sp14.o	0.9248	0.0027	0.0910	0.6
0.143	96.48	linear interpolation	0.9300	-	-	-
0.150	97.51	e100sp15.o	0.9397	0.0022	0.0947	0.6
0.160	104.01	e100sp16.o	0.9515	0.0024	0.0994	0.6

Waste Package Development	Design Analysis			
Title: Criticality Analysis of Pu and U Accumulations in a Tuff Fracture Network				
Document Identifier: A0000000-01717-0200-00050 REV 00	Page 43 of 58			

7.4.2 Results for 0.01 cm Fracture Width

Tables 7.4-4, 7.4-5, and 7.4-6 list the results for soddyite, plutonium oxide, and a 50/50 mixture of soddyite and plutonium oxide for fracture widths of 0.01 cm. The tables cover a range of fissile mixtures with clayey material and water in the tuff matrix.

The results for soddyite (Table 7.4-4) show a range of k_{eff} values from about 0.47 to 1.20 as the amount of soddyite increases from a volume fraction of 10% to 90% for a water volume fraction of 13% in the tuff. A similar range is seen for 8% and 4% water volume in the tuff with slightly lower k_{eff} values. For no water in the tuff, the k_{eff} 's are considerably lower, but the general trend is the same. To obtain a value of k_{eff} of 0.93, volume fractions about 0.359, 0.455 and 0.7598 are required for tuff with 13%, 8% and 4% volume fraction water, respectively. For no water in the tuff, the maximum value of k_{eff} is about 0.703.

For plutonium oxide, the general trend is the same (see Table 7.4-5); however, the values of k_{eff} are significantly higher. They range from about .91 to 1.37 for 13% water, 0.90 to 1.28 for 8% water and 0.86 to 1.15 for 4% water. For no water in the tuff, the results are significantly lower. Volume fractions of about 0.064, 0.079 and 0.143 are required to produce a k_{eff} of about 0.93 for tuff water volume fractions of 13%, 8% and 4%, respectively. The case with no water in the tuff has a k_{eff} below 0.93 with a maximum k_{eff} of about 0.928 for 98% plutonium oxide volume fraction in the fracture.

The evaluation of the 50/50 mixture of soddyite and plutonium oxide in clayey material provides results bracketed by those of soddyite and plutonium oxide (see Table 7.4-6). The k_{eff} values range from about 0.90 to 1.34 for a tuff water volume percent of 13% with slightly smaller values for 8% and 4%. For no water in the tuff, the k_{eff} is significantly lower. The fissile mixture volume percent required for a 0.93 k_{eff} are about 0.109, 0.134 and 0.2403 for 13%, 8% and 4% tuff water volume fractions, respectively. Without water in the tuff, no values approaching 0.93 are possible.

Design Analysis

Waste Package DevelopmentDesign ATitle: Criticality Analysis of Pu and U Accumulations in a Tuff Fracture Network Document Identifier: A00000000-01717-0200-00050 REV 00 Page 44 of 58

	Table 7.4	-4 Soddyite MCNP Re	sults in 0.0	1 cm Wide	Fracture	
Fissile Vol Frac.	²³⁵ U Mass, Kg	MCNP Case ID	k _{eff}	σ	Average Energy of Fission (MeV)	H/X Ratio
		13 Volume Percent Int	erstitial Wa	ter in Tuff		
0.10	3.33	a87s10.0	0.4674	0.0012	0.0029	1018.8
0.35	11.64	a87s35.0	0.9152	0.0022	0.0049	291.0
0.359	11.94	linear interpolation	0.9300		-	•
0.36	11.97	a87s36.0	0.9323	0.0015	0.0054	282.7
0.50	16.63	a87s50.0	1.0397	0.0021	0.0071	204.1
0.90	29.93	a87s90.0	1.1977	0.0018	0.0108	114.2
		8 Volume Percent Inte	erstitial Wat	er in Tuff		
0.10	3.33	a92s10.0	0.4387	0.0012	0.0035	627.4
0.45	14.97	a92s45.0	0.9248	0.0022	0.0077	140.2
0.455	15.13	linear interpolation	0.9300	-	-	•
0.46	15.30	a92s46.0	0.9354	0.0030	0.0087	137.1
0.50	16.63	a92s50.0	0.9553	0.0021	0.0082	126.3
0.90	29.93	a92s90.0	1.1013	0.0026	0.0132	71.0
		4 Volume Percent Inte	erstitial Wat	er in Tuff		•
0.10	3.33	a96s10.0	0.3783	0.0010	0.0045	314.6
0.50	16.63	a96s50.0	0.8305	0.0024	0.0111	64.1
0.75	24.94	a96s75.0	0.9231	0.0031	0.0147	43.4
0.7598	25.27	linear interpolation	0.9300	-	-	-
0.76	25.27	a96s76.0	0.9301	0.0026	0.0151	42.8
0.90	29.93	· a96s90.0	0.9627	0.0025	0.0166	36.5
		0 Volume Percent Inte	erstitial Wat	er in Tuff		
0.10	3.33	a100s10.0	0.2281	0.0007	0.0092	2.4
0.50	16.63	a100s50.0	0.5570	0.0015	0.0195	2.0
0.90	29.93	a100s90.0	0.6876	0.0017	0.0284	2.0
0.98	32.59	a100s98.0	0.7034	0.0020	0.0297	2.0

Waste Package DevelopmentDesign AnalysisTitle: Criticality Analysis of Pu and U Accumulations in a Tuff Fracture NetworkDocument Identifier: A00000000-01717-0200-00050 REV 00Page 45 of 58

Т	Table 7.4-5 Plutonium Oxide MCNP Results in 0.01 cm Wide Fracture					
Fissile Vol Frac.	²³⁹ Pu Mass, Kg	MCNP Case ID	k _{eff}	σ	Average Energy of Fission (MeV)	H/X Ratio
		13 Volume Percent Int	erstitial Wa	ter in Tuff		
0.06	6.04	a87p06.0	0.9068	0.0016	0.0050	567.1
0.064	6.45	linear interpolation	0.9300	•	-	•
0.07	7.05	a87p07.o	0.9603	0.0020	0.0061	486.1
0.10	10.07	a87p10.o	1.0706	0.0018	0.0079	339.3
0.50	50.37	a87p50.o	1.3301	0.0023	0.0280	67.8
0.90	90.66	а87р90.о	1.3731	0.0020	0.0495	37.7
		8 Volume Percent Inte	erstitial Wat	er in Tuff	<u>, </u>	
0.07	7.05	a92p07.0	0.8960	0.0017	0.0066	299.0
0.079	7.96	linear interpolation	0.9300	-	-	
0.08	8.06	a92p08.o	0.9330	0.0022	0.0075	260.6
0.10	10.07	a92p10.o	0.9916	0.0024	0.0088	208.7
0.50	50.37	a92p50.o	1.2239	0.0018	0.0342	41.7
0.90	90.66	a92p90.o	1.2755	0.0027	0.0601	23.3
		4 Volume Percent Inte	erstitial Wat	er in Tuff	<u></u>	
0.10	10.07	а9бр10.0	0.8625	0.0025	0.0114	104.3
0.14	14.10	a96p14.0	0.9253	0.0023	0.0146	74.6
0.143	14.41	linear interpolation	0.9300	-	-	
0.15	15.11	a96p15.o	0.9391	0.0016	0.0150	69.5
0.50	50.37	a96p50.o	1.0807	0.0024	0.0432	20.8
0.90	90.66	a96p90.0	1.1519	0.0024	0.0730	11.6
		0 Volume Percent Int	erstitial Wat	er in Tuff		
0.10	10.07	a100p10.0	0.5524	0.0020	0.0202	0.1
0.50	50.37	a100p50.o	0.8018	0.0027	0.0665	0.0
0.90	90.66	a100p90.0	0.9094	0.0032	0.1085	0.0
0.98	98.72	a100p98.o	·0.9278	0.0020	0.1126	0.0

Design Analysis

Waste Package DevelopmentDesign ATitle: Criticality Analysis of Pu and U Accumulations in a Tuff Fracture NetworkDocument Identifier: A00000000-01717-0200-00050 REV 00Page Page 46 of 58

	Table 7.4-6 50/50 Mixture of Soddyite and Plutonium Oxide MCNP Results in 0.01 cm Wide Fracture					
Fissile Vol Frac.	Fissile Mass, Kg	MCNP Case ID	k _{eff}	σ	Average Energy of Fission (MeV)	H/X Ratio
		13 Volume Percent Int	erstitial Wa	ter in Tuff		
0.10	6.70	a87sp10.0	0.9019	0.0020	0.0050	510.0
0.109	7.30	linear interpolation	0.9300		-	•
0.11	7.37	a87sp11.0	0.9345	0.0016	0.0056	462.7
0.50	33.50	a87sp50.0	1.2837	0.0027	0.0174	102.0
0.90	60.30	a87sp90.0	1.3386	0.0024	0.0300	56.9
		8 Volume Percent Inte	erstitial Wat	er in Tuff		
0.10	6.70	a92sp10.0	0.8441	0.0020	0.0062	313.8
0.13	8.71	a92sp13.0	0.9241	0.0021	0.0078	241.1
0.134	8.98	linear interpolation	0.9300	-	-	-
0.14	9.38	a92sp14.0	0.9404	0.0024	0.0079	223.6
0.50	33.50	a92sp50.0	1.1723	0.0025	0.0220	62.9
0.90	60.30	a92sp90.0	1.2326	0.0029	0.0366	35.2
		4 Volume Percent Inte	erstitial Wat	er in Tuff		
0.10	6.70	a96sp10.0	0.7411	0.0016	0.0083	157.1
0.24	16.08	a96sp24.0	0.9297	0.0024	0.0153	65.6
0.2403	16.10	linear interpolation	0.9300		-	_
0.25	16.75	a96sp25.0	0.9383	0.0024	0.0152	62.9
0.50	33.50	a96sp50.0	1.0298	0.0024	0.0286	31.7
0.90	60.30	a96sp90.o	1.0942	0.0022	0.0458	17.8
	0 Volume Percent Interstitial Water in Tuff					
0.10	6.70	a100sp10.0	0.4780	0.0014	0.0144	0.7
0.50	33.50	a100sp50.0	0.7353	0.0021	0.0456	0.5
0.90	60.30	a100sp90.0	0.8323	0.0024	0.0690	0.5
0.98	65.66	a100sp98.0	0.8507	0.0019	0.0720	0.5

Waste Package Development	Design Analysis
Title: Criticality Analysis of Pu and U Accumulations in a Tuff Fractur	e Network
Document Identifier: A0000000-01717-0200-00050 REV 00	Page 47 of 58

7.4.3 Results for 0.005 cm Fracture Width

The results for soddyite, plutonium oxide, and a 50/50 mixture of soddyite and plutonium oxide mixtures with clayey material filling a 0.005 cm fracture are listed in Tables 7.4-7, 7.4-8, and 7.4-9. The general trend of the data is similar to that for the 0.01 cm wide fracture with lower k_{eff} values, as expected due to smaller possible masses of fissile material.

	Table 7.4-7 Soddyite MCNP Results in 0.005 cm Wide Fracture						
Fissile Vol Frac.	²³⁵ U Mass, Kg	MCNP Case ID	k _{eff}	σ	Average Energy of Fission (MeV)	H/X Ratio	
		13 Volume Percent Int	erstitial Wa	ter in Tuff			
0.50	8.33	b87s50.o	0.7951	0.0017	0.0048	407.8	
0.72	11.99	b87s72.o	0.9277	0.0021	0.0054	283.7	
0.724	12.06	linear interpolation	0.9300	-	-	-	
0.73	12.16	b87s73.0	0.9340	0.0019	0.0055	279.8	
0.90	14.99	b87s90.o	1.0023	0.0021	0.0073	227.4	
		8 Volume Percent Inte	erstitial Wat	er in Tuff			
0.50	8.33	b92s50.o	0.7366	0.0015	0.0055	251.5	
0.90	14.99	b92s90.o	0.9257	0.0024	0.0081	140.6	
0.906	15.09	linear interpolation	0.9300	-	-	-	
0.91	15.16	b92s91.0	0.9329	0.0021	0.0080	139.0	
		4 Volume Percent Inte	erstitial Wat	er in Tuff			
0.50	8.33	b96s50.o	0.6374	0.0015	0.0072	126.7	
0.90	14.99	b96s90.o	0.8042	0.0023	0.0102	71.2	
0.98	16.32	b96s98.o	0.8261	0.0021	0.0109	65.6	
	0 Volume Percent Interstitial Water in Tuff						
0.50	8.33	b100s50.o	0.4017	0.0014	0.0140	2.0	
0.90	14.99	b100s90.o	0.5345	0.0017	0.0183	2.0	

Design Analysis

Waste Package DevelopmentDesign ATitle: Criticality Analysis of Pu and U Accumulations in a Tuff Fracture NetworkDocument Identifier: A0000000-01717-0200-00050 REV 00Page Page 48 of 58

Table 7.4-8 Plutonium Oxide MCNP Results in 0.005 cm Wide Fracture							
Fissile Vol Frac.	²³⁹ Pu Mass, Kg	MCNP Case ID	k _{eff}	σ	Average Energy of Fission (MeV)	H/X Ratio	
		13 Volume Percent Int	erstitial Wa	ter in Tuff			
0.10	5.05	b87p10.o	0.8441	0.0018	0.0044	681.3	
0.12	6.05	b87p12.o	0.9097	0.0020	0.0053	568.1	
0.127	6.41	linear interpolation	0.9300	•	-		
0.13	6.56	b87p13.o	0.9371	0.0022	0.0057	524.5	
0.50	25.23	b87p50.o	1.2597	0.0024	0.0158	136.2	
0.90	45.41	b87p90.o	1.3209	0.0021	0.0258	75.6	
8 Volume Percent Interstitial Water in Tuff							
0.10	5.05	b92p10.o	0.7946	0.0023	0.0056	418.9	
0.15	7.57	b92p15.o	0.9149	0.0017	0.0078	279.1	
0.158	7.97	linear interpolation	0.9300	•	•	-	
0.16	8.07	b92p16.o	0.9332	0.0024	0.0084	261.7	
0.50	25.23	b92p50.o	1.1569	0.0021	0.0178	83.8	
0.90	45.41	b92p90.o	1.2150	0.0024	0.0321	46.5	
		4 Volume Percent Inte	erstitial Wat	er in Tuff			
0.10	5.05	b96p10.o	0.7045	0.0022	0.0070	209.3	
0.29	14.63	b96p29.o	0.9290	0.0021	0.0153	72.2	
0.292	14.73	linear interpolation	0.9300	-	-		
0.30	15.14	b96p30.o	0.9357	0.0020	0.0158	69.7	
0.50	25.23	b96p50.o	1.0034	0.0024	0.0247	41.8	
0.90	45.41	b96p90.o	1.0722	0.0026	0.0401	23.2	
		0 Volume Percent Inte	erstitial Wat	er in Tuff			
0.50	25.23	b100p50.o	0.6884	0.0018	0.0421	0.0	
0.90	45.41	b100p90.o	0.7861	0.0019	0.0625	0.0	

Design Analysis

Waste Package DevelopmentDesign ATitle: Criticality Analysis of Pu and U Accumulations in a Tuff Fracture NetworkDocument Identifier: A0000000-01717-0200-00050 REV 00Page Page 49 of 58

- - --

•

Table 7.4-9 50/50 Mixture of Soddyite and Plutonium OxideMCNP Results in 0.005 cm Wide Fracture								
Fissile Vol Frac.	Fissile Mass, Kg	MCNP Case ID	k _{eff}	σ	Average Energy of Fission (MeV)	H/X Ratio		
		13 Volume Percent Int	erstitial Wa	ter in Tuff				
0.10	3.36	b87sp10.0	0.6446	0.0015	0.0038	1023.3		
0.21	7.05	b87sp21.0	0.9222	0.0023	0.0054	486.3		
0.214	7.18	linear interpolation	0.9300	-	-	-		
0.22	7.38	b87sp22.o	0.9402	0.0019	0.0054	463.9		
0.50	16.78	b87sp50.o	1.1656	0.0021	0.0100	204.4		
0.90	30.20	b87sp90.o	1.2679	0.0022	0.0162	113.8		
8 Volume Percent Interstitial Water in Tuff								
0.10	3.36	b92sp10.0	0.6130	0.0015	0.0044	629.5		
0.26	8.72	b92sp26.0	0.9226	0.0022	0.0074	241.8		
0.267	8.96	linear interpolation	0.9300	-	-	-		
0.27	9.06	b92sp27.0	0.9332	0.0020	0.0073	232.7		
0.50	16.78	b92sp50.o	1.0727	0.0020	0.0129	125.9		
0.90	30.20	b92sp90.o	1.1652	0.0025	0.0207	70.1		
		4 Volume Percent Inte	erstitial Wat	er in Tuff				
0.10	3.36	b96sp10.o	0.5496	0.0016	0.0054	314.8		
0.47	15.77	b96sp47.o	0.9231	0.0023	0.0149	67.1		
0.479	16.07	linear interpolation	0.9300	-	•	-		
0.48	. 16.11	b96sp48.0	0.9307	0.0023	0.0146	65.8		
0.50	16.78	b96sp50.o	0.9389	0.0021	0.0157	63.1		
0.90	30.20	b96sp90.o	1.0166	0.0025	0.0262	35.3		
		0 Volume Percent Inte	erstitial Wat	er in Tuff				
0.50	16.78	b100sp50.0	0.6225	0.0016	0.0273	0.5		
0.90	30.20	b100sp90.o	0.7189	0.0020	0.0415	0.5		

Waste Package DevelopmentDesign AnalysisTitle: Criticality Analysis of Pu and U Accumulations in a Tuff Fracture NetworkDocument Identifier: A00000000-01717-0200-00050 REV 00Page 50 of 58

7.4.4 Results for 0.002 cm Fracture Width

For the 0.002 cm fracture width only plutonium oxide and a 50/50 mixture of soddyite and plutonium oxide cases were evaluated. Further, for these cases only the conditions for a tuff water fraction of 0.13, 0.08 and 0.04 were evaluated. Results for these cases are listed in Tables 7.4-10 and 7.4-11. Due to lower possible fissile mass in the fracture, a significant reduction in k_{eff} is noted.

Table 7.4-10 Plutonium Oxide MCNP Results in 0.002 cm Wide Fracture								
Fissile Vol Frac.	²³⁹ Pu Mass, .Kg	MCNP Case ID	k _{err} .	σ	Average Energy of Fission (MeV)	H/X Ratio		
		13 Volume Percent Int	erstitial Wa	ter in Tuff				
0.31	6.26	c87p31.o	0.9192	0.0021	0.0052	549.7		
0.319	6.44	linear interpolation	0.9300	-	-	-		
0.32	6.46	c87p32.o	0.9311	0.0018	0.0054	532.6		
0.50	10.10	c87p50.o	1.0736	0.0021	0.0073	340.8		
0.90	18.18	c87p90.o	1.2078	0.0017	0.0121	189.2		
8 Volume Percent Interstitial Water in Tuff								
0.40	8.08	c92p40.o	0.9295	0.0026	0.0071	262.0		
0.4004	8.09	linear interpolation	0.9300	-		-		
0.41	8.28	c92p41.o	0.9410	0.0020	0.0076	255.5		
0.50	10.10	c92p50.o	0.9928	0.0023	0.0085	209.6		
0.90	18.18	c92p90.o	1.1064	0.0020	0.0143	116.4		
		4 Volume Percent Inte	erstitial Wat	er in Tuff				
0.50	10.10	c96p50.o	0.8637	0.0024	0.0118	104.7		
0.72	14.54	c96p72.o	0.9285	0.0035	0.0150	72.7		
0.722	14.59	linear interpolation	0.9300	-	•	-		
0.73	14.75	с9бр73.0	0.9372	0.0018	0.0156	71.7		
0.90	18.18	с96р90.0	0.9583	0.0021	0.0190	58.1		

Design Analysis

....

Waste Package DevelopmentDesign ATitle: Criticality Analysis of Pu and U Accumulations in a Tuff Fracture NetworkDocument Identifier: A00000000-01717-0200-00050 REV 00Page Page 51 of 58

•

....

-	Table 7.4-11 50/50 Mixture of Soddyite and Plutonium Oxide MCNP Results in 0.002 cm Wide Fracture								
Fissile Vol Frac.	Fissile Mass, Kg	MCNP Case ID	σ	Average Energy of Fission (MeV)	H/X Ratio				
		13 Volume Percent Int	erstitial Wa	ter in Tuff					
0.50	6.72	c87sp50.o	0.9027	0.0016	0.0053	510.6			
0.53	7.12	c87sp53.o	0.9278	0.0016	0.0054	481.9			
0.533	7.16	linear interpolation	0.9300	-	-	-			
0.54	7.25	c87sp54.o	0.9348	0.0018	0.0050	472.8			
0.90	12.09	c87sp90.o	1.0892	0.0022	0.0078	283.9			
		8 Volume Percent Inte	erstitial Wat	er in Tuff					
0.50	6.72	c92sp50.o	0.8463	0.0023	0.0061	314.2			
0.65	8.73	c92sp65.o	0.9269	0.0022	0.0073	241.9			
0.658	8.84	linear interpolation	0.9300	•	-	-			
0.66	8.87	с92ѕрбб.о	0.9309	0.0018	0.0073	238.2			
0.90	12.09	c92sp90.o	1.0047	0.0021	0.0090	174.8			
		4 Volume Percent Inte	erstitial Wat	er in Tuff					
0.50	6.72	c96sp50.o	0.7416	0.0024	0.0085	157.2			
0.90	12.09	c96sp90.o	0.8761	0.0018	0.0127	87.6			
0.98	13.17	c96sp98.0	0.8936	0.0026	0.0124	80.4			

Waste Package DevelopmentDesign AnalysisTitle: Criticality Analysis of Pu and U Accumulations in a Tuff Fracture NetworkDocument Identifier: A00000000-01717-0200-00050 REV 00Page 52 of 58

7.4.5 Results for 0.001 cm Fracture Width

.....

For a further reduction in the fracture width, 0.001 cm, with 13%, 8% and 4% water in the tuff, a further reduction in k_{eff} is noted as shown in Tables 7.4-12 and 7.4-13 for these cases.

Table 7.4-12 Plutonium Oxide MCNP Results in 0.001 cm Wide Fracture								
Fissile Vol Frac.	²³⁹ Pu Mass, Kg	MCNP Case ID	Average Energy of Fission (MeV)	H/X Ratio				
		13 Volume Percent Int	erstitial Wa	ter in Tuff				
0.64	6.47	d87p64.o	0.9288	0.0017	0.0054	532.8		
0.641	6.48	linear interpolation	0.9300		-	-		
0.65	6.57	d87p65.o	0.9387	0.0018	0.0051	524.7		
0.90	9.09	d87p90.o	1.0494	0.0017	0.0069	378.9		
		8 Volume Percent Inte	erstitial Wat	er in Tuff				
0.70	7.07	d92p78.o	0.9005	0.0024	0.0074	299.7		
0.785	7.93	linear interpolation	0.9300	-	-	-		
0.79	7.98	d92p79.o	0.9318	0.0023	0.0073	265.4		
0.90	9.09	d92p90.0	0.9685	0.0022	0.0087	232.9		
	4 Volume Percent Interstitial Water in Tuff							
0.90	9.09	d96p90.o	0.8462	0.0024	0.0103	116.4		
0.98	9.90	d96p98.o	0.8631	0.0020	0.0112	106.9		

,

Design Analysis

Waste Package DevelopmentDesign ATitle: Criticality Analysis of Pu and U Accumulations in a Tuff Fracture NetworkDocument Identifier: A0000000-01717-0200-00050 REV 00Page Page 53 of 58

Table 7.4-13 50/50 Mixture of Soddyite and Plutonium Oxide MCNP Results in 0.001 cm Wide Fracture									
Fissile Vol Frac.	Fissile Mass, Kg	MCNP Case ID	σ	Average Energy of Fission (MeV)	H/X Ratio				
	13 Volume Percent Interstitial Water in Tuff								
0.90	6.05	d87sp90.0	0.8645	0.0018	0.0052	567.9			
0.98	6.59	d87sp98.0	0.8946	0.0015	0.0050	521.6			
		8 Volume Percent Int	erstitial Wat	er in Tuff					
0.90	6.05	d92sp90.o	0.8097	0.0017	0.0057	349.4			
0.98	6.59	d92sp98.o	0.8387	0.0020	0.0062	320.9			
4 Volume Percent Interstitial Water in Tuff									
0.90	6.05	d96sp90.o	0.7180	0.0017	0.0074	174.8			
0.98	6.59	d96sp98.o	0.7393	0.0018	0.0078	160.6			

Waste Package Development	Design Analysis
Title: Criticality Analysis of Pu and U Accumulations in a Tuff Fracture	Network
Document Identifier: A0000000-01717-0200-00050 REV 00	Page 54 of 58

7.4.6 K_{err} as a Function of Fracture Width

The results listed in the previous tables allow trending of the k_{eff} as a function of fracture width for plutonium oxide and a 50/50 mixture of soddyite and plutonium oxide for 90 volume percent fissile material in clayey material and 13 volume percent water in the tuff. Table 7.4-14 lists the k_{eff} as a function of the fracture width. For the 50/50 mixture of soddyite and plutonium oxide, a fracture width of about 0.0013 cm is required to obtain a k_{eff} of 0.93. Due to the slope of the PuO₂ curve no estimate is made for the thickness required for a k_{eff} of 0.93 for plutonium oxide.

Tabl 90 Volu	Table 7.4-14 Plutonium Oxide and 50/50 of Mixture Soddyite/PuO1MCNP Results As a Function of Fracture Width for90 Volume Percent Fissile Material and 13 Volume Percent Water in Tuff								
Fracture Width	Fissile Mass, Kg	MCNP Case ID	k _{eff}	σ					
		Plutonium Oxide	•						
0.001	9.09	d87p90.o	1.04943	0.00166					
0.002	18.18	c87p90.o	1.20775	0.00168					
0.005	45.41	b87p90.o	1.32091	0.00211					
0.010	90.66	a87p90.o	1.37312	0.00201					
	50/50 Mix	xture of Soddyite and Plutoni	um Oxide						
0.001	6.05	d87sp90.0	0.86451	0.00184					
0.0013	-	linear interpolation	0.93	· •					
0.002	12.09	c87sp90.o	1.08915	0.00224					
0.005	30.20	b87sp90.o	1.26786	0.00219					
0.010	60.30	a87sp90.0	1.33863	0.00242					

Waste Package Development	Design Analysis
Title: Criticality Analysis of Pu and U Accumulations in a Tuff Fracture N	letwork
Document Identifier: A0000000-01717-0200-00050 REV 00	Page 55 of 58

8. Conclusions

The tables in the previous sections provide the k_{eff} results for the fissile material as a function of fracture width or fissile concentration. In addition, an estimate of the fissile volume fraction and weight that would produce a k_{eff} of 0.93 is tabulated based on linear interpolation. These interpolated values are gathered and listed in Tables 8-1 and 8-2 as a function of spacing and material. The trend of the data indicates that the volume fraction of fissile material is inversely proportional to the fracture width by almost a constant factor, i.e. the volume fraction approximately doubles for a reduction in the width by a factor of 2. Stated another way, the fissile mass to produce a k_{eff} of 0.93 essentially remains constant for a given material. For uranium, the required weight seems almost constant with small deviations probably due to the statistical nature of the results and linear interpolation. However, for the materials containing plutonium, there seems to be a slight increase in mass as the fissile volume fraction increases. This may also be due to statistics and interpolation. However, since the trend is followed for four sets of data, it is probably related to either the fissile mass increase or the decrease in the hydrogen content of the fissile material.

Other observations that can be made from this data are:

- 1) soddyite is the least reactive fissile material and plutonium oxide is the most reactive
- 2) the results for fissile mixtures with water and fissile mixtures with clayey material are very similar
- 3) the fissile volume fraction increases as the amount of water in the tuff decreases

Waste Package DevelopmentDesign AnalysisTitle: Criticality Analysis of Pu and U Accumulations in a Tuff Fracture NetworkDocument Identifier: A00000000-01717-0200-00050 REV 00Page 56 of 58

.

.

Table 8-1 0.93 K _{wt} Fissile Volume Fractions and Weights MCNP Results for Fissile Mixtures with Water											
Fracture	13%	Water VF in	Tuff	8%	Water VF in	Tuff	·4%	Water VF in	Tuff		
Width, cm	Soddyite	PuO,	Mixture	Soddyite	PuO,	Mixture	Soddvite	PuO,	Mixture		
	Fissil	e Volume Fr	action	Fissil	e Volume Fr	action	Fissil	e Volume Fr	action		
0.100	0.0312	0.0057	0.0096	0.0322	0.0058	0.0099	0.0347	0.00604	0.0102		
0.010	0.355	0.062	0.105	0.438	0.074	0.125	0.722	0.113	0.195		
0.005	0.714	0.125	0.214	0.899	0.152	0.258	-	0.262	0.444		
0.002	•	0.317	0.541	•	0.388	0.662	•	0.723	-		
0.001	-	0.638	•	•	0.784	-	-	•	•		
	Fissile Weight, Kg Fissile Weight, Kg Fissil				sile Weight,	Kg					
0.100	10.07	5.57	6.24	10.39	5.67	6.44	11.20	5.90	6.63		
0.010	11.81	6.25	7.03	14.57	7.45	8.37	24.01	11.38	13.06		
0.005	11.89	6.31	7.18	14.97	7.67	8.66	•	13.22	14.90		
0.002	•	6.40	7.27	•	7.84	8.89		14.61	-		
0.001	-	6.45	•	-	7.92	-	-	•	-		

.

•

 Waste Package Development
 Design Analysis

 Title: Criticality Analysis of Pu and U Accumulations in a Tuff Fracture Network
 Document Identifier: A00000000-01717-0200-00050 REV 00
 Page 57 of 58

Table 8-2 0.93 K _{off} Fissile Volume Fractions and Weights MCNP Results for Fissile Mixtures with Clayey Material										
Fracture	13%	Water VF in	Tuff	8%	Water VF in	Tuff	4%	Water VF in	Tuff	
Width, cm	Soddyite	PuO,	Mixture	Soddyite	PuO,	Mixture	Soddyite	PuO ₂	Mixture	
	Fissil	e Volume Fr	action	Fissil	e Volume Fr	action	Fissil	e Volume Fr	action	
0.100 ·	0.0389	0.0067	0.0115	0.0498	0.0085	0.0144	0.082	0.0162	0.0273	
0.010	0.359	0.064	0.109	0.455	0.079	0.134	0.7598	0.143	0.2403	
0.005	0.724	0.127	· 0.214	0.906	0.158	0.267	•	0.292	0.479	
0.002	•	0.319	0.533	-	0.4004	0.658	•	0.722	•	
0.001	•	0.641	-	-	0.789	•	•	•	•	
	Fis	sile Weight,	Kg	Fissile Weight, Kg Fissile Weight, Kg			Kg			
0.100	12.55	6.55	7.48	16.07	8.31	9.36	26.46	15.83	17.75	
0.010	11.94	6.45	7.30	15.13	7.96	8.98	25.27	14.41	16.10	
0.005	12.06	6.41	7.18	15.09	7.97	8.96	•	14.73	16.07	
0.002	•	6.44	7.16	•	8.09	8.84	•	14.59	-	
0.001	-	6.48	-	-	7.97	•	•	-	-	

Waste Package Development	Design Analysis
Title: Criticality Analysis of Pu and U Accumulations in a Tuff Fractu	re Network
Document Identifier: A0000000-01717-0200-00050 REV 00	Page 58 of 58

....

9. Attachments

The following is a list of attachments. Electronic attachments are provided on Colorado DT-350 backup tapes (Ref. 5. 13) and listed in Attachment II.

Attachment	Description	Number of Pages	Date
Ι	Sample MCNP input file listings	6	11/17/97
П	List of MCNP output files supporting results	10	11/17/97
ш	Listing of EXCEL spreadsheet Tuff.xls,Sheet1	4	11/17/97
IV	Listing of EXCEL spreadsheet Tuff.xls,Sheet2	2	11/17/97
v	Listing of EXCEL spreadsheet Tuff.xls,Sheet3	1	11/17/97
VI	Listing of EXCEL spreadsheet Clay.xls,Sheet1	6	11/17/97
VII	Listing of EXCEL spreadsheet Clay.xls,Sheet2	1	11/17/97

Attachment I

A listing of three typical MCNP input files is provided in this section. The files represent a fracture width of 0.01 cm for 10% soddyite, plutonium oxide, and soddyite/PuO₂ mixtures in tuff with 8%, 13%, and 0% interstitial water, respectively. Note that the titles in the input files refer to the fracture thickness at the edge of a fracture cube. The fracture width, twice this value, is used in previous sections to distinguish among the fracture width evaluations.

NEAR-FIELD CRITICALITY ANALYSIS

C t92s10: .005 cm, 8% water, 10% soddyite С **CELL SPECIFICATIONS** C inner region 1-2.325135 -1 2 -3 4 -5 6 U=1 IMP:N=1 1 2 -1.37 1: -2: 3: -4: 5: -6 U=1 IMP:N=1 2 C 3 cm cube 3 0 -11 12 -13 14 -15 16 LAT=1 FILL=1 U=2 IMP:N=1 C 1 meter cube 4 0 -21 22 -23 24 -25 26 FILL=2 U=3 IMP:N=1 5 1 -2.325135 21: -22: 23: -24: 25: -26 U=3 IMP:N=1 C 3 meter cube 6 0 -31 32 -33 34 -35 36 FILL=3 IMP:N=1 С SURFACE SPECIFICATIONS C inner region - tuff PX 1.495 1 2 PX -1.495 3 PY 1.495 4 PY -1.495 5 PZ 1.495 6 PZ -1.495 C outer region - soddyite 11 PX 1.5 12 PX -1.5 PY 1.5 13 14 PY -1.5 15 PZ 1.5 16 PZ -1.5 C 1 meter cube 21 PX 50. 22 PX -50. 23 PY 50. PY -50. 24 25 PZ 50.

Attachment I

A0000000-01717-0200-00050 REV 00

26 PZ -50. C reflector *31 PX 150. *32 PX -150. *33 PY 150. *34 PY -150. *35 PZ 150. *36 PZ -150.

.......

MODE N \$ neutron transport KCODE 4000 1. 7 37 \$ criticality source SDEF RAD=D1 ERG=D2 \$ general source SI1 50 **\$** source information SP2 -3 \$ source probability, watt fission spectrum C MATERIAL SPECIFICATIONS C 100% tuff, 8% water, density 2.325135 g/cc M1 8016.50c -1.176071 . \$ oxygen 14000.50c -.807062 \$ silicon \$ aluminum 13027.50c -.151527 26000.55c -.014707 \$ iron 20000.50c -.008994 \$ calcium 12000.50c -.003321 \$ magnesium 22000.50c -.001320 \$ titanium 11023.50c -.059898 \$ sodium 19000.50c -.091967 \$ potassium 15031.50c -.000147 \$ phosphorus 25055.50c -.001166 \$ manganese 1001.50c -.008953 \$ hydrogen MT1 LWTR.01T C 10% soddyite, 90% water, density 1.37 g/cc M2 92235.50c -.333670 \$ uraniun 8016.50c -.912809 \$ oxygen 14000.50c -.019936 \$ silicon 1001.50c -.103585 \$ hydrogen MT2 LWTR.01T PRINT NEAR-FIELD CRITICALITY ANALYSIS C t87p10: .005 cm, 13% water, 10% PuO2

C CELL SPECIFICATIONS

C inner region

1 1-2.375135 -1 2 -3 4 -5 6 U=1 IMP:N=1

.

Attachment I

2 2 - 2.046 1: -2: 3: -4: 5: -6 U=1 IMP:N=1 C 3 cm cube -11 12 -13 14 -15 16 LAT=1 FILL=1 U=2 IMP:N=1 3 0 C 1 meter cube 4 0 -21 22 -23 24 -25 26 FILL=2 U=3 IMP:N=1 5 1-2.375135 21: -22: 23: -24: 25: -26 U=3 IMP:N=1 C 3 meter cube -31 32 -33 34 -35 36 FILL=3 IMP:N=1 6 0 SURFACE SPECIFICATIONS С C inner region - tuff PX 1.495 1 PX -1.495 2 PY 1.495 3 PY -1.495 4 PZ 1.495 5 PZ -1.495 6 C outer region - soddyite 11 PX 1.5 PX -1.5 12 PY 1.5 13 PY -1.5 14 15 PZ 1.5 16 PZ -1.5 C 1 meter cube 21 PX 50. PX -50. 22 23 PY 50. PY -50. 24 25 PZ 50. 26 PZ -50. C reflector *31 PX 150. *32 PX -150. *33 PY 150. *34 PY -150. PZ 150. *35 *36 PZ -150. MODE N \$ neutron transport KCODE 4000 1. 7 37 \$ criticality source SDEF RAD=D1 ERG=D2 \$ general source

```
SII 50
                $ source information
SP2 -3
                $ source probability, watt fission spectrum
   MATERIAL SPECIFICATIONS
C
C 100% tuff, 13% water, density 2.375135 g/cc
M1 8016.50c -1.220476
                          $ oxygen
  14000.50c -.807062
                         $ silicon
  13027.50c -.151527
                         $ aluminum
  26000.55c -.014707
                         $ iron
  20000.50c -.008994
                         $ calcium
```

12000.50c -.003321 \$ magnesium 22000.50c -.001320 \$ titanium 11023.50c -.059898 \$ sodium 19000.50c -.091967 \$ potassium 15031.50c -.000147 **\$** phosphorus \$ manganese 25055.50c -.001166 1001.50c -.014549 \$ hydrogen MT1 LWTR.01T C 10% PuO2, 90% water, density 2.046 g/cc M2 94239.55c -1.010743 \$ plutonium 8016.50c -.934534 \$ oxygen

1001.50c -.100723 \$ hydrogen MT2 LWTR.01T PRINT

NEAR-FIELD CRITICALITY ANALYSIS

C CELL SPECIFICATIONS (T100sp10: .005 cm, 0%water, 10% Soddyite/PuO2) C inner region 1 1-2.245135 -1 2 -3 4 -5 6 U=1 IMP:N=1 2 2 -1.708 1: -2: 3: -4: 5: -6 U=1 IMP:N=1 C 3 cm cube 3 0 -11 12 -13 14 -15 16 LAT=1 FILL=1 U=2 IMP:N=1 C 1 meter cube 4 0 -21 22 -23 24 -25 26 FILL=2 U=3 IMP:N=1 5 1 -2.245135 21: -22: 23: -24: 25: -26 U=3 IMP:N=1 C 3 meter cube 6 0 -31 32 -33 34 -35 36 FILL=3 IMP:N=1 С SURFACE SPECIFICATIONS C inner region - tuff 1 PX 1.495 2 PX -1.495 3 PY 1.495

Attachment I

Attachment I

PY -1.495 4 5 PZ 1.495 6 PZ -1.495 C outer region - soddyite 11 PX 1.5 PX -1.5 12 13 PY 1.5 PY -1.5 14 15 PZ 1.5 PZ -1.5 16 C 1 meter cube 21 PX 50. PX -50. 22 23 PY 50. PY -50. 24 25 PZ 50. 26 PZ -50. C reflector *31 PX 150. *32 PX -150. *33 PY 150. *34 PY -150. *35 PZ 150. *36 PZ -150. MODE N \$ neutron transport KCODE 4000 1. 7 37 \$ criticality source SDEF RAD=D1 ERG=D2 \$ general source SI1 50 **\$** source information SP2 -3 \$ source probability, watt fission spectrum C MATERIAL SPECIFICATIONS C 100% tuff, no water, density 2.245135 g/cc M1 8016.50c -1.105025 \$ oxygen 14000.50c -.807062 \$ silicon 13027.50c -.151527 \$ aluminum 26000.55c -.014707 \$ iron 20000.50c -.008994 \$ calcium 12000.50c -.003321 \$ magnesium 22000.50c -.001320 \$ titanium 11023.50c -.059898 \$ sodium 19000.50c -.091967 \$ potassium 15031.50c -.000147 \$ phosphorus

Attachment I

25055.50c -.001166 \$ manganese C 5% soddyite, 5% plutonium, 90% water, density 1.708 g/cc M2 92235.50c -.166835 \$ uraniun 8016.50c -.923671 \$ oxygen 14000.50c -.009968 \$ silicon 1001.50c -.102154 \$ hydrogen 94239.55c -.505371 \$ plutonium MT2 LWTR.01T PRINT

-- --- -- --

Attachment II

A list of the MCNP output cases that are referenced in this document are listed in the following sub-sections.

Results for 0.1 cm Fracture Width

Directory of C3Work/autic/aran incholuto* HEADOUT HXAVE OUT PICOPODS PICOPUDS O 3.696 11-06-97 2:54p headout 63.081 11-06-97 2:55p hurve.out 2,194 11-06-97 2:55p p100p005 116,899 11-06-97 2:56p p100p005 2,195 11-06-97 2:55p p100p006 PICOPODS 118,002 11-06-97 2:56p p100pi816.0 2.195 11-06-97 2:55p p100pi817 116,299 11436-97 2:36p p100p01 2,189 11406-97 2:35p p100p01 116,900 11406-97 2:36p p100p01 PICIPULIT O PICOPOI PIOPOL O 116,000 11-06-97 2:55p p100-01.0 2,236 114/6-97 2:55p p100-03 117,143 114/6-97 2:55p p100-03 2,236 114/6-97 2:55p p100-05 117,113 11-06-97 2:55p p100-05 117,116 11-06-97 2:55p p100-05 117,116 11-06-97 2:55p p100-01 118,552 11-06-97 2:55p p100-01.0 2,206 11-06-97 2:55p p100-01.0 P IONSO3 PICOSOJ O PIODS04 PICOSO4 O PICOSOS PICOSOS O PICOSPOI PIONSPOI O PIODSPOA PIODSPOA O 118.339 1146-97 2369 p103.pt.(2.304 11-06-97 2:559 p103.pt.(118.375 11-06-97 2:559 p103.pt)(2.232 11-06-97 2:559 p179.005 118.029 11-06-97 2:559 p179.005 2.233 11-06-97 2:359 p179.006 PIONSPOF PIONSPOF O PETPODS O PETPODS O PETPODS O 2.253 11-06-97 2:55p p47p006 116.286 11-06-97 2:56p p47p106.0 2.247 11-06-97 2:55p p47p01 11.7953 11-06-97 2:56p p47p01.0 2.294 11-06-97 2:55p p47p03.0 118.414 11-06-97 2:55p p47p03.0 P17P006 O P17P01 0 PE7503 PE7503 0 118.414 11-06-97 2:55p p87:803.0 2.302 11-06-97 2:55p p87:803 118.002 11-06-97 2:55p p87:813.0 2.302 11-06-97 2:55p p87:813.2 117:503 11-06-97 2:55p p87:813.2 2.304 11-06-97 2:55p p87:804.0 2.364 11-06-97 2:55p p87:804.0 2.366 11:40-57 2:55p p87:804.9 118.183 11-06-97 2:55p p87:804.9 118.183 11:40-57 2:55p p87:804.1 118.383 11:40-57 2:55p p87:804.1 118.383 11:40-57 2:55p p87:804.1 P\$75031 P\$75031 O P\$75032 P\$75032 O P\$7504 P17504 0 P\$75P009 P175P009 O P175P01 P175P01 O 112.53 11-06-97 2:56p p87apti2 2.357 11-06-97 2:55p p87apti2 117,138 11-06-97 2:56p p87apti2 2.250 11-06-97 2:56p p97apti2 118,329 11-06-97 2:56p p92pti05,0 2.251 11-06-97 2:55p p92pti05 PETSPO2 PETSPO2 O P92P005 P92P005 O P92P006 2.251 11-06-97 2:55p pr2pm6 118,199 11-06-97 2:57p pr2pt06.0 2.245 11-06-97 2:55p pr2pt01 116,423 11-06-97 2:55p pr2pt01 2:593 11-46-97 2:55p pr2pt01 2:01 11-06-97 2:55p pr2pt01 118,443 11-06-97 2:55p pr2pt03 118,443 11-06-97 2:55p pr2pt03 118,443 11-06-97 2:55p pr2pt03 111,442 11-06-97 2:55p pr2pt03 117,442 11-06-97 2:55p pr2pt03 117,642 PV2P1816 O P92P01 P92P01 O PV2503 O PV25034 P925034 O P925035 P925035 O 117.482 1146-97 2257p 972404 2.293 11.06-97 2257p 972404 117.838 11-06-97 2257p 972404.0 2.362 11-06-97 2257p 97240109.0 2.355 11-06-97 2255p 9724010 118.189 11-46-97 2255p 9724011 PV2SO4 1925(H O 1925PIX/9 PV2SPUX/9 D P925P01 P925P01 0 P925P02 P925P02 P96P005 P96P005 P96P005 P96P005 P96P005 P96P005 112.109 1146-97 2:57p 99240113 2.553 11-06-97 2:55p 9924012 116.872 1146-97 2:57p 9924012.0 2.250 11-06-97 2:55p 99540105 117.469 11-06-97 2:55p 99540105 2.251 11-06-97 2:55p 99540106 2.251 11-06-97 2:579 pMptR6 113.142 11-06-97 2:579 pMptR7 117.924 11-06-97 2:579 pMptR7 2.255 11-06-97 2:579 pMptR7 117.922 11-06-97 2:579 pMptR0 117.922 11-06-97 2:579 pMptR0 PHOPINIT O P%P01 P%P01 P%P01 P%S03 P%S03 P%S03 P%S035 117.028 11-06-97 2:57p p96(r).0 2:293 11-06-97 2:55p p96(r)3.0 118.416 11-06-97 2:55p p96(r)3.0 2:301 11-06-97 2:55p p96(r)3.0 2:303 11-06-97 2:55p p96(r)3.0 2:303 11-06-97 2:55p p96(r)3.0 118.412 11-06-97 2:55p p96(r)3.0 118.412 11-06-97 2:55p p96(r)3.0 118.412 11-06-97 2:55p p96(r)3.0 9:355 11-06-97 2:55p p96(r)3.0 9:355 11-06-97 2:55p p96(r)3.0 P945035 P945035 O P94504 P94504 O P94505 P94505 O 111.169 11-16-97 2:57p p96x05.a 2.355 11-16-97 2:55p p96xp01 118.945 11-06-97 2:57p p96xp01.a 2.653 11-06-97 2:55p p96xp011 119.074 11-06-97 2:57p p96xp011.a PHSPIL PHSPIL O PHSPIII PHSPIII

.

....

P%SP012	2.361 11-06-97 2:55p p96m012
P%SP012 0	119,048 11-06-97 2:57p p9/m012.n
PHSP02	2.353 11-06-97 2:55p p96ep02
PRASPUZ O	118,699 11-06-97 2:57p p96ap02.0
PLUTOS HX	\$.350 11-14-97 2:55p photoS.hz
PLUTOS-I KEP	3.364 11-06-97 2:54p plato 5.keff
SUMRY-1 OUT	3.093.492 11-06-97 2:35p survey.outlat
TEMP	6,025 114H-97 2:54p temp

. .

Results for 0.01 cm Fracture Width

Directory of C1	Worktuttictransactionate
HEADING	133 10-24-97 1:26e beading
HEADOUT	5.605 (i)-24-97 1:26e headout
HXAVE OUT	\$5.044_10-24-97_1-26e baser out
PLITTOI-LKE	E 2936 10-2497 1:778 about heff
SUMPY-I OF	T 1037057 UL7497 1-778 summer metho
30MK1-1 00	9 911 HL74.07 1-77- 45-11-
THUSE LINE O	119 475 10-34 87 1-376 856116 a
TUNER	117.013 Nº 24-97 1.279 Kmp(11.5
1100710	118 611 10 31 63 1/32 1/00-10 -
TIMPIO	
1100220	2.133 10-24-97 1.2791103030
TIMPOU U	117,500 10-24-97 1:279 1:140,500
1 ILENTAL	2.133 102447 1.2791100000
TRUNKO	117393 10-24-97 1:279 1103991.6
110947	2.135 10-24-97 1:2791104991
TIONALO	117.963 10-24-97 1:27p (100p91.6
THIMAS	2,133 10-24-97 1:270 1100992
1100645 O	117,294 10-24-97 1:27p t100p92.0
TIOUSIO	2.196 10-24-97 1:27p t100+10
T100510 O	118,755 10-24-97 1:27p t100x10.o
T100550	2,198 10-24-97 1:27p 1100x50
TIGISSO O	117,540 10-24-97 1:27p t100±50.o
T100590	2,196 10-24-97 1:27p t100/90
T100590 O	117,669_10-24-97_1:27p t100e90.o
T100598	2,198 10-24-97 1:27p t100#98
T100591 O	118,755 10-24-97 1:27p t100e98.o
T1005P10	2.257 10-24-97 1:27p t100sp10
TIOSPINO	118.957 10-24-97 1:27p 1100ap10.o
TICOSPSO	2.258 10-24-97 1:27p c100ap50
T100SP50 O	118.011 10-24-97 1:27p 1100ap50.o
THOUSP90	2,259 10-24-97 1:27p (100ap90
THUSP90 O	118.041 10-24-97 1:27p 1100ap90.o
THUSPH	2.259 10-24-97 1:27p tHDap94
THINSPONO	121,454 10-24-97 1:27p (100)ap94.n
TIOUSPYE	2,259 10-24-97 1:27# t100x098
TIMSPH O	119.226 10-24-97 1:27p (10/mp98.0
T17PU6	2.215 10-24-97 1:27p t87pt16
T17206 O	118,105 10-24-97 1:270 187006.0
T17P07	2.215 10-24-97 1:278 07107
T17PU7 0	116.530 HI-24-97 1:27e t87e07 e
T17P10	2.255 10-24-97 1:270 187010
T17P10 0	116 420 10-24-97 1-278 (87810 0
T17P50	2 254 10-24-97 1-276 (87/150
T17P50 0	116 174 10-74-97 1-270 17050 0
787890	7 756 IL 74.97 1-776 17780
717840 0	116 146 10 74 07 1-770 rF700 a
TETRIE	2 756 10.74.07 1-77a (87aus
TRIPUE	116 648 10-74 07 1-77a 187aus a
717510	7 307 10-74-07 1 77-197-10
	4.344 10-24-77 1.379 147314 117 857 10-34 87 1-376 187-10 6
797535	7 787 11.74.87 1.77. 197.36
777515 0	117 841 10-54 07 3-97-107-10
797514	3 305 30 31 83 1.33
TT7514 0	117 817 10.34 WT 1.975 197.34
TW7550	3 304 10 34 03 4:37 1.07 00 00.0
	2,500 10-69-77 1.270 107507
797500	120,223 AF24-97 1279 1872315
11/2/0	2.564 16-24-97 1:279 (2795)
12/39/ 0	119.5% N=24-97 1:279 187.5% B
18/3710	2,317 10+24-97 1:27018/3018
11/3210 0	117,952 IN-24-97 1:210 templita
14/3711	2.322 11-24-97 1:2791473911
11/3711 0	118.121 10-24-97 1:27p tk/sp11.0
12/3/30	2.363 11+24-97 1:279 (871930)
11/3/90 0	116,921 10-24-97 122/p 18/3p31.6
11750-90	2,364 10-24-97 1:270 1874990
1873150 0	110,920 10-24-97 1:270 t875091Le
IN/SPUE	2,383 II-24-97 1:27p (87spec
117SPUE O	118.412 10-24-97 1:27p 187spec.o
TRISPUE CO	118,670 10-24-97 1:27p t87spue.no
TISPIIR	2,998 1(1-24-97 1:27p 18sp11e
TISPIIR O	120,484 10-24-97 1:27p t8xp11r.m
192807	2.212 10-24-97 1:27p t/2p07
T92P07 O	118,075 10-24-97 1:27p #92p07.a
TY2POIL	2.212 10-24-97 1:27p t92pm
TY2PUE O	118,104 39-24-97 1:27p t92ptill.in
TY2P10	2.253 10-24-97 1-278 (92810

Attachment II

....

T02810 0	118 169 10-34-97 1-976 M2610 6
131,10 0	
191530	2,232 10-24-97 1:279 (52031
192 25 0 O	117,925 10-24-97 1:21p (72p50.e
T92290	2.254 10-24-97 1:27# 02:90
T97891 0	117 971 10.74.97 1-714 197-90 4
	3 396 10 34 03 1/33 /03
TATAOF	2.285 10-24-97 1:279 19200
T92FUE O	116.549 10-24-97 1:21p (92put.o
T92510	2,301 10-24-97 1:279 192410
T92510 0	117.930 10-24-97 1-286 (92:10.4
101614	7 757 10.74 87 1-77- 47-44
1742	
T92544 U	118718 Br-24-AL 1:510 (A574410
TY2546	2,257 10-24-97 1:27p 192+46
T92546 O	118,348 30-24-97 1:28p (92,46.n
TV2550	2.301 10-24-97 1:27# (92:50
TOTES	117 717 10.74.97 1-710 197-50 0
1923041 0	
141240	2.011 10-24-97 1.27p 192890
T932590 C	118_546_10-24-97_1:21p 192490.o
T925P10	2,360 LD-24-97 1:27p t92sp10
T925P10 O	118,994 10-24-97 1:280 1920010.0
7015917	7 361 ID.14.07 1-77a (97m17
17424 14	
19:3711 0	118,104 10-24-97 1:280 1728014.0
TY25P13	2,320 10-24-97 1:27p (92ip13
TY25PIJ O	[18,851_10-24-97_1:28p t92sp13.o
T925P50	2.361 10-24-97 1:27# (92#50
T025850 0	170 674 10-74-97 1-78a (97m50 a
	9 343 10 34 03 1/37- 03-00
19726-20	2.362 11-24-97 1.279 (92094)
T925P90 D	1211020 10-14-44 1:528 64200-000
T92SPUE	2.388 10-24-97 1:27p 192spue
T92SPUE O	118,918 KI-24-97 1:280 t92sour.0
TRAPIO	2 753 10-74-97 1-77e #6e10
70/810 0	118 196 10 11 07 1-26
LANALIN C	118.343 It+24-97 1:389 (940)10.0
T96P11	2.254 10-24-97 1:27p (96p11
T96P11 O	117,470 10-24-97 1:28p t94p11.0
T96P12	2.254 10-24-97 1:270 (96012
T96212 D	117 420 10-24-97 1-280 196012 0
704940	3 363 10 34 87 1/37- #6-10
190720	2,252 10+24-97 1:270 190050
T96PS0 O	118.329 10-24-97 1:28p t96p50.0
T96P90	2.254 10-24-97 1:27p 196p90
T96P90 0	117,470 10-24-97 1-280 (96090.0
794510	3 301 10 24 07 1-2704-10
	2.001 10-2-91 1.21p (50810
124/210 0	118,240 11>24-97 1:28p (906)10.0
T96550	2,301 10-24-97 1:27p t96450
T96550 O	118,759 10-24-97 1:28# (96450.0
T96572	2.302 10-24-97 1:270 196472
794577 0	118 660 10.74.97 1-21-196477.0
1703/1 0	1 100 At 14 00 1 00
124/21/2	2,312 10-24-97 1:270 196673
T96573 O	118,630 (0-24-97 1:28p (96473.o
T%59 0	2,301 10-24-97 1:27p t96r90
T96590 O	118.687 10-24-97 1:210 196490.0
TOACPIN	7 360 1/1.74.97 1-77a (96m)0
1703110	Province (1), 2 4, 31 1, 915 1, 1, 000 1, 0
1963710 0	101 110 10 04 00 1.00
	121,115 10-24-97 1:28p 196ep10.0
1302618	121,115 10-24-97 1:28p (96ep10.0 2,365 10-24-97 1:27p (96ep19
TY6SPI9 O	121,115 10-24-97 1:28p 196ap10.0 2,365 10-24-97 1:27p 196ap19 118,432 10-24-97 1:28p 196ap19.0
1965P19 O	121,115 10-24-97 1:28p (%ep10.e 2.365 10-24-97 1:27p (%ep19 118,432 10-24-97 1:21p (%ep19.u 2.363 10-24-97 1:27p (%ep19.u
TY65P19 0 T965P20	121,115 10-24-97 1:25p t96ap10.0 2.365 10-24-97 1:27p t96ap19 118,432 10-24-97 1:27p t96ap19.0 2.363 10-24-97 1:27p t96ap20 119 119 10-24-97 1:27p t96ap20
1965P19 O 1965P19 O 1965P20 1965P20 O	121,115 1(-24-97 1:28p t96ap10.e 2,565 10-24-97 1:27p t96ap19 18,432 10-24-97 1:28p t96ap19.u 2,563 10-24-97 1:27p t96ap20 119,189 10-24-97 1:28p t96ap20.e
1965P19 1965P19 O 1965P20 1965P20 O 1965P50	121,115 1(+24-97 1;25p thiap10.0 2,365 10-24-97 1;27p thiap19 118,432 10-24-97 1;27p thiap19.0 2,363 10-24-97 1;27p thiap20.0 119,189 10-24-97 1;27p thiap20.0 2,361 10-24-97 1;27p thiap20.0
1965P19 1965P19 1965P20 1965P20 1965P50 1965P50 0	121,113 10-24-97 1226 ლრიც 0.0 2,345 10-24-97 1279 ლრიც 19 118,432 10-24-97 1279 ლრიც 19 2,363 10-24-97 1279 ლრიც 20 119,189 10-24-97 1279 ლრიც 20 2,361 10-24-97 1279 ლრიც 20 2,361 10-24-97 1279 ლრიც 20 118,138 10-24-97 1279 ლრიც 20 118,138 10-24-97 1279 ლრიც 20
1965P19 1965P19 1965P20 1965P20 1965P50 1965P50 1965P50 1965P50 1965P50 1965P50	121,113 10-24-97 1:22p pHap10.e 2.365 10-24-97 1:22p pHap19 118,432 10-24-97 1:22p pHap19.e 118,432 10-24-97 1:22p pHap20.e 19,199 10-24-97 1:22p pHap20.e 2.361 10-24-97 1:22p pHap30.e 2.362 10-24-97 1:22p pHap30.e
1965P19 T965P20 T965P20 T965P50 T96	121,113 10-24-97 1:22p 9%ap10.e 2,363 10-24-97 1:27p 9%ap19 118,432 10-24-97 1:27p 9%ap20 2,363 10-24-97 1:27p 9%ap20 119,189 10-24-97 1:27p 9%ap20 2,361 10-24-97 1:27p 9%ap30.e 2,362 10-24-97 1:27p 9%ap30.e 2,362 10-24-97 1:27p 9%ap30.e

Results from new runs

Directory of CA	WorkVutticVassocitiewruns
TOSPIIR	3.019 01-28-98 3.37p (0xp11r
TUSPIIRO	121,160 01-28-98 3:37p dbp11m
TE7SPX	2.993 01-28-98 3:37p t87spx
TE7SPXO	121.186 01-28-98 3:37p 187apan
TE7SPY	2.994 01-28-98 3:379 187spy
TE7SPYO	121.234 01-28-98 3:37p 187spyn
TESPIIR	3,086 01-28-98 3:37p t8xp11r
TISPIIRO	121,481 01-28-98 3:37p tExp11m
TY25P11	2.392 01-28-98 3:37p tV2sp11
T925P110	119,151 01-28-98 3:37p 192sp11o
TY2SPX	2.947 (11-28-98 3:37p 192sps
T925PXO	121.112 01-28-98 3:370 192.000
TY25PY	2.993 01-28-98 3:37p 192spy
TY25PYO	121,291 01-28-98 3:379 1924950

Results for 0.005 cm Fracture Width

Directory of CA	WorkVortleVeranauctiphoto2
HEADING	133 11-24-97 1:28p heading
HEADOUT	3.938 10-24-97 1:28p headout

.

.

Attachment II

. .

.

· -

.

.

.

....

.

•

HXAVE	OUT	46,286 10-24-97 1:28p hasve.out
N100P50	0	120,706 10-24-97 1:28p s100p50.e
N100P90	•	2,161 10-24-97 1:28p #100y90
N102550		2.204 10-24-97 1:21e a100x30
N100590	0	117,374 10-24-97 1:20p alcoso.a 2,204 10-24-97 1:20p alcoso.a
N100590	0	117_316 10-24-97 1:28p s100x90.e
NIMSPS	io	118.042 10-24-97 1:28p aHTmp50.0
N1005P90	, 10	2.265 10-24-97 1:28p m103up98) 119.257 10-24-97 1:28p m103up990.o
NETPIO	^	2.262 10-24-97 1:28p ml7p10
NE7P12	U I	2,263 10-24-97 1:28p ml7p12
NE7P12 NE7P13	0	117,599 KI-24-97 1:28p n87p12.e 2.263 10-24-97 1:28p n87p13
NETPI3	0	118,199 10-24-97 1:21p n87p13.0
NETPSO	0	116,204 10-24-97 1:28p s87p50.s
NE7P90	0	2.263 10-24-97 1:28p n87p90 117.679 10-24-97 1:28p n87p90.p
N17550	~	2.311 10-24-97 1:28p #87:30
N\$7571	0	2.312 10-24-97 1:28p n87s71
NE7571 NE7572	0	117.816 10-24-97 1:28p n87s71.0 2.312 10-24-97 1:28p n87s72
N\$7572	0	117,683 10-24-97 1:28p #87172.0
N\$7590	0	118.416 10-24-97 1:21p a87:90.0
NE75P10 NE75P10	0	2.370 10-24-97 1:28p n87ap10 118.136 10-24-97 1:28p n87ap10.0
N875P21		2.376 10-24-97 1:21p n17m21
N#75P22	0	2.372 10-24-97 1:21p nl7ap21.0
N#75P22 N#75P50	0	118.214 10-24-97 1:28p sl7sp22.0 2.370 10-24-97 1:28p sl7sp50
NETSP50	0	118.671 10-24-97 1:28p #87ap50.0
NE75290	0	116,893 10-24-97 1:29p al7ap90.n
N92P10	0	2,260 10-24-97 1:28p #92p10 118 411 10-24-97 1:29p #92p10 p
N92P15	-	2.261 10-24-97 1:28p #92p15
N92P15	o	118.168 10-24-97 1:299 #92915.0 2.261 10-24-97 1:28p #92916
N92P16 N92P50	0	118,200 10-24-97 1:29p #92p16.0 2.259 10-24-97 1:28p #92p50
N92P50	0	117,954 10-24-97 1:29p #92p50.o
N92P90	o	118,058 10-24-97 1:29p #92p90.o
N92550 N92550	0	2,308 10-24-97 1:28p #92i50 117,930 10-24-97 1:29p #92i50.p
N92590	-	2.308 10-24-97 1:28p #92#90
N92590	0	2.368 10-24-97 1:28p #92sp10
N925P10	0	118.431 10-24-97 1:29p #92#010.6 2.372 10-24-97 1:21p #92#025
N925P25	0	118.376 10-24-97 1:29p #92sp25.m
NV25P26	o	118.749 10-24-97 1:29p #92sp26.e
NV25P50 NV25P50	o	2,348 10-24-97 1:28p #92sp50 118,888 10-24-97 1:29p #92sp50.0
N925290	0	2.349 30-24-97 1:28p #92sp90 118 831 10-24-97 1:29p #92sp90
N96P10	č	2.260 10-24-97 1:28p #Hop10
NYAPIO	0	2.261 111-24-97 1:29p #96p10.o
N96P26	0	118,415 10-24-97 1:29p #96p26.0
NMP27	0	120,123 10-24-97 1:29p #96p27.o
N96P50	0	2,239 10-24-97 1:21p #96p50 117,441 10-24-97 1:29p #96p50.o
NKPAD	0	2.261 10-24-97 1:21p #96p90
N96550		2.308 10-24-97 1:28p #¥6450
N96590	0	2.308 10-24-97 1:239 #9620.0
DV2ARM B02AMM	0	117.957 10-24-97 1:29p #96#90 o 2.309 10-24-97 1:28e #96#98
N96598	0	118.687 10-24-97 1:29p #96#98.0
N965P10	0	2.306 10-24-97 1:230 1994010 119,431 10-24-97 1:290 1966010.0
N965P44	o	2,370 10-24-97 1:28p #96ap44 119,131 10-24-97 1:29n #96ap44 -
N965745	~	2.374 10-24-97 1:21p #96ap45
N965250	U	2.368 10-24-97 1:28p #964p45.0
N965250	0	119,189 10-24-97 1:29p #96ep50.0 2,369 10-24-97 1:28p #96ep90

Attachment II

.

Page 4

N965F90 O 119,132 10-24-97 1;29p #HapMLo PLUTO2-1 KEF 2471 10-24-97 1;28p plan2.keff SUMRY-1 OUT 910.315 10-24-97 1;28p mmry.ovdist

Results for 0.002 cm Fracture Width

 Directory of CAWorkiwalk/armanectopian3

 H87731
 2.254
 10-24-97
 1:36p h87p31

 H87731
 0
 118.172
 10-24-97
 1:35p h87p31

 H87791
 0
 118.172
 10-24-97
 1:35p h87p31

 H87792
 0
 117.543
 10-24-97
 1:35p h87p32

 H87793
 2.254
 10-24-97
 1:35p h87p50

 H87790
 0
 116.449
 10-24-97
 1:35p h87p50

 H87790
 2.256
 10-24-97
 1:45p h87p50

 H87790
 2.256
 10-24-97
 1:45p h87p50

 H87790
 2.256
 10-24-97
 1:35p h87p50
 2,256 10:24-97 1:14p MT/950 116,448 10:24-97 1:25p MT/950.0 2,563 10:24-97 1:14p MT/950.0 2,563 10:24-97 1:14p MT/950.0 2,563 10:24-97 1:14p MT/954.0 117,532 10:24-97 1:129 MT/954.0 2,364 10:24-97 1:129 MT/955.0 2,364 10:24-97 1:25p MT/955.0 2,364 10:24-97 1:25p MT/955.0 H17190 O HE75P50 O HE75P54 HE75P54 O HE7SP55 HETSPSS O 118.319 10-24-97 1239 h87a930 2.344 10-24-97 124 h87a950 2.254 10-24-97 1239 h87a950 2.254 10-24-97 1239 h87a950 2.254 10-24-97 1239 h87a950 2.254 10-24-97 1239 h87a95 117,000 10-24-97 1239 h87a950 117,443 10-24-97 1239 h87a950 117,443 10-24-97 1239 h87a950 HE75P90 HE75P90 O H92731 H92P3A O H92P39 H92P39 O 2.552 10.24-97 1:149 1972931 117.443 10.24-97 1:259 1972950 2.254 10.24-97 1:259 1972950 2.254 10.24-97 1:259 1972950 2.364 10.24-97 1:259 1972956 118.215 10.24-97 1:259 1972956 118.918 10.24-97 1:259 1972956 119.074 10.24-97 1:259 1972956 119.074 10.24-97 1:259 1972956 119.074 10.24-97 1:259 1972956 119.074 10.24-97 1:259 1972956 119.074 10.24-97 1:259 1972956 119.074 10.24-97 1:259 1972956 117.817 10.24-97 1:259 1972956 117.817 10.24-97 1:259 1972956 117.817 10.24-97 1:259 1952957.0 2.254 10.24-97 1:149 195497 118.416 10.24-97 1:259 1956957.0 2.254 10.24-97 1:149 1956957 118.416 10.24-97 1:259 1956957.0 2.254 10.24-97 1:259 1956957.0 2.254 10.24-97 1:259 1956957.0 2.354 10.24-97 1:249 10.24-97 1:249 1956957.0 2.354 10.24-97 1:249 10.24-97 1:249 10.24-97 10.24-97 10.24-97 10.24-97 10.24-97 10.24 H92P50 O H92P90 H92P90 0 H925P50 H925P50 O H925P66 H925P66 O H925P67 H925P67 O H925P90 O H925P90 O H96P30 H96P31 O H96P32 O H96P73 H96P73 O H96P90 H96P90 O H96SP50 H945P50 O H965P90 O
 H965P91
 D
 121,727
 10-24-97
 1:329
 Юбар91.0

 H965P91
 2.362
 10-24-97
 1:149
 Юбар91.0

 H965P91
 2.362
 10-24-97
 1:149
 Юбар91.0

 H965P91
 0
 119.262
 10-24-97
 1:149
 №64091.0

 HEADING
 133
 10-24-97
 1:149
 №ading

 HEADOUT
 2.012
 10-24-97
 1:149
 №ading

 HXAVE
 OUT
 23.637
 10-24-97
 1:149
 №ave.out

 HUTO3-1
 KEF
 1.315
 10-24-97
 1:149
 №ave.out

 SUMRY-1
 OUT
 397.453
 10-24-97
 1:299
 №avery.outbal

Results for 0.001 cm Fracture Width

Directory of C:N	Work/with/canext/pluto-l
HEADING	133 10-24-97 1:14p heading
HEADOUT	1,224 10-24-97 1:14p headout
HXAVE OUT	17,034 10-24-97 1:14p heave.out
K87P63	2.263 10-24-97 1:14p k#7p63
K87P63 D	117.371 10-24-97 1:290 187063.0
X17964	2,263 10-24-97 1:14p k#7p64
K87264 0	117,470 10-24-97 1:290 137664.0
K87P90	2.263 10-24-97 1:14p k#7p90
KR7PHI O	117,955 10-24-97 1:290 187091La
K875P90	2.371 10-24-97 1:14e k#7a090
KETSPHI O	118,805 10-24-97 1:290 k87so9().e
K#7SP9#	2.371 10-24-97 1:140 2878098
KETSP9E O	121.387 10-24-97 1:290 k\$7x098.4
K92P78	2.261 10-24-97 1:140 192078
K92P78 O	118.169 10-24-97 1:29# 192#78.0
K92979	2.261 10-24-97 1:140 1:92079
K92P79 O	118,299 10-24-97 1:29s k92a79.a
K92P90	2.261 10-24-97 1:144 192090
K92P91 O	118,199 10-24-97 1:29e k92o90.e.
K92SPW	2.369 10-24-97 1:140 \$920091
KY2SPW) O	118,919 10-24-97 1: Nin 19210910
K92SPVH	2.344 10-24-97 1:140 1921098

Attachment II

K92SP91 O	118,918 10-24-97 1:30p 192ap98.o
K96P90	2,261 10-24-97 1:149 196990
K94P90 0	117,714 10-24-97 1:30p 196p9ilo
K94P98	2,361 10-24-97 1:149 196991
K94PH O	117,714 10-24-97 1:300 196098.0
K965P90	2,369 10-24-97 1:14p 196ep90
K965P90 O	119.072 10-24-97 1:30p k96ep90.a
K965P9E	2,369 10-24-97 1:149 1964098
K96SP9K O	119,404 10-24-97 1:30p k96ap98.a
PLUTO4-1 KEP	976 10-24-97 1:14p philo4.keff
SUMRY-1 OUT	T 229,080 10-24-97 1:299 summy nutbil

....

Results for 0.1 cm Fracture Width

Directory of CAV	Work/sutlevenancticlay5
CLAYS HX	4,812 11-06-97 2:56p clay5.ht
CLAYS-I KEF	3,024 11-06-97 2:55p clay5.keff
ETITIAL C	2.300 1148-97 2.339 61084879 177 641 11-06-97 7-558-e100909 n
Elizielo	2,962 11-06-97 2:55p e100p10
EIUNPIO O	121,471 11-06-97 2:58p e100p10.o
E100P20	2,962 11-06-97 2:56p e100p20
E100F20 O	121,069 11-06-97 2:58p 8100p210
E1111527 O	121.315 11-06-97 2:58p c100c27.0
EIUS28	2.968 11-06-97 2:56p e100x28
EIMS21 O	121,444 11-16-97 2:51pe100s28 o
E100529	2,968 11-06-97 2:56p c100x29
E100574 U	2 048 11/06-97 2:34p 6100629.0
EIUISJ4 O	121.096 11-06-97 2:58p e100e34.n
E100530	2,968 11-06-97 2:55p e100a50
EUUSSO O	121.067 11-06-97 2:58p e100x50.n
E1005710	3,039 11-06-97 2:33p e100mp10 171 976 11-06-97 2:51e e100mp10 e
FIREPLA	3 1139 11-06-97 2:56e e)00xe14
EINSPI4 O	123.003 11-06-97 2:58p e100ep14.n
EIONSPIS	3.043 11-06-97 2:56p e100xp15
ELOISPISO	123,059 [1-06-97 2:58p e10kmp15.n
FUOSPIAO	123.060 11-06-97 2:58a e100x516 n
E17POD6	3.023 11-06-97 2:56p e87p006
EETPONS O	123.859 11-06-97 2:58p c87p006.0
ESTPLAT	3.023 11416-97 2:56p e87pm17
E17P017 0	123,863 11-0K-97 2:58p #87p0877.6
FETROL O	121 337 11-06-97 2-33p c87p01
E\$7503	3.026 11-06-97 2:36p c87s03
E\$7503 O	122.396 11-06-97 2:38p c87s03 o
E175039	3.033 11-06-97 2:56p e87±039
E875039 0	123,013 11-06-97 2:340 6878039.0
E17504 0	122.285 11-06-97 2:58p c87#14.0
E\$7510	3.028 11-06-97 2:55p e87#10
E\$7510 0	120.372 11-06-97 2:58p e87s10.0
ES7SPUL	3,100 11-06-97 2:55p e87sp01
E\$757011	3.107 11-06-97 2:56e e87ap011
E175P011 O	122.994 11-06-97 2:58p e87spill1.0
E875P012	3.105 11-06-97 2.56p e87sp012
E175P012 O	122,028 11416-97 2.58p e87sp012.0
E175P02 0	122.995 11-06-97 2:580 e874002.0
E92PONT	3.021 11-16-97 2:55p e92p(07
EV2PLANT O	122,366 11-06-97 2:58p e92p(817.s
E92PLDE	3.021 11-06-97 2:56p e92p008
EVIPLUE O	1021 11-05-97 2:566 e92e000
E92P009 O	122,396 11-06-97 2:51p e92p(119.m
E92P01	3.017 11-06-97 2:56p ev2ptil
E92P01 O	122.394 11-06-97 2:58p e92p01.e
EATUR O	3,017 11-06-97 2:300 092012 171,473 11,06-97 7:516 092012 o
E92504	3,023 11-06-97 2:560 092414
E925(M O	121,797 11-06-97 2:58p e92a04.n
E92505	3.023 11-06-97 2:56p e92.05
E92505 O	123,992 11-06-97 2:359 892813.0
E92510 O	121.366 11-06-97 2:580 c92410.n
EV2SPUL4	3.102 11-06-97 2:56p #92xp014
E925P014 O	121,784 11-06-97 2:58p #92ap014 o
E92SPOILS	3,104 11-06-97 2:56p e92api115
2723P(113 0	122.870 1148-97 2:510 092mp115.0
EVISPUE O	121,8% 114%-97 2:580 e92sett2.n
E96201	3.017 11-06-97 2:35p c96pi)1
E96P01 0	122.369 11-06-97 2:58p e96pill.n

Attachment II

. . .

. .

E96P016	3.024 11-04-97 2:56p e96p016
EMPOIS O	121.827 11-06-97 2:51a e96e016.a
E96P017	3,024 11-06-97 2:569 #969017
E96P017 O	121.667 11-06-97 2:510 4960017.0
EMPINZ	3.017 11-06-97 2:56p e96p02
E96P02 0	122.395 11-06-97 2:580 #96002.0
E96P03	3.017 11-06-97 2:569 696p03
EMMI3 O	123,834 11-06-97 2:58p #96p03.p
E965(IT	3.023 1146-97 2:56p e96e07
E96507 0	121,640 11-06-97 2:38# #96#07.#
E9KS08	3.023 1146-97 2:56p e96408
E96SOE O	122.339 11-06-97 2:58p e96a08.a
E96STM	3.023 11-16-97 2:56p e96e09
E96509 O	121.667 11406-97 2:58p e96e09.e
E96\$10	3,025 1146-97 2:55p e96x10
E96510 D	122.396 11-06-97 2:58p e96s10.0
E96550	3.025 11-06-97 2:55p e96a50
E96550 0	122.121 11-06-97 2:58p #96450.a
E965P024	3.104 11-06-97 2:56p e96sp024
E965P024 O	123.270 11-06-97 2:58p e96ap024 a
E%SPU28	3.104 11-06-97 2:56p e96ap028
EMSPICE O	122,955 11-04-97 2:58p e96spi28 a
E965203	3,099 11-06-97 2:56p e96ap03
EX6SP03 O	123.057 11-06-97 2:58p e96m03.o
E965P10	3.096 11-06-97 2:55p e96ap10
E%SP10 O	122,057 11-06-97 2:59p e96ap10.n
E%SP20	3,098 11-06-97 2:56p e96sp20
E%SP20 O	121,925 11-06-97 2:59p e96ap20.n
HEADING	133 11-06-97 2:55p heading
HEADOUT	4,305 11-06-97 2:55p headout
HXAVE OUT	56,499 11-06-97 2,56p luave.out
SUMRY-1 OU	T 3.419.208 11-06-97 2:56p survey outlat
TEMP	6,96£ 11-06-97 2:55p temp

Results for 0.01 cm Fracture Width

Directory of Cd	Work/suttle/stanaoct/clav1
A100P10	2 969 10-24-97 1:15s at00e10
A100P10 O	121 390 10-24-97 1-21a att00x10 o
A100950	2 969 10-24-97 1:180 s100n50
ATOOPSU O	171 285 10-24-97 1-71a al00050 a
A 100000	7 960 10-74-97 1-18 + 100-90
	171 785 10.74.97 1-11a s100-00 a
ALCORPT	3 968 10.74.97 1-18s s100-08
	121 315 10-34-97 1-21s si00-98 a
A100510	2 975 10-24-97 1-18- st@bal0
ALCOSID D	121 303 10-34-07 1-31- +100-10 -
AIODEN	2 975 10-24-97 1-18100-50
	121 215 10 24 87 1-21- 100-50 -
	2016 10 21 02 1/18
AUUS90	2.973 10-24-97 1:169 210.090
ALCOSTO	122.329 10-24-97 1:219 8100890.8
	2.974 10-24-97 1:169 810.898
AIDSYLU	111.328 10-24-97 1:219 8108-98.0
AIUGPIO	3100 10-24-97 1:14p 10.04p10
AIDSPIDO	121,949 RE2497 12210 BURBHUND
ANUSPSO	3048 10-24-97 1:18p 8(008p3)
AIUISPOILO	121.9/5 10-24-9/ 1:210 \$100000
AUGSPAU	3046 10-24-97 11180 800.000 -
	1233300 10-24-97 12218 810889910
AIGCOVE	3.047 IC-24-97 1:180 81008998
ARESPYEU	121.321 10-24-97 1:219 8111.00998.0
	33420 11-4-97 1:180 88/pt0
	121,463 10-24-97 1:210 4679-000
	3140 10-44-97 1:180 86/pi//
AN7011 U	121.982 [IP-44-77 122] p.84/pi//.0
A87P10	3128 10-24-97 1:189 88/910
AA7PIU U	121,119 10-24-97 12219 16/910 0
A8/230	3.128 10-24-97 1:189 887930
AS/PSU U	121.279 HH24-97 1219 51/9540
AL/PYU	3322 10-24-97 1:18p 88/990
AN/PHI U	122.18m 10-24-97 2.210 24/PMLD
A47510	33333 IN-24-97 1:180 887810
A1/310 U	122.339 10-24-97 1:218 847814.0
VE1223	3.134 10-24-97 1:189 88/833
V1/272 C	121_972 10-24-97 1:219 24/533.0
V1/270	33354 10-24-97 1115 88/856
A87330 U	2010 10 24 07 11219 8475000
A8/33/	3.133 10-24-97 1:10p 107150
A1/550 0	122,131 10-24-97 12210 847030.0
AN7200 A	33333 10-24-71 11189 12/1551
AE/3%1 ()	122.041 10-24-97 12219 1875910
A5/3710	3,108 10-24-97 1:180 1873010
ASISPIC O	122,185 10-24-97 1:21p 4878p10.6
A475P11 .	3.110 10-24-97 1:11p al7ap11
ALISPII O	122.628 10-24-97 1:219 2871011.0
A175P50	3.107 10-24-97 1:18p a#7sp\$0
A175P50 0	121,IXW [II-24-97 [:2]p ##7sp\$().e

Attachment II

. .

.

ALTSPHO 3.107 10-24-97 1:18# 2871#90 A875P90 O 120,734 10-24-97 1:21p #7ap90.6 3,024 10-24-97 1:11p #72p07 122,348 10-24-97 1:22p #92p07.a A92707 O A92PUE A92PUE 3.024 10-24-97 1:18p #72p08 121.392 10-24-97 1:22p #72p08.a 121.972 (0-24-97 1:22) effp01.e 3.024 (0-24-97 1:21) effp01.e 3.025 (0-24-97 1:21) effp10.e 3.025 (0-24-97 1:21) effp10.e 3.025 (0-24-97 1:15) effp01 123.82 (0-24-97 1:15) effp01 123.831 (0-24-97 1:22) effp01.e 3.032 10-24-97 1:15) effp10 A92P10 A92P10 O A92P50 A92P50 O A92890 A92991 0 A92510 A92510 O A92545 A92545 O A92546 A92546 O A92550 3.032 10-24-97 1:18p #92#46 122.366 10-24-97 1:22p #92#46.m 3.032 10-24-97 1:18p #92#50 3.032 10-24-97 1:129 #9250 123.462 10-24-97 1:229 #92500 123.963 10-24-97 1:229 #92590 3.032 10-24-97 1:229 #92590 3.03 10-24-97 1:229 #925910 123.302 10-24-97 1:229 #926910 A92550 O A92590 O A92590 O A925910 A925910 O 123,302 10-24-97 1229 8228910 3,107 10-24-97 1:129 8928913 122,848 10-24-97 1:229 8928913 3,103 10-24-97 1:129 8928914 123,028 10-24-97 1:229 8928914 3,103 10-24-97 1:189 8928930 A925P13 A925P13 O A925P14 A925P14 O A925P50 3.103 10-24-97 1:109 8728350 122,783 10-24-97 1:229 8728510 3.105 10-24-97 1:229 8728950 122,598 10-24-97 1:229 8728950 3.026 10-24-97 1:289 856910 121,610 10-24-97 1:229 856910.0 A925P50 0 A925790 A925P90 O A925P90 O A96P10 A96P10 O A96714 A96714 O 3.026 10-24-97 1:119 #96914 122.171 10-24-97 1:229 #96914.0 122.171 10.24.97 1:22p #96p14.0 3.026 10-24.97 1:18p #96p15 122.97 10.24.97 1:18p #96p50 121.521 10.24.97 1:22p #96p50.0 3.026 10-24.97 1:12p #96p50 121.521 10.24.97 1:12p #96p50 122.151 10.24.97 1:12p #96p90.0 3.032 10-24.97 1:12p #96p10 3.032 10-24.97 1:12p #96p30 122.653 10.24.97 1:12p #96p30 122.654 10.24.97 1:12p #96p30 122.640 10.24.97 1:12p #96p30 121.640 10.24.97 1:22p #96p30 A96715 A96715 O A%P50 A36P30 0 A36290 0 A96510 A96510 A96510 A96550 A96550 A96575 A96575 A96575 A96576 A96576 A96590 A96590 3.032 10-24-97 1:159 09476 121.639 M1-24-97 1:279 59476.0 3.032 10-24-97 1:159 096690 122.656 10-24-97 1:229 096690 122.545 10-24-97 1:229 0966910 122.327 10-24-97 1:229 0966910.0 A96590 O A965910 A965910 O A%5P24 A%5P24 O A%5P25 3.105 10-24-97 1:11p #96sp24 122,169 10-24-97 1:22p #96sp24.0 Ay6SP24 O 122,169 10-24-97 1:22p #95ap24.a Ay6SP23 3,109 10-24-97 1:22p #95ap24.a Ay6SP23 3,109 10-24-97 1:22p #95ap24.a Ay6SP23 0 122,167 1:22p #95ap24.a Ay6SP23 0 122,167 1:22p #95ap24.a Ay6SP23 0 122,127 10-24-97 1:22p #95ap30.a Ay6SP50 122,129 10-24-97 1:22p #95ap50.a A96SP50.a 124,343 10-24-97 1:22p #95ap50.a Ay6SP50 124,343 10-24-97 1:12p #95ap50.a A96SP50.a 124,343 10-24-97 1:12p #95ap50.a Ay6SP50 124,343 10-24-97 1:13p #95ap50.a A963p50.a CLAY1-1 KEF 2.8927 10-24-97 1:13p #95ap50.a CLAY1-1 KEF 2.8927 10-24-97 1:13p #95ap50.a KEADOUT 4.992 10-24-97 1:13p

Results for 0.005 cm Fracture Width

Deeckory of CAWork/textic/transocticity?	
0100P50	2.976 10-24-97 1:18# b100p50
B100P50 O	121.343 10-24-97 1:23e b100pStue
8 ton#90	2,976 10-24-97 1:189 0100990
8100#90 O	122,532 10-24-97 1:23p \$100p90.e
B100\$50	2,962 HI-24-97 1:18p 6100x50
B100550 0	121,227 10-24-97 1:239 5101550.0
B100590	2,982 10-24-97 1:189 6100490
8100590 0	121,720 10-24-97 1:23p \$100x90.a
B1005P50	3.055 10-24-97 1:18# b100ep50
BIOISP50 O	122,596 10-24-97 1:23p b100xp50.o
B1005P90	3.055 10-24-97 1:18p \$1(Xisp90
B1005890 O	123.059 10-24-97 1:23p \$100mp90.n
847P10	3.035 10-24-97 1:11p bit7p10
817P10 O	121,423 10-24-97 1:23p b87p10.n
B#7P12	3.035 10-24-97 1:18p 687p12
BX7P12 O	121.395 10-24-97 1:23p b87p12.n

Attachment II

· · · · · · · · · · · ·
.

.

.

Attachment II

.

_

.

.

•

.

887913	3,035 10-24-97 1:18p b67p13
347950	3.035 10-24-97 1:239 00 7913.0
147750 O	121,908 10-24-97 1:23p 187p50.0
B477993 B477993 (D	3,035 (0-24-97 1:18p M7/99) 121,878 10-24-97 1:23p M7/990.0
B#7\$50	3.042 10-24-97 1:18p 567650
BETSSO O	122.338 10-24-97 1:23p M7x30.o
B47572 O	122,124 10-24-97 1:24p M7s72.0
847573	3.042 ID-24-97 1:18p 067:73
887590	3,042 10-24-97 1:18p M7/90
B\$7590 O	123.991 10-24-97 1:24p M7#90.m
B175P10	122.002 10-24-97 1:24e bi7se10.0
B\$75P21	3.118 10-24-97 1:18p b67ap21
B\$75P21 O B\$75P22	121,868 10-24-97 1:24p 987ap21.0 3.114 10-24-97 1:18p 147ap22
B475722 O	122.654 10-24-97 1:24p b87sp22.0
BX75P50	3.114 10-24-97 1:18p M7sp30 121.064 10-24-97 1:24p M7sp30.p
B#75P90	3,114 10-24-97 1:18p b#7ap90
BR75P91 O	122,313 10-24-97 1:24p 107ap90.0
BY2P10 O	122.339 10-24-97 1:249 492910.0
B92P15	3.033 10-24-97 1:18p b92p15
892715 0	3.033 10-24-97 1:18p 092p16
892716 O	121.366 10-24-97 1:249 092016.0
892250 892250 O	3,033 [0-24-97 [:18p 092p50 122,281 10-24-97]:24p 192p50.o
892990	3.033 10-24-97 1:18p W2p90
B92P90 O	121,331 10-24-97 1:24p 192p90.0
892550 O	122.640 10-24-97 1:24p 192:50.o
B92591)	3.039 10-24-97 1:180 692.90
B92591	3.038 10-24-97 1:180 092:91
892591 O	122,496 10-24-97 1:24p 192:91.o
8925P10 0	3,110 10-24-97 1:18p 9924p10 123,395 10-24-97 1:24a 992ap10.o
8925726	3.112 10-24-97 1:18p 192ap26
B925P26 O	121,866 10-24-97 1:24p 992ap26.0 3 114 10-24-97 1:18p 992ap27
BY2SP2T O	121,923 10-24-97 1:24p 192sp27.o
B925P50	3.112 10-24-97 1:18p 892ap50
8925790	3,112 10-24-97 1:18p 992ap90
8925P90 O	121,783 10-24-97 1:249 192ap90.0
By6P10 O	122.349 10-24-97 1:149 996910
B96P29	3.033 10-24-97 1:180 196029
896729 O	121.639 10-24-97 1:249 996929.0 1.031 10-24-97 1:18n 996930
896730 O	122.369 10-24-97 1:24# 196p30.n
896250	3.033 10-24-97 1:18p b%(p50
396790	3.033 10-24-97 1:18p 096p90
896P90 O	122.339 10-24-97 1:24p 196p90.o
B96550 O	121.343 10-24-97 1:1240 09650.0
B96590	3.039 10-24-97 1:189 096-90
896598	3.038 10-24-97 1:249 09698
896598 O	121.667 10-24-97 1:249 996498.0
BWASPICI BWASPICI CI	3,110 10-24-97 1:18p 696ap10 123,301 10-24-97 1.24a 696xo10.a
8%SP47	3.116 10-24-97 1:18p 096ap47
B965P47 O	124,336 10-24-97 1:24p 196(p47,o
BY6SP41 O	123,031 10-24-97 1:24p 096up48 e
8965250 8965250	3,112 10-24-97 1:18p 096ep50
BYASPYN	3.112 IR-24-97 1:18p 196ap90
BIASPHO O	122.112 10-24-97 1:249 9964990.0
HEADING	2.441 10-24-97 1:18p cmy2.heff 133 10-24-97 1:18p heading
HEADOUT	4,025 10-24-97 1:18p headout
SUMBY-1 OF	43.333 IO-24-97 1:18p haave.out 5 \$47.910 10-24-97 1:24p summer conter

Results for 0.002 cm Fracture Width

Directory of CAWorkWutleWrana.et/clay3 CB7P31 3.128 10-24-97 1:18p cB7p31 CB7P31 0 121.556 10-24-97 1:24p cB7p31.n

C17732	3.028 10-24-97 1:188 c87832
CI7712 0	122.125 10-24-97 1:24e c87e32.e
C17P50	3.028 10-24-97 1:180 c87850
C17750 0	121.365 10-24-97 1:240 087050.0
C175%	3,028 10-24-97 1:188 687890
C17790 0	120 402 10-24-97 1:24e c#7#90.e
CUTSPED	3,107 10-24-97 1:11e ct7m50
C175250 0	121.761 10-24-97 1:24e c\$7m50.e
C175P13	3.111 10-24-97 1:15e c17m53
(17525) 0	121 975 10-24-97 1:24e c#7m53.0
CETERL	3 107 10-24-97 1-18e c#7+054
CHISPLIO .	177 877 10-24-97 1-74e c\$7an54 o
CHISPHI	3 107 10-24-97 1-18a c87ar90
CETERALO	121 924 10-34-97 1-34e c#7xe90 o
(177941)	3 (76 1/) 74 97 1-110 (9704)
072540 0	177 179 10-24-97 1-24e c92e4(1e
C02941	1 076 10-74-97 1-18a c97a41
CHILL D	171 477 10-74-97 1-74e c97e41 e
CONHO	1 174 HL7497 1-116 (9765)
00000	121 340 10-24-97 1-24e cm2eS0 e
CUTRU	3 (176 1) 574.97 1-186 (97-99)
C97541 0	177 (MA 10-74.97 1-75a c97c9) a
C975 P50	1 105 10-24-97 1-12a c#7as\$0
CRITERO O	121 058 10-34.97 1-356 (92:450.6
CRISING	3 10H 10-74-97 1-18a c97ac65
CY25HS 0	172 024 10-24.97 1-254 092065 0
CHISNA	3 105 10-24-07 1-18+ -97+64
	171 808 10.74.97 1:75a c07ca44 a
Case	3 105 10-74-97 1-18s c97sr90
C125290 0	177 868 10.74.97 1.754 (97:00) 4
C%250	3 026 10-24-97 1-136 (56-50)
CNOPSU D	121 610 10-24-97 1-250 (96050 0
C96277	3,076 10-24-97 1-186 -96677
C96272 0	171 610 10-24-97 1-210 596072 0
C%P73	1(176 10-24-97 1-180 096-71
C96271 0	121 664 10-24-97 1-254 (96073 0
C96290	3.026 10-24-97 1:18e c96c%)
CV6290 0	121 667 10-24-97 1-254 (96690) 0
C945P51	3 105 10-24-97 1-180 0964050
C965250 0	123 274 HI-24-97 1-250 c96en50 o
COASPON	3 105 10-24-97 1-180 (96490)
C965P90_0	173 147 86-74-97 1-750 -960-901 0
1045300	1 104 10-74-97 1-18n c96m91
CONSIDE O	191 046 1/1-74-97 1-750 -964-997 -
CLAYL FFF	1 114 10.74.97 1-18s clart bad
HEADING	111 10-34-97 1-18s header
HEADOUT	2 012 10-24-97 1-180 beadows
HYAVE OUT	21 677 10-24-97 1-186 https://www.
SUMPY-LOP	T ON4 961 IL 94.07 1-110 made
30mm141 00	•

Results for 0.001 cm Fracture Width

Directory of CA	Work/buttle/transnet/clay#
CLAY4-I KEF	789 10-24-97 1:11e chy4.keff
DKTPA4	3.035 10-24-97 1:18p d87p64
D87P64 O	121,227 10-24-97 1:25e d37p64 p
D#7P65	3.035 10-24-97 1:180 087065
DETPAS O	121.423 10-24-97 1:25e d37p63 p
DE7P90	3.035 10-24-97 1:180 687090
D\$7Pyll O	121,423 10-24-97 1:250 437090.0
D875P90	3,114 10-24-97 1:18p 487sp90
D875P90 D	122,597 10-24-97 1:25p dt7ap90.a
D\$75P98	3.113 10-24-97 1:18p d87sp98
DX7SPYK O	121.925 10-24-97 1:25p dx7sp98 o
DY2P78	3,033 10-24-97 1:18p d92p7x
D92P71 O	121,769 10-24-97 1:25p d92p78.e
D92879	3,033 10-24-97 1:18p d92p79
D92779 O	121.396 10-24-97 1:25p d92p79.n
D92P90	3.033 10-24-97 1:18p d92p90
DY2PHO O	121,396 10-24-97 1:25p d92p90.o
D92SP9KI	3.112 10-24-97 1:18p d92ap90
DV2SPXI O	122.627 10-24-97 1:25p d92ap90.o
DY2SPVI	3.111 10-24-97 1:18p d92sp98
DY2SP9X O	122.898 10-24-97 1:25p #92ap98.o
DW(PNI)	3.033 10-24-97 1:18p d96p90
DW(PH) O	121,666 10-24-97 1:25p d96p91kn
DWINI	3.032 10-24-97 1:18p d96p9t
DWAPHE O	121,667 10-24-97 1:25p d96p98.o
D965P90	3,112 10-24-97 1:18p d96ap90
D965890 O	122,168 10-24-97 1:25p d96ep90.n
D965P98	3,111 10-24-97 1:13p d96ap98
D965797 O	122,272 10-24-97 1:25p d96ep98.e
HEADING	133 10-24-97 1:18p heading
HEADOUT	1,224 10-24-97 1:18p headout
HXAVE OUT	13,363 10-24-97 1:18p heave.out
SUMRY-I OUT	F 522,358 10-24-97 1:25p mmry outst

Attachment II

_ ..

	A B C D E F G H I J K L																		Attachmen
	A	В	С	D	E	.F	G	н		J	ĸ	L	M	N	0	P	Q	R	s
1	From DAT-	TUFF.WK3	1	1						i —	1				1	Element	0	Si	A
2	1	· · · ·	· · ·	1.	•	· · · ·	[-		·] -		1	[···	ľ	[AL WL	15.995	28.086	26.982
3				-1		· 1 ·	1				1 · · ·			1	i i		1		
4		· · · ·				!	t					· ·	1 -	· ·		- • •			
5				Num	i ber o	f Atoms	s per (Compo	bund		i		<u>۲</u>	1 .			Number of	Atoms * Ato	mic Weial
6	· · ·	<u>.</u>			•	• • •	1	1	1 -	· ·			ť "	ł			1	· · ·	
7	Compound	ww.%	-	0	Si	AI .	Fe	Ca	Ma	Ti	Na	ĸ	P'	Mn	H		lo	si	AI
8			· · · ·								•••••	· · · · ·	-	1.4.1					
9	SiO2	78,900	•••	1 - 2	2 [:]	1		i	1	•••				· · · · -		·] ··	31.99	28.086	• ••• == •
10	A1203	12,300	• ••• • • •		3	2	•	• • •			·				•••		47.985		53.964
11	Fe203	0.973	•	3	31	1 -	i ~2	•					•	j			47.985		
12	CaO	0.451	: <u>.</u>	······································		· ·		1	† •		┝ - ──			1			15,995		
13	MoO	0,128		1 1	il "	!	•	;	1		<u>}</u>		· -	· .			15,995		
14	TIO2	0 093		1 2			·		·	. 1	• · · •	•			:	ŀ	31.99		
15	Na20	3 920		-!		1			· ·		· · 2						15,995		
6	K20	3 180	:	•						ļ	-		. ·				15 995	• • • • •	
17	P205	0.010										-	2			i .	79 975	• •	- ·
18	MaQ	0.046		1	í.			ļ					-	1		1	15 995	• ••	• •
10		: 0.040		: '		1	1		į .				•	· ·	l I		10.000		• · · •
20	H2O	100 000		: 1	ı				· ·						,		15 905		• •
21		:		: '							i				•		10.055	• • •	• • • •
22				1	·											· •			• • •
23		:		:				í								Fractional	l Densities ne	Composin	d and Ele
24		•	· .	1					•							riacuonar	Densioes pe	compoun	
25		Na Èrari	Dene		•	1				•		•				502	0 488354	0 400420	· · -
26	ก้อง รางซ		20013.								•				-	AD03	0.900351	0.903939	0 072250
20	Mater	0.5	. 4 .4	i .	•			•	•	•					-	1203	0.001201	· -·	0.072209
20	AAGIC!	0.5		'	•	:										C-0	0.003240	••	
20	• •	f :			:	•											0.001428		
3		: ;		1	:	1		•								MgO	0.000564	(
30	-			1					-					•••		1102	0.000413		
31			.				••							-		Nazo	0.011230	··· · ·· · ···	
32		· ·		1		1										K20	0.005994		·
33				1											.	P205	0.000063	1	· ···
34							_									MnO	0.000115		
35		,				. 1				. .]			i	ļ	
36				:	:	:				.						H2O	0.444034	· · · · •	
37					:	· .												- 1	

Page 1 of 4

	A00000000-	01717-0200	-00050 RE	V 00 V					٦	Fuff.xds	,Shee	ett							Attachment II
	A B C D E							FGHIJKLMNC							0	P Q R			S
38									1							Total	0.997699	0.409439	0.072269
39]			[I				
40					•											WL Fract	0.619684	0.254308	0.044887

Page 2 of 4

	A00000000	-01717-020	0-00050 RE	EV 00		Tuff.xis,Sh	eet1			
\square	T	U	V	W	X	Y	Z	AA	AB	AC
1	Fe	ICa	Mg	Ti	Na	K	Ρ	Mn	Н	[
2	55.847	40.080	24.312	47.900	22.990	39.102	30.974	54.938	1.008	· — ·
3					ł	1				
4										
5										
6										
7	Fe	Ca	Mg	TI	Na	K	Ρ	Mn	H	Total
8										
9			•							60.076
10		.		· •• ••			-			101.949
11	111.694		• •		i 1	.			· ·	159.679
12	· · · · · ·	40.08		•	-				· · · · ·	56.075
13			24.312				· · · •			40.307
14	• • • • •	-	i .	47.9	35.00					79.890
15					45.80			- ·		01.9/5
10						10.204		• •		94.199
1/	. · · ·					· ·	. 01.940	· 54 020		141.923
10	·· · 4		·			• • •		54.935	··	10.933
19	· ,								2016	
21			-			-			2.010	.10.011
22						• •				•
23	nt									•
24						•	•		•	-
25			• • •	• ••				•••••	•	
26				••		•		•••••••	••• •••• •	
27	0.007555	•· ·						• •	· - · ··	
28		0.003578	-	·						
29	•		0.000857							•
30				0.000619			•	• ••	• • ••	
31	!				0.032282					- ·
32	,	• • • • •			-	0.029304	• •	·· · ··		
33					•		0.000048			
34								0.000395		·
35		. 1							·	
36									0.055966	
37				i					•	

Page 3 of 4

11/17/97

Attachment III

Attachment III

		-01111-020								
	T	U .	V	W	X	Y	Z	AA	AB	AC
38	0.007555	0.003578	0.000857	0.000619	0.032282	0.029304	0.000048	0.000395	0.055966	1.610011
39										
40	0.004692	0.002222	0.000532	0.000384	0.020051	0.018201	0.000030	0.000246	0.034761	

Tuff vie Shaatt

40000000-01717-0200-00050 REV 00

Page 4 of 4

.

.

.

.

Tuff.xis,Sheet2

_

Attachment IV

. ..

_...

	A	8	T C	D	E	F	G	Н	11	11	K	T L	T M	I N	0	P		R	S S	T	
T	From FAX	Aug. 4	;	1	1	1	1	Î	1			1	1	1	1	Element	0	Si	A	Fe	Ce
2	• • • • • •	[⁷	1 .	1	1-	1 -	1	1 ·		- 1		f ••• •			1	AL WE	15.994915	28.066000	26.9815389	55.847000	40.000000
3	· •	 .	i .	1.	1	:	1		l -	1.	1	r	1		1	i	1	1 • • • •	•	••• ••	· ~
4			T	1	1	1	1		i	1	Γ	l	1					1		- • •	· · ·
5	•	•••	1	Num	ber of	Atom	s per (Ċomo	ound		F ·	1 · -	· ·	t	ł	·· · •	Number of	Aloms Alc	mic Weight	•••	
6	••••		1		F	• •	1	1	I			t-	1		ŀ ·			1	• • •		
7	Compoun	w %	1	:o	isi	AI .	Fe	C	Ma	h	Na	ĸ	P.	Ma	ĥ.		lo ⁻	IST	'AI	Fe	Ċa "
8	···			· •	***	İ	!	1	· ' -	1	t	<u> </u>	<u>†</u>	1••••		· ·			1		
9	SIOZ	76.827	· · · · · ·	2	11	Ì	1	1 .	i		f- • ·	•		f		• • • •	31.989830	28.086000	*• • ··· ••• •		·· - · ·
10	A1203	12.740	<u>,</u>	3		2	1	1 :	· ·	•	t -			1			47.984745		53.963078		
11	Fe0	0.842		1	1	-	1				••••	•••	1.	1 .	1		15.994915			55.847000	· ·
12	CaO	0.560		1				1	i -		·	1				· ·	15.994915				40.060000
13	MaO	0.245		1	· ·	•		-	ī		•••	t ·	1 .			-	15.994915		••••	•••	
14	TiO2	0.098	· ·	2		• •				1	t		1.		•		31.969830		••••		
15	Na2O	3,593		- 1		•	!		•••		2	1	· ·	1 · 1			15.994915		• • •		
16	K20	4,930				• •	;	! ·	÷			l ż		· ·			15.994915	• ·	•		·
17	P205	0.015	ł	Ś	•-	•	:	:	• • ••	•••	· ·	1 7	2		· ••		79.974575	•		• •	
18	MnO -	0.067	.!	۱ I	! •	•	•	•	•			1	1 -	1 1	!	· · • • • •	15.994915	1	•		
19			1	•	•	•	•	•	•			1	!	1	1	· ·		1	•	••	
20	н20	100.000	,t	1 1	1	:	:	:			• • •	·· ·	t -		ⁱ 2	j ·	15,994915			-	
21			•	1	t	i	i :						1	!	_			1	• • • • •	• • •	• •
22	·		÷		t	:		i ·	•					•	•		1 :	•••••	• • • •	• •	· · · · · · · -
23			•		ł	•										Fractional	Densities pe	Compoun	d and Elemen		
24		· · ·	ir ·	ł		i								• • • •	•	-	i i	1	! :		•••
25		Vol. Fract.	Dens	F I	1	ļ				•						SiO2	0.919240	0.807062	• ••		• ••
26	Dry Tuff	1	2.247	1		i		1		-			· ·		ŀ	A1203	0.134740		0.151527	•	
27	Water	0.13	1	•••	1					••••		· ·				FeO	0.004212			0.014707	
28	•		1	t i							• •	•		•	-	CaO	0.003589		: -	. .	0.008994
29		•	1	! ·	1.			••		•						MgO	0.002185			••••••	· • · · · · ·
30	· • · • · ·		t ·	1	1	:		•		· •			· ·			TiO2	0.000682		••••		
31			1	۰ I	ţ	•						· ·	· ·	•	• • ••	Na2O	0.020837		•		
32		••••	t i	1	•	• •						t.		•		K20	0.016810		• • • • • • • •		•
33	· ••	·	i • •	•	• • •	ł	1	1	• ••	-	•	• • •			•	P205	0.000190		••••		
34	i		1	:	!	:	!									MnO	0.000339		•		
35			•	1	į.	•	i '	•				-	i					· -		• • • •	•
36	·	•			1 ·	1	i 1	: 1	- 1			· ·	1			H20	0.115451			· ·	•
37	•		i	••		· ·	1		· ••••		• •	•••		• •	••	47 Tana 41 Ia				•••• •	· • ·
1	• • •	•••••	1			1 1	1	;••	-	·	⊢ •	-				Total	1,220476	0 807062	0.151527	0.014707	0.008994
1	• •	• • •	· ·	•••		- ·	1			·			· ·								
40			•••••••		l			•	•			۰ I	· · ·	-		Wt. Fred.	0.513855	0.339796	0 063797	0.006192	0 003787

Page 1 of 2

11/17/97

.

Tuff.xls,Sheet2

_

.

.....

Attachment IV

	V I	W	X	Y	Z	A A	AB	AC
1	Ma	iti	Na	ĸ	P	Mn	н	
12	24 312000	47.900000	22,9897707	39,102000	30.9737647	54.9380503	1.00782519	
15								
L.								
÷								
Ť								
L-			Na	K	P	Mo	H	Total
H-				······································	·			· · · · · · · · · · · · · · · · · · ·
l-	·	· · · ·-	•		• • • • •			60.075830
1					····			101.947823
10		·						71.841915
13			· - ···		·	·		58.074915
	24 312000	 -		·				40.306915
	4.312000	47 900000	!	·	•	···· •• •••	···· ··· ·· •••	79.889830
H÷-			45 07054			• • • • • •		61.974456
13				78 204000				94 198915
1		• • • • • • • • • • • • • • • • • • • •	;	10.201000	81 047570			141 922104
1.			* *******			64 938050		70 912955
10								
19			·		 ·		2015650	18 010565
20				·		•• • •	- 2.013030	-10.010000
1			i -	<u> </u>	••	• • • •		
122				·				· · · · · · · · · · · · · · · · · · ·
23		· ·		••••	···	• • • • •		
4			- '		••••	••• ••		•••
23					•	• • • •		
100		1			. i			
1								
148				·		·		
29	0.003321			·• ·• ·				
130		0.001320			··· • ·	••••		
131		•	0.039696	100000T	· ••	••• •••		
32	· · ·			0.031907	-0000	(·		
33					0.000147			
34						0.001166		
35								
36						•• -··	0.014549	
37								
38	0.003321	0.001320	0.059898	0.091967	0.000147	0.001165	0.014549	2.375135
39			••• ••••					
40	0.001398	0.000556	0.025219	0.038721	0.000062	0.000491	0.006126	

.

Page 2 of 2

Attachment V

Tuff.xls,Sheet3

.

A0000000-01717-0200-00050 REV 00

. ..

.

			<u> </u>		I c	1 5			· · · · · · · · · · · · · · · · · · ·	· · · · ·	. <u>K</u>		M	N	
<u> </u>	A	D			<u> </u>	╎┍	10	<u> </u>	Element			<u>с</u> н		Pu	
	Socoyite/P	1010nium		•••	ł -	ł	1		AL 14A	15 004015	28.086000	1 00782510	235 043015	239 052146	<u> </u>
2					•	 -	· ·	· · 	<u> </u>		20.00000	1.00702318	200.040310	200.0021-0	· •••••
3				-		∔ •		· •							
4		L			1	<u> </u>	L		L			in Mainht			
5		I-		NUM		Atom	s per u I	ompo	puna	Number of A	toms - Alon	IC WEIGHT			
6						Ļ	-	<u>-</u>							Tatal
7	Compoun	WN %		0	ISI	н	U	PU		0	SI	н	υ	Pu	1003
8					i .	-			· ·						
9	Soddyite	100.000	0.004275	10	1	4	2		.. .	159.949150	28.086000	4.031301	4/0.08/830		662.154281
10				0.04	<u> </u>	0.02	0.01	<u> </u>							40.040505
11	H2O	100.000	0.033439	1	!	2				15.994915		2.015650	!		18.010565
12				0.03	• •	0.07							• •		
13	PuO2	100.000	0.025464	2				1	I.	31,989830				239.052146	2/1.041976
14				0.05	; • • •			0.03	1						
15				:		1									
16															.
17						i i	ļ								
18					i	İ		i .			•				.
19															
20		Vol. Fract.	Dens.		i				Fractional	Densities per	Compound	and Element			
21	Soddyite	. 0	4.7		i.	Ι.									 . .
22	Water	0.73	1		l				Soodyite	0.000000	0.000000	0.000000	0.000000	0.000000	
23	PuO2	0.27	11.46		İ					- · - · · ·	-		
24									H2O	0.648302	0.000000	0.081698	0.000000	0.000000	
25		_								• · · · · · · · ·					
26					!				PuO2	0.365194	0.000000	0.000000	0.000000	2.729006	·
27															
28									Total	1.013496	0.000000	0.081698	0.000000	2.729006	3.824200
29		-	•												
30				i	•				Wt. Fract.	0.265022	0.000000	0.021363	0.000000	0.713615	

11/17/97

•

Page 1 of 1

. . .

clay.sls,Sheet1

Altechment VI

.

	A	1 6	6	0	F	F	9	H			ĸ	· · ·	M
H		<u> </u>	<u> </u>	<u> </u>				<u> </u>	Solida pende med at the and of cell 4, pess (L) area Area Tuff			<u> </u>	
H		·	L			L			Comp hooding at the and of the 4' have a the ware the				
2		Numpe	r Densi	ly work	leolope Lie	A			Phase/End-member	Log moles	Molet	Mass, g	Volume oc
3		1	1	<u> </u>			-					• • • • • •	
		1	1	· · · · · ·					Albits the MeAlS/208	6 0 1000	2 8861	754 36	284 84
		Element	Sumbre .	Incine	NICHE ID	Abrenie Winestel	Inchesic En		Borny Ma28407*1001201	.1	0.014544	6 6487	1 224
		Libertennes	IN ISSUE	14.1	1001 400	1 00782518			Caledrate Manager (VIOVOLD)		0.17341		
H		in the second	<u>.</u>		1001.000	100/04510					0.12241		
L-			<u> </u>	44.4	1002.850	201410222		-	Filler and Case (FUR)S	~(.3.3	0 001448	0.73.02	0 226316/3
L.			<u>[-</u>		1003 800	3010019/1			Metrinum Metricume, KAISISCH		2 0000		276.32
		HIGHLIN	1740	INSC.	2000 010	4 00.26		·	Refuterent	-2.813	0.003089	1,8634	6.4505292
10	<u> </u>		1980	198-4	2004.50	4 00200312		••••	PUCZ	-3.4514	0 000354	0.00701	0 00042//
11		Uhum_	<u>u</u>	1110	3006 50C	8 0181247			Pyrolusile, MnO2	-1.7122	0.0194	1.8400	0.333320154
12	_	1	U	LL-7	3007.45C	7 0180039			Quertz, SiO2	1.0195	10.46	629.5	237.32
13	4	Berystum	60	80-9	4009 50C	8 0121855			Rulls, TIO2	-1.5009	0 0253	2 0200	0 47615
14		Boron	0	<u>8-10</u>	5010 SOC	10 0129349	0 199		Tenorite, CuO	-1.5019	2 62E-05	6 002063	0 00032
15		I	6	8-11	5011 56C	11.0093063	0 801						
16		Carbon	c	nat	6000 50C	12 01115			Carbonate-Calcile	-0 8963	0.20122		
17			c	C-12	6012 50C	12			Calcile, CaCO3	-0 7024	0.19843	19 96	7.3284
16		Nerogen	N	N-14	7014 50C	14 00307439			Magneelle, MgCO3	-2 \$541	0 002787	0 23496	8.078085
19		Oxygen	0	0-16	8016 50C	15 994915			Rhodochroete, MnCO3	-11.4457	3 42E-12	3 8333E-10	1.0633E-10
20		Fluonne	F	F-19	9019 50C	18 9984046		•	Siderile, FeCO3	-20 262	\$ 47E-21	6 3364E-19	1.8068E-18
21	11	Sodium	No	Na-23	11023.50	22 9897707			Smilhsonile, ZnCO3	-15 8471	1.42E-18	17832E-14	4 0200E-15
22	12	Maonesu	Mo	nat	12000 50	24 312		•	Simpliante, SrC03	-8 8731	1.34E-00	1 8772E-07	\$ 2248E-08
21	13	Abrown	Al	AI-27	13027.50	26 9815389		• • • • • •					
24	14	Shoon	SI	Call.	14000 50	28 086		-	Smertile.dl	-C asis	0 12065		·
25	15	Phosobory	P	P-31	15031 50	30 8737647		•••	Beitinge Ca	.19 8784	1 127.20	4 84965.11	17137E-18
26	16	Sutter	S	5-32	10032 50	31 1720737		• •••	Beidelin K	-18 8681	1 08F-18	4 0124F-17	14309E-17
27	17	Chignne	a	ON	17000 50	35 452			Reitellie Ma	-20 4681	3 45.21	1 73445.11	A 1815.18
24		Polatium	ĸ	Cont.	19000 50	318 102				-18 8541	1 115.17	A MAGAE	14115-15
29	20	Calcum	Ca	Cont .	20000 50	40.04			Nonimer-Ca	-12 9778	1 18F-13	4 3721E.11	A SOME
30	22	Teansura	n	nat	22000 50	47.8			Montman M	-11 4045	1 875.12	6 8405F.10	7 4115.10
31	23	Vanadaum	v —	0.00	23000 50	50 942			Alcohore Alio	-11 3064	4 46.14	1 74476.11	7 444/5.11
32	24	Chromium	Ċ,	nat	24000 50	51 996	_	••••	Merekener Ma	.9 4011	1 68F.10	5 798.85 .04	7 80046 /4
33	24	Mannanas	Mo	140.55	25055 50	64 8380503		• • •	Nonman Co. Carl Jass Fatara STICKS STOCKOWOODS	3 844	0.00014	0.068177	
14			E.e	Out .	26000 55	55 AL2				- 3.53	0 001483		
-		Cobell	<u> </u>	Co.34	22058 50	44 833189				4 4 4 3 3	1.6.0		
34		Markel	N	Cont	28000 60	64 T			New Start Start Start Start Start Start Start			0.010103	
37		Conner	Ċ.	0.00	29000 60				Construction of the second second second second second second second second second second second second second s				
		7.00	20			46.17		••• ••• ••	Phabduchana as		أمترغموه		
		Arner	A 1	A 4.75	11076 34	74 8215044			I aDO4 HOO		4.30C-00		••••
40		Standards	~			47 47					3.902-07	000000010	
		Zenterin	34		10000 40	er 62		•		-10 9069	1.036-20	2 000/E-10	
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	2. Corolani	4	10.00	44000 30	01.22		•			4.008-07	0 00010513	
**	- 41	And date -			43000 40	82 906382					32-07	0.0002744	a.25527E-05
井	47	eluyooen			12000 50	<b>V3 P4</b>				. 4 142	7.21E-07	0 0001899	
			MED .	MID-85		84 905838				. I		2101 482553	001.7961747
		10CTVIDEU	IC	10-99		98 90627501			I			1	
		<b>NUTION</b>		RU-101		100 105578			i				·
	45	RUDOUM	Kn As	RIF-103	49103 50	102 105511							
	47	SHVER	~	AQ-109	4/109 50	108 904756		• .	and and a second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s				
49	4	Caomum	Ca	nat,	48000 50	112.4					1		

Page 1 of 6

--- -

#### clay_sts_Sheet1

• •

-

#### Allactyment VI

		8	C C	0	ε –		G	ТН			ĸ		M
50	49	lindum	lin	inat.	1	114 82		1				1	
4.	60	Tre	150	lost.	50000 35	118.60						t — - ···	
H		Contract	10.	C		433 0063455					·		
14		Cessori	<u></u>	0.00	<u> </u>	132 000000					• ••		
100			<u></u>	CI-135		134 805//					<u> </u>		
64		Banum_	Ba	inet.	<b>!</b>	137.34		1			L		
65	67	Lanthanu	La	inel	I	138.01		ł			L		
56	64	Cenum	Ce	inet.		140 12							
\$7	60	Neodymau	Nd	Nd-143		142 908779							
50			Nd	Nd-145		144 812538							
50								1		_			
60						· · · · · · · · · · · · · · · · · · ·		1		· •			
41								1 • •		· ·			
H											*		
<b></b>								{ —					
63		Numbe	r Densi	y work	leolope Lie	at (Continued)		1					
64					1							····=	
145		-			t	1				·			
		Element	Cumbral	lanana	INCHE IN	A summer barringe							
		E annon a	57	8-147		144 91494						{ •	
	- °ć	aamarium	3	3000147		140 914807	_					· · · · · · · · · · · · · · · · · · ·	
64		·	Sm	5/1-149	42149 50	148 91/18		· •					
69			Sm	Sm-150	l	149 917278	_	1	•	·			
70			Sm	Sm-151_	I	150 919919							
71			Sm	\$m-152		151 010756							
72	63	Europium	Eu	Eu-151	63151 55	150 918838							
73		· · · ·	Eu	E+153	43153 55	152 821242							
74			Eu	Eu-154	63154 50	153 923053			· · · · · · · · · · · · · · · · · · ·		• • •		
75	64	Gadobneu	Gal	met	64000 35	157.25		• ••••			••••	· ·	
74			04	GA.154	64155 50	154 972054			······································		• •••••	••••	
77			Gd	64.157	44157 40	154 824025					••••	• •	·
78	73	Halma In			73000 60	178.40			· • • · · • · • • • • • •				
		- Approx.m	7.8	Te dad	72000 30	1/8 49		• • • •					
10		Lanuaum	<u> </u>	18-187	73101 80	180 848007							
80	/4	Lingsten	W	net	74000 55	28 231	_	·					
81	62	Lead	PD	inat	82000 50	207.19			••••••••••••••••••••••••••••••••••••••			i]	
82	82	Uranum_	U	0-233	02233 50	233 039522				1			
83			0	U-234	92234 50	234 040904							
8			U	U-235	92235 50	235 043915			···· ···		•		
85			U	U-230	92236 50	236 045637		· ·	• • • • • • • • • • • • • • • • • • • •	•••••		• • •	
84	-		U	U-236	92238 50	238 05077			· · · · · · · · · · · · · · · · · · ·	· ·· •		•	
17	63	Nach Inc.	No	No-237	83737 64	217 048044			••• •••			·	
-		Phatometers	Pu	Pu-214	64238 65	218 048411				• •••		• •• •	
		PIDGRAM	P.	PU-230	84339 55	230 040311				·		· · ·	
			TV			238 092140				/		·	
80			71	PV-240	94240.50	240 053482							
91			PV	Pu+241	B4241.50	241 056737				1			
82			Pu	Pu-242	94242 50	242 058725	_						
83			Pu	Pu-243	94243 35	243 061972					•	•	
94	95	Amencum	Am	Am-241	85241 50	241 056714							
95			Am	Am-242m	85242 50	242 056502				• 1	· · ·	. · .	
90			Am	Am-243	95243 50	243 061367			•••	· · · ·		• • • •••	···
97	96	Cunum	Cm	Cm-243	96243 35	243 08137				·			·- ··· ]
			Cm	Cm.245	96745 35	245 065371		·		ł			·

Page 2 of 8

.

.

.

clay_ste_Sheet1

•

. . . .

Attachment VI

	A		C	0	E	F	G	н	J	×	L	M
99			Cm	Cm-248	96248 35	248 0722						
100												
101												
102		Numbe	r Densli	y Work	sheet:	÷						
103												
104		Number D	maily = (We	v <b>ori %) * (</b> C	Denelly) • (N	a) / (Amr)						
105		Avogedro's	Number	0 002252								
106		Alomic We										
107								·				

Page 3 of 6

11/17/97

.

-

. . . .

.

#### cley.sis,Sheet1

Allactyment VI

	N	0	P	0	R	8	T	Ú	V
T								· · · · · · · · · · · · · · · · · · ·	
2	Density g/cc		Atomic Weight	Alom Density			MCNP ID	teolopic Atom Density	for MCNP
3				meas/(total volume)/AW	PAV .				
14	2 620343443		262.1888296	2.1643E-03			1001.50C	3.8517E-04	
5	1.712790267		341,2937137	1.0927E-05			6012.50C	1.8117E-04	
1.	2 525377015		395.8941083	8.1953E-05		<b></b>	8016.50C	4.8406E-02	
17	3.2		504.2586787	1.0683E-06			9019 50C	1.0683E-06	
	2 \$59565522		278.3006588	1.5773E-03			11023.50C	2.1978E-03	
	3 892102532		538 9470628	2.3183E-08			12000.50C	9 4051E-05	
10	11 58204492		271.041976	2.7050E-07			13027.50C	3.8674E-03	
11	5 08		86 9278803	1.4574E-05			14000.50C	1.9795E-02	
112	2 648322939		60.07543	7.8501E-03			15031.60C	3.2649E-08	
13	4.244250701		79 88983	1.9001E-05			19000.50C	1 6696E-03	
14	8 508375		79 534915	1.9672E-08			20000 50C	1.5454E-04	
15						_	22000.50C	1 9001E-05	
16							25065 500	1 4574E-05	
17	2 709857003		100 064745	1 4108E-04			26000 55C	1.8127E-04	
10	3 009284754		84.296745	2 0838E-08			29000 50C	1.9672E-00	· .
10	3 899144174		114 0227053	2 \$708E-15					·
20	3 843738109		115 831745	4 1092E-24			TOTAL	7.8920E-02	
21	4 434938321		125,365895	1 0684E-19					
22	3.784404548		147.615895	1.0061E-12					
23									
24					L				· -
25	2 830016922			I			<u> </u>		
26	2788658003								
27	2.954447889				•			· · · · · · · · ·	•
28	2 815575485							••• •	•
22	0 732067806	• • • •							
30	0744667287		•						
31	0.726867607								
32	0.734034806								
33	3 238509321		424 2413542	1.05136-07	· · ••	••••			
1	3.183180538		430.0310102	1.00020-00					
12	3.249/00548	•	436 7147836		•				
hê			420 2141023		and in standard	a and inches	ed in Intel or matoric	number denabes	
1	[		TOTAL	1 1972E-02					
F									
1		• •• <del>· · · · · · · · · · · · · · · · · </del>							•••••
Han 1		***			· ·—				
H	أدفار المحدما	•••	• • •						
	<u></u>								
		j			•••				
45		•••• -							· ·
		··· · -·			• •				
47									
44	•				••				
49									

.....

Page 4 of 8

.

- - -

.....

#### cley.sts,Sheet1

...

Altachment VI

<u> </u>									<u> </u>
100	<u> </u>	<u>  ~ </u>	·	· · · · · · · · · · · · · · · · · · ·	+	<u>+</u>		<u> </u>	<u> </u>
F-		<u> </u>	+		- ··		<b>├</b>	<u></u> +• •• - • • • <b>−−</b>	
			··· · · · · ···					· · · · · · · · · · · · · · · · · · ·	
H	- <del></del> <del></del>	·				ł	{	•••••••••	
			<b>↓</b>		·	<u> </u>	<u>↓</u>	••••••••••••••••••••••••••••••••••••••	·
	** <b>~~~</b> ~~ ~~ ~~		<u> </u>			<u>ا ا ا ا ا ا ا ا ا ا ا ا ا ا ا ا ا ا ا </u>			
100						<u> </u>			
<b>1</b>		·	<b>↓</b>		· · · · · · · · · · · · · · · · · · ·	ļ			[
37		l							
34		÷						· ···· ·	· ·
50			· · · · · · · · · · · · · · · · · · ·		·   · ·			<b></b>	
60		ļ <b></b>	•	······	- I-				
61		· · · · · · ·	· · · · · · · · · · · · · · · · · · ·		· · · ·				
62			· · ·		1 .			·- ·-	•• •
63					1	1			
64					1 .			•••	
65			<b>1 </b> . <b></b>	• • • • • •	1 "			•••••	
80			····		1	t		· · ·	
67						1			
-					1	1			· •··
4.								•••	
70		• •	· - ·		· ·		• • • • • • •		
71				•	1	• •		• • •	• • • •
72			• •		· · · ·			· ·· · · · ·····	<b>-</b> ·
73		• •							•••••••
74					i ·			·	-
75			· ·			· · ·	• - • • • • • • • • • • • • • • • • • •	· •	• ==
78					1			• • • • • • • • • •	
77	••••	• ••			1	1 - 1		••••	•••
78			•••	••		•••	• • • • • •		
79	·				1				
80			· · ·		-		• •• •		••
	• •		·	•• •			· · · · · · · · · · · · ·		
82		••••							
83					I				
84		· ·			r •				
85									
86					1				
87					L				
86									
89									
90									
81					1				
92					T				
83									
14									
85			· ····	· <u></u> · · · · · · · · · · · · · · · · ·	· · · · · · · · ·				
86					· · ·				·· ···
87		••••••						· · · ·	
94					1				· · · · · · ·
_						_			

Page 5 of 8

#### cley sis, Sheet1

____

	N	0	P	0	<u>i n</u>	5	T	<u> </u>	I
100									
101				· · ·	L				
102									
103									
104									
105									
105			I						
187									

.

Page 8 of 8

A	۵	0	٥	0	0	0	0	Q	-	0	1	7	4	17	7.	C	2	C	Ю	н	Ö	0	0	5	0	F	ł	Ē١	V	0	0	
---	---	---	---	---	---	---	---	---	---	---	---	---	---	----	----	---	---	---	---	---	---	---	---	---	---	---	---	----	---	---	---	--

			·								<u> </u>	
	A	В	C	0	<u> </u>	F	G	<u>і н</u>		J	<u> </u>	<u> </u>
1			0.76	0.12	0.12							
2				4							-	
3	Element	MCNP ID	Clayey	Soddyite	PuO2	Total		MCNP ID	Total	\$	Element	
4			•							-		
5	Hydrogen	1001.50C	3.6517E-04	0.0171		2.3295E-03	M2	1001.50C	2.3295E-03	5	Hydrogen	
6	Carbon	6012.50C	1.5117E-04			1.1489E-04		6012.50C	1.1489E-04	\$	Carbon	
7	Oxygen	8016.50C	4.8406E-02	0.04275	0.050928	4.8030E-02		8016.50C	4.8030E-02	\$	Oxygen	
8	Fluorine	9019.50C	1.0883E-06			8.2712E-07		9019.50C	8.2712E-07	\$	Fluorine	
9	Sodium	11023.50C	2.1978E-03			1.6703E-03		11023.50	1.6703E-03	\$	Sodium	
10	Maonesium	12000.50C	9.4051E-05			7.1479E-05		12000.50	7.1479E-05	\$	Magnesium	
11	Aluminum	13027.50C	3.8674E-03			2.9392E-03		13027.50	2.9392E-03	5	Aluminum	
12	Silicon	14000.50C	1.9795E-02	0.004275		1.5557E-02		14000.50	1.5557E-02	\$	Silicon	
13	Phosphorus	15031.50C	3.2649E-06			2.4813E-06		15031.50	2.4813E-06	\$	Phosphorus	
14	Potasium	19000.50C	1.6696E-03			1.2689E-03		19000.50	1.2689E-03	\$	Potasium	
15	Calcium	20000.50C	1.5454E-04			1.1745E-04		20000.50	1.1745E-04	\$	Calcium	
16	Titanium	22000.50C	1.9001E-05			1.4440E-05		22000.50	1.4440E-05	\$	Titanium	
17	Manganese	25055.50C	1.4574E-05			1.1076E-05		25055.50	1.1076E-05	\$	Manganese	
18	lm	26000.55C	1.8127E-04			1.3777E-04		26000.55	1.3777E-04	\$	Iron	
19	Copper	29000.50C	1.9672E-08			1.4951E-08		29000.50	1.4951E-08	\$	Copper	
20	Uranium	92235.50C		0.00855		1.0260E-03		92235.50	1.0260E-03	\$	Uranium	
21	Plutonium	94239.55C			0.025464	3.0557E-03		94239.55	3.0557E-03	\$	Plutonium	
22												
23		TOTAL	7.6920E-02	0.072675	0.076392	7.6347E-02						

clay.xls,Sheet2

.

. .

Page 1 of 1

٢.

11/17/97

Attachment VII