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The Objectives of the Research

In the United States, spent fuel and high-level radioactive waste

will be permanently disposed of in a geologic repository. Disposal of

the spent fuel and high-level waste is scheduled to begin in the year

2010. The candidate site for the first U.S. geologic repository is

located at Yucca Mountain, Nevada, approximately 100 miles, or about 160

kilometers, northwest of Las Vegas, Nevada. Comprehensive studies are

underway on the potential host rock formation. These studies are called

site characterizations.

An important element in assessing the suitability (or lack of

suitability) of the Yucca Mountain site is an assessment of the

potential for future volcanic activity. A potentially adverse condition

with respect to volcanism is judged to be of concern at the Yucca

Mountain site (Department of Energy, 1986) because of the presence of

multiple basalt centers of Quaternary age.

Present understanding of eruptive mechanisms is not yet advanced

enough to allow deterministic predictions of future activity. The only

attempts at long-term forecasting have been made on statistical grounds,

using historical records to examine eruption frequencies, types,

patterns, risk, and probabilities. Reliable historical data make

possible the construction of activity patterns for several volcanoes

(Wickman, 1966, 1976; Klein, 1982, 1984; Mulargia et al., 1985; Mulargia

et al., 1987; Condit et al., 1989). Unfortunately, there is no

historical record of volcanism near Yucca Mountain, located within the

Nevada Test Site (NTS). The volcanic record must therefore be developed

by detailed field, geomorphic, and geochronologic studies.
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Concern that future volcanism might disrupt the proposed Yucca

Mountain repository site motivated the assessment of the volcanic risk

to the Yucca Mountain area. Crove and Carr (1980) calculate the

probability of volcanic disruption of a repository at Yucca Mountain

using a method developed largely by Crowe (1980). Crowe et al. (1982)

refine the volcanic probability calculations for the Yucca Mountain area

using a simple Poisson model. Although the simple Poisson model has

proved successful in a wide range of situations, it might be inadequate

to model the volcanism at NTS for the following reasons:

a) A simple Poisson model does not allow for the possibility of a

waning (or developing) volcanic time trend, which is one of the major

concerns in quantifying the volcanism at the Yucca Mountain region. It

should be obvious that the chronological order in which the volcanic

eruptions occur is an extremely important aspect of a historical

eruptive data set. The simple Poisson model, however, assumes that the

average recurrence rate (A) is constant throughout the entire life of

the volcanic activity.

A new development in volcanic studies is the possibility that the

scoria cone of the Lathrop Yells volcanic center, one of the youngest

volcanic centers in the Yucca Mountain region, is significantly younger

than associated lava flows (Wells et al., 1988). Further studies have

shown that at least three and possibly more of the seven Quaternary

volcanic centers in the region exhibit polycyclic activity (Crowe et

al., 1989 and Wells et al., 1990). It is therefore of interest to

explore alternative model(s) derived from less restrictive model

assumptions to see how the time trend could be evaluated.
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b) Given the extremely limited nature of the geologic data at the

Yucca Mountain area, the use of the most elementary statistical model

(i.e., a simple Poisson model) is hard to justify. As has been

mentioned earlier, there is a large and growing body of literature on

probabilistic modeling for volcanism. Much of the debate in the

literature is centered on the choice of distribution models (principally

homogeneous Poisson versus nonhomogeneous Poisson models). There are

several variations possible in goodness-of-fit testing. For the

homogeneous Poisson model, the chi-square goodness-of-fit test (e.g.,

see Steel and Torrie, 1980, p. 529) based on count data is often not

reliable because of low degrees of freedom or low expected cell counts

for some volcanic eruptive data. The Kolmogorov-Smirnov test (e.g., see

Steel and Torrie, 1980, p. 535) is considered more reliable and is based

on the repose times between eruptions, but does not take into account

the relative positions of repose times. In general, relatively large

samples are usually required to verify the validity of a specified model

(at some probability level).

There is a developing literature on volcanic recurrence models that

include plots of cumulative volume of volcanic events versus time (Shaw

1980, 1987; Vadge, 1982; Bacon, 1982). Crowe and Perry (1989) use the

curve of cumulative magma volume plotted versus time to evaluate whether

the volcanism at NTS indicates steady-state eruptive behavior in magma

production. They then evaluate the slope of the curve as an estimate of

the annual rate of magma production. I consider this approach

questionable. First, a simple Poisson model requires a constant rate of

occurrence, which is not the same as magma production. Also, the trend
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of magma volume has not proved relevant to that of the frequency of the

volcanic events (eruptions) at the NTS area. Second, the degree of

erosional modification of volcanic landforms for the Yucca Mountain

region should be studied to estimate volumes of missing volcanic

deposits.

Crowe and Perry (1989) object that cone counts record only the

recognition of a volcanic event, not its magnitude, and so they refine

the parameter estimation by concentrating on the cumulative magma volume

which is a continuous variable. Nonetheless, their model assumptions

and development are still based on a discrete simple Poisson model,

which treats each eruption equally in order to calculate the final

probability. So far, the problems of model assumptions and parameter

estimations have been treated only separately by Crowe et al. (1982) and

Crowe and Perry (1989), despite the fact that the model assumptions and

parameter estimation methods virtually always depend on each other in

volcanic hazard and risk calculations.

For the reasons discussed, a formal structure, with conclusions

depending on the model assumptions, needs to be developed to ensure that

volcanic risk assessment is based on an adequate model and a complete

volcanic record of the Yucca Mountain region.

Nonhomogeneous Poisson lodels Developed

I Compound Poisson lodel with a Camma Compounding Density

The simple Poisson model generally gives a good fit to many

volcanoes for volcanic eruption forecasting. Nonetheless, empirical

evidence suggests that volcanic activity in successive equal time-period
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tends to be more variable than a simple Poisson with constant eruptive

rate. An alternative model is therefore examined in which eruptive rate

(A) for a given volcano or cluster(s) of volcanoes is described by a

gamma distribution (prior) rather than treated as a constant value as in

the assumptions of a simple Poisson model. Bayesian analysis is

performed to link two distributions together to give the aggregate

behavior of the volcanic activity. When the Poisson process is expanded

to accommodate a gamma mixing distribution on A, a consequence of this

mixed (or compound) Poisson model is that the frequency distribution of

eruptions in any given time-period of equal length follows the negative

binomial distribution (NBD). Applications of the proposed model and

comparisons between the generalized model and simple Poisson model are

discussed based on the historical eruptive count data of volcanoes Mauna

Loa (Hawaii) and Etna (Italy). Several relevant facts lead to the

conclusion that the generalized model is preferable for practical use

both in space and time. Moreover, this exceedingly flexible model has

only two parameters which can be easily determined from the eruptive

court data.

I Ionhomogencous Poisson Frocess vith eibull Intensity

A simple Poisson process is more specifically known as a

homogeneous Poisson process since the rate A was assumed independent of

time t. The homogeneous Poisson model generally gives a good fit to

many volcanoes for forecasting volcanic eruptions. If eruptions occur

according to a homogeneous Poisson process, the repose times between

consecutive eruptions are independent exponential variables with mean 0

= 1/A. The exponential distribution is applicable when the eruptions
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occur "at random" and are not due to aging, etc. It is interesting to

note that a general population of volcanoes can be related to a

nonhomogeneous Poisson process with intensity factor A(t). In this

model, specifically, we consider a more general Weibull distribution,

VEI(O,p), for volcanism. A Weibull process is appropriate for three

types of volcanoes: increasing-recurrence-rate (#>1),

decreasing-recurrence-rate (f<i), and constant-recurrence-rate (6=1).

Statistical methods (parameter estimation, hypothesis testing, and

prediction intervals) are provided to analyze the following five

volcanoes: Aso, Etna, [ilauea, St. Helens, and Yake-Dake. We conclude

that the generalized model can be considered a goodness-of-fit test for

a simple exponential model (a homogeneous Poisson model), and is

preferable for practical use for some nonhomogeneous Poisson volcanoes

with monotonic eruptive rates.

Statistical Estimation of Recurrence Rates of Volcanism

near the Yucca fountain Site

Investigations are currently underway to evaluate the impact of

potentially adverse conditions ( e.g., volcanism, faulting, seismicity)

on the waste-isolation capability of the proposed nuclear waste

repository at Yucca Mountain, Nevada, U.S.A. We discuss three

estimating techniques for determining the recurrence rate of volcanic

eruption (A), an important parameter in the Poisson probability model.

The first method is based on the number of events occurring over a

certain observation period, the second is based on repose times, and the

final is based on magma volume.
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All of the statistical estimation methods considered for A require

knowing the value of E (total number of eruptions during the observation

period). An accurate count of E is possible for volcanoes with a

complete historical record. Identifying E, however, depends strictly on

a clear understanding of eruptive processes and reliable dating

techniques for the NTS region, since no historical record is available.

Scientists differ in their opinions of volcanism at the NTS area. The

following is the view of Crowe et al. (1983):

Basalt centers are composed of multiple vents, each marked

by a scoria cone. In this NTS region the cones are divided into

two categories: large central cones, referred to as the main

cones, and satellite cones. The average number of cones at a

single center, based on cone counts of seven Quaternary basalt

centers in the NTS region, is about 2 to 3 cones. Thus, field

data suggest a general eruption pattern where the initial

breakthrough of magma to the surface is marked by the

development of an eruptive fissure with two or three loci of

effusion. Each of these vents becomes the site of small scoria

cones. As the eruption proceeds, activity shifts or

concentrates at a single vent that becomes the site of the main

scoria cone.

The above description indicates that a main scoria cone is the final

stage of a single eruption, and a single eruption could have several

small vents to accompany the main cone. However, the possibility of

polygenetic (and polycyclic) volcanism at all the volcanic centers needs
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to be evaluated. A would be underestimated if nearby vents have

distinguishable ages. We, therefore, estimate E as follows:

Let I denote the number of volcanic centers under

investigation, and let Ji be the number of main cones

in the ith volcanic center, where i=1, ... , I. The

proposed estimate of E is:

I J

i- E~ (ij + ij)(1i= j=1

where mij = number of multiple, time-separate eruptions

of the jth main cone in the ith volcanic center,

and eij = number of vents that are separate in space

and time (with distinguishable age measurements)

from the jth main cone in the ith volcanic center.

The rationale for this estimate is that significant information has

emerged that some of the volcanic centers are polycyclic volcanoes

(e.g., Lathrop Vells center (Vells et al., 1990)). This estimation for

parameter E (total number of eruptions) given by Equation 1 takes into

account such a possibility for the NTS area.

Future Work

Crowe and Perry (1989, Figure 1) divide the Cenozoic volcanism of

the Yucca Mountain region into three episodes that include 1) an older

episode of large volume basaltic volcanism ( 12 to 8.5 Ma) that

coincides in time with the termination of silicic volcanic activity; 2)

the formation of five clusters of small volume basalt scoria cones and

lava flows (9 to 6.5 Ma), all located north and east of the Yucca

Mountain site; and 3) the formation of three clusters of small volume
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basalt centers (3.7 to .01 Ma), all located south and west of the Yucca

Mountain site. The two youngest episodes form northwest-trending zones

that parallel the trend of structures in the Spotted Range-Mine Mountain

section of the Valker Lane belt. Crowe and Perry (1989) suggest a

southwest migration of basaltic volcanism in the Yucca Mountain area

based on this structural parallelism, a pattern that may reflect an

earlier southwest migration of silicic volcanism in the Great Basin.

Smith et el. (1990) also provide a different point of view of the

migration trends of volcanism in the Yucca Mountain region.

The important questions that we attempt to answer for assessment of

volcanic risk for the Yucca Mountain site include:

1. What is the overall time trend of the volcanic activity?

2. Can the next episode be predicated?

3. What does the youngest episode (3.7 to 0.01 Ma) tell us?

Is the time trend increasing?

4. Can the probabilities of future eruptions and site disruption

be predicted?
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ABSTRACT

The simple Poisson model generally gives a good fit to many

volcanoes for volcanic eruption forecasting. Nonetheless,

empirical evidence suggests that volcanic activity in successive

equal time-periods tends to be more variable than a simple Poisson

with constant eruptive rate. An alternative model is therefore

examined in which eruptive rate (A) for a given volcano or

cluster(s) of volcanoes is described by a gamma distribution

(prior) rather than treated as a constant value as in the

assumptions of a simple Poisson model. Bayesian analysis is

performed to link two distributions together to give the aggregate

behavior of the volcanic activity. Vhen the Poisson process is

expanded to accommodate a gamma mixing distribution on A, a

consequence of this mixed (or compound) Poisson model is that the

frequency distribution of eruptions in any given time-period of

equal length follows the negative binomial distribution (NBD).

Applications of the proposed model and comparisons between the

generalized model and simple Poisson model are discussed based on

the historical eruptive count data of volcanoes launa Loa (Hawaii)

and Etna (Italy). Several relevant facts lead to the conclusion

that the generalized model is preferable for practical use both in

space and time.

INTRODUCTION

The evaluation of eruptive probabilities for a given volcano or

a volcanic center remains an open problem in the definition of

volcanic risk. There are many unknown areas with respect to
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geologic understanding of volcanic activity, despite the fact that

there are well recognized means of gathering data (field mapping,

determinations of the eruptive history of basaltic centers,

petrology, geochemistry, geochronology including magnetic polarity

determinations, tectonic setting, and geophysical studies) that are

well advanced. Present understanding of eruptive mechanisms is not

yet advanced enough to allow deterministic predictions of future

activity to be put forward. The only attempts at long term

forecasting have been made on statistical grounds, using historical

records to examine eruption frequencies, types, patterns, risk, and

probabilities (Vickman 1966, 1976; Crowe et al., 1982; Klein 1982;

Mulargia et al., 1985; Condit et al., 1989). The application of

statistical methods to volcanic eruptions was put onto a sound

analytical footing by Vickman (1966, 1976), in a series of papers

which discussed the applicability of the methods and the evaluation

of eruptive rates for a number of volcanoes. Vickman observed

that, for some volcanoes, the eruption rates were independent of

time. These volcanoes were called "simple Poissonian volcanoes".

Theoretically, the probability model for simple Poissonian

volcanoes is derived from the following assumptions:

Volcanic eruptions in successive time periods of

length t for each period are independent and should

follow a Poisson distribution with a constant mean

(average rate) At, where A is the average eruptive

rate in unit time and is assumed to be constant

throughout the entire life of the volcanic activity.

A is called the parameter of a Poisson model.
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Relevant standard statistical methods (Runs test, [olmogorov -

Smirnov test, etc.) have been surveyed by Davis (1986, Ch. 4) and

Tazieff (1983, Ch. 6), and have been widely applied to closely

examine the above assumptions for volcanoes such as Etna (Eulargia

et al., 1985), Kilauea, and launa Loa (Klein, 1982). Although the

simple Poisson model has proved useful in some situations,

assumptions of a simple Poisson process are rather restrictive for

longer observation time and, consequently, fail to cover a more

general population of volcanoes. It is therefore of interest to

explore suitable models derived from different assumptions for

volcanoes other than simple Poissonian volcanoes.

In this article we are concerned with the assumption that the

eruptive rate in unit time, A, should be constant. One well-known

characteristic of the Poisson distribution is that the mean and

variance have the same value. In some cases these properties may

not be valid, and a more flexible model is required.

CIlIA PRIOR AND BAYESIAN ANALYSIS

In searching for a more flexible model, we consider, at least

conceptually, a large volcanic center (belt) with cluster(s) of

volcanoes in which, for any given volcano, the number of volcanic

eruptions in [O,t] follows a Poisson process with rate p = At;

however, A may be different from volcano to volcano. In

particular, for this conceptually large population of volcanoes, we

assume that A is a continuous random variable that follows a

probability density function g(A). There is one more scenario that

suggests this generalization, which is also suitable for a single
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volcano. It arises from the fact that, although eruptions are

caused by specific physical events or processes, there might be

many causal factors with random influences on the sequence of

eruptions. As a result, parameter A is a random variable. Note

that in the context of a Bayesian analysis of a Poisson model, the

density g(A) corresponds to a prior density for the parameter, and

the mathematics involved in the Appendix is essentially equivalent

to that involved in the associated Bayesian analysis. The

differences between the suggested scenarios for this generalization

and the Bayesian approach to the same problem depend on the

philosophy for introducing a density function for the parameter and

the interpretation of the results. In a Bayesian analysis the

prior density reflects a degree of belief about the value of the

parameter or some previous information about the value of the

parameter (Interested readers are referred to Berger, 1988, Ch. 4).

Ve now turn to the modification of the Poisson scheme which is

derived by supposing that the average eruptive rates in successive

time periods of equal length are not the same. Vithout loss of

generality, each observation period will be treated as unit time,

i.e. t=l. One naturally commences with the assumption that g(A)

has a normal distribution. But the assumption of a normal

distribution cannot be justified since values of A may range from

zero far in the positive direction so that g(A) should be skew.

The distribution of A we adopt is the gamma distribution. This is

plausible, since such a distribution is fairly flexible (having two
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adjustable parameters) and the right shape (i.e. a continuous

distribution for non-negative values that is reversed-J-shaped or

hump-backed and always positively skewed). In the Bayesian

analysis, the gamma distribution is a prior from the conjugate

family for the Poisson population (DeGroot, 1970, p. 164). Klein

(1984) has also used the gamma distribution as one of the smoothing

curves to fit the empirical data of the eruption forecasting

parameters.

NEGATIVE BINONIAL PIEDICTOIS

Vhen the Poisson process is expanded to accommodate a gamma

mixing distribution on A, an immediate consequence of this mixed

(or compound) Poisson model is that the frequency distribution of

eruptions in any given time-period of equal length follows the

negative binomial distribution ( abbreviated NBD). (See Appendix.)

The probability of x eruptions is:

P(x) = { [Th] [ x = 0, 1, 2,..., (1)

where r and a are, respectively, the shape and scale parameters of

the gamma distribution (mean = r/a, variance = r/a2). If the

future observation time interval increased by a factor of t then a

in the right-hand side of (1) is replaced by at. Equation (1) is a

form of negative binomial distribution, and it is referred to as a

compound Poisson distribution with a gamma compounding density.

Thus, the NBD represents a generalization of the Poisson

distribution, and it converges to the Poisson distribution when the

gamma prior density becomes degenerate at a constant (Feller, 1968,

p. 281). The negative binomial model, therefore, can be used as an
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alternative to the Poisson model in analyzing volcanic eruption

count data, particularly when the variance and the mean cannot be

assumed equal.

THE POSTERIOT NEAI OF A

Bayesian analysis is performed by combining the prior information

(g(A)) and the sample information (x) into what is called the

posterior distribution of A given x, from which all decisions and

inferences are made. The posterior distribution of A given x (or

posterior for short) is denoted g(Aix). The name "posterior

distribution" is indicative of the role of g(Alx). Just as the

prior distribution reflects the value of A prior to

experimentation, so g(Alx) reflects the updated beliefs about A

after (posterior to) observing the sample x. In other words, the

posterior distribution combines the prior beliefs about A with the

information about A contained in the sample, x, to give a composite

picture of the final beliefs about A. The eruptive rate A plays an

important role in the evaluation of volcanic risk and volcanic

forecast. The mean of this up-dated posterior distribution is

derived in the Appendix as

E [AIx] = r + nx (2)

where n is the total number of observation periods with equal

length and I is the sample average. Again, if the future

observation period increased by a factor of t then the right-hand

side of (2) is multiplied by t.
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PAL&IETER ESTIMTION JND EODEL IDEQUICY CHECKING

General sampling theory of the NBD has been discussed by

Anscombe (1950), who also gives earlier references. The mean and

variance for the negative binomial variable in (1) are given by

EX = r/a,

and

Var(x) = r(a + 1)/a 2.

In spite of the fact that maximum likelihood estimates for the NBD

were given (implicitly) by Anscombe (1950), the two common

techniques for estimation of (r,a) (required to evaluate (1)) have

been the method of moments and fitting the mean and zeros

(Anscombe, 1950). The second method is more attractive in terms of

efficiency. The technique is to equate the observed proportion of

zero counts P0 to its expected value, i.e. to write

[ a +1]°'Po (3)

and

i = a xs (4)

where i is the observed sample mean. The first equation is solved

for i by iteration. Once a and i are estimated, the probability of

future eruptions can be calculated based on (1). If PO = 0, then

the method of moments is a natural substitute. Method of moment

estimates for the NBD are:

& l (s 2 X

i = a S.

where i and s2 are the observed mean and variance, respectively.
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The goodness-of-fit of the estimated distribution can be

tested by comparing the observed and theoretical frequencies using

the chi-square goodness-of-fit test. A slightly more laborious

test, for large samples, is to compare the observed variance with

the theoretical value r(a+l)/a2 as proposed by Anscombe, 1950.

EXPIRICAL ELAIPLES

The data set used here consists of historical eruptions of

volcanoes Etna (Table 1) and Mauna Loa (Table 2).

volcano Etna

A complete record exists for the eruptive activity of Etna.

The time series of occurrence of flank eruptions in the period

1600-1980 is found to follow a simple Poisson process (Eulargia et

al., 1985). 1 similar result was found by Vickman (1976), although

on a less reliable data set. The purpose of the following analysis

is not to reexamine the previous results, but to investigate the

sensitivity of the proposed NBD model to a simple Poissonian

volcano based on eruptive count data. For comparison purpose, we

adopt the same observation time intervals as described in Rulargia

et al., 1985. The year 1605 was taken as a starting point and the

period 1605-1980 was divided into 25 fifteen-year intervals. The

frequency distribution of this set of data yields sample variance

s2 = 2.826 and sample mean £ = 1.920. These results suggest that

the mean and variance of I may not be equal. However, additional

distribution results are needed in order to indicate whether this

magnitude of difference between s2 and i reflects a true difference

or is due to random variation. It has been shown in the literature
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(e.g., Steel and Torrie, 1980, p. 530-531) for this case that

approximately

(n-i) 2 2

when I does follow a Poisson model (it may yield different

conclusions than other methods). In our problem (n-l)s 2/x =

24(2.826)/1.920 = 35.325. Now P[X2(24) > 35.325] W 0.06, thus the

observed ratio is larger than would be likely. However, there is

about a 67. (p-value) chance of getting such a result when the

Poisson model is valid. Therefore, the hypothesis of a simple

Poisson model can not be rejected at 0.05 significance level, which

is consistent with the results in the previous studies (Mulargia et

al., 1985, and Vickman, 1976). Ye then use the generalized model

(NBD) to fit this data set. Equations 3 and 4 yield i = 1.079 x

10 and i = 2.072 x 108. The estimated mean and variance of the

gamma prior distribution are:

l = = 1.920 =

and

O2 =/j2 =1.78 x 10-8 _0.

The near zero variance of the gamma prior indicates that the gamma

prior density degenerates at i = 1.920, which is the same estimate

for the eruptive rate as if a simple Poisson model were used. The

probability of x eruptions based on equation (1) can then be

approximated by the Poisson probability distribution function:

P(x) = e , x = 0, 1, ...
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Thus, the NBD does represent a generalization of the Poisson

distribution. Further analyses for this simple Poisson model were

not attempted to avoid duplicating similar work already in the

literature.

Volcano fauna Loa

Klein (1982) has performed statistical test for randomness on the

repose times between eruptions for Kauna Loa using eruptions during

the period 1832-1975. Except for small phases of summit activity,

data for Mauna Loa eruptions are complete since 1832, owing to

visibility of the mountain from several coastal towns. Our attempt

to analyze longer periods of time leads us to adopt the historical

eruptions recorded in the Volcanoes of the Vorld (Simkin et al.,

1981). According to their record, the first eruption started in

1750. After a period of total inactivity (or loss of data) of 82

years, in 1832 Mauna Loa renewed its activity. The reliability of

the historical eruptive counts is not our concern here. On the

contrary, we intentionally include this possibly unreliable

eruption to perturb a potential simple Poisson process in contrast

to the previous analysis for Etna. Based on Table 2, the year 1750

was taken as a starting point and the period 1750-1979 was divided

into 46 five-year intervals. The frequency distribution provides

sample variance s2 = 1.169 and sample mean i = 0.826. The

chi-square test statistic (= 63.69) for the observed ratio yields

p-value = 0.03, which rejects the hypothesis of a simple Poisson

model at 0.05 significance level and concludes that a NBD model is

indicated for further analyses. The results are summarized in

10



Table 3. Generally speaking, the fit is adequate except at x = 3

where the observed count is zero. Note that the observed and

theoretical frequencies at x=0 are always identical since the

parameter estimates were obtained by fitting the sample mean and

observed proportion of zero eruptions. A chi-square

goodness-of-fit test was performed to check the adequacy of the fit

of the negative binomial distribution. The test statistic is 8.69

which leads to p-value I 0.07, and indicates that the model is

acceptable at 0.05 significance level. The estimated theoretical

variance is 1.031 (= i (a + 1)/&2), which is also close to

(relative to the theoretical value ( =0.826) from a simple Poisson

model) the sample variance s2 = 1.169. Moreover, the posterior

mean is estimated as 0.826, which coincides with the sample mean,

x. In other words, the updated belief about the future long run

average eruptive rate, from the Bayesian point of view, after

observing the sample x, is the sample average. The value 0.826 is

based on five-year time interval. It is equivalent to 0.1652

(year 1), or 1.38 x 10-2 (monthl1), or 3.77 x 10-5 (day-1).

Indeed, the eruptive rate which has been postulated as a random

variable need not be observable in any sense. It is only necessary

to suppose that in any one period of time eruptive rates behave as

if they were a random sample from a gamma distribution.

CONCLUSIONS

Volcanic activity is governed by the complex interaction of

several geological, geophysical and geochemical factors. Because

of this complexity even with the present knowledge eruptions cannot
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theoretically be predicted. Several circumstances make it

difficult to work out more realistic statistical models yielding

results in 100 percent quantitative agreement with the observed

data. First of all, reliable historical records of volcanic

activity are available for only a few volcanoes and, when this

favorable circumstance occurs, the records are generally either

short or inhomogeneous. In spite of these difficulties and

limitations, the statistical model proposed in this work concludes

the following relevant facts:

a) The whole analyses are strictly based on the eruptive

count data, which are more reliable and consistent than

measurements based on repose times, magmatic volume or other

geologic variables. For the simple Poisson model, the chi-square

goodness-of-fit test is often not reliable due to low degree of

freedom or low expected cell counts. The Kolmogorov-Smirnov test

or other survival curves, is then applied based on the repose times

between eruptions, which is expected to be exponentially

distributed. However, analyses based on repose times are limited

to a description of its general pattern of activity, rather than

the prediction of the outbreaks of a volcano. For the purpose of

prediction, one has to convert the exponential distribution model

to the Poisson model, which requires additional estimation of the

eruptive rate based on count data. Often these two models produce

inconsistent estimates, despite the fact that they should be

identical theoretically.

12



b) The assumptions of the proposed NBD model are less

restrictive and thus more applicable for a variety of situations.

Moreover, this exceedingly flexible model has only two parameters

which can be easily determined from the available data. The

estimated posterior mean for the future eruptive rate is the

observed sample average, which is intuitively acceptable and

simple. Individual probability of x number of eruptions can be

predicted based on the aggregate behavior of the volcanic activity.

The applicability of the NBD model extends to cluster(s) of

volcanoes and longer observation time. One does not need to trim

the data and strive for the homogeneity of the processes. In

several parts of the world, socio-economic conditions have resulted

in the growth of large human settlements near active volcanic

regions (e.g., Italy, Japan, U.S.A., Indonesia and Central

America). Such is the high rate of industrial and agricultural

development in these areas that it is becoming increasingly urgent

to be able to evaluate the risk to which they are exposed. The

record of global volcanism, however, is fragmentary and scattered.

Many volcanoes were remote from human habitation, and the historic

record, in view of the long intervals between many eruptions, is

often too short to aid in predicting future volcanic activity.

Predictions are needed, though, and there is always a chance that

if we exclude any long repose time(s) (or interval(s) suspected as

loss of data) we are discarding real information. We need

solutions to this problem: protection against discarding good
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data. The flexible model proposed in this paper would be helpful

in this regard.

c) General sampling theory of the negative binomial

distribution is well documented. The parameters estimation method

adopted for the volcanic eruption modelling is not new. However,

the most promising development for the NBD model, perhaps, is that

the observed and theoretical counts for zero eruptions are exactly

identical (except for some rounding errors). The probability

distribution of volcanic count data decreases rapidly for high

count values as :.n most of the cases, where P(O)(=P(no eruptive

events)) sometimes is the largest frequency and plays an important

role in decision making processes such as selection of a high-level

nuclear waste repository site (e.g., Yucca Mountain, Nevada,

U.S.A.). This model reflects 100 percent accuracy for fitting the

theoretical value of P(O) to the observed data.

d) Finally, the estimated parameter i in the NBD model could

also serve as a diagnostic index for a simple Poisson process. I

huge e automatically sends a signal of a degenerated gamma prior,

indicating a simple Poisson model for future volcanic forecasting.

This is a valuable unique distinction of the generalized NBD model.

There are many unknown areas with respect to geologic

understanding of volcanic activity. One possible improvement would

be to reconfirm all of the crucial assumptions from statistical

evidence using data, which are the only basis we have for making

necessary plans, calculations and decisions. Ve have no choice but

to form our notion of governing laws on the basis of data and to
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act accordingly. This is particularly true in volcanic studies,

where data are rare and expensive (e.g., dating of volcanism, cone

counts). For the reasons discussed, the gain of Bayesian analysis,

letting A be random, is obtained with virtually no loss in

predictive ability both in space and time.
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APPENDII

the IIIB lodel.

Treating the average eruptive rate as a random variable A means

that the probability distribution function f(x;A) is actually a

conditional probability, the condition being that A is in state A.

Thus, when using a probability distribution for A, it is more

appropriate to use the notation f(xlA) for the data I. From the

conditional distribution of I and the given prior distribution for

1, we can calculate the joint distribution of (IA):

f(xA) = f(xIA)g(A),

and the corresponding marginal or absolute distribution of I, with

probability

P(x) = Eg[f(xA)] = ff(xJA)g(A)dA. (Al)

For the case as described in the text, assuming that A follows a
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gamma distribution, GAE(r,a), then

g(1) "r r-le-", A > 0; r,- > A
r (r)

and

f(xlA) = e-A'/x!, x = O0 1,

Thus, from equation (Al), the marginal probability distribution for

the number of eruptions in unit time interval is given by

P(x) = f e-jAx Ar rle-a I

0 x! r(r)

r (r + x) ( a r =
r (r) x! ol ]r [ l+l J = 2,..

as indicated in the text's expression (1). The interest in the

marginal distribution centers around the fact that, if I has the

conditional density f(xJA) and A actually is random with density

g(A), then P(x) is the probability according to which I will

actually occur. For this reason P(x) is sometimes called the

predictive distribution for X, since it describes what one would

"predict" that I would be.

Posterior lean ZEA z:

Assume I = (x1, ... , xn) is a sample from a Poisson

distribution with mean A, and assume A - GAI (r,a), then A and I

have joint distribution

f(x,A) = f(xIA)g(A)
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K>

e- UA nx Ar-le-OA arI (1)
= r

Ei~nl [Xi!]r(r)

= e-A(n+a) A(nx+r-1) 8r I(o )(A)

r(r) 1i1 [X!

The factor involving A in this last expression is recognizable as

belonging to a GAI (nY + r, n + a) distribution. This must then be

g(Alx). Since this posterior is a gamma distribution, it has mean

E[AIx] = r + n I
a i n

as indicated in the text's expression (2).
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TABLE 1

Years of flank eruptions of the volcano Etna

for the period 1605-1980

1610 1766 1874 1928

1614 1780 1879 1942

1634 1792 1879 1947

1646 1792 1883 1949

1651 1802 1886 1950

1669 1809 1892 1971

1689 1811 1908 1971

1702 1819 1910 1974

1755 1832 1911 1974

1759 1843 1918 1978

1763 1852 1923 1978

1763 1865 1928 1978
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TABLE 2

Years of eruptions of the volcano Mauna Loa

for the period 1750-1979

1750 1870 1880 1926

1832 1871 1887 1933

1843 1872 1892 1935

1849 1873 1896 1940

1851 1873 1899 1942

1852 1875 1903 1949

1855 1875 1907 1950

1859 1876 1914 1975

1865 1877 1916

1868 1880 1919
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TABLE 3

Summary of the fit of a negative binomial distribution

(volcano Mauna Loa)

NUMBE. OF FREQUENCIES

ERUPTIONS OBSERVED THEORETICIL

9 22 22.0

1 15 14.6

2 7 6.3

3 0 2.2

4 1 0.2

5 1 0.2

6+ 0 0.0

x = 0.826, P0 = 0.478, e = 4.023, i = 3.322
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LBSTRACT

A simple Poisson process is more specifically known as a homogeneous

Poisson process since the rate A was assumed independent of time t.

The homogeneous Poisson model generally gives a good fit to many

volcanoes for forecasting volcanic eruptions. If eruptions occur

according to a homogeneous Poisson process, the repose times between

consecutive eruptions are independent exponential variables with mean 0

= 1/A. The exponential distribution is applicable when the eruptions

occur "at random" and are not due to aging, etc. It is interesting to

note that a general population of volcanoes can be related to a

nonhomogeneous Poisson process with intensity factor A(t). In this

paper, specifically, we consider a more general Veibull distribution,

VEI(V,fl), for volcanism. A Veibull process is appropriate for three

types of volcanoes: increasing-eruption-rate (P>1),

decreasing-eruption-rate (P<1), and constant-eruption-rate (P=1).

Statistical methods (parameter estimation, hypothesis testing, and

prediction intervals) are provided to analyze the following five

volcanoes: Iso, Etna, Kilauea, St. Helens, and Yake-Dake. Ye conclude

that the generalized model can be considered a goodness-of-fit test for

a simple exponential model (a homogeneous Poisson model), and is

preferable for practical use for some nonhomogeneous Poisson volcanoes

with monotonic eruptive rates.

INTRODUCTION

It is the complex, unpredictable interaction of the factors

governing the behavior of a volcano that makes it doubtful whether the
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exact time of an outbreak of a volcano can be exactly predicted.

Although every volcano has an individual repose-period pattern, there

are, nevertheless, several general types of patterns (Vickman, 1966,

1976), which make long term forecasting possible for volcanoes with

simple extreme patterns. Vickman observed that, for some volcanoes,

the eruption rates were independent of time. These volcanoes were

called "simple Poisson volcanoes". Vickman also used a series of

repose states characterized by increasingly larger but time-independent

rate parameters to describe the repose-period patterns of several

volcanoes other than simple Poisson volcanoes. However, the models

presented by Vickman were based on the assumption that the conditions

of the volcanic activity mainly changed stepwise. This paper is

concerned with the use of time-dependent rate parameter-a continuous

model.

Theoretically, the probability model for simple Poisson volcanoes is

derived from the following assumptions:

Volcanic eruptions in successive time periods of length t for

each period are independent and should follow a Poisson

distribution with a constant mean (average rate) p=At, where A

is the average eruptive rate in unit time and is assumed to be

constant throughout the entire life of the volcanic activity.

If A is assumed constant over t, the process is referred to as a

homogeneous Poisson process (IPP). Since A is constant and the

increments are independent, it turns out that one does not need to be

concerned about the location of the observation time interval, and the
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model I - POI(p) is applicable for any interval of length t, [s, s+t],

# = At. That is, regardless of the interval chosen, the variable

remains Poisson with the appropriate mean. The Poisson process is an

important model for the repose times of a volcano. In this

terminology, the EPP assumptions imply that the time to first eruption

is a random variable that follows the exponential distribution, and

also that the time between eruptions, is an independent exponential

variable. The assumption of a constant eruptive rate A suggests that

the volcanism, which depends on the availability of magma and a

functioning triggering mechanism, as well as on their mutual

interaction, is relatively uniform and does not get "exhausted" by loss

of gases or for other reasons. If the volcanism is waning or

developing, the model should be generalized to allow A to be,

respectively, a decreasing or increasing function of t. More

generally, one might want to allow the eruptive rate to be an arbitrary

nonnegative function of t.

NONROIOGEIEOUS POISSOU PROCESS

If we replace the constant A with a function of t, denoted by A(t),

then another type of Poisson process can be derived, known as a

nonhomogeneous Poisson process (MIPP). If I(t) denotes the number of

occurrences in a specified interval [O,t] for a KIPP, then it can be

shown that (Parzen, 1962, p. 138)

I(t) - POI(AMt),

where

Amt)=fA l(s)ds.
0
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The cumulative distribution function for the time to first occurrence,

t,, now becomes

F1(t) = 1-exp[-p(t)].

An important choice for a nonhomogeneous intensity function is

A(t) =

which gives

A(t) = (t/w)o.

In this case the time to first occurrence follows a Veibull

distribution, VEI(O,f). This intensity parameter is an increasing

function of t if #>1 and a decreasing function of t if P<1. Of course

the Veibull process is a generalization of the exponential case (f=1,

which assumes a no-memory property), so it is useful for situations

which entail waning, growth, etc. For example, the birth process (new

volcanoes) and the death process (extinction) of volcanoes are included

also. In a Veibull process the time to first occurrence, say T1,

follows a Veibull distribution VEI(P, P). The time to second

occurrence or the time between occurrences does not follow a Veibull

distribution. This is in contrast to the exponential case in which the

times between occurrences are also exponentially distributed. Thus in

the exponential case the data could have come from either times between

occurrences of a single Poisson process or from repeated observations

on the time to first occurrence of several Poisson processes. (Or the

data could be from variables not interpreted in terms of a Poisson

process.) Thus if Veibull data are to be interpreted in terms of the
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Veibull process, it must be remembered that the data represent repeated

observations on the time to first occurrence of a Veibull process. As

in the exponential case, the successive times of occurrences from a

single Veibull process are of main interest, and some statistical

results in this framework are discussed in the next section.

ANALYSIS FOR TILE VEIBILL PROCESS

Bain (1978) discusses inference procedures of the Veibull process,

and also give additional references. Suppose we assume that the

successive volcanic eruptions of a specific volcano follow a single

Veibull process. Let t1, . . ., tn be the first n successive times of

eruptions of a volcano. These times are measured from the beginning of

the observation period (cumulative length of time over which the

eruptions occur) so t1 5 t2 . . 5 tn. The following theoretical

results (for proof see Bain, 1978, Ch. 4) are useful for volcanic

eruptive studies:

1) The maximum likelihood estimators for f and 0 are

= n-i ' (1)
M: ln(tn/tj)

and

t

nt/4 * (2)

2) A size a test of I0: 9 = fl0 against IA: f 0 f0 is to reject No

if X012(2n2) 2(2 2,where X 0/2(2n-2) iif2nfo/fl < X2a/(n or 2n40/4 > x2 0, 2(2n-2), whr 222-)is

the lOOa/2 percentile of a chi-square distribution with 2n-2 degrees of

freedom.
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3) A r level prediction interval for t,+1 is L < tn+1 < U, where

U =tt exp

and

L = to exp,{(y)1(-)l/)

First, the parameters estimated from Equations 1 and 2 provide us with

a quantitative model to characterize the volcanic activity, which is

the first step towards forecasting of future eruptions. Second,

suppose we wish to decide whether an exponential distribution seems

appropriate for the data collected or whether the more general Veibull

distribution seems required. This suggests a test of 0: # = 1 against

RI : fi $ 1. Result 2 indicates that a chi-square test is appropriate.

And third, consider a single Veibull process for the volcanic eruptive

times, and suppose that successive eruptive times t1, . . ., tn have

been recorded. Perhaps the most natural question concerns when the

next eruption will occur. This suggests that a prediction interval for

tn+1 would be quite useful and meaningful in this framework. A

prediction interval is a confidence interval for a future observation.

Result 3 serves this purpose.

EXPILICAL EMXAPLES

The eruption records (adopted from Volcanoes of the Vorld, Simkin et

al., 1981) of the following four volcanoes are studied for monotonic

trend: Aso, St. lelens, [ilauea, and Yake-Dake. The time series of

occurrence of flank eruptions of Etna is found to follow a homogeneous

Poisson process (Kulargia et al., 1985). For comparison purposes, the

data set of Etna in the paper of Nulargia et al. (1985) was added and
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assumed to be from a Veibull process. Several simplifying assumptions

must be made in treating eruptions as events in time. Although the

onset date of an eruption is generally well defined by the time when

lava first breaks the surface, the duration is harder to determine

because of such problems as slowly cooling flows or lava lakes and the

gradual decline of activity. Ve adopt the same definition for repose

time as defined by Klein (1982). Ve, therefore, ignore eruption

duration; instead, we take the onset date (based on year only) as most

physically meaningful, and measure repose times from one onset date to

the next. Thus, our definition of "repose time" differs from the

classic one (a noneruptive period). This procedure seems justified

because most eruption durations are much shorter than typical repose

intervals (Klein, 1982). Each data set of a Veibull process consists

the cumulative length of time (measured in years) over which the

eruptions occur. Based on the above definition of repose times, this

form of dates may be directly transformed into a sequence of the

intervals (repose times) between eruption for further analyses if an

exponential distribution seems appropriate for the data set. Results

of the statistical analyses are summarized in Table 1. Based on 8, the

data suggest a waning or decrease in the eruptive rates through time

for both St. Helens and Yake-Dake. All other volcanoes show the

opposite trend (#>1). The results of the significance tests are

interesting. The p-values indicate that the hypothesis of an

exponential distribution is rejected at 0.05 significance level

(p-value <0.05) for all five volcanoes, although Etna and Yake-Dake
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K-J show moderate evidence against 10(P=1). A verbal definition of p-value

is the chance of getting a departure from 10 as or more extreme than

that observed, calculated assuming 10 to be true. Using Kilauea

eruptions during the period 1884-1961, Vickman (1966) found non-random

behavior, revealed as a lowered eruption rate after a repose of two

years. A different result was obtained by Klein (1982), who used

eruptions during the period 1918-1979. The result of a IPP for Kilauea

obtained by Klein (1982), however, is not substantiated by the present

approach of a general Veibull model, which uses eruptions over a longer

period (1800-1979). For Kilauea, the number of reposes in each of the

periods 1918-1924, 1925-1959, and 1960-1979 were 6, 11, and 28,

respectively (Klein, 1982, Table 3), suggesting an increase in volcanic

activity in the observed periods. There are several variations

possible in goodness-of-fit testing. For the HIP model, the chi-square

goodness-of-fit test (e.g., see Steel and Torrie, 1980, p. 529) based

on count data is often not reliable because of low degrees of freedom

or low expected cell counts for some historical eruptive data. The

Kolmogorov-Smirnov test (e.g., see Steel and Torrie, 1980, p. 535) is

considered more reliable and is based on the repose times between

eruptions, but does not take into account the relative positions of

repose times. In other words, any random permutations of the same data

set of repose times yield the same result if [olmogorov-Smirnov test

was applied. In contrast, Equation 1 is sensitive to the locations,

numbers, and relative sizes (to tn) of the ordered t is. If an early

sparse t 's were accompanied later by dense tj's toward tnO then i
i~~~~~~~~~~~~~~~~~~~~~~~~~~~.
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would be large, showing an increasing rate of eruption through time,

and vice versa. For this reason, a test of the eruptive rate of Etna

indicates that it is increasing, but only slightly.

Finally, how can we give meaning to "'90% prediction interval"? The

answer lies in recalling the long-run frequency interpretation of

probability: To say that an event A has probability .90 is to say

that, if an experiment in which an event A is possible is performed

over and over again, in the long run A will occur 90% of the time.

That is, the procedure (Result 3) outlined for obtaining a 90%

prediction interval succeeds 90% of the time in producing an interval

that include the next future eruption. For example, a 90% prediction

interval for the true value of tn+1 for St. Helens is (1982, 2206).

This interval is obviously quite wide, reflecting substantial

variability in cumulative eruptive times ( 4, 11, 16, 17, 18, 22, 23,

26, 149) and a small sample size (n=9). It seems that we have no

choice but to form our notion of governing laws on the basis of data

and to act accordingly. This is particularly true in volcanic studies,

in which there are many unknown areas with respect to geologic

understanding of volcanism.

CONCLUSIONS

In volcanic eruption modeling, geological considerations may suggest

a certain distribution, but it is also important to have statistical

techniques available to aid in selecting an appropriate model. One

difficulty is that with a small sample size of historical eruptive

data, several different distributions may appear acceptable, yet tail
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probabilities from these distributions may vary considerably. Thus,

relatively large samples are usually required to verify the validity of

a specified model (at some probability level); however, even with

smaller sample sizes it may be possible to eliminate some models from

consideration. There are several variations possible in

goodness-of-fit testing. Our approach demonstrated in this paper is to

consider a general family of distributions such as VEI(U, P), and then

decide whether some subset of this family such as VEI(O, 1) = EIP(8) is

valid. Thus, in this case the test of 1O: P = I may be considered a

goodness-of-fit test, and several examples of this type have already

been discussed. It is desirable to arrive at the simplest model which

can properly describe the volcanic activity. Of course, if the simple

model is not correct, then poorer results may be achieved than if a

more general model is used. The preceding type of example, of course,

incorporates the assumption that the original model, in this case

VEI(d, P), is at least general enough. This assumption may have been

settled earlier, either with previous data showing a developing (or

waning) trend, or using some other geologic knowledge. If a valid

model is assumed, then predictions of future eruptions should be useful

and reliable.
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TABLE 1

Summary of Empirical Results

NAIE OF VOLCANO ISO ETNI ST. HELENS KILAUEA YIKE-DAKE

Analysis period 1800-1980 1605-1978 1831-1980 1800-1979 1910-1962

Number of eruptions, n 66 48 9 69 21

1.7931 1.432 [0.4927 2.2358 0 .63691
8 17.3997 4.996 1.7236 26.9405 0.4366

Test statistic 2n/0 73.62 67.04 36.53 61.72 65.94

for II0: P=1 vs. EH: Pt1 (0.000) (0.032) (0.005) (0.000) (0.012)

(p-value)

a 90% prediction [1980 [19781 [19821 [19791 [1962
interval for tn+1 1985] 11996] [2206 11983] 1977]
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ABSTRACT

Investigations are currently underway to evaluate the impact of

potentially adverse conditions (e.g., volcanism, faulting, seismicity)

on the waste-isolation capability of the proposed nuclear waste

repository at Yucca Mountain, Nevada, U.S.A. This paper is the first

in a series that will examine the probability of disruption of the

Yucca Mountain site by volcanic eruption. In it, we discuss three

estimating techniques for determining the recurrence rate of volcanic

eruption (A), an important parameter in the Poisson probability model.

The first method is based on the number of events occurring over a

certain observation period, the second is based on repose times, and

the final is based on magma volume. All three require knowledge of the

total number of eruptions in the Yucca Mountain area during the

observation period (E). Following this discussion we then propose an

estimate of E which takes into account the possibility of polygenetic

(and polycyclic) volcanism at all the volcanic centers near the Yucca

Mountain site.

INTRODUCTION

The Yucca Mountain region is located within the Great Basin portion

of the Basin and Range physiographic province, a large area of the

western United States characterized by alternating linear mountain

ranges and alluvial valleys. Crowe and Perry (1989, Figure 1) divide

the Cenozoic volcanism of the Yucca Mountain region into three episodes

that include 1) an older episode of large volume basaltic volcanism (12

to 8.5 ha) that coincides in time with the termination of silicic
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volcanic activity; 2) the formation of five clusters of small volume

basalt scoria cones and lava flows (9 to 6.5 Ma), all located north and

east of the Yucca Mountain site; and 3) the formation of three clusters

(seven volcanic centers) of small volume basalt centers (3.7 to .01

Ma), all located south and west of the Yucca Mountain site. The two

youngest episodes form northwest-trending zones that parallel the trend

of structures in the Spotted Range-Mine Mountain section of the Valker

Lane belt. Crowe and Perry (1989) suggest a southwest migration of

basaltic volcanism in the Yucca Mountain area based on this structural

parallelism, a pattern that may reflect an earlier southwest migration

of silicic volcanism in the Great Basin. Smith et al. (1990) also

provide a different point of view of the migration trends of volcanism

in the Yucca Mountain region.

Concern that future volcanism might disrupt the proposed Yucca

Mountain repository site motivated the assessment of the volcanic risk

to the Yucca Mountain area, located within the Nevada Test Site (NTS).

Crowe and Carr (1980) calculate the probability of volcanic disruption

of a repository at Yucca Mountain, Nevada using a method developed

largely by Crowe (1980). Crowe et al. (1982) refine the volcanic

probability calculations for the Yucca Mountain area using the

following mathematical model:

Pr [ disruptive event before time t ] = 1 - exp7AtP

where A is the recurrence rate of volcanic events and p is the

probability of a repository disruption, given an event. The parameter

p is estimated as a/I, where a is the area of the repository and l is

some minimal area that encloses the repository and the area of the
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volcanic events. Crowe et al. (1982) develop a computer program to

find either the minimum area circle or minimum area ellipse (defined as

A) that contains the volcanic centers of interest and the repository

site. I is defined to accommodate tectonic controls for the

localization of volcanic centers and to constrain A to be uniform

within the area of either the circle or ellipse. The rate of volcanic

activity is calculated by determination of the annual rate of magma

production for the NTS region and by cone counts using refined age

data. Resulting probability values using the refined mathematical

model are calculated for periods of 1 year and 100,000 years. Two

procedures (explained below) are used for the rate calculations (Crowe

et al., 1982). As calculated by Crowe et al. (1982), the annual

probability of volcanic disruption of a waste repository located at

Yucca Mountain falls in the range of 4.7 x 10-8 to 3.3 x 10-10.

ISSUES TEAT ARISE IN CONNECTION VITH

THE YORK OF CROVE et al. (1982)

Although the procedure outlined in Crowe et al. (1982) represents a

more formal approach to this problem than ever attempted previously,

flaws exist. The method must be modified because the existing data

base is inadequate to reasonably constrain A. Despite the fact that

there are well-recognized means of gathering data in the NTS region

(field mapping; determinations of the eruptive history of basaltic

centers; petrology; geochemistry; geochronology, including magnetic

polarity determinations; tectonic setting; and geophysical studies)

many considerations are still unknown, e.g., age of volcanism and vent

counts.
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Present understanding of eruptive mechanisms is not yet advanced

enough to allow deterministic predictions of future activity. The only

attempts at long-term forecasting have been made on statistical

grounds, using historical records to examine eruption frequencies,

types, patterns, risk, and probabilities. Reliable historical data

make possible the construction of activity patterns for several

volcanoes (Vickman, 1966, 1976; Klein, 1982, 1984; Hulargia et al.,

1985; Condit et al., 1989; No, 1990ab). Unfortunately, detailed

geologic mapping of volcanic centers is in its infancy in the Yucca

Mountain area. A formal structure, with conclusions depending on the

model assumptions, needs to be developed to evaluate volcanic risk for

NTS.

This paper investigates important parameters required to calculate

the probability of site disruption and provides estimates for the

unknown parameter(s) that are meaningful both statistically and

geologically, taking into account the limited availability of precise

ages in the NTS region.

TAe Poisson lodel

The application of statistical methods to volcanic eruptions is put

onto a sound analytical footing by Vickman (1966, 1976) in a series of

papers that discuss the applicability of the methods and the evaluation

of recurrence rates for a number of volcanoes. Vickman observes that,

for some volcanoes, the recurrence rates are independent of time.

Volcanoes of this type are called "Simple Poissonian Volcanoes".

Theoretically, the probability formula (Crowe et al., 1982) is derived

for this type of volcanic activity from the following assumptions:
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1. Volcanic eruptions in successive time periods of length t for

each period are independent and should follow a Poisson

distribution with a constant mean (average rate) At, i.e., a

simple Poissonian volcano.

2. Every eruption has the same probability of repository

disruption p. That is, there is no heterogeneity with respect

to disruptiveness.

3. The disruptiveness of the eruptions are independent of one

another.

This very brief description is purely mathematical and has no direct

interpretation in geologic terms. However, the Poisson model has

proved successful in a wide range of situations and does have a number

of mathematical implications that in turn can have a practical

interpretation. Of course, exploring alternative models derived from

different assumptions based on detailed geologic data and statistical

analyses would be valuable, as well. Since a simple Poisson model

serves as a basis for future refined model(s), we do not question the

assumptions in this article. Therefore, the following statistical

development uses the same assumptions as described above.

Probability Formula

The probability model of Crowe et al. (1982) is based on the

following relationship:

Pr [disruptive event before time t ] = 1 - exp-AtP.

The power series expansion for exp Atp (Ellis and Gulick, 1986, p. 545)
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is:

exp-tp = A (-ti)} = 1 -tp + (Otp)2 _ (Atp) 3 +
k=0 k!r- 2! r- 3!F

Therefore, the final probability calculation can be simplified as:

Pr [ disruptive event before time t ]

= Atp - (Atp)2 + (Atp)3 +
-27- - T-3F

& Atp, for small A and p relative to t.

The approximation is reasonable and is true for virtually all of the

calculations in Crowe et al. (1982) since all of their estimated values

of both A (<10-5) and p (<1-3 ) are small. Therefore, the accuracy of

estimating the unknown parameters A and p directly influences the

significance of values for the probability of repository disruption.

fates of Volcanic ct iuity

The Poisson processes are used to describe a wide variety of

phenomena that share certain characteristics and phenomena in which

some "happening" takes place sporadically over a period of time in a

manner that is commonly thought of as "at random". Ve will refer to a

"happening" as an event. If events in a Poisson process occur at a

mean rate of A per unit time ( 1 yr, 105 yr, etc.), then the expected

number (long-run average) of occurrences in an interval of time in t

units is At. In quantifying volcanism at Yucca Mountain, we define a

volcanic eruption as an event. Therefore, the collection of data is

directly or indirectly based on the number of eruptions.
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Crowe et al. (1982) try three methods to calculate A in their

probability calculations. These are: 1) evaluation of intervals of

volcanic activity for evidence of periodicity, 2) counts of volcanic

events in Quaternary time, and 3) evaluation of the ratio of magma

production rate and mean magma volume. Based on method 1, they

conclude that the data suggest no distinct patterns or periodicity of

basaltic volcanism in late Cenozoic time. Therefore, the data are

insufficient to analyze interval patterns and thus cannot be used to

calculate future rates of volcanic activity (Crowe et al., 1982). We

believe, however, that according to the Poisson model assumptions,

intervals of volcanic activity should follow an exponential

distribution and thus A can be estimated statistically. We shall

demonstrate such statistical sampling and estimation techniques in the

following section.

Based on method 2, Crowe et al. (1982) calculate A as N/T where N is

the number of scoria cones and T is the period of time represented by

the age of the cones or some other specified time period. Thus A is

the average number of eruptions per unit time. In their calculation of

N/T, they define no statistical sampling technique that is associated

with the assumed model. Moreover, they do not provide evidence that

counting cones is equivalent to counting eruptive events. Crowe et al.

(1989) and Wells et al. (1990) now recognize and classify the Lathrop

Wells volcanic center as a polycyclic volcano and hence that some cones

may have erupted more than once. Note that the Lathrop Wells volcanic

center is only twelve miles away from the proposed Yucca Mountain

repository site. We shall introduce a statistical estimation procedure

to interpret the estimator.
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Based on method 3, Crowe et al. (1982) determine the rate of magma

production for the NTS region by fitting a linear regression line to a

data set of four points collected from four volcanic centers. Each

value thus represents magmatic volume of a single eruption at a

corresponding volcanic center. The mean magma volume for 4 m.y. is

calculated by taking the average of these four values. The ratio

(rate/mean) is then calculated as an estimate for the annual recurrence

rate A. Similarly, the annual recurrence rate for Quaternary time is

obtained using only the two Quaternary data points. Ve consider this

approach questionable, since a simple Poisson model requires a constant

rate of occurrence, which is not the same as magma production. We

shall show that such calculations based on magma volume duplicate those

of method 2, if the rate of magma volume is constant. Moreover, we

shall also point out that, in this case, they apparently assume only

four (two) eruptions in the NTS region during the last 4 m.y.

(Quaternary time). This apparent assumption explains why their final

probabilities based on magma volume are consistently smaller than those

based on cone counts (Crowe et al., 1982, Tables IV and V).

The rate of volcanic eruption, A, is a critical parameter for the

probability calculation. We shall now examine various statistical

methods for calculating A, how the geologic record of volcanism in the

Yucca Mountain can be used to estimate values of A, and the limitations

in calculating A.

ESTIMATION BASED ON POISSON COUNT DATA

In dealing with distributions, repeating a random experiment several

times to obtain information about the unknown parameter(s) is useful.

The collection of resulting observations, denoted x1, x2, . . ., xn, is

8



a sample from the associated distribution. Often these observations

are collected so that they are independent of each other. That is, one

observation must not influence the others. If this type of

independence exists, it follows that x1, x2, . . . I xn are observations

of a random sample of size n. The distribution from which the sample

arises is the population. The observed sample values, x1 x2, . . ..

xn, are used to determine information about the unknown population (or

distribution).

Assuming that x1, x2, . . xn represent a random sample from a

Poisson population with parameter A, the likelihood function is
n

n -nA xi
L(A) =11 f I(x;A) = e A i-1

i=1 E x-!
i=1 1

Many good statistical procedures employ values for the population

parameters that "best" explain the observed data. One meaning of

"best" is to select the parameter values that maximize the likelihood

function. This technique is called "maximum likelihood estimation,"

and the maximizing parameter values are called "maximum likelihood

estimates," also denoted XLE or A. Note that any value of A that

maximizes L(A) will also maximize the log-likelihood, lnL(A). Thus,

for computational convenience, the alternate form of the maximum

likelihood equation,
d lDL(A) = 0
ar

will often be used, and the log-likelihood for a random sample from a

Poisson distribution is:
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R n
lnL(I) = -nA + E xilnA - ln( xi!).

i=1i1

The maximum likelihood equation is:

d n x.
A-lDL(A) =-n +E -.-- 9

U X.
which has the solution A = E n = x. This is indeed a maximum

i=1 n

because the second derivative

d2 n xi
-2-- lnL(A) = i-= ,

is negative when evaluated at x.

Let us demonstrate this estimation technique. Let X denote the

number of volcanic eruptions for a 105-year period for the NTS region

from this assumed Poisson process. Then X follows a Poisson

distribution with average recurrence rate p , with p = At = 105A. If

we wish to estimate A for the Quaternary using the Poisson count data

for the NTS region, the successive number of eruptions from the last

eighteen consecutive intervals of length 105 years (18 x 10 = 1.8 x

106 Quaternary period) must be estimated. The number of observed

eruptions per interval are denoted as xl, x2, . . ., x18. Thus, these

eighteen values represent a sample of size eighteen from a Poisson

random variable with average recurrence rate p. Estimating the mean of

the Poisson variable from these count data gives

18
E xi

- i=1

18
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18
a E x.

and A = = i=1 l
105 1.8 x 106

This shows that the estimated annual recurrence rate, I, is the average

number of eruptions during the observation period. Based on this

estimation technique, A can be defined as

= EA=-,T-, (1)

where E = total number of eruptions during

the observation period,

and T = observation period.

Note that for the estimation of A in this model, an individual

observation xi is not required. However, the distribution of xis can

provide information for model selection, for model-adequacy checking,

and for parameter estimations in general.

ESTIKATION BUSED ON RIEPOSE TINES

With any Poisson process there is an associated sequence of

continuous waiting times for successive occurrences. If events occur

according to a Poisson process with parameter A, then the waiting time

until the first occurrence, T1, follows an exponential distribution, T,

- exp(P) with e = 1/A. Furthermore, the waiting times between

consecutive occurrences are independent exponential variables with the

same mean time between occurrences, 1/A ( Parzen, 1962, p. 135).

Several simplifying assumptions must be made in treating eruptions as

events in time. Although the onset date of an eruption is generally

well-defined as the time when lava first breaks the surface, the

duration is harder to determine because of such problems as
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slowly-cooling flows or lava lakes, and the gradual decline of

activity. We adopt the same definition for repose time as used by

Klein (1982). Therefore, we ignore eruption duration, we choose the

onset date as the most physically meaningful parameter, and we measure

repose times from one onset date to the next. Thus, our definition of

"repose time" differs from the classic one as a noneruptive period.

This procedure seems justified because most eruption durations are much

shorter than typical repose intervals. The mean time between two

events (eruptions), 9, is inversely related to the volcanic recurrence

rate A. Assumptions of the Poisson process are rather restrictive, but

at least a very tractable and easily analyzed model can be proposed.

The maximum likelihood estimator for 0 = I (Hogg and Tanis, 1988, p.

336) is:
m
S t.

- i=1 1
8 = = t and A= = ,

#t

where t1, . . ., tm represent values of a random sample of size m from

an exponential population with parameter P. For the NTS region, the

exact values of ti's (repose times) are difficult to obtain because the

precise date of each eruption is not known. However, based on the

definition of repose times we can calculate:

m
S ti = time between the first and last eruptions during

the observation period,

and

m = total number of repose times = E - 1, which gives
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1 -1 = A(2)

where

E = Total number of eruptions between To and T y inclusive,

with

To = age of the oldest eruption,

Ty = age of the youngest eruption.

Note that the numerical values of E in both Equations 1 and 2 are

identical for the same observation period of length T. In practice,

however, the observation period for the exponential model (Equation 2)

must be trimmed to a period between To and Ty, inclusive, to reflect

that exactly m (= E - 1) repose times (t1 through ti) are obtained.

Theoretically, the two estimates obtained for A (Equations 1 and 2)

should be consistent, but not identical.

ESTIXITION BASED ON EAGKl VOLUME

Let V be the total volume of basaltic magma erupted at the surface

in the NTS region during the observation period of length T. From

Equation 1, we obtain

A = E/T = EV/TV = (V/T)/(V/E) = r/V (3)

where

r = V/T, the annual rate of magma production,

and

v = V/E, the mean volume of magma during the

observation period of length T.

Equation 3 is valid, but it also requires an accurate estimate of E for

v. If E (or r) is underestimated, so is A. The most efficient way to
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calculate r is V/T. Crowe and Perry (1989) present a refined method to

calculate r. They evaluate r as the slope of the curve of cumulative

magma volume plotted versus time. It is essentially identical to V/T,

assuming a constant rate of magma volume (an assumption that Crowe et

al. (1982) and Crowe and Perry (1989) have been striving to prove). In

this case, the degree of erosional modification of volcanic landforms

should be studied to estimate volumes of missing volcanic deposits.

The overall error, which is multiplicative, is compounded in the values

of Crowe and Perry (1989) for r. Moreover, E must be estimated when

calculating i, the mean volume of magma. Therefore, we see no economy

in Equation 3 and consider it to duplicate Equation 1. We derive

Equation 3 merely to demonstrate that the estimation procedures used by

Crowe et al. (1982) and Crowe and Perry (1989) are flawed and therefore

must be modified.

ESTIKLTION OF E

All of the statistical estimation methods considered for A

(Equations 1-3) require knowing the value of E (total number of

eruptions during the observation period). An accurate count of E is

possible for volcanoes with a complete historical record. Identifying

E, however, depends strictly on a clear understanding of eruptive

processes and reliable dating techniques for the NTS region, since no

historical record is available. Scientists differ in their opinions of

volcanism at the NTS area. The following is the view of Crove et al.

(1983):
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I

Basalt centers are composed of multiple vents, each

marked by a scoria cone. In the NTS region the cones are

divided into two categories: large central cones, referred

to as the main cones, and satellite cones. The average

number of cones at a single center, based on cone counts

of seven Quaternary basalt centers in the NTS region, is

about 2 to 3 cones. Thus, field data suggest a general

eruption pattern where the initial breakthrough of magma

to the surface is marked by the development of an

eruptive fissure with two or three loci of effusion.

Each of these vents becomes the site of small scoria

cones. As the eruption proceeds, activity shifts or

concentrates at a single vent that becomes the site

of the main scoria cone.

The above description indicates that a main scoria cone is the final

stage of a single eruptions and a single eruption could have several

small vents to accompany the main cone. However, the possibility of

polygenetic (and polycyclic) volcanism at all the volcanic centers

needs to be evaluated. A would be underestimated if nearby vents have

distinguishable ages. We, therefore, estimate E as follows:

Let I denote the number of volcanic centers under

investigation, and let Ji be the number of main cones in the

ith volcanic center, where i=1, ... , I. The proposed estimate

of E is:

I
E = E E (mij + eij), (4)

w=h j=1

where Min. = number of multiple, time-separate
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eruptions of the jth main cone in the ith

volcanic center,

and eij = number of vents that are separate in space

and time (with distinguishable age

measurements) from the jth main cone in

the ith volcanic center.

The rationale for this estimate is that significant information has

emerged that some of the volcanic centers are polycyclic volcanoes

(e.g., Lathrop Vells center (Vells et al., 1990)). This estimation for

parameter E (total number of eruptions) given by Equation 4 takes into

account such a!possibility for the NTS area. Studies are in progress

to attempt to evaluate the values of mij's and e.j's for the Quaternary

volcanic centers of the Yucca Mountain region using K-Ar age

determinations.

EMPIRICAL EIAIPLE

The following calculations demonstrate the applications of Equations

1 through 3 using the historical eruptions of It. Etna, since at this

preliminary stage of our work data for the Yucca Mountain region are

incomplete. A complete record exists for the eruptive activity of Etna

between 1600 and the present. The time series of occurrence of flank

eruptions in the period 1600-1980 follow a simple Poisson process (see

Mulargia et al., 1985, and No, 1990ab). We provide this example to

show consistency among the three estimation techniques for determining

the recurrence rate.

Using the data for Etna, we take the year 1605 as a starting point
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and then divide the period 1605-1980 into 25 fifteen-year intervals.

Consistent with the notations used in the previous sections, Table 1

yields:

n = 25, t = 15, T = 375, E = 48, V = 2830 x 106m3 (we treat the missing

volumes in 1974 and 1983 as negligible).

Therefore, based on Equation 1,

A = E/T = 48/375 = 0.128.

Based on Equation 2,

A = (E,1)/(T0*Ty) = (48-1)/(1978-1610) = 0.1277.

Based on Equation 3,

A = r/V = (2830 x 106/375)/(2830 x 106/48) = 0.128.

As expected, two of the estimated rates are identical, while the third

is also correct to two significant figures.

DISCUSSION AND CONCLUSION

The statistical estimation of eruptive rates A requires a reliable

count of distinguishable vents. This approach is based on the geologic

record of volcanism at the NTS region. The methods of the approach are

supported by sound statistical sampling theory. Crowe and Perry

(1989), however, object that vent counts record only the recognition of

a volcanic event, not its magnitude, and so they refine the parameter

estimation by concentrating on the cumulative magma volume, which is a

continuous variable. Nonetheless, their model assumptions and

development are still based on a discrete simple Poisson model, which

treats each eruption equally in order to calculate the final

probability. Crowe and Perry (1989) also state:
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Vent counts depend on the item scale of observation and

may be insensitive to variations in rates of volcanic

activity. Volcanic activity has been intermittent in

the Yucca Mountain region during the Pliocene and

Quaternary periods. Short periods of eruptive activity

are bounded by long periods of inactivity. Because of

this, differing observation periods for determining vent

counts can lead to variations in rates of volcanic activity.

For example, high rates of volcanic activity are obtained by

narrowing the observation period to intervals of eruptive

activity. Conversely, vanishingly small values of A are

obtained by restricting the observation period of intervals

of inactive volcanism. The use of volcanic vent counts can

therefore lead to an arbitrary biasing of calculated volcanic

rates.

Their criticism is perfectly understandable based on the following

facts:

a) Their recommended method for estimating A is to construct a

curve of cumulative magma volume versus time, which is also

affected by the counts of vents (E) in the observation period

(T). Their ignorance of the critical factor E in Equation 3

leads them to believe that estimation based on magma volume is

the most acceptable method (Crowe and Perry, 1989); this

questionable belief, in turn, handicaps their estimates for v

and thus for A.
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b) All of the published results that demonstrate statistical

sampling techniques for volcanic activity require a

representative sample and a sufficiently large sample size to

calculate a reliable long-run average with precision at a

desired level (flipping a coin twice does not tell the whole

story of the fairness of the coin).

c) Their recognition of the fact that short periods of eruptive

activity are bounded by long periods of inactivity at NTS

indicates that their choice of a simple Poisson model should be

adequately checked based on more detailed geologic data. So

far, the problems of model assumptions and parameter

estimations have been treated only separately by Crowe et al.

(1982) and Crowe and Perry (1989), despite the fact that the

model assumptions and parameter estimation methods virtually

always depend on each other in volcanic hazard and risk

calculations. a

Yucca Mountain is remote from human habitation. There is no

historical record of volcanism near Yucca Mountain. Therefore, the

volcanic record must be developed by detailed field, geomorphic, and

geochronologic studies. Precise ages are critical for volcanic rate

calculations, but traditional K-Ar dating commonly has a large error in

the age range recorded by the volcanoes near Yucca Mountain (1.1 la to

20 Ka). Until more precise techniques are developed, there will be

uncertainties with regard to the age and duration of volcanism. Since

predictions are needed, one possible improvement would be to reconfirm

all of the crucial assumptions using data that are the only basis we
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have for making necessary plans, calculations, and model selections.

Ye have no choice but to form our notion of governing laws on the basis

of data and to act accordingly. This is particularly true in volcanic

studies, where data are rare and expensive ( - $300 - $600 per age of a

vent at Yucca Mountain). Our efforts for future studies will be

devoted to considerably more detailed data collection and statistical

modelling. At this preliminary stage of our work, all we can conclude

is that the probabilistic results of Crowe et al. (1982) are based on

idealized model assumptions, a premature data base, and inadequate

estimates of the required parameters. For the reasons discussed, we

think that Crowe et al. underestimate the risk of volcanism at the

proposed Yucca Mountain repository site.
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TABLE 1

Date and volume of erupted lava for Etna flank eruptions

in the period 1605 - 1980 (Source: Mulargia et al., 1985, Table 1)

Date Erupted lava Date Erupted lava Date Erupted lava
Volume (106m3) Volume (106m 3) Volume (106m3)

1610 29 1802 7 1911 40

1614 424 1809 19 1918 1

1634 101 1811 23 1923 50

1646 184 1819 33 1928 8

1651 426 1832 51 1928 25

1669 435 1843 53 1942 2

1689 16 1852 118 1947 5

1702 11 1865 46 1949 4

1755 5 1874 1 1950 55

1759 67 1879 1 1971 3

1763 16 1879 40 1971 30

1763 28 1883 -- 1974 --

1766 115 1886 59 1974 4

1780 16 1892 105 1978 27

1792 12 1908 3 1978 4

1792 79 1910 38 1978 11
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