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1 INTRODUCTION
1.1 OBJECTIVE

Expert judgment is expected to play an important role in several activities related to the
characterization, design, and evaluation of the proposed high-level waste repository. For the purpose of
postclosure performance assessments, formal techniques for eliciting expert judgments may prove to be
very useful in developing: (i) subjective probabilities for hydrogeologic events, conditions, and processes;
and (ii) probability curves for parameters representing site and waste form characteristics (e.g., hydraulic
properties, sorption coefficients, and solubilities).

Obtaining probability information through elicitation techniques is motivated largely by one
basic and compelling fact. That is, in the earth sciences, the time and space scales are so large that
obtaining sufficient quantities of data to compute a probability estimate (i.e., relative frequency) or
probability curve will not, in general, be feasible. In addition, the current scientific knowledge about
coupled geologic, hydrologic, thermal and geochemical phenomena is very limited. The elicitation
approach permits the formal incorporation in a performance assessment of the information that is
available. This information is primarily in the form of expert judgments.

While formal elicitation techniques are well developed and have been extensively used in
decision analysis and risk analysis applications (primarily in business, but also in the public sector),
relatively few applications have been made in the earth sciences. One of the fundamental concerns about
using these elicitation techniques is the question: "How reliable is expert judgment?” In the terminology
of the expert judgment analyst, the question is one evaluating the "quality” of the expert’s judgment.
Other concerns about expert elicitation include such aspects as how the experts are selected, how they
are trained, approaches for avoiding bias, and aggregation of expert judgments.

This report focuses on the issue of the quality of experts’ probabilities as obtained through a
formalized elicitation process. A broad review of the scientific literature was performed to survey studies
where expert judgment was compared with actual data. The review included the fields of:

® Science and engineering,

® Risk analysis,

® Weather forecasting,

® Medicine,

Business, and

Psychology.
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1.2 REPORT ORGANIZATION

This brief report is organized into five major sections. In Section 2, the general steps in the
expert elicitation process are outlined. Various interpretations of probabilities are presented and explained
in Section 3. In Section 4, the results of the literature review are presented. An appendix is also
included which describes various procedures for evaluating experts’ probabilities.



2 OBTAINING EXPERT JUDGMENTS AS PROBABILITY
DISTRIBUTIONS

2.1 INTRODUCTION

Expert judgment can provide important information in decision analysis, risk analysis, and
policy analysis to supplement other information that might be available. For example, important sources
of information for the performance assessment of nuclear waste disposal systems include the results of
experiments and observations, mathematical/computer models of physical and geochemical processes, and
expert judgments. Although expert judgments may take many forms, such as recommendations and
criticisms, scenarios, value judgments, model-building choices, and estimates, the discussion in this report
is limited to the acquisition of judgments in the form of probability distributions.

The evaluation of risks for the purpose of policy and decision making has led to the
development of formal methods for the collection of expert judgment through the elicitation of
probabilities. Examples of the use of such methods and discussions of such methods include Morgan
et al., (1984), Electric Power Research Institute (EPRI) (1986), Richmond (1987), Bonano et al., (1989),
Hora and Iman (1989), Keeney and von Winterfeldt (1989, 1991), Merkhofer and Runchal (1989),
Nuclear Regulatory Commission (NRC) (1989), Whitfield and Wallsten (1989), Morgan and Henrion
(1990), Cooke (1991a), and Whitfield et al., (1991). Judgments given as probabilities are often called
subjective probabilities or degrees of belief to distinguish them from relative frequencies and other
interpretations of probability.

2.2 ACQUISITION AND USE OF EXPERT JUDGMENT

The acquisition and use of expert judgment encoded as probabilities has long been a vital part
of decision analysis (e.g., Raiffa, 1968; Spetzler and Stael von Holstein, 1975). Many of the techniques
and procedures developed and used in decision analysis are also used in risk assessment and performance
assessment. However, special aspects of the latter situations necessitate different emphasis on some
issues. The primary focus may not be on a particular decision, but on representing the state of
information about something and characterizing certain risks of interest. Moreover, the public nature of
most risk assessment problems dictates extra care to provide a justifiable and well-documented process.
Otway and von Winterfeldt (1992) discuss the importance of making the use of expert judgments more
formal, explicit, and documented.

Expert judgment is often used to obtain probability distributions for uncertain quantities and
probabilities of potential events in order to assess risks. Expert judgment, however, should not be viewed
as a substitute for experimentation, modeling, and observation. Instead, it complements these activities.
For example, when alternative sources of information are available but conflict, the judgments of experts
may be the preferred method for integrating the information into a single probability distribution. Experts
may be able to assess the uncertainty inherent in the various sources of information and, additionally, may
be able to make adjustments to account for biases in the data. Experts therefore may provide a
"calibrating” and "integrating” mechanism to account for differences in applications, environments, and
other factors.

Scaling up from an experiment to a projection of the behavior of the real process is another
problem. The geochemistry of experiments conducted in a laboratory environment is less complicated
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than the real systems. Estimating solubilities in a laboratory and then scaling up to a nuclear waste
disposal system involves making a transition from a laboratory experiment with a relatively simple
environment to a system that is spatially differentiated by many microenvironments. Expert judgment
is one option to make this transition.

Expert judgments may change with time, of course. This is only to be expected. As new
information becomes available, the state of knowledge is modified and opinions change. The role of the
experts is to summarize the available information and to express both what is known and what is not
known. Of course, probabilities are the natural medium for expressing such uncertainties. Moreover,
expressing judgments in terms of probabilities allows these judgments to be combined with other sources
of information, thus evoking the power of mathematical manipulation. Such manipulations are not
possible when judgments are given qualitatively. A final point is that experts’ probabilities can help to
pinpoint where additional information (more data collection or experimentation, further model-building,
consulting different experts) can be valuable.

2.3 THE SELECTION OF EXPERTS

Who is an expert? An expert may be someone who has special skills and training resulting in
superior knowledge about a particular field and access to that knowledge (Bonano et al., 1989). The
identification of experts is an important stage in the process of acquiring expert judgments. Quite aside
from the danger of selecting an expert who is not "well qualified,” performance assessment is in the
public view. Therefore, because the stakes go beyond science, the criteria and process of selecting
experts become critical.

Experts can be identified through literature searches, registries of professional organizations,
consulting firms, research laboratories, government agencies, and universities. A formal nomination
process is sometimes used, particularly when controversy is possible. The nomination process should
be designed to preclude bias in selection. A first step is inviting stakeholders and interested parties to
nominate experts. A second step is using an independent external selection panel to evaluate the
nominees. '

The criteria for selection should be specific and documented, including:

® Evidence of expertise, such as publications, research findings, degrees and certificates,
positions held, awards, etc.;

® Reputation in the scientific community, including knowledge of the quality, importance, and
relevancy of the nominee’s work and the nominee’s ability to provide the desired judgments;

® Availability and willingness to participate;
® Understanding of the general problem area;

® Impartiality, including the lack of an economic or personal stake in the potential findings;
and

® Inclusion of a multiplicity of viewpoints.
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Biases from economic or other stakes can affect an expert’s judgment. Yet, excluding an expert
because of potential bias may prevent relevant information from being discussed. A solution to this
dilemma was used in NUREG-1150 (Wheeler et al., 1989; Hora and Iman, 1989), where potentially
biased authorities were allowed and encouraged to give testimony. In one instance, an employee of a
pump manufacturer testified on the performance of a pump under severe stress. The employee had access
to relevant information that the members of the expert panel did not have. However, inclusion of the
employee on the expert panel could have been perceived as a conflict of interest. Presentation of the
employee’s testimony allowed the expert panel to judge the value of the testimony.

24 PREPARATION FOR PROBABILITY ELICITATION

The elicitation process is much more than just asking experts to assess some probabilities. The
experts must prepare and be prepared for the experience. Often, experts in a substantive field such as
geology or health may not be experienced in expressing their beliefs in the form of probability
distributions and may not understand why their probabilities are of interest and how they will be used.
Training the experts, then, is a crucial step in the process.

It is important that analysts with expertise and experience in eliciting experts’ probability
judgments design and conduct the elicitation process (Keeney and von Winterfeldt, 1991). The analysts’
expertise involves probability elicitation, in contrast to the experts’ substantive knowledge regarding the
events or variables of interest. Since the analysts will plan and direct the process, the selection of
qualified analysts is just as important as the choice of substantive experts. As Keeney and von
Winterfeldt point out, in complex technological problems it may also be helpful to have the analysts
joined by individuals with general knowledge about the field of interest (e.g., geology or seismology) to
help in structuring the problem and communicating with the experts.

Training the experts has multiple objectives. One is to motivate the experts and provide an
overview of the process, including how the experts’ judgments will be used. Another objective is to
develop the experts’ confidence in their ability to express their judgments as probabilities and in the entire
process. Lack of understanding or confidence can undermine the entire effort. Yet another objective is
to assure that the experts have access to relevant background information and evidence specific to the
questions of interest (reports of pertinent studies, etc.) and sufficient opportunity to review this
information and think about its implications for the elicitation.

Motivating the experts is an important aspect of the process. Experts may object to the formal
elicitation of judgments as probabilities because they believe that "opinion" is being substituted for
"objective” scientific research. However, the experts’ role is not creating new knowledge, but
synthesizing disparate and often conflicting interpretations of information to produce an integrated picture.
Experts who appreciate their role from this perspective are likely to be cooperative and to find the entire
process enjoyable and educational.

The fundamental objective of elicitation training, of course, is to help the experts learn to
express their judgments in probabilistic form. Training introduces experts to the notion of probability
and to methods for probability assessment. It should also instill awareness of potential cognitive and
motivational biases and suggestions for how to counteract such biases. Finally, it provides practice at
actual probability assessment. Evidence suggests that practice improves elicitation, as will be discussed
in subsequent chapter.
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The description of the issues should be accompanied by information to assist the expert.
Included should be references and data sources pertinent to the issues. This approach was used in a study

of the relation of SO, concentrations and mortality (Morgan et al., 1984), where two-page summaries
of articles were prepared for the experts. In Environmental Protection Agency (EPA) studies of health
risks associated with exposure to lead (Whitfield and Wallsten, 1989), and ozone (Whitfield et al., 1991),
documents summarizing relevant scientific evidence and some useful calculations were provided to all of
the experts. In the NUREG-1150 study (Hora and Iman, 1989), large numbers of reports and studies
were provided to the experts.

An expert may have depth of knowledge in a related field, but perhaps limited knowledge about
the specific issues of interest. In recent work on the solubilities of transuranic elements in brine (Trauth
et al., 1991) done for the Waste Isolation Pilot Plant (WIPP) performance assessment, one of the experts
was from the field of ocean chemistry. This expert had substantial knowledge of solubilities, but he did
not have direct experience with the brines expected to fill the mined salt repository after closure nor was
the expert initially knowledgeable about the relevant chemistry, including the pH and the ionic strength
of the brine, in the repository. To participate effectively, this expert required substantial information
about the chemistry expected within the repository.

Experts should not be asked questions without allowing time to study the issues and consider
possible answers. A good procedure is to introduce the experts to the questions to be addressed, provide
background briefings, and allow an interim study period to consider the issues. Such a period of study
could range from several days to several months depending upon the number and complexity of the
issues. During this time the experts might ask for additional information (e.g., data sets, articles,
reports). At the end of the study period, the experts should be prepared to state and defend the rationales
supporting their elicited judgments.

25 THE ELICITATION OF EXPERT JUDGMENT

An important step in an expert judgment process is identifying the issues to be addressed and
formalizing the quantities to be elicited. While this may appear to be a simple and obvious step,
experience has shown that developing questions for experts that are mutually understood by those asking
the questions and those answering the questions can be a difficult task.

Achieving an accurate, logically complete, and understandable description of an issue to be
addressed by experts is critically important. The description of the issue under assessment must be
complete and without unstated assumptions; everything that can be disagreed upon must be made explicit.
Spetzler and Stael von Holstein (1975) have suggested the test of "clairvoyance.” If, after reading the
description of the issue, a "clairvoyant" would be able to answer the question without asking for any
additional information, the description is complete. Often, analysts will make contextual assumptions that
are not obvious. Conversely, experts often make assumptions that were not intended by the analysts.

A principle espoused by Winker et al., (1978) is that of asking only questions about observable,
or at least theoretically observable, quantities. To understand this assertion more fully, consider a
situation where a two-dimensional (2D) model is used to predict the transport of fluids through the earth.
Perhaps one parameter in this model is the spacing of fractures. In reality, fractures come in many sizes,
lengths, and orientations. Spacings vary greatly between nearest neighbors and are not constant along
the length of fractures for any pair of fractures. The parameter in the model is, then, a convenient

24




summarization that has no physical meaning and cannot be measured, even conceptually. In this
situation, the experts should be asked questions about physically-measurable quantities, such as average
aperture or fracture permeability. From these responses the uncertainties about the model parameter can
be derived.

The questions for probability elicitation should be presented in such a way as to reduce
tendencies toward bias on the part of the expert. Experts can be biased by presentations of issues that
hint at or suggest a particular answer. Also, awareness of possible cognitive biases (Kahneman et al.,
1982) should stimulate efforts by the analyst (and, to some degree, the expert as well) to structure the
questions in an attempt to avoid such biases. For example, probing the extremes of an expert’s
probability distribution before asking questions about the middle part of the distribution helps to counter
any tendency to anchor on central values.

2.6 INTERACTION AMONG EXPERTS

There are alternative approaches to organizing a group of experts. These approaches vary with
the respect to the scope of the issues being addressed, the amount and type of interaction among the
experts, the amount of redundancy, and the role of the experts in defining objectives.

The simplest organization is either one expert or several experts working in isolation from each
other. When there are several experts addressing the same issues, there is some useful redundancy
because multiple experts’ alternative viewpoints increase the potential for representing the appropriate
range of uncertainty. The difficulty with isolated experts is that information is not shared, thus reducing
the opportunity for learning through the exchange of information.

When there are multiple experts addressing the same questions, panels may be organized in
which experts work together sharing information and approaches to the issues. The study of nuclear
reactor safety (Hora and Iman, 1989) allowed for two meetings of the experts, with an intervening study
period of about eight weeks. Issues and background information were presented in the first meeting while
the experts presented their analysis in the second meeting.

Merkhofer and Runchal (1989) and Whitfield et al., (1991) employed a combination of
individual elicitation procedures and group interaction. After judgments were assessed independently in
probabilistic form by each expert, the resulting probability distributions and rationales were shared among
the experts, who were then allowed to revise their individual probabilities.

Panels may provide a "group assessment” or individual assessments; each has advantages.
When experts work together and obtain a group assessment, there is no need to combine assessments.
However, group interactions can sometimes be dysfunctional, with some individuals dominating the
discussion. Also, opinions may vary so greatly that a consensus cannot be reached, in which case it may
be necessary to combine distributions mechanically using a quantitative rule such as the arithmetic or
geometric mean. In contrast, when experts provide individual assessments, the potential is better for
capturing the full uncertainty about the issue, and provide a traceable and auditable basis for individual
opinions (as opposed to opinions of an anonymous group). However, the combination of the disparate
probabilities may be difficult in certain cases.




Isolated panels of experts are efficient with respect to the experts’ time but require coordination.
The views, assumptions, and findings of a panel may shape the issues addressed by another. When
coordination between experts or panels of experts is necessary, the work may be accomplished
sequentially. An example of such a situation is the coordination between a panel of experts judging how
fast and how high pressure will rise in a reactor containment vessel, while a second panel considers the
pressure at which the vessel will fail. Knowing the relevant range of pressure-rise parameters will help
establish the assumptions for the second panel’s assessments of containment failure probabilities.

Another strategy for the analysis of complex issues consists of using multi-disciplinary teams
of experts. This approach is relevant when the issue to be addressed is difficult to decompose into a
series of smaller independent or conditional issues. A difficulty with decomposition is that there are
significant linkages or information requirements among the issues. Redundant teams were used in the
EPRI (1986) study of seismicity in the Eastern United States. A main limitation of using several teams
is that their organization is difficult. A second problem is bringing the team members together to perform
their analyses. This is costly. In the seismicity study, the teams were formed within companies and
institutions to facilitate communication. Each team was allowed some flexibility in determining how to
decompose the problem into the individual experts’ specializations. Coordination assured that the
assessments made by the various teams would be compatible with the overall study objectives.

2.7 PROCESSING JUDGMENTS

The goal of processing judgment is to: (i) produce a usable product for the ensuing analysis;
and (ii) to preserve intact the expert’s judgments. Judgments often require some processing to put them
in a usable form. Assessments obtained using indirect methods, for example, must be translated into
probabilities or densities. Distributions for continuous quantities are most often assessed by obtaining
several points on the distribution function and then fitting and/or interpolating to obtain the remainder
of the distribution. Frequently a member of a certain family of distributions, such as the normal family,
is used as an approximation to the experts’ judgments.

Occasionally, it may be necessary to extrapolate beyond the given range of values. This can
occur when the expert has provided values, such as the 0.01 and 0.99 quantiles, but it is necessary to

obtain the endpoints of the distribution. These values are often the most important in the analysis because
they lead to the most serious consequences.

Another type of processing is the aggregation of judgments from multiple experts (see Sections
5 and 6). Aggregation is often justified by one or more reasons (Bonano et al., 1989):

® An aggregated distribution provides a better appraisal of knowledge than the individual
distributions (a sample mean is better than one observation);

® The aggregated distribution is sometimes thought of as representing some sort of consensus;
and

® It is easier to use a single distribution in further analysis.
However, when judgments are combined, the individual judgments should be retained to show the range

of opinion on an issue, as well as provide a traceable record of individual judgments.
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2.8 DOCUMENTATION

Regardless of how well an expert judgment elicitation process is designed and implemented,
adequate documentation is required. The entire expert elicitation process should include documentation
of the procedures and criteria for selecting experts and issues, descriptions of the elicitation issues, copies
of all supporting materials, and the results of the elicitation sessions. Most importantly, the detailed
rationales for the assessments, the methods, and results of any post-elicitation processing of the judgments
or re-elicitations by the experts should be provided. Moreover, as new evidence becomes available,
understanding the rationale for probability distributions will allow the judgments to be reinterpreted
instead of being discarded. For example, Sandia National Laboratories (SNL) (Camp et al., 1990) has
undertaken the updating of some distributions obtained in the NUREG-1150 study. Without explicit
rationales, updating these distributions would be difficult.

29 SUMMARY

Although expert judgment pervades all scientific inquiry, it is often disguised as implicit
assumptions while the primary attention focuses on data, models, and analysis (all of which require expert
judgment to plan, conduct, and interpret). In the WIPP study of waste isolation, for example, a great
deal of time and effort has been spent on the geology and hydrology of the area. Extensive computer
algorithms have been constructed and preliminary risk analyses made. Only recently, however, has the
focus shifted to the effect of human intrusion, an area where the physical sciences have less to say. Yet
human intrusion is apt to be the dominant contributor to risk. Those risks that are analyzed using expert
judgment are often the most crucial risks, but the effort applied to obtaining good expert judgments is
small when compared to efforts elsewhere.

The elicitation of expert judgments in the form of probabilities makes the role of expert
judgment explicit and impossible to ignore. Moreover, it is just as important to design a process for the
elicitation of expert judgment carefully as it is to design a scientific experiment carefully or to set up a
model-building exercise carefully. Collecting expert judgments in an arbitrary manner or failing to give
due consideration to what is known about the assessment of probabilities from experts makes the process
vulnerable to attack. When expert judgment is used, a formal process developed by analysts experienced
in eliciting expert judgments is important.

The discussion in this chapter has involved important aspects of a formal process for the
elicitation of expert judgments. This suggests that evaluating a set of expert judgments can be
accomplished to a large extent by looking at the process used to obtain the judgments. Aspects deserving
careful attention include:

® The selection of experts;

® The selection of analysts to design and conduct the elicitation process;

® Attempts to motivate the experts in an impartial manner;

® The training of the experts;

® The opportunity for practice elicitations;
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® The development of definitions of the issues, events, and variables of interest;
® The distribution of background materials to the experts;

® The allowing of ample time for experts to study the materials, think about the issues, and
ask questions;

® Possibly the opportunity for experts to interact to exchange information;
® The use of accepted formal probability elicitation techniques;

® The recording of the rationales (informal arguments, theory, data models) underlying the
expert judgments;

® Justification for any processing of judgments; and

® Possibly the opportunity for post-elicitation interaction among experts and/or feedback
regarding the elicited probabilities and rationales, followed by the opportunity for revising
judgments.

Documentation of each step of the process is essential. The process may proceed sequentially, with some
steps repeated again after new evidence is obtained or the experts have had the opportunity to interact.
Care and attention to all of these aspects of an expert judgment process should result in a successful,
justifiable process that produces valuable information for uncertainty analysis and performance
assessment.
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3 PROBABILITY AND EXPERT JUDGMENT

3.1 INTRODUCTION

When most people are exposed to the concept of probability, it is within the framework of a
general theory or mathematical system. In this context, probabilities are simply numbers between zero
and one, inclusive, that satisfy certain rules. Given certain probabilities, the theory of probability can
be used to determine certain other probabilities. Many books have been written and many courses are
taught focusing strictly on mathematical properties of probabilities. Just viewing probability as a
mathematical system, however, leaves a fundamental and crucial question unanswered: What do these
probabilities really mean and how should they be interpreted? Clarity on this interpretation is important
not just from the standpoint of the analyst or decision maker who must draw conclusions or make
decisions based on the experts’ judgments, but also from the viewpoint of the experts themselves. Part
of the process of training experts to assess probabilities is a review of the appropriate interpretation of
those probabilities.

The purpose of this section is to clarify the appropriate interpretation of experts’ probability
judgments in the context of uncertainty analysis and performance assessment. First, a review of the
major interpretations of probability is presented. The question of the appropriate interpretation for
experts’ judgments is then considered, followed by some comments on the search for "true probabilities.”

3.2 INTERPRETATIONS OF PROBABILITY

Philosophers, mathematicians, statisticians, and others have devoted a great deal of effort over
the years to discussions of interpretations of probability. This has been an issue of great debate, with the
concerns ranging from philosophical/foundational to very applied/practical. It has had a strong influence
on the development of statistics and on the way people try to apply the mathematical theory of probability
in the real world.  Although there are different nuances and offshoots of theories, the three main
interpretations of probability — objective (classical, frequency), and subjective — will be discussed here.

3.2.1 Objective Probabilities

The classical interpretation of probability originated in the study of games of chance in Europe
in the eighteenth century. Consider, for example, the probability that when tossed, a six-sided die lands
with the side having three dots facing up. Most people would say that this probability is one-sixth. The
classical argument is that by virtue of the apparent symmetry of the die, each of the six possible outcomes
is equally likely. If the possibility of the die landing on edge or disintegrating in mid-air is ignored, and
there is no reason to believe any one side is more likely to occur than any other, then each side must have
probability one-sixth. According to the classical view, then, the probability of an event is equal to the
number of outcomes comprising that event divided by the total number of outcomes. For example, the
probability that a die yields an even number when tossed is 3/6, since there are six possible numbers and
three of them are even. Aside from questions of counting the number of outcomes in complex situations,
the classical interpretation is straightforward and easy to apply. The underlying assumption of equally
likely outcomes is, however, a very strong assumption that is reasonable only in a limited set of practical
applications.
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The frequency interpretation is empirical in spirit, considering not just the possible number of
outcomes, but past evidence regarding the event of interest. If a person is contemplating making a bet
on the toss of a thumbtack instead of the toss of a die, there are two possible outcomes, the thumbtack
landing point up or point down (as with the die, the possibility of landing on edge with the point straight
out horizontally from the top of the tack is ignored for the purposes of this discussion). However,
arguments that these two outcomes are equally likely are not particularly compelling. The person
contemplating a bet might find it useful to see the results of an experiment in which the thumbtack was
tossed 1000 times. If, for instance, it landed point up 420 times, the relative frequency of occurrence
of "point up” would be 0.42. In the frequency interpretation, the probability of an event is the limiting
relative frequency of occurrence of that event in a series of independent, identical trials as the number
of trials approaches infinity. The law of large numbers shows that this relative frequency will approach
the probability of the event. As with the classical interpretation, the relative frequency interpretation is
generally straightforward. In terms of actual implementation, the key issue is the availability of
appropriate data. Many events of interest are unique in the sense that no past record of identical,
independent trials exists. Sometimes no data are available, and other times the data are not from
“identical” situations.

3.2.2 Subjective Probabilities

In the subjective interpretation of probability, a probability is viewed as an individual’s degree
of belief that an event will occur. If an engineer is interested in the probability of an accident at a
particular nuclear power plant in the next year, it is difficult to think in terms of the classical or
frequency interpretations of probability. There is no reason that the possible outcomes need be equally
likely, and the evidence from repeated, independent, identical trials is not available. It is possible to look
at the past relative frequency of accidents at this and similar installations, but each plant may have some
unique features and things may change from year to year as equipment ages and personnel change. Here
the probability appropriate for the engineer is his or her degree of belief, which is based on any relevant
information that is available (historical evidence, knowledge about the reliability of equipment, changes
in personnel, and so on).

In terms of application, the classical and frequency interpretations are more restricted than the
subjective interpretation. The classical interpretation requires an assumption that the outcomes are equally
likely, something that might be reasonable in certain games of chance, but is not very reasonable in most
real-world situations. The frequency interpretation needs data from a reasonably large sample of
independent, identically distributed trials to be of most use. The insurance industry is one place where
such data are available, with actuarial tables being based on large samples and providing the basis for
insurance rates. The subjective interpretation has no such restrictions. However, it is limited by the fact
that different experts may (and no doubt will in many cases) have different probabilities for the same
event.

In a very real sense, the subjective view subsumes the other two interpretations. Ultimately,
the decision as to whether the assumptions of the classical or frequency interpretations are applicable in
a given situation is a subjective choice. An individual contemplating a game of chance may feel that the
game is fair, with equally likely outcomes, or may feel that it is not fair (e.g., a die may be "loaded").
Even with data, the choice of an appropriate "reference set" of data is subjective. If the probability that
a given person dies in the coming year is of interest, what is the appropriate reference set of past data
to use in trying to apply the frequency interpretation? Is it all people, or all people of the age of the
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individual in question, or all people of the same age and sex, or all people of the same age and sex and
general health (assuming this can be measured and is in the data base)? Also, are past data applicable
if a new cure has just been found for a disease that has been a major cause of death for people in the age
group in question? Ultimately, these questions must be answered subjectively. Furthermore, in many
applications the available data are sparse and even further removed from the question of interest than in
this example.

33 EXPERTS’ PROBABILITIES

The fact that experts’ probabilities are subjective, while perhaps unappealing to some, is
undeniable. The types of events or variables of interest in a uncertainty analysis and performance
assessment do not meet the assumption of equally likely outcomes, and frequency data are either not
available or form only part of the set of available information. The very use of the expression "experts’
probabilities" indicates that the probabilities are associated with the experts who are consulted.

Some individuals feel uncomfortable with probabilities that are subjective, or soft, as opposed
to so-called "objective" probabilities based on "hard data.” Scientists in particular have been trained to
avoid subjectivity. More will be said on the question of "objective” probabilities in the next section. The
point of interest here is that for those who would like to base their probability judgments on hard data,
there is the problem of what to do in case of sparse data. In a performance assessment of a geologic
repository, the probability of an earthquake exceeding magnitude six within a 10,000-year period might
be of interest. Direct data regarding the occurrence of earthquakes in this or similar locations are too
limited to be of much use. Taking into account general scientific knowledge about seismology and
specific knowledge about the location, experts can form judgments about the possibility of future
earthquakes. But these judgments are subjective. Should they be ignored? Those who think so are
falling into the trap noted by Savage (1954), who drew an analogy with building on sand. Those
disdaining subjective information are, in effect, saying "Take away the sand, we will build on the void."

Moving to the question of implementation, the measurement of probability and the fact that
probabilities as so measured obey the mathematical rules of probability are consistent with the classical
and frequency views. But subjective probability also has very solid mathematical foundations, with
important contributions from, among others, Ramsey (1931), de Finetti (1937), and Savage (1954). Some
key work is presented in a book of readings edited by Kyburg and Smokler (1964). The important
message is that under certain axioms of coherence, the existence of objective probabilities that obey the
usual mathematical rules of probability can be shown. These axioms are generally viewed as reasonable;
for example, if an individual judges A to be more likely than B, and B to be more likely than C, then
he or she must judge A to be more likely than C.

In terms of measurement, it is possible to simply ask experts for their probabilities for events
of interest. Alternatively, several devices are available to help the experts think about and assess their
probabilities. For example, meteorologists can be asked whether they would rather receive $100
contingent on rain tomorrow or contingent on a red ball being drawn in a random drawing from an urn
with SO red balls and 50 white balls. If the urn is chosen, the meteorologist’s probability of rain is
inferred to be less that .50 (50/100); if the payoff contingent on rain is chosen, P(rain) must be greater
than .50; if the meteorologist is indifferent, then P(rain) is taken to be equal to .50. By varying the
proportion of red balls in the urn until the meteorologist is indifferent between betting on rain and betting




on red, it is possible to assess the meteorologist’s probability of rain. Similar devices such as probability
wheels are also available.

Techniques for assessing or eliciting probabilities represent only part of an overall approach to
obtaining experts’ probability judgments. This approach, typically includes some training in probability,
some practice probability assessments, careful definition of the events or variables of interest, assessments
of probabilities for those events or variables, checks for consistency with the rules of probability, and
reviews of the assessments and revisions where deemed appropriate. For a general discussion of
probability assessment, see Spetzler and Stael von Holstein (1975).

34 THE NOTION OF "TRUE" PROBABILITIES

The desire for objective probabilities is fueled in part by the notion that for a given event, there
is a "true” probability. This leads to the idea of trying to estimate this true probability. Think, however,
about the probability of a serious accident at a nuclear power plant. It is reasonable to think that at a
given point in time, there is some true probability that an accident will occur in the coming year? What
would be the basis for that true probability? Thinking about all of the possible causes of accidents
(including both human causes and natural causes), the idea that there is a true probability of an accident
seems not scientific but rather almost a religious belief that everything is preordained. Is there a true
probability that a group of terrorists will blow up the nuclear power plant? That a worker will turn the
wrong dial and thereby cause an accident? That an earthquake nearby will occur and will be strong
enough to cause an accident? That an amateur pilot will lose control of his plane and crash into the
power plant? This list could go on and on, and for any of these scenarios, there is no true, objective
probability there for the estimating.

De Finetti (1970) makes the point of this section very concisely when he says, "PROBABILITY
DOES NOT EXIST." What he means is that objective probability does not exist. For a given event,
each individual has 3 probability, but there is no such thing as the probability. An expert’s probability
represents the expert’s judgment based on any available information. Since different experts may have
access to different information or may interpret it differently, it is not surprising if they have different
probabilities for the same event.

35 SUMMARY

When people learn about probability theory, it is generally in terms of mathematical
manipulations of probabilities, with little attention paid to interpretation. When probabilities are used to
represent uncertainty in practice, however, the interpretation is very important. In cases where there is
general agreement that the outcomes are equally likely or that extensive past data are directly relevant,
the classical and frequency approaches can be useful. This is seldom the case in uncertainty analyses and
performance assessment of a high-level viable repository.

The appropriate interpretation of probability for the purposes of uncertainty analysis and
performance assessment is the subjective interpretation. This may seem to fly in the face of the scientific
desire for "objectivity,"” but that cannot be avoided. There are no "objective,” or "true,” probabilities
for events such as the release of a certain amount of radioactivity from a waste storage facility in a given
period of time, any more than there is a "true” probability that a Republican will be elected as President
of the United States in 1996. (Those who would argue that the release of radioactivity is predictable
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scientifically should think not just about uncertainties regarding the exact makeup of the waste, the
condition of the containers in which the waste is stored, etc., but also about the impact of potential
earthquakes, human intrusion, and so on.)

Experts have relevant information and can represent this information in the form of subjective
probabilities. Fortunately, a solid scientific foundation exists in the form of a theory of subjective
probability and a set of formal methods that have been developed to elicit subjective probabilities in
practice. Thus, it is possible to justify the use of expert judgment in the form of probabilities and to
obtain such probabilities for use in risk assessment, decision analysis, and other situations where experts’
probabilities can provide valuable information.




4 QUALITY OF EXPERTS’ PROBABILITIES
4.1 INTRODUCTION

This chapter reviews the published literature on the quality of probability assessments from
individuals. While the emphasis is on probabilities obtained from experts for events or variables in their
field of expertise, the number of studies meeting this emphasis is small compared to the number of studies
using experts to give nonprobabilistic assessments and those using nonexperts to give probabilistic
judgments. A portion of the review will include studies that do not involve experts. No attempt will be
made to review the extensive literature on experts providing nonprobabilistic assessments.

4.2 NONEXPERTS PROVIDING PROBABILITIES

Many of the studies of the quality of subjective probabilities have been conducted in the fields
of decision analysis and cognitive psychology. Most of these studies used student subjects. Reviews of
this work are found in Lichtenstein et al., (1982) and Wallsten and Budescu (1982). These studies can
be divided into those assessing probabilities of events and those assessing probability densities for
unknown quantities. First, studies where probabilities of events were assessed will be reviewed.

4.2.1 Probabilities of Events

In one pair of early studies (Adams and Adams, 1958, 1961), small numbers of student subjects
participated in a multiple-session experiment. In the first study, students were asked to assign
probabilities to pairs of words being synonyms, antonyms, or unrelated words. In the second study, the
students were asked to assess the percentage of blue dots in an array of red and blue dots, judge the truth
of general knowledge statements, judge blindfolded the weight of lifted objects, and perform the same
task as in the first study. Some participants were provided feedback between sessions about the
calibration of their probabilities while others (the control group) were not. The calibration of subjects,
as measured by the absolute differences between assessed probabilities and observed relative frequencies,
improved significantly with feedback.

Other studies have been conducted using general knowledge or almanac questions. Often the
assessment task requires the subject to select one of two alternatives as more likely to be true and to
provide a probability that the statement is true. Thus, in response to the question "Is the White House
or the Treasury Building shown on the twenty dollar bill?", the subject might respond "the White House"
and provide a 0.7 probability that the judgment is correct. These studies, whether conducted using
students as subjects or professionals from various fields, share one common finding — overconfidence,
for example, probabilities too extreme in relation to the corresponding relative frequencies. Figure 4-1
is taken from Lichtenstein et al., (1982). This figure shows calibration plots from four studies. The
studies by Hazard and Peterson (1973) used armed forces personnel studying at the Defense Intelligence
School as subjects. The Phillips and Wright (1977) study used student subjects, while the type of subject
in the Lichtenstein study is unknown.

In Fischhoff et al., (1977), various question formats and response modes (no alternative, one
or two alternatives, half and full-range responses, and logs) for questions about events were tried, but
overconfidence remained. They reported that only 72 to 83 percent of items assigned probabilities of 1.0
were actually true, for instance.
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Figure 4-1. Calibration curves elicited from nonexperts using general knowledge questions
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Several early studies indicated that the difficulty of the questions could influence calibration.
Unfortunately, some of these studies were methodologically flawed in that the responses by the subjects
were used to determine both the difficulty of the questions and the degree of calibration. Lichtenstein
and Fischhoff (1980), however, employed a set of 500 general knowledge questions and a measure of
difficulty derived from the ratio of values inherent in the two alternatives in each question to show that
overconfidence increases with question difficulty. Although the evidence is modest, it appears that
calibration becomes worse when the question difficulty increases.

Koriat et al., (1980) found that calibration could be improved by asking subjects to list reasons
for and against their responses. Improvement in calibration was due almost exclusively to the listing of
negative reasons. This suggests that persons fail to consider or give proper weight to negative indicators.
In a study of point estimates, MacGregor et al., (1988) found that student subjects who listed reasons for
their judgments performed better than those who did not.

4.2.2 Probability Distributions for Quantities

Overconfidence is also pervasive in studies employing continuous quantities. Table 4-1, adapted
from Lichtenstein et al., (1982), shows the results of a number of such studies. Shown are the number
of assessments (questions times subjects), the number of responses falling within the assessed interquartile
ranges, and the expected and actual proportion of responses falling in the extreme tails of the assessed
distributions, that is, the surprise index. The relative frequency within the interquartile range should be
50 percent when the subjects are well calibrated. The expected relative frequency of responses falling
into the extreme tails depends upon the definition used in the study. Each of these studies points to fewer
than 50 percent of the true values being within the quartiles. Almost invariably, however, the true values
are found in the tails of the distribution more often than they should be.

The five results reported for the Alpert and Raiffa (1982) study were obtained using almanac
questions. The first and second groups were asked to provide 0.01 and 0.99 fractiles and 0.001 and
0.999 fractiles, respectively. The third and fourth groups were asked to provide endpoints that were the
judged minimum and maximum possible values and values that were astonishingly high and low,
respectively. The fifth group is actually the combined result for three groups who received feedback after
their first ten assessments. Two things are clear in these findings: the spread of the tails seems to be
somewhat insensitive to the definition of the extreme fractiles, and while feedback provides substantial
improvement in overconfidence, it does not do away with this fault.

The two results reported by Selvidge (1975) used assessments of five fractiles (0.01, 0.25, 0.50,
0.75, and 0.99) and seven fractiles (0.10 and 0.90, in addition to the five fractiles). Selvidge also
permuted the order that the fractiles were assessed and found better calibration when the more central
fractiles were assessed first. The Moskowitz and Bullers (1978) study employed two types of questions,
self-generated proportions and the Dow-Jones average, and a three and a five fractile assessment protocol.
Self-generated proportions were obtained from the subjects by asking questions such as "Do you prefer
Bourbon or Scotch whiskey?”

Seaver et al., (1978) used five assessment techniques: fractiles, odds-fractiles, probabilities,
odds, and log odds. The results in this study, however, may reflect the fact that the experimenters
established values for some response modes (probabilities, odds, and log odds) which may have anchored
the subjects to these values and thus, inadvertently, improved the calibration. Schaefer and Borcherding
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Table 4-1. Calibration studies with continuous quantities; nonexperts

Observed Observed
Number Interquartile Surprise
of Frequency Expected Index
Study Assess- Surprise
(Type of Subjects) ments Before After Index Before After
Training/ Training/ Training/ Training/
Feedback Feedback Feedback Feedback
Alpert & Raiffa (1969) 880 0.33 0.02 0.46
(Graduate Business Students) 500 0.33 0.002 0.40
700 0.33 0.00 0.47
700 0.33 0.00 0.38
2270 0.34 0.44 0.00 0.34 0.19
Hession & McCarthy (1974)
(Graduate Students) 2035 0.25 0.02 0.47
Selvidge (1975) 400 0.56 0.02 0.10
520 0.50 0.02 0.07
Moskowitz & Bullers (1978) 120 - 0.02 0.27
145 0.32 0.02 0.42
210 - 0.02 0.38
210 0.20 0.02 0.64
Pickhardt & Wallace (1974) ? 0.39 0.49 0.02 0.32 0.20
(Graduate Business Students) ? 0.30 0.45 0.02 0.46 0.24
Brown (1973) 414 0.29 0.02 0.42
Lichtenstein & Fischhoff
(1980) 924 0.32 0.37 0.02 0.41 0.40
Seaver, von Winterfeldt & 160 0.42 0.02 0.34
Edwards (1978) 160 0.53 0.02 0.24
180 0.47 0.02 0.05
180 0.47 0.02 0.05
140 0.31 0.02 0.20
Schaefer & Borcherding 396 0.23 0.38 0.02 0.39 0.12
(1973) (Students) 396 0.16 0.48 0.02 0.50 0.06
Larson & Reenan (1979) 450 - Reasonably 0.42
Certain
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(1973) also experimented with two assessment methods, in this case fractile assessment and hypothetical
samples. For both methods, the extensive feedback produced substantial improvements in calibration.

Finally, Larson and Reenan (1979) asked subjects to establish a best guess and then two
bounding values such that they were "reasonably certain” that the true value would be found. The results
are similar.

4.3 EXPERTS PROVIDING PROBABILITIES

In this section, published results of the quality of probabilities obtained from experts are
reviewed. In the review, studies involving experts from similar fields will be reviewed together. Results
from some of the studies are summarized in Table 4-2. The fields reviewed include engineering and risk
analysis, weather forecasting, medicine and psychiatry, intelligence and military applications, and
business.

4.3.1 Engineers, Scientists, and Risk Analysts

Hofer et al., (1985) relate an example originally reported by Hynes and VanMarcke (1976).
The practical background was the construction of a highway through the tidal marshes north of Boston.
The question concerned the additional height of fill at which stability failure of the embankment would
occur due to the deformation behavior of the clay foundation. Comprehensive geological data, the
evaluation of test drilling, and the results of various measurements performed prior to and during a
certain period of the filling process were made available to experts for use in their computational models.
Figure 4-2 shows the 95 percent probability intervals formed by the experts.

Mosleh et al., (1987) present an interesting comparison of judgmental distributions for
component repairs to empirical rates obtained from review of power plant operating histories. The
judgmental distributions had been obtained for use in nuclear reactor probability risk assessments (PRAs).
This situation is not the same as when an expert provides a probability distribution for a single quantity,
however, since the validating data also form a distribution. The authors conclude that the experts
systematically underestimated the actual variation of the mean maintenance duration from one plant or
component to another, However, in eleven of the twelve cases examined, the judgmental mean was
within a factor of four of the empirical mean. Nine of the twelve maintenance time means were larger
than the corresponding empirical means, perhaps indicating some conservatism. This result compares
favorably to the data reported by Kidd (1970), which shows that engineers considerably underestimated
the repair times for generators.

Some studies known as the European Benchmark Exercises have examined systems analysis of
nuclear safety by using several independent groups to analyze the same problem. In Amendola (1986),
the Auxiliary Feedwater system of the EdF 1300 MWe PWR was studied. The results of eight teams
were assessed at different points in the study. The ratio of maximum to minimum failure estimates
provided by the teams was 25 on first evaluation. The ratio increased to 36 after the teams made a
comparison of qualitative analyses but used different fault trees, and it fell to 9 when the teams used a
common fault tree but different data sets. When the teams used the fault tree and the same data set, the
ratio of the maximum to minimum estimate became nearly one. This finding supports the contention
expressed in Meyer and Booker (1991) and Hora et al., (1992) that the way decomposing or thinking
about a problem, in this case the fault tree, is an important determinant of the judgments.
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Table 4-2. Calibration studies for continuous variables; experts

Observed Observed
Number Interquartile Surprise
of Frequency Expected Index
Study Assess- Surprise
(Type of Subjects) ments Before After Index Before After
Training/ Training/ Training/ Training/
Feedback Feedback Feedback Feedback
Pratt (1975)
(One Expert) 175 0.37 0.00 0.05
Murphy & Winkler (1974)
(Weather Forecasters) 132 0.45 0.25 0.27
Murphy & Winkler (1977b)
(Weather Forecasters) 432 0.54 0.25 0.21
Stael von Holstein (1971a)
(Weather Forecasters) 1269 0.27 0.02 0.30
Hora, Hora & Dodd (1992)
(Scientists and Nuclear 480
Engineers) 480 0.00 0.35
Cooke (1991a) (Space Systems 80 - 0.10 0.44
and Atmospheric Experts) 52 - 0.10 0.37
396 - 0.10 0.37
154 - 0.10 0.10
Henrion and Fischhoff (1986) 27 0.41 0.02 0.11
17 0.41 0.29
7 0.14 0.14
38 0.50 0.27
7 1.0 0.00
306 - 0.07
Hynes and Van Marcke (1977) 7 0.00 0.57
Tomassini et al., (1982) 6x 0.64 0.02 0.07
0.20 0.14
46




Added Height to Failure, h

30
Measured Value
® \ = 18.7 ft
25 1 -
20 —
___________________ '
¢ e
10
|
5
0

Experts' Responses

Figure 4-2. Results from a survey of expert opinion in geotechnics (Hynes and
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The benchmark studies do not, however, make comparisons to known values and thus they do
not provide a true method of validation. In contrast, what they do provide is a comparison among
analyses and a measure of agreement. However, agreement and accuracy are not synonymous. One can
have good agreement on the wrong value.

Henrion and Fischhoff (1986) examine, retrospectively, values and uncertainties for a number
of physical constants. They find that past assessments of uncertainties associated with estimates of
constants such as the speed of light, Avogadro’s number, Planck’s constant, etc., tend to be
underestimated. For example, Figure 4-3 shows estimates and uncertainties for the speed of light
published between 1875 and 1958. The error bars in Figure 4-3 represent one standard deviation from
the central estimate. These error ranges have been converted to 50 percent and 98 percent confidence
intervals by assuming a normal error distribution. The resulting relative frequencies are shown in
Table 4-2.

A study with space scientists is reported in Cooke (1991a). As part of the study, ten experts
were asked to provide distributions for system reliabilities. Cooke developed eight questions about space
systems reliabilities and reliabilities of similar systems in a manner such that the experts would not have
had access to the data. The experts assessed the 0.05, 0.50, and 0.95 quantiles. Thirty-five of 80
responses did not contain the true value within the 0.05 and 0.95 quantiles.

Cooke (1991b) also conducted a study with experts in the atmospheric sciences. The purpose
of the study was to develop subjective probability distributions for dispersion and deposition coefficients.
Again, as part of the study, the experts were asked to provide medians and 0.05 and 0.95 fractiles for
quantities that were the realizations from experiments involving either dispersion or deposition
measurements. Thus, the study involved the unusual and desirable combination of having experts
responding to questions requiring their specific expertise and having, at the same time, known answers
so that the quality of the probability distributions could be directly judged.

Each of eleven atmospheric dispersion experts was asked to respond to 36 questions for which
the true value was known. A chi-square statistic was computed for each of the experts and, at
approximately the 0.01 level of significance, it was possible to reject the hypothesis of perfect calibration
for each of the eleven experts. Cooke cautions, however, that the observations are not independent and
thus the effective sample size in the chi-square test is actually much smaller than the 36 questions would
indicate. This dependence will cause the chi-square statistic to tend to larger values and thus lead to the
conclusion of miscalibration more often than warranted. In contrast, within the group of four experts
responding to twenty-four questions about deposition experiments, three of the four experts were shown
to be well calibrated.

Examination of Cooke’s data also show that "surprises” (in the upper or lower 5 percent of the
tails) occur 27 percent of the time. The poor performance of the surprise index can be traced to gross
overconfidence exhibited by several of the scientists. Very little training in probability assessment was
provided to the scientists, however.
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4.3.2 Weather Forecasting

The most studied, and perhaps best calibrated, experts are weather forecasters. Beginning in
1965, U.S. weather forecasters have routinely made probabilistic predictions of precipitation. Murphy
and Winkler (1977a) studied precipitation forecasts given by professional weather forecasters in Chicago.
Some 17,514 forecasts were analyzed. Figure 4-4 shows the calibration plot, which is nearly perfect, for
these forecasts. Weather forecasters have several advantages: the task is repetitious, there is an excellent
base of information, feedback is provided, and they are rewarded for good performance. In a recent
study, Winkler (1991) reports precipitation forecast performance in terms of scoring rules at twenty
National Weather Service stations. Performance was found to vary with location because of difficulties
of forecasting and from real differences among expertise at various stations. An asymmetric scoring rule
was employed to measure the skill of forecasters.

Murphy and Winkler (1977b) report on the performance of forecasters making probabilistic
predictions of minimum and maximum temperature. In contrast to precipitation forecasting, which
requires the assignment of a single probability to an event, this task involves assessing a distribution for
a continuous quantity. The calibration of forecasters making assessments by giving the fractiles was very
good in contrast to the rather poor calibration of those who provided probabilities for fixed intervals
centered around the median.

In contrast, Stael von Holstein (1971) asked weather forecasters to provide probability
distributions for the next day’s average temperature, average temperature 4 and 5 days into the future,
and total rain for the next five days. The distributions were obtained using assessments of probabilities
for fixed intervals. The resulting distributions were poorly calibrated; in terms of the interquartile range
and the surprise index, they were comparable to distributions obtained from nonexperts using almanac
questions. The question of refinement, as opposed to calibration, unfortunately, was not addressed in
this study.

4.3.3 Medicine

Physicians have also been expert subjects in studies of probability assessment. Wallsten and
Budescu (1982) report on a study by Lusted (1977) involving physicians assigning probabilities to the
most important and most likely diagnosis. The diagnoses were then evaluated via an x-ray. Ludkeet al.,
(1977) presented calibration curves for three classes or problems -- skull fracture, extremity fractures,
and pneumonia. The calibration for extremity fractures is nearly perfect, while probabilities are
uniformally overestimated for skull fractures. For pneumonia, low probabilities are overestimated while
the converse is true for large probabilities. DeSmet et al., (1979) also present calibration data for
physicians which also suggest over estimation of probabilities associated with head traumas.

Overestimation of probabilities of illness by physicians was observed in Centor et al., (1984).
In this study, physicians assigned probabilities of a streptococcus inflection to patients complaining of sore
throats. The researchers compared the probabilities assigned by the physicians to those estimated through
a regression model. The comparison was based on Brier scores. The results showed that while the
physicians had better resolution than the regression model, the regression model predictions were better
calibrated. A similar comparison was made by Lee et al., (1986) with the result that a proportional
hazards regression model gave better Brier scores than four out of five doctors.
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Figure 4-4. Calibration plot for professional weather forcasters making probabilistic predictions
of precipitation. The number of forecasts is shown for each point (Murphy and Winkler,
1977a).

In a study by Christensen-Szalanski and Bushyhead (1981), nine physicians examined 1,531
first-time patients for pneumonia. Each patient was examined by one physician, and a pneumonia
probability was assigned. Verification was made by x-rays. The physicians assigned probabilities that
were much too high. The authors suggest that patients may be assumed to have pneumonia until it is
proven otherwise. They also suggest that a check list of symptoms may be helpful, as well as base rate
information. Physicians may rely too much on the presence of cues and ignore the absence of cues. Of
course, motivational bias, caused by the asymmetry of the costs of misdiagnosis (declaring a healthy
patient ill versus declaring an ill patient healthy) may also explain the tendency to assign probabilities that
are too large.

In contrast, McClish and Powell (1989) and Poses et al., (1989) present findings that show very
good calibration among physicians. The McClish and Powell study deals with patient mortality in an
intensive care unit. Once again, the physicians’ performance is compared to the performance of a model
with the result that the physicians have more resolution but the model is better calibrated. The setting
for the Poses et al. study is a critical care unit. Three calibration curves are shown in Figure 4-5. These
curves show the assigned probability of survival (abscissa) plotted against the empirical probability of
survival in each forecast bin. The first plot, A, is for house officers who show some underestimation
of survival probabilities, while the second plot, B, is for critical care attendings who show remarkably
good calibration.
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Figure 4-5. Calibration curves for physicians estimating patient mortality in intensive care units (Poses et al., 1989)



Similarly, Winkler and Poses (1991) examined probabilities of patient survival given by
physicians in an intensive care unit. The physicians were classified into four levels of experience by title.
While all four groups of physicians were found to be reasonably well calibrated, those with the most
experience and expertise performed better overall in terms of average scores. This study found that the
key factors in performance involved discrimination and resolution. The more experienced physicians
demonstrated the ability to group together patients with similar survival chances.

4.3.4 Business

In another study by Stael von Holstein (1972), a total of 72 participants were used to assess
discrete probability distributions for changes in stock prices. Ten of the participants worked in the stocks
and bonds department of a Stockholm Bank, 10 were connected with the stock exchange, 11 were
statisticians in academic positions, 13 were business administration faculty, and 28 were students. The
target quantities were share prices two weeks hence for twelve stocks. The assessments involved
assigning probabilities to five classes of price changes. Ten sessions were conducted with feedback on
performance provided before each new assessment.

The evaluation of the resulting probability distributions was based on a quadratic scoring rule.
Comparisons to log and spherical rules were also made. Stael von Holstein was surprised to find that
the bankers performed most poorly. From best to worst, the groups of the participants were statisticians,
stock market employees, students, business teachers, and, far behind, bankers. At the beginning of the
study, the statisticians were found to give more spread-out distributions. As the sessions progressed the
distributions averaged across all experts became more spread out. Thus, the experts learned through
feedback to spread their distributions. The response categories (classes of price changes) were a priori
chosen to be of about equal probability. Assigning equal probabilities to all classes in every session
would have resulted in better scores for 69 out of 72 participants.

The task assigned to the experts in this study is, indeed, most difficult: the efficient market
hypothesis popular in finance suggests that the subject can do no better than random chance without inside
information.

Auditors served as subjects in a study by Tomassini et al., (1982). They were asked to review
six scenarios and develop subjective probability distributions for quantities using the 7-fractile method
of assessment. The results were compared to actual audit values. The auditors appeared to be better
calibrated than most subjects; they exhibited less overconfidence and perhaps some underconfidence in
their distributions, as shown in Table 4-2.

4.3.5 Experts Answering General Knowledge Questions

Overconfidence when responding to general knowledge questions is pervasive and can be found
among professionals as well as students. Cambridge and Shreckengost (1978) found overconfidence
among U.S. Central Intelligence Agency (CIA) analysts, while Hazard and Peterson (1973) found the
same bias among students at the Defense Intelligence School. These studies have also revealed, however,
a tendency for overconfidence to become severe as the difficulty of the task increases.

Hora et al., (1992) report calibration data obtained from scientists and engineers who
participated in the expert judgment elicitation associated with NUREG-1150. During the training for
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probability elicitation, the experts were asked to complete an almanac question training exercise to
demonstrate the overconfidence bias. Each participant responded to one-half the questions by providing
probabilities for intervals (direct assessment), and to the other half of the questions by providing values
for cumulative probabilities (successive bisection.) Figure 4-6 shows calibration plots for these
participants. These graphs are created by plotting the cumulative probability of the true answer against
the empirical distribution function of that probability among all assessed probabilities. The plot should
describe a 45 degree line when the experts are well calibrated. The calibration plot for this study,
however, displays the typical degree of overconfidence obtained with other groups responding to general
knowledge questions.

4.4 SUMMARY

The quality of individual probability assessments has been most often examined in terms of
calibration. A few studies have used scoring rules which measure overall performance, incorporating
refinement as well as calibration. The evidence about the quality of probabilities, however, is for the
most part confined to evidence about calibration.

As Wallsten and Budescu (1983) note, experts involved in assessing probabilities for events with
which they are familiar can be very well calibrated. The evidence indicates that continuous distributions
from experts can also be well calibrated. A similar quality of goodness has rarely been demonstrated in
laboratory settings with nonexpert subjects. Other studies with experts, however, show that when the task
is less familiar, so that there is little opportunity for practice and feedback, experts may succumb to the
same limitations as nonexperts.

The repetitive nature of weather forecasting and medical diagnosis provide opportunities for
practice and feedback. Clearly, in these fields, probability assessors can, and should, perform well.
Unfortunately, many of the assessments that must be made in risk analysis and performance assessment
are not repetitive, nor can feedback be provided.

The majority of those studies in which training has been employed show modest to substantial
improvement in calibration. Training and practice in making assessments, then, should be considered
as an important step in improving the quality of assessments. The evidence also indicates that the quality
of assessments improves with simpler questions. This suggests that a strategy of decomposition, such
as that used in the EPRI and WIPP studies, may also help improve the quality of the elicited probabilities.

Because the most essential flaw in many studies of elicited probabilities is the tendency toward
an understatement of uncertainty, methods should be considered to counteract this tendency. Asking
assessors to consider reasons why an event does not occur as well as why it might occur is an example
of an elicitation technique that can be used to improve the quality of probabilities. The choice of scales
(e.g., log probabilities or log odds) may also help to counteract this bias.

In summary, in some circumstances experts may provide excellent probabilities. One should
not conclude, however, that expertise alone is sufficient to guarantee that probabilities are of high quality.
Practice and evaluation seem to be key ingredients in producing high quality probability assessments, and
careful design of the overall assessment process is also important.
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Figure 4-6. Calibration plots for scientists and engineers responding to almanac questions
(Hora et al., 1992)
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EVALUATION OF EXPERTS’ PROBABILITIES
A.1 INTRODUCTION

It is common practice to judge the quality of a forecast retrospectively by comparing the forecast
to what actually happens. For example, if the forecast is that an event will occur, then the forecast is
evaluated after it is learned whether the event does in fact occur or not. Similarly, when the forecast is
about a variable, such as tomorrow’s high temperature or next year’s growth in gross national product
(GNP), the goodness of the forecast is judged retrospectively by the closeness of the forecast to the true
value. Often a measure of the deviation of the forecast value from the true value, such as the squared
error, serves to evaluate this closeness. More generally, if a series of forecasts and actual values have
been observed, the characteristics of the forecasts can be studied by looking at the joint distribution of
forecasts and actual values and at various measures based on that distribution.

The goodness or quality of probabilities can be investigated in the same overall manner as any
other forecasts. Typically, however, people find the evaluation of probabilities more difficult to think
about than the evaluation of point forecasts. The underlying concepts are similar, but people are not used
to thinking carefully about probabilities and the concepts are a little more difficult intuitively at first
glance when applied to probabilities.

In evaluating a probability of an event retrospectively, it must be understood that the realization
(what actually happens) is, on a numerical scale, either zero or one. If the event occurs, the actual value
is one; if not, it is zero. Obviously a probability forecast is "perfect” if the probability is one and the
event occurs or if the probability is zero and the event does not occur. Just as obviously, perfect
forecasts are seldom attainable. The expert is usually uncertain about whether an event will occur, so
the expert’s probability is somewhere between zero and one.

The purpose of this chapter is to present and discuss methods that have been developed for
evaluating the quality of experts’ probabilities. The joint distribution of probabilities and actual values
is the basic starting point for an evaluation of the probabilities, and various summary measures of that
distribution can provide useful information. The joint distribution will be presented first, followed by
discussions of some of the most important characteristics of interest and summary measures that provide
information about those characteristics.

A2  JOINT DISTRIBUTION OF PROBABILITIES AND OBSERVATIONS

The evaluation of an experts’ probabilities involves the correspondence of those probabilities
and the corresponding observations (what actually occurred). If an expert’s probability for an event is
denoted by r and the corresponding observation by x (where x=1 if the event occurs and x=0 if the
event does not occur), the correspondence between the probabilities and observations can be investigated
by looking at the joint distribution g(r,x) of probabilities and observations. Ideally, this joint distribution
would consist of only two points, (r,x) = (1,1) and (r,x) = (0,0); that is, all of the forecasts would be
"perfect”. In practice, however, that is not feasible.

The joint distribution can be factored into conditional and marginal distributions two ways
(Murphy and Winkler, 1987, 1992):




and

g(r,x) = g (x| g), (A-1)

g(r,x) = g(r|x) gx). (A-2)

These factorizations follow directly from standard probability theory, and the elements of the
factorizations provide different information about the probabilities:

g(x | r) is the conditional distribution of the observations, given a probability value, and this
conditional distribution can be studied for all possible probability values r. The mean of this
distribution is the relative frequency with which the event occurs when a probability value
of r is given. If this relative frequency always equals r, then the probabilities are said to be
perfectly calibrated, and large differences between the relative frequency and r imply poor
calibration. Calibration is an important characteristic of probabilities that will be discussed
in greater detail later in this chapter.

g(r) is the marginal distribution of the probabilities. This indicates, for instance, how often
the expert uses extreme probabilities (probabilities near zero and one) and how often the
expert uses less extreme probabilities. By itself, g(r) only says something about r, not about
the observations. Experts who give extreme probabilities more frequently are said to be
more refined; refinement will be discussed at greater length later in the chapter.

g(r| x) is called a likelihood; for a given x (zero or one), it shows how likely different
values of r are. This relates to discrimination. The discrimination of a set of probabilities
is high if the expert tends to give high probabilities on occasions when the event actually
occurs and low probabilities on occasions when the event does not occur. In other words,
considering a weather forecaster, the forecaster with high discrimination does a good job of
discriminating the rainy days from the nonrainy days (in advance, of course).
Discrimination will be discussed further later in the chapter.

g(x) is simply the base rate, indicating how frequently the event occurs (i.e., x=1) in the
data set. This base rate is sometimes used as a standard of comparison in the sense that the
performance of an expert’s probabilities are compared with the performance of a scheme that
just takes the base rate as the probability every time. The base rate itself is not very
informative, so it would be hoped that the expert would easily outperform the base rate.

The four components in the two factorizations involve different characteristics of the experts’
probabilities and the situations for which the probabilities are assessed. Although each characteristic can
be studied by itself, the entire "package" is important. For example, if an expert always gives
probabilities of zero or one (high refinement), this is not very helpful if the relative frequency of
occurrence of the event is 0.5 when the probability is zero and 0.5 when the probability is one (poor

calibration).

On the other hand, if the expert always says 0.5 and is perfectly calibrated, the poor

refinement means that the probabilities are not at all informative despite the perfect calibration. Some
summary measures based on g(r,x) provide overall measures of accuracy that take into account all of the
characteristics. These summary measures, called scoring rules, will be discussed after more detail is
given regarding the individual characteristics.
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A.3 CALIBRATION

Probabilities may be said to be good in the sense that they correctly reflect uncertainty. Much
work has been accomplished on the quality of probabilities obtained from weather forecasters (Murphy
and Winkler, 1977, 1984). One of the activities of a weather forecaster is to provide predictions of
precipitation. Since 1965, U.S. Weather Service forecasters have provided these forecasts in the form
of probabilities. Calibration refers to the extent to which probabilities assessed for events conform to the
relative frequencies with which these events occur. Thus, the stated probabilities of precipitation should
correctly reflect the relative frequency with which rain occurs. On those days that the weather forecaster
announces a 60 percent chance of rain, for example, it should rain about 60 percent of the time. If for
every forecast value (10 percent chance of rain, 20 percent chance of rain, etc.) the observed relative
frequency of rain corresponds to the probability, then the forecaster is well calibrated.

One property of a set of well-calibrated probabilities is that a plot of the observed relative
frequencies against the probabilities will depict a 45 degree line. Such a plot is called a calibration
diagram. Figure A-1 is a calibration diagram for weather forecasters (Murphy and Winkler, 1977) that
displays a remarkable degree of calibration. The companion plot, Figure A-2 (Christensen-Szalanski and
Bushyhead, 1981), shows very poor calibration for probabilities assigned by physicians for the presence
of pneumonia in patients.

The calibration of probabilities given for discrete events has traditionally been measured by
"binning" similar probabilities and then comparing the relative frequency of events in the bin to the
probability associated with the bin (Lichtenstein, Fischhoff, and Phillips, 1982). Thus, if several events
are each assigned probabilities between 0.2 and 0.3, a bin for these events should have a relative
frequency of occurrence somewhere between 0.2 and 0.3. In Figure A-2 the bins are defined by the
probabilities 0.1, 0.2, etc.

The difference between the observed relative frequency of events in a bin and the expected
relative frequency (i.e., the bin probability) quantifies the degree of calibration. The greater the
discrepancy between the observed and expected frequencies, the poorer the calibration. The discrepancy
between observed and expected frequencies in the bins has been modeled using a multi-nominal
distribution (Murphy, 1973). Denoting the assessed probabilities by r;, the observed relative frequencies
by f,, and the number of events assigned to the ith bin (assigned the probability r) by n;, the lack of
calibration can be measured by

k
C-= E (I‘i— i)zni n, (A-3)
i=1

where k is the number of bins and n is the total number of events assigned probabilities.

C takes on the value zero when the assessed probabilities and the relative frequencies are equal,
and can be expressed as a summary measure of the joint distribution of probabilities and outcomes: the
expected squared difference between r and the relative frequency given r. As will be seen later, the
expected score from a quadratic scoring rule can be decomposed into a series of terms, of which C is
one.

A-3




100

90

80

70

60

50

40

30

Observed Relative Frequency (%)

20

10—
1134 2P02

0 ] ! ] | | ] ] ]
0O 10 20 30 40 50 60 70 80 90 100

Forecast Probability (%)

Figure A-1. Calibration plot for professional weather forecasters making probabilistic
predictions of precipitation (Murphy and Winkler, 1977)
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Bins require a coarseness of probabilities that may be artificial in a given situation. That is,
it may be necessary to bin somewhat dissimilar probabilities (0.5 and 0.7, for example) in order to have
a sufficient number of events in each bin. The following measure of calibration avoids the necessity to
bin or to have the same probability assigned to multiple events. Let E, for j=1, ..., be potential events,
and let r; be the assessed probability of E; occurring. Let I(z) = 1 whenever z20 and I(z)=0 otherwise.
Let x(E)=1 when E occurs and x(E)=0 otherwise. A measure of calibration is then
n

[xEB) - 1] I(r-r)
i=1

i=
T=max - . (A-4)

If, for every r, the relative frequency of events assigned probabilities equal to or less than r equals the
average of the probabilities assigned to these events, then T = 0.

The assessment of probability distributions for continuous quantities is most often accomplished
by assessing certain fractiles of the distributions such as the median, 0.25, 0.75, 0.05, and 0.95 fractiles.
The remainder of the cumulative distribution function (CDF) is inferred from these points. For
continuous quantities the underlying probability function is a density; thus, one cannot compute
probabilities of individual values. Instead, probabilities for intervals of values can be computed.

The concept of calibration for continuous quantities, then, involves probabilities for intervals
of values. One such approach is to develop bins corresponding to certain probability intervals. For
example, continuous probability functions (densities) could be subdivided into intervals with equal
probability, say 10 percent. Thus, equally probable bins delimited by the 0.0, 0.1, 0.2, etc., fractiles
would be created. Calibration would be judged by the relative frequency of the true values in the bins.
Ten percent of the uncertain quantities should turn out to be in each of the bins. Alternatively, assessed
fractiles such as the 0.05, 0.25, 0.50, 0.75, and 0.95 fractiles could be used to define bins with
probabilities 0.05, 0.20, 0.25, 0.25, 0.20, and 0.05.

Researchers in probability elicitation often chose to report only data on the extreme bins such
as the lower and upper 0.05 bins. Values that turn out to be in these extreme bins are called "surprises.”
The literature abounds with examples where the number of surprises greatly exceeds the expected number
of surprises (see Morgan and Henrion, 1990).

An approach to measuring and displaying calibration that avoids binning (Morgan and Henrion,
1990; Hora et al., 1992) is to use the cumulative probabilities of the observed values. For, example,
if the CDFs F,, F,, ... are assessed for a series of variables and the resulting observed values are x,,
X,, ..., then the quantities p, = F;(x;) should be uniformly distributed between zero and one. This is the
same as saying that 5 percent of the quantities should appear in the lower 5 percent tails, 10 percent in
the lower 10 percent tails, and so on.

A plot of cumulative probabilities obtained from scientists and engineers responding to almanac
questions in the NUREG-1150 project (Hora et al., 1992) is given in Figure A-3. The horizontal axis
is the cumulative probability of the true result while the vertical axis is the empirical cumulative relative
frequency of the cumulative probabilities. The plot shows some lack of calibration, particularly in the
tails. The lack of calibration exhibits itself as a deviation from the ideal 45 degree line — the line of
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Figure A-3. Calibration plots for scientists and engineers responding to almanac questions
(Hora et al., 1992)
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uniformly distributed cumulative probabilities. A measure of the deviation from the 45 degree line, such
as the maximum vertical distance from the 45 degree line, can be taken as a measure of calibration.

In summary, calibration is associated with the faithfulness of probabilities — how well they
predict the relative frequencies of events. Calibration is not an end unto itself however, because
calibration does not measure the information in distributions.

A.4  REFINEMENT

The amount of information in a probability or probability distribution is called its refinement.
Probabilities close to zero and one have more refinement than those near 0.5. Probability density
functions that are tightly concentrated have more refinement than those that are more spread out.
Sometimes the terms precision and sharpness are used to describe refinement.

While both good calibration and high refinement are desirable properties, they are often in
conflict as noted by von Winterfeldt and Edwards (1986). High refinement sometimes may be achieved
only at the expense of good calibration, because the state of knowledge does not permit very extreme
probabilities. In fact, it is possible to be well calibrated but have no refinement. A weather forecaster
who gives the same forecast on every day may be well calibrated. If it rains on 20 percent of the days
and the prediction each day is for a 20 percent chance of rain, the forecaster is well calibrated but has
no refinement. One learns nothing from the forecasts that is not readily available from historical data.
In contrast, if the forecaster predicts either a 100 percent chance or zero percent chance of rain, and the
predictions are always correct, then the forecaster is both well calibrated and has perfect refinement —
a clairvoyant.

Measures of refinement depend only on the assessed probabilities and not on the realizations
of the events or random variables. Unlike calibration, refinement can be measured without reference to
true values. Moreover, the refinement of a single probability or density can be measured while
calibration as an empirical concept applies only to sets of probabilities or sets of probability distributions.

A.5 DISCRIMINATION

Calibration and refinement both focus on the probability values that are provided by the experts.
Calibration involves how well these probability values agree with empirical reality in the form of relative
frequencies, and refinement deals with the closeness of the probabilities to zero or one. In contrast,
discrimination asks how different probability values discriminate between the occurrence and
nonoccurrence of the events of interest, regardless of the actual numerical values themselves. For
instance, suppose an expert always assigns probabilities of either 0.60 or 0.40; whenever the probability
is 0.60, the event occurs, and whenever the probability is 0.40, the event does not occur. Although the
numerical values of 0.60 and 0.40 do not seem very extreme, the expert in fact exhibits perfect
discrimination. On the other hand, consider an expert who always assigns probabilities of 0.90 or 0.10;
when the event occurs, it turns out that it follows a probability of 0.90 half the time and a probability of
0.10 half the time, which is identical to what happens when the event does not occur. This expert would
seem, based only on the probability values of 0.90 and 0.10, to be a good candidate for high
discrimination, but in fact there is no discrimination at all.




One way of investigating discrimination is through likelihoods. For a given value of a
probability r for a single event, the two likelihoods of interest are g(r |x=1) and g(r|x=0), the
likelihood of the expert providing the probability r if the event will occur and the likelihood of r if the
event will not occur. If these likelihoods are equal, as in the second example in the preceding paragraph,
then nothing is learned when the expert gives the probability r. The further apart the likelihoods are, the
more discriminatory the probability r is.

Frequently the similarity of the likelihoods is measured via the likelihood ratio,
L(r) = g(r|x=1)/g(r|x=0). (A-5)

A likelihood ratio of one (equal likelihoods) indicates no discrimination, while likelihoods less than or
greater than one are more discriminatory as they move away from one. To avoid the asymmetry of this
measure (e.g., likelihood ratios of 1/2 and 2 are equally discriminatory, even though the latter is twice
as far from one), the log likelihood ratio is sometimes used instead:

log L(r) = log g(r|x=1)-log g(r|x=0). (A-6)

The overall discrimination of an expert can be displayed graphically in terms of a plot of L(r) or log L(r)
as a function of r. The more this plot deviates from L(r) = 1 or log L(r) =0, the more discriminatory
the expert’s probabilities are.

Another graphical approach to discrimination is to plot g(r|x=1) and g(r|x=0) on the same
graph. If the two distributions do not overlap at all (e.g., the probability is always over 0.40 when x=1
and always below 0.40 when x=0), the probabilities are perfectly discriminatory. At the other extreme,
if the two distributions are identical, there is no discrimination. For nonoverlapping distributions, the
likelihood ratio is always infinity or zero; for identical distributions, the likelihood ratio is always one.
In terms of this graph, then, the degree of discrimination increases as the amount of overlap between the
two distributions decreases.

Signal detection theory (Green and Swets, 1974) provides another way of measuring
discrimination. A curve called the receiver operating characteristic curve is generated, and the area under
the curve is taken as a measure of discrimination. This area can be interpreted as the probability that an
expert’s judgment is correctly able to discriminate between the event of interest occurring and not
occurring. For details, see Green and Swets (1974) and Levi (1985).

Discrimination is a very appealing concept because it gets right to the heart of the matter, the
ability of the expert to distinguish between occasions on which the event of interest will occur and
occasions on which it will not occur. However, an underlying issue is that in order to take full advantage
of this discrimination, the individual using the experts’ probabilities will generally have to, in effect, take
the probability value provided by the expert and treat it as though it were a different value. This is
perfectly consistent with a Bayesian view of the world: an expert’s probabilities provide information,
and the individual using that information revises his or her own probabilities based on what the expert
says. This can be thought of, in a way, as calibrating the expert to correct for miscalibration.




A.6 SCORING RULES

Scoring rules, (Winkler, 1967) are measures of the overall accuracy of assessed probabilities
that are functions of calibration, refinement, and discrimination. Consider the instance of an expert
providing probabilities for the occurrence of binary events. As before, suppose that the events are binned
according to their probabilities. Let n, be the number of events assigned the probability r; and let f; be
the observed proportion of times events in this bin actually do occur. The first scoring rule proposed for
such a situation is the Brier (1950) score. The Brier score for a response r; when the associated event

occurs is (1-r)? while the score when the event does not occur is r;. Smaller scores are better.
Averaging the scores over n=n,+n,+...+n, responses binned into k categories gives the average score

k
5= rllz [0, £(1-r)? + n(1-D)F]. (A-7)
=

The average Brier score can be partitioned into three parts, corresponding to the difficulty of
the assessments, the calibration of the expert providing the probabilities calibration, and the resolution
of the assessments (Murphy, 1973). The partition is given by

k k
s = 11-D + Iy 0 -fr-1Y 0D, (A-8)
j=1 ni=1

where T = Y nf/n is the overall proportion of times the events occur. The first term in the partition
depends only on the proportion of events that occur (the base rate). Therefore, this term cannot measure
any aspect of "goodness" of the probabilities; instead, it measures the empirical uncertainty about the
occurrence and nonoccurrence of the events in question. If all the events do occur (or all do not occur),
then this term is zero. If half the events occur, then the term reaches its maximum value of 1/4. The
second term measures calibration through the squared difference between the assigned probabilities and
observed relative frequencies. This term, which is just C from (A-3), is zero for a perfectly calibrated
expert.

The third term measures a characteristic called the resolution of the probabilities, which relates
to the differentiation of frequencies of events assigned to the various bins. For example, if events in each
of the bins are found to have the same relative frequency of occurring, then the binning provides no
resolution between more and less likely events. If, in contrast, the events are grouped so that some
groups have high relative frequencies and some have low relative frequencies, then the resolution is high,
implying that the binning (or assignment of probabilities) successfully distinguishes between more and
less likely events. Note that the resolution term does not depend on the actual r; values, but only on the
grouping of situations into bins with different r; values. In this sense, it is similar to discrimination.

While the Brier rule is perhaps the best known scoring rule, any strictly concave or strictly
convex expected score function can be used to generate a “strictly proper” scoring rule (Savage, 1971).
The term "strictly proper" is applied to such functions because of the property that an individual’s
expected score is optimized (minimized in the case of concave functions such as the expected Brier score,
and maximized in the case of convex functions such as the logarithmic and spherical rules given below)
whenever that individual responds with his or her honest probabilities. In contrast, consider the linear
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scoring rule that gives a score 1-r when the event occurs and r when the event does not occur, where r
is the assessed probability. (Compare to the Brier score, which gives scores (1-r)? and r2.) If the expert
actually believes the probability of the event occurring to be p, the expected score is maximized by
responding r=1 whenever p>.5 and r=0 whenever p<.5. The expert is thereby "rewarded” for
responding untruthfully, and the rule is called improper.

Some other proper scoring rules include the logarithmic rule,

S = log r if the event occurs, (A-9)
log (1-1) if the event does mot occur,
and the spherical rule,
—2——r—“—n if the event occurs,
S [r +(ll-_rr)] (A-10)

W if the event does not occur.
r +(1-

For these logarithmic and spherical rules, a higher score is better.

Each of these rules, including the Brier rule, which is quadratic, extends to events having
several possible outcomes, and, by passing to a limit, extends to a corresponding rule for continuous
variables (here the quadratic rule, like the others, is expressed so that a higher score is better). If f is the
assessed density and x is the revealed or actual value of the variable, the rules for continuous variables
can be expressed as follows:

® Quadratic: S = 2f(x)- f [f(w)]?du, (A-11)

® Logarithmic: S = log[f(x)], (A-12)

® Spherical: S = _f(x—) (A-13)
([ tErdu}

The logarithmic rule has the property that the score depends only on the density at the realized value and
not on the density at other values. While this is an advantage of the logarithmic scoring rule, the rule
also assigns an infinite score if the realized value is assigned zero density, thus overwhelming any other
assessments. Clearly, this is a drawback.

The above three scoring rules can be developed by direct extension from scoring rules for
discrete events. Matheson and Winkler (1976) developed scoring rules for continuous distributions from

another approach. They consider scoring rules for the binary events x<c¢ and x>c. By allowing ¢ to
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vary over the entire range of x and integrating the scoring function with respect to c, they obtain another
class of strictly proper scoring rules. One member of this class is another form of quadratic scoring rule,

X o
S = f [F)Pdu + f [1-F(u)Pdu, (A-14)
o x

where F(u) is the assessed cumulative distribution function for x.

Some care must be used with scoring rules. It must be recognized that an average score
developed with one set of questions is not comparable to an average score developed from another set
of questions. An attempt to avoid this problem is represented by the asymmetric scoring rules developed
in Winkler (1985, 1991). These strictly proper rules attempt to make scores from different situations
comparable by scaling them appropriately. For instance, if the long-term relative frequency of
precipitation at a given location at a particular time of year is 0.20, then a weather forecaster who gives
a precipitation probability of 0.20 each day should get the worst average score. With the typical
symmetric scoring rules discussed above, the worst score is obtained for a probability of 0.50, which is
midway between zero and one, and the expected scores are identical for probabilities of, say, 0.20 and
0.80. For the asymmetric scoring rules, the worst score can occur at a probability other than 0.50, and
the expected score improves as the probability moves from that value toward zero or one.

A.7  QUALITATIVE EVALUATION OF VALIDITY

Characteristics such as calibration, refinement, discrimination, and resolution are useful concepts
for appraising the quality of probability assessments. They are useful in understanding the properties of
"good" probability assessments. Empirical measures such as average scores and calibration measures are
limited, however, to situations where the true outcomes are known. This will often not be the case in
the assessment of radioactive waste disposal issues. More often than not, the quality of assessed
probabilities must be judged by the quality of the experts themselves and the process used to acquire the
probabilities.

Perhaps the foremost concern is the quality of the experts themselves. The quality of the
experts may be judged along several dimensions.

® The experts should have possession or access to exceptional knowledge that sets them apart
from others. In issues involving public safety, which are apt to receive strict review, the
experts should be identifiable through their work and contributions in the subject area.

® The experts should be free from motivational biases. The outcome of the probability
elicitation should not affect them. Individuals choosing experts for probability elicitation
should be aware of possible economic ties to the issues under question. Sometimes these
ties may be difficult to see. For example, a person’s experimental program conceivably
could be affected by the outcome of an elicitation exercise. Strong political positions may
also carry with them a preference for certain outcomes, and, thus, the potential for bias.
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® Those engaged in a probability elicitation exercise should be willing to provide the time and
effort needed for a competent evaluation of the issues. This means studying the problem and
documenting the rationales for the conclusions reached.

® When there are multiple scientific viewpoints or approaches to a problem, multiple experts
should be used to ensure that diverse viewpoints are included. This will help capture the
true range of uncertainty about the question.

The quality of probabilities depends, in part, on the way questions are asked. For example,
questions should pass the "clairvoyance test.” This test requires that the statement of the question be
sufficiently complete so that a clairvoyant would be able to answer the question without further
explanation (e.g., Spetzler and Stael von Holstein, 1975). Properly structuring and presenting questions
helps to ensure that the expert is responding to the same question that is being asked. Moreover,
questions should be asked in a manner free from suggesting or promoting certain answers; the judgments
gathered should be influenced by analysts working with the experts only in the sense that assistance is
provided in converting beliefs into probabilities. In general, a formal, well-structured elicitation process
is important [see Morgan and Henrion (1990), Keeney and von Winterfeldt (1991)].

The quality of probabilities is therefore evaluated, at least in part, through the experts and the
process used to collect the judgments. Here, documentation of all aspects of the process are vital. It is
particularly important that the rationales and sources of information used by the experts be well
documented. Numbers, by themselves, have little credibility. The methodology used to develop those
numbers provides the support for their quality.

A8 SUMMARY

The quality of probabilities can be investigated in terms of the joint distribution of probabilities
and actual outcomes and characteristics such as calibration, refinement, discrimination, and resolution.
Empirical measures of these characteristics are available but require the availability of appropriate data.
Scoring rules provide overall measures of the goodness of probabilities through functions that incorporate
the various characteristics of goodness. An investigation of all of the aspects of goodness can be useful
in a diagnostic sense (Murphy and Winkler, 1992) to help experts improve their judgments, as well as
in an evaluative sense.

Qualitative evaluation of expert probability distributions will most often be made on the basis
of the process that generates the probabilities. The expert selection process, the training process, the
statement of questions, the general elicitation procedures and the documentation, including the rationale
behind the assessments all provide indirect indicators of the quality of the assessed probabilities.
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