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A. The simple model

Consider the simple model of Figure la in which water is flowing downward

in unsaturated sediments at the steady rate w(gm/cm2 sec). For convenience,

we illustrate only one stratum in an otherwise homogeneous section. As the

medium is unsaturated, the mass flux is generally divided between a

contribution from transport in the liquid state, , and one from transport in

the vapor state, wg As the flow passes through the stratum with contrasting

capillary properties, we expect that the relative contributions of each phase

will generally be different. (How different they might be depends upon the

dynamics of flow which we shall not address.) As we have assumed steady-state

conditions, however, the total mass flux, w, will be the same in each medium,

i.e.,

wwg w+ w (la)

= wI + W (lb)g I2

where primes denote conditions in the stratum. To fix ideas, we suppose that

the contrast in properties between the stratum and the enclosing medium is

such that a greater proportion of the flow occurs in the liquid state in the

stratum, i.e., w > w To meet this condition, water vapor must condense

near the upper boundary of the stratum at the rate w' - w, and the latent

heat of vaporization, L per unit mass, must be liberated there. Hence the

upper surface of the stratum must behave as a heat source of strength Aq(top)

Aq(top) = (W - w)L (2a)

= wL (2b)
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where A is the increase in the fraction of mass flux carried by the liquid

phase when the boundary is crossed, i.e.,

W - w
X =.9 (2c)

Similarly as the flow passes through the lower boundary of the stratum

vaporization must take place at the rate w - w resulting in a steady heat

sink there of strength

Aq(bottom) = -wL (3)

Suppose the geothermal flux results in a steady input of heat at the rate

q0 into the bottom of the stratum (Figure lb). As this flow crosses into the

stratum, the sink (equation 3) will reduce its value to q - AwL. When the

heat emerges at the top of the stratum, it will be augmented by the source

(equation 2) so that, in the domain above, its value will again be 

( q0 - AwL + AwL), (see Figure lb).

The potential importance of this effect stems from the large magnitude of

the quantity L, viz.

L -- 580 cal/gm (4)

If we express w in gm/cm2 yr (equivalent to a volume flow rates of liquid

water in cm/yr), the source strength (2) is

Aq(- cal ' 580 Aw(gm/cm2 yr) (5a)Aq(y-zyr~
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or expressed in heat-flow units (1 HFU 10 6 cal/cm2 sec)

aq(HFU) ". 18 Aw(gm/cm2 yr) (5b)

The background geothermal gradient in continental regions (including NTS)

is determined by a regional geothermal flux q of '.1-2 HFU. Thus it is seen

that the source (or sink) associated with condensation (or vaporization) of

vertical water flux of only 1 gm/cm2 yr (i.e., 1 cm/yr seepage velocity) is a

full order of magnitude greater than the background heat flow. Consequently,

the gradient changes associated with such sources and sinks would be an order

of magnitude greater than the background gradient (see Figure 1c). Thus

changes from vapor transport to liquid transport for flow rates of only

1 mm/yr could produce anomalies of 100% in the background geothermal gradient.

In general, an anomalous negative temperature gradient of the type illustrated

(in Figure 1c) should be characteristic of strata favoring transporting the

liquid phase in regions of slow downward unsaturated flow. In regions of slow

upward flow, the roles of source and sink would be reversed and so would the

sign of the temperature-gradient anomaly across such strata. If the anomalous

stratum favored vapor flow (instead of liquid flow), the opposite rules would

apply (negative gradient anomaly for upflow; positive for downflow). Hence

the direction (up or down) of very small steady unsaturated flows might be

determined from a superficial examination of the temperature profile and core.

The rate of steady flow can be calculated from the magnitude of the gradient

anomaly and an estimate of ; a lower limit is obtained by setting = 1.

It is important to emphasize that we do not know, at present, whether it

is reasonable to expect appreciable changes in phase composition in steady

unsaturated flows in bedded tuffs. However, temperature profiles in

unsaturated sediments at the Nevada Test Site show steady-state gradient

reversals and other anomalies that might be explained by their effects. The

applicability of the model to these data is under study.
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B. More general considerations 0

We consider the steady-state one- * .cu 

dimensional problem of water flowing downward __aB ____

from the surface through unsaturated sediments

whose properties vary with depth (z, Figure 2). Fig. 2

The total mass-flow rate is a constant w, the sum of contributions from

flow in the vapor state w and flow in the liquid state w, each of which are

functions of depth z. The mass-flow rates are the product of a volume-flow

rate v and density p. Hence

w = wI + wg independent of z (6a)

W = p V (6b)

wg = P vg (6c)

Differentiation of (6) yields the continuity condition:

dw k + 0 ~~~~~~~~~~~~~~(7)
dz dz + dz =0

The thermal condition of the sediments is a steady-state resulting from a

constant temperature on the surface (z = 0), a constant geothermal flux 

from great depth, and internal sources of heat resulting from steady-state

convection and mechanical conversion by the liquid and vapor components of the

flow. The energy balance for this condition requires that at any depth

dz k dE] = dEw e + wg e + (v + V (8)
Fz dz dzg dz g9 

where is temperature, k is thermal conductivity, P is pressure, and e and

e9 are the internal energies per unit mass of water in the liquid and vapor

phases respectively.
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The term on the left in (8) is the change with depth in conductive heat

flow; it is balanced by the local rate of accumulation of heat by convection

(first term on the right) and the rate of heat generation associated with

reversible volume changes (second term on right). Much of the work of volume

change can be incorporated into the first term on the right by replacing the

specific internal energy e by the specific enthalpy h (= e + Pp).

[k d] = d[w h + w h - v + v dP)dz dz dz £ g g I) (9)

We neglect the last term in (9), which is equivalent to assuming that the work

of volume change takes place at constant pressure. Now using (2), (3), and

the relation

dh c do
dz dz

where c is specific heat at constant pressure, we can express (9) as follows

dztk de] = [w c + w c] do _ (h - h) dw (103

We define a mean value, c, of specific heat of the mass flow by

Wic + wgc

w

and denote the conductive flux, positive in the direction of heat flow, by

q = kddO (12)
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The latent heat of vaporization L is given by

L = h - h (13)

Combining equations (10) through (13) gives a convenient relation between

conductive heat flux and conditions of water flow

dw, - (4
49=-L d +E wq (14)

dz d 

The first term on the right shows how, in the steady state, the heat flow

changes with depth according to the changing phase composition of the mass

flow. The second term on the right is the familiar convection term associated

with the transport of thermal cpacity.

As the thermal gradient is easier to visualize than the heat flow, it is

useful to write (14) for the case of uniform thermal conductivity.

dz L A CW r (15a)

dk E (15b)

where r = d/dz denotes thermal gradient. Although (15a) is useful for

intuitive purposes, the assumption (15b) usually is not justifiable and the

more general form (14) is needed for calculations. In practice, this poses no

problem, as the thermal conductivity of the formation is easily determined in

the laboratory from core or (if porosity is known) from drill cuttings.

C. The relative importance of the terms in equation (14).

To investigate the role of the second term on the right in (14), consider

a medium composed of horizontal strata, each of which has uniform properties

- 8 -



in its interior. Within each stratum, we assume for convenience that the

phase composition of the flow will be constant, in which case the first term

on the right will vanish, i.e., (14) becomes

dz = wq (16)

Integrating (16) across a stratum of thickness Az yields

tq(oO = eZ/S (17a)
q(bottom e(17

where "top" and "bottom" refer to the stratum boundaries at which q is

evaluated and s is a scale length with the sign of w (positive for downward

flow)

s = k (17b)
cw

To estimate the expectable range of s we note that the specific heats of

liquid and vapor are

c 1 cal/gm C (18a)

cg _ 0.45 cal/gm C (18b)

and consequently c (equation 11) is restricted to a relatively narrow range.

wo w
ctcal/gm CJ + 045 w (19a)

1 , wg =0 - (19b)

0.45, w = (19c)
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Unsaturated sediments normally have thermal conductivities in the range

k -. 0.003 50% cal/cm sec C (1.2 ± 0.6 W m k ) (20)

Using (19b) and (20) in (17b) yields an estimate of scale length s for the

case where transport is predominantly in the liquid phase

[km] =- 1 --I(2la)
sI(kmJ w[gm/cm2 yr(

Similarly if the flow is predominantly in the vapor phase, the scale length s 

is

s [km] 2.2 (21b)
g w[gm/cm2 yr)I

Comparing (21a) and (21b) to (17a), it is seen that for mass flow of constant

phase composition at rates on the order of 1 gm/cm2 yr (Darcian velocities

'.1 cm/yr) conductive heat flow across a stratum will be uniform unless its

thickness approaches 1 km; for Darcian liquid flow rates -.1 m/yr the governing

stratum thickness is "10 m, for '.1 mm/yr it is 10 km.

Thus for mass flow rates up to 1 gm/cm2 yr, the temperature may be

treated by conduction theory (dq/dz = 0) in the interior of strata less than a

few hundred meters thick if the phase composition of the flow is uniform

within such strata.

We now consider the more general case in which the phase composition of

flow, and consequently w, vary across a layer of thickness z extending

downward from z to Z2- Using the notation of (17b) in (14) and integrating
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over the layer yields

Z2 Z2 Z2 l
fzj dq -L dw, + fI -q dz (22a)

q(zl) - q(Z 2 ) - L[ws (Z 2 ) - wY(Z)J - q5 (22b)

where q is the mean value of q in the layer, and the relatively small possible

variation of s (equations 21) is neglected. The third term will usually be

negligible if

6Z << 1 (23)

in which case the variation of heat flow across the layer can be attributed

entirely to change in phase composition of the flow, i.e.,

Cq(zl) - q(zl)] 18[wj(z.) - ,(z1)] , (24)

where q is measured in HfU, and w is measured in gm/cm2 yr

According to (24) if the liquid flow rate increases by 0.1 gm/cm2 yr between

two depths, the heat flow will decrease by 1.8 HFU between those depths. The

form of the depth-dependence of w in the interval is immaterial; the special

case of a discontinuous change in w (i.e., z 0 0) is the one discussed

originally (equations 2 and 3).
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