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ABSTRACT

The evolution of a thin layer of water on an unsaturated porous incline is analyzed. A similarity solution

is found for such flows incorporating the effects of gravity, viscosity, and an idealized linear

representation of imbibition into the unsaturated porous matrix. The previously derived similarity solution

for flow on an impervious surface by Huppert (1982) is a specific case of the new similarity solution. The

maximum distance (the penetration length) that water can travel outside the porous medium is analytically

related to the amount of water applied, acceleration due to gravity, the density and viscosity of water,

the angle of inclination, and the rate of imbibition into the matrix. Using Green-Ampt and Richards'

equation-based descriptions of the imbibition process, the evolution of water is numerically simulated.

The penetration length and its variation with the amount of water applied to an unsaturated porous block

are experimentally observed. By experimentally determining the imbibition rate, model predictions of the

penetration length are compared to observations. The role of the distinct time scales of movement of

water along the length of fractures and imbibition into the unsaturated porous matrix in determining the

capacity of fractures to transport water in unsaturated porous media is discussed.
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1 BACKGROUND

1.1 REGULATORY NEED

An evaluation of the environmental consequences of the proposed high-level radioactive waste

(HLW) repository at Yucca Mountain (YM) in southwest Nevada requires an assessment of the rates of

water movement in the vadose zone. Since water is a potential carrier of radionuclides, larger time scales

associated with its movement would support the feasibility of the geologic repository. The Nuclear

Regulatory Commission (NRC), as a criterion for performance assessment (PA) of the proposed

repository, has set a "Groundwater travel time criterion" that states:

"The geologic repository shall be located so that pre-waste emplacement groundwater
travel time along the fastest path of likely radionuclide travel from the disturbed zone
to the accessible environment shall be at least 1000 years or such other travel time as
may be approved by the Commission." [Section 60.113(a)(2), 10 CFR Part 60
(Nuclear Regulatory Commission, 1991)]

Since the engineered containment for the radionuclides is expected to be effective for only a

fraction of the half-lives of some of the radionuclides to be disposed, the geologic environment's ability

to provide a barrier to the movement of radionuclides needs to be quantified to determine the feasibility

of a geologic repository. The NRC stated, "The Commission considers both engineered and natural

barriers to be important...." [Federal Register, page 28,203 (Nuclear Regulatory Commission, 1983)].

Therefore, the dissolution of radioactive waste in water and its subsequent movement in the natural
environment needs to be anticipated. 10 CFR 60.112 specifically requires that:

"The release of radionuclides to the accessible environment must meet Environmental
Protection Agency (EPA) standards."

The current EPA standards defined in 40 CFR Part 191 (Environmental Protection Agency, 1991) place

a limit on the cumulative releases of radionuclides to the accessible environment for the first 10,000 yr

after disposal (Section 191.13), and set a limit on the annual dose to any member of the public in the

accessible environment during the first 1,000 yr after disposal (Section 191.15). The EPA in 40 CFR
Part 191 also states that "disposal systems shall use different types of barriers to isolate the wastes from

the accessible environment. Both engineered and natural barriers shall be included." (Section 191.14).

An assessment of the cumulative flux of solute across a specified boundary requires a description

of the velocity field of the fluid transporting the solute from its source to the boundary. The radionuclides
carried in the relatively rapid pathways would travel across a compliance boundary without undergoing

as much radioactive decay as the radionuclides in the slower waters. The performance of the engineered

containment for the radionuclides will also be influenced by its interaction with the water in the geologic

environment. In this context, an evaluation of rates of water movement is needed to assess the suitability
of the proposed site for HLW disposal.
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1.2 INDICATIONS OF FRACTURE FLOW AT YUCCA MOUNTAIN

YM consists of a series of eastward dipping, variably welded fractured tuffaceous material.

Some measurements reported in Scott et al. (1983), Montazer and Wilson (1984), and Peters et al. (1984,

1986) are presented here to describe the hydrostratigraphy of YM. Ababou (1991) provides a summary
of this information in a review of modeling approaches. Wittmeyer et al. (1993) used rock-hydraulic
property data, detailed microstratigraphic data, and measured saturation profiles in near-surface boreholes,
to infer infiltration rates at YM. There is little alluvial cover above the proposed repository site, and the
fractured welded Tiva Canyon unit crops out at the ground surface. Tiva Canyon is estimated to have 10

to 20 fractures per m3 (Scott et al., 1983). The saturated matrix hydraulic conductivity of Tiva Canyon
is of the order of 10-11 m/s, and matrix porosity is 10 percent. Beneath the Tiva Canyon unit lies the
nonwelded Paintbrush Tuff unit, which is relatively less fractured (1 fracture per m3) (Scott et al., 1983),

and has a higher saturated matrix permeability (10-7 m/s) and porosity (40 percent) in comparison to the
Tiva Canyon unit. The potential repository location is in the fractured welded Topopah Spring unit

beneath the Paintbrush Tuff. Like Tiva Canyon, Topopah Spring is highly fractured with 8 to 40 fractures
per m3 (Scott et al., 1983). The saturated matrix permeability and porosity of Topopah Spring is of the
same order as that of Tiva Canyon. The relatively less fractured Calico Hills nonwelded unit underlies
Topopah Spring. The hydraulic properties of the consolidated porous matrix show variations within each
unit, and the presence of fractures creates another strong variation in hydraulic properties superimposed
on the matrix heterogeneity.

For an unfractured porous medium obeying the Darcy constitutive assumptions, measurements
of in situ moisture contents or suction heads, along with the hydraulic conductivity-moisture
content-suction head characteristics, provide an estimate of the flux of water. However, for a fractured
porous medium the matrix moisture contents or suction heads may not provide an estimate of flux of

water if the flux is predominantly due to transient fracture flow (Nitao et al., 1992). Most of the studies

that infer infiltration rates at YM begin with the assumption that Richards' equation is sufficient for
modeling flow of water in the fractured unsaturated porous medium. These studies either employ Darcy

porous matrix constitutive properties, or "equivalent" continuum properties. These continuum properties
are based on the presumption of pressure equilibrium between the fractures and the adjacent matrix. The
analysis of infiltration into soils with macropores (Germann and Beven, 1981a,b; Beven and Germann,
1981, 1982) indicates that such an approach tends to underestimate infiltration by neglecting preferred
pathways for downward water movement. In view of the limited and irregular alluvial cover and the
cropping out of the fractured Tiva Canyon at the ground surface, the fact that "...the permeability of a
soil during infiltration is mainly controlled by big pores, in which water is not held under the influence
of capillary forces" (Schumacher, 1864) needs to be recognized in assessing infiltration at YM. The time
scales associated with downward water movement in the porous matrix in the Tiva Canyon unit are large

because the matrix saturated hydraulic conductivity divided by porosity is a small number (3.0 mm/yr).
Based on this number, even if the Tiva Canyon unit were completely saturated, water would travel down
only 3 m in 1,000 yr. It is likely that the time scale of evaporation processes is smaller than the time
scale of downward water movement in the porous matrix; therefore little infiltration can be expected if
water movement does indeed take place through the porous matrix. This scenario can change if the
downward movement of water takes place in fractures, depending on the speed at which water moves in

fractures and the amount of water imbibed by the porous matrix surrounding the fractures. A U.S.
Department of Energy (DOE) peer-review team stated that there are "major uncertainties associated with"

the process describing matrix-fracture interactions (Freeze, 1991). Considering that the dynamics of flow
in unsaturated fractured porous medium are not well understood and that no large-scale controlled
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infiltration experiments exist to directly determine the aggregate behavior of the fractured tuffaceous

material at YM, the widely reported numerical model estimates of average annual infiltration rates are

to be viewed with skepticism.

The average annual precipitation at YM is approximately 150 mm/yr. Rainfall, which is

reported to be affected by surface topography, occurs as infrequent short intense thunderstorms that

occasionally flood the nearby washes (Waddell et al., 1984). Nitao et al. (1992) have discussed evidence

indicating that the nature of the precipitation and the hydraulic behavior of the fractured tuff render

infiltration at YM to be spatially highly nonuniform. Some of the evidence they present indicating

relatively rapid fracture flow at YM is repeated here.

* Detection of chlorine-36 and tritium at depths of 450 to 500 ft (Norris, 1989). At the rate

of downward water movement characteristic to Tiva Canyon matrix properties (less than

3.0 mm/yr), thousands of years would be required for water to travel this distance.

* Loss of polymer-based drilling fluid while drilling borehole USW G-1 (Water Waste and
Land Inc., 1986).

* Report by Quade and Cerling (1990) on stable isotope signatures for Trench 14, and

comparison to pedogenic soil carbonates and spring deposits in the Amargosa Valley and

Devils Hole. The Trench 14 data are similar to modem calcite deposited in soils from

Pifion-Juniper vegetation zones. Similar measurements for calcite, filling fractures in cores

taken from YM tuffs, were reported by Szabo and Kyser (1990). This similarity in the stable

isotope ratios and the pedogenic origin of Trench 14 deposits indicate that the deposits in the
fractures must be derived from percolating meteoric water (Nitao et al., 1992).

Yang (1992) analyzed tritium concentration profiles of test hole UE-25 UZ #4 in Pagany Wash

near YM. He concluded that the tritium concentration inversions indicate "that non-vertical flow along

preferential paths (fracture or channels) are occurring."

These empirical observations indicate that the potential for flow of water in fractures and faults

is an important candidate for the fastest pathway for contaminant transport. The YM Site Characterization
project has recognized this potential and the need to investigate it as part of site characterization activities
(U.S. Department of Energy, 1988). On the modeling side, DOE-funded studies have also recognized

this feature and have begun to model the dynamics of flow in discrete fractures interacting with variably

saturated matrix to assess the environmental implications of the proposed HLW repository at YM (Travis

et al., 1984; Nitao and Buscheck, 1991; Buscheck et al., 1991; Nitao et al., 1992; Zimmerman and

Bodvarsson, 1992).

1.3 MODELS OF FLOW IN VARIABLY SATURATED
FRACTURED POROUS MEDIA

Some current approaches for modeling flow in unsaturated fractured media are briefly reviewed

here. For a more extensive discussion, the reader is referred to the review by Ababou (1991). Brown and

Gelhar (1985) provide a critical review of flow in saturated fractured porous media. Manteufel et al.

(1993) provide a detailed discussion of the coupling of thermal, mechanical, chemical, and hydrologic
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processes. Ghosh et al. (1994) present an evaluation of computer codes for coupled thermal, mechanical,

and hydrological process, pertinent to the proposed repository at YM.

1.3.1 Heterogeneous Porous Continuum Approach

In this approach, fractures are viewed as a porous medium with a contrasting hydraulic
conductivity-moisture content-suction relationship. The presence of fractures completely filled with calcite
supports their treatment as a distinct porous continuum, and a direct measurement of the properties of
the fillings can provide the parameters needed to describe their flow behavior. For unfilled fractures, the
hydraulic conductivity-saturation relationship can be constructed by assuming laminar flow (e.g., Beven
and Germann, 1981). Wang and Narasimhan (1985) propose a suction-moisture content relationship for
a fracture with a variable aperture, assuming capillary forces to be the dominant force on water inside
a fracture. If the fracture surface and the dimensions of the water inside a fracture are such that capillary
forces are not the dominant force on water in a fracture, water is subjected to an atmospheric pressure
at its interface with air (assuming air to be infinitely mobile). If viscosity and gravity are important
influences on water inside a fracture, it is possible for a fracture to go from complete saturation to small
saturation values without the water pressure becoming negative. Therefore, it is not necessary to associate
partial saturation of an unfilled fracture with negative fracture fluid pressure values. A large part of the
range of hydraulic conductivities associated with a fracture can be in the positive pressure range. The
aperture of the fracture and the nature of the fracture surface and its interaction with the fluid will
determine the relative importance of viscosity, gravity, and capillary forces. The assignment of porous
medium characteristics to unfilled fractures in unsaturated porous media needs to be experimentally
investigated. Chuang et al. (1990) reported a fracture block experiment, but did not estimate a fracture
hydraulic conductivity-pressure-moisture content relationship.

The heterogeneous porous continuum approach in modeling flow in unsaturated fractured porous
media can be further divided into two categories: (i) discrete fracture models, and (ii) equivalent
continuum models.

1.3.1.1 Discrete Fracture Models

If a geometric delineation of fractures based on observations or hypothesis is made, and they
are assigned porous continuum properties, the resulting variably saturated flow problem can be
presumably solved by a conventional unsaturated flow solver. If the hydraulic properties assigned to the
fractures are appropriate, and the numerical approximation resolves the spatial-temporal variations of the
suction field created due to fractures, this approach is an attractive one in understanding the behavior of
fractured unsaturated porous medium. The work of Nitao and Buscheck (1991) is an example of an
analytical approach to this problem. Baca et al. (1984) and Therrien (1992) have developed finite element
techniques for simulating variably saturated flow with this approach. The difficulty with this approach
is the assignment of Darcy constitutive properties to the fractures and computational requirements.

1.3.1.2 Equivalent Continuum Models

The starting point for assessing flow in this approach is similar to the discrete fracture approach,
insofar as descriptions of the geometry and the constitutive properties of the fractures are required. The
equivalent continuum approach seeks to replace the discrete fracture model of the porous medium with
a simplified "equivalent" that is capable of predicting the spatially averaged flux of water in the discrete
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fracture model. This approach is attractive because, after computing the constitutive parameters of the

equivalent model, the task of predicting spatially averaged fluxes of fluid is rendered relatively simple.

However, the development of a theoretical method to reduce a complex heterogeneous physical system

into a simplified equivalent and testing its efficacy in predicting fluxes is a difficult task. A priori, the

data requirements for this approach are not any less than the discrete fracture approach. However, if the

equivalent constitutive properties of practical importance are shown to depend on certain statistical

measures describing the fractures, such an approach has the potential for prioritizing data collection, and

evaluating uncertainties due to limited data.

There is an important distinction to be made among methodologies to assign equivalent

continuum properties to unsaturated heterogeneous porous medium. In one category, pressure equilibrium

is assumed a priori in computing equivalent continuum parameters. The simplest of these approaches is

to volumetrically average the assumed hydraulic conductivity-suction relationship, like Klavetter and

Peters (1988). Also, the work of Mualem (1984) lies in this category. His work takes into account simple

geometrical features of the heterogeneity orientation in numerically computing effective hydraulic

conductivities, presuming pressure equilibrium. In the second category, there are analyses that explicitly

calculate the suction head perturbations associated with flow in heterogeneous media and examine

approximately how these perturbations, along with hydraulic conductivity perturbations, determine the

capacity of the medium to transport water.

The theoretical results on steady-state unsaturated flow by Yeh et al. (1985) and Yeh (1989),

on unsteady unsaturated flow by Mantoglou and Gelhar (1987), and the numerical work on steady-state

unsaturated flow by Anderson and Shapiro (1983) are examples of approaches that examine the impact

of suction head perturbations. This approach has been compared to experiments by Yeh and Harvey

(1990). Polmann et al. (1988) and Gelhar (1993) provide a summary of the analytical results on

assignment of effective properties incorporating the effects of suction head perturbations. Although the

accomplishment of such a task analytically or numerically is based on simplifying approximations, the

consideration of suction head perturbations in this approach has a major impact on the suction head

dependant anisotropy and hysteresis of the computed effective hydraulic conductivity. This shows that

the capacity of a heterogeneous soil to transmit water is greatly influenced by the suction head

perturbations created due to material property variations. This approach has not been applied to the

unsaturated fractured porous medium problem. If a realistic stochastic description of hydraulic properties

of fractured porous medium can be made, the previously developed results for unfractured heterogeneous

porous medium may be extended to fractured porous medium.

The work of Klavetter and Peters (1988) is attractive to the applied modeler because the effort

involved in computing "effective" parameters is limited to adding two hydraulic conductivity-suction

characteristics with different weights, reflecting the relative volumetric presence of fractures and porous

matrix in a numerical grid block. The application of Klavetter and Peters method in modeling flow when

the fractures are less conductive than the surrounding matrix is supported by Wang and Narasimhan

(1985). However, it has been recognized that this approach will underestimate flux when fractured porous

media are suddenly subjected to a wet boundary condition. This underestimation can be appreciated by

a simple argument. If, during a rainfall event, water finds its way into fractures, it will flow relatively

fast in the fracture due to a relatively large hydraulic conductivity. This rapid flow will occur until the

water is imbibed into the adjacent matrix. However, in extensively fractured porous media, water may

be able to travel considerable distances before it is imbibed into the matrix. In the Klavetter and Peters

(1988) approach (presuming pressure equilibrium between fracture and adjacent matrix), this

redistribution of moisture occurs instantaneously, thereby neglecting the distance water can travel before
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this equilibration takes place. Once water is redistributed relatively uniformly, the fracture may become

less conductive compared to the consolidated porous matrix. However, the fact that this approach unduly

biases the velocities of water to the matrix values has been recognized in studies performed for the DOE

(Nitao et al., 1992; Zimmerman and Bodvarsson, 1992). Rapid fracture flow is observed in a tunnel

located 400 m beneath the top of Ranier Mesa (Russel et al., 1987), and the existence of dry porous

matrix alongside a flowing fracture inside the tunnel is readily visible. If the fluid suction values along

a horizontal transect through the fracture were to be measured, the fluid suction head would be relatively

large away from the flowing fracture, and positive pressures could occur inside the fracture. To average

the fluid suction value over the transect and assert that the flux of fluid can be computed by averaging

the hydraulic conductivities evaluated at the average suction is the essence of the equivalent continuum

approach which neglects the effect of suction variations in computing effective parameters. Since fractures

are generally assigned hydraulic conductivities that decrease more rapidly with suction than the

surrounding matrix, such a naive averaging approach would result in unduly large estimates of

groundwater travel times at Ranier Mesa.

1.3.2 Dual Continuum Approach

In a dual continuum approach, the effect of fractures is sought to be represented as a distinct

continuum with Darcy constitutive properties. The fracture continuum and the matrix continuum interact

as they exchange fluids based on the pressure differences between them. This dual continuum approach

is conceptually attractive because it permits water to travel at distinct rates in the distinct continua. It is

less restrictive than the equivalent continuum models that make the critical fracture-matrix pressure

equilibrium presumption (that makes them underestimate flux of water in fractured rocks subjected to wet

boundary conditions.) However, the transfer function controlling the exchange of fluids in the dual

continuum model needs to be theoretically determined, as the absence of any large-scale controlled

experiment rules out its determination based on fitting to observations. A modeling exercise to determine

the transfer term would have to employ a discrete fracture model and attempt to fit the right transfer term

to make the dual continuum model yield the flux of water found in the discrete fracture model. A priori,

the existence of a unique transfer term that will enable the dual continuum model to predict water flux

in fractured unsaturated porous medium is not guaranteed. Updegraff et al. (1991) discuss the

development of the dual continuum approach and its application to unsaturated fractured porous medium.

1.4 TECHNICAL OBJECTIVES

This study investigates fracture-matrix fluid flow interaction, incorporating viscous fluid motion

physics and variably saturated porous medium behavior. A systematic development of theoretical concepts

and experiments is needed to make a critical performance comparison of distinct modeling approaches,

or develop an alternate approach to model flow in fractured unsaturated porous medium. Such a study

would encompass experiments on laboratory-scale matrix blocks with and without fractures, large-block

experiments, and controlled field-scale experimentation. However, the objective of this study is limited

to developing an understanding of the phenomenon of a thin layer of water dripping down a fracture in

an unsaturated porous medium. The focus in this work is on the disparate rates of water movement in

consolidated porous medium and on water movement in unfilled fractures. The imbibition of water into

the porous matrix, the manner in which it determines the proportion in which these velocities are

experienced by water, and the distances and rates at which water travels are analytically and numerically

studied. Observations from a simple experiment conducted in this study are compared to model

predictions. The analysis made here assumes isothermal conditions.
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2 INTRODUCTION

2.1 ORGANIZATION

The evolution of a thin layer of water on an idealized plane unsaturated porous medium

(Figure 2-1) is examined in this work. Section 2.3 formulates the nonlinear initial-boundary value

problem governing the spatial-temporal evolution of water dictated by the constitutive properties of the

water and porous continuum, and by the conservation of fluid mass and momentum under isothermal

conditions. A similarity solution for such flows is reported in Section 3.1, coupling the nonlinear

advection equation governing the evolution of water outside the porous medium to an idealized linear

representation of water loss to the porous medium. The derived similarity solution yields analytical

expressions of the maximum distance a finite amount of water can travel outside the porous medium

before becoming completely imbibed. This maximum distance is referred to as the "penetration length."

Numerical approximations to model such flows are evaluated by comparison with similarity solutions in

Section 3.2. The evolution of the thin layer of water with imbibition into porous medium modeled using

the Green-Ampt model and Richards' equation, is numerically simulated in Sections 3.2 and 4,

respectively. A simple experiment of this phenomenon is reported in Section 5, where observed

penetration lengths are compared to model predictions employing the Green-Ampt imbibition model. A

discussion and a summary of the results of this study are provided in Sections 6 and 7 respectively.

2.2 RELATIONSHIIP WITH OTHER WORK

The juxtaposition of unsaturated flow and viscous flows to examine the interaction of viscous

transport of fluid momentum, gravitational acceleration of the fluid, and the loss of fluid to the

unsaturated porous medium is the objective of this work. The nonlinear equation used in this study to

model the flow of water outside the porous medium is a specific case of the kinematic wave equation,

which has been used previously to numerically study surface hydrological response and infiltration (e.g.,

Henderson and Wooding, 1964; Chen, 1970; Smith and Woolhiser, 1971; Li et al., 1975; Smith and

Hebbert, 1979; Cundy and Tento, 1985; Luce and Cundy, 1992). Beven and Germann (1981) numerically

coupled steady-state viscous flow descriptions and unsaturated flow for vertical cylindrical pores in

unsaturated porous medium. Davidson (1984) modeled the imbibition of water into unsaturated porous

medium from a crack, employing a two-dimensional (2D) Green-Ampt model, neglecting gravity. The
crack was assumed to be full of water under hydrostatic conditions in Davidson's work. In contrast to

earlier works, the focus of this study is on the maximum travel distance (penetration length) for a

specified amount of water introduced on low-permeability consolidated porous medium. In the fluid
mechanics literature on flow on impervious surfaces, a viscous-gravity balance has been previously

employed to describe the fluid flow via similarity solutions, and favorable comparison between theory

and observation have been found (e.g., Smith, 1973; Huppert, 1982; Lister, 1992). The analytical,
numerical, and experimental results developed here generalize this class of previous work insofar as the

effects of the imbibition of water into the porous medium are incorporated.
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Figure 2-1. Flow of a thin film of water on an unsaturated porous incline

2.3 FORMULATION

2.3.1 Basic Equations

The conservation of an incompressible fluids momentum and mass dictate that

aui+ ) = _pgi+ __ (2-1)
ax 2~~~~~~x
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and

- =O (2-2)
ax,

In Eq. (2-1), p is the density of water, p is the pressure, A the dynamic viscosity of water, gi is the

component of the acceleration of gravity in the i th direction, and u, is the velocity of water. A

summation over repeated indices is implied in Eqs. (2-1) and (2-2). Inside the porous medium, the flux

of water qj is assumed to be governed by the Darcy porous continuum constitutive model

qi ( ak ip) (2-3)

For the coordinate system shown in Figure 2-1, g, = gsin(a) and &2 = -gcos(a). Assuming p to be

a constant, conservation of fluid mass inside the porous continuum is expressed as

- + 1 =0 (2-4a)
at ai

A sum over repeated indices is implied in Eq. (24a) in which e is the volume of water per unit bulk

porous medium volume. In Eq. (2-3), k is the permeability of the isotropic porous medium.

Equations (2-3) and (2-4a), along with functions k(p) and 0(p), determine the porous medium flow

mechanisms. The microstructure of the porous medium and its interaction with fluid determine k(p) and

0(p). Relating these functions to the pore-scale geometry is difficult in view of their dependence on

complex 3D pore geometry and physical processes. A direct measurement of these porous medium

constitutive functions is needed in practical applications. Equation (2-4a) implies that the soil-water

suction head * =-p/pg (assuming constant fluid density p) is governed by a form of Richards' equation

(Richards', 1931)

S 8+ a -|K(4r)sin(a) -K(*O) ] (4b

at x x
(2-4b)

+ a[K(*)cos(a)-K(*) = 0

where

5 dO (24c)

d*

In Eq. (24b), hydraulic conductivity K=kpglp, the xl axis is assumed to be dipping at an angle a

below the horizontal direction, and the x2 axis is at an angle a in the clockwise direction from the

vertical (Figure 2-1.) For positive suction head values, the coefficient S represents the effects of change
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in storage of moisture with suction. For positive pressure values and an incompressible fluid, S

represents the effects of compressibility of the porous medium. For saturated conditions, S is typically

of the order of 10-4 m 1- for unconsolidated material (Hunt, 1983). If the coefficient S were set to zero,

Eq. (2-4b) would become an elliptic equation. In the variably saturated porous medium flow problem

analyzed here, there is a possibility that some regions are completely saturated. In this circumstance,

retaining a positive value for S at positive pressures (attributed to porous medium compressibility)

provides a continuous variation of S between fully saturated and unsaturated flows. Depending on the

function 0 (), there may be a strong disparity between the time constants over which the pressure field

changes are propagated in these distinct porous flow regimes.

In addition to Eqs. (2-1) through (24a,b,c), the conditions at the interface between the water

outside the porous medium and the water inside the porous medium need to be specified. The details of

the hydrodynamics of water entering pore spaces are not modeled here. For the free surface water outside

the porous medium, it is assumed that the velocity at the interface, tangential to the porous plane, is zero.

The velocity component orthogonal to the interface is equal to the normal flux of water inside the porous

matrix, which is also governed by the porous medium flow mechanisms. Additionally, the pressure at

the interface is assumed to be uniquely defined. The appropriateness of these interface conditions between
free flows and porous flows has been debated because of the distinct scales at which the continuum

hypothesis is made in the distinct media. For example, the tangential velocity of fluid particles at the

interface admits a discontinuity in this boundary condition specification. This discontinuity is because the

porous flow problem does not involve second derivatives of the velocity, unlike Navier-Stokes equations.
The reader is referred to analysis by Taylor (1971) and Saffman (1971), experiments by Beavers and

Joseph (1967) and Beavers et al. (1970) and (1974), and the recent pore-scale numerical modeling work

by Martys et al. (1994) for an investigation of boundary conditions between free flows and saturated
porous media flows.

2.3.2 Thin-film Approximation

A free surface flow governed by the Navier-Stokes equations [Eq. (2-1)] is rendered simpler
under the thin-film approximation

h<<L, h ah ''V (2-5a)

where h is the thickness of the layer of water, L is the characteristic longitudinal length of the water

body, and v = gL/p is the kinematic viscosity of water. Under these conditions, Eq. (2-1) is

approximated in two dimensions as

0= - P + v + gsin(ca) (2-5b)
P axI aX2
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and

o - - 1.2P - gcos(a) (2-5c)

P 'X2

The reduction of the Navier-Stokes equations [Eq. (2-1)] to the thin-film equations [Eqs. (2-5b,c)] is
discussed in fluid mechanics texts (Acheson, 1989). Conditions specified in Eq. (2-5a) ensure that the

spatial derivatives of the velocity in the x1 direction are much smaller than those in the x2 direction, and

that the terms on the left side of of Eq. (2-1) are small. For the thin-film approximations to apply, it is

not necessary for the Reynolds number (based on the longitudinal length scale L) to be small, provided

that h1L is sufficiently small. The pressure in the fluid is obtained by solving Eq. (2-5c)

p = pg(h -x 2)cos(a) + PA (2-6)

where pA is the atmospheric pressure. Henceforth, PA is set to zero, therefore, fluid pressure values are

expressed relative to atmospheric pressure. Substituting Eq. (2-6) in Eq. (2-5b) yields

v = - gsin(ac) + g -cos(a) (2-7)
2axax2

Consistent with the thin-film approximation [Eq. (2-5a)], the second term on the right side of Eq. (2-7)

may be considered to be small compared to the first term, for nonzero or very small values of a, and
is neglected. The zero tangential stress condition and the purely kinematic condition at the top of the layer
of water require that

(U -o U 2 = ah + U ah; x2 = h (2-8)

aX2 2 1I

Equations (2-7) and (2-8) and the incompressibility condition [Eq. (2-2)] yield the equation governing the

evolution of the thickness h of the thin-film of water outside the porous medium

8ah + ch 2 aah = s, s(x 1 ,t) = U2(X1,X2 = 0, t)

(2-9a)

C = pgsin(a)

The divergence-free 2D fluid velocity in the thin-film of water is obtained from Eqs. (2-7), (2-8), and
the incompressibility condition of Eq. (2-2)
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2~~~~Us (X1'X2't) = i(cc) h^(x,,t)x2- 21(-b

U2 (X1,X2't) = u2 (x1 ,x 2 =Ot) - X2 pgsin() ah(x1 ,t)

This velocity description may be used to model solute transport. In this work, the focus is on Eq. (2-9a),
which enables a direct study of the evolution of the thickness of the water film without solving for the
details of its velocity field. This affords a 2D analysis of the water flowing on the porous medium.

In Eq. (2-9a), the fluid velocity s at the interface, orthogonal to the porous plane, provides a

coupling between the water outside the porous medium with the flux inside it. Negative values of s

signifying water loss to the porous medium create a reduction in film thickness h, which causes a

reduction in its velocity ch2, which reflects a balance between viscous effects and gravity. An
appreciation of the impact of gravity and viscosity on layers of water of different thickness can be

obtained from Figure 2-2, which shows how the film velocity ch2 varies with its thickness and the angle
of inclination. Gravity has the potential to make even very thin layers of water travel relatively fast
outside the porous medium. However as a finite size water body introduced onto a porous incline moves,
its thickness decreases, and thereby its velocity is reduced. The description of how this happens on an
idealized plane unsaturated porous surface and an assessment of the impact of water loss to the porous
medium on the movement of water are presented in the following sections.
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3 TBIN-FILM FLOW WITH SIMPLIFIED
IMBIBITION FUNCTIONS

The evolution of a viscous fluid on impervious surfaces has been extensively studied employing the
thin-film approximation [Eq. (2-9a)]. Solutions to these thin-film equations have been found without any
water loss term (e.g., Smith, 1973, Huppert, 1982, Lister, 1992). For a linear model of imbibition of
water into the porous medium, a new similarity solution to Eq. (2-9a) is developed here. This solution
affords an exploration of the parametric sensitivities of this fluid flow-imbibition phenomenon, and also
provides a method to evaluate the numerical approximations for the thin-film equation with a loss term.
The numerical approximation is then used to examine the influence of different representations of the
imbibition process.

3.1 SIMILARITY SOLUTION WITH FIRST ORDER LOSS
TO POROUS MEDIUM

To begin examining the properties of solutions to Eq. (2-9a), consider the loss of water to the

porous medium at a rate proportional to the pressure at the interface, that is, s = -Kh. This is a very
simplified representation of the imbibition process into unsaturated porous medium. If the time scale of
loss of water is small compared to the time scale associated with the movement of. water outside the

porous medium, that is, if K is much greater than cA2/L3 (0), with A being the initial area of water body

on the porous medium and L(O) its initial longitudinal dimension, water barely moves down the porous
incline before it is lost to the porous medium due to imbibition. In this circumstance, the solution to the
evolution of water is simply an exponential decrease of the height of water outside the porous medium.

However, if the imbibition rate constant Y. is less than cA2/L 3(0), then the thin layer of water can be
expected to move down the incline.

In order to solve Eq. (2-9a) with s = -ich, first consider the general nonlinear-temporally
varying advection equation

at + g(t) N (h) ak 0 (3-1)
at ax

Where N(h) is a nonlinear function of h. Equation (3-1) admits general solutions of the form

t ] ~~~~~~~~~~~~~~(3-2)fr x-N(h)f 9(Qu)dt](32

for an arbitrary function f . Under the condition that N 1 is a single-valued function, Eq. (3-2) yields

similarity solutions for h of the form
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h = N- ___
(3-3)

~fg(:r)d-c

Differentiation of Eqs. (3-2) and (3-3) shows that they satisfy Eq. (3-1). For a first order loss function

(s = -Kh), Eq. (2-9a) can be readily transformed into the form of Eq. (3-1) [by making the

transformation h* = hexp(lct)] for an impulsive introduction of water on the porous surface. From
Eq. (3-3), the similarity solution to Eq. (2-9a) with a linear loss function may be constructed

h (XI, t) = 2 lll (3-4)

The solution in Eq. (3-4) can be expected to govern the main part of the water body outside the porous
medium, independent of the initial conditions, after the water body has traveled down distances of the

order of its original longitudinal dimensions, which happens when t is greater than L 3(0)/cA2. A
differentiation of the solution [Eq. (34)] shows that it satisfies Eq. (2-9a) with a first order loss function.
The position of the advancing tip of the thin layer of water may be found by integrating Eq. (34) and
recognizing that the total area of water outside the porous medium will be decaying exponentially. These
evaluations yield the position of the leading edge of the water body

L(t) = [9 A 2 pgsin(a) (1-e 2 xt) 13 (35)

Equivalently, the time at which point xl >0 is hit by the leading edge of water is given by expression

th(Xl) = - In 1 2 K (36)

Of course, Eq. (3-6) is valid only for positive arguments of the logarithm. Figure 3-1 presents a
schematic of the new similarity solution [Eqs. (34) through (3-6)].
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Figure 3-1. New similarity solution for thin-film flow with first order imbibition
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3.1.1 Penetration Length

It follows from Eq. (3-5) that

lim L(t)[- 9 A 2 pgsin(a) (3-7)

t-.co L 8)- I[
Therefore, the thin-film Eq. (2-9a) with a first order loss yields distinct penetration lengths beyond which

the thin layer of water cannot travel. Equation (3-7) shows the sensitivities of this distinct length to the

physical variables controlling the flow problem. Figure 3-2 presents the variation of the penetration length

with the initial height of the film of water. The similarity solution is expected to hold if the water body

has traveled a distance comparable to its original length, L(O). This condition occurs if the initial

thickness of the water film is larger than the amount indicated beneath the vertical line in Figure 3-2. Of

course, the first order imbibition is a major simplification of the dynamics of imbibition by the porous

medium. However, the qualitative behavior of the nonlinear-advection-source/sink term Eq. (2-9a) is

revealed by the derived similarity solution [Eqs. (3-5) to (3-7)]. Employing the first order loss model for

imbibition of water into the porous medium as a sharp front, the depth of the wetting front inside the

porous medium Zf(x1,t) is governed by

(e -0b dZHdt) = Kh(x 1,t) (3-8a)

which is equivalent to

ZfxI,t) =f h ( T)dt (3-8b)

Ob and OW are the initial moisture content and wetted zone moisture content, respectively.

Equations (34), (3-6), and (3-8) yield a simple expression for the position of the advancing wetting front
inside the porous medium

Z~x1,1t) = 2qI {sin' [e -h(XI)]-Sjng1(e-t') } (39)
Z/X1 ) e w-b pgsin(ot)

A schematic of this solution is shown in Figure 3-1.

The similarity solutions constructed above yield the similarity solution for flow down an

impervious slope when the amount of water imbibed by the porous medium is small, that is, when

ct<<1, Eqs. (34) and (3-5) become

34
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h(x 1,t)x= m (3-10)

tpgsin(a)

and

L(t) = |9A pgsin(a )t ] (3-11)

Expressions (3-10) and (3-11) were presented by Huppert (1982). The contrasting nature of the temporal
evolution of the water body with no imbibition and with a first order imbibition function is shown in
Figure 3-3.

3.1.2 Steady-State Solution for Dirichlet Upstream
Boundary Condition

The previous derivations pertain to the evolution of a finite amount of water impulsively
introduced onto the porous medium. Also of interest is the case in which a specified height of water is
maintained at the upstream end of a porous plane. Specifying the height of water fixes the flux of water.

Figure 34 illustrates the situation in which an idealized parallel plate fracture at an inclination is

subjected to incipient ponding. For a first order loss function, the steady-state solution to Eq. (2-9a)

yields a finite penetration length

lim pgsin(a)h2 (3-12)
L L(t) = 2 3-2

t- X 2-K P

Equation (3-12) was obtained by setting the temporal derivative in Eq. (2-9a) to zero, and solving the

resultant ordinary differential equation for h 2 . The penetration length Eq. (3-12) reflects a balance in
which the rate at which water is being applied is equal to the rate at which water is being imbibed into
the porous medium.

3.2 NUMERICAL APPROXIMATION FOR TBEIN-FILM FLOW

To further explore the coupled flow of water on and in an unsaturated porous medium,
numerical approximations of the thin-film Eq. (2-9a) are developed here. The three-step explicit scheme
employed is
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h=hin + hi l

2
_ At (Gil - Gin)

2Ax )

ki = - A (G.- i-1) (3-13)

hin = hi + sAt

where G = ch313, h,5 is the numerically approximated value of the height of the thin-film at the ith node

at the nth time-step, Ax and A t are the spatial and temporal discretization intervals, and s is the fluid
flux as defined in Eq. (2-9a). This numerical scheme is adapted from Peyret and Taylor (1983). The first
two steps solve the thin-film equation without any loss term. The averaging of the head incorporated in
the first step is chosen because the direction of movement of the front of water in this analysis is in the

direction of increasing i . This averaging was found to be critical in obtaining solutions without spurious
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oscillations. The time step At needs to be smaller than A x/ch2 by the Courant-Fredrichs-Lewy (CFL)
condition, to solve the thin-film equation without any water loss. The third step incorporates the water
loss term. The time step needs to be appropriately small to temporally resolve the imbibition process. It
is chosen so that the water body does not lose more than half a percent of its initial maximum height in
a time step, for the maximum possible imbibition in the time step. The spatial discretization is primarily
based on the original dimensions of the water introduced on the plane. As the mechanism by which water
is introduced onto the porous medium is not simulated here, for convenience, the initial condition for the
film height is taken to be half a sine wave in front of the origin in the following simulations.

3.2.1 Zero Imbibition

Without any imbibition, the numerical solution is compared with the large-time analytical
similarity solution presented in Eqs. (3-10) and (3-1 1). The almost perfect fit at large times shown in
Figure 3-5a is a verification of the appropriateness of the numerical scheme [Eq. (3-13)] employed here,
and the well known similarity solution for a thin-film of water moving down an impervious slope
[Eqs. (3-10) and (3-1 1)]. The ability of the numerical approximations to capture the sharp front accurately
was tested for large travel distances compared to the initial longitudinal dimensions of the water body.
The averaging of the head performed in the first step of the numerical scheme [Eq. (3-13)] avoids
spurious oscillations at the front tip, but does not dampen the solution in any detrimental way.

An interesting feature observed in the numerical solution at early times is the adjustment of the
shape of the water body. For the initial conditions employed here, that is, half a sine wave, the front end
steepens to form a sharp front before it moves ahead. Although, in terms of water mass, there is a
movement of the water center of gravity forward, the dimension of contact with the solid surface remains
constant for a while. Such waiting-time solutions on impervious surfaces have been previously presented
by Tayler (1986).

3.2.2 First Order Imbibition

A first order loss term is introduced in the numerical solution and a comparison made with the
derived similarity solution, in Figure 3-5b. The new similarity solution presented here [Figure 3-6a, and
Eqs. (34), (3-5), (3-6), (3-9)] for a thin layer of water moving down a porous slope, and losing water
at a rate proportional to the height of water, is the correct large time solution to Eq. (2-9a). The
penetration length as a function of the system parameters was found to be adequately predicted by the
simple expression Eq. (3-7). The condition for the applicability of the similarity solution derived here is
worth repeating. If the water loss process is slow enough that the mass of water travels down the porous
incline distances comparable to its original dimensions, the analytical expressions presented in Section
3.1 apply. This assumption excludes the case in which the water height rapidly decays to zero without
any movement, which of course can be simulated by solving the ordinary differential equation resulting
from neglecting the transport term in the thin-film Eq. (2-9a).

3.2.3 Green-Ampt Imbibition

In this representation of flow in an unsaturated porous medium, imbibition takes place as a sharp
front of distinct moisture content (Figure 3-6a). Additionally, it is assumed here that imbibition of water
into the porous medium takes place orthogonal to the porous plane due to a diffusive flux (driven by
capillary forces inside the porous medium). The sink term to the thin-film equation is given by
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s(x1,t) = -KGA [h(xlt) cos (a) + lM I [h(x,,t) ] (3-14a)
Zf (XI,t)

where I[h(x,,t)], an indicator function takes a value zero when h=O, and a value of 1 when h>O . In

Eq. (3-14a), Zf is the distance of the wetting front from the interface, KGA is the hydraulic conductivity

and *f is the suction head ahead of the wetting front. For ews the wetted zone moisture content, and Eb'
the initial moisture content, the velocity of the wetting front inside the porous medium is given by

dZf (Xapt) _ KGA[h(Xt) cos(a) + (I[h

dt (Ow Ob)Zf (Xilt) I h 13X4b

When the height of water at a point becomes zero, the sink term is set to zero. The moisture
front inside the porous medium is tracked only as long as there is a nonzero height of water outside.
Equation (3-14b) can be rewritten as

Z, (XI,t) = [ - (| {h(x ,t) cos (a) + I [h(x 1,') ] *f }dt ) ] (3-15)

Equations (3-14a) and (3-15) are easily coupled to the numerical scheme [Eq. (3-13)] to solve for the
thin-film flow, by evaluating the integral Eq. (3-15) numerically. In this work, KGA, e., and Ob are

assumed to be constant, and Zf (x1,O) = 0.

The effect of gravity on water inside a porous medium of extremely small permeability can be
expected to be much smaller than that on water outside it. In this adaptation of the Green-Ampt (1911)
model the impact of gravity on water inside the porous medium is being neglected. The flux of moisture
inside the porous medium associated with gradients in moisture content in the x1 direction is also being
neglected. Further simplification is achieved if we assume that the suction head ahead of the wetting front
is much larger than the height of the thin-film

. >> 1 s =- D I [h (X, t) (3-16a)
hcos(a) T(X 1, t) I\'
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where DGA, the "imbibition coefficient" is given by

D = KGA(OW Ob) *J (3-16b)
GA 2

and T is the duration of ponding at a point

T (xt) = f I [h (xi,t) ] d-r (3-16c)
0

Correspondingly, the distance of the wetting front away from the interface is given by

Zf (X,t) = I/GAT (x 1,t) (3-16d)

Philip (1969) presents a detailed account of such an unsaturated flow representation. The numerical results

shown here use Eq. (3-16) as the imbibition model. A specification of DGA is all that is needed to

incorporate the rate of imbibition of water into porous medium in this simplified model. The spatial
temporal evolution of the thin layer of water and the wetting front inside the porous matrix is shown in

Figure 3-6a, with DGA = 1.00X 10-10 m2/s. The difference between the background moisture content

and that of the wetted zone, that is, Ow - Ob' is 0.1.

The film of water introduced onto the porous medium flattens and forms a sharp front as it
moves down the unsaturated porous incline. The gravity and viscosity effects cause the rear end to be
thinner than the front. Imbibition further reduces the height of the water film and the rear limit of
nonzero height of water advances and catches up with the front as the flow-imbibition process proceeds.
The maximum distance to which the front end of the water body is able to move is the penetration length.
The kink in the plot showing the position of the wetting front (Figure 3-6a) is due to the initial adjustment
of the shape of the water on the porous medium. For a short period of time, the dimensions of contact
between the water and porous medium remain constant. During that time, the wetting front in the porous
medium, beneath the layer of water, moves away from the interface according to Eq. (3-16d). The
locations of the front and rear ends of the water body are shown in Figure 3-6b. The effect of reducing
the initial amount of water applied by reducing the maximum initial height of the water is shown in
Figure 3-6c. If the initial thickness of the film is small enough so that the time over which the film
adjusts its shape is greater than the time required for it to be completely imbibed, there may be no
downward movement of water outside the porous matrix, as shown in Figure 3-6c. The effect of changing
the angle of inclination of the unsaturated porous incline is shown in Figure 3-6d. The film travels further
but gets imbibed faster as the rate at which the water body encounters dry porous medium is also greater.
This negative feedback diminishes the sensitivity of the penetration length to the angle of inclination. The
larger the imbibition coefficient, the more intense is this negative feedback effect. A decrease in the
imbibition coefficient makes the water move much further, as shown in Figure 3-6e.

Like the first order imbibition case, the leading edge of water cannot travel beyond a distinct
maximum value (the penetration length). The leading edge does show a little recession at later times
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because it is in the zone of maximum imbibition rate as the wetting front is relatively shallow. In contrast
to the first order imbibition case, the rear limit of the water body advances with time. This advance
occurs because the Green-Ampt imbibition can completely deplete the water at a point, unlike the first
order loss case. The rear end of the water body advances and catches up with the leading edge at the
instant water is completely imbibed into the porous medium. The feature of the rate of imbibition
decaying with time due to the decreasing suction gradient [Eqs. (3-16a) and (3-16c)] is important.
Consequently, for a Dirichlet upstream boundary condition, there is no finite penetration length for the
Green-Ampt imbibition model, unlike the first order loss case [Figure 3-4, Eq. (3-12)].

In the numerical results presented here, the mass loss errors at the time of complete imbibition
were extremely small. For each of the results shown in Figures 3-6a through 3-6e, the numerically
approximated dependent variables became insensitive to numerical discretization intervals at the level of
discretization employed. In coupling the thin-film evolution to the Green-Ampt model-based imbibition
of water into the porous medium, the coupling of distinct fluid flow phenomenon with distinct
characteristic time-scales has been accomplished. The next section reports a numerical model coupling
the thin-film flow to 2D-Richards' equation-based unsaturated flow.
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4 THIN-FILM FLOW WITH RICHARDS'
EQUATION-BASED IMBIBITION

4.1 NUMERICAL APPROXIMATION FOR VARIABLY
SATURATED FLOW

The flow inside the porous medium governed by Eq. (2-4) is solved by an explicit two-step
predictor-corrector scheme due to MacCormack (1969), modified to take into account the nonlinear
coefficient multiplying the time derivative term. The MacCormack (1969) scheme is discussed by Peyret
and Taylor (1983). Consider a general nonlinear advection-diffusion equation with nonlinear coefficients;

p (f) atat
2 a

m=1 tcxm
EFm (f) - e (f) af = 0ax,

(4-1)

The corresponding terms in Richards' equations are easily obtained by comparing Eqs. (2-4) and (4-1).
The two-step finite-difference scheme adopted in this work is

f (ij) =fn (ijj) - - EAA 2 x Fm [n (ij) ] - Nm (ij) Ax fn (ij) }
p Lfn (ij) ] 1 MAZ {Fm

(4-2a)

f"+, (ibj) = 1 [fn2 (ij) + f (ij) I

(At) 2

E~
A (Fm [f (ixj) ] (4-2b)

P 1 ffn (ij) + f (ixj) I I
- Nm (isj) Ax. f (ij) }
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where

N1 (idj) = 2. { n (ij) ] + E [pn (i-lj) ] }
2

N2 (II) = 2 {t [fR (ij) ] + E VIn (ij-1) ] )
2 ~~~~~~~~~~~~~~(4-2c)

l (ij) = 1 { (isj) ] + ( V (i+lj) I }
2

N2 (Qi) = 2! {V [(ij) ] + e j(ij+i) I }
2

and A and A are the forward and backward finite difference operators in the mth direction,

respectively.

The spatial discretization in the mth direction, AX,,, is chosen so that the implied grid Peclet

number is less than one in both directions; that is

x= I aF < (4-3a)

Pm 2E,

for m = 1 and 2. The time step At is chosen based on numerical stability considerations (Peyret and
Taylor, 1983),

Ax2
At <

M(aFI1 | aF 2 1 A (4-3b)

These two conditions, along with adequate discretization of initial conditions, were the selected spatial-
temporal discretization criteria. Finlayson (1985) provides a detailed account of spatial-temporal
discretization criterion for Richards' equation. For the simulations reported here, the grid Peclet number
was always less than 0.1, and the time step was taken to be less than half the maximum allowed for
stability considerations [Eq. (4-3b)]. The moisture content is advanced in time by a two-step
predictor-corrector method
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(ij) = on (ij) - S [ i" (ij) ] {iJ(ij) - *n(ij) }

On+1 (i j) o n (i j) + 0 (i j) - S | (i j) + * (i j) 1
2 [2 j(4-4)

{4fn+1 (i j) _ nIJ (ij) + it (ij)}

where S is as previously defined in Eq. (2-4b).

The performance of this simple methodology and discretization criteria to find a numerical
solution for variably saturated flow in porous medium is assessed by comparing it with a transient
analytical solution for Burgers' (1974) equation

af + a(j f af 0 (4-5)
at Ax 2 ax

Solutions to Eq. (4-5) can be used to represent infiltration with some special representations of the
hydraulic conductivity-moisture content relationship (Philip, 1974; Clothier and White, 1981; Clothier
et al., 1981; Rogers and Ames, 1989). The analytical solution due to Whitham (1974)

f8t ==E nexp - sin

1+2 ] exp |- 1 cos( 21nx
1+2 ~~~~~~. )

is compared with the solution obtained from the numerical approximation [Eq. (4-2)]. The initial and

boundary conditions correspond to Eq. (4-6) with t=O and x=O and A, respectively. In Figure 4-la,

the results shown are for e = 1, domain length X = 1, and numerical spatial discretization A x = 0.05,
implying a grid Peclet number less than one, with a time step satisfying the stability criteria [Eq. (4-3b)].
These two criteria [Eqs. (4-3a) and (4-3b)] and an adequate resolution of initial conditions produced

favorable comparisons. Of course, as & is reduced, a smaller grid is required to get accurate solutions,
and the time step required for stability becomes smaller.

The second check of the adopted numerical technique [Eq. (4-2)] is by comparing the
steady-state solution of Eq. (2-4) with a Gardner (1958) hydraulic conductivity function, that is,
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K(*) = Ksexp(-ag*),*AO. Following Gardner (1958) and Bear (1972), for Dirichlet boundary
conditions, it can be shown

' (Z) = 4r(0) - 1 In I_1e ) (H)] } (1- e-e ) ] (47)

For a specified flux qat z =0 and specified head boundary condition at z = H

( = ) (H) + { In I K ElYH[:(H) es } (4-8)

a elk ,,-ag[*(H)-z] (e agHe agz)

Both of these solutions are valid as long as the suction head I=-p/pg is positive throughout the
domain. However, such solutions can be extended to the case where parts of the domain are completely
saturated. In both of these solutions, z is positive downwards (aligned with gravity), and varies from 0

to H. For K,=10-4 m/s, ag =0.1 m-1, H=10 m, with spatial discretization of 0.05 m, Figure 4-lb
shows the comparison for the Dirichlet boundary conditions. Figure 4-1c illustrates a case with a specified
flux equal to Ks applied at the z =0 m, and a specified suction head of 10 m at z = 10 m.

In marching to steady-state, the coefficient S [Eq. (2-4c)] does not play any role in determining
the steady state. However, in transient problems, the storage coefficient needs to be specified. In the
porous flow problem, we can expect some portions of the domain to be completely saturated, therefore,
the moisture content-suction relationship for both saturated and unsaturated conditions is needed. The
function

0(M) = O(0) - SS*, 4,0

0(*) = S(O)eXp SS (4-9)
O(0)exp[~(P~r) - 0(0) J

yields a continuous and positive function for S = do
dWr

S = Ss, < 0

S = [Ss + 2p2 0(O)4,] eXp [._(p4)2 _ S) > 0 (4-10)

The parameters 1 and S3 may be varied to control the shape of the moisture-suction characteristic. The

hydraulic conductivity was taken to be K3 for l 5 0, and Gardner's (1958) Ksexp(-cgiar) for lI' > 0.
These simple hydraulic conductivity-suction-moisture content functions are only to illustrate the coupled
thin-film flow and Richards' equation-based imbibition process. For a practical application with a specific

44



porous medium, direct measurement of these functions is needed. Paniconi and Wood (1993) took a
similar approach to modify the moisture content-suction head function proposed by van Genuchten and

Nielson (1985) to yield a nonzero value of S.

With hydraulic conductivity parameters identical to those in the previous two test problems,

0(0)=0.3, 1 =0.001 m-1, and S. =10-5 m-1, a transient moisture redistributionproblem was solved

for three different discretizations (0.2, 0.1, and 0.05 m). In this test problem, both the boundary
conditions are of the no-flux type. A uniform suction of 1 m is the initial condition. The steady-state
solution to this problem is a linear suction variation with height. That the transient solution has converged
with respect to grid size is seen in Figure 4-id, showing the solutions at two different time steps for three
different discretizations, represented by the solid line, dashed line, and circles.

These one-dimensional (iD) transient and steady-state solutions were numerically simulated in
both directions identically. These comparisons support the adequacy of the simple numerical scheme and
the chosen discretization criteria. The simplicity of the MacCormack (1969) scheme and an a priori
estimate of spatial-temporal discretization needs [Eqs. (4-3a) and (4-3b)] and its satisfactory performance
for a few analytically tractable cases are the reasons it was chosen for this study. Needless to say, in the
past two decades, a number of different numerical schemes have been successfully employed for modeling
variably saturated flow (e.g., Neuman, 1973; Baca et al., 1978; Gureghian et al., 1979; Cooley, 1983;
Huyakorn and Pinder, 1983; Finlayson, 1985; Ababou and Gelhar, 1988; Celia et al., 1990; Baca and
Magnuson, 1992, etc.).

4.2 COUPLED THIN-FILM VARIABLY SATURATED FLOW SIMULATION

The thin-film solution [Eq. (3-13)] is coupled to the 2D variably saturated porous medium flow.
On the interface between the water and variably saturated porous medium, wherever there is a nonzero

height of water, the pressure head boundary condition applied to the porous medium is hcos(a) . At the
other points on the boundary, a no-flux boundary condition is imposed, as long as the porous medium
at the boundary is not fully saturated. If a point at the interface is fully saturated, water can flow in and
out of the porous medium at that point as given by

s(x1,t) = - K cos(c) + Ks Jr2 =o (4-11),,cos ~ s aX2 ~(-

A background of uniform moisture content is assumed to be the initial condition in the porous
medium. The sequence by which the solution is advanced in time is as follows: impart thin-film
movement, impose boundary conditions on porous medium, calculate porous medium suction head field,
compute boundary flux, impart water loss or gain in the thin-film [Eq. (4-11)], next time step. A
constraint on the time step in the numerical approximation is that the height of water should not decrease
by more than 0.5 percent of its initial height in any time step. The discretization of the porous medium
needs to be adequate for the porous medium flow as discussed in the previous section.

The parameters for the example shown here are: a =45 degrees, 0(0)=0.1,
K, = 1.00 x 10-8 m/s, ag = A3 =0.05 m- I 1 , and S. = 1.00 10-4 m- i. The initial suction head inside the

porous medium is 20 m. The isotropic and homogeneous porous medium is 1.1 Im long and 0.02 m thick.
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The computational domain is divided into 300 and 150 cells in the length and thickness, respectively.
Water is introduced over 20 cm with an initial maximum height of 1 mm. In Figure 4-2a, which shows
the temporal evolution of water, on the positive y axis is the height of the water film outside the porous
medium, and on the negative y axis is the center of gravity of the moisture introduced by imbibition along
the direction orthogonal to the porous surface; that is

-a

I[e(xj3 x2 t) - E)(XIIX2'0) ] X2 X2
W(X) = -a (4-12)

f [6(x 1,x 2,t) - O (x 1,x 2 ,°) ] dx2
0

The porous medium extends from 0 to -a along the x2 axis, a being 0.02 m in this example. This is

a convenient way to present the 2D moisture distribution inside the porous medium. The evolution of the
end points of the water body are shown in Figure 4-2b. The unaccounted accumulation of water mass in
the numerical simulation when the water film was completely imbibed into the porous medium was 0.5
percent of the initial water mass.

Qualitatively, the simulation with the Green-Ampt imbibition representation (Figure 3-6a) is
similar to that found by solving the detailed imbibition process via Richards' equation. Both these models
exhibit the initial expansion of the water mass on account of gravity, and the distinct penetration length
beyond which the leading edge cannot move, and the shrinking of the longitudinal dimensions of the
water body with the rear end moving forward and meeting with the front end at the end of its journey
outside the porous medium. The evolution of moisture inside the porous medium after a point ceases to
be ponded with water is not obtained in the Green-Ampt imbibition model, which creates the rounding
of the wetting front at the rear end as it advances forward (Figure 3-6a). Of course, this similarity will
break down if there is a significant influence of gravity on water inside the porous matrix (which is
considered in the Richards' equation model and neglected in the Green-Ampt model adapted in Section
3.2.3) over the time it takes for water to get completely imbibed.
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5 EXPERIMENT

The coupled viscous-unsaturated flow phenomenon, analyzed in this document, can be experimentally
observed relatively simply by introducing a small quantity of water onto an unsaturated porous plane
surface. For the low-permeability consolidated porous material motivating this research, determining the
complete Darcy constitutive properties (i.e., hydraulic conductivity-moisture content-suction head
characteristics) of the porous medium is not easy because of the large suction heads and small rates of
water movement involved, and was not attempted in this study. However, the flow of water down an
unsaturated plane porous incline was observed, and qualitative comparisons with model predictions were
made. The value of the imbibition coefficient associated with the Green-Ampt imbibition representation
(Section 3.2.3) was experimentally estimated, and quantitative predictions of the penetration length were
made and compared with experimental observations.

5.1 SETUP

The consolidated porous medium used in this experiment was a smooth finish, commercially
available, fired-clay ceramic stone that was 1.5 cm thick, 42 cm long, and 40 cm wide. The stone was
set at an inclination of 12.5 degrees with the horizontal. Using a calibrated syringe, a specified amount
of water was introduced into one end of a flexible tube having an internal cross-sectional area of 0.2 cm2.
The other end of the tube was closed to retain the water in the tube. The water inside the tube was
positioned near the end of the tube from which the water was to be introduced onto the porous surface.
The tube was positioned onto the porous stone and water was released onto the porous plane. The
distance that the water traveled on the porous plane before being completely imbibed was noted. This
experiment was repeated four times at different regions on the porous plane using three different
quantities of water (0.5, 0.7, and 0.9 cm3). In doing so the variations in the experimentally observed
penetration length associated with variations in the mechanism to introduce water, or porous medium
property variations can be quantified, and the systematic variation in the mean penetration length due to
varying the quantity of water applied can be better judged. The thinning of the water film at its rear
visible limit, and the advancement of the trailing edge of water as the front end slows was observed and
was qualitatively similar to the numerical simulation shown in Figures 3-6(a) and (b), and 4-2(a) and (b).
The mean and standard deviations of the experimentally observed penetration lengths are reported in
Table 5-1.

5.2 ESTIMATION OF IMBIBITION COEFFICIENT

The porous surface used in the experiments was positioned horizontally, and a small quantity
of water was applied. The time required for the water to be completely imbibed into the matrix was
recorded. This time is related to the Green-Ampt imbibition coefficient [Eq. (3-16a,b)]

( Volume of Water 12

D GA= Area of Application) (5-1)
4 x Time for Complete Imbibition

A cubic centimeter of water applied over a region 1.75 cm in diameter was fully imbibed in 15 s. This
yields an estimate of the imbibition coefficient DGA of 3.0x 10-7 m2/s. The limited thickness of the
porous specimen (1.5 cm) did not interfere with the measurement technique as the wetting front depth
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Table 5-1. Experimentally observed penetration lengths

Volume of Water Penetration Length

Mean Standard Deviation
cm3 cm cml

0.5 11.9 1.2

0.7 18.1 2.7

0.9 j 28.0 2.8

inferred from Eq. (3-16a) was much less than 1.5 cm. This estimate was observed repeatedly at different
locations on the initially dry porous medium. Admittedly, with the assumption of iD Green-Ampt
imbibition, this is a rough estimate of the imbibition characteristics of the porous medium. However, in
view of the lack of readily available techniques for directly measuring the hydraulic conductivity for
consolidated porous medium, this is a useful characterization of imbibition characteristics of the porous
medium. A direct inference of parameters governing porous medium behavior (albeit simplified) makes
possible "uncalibrated" predictions using the simple model in Section 3.2.3. There is no adjustable
parameter in the predictions of the penetration length made in the next section.

5.3 PREDICTIONS AND OBSERVATIONS OF PENETRATION LENGTH

The model based on a simplified Green-Ampt representation of the imbibition process (in
Section 3.2.3) is used to predict the penetration length and to compare that length with the experimentally
observed penetration length. The boundary conditions to simulate the experiment are a specified height
of the water film at the upstream end of the porous medium for the amount of time it takes to apply a
specified amount of water. Since the model is 2D, the side of a square of an area equal to that of the
circular water application tubes internal area is the specified height of water [i.e., (2.00x 10-5)l2 ml.
In the 2D model, when the total area of water applied to the porous medium becomes equal to the volume
of water applied in the experiment, divided by (2.00 x 10 -)12 m, the boundary condition is switched
to zero water height. At the downstream end, the height of the water is taken to be zero. The downstream
zero boundary condition is passive insofar as the computational domain was always larger than the
penetration length. With this boundary condition the evolution of the water body is simulated. The
maximum distance to which the leading edge of water travels (the penetration length) is noted for the
three different amounts of water applied. The model predictions of penetration length are shown by the
diamond symbol in Figure 5-1. The mean of the experimentally observed penetration length and the
experimentally observed one standard deviation envelope around the mean are shown by the circles with
error bars in Figure 5-1. The correct order of magnitude of the penetration length is predicted by the
model. This quantitative comparison of the experiment with the model indicates that interaction of the
imbibition time scales and viscous water flow time scale in determining the distance to which water can
travel outside the porous medium is well represented in the simple model. The limited size of the porous
specimen limits the quantity of water that can be applied in the experiment.
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Needless to say, these experiments only provide preliminary support of the simplified models
ability to simulate water "dripping" on an unsaturated porous medium. Further experiments with different
types of consolidated material and detailed measurements of unsaturated constitutive properties of
consolidated porous materials are clearly needed.
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6 DISCUSSION

That fractures in low permeability porous media above the water table in arid zones can be important
conduits for the flow of water is readily observable in a tunnel beneath Rainier Mesa (Russel et al., 1987)
in southern Nevada. The time-scales associated with the downward movement of water in consolidated
porous media at YM are large because of the low hydraulic conductivities. Water movement through the
consolidated porous matrix cannot explain the geochemical data at YM. Other studies have concluded that
fracture induced flow is potentially the main mechanism of bringing water to the waste package in the
proposed repository at YM, and transporting radionuclides dissolved in water to the water table (Buscheck
et al., 1991; Nitao and Buscheck, 1992; Buscheck and Nitao, 1993). Motivated by these observations,
water dripping down a fracture under gravity and imbibing into the porous matrix on account of capillary
tension, was modeled in this report.

The fluid outside the porous matrix, dripping down a fracture, was modeled using the thin-film
approximation that incorporates the effects of energy supplied to the fluid by gravity and energy
dissipated due to viscosity. The imbibition of water was represented by three different methods. The first
idealization was to simply represent it as a first order loss term. This was done to understand the behavior
of the thin film equation with a sink term. The similarity solutions derived with this representation
predicted the existence of a distinct penetration length, and also provided a way to verify numerical
approximations. The second, and more realistic representation of imbibition, was made employing a
Green-Ampt approximation for the moisture inside the porous matrix. This imbibition representation is
simple to implement numerically, and the imbibition rate can be experimentally inferred relatively easily.
The third, and most detailed representation of the imbibition process, was made by Richards' equation.
The evolution of water outside the porous medium, and the moisture inside the porous medium, was
simulated with the different imbibition representations. The analysis was performed in two spatial
dimensions and temporal evolutions were studied.

The effects of surface tension at the moving interface between water, porous medium, and air, at both
the front and the rear extremity of water outside the porous medium has not been analyzed here. Since
the solution for the thin-film of water tends to have a sharp front at the leading edge [Figures 3-6(a) and
4-2(a)], the effect of surface tension may be much more pronounced there, and can be expected to counter
the sharp front. The mathematical representation of the physical processes at such a moving contact with
high curvature is being explored in the fluid mechanics literature for flow on impervious solids (e.g.,
Dussan, 1979; Goodwin and Homsy, 1991; Kalliadasis and Chang, 1994). The important effect of surface
tension incorporated in this study is within the porous medium, which controls the imbibition into the
low-permeability porous medium on which the thin-film of water is moving. The effects of gravity and
viscosity on the water outside the porous medium were considered in detail. It was demonstrated that the
existence of distinct penetration lengths beyond which water cannot travel outside the porous medium is
not dependent on the effects of surface tension on the water body outside the porous medium. The effect
of surface tension may alter the penetration length significantly if the dimensions of the water outside the

porous medium are small enough. The Bond number (pgl 2 / coefficient of surface tension of water) based

on the transverse dimension of the film of water in the experiment (I =4.4721 x 10-3 m) is about 50,
which probably explains why the model predictions without surface tension effects are yielding the right
magnitude of the penetration length (Figure 5-1). That the prediction is better for larger amounts of water
applied may be due to the lessening of surface tension effects. The fact that the simple model of viscous-
gravity flow coupled with Green-Ampt imbibition is able to predict the penetration length is not altogether
surprising, considering that previous studies on impervious surfaces have reported good agreement with
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observations (Smith, 1973; Huppert, 1982; Lister, 1992), and that the time scale of the imbibition
process, the additional process incorporated here, is experimentally determined in this work.

The porous medium employed in the experiment reported in section 5 had a very smooth finish.
Otherwise, surface roughness effects, that have not been considered in this analysis, may be very

important. Mild undulations in the porous surface are easily dealt with by considering x1 (Figure 2-1)

to be aligned with the mildly undulating surface. The value of the angle a between a tangent at the
surface and the horizontal direction may be considered to be varying with spatial coordinates, rendering
the value c [Eq.( 2-9a)] to be varying smoothly in space. A mild variation is one in which the time scale
associated with a water element experiencing its effects is larger than the time scale associated with the
viscous momentum diffusion time scale associated with the film thickness. Fine scale variations are ones
in which the time scale associated with a water element experiencing its effects is smaller than the time
scale associated with viscous momentum diffusion across the film thickness. Such variations may result
in considerably greater viscous dissipation of energy which may be represented by an effective viscosity
by multiplying the dynamic viscosity in Eq. (2-9a) by a "roughness coefficient," that needs to be

empirically determined. Turbulent effects are parameterized by replacing ch2 in Eq. (2-9a) by a general

velocity representation, C1 h 2 , where c1 and c2 are to be empirically determined. Cundy and Tento

(1985) and Luce and Cundy (1992) discuss these parameterizations. In addition to these effects, it is to
be expected that interfacial surface tension effects will play an important role in conjunction with surface
roughness effects, which will create more curvature at the air-water interface. Rasmussen (1991) has
analyzed surface tension effects at the air water interface, for steady-state flow on impervious surfaces.
An analysis combining the unsteady imbibition-viscous-gravity effects with a moving air-water interface,
as analyzed here, with dynamic air-water interfacial surface tension and air-water-solid contact line
effects, on an irregular unsaturated porous surface, needs to be undertaken to provide a comprehensive
understanding of the phenomenon of water dripping down fractures in consolidated porous medium.

The goal of this work is to understand flow in fractured consolidated porous medium with fractures large
enough for viscous and gravity effects to be important for flow inside the fractures. A parallel plate model
of fracture flow in an unsaturated porous medium would require considering imbibition on both surfaces
as long as the flux is large enough to sustain a fully occupied fracture. The transition from a fully
saturated fracture to a partially occupied fracture would have to be determined. A parallel plate fracture
at an angle with the vertical, subjected to incipient ponding conditions would behave like the flow with
a Dirichlet upstream boundary condition, analyzed in Section 3.1.1 (Figure 34). The distance that the
water supplied during a rainfall event can travel in an open exposed void may be important to know in
assessing the environmental consequences of waste disposal in fractured unsaturated porous medium.
Equations (3-5), (3-7), (3-1 1), and (3-12) provide a simple estimate of that, assuming a linear
representation of imbibition into the porous matrix. For a Green-Ampt description of the imbibition
process, a simple numerical model is presented in Section 3.2.3, and compared to experimental
observations in Section 5. If the penetration length is much smaller than the depth at which a waste
disposal scheme lies in fractured porous medium, then the impact of such flows may not be very
important. After the water gets into the matrix, it is no longer in the fast downward pathway (assuming
the porous medium to be of small permeability), and will experience other influences like thermal effects
and evaporation. The penetration length may be greater than the depth of the waste disposal scheme;
however, the time required for water to get there may be so large, that the influence is again not very
important. On the other hand, if the penetration length is rapidly attained and is greater than the waste
disposal depth, the influence of such waters will be potentially important in transporting contaminants.
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While the previous discussion pertains to water entering the vadose zone from the surface, the effect of
fractures on the redistribution of water inside the vadose zone is also of concern. For example, a fracture
connected to a perched water zone has the potential to drain it. The water from the perched zone,
traveling down the fracture, will reenter the unsaturated porous matrix surrounding the fracture. This
nonequilibrium process of formation of perched water zones and their drainage by fractures can be
simulated using the model developed here. In considering the nonisothermal effects of the emplacement
of radioactive waste in a repository, the effect of evaporation of water in delaying the corrosion of waste
canisters is an important parameter in assessing the repository performance. Of concern is the dripping
of condensed water down fractures in the porous matrix around the waste package (Buscheck and Nitao,
1993), which may be assessed using the presented model.

6.1 FRACTURE EFFICACY NUMBER

Consider the flow in a fractured porous medium with a fracture oriented at an angle a to the

horizontal, with an aperture r and length L (with a unit transverse dimension). For the Green-Ampt

imbibition model in Eq. (3-16), the time scale t, associated with imbibition of the water in the fracture

by the porous matrix is given by

r2
t ____ (6-la)

4 DGA

The imbibition coefficient DGAdefined in Eq. (3-16b), is linearly related to the squared sorptivity of a

porous medium [4DGA = (Sorptivity)2] as discussed in Phillip (1969). Zimmerman and Bodvarsson (1992)

present expressions relating the sorptivity to commonly used parameters of hydraulic conductivity-suction
head-moisture content functions. The substitution of sorptivity in the model with Green-Ampt imbibition
extends it to general hydraulic conductivity models, under the assumption that gravity plays an
unimportant role in the transport of moisture inside the porous matrix, compared to its action on water
in fractures. From the thin-film approximation [Eqs. (2-9a,b)], it follows that the time scale of water

movement inside the fracture under the influence of gravity and viscosity, tA is given by

tA ~ L (6-lb)

pgsin(a) r2

The ratio of these two time scales may be called the "fracture efficacy number"

F,(r,L) - (6-ic)
tA

The faster the process of imbibition of water into the porous medium, as compared to the advection of
water along the length of a fracture, the smaller the likelihood of water traveling the length of the
fracture, the smaller is the "fracture efficacy number" in Eq. (6-ic). Substituting for the distinct time
scales [Eqs. (6-la,b) into Eq. (6-ic)]
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= pgsin(a)r4
(Sorptivityp ? L

4 4 ~~~~~~~~~~(6-1d)
= pgsin(cc)r4 pgsin(a)r4

4 DGApL 2 KGA(eW-eb)*fpL

A fracture efficacy number of much larger than one implies that water can travel over the length of the

fracture without getting imbibed into the porous matrix. If water finds its way into a fracture withF,
much larger than one, the fracture will serve as a conduit transporting the water over its entire length.
In modeling flow in highly fractured porous medium, priority should be given to modeling the fluid flow
in persistent fractures with large fracture efficacy numbers.

64



7 SUMMARY AND RECOMMENDATIONS

The objective of this study was to model water dripping down an unfilled fracture in an unsaturated
porous medium. This was accomplished by describing flow in the fracture by the thin film approximation
and coupling it to the porous medium by a loss term. The results of this study are summarized below:

* Similarity solutions for the spatial-temporal evolution of fluid flowing down an unsaturated
porous incline were found with a linear representation of the imbibition process (Section 3.1
and Figure 3-1).

* The maximum distance a finite amount of water can travel down a porous incline before
being completely imbibed into it (the penetration length) was expressed by simple analytical
relationships that show how the penetration length increases with an increase in the amount
of water applied, angle of inclination, and density of water, and how it decreases with an
increase in the dynamic viscosity of water and the rate of imbibition into the matrix
(Section 3.1).

* Numerical approximations for modeling the flow of thin-films of water were verified by
comparing with similarity solutions, including the effects of an idealized linear imbibition
rate, and without any imbibition (Sections 3.2.1 and 3.2.2).

* By employing a Green-Ampt representation for imbibition of water into the unsaturated
porous medium, the spatial-temporal evolution of water was simulated. The longitudinal
extent of the film initially expands as the water body moves down the unsaturated porous
medium. The rear limit of the film then advances, causing a decrease in the longitudinal
dimension of the film, and meets the leading edge of the film when it is completely imbibed
into the porous matrix (Section 3.2.3).

* The imbibition coefficient governing Green-Ampt model-based evaluation of imbibition of
water into the unsaturated porous matrix was experimentally estimated, and model
predictions of the penetration length made. That the model successfully captures the
dynamics of the viscous-gravity-imbibition fluid flow process is reflected in its ability to
predict the experimentally observed penetration lengths (Sections 5.2 and 5.3, and Figure
5-1).

* The fracture efficacy number was defined as the time scale over which water in a fracture
becomes imbibed into the porous matrix divided by the time scale over which the water
travels the fracture length. Simple analytical expressions for these time scales yield an
expression for the fracture efficacy number. Fractures with fracture efficacy numbers greater
than one are potentially important conduits for water flow over their length. (Section 6.1).

Specific recommendations for future work are:

* Evaluate the potential for water dripping down fractures in distinct geologic units at YM by
determining fracture efficacy numbers, using realistic data for fracture apertures, lengths,
orientations, and matrix sorptivity.
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* Examine the influence of fracture surface roughness in conjunction with dynamic air-water
interfacial tension and air-water-solid contact line effects

* Perform experiments with well-characterized porous medium to critically judge our ability
to estimate rates of water movement in unfilled fractures in unsaturated porous medium

* Compare water movement rates resulting from the approach developed in this work with the
more popular models based on the equivalent continuum, dual continuum, and dual
permeability approaches (described in Section 1.3) to evaluate their applicability in modeling
water dripping down an unfilled fracture

* Interpret field geochemical data discussed in Section 1.2 with distinct modeling approaches
to evaluate their applicability in determining regulatory performance measures to assess the
feasibility of the HLW repository at YM
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