
a.

CNWRA 94-007

-~~~~~~~~~~~~~~--

A~ i A. 3S Ai-AAAA 33.~~ 1 ft a I9Ia

3f A 3 A A 5l

Prepared for

Nuclear Regulatory Commission
Contract NRC-02-93-005

Prepared by

Center for Nuclear Waste Regulatory Analyses
San Antonio, Texas

March 1994

2. --- T1-94O32O-O051
Effective Hydraul ic Property
Ca1cul1ations for
Unsaturated , Fractured Rock



CNWRA 94-007

EFFECTIVE HYDRAULIC PROPERTY CALCULATIONS FOR
UNSATURATED, FRACTURED ROCK WITH SEMI-ANALYTICAL

AND DIRECT NUMERICAL TECHNIQUES:
REVIEW AND APPLICATIONS

Prepared for

Nuclear Regulatory Commission
Contract NRC-02-93-005

I Prepared by

Amvrossios C. Bagtzoglou, Sitakanta Mohanty,
Ashok Nedungadi, Tian-Chyi Jim Yeh, and Rachid Ababou

Center for Nuclear Waste Regulatory Analyses
San Antonio, Texas

March 1994



ABSTRACT

This report consists of an extensive, yet not exhaustive, literature review on the subjects of effective
property calculations, fracture network generation with stochastic approaches, and modeling approaches
for fluid flow simulation in fractured rock. It also presents visualization, statistical, and connectivity
analyses of realistic networks at the Apache Leap Tuff Site, Arizona; the development and verification
of a two-dimensional fracture network generator; the theoretical background, assumptions, and algorithm
implementation of the Real Space Renormalization Group (RSRG) approach for calculation of effective
properties; the verification of the RSRG approach for binary and nonbinary matrix-fracture systems; a
study of effective property calculations with direct numerical simulation using the MMOC2 and
BIGFLOW numerical codes; and a parametric study and analysis of limitations of the RSRG approach.
In this report, a modeling approach which addresses the issue of modeling flow in unsaturated,
heterogeneous, fractured rock is advocated. This approach models explicitly all important geological
features as persistent discontinuities, and lumps together the remaining heterogeneity, composed either
of fractures or matrix heterogeneity, under a regionalized effective and/or stochastic continuum approach.
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EXECUTIVE SUMMARY

The technical objective of the Stochastic Analysis of Unsaturated Flow and Transport Research Project,

hereafter called Stochastic Project, is to provide and document the methods and tools necessary for i

realistic modeling and analysis of the complex, heterogeneous flow and transport processes anticipated

or hypothesized to occur in the far-field of the proposed high-level waste (HLW) repository at Yucca

Mountain, Nevada. These models and analyses will be necessary to predict the performance of the overall

system (10 CFR 60.112), the Geologic Setting (10 CFR 60.113), and to evaluate compliance with siting

criteria (10 CFR 60.122). The spatial variability of many processes and parameters affecting the long-

term behavior of the flow system at the scale of the Yucca Mountain site is poorly known. More

specifically, there is a lack of acceptable hydrogeologic parameters, theories, and conceptual and

mathematical models that are considered applicable or computationally feasible for the conditions

prevailing at Yucca Mountain. Even if such models are developed, there will be a variety of fundamental

questions regarding their applicability over the spatial scales of the subregional and regional hydrologic

systems. Moreover, some uncertainty will always remain in the value of hydrogeologic parameters

because realistically, only a limited amount of data will be collected. One must also keep in mind that

this information is provided at vastly different scales, ranging from the millimeter or centimeter

laboratory scale, to the meter laboratory or field scale, all the way up to the tens or thousands of meters

field scale. Making these measurements compatible with each other so that they all play an integral role

in building a conceptual and mathematical model of a site at the kilometer scale is a formidable task.

The Stochastic Project aims to address issues related to the quantitative characterization of large-scale

flow and transport in unsaturated, highly-fractured, heterogeneous rock. Information, methodologies, and

numerical tools developed within this project will be used to support specific portions of the License

Application Review Plan (LARP). Specifically, review plans that deal with "Assessment of Compliance

with the Groundwater Travel Time Performance Objective" and "Potentially Adverse Condition: Perched

Water Bodies," which have been judged to require a Type 5 review, and thus require independent

research to resolve the following key technical uncertainties (KTUs): (i) determining effective hydrologic W

characteristics (e.g., effective porosity, effective hydraulic conductivity) as a function of scale for the

saturated and unsaturated zone, (ii) developing a conceptual groundwater flow model that is representative
of the Yucca Mountain flow system, and (iii) uncertainties associated with determining characterization
parameters.

This first of two final reports addresses the issue of effective hydraulic property calculations with semi-

analytical and direct numerical techniques and summarizes one possible methodology for the accurate and

efficient simulation of large-scale flow processes in unsaturated, highly-fractured, heterogeneous rock.

It is organized as follows. Chapter 1 introduces fractures and discusses their characteristics. The chapter

presents a discussion on the need for effective hydraulic properties and the presentation of an approach

for large-scale flow modeling in fractured rock. This approach consists of: (i) lumping all micro- and

macro-scale fractures under one equivalent, spatially variable, hydraulic property and (ii) preserving the

discrete nature of dominant stratification and/or linear features under the "persistent discontinuity"

concept. Examples of such features are fault zones and highly-fractured rock zones. It continues with a

brief literature review of several modeling approaches for studying flow in fractured rock. It then presents

the concept of describing fracture characteristics as regionalized variables, which is integral to the

modeling approach presented herein. Chapter 2 deals with the visualization and numerical generation of

realistic fracture sets. The chapter introduces some concepts for the statistical description of fractures and

their characteristics. Then it continues with the study of the Apache Leap Tuff Site (ALTS) in Arizona,

xiv



one of the Nuclear Regulatory Commission (NRC) sponsored hydrology research field sites. The
application of visualization and connectivity analysis tools, developed under the Stochastic Project, for
the ALTS is the next part of the chapter. An extensive literature review on the subject of numerical
generation of realistic fracture networks is also presented. Finally, Chapter 2 concludes with the
development and verification of a simple, yet realistic and efficient, fracture network generator. Chapter
3 of this report constitutes a thorough, yet not exhaustive, literature review on the subject of effective
property estimation. This literature review is grouped under the following broad categories: (i)
calculations based on additive volume fractions, (ii) calculations with direct numerical simulations,
(iii) calculations based on homogenization and renormalization methods, and (iv) calculations based on
power averaging and its variants. Chapter 4 presents a detailed description of one of the renormalization
methods, the Real Space Renormalization Group (RSRG) method. The assumptions used and the
algorithmic implementation of the RSRG method for unsaturated, fractured media are also presented.
Finally, Chapter 4 concludes with some verification results for the case of binary matrix-fracture systems.
Chapter 5 presents a detailed direct numerical simulation study. A variety of cases are studied, and two
numerical codes, the Modified Method of Characteristics 2 (MMOC2) and BIGFLOW codes are used to
explore the dependence of the effective hydraulic conductivity on several matrix and fracture
characteristics. Chapter 5 concludes with a study of the anisotropic, tensorial nature of the fracture
network, comprising parallel, inclined fractures of infinite extent. Chapter 6 presents a parametric study
of the RSRG method. A comprehensive suite of numerical experiments was conducted, and the
importance of various parameters, such as the degree of fracturing, the heterogeneity of the matrix, the
spatial structure of the matrix, the fracture length, etc., was studied. This chapter also presents a study
of the effect of variability in the fracture networks on the effective properties. This chapter concludes with
some further verification of the RSRG method in the case of nonbinary matrix-fracture systems and
identifies some of the limitations of the method. Chapter 7 of this report summarizes the findings, and
presents some conclusions.

This work showed that any modeling effort must be site-specific. For example, at the ALTS, an
equivalent continuum approach could be valid for a relatively shallow part of the rock only. At greater
depths, this approach would most probably neglect the existence of elongated, highly connected features.
This work has reviewed some pertinent literature on methods for effective property calculations and
introduced the RSRG method, which was found to be extremely accurate for binary matrix-fracture
systems.

A variety of numerical experiments was conducted with the help of the MMOC2 and BIGFLOW codes
and comparisons between the two codes and the RSRG solution were made. Finally, a detailed parametric
study of the RSRG method showed that it provides a viable alternative to direct numerical simulation
techniques, especially since it is typically two to three orders of magnitude faster. However, it has to be
noted that the RSRG method is not a panacea since it suffers from limitations, especially in cases where
the underlying matrix rock is heterogeneous with very long, isotropic correlation structures.
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1 FLUID FLOW IN FRACTURED ROCKS AND THE NEED
FOR EFFECTIVE PROPERTY CALCULATIONS

1.1 MOTIVATION FOR EMPLOYING EFFECTIVE PROPERTIES IN THE
SIMULATION OF LARGE-SCALE FLOW IN FRACTURED ROCK

Assessing the performance of the potential high-level waste (HLW) repository at Yucca
Mountain, Nevada, requires the determination of the rate of radionuclide transport via groundwater
through the unsaturated and/or saturated zones to the accessible environment. The unsaturated zone
extends over approximately 500 m of interbedded welded and nonwelded ash flow tuffs. This tuffaceous
rock exhibits a large variation in petrophysical properties due to the post-depositional fracturing, faulting,
and erosion (Flint et al., 1993). It has been postulated (Nitao and Buscheck, 1991) that as the water
infiltrates down from the surface, it may, at first, flow mainly through the fractures in the rock. As this
filtration occurs, water may also imbibe into the matrix blocks. The rate at which imbibition takes place
determines whether or not the water from a precipitation event can reach the repository level. The
accessibility is also strongly governed by the fracture characteristics such as density (i.e., inverse of
spacing), connectivity, and orientation. Explicit representation of individual fractures in numerical models
is not considered feasible, except possibly for small volumes of rock, and unless some simplifying
assumptions are made concerning fracture network geometry. However, that would be almost impossible
for the Yucca Mountain site since, if the Topopah Spring welded unit has a mean fracture density of 20
fractures/m3 and a mean thickness of 300 m over the approximately 7 x 106 m2 area of the central Yucca
Mountain block, one would have to consider flow in approximately 4X 1010 discrete fractures (U.S.
Geological Survey, 1993). As it is virtually impossible to describe the exact fracture topology in a
deterministic fashion to conduct a full-scale simulation, it is worthwhile to investigate an alternative
approach. This approach consists of stochastically generating several fracture realizations to estimate the
most likely flow behavior of the fractured composite. These realizations may be conditioned on
experimental data. To stochastically generate and analyze many realizations in a reasonable amount of
time, it is required that the simulation of flow using each realization of the stochastic field be able to be
conducted relatively quickly. A minimum requirement is to be able to determine the essential or dominant
flow behavior by using fewer discretized flow units without sacrificing the important contributions from
features smaller than the grid block scale.

One approach to modeling variably saturated fractured rock has been to explicitly represent a
single fracture in the computational mesh, and invoke the symmetry of highly idealized fracture-network
geometries, such as parallel fracture systems, to predict network behavior (Nitao and Buscheck, 1991;
Pruess et al., 1990a,b). This approach has provided useful insights regarding how fluids are exchanged
between fractures and intact matrix, but has ignored potentially important issues such as network
connectivity and the dispersive effects on flow due to intersecting fractures. Additionally, relatively
infrequent, potentially highly transmissive and areally extensive fractures (e.g., fault zones) may be
represented as distinct entities in the models. Small-aperture fractures or microfractures, or less extensive
features, are lumped into the fracture continuum and treated as a single continuum. This approach
captures some of the flow irregularity which is characteristic of fractured environments, yet reduces the
number of fractures that need to be considered as discrete entities by the model. The objective of models
to be developed by this study is to create an artificial system that displays flow and transport behavior
approximately equivalent to the real system.

1-1



In fact, this indirect approach to heterogeneous flow modeling can be used in combination with

explicit modeling of certain types of heterogeneities that are too important to be treated implicitly

(Ababou, 1991). Besides explicit modeling of site-specific large-scale geologic discontinuities and trends,

auxiliary models such as the ones presented above would be used to deal with smaller scale heterogeneity

in a simplified manner. Therefore, when indirect modeling methods are implemented with a view to

obtain representative field-scale simulations of site-specific processes, direct representation of

heterogeneities is still needed to capture essential features. Clemo (1989) advocated a similar method

which he calls the "dual permeability" approach. This term should not be confused with the dual porosity

continuum models, as it refers to an approach that addresses the simulation of fractures at two levels.

Under this approach, the larger and, therefore, more important fractures are modeled discretely, whereas

the smaller (but abundant) fractures are lumped in a continuum with representative properties. According

to Clemo (1989), this approach lies between the concepts of REV and discrete fracture modeling.

Figure 1-1 depicts a schematic, adapted from Mazurek et al. (1993), of the process involved in

representing reality with three different conceptual models. Under this conceptualization, the highly

fractured rock at the left could be described by: (i) an equivalent porous medium which honors

stratification, (ii) the hybrid or dual permeability approach, and (iii) a discrete fracture approach.

The methodology advocated in this report is very much consistent with such an approach.

Important geologic features, also called persistent discontinuities, must be modeled explicitly. This could

be accomplished with the help of several techniques, but a continuum approach is, in our opinion, fully

justified, especially under conditions of uncertain data. The remaining heterogeneity in the rock mass can

be lumped together under a single continuum approach. This is precisely the point of interest here. It is

necessary to somehow account for the fracturing over different parts of the domain under study, and

assign representative effective properties to the grid blocks of a large-scale flow simulator. This concept

is demonstrated in Figure 1-2. As indicated in this figure, one may want to conduct a flow simulation on

a 5 x5 computational cell domain. This can be accomplished only if some representative hydraulic

property is assigned to each of the grid blocks. There is nothing in this approach that precludes the

implementation of a stochastic continuum approach. In fact, this could well be a very realistic

representation of field conditions. A model, therefore, is necessary that is independent of distributional

assumptions and hydraulic conductivity contrasts, imposes minimal computer memory space requirements,

and is fast enough in its numerical implementation for repeated use. Models based on the theory of

renormalization seem to be powerful enough to overcome these constraints, at least for saturated flow

systems. As it will be demonstrated later in this report, these methods have been extended and applied

for unsaturated fractured rock systems.

The object of this work is to study the effective flow behavior of an ensemble of fractures in

the presence of matrix-fracture interaction. Presented in this work are salient features of a fracture

network visualization and statistical analysis tool, and a simple, but efficient, two-dimensional (2D)

fracture network generator code developed at the Center for Nuclear Waste Regulatory Analyses

(CNWRA). Then, the implementation of the Real Space Renormalization Group (RSRG) method to

upscale petrophysical and flow properties from the scale of measurements to the large-scale simulation

grid block scale is discussed, together with results from direct numerical simulations.

1.2 FRACTURES AND THEIR CHARACTERISTICS

Fractures are abundant in all types of rocks and soils. Fractures are the result of shear and

tensile stresses which develop within rock masses under the influence of various forces, such as
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and Equivalent
Porous Medium

Figure 1-1. Different hydrogeological conceptual models for the representation of a stratified, highly
fractured rock [adapted from Mazurek et al. (1993)]
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Figure 1-2. Schematic of a 2D fractured system to be used in flow simulations with a large-scale flow simulator



compressive forces, or forces associated with the movement of rock. Several terms associated with
fracture-related terminology are often used synonymously and, therefore, are useful to define at this point.

* A fracture is a planar feature across which rock continuity has been broken
(Gary et al., 1972) without the details of an offset being visible. According to Griggs and
Handin (1960), "a fracture is defined as a surface along which a loss of cohesion has taken
place." The two rock faces of a fracture may be: (i) completely separated, (ii) in complete
contact, or (iii) healed by either rubblized material or mineralized/brecciated material. Figure
1-3 depicts three types of fractures: (i) fractures s and d, which follow the general
orientation of the beds, are developed due to the upward movement of the rock mass;
(ii) fractures t are developed by tensile forces due to the folding of the beds; and (iii)
fractures o are developed due to shear stresses and are, generally, oblique to the trend of the
fold. Even though these fractures are not necessarily developed due to shear stresses, the
conjugate sets intersect each other at acute angles (approximately 600).

* A joint is a fracture with the two opposing faces being offset by normal stresses. The
opening between the two rock faces, called aperture, is distinguishable and typically is not
associated with shear-related displacements. However, according to Bates and Jackson
(1980), a joint is a fracture surface with no visible displacement parallel to the surface.
Hancock (1985) classifies fractures s and d as extension fractures and o as conjugate shear
fractures, enclosing an acute angle.

* A fault is a fracture feature that has not only been offset normally, but also has been under
the influence of substantial shear stresses, thus exhibiting displacements parallel to the
fracture. A collection of interlacing fractures is called a fault zone and is characterized by
numerous fractures which vary in density with the distance from the fault offset. This can
be seen in schematic form in Figure 14.

Howard and Nolen-Hoeksema (1990) define fractures to include the entire volume between two
fracture walls. They distinguish this term from the notion of fracture pore space, which excludes fracture-
filling cement or other mineral fillings. Therefore, according to Howard and Nolen-Hoeksema (1990),
the total volume within a fracture is the sum of the fracture pore space plus the volume of the fracture
filling. A detailed discussion on the subject of joints and shear fractures in rock can be found in the work
of Engelder (1987).

Fractures are found over a wide range of length scales, from microfractures which extend over
the submillimeter scale to intra-crustal-plate features which extend over thousands of kilometers in length.
In stark contrast to porous media flow and transport theories, there are no widely acceptable theories for
the study of fracture flow, especially under unsaturated conditions. Due to their extremely anisotropic
geometric topology, fractures can strongly influence fluid flow in rock masses, either as a flow conduit
or as a flow barrier. There are several physical parameters that affect fracture flow. According to Long
(1983), characterization of a fracture system is considered complete only after each fracture is described
in terms of the strike (azimuth), dip (inclination), aperture, extent, roughness, shape, density, spatial
distribution (regionalization) of fracture-related parameters, connectivity, and the type of mineral fillings
associated with each individual fracture. However, as it was pointed out in Section 1.1, this is rarely
feasible in real-life applications.
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Figure 1-3. Distinction among fractures based on their mechanism of formation

Figure 1-4. Schematic of a fault zone and variability in the fracture density around the fault offset
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1.2.1 Fracture Orientation and Inclination

The strike (azimuth) and dip (inclination) of an individual fracture or fracture set are perhaps
* the most important characteristics of fractured rock for fluid flow patterns. They are typically closely

related to the tectonic history of the rock and as such provide a very convenient platform to classify or
group fracture sets and associated tectonic events. For example, at Yucca Mountain there exist two major
sets of fractures and faults. One striking north-northwest and the other striking north-northeast. Even
though both sets are steeply dipping to the west, the second set is believed to be more open and thus more
conductive, indicating a differentiation in their development (Scott et al., 1983).

The strike and dip of a fracture plane can be represented readily by plotting the projection of
the plane on a lower-hemisphere equal-area stereographic projection diagram. However, a more
convenient way of representing a fracture plane is through the plane pole which is defined as the
intersection of the reference sphere by the plane normal vector. Figure 1-5 depicts the stereographic and
lower-hemisphere projection representation of a fracture plane and its corresponding pole. This type of
diagram, also called a Schmidt diagram, has been extensively used for analyses of rock mass stability,
highway engineering, etc. Their use, in conjunction with aerial photography and layer drilling of
intersecting lineaments, has been successful in locating major water-bearing fracture zones [e.g., in the
vicinity of Lake Tahoe, California (Gates, 1993)].

1.2.2 Fracture Aperture

One of the most common assumptions made in studying flow in fractures is that, for
smooth-walled fractures, the volumetric flow rate is a function of the cube of the aperture. In reality,
fractures have complex surfaces and highly variable apertures. Therefore, for rough-walled fractures, the
volumetric flow rate may be expected to deviate from being a function of the cube of aperture. Montazer

* and Harrold (1985) have used roughness profiles for calculating hydraulic properties of rocks. Under
unsaturated conditions, these assumptions are still to be verified. A further complication is that a large-
scale negative trend of fracture aperture is often observed due to the closing of fractures under increased
lithostatic stresses. For example, Rush et al. (1984) confirmed the lithostatic stress-based closure of
fractures at Yucca Mountain. Similarly, Pollard and Aydin (1988) and Pollard and Segall (1987) studied
displacements and stresses developing near fractures and rock joints and inferred the decrease of fracture
intensity with distance away from the stress concentration points. Barton and Hsieh (1989) have fitted
power-law functions to describe aperture frequency distributions from various layer-parallel pavements
at Yucca Mountain.

1.2.3 Fracture Trace Length

Fracture trace lengths are measured from aerial photographs, outcrop maps, or direct outcrop
observations. Associated with these measurements are two types of truncation errors: (i) low-end
truncation because no fracture length less than a certain resolution length can be measured, and (ii) high-
end truncation because there will always be fracture lengths that exceed the dimensions of the outcrop
under study. Barton and Hsieh (1989) have attempted to fit various functions to describe trace-length
frequency distributions for Yucca Mountain fractures. They concluded that the histograms were best fitted
by power-law or exponential functions.
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Figure 1-5. Determination of the pole of fracture plane II on a lower-hemisphere stereographic
projection diagram

1.2.4 Fracture Mineralization and Alterations

The degree to which a fracture has been mineralized and/or altered affects its hydraulic

characteristics. The nature of minerals deposited on the faces of fractures can provide information

regarding the paleohydrology of a fracture network (Barton and Hsieh, 1989). Bates and Jackson (1980)

discuss fracture mineralization and vein origin. For example, a filling material could be an external

material, such as an intrusive igneous vein, or could be the result of in situ deformation. Groshong (1988)

discusses several other types of mineral-filled veins, such as dilation veins filled with minerals

precipitated from igneous solutions.

1.2.5 Fracture Conceptual Model

In modeling unsaturated flow in soil, the hydrologic properties are typically represented by

characteristic curves (Ford, 1991). These characteristic curves describe the hydraulic conductivity and

moisture content as functions of the suction head. Furthermore, the soil is assumed to behave as a

continuum over which Darcy's law for unsaturated flow is applicable. A multitude of modeling

approaches assume an analogous situation for flow within fractures. Standard laboratory methods capable

of determining the characteristic curves of fractures are not yet available. As a necessary substitute, Wang

and Narasimhan (1985) and Pruess and Tsang (1990) have developed theoretical models for the
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description of flow in variably saturated fractures. These models generally assume that the fracture
apertures vary within the fracture plane as a single heterogeneous continuum. Based on statistical theories,
fracture hydraulic conductivity curves as a function of saturation have been generated for the densely
welded tuff of the Topopah Spring Member of Yucca Mountain, Nevada. These theoretical studies
concluded that, under such a conceptual model, fractures drain or fill over a range of matric potentials
rather than a single value. Therefore, their flow and storage properties may be represented by functional
relationships analogous to porous media. A recent study by Kwicklis and Healy (1993) has yielded some
similar results. These investigators conducted a numerical study for the steady flow of liquid in a 5 X 5-m
vertical section which contained a fracture network using the TOUGH numerical code. The fracture
network contained either all 125 gm, or all 25 Ism, or a combination of apertures. Figure 1-6 presents
permeability as a function of suction head for a system consisting of two different aperture sizes and a
mixture. A behavior characteristic of a porous medium is observed. The conceptual model for simulating
flow in fractured rock, used in the work by Kwicklis and Healy (1993), assumes that the fracture can be
represented by a continuum. In a similar effort, Zimmerman et al. (1990) studied the absorption of water
in porous blocks and observed continuum behavior.

At this point, it is important to define the physical significance of a discrete fracture in the
context of the analyses presented in this work. As shown in Figure 1-7, a fracture is represented by a
continuum that possesses distinctly different hydraulic properties from the surrounding matrix. Any
hydraulic conductivity or moisture retention model, in principle, can be applied within the context of this
approach. It should be noted that this conceptual model is consistent with samples collected in the vicinity
of Yucca Mountain, as evidenced by Figure 1-8.1 The rock is a devitrified, densely welded ash-flow tuff
from the Tiva Canyon Formation. Secondary vein filling mineralization (calcite) and angular clasts of host
rock comprise an 1 1-mm thick vein. The vein consists of brecciated Tiva Canyon Tuff and carbonate
mineralization. The resemblance of Figure 1-7 and Figure 1-8 should be noted. Our conceptual model
is also consistent with some earlier works by Snow (1969) and Sagar and Runchal (1982). These
researchers have assumed that fractures are filled with porous material and, consequently, the flow is
described by Darcy's law. Sagar and Runchal (1982) claim that this is not a limiting assumption since,
even for open fractures, a Darcian flow equation is usually employed in which a surrogate hydraulic
conductivity is specified based on the cubic law and some average aperture.

1.3 MODELING APPROACHES FOR FLOW IN FRACTURED ROCK

According to Gureghian and Sagar (1991), there exist six candidate conceptual modeling
approaches for predicting flow in fractured geologic media:

* The equivalent continuous porous medium model (ECPM); also known as single equivalent
continuum model

* The double porosity model (DPM)

* The discrete fracture network model (DFNM)

* The discrete fracture equilibrium model (DFEM)

'This photograph depicts a rock sample collected by A.C. Bagtzoglou on November 18, 1993, at the
general area of U.S. Department of Energy (DOE) well WT-7 at the south end of Boomerang Ridge, Nye
County, Nevada. The sample was taken from the outcrop at the west edge of the drill pad.
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Figure 1-6. Permeability characteristic curve for three types of fractures [adapted from Kwicklis

and Healy (1993)]

* The discrete fracture nonequilibrium model (DFNEM)

* The stochastic fracture continuum model

Combinations of these approaches are also conceivable. A brief description of these approaches is

provided in Sections 1.3.1 to 1.3.6.

1.3.1 Single Continuum Models

The ECPM concept, related to saturated flow through fractured rock masses, was first

introduced by Snow (1965). Later, Snow (1969) assumed an independence of flow at the intersection of

the joints and derived the permeability tensor of a network of parallel fractures by adding the contribution

from each one of these. Long (1983) conducted similar studies which revealed that the ECPM becomes

applicable when "the fracture density is increased, apertures are constant rather than distributed,

orientations rather constant, and larger sample sizes tested." Similarly, Long et al. (1985b) were able to

determine whether a given fracture network could be modeled as an equivalent porous medium as a

function of interconnectivity and heterogeneity.
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Figure 1-7. Schematic of fracture conceptual model and the corresponding continuum approximation
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Figure 1-8. Photograph of rock sample showing vein filled with angular clasts of host rock and

calcite mineralization
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One notable semi-empirical model for representing the unsaturated fracture/matrix system as
a single equivalent continuum was proposed and tested by Pruess et al. (1986). In this effective continuum
approach, the unsaturated conductivity is approximated by the simple arithmetic sum:

K(h) = KM(h) + K(h) (1-1)

where Kis the hydraulic conductivity, h is the pressure head, and subscripts m andf correspond to matrix
and fracture properties, respectively. A similar isotropic conductivity for composite fracture/matrix media
was also employed by Peters and Klavetter (1988). Pruess et al. (1986) recognized and demonstrated that
this approximation is based on a hypothetical equilibrium between fracture and matrix pressures and
breaks down in the presence of rapid pressure transients. More recently, Pruess et al. (1990a,b) tested
their effective continuum approximation under various conditions involving near-field nonisothermal, two-
phase flow in the vicinity of a hot waste package. They concluded again that the approximation breaks
down for very tight rock matrix, large fracture spacings, and/or rapid transients. A well-recognized
problem with using composite characteristic curves is that these may have a complex shape, which is
difficult to represent mathematically. This problem may create numerical stability problems, especially
when the composite characteristic curve contains a very sharp transition from predominantly matrix flow
to predominantly fracture flow (Ford, 1991). A more detailed description of this model can be found in
Chapter 3 of this report.

1.3.2 Dual Porosity Models

Comprehensive reviews of the dual continuum approximation can be found in the works of
Shapiro (1987), Barenblatt et al. (1990), and Gureghian and Sagar (1991). The dual continuum approach
was first introduced and applied by Barenblatt et al. (1960), Warren and Root (1963), and Streltsova
(1976). The dual continuum approximation considers separate governing equations for the fluid in the
fracture system (D) and the fluid in the porous matrix (m) with a coupling term to account for mass
transfers between the two systems. In the case of transient saturated flow through a fractured porous rock,
the dual continuum equations are of the form (Ababou, 1991):

a(Po.m) = PC. at = -V(pqm) - Pr (1-2)

t(p) pCfd-F = -V(pqf) + pr (1-3)

where 0 is the void volume fraction, C is the specific capacity, q is the specific discharge rate or flux
(related to velocity by q=WV), and p is the fluid density. All quantities are defined for the matrix fluid
and the fracture fluid, respectively, except for fluid density which is assumed to be constant (i.e.,
P = pm = p). Finally, pr is the rate of exchange of fluid mass between the two continua.
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The main assumptions of the dual continuum model are: (i) the flux q in each continuum is

governed by Darcy's law, and (ii) the exchange term r is proportional to the local pressure difference

between the fluid in the matrix and the fracture. The individual Darcy's laws are given by:

qm = -Km V(hm + z) (14)

qf= - Kf V (hf + z) (1-5)

where z is the elevation head. Furthermore, Barenblatt et al. (1960) assumed that the exchange term is

proportional to (h.-hf) times porous matrix conductivity divided by an areal scale Af (M2):

r = Am (h_ hj) (1-6)
Af

In the conventional implementation of dual porosity models, r is a scalar quantity.

One of the advantages of this approach is that the matrix-fracture transfer term can be used to
simulate other physical phenomena such as flow through mineral fillings between fracture walls. Even

though the dual porosity approach will have its time-stepping dictated by the magnitude of the transfer
term, it generally has far fewer problems with code instabilities when compared to the single continuum
models. Under this conceptual model, the two continua assume the existence of a Representative
Elementary Volume (REV) which is common to both subsystems (Bear, 1993). If the scales of the pores

and the fractures are approximately equivalent, the double porosity approach is applicable. However, if

the fracture scale is much larger than the pore scale, then this approach is probably not valid (Updegraff
and Lee, 1990). Similar to the single continuum approaches, the dual porosity model requires the fracture

continuum to exhibit a characteristic curve. This is an issue that to date has not been verified _
experimentally. Furthermore, the matrix-fracture interaction term is a parameter that cannot be measured V
in the field (Ford, 1991). Ababou (1991) presented an extensive discussion on dual porosity models and
identified several of their shortcomings.

1.3.3 Discrete Fracture Network Models

In the DFNM approach, the flow is simulated in all significant, conductive, individual fractures.

Therefore, a detailed description of all fractures is necessary. Nevertheless, the discrete models play a

significant role for studying the mechanism of flow in fractured media, for setting defensible criteria for
equivalent porous-media approximations, and for deriving equivalent porous-media characteristics. In the

stochastic approach for modeling flow in discrete fracture networks (Robinson, 1984; Schwartz et al.,
1982; Long, 1983), the geometry of the fractures is described as a random process. Interconnected
networks of discrete fractures are generated using appropriate probability distribution functions.

According to Gureghian and Sagar (1991), the disadvantage of this modeling concept is the vast

amount of geometric details that it requires. The computational complexity of the DFNM seems to be far

beyond the capacity of present-day computers. Furthermore, the availability of field data on fracture

distributions, which for their physical interpretation rely strongly on statistics and probability, may not
support the use of such a model.
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1.3.4 Discrete Fracture Equilibrium Models

In the DFEM, in addition to considering the geometry of the fracture system explicitly, flow
* through the rock matrix is also accounted for. This modeling approach, first proposed by Gureghian

(1975), has gained wide acceptance. The main assumption of this approach is that at some finite scale of
discretization of the rock-fracture system, the fluid pressure in the fracture is the same as that in the
adjoining rock. Thus, within an element of a numerical grid, pressure is a single value, in contrast to the
two values in DPMs. However, its use becomes quite cumbersome when the fracture density exceeds a
certain threshold. An example of this type of formulation in fractured media is found in the work of
Runchal and Sagar (1993).

The advantage of the DFEM approach is that the geometry and the hydraulic properties of the
fractures is directly used in the model and the interaction between the fractures and the rock matrix is
considered at a scale larger than the scale of discretization. While the computational effort required in
DFEM is less than that required in the double porosity formulation (because only one equation per node
is solved rather than two), the amount of input data required is much greater. The main disadvantage of
the DFEM approach is that the pressure distribution very close to the fracture is not accurately obtained,
as the matrix-fracture interaction occurs only at scales larger than the scale of the calculational element.

1.3.5 Discrete Fracture Nonequilibrium Models

In the DFNEM approach, no assumption regarding matrix-fracture interactions is made. In this
approach, fractures are treated as porous media embedded in the rock. In obtaining numerical solutions
to flow problems in this approach, the fractures are treated as elements with distinct properties. Full
geometry and hydraulic characteristics of the fractures are required as input. In such models, channeling
of flow within individual fractures can also be treated. Because no assumption is made regarding flow

* interaction between the fractures and rock matrix, this formulation has the potential of producing the best
results. It is limited, however, by large computational effort, numerical instabilities, and huge data input
requirements. The great advantage is that almost any model designed to model flow through porous media
can be adapted to this approach.

1.3.6 Stochastic Fracture Continuum Models

The stochastic methodology treats fractured rock at the field scale as either a network of discrete
fractures whose characteristics are known in a statistical sense or as a heterogeneous porous medium
whose variability is great, thus permitting flow to occur through highly channelized preferential pathways.
Neuman (1987) has been a very strong proponent of the stochastic continuum approach as an alternative
to both the REV and fracture network concepts. Neuman's rationale is based on the notion that if rock
properties are measured over distances smaller than the REV (and fractured rock is usually characterized
by large REVs), then these properties should be described in a geostatistical sense only. Neuman (1987)
demonstrated the feasibility of such an approach by performing packer tests in several boreholes having
different orientations. The effect of fracture set orientation on the hydraulic conductivity of the rock is
assumed by Neuman to be inherent in the observed large-scale structural anisotropy.
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1.4 REGIONALIZATION OF FRACTURE PARAMETERS

Even though the majority of fracture network generation models assume independent, or nearly

independent fractures, it is common knowledge that geologic phenomena are partially structured and as

such may require a geostatistical description. For example, LaPoint and Hudson (1981) have observed

that in many cases, fractures occur in zones or bands of subparallel features, indicating that spatial

correlation between fracture characteristics may exist. Lin and Logan (1991) conducted a microscopic

study and showed that microfractures are highly concentrated in the area immediately adjacent to existing

macrofractures. They also demonstrated that the majority of the grains away from the macrofractures

remain unfractured. Long and Billaux (1987) pointed out that the presence of several fracture clusters

which overlap may have a large effect on the interconnectivity and flow characteristics of the network.

They also advocated the use of geostatistics to estimate the value of a given regionalized variable such

as the average fracture trace length or fracture density.

De Marsily (1985) discussed various applications of geostatistics to study rock fracturing, and

concluded that the density, length, and (possibly) orientations of fractures can be adequately described

within a geostatistical context. This implies that rock fracturing may be defined as a regionalized

phenomenon and, therefore, fracture characteristics display correlation structures. Neuman et al. (1985)

applied such an approach at the Oracle site in Arizona, and found a strong correlation between the

hydraulic conductivity tensor principal directions and the orientations of major fracture sets. Similarly,

Gender (1990) has applied geostatistical techniques to the study of fracture surface topography and fitted

theoretical variogram models to the variogram of the heights along the profile of a fracture surface.

Another very similar effort is the work of Nordqvist et al. (1992) who were able to characterize, and

subsequently generate, spatially varying fracture aperture fields based on geostatistical methods.

Chiles (1976, 1989a) has presented numerous examples of fracture characteristics being treated

successfully as regionalized variables. Both fracture spacing and trace density have been found to exhibit

spatial structure. Variograms were successfully calculated and fitted to data from subvertical fracture sets

in the Fanay granitic massif, in France. Finally, fracture cluster centers, used in the parent-daughter

network models (see Chapter 3), have been found to exhibit spatial structure. Moreover, Chiles (1989b)

reported that a cubic variogram appears to best represent the variogram of trace cluster center number

count.

LaPoint (1980) severely criticized conventional methods for analysis of fractured rock and

pointed to the locational independence as the major flaw of these methods. He then presented a

generalization of the semivariogram for vectorial and tensorial quantities. The theoretical semivariogram,

for a scalar quantity X, .'y(h) is calculated empirically as:

1= nkn (1-7)
hi=1 k ;

where n(h) is the number of samples a distance h apart. Note that the squared quantity in the equation

above is a scalar measure of the difference in the values at two points. Similarly, there exists a scalar

measure of the difference between two vectors. Let the two vectors be:
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X(4) = {XI(4), X2(;). X3(;)} (1-8)

S and

g h) {XIN + h), X2r; + W), Xc3 + W)} (1-9)

The scalar difference between these two vectors is given by the square of their difference, or:

(1-10)

[(- X~g + h)] + [X2( - X2r + + [X3(4) - X3( +

Thus, for a vectorial quantity X, that is a quantity which has orthogonal components, the
semivariogram becomes:

= (7) ) (1-11)

2n(7 -) i=1

where j(h) is the semivariogram of a vectorial quantity, n(h) is the number of pairs of samples whose
centers are a vectorial distance W apart, N~) is the value of a vectorial property (such as the direction

cosines of the normal to a joint plane) of a sample centered at z, in the rock, and + 7 is the value
determined for a sample located at a vectorial distance h from z .

In a similar manner, tensors can be handled as a set of vectors. Thus, instead of a single
semivariogram to represent the correlation characteristics of a property, tensors require as many
semivariograms as there are independent quantities in the tensor. Rock properties at unknown points can
be estimated from known sample values and their semivariograms through a process known as Kriging.
For scalar and vector rock properties, the Kriging process follows the procedures used in mining
applications, details of which can be found in standard geostatistics texts. For tensors, the process remains
substantively the same except that each tensor component is estimated separately. This generalization by
LaPoint (1980) is an important step for describing vectorial quantities, such as fracture orientations, as
regionalized variables.
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2 VISUALIZATION AND NUMERICAL GENERATION OF
REALISTIC FRACTURE SETS

2.1 STATISTICAL STUDY OF FRACTURE SETS

In this section, a presentation of the common assumptions made when describing the geometry
of fracture sets is given. This discussion covers the characteristics identified in Chapter 1, and extends
to the presentation and mathematical description of the distributions used for the statistical analyses of
these fracture characteristics.

2.1.1 Orientation of Fracture Sets

The orientation of fractures cannot be classified as either a purely random or regular process
(Chiles and de Marsily, 1993). For example, fracture orientation can be extremely regular (e.g.,
Engelder, 1985; Dunne and North, 1990), or in some cases purely random or nearly random (e.g.,
implosion breccia; Sibson, 1986). Fractures with approximately the same orientation form or constitute
a fracture set. The formation of fracture sets is due to the origin of the host material or tectonic history.
Since fracture sets that are formed at a later time usually terminate at intersections with older sets, it is
best to study each fracture set independently of the others. The orientation of a fracture plane is most
conveniently described by its strike and dip, or by its pole, that is the unit vector normal to the fracture
plane (Chiles, 1989a,b). This, as explained in Chapter 1, is typically visualized on an equal area lower
hemisphere projection diagram called a stereographic projection or Schmidt diagram. The results of a
fracture survey are best represented as a contoured stereographic projection diagram. This is
accomplished by moving a relatively small circle (window) around the Schmidt diagram in a systematic
way. The number of poles inside the moving circle is counted and then, expressed as a percentage of the
total number of fractures, is plotted as contours on the projection diagram. An example of this process
is illustrated in Figure 2-1.

Once a set of fracture observations is plotted in stereographic projection, outliers can be
identified and eliminated (censored) from the set. The statistical analysis of directional data is facilitated
by performing the analysis for points distributed on a sphere. Procedures have been developed for the
statistical analysis of points in one cluster or a girdle. If the poles appear to define one or more clusters,
the following steps can be followed in order to analyze the data (Koch and Link, 1980; Barnett and
Lewis, 1984): (i) determine whether the poles are clustered or are randomly distributed on the sphere;
(ii) estimate the mean strike and dip of the cluster, and the dispersion of poles within the cluster;
(iii) determine whether one or more clusters share the same mean direction; and (iv) determine whether
the two clusters are equally dispersed.

The azimuthal parameters (i.e., the strike and dip) of a fracture set are typically approximated
by normal distributions, although it may sometimes be difficult to separate superimposed fracture sets
and, therefore, deconvolve the observed bimodal distribution. There exist several other distributions for
the statistical analysis of clustering of poles but the analysis is, usually, based on the Fisher or bivariate
Gaussian frequency distribution in the plane tangent to the central orientation of the cluster. The Fisher
distribution is symmetrical about the mean direction of a cluster, and its measure of tightness (or inverse
dispersion) is a statistic called the estimate of precision. The mathematical description of this and other
distributions used in the statistical analysis of fracture set orientations is presented in the following.
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Figure 2-1. Pole analysis and contouring of the stereographic projection diagram. a) Counting

number of poles within a moving window; b) and c) contouring and grey shading of results.

2.1.2 Probability Distributions for Directional Data

There exist five types of probability distributions for directional variables: the univariate and

the bivariate Fisher, the bivariate normal, the bivariate Bingham, and the spherical Dirac delta (i.e.,

constant direction) distribution. The spherical Dirac delta distribution is trivial and is not discussed

further. These distributions are stated in terms of their probability density functions, (4,O), for a

variation (0' ,e') about the mean direction (p). Parameters 4 and 0 denote the dip and strike-azimuth

angles, respectively. The mathematical description of the distributions, used more often, follows.

2.1.2.1 Univariate Fisher Distribution

The univariate Fisher distribution is defined by the probability density function (Mardia, 1972):

A ,o ) K sin 4' ,O sd/ • 0 (2-1)

2,r(e"-l)2

where K is the distribution parameter. This distribution is unimodal and symmetric about the 4/ axis.

Increasing K produces a distribution more concentrated around the 4/ axis.

2-2



The Fisher dispersion parameter K is generally found from the equation:

K = Nf (2-2)
Nf- IRI

where I R I is the magnitude of the vector sum of the unit vectors for orientation, and Nf is the number
of fractures. Snow (1969) used the Fisher distribution (Fisher, 1953) to generate a variety of synthetic
joint orientation distributions. These orientations are symmetric about a central or average orientation
whereas natural distributions may not be.

2.1.2.2 Bivariate Fisher Distribution

The bivariate Fisher distribution is defined by the probability density function (Dershowitz,
1979):

f(O /,o') = c-l sin O' exp[(xi sin 2o/ + iC2 cos25I) cos 4/] (2-3)

0 < 4, •< ir, 0 5 ' <- 2ir

where C is the normalizing constant:

2w F/2

C = I i sin 4 exp [(KI sin2o/ + K2 cos20I)cos 4, ] dO/ de' (24)

and KI and K2 are the distribution parameters. When K1 = K2, this distribution reduces to the univariate
Fisher distribution. When 'q ;£ K2, this distribution is unimodal with planes of symmetry normal to the

axes (O/ = 900, 0 = 0°) and (4,1= 90°, 0 = 90°). When K1 > K2 , the distribution is more

concentrated in the 0 = 00 and 0 = 1800 directions, and more scattered in the 0 = 900 and 6 = 2700
directions.

2.1.2.3 Bivariate Normal Distribution

The bivariate normal distribution for orientation is defined by the probability density function:
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(2-5)
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exp _ |+5, 2p(-io5 + -@ ]

where (000 e3 are the standard deviation of the dip and strike, and p is the correlation coefficient.

Decreasing <, and 0, produces a distribution more concentrated around the mean orientation.

2.1.2.4 Bivariate Bingham Distribution

The bivariate Bingham distribution is defined by the probability density function (Dershowitz,

1979):

f (4/ ,e') = C-l sin 0/ exp [(K1 cos201 + K2 sin2oI) sin20/] (2-6)

0 < 4/ < ir, 0 < / <- 2ir

where C is the normalizing constant:

2v r

C = i i sin 4/ exp [(KI COS 2 1 + K2 sin2o ) sin2 f ] dO/ dO (2-7)

and K, and iC2 are the distribution parameters. When icl =K2, this is a girdle distribution, with the region

of highest concentration lying around the equator O/ =90°. When K1> K2, this is a bimodal distribution

with the regions of highest concentration lying at (4/=900, 0/=00) and (4/=90°, 0'=1800); when

KI < K2 ' this is a bimodal distribution with the regions of highest concentration lying at(4/ =90°, 0/ =90°)

and (4/ =900, 01 =2700). This distribution will produce a population of directions predominantly normal

to the specified mean direction (i, V). Chiles and de Marsily (1993) have presented similar formulae for

the case of isotropic distributions.

2.1.3 Fracture Density and Spacing

A wide variety of measures is available for quantifying the intensity of geologic features. Thus,

fracture intensity can be measured in terms of Nf, the total number of fractures in the region; P32. the

areal intensity; and P33. the volume percent. P32 is defined as the total area of features per unit volume

(Dershowitz, 1984) given by:
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P3 2 = AfIV8 (2-8)

where Af is the total area of features, and V, is the total volume. The measure P32 is dimensional (in
units of 1/m or 1/km), but is scale-independent (i.e., it does not depend upon the volume studied or the
orientation of the measurements). Note that alternative measures such as the number of features per unit
are scale-dependent. The volume percent, P33 is the percentage of a feature by volume given by:

P33 = Vf/Vt (2-9)

where Vf is the total volume of features. All of these measures are interrelated through the distribution
of fracture size (area or volume). They are also related to the more common measures of fracture
intensity, the distribution of spacings between fractures as encountered in a borehole or along an outcrop
transect.

Fracture spacing is measured as the separation between intersections of fractures within a
borehole or a surveying traverse. It is a measure that applies to both fractures of finite and infinite extent.
The fracture density is calculated, in an average sense, as the inverse of the mean fracture spacing.
Fracture spacings are typically observed to obey an exponential distribution, supporting the premise of
a Poisson random field. Baecher et al. (1977) found that the exponential distribution is honored
irrespective of the orientation of the sampling line. It is possible, however, to observe anisotropic
exponential distributions. Other assumptions regarding the fracture spacing distributions can be made, for
example, that they are normal in the case of cooling joints in basalts or clustered distributions.

Since both areal- and line-based measures of fracture density (d2, dl) depend on the orientation
* of the plane or line considered, the most interesting parameter is the volumetric-based fracture density

(d3). In order to account for the bias introduced when sampling at planes or lines of a certain orientation,
the parameter d3 is weighted by the acute angle of intersection Oi which corresponds to the ith of the n
fractures intersecting the plane or borehole. Therefore, the volumetric fracture density measure is given
by:

I3=LE |sin 6i] (2-10)

2.1.4 Fracture Trace Length

Under the assumption of circular fractures, Baecher et al. (1977) suggest that the fracture radii
follow lognormal distributions. In similar efforts, Baecher (1983) concluded that trace lengths are
lognormally distributed, although exponential distributions have also been used to describe fracture trace
lengths. Through stereological transformations one can relate the observed outcrop trace lengths to their
actual three-dimensional (3D) diameters.

The effect of distribution truncations due to the inability to observe: (i) trace lengths shorter than
a low cutoff limit (truncation); (ii) trace lengths that extend beyond the outcrop, planar, or drift sampling
area (censoring); and (iii) long traces in a very small sampling area (trace size biasing) is associated with
the techniques used during sampling of fracture geometry. The orientation of the fractures, relative to the
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outcrop plane or the boreholes, also introduces sampling bias since there will be a large number of

fractures that may not be accounted for. For example, a horizontal outcrop will discriminate against

subhorizontal fractures. Several methods have been proposed by Chiles (1989a) to correct these biases.

2.1.5 Aperture and Thickness

Several researchers have found apertures to be lognormally distributed with the means being

a decreasing function of depth. However, Chiles (1989b) considers the aperture as a meaningless fracture

parameter because: (i) it is not constant in space and therefore there will always exist void spaces and

contact areas which cannot be accounted for, and (ii) the measured parameter is drastically different than

the in situ parameter due to the stress release. However, in cases where the fracture has been calcified

or filled with some other material, the term aperture can be replaced by the term thickness. The fracture

thickness has been found to follow a lognormal distribution and to be highly correlated with the length

of the fracture (Chiles, 1989b).

2.1.6 Probability Distributions for Scalar Data

The following probability distributions exist for scalar variables, such as the ones described in

Sections 2.1.3 to 2.1.5: uniform, exponential, normal, lognormal, power law, gamma, and Dirac delta

(i.e., constant) distributions. The Dirac delta distribution is trivial, the gamma distribution has limited

applicability and are not discussed here. Exponential, normal, and lognormal distributions can be specified

in either truncated or standard forms. The mathematical description of the distributions, used more often,

follows.

2.1.6.1 Uniform Distribution

The uniform distribution is specified by the probability density function:

Xx) = l/2a, x - a 5 x 5 x + a, and (2-11)

fAx) = 0 otherwise

where a is the maximal deviation and x is the mean value. This distribution is also known as the

rectangular distribution.

2.1.6.2 Exponential Distribution

The exponential distribution is specified by the probability density function:

A4x) = X exp(-Xx) (2-12)

and has a mean value x = 1/X. Thus, the exponential distribution is completely specified by its mean

value x. The truncated exponential distribution has two additional parameters (x_, x+), the minimum and

maximum values. The mean and standard deviation values for the nontruncated distribution are related

to the actual mean, x7 and standard deviation, x¢, of the truncated exponential distribution by:
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x +e( -x + VX)-x e(x - VT)

e(-X + VX )e(-X - Vx )

(2-13)

| (+2+ 2x+ e(X+X )_(x2 + 2xx_ -(Xx/ )

e(-'+Vx ) - e(-x-Vx/)

112
+ 2-X2 - V)2

(2-14)

2.1.6.3 Normal Distribution

The normal distribution is specified by the probability density function:

Ax) = exp{-(x -_)2 1 2 a2} 1
(2-15)

where x is the mean value of x and a is the standard deviation of x. The truncated normal distribution
has two additional parameters (x_, x+), the minimum and maximum values. The mean and standard

deviation values for the nontruncated distribution are related to the actual mean x7 of the truncated
normal distribution by:

2 2

7 T= ~ + F2:C_ X_ _; erf y+ fy
X erf (y+) - erf (y-)

(2-16)

x_ - x
where y- = ,

A ~x,
= X , and erf is the error function.

v-2XG

2.1.6.4 Lognormal Distribution

The lognormal distribution is specified by the probability density function:

Ax) = I- exp{ -[ ln x -y (2-17)

where y and ye are the mean and standard deviation of the natural base logarithm.

The truncated lognormal distribution has two additional parameters (x-, x+), the minimum and
maximum values. The mean and standard deviation values for the nontruncated distributions are related

to the actual mean x7 of the truncated lognormal distribution by:
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7-x7 = Y F2_ YaX

2 2
e Y -e Y.

erf (y+) - erf (y-)
(2-18)

where

- log x Y and y+ =

V hy

log x+ - y

V Hy
(2-19)

2.1.6.5 Power-Law Distribution

The power-law distribution can be useful for describing the distribution of fracture size which

can exhibit scale independent (fractal) behavior. The power-law distribution is described by two

parameters, the minimum value xmi. and the exponent b.

fjx) =bl - b , when x 2 xmin, b > 1
Xrmin X J

F(x) = 1 - | | when x 2 xm, b > 1

The mean x and standard deviation x: are related to xn and b by:

(2-20)

(2-21)

[= x, when b >2 (2-22)

(2-23)x = xo, when 1 < b < 2

Xe = I
b - I ] "' Xmin , when b > 3
b - 3 b-2

(2-24)

xa = xo, when 1 < b < 3 (2-25)

(2-26)
Xmin = I b 2] , when b > 3
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b = 2 + 1 + when b > 3 (2-27)

2.2 VISUALIZATION, STATISTICAL, AND CONNECTIVITY ANALYSES
OF APACHE LEAP TUFF SITE FRACTURE SETS

2.2.1 Visualization and Statistical Analyses

In order to evaluate whether geologic disposal of HLW in unsaturated fractured rock can be
carried out in accordance with applicable environmental and radiological health and safety regulations,
a thorough understanding of the flow processes occurring is imperative. One way of accomplishing this
objective is to define or adopt site-specific conceptual models. Moreover, model parameters have to be
estimated through experimental and/or field techniques. In addition to the Yucca Mountain fracture data
compiled in the Site Characterization Plan (U.S. Department of Energy, 1988) and those available from
the Nevada Test Site G-Tunnel (Nuclear Energy Agency, 1993), two possible sources of data have been
identified as applicable to the study of multidimensional geometry of rock fracture networks: (i) fracture
traces and the 3D fracture network at the inclined borehole site of the Apache Leap Tuff Site (ALTS)
(Rasmussen et al., 1990); and (ii) statistical data on 2D and 3D fracture orientations at the uranium mine
drift site of Faney-Augeres, France (Long and Billaux, 1987). The ALTS is one of the Nuclear
Regulatory Commission (NRC) sponsored test sites located near Superior, Arizona. Data collection at the
ALTS is conducted with the help of inclined boreholes that were drilled with the specific objective of
obtaining: (i) core samples for laboratory analyses; and (ii) hydraulic, pneumatic, and transport
parameters. Site and data description can be found in the report by Yeh et al. (1988).

The ALTS is located in central Arizona, approximately 160 km north of Tucson, near Superior,
Arizona at an elevation of 1,200 m. It is a 20-million-year-old tuff formation similar, to some extent, to
the tuffs found at Yucca Mountain, Nevada. This formation is slightly to moderately welded near the
surface and densely welded near the base of the formation, which has an approximate thickness of 150 m
(Rasmussen et al., 1993). The field site is located in the White Unit of the tuff formation, which has a
matrix porosity of 17.5 percent and an average number of 0.77 fractures per meter. Nine inclined
boreholes have been drilled at an approximate angle of 450 and spacings of 10 m, as shown in
Figure 2-2(a). The boreholes are parallel to each other (horizontal plane), with the exception of the third
set which is perpendicular to the other two (vertical plane), as shown in Figure 2-2(b). A substantial
amount of information has been collected and documented during the ALTS characterization effort.
Approximately 100 core samples were collected and over 200 fracture planes have been identified.
Among the parameters that have the greatest effect on flow and transport through fractured rock are:
(i) fracture orientations, areal extents, and shapes; (ii) number of fracture sets and center locations;
(iii) fracture density, porosity, and aperture distributions; (iv) fracture connectivity; and (v) fracture
hydraulic properties (unsaturated conductivity and moisture retention curve). At the ALTS, only the one-
dimensional (ID) measure of fracture density is available from borehole core logs. The fracture density
variation is high, with a range from no fractures per 3-m interval to a maximum of 4.3 fractures per
meter. The distribution is very close to being exponential, consistent with a Poisson process for fracture
locations. One can infer fracture spacing as the inverse of fracture density.
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Figure 2-2. Borehole configuration at the ALTS: (a) plan view and (b) profile view (after Yeh et al.,

1988)
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In this section, emphasis is given mainly on the strike and dip (azimuth and inclination) statistics
and connectivity of the fracture sets encountered at the ALTS. More importantly, the work reported
herein presents the results obtained with numerical tools developed for efficient data manipulation and
visualization. This is a step towards understanding of the site-specific important features and the
incorporation of realistic hydrogeologic data in the large-scale flow and transport simulations to be
conducted in the future.

Information on strike and dip angles can be incorporated in the visualization tool GLFRACT3D
and its associated preprocessor by simply providing the lower-hemisphere stereonet projection data. The
cartesian coordinates of the drill core extraction point serve as conditioning points upon which the fracture
plane description is based. GLFRACT3D is an interactive graphics program for plotting 3D networks of
planar fractures. It runs on a Silicon Graphics (SG) IRIS powervision VGX series workstation and makes
use of the Graphics Library (GL) graphics language. It implements z-buffering to show hidden surfaces
and the IRIS alpha-planes to provide translucency, if so desired. Coupled with its preprocessor, the
package provides the user with the option to plot the stereonet projection, separate the dominant fracture
sets based on ranges of strike and dip angles, and calculate triplets of x, y, and z coordinates which are
needed to define a fracture plane. These coordinates can be conditioned upon the borehole extraction point
cartesian coordinates, providing a much more realistic and meaningful representation of the data. Each
fracture plane is subsequently coded a different color from a set of 64 with the colors re-used as
necessary.

Figure 2-3 depicts the ALTS fracture plane data as a lower-hemisphere pole stereographic
projection. Qualitatively, one can readily identify three dominant sets of fracture plane poles. The first,
and most important one in terms of frequency of occurrence, is the set that spans the range of 30 to 1200
and 210 to 3000 in pole strike, and 60 to 900 in pole dip. The second set, much less frequently
encountered, is complementary to the first in terms of strike. However, it spans the dip range almost at
random. Finally, the third set consists of almost horizontal planes. The same data can be viewed in terms
of the fracture plane distribution of strikes and dips, as shown in Figure 2-4. It is important to keep in
mind the dominant set's northwest-to-north orientation and almost vertical dip. Moreover, it is also
interesting to note that the second most frequently occurring set corresponds to the subhorizontal
fractures. These observations are in close agreement with data presented by Barton and Hsieh (1989) for
pavement 300 at Yucca Mountain, Nevada. It is also consistent with the calculation by Thornburg (1990)
who analyzed data from the surface of the rock knoll at the ALTS. Figure 2-5 depicts a line interpretation
of structural lineaments in the ALTS and exemplifies the complex structure of the fractures present at the
ALTS. Nevertheless, Thornburg (1990) processed approximately 300 azimuthal measurements collected
from a rock knoll 80 m in diameter near the shallow borehole site and was able to identify useful
statistics. Sampling bias was minimized since measurements were taken on the slopes of the knoll and
on a steep roadcut. The poles of identified fracture planes were plotted in lower-hemisphere, equal area
projections. The densities of fracture poles were contoured according to the method by Kamb (1959) and
the orthogonal principal axes were determined using the Bingham probability density function (Cheeney,
1983). This method provided eigenvector solutions of the Bingham distribution and identified the
existence of subhorizontal and complementary subvertical fracture planes at the ALTS, even for cases
when only horizontal outcrop data were analyzed.

A typical example of the statistical analyses performed by GLFRACT3D and its preprocessor
is shown in Figure 2-6. The strike angle distribution is presented in histogram form for the dominant
subvertical fracture set. Superimposed on the same figure is a normal distribution honoring the first two
moment statistics of the sample. Even though no formal x2 test of normality was performed, such an
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Figure 2-3. Lower-hemisphere stereonet projection of fracture pole orientations observed at the

ALTS

assumption seems to be justified based on qualitative reasons and inspection of the histogram of

Figure 2-6.

The importance of spatial conditioning is clearly seen in Figure 2-7, which presents a fully 3D

representation of all identified fracture planes at the ALTS. The exact points where cores were removed

serve as conditioning points and the fracture planes pass through them. The nine boreholes are also

shown, together with a parallelepiped bounding the domain for reference. The dimensions of the

parallelepiped are 50x20X50 m in the x, y, and z directions, respectively. Figure 2-8 shows the 3D

spatial distribution of all 224 fracture planes in the ALTS, assuming that they extend infinitely. We

recognize that this assumption, of infinite extent, is not a generic one and could, therefore, be questioned.

However, according to Thornburg (1990), the surficial trace length distributions at the ALTS, which are

found to be lognormal, have means of 270 and 100 m, depending on the scale of mapping and subsequent

statistical analyses. Since the domain extends less than 50 m in any direction, the infinitely extensive

fractures assumption appears to be a reasonable one. Andersson et al. (1984) assumed as a first

approximation, fractures to be of infinite areal extent, or at least long enough to totally traverse the

investigated (and modeled) region. With this assumption the fracture network is defined by the fracture

plane orientations only. The assumption of arbitrary fracture positions implies that a single fracture has

an equal probability to occur anywhere in the modeled region. This assumption is, at least to some extent,

contrary to experimental evidence, since fractures are related to regional and local stress concentrations

and the rock geology (Aguilera, 1980).
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Figure 24. Fracture plane strike (A) and dip (B) distribution at the ALTS (after Yeh et al., 1988)

Finally, Figure 2-9 depicts the traces at the top of the domain (considered as an outcrop). This
type of a figure could very well serve as a verification tool since it can be easily compared with trace
mappings. These figures clearly exemplify the power of the GLFRACT3D package for visualization-based
problem conceptualization.

2.2.2 Connectivity Analyses

Several authors have addressed the issue of connectivity for fractured rock. Billaux and Gudrin
(1993) define a connectivity index IC for a fracture field as the mean number of intersections per fracture,
weighted by fracture size (diameter). This simple geometrical characteristic does not vary with the scale
considered, although it may be biased if computed on too small a region (under-representation of very
large fractures). It is easily computed, given the statistical properties of a fracture network. The diameter
weighting accounts for the fact that an intersection with a large fracture contributes more to the network
connectivity than an intersection with a small one. This weighting is also consistent with numerical studies
performed earlier (Charlaix, 1987) on percolation invariants. Odling (1992) studied a variety of fractured
rock samples and concluded that, in three dimensions, fractures intersect to form a fracture network. The
degree to which this network provides continuous pathways through the rock is termed connectivity
(Stauffer, 1985) and is controlled by many factors including fracture density, length and orientation
distributions, and spatial distribution. Traditional methods of describing fracture patterns within the
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Figure 2-5. Line interpretation of structural lineaments in the ALTS. Fractures were traced from an aerial photo scaled at 1:7,180

(from Thornburg, 1990).
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Figure 2-6. Histogram of strike azimuth for the dominant fracture set and normal distribution
honoring the first two moments. Note that angles over 3600 fall in the N to NE quadrant. The
symbol * denotes the class representative value.

discipline of geology have consisted of the determination of orientation and length distributions with some
serniquantitative information on fracture spacing. Robinson (1984), Charlaix (1985), and de Marsily
(1985), among others, approached connectivity from the perspective of percolation theory. There is no
consensus on exactly how to define or calculate the connectivity of a fracture network. Hestir et al.
(1989), for example, proposed a measure of connectivity as a simple summary of the number of paths
through which water flows from a starting to some ending point. Dershowitz et al. (1992) proposed two
other measures of connectivity: (i) the number of fracture plane intersections per unit volume of rock,
and (u) the total fracture plane intersection length per unit volume of rock. Another heuristic
approximation to the connectivity issue is the conjecture by Charlaix (1985), who suggested that, for
randomly oriented fractures, the density of fractures and the mean size of fractures (assumed to be
circular) are related by:

(fracture density)x(mean radius of fractures)2 = 0.15 to 0.30

Even though these three measures of connectivity provide some understanding on how well connected
the fracture network is, there is nothing in these measures that demonstrates or accounts for the effect
of interactions between the rock matrix and the fractures.

2-15



I

'IL

F.$,

lo I

Iw I 1

II

16� 1

I

I

Figure 2-7. 3D representation of inventory of observed fracture traces obtained from oriented cores
along the boreholes of ALTS. Dimensions of the parallelepiped are 50x20x50 m.
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Figure 2-8. 3D representation of 224 fracture planes at the ALTS. The fractures are assumed to be
of infinite extent. Dimensions of the parallelepiped are 50x20x50 m.
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Figure 2-9. Outcropping traces for the fractures of Figure 2-8. Dimensions of the outcrop are

20x50 m.

The calculation of a new connectivity measure is proposed as follows: (i) for a given fracture

set geometry identify all possible fracture plane intersections, (ii) calculate the shortest distance between

all fracture plane intersections, (iii) identify all plane intersections with shortest distances smaller than

a certain penetration depth (classify these intersections as connected and count the number of

connections), and (iv) establish and plot in 3D space the cloud of connections. A schematic that provides

some explanatory descriptions for three fracture planes is depicted in Figure 2-10. It is clear that the

shortest distance is always less than or equal to the actual length that the water will traverse while flowing

along the connecting plane. However, for a large number of fractures spanning a relatively wide range

of strikes and dips, this is a valid measure of connectivity. Moreover, the procedure provides for the

incorporation of hydraulic data into the calculation of connectivity. For example, the assumed penetration

depth of step (iii) can be related to the fracture aperture and permeability. This could be based on

theoretical or experimental analyses (e.g., Thoma et al., 1992). Rasmussen et al. (1985) have

implemented a similar connection between the fracture plane lines of intersections. They calculate the

trapezoidal area through which fluid flow occurs and apply it to the straight line segment connecting the

midpoint of the lines of intersection.

If the shortest distance between two fracture plane intersections is greater than the penetration

depth, the top and bottom fracture planes of Figure 2-10 will not be connected hydraulically. This

approach assumes that: (i) such a penetration depth has been or could be calculated; (ii) this number is

constant over the 3D domain of interest; and (iii) the supply of water is infinite, or the storage capacity
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Figure 2-10. Schematic of three intersecting fracture planes and associated fracture plane
intersections

of the fracture network is negligible. Nevertheless, it provides a very convenient way of understanding
how well connected the fracture network is for a specific given value of the penetration depth.

Figure 2-11 shows the 845 fracture plane intersections identified at the ALTS. Note that for
clarity this and all subsequent analyses were performed with a subset of only 56 (out of the 224) fracture
planes. All numbers, therefore, are smaller than what would be the case if all 224 fracture planes were
used in the analyses. Figure 2-12 depicts an x-z projection of all 6,309 identified connections between
the fracture plane intersections of Figure 2-11, with the shortest distance smaller than 5 cm. Figure 2-13
presents the same results in an x-y projection. Several observations can be made based on these results:
(i) the fractured rock at the ALTS appears to be much more connected near the surface (this implies that
for depths up to 10 m, an equivalent porous assumption may be justified on connectivity grounds); and
(ii) there exist four highly connected zones that extend downward. The first two are relatively shallow
and appear to end at a depth less than 5 to 7 m. The other two extend much further, to a depth of 40 to
50m.

Based on this analysis, it would seem appropriate to model flow phenomena at the ALTS using
a hybrid approach whereby an equivalent or stochastic porous medium is enhanced by the presence of
several well-connected zones of fractures. These zones could be modeled as persistent discontinuities.
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Figure 2-11. 3D representation of 56 fracture planes and their 845 fracture plane intersections.
Dimensions of the parallelepiped are 5Ox20x50 m.
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Figure 2-12. X-Z projection of 6,309 identified connections between fracture plane intersections.
Dimensions of the rectangle are 50 x 50 m.
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Figure 2-13. X-Y projection of 6,309 identified connections between fracture plane intersections.
Dimensions of the rectangle are 20 x 50 m.
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2.3 NUMERICAL GENERATION OF REALISTIC FRACTURE
NETWORK SETS

The first models to be used for the generation of fracture sets were deterministic. Snow (1965)
developed a model defined by orthogonal directions of equidistant planes. Since then, the application of
stochastic fracture network generators has flourished. A presentation of some of the most widely used
and accepted fracture generators follows.

An analysis of the confidence of flow solutions for stochastically generated rock formations was
carried out by Braester and Thunvik (1987) with the aid of a simplified model. The rock formation was
conceptualized and modeled as a 2D orthogonal fracture network with a known geometric structure
intersecting an impervious mass of rock, while fracture permeability was considered a stochastic process.
Andersson and Dverstorp (1987) modeled fractures as planar circular disks with radii, orientation (strike
and dip), and transmissivity as stochastic parameters. Fracture centers were assumed to follow a constant
intensity Poisson space process. This model was applied to model calibration and validation exercises in
the Stripa research mine (Dverstorp and Andersson, 1989) and the results were compared to similar
results by Rouleau (1984) who used a 2D DFNM. Fractures are commonly assumed to be planar features
of circular or elliptical shape (Baecher et al., 1977). The centers of the fractures are further assumed to
be randomly distributed in space, such that their volumetric concentration is approximated by a Poisson
process. When more than one fracture set is present, superposition of independent Poisson processes will
preserve the global Poisson distributional assumption. The Baecher model (Baecher et al., 1977) was one
of the first well-characterized discrete fracture models. In this model, the fracture centers are located
uniformly in space, using a Poisson process, and the fractures are generated as disks with a given radius
and orientation. The enhanced Baecher model (Dershowitz et al., 1991) extends the Baecher model by
providing for fracture terminations and more general fracture shapes.

One of the most widely used and simple models for fracture generation is the Poisson process.
Its simplicity stems from the fact that it is very easy to fit parameters for this model. It is a close analog
of cases where the fractures are long enough compared to the domain within which fractures are to be
generated. As such, it is best suited for the generation of fractures of infinite extent which is, in many
occasions, an unrealistic assumption. The assumption of uniform (Poisson process) locations for fracture
centers implies that the number of fracture centers per unit areas follows a Poisson distribution (Benjamin
and Cornell, 1970). Its mathematical representation is given by:

f =(nc) e (2-28)

where nC is the mean number of centers in a given sized region.

Long et al. (1985a) claim that the first step in developing a fracture flow model is to adopt a
conceptual model for fracture networks which is compatible with the geometry observed in the field.
Through the analysis of trace data and examination of fracture surfaces, several studies have reported that
fractures are likely to be roughly elliptical or circular (Robertson, 1970; Pollard, 1976). The 3D model
of Long et al. (1985a) assumes all fractures to be circular. The extension of the mathematics to elliptical
fractures is possible but not trivial. For much of this work Long et al. (1985a) used a model which is
essentially the same as that developed by Baecher and Lanney in which circular fractures have
lognormally distributed radii and are randomly located in space. Baecher and Lanney have supported this
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concept through analysis of trace data observed in outcrops, intersection data observed in boreholes, and
the examination of fracture surfaces (Baecher and Lanney, 1978). A variety of fracture orientation
distributions is possible and, in general, these distributions can be determined from field data. Arnold's
hemispherical normal, Bingham's, Fisher's, and uniform distributions have all been used by various
authors. Apertures can have lognormal distribution as was deduced by Snow (1969). Others (LaPoint and
Hudson, 1981) have observed that in some cases fractures occur in zones or bands of subparallel features.
In other words, fractures may be spatially correlated.

Long and Hestir (1990) have examined 2D Poisson systems where it was assumed that the
fractures are ID, finite line segments-in other words, 2D pipe networks. They concluded that this may
be a reasonable model for 3D fracture network representation if most of the conductance is in the
intersections between fractures or if the flow in the fractures is channelized. Studies of this type have
been done by Long (1983), Robinson (1984), and Dershowitz (1984). An enhancement to the standard
Poisson process was developed by Hestir et al. (1989) who implemented a stochastic parent-daughter
model for representing fracture systems. A Poisson process places points in space independently of each
other and is characterized by a constant rate. It will, therefore, not duplicate the clumping of fractures
that is often observed in the field. Another enhancement of the Poisson model is the doubly stochastic
Poisson process. This is a generalization of the standard Poisson process in the sense that the rate is
allowed to vary in 3D space. However, the number of fracture centers is still an independent random
variable. The parent-daughter model, introduced by Hestir et al. (1989), places points in 3D space
according to a doubly stochastic Poisson process. These points are called parents, and around each one
of them a number of daughter points is generated. This process yields the clumping behavior of fractures
typically observed in the field. Another advantage of the parent-daughter point process, in comparison
to the doubly stochastic Poisson process, is that the rate of parent point generation can be much smoother
than the swarming rate of the daughter points. Hestir et al. (1989) calculated the variogram of trace
density and were able to fit a variograin which was very close to a spherical model. A further
enhancement of this model is the development of the regionalized parent-daughter process by Hestir et al.
(1989). For this process there exists structure in the characteristics of the network and, therefore, a
semivariograrn can be defined. Snow (1968) found that small samples from an essentially infinite
population (of fractures) should have a Poisson distribution of counts, provided that the fractures have
no tendency to congregate.

Another fracture generation approach is the nearest neighbor model. It is a simple, non-
stationary model in which fracture intensity P32 decreases exponentially with distance from identified
major features. The intensity P3 2 at any point in space is defined by:

P32(x) = C e-bd (2-29)

where C and b are constants, and d is the distance between location x and the nearest major feature.

This model is also called the random discs model, and is a particular case of a Boolean model.
Each fracture is assumed to be a circular or elliptic disc. Each disk is defined by its center location,
diameter, and orientation. The disks centers are assumed to be a 3D Poisson process, the diameter is
random with some given distribution, the orientation is random, and all fractures are assumed to be
independent of each other. Since in most cases fractures are studied at a scale that cannot justify
considering them as infinitely extensive, a variety of fracture generation models, classified under the
generic term of tessellation models, was developed in order to address this problem. The model by
Veneziano (1978), for example, is based on a Poisson process to generate independent lines. Once the
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lines are generated, their intersections are calculated and a network of polygons is formulated. Then, each

of these polygons is randomly classified as part of fractured or intact rock.

Dershowitz et al. (1985) developed a fracture generator in which the intersections between

fractures were defined in a relatively simple manner, yet it was a slight improvement to the Veneziano

model. There are three steps in the application of the Dershowitz model: (i) define the fracture planes

with an a priori assumed orientation distribution; (ii) use the line intersections between these planes to

provide the definition of a line process, which can also be viewed as a set of convex polygons; and (iii)

classify a certain percentage (also called persistence) of these polygons as fractures. Since fractures may

be defined by several adjacent polygons, the model does not preclude the existence of intersections within

the fracture rather than the boundary. The Dershowitz et al. (1985) model exhibits a much higher

connectivity than the Baecher and Veneziano assumptions. This is because, for example, in 2D space,

the network generated may consist of traces that terminate in intact rock, traces which penetrate plane

intersections, and traces terminating at intersections with other fracture planes. Dershowitz et al. (1985)

verified their generator by comparing its results to outcrop and trace mappings from tunnels in

Cambridge, Massachusetts, and the Stripa project in Sweden.

One suite of tessellation models is based on the generation of Voronoi polyhedra. Under this

type of model, each point in 3D space is considered a Poisson point process and viewed as the seed or

grain. Each seed grows in every direction at a constant rate until two grains come into contact. The

Voronoi model can be enhanced by the option of using a variable growth rate which results in polygons

of variable side lengths. A similar type of model is the Delaunay model which is also based on a Poisson

point process, with the difference that the Poisson seeds represent block vertices. In this model, all block

faces are triangles. Models based on the tessellation of space by Voronoi polyhedra, and their derivatives,

are very good analogues of metallic grains and cracks but are less suited for simulating rock fractures.

An exception is the case of columnar jointing in basalt (Chiles and de Marsily, 1993).

Other notable efforts are the studies by Rasmussen et al. (1985) and Rasmussen and Evans

(1989) who presented a 3D fracture network generation model capable of synthesizing up to 1,000

fracture intersections within a matrix block broken into a maximum of 200 fractures. This model is

similar in some respects with the Baecher model and addresses variability in the following fracture

parameters: (i) aperture; (ii) density; (iii) orientation; (iv) shape (circular, elliptical, square, or

rectangular); and (v) length. Rasmussen et al. (1985) implemented the following distributions: uniform,

normal, lognormal, and exponential. Similar assumptions regarding the shape of fractures have been

supported by trace data analysis by Pollard (1976). Once the fracture network is generated, the

Rasmussen model solves the flow problem by reducing the complexity of the 3D problem with a collapse

in dimensionality. This renders the active flow domain a sequence of interconnected iD line elements.

Finally, Billaux and Fuller (1989) have presented an algorithm that treats the fractures as random

assemblages of conductive elements in a non-conductive matrix. The most important contribution of their

model, however, is the application of an algorithm to remove dead-end fracture clusters, thus simplifying

the mesh and speeding up the flow computations.

Long and Billaux (1987) analyzed the distributions (mean and variance) of orientation angles

and fracture lengths for data collected at the Fanay-Augeres drift site. In all, about 7,000 fractures were

analyzed for either orientation, location, and permeability or aperture characteristics. Long and Billaux

used a single random network model to generate a 2D synthetic fracture network comprising 65,740

fractures. This synthetic network is reproduced in Figure 2-14, adapted from Long and Billaux (1987).

The generation procedure is conceptually relatively straightforward. Each of the five sets was generated
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Figure 2-14. Synthetic 2D fracture network in a 100x100 m domain, where each lOxIO m
subdomain was generated independently. The total number of fractures is 65,740 [from Ababou
(1991), as adapted from Long and Billaux (1987)].
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separately, and all five fracture sets were then superimposed in space. For each set, the generation

procedure was as follows: (i) fracture centers were generated randomly based on measured fracture

density, (ii) fracture orientations were randomly assigned to each center based on measured fracture

orientation, (iii) fracture lengths were randomly assigned based on lognormal or exponential distribution,

and (iv) fracture apertures were randomly assigned based on lognormal distribution. Each random

parameter was generated independently, for example, without correlations between fracture aperture and

orientation, etc. The procedure can be applied to subdomains, in order to allow for large-scale variations

of fracture network statistics such as density, mean aperture, mean orientation, etc.

A relatively new type of fracture network generation model is based on concepts from the field

of fractals. Fault zones, for example, have been found to obey fractal statistics (Levi, 1990). Rock mass

discontinuities have been investigated for fractal behavior. Ghosh and Daemen (1993) applied the theory

of fractal geometry to describe the rock fracture networks from all four faces of a copper mine in

Arizona. Other investigators (Hestir et al., 1991) have observed scaling and self-similar behavior in

fracture networks. In a tangential effort, Kumar and Bodvarsson (1990) postulated a deterministic

representation of fracture roughness profiles based on the fractal dimension of geophysical surfaces. Based

on these observations, Martel et al. (1991) have proposed and developed fracture pattern generators using

self-similar Iterated Function system concepts.

Fractal patterns may be either self-similar (topologically identical at different scales), or

self-affine (topologically similar but anisotropically distorted at different scales). Fractal fracture patterns

can be generated in three ways:

* Utilize a recursive generation scheme which produces fracture patterns at one scale, then

superimposes them at different scales (with self-affine distortion if appropriate) to directly

produce a fractal pattern

* Generate fractures according to a process such as Levy-Flight which has been shown

mathematically to produce fractal patterns

* Generate fractures using nonfractal processes, then test the resulting patterns to determine

whether the resulting pattern is fractal

The Levy-Lee fractal fracture model utilizes the second of the above approaches, based upon

the Levy-Flight (Mandelbrot, 1985). The Levy-Flight process is a type of random walk, for which the

length L of each step is given by the probability function:

PLS[L > LS] = LD (2-30)

where D is the fractal mass dimension of the point field of fracture centers, and LS is the distance from

one fracture to the next for the previous step in the generation sequence. For D=0, the distribution of

the step length is uniform, such that there is no clustering or heterogeneity. For large D, there is a very

low probability of large steps, and therefore fractures are formed close to each other in concentrated

clusters. The Levy-Flight is a iD process for points on a line (Bartlett, 1975).
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2.4 APPLICATION AND VERIFICATION OF A
TWO-DIMENSIONAL FRACTURE NETWORK GENERATOR

A numerical code has been developed to generate 2D fracture networks consisting of horizontal
and vertical fractures. This network topology is not as restricting as it may seem since it is very much
consistent with fracture data observed at the ALTS and several pavements at Yucca Mountain, Nevada
(Yeh et al., 1988; Barton and Hsieh, 1989; Thornburg, 1990; Bagtzoglou, 1993). Figure 2-15 depicts
a conceptualization of how the fracture sets identified at the ALTS may look in 3D space, assuming that
all subvertical and subhorizontal fracture planes have been lumped under the vertical and horizontal
category, respectively. Therefore, if the fracture sets are to be observed and studied along vertical planes,
as is the case in hand, the adopted fracture network topology is applicable. Furthermore, this assumption
is supported by the findings of Wang and Narasimhan (1985) who studied fracture inclinations from
densely welded Topopah Spring tuff and classified them as: (i) 56 percent nearly vertical (75 to 90° dip),
and (ii) 44 percent nearly horizontal (0 to 250 dip). Wang and Narasimhan (1985) estimated that a
fracture density anisotropy of 1.33 exists between the vertical and horizontal directions.

The approach used to place the fractures in space is similar to the methodology used by
Sheridan (1992) for estimating the probability of occurrence of future volcanic dikes in the vicinity of
Yucca Mountain. Sheridan's model is based on a geometric approach that assumes the centers of the
volcanic dikes to be spatially distributed according to a bivariate Gaussian distribution. In a similar
fashion, the generator presented here distributes the fracture center locations following either a spatially
random or exponential distribution around a specified point within the domain. This point is called, in
this formulation, the centroid of the cluster of fractures. The distribution of fracture centers becomes a
Poisson process in the case of the exponential distribution. The clustering or development of spatial
structure of fracture centers is controlled by defining the centroid of the cluster of fractures to be either
fixed or randomly distributed in space. The number of fracture centers is determined based on a user-

* defined fracture density along the horizontal direction. The horizontal fracture density is specified as a
fraction of the total number of pixels (or computational cells). Anisotropy in fracture density can be
introduced by assigning the density of the vertical fractures as a fraction of the density of the horizontal
fractures. Obviously, when the fracture density is isotropic, this ratio is equal to one, and for every
fracture center, two orthogonal fractures exist creating a fracture feature with the shape of a cross. After
the center of a fracture has been set, the fractures get placed by determining their half-length in each
possible direction through sampling from an exponential distribution. This choice is corroborated by trace
length data presented by Barton and Hsieh (1989) who fitted power-law functions of the form f=aLb,
where f is the frequency, L is the trace length, and a and b are some fitting parameters. A power-law
distribution of this form is a strong indication of self-similarity and, therefore, analyses of such features
by recursive scale transformations are expected to prove extremely compatible. Anisotropic behavior can
be introduced also by choosing different means for the exponential distribution along the horizontal and
vertical directions, or by choosing the half-length in the vertical direction to be a fraction of the horizontal
fracture half-length. A schematic of the fracture generator flowchart is shown in Figure 2-16. The
generator also provides for the fractures to have uniform lengths. If the length of a fracture is greater than
the system length, it is assumed that the fracture is fully connecting the two opposite ends of the system.

The width of the fracture is assumed to be one pixel, and the length of the fracture is
represented as a row or column of pixels, where the pixels are square. Obviously, the aperture assigned
to the fracture is dependent on the resolution with which the domain has been discretized. What is
important to keep in mind is that all subsequent analyses can be considered dimensionless since by
changing the characteristic length of the domain (in this case the side of a square), all lengths and related
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Figure 2-15. Conceptualization of fracture set appearance at the ALTS

properties are scaled appropriately. In order to mimic large system behavior (i.e., reduce the effects of

finite domain size), the generator has been enhanced by a periodic boundary. This means that fractures

loop around and appear at the opposite face of the computational domain when they are intercepted by

a boundary. Provision has been made also for two parallel fractures to be separated from each other by

at least one pixel. However, two parallel fractures can connect at their tips, thus giving rise to

connectivity even when two fractures are not intersected. Thus, while sampling the center of fractures

from a specified distribution, provision is made to reject candidate fractures that are not at least one pixel

away from existing ones in every direction. This process of rejection of fractures was suspected of

violating the distributional assumptions of centers and, therefore, a variogram analysis was conducted in

a manner similar to the study by Hestir et al. (1989). No biasing of the generator was obvious from the

semivariogram plots, indicating that the distributional assumptions were honored for the following tests.

First, the generator produced a series of parallel fractures in the vertical direction within a

256x256 domain (Figure 2-17). The choice of parameters was such that the fracture centers and

associated half-lengths were sampled from an exponential distribution with a mean length of 50 length

units. Figure 2-18 depicts the calculated variogram in the horizontal and vertical directions. Since the

generated fracture pattern has no structure in the horizontal direction, the horizontal variogram is very

close to a pure nugget variogram. In contrast to this behavior, the vertical variogram exhibits structure,

and its range is approximately 100 length units, in close agreement with the prescribed mean length.
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Figure 2-16. Fracture network generator flowchart

II I

I III I

Figure 2-17. Set of vertical fractures used for network generator verification. Dimensions of the
bounding box are 256x256 length units.
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Figure 2-18. Horizontal (dashed) and vertical (solid) variograms for the fracture pattern of

Figure 2-17

Furthermore, the sill of the vertical variogram approaches, at large separation distances, the pure nugget

variance of the horizontal variogram, as it should. The results of Figure 2-18 are analyzed further by

plotting only the vertical variogram in Figure 2-19. Two theoretical variograms, an exponential and a

spherical, are fitted (by trial and error) to the variogram calculated numerically. It appears that the

spherical variogram model better matches the variogram calculated from the fracture pattern. This is in

agreement with the results by Hestir et al. (1989) for trace density and the results by Chiles (1989b) and

Chiles and de Marsily (1993) who fitted a cubic variogram for trace center number count.

The second test involved the generation of a fracture network consisting of horizontal and

vertical fractures, with centers sampled from an exponential distribution and half-lengths sampled from

two independent exponential distributions with mean length of 50 length units in the vertical and

horizontal directions. Figure 2-20 presents the trace length variogram for this fracture network, together

with the best fitted exponential and spherical theoretical models. Again, the spherical model appears to

be closer to the variogram calculated numerically. It should also be noted that the numerical variogram

exhibits a nugget effect approximately equal to 0.12, which is in very close agreement with the sill of the

variogram in Figure 2-18.

Finally, the fracture network generator is capable of superimposing the fracture sets on either

a homogeneous or a heterogeneous matrix background. In this way, the user may choose to analyze a

binary system or a fracture network superimposed on a stochastically generated matrix hydraulic property

field. Typical examples of complex, highly fractured, heterogeneous structures generated by the numerical

code discussed in this section are shown in Figures 2-21 and 2-22.
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Figure 2-21. Highly fractured, heterogeneous structures for a binary matrix-fracture system.
Dimensions of the bounding box are 512x512 length units.

Figure 2-22. Highly fractured, heterogeneous structures for a stochastic matrix-fracture system.
Dimensions of the bounding box are 256x256 length units.
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3 METHODS FOR ESTIMATING EFFECTIVE UNSATURATED
HYDRAULIC PROPERTIES

Fluid flow through fractured rock is a process that has importance for many areas of the geosciences,
ranging from groundwater hydrology, to nuclear waste disposal, to petroleum engineering. Of key

technical importance to these three fields is the detailed understanding of how fluids flow through
individual fractures and sets of fractures in rock (Pyrak-Nolte and Cook, 1988). One of the challenges

in modeling flow and transport in fractured rock is to account for the spatial variability in the physical

and chemical properties of naturally occurring porous media. In realistic applications, there is always

scarcity of data available for the precise description of a flow problem at any given scale. Given the fact
that there is always going to be some heterogeneity of natural media for which we cannot account, the

pertinent question is how to incorporate realism in models in the absence of adequate data and abundant
computational resources. Dykaar and Kitanidis (1993) proposed a general approach to address this issue.
Their approach employs spatial averaging of hydraulic parameters in some appropriate fashion, and moves

information from the local scale (the scale of large heterogeneity and parameter uncertainty) to the global

scale (the scale where the heterogeneity is smoothed out). This, and similar types of approaches, lumps
small-scale details into a few representative macroscopic parameters with the aspiration of preserving the

large-scale behavior of the system. As discussed in Chapter 1, effective property approaches provide great

computational savings, and their spatial support is consistent with the small number of field measurements
available. The effects of change in spatial support have been extensively studied by geostatisticians. These
efforts have primarily focused on additive properties, such as shale fractions and (by extension) porosity.
One disadvantage of the conventional geostatistical approach is that it leaves the mean of the property
distributions unchanged (Rautman and Robey, 1993). These approaches have also been criticized for their
failure to account for the anisotropic behavior of the relationship between saturation and effective
permeability (Bear et al., 1987). As a result, while it may be possible to establish effective constitutive
laws for background fracturing (Dershowitz, 1992) and lump the effects of numerous small fractures into

~ submodels, the effective continuum approach must be enhanced through the explicit incorporation of

w discrete geological features. These discrete geological features can be fracture zones or faults and control
the behavior of the flow system at scales larger than the fracturing.

The field of effective property calculations is not new and spans a great number of disciplines. Several
approaches and methods have been proposed and applied in the past. A comprehensive review of some

of these approaches can be found in the work of Durlofsky (1991). Notable examples are the works of
Journel et al. (1986), Desbarats (1987), and Deutsch (1987) who calculated effective permeabilities based

on the sand-shale ratio with the help of an empirical power-law. Other efforts include works on various
other types of averaging, such as arithmetic, geometric, harmonic, and areally-based (Warren and Price,

1961; Begg and King, 1985; Kasap and Lake, 1989), direct numerical simulations, and homogenization
approaches. One of the homogenization approaches discussed extensively in this work is the RSRG
method. In the following sections, a thorough, but not exhaustive, presentation of some relevant literature
is provided.

3.1 EFFECTIVE PROPERTY CALCULATIONS BASED
ON ADDITIVE VOLUME FRACTIONS

Perhaps the most widely known, at least in the hydrologic community, equivalent continuum

approach application is the work of Peters and KIavetter (1988). In their work, the fracture porosity, Of,

can be defined as the ratio of the fracture volume to the total bulk rock volume. The matrix porosity, Om,
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can be defined as the ratio of the volume of the voids in the matrix (excluding fracture void space) to the
volume of the matrix. A bulk equivalent porosity, ObI is then defined after Nitao (1988) as:

Bb = Of + (1 - 'arm (3-1)

The equivalent continuum approach is based on the assumption that the pressure head in the fractures and
the matrix are identical in a plane perpendicular to flow. The major points of the conceptual model by
Peters and Klavetter (1988) are summarized below:

* The saturated fracture conductivity is much larger than the adjacent matrix conductivity.
Thus, flow across the fracture is controlled by the adjacent matrix conductivity.
Consequently, the fracture conductivity for water movement across the fracture can be
replaced by the matrix conductivity.

* In a flow system at or near steady-state, if the flux in the unsaturated rock is less than the
value of the saturated conductivity of the matrix, then the water will flow only in the matrix.
In cases when the flux is greater than the saturated conductivity of the matrix, the matrix
will saturate, and the fractures (in addition to the matrix) will carry water.

* The more the fracture orientations become preferential, or consistent, the more this
conceptual model will suffer due to the lack of anisotropic characteristics.

The steady-state version of the flow equation can be integrated to obtain the following form of
Darcy's law:

-(Km,b + Kfb) V(k + z) = qm + qf = qtot (3-2)

Then, it can be written in terms of a composite-porosity material:

-K -V(( + z) = q, = q t (3-3)

where the subscript c refers to the composite-porosity material, which is equivalent to the fractured,
porous matrix system in terms of predicting the total fluxes and the pressure head field. The composite-
porosity material parameters are given by (Peters and Klavetter, 1988):

Kc Kmb + Kfb (34)

Given the saturation of the fracture, Sf, and matrix, Sm, the equivalent bulk saturation, Sb, can
be defined as:

Su - + S41 - FarM (3-5)

Of+ (1 - Farm

The weighting procedure of Klavetter and Peters (1986b) is used to obtain the equivalent bulk hydraulic
conductivity:

Kc = K,41 - 0 + Kf -f (3-6)
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If the formation is highly fractured and the matrix blocks are small, the pressure and/or
temperature within a matrix block will quickly equilibrate with the surrounding fractures (Wang and

Narasimhan, 1985; Pruess et al., 1990a). If the local thermodynamic equilibrium conditions are satisfied,

there is no need to separately calculate pressure/temperature values in the matrix and fractures. In this
composite-porosity and effective continuum model (Peters and Klavetter, 1988; Pruess et al., 1990b), a

fractured porous medium is represented by saturation and permeability functions which are arithmetic

averages of the properties at the fracture and matrix system. The arithmetic averages of permeabilities
are accurate for the special case of the flow in fractures being parallel to the flow in the matrix blocks.
Rasmussen et al. (1989) studied the nonparallel flow effects by simulating a vertical square region and

a cubic box region containing a fracture. The equivalent permeability was related to the fracture and

matrix permeability by arithmetic, harmonic, or geometric means, depending on the fracture orientation.

Rulon et al. (1986) and Rockhold et al. (1992) conducted simulations using the equivalent
continuum approach for a system analogous to Yucca Mountain, Nevada. The results by Rockhold et al.
(1992) suggest that fracture flow, as approximated by the equivalent continuum model, is unlikely to

occur at the level of the potential repository at recharge rates up to 4 mm/yr. Calculations, based on this
approach, are valid under the assumption that there are enough fractures of varied orientation to ensure
continuum behavior. A possible criticism is that, according to Pruess et al. (1990a), the continuum
approach will break down for processes involving rapid transients and for conditions of a very tight rock

matrix or large fracture spacing. Finally, the effective permeability or composite curves proposed by
Wang and Narasimhan (1986), Klavetter and Peters (1986), Peters and Kiavetter (1988), and Dudley et

al. (1988) have never been validated since no comparison with data has been reported to date (Loeven,
1993).

Extensive literature on the subject of effective properties exists in the field of heat conduction
and thermal materials. For example, a list of formulae useful in calculating thermal conductivity of a fibre
composite has been given by Chawla (1987). Parang et al. (1987) have studied heat conduction normal
to the axes of coolant tubes. Baker-Jarvis and Inguva (1985) have studied steady heat conduction in a
region containing inclusions. Hatta and Taya (1985) have extended Eshelby's (1957) equivalent inclusion
method in elasticity and determined the effective conductivity of a composite with highly conducting short
fibres randomly oriented within it. More recently, Muralidhar (1990) has numerically investigated the

thermal conductivity of a composite medium on a 2D square spatial domain. Two sides of the domain
were insulated, while the other two were subject to fixed temperature boundary conditions. Effective
conductivities were calculated for different patterns and numbers of inclusions in the form of circular
voids. Void volume fractions ranged up to 20 percent. The numerical results of this study were compared
to the rule of mixtures:

Ko = VKm + (1-V)Kf (3-7)

and to the empirical transverse conductivity given by (Chawla, 1987):
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Ko = (1 - V)Km Km (3-8)

1 - FV 1 _ Km

where fraction V of the medium has conductivity Km and fraction 1 - V has conductivity Kf. Based on
this analysis, Muralidhar concluded that the static equivalent conductivity of a composite region is
primarily a function of the percentage of inhomogeneities. It depends weakly on the pattern of distribution
and fineness of their size.

In similar efforts, Bergman (1982) showed that for a two-phase medium the effective
conductivity of the medium is bounded by the volume-weighted arithmetic mean conductivity, KA, from
above, and from below by the corresponding harmonic mean, KH:

KA = 1 - V + Va (3-9)

and

KH = [V+ 1-V]~ (3-10)

where proportion V of the medium has conductivity a and proportion 1-V has a unit conductivity. This
equation is the rule of mixtures result given by Chawla (1987). The proportion V is called the volume
fraction and, alternatively, is associated with the symbol 4.

In order to predict the effective properties of a composite material from classical or statistical
theories, we need to know not only the porosities and permeabilities of the various rock materials, but
also the exact geometries of the phases in the composite. This requires a complete statistical
characterization of the microstructure. Such a complete characterization, according to statistical theories,
requires an infinite set of multipoint correlation functions due to the random nature of the phase
geometries. The statistical correlation functions provide the microstructural information. The limited order
of correlation functions obtainable cannot provide accurate predictions of effective permeability for a wide
permeability contrast and arbitrary volume fraction of the phases. Nevertheless, given a limited amount
of information on the microstructure, improved lower and upper bounds are obtainable (Torquato, 1987).
The variational bounds tell us what rigorous statement can be made about the effective properties given
that only certain statistical information about the distribution of the phase is available. The bounds are
useful in the sense that they enable one to test the merits of both theory and experiment, and occasionally,
one bound can provide a good estimate of effective properties for a large class of media. As successively
more detailed microstructural information (statistical correlation functions of high orders) is incorporated,
the separation between the bounds can be systematically decreased.

The first order bounds for effective conductivity of a composite, comprising two media of
conductivities k, and k2 due to Weiner (see Torquato, 1987) are:
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KL Ke KU (Ku(3-1 1)

where

KL = <K l> = k1k2 (3-12)

4k1 + (1 - ()k2

Ku = <(K = k 1O + k 2( - X) (3-13)

The lower and upper bounds (KL and Ku) grossly underestimate and overestimate the effective
properties (Ke), respectively. The anisotropic parallel arrangement of the phases relative to the direction
of fluid flow represents an upper limit for the permeability of the two-phase system. This is given by the
porosity-weighted arithmetic mean of the two permeabilities. The anisotropic series arrangement of the
phases represents the lower limit for the conductivity of any possible geometrical configuration of the two
phases. This is given by the harmonic mean of the two permeabilities. An alternative is the weighted
geometric mean for better prediction of the effective permeabilities:

Ke = kf 1 +) 4 (3-14)

Hashin and Shtrikman (1962) studied effective magnetic permeabilities using a variational
approach. For the case of a two-phase medium, they obtained improved bounds as compared with those
in the equations above. Their upper (Ku) and lower (KL) bounds are, respectively:

V
KU=l1 + 1 1 - V (3-15)

a- 1 2

and

KL = x + 1 V (3-16)

1 -a 2CY

where V and c were described previously.

Results obtained in the study of thermal conductivities are equally valid for the problem of
groundwater flow through fractured rocks. This extension is possible by identifying temperature with
pressure, conductivity with permeability, and thermal capacity with storage capacity. Dagan (1979)
applied a self-consistent approach in a groundwater flow application and derived bounds on the effective
permeability of isotropic systems. The determination of the effective hydraulic conductivity of the flow
domain is derived from knowledge of the probability density function of the (assumed random) hydraulic
conductivity. The following result from Dagan's work is relevant here:
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K 2 [I k+ k 1 (3-17)

where K* is the effective conductivity of the medium, f is the probability density function, and the range

of integration is over the domain of f. This equation is based on the assumption of an unbounded, 2D

spatial domain over which k can vary randomly. Dagan's results provided narrower bounds than those

previously available. Kirkpatrick (1973) provides an alternative derivation of this equation. Kirkpatrick

advocated a power averaging for random geometric mixtures of materials which falls between the

arithmetic and harmonic averaging for materials with constant conductivities. Kirkpatrick presented the

following transcendental equation for approximating the effective conductivity of a random mesh of

resistors:

+00 TK F -K I XK

(K K) ct K = O (3-18)
i (c/2 - 1)K, + KdK=0318

where Ke is the effective conductivity, 1(K) is the probability density function for the conductivity, and

c is the connectivity of the resistor mesh. For a continuous region, the connectivity is twice the number

of dimensions. This allows use of this averaging equation for 1, 2, and 3D continuum problems. In

deriving the above equation, the assumption that the medium is of infinite extent and has the various

conductivity levels distributed randomly was made. When these conditions are met, the equation has been

demonstrated to be reasonably accurate (Kirkpatrick, 1973; Burganos and Sotirchos, 1987).

In summary, and regardless of the exact method with which the effective conductivity is

calculated, K* or Ke gives the effective conductivity of the two-phase medium with the bounds:

KH 5 KL<K*•KU<KA (3-19)

where KL and Ku are the improved bounds by Hashin and Shtrikman (1962). Finally, the conclusion

reached by Muralidhar (1990) that the static effective conductivity can be used for unsteady problems

corresponds with a similar conclusion for unbounded groundwater flow domains reached by Dagan

(1979).

A similar effort by Zimmerman (1992) studied the effective hydraulic conductivity of a 2D

porous medium that contains elliptical inhomogeneities. The background medium has permeability k0,

whereas the inhomogeneities have permeability ki. The shape of the inhomogeneities is quantified by their

aspect ratio which can take on values between 0 and 1. The elliptical inhomogeneities are assumed to be

randomly oriented, so that the effective conductivity is isotropic. Zimmerman used Maxwell's effective

medium theory to find the overall conductivity. Results are obtained as a function of the area fraction of

the inhomogeneities, c, for arbitrary inhomogeneity ratios kilk 0, and all aspect ratios. The effective

conductivity is predicted to vary from k0 to ki as the area fraction of the elliptical inhomogeneities varies

from 0 to 1. In the limiting cases where ki=O or ki= c, the theory predicts percolation-like behavior,

in the sense that the effective conductivity reaches ki at some value c*< 1. The critical area fraction c*

is found to depend on the aspect ratio, but the percolation exponent does not. Except in the region near
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the percolation limit, the predictions are in agreement with experimental results which measured the
electrical conductivity of a metallic sheet perforated with thin elliptical slits.

In other notable efforts, Warren and Price (1961) considered 3D systems with random
W permeabilities without any spatial structure, and showed that the geometric mean is a reasonable average

property for such systems. Begg and King (1985) conducted a similar study for flow regions with
discontinuous flow barriers and expressed the effective permeabilities as a function of shale size and shale
volume fractions. Desbarats (1987) studied sand-shale sequences with both correlated and uncorrelated
permeability fields. Using a distribution of permeability values, Johnson and Greenkorn (1962) found that
when their data were approximately normally distributed arithmetic averaging gave the closest estimate
(within 3.5 percent) to the well test permeability.

One other frequently used method to estimate the effective properties is geometric averaging.
Although it has been widely used to predict effective permeability, there are some problems associated
with it, and whether the geometric mean is the appropriate quantity to be estimated has been questioned
in the past, since for any of the permeability values approaching zero it will lead to erroneous results.
Moreover, the geometric mean does not exist for discontinuous distributions for which there is a non-zero
probability of zero values occurring. This, of course, is seldom the situation for permeability of geologic
materials. Although, theoretically, given a sufficiently large head or area of flow, most geologic material
would permit some fluid flow, from the numerical point of view values close to zero entail some sort of
bias in the average property. Percolation theory and numerical simulation have suggested that even if
there are regions of zero permeabilities, the overall permeability can still be non-zero. On the other hand,
results from the works of Matheron (1967), Bakr et al. (1978), and Dagan (1979; 1981) indicate that the
geometric mean applies when permeabilities are lognormally distributed with small variances and the flow
domain is 2D. Approximate corrections to the geometric averaging are also available for its application
in iD and 3D (Gutjahr et al., 1978).

3.2 EFFECTIVE PROPERTY CALCULATIONS BASED
ON DIRECT NUMERICAL SIMULATIONS

The general formulation for numerical procedures used for the determination of effective
properties for heterogeneous reservoirs involves a continuity equation for a single-phase, incompressible
flow through porous media. This equation, given in dimensionless form, can be represented as:

V- (K- Vp) = 0 (3-20)

where p is pressure potential and K is the permeability tensor embodying the variation at many length
scales. In this equation, the gravity terms are neglected for clarity reasons. Our intent here is to replace
the above equation with an equation of identical form but with K being replaced with an effective
permeability tensor, designated by K*, where K* now varies on a coarser (simulation grid block) scale.
From the numerical simulation point of view, one would wish to decrease the number of grid blocks to
save computation time. The intent, therefore, is to replace the above equation with an equation of
identical form in which K is replaced with an effective permeability tensor, designated K*, that is,

V - (K* - Vp) = 0 (3-21)

where K* now varies on a coarse (simulation grid block scale). Each grid block is assumed to be
homogeneous and perfectly defined by its characteristics. The properties input to the model must therefore

account for the heterogeneities, as well as the fluid distribution at any scale smaller than the grid block
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size. These properties are generally called pseudo functions. They can be used to reduce the dimension
of the problem or to reduce the number of grid blocks in a numerical model (Ahmadi et al., 1990).

In the direct numerical simulation approach, as the flow equation is (typically) solved using a
block-centered finite difference scheme, the interface permeability rather than the block permeability will
be sought. The effective permeability is determined by equating the integrated flux from the fine scale
solution with those which would be obtained from the global pressure gradient and the effective
permeability tensor. Each bond or each site is assigned a permeability value. One can also find the global
permeability directly through a transfer matrix calculation. A notable example of this approach is the
work of Gomez-Hernandez (1990) and Gomez-Hernandez and Journel (1990). In their numerical solution,
the flow equation was solved at the grid block and subgrid block scales under the following two imposed
conditions: (i) that the pressure from the grid block scale simulation should be equal to the storativity-
weighted sum of subgrid block scale pressures within the grid block scale block, and (ii) that the flux at
the interface between two nodes at the grid block scale is equal to the sum of the fluxes from the subgrid
blocks. These investigators used a least square approach based on the solution of flow for different
boundary conditions and claim that this block permeability reproduced better total fluxes, especially in
the direction orthogonal to the elongation of the heterogeneities. In similar efforts, Huppler (1970) and
Saez et al. (1989) employed direct numerical simulations to study the effective homogeneous behavior
of heterogeneous porous media.

Several methods are used to calculate equivalent conductivities for a numerical simulation
(Durlofsky, 1991). The essential difference between these methods is the nature of the boundary
conditions specified on the subdomains, which is of particular interest when calculating off diagonal terms
of the conductivity tensor. However, as the primitive fields are isotropic, the off-diagonal terms are
expected to be insignificant. Beckie et al. (1994) showed that the x and y components of K exhibit only
very weak and spatially random anisotropy. A comparison of their numerically determined coarse grid
block equivalent conductivities to those found using the renormalization strategy of King (1989) yielded
almost indistinguishable results.

Furmahski (1992) studied the macroscopic thermal behavior of heterogeneous materials using
the ensemble averaging technique. The nonlocal constitutive relations for heat conduction were derived
and found to relate the ensemble averaged heat flux and energy density to the ensemble averaged
temperature of the medium. All the effective properties appearing in the relations were defined with the
help of microstructure functions. Furmahski's results showed that an effective parameter approach is a
valid resolved-scale model when there exists a separation between the grid and subgrid scales. The
existence of a local resolved-scale equation is guaranteed if the subgrid scale fluctuations are much
smaller than the resolved-scale variation (Auriault, 1991; Beckie et al., 1994). Eaton et al. (1991) studied
flow through nonhomogeneous porous media and, although the material properties and boundary
conditions used in this study resulted in nonlinear solutions, they compared these results with averaging
methods for the linear case.

Rautman and Robey (1993) discuss various issues of numerical computation of the effective
permeability of a limited number of block scale cells positioned within a large microscale simulation
conditioned to existing well data. The effective permeabilities of a number of such block scale cells are
computed, and the variograms and cross variograms for the (exhaustive) point values and (sparser) block
values can be computed. Once the point-to-block correlation structure has been approximated, it is a
relatively simple matter to directly simulate a large field of block values conditioned to data measured
on the smaller scale. Upscaling flow properties has serious difficulty when applied to Yucca Mountain
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since it appears unlikely that the effective permeability of tuff is related to the proportion of welded and

nonwelded material. The direct simulation of block scale effective permeabilities could be used at Yucca

Mountain in certain limited instances. However, serious difficulties exist in performing such a task since

the Yucca Mountain problem is 3D and multilayered (Rautman and Flint, 1992). In addition, a major

focus within the Yucca Mountain project is on assessing uncertainty, which implies that numerous

realizations must be produced, scaled up, and evaluated.

Rautman and Robey introduced an adaptive grid algorithm based on concepts originally

described by Garcia et al. (1990). They construct a mesh covering the area (or volume) of interest, for

which the sides of each cell are conceptually and mathematically represented as springs with an

appropriate coefficient of elasticity. By adjusting the coefficients of elasticity in a manner proportional

to some measure of heterogeneity of the discretized cells, it is possible to have the spring sides of the

cells expand or contract to minimize some aspect of that heterogeneity. The effect of this algorithm is that

the final grid adapts to follow geological features reflected in the underlying geostatistical simulation of

a material property, and the individual cells are as homogeneous as possible. Finally, Kasap and Lake

(1989) proposed and applied an analytical technique that essentially provides the ability to calculate the

arithmetic and harmonic means for layered systems comprising full tensorial permeabilities. Their method

is based on a parallel and series combination at a local scale which is subsequently rotated to arrive at

tensorial permeabilities from the orientations of these layers. They validated their method using a finite

element numerical simulator which models permeability discontinuities explicitly.

3.3 EFFECTIVE PROPERTY CALCULATIONS BASED ON
HOMOGENIZATION AND RENORMALIZATION METHODS

Phenomenological scaling laws are usually considered adequate to provide quantitative means

for organizing data, and thereby allow some sense of order or coherence to be brought to a complex

natural system. The response of any such complex system to a change in scale typically reflects some

deep underlying features that are often independent of its detailed dynamics. Generally speaking, scaling

up from the small to the large is usually accompanied by a change from simplicity to complexity. This

occurs while maintaining certain fundamental elements of the system invariants or conservation laws.

For example, when considering double-conductivity media, the phenomenological reasoning is

characterized by the introduction of one temperature field for each constituent (Rubinstein, 1948). These

temperatures are defined at a macroscopic scale, directly, and the description is assumed to be continuous.

Because of the two different temperatures, a heat flux between the two constituents appears and is given

by Auriault and Royer (1992) as:

1 = a(T1 - T2) (3-22)

where a is a negative constant and denotes the transfer coefficient expressed in Wm 3 K-1 , and T1 and

T2 are temperatures. Consequently, 42 characterizes the heat transfer from medium 1 to medium 2 and

is written:

02=-+1 (3-23)

In contrast to the phenomenological approaches, homogenization methods are based on the

passage from the microscopic description to the macroscopic one. The main idea of these methods is to
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define, if possible, a fictitious homogeneous medium that will be referred to as the homogeneous medium
or the equivalent macroscopic medium. It will behave as the composite medium when submitted to the
same external constraints. The description of this medium must be intrinsic to the material and the
phenomenon considered. In particular, it should not depend on the macroscopic boundary conditions. An
effective macroscopic description for transient heat conduction in periodic composites has already been
derived by Auriault (1983).

Auriault and Royer (1992) have investigated the heat transfer process in double-conductivity
media by both phenomenological and homogenization approaches. They were critical of the former
because it leads to a description governed by the temperature of the most conductive constituent.
Moreover, the conductivity of the less conductive constituent is neglected and is not taken into account
in the macroscopic model, and the corresponding temperature field has no real physical interpretation.
They implemented a homogenization process, first proposed by Auriault (1991), and compared the two
approaches.

Other methods of calculation of effective properties for periodic or random structures, also
called homogenization techniques, are well documented. In the case of probabilistic models, only linear
constitutive behavior (like Darcy's law) is fully studied. A possible paradigmatic structure for discussing
some of these methods and associated scaling questions within a general framework is one that has arisen
in the context of understanding scaling phenomena in quantum field theory and statistical physics. One
specific analytic technique developed there is called the Renormalization Group (RG). It is a rather
powerful and general one, and it has potentially important applications in areas of science other than that
where it was first applied. It has a precise formulation and, consequently, precise quantitative statements
concerning scaling in both elementary particle physics and phase transition phenomena in statistical
mechanics. For example, anomalous dimensions and the consequent power-law behavior that appear in
this context are quite analogous to fractal dimensions that occur, for example, in classical complex
systems. In a practical application of the RG approach, Abu-Elbashar et al. (1990) assigned permeability
values at each node proportional to the net-to-gross thickness of the layer as observed from well data. By
using the RG formalism, as introduced by King (1989), they claim to have obtained good results.
However, their effort seems limiting due to the alignment of the anisotropy in the flow direction only and
the use of a rather high to medium conductivity permeability range. In statistical physics, one typically
assumes no spatial correlations among the local permeabilities (i.e., fully random systems). The issue of
spatial anisotropy also has not been addressed in detail by these authors. In addition, these studies have
obtained effective permeabilities by averaging over an ensemble of systems in the limit of infinite size.

One of the advantages of the RG-based approaches is that they compare very favorably to direct
numerical simulations in terms of computational requirements. The time for direct calculation scales with
the size of the domain to a power normally between 2 and 3. Contrary to that, the RG algorithm scales
linearly with the size of the domain. Aharony et al. (1991) obtained results in 2D and 3D domains with
accuracy in the range of 5 percent or better, irrespective of anisotropy or correlation. Further details on
the RG algorithm, its implementation, and computational savings can be found in Chapter 4 of this report.

3.4 EFFECTIVE PROPERTY CALCULATIONS BASED ON
POWER AVERAGING

Many equations have been proposed to find average conductivities that fall between the limiting
cases of arithmetic and harmonic averaging (Journel et al., 1986). Some empirical approaches derive
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estimates of the effective properties by averaging the point values of the coefficient after an appropriate
transformation (such as a power law); this kind of averaging has no theoretical foundation, except in the
case of log-symmetrical 2D media where the geometric consideration is exact (Matheron, 1967). The
main limitation of these methods is that the above developments diverge for a zero or infinite hydraulic
conductivity. In these conditions, other techniques are available like the self-consistent method.

Gomez-Hernandez and Journel (1990) have proposed a numerical averaging technique from
point-to-block permeabilities accounting for the tensorial character of permeability. In the power
averaging method, the vertical and horizontal block permeabilities are identified in an elaborate way to
two different power averages (or p-norms) of the core values (Deutsch, 1989). Although the numerical
simulation method is considered to be accurate in obtaining effective properties, there are questions raised
about its validity. Begg et al. (1989) point out that such a technique would fail in the case of large
heterogeneities of the order of magnitude of the block size. The block permeabilities thus obtained are
dependent on the boundary conditions needed to solve from within each block. Gomez-Hernandez (1990)
points out that this is the case because the block permeabilities are not intrinsic to the internal distribution
of core values (i.e., known permeabilities assigned to the smallest grid block) even when these core
values are exhaustively known. It is impossible to assign block permeability that will be valid for any
boundary condition. However, from the analytical solution of simple 2D cases by Kitanidis (1990), it can
be inferred that if the range of the fine-scale permeability distribution covariance is finite, then there will
be a minimum block size beyond which the block permeability will become independent of the boundary
conditions needed to obtain it.

A statistical continuum approach was used by Ababou and Yeh (1992) to investigate effective
flow behavior in heterogeneous, unsaturated porous media. At small scales, the constitutive relation
between hydraulic conductivity and suction head is represented by a nonlinear function with two cross-

correlated (with correlation coefficient given by p) random field parameters, namely the saturated log-
conductivity and the logarithm of the moisture dispersivity length scale or inverse slope of unsaturated
conductivity. A probabilistic analysis of the random set of conductivity curves reveals the existence of

a fuzzy cluster of crossing points centered around suction #=i0o. An upper bound conductivity curve is
also identified, which decreases more smoothly with suction than any local curve. The analytical results
are compared to perturbation solutions of the random flow equations, and checked against direct
numerical simulations for periodic or random layers with uncorrelated or cross-correlated parameters.

It turns out that the envelope curve K8up(4') behaves like a power law rather than an exponential function,

that is it decreases less steeply as suction increases. Note that Ksup is a scalar quantity which does not
distinguish vertical and horizontal flow. It could be used, however, as an alternative to directional

effective conductivities for predictions of contaminant transport. In the special case p=1, there exists an
exact deterministic upper bound to the random set of conductivity curves. The highest density point on
the upper-bound conductivity curve occurs at the same critical suction that maximizes the density of
crossing points.

Finally, in the more general case of imperfect correlation, 0 p < 1, there is no longer an exact

upper-bound conductivity curve, except asymptotically as p-.l. Nonetheless, if the correlation is
significant, an approximate or fuzzy upper bound exists in some statistical sense. The general expression
of the fuzzy upper-bound conductivity curve, or upper-envelope curve, is given by:
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K (O) = KG exp I F pa AAl (3-24)

_PCA ~P PAJ

where KG is the geometric mean of conductivity. This expression reduces to the crisp curve in the case
of perfect cross-correlation, as it should. Note again that the upper-envelope conductivity-suction curve
is a power law, in contrast with the postulated exponential form of the local conductivity-suction curves.
The crispness of the upper envelope degrades as the coefficient of correlation decreases from p=+l to

p=O.

An analytical model proposed by Ababou (1990, 1993) gives the components of a macro-scale

conductivity tensor in terms of the micro-scale conductivity field K(xl,x 2,x 3), under certain conditions
of randomness, statistical homogeneity, and statistical anisotropy. The proposed relation is empirical,
although specialized forms of it are confirmed by other, more fundamental results, including: (i) exact
bounds, (ii) exact solutions in special cases involving lower dimensionality, statistical isotropy, symmetric
distributions, and binary distributions, and (iii) approximate analytical solutions based on linearization
and/or perturbation of the governing equations.

Underlying this model is the assumption that spatial variability can be represented by a random
function of space. Imperfectly stratified and anisotropic structures are described by means of directional
fluctuation scales or correlation scales, while other features such as degree of variability, bimodality, etc.,
are conveyed by a probability distribution. The dimensionality of the flow system is also an important
factor; therefore, the general case of a D-dimensional flow system will be considered (D= 1, 2, or 3).
The proposed model, then, postulates that effective conductivity is a second rank symmetric tensor and
expresses the principal components of this tensor by means of a power-average operator:

kii = <KPi> Pi (i = 1, ... , D) (3-25)

where the angular brackets < > designate the operation of averaging. In this equation, the pi values are
directional averaging exponents. They are expressed in terms of the directional correlation lengths l, as
follows:

Pi = 1 - 2 l (i = 1, ... , D) (3-26)
D1i~

where 1H is the D-dimensional harmonic mean fluctuation scale:

H 1 iD I 1] (3-27)

Note that the averaging exponents are constrained to lie within the interval [-1, + 11, and that
they sum to D-2. The above equations give an analytical relation for the D-dimensional effective
conductivity tensor in terms of the single-point probability distribution, the principal directions, and the
directional fluctuation scales of the micro-scale log-conductivity field. Note that the micro-scale data
required for this implementation are all of a statistical nature. For technical reasons, the statistics of log-
conductivity rather than conductivity are preferred.
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The power-average effective conductivity tensor can be expressed in closed form for several
common types of log-conductivity distributions, such as Gaussian and binary. In the case of a Gaussian
medium with normally distributed In K, applying the equations given above leads to:

2~~~~~~~~~~~~~(-8*i = KG exp a I - 2 1l (i = 1 ... , D) (3-28)

2where ay is the In K variance, and KG is the geometric mean conductivity. This relation was initially

developed by Ababou (1988) in the equivalent form:

kii = (KA) (KH) 1 (i i1, ... , D) (3-29)

where ai=(D-lHIHi)ID, and KA and KH represent the arithmetic and harmonic mean conductivities,
respectively.

Another case of interest is that of a binary medium comprising conductive phases a and S3,

present in the proportions (V) and (1- V), respectively. For instance, phase a could be a sandstone
matrix, and phase j6 might be a set of shale lenses or shale clast inclusions (Desbarats, 1987; Bachu and
Cuthiell, 1990). The conductivity distribution of such a composite medium is of the form:

Prob {K(x1, X2, X3) = K.} = V (3-30)

Prob {K(x1, X2, X3) = K,} = 1 - V

* As before, it is assumed, as a first approximation, that the spatial anisotropy of the random
structure can be defined with three fluctuation scales 11,12,13. Then the equation for the binary
distribution becomes:

kii ={VK'i + (I - V)KO"} (i = 1, ... , D) (3-31)

with averaging powers (Pi) given previously. In the case of a 3D isotropic binary medium, let D=3, and

11=k=13- This yields pi=13(i=1,2,3,). In the case of a 2D isotropic binary medium, let 11=12 for

horizontal isotropy, and D=2 for restriction to 2D space, or equivalently D=3 with 135+oO for 2D

horizontal flow through a vertically homogeneous medium. Either case yields po-O for i=1 and 2.
Inserting the equation above and using Taylor series expansions leads to:

kii = (K.)V(KO)lV (i = 1, 2) (3-32)

where p represents the concentration of phase a and 1-p is the concentration of phase (3. In another
effort, Berkowitz and Clemo (1992) showed that effective parameter laws concerning medium
connectivity, especially with regard to fractured formations, can be applied and, therefore, power-law
relationships can characterize properties of disordered media.
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Perturbation techniques were applied by Gelhar and Axness (1983) to determine the effective
permeability in porous media with statistically anisotropic permeability fields and small permeability
variances. Similar yet more sophisticated efforts are the effective unsaturated conductivity models
proposed by Yeh et al. (1985 a,b,c), Mantoglou and Gelhar (1987), and Ababou and Yeh (1992). They
all share the following features:

* They are based on a statistical continuum representation of the heterogeneous porous medium
(without explicit fracturing so far)

* They can be expressed in closed form in some cases, and the most tractable results are
obtained when the local conductivity is an exponential function of pressure (Gardner model)

* They can incorporate cross-correlations that are known to occur among material properties,
particularly between saturated conductivity and other parameters indicative of pore size
distribution, such as capillary length scale and moisture dispersivity, the latter being a length
scale equal to the inverse slope of the log-conductivity curve

* They can incorporate the anisotropic structure of the medium in such a way that the resulting
conductivity has an anisotropy ratio that is pressure-dependent

The Mantoglou-Gelhar and Yeh (MGY) work reduces to specializations of essentially one unique
effective model. This model is based on solutions of linearized and perturbed unsaturated flow equations
and on ensemble averaging for defining the effective conductivity. Ababou and Yeh (1992) has proposed
a model based directly on a more general kind of ensemble averaging, namely power averaging of the
local conductivity curves. It yields closed-form results analogous, but not identical, to the MGY model.
The behavior of the conductivity anisotropy ratios given by the MGY and the proposed models are
identical in certain cases. While this model is not restricted to exponential (Gardner) curves for local

conductivity K(h,x), the results are simpler with this assumption. A method for extending the results

from the Gardner curves to any other type of K(h,x) curve will be given later where ,=-h equals
suction head. Briefly, the model can be expressed as follows in the case of unimodal (lognormal)
statistical parameters:

Kpi(*) = KG exp [(Ai 2 +Bi*+C)]

= aG#

The values for Ai, Bi, and Ciare given by:
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2 2Ai = Pia2Ga

Bi = -2aG(l + PiPgaaf) (3-34)

=2
Ci = Piaf,

Here, pi is the power of averaging for direction Xi; t is a dimensionless suction head;aG

is the geometric mean of a(x), the slope of log-conductivity [a In K(h,x)/ah]; a, is the standard

deviation of a(x) = Ina(x); af is the standard deviation of (x) = In Kj(x), the logarithm of saturated

conductivity; and p is the correlation coefficient between random fields a(x) and Ax).

The MGY model is of the same form as Eq. (3-33), but with different expressions for the

coefficients Ai, Bi, and Ci. The expressions for the X(t*) and Kt,(*) can be given by:

kxi") = KG exp [2(Ax t2 + Bx * + Cx)]

(3-35)

tzz(*) = KG exp [.(Az 1,2 + Bz* + CZ)]

22G a, a af 2 a 1 C f+ 2 praoyaG -A

where Ax= e+rGK Bx 2aG[1 P+aGf ai+aGAJ Cx 1-+aGX A

Bz=-(Bx+4 aG), and Cz=-Cx.

Equating Kp and K. or Kp and kzz term by term gives, respectively, the values of p that
would make the coefficients of the two approaches coincide. As will be seen, it is not always possible
to make all the coefficients coincide (quadratic plus linear plus constant terms). Cases for which the

stochastic perturbation approach yields power-averages for k. and kzz are identified in Table 3-1. For

p = 0, the identification of the two approaches leads to the equivalences presented in Table 3-2.

Comparisons of predicted effective conductivities with direct numerical simulations do not
clearly give the advantage to one or the other model; this provisional conclusion is based on work done
in Ababou and Yeh (1992). However, their model appears more flexible in two respects:

* It admits free parameters that can be adjusted empirically

* It may be extended to handle explicitly fractured media
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The free parameters of this model correspond to the exponent, or averaging power pi, which can be

different horizontally and vertically. For a horizontally stratified medium, assuming p=-+ 1 horizontally

and pz=- 1 vertically, the model yields arithmetic and harmonic means of nonlinear K(h, x) curves.

Table 3-1. Equivalence between the stochastic perturbation and power average approaches (p • 0)

Table 3-2. Equivalence between the stochastic perturbation and power average approaches (p = 0)

E ~ ~P=o t. I kzA 1 PZ= pX
P_=l'aGX

B px-. +oo or pz-.-oo or

2 aGX - ° and 2 GX - ° and

a+ CC< Oara |r l+aGX
I p~,I < oo arbitrary IP < oo arbitrary

C l~~~~x +aGX

The model by Ababou and Yeh (1992) may be extended to also treat, more explicitly, the case

of fractured media. This extension is possible because it is semi-empirical and, unlike the MGY model,

does not require analytical treatment of complicated flow equations. In that respect, the Ababou model

can be made to resemble the familiar effective continuum approximation of Pruess et al. (1990a,b). The

model by Pruess et al. is totally empirical and gives an isotropic double-humped conductivity curve for
a matrix-fracture composite. This model has been criticized for its inability to represent anisotropic

behavior, particularly pressure-dependent anisotropy. Indeed, the anisotropic behavior of flow may be
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highly pressure-dependent and therefore moisture-dependent, as unsaturated flow can potentially switch
from horizontal paths (matrix strata) to vertical paths (fractures) (Ababou, 1991).

One way to explicitly account for the influence of fractures in this model may be to introduce
a bimodal (binary) distribution rather than lognormal distributions and to develop the consequences in
terms of effective conductivity. The result should account for fracture-induced anisotropy, as well as
porous matrix anisotropy. A rather simplified way of picturing the expected result is as follows: provided

the fractures and strata are both more or less aligned with the same coordinate system Xi, there should

be two different double-humped directional conductivity curves, one for XI (horizontal) and the other

for X2 (vertical). This model would, therefore, share some features in common with the less realistic

Pruess et al. (1990a,b) model.

Finally, the following extension is proposed here for the case where local conductivity curves K(h, x)
do not follow the exponential Gardner model. For any fixed point in space, assume that the conductivity

curve is given by an arbitrary function denoted K(+). Let:

a(,;, = _ a In K(\b)

(3-36)

Ko (') = K3 expj | [C1()-C(W1)] d }6
Thus, any function K(*) can be expressed as:

K(+) = Ko (0)exp[-a(J) 0] (3-37)

If K0 (O)and ca(+) are smooth and slowly varying functions of 4, relations obtained using the

Gardner conductivity function can be extrapolated to the desired K(V4) function by holding constant the

suction-dependent Ko and a when computing statistical quantities. Thus, in the present and MGY

models, let KG become KG(#), IaG become aG(C), etc. Possible candidates to implement this idea are
the Brooks-Corey conductivity curve and the Mualem-van Genuchten conductivity curve, among others.
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4 SEMI-ANALYTICAL PREDICTION OF EFFECTIVE
HYDRAULIC PROPERTIES WITH THE REAL SPACE

RENORMALIZATION GROUP METHOD

Scaling effects arise when the scale of measurements differs from the scale of application. Scale effects
arise as the relative importance of different flow and transport processes shifts where the scale of analysis
changes. As Tidwell et al. (1993) pointed out, scaling models are designed to provide a means of
transforming heterogeneous small-scale data to a larger scale in terms of effective properties, while
preserving the signature of small-scale flow and transport processes and media heterogeneity. An effective
hydraulic conductivity is a conductivity that preserves the fluid flux-potential gradient quotient between
a heterogeneous block and an equivalent (same geometry and fluid viscosity) homogeneous block (Kasap
and Lake, 1990). The scaling (averaging) process for moving from a smaller scale to a larger scale is
particularly complicated for properties such as saturated and unsaturated conductivities that are
nonadditive. A discussion of various techniques for the calculation of effective properties was presented
in Chapter 3.

David et al. (1990) and Wang (1991) pointed out that systems with nearly narrow distributions can be
treated with the effective medium approximation, whereas systems with broad distributions must be
treated with different types of analysis. In this chapter we present, in more detail, a semi-analytical
method for the calculation of effective properties, namely the RSRG method. The RSRG method works
equally well for any fraction of the dispersed phase (e.g., fractures), especially near the percolation
threshold, defined as the minimum volume fraction of the conducting component at which a
conductor/nonconductor binary mixture allows conduction. Owing to the sharp contrast in the fracture
and matrix hydraulic conductivity, percolation-type behavior is expected in an unsaturated fracture/matrix
system.

Various aspects of the percolation theory have been extensively reviewed by Kirkpatrick (1973) and
Ferrand et al. (1990). In the percolation problem, a binary conductor-nonconductor system is considered,
usually on a lattice in which either bonds (or sites) are occupied (conductors) or are vacant (insulators).
The objective of a percolation problem is to study the size distribution of clusters of connected bonds or
sites (cluster size distribution), and the probability that the flow injected at one arbitrary site finds an
infinite conducting pathway (percolation probability). Three kinds of percolation problems have been
studied: site percolation, bond percolation, and site-bond percolation. In the pure site percolation
problem, the conductors are randomly distributed on sites of a lattice. In the bond percolation problem,
the vertices are all occupied by the particles and the bonds may be present or absent. In the site-bond
percolation problem, the vertices may or may not be occupied and also the bonds may or may not be
present.

In a percolation problem, the local permeability has one of two values: 1 with probability p and 0 with
probability (1 -p) or vice versa (Chandler et al., 1982). The average macroscopic permeability varies as
p decreases from 1 to 0. The permeability of the macroscopic system vanishes well before p reaches 0
if the microscopic permeability distribution is isotropic. The percolation-conduction problem is of interest
because the majority of the methods discussed here were first implemented for such problems before
being extended to determine effective properties for a distribution of conductances. Moreover, the
behavior of the field near the percolation threshold proves to be an extreme test for any new method.
Percolation-theory-based approaches are well explored either for fully random systems or for systems
with very small correlation lengths.
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For the fluid flow problem, the porous medium can be discretized into smaller units to adequately
describe the microscopic structural details. Various rock conductivities can be represented as components
in the resistor network according to their locations and conductances, where all resistors conduct to a
lesser or greater degree. In a typical arrangement, the centers of various units can be put at the nodes and
the communication between different units can be represented by resistors or conductors. Jerauld and
Salter (1990) have pointed out that as long as the average coordination number of the disordered network
is the same as the average coordination number of the continuum under consideration, for all practical
purposes the two systems are indistinguishable from each other. The following is a brief description of
the background of the RSRG method and its implementation in its simplest form.

4.1 REAL SPACE RENORMALIZATION GROUP METHOD

The RG method (Wilson and Kogut, 1974) is a statistical mechanics approach originally
developed to study the phase transition behavior of fluids near a critical point. This method involves a
recursive scale transformation process in which, while going from the smallest to the largest length scale,
the small-scale fluctuations are integrated and only the important features that contribute to the
macroscopic behavior are preserved. This method is suitable for dealing with any problem in which
complex microscopic effects underlie macroscopic properties (i.e., a problem that involves many length
scales). The method has largely been applied in the past to study the Ising problems in magnetic systems
(Wilson and Kogut, 1974).

The transformation of conductance distributions on a lattice was proposed by Stinchcombe and
Watson (1974) to determine the conductivity exponent for a percolation conduction problem. This
transformation uses a method of decimation to map a given lattice to another. To carry out a length
rescaling, the lattice can be partitioned into cells with conducting and nonconducting blocks. The size of

the cell b is called the spatial rescaling factor and is measured in the units of a lattice characteristic

length. The lattice consists of conductors with conductivity k chosen from a distribution P F(k), and the

renormalization transformation W maps this distribution to another lattice on which the conductors are

distributed in accordance with a new conductance distribution P ,+I(k) given by:

P n+I(k) = WIP n(k)j (4-1)

where

W {P n(k)}= J Fn(k1 )PF(k 2)Pn(k3) ... P n(kN) (4-2)

x k - g(kj, k2, k3, ... kz,] dkdk2dk3 ... dky

where a is the Dirac function. By g(kj,... . kN) we denote the normalized equivalent conductivity of a cell

constructed on the lattice with N conductors and nonconductors, n is the recursion step, and

klk, ... , kN are individual conductivities of the bonds/sites in the lattice. The distribution P n+I(k) is

a narrower distribution since the fluctuations in conductivity values that occur at length scales smaller
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than the lattice spacing are integrated out. At each step, the number of blocks is reduced by b D in a D-
dimensional lattice. In the spirit of the RG theory, if this process of scale transformation is continued
recursively, we converge to the effective conductivity of the lattice, given by:

IF (k) = #k -k) (4-3)

A transformation of a distribution of conductances on a 2D lattice of spacing I results in a
distribution of conductances of spacing 21. The simplest possible transformation corresponds to the case
of infinite boundaries in one direction and impermeable boundaries in the other, and combines the four
conductances (kj, k2 , k3, k4) in a 2 x 2 renormalization cell into an effective conductivity in the
renormalized lattice by connecting nearest neighbors in the direction of the infinite boundaries. Such a
renormalization is of interest when the effective conductivity is for the direction of the infinite boundaries,
and is represented by:

P n+1(k) = | P n(kj)P n(k2)P n(k3)P n(k4) (4-4)

X[ [ k1k 2 k3k4 dkldk2dk3dk4[ k, + k k3 + c4J
For the percolation conduction problem, the transformation of the previous equation can be

represented by:

P n+I(k) = (1 - Pn+ -k - °) + pn+j^k - k(45)

When both components of the random binary system are conducting, the above equation is written as:

F n + A) = (1 - Pn + P1+15(k - k (4-6)

To obtain the terms pn + I in the above equation, the closed form solution (Bernasconi, 1978) for random,
uncorrelated lattices is applied. This solution is obtained from the probabilities for the cell configuration
and their degeneracy, and is given by:

M

Pn+ fg4p.) (4-7)

For a 2D random uncorrelated system, pn +I is obtained by summing up the product of the
probability of occurrence of conducting configurations (Ps) with their degeneracy, according to:

M

Pn+1 = Efj qfn) = P 4P(l - Pn) + 2pn(l - pn)8)
i=l

where fi is assigned a value of 0 for nonconducting configurations and a value of 1 for conducting
configurations. The right-hand side of the equation above is the sum of all possible cell configurations

for b=2 that allow conduction. For example, p4 is the probability that all four sites are occupied by
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conductors, whereas p 3(i -p) is the probability of occurrence for a configuration consisting of three
conductors. For two conductors and two nonconductors, there are six possible configurations, of which
two conduct and four (where conductors are located diagonally or vertically) do not conduct. Table 4-1
shows all possible configurations and their effective conductivities. The table assumes that the infinite
boundaries are to the left and right of the grid blocks. For correlated systems, whether isotropic or
anisotropic, the method assures statistical homogeneity for a given correlation length. A detailed
description of the theoretical background and a multitude of application results can be found in the work
by Mohanty (1993).

0

Table 4-1. Possible configurations of conductivity
conductivity

for a binary system and associated effective

[_Possible Configuration Probability Combinations Effective Conductivity

(lp,) 4 1 k1

XPn( l-Pn )34 k, k2 2,

2 2~ ~ ~ ~ ~~~k 1 k

1 pn2( l -Pn)2 4 2k1 k2 l

F~~~pn2( 1 _ pn)22 ~~~~~~~~~k, +k2
2,(l _p,)2

2

PXn ( -Pn) 4 k, k2 k2

k I+k2 2

Ic 2 ~~~~~Pn 1 Ic2

The RG theory has been formulated in Fourier space and in real space. In the Fourier space
method, the Fourier transform of the partition function or the probability distribution function is
manipulated. Its implementation in real space is referred to as the RSRG method. RSRG methods are of
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greater practical importance, and the method is intuitively appealing because of its geometric description
on a lattice, which provides a direct analogy to a network model of conduction. The first application of
the RSRG formalism to percolation problems was given by Young and Stinchcombe (1975). In a binary
site percolation problem, the sites/nodes are considered to be occupied by a conductor/nonconductor
binary mixture. The correlation length of the dispersed phase (i.e., fractures) is the first moment of the
cluster size distribution. As the system approaches the percolation threshold, the correlation length tends
to infinity. This implies that infinite or sample-spanning clusters are formed. The renormalization
transformation is directly applied to the probability distribution of sites (nodes) or bonds (conductive links
between the nodes). Application of the method to a system in which both phases are conducting is a
logical extension of the conductor-insulator problem. The percolative behavior can still be observed,
primarily because of the sharp contrast in the hydraulic conductivity of fracture and matrix cells. There
is nothing in the method itself that prevents it from being applied to a system in which two or more
phases are conducting. Mohanty and Sharma (1990) extended this approach to calculate effective
properties of as many as four components. Amaziane et al. (1990) conducted similar studies for diphasic
flow in heterogeneous media. Bernasconi (1978) implemented the RSRG approach using a bond
disordered conductance distribution on a square lattice, and a simple cubic lattice with a binary
distribution of conductances. He applied the theory only to conductor-insulator systems. As evident from
the previous discussion, the RG has primarily been applied to fully random systems or to site percolation
problems posed as a correlated bond percolation problem. Several applications have also been reported
on anisotropic bond percolation problems.

Mohanty and Sharma (1991) developed a cluster-counting method for correlated isotropic and
anisotropic systems that honors the true spirit of the RG formalism in keeping the nature of the
conductance distribution invariant through the recursion steps. They used the explicit cluster-counting
method to calculate degeneracy, which is necessary for implementing the recursion relation. Although
their implementation minimized the finite lattice size effects, the method was more suitable for an
ensemble of realizations rather than determining the conductivity of a given field. A much simpler and
quicker alternative to the above method is to simply ignore the effects due to finite lattice size and to
recursively calculate the average property. An average property is calculated for each cell. The process
is repeated until only a single site/bond is obtained. This method is referred to as Simple Recursive
Spatial Averaging (SRSA). No renormalization transform is required, no new lattice needs to be
generated, and the number of cells is reduced by a factor of b D at each step in the recursion until only
one conductance remains. The SRSA method can provide incorrect answers because it attempts to apply
a statistical method (such as RSRG) in an absolute sense to lattices with fixed geometry. For large enough
lattices, this problem will be minimized because of some degree of statistical variation provided in the
lattice itself. This, however, suggests that the results of the SRSA method will depend on the lattice size.
How large the lattice needs to be depends on the correlation length.

In the proposed method, the SRSA recursion is continued until the probability of occurrence
of conductors approaches one of the fixed points. That it takes so many recursion steps to converge is
not apparent from the SRSA procedure, and this method has been used in the past by various investigators
(King, 1989; Aharony et al., 1991; Ahmed et al., 1991) without any reference to its accuracy near the
percolation threshold. The SRSA approach was first used by Lobb et al. (1981) for anisotropic conduction
problems. Instead of performing an averaging of the cell conductivities with the purpose of regaining the
original nature of the distribution function, they left the renormalized cells as such. This in fact allowed
the use of any conductance distribution. Aharony et al. (1991) have pointed out that in the SRSA method,
the finite size dependence, broad distributions, large anisotropies and strong correlations, as well as the
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Figure 4-1. Effect of fracture length on the effective saturated conductivity of a 2D fracture network

question of self-averaging in such a system, should be addressed. Figure 4-1 demonstrates the percolation-

like behavior of a fracture network system similar to the one shown in Figure 2-21. In Figure 4-1, the

effective saturated conductivity is presented as a function of the fracture length for a saturated

conductivity contrast of 1,000. It can be seen that as the fracture lengths increase, their connectivity

increases and, therefore, beyond a certain value of fracture length a linear behavior is observed.

The limitation of this method lies in the fact that, in some cases, an artificially created

connectivity between disconnected conductors will lead to an overestimation of the conductivity.

Independent of exactly how the RSRG method is implemented, the following assumptions must hold:

(i) the field is of infinite extent, (ii) steady-state conditions have been established, and (iii) the

transformation keeps the random conductance field invariant. Comparison between the above two methods

using isotropically and anisotropically correlated fields can be found in Mohanty (1993). The two methods

give similar results away from the percolation threshold. The above methods are expected to give poor

results when the fractures are oriented at an angle to the global flow and also when many of the

conductivities in one direction are set equal to zero, which is reflected through large relative errors when

the effective conductivity in that direction is small.
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4.2 DETERMINING EFFECTIVE HYDRAULIC CONDUCTIVITY
WITH THE REAL SPACE RENORMALIZATION GROUP METHOD

To obtain effective unsaturated conductivities, a numerical flow experiment is conducted in a
heterogeneous medium and the flow rate and the pressure gradients at any cross-section are averaged to
obtain the effective relative conductivity for each phase. The primary issue in the steady-state analysis
of heterogeneous media is the determination of the saturation distribution. For relatively small capillary
number flows, that is viscous forces 4 capillary forces, capillary pressure will dictate the distribution
of the fluids involved. The capillary number is defined as the ratio between viscous and capillary forces.
Indeed, if no flow occurs, the pressure in the wetting component and the nonwetting component will be
constant everywhere, and the difference will be controlled entirely by the capillarity. For such a case,
the effective unsaturated conductivity will be a strong function of the structure of the permeability
distribution.

The fractured porous medium, whether it is considered as a composite porosity or effective
continuum (Peters and Klavetter, 1988; Pruess et al., 1990b), is characterized by saturation and
permeability functions. The properties of the composites are represented by an arithmetic average of the
fracture property and matrix property. This sort of averaging mimics a physical condition as if the flow
in the fracture is parallel to the flow in the matrix. The study of Rasmussen et al. (1989) indicated that
harmonic and geometric means would also be appropriate averaging methods, depending on the fracture
orientation. Clearly, there is a need for a method that is robust enough for representing the composite
properties for a broad range of fracture properties (such as distribution and orientation), yet at the same
time maintaining some vital efficiency characteristics, such as high computational speed and low computer
memory requirements. A particularly simple implementation of the RSRG concept has been to recursively
calculate the average property (Mohanty and Sharma, 1991; Lobb et al., 1981; King, 1989). In this
approach, a lattice, preferably a square lattice in 2D or a cubic lattice in 3D, is overlain on the given
heterogeneous field. Each node on the lattice of a binary system represents either a matrix pixel or a
fracture pixel. In reality, as the pixel size may be larger than the fracture width, an equivalent property
is assigned to the fracture pixel, which is calculated by assuming that the fracture is surrounded by some
matrix material that coexists in the same pixel as a portion of the fracture, according to the fracture
conceptual model described in Section 1.2.5. Pruess and Tsang (1990) have made a similar assumption
while studying the fracture pore space in terms of an aperture distribution. The crucial concept in their
method is that all fracture properties can be approximated locally by a parallel-plate model (which invokes
a form of an effective aperture approximation). Then, the whole lattice is subdivided into cells that
contain a few matrix and/or fracture pixels. The average conductance of each cell is calculated by
imposing a no-flow boundary condition in the transverse direction and a unit pressure gradient in the flow
direction. If the heterogeneous field is anisotropic, one can interchange the boundary conditions and the
flow direction to obtain the average conductivity in the transverse direction. This process of subdividing
the lattice into cells and averaging the heterogeneities inside the cell is continued until only a single
conductance block is obtained. The number of cells is reduced by a factor of 2 D (D is the dimensionality
of the problem) at each step. This transformation process is depicted in schematic form in Figure 4-2.
In this example, a cluster of cells transforms to a cell, a cell transforms to a conductance block, etc.

4.2.1 Assumptions

The following are the assumptions under which the proposed method is applicable: (i) a
capillary-dominated flow regime exists; and (ii) for every change in the pressure, equilibrium is reached
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Figure 4-2. Schematic of RSRG transformation

instantaneously. Indeed, the first assumption is justified by the findings of Zimmerman and Bodvarsson

(1992). Based on the sorptive length concept, these researchers showed that, for hydrological parameters d

believed to be similar to the Topopah Spring welded unit, one can assume that imbibition into the matrix

is controlled by capillary forces. Wang and Narasimhan (1985) and Pruess et al. (1990a) have pointed

out that when the matrix blocks are small, that is the formation is highly fractured, the pressure and

temperature within the matrix block will quickly equilibrate with the surrounding fractures. The quick

attainment of thermodynamic equilibrium eliminates the need to determine pressure separately in the

matrix and in the fracture.

To implement the RSRG method, the following relationships can be used. The first is the

saturation versus pressure head, represented by van Genuchten's moisture retention relation given by

(van Genuchten, 1980):

O (h,x) = Or (x) + e if h < 0

11 + [-#(x) hr(x ) }9(x))

0 (h,x) = Es (x) if h 2 0
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where n is a dimensionless shape factor (a real number, not an integer), 1B is an inverse pressure head
scale factor (L-1), OS is the saturated water content, or effective porosity of the medium, and Or is the
residual water content at very high or infinite negative pressure. Parameter Or is an empirical adjustment
which should be taken equal to zero unless a better fit to experimental curves is obtained by using some
nonzero value. The second is Gardner's unsaturated conductivity-pressure relation which is defined as:

K(h) = K, expa(h - hb) ] (4-10)

where K(h) is the hydraulic conductivity at pressure head (h), K, is the saturated conductivity, hb is the
air entry pressure head (bubbling pressure), and a is a scaling parameter.

4.2.2 Algorithm

The algorithm developed for determining effective unsaturated conductivity for a binary system
is summarized as:

* Choose a water saturation value for the matrix

* Calculate the corresponding suction head in the matrix region, assume that suction heads in
the matrix and fracture are at equilibrium, and calculate the fracture saturation corresponding
to this suction

* Determine the corresponding unsaturated hydraulic conductivities with an appropriate model
(e.g., Gardner or van Genuchten-Mualem)

* Apply the RSRG method to average the values for the binary system

* Assign weighted average saturation to the homogenized region.

Before implementing this algorithm, an equivalent saturated hydraulic conductivity must be assigned to
the pixels representing the fractures. Here, several pixels may represent a single fracture. The equivalent
saturated conductivity must be representative of the fracture roughness, disturbed matrix texture, and a
portion of the surrounding undisturbed zone texture. Thus, the pixel need not be as small as the width
of the aperture. The variation in aperture along the length of the fracture can be represented easily as a
variable number of pixels corresponding to each fracture. However, in this work this was not attempted.
The algorithm presented above is shown in diagrammatic form in Figure 4-3. More details can be found
in the work of Mohanty and Bagtzoglou (1994). This algorithm has been enhanced with several scaling
features that make it applicable to situations where the matrix is heterogeneous. This will be discussed
in Chapter 6 of this report.

This approach is very similar to the one used in the work of Ferrand and Celia (1992) and
Kueper and McWhorter (1992). For example, Ferrand and Celia simulated the drainage part of the
pressure-saturation relation for a pore-scale network by starting at the saturation point and then
incrementally increasing the capillary pressure. They concluded that the definition of an effective
relationship between pressure and saturation in heterogeneous media is very much dependent on the
structure of the material and drastically different than those which, for example, linear averaging would
predict. Similarly, Kueper and McWhorter (1992) conducted analogous numerical experiments and
increased the macroscopic capillary pressure in 100-KPa increments up to a maximum of 10,000 KPa.
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Figure 4-3. Schematic of algorithm for the determination of effective unsaturated conductivity

Their work is different in that they reversed the process, thereby obtaining the wetting curve behavior.

When a fracture-matrix binary system is used, for every matrix saturation a unique value of
saturation can be determined for the fracture, as for every matrix saturation value there exists one and
only one fracture saturation. However, for a distribution of matrix conductivities, this cannot be done as
there is no unique value of pressure or saturation that characterizes the matrix. Therefore, two methods
have been implemented. The first is method A, for which the saturation in each matrix block is evaluated
at the specified pressure head in the fracture. The average of all the saturations in the matrix blocks is
used to determine the matrix unsaturated conductivity. Then, the RSRG method is applied to obtain the
effective hydraulic unsaturated conductivity of the matrix-fracture composite. The second is method B,
for which the pressure head distribution is calculated for a specified saturation. Then, the average value
of the pressure heads in the matrix is used to determine the unsaturated conductivity in the fracture before
the RSRG is applied to determine the effective unsaturated conductivity of the matrix-fracture composite.

4.3 VERIFICATION RESULTS AND DISCUSSION

In the first part of this study, the effective saturated and unsaturated conductivities were obtained
by using fully connected fracture networks. Figure 4-4 depicts a schematic representation of such a
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Figure 4-4. Schematic of a fully connected fracture network with anisotropic fracture density

network. The computational burden is not found to be significantly different for stochastically generated
fracture networks. The execution times for saturated and unsaturated conductivities are presented in
Tables 4-2 and 4-3, for direct numerical simulations and the RSRG method, respectively. Clearly, as the
system size grows, the RSRG method becomes much faster than the numerical method.

The accuracy of the RSRG method was compared against the numerical solution by using a fully
connected fracture network on a 64 x 64 grid with a fracture conductivity 1,000 times that of the matrix
conductivity. Figure 4-5 depicts the dependence of the effective saturated conductivity on the horizontal
or vertical fracture density for a network of fully connecting fractures. It also presents a comparison
between the RSRG and direct numerical simulation results for a 2D system with a conductivity ratio
between fracture and matrix equal to 1 ,00O.The RSRG results are in excellent agreement (maximum error
of 2 percent) with direct numerical simulation results in the case of saturated flow conditions and fully
connecting fractures.

A slightly different verification of the RSRG approach is presented in Figure 4-6, where the
seinivariogram of saturated conductivity is calculated at four different steps through the recursive process.
Note that the system possesses no spatial structure and, therefore, the variogram corresponds to a nugget
effect. As the RSRG procedure advances from a 64X 64, to a 16x 16, to an 8x8 homogenized system,
the variance (as this is inferred by the sill of the variogram) decreases rapidly, while the nature of the
variogram does not change.
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Table 4-2. Execution time comparison between numerical simulation and RSRG method for

the determination of effective saturated conductivity. The calculation of the time ratio assumes

that the Cray X-MP is about seven times faster than a SUN Sparc workstation.

Grid Numerical | RSRG | Approximate
Size (Cray X-MP) (SUN Sparc) Ratio

128x128 100s 24s 30

512x512 500 s 30 s 115

Table 4-3. Execution time comparison between numerical simulation and RSRG method for

the determination of effective unsaturated conductivity. The calculation of the time ratio

assumes that the Cray X-MP is about seven times faster than a SUN Sparc workstation.

Grid Numerical RSRG Approximate

Size (Cray X-MP) (SUN Sparc) Ratio

64X64 1,200 s 24 s 350

1,024 x 1,024 N/A 100 sec N/A

Figure 4-7 shows comparisons between the RSRG results against direct numerical simulations

with the BIGFLOW code (Ababou and Bagtzoglou, 1993) in the case of unsaturated flow conditions. In

this figure two types of systems are analyzed: (i) a fracture system with a density anisotropy of two; and

(ii) the same system but with the fracture and matrix pixels being fully randomized, that is no spatial

correlation being present. In both cases the fractures are assumed to be homogeneous. The saturated

hydraulic conductivity ratio between fracture and matrix is 1,000. The slope of the logarithm of

unsaturated conductivity versus suction curve for the fractures is four times that of the matrix. A good

match is obtained between the numerical and semianalytical results both at low and high suctions. One

should also note that, for a relatively large range of the suction head (-110 to -77 cm), the effective

unsaturated conductivity of a well-structured fractured system is identical to that of a fully random

system. This observation suggests that under certain conditions (fracture volume fraction and suction

head), a stochastic continuum approach may be appropriate for the study of flow in unsaturated fractured

rock. Kwicklis and Healy (1993) have investigated two identical fracture networks which contained

randomized apertures. The average fracture apertures were either all 125 pm, or all 25 Am, or a

combination. They reached a similar conclusion in that they found that "representation of variably

saturated fracture networks as an equivalent continuum may be more valid for some ranges in pressure

head than others."

Figure 4-8 presents results very similar to Figure 4-7, with the exception that the ratio in

saturated hydraulic conductivities is now 25. It can be seen that the match is not as great as in the case

of a very sharp contrast in hydraulic properties. However, even in this case a relatively good match

between the two methods is obtained at low suctions. It should also be noted that the direct simulation

results, depicted in Figure 4-8, are suspected to not have been exactly at steady-state conditions, as was
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Figure 4-5. Comparison between RSRG and direct numerical simulation results for saturated flow
in a network of fully connecting fractures

the case in Figure 4-7. Therefore, the deviations between the numerical and semianalytical results,
especially at high suctions, may be explained.

Finally, Figure 4-9 depicts a comparison between RSRG results and BIGFLOW for a fracture
network with orthogonal fractures of isotropic density and finite length. The fracture volume fraction for
this network is 69 percent and, therefore, this exercise tests the RSRG capabilities for very high levels,
most likely unrealistic, of fracturing. As can be seen in Figure 4-9, the match obtained is excellent. It
should be noted that all the verification results presented in this chapter correspond to binary matrix-
fracture systems, that is the matrix field is homogeneous. Results for the case of heterogeneous matrix
fields will be presented in Chapter 6 of this report.
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5 CALCULATION OF EFFECTIVE HYDRAULIC PROPERTIES
WITH DIRECT NUMERICAL SIMULATIONS

. 5.1 APPROACH

A number of numerical simulations of flow through different fracture/matrix arrangements in
a fractured rock mass were conducted using either an exact analytical solution for infiltration into layered
soils (Yeh, 1989) or two numerical codes for the simulation of flow in variably saturated media. These
codes are: (i) a finite element model for variably saturated flow and transport, under the name Modified
Method of Characteristics 2 (MMOC2) (Yeh et al., 1993); and (ii) the BIGFLOW finite difference model
for variably saturated flow in heterogeneous media (Ababou and Bagtzoglou, 1993). The objective of this
study was to determine the effective conductivity of the rock mass under steady-state unsaturated flow
conditions. Four different cases were simulated: Case 1-Flow Perpendicular and Parallel to
Unidirectional Fully Connecting Fractures; Case 2-Flow Through Orthogonal Fracture Sets Embedded
in Homogeneous Rock Matrix; and finally, Cases 3 and 4, Flow Through a Random Network of
Fractures Embedded in Homogeneous and Heterogeneous Rock Matrices, respectively. Within each case,
several different scenarios were also investigated. Finally, the tensorial nature of the effective hydraulic
conductivity was studied for the case of parallel inclined fractures of infinite extent.

In all the cases examined, fracture and matrix hydraulic conductivity as a function of pressure
head (h) was assumed to be represented by the Gardner exponential model, given in Eq. (4-10). The
water retention curves were assumed to be described by either an exponential model (Yeh et al., 1993)
or the van Genuchten-Mualem model given in Eq. (4-9). The former model was used in conjunction with
the MMOC2 analyses, whereas the latter model was used in conjunction with the BIGFLOW analyses.
However, all the simulations considered steady-state flow conditions and the pressure head distribution. was of primary interest. Thus, the water retention characteristics of the media were not relevant to the
simulations and are not discussed in this report. In all subsequent discussions, subscripts m and f are
associated with the matrix and fracture properties, respectively.

5.2 ANALYSIS AND RESULTS

5.2.1 Case 1-Flow Perpendicular and Parallel to Unidirectional
Fully Connecting Fractures

In this case, each member of a set of parallel linear fractures completely crosses an otherwise
uniform porous medium. Parameter values for the unsaturated hydraulic conductivity of the fracture were

assumed Kf = 1.0 cm/s and af =0.l cm- 1. However, two different sets of hydraulic properties were
employed to represent two rock matrices to investigate the effect of the contrast in the saturated hydraulic
conductivity between the fracture and rock matrix. The conductivities of the two rock matrices are

Ks =0.001 cm/s and am =0.025 cm-f for Case la; and K, =0.04cm/s and am=0.025 cmn- for
Case lb.

Using the above hydraulic properties, two flow regimes were considered: (i) flow perpendicular
to fractures, and (ii) flow parallel to fractures.
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5.2.1.1 Flow Perpendicular to Fractures

For flow perpendicular to fractures, the dimension of the simulation domain was 390.48 cm in

the vertical and 390.0 cm in the horizontal. The fracture aperture was considered constant and assumed

at 0.04 cm with a separation between fractures of 30 cm, resulting in 12 horizontal line fractures in the

domain. Boundary conditions were set as no-flow across the edges of the domain parallel to the flow, and

constant flux at the upper boundary and constant head at the bottom boundary of the domain. An exact

analytical solution developed by Yeh (1989) was employed to derive the pressure head distribution along

the vertical. The imposed value of the flux combined with the mean suction along the hydraulic head unit

mean gradient portion were used to define the effective conductivity (Yeh, 1989). For example, for Case

la, when a flux equal to 1 x 10-5 cm/s was imposed, the resulting suction along the unit gradient portion

varies from 165.1 to 174.1 cm with a mean of 169.6 cm.

Figure 5-1 shows the effective hydraulic conductivities for Cases la (circles) and lb (triangles).

Also shown are the hydraulic conductivity of the fracture and matrix along with the average conductivity

resulting from a direct average approach (Yeh et al., 1985c). For flow perpendicular to fractures, the

direct approach employs the weighted harmonic mean. That is, the average was computed taking into

consideration the thicknesses of the fracture and the matrix according to:

KH(+) L " . (5-1)

ilKi(O)

where Li is the thickness perpendicular to the flow of either the matrix or the fracture, and Ki(z) is the

hydraulic conductivity of either fracture or matrix at the given suction, '. The effective conductivity

formula developed by Yeh et al. (1985b) and Yeh (1989) can be used to estimate the effective

conductivity for this case. Since the fracture aperture is small, the effective conductivity based on Yeh's

model is identical to the weighted harmonic average of the fracture and matrix conductivity for the given

suction and for all the range considered. This applies to both Cases la and lb, regardless of the contrast

in hydraulic conductivity between the fracture and matrix. These results are different from those for

layered porous media with much larger vertical correlation scales (e.g., layer thicknesses) (Yeh, 1989;

Yeh and Harvey 1990).

Similar results were obtained for the cases where the spacing between fractures was randomly

generated. However, the range of suction along the unit gradient portion was slightly larger than that

observed for the case with uniformly spaced fractures. For instance, for flux equal to 1 x 10-5 cm/s the

resulting suction along the unit gradient portion varies from 165.9 to 176.8 cm with a mean of 170.4 cm.

5.2.1.2 Flow Parallel to Fractures

To avoid increasing the computational burden, the flow domain for the simulation of this

particular case was simplified because of flow symmetry with respect to the centerline of a fracture. Thus,

only one half of a matrix block and a single fracture (i.e., 15.02 cm for the domain width) were

considered. Boundary conditions were set as no-flow along the symmetry lines and constant head at top

and bottom boundaries. The same value of suction head was used for both boundaries to force an overall
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unit gradient across the domain. In this case, MMOC2 was used to simulate the suction head profile and

calculate the infiltration and outflow fluxes at the upper and lower boundaries.

The effective conductivity for this case was set to be the average flux in the fracture and matrix

over the top or bottom boundaries, and the corresponding mean suction value for the conductivity was

the imposed constant suction value at the top and bottom boundaries. This approach takes advantage of

the fact that the pressure head throughout the domain is uniform and equal to the value imposed at the

boundaries. In fact, it is identical to the classical effective hydraulic conductivity approach for steady flow

parallel to stratification and it yields an effective hydraulic conductivity that reproduces the observed

volumetric flow corresponding to the imposed head. Analogous to steady-state saturated flow parallel to

stratification, there is no pressure head difference across the fracture and matrix and the mean pressure

within the domain equals the boundary pressure value. However, gravity is the driving force. Thus, the

effective hydraulic conductivity must be closely approximated by the weighted arithmetic mean of the

fracture and matrix according to the aperture of the fracture and the width of the matrix. Figure 5-2

depicts the hydraulic conductivity curves for the matrix and fracture, the arithmetic average weighted by

the matrix and fracture area perpendicular to flow, and the simulated effective conductivities (circles).

As expected, the weighted arithmetic mean provides an accurate representation of the effective

conductivity over the complete suction range. Note the inflection point in the effective conductivity versus

suction curve which exists around a suction value of 100 cm. This is in agreement with the composite,

double-hump behavior of the Peters and Klavetter (1988) model. Note also that this suction value

corresponds to the crossover point of the matrix and fracture hydraulic conductivity curves.

5.2.2 Case 2-Flow Through Orthogonal Fracture Sets Embedded
in Homogeneous Rock Matrix

In this case, the effective hydraulic conductivity is determined for two fractured rock masses.

The first rock mass contains an orthogonal fracture set with equal density in horizontal and vertical

directions, while in the other, the fracture density in the horizontal direction is different from that in the

vertical. The fractures were assumed to fully penetrate the rock mass, and hydraulic properties of the
fracture and matrix for the two rock masses were assumed identical to those for Case la.

5.2.2.1 Fracture Sets with Equal Density in Horizontal and Vertical Directions

The first case considered an orthogonal fracture set which consisted of six horizontal fractures

and six vertical fractures uniformly spaced (every 30 cm). Because of this arrangement of fractures, the

flow regime must be symmetrical about the centerline of any vertical fracture. To save CPU time and

storage space, flow was simulated only along a column 216.0 cm tall and 15.5 cm wide. This column

consists of seven matrix blocks and six horizontal fractures in the vertical, and half of a single vertical

fracture and half of a matrix block in the horizontal. Due to lack of convergence of the numerical

solutions, the fracture thickness was later increased to 1.0 cm.

The boundary conditions in this case were assigned as constant pressure head values with equal

magnitude at top and bottom boundaries. The effective conductivity was computed, as before, using the

average flux through these boundaries. The hydraulic conductivity for the matrix and fracture, as well

as the weighted average as a function of suction, are presented in Figure 5-3. The weighted average was

computed based on the equation:
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KH(7) bm + Kf(#) bf (5-2)

Ke\#) = bm + bf

where KH(O) is the harmonic mean of the fracture and matrix conductivities at a given suction, ', and

bf and bm are the areas perpendicular to the flow. The open circles in Figure 5-3 represent the effective

conductivity obtained from the numerical simulations. As illustrated in Figure 5-3, the effective

conductivity given by Eq. (5-2) seems to be a good approximation of the effective conductivity over most

of the suction ranges, except for very dry conditions.

A second case with the same number of fractures but with random spacing was simulated and,

since the results are identical to those for the uniformly spaced fractures, it is not reported here.

5.2.2.2 Fracture Sets with Different Density in Horizontal and Vertical Directions

The simulation domain, boundary conditions, and number of fractures in the horizontal direction

for this case were identical to those in the previous case. However, the fracture locations were randomly

selected and the number of fractures in the vertical direction was reduced to three corresponding to a

fracture density anisotropy ratio of two. The horizontal fractures were located at 30.0, 55.0, 88.0, 122.0,

151.0, and 177.0 cm from the bottom boundary and the vertical fractures at 100.0, 151.0, and 192.0 cm

from the left boundary. Figure 54 shows the numerical results and those computed using Eq. (5-2).

Again, the analytically estimated effective conductivity, obtained by the weighted average, compares

favorably to the results of numerical simulations.

5.2.3 Case 3-Flow Through a Random Network of Fractures
Embedded in Homogeneous Rock Matrix

In this case, orthogonal fracture sets were randomly distributed in a homogeneous rock matrix

in contrast to Case 2. In addition, the fracture trace was considered to be random in both horizontal and

vertical directions. The fracture lengths were sampled from an exponential distribution, and the 2D

fracture network was generated by the numerical code described in Chapter 2. Two hypothetical fractured

rock masses were examined: (i) one with fracture sets which have a short average trace (short fractures),

and (ii) another with long average fracture trace (long fractures). For each rock mass, two sets of

simulations were conducted, one with the MMOC2 numerical code and one with the BIGFLOW

numerical code. For the MMOC2 simulations, the boundary conditions imposed on the domain were

identical constant pressure head on the top and bottom boundaries and no-flow across the vertical

boundaries thus simulating gravity drainage. The constant head boundary conditions were varied to obtain

the effective hydraulic conductivities at different mean suction values. However, the BIGFLOW

simulations were conducted such that the flow was through the horizontal plane, driven by capillary

forces. This was invoked by starting the simulation at an initial condition 4, and imposing constant

suction head boundaries at left and right, differing by a very small suction differential, by. Again, the

value 0i. varied in order to obtain the effective hydraulic conductivities at different mean suctions. A

schematic of both approaches is depicted in Figure 5-5. There were three reasons for this approach. First,

it was of interest to test the isotropy hypothesis within the fracture network generator; that is to determine

whether the flow along the other direction yields a totally different effective conductivity for a presumably

isotropic fracture network. Second, it was of interest to test whether different boundary conditions yield
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Figure 5-5. Schematic illustrating the two types of numerical simulations conducted for the
calculation of effective hydraulic conductivities. a) MMOC2 simulations and b) BIGFLOW
simulations.

different values for the effective conductivity; that is whether the results of this study corroborate the
findings of Beckie et al. (1994) who found that under conditions of isotropy two different types of
boundary conditions yielded similar results. Third, BIGFLOW simulation results were to be used at a
later stage to test the RSRG results; therefore, a numerical analog of a pressure plate extractor experiment
had to be tested.

5.2.3.1 Flow Through Short Fractures

Figure 5-6 shows the location of fractures and the finite element discretization used for the
MMOC2 numerical simulation of this case. The size of the domain is 64.0 cm in both the vertical and
horizontal directions. The fractures and the matrix were discretized using rectangular elements of
dimension 1 X 1 cm and the matrix was further discretized into four triangular elements. Again, the
exponential model was used to represent the unsaturated hydraulic conductivities of the fracture and

matrix, with KZ=1.0 cm/s and af=0.075 cm-' for the fracture and K1m=0.000066 cm/s andS

am =0.00533 cm-' for the matrix.

The pressure head distributions simulated by the numerical code MMOC2 for two different
imposed pressure head boundary values (-60 and -200 cm) are presented in Figures 5-7 and 5-8,

5-9



60

50~ ~ ~ ~

40

30

20

10

0 10 20 30 40 50 60

x (cm)

Figure 5-6. Schematic showing the location of fractures (denoted as open pixels) and the finite

element discretization used for the MMOC2 numerical simulations of flow through a randomly

generated set of short fractures

respectively. These figures show the contrast in pressure head distribution between the cases when the

matrix is less conductive or more conductive than the fracture under different unsaturated conditions. The

effective conductivity obtained from the numerical simulations using the average flux through the top and

bottom boundaries at the given boundary head value is shown in Figure 5-9. In addition, Figure 5-9

shows the fracture and matrix conductivities, and the arithmetic, geometric and harmonic means. The

effective conductivity lies between the arithmetic and the geometric means; however, it is closer to the

geometric mean over a wide range of suction values. Again, it is worthwhile noticing the perceptible

break in the effective conductivity curve around a suction value of 100 cm. Also depicted in Figure 5-9

are the BIGFLOW simulation results. The agreement between the two groups of numerical solutions is

considered excellent. The pressure head distributions obtained by the BIGFLOW numerical simulations,

for two imposed average pressure head boundary values (-10O and - 200 cm), are presented in Figures

5-10 and 5-1 1, respectively. These figures show the extreme contrasts in suction head developing in the

case when the matrix is less or more conductive than the fractures. Streamlines corresponding to the

suction fields of Figures 5-10 and 5-11 are shown in Figures 5-12 and 5-13. As expected, the

dramatically persistent nature of the fracture-dominated flow field is obvious in Figure 5-12, as a result

of the fact that near saturation the fractures are much more conductive pathways than the matrix. At

much higher suctions, the flow velocities decrease drastically and their distribution becomes much more

uniform. Here, the fractures act as diverting barriers around which flow occurs. An example of this

behavior is Figure 5-14, where typical equipotentials and flow lines are shown. These results were
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Figure 5-14. Typical equipotential lines and streamlines for flow around a intruding fracture
[adapted from Tabatabai-Irani (1989)]

obtained from a numerical simulation of vertical infiltration around a fracture (Tabatabai-Irani, 1989).
Martinez et al. (1992) have presented similar results based on numerical and approximate analytical
solutions.

Additional effective conductivity values were not obtained with the MMOC2 numerical simulator
for suction values smaller than 30 or larger than 200 cm. In fact, convergence problems were encountered
by the MMOC2 code even for suction values in the range between 30 and 200 cm. To circumvent this
problem, a number of strategies were applied, for example, transient time marching and pseudo-transient
approaches (Fletcher, 1988), grid refinement, nonuniform discretization, and the use of good initial
solution estimates based on solutions of stepwise increase in the conductivity contrast in steady-state
simulations. However, none of these approaches seemed to completely alleviate the convergence
problems. Finally, failure of these approaches forced a decrease in the hydraulic conductivity contrast
between the matrix and the fracture. The saturated conductivity of the fracture was kept at 1 cm/s but that
of the rock matrix was increased to 6.6 x 10-3 cm/s. The results of the simulation and analysis are shown
in Figure 5-15. Under this reduced contrast, the interval of convergence was expanded, but to only
between 10 and 200 cm. Numerical solution outside this range was not obtainable with the MMOC2
numerical code. The BIGFLOW solutions were obtained by time-marching to the steady-state conditions
and no numerical problems were experienced.
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5.2.3.2 Flow Through Long Fractures

In this case, the material properties, domain size and discretization, and the boundary conditions

are the same as in Section 5.2.3.1 (Figure 5-6), but the length of fractures is increased as shown in

Figure 5-16. Numerical estimates of the effective hydraulic conductivity, the direct averages, and matrix

and fracture conductivity as a function of suction are presented in Figure 5-17. The results indicate that

the effective conductivity is close to the arithmetic average for suction values smaller than the crossover

point of the fracture and matrix unsaturated conductivity curves and close to the harmonic average for

suction values larger than this crossover point. This significantly different behavior (when compared to

the results of Section 5.2.3.1; see Figure 5-9) is attributed to enhanced interconnectivity of the fracture
network due to the longer fractures involved. BIGFLOW exhibited no numerical problems in this case,

even under the presence of sharp contrast in properties. Therefore, the BIGFLOW results are not

presented since they are not directly comparable with the MMOC2 results of Figure 5-17.

5.2.4 Case 4-Flow Through a Random Network of Fractures
Embedded in Heterogeneous Rock Matrix

The scenarios considered in Case 4 are similar to those of Case 3 with the exception that

hydraulic conductivity parameters of the matrix were considered as spatial random fields.

5.2.4.1 Flow Through Short Fractures

Fracture location, domain size, and the finite element discretization used for the numerical

simulation of this case are identical to those of the homogeneous case (Figure 5-6). The parameter values
for unsaturated hydraulic conductivity of the fractures were 1 0~l.O cmls and af=O.0 7 5 cm1l.

However, the hydraulic properties of matrix were assigned to each 1 X 1-cm element randomly, generated
by the Turning Bands code (Tompson et al., 1987).

The boundary conditions are similar to those for Case 3. The effective conductivity obtained

from the numerical simulations using the mean flux through the top and bottom boundaries is shown in

Figure 5-18 along with the fracture and matrix conductivities, and their arithmetic, geometric, and

harmonic means. Here again, the effective conductivity is closer to the geometric mean for a large range

of suctions, and lies between the harmonic and arithmetic means for suctions near saturation. Results from

the BIGFLOW simulations are also depicted in this figure. An excellent match between the two numerical

codes is observed.

5.2.4.2 Flow Through Long Fractures

In this case, the material properties, domain size and discretization, and the boundary conditions

are the same as in Case 3b (homogeneous matrix with long fractures), but the matrix hydraulic

conductivity is heterogeneous and varies for each 1 X 1-cm element. Numerical estimates of the effective

hydraulic conductivity, arithmetic, geometric, harmonic averages, and matrix and fracture permeability

as functions of suction are presented in Figure 5-19. In this case, the effective conductivity is closer to

the arithmetic and harmonic means for suction values smaller or larger than the crossover point,

respectively. Again, a very good match is obtained between the MMOC2 and BIGFLOW simulation

results.
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Figure 5-16. Schematic showing the location of fractures and the finite element discretization used
for the MMOC2 numerical simulations of flow through a randomly generated set of long fractures

5.3 ANISOTROPIC EFFECTIVE HYDRAULIC CONDUCTIVITY FOR
ROCKS WITH PARALLEL, INCLINED FRACTURES

A semi-analytical solution was derived to evaluate the anisotropic behavior of the effective
hydraulic conductivity of a 2D fractured rock mass which consists of parallel fractures inclined at an
angle 9 with the horizontal axis. The rock matrix is assumed homogeneous and the fracture aperture
uniform; the rock mass is also assumed unbounded in both the vertical and horizontal directions under
steady uniform infiltration. Under these assumptions, the pressure head distribution along any vertical
line can be described by a iD steady-state infiltration equation for layered media (Zaslavsky and Sinai,
1981). Therefore, an analytical solution for the off-diagonal component of the effective hydraulic

conductivity, (K~u> (where z is the vertical coordinate and x is the horizontal), can be obtained.

Consider a fractured rock with properties changing in a direction n normal to the fracture. The
direction parallel to the fracture is s; n and s form an angle 0 with the vertical z and horizontal coordinate
x (Figure 5-20). The specific discharges in x and z can be derived as:
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Figure 5-17. Comparison of effective hydraulic conductivity from numerical simulations and the arithmetic, geometric, and harmonic
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saturated hydraulic conductivity was reduced by a factor of 100.
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means for flow through a randomly generated set of short fractures in heterogeneous matrix
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Figure 5-20. Schematic showing one of a set of infinite, parallel, inclined fractures

qz= -K(O,) F0 +11 (5-3)[ az I

q = K(O) ax (54)

for any point in the flow domain since the medium is assumed to have point isotropy. Note that K(^,)
is the point unsaturated hydraulic conductivity which is a function of the point matric potential (or
suction), ik. Furthermore, using simple geometrical relations, we can obtain:
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q =K(O)a# sin 0
an

= _______sin 0 (55)

az (T
-K(O )a tan G

az

Now, integration of q, over the z direction gives the total horizontal discharge as:

QX= -tan J I K(#)a. dz = -tan J |K() d, (5-6)

Then, the average specific discharge is given by:

qx = - 1 tan 0 j K(O) d6 (5$7)

where D is the vertical distance where the integration takes place. Ross (1990) has applied this approach

in determining the diversion capacity of capillary barriers.

If we assume the fracture rock is homogeneous even though the rock mass includes parallel

fractures, the effective hydraulic conductivity will exhibit anisotropic behavior. Therefore, the specific

discharge can be rewritten in terms of mean gradients, Jx and Jz, and the effective hydraulic conductivity,

<KXX> , <K; <K)X , and <K.> , according to:

qx = - (K,=(*)> Jx - (K-z(*)> Jz (5-8)

qz = - <Kz,(*)> Jx - <Kzz(*)> Jz

Note that 4 represents the mean matric potential, given in the works by Yeh (1985 a,b,c), and is different

from the point matric potential, A, at any point in the domain. If we further assume that the mean

gradient is in the z direction only, and Jx =0, the effective conductivity tensor component, (K~, ()>

can be obtained by:

<Kxz(l-)> = (5-9)
TZ~

Now, we assume that the point hydraulic conductivity of the rock matrix and the fracture are described

locally by an exponential function of the form:
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At) = Ks exp(cto) (5-10)

W where Ks is the saturated hydraulic conductivity and a is the capillary length-scale parameter. In this

analysis the following parameters were used: Z = 1.0 cm/s and a1. = 0.075 cm-1 for the fractures,

and Ksm = 0.001 cm/s and am=0.00533 cmn' for the matrix. Then, the average specific discharge in
Eq. (5-7) can be obtained by carrying out the integration for each medium over the point matric potential
ranges in the medium. For a given infiltration rate, qz, the point matric potential distribution for the
fractured rock can be obtained analytically (Yeh, 1989; Warrick and Yeh, 1990). However, the average
specific flux was evaluated numerically in this investigation. In this analysis, the distance between
fractures is 30 cm and the fracture thickness was assumed to be 1.0 cm.

Once the average specific flux in the x direction was determined, a unit mean gradient was
assumed for the entire fractured rock (i.e., Jz= 1 and J =0). Therefore, the Ku> was obtained by
Eq. (5-9). To verify this result, the analytical values for the effective conductivity tensor were derived
using standard tensor algebra for a layered system at a 450 angle as:

(K; = <Kzz> = <K 1> + <K22> By l<K1 > - (K22> (5-11)
2 2

where (K1I> and <K22> are the effective conductivities in the principal directions. For the fracture
system under consideration, these directions are parallel and normal to the fractures with principal
conductivities equal to weighted arithmetic and harmonic means. These values from Eq. (5-11) (analytical
solution) were then compared with those obtained previously (semi-analytical solution) by evaluating
numerically the integral in Eq. (5-7), with the matric potential ,6 expressions derived by Yeh (1989) and
Warrick and Yeh (1990).

Figure 5-21 compares the results from the semi-analytical solution with those from Eq. (5-9)
which show excellent agreement over the entire range of suctions analyzed. These results suggest that
equations similar to Eq. (5-5) could be used to determine the effective conductivity tensor of fractured
rocks at any angle whatever the degree of saturation. As it can be seen in this figure, the off-diagonal
terms of the hydraulic conductivity tensor attain their minimum values at approximately the crossover
point of suction head. Also, the anisotropy ratio for such fracture systems could be estimated using the
equation:

(K2> _ (IK1 > (1 - cos 20) + <K22> (1 + cos 20) (5-12)

<K; <K 1> (I + cos 20) + (K22> (1 - cos 20)

Equation (5-12) yields (5-11) for 0=450. This equation is similar, in some respects, to the formulae by
Maini and Hocking (1977) for saturated flow.

The anisotropy ratio for the fractured rock system at different mean suction values and at
different angles is shown in Figure 5-22, indicating that the ratio varies with mean suction or moisture
content as demonstrated in the result of the stochastic analysis by Yeh et al. (1985 a,b,c). This ratio
varies from 0.033 to 33 near saturation for inclination angles ranging from 10 to 800. However, for the
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extreme case of 0 being equal to 0 and 900 (i.e., horizontal or vertical fractures), this ratio appears to

be unbounded at very high suctions. Finally, it should be noted that the anisotropy ratio attains its

minimum values around the suction crossover point.

5.4 DISCUSSION

Based on the results of these simulations, the conclusion is reached that the effective unsaturated

hydraulic conductivity of the fractured rock mass is strongly controlled by the fracture pattern (i.e., the

trace length of the fracture and the orientation of the trace with respect to flow direction). For rock

masses with unidirectional fractures, the effective conductivity behaves the same as that of stratified

porous media. Therefore, in the case of flow perpendicular to the fractures it can be represented by the

harmonic mean, and for flow parallel to the fractures by the arithmetic mean of the fracture and matrix

conductivity. These simple averages can be extended to more complicated fracture distributions. For

example, in the case of flow through orthogonal fractures, the effective conductivity may be represented

by the arithmetic mean of the harmonic means of columns along the flow direction. Similarly, for long

fractures embedded in homogeneous and heterogeneous matrices, the flow at small suction values is

predominantly along the fractures in the flow direction, resulting in an effective hydraulic conductivity

equal to the arithmetic mean. However, at higher suctions (exceeding the crossover point of the fracture

and matrix conductivity curves), the horizontal fractures across the domain become less conductive than

the matrix resulting in an effective hydraulic conductivity equal to the harmonic mean.

For flow parallel to fractures traversing the entire rock mass, the effective hydraulic

conductivity is mainly controlled by the fracture conductivity at suctions smaller than the suction at the

crossover point. However, at suctions greater than the crossover point, it is dominated by the conductivity

of the rock matrix. Such behavior results in an effective hydraulic conductivity curve characterized by

a hump near the crossover point, indicating that the composite model by Peters and Klavetter (1988) may

be applicable to flow situations which are more complex than its original confines. However, this

statement must be taken cautiously, especially since this behavior is very much dependent on the fracture
network topology and other characteristics. On the other hand, when the flow direction is perpendicular
to the fractures or if the fractures are short and disconnected, no apparent humps are observed. The

heterogeneities in the rock matrix do not strongly influence the effective conductivity for the cases
considered in this study.

An important conclusion derived from this study is that the discrete fracture approach, for such

sharp contrasts in hydraulic conductivity between the fracture and the matrix, is in many cases,

unattainable with the MMOC2 finite element model. The BIGFLOW numerical code demonstrated a

higher degree of robustness in terms of the types of properties that it can handle. Furthermore, both

numerical codes exemplified the extensive computational resources one may have to rely upon should

effective hydraulic properties need to be calculated with direct numerical simulations.

Since the flow domain considered in this study was relatively small and did not contain a large

number of fractures, the resulting effective conductivity may not accurately, in a statistical sense,

represent the true effective hydraulic conductivity for the fractured rock mass. However, the values of

the simulated effective hydraulic conductivity seem physically plausible as discussed before. Monte-Carlo

simulations are necessary for assessing the validity and/or reproducibility of these results. A study

addressing this very issue is discussed in Chapter 6.
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Based on the anisotropy ratio results, we may conclude that the effective unsaturated
conductivities in the principal directions for the rock matrix with parallel fractures are bounded, for the
majority of suction values, and can thus be represented by the weighted arithmetic and harmonic means.
Furthermore, it was found that the effective conductivity is a second rank tensor in agreement with Sagar
and Runchal (1982), who obtained symmetric hydraulic conductivity tensors for the case of extensive
fractures. It should also be noted that, even though the anisotropy ratio attains its minimum value near
the suction crossover point, it is precisely at this suction range that the off-diagonal effective hydraulic
conductivity terms attain their minimum value and, therefore, deviate the most from the arithmetic and
harmonic mean bounds.
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6 PARAMETRIC STUDY FOR THE CALCULATION OF
EFFECTIVE PROPERTIES AND LIMITATIONS OF THE REAL

SPACE RENORMALIZATION GROUP METHOD

In Chapter 4, the RSRG method was presented, and several verification tests demonstrated its
applicability for effective property calculations in fractured rock. However, the range over which this
approach provides accurate results has not been investigated. Furthermore, the systems studied in
Chapter 4 were of a binary nature, that is the fractures and underlying matrix were assumed to be
homogeneous. In Chapter 5, the application of direct numerical simulation for the same purpose was
presented for a variety of test cases. Moreover, the two numerical codes used in this work, namely the
MMOC2 and BIGFLOW simulators, were verified against each other for some rather complex and
computationally challenging cases.

This chapter attempts to provide answers to the following questions. First, how sensitive is the RSRG
approach to identifying the effects of various parameters on the effective properties of unsaturated,
fractured rock? Second, is there a certain parameter range for which this method does not work? Third,
what is the effect of variability in the underlying heterogeneous matrix and the overlying fracture network
on the effective hydraulic conductivity? Finally, this chapter attempts to provide some additional
verification of the RSRG method for the case of nonbinary systems, that is for systems where the matrix
is heterogeneous.

6.1 DESIGN OF EXPERIMENTS

In order to address these issues, 36 experiments were designed to investigate the effect of the
following on the effective properties of the combined matrix-fracture system:

* The standard deviation (o) of the underlying porous medium matrix treated as a spatially
correlated random field

* The correlation length of the underlying matrix along the X and Y axis (X1, AD) of the 2D
domain, comprising 64 X 64 computational cells

* The degree of anisotropy in the correlation length

* The superimposed fracture volume (f) given as a percentage of the total volume

* The length of fractures (i.e., short or long) in the horizontal and vertical directions, as
expressed by two inverse length parameters (xlmean, ylmean)

* The contrast between the mean value of the underlying matrix saturated conductivity (KG)

and superimposed fracture network (Kf), as expressed by the parameter X = log (KfIKm').

The range of each of the above parameters is as follows:
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0 :.. a < 0. 60
° < Xe < 64
0 < f <1 percent

K = 1.0 cm/s

KG= 0.01 or 0.001 cm/s

0.001 • xlmean, ylmean < 1.5

A list of the 36 numerical experiments is presented in Table 6-1. The experiments with a

superscript of 1 attempt to determine: (i) the effect of variability in the underlying matrix for a fixed

fracture network, and (ii) the effect of variability in the fracture network superimposed on a fixed

underlying matrix. The experiments with a superscript of 2 were selected to compare the semi-analytical

RSRG solution with BIGFLOW, which is a conventional numerical code that has been successfully tested

and verified in the past. The soil properties of the underlying matrix and the assumptions used for all of

the above experiments are as follows:

* The Gardner exponential and van Genuchten relationships are used for the description of the

hydraulic conductivity versus pressure head and saturation versus pressure head characteristic

curves, respectively.

* The van Genuchten parameter n of the soil is homogeneous and equal to 1.51.

* The bubbling pressure or air entry pressure head hb for both the matrix and fractures is zero.

* The boundary conditions are such that flow is predominantly along the horizontal direction

(X axis).

* The 2D domain size is 64 cm along both the X and Y axis.

* The majority of numerical experiments involve short fractures (i.e., xlmean, ylmean = 1.5).

This means that the average fracture length is approximately one computational cell. At the

other end of the spectrum, a value of 0.001 means that the fractures extend over the whole

domain, that is 64 cells.

The RSRG approach and associated algorithm, presented in Chapter 4, are directly applicable for a binary

matrix-fracture system. In order for this algorithm to apply in the case of heterogeneous matrix, the

hydraulic properties of computational cells which correspond to the matrix must be inferred from certain

a priori assumed bounds. Specifically, it is assumed that: (i) the matrix saturated conductivity cannot

exceed the fracture saturated conductivity; (ii) all relevant hydraulic properties scale in some proportion

to the saturated conductivities; and (iii) several physically based constraints apply, such as that the

conductivity cannot become negative, or the slope of the logarithm of unsaturated conductivity versus

pressure head curve cannot change sign within the domain.

Therefore, the scaling parameter am, (Gardner-a) of the heterogeneous matrix system is based

on a linear interpolation (in the semi-log space) from a reference value am (corresponding to a reference

value of saturated conductivity, Ks, ) to af based on the following equation:

6-2



Table 6-1. List of experiments to study the effect
conductivity of a stochastic matrix-fracture composite

of several parameters on effective

Expt# A%) _xmean ylmean _ I X w=log(4'AR)

1 7 1.5 1.5 0 N/A N/A 2

2 7 1.5 1.5 0 N/A N/A 3

3 7 1.5 1.5 0.375 0 0 2

4 7 1.5 1.5 0.375 4 4 2

5 7 1.5 1.5 0.375 64 64 2

6 7 1.5 1.5 0.375 0 0 3

7 7 1.5 1.5 0.375 4 4 3

8 7 1.5 1.5 0.375 64 64 3

9 7 1.5 1.5 0.60 0 0 2

10 7 1.5 1.5 0.60 4 4 2

11(2) 7 1.5 1.5 0.60 64 64 2

12 7 1.5 1.5 0.60 0 0 3

13 7 1.5 1.5 0.60 4 4 3

14(2) 7 1.5 1.5 0.60 64 64 3

15(1) 7 1.5 1.5 0 N/A N/A 2

16() 7 1.5 1.5 0 N/A N/A 3

17() 7 1.5 1.5 0.375 4 4 2

14(2) 7 1.5 1.5 0.375 4 4 3

19 0 N/A N/A 0.375 0 0 2

20 0 N/A N/A 0.375 0 0 3

21 0 N/A N/A 0.375 4 4 2

22 0 N/A N/A 0.375 4 4 3

23 7 1.5 0.01 0 N/A N/A 2
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Table 6-1. List of experiments to study the effect of several

conductivity of a stochastic matrix-fracture composite (cont'd)
parameters on effective

EE~~~~ ~~ I% k ([ ,,=Iog(v41K31Expt# f(%) xlmean/ jym 0.3a5 - - 2

19 0 N/A N/A 0.375 0 0 2

20 0 N/A N/A 0.375 0 0 3

21 0 N/A N/A 0.375 4 4 2

22 0 N/A N/A 0.375 4 4 3

23 7 1.5 0.01 0 N/A N/A 2

24 7 1.5 0.01 0 N/A N/A 3

25(2) 0 N/A N/A 0.60 64 2 2

26(2) 0 N/A N/A 0.60 64 2 3

27 0 N/A N/A 0.60 0 0 2

28 0 N/A N/A 0.60 0 0 3

29 7 1.5 1.5 0.60 64 2 2

30 7 1.5 1.5 0.60 2 64 2

31 7 1.5 1.5 0.60 2 64 3

32 7 1.5 1.5 0.60 64 2 3

33 0 N/A N/A 0.60 64 64 2

34 0 N/A N/A 0.60 64 64 3

35 0 N/A N/A 0.60 2 64 2

36 ~~0 N/A N/A 0.60 2 64 3
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*~ ~ ~ ~~~~~~~~~= + KSJs ( S (6-1)
ln(KfKXm )

Thus, when the saturated conductivity Ksm of a particular cell from the heterogeneous matrix system is

Eq. (6-1) yields am=a, , and when K ! =4, Eq. (6-1) yields m=

The scaling parameter gm of the heterogeneous matrix system is based on a linear interpolation

from a reference value g m (corresponding to a reference value of saturated conductivity, Ksm ) to #f
based on the following equation:

S Sa~m =Tm + (ffl m)* K (6-2)

From Eq. (6-2) it follows that for Ksm=K{ we get ft. =(Sf; and for Ksm=Km* we get Idm',0 The
properties used for performing the scaling described in Eqs. (6-1) and (6-2) are given by:

* The scaling parameter am of the matrix for the conductivity-pressure relationship in Eq.
(6-1) is 0.025 cm- 1.

* The scaling parameter af of the su1 erimposed fracture for the conductivity-pressure
relationship in Eq. (6-1) is 0.075 cm- .

* The scaling parameter O~m of the matrix for the van Genuchten moisture retention in Eq.
(6-2) is 0.01 cm- 1.

* The scaling parameter Off of the superimposed fracture network for the van Genuchten
moisture retention in Eq. (6-2) is 0.05 cm 1.

Finally, the fractures are generated based on the following:

* Fracture centers are exponentially distributed.

* For different realizations, the cluster-of-fractures center is randomly selected.

* For every horizontal fracture, the probability of a vertical fracture is 1.0 (i.e., the fracture
network system is isotropic), unless otherwise stated.
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6.2 SUMMARY OF PARAMETRIC STUDY RESULTS

In the following section, we summarize the results of the experiments. This section has been

subdivided into three main subsections to facilitate understanding of the observations made during the

numerical experiments. Each subsection is further subdivided depending on the parameter or variable used

to study the sensitivity or variability of the effective conductivity of the combined matrix-fracture system.

6.2.1 Fractured Matrix (f=7 percent)

In the following sections, we discuss those experiments in Table 6-1 that show the effect of the

parameters/variables on the effective conductivity of an underlying matrix superimposed with a fracture

network of volume 7 percent.

6.2.1.1 Effect of Matrix Standard Deviation a

Experiments 1, 4, 10 and 2, 7, 13 show the effect of varying the matrix heterogeneity, as

expressed by the standard deviation a, from 0 to 0.60 on the effective conductivity of the combined

matrix-fracture system, while the matrix correlation length along the X and Y axis (XI = AD = 4) as well

as the fracture volume (f=7 percent) are kept fixed. Figure 6-1 illustrates the effect of a on the effective

conductivity of the matrix-fracture system for two geometric mean values of the matrix, namely

KG =0.01 cm/s and KG =0.001 cm/s. As can be seen from Figure 6-1, varying the matrix standard

deviation does not have a noticeable effect on the effective conductivity of the matrix-fracture system,
1

except at high suction heads for the case of KG = 0.01 cm/s in which a more heterogeneous matrix

produces a lower effective conductivity.

6.2.1.2 Effect of Matrix Mean

The experiments described in Table 6-1 serve to confirm that the mean of the underlying matrix

conductivity has a direct effect on the effective conductivity of the matrix-fracture system. A high mean

value for the matrix conductivity results in a higher effective conductivity of the matrix-fracture system.

This is also illustrated in Figure 6-2 for the case of experiments 25 and 26, where the heterogeneity of

the matrix is kept fixed (or=0.60) and a highly anisotropic matrix field is used.

6.2.1.3 Effect of Matrix Correlation Length X

Experiments 3, 4, 5 and 6, 7, 8 show the effect of varying the matrix correlation length

(X.=Xj0, 4, 64) on the effective conductivity of the combined matrix-fracture system, while the matrix

standard deviation (a=0.375) and fracture volume (f=7 percent) are fixed. Figure 6-3 illustrates the

effect of X on the effective conductivity of the matrix-fracture system for two mean values of the matrix,

namely KE 1=0.01 cm/s and KG =0.001 cm/s. As can be seen from Figure 6-3, varying the correlation

length of the matrix has, in general, a smaller effect on the effective conductivity than the mean of the

matrix conductivity. In the zone close to saturation (low suction head region), a larger correlation length

results in lower effective conductivity. The explanation for this observation is that smaller correlation

lengths result in shorter pathways which in turn allow more water to flow between these pathways and

the more conductive short fractures. In the dry zone (high suction head), varying the correlation length
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Figure 6-1. Effect of matrix standard deviation on the effective hydraulic conductivity of a fractured. medium. Experiments 1 and 2 (o=0.0; solid), 4 and 7 (o=0.375; dashed), and 10 and 13 (or=0.60;
dash-dot).

of the matrix has no effect for KG =0.001 cm/s. However, increasing KG to 0.01 cm/s causes a partial
reversal of the effect observed at low suction heads, without the results being totally conclusive.
Nevertheless, this result is consistent with the observations by Pruess and Tsang (1990) who found that,
under capillary-dominated flow regimes, a larger correlation in small apertures yields higher connectivity.

Experiments 9, 10, 11 and 12, 13, 14 show the effect of varying the matrix correlation length
(X =\=0, 4, 64) on the effective conductivity of the combined matrix-fracture system, while the matrix
standard deviation (a=0.60) and fracture volume (f=7 percent) are fixed. A comparison of the results
of experiments 3, 4, 5, 9, 10, 11 and 6, 7, 8, 12, 13, 17 indicated that the effects of the matrix
correlation length are negligible for both levels of matrix heterogeneity. Since the results of experiments
9, 10, 11 and 12, 13, 14 were very similar to experiments 3, 4, 5 and 6, 7, 8 they are not reported here.

6.2.1.4 Effect of Increasing Fracture Volume

Experiments 19, 3, 20, and 6 examine the effect of increasing the fracture volume on the
effective conductivity of the combined matrix-fracture system, while fixing the matrix standard deviation
(a = 0.375) and correlation lengths (X.=X,=0), as shown in Figure 64. As expected, increasing the

6-7



10-2

10-3

l. . . .

I *

0

.11,

-------

I I

I
I

-7---T--7-1T1 T1r_-

10-4

10-5

10-6 -

10-7 L

100

. .
. . . .

I 101 102 103

Suction Head [cm]

Figure 6-2. Effect
conductivity of the
cm/s (dashed).

of the mean value for the matrix Saturated conductivity on the effective
combined matrix-fracture system. RK' = 0.01 cm/s (solid), and P,' = 0.001

fracture volume results in higher effective conductivity for both cases of KG =0.01 cm/s and

KG =0.001 cm/s. Moreover, this figure shows that the aforementioned observation is reversed at higher

suction heads (dry zone); that is a matrix with no fractures results in a higher effective conductivity
compared to one with 7 percent fractures.

The effect of increasing the fracture volume on the effective conductivity of the combined

matrix-fracture system for a spatially correlated matrix field was examined with experiments 21, 4, 22,

and 7. The results obtained in this case were consistent with the behavior shown in Figure 64, and are

not reported here.

6.2.1.5 Effect of Anisotropy in Fracture Length, and Matrix Correlation Length

Experiments 23, 1, 24, and 2 show the effect of anisotropy in the fracture length on the

effective conductivity, while the matrix is homogeneous (or=0.0) and the fracture volume (f=7 percent)

is fixed. In these experiments, the lengths of vertical fractures were increased to an approximate average

length of 20 computational cells. The anisotropy in the fracture length does have a noticeable effect on

the effective conductivity of the combined matrix-fracture system. As the fractures along the Y axis
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Figure 6-3. Effect of matrix isotropic correlation length on the effective conductivity of a fractured
medium. Experiments 3 and 6 (X=O; solid), 4 and 7 (.=4; dashed), and 5 and 8 (X=64; dash-dot).

(vertical direction) get longer, the effective conductivity of the combined matrix-fracture system increases
as a consequence of the enhanced cross-flow which allows water to find other highly conductive
pathways. Figure 6-5 illustrates the effect of fracture length anisotropy on the effective conductivity of
the combined matrix-fracture system.

Experiments 29 and 11 show the effect of varying the matrix correlation \t along the Y axis
(i.e., varying the lengths of the features along the Y axis) on the effective conductivity of a fractured
medium, while fixing the matrix standard deviation a=0.6, the correlation length X4=64 along the X

axis, the fracture volume (f=7 percent), and the matrix mean KG =0.01 cm/s. Experiments 31 and 14
vary X, (i.e., varying the lengths of the features along the X axis) on the effective conductivity of a
fractured medium, while fixing the matrix standard deviation o=0.6, the Yaxis correlation length \Y =64

and the matrix mean KG =0.001 cm/s. Figure 6-6 shows the effect of each of the correlation lengths
along the X and Y axis individually on the effective conductivity of a fractured medium. It is interesting
to note that in both cases, the incorporation of anisotropy enhances the effective conductivity near
saturation but has relatively little effect at the dry region.
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Figure 64. Effect of increasing fracture volume on the effective conductivity of a fractured medium.

Experiments 19 and 20 (f=0; solid) and 3 and 6 (f=7; dashed).

6.2.2 Nonfractured Matrix

In the following section, those experiments examining the effect of the parameters/variables on

the effective conductivity of the underlying matrix alone are discussed. No fractures are considered in
this case.

6.2.2.1 Effect of Matrix Spatial Structure

Experiments 19, 20, 21, and 22 show the effect of varying the matrix correlation length

(X,=X=0, 4) on the effective conductivity of an unfractured matrix, while fixing the matrix standard

deviation (r= 0.375). Figure 6-7 illustrates the effect of the matrix correlation length (X) on the effective

conductivity of a matrix with no fractures. As shown in Figure 6-7, the isotropic matrix correlation length

has no effect on the effective conductivity of an nonfractured matrix. This is the case for both

KG = 0.01 cm/s and KG] =0.001 cm/s over the entire range of suction heads. Note that the correlation

length did not have a noticeable effect on the effective conductivity of a fractured matrix either (see

Figure 6-3).
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Figure 6-5. Effect of fracture length anisotropy on the effective conductivity of a fractured medium.
Experiments 23 and 24 (ylmean=0.01; solid), and 1 and 2 (ylmean= 1.5; dashed).

6.2.2.2 Effect of Anisotropy in Matrix Correlation Length

Experiments 25, 26, 33, and 34 show the effect of varying the correlation XY along the Y axis
(i.e., varying the lengths of the features along the Y axis) on the effective conductivity of an unfractured
medium, while fixing the matrix standard deviation u=0.6, the correlation length Xx=64 along the X
axis. Figure 6-8 shows the effect of the correlation lengths along the Y axis on the effective conductivity
of an unfractured medium. Comparing Figure 6-8 to 6-6, we conclude that the effect of correlation length
anisotropy is much more pronounced in the case of a fractured medium near saturation. At the dry region
there is no noticeable difference. Similar results were observed for experiments 33, 34, 35, and 36 where
X was varied (not shown).

6.2.2.3 Effect of Matrix Standard Deviation

Experiments 27, 28, 19, and 20 show the effect of the matrix standard deviation a on the
effective conductivity of an unfractured matrix, while fixing the matrix correlation length (Xx=X =0).
Figure 6-9 illustrates the effect of the spatially uncorrelated matrix standard deviation a on the effective
conductivity of an unfractured matrix. As can be seen from this figure, varying the matrix standard
deviation has no effect on the effective conductivity of a nonfractured medium for the whole range of
suction, contrary to the case of a fractured medium (Figure 6-1).
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Figure 6-6. Effect of anisotropy in correlation length on the effective conductivity of a fractured

medium. Experiments 29 and 31 (VX,=32 and 1/32; solid), and 11 and 14 (X,=X,=64; dashed).

0
6.3 SUMMARY OF MULTIPLE REALIZATION STUDY RESULTS

The following section is a study of: (i) the effect of variability in the fracture network for a

fixed underlying matrix, and (ii) the effect of variability in the matrix for a fixed fracture network on the

effective conductivity of the combined matrix-fracture system.

6.3.1 Effect of Variability in Fracture Network for Fixed Fracture Volume

In experiment 15, the variability in statistically equivalent fracture networks was realized by

superimposing 24 random fracture networks with identical fracture volume on a fixed underlying

homogeneous matrix with mean saturated conductivity KG =0.01 cm/s. An ensemble mean effective

conductivity along with the associated standard deviations was computed from the 24 matrix-fracture

realizations. Experiment 16 is very similar to experiment 15 with the difference being that

KGm =0.001 cm/s. Similar to experiment 15, an ensemble mean effective conductivity along with standard

deviations was computed from the 24 matrix-fracture realizations. Figure 6-10 shows the mean effective

conductivity of all 24 realizations along with the standard deviation. Figure 6-11 shows the relative

variability of the effective conductivity for all 24 realizations, defined as the ratio between the ensemble

standard deviation and mean (also known as the coefficient of variation).

6-12



10-2

10-3

05 10-4

U

10-5

10-6
100 101 102 103

Suction Head [cm]

* Figure 6-7. Effect of matrix spatial structure on the effective conductivity of an unfractured
medium. Experiments 19 and 20 (X=0; solid) and 21 and 22 (X=4; dashed).

Figures 6-10 and 6-11 show that the relative variability of the effective conductivity is a
minimum in the region of mid-suction head. The variability of the effective conductivity increases at both
low and high suction regions. Comparing experiments 15 and 16, it is clear that the effect of fracture
network variability is more pronounced for sharper contrast between the matrix and fractures. Thus, the
relative variability in the effective conductivity for experiment 16 ranges between 1 and 50 percent; in
the case of experiment 15, it ranges between 0.01 and 30 percent.

In experiment 17, the variability in the fracture network was realized by superimposing 24
random fracture networks with identical fracture volume on a fixed underlying heterogeneous matrix with
standard deviation u=0.375, isotropic correlation length X=4, and mean saturated conductivity

K3 =0.01 cm/s. The mean effective conductivity along with associated standard deviations were
computed from the 24 matrix-fracture realizations. Figure 6-12 shows the mean effective conductivity of
all 24 realizations along with the standard deviation, whereas Figure 6-13 shows the relative variability
(or coefficient of variation) of the effective conductivity for all 24 realizations. Figures 6-12 and 6-13 also
show that the relative variability of the effective conductivity is a minimum in the region of mid-suction
head. The variability of the effective conductivity increases at both the low and high suction zones to 10
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Figure 6-8. Effect of anisotropy in correlation length on the effective conductivity of an unfractured

medium. Experiments 25 and 26 %=2; solid) and 33 and 34 (6=64; dashed).

and 50 percent, respectively. Experiment 18 is a repetition of experiment 17 with KG =0.001 cm/s. In

this case the variability of the effective conductivity at both low and high suction zones is 60 percent,

which is consistent with the results obtained for a homogeneous matrix.

6.3.2 Effect of Variability in Matrix for a Fixed Fracture Network

Experiments 17 and 18 were selected to further determine the effect of variability of a

heterogeneous matrix with a fixed fracture network on the effective conductivity of the combined matrix-

fracture system. In experiment 17, the variability in matrix was realized by superimposing a fixed fracture

network on 24, statistically equivalent, realizations of a heterogeneous matrix with standard deviation

a= 0.375, isotropic correlation length X=4, and mean saturated conductivity KG' = 0.01 cm/s. Figure 6-14

shows the mean effective conductivity of all 24 realizations along with the standard deviation. Figure 6-15

shows the relative variability of the effective conductivity for all 24 realizations. These figures

demonstrate that the effect of variability in a heterogeneous matrix on the relative variability of effective

conductivity is, in general, comparable to the relative variability obtained by superimposing 24 fracture

network realizations on a fixed matrix.
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Figure 6-9. Effect of matrix standard deviation on the effective conductivity of an unfractured
matrix. Experiments 19 and 20 (u=0.375; solid) and 27 and 28 (o=0.60; dashed).

Figure 6-16 shows the mean effective conductivity of all 24 realizations along with the standard

deviation for experiment 18, which deals with a KG =0.001 cm/s. Figure 6-17 shows the relative
variability of the effective conductivity for all 24 realizations. Figures 6-16 and 6-17 show that the
relative variability of the effective conductivity is, in general, comparable to the relative variability
obtained by superimposing 24 fracture network realizations on a fixed matrix for all levels of contrast
between the mean matrix and fracture conductivities.

6.4 SUMMARY OF REAL SPACE RENORMALIZATION GROUP
VERIFICATION RESULTS FOR NONBINARY SYSTEMS

As discussed earlier, four experiments (11, 14, 25, and 26) were reproduced with direct
numerical simulations in order to further test the validity of the RSRG approach for the case of nonbinary
matrix-fracture systems. Experiments 25 and 26 dealt with a nonbinary fractured, heterogeneous (a = 0. 60)
matrix, which is characterized by a high level of anisotropy in its correlation length. More specifically,
XK=64 and X,,=2, signifying that the system essentially consists of horizontal layers of varying
heterogeneous material. An approach similar to the one described in Chapter 5 was followed, using the
BIGFLOW numerical code. Figures 6-18 and 6-19 depict the comparison between the RSRG and
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Figure 6-10. Mean (solid) and standard deviation (dashed) of the 24 realizations
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Figure 6-11. Relative variability of the effective conductivity for 24 fracture network realizations

on the fixed matrix of experiment 16
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Figure 6-12. Mean (solid) and standard deviation (dashed) of the 24 realizations
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Figure 6-13. Relative variability of the effective conductivity for 24 fracture network realizations
on the fixed matrix of experiment 17
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Figure 6-14. Mean (solid) and standard deviation (dashed) of a fixed fracture network superimposed
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Figure 6-16. Mean (solid) and standard deviation (dashed) of a fixed fracture network superimposed
on 24 realizations of the matrix of experiment 18
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BIGFLOW results for Kn =0.01 cm/s, and KG =0.001 cm/s, respectively. For both levels of the
geometric mean of the heterogeneous matrix field, very good agreement is observed.

Experiments 11 and 14 dealt with a fractured, heterogeneous, isotropic matrix (a=0.60).
However, both experiments imposed an unrealistically large correlation length for the heterogeneous
matrix. As a result, the generated matrix field consisted of two or three large-size blocks of homogeneous
material. Since these blocks differed in terms of properties, the result was a patch-like heterogeneous

material. Figure 6-20 depicts the comparison between the RSRG and BIGFLOW results for KG =0.01
cm/s. It can be seen that the two methods do not compare favorably, especially near saturation. This
observation persists in the case of experiment 14. In this experiment, the RSRG method exhibited serious
difficulties and produced totally erroneous results. Mohanty (1993) has identified the Simple Recursive
Spatial Averaging (SRSA) as a possible explanation for this problem. He points out that the SRSA method
could provide incorrect answers because it attempts to apply a statistical method in an absolute sense to
lattices with fixed geometry. Therefore, in cases where the correlation length is large, the clusters of
heterogeneity grow in size. According to Mohanty (1993), this translates to "[t]he formation of larger,
more compact clusters of conducting sites l, and] results in poor connectivity between conducting sites."
This explains why the RSRG results, underestimate the effective conductivity, when compared to the
direct numerical simulation results.

In order to investigate this limitation of the RSRG further, another numerical experiment was
conducted. This experiment corresponds to Figure 5-19, and involves a set of long fractures with an
approximate volume fraction of 14 percent. The fracture network is superimposed on a heterogeneous
matrix field which is characterized by a correlation length approximately equal to the size of the domain

and a KE =0.0001 cm/s. In this case, probably due to the fact that the volume fraction of fractures was
* 14 percent (as opposed to 7 percent), the RSRG approach produced results even though it was not

expected to do so (in light of the findings of experiment 14). However, as demonstrated in Figure 6-21,
the comparison between the RSRG and BIGFLOW results is extremely unfavorable for the RSRG
method.

6.5 DISCUSSION

A series of 36 numerical experiments was conducted to investigate the effect of: (i) the
underlying porous medium matrix heterogeneity; (ii) the spatial structure of the underlying porous
medium matrix; (iii) the degree of fracturing, as expressed by the fracture volume fraction; (iv) the length
of fractures; and (v) the contrast between the underlying matrix and superimposed fracture saturated
conductivity on the effective hydraulic conductivity of the combined matrix-fracture system. Furthermore,
some of these experiments served as verification exercises for the RSRG method in the case of nonbinary
systems, and indicated some limitations of the method.

Based on the results of these simulations it is concluded, in general, that the RSRG method
provides a viable alternative to direct numerical simulation techniques for the calculation of effective
hydraulic properties. This was found to be true at two levels of contrast between the saturated hydraulic
conductivities of matrix and fractures, and in the case of nonbinary fractured, heterogeneous matrix with
high level of anisotropy in its correlation length. The RSRG was found to be limited, in terms of
performance against direct numerical techniques, when the underlying matrix is characterized by
unrealistically large, isotropic correlation lengths.
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The parametric study indicated the following: (i) the heterogeneity of the underlying matrix has
no noticeable effect on the hydraulic conductivity of the matrix-fracture system, except at very high
suction heads; (ii) the heterogeneity of the matrix has no effect whatsoever in the case of a nonfractured
medium, for the whole range of suction; (iii) the geometric mean of the underlying matrix has a great
effect on the effective properties for both fractured and nonfractured media; (iv) the degree of fracturing
is affecting greatly the effective hydraulic conductivity; (iv) the anisotropy in the fracture length has a
noticeable effect on the effective conductivity of the combined matrix-fracture system, especially near
saturation; and (vi) the correlation length of the underlying matrix has little effect on the effective
conductivity. However, the effect of anisotropy in the matrix correlation length is much more pronounced
in the case of a fractured medium near saturation.

Finally, the multiple realization study concluded the following: (i) the effect of fracture network
variability on the relative variability (or coefficient of variation) of the effective conductivity is more
pronounced for sharper contrasts between the matrix and fracture properties; (ii) the relative variability
of the effective conductivity is a minimum in the region of mid-suction head (near the crossover suction
point) (this variability increases at both low and high suction regions); and (iii) the variability of a
heterogeneous matrix influence on the effective conductivity is comparable, in general, to that observed
due to the fracture network variability.

6-23



7 SUMMARY AND CONCLUSIONS

Modeling the flow and transport processes in the vadose zone at Yucca Mountain, Nevada, requires that
the effects of various types and levels of heterogeneity be incorporated. Some of the most important
geological features are fractures that are hypothesized to play a very significant role in the far-field flow
of moisture at a site or subregional scale. It has been postulated (Nitao and Buscheck, 1991) that as water
infiltrates down from the surface of the mountain, it first flows mainly through the fractures in the rock.
As this process continues, water is hypothesized to imbibe into the matrix, resulting in pure matrix flow.
Whether this hypothesis is true or not, one cannot assess the accessibility of the potential repository level
to infiltration without studying the effects of various fracture characteristics.

The explicit representation of individual fractures in numerical models on the scale of Yucca Mountain
(i.e., subregional scale) is not considered feasible, since it is estimated that in the Topopah Spring welded
unit alone over 4x 1010 discrete fractures are present. Once one recognizes the fact that it is impossible
to either characterize every individual fracture, the need for the use of a stochastic representation and
effective properties becomes clear.

In this work, a brief but thorough description of fractures and their characteristics has been presented
first. Various modeling approaches to study flow in fractured rock were then discussed, and the
regionalization of fracture parameters established the ability to model fractured rock as a conglomeration
of spatially correlated fracture networks. This in turn provided the necessary platform for the modeling
approach advocated in this work. As is shown in the second chapter of this report, where visualization,
statistical and connectivity analyses of a realistic fracture data set are conducted, any modeling effort must
be site specific. It is shown, for example, that at the ALTS, one of the NRC hydrology research sites,
an equivalent continuum approach could be valid for a relatively shallow part of the rock only. At greater
depths this approach would most probably neglect the existence of elongated, highly connected features
which are classified herein as "persistent discontinuities. " Therefore, the approach advocated in this work
addresses the issue of modeling flow in fractured rock by: (i) explicitly modeling important geologic
features; and (ii) lumping together the remaining heterogeneity, composed either of fractures or matrix
heterogeneity, under an effective and/or stochastic continuum approach.

A model is needed to calculate effective hydraulic properties for a variety of conditions and degrees of
matrix or fracture network heterogeneity. Moreover, this model must: (i) preserve most of the smaller
scale features as is practically possible, and (ii) impose minimal computer space and processing time
requirements. This work has reviewed some pertinent literature on methods for effective property
calculation, and introduced the RSRG method. In the fourth chapter of this report, a detailed description
of the RSRG method together with assumptions and associated algorithms were presented. Then, a
verification of the method for binary matrix-fracture systems was presented.

In order to establish a reference point against which one could draw conclusions regarding the suitability
of the RSRG method, a detailed direct numerical simulation study was conducted with the help of two
numerical codes established in the literature, the MMOC2 (Yeh et al., 1993) and BIGFLOW (Ababou
and Bagtzoglou, 1993) codes. A variety of test cases was investigated and comparisons between the two
codes and the semi-analytical RSRG solution were made. Inferences about the anisotropic behavior of the
effective hydraulic conductivity of fractured rock were also made. Finally, a detailed parametric study
of the RSRG method was conducted which showed that it provides a viable alternative to direct numerical
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simulation techniques. Some limitations of the method, in cases where the underlying matrix rock is

patch-like heterogeneous, that is exhibiting very long correlation structures, were identified.

In summary, this work provided an extensive literature review of: (i) effective property calculations,

(ii) fracture network generation with stochastic approaches, and (iii) modeling approaches for simulation

of fluid flow in fractured rock. It further presented: (i) visualization, statistical and connectivity analyses

of realistic networks; (ii) a simple, yet efficient, fracture network generator and its verification; (iii) the

theoretical background, assumptions and algorithm implementation of the RSRG approach; (iv) the

verification of the RSRG method for binary and nonbinary matrix-fracture systems; (v) a study of

effective property calculations with direct numerical simulations; and (vi) a parametric study and

limitations of the RSRG method.
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