CRWMS/M&O

Calculation Cover Sheet

MOL.19980811.0635

1. QA: - NA (T) 2/13/ 18 Page: 1 Of: 15

Complete only applicable items.

2. Celculation Title Criticality Evaluat	ion of Pluton	ium Disposition	Ceramic Weste Fo	orm: Intact Mode	
3. Document Identifi BBA000000-0171	er tincluding f 7-0210-0001	ievision Numberi 2 REV 00	•		4. Total Pages 15
6. Total Attachment 25	5	6. Attachment I/12, II/1, III-	t Numbers - Numbe -8/1, III-b/1, IV/3,	r of pages in each V/3, see remarks below for attachn	nents VI through XXV
· · · ·		Prin	it Name	Signature	Date
7. Originator		Bassam	J. Dahdouh	Benen Indalda	L 7/30/ 1998
8. Checker		Amir S.	Mobasheran	Dint S. Molaster	an 7/30/98
9. Lead Design Engin	eer	Peter	Gottlieb	Peter Stouti	1 7/30/98
	•	۰ ٤.	•	• • •	•
	· · · · · · · · · · · · · · · · · · ·		Revision	History	· · · · · · · · · · · · · · · · · · ·
11. Revision No.	12. Data	Approved		13. Description of Revision	
			•	•	
				·	· · · · · · · · · · · · · · · · · · ·
					• •

ALP-3-27 (Effective 01/26/88)

0635 (Rev. 11/20/97)

Waste Package OperationsEngineering CalculationTitle: Criticality Evaluation of Plutonium Disposition Ceramic Waste Form: Intact ModeDocument Identifier: BBA000000-01717-0210-00012 REV 00Page 20115

Table of Contents

It	êm de la companya de	Page
1.	Purpose	3
2.	Method	.3
3.	Assumptions	3
4.	Use of Computer Software. 4.1 Software Approved for QA Work. 4.1.1 MCNP4B2. 4.2 Software Routines. 4.2.1 Excel.	4
5.	 Calculation. 5.1 Calculation Input. 5.1.1 Description of the Discs and Cans Inside One Canister. 5.1.2 Description of a Single Can. 5.1.3 Description of a Single Canister. 5.1.4 Description of Ceramic Discs 5.1.5 Description of the Ceramic Chemical Composition. 5.1.6 Description of the Waste Package. 5.2 Waste Package and the Waste Canisters. 5.3 The Seven Tubes Inside One Canister. 5.4 Material Densities. 5.5 Element MCNP ID and Atomic Weights. 5.6 Dimensions Used. 5.7 Ceramic Configuration and Composition. 5.8 Infinite Lattice and Pitch Variation input. 	5 5 5 7 7 7 7 8 8 9 9 10 11 11
6.	Results	11
7.	References	13
8.	Attachments	14

Engineering Calculation

 Itle: Criticality Evaluation of Plutonium Disposition Ceramic Waste Form: Intact Mode

 Document Identifier: BBA000000-01717-0210-00012 REV 00
 Page 3 of 15

1. Purpose

The purpose of this calculation is to investigate the criticality of a 5 High-Level Waste (HLW) Canister Waste Package (WP) containing immobilized plutonium arriving at a repository in the form of ceramic disks embedded inside the HLW glass pour canisters (see Figures 5-3 and 5-4). This WP configuration includes a centrally located central tube. The results of this analysis will be used in subsequent evaluations leading to the final selection of a waste package design for immobilized plutonium to be placed in a Monitored Geologic Repository (MGR).

2. Method

The tools utilized for this criticality calculation are the Monte Carlo N-Particle Version 4B2 computer code (MCNP4B) and Microsoft Excel. The MCNP4B2 code package uses the Monte Carlo methodology to perform transport calculations and arrive at the effective neutron multiplication factor, ker. The Monte Carlo numerical method simulates and records the behavior of individual particles within the system as an estimate for criticality potential. This mathematical approach applies random selections of particle transport characteristics and interactions based on probabilities, cross sections, and system geometry. The fission process is regarded as the birth event that separates generations of neutrons. A generation is the lifetime of a neutron from birth by fission to death by either escape, parasitic capture, or absorption leading to fission. The average behavior of the sample set of neutrons is used to describe the average behavior of the system with regards to the number of neutrons in successive generations, i.e., effective neutron multiplication factor, k_{eff} . This code was used to calculate the k_{eff} of the model developed for this analysis. The input to the MCNP4B computer code is taken from the geometry and the composition results obtained using the parameters shown in Section 5 and data obtained from the Lawrence Livermore National Laboratory report PIP 98-012 (Ref. 7.1).

3. Assumptions

3.1 The High-Level Waste Disposal Canister geometry is assumed to be cylindrical in shape versus that given in Ref. 7.2, Figures 3.3.1 and 3.3.2, ORNL DWG 90-418 and ORNL DWG 90-419. The reason for this assumption is to simplify the canister geometry as compared to that given in Ref. 7.2. This assumption is used in Section 5.

3.2 Water will fill the central tube, see Section 5.3 and Figure 5-2, as well as the space surrounding the canisters inside the waste package. For conservatism, water will also

Title: Criticality Evaluation of Plutonium Disposition Ceramic Waste Form: Intact Mode Document Identifier: BBA000000-01717-0210-00012 REV 00

Page 4 of 15

fill the voids present in the cans containing the immobilized plutonium. This assumption is used in Section 5.

- 3.3 The central tube and the waste canisters will settle in the waste package, as shown in Figure 5-2. This assumption is used in Section 5.
- 3.4 The HLW glass is assumed to be poured to fill the remaining space inside the HLW canisters, and the expanded or perforated metal magazine sleeve will be assumed not to form a barrier between the cans and the glass. The reason for this assumption is due to the fact that the can-in-canister design has not been finalized yet. This assumption is used in Section 5.
- 3.5 The materials content of the magazine sleeve, tie rods, scalloped plates, socket plates, latch, and support plates inside the waste canister as shown in Attachment II are not known at this time and thus are not considered. The reason for this assumption is due to the fact that the can-in-canister design has not been finalized yet. This assumption is used in Section 5.

4.0 Use of Computer Software

4.1 Software Approved for QA Work

4.1.1 MCNP4B2

MCNP4B2 computer code (Ref. 7.5), is used to calculate the effective neutron multiplication factor, k_{eff} , for this analysis, Reference 7.4.

- Program Name: MCNP
- Version/Revision Number: Version 4B2
- Computer Software Configuration Item (CSCI) Number: 30033 V4B2LV
- Computer Type: Hewlett Packard 9000, SUN Ultra2 Workstations, and Personal Computers (PC)

The input files used are echoed in their corresponding output files. The output files are listed in Attachments VI through XXV.

- a) The MCNP4B2 computer code (Ref. 7.4) is an appropriate tool to be utilized to estimate the effective neutron multiplication factor k_{eff}.
- b) This software has been validated over the range it was used.
- c) It was previously obtained from the Software Control Management (SCM) in accordance with appropriate procedures.

Engineering Calculation

Engineering Calculation

 Tille: Criticality Evaluation of Plutonium Disposition Ceramic Waste Form: Intact Mode

 Document Identifier: BBA000000-01717-0210-00012 REV 00
 Page 5 of 15

4.2 Software Routines

4.2.1 Excel

- Title: Excel
- Version/Revision Number: Microsoft Excel 97
- The Excel spreadsheet program was used for simple numeric calculations as documented in Attachment IV

5. Calculation

The calculated parameters are derived by performing several activities. These activities are explained in the following sections.

5.1. Calculation Input

5.1.1 Description of the Discs and Cans Inside one Canister

An intact (non-degraded) 5-HLW WP is utilized to contain the immobilized plutonium in the form of ceramic discs inside cans, cans inside HLW waste canisters, and HLW canisters inside the WP. Each plutonium bearing can (Ref. 7.1) contains 20 cylindrical discs that are 2.625 inches in diameter and 1 inch thick. Each HLW canister contains 28 cans of immobilized plutonium. The cans are placed into seven tubes (4 cans per tube), arranged as shown in Figures 5-3 and 5-4. The cans in each tube are stacked vertically and separated by spacers called handling ugs, as shown in Attachment II. The ceramic discs do not fill the cans completely; voids are left inside the cans as shown in Figure 5-1. These voids were modeled in the analysis.

5.1.2 Description of a Single Can

The physical characteristics of a single can, Ref. 7.1, are taken as follows:

Ceramic discs per can	20
Height	53.34 cm
Outer diameter	7.62 cm
Wall thickness	0.3175 cm
Material	Type 316 Stainless Steel

Engineering CalculationTitle: Criticality Evaluation of Plutonium Disposition Ceramic Waste Form: Intact ModeDocument Identifier: BBA000000-01717-0210-00012 REV 00Page 6 of 16

Figure 5-1. Discs in One Can With Voids Showing

Engineering Calculation

 Title: Criticality Evaluation of Plutonium Disposition Ceramic Waste Form: Intact Mode

 Document Identifier: BBA000000-01717-0210-00012 REV 00
 Page 70115

5.1.3 Description of a Single Canister

The physical characteristics of a single HLW canister, Ref. 7.2, are taken as follows:

Cans per canister	28 (seven stacks of four)
Height	299.72 cm
Outer diameter	6 0.96 cm
Wall thickness	0.9525 cm
Material	Type 304L Stainless Steel

5.1.4 Description of Ceramic Discs

The physical characteristics of the cylindrical discs, Ref. 7.1, are as follows:

Diameter	6.6675 cm
Thickness	2.54 cm

5.1.5 Description of the Ceramic Chemical Composition

The chemical composition of the discs is analyzed as shown in Attachment IV.

5.1.6 Description of the Waste Package

The 5-HLW WP design used in the analysis is shown in Attachment I and Figure 5-2. It consists of inner and outer barriers. The materials and dimensions of the WP are given in Sections 5.4 and 5.6. The five HLW canisters were placed in a pentagonal array as shown in Figure 5-2. Figure 5-2 also shows the canisters and central tube settling due to the horizontal orientation of the emplaced WP. The 28 cans contained in seven tubes each containing 4 cans are shown in Figure 5-3.

Because the dimensions and material specifications of the can-in-canister were not given in Ref. 7.1, and Attachment II, the spacers/ugs dimensions were scaled to be 4.445 cm each. The coordinates of these geometries were entered in the input file as echoed in Attachments XXIV and XXV. HLW waste canister dimensions were taken from Ref. 7.2, Figures 3.3.1 and 3.3.2, ORNL DWG 90-418 and ORNL DWG 90-419, respectively.

Engineering Calculation

Title: Criticality Evaluation of Plutonium Disposition Ceramic Waste Form: Intact Mode Document Identifier: BBA000000-01717-0210-00012 REV 00

Page 8 of 15

Figure 5-2. The Waste Package with the Five HLW Canisters and the Central Tube Settled

5.2. Waste Package and the Waste Canisters

The (x y z) coordinates of the five canisters fitting into the settled pentagonal array relative to the WP centerline, see Attachment III-a, were scaled as (55 9.4 0), (8.6 49.3 0), (-55 9.4 0), (-30.5 -46.5 0), and (30.5 -46.5 0) respectively, see Figure 5-2.

5.3 The Seven Tubes Inside One Canister

The (x y z) coordinates of the seven tubes containing 4 cans each, relative to the canister centerline, see Attachment III-b, were scaled as (14.85 12.45 0), (-0.36 19.05 0), (-14.73 11.85 0), (-18.3 -4.35 0), (-7.82 -17.1 0), (8.55 -16.74 0), and (18.6 -3.6 0) respectively, see Figure 5-3.

Engineering Calculation

 Title: Criticality Evaluation of Plutonium Disposition Ceramic Waste Form: Intact Mode

 Document Identifier: BBA000000-01717-0210-00012 REV 00

 Page 9 of 15

Figure 5-3. Ceramic Disc Cans Inside Canisters of the Waste Package

5.4 Material Densities

The model comprised the following materials and their corresponding density in g/cc except for water where the density is listed in atoms/barn cm (Ref. 7.1):

Material	<u>Density</u>
Ceramic	5.5 g/cc
HLW glass	2.85 g/cc
ASTM A 516 Carbon steel	7.832 g/cc
ASTM B 575 N06022 (Alloy 22)	8.69 g/cc
Water	1.0032-01 atoms/barn-cm
SS 304L	7.9 g/cc
SS 316	7.952 g/cc

5.5 Element MCNP ID and Atomic Weights

Attachment V and Reference 7.5 (see page G-6 of Ref. 7.5) are utilized for the corresponding isotope MCNP nuclide identification numbers.

Engineering Calculation

Tille: Criticality Evaluation of Plutonium Disposition Ceramic Waste Form: Intact Mode Bacument Identifier: BBA000000-01717-0210-00012 REV 00

Page 100115

5.6 Dimensions Used

The dimensions used, (see Attachment I), are:

Inner radius of WP		86.5 cm
Radius of inner barrier outer wall		88.5 cm
Radius of outer barrier outer wall	•	98.5 cm
Inner radius of central tube wall		21.18 cm
Outer radius of central tube wall		22.45 cm
Inner height (one-half)		152 cm
Inner barrier lid thickness		2.5 cm
Outer barrier lid thickness		11.0 cm

Engineering Calculation

 Tille: Criticality Evaluation of Plutonium Disposition Ceramic Waste Form: Intact Mode

 Document Identifier: BBA000000-01717-0210-00012 REV 00

 Page 11 01 15

5.7 Ceramic Configuration and Composition

The immobilized plutonium in the ceramic discs, as given by the PIP 98-012 (Ref. 7.1), does not fill up the cans completely and leaves voids as shown in Figure 5-1. These voids were filled with water, (see Figure 5-5), to analyze the impact on the effective neutron multiplication factor, k_{eff} , as shown in Tables 6-3, 6-4, and 6-5. The ceramic composition contained the following various elements, including nuclides, and oxides: Ca, Hf, U, Ti, Pu-238, Gd-152, Gd-154, Gd-155, Gd-156, Gd-157, Gd-158, Gd-160, Pu-239, Pu-240, Am-241, and Pu-242.

5.8 Infinite Lattice and Pitch Variation Input

An infinite hexahedral lattice model was developed for the ceramic discs placed in the four stacked cans configuration. Figure 5-5 shows one stack of these four cans. The pitch, the distance between the centerlines of the adjacent cans inside the canister, was varied, and the effective neutron multiplication factor, k_{eff} , was calculated for three configurations: 1) Dry cans (no water) cases, 2) Flooded cans, 100% water density, cases, and 3) Varied water density cases. Eighteen computer runs for these infinite lattice cases, and two runs for the total WP, were made and the resulting k_{eff} values were tabulated in Section 6.

6. Results

These results should not be used for procurement, fabrication, or construction, and should be tracked as "To Be Verified", TBV, and controlled by appropriate procedures. Tables 6-1, 6-2, 6-3, and 6-4 show that the highest k_{eff} was reached when the pitch between the cans was 7.64 cm. At this pitch where the cans are almost touching, the highest concentration of the ceramic containing the immobilized plutonium is present. Thus, this pitch representing the highest k_{eff} was used to analyze the cases of Tables 6-1 and 6-4. These k_{eff} results are shown below in Tables 6-1; for the no water case, Table 6-2; for water outside of cans only; Table 6-3; for flooded 100% water density cases, and Table 6-4; for the varied water density cases. The output MCNP4B files for the cases shown below are found in 20 attachments, numbered VI through XXV, see Section 8.

The output files cases (input files echoed in the output files), impuydff and impuynff, for the overall waste package, dry and flooded cans cases, respectively, are given in Attachments XXIV and XXV. Substantial nuclides fission has taken place in the zones where both the ceramic and the HLW glass are located. An example of this is reflected in Table 140 of the computer run case impuynff. Thus, one computer warning that there was no fission in some of the larger universe cells of the model appears to be irrelevant. The results of the calculations for the overall k_{eff} are shown in Table 6-5.

Engineering Calculation

 Itile: Criticality Evaluation of Plutonium Disposition Ceramic Waste Form: Intact Mode

 Document Identifier: BBA000000-01717-0210-00012 REV 00

 Page 120115

Figure 5-5. Cans Flooded With Water (One Cell of an Infinite Lattice)

Table 6-1. Dr	y Inside and	Outside Cans	(No Water)
---------------	--------------	--------------	------------

Input Case Name	Pitch, (cm)	ker .	$k_{\rm eff} \pm 1\sigma$	ker +20
ldnwf	7.64	0.86721	0.86721±0.00049	0.86819

Input Case Name	Pitch, (cm)	iker	$k_{eff} + 1\sigma$	k _{eff} +2σ
pd7.64f	7.64	0.53004	0.53004+0.00076	0.53156
pd8f	8	0.47985	0.47985+0.00072	0.48129
pd9f	9	0.36763	0.36763+0.00071	0.36953
pd10f	10	0.29124	0.29124+0.00062	0.29248
pd15f	15	0.13933	0.13933+0.00045	0.14023
pd20f	20	0.10543	0.10543+0.00039	0.10621

Table 6-2. Dry Inside of Cans, 100% Water Outside

Engineering Calculation

 Tille: Criticality Evaluation of Plutonium Disposition Ceramic Waste Form: Intact Mode

 Document Identifier: BBA000000-01717-0210-00012 REV 00
 Page 13 01 15

Table 6-3. Flooded 100% Density Water Inside of Can, 100% Density Water Outside

Input Case Name	Pitch, (cm)	ker	ker ± 10	keff +20
pw7.64f	7.64	0.49831	0.49831±0.00068	0.49967
pw8f	8	0.45192	0.45192+0.00064	0.45320
pw9f	9	0.35053	0.35053+0.00070	0.35193
pw10f	10	0.27874	0.27874+0.00061	0.27996
pw15f	15	0.13704	0.13704+0.00043	0.13790
pw20f	20	0.10545	0.10545+0.00036	0.10617

Table 6-4. Varied (%) Water Density, Similar Inside and Outside of Cans

Input Case Name	Pitch, (cm)	ker	kert lo	ker +20	
ptlf, (1% water)	7.64	0.85312	0.85312+0.00055	0.85422	
ptSf, (5% water)	7.64	0.81452	0.81452+0.00061	0.81574	
pt10f, (10% water)	7.64	0.77908	0.77908+0.00055	0.78018	
pt15f, (15% water)	7.64	0.74974	0.74974+0.00061	0.75069	
pt20f, (20% water)	7.64	0.72299	0.72299+0.00064	0.72427	

 Table 6-5. Overall Multiplication Factor Results

Case Name	keff	ker ±lo	k _{eff} +2σ
impuydff	0.11407	0.11407±0.00018	0.11443
impuynff	0.12459	0.12459+0.00025	0.12509

7. References

- 7.1 Plutonium Immobilization Project, PIP 98-012, January 23, 1998. Data for Yucca Mountain TSPS, Rev 1, Lawrence Livermore National Laboratory.
- 7.2 Characteristics Of Potential Repository Wastes, DOE/RW-0184-R1, Volume 1, July 1992, US DOE Contract No. DE-AC05-840R21400.
- 7.3 Material Compositions and Number Densities for Neutronics Calculations, Document Identifier (DI) Number: BBA000000-01717-0200-00002 REV 00, Civilian Radioactive Waste Management System (CRWMS) Management and Operating Contractor (M&O).
- 7.4 Software Qualification Report for MCNP Version 4B2, A General Monte Carlo N-Particle Transport Code, DI Number: 30033-2003 REV 00, CRWMS M&O.

Engineering Calculation

Page 14 of 15

Tille: Criticality Evaluation of Plutonium Disposition Ceramic Waste Form: Intact Mode Document Identifier: BBA000000-01717-0210-00012 REV 00

- 7.5 Briesmeister, Judith F., Ed., MCNP- A General Monte Carlo N-Particle Transport Code, Los Alamos National Laboratory (LANL), LA-12625M, Version 4B, March 1997.
- 7.6 Dahdouh, Bassam J., MOL 19980715.0397, Criticality Evaluation of Plutonium Disposition Ceramic Waste Form: Intact Mode, CRWMS M&O 1998. Electronic Attachments for DI Number: BBA000000-01717-0210-00012 REV 00. Colorado Backup Tape, Las Vegas, NV.

8. Attachments

5-HLW Canister Waste Package, 12 pages, TBV
Can-in-Canister Assembly
Coordinates scale of the five settled canisters, 1 page
Coordinates scale of the seven stacks of cans. 1 page
Ceramic Spreadsheet, cer-base,xis, 3 pages
MCNP ID Table, 3 pages

A magnetic Tape contains the following 20 attachments, see page 15, created on a HP Series 9000 work station.

Attachment VI	Results output file for case pd7.64f .
Attachment VII	Results output file for case pd8f
Attachment VIII	Results output file for case pd9f
Attachment IX	Results output file for case pd10f
Attachment X	Results output file for case pd15f
Attachment XI	Results output file for case idnwf
Attachment XII	Results output file for case pd20f
Attachment XIII	Results output file for case pw7.64f
Attachment XIV	Results output file for case pw8f
Attachment XV	Results output file for case pw9f
Attachment XVI	Results output file for case pw10f
Attachment XVII	Results output file for case pw15f
Attachment XVIII	Results output file for case pw20f
Attachment XIX	Results output file for case pt1f
Attachment XX	Results output file for case pt5f
Attachment XXI	Results output file for case pt10f
Attachment XXII	Results output file for case pt15f
Attachment XXIII	Results output file for case pt20f
Attachment XXIV	Results output file for case impuydff
Attachment XXV	Results output file for case impuynff

Engineering Calculation

Waste Package Operations Engineering Tille: Criticality Evaluation of Plutonium Disposition Ceramic Waste Form: Intact Mode Document Identifier: BBA000000-01717-0210-00012 REV 00

The magnetic tape contains the following 20 attachments created on a HP Series 9000 work station and transferred to a PC desktop computer. This tape was written using the Colorado Model T1000e External Parallel Port Backup System for personal computers. The files representing the following attachments are on a Colorado backup tape having an identification MOL 19980715.0397 (Ref. 7.6).

Case File Name	HP 9000 File Size	File	Date and Time	HP Work Station File Name
		Туре	· · · · · · · · · · · · · · · · · · ·	`
idnwf	229062	ASCII	7/28/98, 8:32 AM	home/dahdouh/mcnp/ idnwf
pd7.64f	227215	ASCII	7/15/98, 9:54 AM	home/dahdouh/mcnp/ pd7.64f
pd8f	226148	ASCII	7/15/98, 9:54 AM	home/dahdouh/mcnp/ pd8f
pd9f	227312	ASCII	7/15/98, 9:55 AM	home/dahdouh/mcnp/ pd9f
pd10f	226342	ASCII	7/15/98, 9:55 AM	home/dahdouh/mcnp/ pd10f
pd15f	227624	ASCII	7/15/98, 9:55 AM	home/dahdouh/mcnp/ pd15f
pd20f	227936	ASCII	7/15/98, 9:55 AM	home/dahdouh/mcnp/ pd20f
pw7.64f	227975	ASCII	7/15/98, 9:55 AM	home/dahdouh/mcnp/
				pw7.64f
pw8f	227975	ASCII	7/15/98, 9:55 AM	home/dahdouh/mcnp/ pw8f
pw9f	226811	ASCII	7/15/98, 9:55 AM	home/dahdouh/mcnp/ pw9f
pw10f	227005	ASCII	7/15/98, 9:56 AM	home/dahdouh/mcnp/ pw10f
pw15f	228287	ASCIL	7/15/98, 9:56 AM	home/dahdouh/mcnp/ pw15f
pw20f	228502	ASCII	7/15/98, 9:56 AM	home/dahdouh/mcnp/ pt20f
ptlf	229223	ASCII	7/15/98, 9:56 AM	home/dahdouh/mcnp/ ptlf
pt5f	227742	ASCII	7/15/98, 9:56 AM	home/dahdouh/mcnp/ pt5f
pt10f	228583	ASCII	7/15/98, 9:57 AM	home/dahdouh/mcnp/ pt10f
pt15f	227227	ASCII	7/15/98, 9:57 AM	home/dahdouh/mcnp/ pt15f
pt20f	228599	ASCII	7/15/98, 9:57 AM	home/dahdouh/mcnp/ pt20f
impuydff	363901	ASCII	7/17/98, 1:39 PM	home/dahdouh/mcnp/
				impuydff
impuynff	364252	ASCII	7/17/98, 1:39 PM	home/dahdouh/mcnp/
	•	•		impuynff

Magnetic Tape Table of Contents

Page 15 of 15

. . .

. . .

Α

.

. . .

. . . .

•

• • •

· · ·

.

•

. . . .

FAX NO. 5104232759

APR-24-98 FRI 11:04 AN PPAC

F. 02

.

13

15

21

22

23

36

ATTACHMENT I PAGE TE-1

	A	B	C	D	E	F
3	Oxide	W1. %	Atomic Mass, 1'st	MCNP ID, 1'st	Atomic Mass, 2,nd	WL 1 mole
4	1Ca0	10	40.08	20000.600	15.894915	58.07
5	HIÖ2	10.6	178.49	72000.50C	31.98983	210.4
6	1002	· 23.7	238.05077	92238.50C	31.98983	270.
7	PuO2	11.9	239.158738	see d16 to d20	31.98983	271.14
8	Gd203	. 7.9	314.5	see f16 to f20	47.984745	362.48
9	TiO2	35.9	47.9	22000.50C	31.98983	79.8
10		100				
11						
42		······································	Du total wt %	1	40 40603085	

362.484745 MCNP ID, 79.88983 8016.50C 31.88983 10.49603985 14 Isotope wt % 17 ton case, year 2010, ref PIP, page 15, table 4.3 wt % in Ceramic MCNP ID PU EIT AL WL Gd isotope MCNP ID 0.002099208 94238.50C 16 Pu 238 0.047609902 Gd 152 0.02 64152.50C 9.508382498 94239.55C 17 Pu 239 90.59 216.5573391 Gd 154 64154.50C 20.18853148 Gd 155 2.145404765 Gd156 0.217852853 Gd157 18 Pu 240 8.41 0.882716951 94240.50C 64155.50C 19 (Am+Pu)241 20 Pu 242 0.89 0.093414755 95241.50C 64158.50C 0.009448438 94242.50C 0.09 64157.50C 239.158738 Gd158 64158.50C Gd160 64160.60C 24 MCNP ID WL % 25 20000.60C 7.14768105 28 72000.50C 8.98895633 27 92238.60C 20.892426 28 64152.50C 0.01324237 29 64154.50C 30 64155.50C 31 64155.50C 0.14625548 0.99940103 1.39119548 32 64157.50C 1.07044509 33 64158.50C 1.70986216 34 64160.50C 1.52381789 35 22000.50C 21.5247673

58.074915

210.47983 270.0406

271.146568

G

ATTACHHENT I PAGE TE-1

.

BBA00000-01717-0210-00012 REV 00

.

3 Oxide ML % Atomic Mass, 1%L MCNP ID, 1%L Atomic Mass, 2,nd Wt. 1 mole 4 Cao 10 40.08 2000.60C 15.84916 68.074916 6 HO2 10.8 77.8407200.60C 31.88983 210.47883 270.0406 7 Pu/02 11.9 238.156738 aee f18 to d20 31.88983 271.148588 6 Gd203 .7.9 31.45 see f18 to d20 31.88983 271.148588 6 Gd203 .7.9 31.45 see f18 to d20 31.88983 79.88983 8018.60C 10 100 100		A	B	C	Đ	E		G
4 Cao 10 40.06 2000.50C 15.044915 60.74915 6 H102 10.6 178.46 7200.60C 31.98983 210.47983 7 Pu02 11.5 230.150738 see f18 to 620 31.98983 227.146568 8 Gd203 .7.9 31.45 see f18 to 620 31.98983 271.146568 8 Gd203 .7.9 31.45 see f18 to 620 47.944745 382.484745 9 H102 35.9 47.9 22000.60C 31.98983 79.88983 8016.60C 10 100	3	Oxide	WL %	Atomic Mass, 1'st	MCNP ID, 1'st	Atomic Mass, 2,nd	Wit. 1 mole	
6 Ht02 10.6 178.49 72000.60C 31.98983 210.47983 6 U02 23.7 238.05077 82238.50C 31.98983 270.0408 7 Pu02 11.8 230.156738 see f18 to 620 31.98983 271.145588 6 G6203 .7.9 314.5 see f18 to 620 47.984745 S62.484745 MCNP ID, 7 Pu02 35.9 47.9 22000.60C 31.98983 271.145588 6015.60C 10 100 100 10.49603385 11	4	CaO	10	40.08	20000.50C	15.994915	58.074915	
6 UO2 23.7 238.05077 (2238.50C 31.96983 271.0400 7 Pu02 11.9 238.156738 see 616 to d20 31.96983 271.146568 6 G2C03 .7.9 314.16 see 616 to d20 47.864745 382.484745 MCNP ID, 6 G2C03 .7.9 314.16 see 616 to d20 31.96983 79.86983 6018.50C 10 100	6	HIO2	10.6	178.49	72000.50C	31.98983	210,47983	
7 PiúO2 11.9 233.158738 see d19 to d20 31.98983 271.146588 8 Gá2Ó3 .7.9 314.5 see f18 to 20 47.864745 362.48745 MCNP ID, 9 TiO2 35.9 47.9 22000.60C 31.98983 79.88983 6016.50C 10 100 100	6	002	23.7	238.05077	92238.50C	31.98983	270.0406	
8 Gd2C03 7.9 314.5 see Fi8 to E20 47.984745 362.484745 MCNP ID, 9 1102 35.9 47.9 22000.60C 31.88983 79.88983 8016.50C 10 100 100 10.49603985	7	PuO2	11.9	239.158738	see d18 to d20	31.98983	271.146568	
9 TiO2 35.6 47.9 22000.60C 31.88983 79.88833 8016.50C 10 100 100 100 100 101	8	Gd203	. 7.9	314.5	see (18 to (20	47.984745	362,484745	MCNP ID,
10 100 100 11 Pu total wt % 10.49603685 13 11 10.49603685 14 isolope wt % 17 ton case, year 2010, ref PiP, page 15, table 4.3 10.49603685 16 Pu 238 0.62 0.60209203 94238.60C 0.647609002 Gd 152 64152.50C 17 Pu 230 90.59 9.630362498 94239.65C 216.573391 Gd 154 64152.50C 18 Fu 230 9.641 0.682716951 94240.60C 20.18853148 Gd 155 64155.60C 19 Am+Puj241 0.89 0.093414755 95241.60C 2.145404765 Gd158 64158.50C 20 Pu 242 0.00 0.009448438 94242.60C 0.217882853 Gd157 64157.60C 21 0.00 0.009448438 9424.60C 0.217882853 Gd158 64168.60C 22 0.00 0.009448438 9424.60C 0.217882853 Gd158 64158.60C 22 0.00 0.009448438 9424.60C 0.217882853 Gd158 64158.60C 23 1.00 0.009448438 9424.60C 0.217882853 Gd158 64158.60C 24 McNP ID	10	TiO2	35.9	47.9	22000.50C	31.98983	79.88983	8018.50C
11 Pu total wt % 10.49603985 13 11 10.49603985 14 Isolope wt % 17 ton case, year 2010, ref PiP, page 15, table 4.3 4 16 wt % in Ceramic MCNP ID 17 Pu 238 0.42 18 wt % in Ceramic MCNP ID 19 Pu 239 90.59 0.602099208 19 Pu 240 0.4162.50C 0.447604902 19 Pu 240 0.4162.50C 216.5573391 Gd 154 64152.50C 19 Am+Puj241 0.89 0.093414765 95241.50C 20.185531448 Gd 155 64155.50C 20 Pu 242 0.09 0.009448438 64240.50C 2.145404765 64155.50C 21 0.59 0.009448438 64240.50C 2.145404765 64155.50C 22 0.59 0.009448438 64242.50C 0.217852653 64155.50C 22 0.59 0.009448438 6422.50C 0.217852653 64155.50C 23 52000.50C 7.14758105 10 10 10 24 MCNP ID WL %	10		100					
12 Pu bibil wt % 10.49803985 13 wt % in Ceramic MCNP ID 15 wt % in Ceramic MCNP ID 16 Pu 238 0.02 0.60209208 94238.60C 0.047809902 Gd 152 64152.50C 17 Pu 239 90.59 0.503822498 94239.55C 218.6573391 Gd 154 64152.50C 18 Pu 240 8.41 0.682716951 94240.50C 20.18853148 Gd 155 64155.60C 19 Am+Pu/241 0.69 0.093414765 95241.50C 2.148404765 Gd168 64155.60C 20 Pu 242 0.09 0.00944635 94242.50C 0.217852853 Gd157 64157.50C 21	11	1				1	1	{
13 14 Isciope wit % 17 ton case, year 2010, ref PiP, page 15, table 4.3 Pu Eff AL WL Gd isciope MCNP ID 16 9u 238 0.62 0.002090208 94238.50C 0.047609002 6d 152 84152.50C 17 Pu 239 90.59 0.502362498 94238.50C 216.5573391 Gd 164 64154.60C 18 Pu 240 8.41 0.682718951 94240.50C 20.18853148 Gd 165 64155.60C 19 (Am+Pu)241 0.89 0.003414765 95241.50C 2.145404765 Gd168 64155.60C 20 Pu 242 0.59 0.009448438 94242.60C 2.145404765 Gd168 64155.60C 21	12			Pu total wt %		10.49603985		
14 Isolopa wt % 17 ion case, year 2010, ref PiP, page 15, table 4.3 Gd isolope MCNP ID 15 wt % in Ceramic MCNP ID Pu Eff AL WL Gd isolope MCNP ID 16 Pu 238 0.02 0.002090208 04238.60C 0.047809002 Gd 152 84152.50C 17 Pu 239 90.50 9.503362498 04239.55C 218.5573301 Gd 154 64152.50C 18 Pu 240 8.41 0.62716951 04240.50C 20.18853148 Gd 155 64155.50C 19 (Am+Puj241 0.69 0.009448436 94242.60C 0.217852853 Gd 155 64155.60C 20 Pu 242 0.59 0.009448436 94242.60C 0.217852853 Gd 158 64155.60C 21 0.09 0.009448436 94242.60C 0.217852853 Gd 158 64155.60C 22 0.59 0.009448436 94242.60C 0.217852853 Gd 158 64156.60C 23 1.507380 Gd 158 64158.60C 239.158738 Gd 158 64160.50C 23 1.507380 Gd 158 1.507 1.507 1.507 1.507 24 MCNP ID WL % 1.507 1.507 1.507 1.507 1.507	13	[1	1		1		
15 wt % is Ceramic MCNP ID Pu Eff AL Wit Gd isctope MCNP ID 16 Pu 233 0.62 0.602099208 94238.60C 0.047609902 Gd 152 64152.60C 17 Pu 239 90.59 9.508382498 94239.65C 216.6573391 Gd 164 64152.60C 18 Pu 240 8.41 0.882718951 94240.60C 20.18853148 Gd 165 64155.60C 19 (Am+Pu)241 0.89 0.093414765 95241.60C 2.145404765 Gd168 64155.60C 20 Pu 242 0.09 0.009448438 9424.2.50C 0.217852853 Gd158 64158.60C 21	14	Isolope wt % 1	7 ton case, ye	ar 2010, ref PiP, pag	e 15, table 4.3	· · · ·		
16 Pu 233 0.62 0.002099203 94238.50C 0.047609902 6d 152 64152.50C 17 Pu 239 90.59 9.508382498 94239.55C 218.5573391 6d 154 64154.50C 18 Pu 240 8.41 0.682716951 94240.60C 20.18853148 6d 155 64155.60C 19 (Am+Pu)241 0.69 0.093414765 95241.60C 2.145404765 6d 165 64155.60C 20 Pu 242 0.09 0.009448436 94242.60C 0.217852853 6d 167 64157.60C 21	15		[wt % in Ceramic	MONP ID	PU EH AL WL	Gd isotope	MCNP ID
17 Pu 239 90.59 9.503362498 94239.55C 218.6573391 Gd 164 64154.50C 18 Pu 240 8.41 0.882716951 94240.50C 20.18853148 Gd 165 64155.60C 19 (Am+Pu)241 0.89 0.093414765 95241.50C 2.145404765 Gd168 64156.50C 20 Pu 242 0.09 0.009448436 94242.60C 0.217852853 Gd158 64157.50C 21	16	Pu 238	0.02	0.002099208	94238.50C	0.047609902	Gd 152	64152.50C
18 Pu 240 8.41 0.882716951 94240.50C 20.18853148 Gd 155 64155.50C 19 (Am+Pu)241 0.89 0.093414765 95241.50C 2.145404765 Gd158 64155.50C 20 Pu 242 0.09 0.009448436 94242.50C 0.217852853 Gd157 64157.50C 21 230.158738 Gd158 64158.50C 239.158738 Gd158 64158.50C 22 Gd160 64160.50C Gd160 64160.50C 239.158738 Gd160 64160.50C 23 Gd160 64160.50C 10.000.50C 8.98895833 10.000.50C 10.6994226 10.000.50C 10.69942237 10.000.50C 10.69942237 10.000.50C 10.69942237 10.000.50C 10.699420103 10.000.50C 10.699420103 10.000.50C 1	17	Pu 239	90.59	9.508362498	94239.550	218.5573391	Gd 154	64154.60C
19 (Am+Puj241 0.89 0.093414765 95241.60C 2.145404765 Gd168 64165.60C 20 Pu 242 0.09 0.009446438 94242.60C 0.217852853 Gd157 64157.60C 21 239.156738 Gd158 64158.60C 239.156738 Gd160 64160.60C 22 3 3 3 3 3 64160.60C 1.45404765 23 36 3 64158.60C 0.217852853 3 3 3 24 MCNP ID VIL 14 3	18	Pu 240	8.41	0.882718951	94240.50C	20.18853148	Gd 165	64155.60C
20 Pu 242 0.09 0.009446438 94242.60C 0.217852853 Gd157 64157.60C 21 23 30.156738 Gd158 64158.60C 239.156738 Gd160 64160.60C 23 30.000.60C 7.14758105 30.000.60C 6.08895633 30.000.60C 20.892426 30.000.60C 20.892426 30.000.60C 30.892426 30.000.60C 30.892426 30.000.60C 30.9940103 30.000.60C 30.9940103 30.000.60C 30.9940103 30.000.60C 30.9940103 30.000.60C 30.9940103 30.000.60C 30.9940103 30.000.60C 30.64158.60C 30.	19	(Am+Pu)241	0.69	0.093414765	95241.50C	2.145404765	Gd155	64156.60C
21 239.156738 Gd168 64158.50C 22 Gd160 64160.50C 23 Gd160 64160.50C 24 MCNP ID WL % 25 20000.50C 7.14758105 26 72000.50C 8.98895833 27 92238.50C 20.892426 28 64152.50C 0.01324237 29 64154.50C 0.14625548 30 64158.50C 0.99940103 31 64158.50C 1.97044509 33 64158.50C 1.07044509 33 64158.50C 1.52361789 36 </th <th>20</th> <th>Pu 242</th> <th>0.09</th> <th>0.009448438</th> <th>94242.50C</th> <th>0.217852853</th> <th>Gd157</th> <th>64157.50C</th>	20	Pu 242	0.09	0.009448438	94242.50C	0.217852853	Gd157	64157.50C
22 Gd160 64160.50C 23	21			· · · · ·		239.158738	Gd158	64158.50C
23	22]					Gd160	64160.50C
24 MCNP ID WL % 25 20000.60C 7.14758105 26 72000.50C 8.98895633 27 92238.60C 20.892426 28 64152.60C 0.01324237 29 64154.60C 0.14625548 30 64165.50C 0.99940103 31 64166.60C 1.39119548 32 84157.60C 1.07044509 33 64188.60C 1.70988216 34 64160.50C 1.62381789 35 22000.60C 21.6247673	23	1		· .		•		
25 20000.60C 7.14758105 26 72000.50C 8.98895633 27 62238.60C 20.892426 28 64152.50C 0.01324237 29 64154.60C 0.14625548 30 64155.50C 0.99940103 31 64166.60C 1.39119548 32 84157.50C 1.07044509 33 64188.50C 1.70988216 34 64180.50C 1.52381789 35 22000.50C 21.6247673	24	MCNP ID	WL %					
26 72000.60C 8.98895833 27 92238.60C 20.892426 28 64152.60C 0.01324237 29 64154.60C 0.14625548 30 64155.80C 0.99940103 31 64166.60C 1.39119548 32 64154.80C 1.07044509 33 64180.60C 1.70988216 34 64180.60C 1.52381789 35 22000.80C 21.6247673	25	20000.50C	7.14758105					
27 62238.60C 20.892426 28 64152.50C 0.01324237 29 64154.60C 0.14625548 30 64155.80C 0.99940103 31 64156.60C 1.39119548 32 64157.60C 1.07044509 33 64158.60C 1.70948216 34 64160.60C 1.52381789 35 22000.60C 21.6247673 36 36 36	26	72000.50C	8.98895633				1	
28 64152.50C 0.01324237 29 64154.60C 0.14625548 30 64155.50C 0.99940103 31 64156.60C 1.39119546 32 64157.60C 1.07044509 33 64158.60C 1.70986216 34 64160.50C 1.52381789 35 22000.50C 21.6247673	27	92238.50C	20.892426					
29 64154.50C 0.14625548 30 64155.50C 0.99940103 31 64156.60C 1.39119548 32 64157.50C 1.07044509 33 64158.50C 1.70988216 34 64160.50C 1.62381789 35 22000.50C 21.5247673 36 1 1	28	64152.50C	0.01324237					
30 64165.50C 0.99940103 31 64166.60C 1.39119548 32 64157.60C 1.07044509 33 64158.60C 1.70988216 34 64160.50C 1.62381789 35 22000.60C 21.6247673 36	29	64154.50C	0.14625548]	[
31 64166.60C 1.39119548 32 64157.60C 1.07044509 33 64158.60C 1.70988216 34 64160.50C 1.62381789 35 22000.60C 21.6247673 36 1 1	30	64155.50C	0.99940103			1.		
32 64157.50C 1.07044509 33 64158.50C 1.70986216 34 64160.50C 1.62381789 35 22000.50C 21.5247673 36 1 1	31	64156.50C	1.39119548					
33 64158.50C 1.70988216 34 64180.50C 1.52381789 35 22000.50C 21.5247673 36 1 1	32	64157.60C	1.07044506					
34 64160.50C 1.62381789 35 22000.50C 21.6247673 36	33	64158.50C	1.70986216	3				
35 22000.50C 21.5247673 36	34	64160.50C	1.6238178					
36	35	22000.50C	21.5247873					
	36	1	1	1		1	1	1

ATTACHHENT IL PAGE IL-2

	A	B	C	D	E	F		
37					•		1	
38	94238.50C	0.00209921	1		• •	2		
39	94239.55C	9.5083825				· ·		
40	94240.60C	0.88271695		•				
41	95241.50C	0.09341475						
42	94242.50C	0.00944644						
43	8016.50C	24.09601						
44	Total WL %	100						

ATTACHMENT IN PAGE IN-3

.

	н			K	L
3	wt %. f'st element	wt % Oxygen			-
4	7.147581053	2.852418947			
5	8.988956329	1.611043671			
6	20.89242599	2.807574013			
7	10.49603985	1.403960152			
8	6.854219479	1.045780521			
9	21.5247673	14.3752327			
10	75.90398999	24.09601001			
11					
12					
13					
14					
15	W1 %*		Wt % In Ceramic		
16	0.001932	0.00028187	0.013242365		
17	0.021338	0.003113119	0.148255481		
18	0.145808	0.021272736	0.999401033		
19	0.202969	0.02981227	1.391195485		
20	0.158173	0.022784943	1.070445089	_	
21	0.249481	0.036395245	1.709862155		
2	0.222318	0.032435203	1.62381789	•	
23	0.999999	0.145895388	6.854219479		
24			•		
25	Ref.GE Nuclear Energy	y, Nuclides and	isotopes, 14th edit	ion	•
26	U-238 assumed to be	100% in UO2 b	cause U-235 conter	nt is ins ignif	icant
27					
28					
29					
30					
31					
32					
33				·	
34	{	ļ			I
35					
36					

ATTACHHENT I PAGE I-1

Waste Package Development

:)

Design Analysis

Title: Material Compositions and Number Densities For Neutronics Calculations Document Identifier: BBA000000-01717-0200-00002 REV 00

Page 29 of 38

4.1.2 List of Isotope Atomic Weights Reference 5.16, Appendix C, Page 941 - 978

•	Element	<u>Symbol</u>	Isotope	MCNP ID	Atomic Weight
I	Hydrogen	H	H-1	1001.50C	1.00782519
		D	H-2	1002.55C	2.01410222
•	••	T	H-3	1003.50C	3.01604971
2	Helium	· He	natural	2000.01Ç	4.0026
•	• • •	He	He-4	2004.50Č	4.00260312
3	Lithium	Li ·	LI-6	3006.50C	6.0151247
		Ц	LJ-7	, 3007.55C	7.0160039
4	Beryllium	Be	Be-9	4009.50C	9.0121855
2	Boron	В	B-10	5010.50C	10.0129388
~	<u> </u>	B	B-11	· 5011.56C	11.0093053
0	Carbon	.Ċ	natural	· 6000.50C	12.01115
~		C	C-12	6012.50C	12.0000
7 -	Nitrogen	·N	N-14	7014.50C	14.00307439
8	Oxygen	0	O-16 .	8016.50C	15.994915
У 	Fluorine	F.	F-19	9019.50C	18.9984046
11.	Sodium	Na	Na-23	11023.50C	22.9897707
12	Magnesium	Mg	natural	12000.50C	24.312
13	Aluminum	Al	A1-27	13027.50C	26.9815389
14	Silicon	Si -	natural	14000.50C	28.086
12	Phosphorus	P	P-31	· 15031.50C	30.9737647
10	Sultur	S .	S-32	16032.50C	31.9720737
-17	Chlorine	CI	natoral	17000.50C	35.452
19	Potassium	K.	natural	19000.50C	39.102
20	Calcium	· Ca	natural	20000.50C	40.08
22	Titanium	Ti	natural	22000.50C	47.9
23	Vanadium	V	natural	23000.50C	50.942
24 05	Chromium	Cr	natural	24000.50C	51.996
23	Manganese	Mn	Mn-55	25055.50C	54.9380503
20	LION	Fe	natural	26000.55C	55.847
41 20	Cobalt	Co	Co-59	27059.50C	58.933189
20	Nickel	Ni	natural	28000.50C	58.71
27 20	Copper	Cu	natural	29000.50C	63.54
20	Zinc	Za	natural	30000.50C	65.37
33 · 30	Arsenic	As	As-75	33075.35C	74.9215964
70 10	Strontium	Sr	natural	38000.500	87.62
107 1	Zirconium	Zr	natural	40000.50C	91.22
11 10	NIODIUM	Nb	ND-93	41093.50C	92.906382
1	Molybdenum	Mo	natural	42000.50C	95.94
· .	6	Мо	Mo-95	42095.50C	94.905839
ت. •	lechnetium	Tc	Tc-99*	43099.50C	98.90627501*

ATTACHHENT L PAGE II-2

Waste Package Development

ر. با ر. با **Design Analysis**

ŧ.

Title: Material Compositions and Number Densities For Neutronics CalculationsDocument Identifier: BBA000000-01717-0200-00002 REV 00Page 30 of 38

4.1.2 List of Isotope Atomic Weights (Continued)

	Element	Symbol	Isotope	MCNP ID	Atomic Weight
44	Ruthenium	Ru	Ru-101	44101.50C	100.905576
45	Rhodium	Rh	Rh-103	45103.50C	102.905511
46	Palladium	Pd	natural	45000.50C	106.4
47	Silver	Ag	Ag-109	47109.50C	108.904756
48	Cadmium	Cđ	natural	48000.50C	112.4
49	Indium	In	natural	49080.500	114.82
50	Tin	Sn	natural	50000.35C	118.69
55	Cesium	Cs	Cs-133	55133.50C	132.905355
		Cs	·Cs-135	55135.50C	134.90577
56	Barium ·	Ba.	natural	56000.50C	137.34
57	Lanthanum	La	. natural	57000.50C	138.91
58	Cerium	Çe	natural	58000.50C	140.12
60	Neodymium	Nd	Nd-143	60143.50C	142.909779
		Nd	Nd-145	60145.50C	144.912538
62	Samarium	Sm '	Sm-147 .	62147 .5 0C	146.914867
	•	Sm	Sm-149	62149.50C	148.91718
		Sm	Sm-150	62150.50C	149.917276
	• *	Sm	Sm-151	62151.50C	150.919919
		Sm .	Sm-152	62152.50C	151.919756
63	Europium	Eu	Eu-151	63151.55C	150.919838
		Eu	Eu-153	63153.55C	152.921242
		Eu	Eu-154	63154.50C	153.923053
64	Gadolinium	Gđ	natural	64000.35C	157.25
		Gd	Gd-155	64155.50C	154.922664
		Gd	Gd-157	64157.50C	156.924025
72	Hafnium	Hf	natural	· 72000.50C	178.49
73	Tantalum	Te	Ta-181	73181.50C	180.948007
·74	Tungstèn	W	natural	74000.55C	183.85
82	Lead	Рь	natural	82000.50C	207.19
92	Uranium	ប	U-233	92233,50C	233.039522
		ប	U-234	92234,50C	234.040904
		U	U-235	92235.50C	235.043915
		U	U-236	92236.50C	236.045637
		U	U-23 8	92238.50C	238.05077
. 93	Neptunium	Np	Np-237-	93237.55C	237.048056
94	Plutonium	Pu	Pu-238	94238.50C	238.049511
		Pu	Pu-239	94239.55C	239.052146
		Pu .	Pu-240	94240.50C	240.053882
_		Pu	Pu-241	94241.50C	241.056737
•		Pu	Pu-242	94242.50C	242.058725
		Pu	Pu-243	.94243.35C	243.061972

ATTACHMENT II PAGE II-3

Design Analysis

Waste Package Development

 Title: Material Compositions and Number Densities For Neutronics Calculations

 Document Identifier: BBA000000-01717-0200-00002 REV 00
 Page

Page 31 of 38

4.1.2 List of Isotope Atomic Weights (Concluded)

95	<u>Element</u> Americium	Symbol Am	Isotope Am-241 Am-242m	MCNP ID 95241.50C 95242 50C	<u>Atomic Weight</u> 241.056714 242.059502
96	Curium	Am Cm	Am-243 Cm-243	95243.50C 95243.50C 96243.35C	243.061367 243.06137
		Cm Cm	Cm-245 Cm-248	96245.35C 96248.35C	245.065371 248.0722