CRWMS/M&O

Calculation Cover Sheet

L

MOL.19990923.0231

Complete only applicable items.

1. QA: L Page: 1 Of: 69

2. Calculation Title Range of Neutronic Parameters Calculation File				
. Document Identifier (including Revision Number) 00000000-01717-0210-00028 REV 01 69				
. Tots! Attachments 6. Attachment Numbers - Number of pages in each Ionc N/A				
		Print Name	Signature	Date
7. Originator		William J. Anderson	Dauhomne WJA	09/20/1999
B. Checker	•	John M. Scaglione	John M. Scyliene	9/20/99
9. Lezd		Daniel A. Thomas	Darlow	09/20/1999
10. Remarks				
			•	
	·			j
		<u> </u>	······································	
		Revision I	History	
11. Revision No.		12.	Description of Revision	
00	Initial Issuan Complete Re	ce write New Experiments/Stateno	ints New Format	
01				
	· .			
	1			
	·			
AP-3-15 (Effective 02/15/99	2			0635 (Rev. 01/18/99)

ميلخ

Title: Range of Neutronic Parameters Calculation File Document Identifier: B00000000-01717-0210-00028 REV 01

Table of Contents

	Item	<u>Page</u>	
1.	Purpose		3
2.	Method		4
3.	Assumpti	ions	5
4.	Use of Co	omputer Software and Models	6
•	4.1	Software Approved for QA Work	6
	4.2	Software Routine	6
	4.3	Models	6
5.	Calculati	01	7
	5.1	Calculation Inputs	9
	5.2	Description1	5
	5.3	Equations for Additional Calculations1	9
6.	Results		3
	6.1	Homogeneous Laboratory Critical Experiments2	5
	6.2	Lattice Laboratory Critical Experiments4	3
	6.3	Commercial Reactor Criticals	0
7.	Reference	es	7
8.	Attachme	ents6	9

Calculation

Page 2 of 69

D----

Title: Range of Neutronic Parameters Calculation File Document Identifier: B00000000-01717-0210-00028 REV 01

Calculation

Page 3 of 69

1. PURPOSE

The purpose of this engineering calculation is to document the benchmark range, over a variety of parameters, for the validation of the criticality calculations supporting the Monitored Geologic Repository (MGR). This engineering calculation accomplishes this by characterizing the Laboratory Critical Experiments (LCE) and the Pressurized Water Reactor (PWR) Commercial Reactor Criticals (CRC), and summarizing the significant parameters. This engineering calculation supports the Disposal Criticality Analysis Methodology program.

Title: Range of Neutronic Parameters Calculation File Document Identifier: B00000000-01717-0210-00028 REV 01

Calculation

Page 4 of 69

2. METHOD

The calculation method used to characterize and document the benchmark range consisted of extracting information from the reactivity calculations performed for the LCEs and CRCs documented in References 7.8 through 7.11, 7.18, 7.19, and 7.22. This information included neutron energies and weights. Other information was taken from the source documentation, as noted in Section 5.

Title: Range of Neutronic Parameters Calculation File Document Identifier: B00000000-01717-0210-00028 REV 01

Calculation

Page 5 of 69

3. ASSUMPTIONS

None Used.

Calculation

Title: Range of Neutronic Parameters Calculation File Document Identifier: B00000000-01717-0210-00028 REV 01

Page 6 of 69

4. USE OF COMPUTER SOFTWARE AND MODELS

4.1 SOFTWARE APPROVED FOR QA WORK

None used.

4.2 SOFTWARE ROUTINE

4.2.1 Excel

Title: Excel

Version/Revision Number: Microsoft® Excel 97

The Excel spreadsheet program was used for simple numeric calculations as documented in Section 5.3 of this calculation. The inputs, user-defined formulas, and results were documented in sufficient detail, in Section 5.1, Section 5.3, and Section 6, respectively, to allow an independent repetition of the various computations.

4.3 MODELS

None used.

Calculation

Title: Range of Neutronic Parameters Calculation FilePage 7 of 69Document Identifier: B00000000-01717-0210-00028 REV 01Page 7 of 69

5. CALCULATION

This calculation uses information reported in the output files from the reactivity calculations, and information retrieved from source documentation. The specific references are listed in the "Location" column of Table 5.1-1 to characterize the critical configurations. Section 6 contains these characterizations.

This calculation is based on source information taken from published reports and a handbook on benchmark experiments. Most of the LCEs are taken from Reference 7.21, which is a standard handbook, generally accepted by the scientific and engineering community. Reference 7.21 is used in a number of license applications and validation reports through out the nuclear industry. The data in this reference is therefore considered "Accepted Data".

All of the CRCs and the remainder of the LCEs are taken from various industry and national laboratory reports. Throughout the rest of this section, information regarding the CRCs and LCEs specified in Table 5-1 should be considered to be verified (TBV) in that they are not considered accepted data sources per the retroactive procedural requirement of AP-SIII.2Q initiated by the July 27, 1999 issuance of the DOE Letter, "Accepted Data Call", from R.E. Spence to J.L. Younker (Reference 7.12).

It should be noted that some of the experiments were not true critical configurations, but were subcritical approaches extrapolated to critical. The number of digits in the values cited herein may be the results of a calculation or may reflect the input from another source; consequently, the number of digits should not be interpreted as an indication of accuracy.

Calculation

Title: Range of Neutronic Parameters Calculation File		
Document Identifier: B0000000-01717-0210-00028 REV 01		

Page 8 of 69

Table 5-1. TBV Experiments and Associated Tracking Numbers

Experiments	TBV Tracking Number
CORE2, CORE3, CORE4, CORE5, CORE6, CORE7, CORE8, CORE9, CORE10, CORE11, CORE12, CORE13, CORE14, CORE15, CORE16, CORE17, CORE18, CORE19, CORE20, CORE21	TBV-1357
UGD1, UGD2, UGD3, UGD4, UGD5, UGD6, UGD7, UGD8, UGD9, UGD10, UGD12, UGD13, UGD14, UGD15, UGD16, UGD17, UGD18, UGD19, UGD20	TBV-1358
SSR83, SSR48, SSR70, SSR57, SSR27, SSR66, SSR53, SSR74, SMR1, SMR9, SMR5, SMR11, SMR12, SMR8	TBV-1359
SUBC2P8H, SUBC3P1H, SUBC3P4H	TBV-1360
EXP12, EXP13	TBV-1361
EXP1, EXP2, EXP3, EXP4	TBV-1362
EXP5, EXP6	TBV-1363
EXP7	TBV-1364
EXP8, EXP9, EXP10, EXP11	TBV-1365
EXP34, SPHU9A, SPHU9B, SPHU9C, SPHU9D, SPHU9E, SPHU9F, SPHU9G, SPHU9H, SPHU9I, SPHU9J, SPHU9K, SPHU9L	TBV-1366
SUBC2P8H, SUBC3P1H, SUBC3P4H	TBV-1367
EXP14, EXP15, SSR83, SSR48, SSR70, SSR57, SSR27, SSR66, SSR53, SSR74, SMR1, SMR9, SMR5, SMR11, SMR12, SMR8, EXP22, EXP23, EXP24, EXP25, EXP26, EXP27	TBV-1368
TRI7, TRI18	TBV-1369
LEUJA01, LEUJA29, LEUJA33, LEUJA34, LEUJA46, LEUJA51, LEUJA54, LEUJA14, LEUJA30, LEUJA32, LEUJA36, LEUJA49	TBV-1370
FFTF001, FFTF003R, FFTF004, FFTF005, FFTF006, FFTF029	TBV-1371
All of the CRCs	TBV-1349

Title: Range of Neutronic Parameters Calculation File	
Document Identifier: B00000000-01717-0210-00028 REV 01	Page 9 of 69

5.1 CALCULATION INPUTS

Table 5.1-1 contains a list of input information and the associated retrieval locations. Reference 7.21, the "International Handbook of Evaluated Criticality Safety Benchmark Experiments", contains numerable individual reports. For ease of referencing, Table 5.1-1 references the report by name only. This will imply that the reference is Reference 7.21. The following table lists the abbreviations used for these reports. The acronym is listed to the left of the "=" and the document identifier used in Reference 7.21 is listed to the right. Also listed under each acronym are the actual document identifiers that appear later in this engineering calculation, along with a list of the associated experiments taken from the references.

Reference	Experiments
	THE REAL PROPERTY OF THE PROPE
HMF-8	HMF8
HMF-11	HMF11
HMF-12	HMF12
HMF-13	HMF13
HMF-14	HMF14
HMF-15	HMF15
HMF-18	HMF18
HMF-19	HMF19
HMF-20	HMF20
HMF-21	HMF21
HMF-22	HMF22
HMF-24	HMF24
IMF-1	IMF1-1, IMF1-2, , IMF1-3, IMF1-4
IMF-2	IMF2-1
IMF-3	IMF3-1
IMF-4	IMF4-1
IMF-5	IMF5-1
IMF-6	IMF6-1
IMF-8	IMF8-1

Table 5.1-1. Reference 7.21 Acronyms

Calculation

Title: Range of Neutronic Parameters Calculation File Document Identifier: B00000000-01717-0210-00028 REV 01

Page 10 of 69

Table 5.1-1. Reference 7.21 Acronyms

Reference	Experiments	
	A STATE OF	
PST-1	PUSTIT1, PUSTIT2, PUSTIT3, PUSTIT4, PUSTIT5, PUSTIT6	
PST-3	PU003-1, PU003-2, PU003-3, PU003-4, PU003-5, PU003-6, PU003-7, PU003-8	
PST-4	PU004-1, PU004-2, PU004-3, PU004-4, PU004-5, PU004-6, PU004-7, PU004-8, PU004-9, PU004-10, PU004-11, PU004-12, PU004-13	
PST-5	PU005-1, PU005-2, PU005-3, PU005-4, PU005-5, PU005-6, PU005-7, PU005-8, PU005-9	
PST-7	PU007-2, PU007-3, PU007-5, PU007-6, PU007-7, PU007-8, PU007-9, PU007-10	
PST-9	PUST9-1, PUST9-2, PUST9-3	
PST-10	PU10091, PU10092, PU10093, PU10111, PU10112, PU10113, PU10114, PU10115, PU10116, PU10117, PU10121, PU10122, PU10123, PU10124	
PST-11	PU11161, PU11162, PU11163, PU11164, PU11165, PU11181, PU11182, PU11183, PU11184, PU11185, PU11186, PU11187	
	PARTY PARTY PROPERTY AND A PARTY P	
PMF-20	PMF20	
PMF-22	PMF22	
PMF-23	PMF23	
PMF-24	PMF24	
PMF-25	PMF25	
PMF-26	PMF26	
PMF-27	PMF27	
PMF-28	PMF28	
PMF-29	PMF29	
PMF-30	PMF30	
PMF-31	PMF31	
PMF-32	PMF32	

Calculation

Title: Range of Neutronic Parameters Calculation File Document Identifier: B00000000-01717-0210-00028 REV 01

Page 11 of 69

Table 5.1-1. Reference 7.21 Acronyms

Reference	Experiments	
	MSJI=MINSOLUHINRM	
MST-1	PNL3187, PNL3391, PNL3492, PNL3593, PNL3694, PNL3795, PNL3896, PNL3897, PNL3898, PNL3808, PNL3999, PNL5300	
MST-2	PNL1158, PNL1159, PNL1161	
MST-3	AWRE1, AWRE2, AWRE3, AWRE4, AWRE5, AWRE6, AWRE7, AWRE8, AWRE9, AWRE10	
MST-4	PNL1577, PNL1678, PNL1783, PNL1868, PNL1969, PNL2070, PNL2565, PNL2666, PNL2767	

Calculation

Title: Range of Neutronic Parameters Calculation File Document Identifier: B00000000-01717-0210-00028 REV 01

Page 12 of 69

Value	Source	Location
Concentration (Solution LCEs only)	Critical Configuration Descriptions	Ref. 7.1, pp. 13-51 Ref. 7.18, Attachment 5 Ref. 7.19, pp. 9-11 Ref. 7.21: LST-1, p. 18; LST-3, p. 6 Ref. 7.22, pp. 4, 5
Density (Fast Metal LCEs only)	Critical Configuration Descriptions	Ref. 7.19, pp. 14, 18 Ref. 7.21: HMF-8, p. 14; HMF-11, p. 14; HMF-12, p. 14; HMF-13, p. 14; HMF-14, p. 12; HMF-15, p. 9; HMF-24, p. 14; IMF-1, p. 12; IMF-2, p. 3; PMF-20, p. 11 Ref. 7.22, pp. 4, 5
Mass	Critical Configuration Descriptions	Ref. 7.21: HMF-18, p. 12; HMF-19, p. 11; HMF-20, p. 12; HMF-21, p. 11; HMF-22, p. 12; IMF-3, p. 12; IMF-4, p. 11; IMF-5, p. 11; IMF-6, p. 12; IMF-8, p. 12; PMF-22, p. 11; PMF-23, p. 11; PMF-24, p. 11; PMF-25, p. 11; PMF-26, p. 11; PMF-27, p. 12; PMF-28, p. 11; PMF-29, p. 11; PMF-30, p. 11; PMF-31, p. 11; PMF-32, p. 11
. Radius	Critical Configuration Descriptions	Ref. 7.21: HMF-8, p. 14; HMF-18, p. 12; HMF-19, p. 11; HMF-20, p. 12; HMF-21, p. 11; HMF-22, p. 12; IMF-3, p. 12; IMF-4, p. 11; IMF-5, p. 11; IMF-6, p. 12; IMF-8, p. 12; PMF-22, p. 11; PMF-23, p. 11; PMF-24, p. 11; PMF-25, p. 11; PMF-26, p. 11; PMF-27, p. 12; PMF-28, p. 11; PMF-29, p. 11; PMF-30, p. 11; PMF-31, p. 11; PMF-32, p. 11

Table 5.1-2. Calculational Input Locations

Calculation

Title: Range of Neutronic Parameters Calculation File Document Identifier: B00000000-01717-0210-00028 REV 01

Page 13 of 69

Value	Source	Location
Enrichment (LCEs only)	Critical Configuration Descriptions	Ref. 7.1, pp. 13-45 Ref. 7.2, pp. 13-99 Ref. 7.18, pp. 9, 11, 12, 16-19, 28, 31, 36, 41, 42, 46, 48, 53, 55 Ref. 7.19, pp. 8-16, 18 Ref. 7.21: PST-1, p. 13; PST-3, pp. 1, 11; PST-4, pp. 1, 11; PST-5, pp. 1, 11; PST-7, p. 14; PST-9, p. 6; PST-10, pp. 5, 8; PST-11, pp. 8, 10; MST-1, p. 13; MST-2, p. 7; MST-3, p. 4; MST-4, p. 10; IMF-1, p. 12; ICT-1, p. 25; PMF-20, p. 6; PMF-22, p. 6; PMF-23, p. 6; PMF-24, p. 6; PMF-25, p. 6; PMF-26, p. 6; PMF-27, p. 6; PMF-26, p. 5; PMF-31, p. 5; PMF-32, p. 5; Ref. 7.22, pn. 4, 5
Fuel Pellet Diameter	Critical Configuration Descriptions	Ref. 7.2, pp. 13-102 Ref. 7.3, p. 26 Ref. 7.4, p. 22 Ref. 7.5, p. 37 Ref. 7.6, p. 22 Ref. 7.18, pp. 10, 16, 24, 25, 27, 28, 42, and Attachment V Ref. 7.19, p. 12 Ref. 7.21, HCT-7, p. 16

.

Table 5.1-2. Calculational Input Locations

Calculation

Title: Range of Neutronic Parameters Calculation File Document Identifier: B00000000-01717-0210-00028 REV 01

Page 14 of 69

Value	Source	Location
Lattice Pitch	Critical Configuration Descriptions	Ref. 7.2, pp. 13-102 Ref. 7.3, p. 5 Ref. 7.4, p. 6 Ref. 7.5, p. 7 Ref. 7.6, p. 5 Ref. 7.18, pp. 8, 16-19, 28, 29, 37, 41, and Attachment V Ref. 7.19, p. 12 Ref. 7.21, HCT-4, p. 1; HCT-8, p. 1 Ref. 7.22, Attachments I, III, and V
Hydrogen to Fissile Isotope Ratio (H/X)	Critical Configuration Descriptions	Ref. 7.18, pp. 12, 46, 49 Ref. 7.21, p. 5
Atom Densities	Critical Configuration Descriptions	Ref. 7.18, pp. 42, 43 Ref. 7.19, Attachment I Ref. 7.21, Attachment V
Average Energy of Neutron Causing Fission (where available)	Critical Configuration Descriptions	Ref. 7.18, pp. 69, 70, 72, 74, 75, 78, 79, 82, 85, 87, 89, 91, 93, 94, 97- 101, 103, 105 Ref. 7.19, pp. 28-32 Ref. 7.22, pp. 11-24
Average Energy of Neutron Causing Fission (weighted by the statistical weight of the neutrons)	MCNP Output	Summary Page Balance Sheet ¹ of: Ref. 7.8, Att. III-V Ref. 7.9, Att. IV, V Ref. 7.10, Att. IV Ref. 7.11, Att. III
Average Weight of Neutron Causing Fission	MCNP Output	Summary Page Balance Sheet ¹ of: Ref. 7.8, Att. III-V Ref. 7.9, Att. IV, V Ref. 7.10, Att. IV Ref. 7.11, Att. III
CRC Batch Initial Enrichments	CRC Configuration Descriptions	Ref. 7.3, pp. 30-40 Ref. 7.4, pp. 25-27 Ref. 7.5, pp. 40-46 Ref. 7.6, pp. 25-29

Table 5.1-2. Calculational Input Locations

1. The problem summary balance sheet is discussed in Reference 7.7, p. 5-40.

Calculation

Title: Range of Neutronic Parameters Calculation File Document Identifier: B00000000-01717-0210-00028 REV 01

Page 15 of 69

Value	Source	Location
Number of Assemblies per CRC Batch	CRC Configuration Descriptions	Ref. 7.3, pp. 30-40 Ref. 7.4, pp. 25-27 Ref. 7.5, pp. 40-46 Ref. 7.6, pp. 25-29
CRC Axial Node Burnup	CRC State Point Descriptions	Ref. 7.3, pp. 62-258 Ref. 7.4, pp. 37-59 Ref. 7.5, pp. 60-99 Ref. 7.6, pp. 40-60
CRC Node Height	CRC State Point Descriptions	Ref. 7.3, p. 61 Ref. 7.4, p. 36 Ref. 7.5, p. 59 Ref. 7.6, p. 39
CRC State Point Effective Full Power Days (EFPD)	CRC State Point Descriptions	Ref. 7.3, p. 27 Ref. 7.4, p. 23 Ref. 7.5, p. 38 Ref. 7.6, p. 23

Table 5.1-2. Calculational Input Locations

5.2 DESCRIPTION

MCNP and the referenced documents do not report all of the values for the parameters discussed in Section 6. To determine these values, additional calculations are necessary. Table 5.2-1 contains a description of the parameters calculated. Section 5.3 lists the formulas used for the additional calculations.

Calculation

Title: Range of Neutronic Parameters Calculation File Document Identifier: B00000000-01717-0210-00028 REV 01

Page 16 of 69.

Parameter	Name	Description
Lattice Rod Ratio	P/D	This is the ratio of the lattice pitch for the fuel rods to the outer diameter of fuel in the rods.
Pitch (For Cylindrical Pitch Lattices Only)	Pi	This is the separation between two "rings" of fuel elements in a cylindrical pitch. It is calculated by subtracting the radius of the inner ring from the radius of the outer ring.
Average Lattice Pitch (For Cylindrical Pitch Lattices Only)	Р	This is the average separation of the rings of a cylindrical lattice. This is calculated by dividing the sum of the pitches (P_i) by the number of pitches (P_i) .
Density	ρ(x)	This is the average density of element "x" in the fuel regions given as grams per cubic centimeter (g/cm ³). This is calculated by dividing the sum of the masses of element "x" in the fuel regions by the sum of the volumes of the fuel regions.
Density (for HMF8)	ρ(x)	This is the average density of element "x" in the fuel regions given as grams per cubic centimeter (g/cm ³). This is calculated by dividing the sum of the product density of element "x" in the fuel regions and the volume of the fuel region by the sum of the volumes of the fuel regions.
Enrichment	c(x)	This is the average amount of isotope "x" in the fuel regions given as a weight percentage of the parent element. This is calculated by dividing the average gram density of isotope "x" by the total gram density of element "x".

Table 5.2-1. Description of Calculated Parameters

Calculation

Page 17 of 69

Title: Range of Neutronic Parameters Calculation File Document Identifier: B00000000-01717-0210-00028 REV 01

Parameter Name Description Enrichment (For This is the average amount of isotope "x" in ugd & fftf LCEs the fuel regions given as a weight percentage of the parent element. This is calculated by c(x) Only) dividing the sum of the product of each fuel type enrichment for isotope "x" and the number of rods each the fuel type by the total number of fuel rods. Enrichment (For This is the average amount of isotope "x" in SUBC2P8H, the fuel regions given as a weight percentage c(x) SUBC3P1H, and of the parent element. This is calculated by SUBC3P4H Only) dividing the sum of the product of the enrichment and the cross-sectional area for each fuel type by the sum of the crosssectional area for each fuel type. Enrichment (For This is the average amount of isotope "x" in Mixed Oxide the fuel regions given as a weight percentage Lattice LCEs e(x) of the parent element. This is calculated by dividing the product of the atom density and Only, except Fast Flux Test Facility the atomic mass of isotope "x" by the sum of the product of the atom density and the atomic (FFTF)) mass of all of the isotopes of element "y". Initial Enrichment This is the initial enrichment of the average assembly for a given CRC cycle. It is the e_o(x) amount of isotope "x" in the fuel region of the average assembly given as a weight percentage of the parent element. This is calculated by summing the product of the enrichments times the number of fuel assemblies containing that enrichment and dividing by the total number of fuel assemblies.

Table 5.2-1. Description of Calculated Parameters

Calculation

Title: Range of Neutronic Parameters Calculation File Document Identifier: B00000000-01717-0210-00028 REV 01

Parameter Name Description State Point This is the average core enrichment for a given Enrichment state point. It is the amount of isotope "x" in e_c(x) the fuel regions given as a weight percentage of the parent element. This is calculated by summing the average enrichment for all of the fuel rods in a core and diving by the total number of fuel rods. Average Energy of This is a measure of the neutron flux spectrum a Neutron Causing of the system. It is calculated by dividing the Fission AENCF "weighted" average energy of a neutron causing fission (from MCNP¹ output) by the "weight" of the average neutron causing fission (from MCNP¹ output). This is a measure of the moderation of a system. It is calculated by dividing the atom H/X H/X density of hydrogen in a fuel region by the sum of the atom density of the fissile isotopes (i.e., ²³⁵U, ²³⁹Pu, or ²³³U) in the same fuel region. State Point Burnup These are assembly burnup values calculated (Minimum and by dividing the sum of the product of the node Maximum) B, height, the fuel pellet outside diameter squared and the node burnup by the sum of the product of the node height and the fuel pellet outside diameter squared Core Average This is the average burnup over the entire core. Burnup It is calculated by dividing the sum of the Bevg product of the number of assemblies of a give type and the burnup of that assembly type by the total number of assemblies.

Table 5.2-1. Description of Calculated Parameters

1. MCNP is a computer code used for calculating the reactivity of a system containing fissionable material.

Page 18 of 69

Title: Range of Neutronic Parameters Calculation File Document Identifier: B00000000-01717-0210-00028 REV 01

Page 19 of 69

Table 5.2-1	. Description	of Ca	alculated	Parameters
-------------	---------------	-------	-----------	------------

Parameter	Name	Description
Average Pellet Diameter (For ugd LCEs Only)	D_{avg}	This is the average diameter of the fuel rods in a lattice. This is calculated by dividing the sum of the product of the number of rods and the fuel pellet diameter of a given fuel rod type by the total number of fuel rods.

5.3 EQUATIONS FOR ADDITIONAL CALCULATIONS

The following sections discuss in more detail the calculation of the parameters listed in Table 5.2-1.

Equation 5.3-1. Lattice Rod Ratio (Ratio)

P/D = P/D

Variables: P/D = Ratio of lattice rod pitch to diameter of fuel in the rodP = Rod pitch in the lattice in cm

D = Diameter of fuel in the rod in cm

Equation 5.3-2. Pitch (For Cylindrical Pitch Lattices Only)

$$P_i = R_2 - R_1$$

Variables: P_i = Pitch between two rings of elements in cm R_i = Radius of the inner ring in cm R_2 = Radius of the outer ring in cm

λ

Title: Range of Neutronic Parameters Calculation File Document Identifier: B0000000-01717-0210-00028 REV 01

Equation 5.3-3. Average Lattice Pitch (For Cylindrical Pitch Lattices Only)

$$P = \frac{\sum_{i} P_i}{N}$$

Variables:

P = Average lattice pitch in cm

 P_i = Pitch between two rings of elements in cm

N = Number of pitches

Equation 5.3-4. Density

$$\rho(x) = \frac{\sum_{i} m_{i}(x)}{\sum_{i} \frac{4}{3}\pi (OR_{i}^{3} - IR_{i}^{3})}$$

Variables: $\rho(x) =$ Average gram density of element "x" in g/cm³ $m_i(x) =$ Mass of element "x" in the fuel region "i" given in g $OR_i = Outer radius of the fuel region "i" in cm$ $IR_i = Inner radius of the fuel region "i" in cm$

Equation 5.3-5. Density (HMF8)

$$\rho(x) = \frac{\sum_{i} \rho_{i}(x) \frac{4}{3} \pi (OR_{i}^{3} - IR_{i}^{3})}{\sum_{i} \frac{4}{3} \pi (OR_{i}^{3} - IR_{i}^{3})}$$

Variables: $\rho(x) =$ Average gram density of element "x" in g/cm³ $p_i(x) =$ Average gram density of element "x" in the fuel region "i" given in g/cm³ OR, = Outer radius of the fuel region "i" in cm

 $IR_i = Inner radius of the fuel region "i" in cm$

Calculation

Page 20 of 69

Title: Range of Neutronic Parameters Calculation File Document Identifier: B00000000-01717-0210-00028 REV 01

Equation 5.3-6. Enrichment

$$e(x_i) = \frac{\rho(x_i)}{\sum_i \rho(x_i)}$$

where "x_i" are the isotopes of a single element "Y" (i.e., U or Pu)

Variables: $e(x_i) = \text{Enrichment, isotopic abundance of isotope "x" in wt%}$ $x_i \equiv \text{Isotope (e.g., }^{233}\text{U}, ^{235}\text{U}, ^{238}\text{Pu}, ^{239}\text{Pu, etc.})$ $\rho(x_i) = \text{Average gram density of isotope "x" in g/cm^3}$

Equation 5.3-7. Enrichment (For ugd and fiff LCEs Only)

$$e(x_i) = \frac{\sum_{T} e_T(x_i) N_T}{\sum_{T} N_T}$$

where " x_i " are the isotopes of a single element "Y" (i.e., U or Pu)

Variables: $e(x_i) = \text{Enrichment, isotopic abundance of isotope "x" in wt%}$ $x_i \equiv \text{Isotope (e.g., }^{233}\text{U}, \,^{235}\text{U}, \,^{238}\text{Pu}, \,^{239}\text{Pu, etc.})$ $e_T(x_i) = \text{Enrichment, isotopic abundance of isotope "x" in wt%, for fuel type "T"}$ $N_T = \text{Number of rods of fuel type "T"}$

Equation 5.3-8. Enrichment (For SUBC2P8H, SUBC3P1H, and SUBC3P4H Only)

$$e(x_i) = \frac{\sum_{k} e_k(x_i) (OD_k^2 - ID_k^2)}{\sum_{k} (OD_k^2 - ID_k^2)}$$

where "x_i" are the isotopes of a single element "Y" (i.e., U or Pu)

Variables:

 $e(x_i) = \text{Enrichment}$, isotopic abundance of isotope "x" in wt% $e_k(x_i) = \text{Enrichment}$ of isotope "x" in fuel type "k" in wt% $x_i = \text{Isotope}$ (e.g., ²³³U, ²³⁵U, ²³⁸U, ²³⁸Pu, ²³⁹Pu, etc.) $OD_k = \text{Outer diameter of fuel type "k" in cm^2}$ $ID_k = \text{Inner diameter of fuel type "k" in cm^2}$ Calculation

Calculation

Title: Range of Neutronic Parameters Calculation File Document Identifier: B00000000-01717-0210-00028 REV 01

Page 22 of 69

Equation 5.3-9. Enrichment (For Mixed Oxide Lattice LCEs Only, Except for fitf)

$$e(x_i) = \frac{A(x_i) M(x_i)}{\sum_i A(x_i) M(x_i)}$$

where " x_i " are the isotopes of a single element "Y" (i.e., U or Pu)

 Variables: e(x_i) = Enrichment, isotopic abundance of isotope "x" in wt% x_i = Isotope (e.g., ²³³U, ²³⁵U, ²³⁵U, ²³⁸Pu, ²³⁹Pu, etc.) A(x_i) = Atom density of isotope "x" in atoms/barn•cm M(x_i) = Atomic mass of isotope "x" in g/mole (These values are taken from Reference 7.20, pp. 975 and 976.)

Equation 5.3-10. Initial Enrichment (CRCs Only)

$$e_o(x) = \frac{\sum_i e_i(x) N_i}{N}$$

Variables:

e₆(x) = Initial enrichment of the fuel in the average fuel assembly in wt% x ≡ Isotope (e.g., ²³³U, ²³⁵U, ²³⁵U, ²³⁴Pu, ²³⁹Pu, etc.)

e_i(x) = Enrichment of fuel in assembly "i" in wt% (assumes all assemblies in a batch have the same initial enrichment)

 N_i = Number of fuel assemblies containing fuel with enrichment $e_i(x)$

N = Total number of fuel assemblies in the reactor

Equation 5.3-11. Average Energy of a Neutron Causing Fission

$$AENCF = \frac{E}{w}$$

Variables:

AENCF = Average energy of neutron causing fission in MeV w = Weight of the average neutron causing fission

E = Weighted average energy of a neutron causing fission g/cm³

Title: Range of Neutronic Parameters Calculation File Document Identifier: B00000000-01717-0210-00028 REV 01

Page 23 of 69

Calculation

Equation 5.3-12. H/X

$$H/X = \frac{AF_HV}{\sum_{x} AF_xV}$$

Variables:

es: H/X = Ratio of atoms of hydrogen to atoms of fissile isotopes in a given material A = Atom density of the material in the fuel region

 $F_{\rm H}$ = Atom fraction of hydrogen

 $F_x = Atom fraction of fissile isotope "x"$

x = Fissile isotope (e.g., ²¹³U, ²¹⁵U, ²¹⁹Pu, etc.)

V = Volume of the fuel region

Equation 5.3-13. State Point Burnup (Minimum and Maximum)

$$B_j = \frac{\sum_{i} H_i D_i^2 B_i}{\sum_{i} H_i D_i^2}$$

Variables:

 $B_j = Burnup$ value for assembly "j"

 $B_i = Burnup$ value for node "i"

 $H_i = \text{Height of node "i"}$

 D_i = Outside diameter of the fuel pellet of node "i"

Equation 5.3-14. Core Average Burnup

$$B_{avg} = \frac{\sum_{j} N_{j} B_{j}}{\sum_{i} N_{j}}$$

Variables:

 $B_{avg} = Core$ average burnup $B_j = Burnup$ value for assembly "j" $N_i = Number$ of assemblies of type "j" in the core

Equation 5.3-15. Average Pellet Diameter (For ugd LCEs Only)

$$D_{erg} = \frac{\sum_{i} N_i \ D_i}{\sum_{i} N_i}$$

Variables:

D_{avg} = Core average burnup

 D_i = Pellet diameter of a the fuel in fuel rod type "i"

 $N_i =$ Number of fuel rods of type "i" in the lattice

Calculation

Title: Range of Neutronic Parameters Calculation FilePage 24 of 69Document Identifier: B00000000-01717-0210-00028 REV 01Page 24 of 69

6. **RESULTS**

This section is divided into three subsections. These are: 6.1 Homogeneous Laboratory Critical Experiments; 6.2 Lattice Laboratory Critical Experiments; and 6.3 Commercial Reactor Critical Calculations.

The first two subsections show the characterizations of the individual Laboratory Critical Experiment (LCE) calculations used as benchmarks for the repository critical analysis methodology. The third subsection contains a summary table for the Commercial Reactor Criticals (CRC).

Several of the references include experiments that are not included in this calculation file. References 7.1 and 7.18 include redundant, but different, representations of several of the same experiments. In these cases, only the most detailed representations are included in this calculation file. Reference 7.19 includes several lattice experiments that are simplified to homogeneous cylinders. These were not included in this calculation file because they do not fit into the current criticality methodology.

The AENCF values reported in the following tables are taken from the calculations using the Waste Package Operations Selected Library set documented in Reference 7.23. Results using the ENDF/B-V and ENDF/B-VI cross section libraries are also available for these experiments (Reference 7.18, pp. 69-105; Reference 7.19, pp. 34-35; and Reference 7.22, pp. 11-24).

The experiments are separated in the following table by material type and flux spectrum. The material types considered are:

- Mixed Plutonium and Natural Uranium
- Plutonium
- High Enriched Uranium
- Intermediate Enriched Uranium
- Low Enriched Uranium
- ²³³U

The flux spectrum categories, as defined for the purposes of this calculation file are:

- Thermal (AENCF ≤ 0.1 Mev)
- Intermediate (0.1 Mev \leq AENCF \leq 1.0 Mev)
- Fast (1.0 Mev \leq AENCF)

The number of digits for cited values does not necessarily indicate accuracy; it may reflect the results of a calculation, values as reported in a reference, or be an artifact of conversion.

Calculation

Title: Range of Neutronic Parameters Calculation FilePage 25 of 69Document Identifier: B00000000-01717-0210-00028 REV 01Page 25 of 69

6.1 HOMOGENEOUS LABORATORY CRITICAL EXPERIMENTS

Table 6.1-1. Mixed Plutonium and Natural Uranium Nitrate Solution Laboratory
Critical Experiment Characterizations (Thermal)

	Experiment	AWREL	AWRE2	AWRE3	WREA	AWRES -
Concentration	U (g/L)	228.5	228.5	228.5	228.5	71.3
	Pu (g/L)	101.3	101.3	101.3	101.3	31.6
Enrichment	U-235 (wt%)	0.72%	0.72%	0.72%	0.72%	0.72%
	Pu-239 (wt%)	93.95%	93.95%	93.95%	93.95%	93.95%
Flux Spectrum	AENCF (MeV)	0.0313	0.0321	0.0318	0.0323	0.0106
	H/X	234	234	234	234	8 30
	Mello permenta	PAWRIEGE	TAWARD A	MANNE DE	CALWROND I	WRITE
Concentration	U (g/L)	71.3	71.3	42.2	42.2	39.6
	Pu (g/L)	31.6	31.6	18.6	18.6	17.5
Enrichment	U-235 (wt%)	0.72%	0.72%	0.72%	0.72%	0.72%
	Pu-239 (wt%)	93.95%	93.95%	93.95%	93.95%	93.95%
Flux Spectrum	AENCF (MeV)	0.0105	0.0109	0.0068	0.0068	0.0065
	H/X	830	830	1430	1430	1521
	Se Experiment>	PNICES	PSOD139	PNILL61	PALICER	PNILIG78
Concentration	U (g/L)	11.1	10. 8	41.0	262.8	262.6
	Pu (g/L)	11.8	11.7	12.2	172.6	172.8
Enrichment	U-235 (wt%)	0.71%	0.71%	0.44%	0.56%	0.56%
	Pu-239 (wt%)	91.10%	91.10%	91.10%	91.12%	91.12%
Flux Spectrum	AENCF (MeV)	0.0039	0.0038	0.0060	0.0596	0.0507
	H/X	2,374	2,405	2,268	135	134

Waste Package Operations

Title: Range of Neutronic Parameters Calculation File Document Identifier: B00000000-01717-0210-00028 REV 01

Page 26 of 69

Table 6.1-1. Mixed Plutonium and Natural Uranium Nitrate Solution	Laboratory
Critical Experiment Characterizations (Thermal)	

	Experiment	AKIE (788)	YERINESS	TRALIGOS	PN152070	EN12565
Concentration	U (g/L)	262.9 ·	174.0	174.7	174.5 .	63.4
	Pu (g/L)	173.2	118.7	119.0	118.9	41.7
Enrichment	U-235 (wt%)	0.56%	0.56%	0.56%	0.56%	0.56%
	Pu-239 (wt%)	91.12%	91.12%	91.12%	91.12%	91.12%
Flux Spectrum	AENCF (MeV)	0.0539	0.0342	0.0336	0.0374	0.0130
	H/X	134	211	210	211	654
	Experiment	PN122666	SPN12267	DENI-O'S	PARES 91-	PN15492
Concentration	U (g/L)	63.7	63.6	365.2	363.7	363.7
	Pu (g/L)	41.9	41.8	102.2	103.4	103.4
Enrichment	U-235 (wt%)	0.56%	0.56%	0.70%	0.70%	0.70%
	Pu-239 (wt%)	91.12%	91.12%	91.12%	91.12%	91.12%
Flux Spectrum	AENCF (MeV)	0.0116	0.0120	0.0416	0.0408	0.0439
	H/X	651	652	227	223	218
	La periment >	VENIE-1593	PN123692	PRINT	PNI-3808	PNI138967
Concentration	U (g/L)	379.6	380.4	6.5	161.7	3.8
	Pu (g/L)	107.9	108.3	195.6	47.1	110.1
Enrichment	U-235 (wt%)	0.70%	0.70%	2.29%	0.70%	2.29%
	Pu-239 (wt%)	91.12%	91.12%	91.57%	91.12%	91.57%
Flux Spectrum	AENCF (MeV)	0.0461	0.0448	0.0397	0.0206	0.0236
	H/X	213	212	125	551	241

Waste Package Operations

Title: Range of Neutronic Parameters Calculation File Document Identifier: B00000000-01717-0210-00028 REV 01

Page 27 of 69

Table 6.1-1. Mixed Plutonium and Natural Uranium Nitrate Solution Laboratory Critical Experiment Characterizations (Thermal)

	a subtriperament	RENTB897C	PN18898	PN1009995	PNE-5300	
Concentration	U (g/L)	2.3	247.3	250.3	251.6	
	Pu (g/L)	58.3	72.7	73.6	74.3	
Enrichment	U-235 (wt%)	2.29%	0.70%	0.70%	0.70%	
	Pu-239 (wt%)	91.57%	91.12%	91.12%	91.12%	
Flux Spectrum	AENCF (MeV)	0.0145	0.0297	0.0293	0.0292	
	H/X	475	343	339	336	

Calculation

Title: Range of Neutronic Parameters Calculation File Document Identifier: B00000000-01717-0210-00028 REV 01

Page 28 of 69

Table 6.1-2. Plutonium Nitrate Solution Laboratory Critical Experiment Characterizations (Thermal)

	Experiment	RU003-1	TELEDOS 2	P200355	DECODE F	HPLOUSS:
Concentration	Pu (g/L)	33.3	34.3	37.4	38.1	40.7
Enrichment	Pu-239 (wt%)	98.24%	98.24%	96.88%	96.88%	96.88%
Flux Spectrum	AENCF (MeV)	0.0062	0.0065	0.0069	0.0072	0.0079
	H/X	788	756	699	682	627
	a se 15 merimente≥	TRC003-61	THURDON'S	RED00-84	Pronten	R10042
Concentration	Pu (g/L)	44.1	36.0	36.8	26.3	26.3
Enrichment	Pu-239 (wt%)	96.88%	96.88%	96.88%	99.46%	99.46%
Flux Spectrum	AENCF (MeV)	0.0085	0.0068	0.0070	0.0052	0.0054
	H/X	563	738	714	987	977
	ette Esperiment		PC004-1)ROADS-SA		E0002-76
Concentration	Pu (g/L)	27.2	28.1	27.6	28.6	29.6
Enrichment	Pu-239 (wt%)	99.46%	99.46%	98.24%	96.88%	96.88%
Flux Spectrum	AENCF (MeV)	0.0054	0.0056	0.0054	0.0056	0.0056
	H/X	935	889	942	927	892
	- Experiment>	SIFC004557	EPOR SAL	PODID	DEGRETING	PIC4122
Concentration	Pu (g/L)	30.0	31.6	35.4	39.4	29.4
Enrichment	Pu-239 (wt%)	96.88%	96.88%	96.88%	96.88%	96.88%
Flux Spectrum	AENCF (MeV)	0.0062	0.0062	0.0072	0.0081	0.0059
	H/X	869	805	689	592	893

Calculation

Title: Range of Neutronic Parameters Calculation File Document Identifier: B00000000-01717-0210-00028 REV 01

Page 29 of 69

Table 6.1-2. Plutonium Nitrate Solution Laboratory Critical Experiment Characterizations (Thermal)

	Experiment	PLOXETS	ERU00S-T	BR1005-2	PE0005-34	FL0005-1
Concentration	Pu (g/L)	29.3	29.7	30.5	31.4	33.5
Enrichment	Pu-239 (wt%)	96.57%	95.95%	95.95%	95.95%	95.95%
Flux Spectrum	AENCF (MeV)	0.0058	0.0057	0.0059	0.0062	0.0066
	H/X	903	903	868	834	765
	L'action and a second second	SPU00552	PELOOS SA	RECONSTRUCTION OF	PRUMS-RC	0R0003-914
Concentration	Pu (g/L)	36.0	38.5	40.9	30.6	31.9
Enrichment	Pu-239 (wt%)	95.95%	95.95%	95.95%	95.60%	95.60%
Flux Spectrum	AENCF (MeV)	0.0072	0.0077	0.0084	0.0059	0.0063
	H/X	69 4	633	581	869	825
	Experimentes	12400.2	RECORTS	EPRLOOF-ST	IPU007.61	PU007=74
Concentration	Pu (g/L)	232.0	221.0	100.2	101.5	100.1
Enrichment	Pu-239 (wt%)	95.01%	95.01%	95.01%	95.01%	95.01%
Flux Spectrum	AENCF (MeV)	0.0402	0.0393	0.0176	0.0180	0.0178
	H/X	110	114	268	262	266
	ALExperiment>	*PUOLES	-TPUINT SO	-1260(2500)	EPG10091	RU10092
Concentration	Pu (g/L)	101.6	101.6	93.5	99.1	73.9
Enrichment	Pu-239 (wt%)	95.01%	95.01%	95.01%	97.15%	97.15%
Flux Spectrum	AENCF (MeV)	0.0181	0.0182	0.0165	0.0168	0.0130
	H/X	258	260	285	267	357
	en lorpermentes	P.0100935	inchorte.	朝的經濟	Sections:	ECHOIN?
Concentration	Pu (g/L)	54.5	54.5	47.2	47.2	41.7
Enrichment	Pu-239 (wt%)	97.15%	97.15%	97.15%	97.15%	97.15%
Flux Spectrum	AENCF (MeV)	0.0099	0.0100	0.0087	0.0085	0.0079
	H/X	484	485	558	558	606

Waste Package Operations

Title: Range of Neutronic Parameters Calculation File Document Identifier: B00000000-01717-0210-00028 REV 01

Page 30 of 69

Table 6.1-2. Plutonium Nitrate Solution Laboratory Critical Experiment Characterizations (Thermal)

	ist lispenments	PUIDIIS	PLIQUE	RUIOHLS	RUMER	PU101224
Concentration	Pu (g/L)	36.9	64.0	49.0	48.8	42.3
Enrichment	Pu-239 (wt%)	97.15%	97.10%	97.10%	97.10%	97.10%
Flux Spectrum	AENCF (MeV)	0.0076	0.0111	0.0088	0.0090	0.0078
	H/X	665	414	535	543	618
	all perments	SPO ODSI	EUOL	TROUGHERS	-Renf akoz	PD1163
Concentration	Pu (g/L)	36.5	31.1	35.0	36.2	38.1
Enrichment	Pu-239 (wt%)	97.10%	97.10%	95.83%	95.83%	95.83%
Flux Spectrum	AENCF (MeV)	0.0069	0.0061	0.0074	0.0078	0.0083
	H/X	728	850	765	736	691
	source and the second second	biatic insta	in in the second second		P. D. III Ser	PUTIS-
Concentration	Pu (g/L)	38.2	43.4	22.4	23.3	23.1
Enrichment	Pu-239 (wt%)	95.83%	95.83%	95.80%	95.80%	95.80%
Flux Spectrum	AENCF (MeV)	0.0085	0.0097	0.0051	0.0055	0.0051
	H/X	682	575	1,208	1,151	1,158
	. Driparimenti>		PULLI85	PENII862	P0010878	PUSTIFI
Concentration	Pu (g/L)	23.8	25.2	27.5	23.9	73.0
Enrichment	Pu-239 (wt%)	95.80%	95.80%	95.80%	95.80%	95.01%
Flux Spectrum	AENCF (MeV)	0.0055	0.0059	0.0063	0.0055	0.0125
	H/X	1,100	1,039	908	1,103	371
	Experiment>	DUSINITY.	PUSIDOS	PUSTIN	ipessings.	PUSNING
Concentration	Pu (g/L)	96.0	119.0	132.0	140.0	268.7
Enrichment	Pu-239 (wt%)	95.01%	95.01%	95.01%	95.01%	95.01%
Flux Spectrum	AENCF (MeV)	0.0170	0.0216	0.0240	0.0248	0.0481
	H/X	272	216	190	180	91

Calculation

Title: Range of Neutronic Parameters Calculation File	
Document Identifier: B00000000-01717-0210-00028 REV 01	

Page 31 of 69

Table 6.1-2. Plutonium Nitrate Solution Laboratory Critical Experiment Characterizations (Thermal)

	e Experiment	PRUSIC-11	AUST	PRISTOS	
Concentration	Pu (g/L)	10.0	9.5	9.5	
Enrichment	Pu-239 (wt%)	97.39%	97.39%	97.39%	
Flux Spectrum	AENCF (MeV)	0.0026	0.0027	0.0025	
	H/X	2,648	2,779	2,803	

Table 6.1-3. Plutonium Metal Laboratory Critical Experiment Characterizations (Fast)

	unit perment≥	PENTER	ORM FD2	PAIRS	EPMI 24	BARA DE
Density	ρ (g/cm³)	15.5	15.3	15.3	15.3	15.3
Enrichment	Pu-239 (wt%)	~90%	98.2%	98.2%	98.2%	98.2%
Flux Spectrum	AENCF (MeV)	1.8886	1.8932	1.8011	1.7421	1.8316
	Eperiment	ERMI26	PMP	TRMIE28	EMI29	PML30
Density	ρ (g/cm ³)	15.3	15.5	15.5	18.9	19.0
Enrichment	Pu-239 (wt%)	98.2%	89.7%	8 9. 7%	88.6%	88.9%
Flux Spectrum	AENCF (MeV)	1.7318	1.4768	1.7166	1.9188	1.8152
	. Experiment	PMIAI	PMRD			
Density	ρ (g/cm ³)	18.9	· 18.9			
Enrichment	Pu-239 (wt%)	88.9%	88.9%			
Flux Spectrum	AENCF (MeV)	1.6059	1.8192			

Waste Package Operations

Title: Range of Neutronic Parameters Calculation File Document Identifier: B00000000-01717-0210-00028 REV 01

Page 32 of 69

	Experiment	DITESTICIE (1:12(3)1(-2)*	101511-3	ALESTRI AL	HESTIS
Concentration	U (g/L)	145.7	346.7	142.9	357.7	54.9
Enrichment	U-235 (wt%)	93.17%	93.17%	93.17%	93.17%	93.17%
Flux Spectrum	AENCF (MeV)	0.0158	0.0386	0.0155	0.0405	0.0065
	H/X	182	71	186	68	499
	Diperment	HIST		HISTER	arestro	
Concentration	U (g/L)	59.7	137.4	145.7	357.7	64.0
Enrichment	U-235 (wt%)	93.17%	93.17%	93.17%	93.17%	93.17%
Flux Spectrum	AENCF (MeV)	0.0068	0.0150	0.0161	0.0410	0.0076
	H/X	459	193	182	68	427
and the state of t	of the orthogonal state of the state of the state of the state of the	MCTRONAL TYPE THE	Contraction of the local data		Sector Contractor	hand an art market the music
	E Dipprimentes	THESTATES	HESTHE??	HISSINES	HESING	STELLER STELLER
Concentration	U (g/L)	20.1	11EST132 25.5	26.8	28.5	70.0
Concentration Enrichment	U (g/L) U-235 (wt%)	20.1 93.2%	25.5 93.2%	26.8 93.2%	28.5 93.2%	70.0 89.04%
Concentration Enrichment Flux Spectrum	U (g/L) U-235 (wt%) AENCF (MeV)	20.1 93.2% 0.0027	25.5 93.2% 0.0031	26.8 93.2% 0.0036	28.5 93.2% 0.0038	70.0 89.04% 0.0073
Concentration Enrichment Flux Spectrum	U (g/L) U-235 (wt%) AENCF (MeV) H/X	20.1 93.2% 0.0027 1375	25.5 93.2% 0.0031 1173	26.8 93.2% 0.0036 1030	28.5 93.2% 0.0038 971	THEST 181 70.0 89.04% 0.0073 405
Concentration Enrichment Flux Spectrum	U (g/L) U-235 (wt%) AENCF (MeV) H/X	20.1 93.2% 0.0027 1375	25.5 93.2% 0.0031 1173	112 ST(153) 26.8 93.2% 0.0036 1030	28.5 93.2% 0.0038 971	1112ST 181 70.0 89.04% 0.0073 405
Concentration Enrichment Flux Spectrum Concentration	U (g/L) U-235 (wt%) AENCF (MeV) H/X U (g/L)	20.1 93.2% 0.0027 1375 111.571424 68.1	25.5 93.2% 0.0031 1173 111517431 67.7	110 ST(153) 26.8 93.2% 0.0036 1030 102 ST(151) 100.5	28.5 93.2% 0.0038 971 100.5	1112ST 181 70.0 89.04% 0.0073 405 112ST 1533 98.8
Concentration Enrichment Flux Spectrum Concentration Enrichment	U (g/L) U-235 (wt%) AENCF (MeV) H/X U (g/L) U-235 (wt%)	20.1 93.2% 0.0027 1375 11175 11175 68.1 89.04%	25.5 93.2% 0.0031 1173 11173 67.7 89.04%	26.8 93.2% 0.0036 1030 1055 100.5 89.04%	28.5 93.2% 0.0038 971 100.5 89.04%	111 ST 181 70.0 89.04% 0.0073 405 112 ST 153 98.8 89.04%
Concentration Enrichment Flux Spectrum Concentration Enrichment Flux Spectrum	U (g/L) U-235 (wt%) AENCF (MeV) H/X Experiment> U (g/L) U-235 (wt%) AENCF (MeV)	20.1 93.2% 0.0027 1375 111.57 422 68.1 89.04% 0.0074	25.5 93.2% 0.0031 1173 1173 67.7 89.04% 0.0079	11251053 26.8 93.2% 0.0036 1030 100.5 89.04% 0.0105	HLST154 28.5 93.2% 0.0038 971 HIST157 100.5 89.04% 0.0101	111 ST 131 70.0 89.04% 0.0073 405 112 ST 153 98.8 89.04% 0.0113

Calculation

Title: Range of Neutronic Parameters Calculation File Document Identifier: B00000000-01717-0210-00028 REV 01

Page 33 of 69

	- Selferneniment	HESDIE	HESDISS	HESTEGN	HESIGI62	HIESTIG3
Concentration	U (g/L)	98.8	95.2	156.5	143.6	144.2
Enrichment	U-235 (wt%)	89.04%	89.04%	89.04%	89.04%	89.04%
Flux Spectrum	AENCF (MeV)	0.0108	0.0111	0.0152	0.0150	0.0160
	H/X	283	295	175	192	191
		HESOMAR	ind Stuffer	HESTICS	HIESOTRES	HESTITS
Concentration	U (g/L)	202.4	202.4	202.4	196.2	192
Enrichment	U-235 (wt%)	89.04%	89.04%	89.04%	89.04%	89.04%
Flux Spectrum	AENCF (MeV)	0.0189	0.0210	0.0200	0.0194	0.0199
	H/X	133	133	133	137	141
		HDS301-765	niiossa a	THESID178	HESING	SHEST182
Concentration	U (g/L)	192	192	186.2	300	300
Enrichment	U-235 (wt%)	89.04%	89.04%	89.04%	89.04%	89.04%
Flux Spectrum	AENCF (MeV)	0.0221	0.0205	0.0222	0.0284	0.0315
	H/X	141	141	147	86	86
	ese Experiment>	HIPSTURST	HESTING	HIES II RS	SHEST	THE STAR
Concentration	U (g/L)	300.0	291.3	291.3	291.3	283.3
Enrichment	U-235 (wt%)	89.04%	89.04%	89.04%	89.04%	89.04%
Flux Spectrum	AENCF (MeV)	0.0299	0.0290	0.0327	0.0307	0.0297
	H/X	86	89	89	89	92
	10 operiment>	HESINES	HEST 89	HESEIGH	HHS0192	THE STORE
Concentration	U (g/L)	283.3	283.3	447.3	393.6	400.0
Enrichment	U-235 (wt%)	89.04%	89.04%	89.04%	89.04%	89.04%
Flux Spectrum	AENCF (MeV)	0.0334	0.0309	0.0426	0.0392	0.0415
	H/X	92	91	55	63	61

Calculation

Title: Range of Neutronic Parameters Calculation File Document Identifier: B00000000-01717-0210-00028 REV 01

Page 34 of 69

	L. D. operimenti≳	SHESTO IC	HESU22	ALLST 2.3K	YHDS TRAY	HIEST2 S
Concentration	U (g/L)	144.4	144.4	334.8	334.8	144.4
Enrichment	U-235 (wt%)	93.17%	93.17%	93.17%	93.17%	93.17%
Flux Spectrum	AENCF (MeV)	0.0155	0.0151	0.0359	0.0346	0.0158
	H/X	184	184	74	74	184
	lect/40 penmente>	HILS 12-6	allis/Superation	HUST2-3	HEST257	HEST210
Concentration	U (g/L)	144.4 ·	334.8	334.8	59.7	59.7
Enrichment	U-235 (wt%)	93.17%	93.17%	93.17%	93.17%	93.17%
Flux Spectrum	AENCF (MeV)	0.0147	0.0366	0.0342	0.0071	0.0066
	H/X	184	74	74	460	460
	Experiment>		11123 DJUR	11157123123	HESTELL	SHESTSIO.
Concentration	U (g/L)	144.4	144.4	334.8	334.8	345.3
Enrichment	U-235 (wt%)	93.17%	93.17%	93.17%	93.17%	93.17%
Flux Spectrum	AENCF (MeV)	0.0155	0.0144	0.0370	0.0336	0.0382
	H/X	184	184	74	74	71
	it's Experiment≥	HESTSIL	HESTER	HESTEIKE	HIRATIGIA	HISTER
Concentration	U (g/L)	345.3	60.3	60.3	60.3	66.3
Enrichment	U-235 (wt%)	93.17%	93.17%	93.17%	93.17%	93.17%
Flux Spectrum	AENCF (MeV)	0.0357	0.0065	0.0065	0.0070	0.0072
	H/X	71	454	454	454	412
	- AllExperiment	HESTER6	ninguest	HESUSIE	THE SPECIAL	HESTORY C
Concentration	U (g/L)	147.7	147.7	345.3	345.3	83.5
Enrichment	U-235 (wt%)	93.17%	93.17%	93.17%	93.17%	93.17%
Flux Spectrum	AENCF (MeV)	0.0159	0.0150	0.0384	0.0341	0.0086
	H/X	180	180	71	71	325

Waste Package Operations

Title: Range of Neutronic Parameters Calculation File Document Identifier: B00000000-01717-0210-00028 REV 01

Page 35 of 69

	D. perimentes	A HOSTEPhic	HIPSTER.	III SI II	HIKS ITAL	HESTER
Concentration	U (g/L)	360.4	83.5	359.6	359.6	359.6
Enrichment	U-235 (wt%)	93.17%	93.17%	93.17%	93.17%	93.17%
Flux Spectrum	AENCF (MeV)	0.0351	0.0086	0.0352	0.0362	0.0357
	H/X	68	325	68	68	68
	arts B, periments≥	UILEST PRO-	1:15Surd		HEIMISTERI	HERUS 152
Concentration	U (g/L)	359.6	359.6	355.9	60.3	60.3
Enrichment	U-235 (wt%)	93.17%	93.17%	93.17%	93.17%	93.17%
Flux Spectrum	AENCF (MeV)	0.0363	0.0358	0.0356	0.0066	0.0068
	H/X	68	68	69	454	454
	Experiment	HIPUSISO	D:DUSDEL	HEUSISS	HEUSIG	HEUSIST
Concentration	U (g/L)	147.7	147.7	345.3	345.3	60.3
Enrichment	U-235 (wt%)	93.17%	93.17%	93.17%	93.17%	93.17%
Flux Spectrum	AENCF (MeV)	0.0163	0.0154	0.0380	0.0354	0.0069
	H/X	180	180	71	71	454
	an 196 merument≥	THEUSON'S	HEUST39	THE CIST /	HEUSTER	HEUSI73
Concentration	U (g/L)	147.7	147.7	67.3	370.0	67.3
Enrichment	U-235 (wt%)	93.17%	93.17%	93.17%	93.17%	93.17%
Flux Spectrum	AENCF (MeV)	0.0164	0.0151	0.0070	0.0361	0.0071
	H/X	180	180	406	65	406
	Concerimente	ittaluStr#f	HEUSTRAS	HPUSTER	HERSIN	HEUST78
Concentration	U (g/L)	364.1	76.1	360.4	76.1	364.1
Enrichment	U-235 (wt%)	93.17%	93.17%	93.17%	93.17%	93.17%
Flux Spectrum	AENCF (MeV)	0.0351	0.0084	0.0377	0.0084	0.0383
	H/X	67	358	68	358	67

Waste Package Operations

Title: Range of Neutronic Parameters Calculation File Document Identifier: B00000000-01717-0210-00028 REV 01

Page 36 of 69

Table 6.1-4. High Enriched Uranium Nitrate Solution Laboratory Critical Experiment Characterizations (Thermal)

	et - Deeperment	HIEUSTIO?	HEUSISI.	HELSTES	HEUST861	HEUST89
Concentration	U (g/L)	80.7	60.3	60.3	355.9	60.3
Enrichment	U-235 (wt%)	93.17%	93.17%	93.17%	93.17%	93.17%
Flux Spectrum	AENCF (MeV)	0.0090	0.0067	0.0064	0.0379	0.0064
	H/X	337	454	454	69	454
	- Experiment>	\$11511810°	SUISTIC	11STAP		CHST-21
Concentration	U (g/L)	285.3	285.3	279.6	20.5	15.1
Enrichment	U-235 (wt%)	89.04%	89.04%	89.04%	93.2%	93.2%
Flux Spectrum	AENCF (MeV)	0.0344	0.0318	0.0328	0.0027	0.0022
	H/Y	at	01	QA	1 272	1 835

Table 6.1-5. High Enriched Uranium Metal Laboratory Critical Experiment Characterizations (Fast)

	Daperment	EENERGE	HIMESINE	A DAMES IS		
Density	ρ (g/cm ³)	18.7	18.8	18.2	18.0	18.0
Enrichment	U-235 (wt%)	94%	93.5%	90%	90%	90%
Flux Spectrum	AENCF (MeV)	1.5681	1.3649	1.5503	1.1620	1.5222
		S Invia 6	HIME	HIMLES	DEMED	HIME LOS
Density	ρ (g/cm ³)	18.0	18.0	18.6	18.4	18.5
Enrichment	U-235 (wt%)	90%	90%	96%	90%	90%
Flux Spectrum	AENCF (MeV)	1.4860	1.5443	1.5808	1.5522	1.4765
	Diperiment≥	HINISO	HIME I		EIMP24	A STATES
Density	ρ (g/cm ³)	18.5	18.4	18.4	18.0	18.6
Enrichment	U-235 (wt%)	90%	90%	90%	90%	93.24%
Flux Spectrum	AENCF (MeV)	1,4333	1.4481	1.5039	1.2504	1.5979

Calculation

Title: Range of Neutronic Parameters Calculation FilePage 37 of 69Document Identifier: B00000000-01717-0210-00028 REV 01Page 37 of 69

Table 6.1-6. Intermediate Enriched Uranium Laboratory Critical Experiment Characterizations (Thermal)

	Experiment>	DECI104	III CALOS	Ech	IEC LIA	TEGILS
Enrichment	U-235 (wt%)	29.83%	29.83%	29.83%	29.83%	29.83%
Flux Spectrum	AENCF (MeV)	0.0741	0.0455	0.0743	0.0738	0.0740
	H/X	64	222	64	64	64
	Experiment	Reinio	incom 97	III compete	SHECTI261	TECTI2/2
Enrichment	U-235 (wt%)	29.83%	29.83%	29.83%	29.83%	29.83%
Flux Spectrum	AENCF (MeV)	0.0555	0.0603	0.0599	0.0570	0.0562
	H/X	64	64	64	64	64

Table 6.1-7. Intermediate Enriched Uranium Laboratory Critical Experiment Characterizations (Intermediate)

	Experiment	SIEGEROLE	FIECT102	NIGHT!	TREFIL	DEGI10/4
Enrichment	U-235 (wt%)	29.83%	29.83%	29.83%	29.83%	29.83%
Flux Spectrum	AENCF (MeV)	0.2168	0.1582	0.1041	0.1079	0.1106
	H/X	8	16	32	32	32
	Experiment>	TECTIOS!	Elkculos	HECTIO	RCHITS	211C7/02
Enrichment	U-235 (wt%)	29.83%	29.83%	29.83%	29.83%	29.83%
Flux Spectrum	AENCF (MeV)	0.1187	0.1679	0.1576	0.1573	0.1557
	H/X	32	16	16	16	16
	Experiment≥	TRCETT	HEGISINS,	JIEC 1120	lit/chi21e	LIL/GTEI22
Enrichment	U-235 (wt%)	29.83%	29.83%	29.83%	29.83%	29.83%
Flux Spectrum	AENCF (MeV)	0.2084	0.1338	0.1554	0.2133	0.1977
	H/X	8	16	8	4	8

Calculation -

Title: Range of Neutronic Parameters Calculation File Document Identifier: B00000000-01717-0210-00028 REV 01

Page 38 of 69

Table 6.1-7. Intermediate Enriched Uranium Laboratory Critical Experiment Characterizations (Intermediate)

	Experiments	IIK GIVE X	TRCI II241	HCT121	(ILICITIES)	
Enrichment	U-235 (wt%)	29.83%	29.83%	29.83%	29.83%	
Flux Spectrum	AENCF (MeV)	0.1283	0.1331	0.1583	0.1510	
	H/X	16	. 16	8	8	

Table 6.1-8. Intermediate Enriched Uranium Metal Laboratory Critical Experiment Characterizations (Fast)

	Experiment	IMERIC		DIFT3	IMPLY I	
Density	ρ (g/cm ³)	18.8	18.8	18.9	18.9	18.8
Enrichment	U-235 (wt%)	55,38%	53.53%	36.33%	37.76%	16%
Flux Spectrum	AENCF (MeV)	1.4395	1.4403	1.3862	1.3848	1.2784
	S. Experiment>	UNITER			MIMIRCI	MINITE
Density	ρ (g/cm ³)	18.4	18.6	18.4	18.4	18.4
Enrichment	U-235 (wt%)	36%	36%	36%	36%	36%
Flux Spectrum	AENCF (MeV)	1.3526	1.3076	1.2872	1.2915	1.3639

Calculation

Title: Range of Neutronic Parameters Calculation File Document Identifier: B00000000-01717-0210-00028 REV 01

Page 39 of 69

Table 6.1-9. Low Enriched Uranium Laboratory Critical Experiment Characterizations (Thermal)

	k periment>	Incula 01	an out Aver	a bi rau al 200	UP SUAVED	LIEUJA32
Concentration	U (g/L)	310.1	313.0	290.4	290.7	· 270.0
Enrichment	U-235 (wt%)	9.97%	9.97%	9.97%	9.97%	9.97%
Flux Spectrum	AENCF (MeV)	0.0190	0.0200	0.0181	0.0188	0.0176
	H/X	719	709	771	770	842
	est les periment≥	LEUJASS	TIEU DA SU	malli/ers.	DECOX	EEUJA49
Concentration	U (g/L)	270.0	253.6	253.9	241.9	241.9
Enrichment	U-235 (wt%)	9.97%	9.97%	9.97%	9.97%	9.97%
Flux Spectrum	AENCF (MeV)	0.0166	0.0159	0.0167	0.0154	0.0159
	H/X	842	896	8 96	9 42	9 42
		INFUSA-SIG	TRACTICALS' .	LE MUSIEX		LEDSTAS
Concentration	U (g/L)	233.2	225.3	452.2	491.7	491.7
Enrichment	U-235 (wt%)	9.97%	9.97%	4.9%	4.9%	4.9%
Flux Spectrum	AENCF (MeV)	0.0148	0.0144	0.0249	0.0283	0.0267
	H/X	983	1,018	1,098	1,001	1,001
	ne - 15 miniment >					153-4
Concentration	U (g/L)	978.3	296.0	264.0	260.0	255.0
Enrichment	U-235 (wt%)	5%	10%	10%	10%	10%
Flux Spectrum	AENCF (MeV)	0.0523	0.0185	0.0165	0.0164	0.0160
	H/X	454	770	878	897	913

Waste Package Operations

Title: Range of Neutronic Parameters Calculation File Document Identifier: B00000000-01717-0210-00028 REV 01

Page 40 of 69

Table 6.1-9. Low Enriched Uranium Laboratory Critical Experiment Characterizations (Thermal)

Experiment S		HEES				153.9/
Concentration	U (g/L)	203.0	197.0	193.0	171.0	168.0
Enrichment	U-235 (wt%)	10%	10%	10%	10%	10%
Flux Spectrum	AENCF (MeV)	0.0131	0.0130	0.0126	0.0115	0.0114
	H/X	1,173	1,213	1,240	1,412	1,438

Table 6.1-10. Low Enriched Uranium Laboratory Critical Experiment Characterizations (Intermediate)

	Caperiment>	SPILOA	Sulfie and	Ispituse	SRH09D	SPHIOE
Concentration	Solution (g/L)	1,998.0	2,293.0	2,232.0	1,720.0	1,726.0
Enrichment	U-235 (wt%)	1.01%	1.01%	1.01%	1.01%	1.01%
Fiux Spectrum	AENCF (MeV)	0.2541	0.2163	0.1883	0.1737	0.1591
	H/X	370	491	605	676	731
	Experiment	SPHIOR	Spiller-	SHHUSH	SPH1091	SPHU91
Concentration	Solution (g/L)	1,778.0	1,790.0	1,842.0	1,796.0	1,828.0
Enrichment	U-235 (wt%)	1.07%	1.07%	1.07%	1.16%	1.16%
Flux Spectrum	AENCF (MeV)	0.2511	0.1839	0.1651	0.2495	0.1783
	H/X	344	533	653	318	476
	re-Faperment>	SHI19K	SPHU91			
Concentration	Solution (g/L)	1,913.0	1,640.0			
Enrichment	U-235 (wt%)	1.16%	1.16%			
Flux Spectrum	AENCF (MeV)	0.1661	0.1549			
	H/X	583	635			

Calculation

Title: Range of Neutronic Parameters Calculation File Document Identifier: B00000000-01717-0210-00028 REV 01

Page 41 of 69

Table 6.1-11. 233 U Laboratory Critical Experiment Characterizations (Thermal)

	Experiment>	122.301	TEXCION .		123344	123365
Concentration	U (g/L)	17.1	17.9	18.5	19.2	19.8
Enrichment	U-235 (wt%)	0.04%	0.04%	0.04%	0.04%	0.04%
	U-233 (wt%)	99.70%	97.70%	97.70%	97.70%	97.70%
Flux Spectrum	AENCF (MeV)	0.0374	0.0039	0.0040	0.0043	0.0044
	H/X	1,531	1,471	1,419	1,369	1,325
	Experiments	120316				
Concentration	U (g/L)	13.3			e L	
Enrichment	U-235 (wt%)	0.03%				
	U-233 (wt%)	97.67%				
Flux Spectrum	AENCF (MeV)	0.0030				
	H/X	1,984		a		

Calculation

Title: Range of Neutronic Parameters Calculation File	
Document Identifier: B0000000-01717-0210-00028 REV 01	Page 42 of 69

Table 6.1-12. 233 U Laboratory Critical Experiment Characterizations (Fast)

	R rExperiment	CAUSSIAN C	1162520.	3121S2h-1		123336
Density	ρ (g/cm ³)	18.4	18.6	18.6	18.6	18.6
Enrichment	U-235 (wt%)	0.03%	0.00%	0.00%	0.00%	0.00%
	U-233 (wt%)	98.13%	98.20%	98.20%	98.20%	98.20%
Flux Spectrum	AENCF (MeV)	1.7739	1.7370	1.7079	1.7483	1.7623
	baperiment>	112257111	foressible		1253558	10123368
Density	ρ (g/cm³)	18.6	18.6	18.6	18.6	18.4
Enrichment	U-235 (wt%)	0.00%	0.00%	0.00%	0.00%	0.03%
	U-233 (wt%)	98.20%	98.20%	98.20%	98.20%	98.13%

Calculation

Title: Range of Neutronic Parameters Calculation File Document Identifier: B00000000-01717-0210-00028 REV 01

Page 43 of 69

6.2 LATTICE LABORATORY CRITICAL EXPERIMENTS

Table 6.2-1. Mixed Oxide Fuel Pin Lattice Laboratory Critical Experimen
Characterizations (Thermal)

	Experiment	ntr0042	TUN061	
Geometry	Pitch Type	Square	Square	Square
	Rod Pitch (cm)	1.53	1.91	2.64
	Fuel Diameter (cm)	0.49	0.49	0.86
	P/D Ratio	3.11	3.89	3.08
Enrichment	U-235 (wt%)	0.71%	0.71%	0.71%
	Pu-239 (wt%)	86.15%	86.15%	90.61%
Flux Spectrum	AENCF (MeV)	0.0819	0.0609	0.0790

Calculation ·

Title: Range of Neutronic Parameters Calculation File Document Identifier: B00000000-01717-0210-00028 REV 01

Page 44 of 69

Table 6.2-2. Mixed Oxide Fuel Pin Lattice Laboratory Critical Experiment Characterizations (Intermediate)

	Experiment		LEDE .	1924 -	apzs -	1. CTP26
Geometry	Pitch Type	Square	Square	Square	Square	Square
	Rod Pitch (cm)	1.78	1.78	2.21	2.21	2.52
	Fuel Diameter (cm)	1.28	1.28	1.28	1.28	1.28
	P/D Ratio	1.39	1.39	1.72	1.72	1.96
Enrichment	U-235 (wt%)	0.71%	0.71%	0.71%	0.71%	0.71%
	Pu-239 (wt%)	91.84%	91.84%	91.84%	91.84%	91.84%
Flux Spectrum	AENCF (MeV)	0.2556	0.2740	0.1613	0.1894	0.1319
	Experiment	epper 3		e minon	Silino037	A HILIODS
Geometry	Pitch Type	Square	Triangular	Square	Square	Squarer
	Rod Pitch (cm)	2.52	1.60	1.26	0.77	0.95
	Fuel Diameter (cm)	1.28	1.27	0.49	0.49	0.49
	P/D Ratio	1.96	1.26	2.55	1.55	1.93
Enrichment	U-235 (wt%)	0.71%	0.71%	0.71%	0.71%	0.71%
	Pu-239 (wt%)	91.84%	91.84%	86.15%	86.14%	86.15%
Flux Spectrum	AENCF (MeV)	0.1537	0.3776	0.1015	0.2453	0.1728
	Experiment	B000029	25527	SSTS3	SSIS AND	SST66
Geometry	Pitch Type	Square	Square	Square	Square	Square
	Rod Pitch (cm)	0.97	1.42	2.01	1.42	1.87
	Fuel Diameter (cm)	0.49	0.85	0.86	0.86	0.86
	P/D Ratio	1.96	1.66	2.35	1.66	2.18
Enrichment	U-235 (wt%)	0.71%	0.71%	0.71%	0.71%	0.71%
	Pu-239 (wt%)	86.15%	90.61%	90.61%	90.61%	90.61%
Flux Spectrum	AENCF (MeV)	0.1647	0.2015	0.1065	0.1938	0.1183

1. The values listed for exp34 are for the MOX rods only. The LCE also involved UO₂ (4.31 wt%²⁰³U) rods (See Reference 7.2, p. 102)..

Calculation

Title: Range of Neutronic Parameters Calculation File Document Identifier: B00000000-01717-0210-00028 REV 01

Page 45 of 69

Table 6.2-2. Mixed Oxide Fuel Pin Lattice Laboratory Critical Experiment Characterizations (Intermediate)

	Diperment				9118 S	Sand' P
Geometry	Pitch Type	Square	Square	Square	Square	Square
	Rod Pitch (cm)	1.32	1.42	1.42	1,42	1.42
	Fuel Diameter (cm)	0.86	0.86	0.86	0.86	0.86
	P/D Ratio	1.54	1.63	1.61	1.61	1.63
Enrichment	U-235 (wt%)	0.71%	0.71%	0.71%	0.71%	0.71%
	Pu-239 (wt%)	90.61%	90.61%	90.61%	90.61%	90.61%
Flux Spectrum	AENCF (MeV)	0.2295	0.1715	0.1919	0.2051	0.1673
	a		in maile it			
Geometry	Pitch Type	Square	Square			
	Rod Pitch (cm)	1.42	1.42		- du autoritatione de la constante de la const La constante de la constante de La constante de la constante de	
	Fuel Diameter (cm)	0.86	0.86			
	P/D Ratio	1.61	1.61			
Enrichment	U-235 (wt%)	0.71%	0.71%			
	Pu-239 (wt%)	90.61%	90.61%			
Flux Spectrum	AENCF (MeV)	0.2048	0.2049			

1. The values listed for smr1, smr5, smr8, smr9, smr11, and smr12 are for the MOX rods only. The LCE also involved UO₂ (5.74 wt%²¹⁵U) rods (See Reference 7.18, p. 41 and 42).

Waste Package Operations

Title: Range of Neutronic Parameters Calculation File Document Identifier: B00000000-01717-0210-00028 REV 01

Page 46 of 69

Table 6.2-3. High Enriched Uranium Oxide Fuel Pin Lattice Laboratory Critical Experiment Characterizations (Thermal)

	Experiment	diction s	hcil02		hellow	Cherins .
Geometry	Pitch Type	Square	Square	Square	Square	Square
	Rod Pitch (cm)	1.22	1.22	1.47	1.72	1.98
	Average Pellet Diameter (cm)	0.83	0.83	0.83	0.83	0.83
	P/D Ratio	1.47	1.47	1.77	2.07	2.38
Enrichment	U-235 (Avg. wt%)	62.40%	62.40%	62.40%	62.40%	62.40%
Flux Spectrum	AENCF (MeV)	0.0793	0.0799	0.0555	0.0439	0.0357
	Summer in Superiments	inch loos	chccloze	ber10816	Energy and	bellio.
Geometry	Pitch Type	Square	Square	Square	Square	Square
	Rod Pitch (cm)	1.98	2.26	2.26	2.23	2.49
	Average Pellet Diameter (cm)	0.83	0.83	0.83	0.83	0.83
	P/D Ratio	2.38	2.72	2.72	2.69	2.99
Enrichment	U-235 (Avg. wt%)	62.40%	62.40%	62.40%	62.40%	62.40%
Flux Spectrum	AENCF (MeV)	0.0359	0.0357	0.0320	0.0316	0.0288
	Experimented	Beinin	heite	a definis		
Geometry	Pitch Type	Square	Square	Square	Square	Hexagonal
	Rod Pitch (cm)	2.49	2.76	2.97	2.50 ¹	2.58
	Average Pellet Diameter (cm)	0.83	0.83	0.83	0.83	0.83
	P/D Ratio	2.99	3.32	3.58	3.01 ¹	3.11
Enrichment	U-235 (Avg. wt%)	62.40%	62.40%	62.40%	62.40%	62.40%
Flux Spectrum	AENCF (MeV)	0.0285	0.0262	0.0252	0.0284	0.0288

1. LCE hct114 has a different horizontal pitch (1.544 cm) and vertical pitch (1.585 cm). The values reported for Rod Pitch and P/D Ratio are averages.

Calculation

Title: Range of Neutronic Parameters Calculation File Document Identifier: B00000000-01717-0210-00028 REV 01

Page 47 of 69

Table 6.2-3. High Enriched Uranium Oxide Fuel Pin Lattice Laboratory Critical Experiment Characterizations (Thermal)

	12. ID operimente>	E LECTION	6ct1	berlis (beau P	pheti20 St
Geometry	Pitch Type	Square	Square	Square	Square	Square
	Rod Pitch (cm)	2.48	2.48	2.48	2.48	2.48
	Average Pellet Diameter (cm)	0.83	0.83	0.83	0.83	0.83
	P/D Ratio	2.99	2.99	2.99	2.99	2.99
Enrichment	U-235 (Avg. wt%)	62.40%	62.40%	62.40%	62.40%	62.40%
Flux Spectrum	AENCF (MeV)	0.0282	0.0286	0.0288	0.0296	0.0229
		inclusion a				
Geometry	Pitch Type	Square				
:	Rod Pitch (cm)	2.48				
	Average Pellet Diameter (cm)	0.83				
	P/D Ratio	2.99				
Enrichment	U-235 (Avg. wt%)	62.40%				
Flux Spectrum	AENCF (MeV)	0.0277				

Waste Package Operations

Title: Range of Neutronic Parameters Calculation File Document Identifier: B00000000-01717-0210-00028 REV 01

Page 48 of 69

Table 6.2-4. High Enriched Uranium Oxide Fuel Pin Lattice Laboratory Critical Experiment Characterizations (Intermediate)

		fici2-14				ALL S
Geometry	Pitch Type	Cylindrical	Cylindrical	Cylindrical	Cylindrical	Cylindrical
	Rod Pitch (cm) ¹	3.51	3.51	3.51	3.51	3.51
	Average Pellet Diameter (cm)	1.70	1.70	1.70	1.70	1.70
	P/D Ratio	2.07	2.07	2.07	2.07	2.07
Enrichment	U-235 (Avg. wt%)	96%	96%	96%	96%	96%
Flux Spectrum	AENCF (MeV)	0.2422	0.2413	0.2381	0.2376	0.2376

1. These LCEs have a different inner zone and outer zone pitches. The values reported for Rod Pitch are averages.

Table 6.2-5. High Enriched Uranium Oxide Fuel Plate Lattice Laboratory Critical Experiment Characterizations (Thermal)

	est d'aperament>	e epertine	SDELC 28	DITI	a sperfax a	eperts.
Geometry	Pitch Type	Rectangular	Rectangular	Rectangular	Rectangular	Rectangular
	Plate Pitch (cm)	0.32	0.32	0.32	0.32	0.32
	Average Fuel Thickness, W (cm)	0.05	0.05	0.05	0.05	0.05
	P/W Ratio	6.23	6.23	6.23	6.23	6.23
Enrichment	U-235 (Avg. wt%)	93.17%	93.17%	93.17%	93.17%	93.17%
Flux Spectrum	AENCF (MeV)	· 0.0147	0.0126	0.0117	0.0110	0.0105

Waste Package Operations

Title: Range of Neutronic Parameters Calculation File Document Identifier: B00000000-01717-0210-00028 REV 01

Page 49 of 69

Table 6.2-5. High Enriched Uranium Oxide Fuel Plate Lattice Laboratory Critical Experiment Characterizations (Thermal)

	Experiment	sperio	sperior	spert8	Stappert9	spert10
Geometry	Pitch Type	Rectangular	Rectangular	Rectangular	Rectangular	Rectangular
•	Rod Pitch (cm)	0.32	0.32	0.32	0.32	0.32
	Average Fuel Thickness, W (cm)	0.05	0.05	0.05	0.05	0.05
	P/W Ratio	6.23	6.23	6.23	6.23	6.23
Enrichment	U-235 (Avg. wt%)	93.17%	93.17%	93.17%	93.17%	93.17%
Flux Spectrum	AENCF (MeV)	0.0102	0.0097	0.0098	0.0099	0.0147
	Experiment?		sperale.	្រាលដូន	SPETIM	Spert13
Geometry	Pitch Type	Rectangular	Rectangular	Rectangular	Rectangular	Rectangular
	Rod Pitch (cm)	0.32	0.32	0.32	0.32	0.32
	Average Fuel Thickness, W (cm)	0.05	0.05	0.05	0.05	0.05
	P/W Ratio	6.23	6.23	6.23	6.23	6.23
Enrichment	U-235 (Avg. wt%)	93.17%	93.17%	93.17%	93.17%	93.17%
Flux Spectrum	AENCF (MeV)	0.0115	0.0101	0.0143	0.0106	0.0106
	Experiment	sperule	576-01-7	LSpel LIS	sperily	sperio a
Geometry	Pitch Type	Rectangular	Rectangular	Rectangular	Rectangular	Rectangular
	Rod Pitch (cm)	0.32	0.32	0.32	0.32	0.32
	Average Fuel Thickness, W (cm)	0.05	0.05	0.05	0.05	0.05
	P/W Ratio	6.23	6.23	6.23	6.23	6.23
Enrichment	U-235 (Avg. wt%)	93.17%	93.17%	93.17%	93.17%	93.17%
Flux Spectrum	AENCF (MeV)	0.0120	0.0131	0.0140	0.0097	0.0114

Waste Package Operations

Title: Range of Neutronic Parameters Calculation File Document Identifier: B00000000-01717-0210-00028 REV 01

Page 50 of 69

Table 6.2-5. High Enriched Uranium Oxide Fuel Plate Lattice Laboratory Critical Experiment Characterizations (Thermal)

	Experiment	Speriel a	Spasion		
Geometry	Pitch Type	Rectangular-	Rectangular	Rectangular	
	Rod Pitch (cm)	0.32	0.32	0.32	
	Average Fuel Thickness, W (cm)	0.05	0.05	0.05	
	P/W Ratio	6.23	6.23	6.23	
Enrichment	U-235 (Avg. wt%)	93.17%	93.17%	9 3.17%	
Flux Spectrum	AENCF (MeV)	0.0126	0.0133	0.0132	

Calculation

Title: Range of Neutronic Parameters Calculation File Document Identifier: B00000000-01717-0210-00028 REV 01

Page 51 of 69

Table 6.2-6. High Enriched Uranium Oxide One-Zone Cruciform Rod Lattice Laboratory Critical Experiment Characterizations (Thermal)

	and signature in the second		tic 42 Y			
Geometry	Pitch Type	Hexagonal	Hexagonal	Hexagonal	Hexagonal	Hexagonal
	Rod Pitch (cm)	0.53	0.53	0.53	0.53	0.52
	Equivalent Fuel Diameter (cm)	0.30	0.30	0.30	0.30	0.33
	P/D Ratio	1.75	1.75	1.75	1.75	1.57
Enrichment	U-235 (wt%)	90%	90%	90%	90%	80%
Flux Spectrum	AENCF (MeV)	0.0740	0.0732	0.0765	0.0748	0.0776
	She 15 premones		ing (Sole			
Geometry	Pitch Type	Hexagonal	Hexagonal	Hexagonal	Hexagonal	Hexagonal
	Rod Pitch (cm)	0.56	1	2.11	1.0 6	2.11
	Equivalent Fuel Diameter (cm)	0.33	0.33	0.33	0.33	0.33
	P/D Ratio	1.70	3.03	6.40	3.21	6.42
Enrichment	U-235 (wt%)	80%	80%	80%	80%	80%
Flux Spectrum	AENCF (MeV)	0.0715	0.0231	0.0106	0.0340	0.0448
	Caperment 2	2006-65	Sincester.	nersp		
Geometry	Pitch Type	Hexagonal	Hexagonal	Hexagonal		
	Rod Pitch (cm)	4.23	0.53	0.53		
-	Equivalent Fuel Diameter (cm)	0.33	0.33	0.33		
	P/D Ratio	12.83	1.60	1.60		
Enrichment	U-235 (wt%)	80%	80%	80%		
Flux Spectrum	AENCF (MeV)	0.0486	0.0882	0.0919		

Calculation

Title: Range of Neutronic Parameters Calculation File Document Identifier: B00000000-01717-0210-00028 REV 01

Page 52 of 69

Table 6.2-7. High Enriched Uranium Oxide Two-Zone Cruciform Rod Lattice Laboratory Critical Experiment Characterizations (Thermal)

	se Leonenineni≫				i teksi	
Geometry	Pitch Type	Hexagonal	Hexagonal	Hexagonal	Hexagonal	Hexagonal
	Inner Zone Rod Pitch (cm)	1.22	1.22	1.22	1.22	1.22
	Inner Zone Equivalent Fuel Diameter (cm)	0.33	0.33	0.33	0.33	0.33
	Inner Zone P/D Ratio	3.70	3.70	3.70	3.70	3.70
	Outer Zone Rod Pitch (cm)	0.61	0.61	0.61	0.61	0.61
	Outer Zone Equivalent Fuel Diameter (cm)	0.33	0.33	0.33	0.33	0.33
	Outer Zone P/D Ratio	1.85	1.85	1.85	5.56	5.56
Enrichment	U-235 (wt%)	80%	80%	80%	80%	80%
Flux Spectrum	AENCF (MeV)	0.0466	0.0417	0.0330	0.0262	0.0207

1. Reference 7.18 (p. 24) indicates that the "hct3" LCEs use the same fuel rod design as the "hct7" LCEs.

(Table Continued on Next Page)

Calculation

Title: Range of Neutronic Parameters Calculation File Document Identifier: B00000000-01717-0210-00028 REV 01

Page 53 of 69

Table 6.2-7. High Enriched Uranium Oxide Two-Zone Cruciform Rod Lattice Laboratory Critical Experiment Characterizations (Thermal)

	n in storage and storag	licit			1168 9945	Panee 10.5
Geometry	Pitch Type	Hexagonal	Hexagonal	Hexagonal	Hexagonal	Hexagonal
	Inner Zone Rod Pitch (cm)	0.61	0.61	0.61	0.61	0.61
	Inner Zone Equivalent Fuel Diameter (cm)	0.33	0.33	0.33	0.33	0.33
	Inner Zone P/D Ratio	1.85	1.85	1.85	1.85	1.85
	Outer Zone Rod Pitch (cm)	1.22	1.22	1.22	1.22	1.22
	Outer Zone Equivalent Fuel Diameter (cm)	0.33	0.33	0.33	0.33	0.33
	Outer Zone P/D Ratio	3.70	3.70	3.70	3.70	3.70
Enrichment	U-235 (wt%)	80%	80%	80%	80%	80%
Flux Spectrum	AENCF (MeV)	0.0419	0.0345	0.0342	0.0265	0.0202

(Table Continued on Next Page)

Calculation

Title: Range of Neutronic Parameters Calculation File Document Identifier: B00000000-01717-0210-00028 REV 01

Page 54 of 69

Table 6.2-7. High Enriched Uranium Oxide Two-Zone Cruciform Rod Lattice Laboratory Critical Experiment Characterizations (Thermal)

	D. que minientes	Alestehr	ancesto a			211-1315 E
Geometry	Pitch Type	Hexagonal	Hexagonal	Hexagonal	Hexagonal	Hexagonal
	Inner Zone Rod Pitch (cm)	0.61	1.83	1.83	0.61	0.61
	Inner Zone Equivalent Fuel Diameter (cm)	0.33	0.33	0.33	0.33	0.33
	Inner Zone P/D Ratio	1.85	5.56	5.56	1.85	1.85
	Outer Zone Rod Pitch (cm)	1.22	0.61	0.61	1.83	1.83
	Outer Zone Equivalent Fuel Diameter (cm)	0.33	0.33	0.33	0.33	0.33
	Outer Zone P/D Ratio	3.70	1.85	1.85	5.56	. 5.56
Enrichment	U-235 (wt%)	80%	80%	80%	80%	80%
Flux Spectrum	AENCF (MeV)	0.0177	0.0263	0.0140	0.0305	0.0185

 Table 6.2-8. Intermediate Enriched Uranium Oxide Fuel Pin Lattice Laboratory Critical

 Experiment Characterizations (Thermal)

	105 ana meni S	C dillo s	ការ
Geometry	Pitch Type	Cylindrical	Cylindrical
	Rod Pitch (cm)	4	4
	Fuel Diameter (cm)	3.64 ¹	3.6 4 ¹
	P/D Ratio	1.10	1.10
Enrichment	U-235 (wt%)	20%	20%
Flux Spectrum	AENCF (MeV)	0.0236	0.0240

1. The TRIGA rods used in tri17 and tri18 include a 0.635 cm diameter zirconium rod in the center of the fuel.

.

Calculation

Title: Range of Neutronic Parameters Calculation File Document Identifier: B00000000-01717-0210-00028 REV 01

Page 55 of 69

Table 6.2-9. Low Enriched Uranium Oxide Fuel Pin Lattice Laboratory Critical Experiment Characterizations (Thermal)

		SO PISE
Geometry	Pitch Type	Square
	Rod Pitch (cm)	2.012
	Fuel Diameter (cm)	0.907
	P/D Ratio	2.22
Enrichment	U-235 (wt%)	5.74%
Flux Spectrum	AENCF (MeV)	0.0886

Table 6.2-10. Low Enriched Uranium Oxide Fuel Pin Lattice Laboratory Critical Experiment Characterizations (Intermediate)

	and nermentar		r STreak	Tore Pa	Cores -	cores of
Geometry	Pitch Type	Square	Square	Square	Square	Square
	Rod Pitch (cm)	1.64	1.64	1.64	1.64	1.64
	Fuel Diameter (cm)	1.03	1.03	1.03	1.03	1.03
	P/D Ratio	1.59	1.59	1.59	1.59	1.59
Enrichment	U-235 (wt%)	2.46%	2.46%	2.46%	2.46%	2.46%
Flux Spectrum	AENCF (MeV)	0.1999	0.1808	0.1791	0.1692	0.1722
	a is meanients	COLVER .	COTES A	ොලා්	citan s	COnel1
Geometry	Pitch Type	Square	Square	Square	Square	Square
	Rod Pitch (cm)	1.64	1.64	1.64	1.64	1.64
	Fuel Diameter (cm)	1.03	1.03	1.03	1.03	1.03
	P/D Ratio	1.59	1.59	1.59	1.59	1.59
Enrichment	U-235 (wt%)	2.46%	2.46%	2.46%	2.46%	2.46%
Flux Spectrum	AENCF (MeV)	0.1596	0.1650	0.1553	0.1604	0.1789

Waste Package Operations

Title: Range of Neutronic Parameters Calculation File Document Identifier: B00000000-01717-0210-00028 REV 01

.

Page 56 of 69

Table 6.2-10. Low Enriched Uranium Oxide Fuel Pin Lattice Laboratory Critical Experiment Characterizations (Intermediate)

	S (Bonerment)		scorelas	r sone BA	scorel6.	
Geometry	Pitch Type	Square	Square	Square	Square	Square
	Rod Pitch (cm)	1.64	1.64	1.64	1.64	1.64
	Fuel Diameter (cm)	1.03	1.03	1.03	1.03	1.03
	P/D Ratio	1.59	1.59	1.59	1.59	1.59
Enrichment	U-235 (wt%)	2.46%	2.46%	2.46%	2.46%	2.46%
Flux Spectrum	AENCF (MeV)	0.1667	0.1808	0.1835	0.1695	0.1819
	Diperimen >	Corel8	area allowed	Sec. 201		
Geometry	Pitch Type	Square	Square	Square	Square	Square
	Rod Pitch (cm)	1.64	1.64	1.64	1.64	2.03
	Fuel Diameter (cm)	1.03	1.03	1.03	1.03	1.12
	P/D Ratio	1.59	1.59	1.59	1.59	1.82
Enrichment	U-235 (wt%)	2.46%	2.46%	2.46%	2.46%	2.35%
Flux Spectrum	AENCF (MeV)	0.1686	0.1835	0.1693	0.1623	0.1210
	talisperineni≥				ense	
Geometry	Pitch Type	Square	Square	Square	Square	Square
	Rod Pitch (cm)	2.03	2.03	2.03	1.89	1.89
	Fuel Diameter (cm)	1.12	1.12	1.12	1.26	1.26
	P/D Ratio	1.82	1.82	1.82	1.50	1.50
Enrichment	U-235 (wt%)	2.35%	2.35%	2.35%	4.31%	4.31%
Flux Spectrum	AENCF (MeV)	0.1247	0.1217	0.1200	0.2797	0.1766

Waste Package Operations

Title: Range of Neutronic Parameters Calculation File Document Identifier: B00000000-01717-0210-00028 REV 01

Page 57 of 69

Table 6.2-10. Low Enriched Uranium Oxide Fuel Pin Lattice Laboratory Critical Experiment Characterizations (Intermediate)

	C. Caperiment S		iten:	erp9	CEDIO IN	
Geometry	Pitch Type	Square	Square	Square	Square	Square
	Rod Pitch (cm)	1.89	1.89	1.89	1.72	1.72
	Fuel Diameter (cm)	1.26	1.26	1.26	1.26	1.26
	P/D Ratio	1.50	1.49	1.49	1.36	1.36
Enrichment	U-235 (wt%)	4.31%	4.31%	4.31%	4.31%	4.31%
Flux Spectrum	AENCF (MeV)	0.1784	0.1774	0.2217	0.2239	0.2664
	1974D9nimenite	Cul	C. CIPIC	CTPL		
Geometry	Pitch Type	Square	Square	Square	Square	Square
	Rod Pitch (cm)	1.89	1.89	1.53	2.21	1.42
	Fuel Diameter (cm)	1.27	1.27	1.12	1.12	0.91
	P/D Ratio	1.49	1.49	1.37	1.98	1.57
Enrichment	U-235 (wt%)	4.31%	4.31%	2.35%	2.35%	5.74%
Flux Spectrum	AENCF (MeV)	0.1946	0.1942	0.2095	0.1098	0.1564
	. A Bapenment >	മസ	el strado	ារប្រជុំនិ	- Sirola	TROS IT
Geometry	Pitch Type	Square	Square	Square	Square	Square
	Rod Pitch (cm)	1.64	1.64	1.64	1.64	1.64
	Average Pellet Diameter (cm)	1.03	1.03	1.03	1.03	1.03
	P/D Ratio	1.59	1.59	1.59	1.59	1.59
Enrichment	U-235 (Avg. wt%)	2.46%	2.46%	2.46%	2.46%	2.46%
Flux Spectrum	AENCF (MeV)	0.2013	0.1983	0.1995	0.1999	0.1975

Waste Package Operations

Title: Range of Neutronic Parameters Calculation File Document Identifier: B00000000-01717-0210-00028 REV 01

Page 58 of 69

Table 6.2-10. Low Enriched Uranium Oxide Fuel Pin Lattice Laboratory Critical Experiment Characterizations (Intermediate)

	- 19 neunents	Und	urgen	augu 8 co	0,000	ngdlat
Geometry	Pitch Type	Square	Square	Square	Square	Square
	Rod Pitch (cm)	1.64	1.64	1.64	1.64	1.64
	Average Pellet Diameter (cm)	1.03	1.03	1.03	1.03	1.03
	P/D Ratio	1.59	1.59	1.59	1.59	1.59
Enrichment	U-235 (Avg. wt%)	2.45%	2.46%	2.46%	2.45%	2.46%
Flux Spectrum	AENCF (MeV)	0.1978	0.1968	0.1976	0.1987	0.2011
	Experiment	ingel 2 - 4	- gain g	anthrows	- Updits	integal 6
Geometry	Pitch Type	Square	Square	Square	Square	Square
	Rod Pitch (cm)	1.64	1.64	1.64	1.64	1.64
	Average Pellet Diameter (cm)	1.05	1.05	1.05	1.05	1.05
	P/D Ratio	1.56	1 .56	1.56	1.56	1.56
Enrichment	U-235 (Avg. wt%)	2.75%	2.75%	2.74%	2.74%	2.73%
Flux Spectrum	AENCF (MeV)	0.2097	0.2084	0.2042	0.2056	0.2065
	Propermine *		SUIZELSS I	inga 10		Cruck -
Geometry	Pitch Type	Square	Square	Square	Square	Square
	Rod Pitch (cm)	1.64	1.64	1.64	1.64	2.03
	Average Pellet Diameter (cm)	1.05	1.05	1.05	1.05	1.12
	P/D Ratio	1.56	1.56	1.56	1.56	1.82
Enrichment	U-235 (Avg. wt%)	2.73%	2.78%	2.77%	2.76%	2.35%
Flux Spectrum	AENCF (MeV)	0.2034	0.2085	0.2101	0.2070	0.1229

Waste Package Operations

Title: Range of Neutronic Parameters Calculation File Document Identifier: B00000000-01717-0210-00028 REV 01

Page 59 of 69

Table 6.2-10. Low Enriched Uranium Oxide Fuel Pin Lattice Laboratory Critical Experiment Characterizations (Intermediate)

	5 a Experiment≥	George	ference.		(Case-)12	Cale6
Geometry	Pitch Type	Square	Square	Square	Square	Square
	Rod Pitch (cm)	2.03	2.03	2.03	2.03	2.03
	Average Pellet Diameter (cm)	1.12	1.12	1.12	1.12	1.12
	P/D Ratio	1.82	1.82	1.82	1.82	1.82
Enrichment	U-235 (Avg. wt%)	2.35%	2.35%	2.35%	2.35%	2.35%
Flux Spectrum	AENCF (MeV)	0.1223	0.1200	0.1222	0.1204	0.1221
	saling manifest		Cares .	a Stoll of Stoll of Stoll	SURGARING	SUBCARUE
Geometry	Pitch Type	Square	Square	Hexagonal	Hexagonal	Hexagonal
	Rod Pitch (cm)	2.03	2.03	7.11	7.87	8.64
	Average Pellet Diameter (cm)	1.12	1.12	5.98	5.98	5.98
	P/D Ratio	1.82	1.82	1.19	1.32	1.44
Enrichment	U-235 (Avg. wt%)	2.35%	2.35%	1.15%	1.15%	1.15%
Flux Spectrum	AENCF (MeV)	0.1211	0.1209	0.4085	0.3417	0.3153
	and Dansement's	531833	t of the			
Geometry	Pitch Type	Square	Square	Square		
	Rod Pitch (cm)	1.32	1.42	1.6		
	Average Pellet Diameter (cm)	0.91	0.91	0.79		
	P/D Ratio	1.46	1.57	2.03		
Enrichment	U-235 (Avg. wt%)	5.74%	5.74%	4.74%	anti- Anti-	
Flux Spectrum	AENCF (MeV)	0.1820	0.1557	0.1025		

Note: The fuel rods used in SUBC2P8H, SUBC3P1H, and SUBC3P4H were annular rods.

Calculation

Title: Range of Neutronic Parameters Calculation File Document Identifier: B00000000-01717-0210-00028 REV 01

Page 60 of 69

6.3 COMMERCIAL REACTOR CRITICALS

State Point	Reactor	Cycle	Time of Measurement . EFPD*
1	Crystal River, Unit #3	1a	0.0
2	Crystal River, Unit #3	1b	268.8
3	Crystal River, Unit #3	1b	411.0
4	Crystal River, Unit #3	2	0.0
5	Crystal River, Unit #3	3	0.0
6	Crystal River, Unit #3	3	168.5
7	Crystal River, Unit #3	3	250.0
8	Crystal River, Unit #3	4	0.0
9	Crystal River, Unit #3	4	228.1
10	Crystal River, Unit #3	4	253.0
11	Crystal River, Unit #3	5	0.0
12	Crystal River, Unit #3	5	388.5
13	Crystal River, Unit #3	6	0.0
14	Crystal River, Unit #3	6	96.0
15	Crystal River, Unit #3	6	400.0
16	Crystal River, Unit #3	7	0.0
17	Crystal River, Unit #3	7	260.3
18	Crystal River, Unit #3	7	291.0
19	Crystal River, Unit #3	7	319.0
20	Crystal River, Unit #3	7	462.3
21	Crystal River, Unit #3	7	479.0
22	Crystal River, Unit #3	8	0.0
23	Crystal River, Unit #3	8	97.6

Table 6.3-1. Commercial Reactor Criticals State Points

Calculation

Title: Range of Neutronic Parameters Calculation File Document Identifier: B00000000-01717-0210-00028 REV 01

Page 61 of 69

State Point	Reactor	Cycle	Time of Measurement EFPD*
24	Crystal River, Unit #3	8	139.8
25	Crystal River, Unit #3	8	404.0
26	Crystal River, Unit #3	8	409.6
27	Crystal River, Unit #3	8	515.5
28	Crystal River, Unit #3	9	0.0
29	Crystal River, Unit #3	9	158.8
30	Crystal River, Unit #3	9	219.0
31	Crystal River, Unit #3	9	363.1
32	Crystal River, Unit #3	10	0.0
33	Crystal River, Unit #3	10	573.7
36	Sequoyah, Unit #2	. 1	0.0
37	Sequoyah, Unit #2	3	0.0
38	Sequoyah, Unit #2	3	210.9
46	McGuire, Unit #1	1	0.0
47	McGuire, Unit #1	6	0.0
48	McGuire, Unit #1	6	62.4
49	McGuire, Unit #1	7	0.0
50	McGuire, Unit #1	7	129.0
51	McGuire, Unit #1	7	282.3
59	Three Mile Island, Unit #1	1	0.0
60	Three Mile Island, Unit #1	5	0.0
61	Three Mile Island, Unit #1	5	114.4

Table 6.3-1. Commercial Reactor Criticals State Points

* Note: EFPD = Effective Full Power Days

Calculation

Title: Range of Neutronic Parameters Calculation File Document Identifier: B00000000-01717-0210-00028 REV 01

Page 62 of 69

٠

State Point	Initial Enrichment	Burnup (GWd/MTU)		
State 1 one	(wt% ²³⁵ U)	Minimum	Maximum	Core Average
1	2.445	0	0	0
2	2.446	4	11	8
3	2.446	7	16	12
4	2.670	0	17	9
5	2.693	.0	20	8
6	2.693	3	25	13
7	2.693	4	28	15
8	2.648	0	18	7
9	2.648	6	25	14
10	2.648	7	26	15
11	2.915	0	17	7
12	2.915	9	28	19
. 13	3.210	0	22	12
14	3.210	3	25	15
15	3.210	13	35	24
16	3.554	0	25	10
17	3.554	6	33	18
18	3.554	7	34	19
19	3.554	8	35	20
20	3.554	11	39	24
21	3.554	12	40	25
22	3.755	0	31	12
23	3.755	3	32	15
24	3.755	4	33	17
25	3.755	11	36	25

Table 6.3-2. Commercial Reactor Criticals Fuel Characterizations

Calculation

Title: Range of Neutronic Parameters Calculation File	
Document Identifier: B00000000-01717-0210-00028 REV 01	Page 63 of 69

State Point	Initial Enrichment	Burnup (GWd/MTU)		
State I Umi	(wt% ²³⁵ U)	Minimum	Maximum	Core Average
26	3.755	11	36	25
27	3.755	14	39	28
28	3.892	0	35	14
29	3.892	5	37	19
30	3.892	7	37	21
31	3.892	11	40	25
32	4.015	0	35	15
33	4.015	18	49	33
36	2.535	0	0	0
37	3.427	0	27	11
38	3.427	7	34	19
46	2.602	• 0	0	0
47	3.472	0	28	12
48	3.472	2	31	14
49	3.618	0	27	11
50	3.618	4	32	16
51	3.618	9	38	23
59	2.633	0	0	0
60	2.820	0	25 -	10
61	2.820	2	28	14

Table 6.3-2. Commercial Reactor Criticals Fuel Characterizations

Calculation

Title: Range of Neutronic Parameters Calculation File	
Document Identifier: B00000000-01717-0210-00028 REV 01	Page 64 of 69

The AENCF values reported in the following table are for the "best-estimate" isotope set, and are calculated from References 7.8, 7.9, 7.10 and 7.11 as noted in Table 5.1-1.

	StarePoint					
Geometry	Pitch Type	Square	Square	Square	Square	Square
	Rod Pitch in Assembly (cm)	1.44	1.44	1.44	1.44	1.44
	Average Pellet Diameter (cm)	0.94	0.94	0.94	0.94	0.94
	P/D Ratio	1.53	1.53	1.53	1.53	1.53
Flux Spectrum	AENCF (MeV)	0.2344	0.2504	0.2518	0.2498	0.2489
	SintePoint	0				
Geometry	Pitch Type	Square	Square	Square	Square	Square
	Rod Pitch in Assembly (cm)	1.44	1.44	1.44	1.44	1.44
- -	Average Pellet Diameter (cm)	0.94	0.94	0.94	0.94	0.94
	P/D Ratio	1.53	1.53	1.53	1.53	1.53
Flux Spectrum	AENCF (MeV)	0.2536	0.2547	0.2499	0.2576	0.2568
			22	10		
Geometry	Pitch Type	Square	Square	Square	Square	Square
	Rod Pitch in Assembly (cm)	1.44	1.44	1.44	1.44	1.44
	Average Pellet Diameter (cm)	0.94	0.94	0.94	0.94	0.94
	P/D Ratio	1.53	1.53	1.53	1.53	1.53
Flux Spectrum	AENCF (MeV)	0.2475	0.2605	0.2513	0.2557	0.2612

Table 6.3-3. Commercial Reactor Criticals Summary 141

Calculation

Title: Range of Neutronic Parameters Calculation File Document Identifier: B0000000-01717-0210-00028 REV 01

Page 65 of 69

Table 6.3-3. Commercial Reactor	Criticals Summary Table
---------------------------------	-------------------------

	ol -SinePomi 🚿					
Geometry	Pitch Type	Square	Square	Square	Square	Square
	Rod Pitch in Assembly (cm)	1.44	1,44	1.44	1.44	1.44
	Average Pellet Diameter (cm)	0.94	0.94	0.94	0.94	0.94
	P/D Ratio	1.53	1.53	1.53	1.53	1.53
Flux Spectrum	AENCF (MeV)	0.2504	0.2583	0.2598	0.2587	0.2582
	Since Domes -					
Geometry	Pitch Type	Square	Square	Square	Square	Square
	Rod Pitch in Assembly (cm)	1.44	1.44	1.44	1.44	1.44
	Average Pellet Diameter (cm)	0.94	0.94	0.94	0.94	0.94
	P/D Ratio	1.53	1.53	1.53	1.53	1.53
Flux Spectrum	AENCF (MeV)	0.2616	0.2532	0.2572	0.2582	0.2615
	State Pome 22	26.j			201-201-0	
Geometry	Pitch Type	Square	Square	Square	Square	Square
	Rod Pitch in Assembly (cm)	1.44	1.44	1.44	1.44	1.44
	Average Pellet Diameter (cm)	0.94	0.9 4	0.94	0.94	0.94
	P/D Ratio	1.53	1.53	1.53	1.53 .	1.53
Flux Spectrum	AENCF (MeV)	0.2610	0.2643	0.2546	0.2584	0.2597

Calculation

Title: Range of Neutronic Parameters Calculation File Document Identifier: B00000000-01717-0210-00028 REV 01

Page 66 of 69

	StatePointe				1 00	
Geometry	Pitch Type	Square	Square	Square	Square	Square
	Rod Pitch in Assembly (cm)	1.44	1.44	1.44	1.26	1.26
	Average Pellet Diameter (cm)	0.94	0.94	0.94	0.82	0.82
	P/D Ratio	1.53	1.53	1.53	1.54	1.54
Flux Spectrum	AENCF (MeV)	0.2635	0.2558	0.2660	0.2374	0.2518
	State Point State	2 35 A	Core and			
Geometry	Pitch Type	Square	Square	Square	Square	Square
	Rod Pitch in Assembly (cm)	1.26	1.26	1.26	1.26	1.26
	Average Pellet Diameter (cm)	0.82	0.82	0.78	0.78	0.78
	P/D Ratio	1.54	1.54	1.62	1.62	1.62
Flux Spectrum	AENCF (MeV)	0.2555	0.2390	0.2351	0.2375	0.2362
	StatePoint	S0		1159	11-160	
Geometry	Pitch Type	Square	Square	Square	Square	Square
	Rod Pitch in Assembly (cm)	1.26	1.26	1.44	1.44	1.44
	Average Pellet Diameter (cm)	0.78	0.78	0.94	0.94	0.94
	P/D Ratio	1.62	1.62	1.53	1.53	1.53
Flux Spectrum	AENCF (MeV)	0.2388	0.2426	0.2353	0.2476	0.2498

Table 6.3-3. Commercial Reactor Criticals Summary Table

Calculation

Title: Range of Neutronic Parameters Calculation FilePage 67 of 69Document Identifier: B00000000-01717-0210-00028 REV 01Page 67 of 69

7. REFERENCES

- 7.1 Civilian Radioactive Waste Management System (CRWMS) Management and Operating Contractor (M&O) 1997. MCNP Evaluation of Laboratory Critical Experiments: Homogeneous Mixture Criticals. BBA000000-01717-0200-00045 REV 00. Las Vegas, Nevada: CRWMS M&O. ACC: MOL.19971230.0134.
- 7.2 CRWMS M&O 1997. MCNP Evaluation of Laboratory Critical Experiments: Lattice Criticals. BBA000000-01717-0200-00009 REV 00. Las Vegas, Nevada: CRWMS M&O. ACC: MOL.19971229.0283.
- 7.3 CRWMS M&O 1998. Summary Report of Commercial Reactor Criticality Data for Crystal River Unit 3. B0000000-01717-5705-00060 REV 01. Las Vegas, Nevada: CRWMS M&O. ACC: MOL.19980728.0189.
- 7.4 CRWMS M&O 1998. Summary Report of Commercial Reactor Criticality Data for Sequoyah Unit 2. B0000000-01717-5705-000064 REV 01. Las Vegas, Nevada: CRWMS M&O. ACC: MOL.19980716.0015.
- 7.5 CRWMS M&O 1998. Summary Report of Commercial Reactor Criticality Data for McGuire Unit 1. B0000000-01717-5705-00063 REV 01. Las Vegas, Nevada: CRWMS M&O. ACC: MOL.19980622.0079.
- 7.6 CRWMS M&O 1998. Summary Report of Commercial Reactor Criticality Data for Three Mile Island Unit 1. B0000000-01717-5705-000069 REV 00. Las Vegas, Nevada: CRWMS M&O. ACC: MOL.19980619.0134.
- 7.7 Briesmeister, Judith F., ed. 1997. MCNP-A General Monte Carlo N-Particle Transport Code. User manual, Report Number: LA-12625-M, Version 4B. Los Alamos, New Mexico: Los Alamos National Laboratory. TIC: 241044
- 7.8 CRWMS M&O 1998. CRC Reactivity Calculations for Crystal River Unit 3. B00000000-01717-0210-00002 REV 00. Las Vegas, Nevada: CRWMS M&O. ACC: MOL.19980728.0004.
- 7.9 CRWMS M&O 1998. CRC Reactivity Calculations for Sequoyah Unit 2. B0000000-01717-0210-00006 REV 00. Las Vegas, Nevada: CRWMS M&O. ACC: MOL.19980728.0005.
- 7.10 CRWMS M&O 1998. CRC Reactivity Calculations for McGuire Unit I. B0000000-01717-0210-00004 REV 00. Las Vegas, Nevada: CRWMS M&O. ACC: MOL.19980728.0006.
- 7.11 CRWMS M&O 1998. CRC Reactivity Calculations for Three Mile Island Unit 1. B0000000-01717-0210-00008 REV 00. Las Vegas, Nevada: CRWMS M&O. ACC: MOL.19980728.0003.

Calculation

Title: Range of Neutronic Parameters Calculation File Document Identifier: B00000000-01717-0210-00028 REV 01

Page 68 of 69

- 7.12 DOE 1999. DOE Letter "Accepted Data Call", from R. E. Spence to J. L. Younker, July 27, 1999. North Las Vegas, Nevada: DOE OCRWM Yucca Mountain Site Characterization Office. ACC: MOL.19990811.0170.
- 7.13 [Reserved]
- 7.14 CRWMS M&O 1997. Criticality Evaluation of Degraded Internal Configurations for the *PWR AUCF WP Designs*. BBA000000-01717-0200-00056 REV 00. Las Vegas, Nevada: CRWMS M&O. ACC: MOL.19971231.0251.
- 7.15 CRWMS M&O 1997. Criticality Safety and Shielding Evaluations of the Codisposal Canister in the Five-Pack DHLW Waste Package. BBA000000-01717-0200-00052 REV 01. Las Vegas, Nevada: CRWMS M&O. ACC: MOL.19971210.0010.
- 7.16 CRWMS M&O 1998. Disposal Criticality Analysis for Aluminum-based Fuel in a Codisposal Waste Package - ORR and MIT SNF - Phase II. BBA000000-01717-0200-00060 REV 00. Las Vegas, Nevada: CRWMS M&O. ACC: MOL.19980224.0670.
- 7.17 CRWMS M&O 1998. Evaluation of Codisposal Viability for Aluminum-Clad DOE-Owned Spent Fuel: Phase II Degraded Codisposal Waste Package Internal Criticality. BBA000000-01717-5705-00017 REV 01. Las Vegas, Nevada: CRWMS M&O. ACC: MOL.19980701.0782.
- 7.18 CRWMS M&O 1999. LCE for Research Reactor Benchmark Calculations. B0000000-01717-0210-00034 REV 00. Las Vegas, Nevada: CRWMS M&O. ACC: MOL.19990329.0394.
- 7.19 CRWMS M&O 1999. LCEs for Naval Reactor Benchmark Calculations. B0000000-01717-0210-00087 REV 00. Las Vegas, Nevada: CRWMS M&O. ACC: MOL.19990819.0239.
- 7.20 Benedict, Manson; Pigford, T.H.; Levi, H.W. 1981. Nuclear Chemical Engineering, Second Edition. New York, New York: McGraw-Hill Book Company. TIC#: 245089.
- 7.21 Organization for Economic Cooperation and Development Nuclear Energy Agency (OECD-NEA) 1998. International Handbook of Evaluated Criticality Safety Benchmark Experiments. NEA/NSC/DOC(95)03, September 1998 Edition. Paris, France: OECD. TIC: 243013.
- 7.22 CRWMS M&O 1999. Laboratory Critical Experiment Reactivity Calculations. B0000000-01717-0210-00018 REV 01. Las Vegas, Nevada: CRWMS M&O. ACC: MOL.19990526.0294.
- 7.23 CRWMS M&O 1998. Selection of MCNP Cross Section Libraries. B0000000-01717-5705-00099 REV 00. Las Vegas, Nevada: CRWMS M&O. ACC: MOL.19980722.0042.

Calculation

Page 69 of 69

Title: Range of Neutronic Parameters Calculation File Document Identifier: B00000000-01717-0210-00028 REV 01

8. ATTACHMENTS

١.

None Used.