

 $\ddot{}$

 $\label{eq:2} \mathcal{L} = \mathcal{L} \mathcal{L} \mathcal{L}$

 $\overline{\cdot}$

 $\ddot{}$

 \overline{a}

Calculation Cover Sheet

 $\frac{1}{2}$

 \overline{a}

 $MOL.19990702.0030⁻⁷$

. \boldsymbol{t}

كهمد

Complete only applicable items. \sim μ $^{-1}$ \mathcal{N}_{c} .

 1.1 QA: L

 $\ddot{}$

 $|$ Page: 1 Of: 51

 $\ddot{}$

DAP-3-15 (Effective 02/15/99)

 $\overline{}$

 $\ddot{}$

J.

Page

Title: EQ6 Calculations for Chemical Degradation of Enrico Fermi Spent Nuclear Fuel Waste Packages <u>Document Identifier: BBA000000-01717-0210-00029 REV 00</u> Page 2 of 51

 \overline{a}

CONTENTS

 $\ddot{}$

Title: EQ6 Calculations for Chemical Degradation of Enrico Fermi Spent Nuclear Fuel Waste Packages Document Identifier: BBA000000-01717-0210-00029 REV 00 Pape 3 of 51

 $\ddot{}$

FIGURES

Page

Calculation

Title: EQ6 Calculations for Chemical Degradation of Enrico Fermi Spent Nuclear Fuel Waste Packages
Document Identifier: BBA000000-01717-0210-00029 REV 00 P age 4 of 51

TABLES

Page

Waste Package Operations **Propriet Calculation**

Title: EQ6 Calculations for Chemical Degradation of Enrico Fermi Spent Nuclear Fuel Waste Packages
Document Identifier: BBA000000-01717-0210-00029 REV 00 Document Identifier: BBA000000-01717-0210-00029 REV 00

1. PURPOSE

The Monitored Geologic Repository (MGR) Waste Package Operations (WPO) of the Civilian Radioactive Waste Management System Management & Operating Contractor (CRWMS M&O) performed calculations to provide input for disposal of spent nuclear fuel (SNF) from the Enrico Fermi Atomic Power Plant (Ref. 1). The Fermi fuel has been considered for disposal at the potential Yucca Mountain site. Because of the high content of fissile material in the fuel, the waste package (WP) design requires special consideration of the amount and placement of neutron absorbers, and the possible loss of absorbers and fuel materials over geologic time. For some WPs, the corrosion-allowance barrier and the corrosion-resistant material (CRM) may breach (Refs. 2 and 3), allowing the influx of water. Water in the package may moderate neutrons, increasing likelihood of a criticality within the package; and the water may, in time, gradually leach the fissile components and neutron absorbers from the WP, further affecting the neutronics of the system.

This study presents calculations of the long-term geochemical behavior of WPs containing Fermi fuel assemblies, and high-level waste (HLW) glass canisters arranged according to the codisposal concept (Ref. 4). The specific study objectives were to determine:

- 1) the extent to which criticality control material, suggested for this WP design, will remain in the WP after corrosion/dissolution of the initial package configuration (such that it can be effective in preventing criticality),
- 2) the extent to which fissile plutonium and uranium will be carried out of the degraded WP by infiltrating water (such that internal criticality is no longer possible, but the possibility of external criticality may be enhanced), and
- 3) the nominal chemical composition for the criticality evaluations of the WP design, and to suggest the range of parametric variations for additional evaluations.

For this purpose, the chemical compositions (and consequent criticality evaluations) for some of the simulations are modeled for time periods up to 500,000 years. This longer time frame is closer with the one million years time horizon recently recommended by the National Academy of Sciences to the Environmental Protection Agency for performance assessment related to a nuclear repository (Ref. 5). However, it is important to note that after 100,000 years most of the materials of interest (fissile and absorber materials) will have either been removed from the waste package, reached a steady state, or been transmuted.

The calculation included elements with high neutron-absorption cross-sections, notably Gd, as well as the fissile materials. The results of this analysis will be used to ensure that the type and amount of criticality control material used in the WP design will prevent criticality.

Waste Package Operations (*Note by a state Package Operations*) and α *S* alculation

Title: EQ6 Calculations for Chemical Degradation of Enrico Fermi Spent Nuclear Fuel Waste Packages
Document Identifier: BBA000000-01717-0210-00029 REV 00 Document Identifier: BBA000000-01717-0210-00029 REV 00

2. METHOD

The method used for this analysis involves the following steps:

- Use of basic EQ3/6 (software package, Section 4.1) capability for tracing the progress of reactions with evolution of the chemistry, which includes the estimation of the concentrations remaining in solution and the composition of the precipitated solids. (EQ3 is used to determine a starting fluid composition for EQ6 calculations; it does not simulate reaction progress.)
- * Evaluation of available data on the range of dissolution rates for the materials involved, to be used as material/species input for each time step.
- Use of "solid-centered flow-through" mode (SCFT) in EQ6; in this mode, an increment of aqueous "feed" solution is added continuously to the WP system, and a like volume of the existing solution is removed, simulating a continuously-stirred tank reactor. This mode is discussed in Section 4.2.
- Determination of fissile material concentrations in solution as a function of time (from the output of EQ6 simulated reaction times up to **5x10⁵** years).
- Calculation of the amount of fissile material released from the WP as a function of time (fissile loss reduces the chance of criticality within the WP).
- Determination of concentrations of neutron absorbers, such as Gd and B, in solution as a function of time (from the output of EQ6 over times up to or somewhat greater than 5.0×10^5) years).
- Calculation of the amount of neutron absorbers retained within the WP as a function of time.
- . Composition and amounts of solids (precipitated minerals or corrosion products, and unreacted package materials).

Further detail on the specific methods employed for each step is available in Section 5 of this set of calculations.

Title: EQ6 Calculations for Chemical Degradation of Enrico Fermi Spent Nuclear Fuel Waste Packages
Document Identifier: BBA000000-01717-0210-00029 REV 00 Document Identifier: BBA000000-01717-0210-00029 REV 00

3. ASSUMPTIONS

All assumptions are for preliminary design; these assumptions will require verification before this analysis can be used to support procurement, fabrication, or construction activities. All assumptions are used throughout Section *5.*

- 3.1 It is assumed that an aqueous solution fills all voids within WPs, and that the solutions that drip into the package will have the composition of J-13 well water (as given in Ref. 6; this composition is given in Table 5-5) for \sim 5x10⁵ years. The basis for the first part of this assumption is that it provides the maximum degradation rate with the potential for the fastest flushing of the neutron absorber from the WP, and is thereby conservative. The basis for the second part of the assumption is that the groundwater composition is controlled largely by transport through the host rock, over pathways of hundreds of meters, and the host rock composition is not expected to change substantially over $10⁶$ years. For a few thousand years after waste emplacement the composition may differ because of perturbations resulting from reactions with engineered materials and from the thermal pulse. These are not taken into account in this calculation because the corrosion allowance barrier and CRM are not expected to breach until after that perturbed period. Therefore, the early perturbation is not relevant to the calculations reported in this document. See Assumption 3.3.
- 3.2 It is assumed that the density of J-13 well water is 1.0 $g/cm³$. The basis is that for dilute solutions, the density differs extremely little from that for pure water and that any differences are insignificant in respect to other uncertainties in the data and calculations. Moreover, this number is used only initially in EQ3/6 to convert concentrations of dissolved substances from parts per million to molalities.
- 3.3 The assumption that the water entering the waste package can be approximated by the J-13 well water implicitly. assumes: (1) that the infiltrating water will have only a minimal contact, if any at all, with undegraded metal in the corrosion allowance barrier, and (2) that any effects of contact with the drift liner will be minimal after a few thousand years. The basis for the first part of this assumption is that the water should move rapidly enough through openings in the waste package barriers that its residence time in the corroded barrier will be too small for significant reaction to occur. Furthermore, the water flowing through the barriers will be in contact with the corrosion products left from the barrier corrosion that created the holes in the first place, but these corrosion products will closely resemble iron oxides and hydroxides in the overlying rock. Consequently, the water should already be close to equilibrium with these compounds and would be unaffected by further contact with them, even if it flowed slowly enough to permit significant reaction. The basis for the second part of this assumption is justified by the following: (1) the drift liner at the top of the drift is expected to collapse with the roof support well before 1000 years, and (2) the water flowing through the concrete liner, dominantly along fractures, will be in contact with the degradation products of the liner which will have come close to equilibrium with the water moving through the rock above

- the repository. Interaction of water in the fractures with any undegraded concrete between fractures would be minimal owing to the slow rate of diffusion through the matrix compared to rate of flow through fractures.
- *3.4* It is assumed that water may circulate freely enough in the partially degraded WP that all degraded solid products may react with each other Through the aqueous solution medium. The basis for this assumption is that this provides one bound for the extent of chemical interactions within the WP.
- *3.5* It is assumed that the existing database supplied with the EQ3/6 computer package is sufficiently accurate for the purposes of this calculation. The basis for this assumption is that the data have been carefully scrutinized by many experts over the course of several decades and carefully selected by Lawrence Livermore National Laboratory (LLNL) for incorporation into the data base (Refs. 7, 8, 9, and 10). These databases are periodically updated and/or new databases added, such as one including extensive data on the lanthanides (Ref. 11). Every run of either EQ3 or EQ6 documents automatically which database is used. The databases include references internally for the sources of the data. The reader is referred to this documentation, included in the electronic files labeled dataO that accompany this calculation, for details (Ref. 12). Nevertheless, the quality of data needs to be verified in the future.
- 3.6 It is assumed that the calculations can be modeled with the 25 \degree C thermodynamic database. The basis for this assumption is that the initial breach may occur when the package contents are at temperatures ≥ 50 °C (Ref. 13, Figures 3-20 through 3-22), though at times $> 25,000$ years, the package temperatures are likely to be closer to 25 °C. Since the solubility of $GdPQ_4$ is retrograde (Ref. 14) (i.e., decreases with increasing temperature), use of the lower-temperature database is likely to be conservative.
- 3.7 In general it is assumed that chromium and molybdenum will oxidize fully to chromate (or dichromate) and molybdate, respectively. This assumption is based on the available thermodynamic data, which indicate that in the presence of air the chromium and molybdenum would both oxidize to the VI valence state. Laboratory observation of the corrosion of Cr and Mo containing steels and alloys, however, indicates that any such oxidation would be extremely slow. In fact, oxidation to the VI state may not occur at a significant rate in respect to the time frame of interest, or there may exist stable $Cr^(III)$ solids (not present in the EQ3/6 thermodynamic database) that substantially lower aqueous Cr concentration. For the present analyses, the assumption is made that over the times of concern the oxidation will occur. This is conservative for times of several thousand years after WP breach, when the high pH solution from any drift liner effects, has been flushed out of the **WIP.** Extreme acidification of the water will enhance solubility (Ref. 2) and transport of neutron absorber out of the WP thereby separating it preferentially from fissile material.

- 3.8 It is assumed that the CRM (the inner barrier) of the WP will react so slowly with the infiltrating water (and water already in the WP) as to have negligible effect on the chemistry. The basis for this assumption is that the CRM is fabricated from Alloy 22 (see nomenclature in Section 5.1.1), which corrodes very slowly compared (1) to other reactants in the WP and (2) to the rate at which soluble corrosion products will likely be flushed from the package.
- 3.9 It is assumed that gases in the solution in the WP will remain in equilibrium with the ambient atmosphere outside the WP. In other words, it is assumed that there is sufficient contact with the gas phase in the repository to maintain equilibrium with the $CO₂$ and $O₂$ present, whether or not this be the normal atmosphere in open air or rock gas that seeps out of the adjacent tuff. Under these conditions the partial pressure of CO₂ exerts important controls on the pH and carbonate concentration in the solution and hence on the solubility of uranium, gadoliniuin, and other elements. The basis for this assumption is that the measured composition of J-13 well water is not in equilibrium with the partial pressure of $CO₂$ in the atmosphere (Ref. 15). By adjusting the average measured composition. of the water slightly, well within the standard deviation of the measurements, it is possible to determine a partial pressure of $CO₂$ nearly ten times atmospheric (Ref. 15, Table 8; and Ref. 16, p. F-210), with which this water was apparentiy in equilibrium at depth in the well. This high partial pressure is close to the maximum found by measurement of the rock gas composition (Ref. 15, Table 8). Therefore this high partial pressure was chosen for all of the computer runs used in this analysis. In another EQ6 calculation (Ref. 2) two runs with normal atmospheric $CO₂$ levels were used to determine the sensitivity of the calculations to this parameter. The high CO₂ tends to increase the concentration of free carbonate ion and its complexation with the dissolved $U^{(VI)}$, thereby tending to increase the solubility of U, but this is moderated by the reduction of the pH. There is little overall net effect on actinide solubility for otherwise comparable conditions. The effect on Gd solubility is somewhat more complex; higher $CO₂$ pressures decrease pH, thereby increasing the chance that solid GdOHCO₃ will be dissolved; however, higher $CO₂$ pressures also increase the capacity of the system to buffer toward intermediate pH (\sim 7.7).
- 3.10 It is assumed that precipitated solids that are deposited remain in place, and are not mechanically eroded or entrained as colloids in the advected water. The basis for this assumption is that it conservatively maximizes the size of potential deposits of fissile material inside the WP.
- 3.11 It is assumed that the corrosion rates will not be significantly enhanced by microbial induced corrosion. The basis for this assumption is that due to lack of organic nutrients available to them. It is assumed that bacteria act as catalysts, and are not expected to significantly change the types of solid formed in the package.

- 3.12 It is assumed that sufficient decay heat is retained within the VP over times of interest to cause convective circulation and mixing of the water inside the package. The analysis that serves as the basis for this assumption is discussed in Ref. 17.
- 3.13 It is assumed that the reported alkalinity in analyses of J-13 well water corresponds to bicarbonate (HCO₃) alkalinity. Contributors to alkalinity in J-13 well water, in addition to bicarbonate, potentially include borate, phosphate, and silicate. However, at pH less than 9 the contribution of silicate will be small, and in any case the concentrations of all three of these components in J-13 well water are small. Fluoride ion will not contribute to a typical measured alkalinity because the titration will not be carried out to a sufficiently low pH for its influence to be detectable. Nitrate will likewise not contribute. The basis for this assumption is the observation that the calculated electrical neutrality, using the assumption, is zero within the analytical uncertainty, as it should be. The same assumption is implicitly made in (Ref. 6, Table 4.1, p. 4.2).
- 3.14 It is assumed that the rate of entry of water into, as well as the rate of egress from, a WP is equal to the rate at which water drips onto the package. The basis for this assumption is that for most of the time frame of interest, i.e., long after the corrosion barriers become largely degraded, it is more reasonable to assume that all or most of the drip will enter the degraded package than to assume that a significant portion will instead be diverted around the remains. Diversion of the water with a consequent lower entry rate has not been modeled by the lower drip rates incorporated into the present calculations.
- 3.15 It is assumed that the most insoluble solids for a fissile radionuclide will form, i.e., equilibrium will be reached. The basis for this assumption is to have a conservative approach for internal criticality because the assumption will lead to simulation for maximal retention of fissile material within the WP.
- 3.16 A number of minor assumptions have been made about the geometry of the Fermi codisposal package. These assumptions are outlined and referenced in the spreadsheet Fermi Fuel_kz.xls (Ref. 12), and are also discussed in Section 5.1. The bases for these assumptions are to obtain the greatest accuracy in the representation of the package geometry, and where inadequate information is available to choose among competing geometry models, the choice that appears to lead to greatest conservatism is always chosen.
- 3.17 For any package components that were described as "316". stainless steel, without indication of the carbon grade, the alloy was assumed to be the low-carbon equivalent (see Section 5.1.1 for nomenclature). The basis for this assumption is that, in general, the carbon in the steel is totally insignificant compared to the carbon supplied by the fixed CO2 fugacity of the EQ3/6 calculation, and to the constant influx of carbonate via J-13 well water. An underestimation of carbon in steel leads to a slight overestimation of metals in the steel, which increases acid production very slightly and is therefore conservative.

Title: EQ6 Calculations for Chemical Degradation of Enrico Fermi Spent Nuclear Fuel Waste Packages Document Identifier: BBA000000-01717-0210-00029 REV 00 Page 11 of 51

- 3.18 It was assumed that the aluminum alloys would last for about 200 years and an approximate degradation rate was calculated from this assumption. The basis for this assumption is that the corrosion rate under conditions applicable to Yucca Mountain appears not to be well known. However, common experience derived from observations of the durability of aluminum window frames and other widely used aluminum items indicate that aluminum alloys will persist for several decades. On the other hand, corrosion of the aluminum does occur, as evidenced by the buildup of white solid products over such time frames. This suggests that the alloy will corrode entirely in a few centuries. The exact lifetime of the alloy is of only minor importance to the chemical simulation so long as it is modeled as corroding much faster than the stainless steels.
- 3.19 Zr and Zircaloy corrosion kinetics studies (Ref. 18) revealed these materials to be resistant against chemical and biological corrosion. Recent studies on corrosion of Zircaloy clad fuel indicates growth of oxide films for a time span of a million year to be about 7.6E-03 millimeter (0.3 mil). It was assumed that Zr cladding would breach soon after it comes in contact with water. The basis -for this assumption is that it is conservative and accounts for any cladding that is damaged during storage, shipping, or packing.

Title: EQ6 Calculations for Chemical Degradation of Enrico Fermi Spent Nuclear Fuel Waste Packages Document Identifier: BBA000000-01717-0210-00029 REV 00 Page 12 of 51

4. **USE** OF COMPUTER SOFTWARE AND MODELS

This section describes the computer software used to carry out the analysis.

4.1 EQ316 SOFTWARE PACKAGE

The EQ3/6 software package originated in the mid-1970s at Northwestern University (Ref. 7). Since 1978 Lawrence Livermore National Laboratory has been responsible for maintenance of EQ3/6. The software has most recently been maintained under the sponsorship of the Civilian Radioactive Waste Management Program of the United States Department of Energy (DOE). The major components of the EQ316 package include: EQ3NR, a speciation-solubility code; EQ6, a reaction path code which models water/rock interaction or fluid mixing in either a pure reaction progress mode or a time mode; EQPT, a data file preprocessor; EQLIB, a supporting software library; and several (>5) supporting thermodynamic data files. The software deals with the concepts of the thermodynamic equilibrium, thermodynamic disequilibrium and reaction kinetics. The supporting data files contain both standard state and activity coefficient-related data. Most of the data files support the use of the Davies or B-dot equations for the activity coefficients; two others support the use of Pitzer's equations. The temperature range of the thermodynamic data on the data files varies from 25 °C only for some species to a full range of 0-300 °C for others. EQPT takes a formatted data file (a "data0" file) and writes an unformatted near-equivalent called a datal file, which is actually the form read by EQ3NR and EQ6. EQ3NR is useful for analyzing groundwater chemistry data, calculating solubility limits and determining whether certain reactions are in states of partial equilibrium or disequilibrium. EQ3NR is also required to initialize an EQ6 calculation.

EQ6 models the consequences of reacting an aqueous solution with a set of reactants, which react irreversibly. It can also model fluid mixing and the consequences of changes in temperature. This code operates both in a pure reaction progress frame and in a time frame. In a time frame calculation, the user specifies rate laws for the progress of the irreversible reactions. Otherwise, only relative rates are specified. EQ3NR and EQ6 use a hybrid Newton-Raphson technique to make thermodynamic calculations. This is supported by a set of algorithms, which create and optimize starting values. EQ6 uses an ordinary differential equation (ODE) integration algorithm to solve rate equations in time mode. The codes in the EQ3/6 package are written in FORTRAN 77 and have been developed to run under the UNIX operating system on computers ranging from workstations to supercomputers. Further information on the codes of the EQ3/6 package is provided (Refs. 7, 8, 9, and 10).

4.2 SOLID-CENTERED FLOW-THROUGH MODE

EQ6 version 7.2b, as distributed by LLNL, does not contain an SCFT mode. To add this mode, it is necessary to change the eq6.for source code, and recompile the source. However, by using a variant of the "special reactant" type built into EQ6, it is possible to add the functionality of.

$\frac{Waste \text{ Package Operations}}{Packet \text{障} \text{P}}$

Title: EQ6 Calculations for Chemical Degradation of Enrico Fermi Spent Nuclear Fuel Waste Packages Document Identifier: BBA000000-01717-0210-00029 REV 00 Page 13 of 51

SCFT mode in a very simple and straightforward manner. This mode was added to EQ6 per Software Change Request (SCR) LSCR198, and the Software Qualification Report (SQR) for Media Number 30084-M04-001.

The new mode is induced with a "special-special" reactant. The EQ6 input file nomenclature for this new mode is jcode=5; in the Daveler format, it is indicated by the reactant type DISPLACER). The jcode=5 is immediately trapped and converted to jcode=2, and a flag is set. to indicate the existence of the DISPLACER reactant. Apart from the input trapping, the distinction between the DISPLACER and SPECIAL reactants is seen only in one 9-line block of the of the EQ6 FORTRAN source code (in the reacts subroutine), where the total moles of elements in the rock plus water system (mte anray) is adjusted by adding in the DISPLACER reactant, and subtracting out a commensurate amount of the total aqueous elements (mteaq array).

This new EQ6 mode acts as a substitute for the allpost/nxtinput method described in Ref. 19 and Ref. 21.

4.3 SOFTWARE ROUTINES

Spreadsheet analyses were performed with Microsoft Excel version 97, installed on a PC. The specific spreadsheets used for calculations reported in this document, are included in the electronic media (Ref. 12). These spreadsheets involve simple formulas for area and volume calculations that allow an independent repetition of the computations using hand calculations.

4.4 SOFTWARE APPROVED FOR QA WORK

The software package, EQ3/6, Version 7.2b, was approved for QA (quality affecting) work by LLNL and is identified as Computer Software Configuration Item (CSCI): UCRL-MA-1 10662. An installation and test report (Ref. 20) was written and submitted to Software Configuration Management (SCM), and the proper installation was verified, before the runs described in this calculation were made. The implementation of the SCFT mode is covered by Software Change Request (SCR) LSCR198, and the Software Qualification Report (SQR) for Media Number 30084-M04-001. The SCFT addendum was installed on three of the Central Processing Units (CPUs).identified in block 16 of the SCR, and the installation and test reports were filed and returned to SCM before the calculations were run. All the EQ6 runs were performed on a U.S. DOE/YMP system, CPU # 115768, a Dell 200 MHz Pentium and on a Sandia National Laboratory system, CPU # S803293, a Dell 300 MHz Pentium II. In this study EQ3/6 was used to provide the followings:

1) a general overview, of the expected, chemical reactions,

2) the degradation products from corrosion of the waste forms and canisters, and

3) an indication of the minerals, and their amounts, likely to precipitate within the WP.

Title: EQ6 Calculations for Chemical Degradation of Enrico Fermi Spent Nuclear Fuel Waste Packages
Document Identifier: BBA000000-01717-0210-00029 REV 00 Document Identifier: BBA000000-01717-0210-00029 REV 00

The programs have not been used outside the range of parameters for which they have been verified. The EQ316 calculations reported in this document used version 7.2b of the code, which is appropriate for the application, and were executed on Pentium series (including "Pentium II") personal computers (PCs).

The EQ3/6 package has been verified by its present custodian, Lawrence Livermore National Laboratory. The source codes were obtained from SCM in accordance with the Management & Operating contractor (M&O) QAP-SI.IQ procedure. The code was installed on the Pentium PCs according to an M&O-approved Installation and Test procedure (Ref. 20).

Wnq-tf, Pnrkncro 0n6rqfinn.Q Cnlriflnfinn

Title: EQ6 Calculations for Chemical Degradation of Enrico Fermi Spent Nuclear Fuel Waste Packages Document Identifier: BBA000000-01717-0210-00029 REV 00

5. CALCULATION

The calculations begin with selection of data for compositions, amounts, surface areas, and reaction rates of the various components of Fermi fuel WPs. These quantities are recalculated to the form required for entry into EQ6. For example, weight percentages of elements or component oxides are converted to mole fractions of elements; degradation rates in micrometers/year are converted into moles per square centimeter per second, etc. Spreadsheets (Ref. 12) provide details of these calculations, and the general procedure is also described in detail in Ref. 21. The final part of the input to EQ6 consists of the composition of J-13 well water together with a rate of influx to the WP that corresponds to suitably chosen percolation rates into a drift and drip rate into a WP (Section 5.1.1.3). The EQ6 output provides the results of modeling of the chemical degradation of the WP, or components thereof. Sometimes the degradation of the WP is divided into phases, e.g., degradation of HLW glass before breach and exposure of the fuel assemblies and basket materials to the water. The results include the compositions and amounts of solid products and of substances in solution. Details of the results are presented below.

Existing data were used in the development of the results presented in this section. Therefore, the use of any data from this calculation for input into documents supporting procurement, fabrication, or construction is required to be identified and tracked as TBV (to be verified) in accordance with appropriate procedures.

5.1 CALCULATION INPUTS

5.1.1 **WP** Materials and Performance Parameters

This section provides a brief overview of the physical and chemical characteristics of Fermi fuel WPs, and describes how the package is represented in the EQ6 inputs. The conversion of the package physical description, into parameters suitable for the EQ6 input files, is performed by the spreadsheet Fermi Fuel kzxls. Additional details of the description may be found in References 1 and 2 and the references cited therein.

Material nomenclature used throughout this document includes: SB-575 N06022 (hereafter referred to as Alloy 22), SA-240 S31603 (hereafter referred to as 316L), UNS N06625 and SA-240 S30403 (hereafter referred to as 304L), SA-516 (hereafter referred to as A516), and SB-209A96061 (hereafter referred to as Aluminum Alloy).

5.1.1.1 Physical and Chemical Form **of Fermi** Fuel WPs

It is convenient to consider the Fermi fuel waste package as several structural components, specifically:

(1) The outer shell, consisting of the corrosion-allowance barrier and the CRM.

Title: EQ6 Calculations for Chemical Degradation of Enrico Fermi Spent Nuclear Fuel Waste Packages Document Identifier: BBA000000-01717-0210-00029 REV 00

- (2) The "outerweb," a carbon steel (A516) structure designed to hold the high-level waste (HLW) glass-pour canisters (GPCs) in place.
- (3) The GPCs (the 304L containers of the solidified HLW glass).
- (4) The DOE standardized SNF canister (sometimes called the "DOE 1 8-inch canister").
- (5) The fuel assemblies, including the shipping canisters and assemblies exclusive of the fuel pins.
- (6) The individual fuel pins.

The details of each of the above numbered components are in the spreadsheet Fermi Fuel kz.xls (Ref. 12). Table 5-1 provides a summary of the compositions of the principal alloys used in the calculations, along with reasonable maxima and averages for the degradation rates. For a comparable specific surface area, the carbon steel is expected to degrade much more rapidly than the stainless steels (31 6L and 304L). In addition, the stainless steels contain significant amounts of Cr and Mo, and under the assumption of complete oxidation (Assumption 3.7), should produce more acid, per volume, than the carbon steel. In Table *5-I* and all tables from this document, the number of digits reported does not necessarily reflect the accuracy or precision of the calculation. In most tables, three to four digits after the decimal place have been retained, to prevent round-off errors in subsequent calculations.

Title: EQ6 Calculations for Chemical Degradation of Enrico Fermi Spent Nuclear Fuel Waste Packages Document Identifier: BBA000000-01717-0210-00029 REV 00 Page 17 of S

Table 5-2 provides molar composition and rates of degradation for two types of aluminum alloy canisters used for Fermi SNF.

Title: EQ6 Calculations for Chemical Degradation of Enrico Fermi Spent Nuclear Fuel Waste Packages
Document Identifier: BBA000000-01717-0210-00029 REV 00 Document Identifier: BBA000000-01717-0210-00029 REV 00

Table *5-3* gives the molar composition of the glass used in the calculations (Ref. 22). The actual glass composition used in the GPCs may vary significantly from these values, since the sources of the glass and melting processes are not currently fixed. For example, compositions proposed for Savannah River glass vary by a factor of -6 in U_3O_8 content, from 0.53 to 3.16 wt% (Ref. 23). The silica and alkali contents (Na, Li, and K) of the glass have perhaps the most significant bearing on EQ6 calculations. The amount of silica in the glass strongly controls the amount of clay that forms in the WP, and the silica activity controls the presence of insoluble uranium phases such as soddyite ($(UO_2)_2$ SiO₄.2H₂O). The alkali content can induce pH to rise in the early stages of the EQ6 run, as glass degrades: The Si and alkali contents in Table 5-3 are typical for proposed DOE glasses (Ref. 22). Rates for glass degradation were taken from Ref. 24 (Figure 6.2-5), and normalized in spreadsheet Fermi_Fuel_kz.xls, sheets "A&V glass", "Rates", and "Norm" (Ref. 12). The high rate corresponds approximately to pH 9 at 70 °C, and the low rate to pH 8 at 25 °C.

Table 5-3. HLW Glass Composition and Degradation Rates

Title: EQ6 Calculations for Chemical Degradation of Enrico Fermi Spent Nuclear Fuel Waste Packages
Document Identifier: BBA000000-01717-0210-00029 REV 00 Document Identifier: BBA000000-01717-0210-00029 REV 00

Table 54 summarizes the assumed characteristics of the Fermi fuel. No fission product inventory was available, so the calculations used the composition of fresh fuel. Use of fresh fuel is conservative, since most fission products have significant neutron absorption cross sections, and the unirradiated fuel has a higher fissile content than partially spent fuel.

Table 5-4. Fermi Fuel Compositions and Degradation Rates

The outer web (Attachment I) is composed of A516 carbon steel, and serves two purposes: it centers and holds in place the DOE SNF canister, and it separates the GPCs and prevents them from transmitting undue stress to the SNF canister in the event of a fall (tip-over) of the entire WP. At the center of the outer web is a thick (3.175 cm) cylindrical support tube, also fabricated of A516. In a breach scenario, the outer web will be exposed to water and corrosion before the rest of the package, and is expected to degrade within a few hundred to a few thousand years. The transformation of steel's iron, the web's most abundant element, into hematite (Fe₂O₃) can decrease the void space in the package by \sim 13%, and the transformation to goethite (FeOOH) can decrease the void space by -22% (Ref. 2). The differences are due to larger molar volume of goethite compared to hematite (Table 5-6). Thus the void space can be significantly reduced, soon after breach of the package, by the alteration of the outer web.

Title: EQ6 Calculations for Chemical Degradation of Enrico Fermi Spent Nuclear Fuel Waste Packages Document Identifier: BBA000000-01717-0210-00029 REV 00

The DOE SNF canister fits inside the central support tube of the outer web. The canister is composed primarily of 316L, with two internal, thick impact plates of carbon steel (approximated as A516 in the calculations). In order to improve mechanical strength of DOE SNF canister and reduce the probability of fuel exposure to water, iron pellets are included in the DOE SNF canister for preferential corrosion by incoming water after the canister is breached. The primary corrosion products will be either hematite and/or goethite, which possess molar volumes greater than the original pellets. The larger volume of these products could seal and decrease the void volume within DOE SNF canister that is accessible to water. In addition, GdPO4 (1%, volume/volume) will be added to the iron shot to decrease chances of internal criticality. The iron shot will be distributed among and inside the 4-inch pipes containing the fuel assemblies.

5.1.1.2 Chemical Composition of J-13 Well Water

It was assumed that the water composition entering the WP would be the same as for water from well J-13 (Assumptions 3.1 and 3.3). This water has been analyzed repeatedly over a span of at least two decades (Ref. 6). This composition is reproduced in Table 5-5.

Table 5-5. Composition of **J-13** Well Water

5.1.13 Drip Rate of J-13 Well Water into a **WP**

It is assumed (Assumption 3.14) that the drip rate onto a WP is the same as the rate at which water flows through the WP. The drip rate is taken from a correlation between percolation rate and drip rate (Ref. 25, Tables 2.3-49 and 2.3-50). Specifically, percolation rates of 40 mm/year and 8 mm/year correlate with drip rates onto the WP of 0.15 m³/year and 0.015 m³/year, respectively. The choice of these particular percolation and drip rates is discussed in detail in Ref. 21, p. 19.

Title: EQ6 Calculations for Chemical Degradation of Enrico Fermi Spent Nuclear Fuel Waste Packages Document Identifier: BBA000000-01717-0210-00029 REV 00 Page 21 of 51

For the present study, the range of allowed drip rates was extended to include an upper value of 0.5 m^3/yr and a lower value of 0.0015 m^3/yr . The upper value corresponds to the 95 percentile upper limit for a percolation rate of 40 mm/year, and the lower value is simply $1/10th$ the mean value for the percolation rate of 8 mm/year (Ref. 25, Figure 2.3-108). These extreme values were used, because prior studies (Ref. 26, p. 28 and Ref. 27, p. 5-19) suggested that when waste forms are codisposed with glass, the greatest chance of Gd removal occurs when: (1) initial high drip rates cause glass leaching and removal of alkali, and (2) subsequent low drip rates allow acid to build from steel degradation.

5.1.1.4 Densities and Molecular Weights of Solids

For input to criticality calculations,.one must convert moles of solids to solid volumes. A few solid phases contribute to the overwhelming bulk of the total volume;. Table 5-6 provides some of the densities and molar volumes for these phases. The current version of EQ6 (Section 4.2) performs the volume calculations for each element automatically and generates four different types of text output files. Ref. 12 contains tab delimited text files with the names like N??????.elem????.txt. The text files list total moles of elements in aqueous phase (*.elem_aqu.txt.), total moles of each element in aqueous and mineral phases (*.elem_m_atxt), total moles of each element produced by minerals (*.elem min.txt), and total concentration of each element which is the sum of aqueous, mineral and unreacted reactants (*.elem tot.txt). The electronic media (Ref. 12) includes Excel files listing total molar inventory, including total volume of each elements for all simulations as functions of time.

Table 5-6. Densities and Molecular Weights of Precipitated Solids

References:

Ref. 28, p. 172

b Ref. 16. p. B-121

c Ref. 12 (EQ316 Data base, dataO.nuc.R8a), glmole. except for pyrolusite, which is calculated from the density and molecular weight. Trevorite given same molar volume as magnetite in EQ3/6 database.

Title: EQ6 Calculations for Chemical Degradation of Enrico Fermi Spent Nuclear Fuel Waste Packages Document Identifier: BBA000000-01717-0210-00029 REV 00 Page 22 of 51

5.1.1.5 Atomic Weights

Atomic weights were taken from Ref. 29 and Ref. 30, and are listed in Ref. 12 (spreadsheet Fermi Fuel kz.xls, sheet "Atomic Weights").

5.2 DATA CONVERSION

The data presented in Section 5.1 are largely not in a form suitable for entry into EQ3/6. The transformation to EQ3/6 format consists largely of converting mass fractions to mole fractions; normalizing surface areas, volumes, and moles to I liter reactive water in the system; and converting rates to moles/ cm^2 s). Most of these conversions are straightforward and are performed in the spreadsheets, which are included in the electronic media for this document (Ref. 12). Ref. 21 describes the conversion process in detail.

53 EQ6 Calculations and Scenarios Modeled

The rationale for selection of scenarios in EQ6 simulations is to provide conservative assessments of solubility and transport of fissile materials (i.e., U compounds) and neutron absorbers species (i.e., GdPO₄) in the WP. Gd PO₄ exhibits solubility minimum at pH ranges of 6 to 7, and has enhanced solubility at very low and high pH (Ref. 2, p. 26). In addition, at high pH, uranium carbonate species could produce complexes and cause an increase in solubility of uranium. The "Disposal Criticality Anialysis Methodology Topical Report" document defined the internal and external degradation scenarios for disposal criticality analysis (Ref. 31, pp. 3-9 to 3-12). The internal degradation configurations are based on the assumption that groundwater drips on the upper surface of the WP and penetrates it. Groundwater accumulates inside the WP, which could dissolve and flush either neutron absorber or the SNF from the WP. Following is a summary of three groups of degradation configurations from Ref. 31.

- 1. WP internals degrade faster than waste forms
2. WP internals degrade at the same rate as the v
- WP internals degrade at the same rate as the waste form
- 3. WP internals degrade slower than waste forms

The WP internals include all components within the waste package including neutron absorber materials (GdPO4-doped iron shot) except SNF. The waste forms refer to SNF. The above configurations set the framework in which EQ6 scenarios could be developed. The scenarios are based on sequence of chemical reactions as function of time and could be divided into two general categories:

Single stage cases: In these calculations all WP internals, including SNF, come in contact with groundwater simultaneously. These cases correspond to an extreme in which the zirconium cladding is fully breached immediately, thereby exposing all the spent fuel as soon as the waste package corrosion barriers arc breached. These cases simulate the highest concentrations of the radionuclides in solution, and could provide the most conservative loss estimate of fissile and

Title: EQ6 Calculations for Chemical Degradation of Enrico Fermi Spent Nuclear Fuel Waste Packages
Document Identifier: BBA000000-01717-0210-00029 REV 00 Document Identifier: BBA000000-01717-0210-00029 REV 00

neutron absorber materials. These cases were designed to maximize exposure of the Gd-doped iron shot to high pH, and to stress the enhanced solubility of GdPO₄ under alkaline conditions.

Multiple stage cases: These EQ6 calculations start with the breach of DHLW waste package allowing groundwater to come in contact with WP internals outside the DOE SNF canister ("stage A"); during this stage the DOE SNF canister remains intact. The second-stage ("stage B") starts with the breach of DOE SNF canister and interaction of groundwater with material inside DOE SNF canister, including waste forms and undegraded reactants left from stage A. These cases were designed to produce the lowest possible pH, by first exposing the HLW glass to J-13 well water to remove alkalinity, prior to exposure of the fuel and Gd-doped iron shot in the second stage. Thus, these cases were intended to test the enhanced Gd solubility at low pH.

In total, 18 cases of single and multiple stage EQ6 simulations, with different degradation rates of steel and HLW glass, and different water fluxes through the waste package were run. Tables 5-7 and 5-8 present a summary of EQ6 runs and their corresponding degradation configurations.

Table 5-7. Summary of Single Stage **EQ6** Cases for Fermi Fuel

Table 5-8. Summary of Multiple Stage **EQ6** Cases for Fermi Fuel

	Rates of Degradation for					
Case Number	Steel	Glass	Fuel	J13 Drip Rates (m ³ /year)	Case ID	Degradation Configuration
10(a)	High	High	No fuel present	0.5	IN01A2204	
10(b)	Average	No glass present	Average	0.015	N02B1012	
$\overline{11(a)}$	High	High	No fuel present	0.5	N01A2204	

Waste **Package ODerations** Calculation ---~ - - - _ _,w -r of

Title: EQ6 Calculations for Chemical Degradation of Enrico **Fermi** Spent Nuclear Fuel Waste Packages Document Identifier: BBA000000-01717-0210-00029 REV 00

5.3.1 EQ6 Run Conditions and Nomenclature

The EQ6 code was used to run the 18 cases summarized in Tables 5-7 and 5-8. In general, each case could be classified as single or multiple stage. Cases 1 through 9 in Table 5-7 are all single stage runs and Cases 10 through 18 of Table 5-8 were all multiple stage runs.

Tables 5-7 and 5-8 under "Case ID" column give the file names used to describe the runs. The EQ6 input files corresponding to these runs end with the extension ".6i" (e.g., N07 1111 .6i is the EQ6 input file name for Case 3); these input files are included in the electronic media accompanying this calculation (Ref. 12). Each EQ6 run has associated tab-delimited text files, also included in the electronic media (e.g., N07_1111 .elem_aqu.txt for Case 3). Several input files, corresponding to separate EQ6 runs, may be grouped into a "Case". Most of the important run conditions could be inferred from the "Case ID." Evaluation of a Case ID for most cases from left to right is as follows:

The first letter "N" corresponds to Fermi Fuel (eNrico Fermi).

The second and third characters (first and second digits after "N") correspond to revision of input file; for each case the numbers range from 00 to 99.

The fourth character corresponds to stage number in multiple stage run (e.g., "A," "B") or single stage run **("_").** Single stage runs that do not converge usually require ("stage A") removal of the

 \cdot

Title: EQ6 Calculations for Chemical Degradation of Enrico Fermi Spent Nuclear Fuel Waste Packages Document Identifier: BBAOOOOOO-0 1 717-0210-00029 REV 00 **Page** 25 of 51

exhausted reactants and restart of the run. Each step is identified as A, B, C, etc. (i.e., N5 {A,B,C,D,E,F,G,H}1114) which appears after the "_" character. For run numbers greater than 10 the letters representing steps replaced the steel rate on the fifth character (e.g., N11 1212/N11 B121).

The fifth digit in the "Case ID" is 1 or 2, corresponding to the average or high rate of steel corrosion in Table 5-1.

The sixth digit in the "Case ID" is 1, 2, or 0, with 1 and 2 corresponding, respectively, to the low and high glass corrosion rates listed in Table 5-3, and 0 corresponding to no HLW glass present in the EQ6 run.

The seventh digit in the "Case ID" is I or 0, with 1 corresponding to the average rate of fuel dissolution in Table 5-3, and 0 corresponding to no fuel present in the EQ6 run.

The last digit in the "Case ID" encodes the choice of J-13 well water flush rate, with 1, 2, 3, and 4 corresponding to 0.0015 m³/year, 0.015 m³/year, 0.15 m³/year and 0.5 m³/year, respectively.

Hematite and goethite are major iron oxide minerals observed to form in rust, though the EQ6 thermodynamic database indicates that hematite is thermodynamically more stable, and hematite's stability increases with temperature. In an EQ6 simulation where the second letter (from left) of the "Case ID" is "H." it indicates that formation of hematite in that run was suppressed (i.e., NHIA2204/NH2B2012). All the other characters in the "Case ID" are the same as those runs in which hematite was not suppressed.

An example is Case 13 (a, b) in Table 5-8 that lists "Case ID" names $N01A2204/N14B2012$ for the two input files. The first file name, N01A2204, covers the time period before the breach of the DOE SNF canister, and represents run number 01 (second and third characters). The fourth character, A, indicates this is a stage one of a multi stage runs. The fifth character is 2, and corresponds to the selection of the faster degradation rates for the A516, 304L, and 316L steels in the package (Table 5-1). The sixth character is 2, corresponding to the faster glass degradation rate in Table 5-3. The seventh character is 0, corresponding to absence of fuel in the EQ6 system (since the run is pre-breach, the fuel is not yet exposed to chemical corrosion). The last character is 4, corresponding to the highest J-13 well water flush rate of 0.5 m³/year.

The second file name, N14B2012, covers the time after breach of the DOE SNF canister, and is Case 13 (second and third characters). As always, the last block of characters, 2012, indicates the rates. The fifth character again corresponds to the faster steel corrosion rate. The time of breach for the DOE canister was chosen to correspond to a low-pH plateau that followed the complete degradation of all glass in the system (e.g., see Figure 5-2). Thus the sixth character is 0, since no glass remains in the EQ6 system (though the glass corrosion products are carried through the calculation). The seventh character corresponds to the average fuel corrosion rate in Table 5-4, and the last corresponds to a J-13 well water drip rate of 0.015 m^3 /year. In general, the first-stage of a multi-stage run is comparatively short $(-10^3$ to -10^4 years), and the second-

Wnc+a 'Maelracro 0nPrqf;nnc ('alellinfln" - **~Vocf** aOLt.. **D** A **... 1oG~fnrtnV n.** -. **... . M.~a A&,** -

Title: EQ6 Calculations for Chemical Degradation of Enrico Fermi Speni Nuclear Fuel Waste Packages Document Identifier: BBA000000-01717-0210-00029 REV 00 _________________ Page 26 of 51

stage of the run is carried out to at least 1×10^5 and up to 5×10^5 years. While the first-stage is important in setting up the chemical conditions, the second-stage is generally of greater interest for neutronics calculations, since the corrosion product compositions can vary greatly in the first stage, but achieve a quasi-steady state composition at long times.

5.3.2 **Examination of Cases**

Table 5-9 summarizes the total percentage Gd and U remaining at the end of the EQ6 runs. The complete output tables (aqueous, mineral, and total moles) for all the cases are included in the electronic media, (Ref. 12) as tab-delimited text files. A summary of the files included in the electronic media is given in Attachment III.

Two basic types of degradation scenarios were simulated:

Cases 1-8 are "single stage," and involve simultaneous exposure of the fuel and the package materials to groundwater. Considering the fuel rods that are contained within zirconium cladding, for a conservative approach, it was assumed (Assumption 3.19, Section 3) that cladding is fully breached immediately after contact with water.

Cases 10-18 are called "multiple stage." In these cases groundwater first interacts with everything inside the WP, but outside the DOE SNF canister including the outside surface of the

Title: EQ6 Calculations for Chemical Degradation of Enrico Fermi Spenit Nuclear Fuel Waste Packages Document Identifier: BBA000000-01717-0210-00029 REV 00 Page 27 of 51

DOE SNF canister. It is also assumed that zirconium cladding would breach just after the breach of the DOE SNF canister.

Plots of reactant concentration changes, pH, and mineral formation/dissolution changes will be used to examine each case. In all these figures, when units of moles are used on the left axis, the quantity is scaled relative to I liter of coexisting J-13 well water (which is equivalent to 1 liter of initial void space in the package). To obtain the total moles of product minerals or package materials in the WP, the mole quantities in the figures, must be multiplied by the package void volume

Case 1 resulted in practically no loss of U or Gd from the WP (Tables 5-9 and 5-10). The combination of high pH and high dissolved carbonate could increase U solubility. The dissolution of HLW glass could make the solution alkaline, however, fast percolation rate of groundwater (0.5 $m³/year$) and capacities of stainless steel components to lower the pH resulted in pH regimes that each U and Gd exhibit low solubility (Ref. 2). Even upon exhaustion of all steel components, pH of the WP did not get higher than 7.68; at this pH, soddyite, the major mineral form of uranium, is not soluble. GdPO $_4$ is soluble only in extreme acidic and alkaline conditions (Ref. 2, p. 26) that were not achieved in this case. In Cases 2 and 3, due to slower percolation rate of water, soddyite starts to dissolve as pH arrives above 8.3. Figures *5-1* and 5-2 indicate that % loss of U is a function of pH and, after exhaustion of all stainless steel reactants, is controlled by dissolution of the HLW glass. The decrease of 100 fold in water flow through the WP in Case 3 compared to Case 2, resulted in about 7 fold higher losses of uranium due to higher pH.

Table 5-10. Total Concentration Changes for U and Gd in the Aqueous Phase as Function of Time for Case 1 (N5_{A,B,C,D,E,F,G,H}1114)

Calculation

Title: EQ6 Calculations for Chemical Degradation of Enrico Fermi Spent Nuclear Fuel Waste Packages
Document Identifier: BBA000000-01717-0210-00029 REV 00 Page 28 of 51

........-

Title: EQ6 Calculations for Chemical Degradation of Enrico Fermi Spent Nuclear Fuel Waste Packages
Document Identifier: BBA000000-01717-0210-00029 REV 00 Document Identifier: BBA000000-01717-0210-00029 REV 00

Figure 5-2. Case 2 (N06_1113): Effects of Reactants on pH, Aqueous U, and Soddyite, J-13 Well Water Percolation Rate of 0.15 \overline{m}^3 /year (molal for aqueous U and moles for solids)

Cases 4, 5, and 6 (N08_1211, N09 2211, and N10_2111) were single stage runs that differed in the degradation rates of glass and stainless steel, but maintained a constant drip rate of 0.0015 $m³/year$. The EQ6 calculation results are presented in Figures 5-3, 5-4, and 5-5. The results were similar to those of Case 3 (N07 1111) with similar percolation rate of groundwater. In Case 3 faster degradation rates of HLW glass combined with slow rate of water percolation contributes to high pH, up to pH of 9.8, at times of \sim 300-10,000 years. During this period about 90% of uranium is dissolved and flushed out of the waste package.

Calculation

Title: EO6 Calculations for Chemical Degradation of Enrico Fermi Spent Nuclear Fuel Waste Packages Document Identifier: BBA000000-01717-0210-00029 REV 00 Page 30 of 51

Figure 5-3. Case 4 (N08_1211): Effects of Reactants (Faster Rates of Glass) on pH and Aqueous U and Gd, and Soddyite with J-13 Well Water Percolation Rate of 0.0015 m³/year (molal for aqueous U and Gd. and moles for solids)

In Case 5 (Figures 5-4 and 5-5, N09_2211), high rates of glass degradation eventually caused high pH values, after exhaustion of most steel components. At this high pH, most soddyite dissolved. More than 90% of uranium inventory was lost during these periods of high pH. Most of this loss was in the U "plateau" between approximately 20,000 and 68,000 years (Figure 5-5). The U losses can be estimated for any specific time line from the figure via:

Concentration of $U = 0.026$ moles/kg water

Examined time = $68,000 - 20,000 = 48,000$ years

Water percolation rate = $0.0015 \text{ m}^3/\text{year}$

 $(0.026 \text{ moles/liter})(1000 \text{ liter/}1\text{m}^3)(0.0015 \text{ m}^3/\text{year})(48,000 \text{ year}) = 1,872 \text{ moles U lost.}$ The system contained 2,616 moles of U, therefor 71.6% (1,872 moles lost U/ 2,616 moles total U^*100 of the U was lost in the period from \sim 20,000 to 68,000 years.

 $\ddot{}$

Calculation

Title: EQ6 Calculations for Chemical Degradation of Enrico Fermi Spent Nuclear Fuel Waste Packages Document Identifier: BBA000000-01717-0210-00029 REV 00 Page 32 of 51

Figure 5-5. Case 5 (N09_2211): Effects of pH on Solubility and Losses of U in Aqueous Phase

Case 6 (Figure 5-6, N10_2111), with high rate of degradation for steel and average rate of degradation for HLW glass, reached low pH values during 3,000-10,000 years. The low pH caused about 2.3% of gadolinium loss in the form of Gd^{3+} (Ref. 2, p. 24). Table 5-11 is a partial listing of U and Gd concentrations for this case.

Calculation

Title: EQ6 Calculations for Chemical Degradation of Enrico Fermi Spent Nuclear Fuel Waste Packages Document Identifier: BBA000000-01717-0210-00029 REV 00 Page 33 of 51

Figure 5-6. Case 6 (N10_2111): Effects of Reactant (Faster Rate of Degradation for Steel) on pH and Aqueous U and Gd, and Soddyite with J-13 Well Water Flow Rate of 0.0015 m³/year (molal for aqueous U and Gd and moles for solids)

Table 5-11. Total Concentration Changes for U and Mo as Function of Time for Case 6 (N10_2111)

Title: EQ6 Calculations for Chemical Degradation of Enrico Fermi Spent Nuclear Fuel Waste Packages
Document Identifier: BBA000000-01717-0210-00029 REV 00 Document Identifier: BBA000000-01717-0210-00029 REV 00

Cases 7, 8, and 9 (N11 1212/N11 B121, N12 2212 and N13 2112/N13 B211) were similar to Cases 4, 5, and 6; the only difference was that the rate of water percolation into the NVP was increased from 0.0015 to 0.015 m^3 /year. In Case 7 the faster rate of HLW glass degradation was selected (Figure 5-7). In this calculation pH rapidly (in about 1.5 years) arrived at 8.5 and soddyite was dissolved. The pH continued to increase to a maximum of 9.7 until all the HLW glass was dissolved, after this point pH dropped, however, by this time, all the uranium was flushed out of the system.

Figure 5-7. Case 7 (N11_1212/N11_B121): Effects of Reactants (Raster Rate of Degradation for Glass) on pH, Aqueous U and soddyite with J-13 Well Water Flow Rate of 0.015 m^3 /year (molal for aqueous U and moles for solids)

Case 8 (Figure 5-8, N12 2212) was simulated with faster rates of steel degradation, which resulted in a more efficient pH buffering, by the steel components. The faster rates resulted in a rapid lowering of pH upon exhaustion of HLW glass. At lower pH soddyite was formed before complete dissolution of the fuel and resulted in a smaller loss of U compared to Case 7.

Calculation

Title: EO6 Calculations for Chemical Degradation of Enrico Fermi Spent Nuclear Fuel Waste Packages Document Identifier: BBA000000-01717-0210-00029 REV 00 Page 35 of 51

Figure 5-9 shows EQ6 simulation results for Case 9 (N13_2112) with combination of faster degradation rates for steel components and average rates of degradation for glass. In this case, the combination of water percolation and HLW glass degradation rates caused the smallest U loss (16.87%) among Cases 7, 8, and 9. In addition, Case 9 (Figure 5-9) exhibited a 1.5% Gd loss (Table 5-12) due to a low pH regime that reached \leq 3.5 and caused Gd loss as Gd³⁺ (Ref. 2, p. 24).

Calculation

Title: EQ6 Calculations for Chemical Degradation of Enrico Fermi Spent Nuclear Fuel Waste Packages Document Identifier: BBA000000-01717-0210-00029 REV 00 Page 36 of 51

Figure 5-9. Case 9 (N13 2112): Effects of Reactants (Faster Rate of Degradation for Steel) on pH and Aqueous U and Gd, and Soddyite with J-13 Well Water Percolation Rate of 0.015 m³/year (molal for aqueous U and Gd and moles for solids)

Table 5-12. Total Concentration Changes for U and Gd as Function of Time for Case 9 (N13_{A,B}211)

The two-stage simulations with Cases 10, 11, 12, 13, and 14 were all started with the first-stage EO6 run of N01A2204. In this run a fast rate of degradation for HLW glass, and stainless steel components outside the DOE SNF canister, including the canister's outside surface, was selected. The fastest rate of water percolation was selected $(0.5 \text{ m}^3/\text{year})$ to remove sources of high alkalinity rapidly. Figure 5-10 shows that within about 1,200 years most of the HLW glass was dissolved and the pH started to decrease due to acid producing components of remaining

Title: EQ6 Calculations for Chemical Degradation of Enrico Fermi Spent Nuclear Fuel Waste Packages
Document Identifier: BBA000000-01717-0210-00029 REV 00 Document Identifier: BBA000000-01717-0210-00029 REV 00.

steels, reaching 6.15 by about 3,500 years. Figure 5-11 shows major minerals in this simulation. As expected, major minerals are oxides of iron and silica clays.

Calculation

. Title: EQ6 Calculations for Chemical Degradation of Enrico Fermi Spent Nuclear Fuel Waste Packages Document Identifier: BBA000000-01717-0210-00029 REV 00 Page 38 of 51

Figure 5-11. Case 10, First Stage (N01A2204): Major Minerals and pH as Function of Time, J-13 Well Water Percolation Rate of 0.5 m³/year

Stage two ("B") of the Cases 10 (Figure 5-12), 11, and 12 (N02B1012, N03B1012, N04B1012) corresponds to simulation in which, respectively, 100%, 10%, and 1% of the fuel comes in contact with J-13 well water due to Zr cladding failure. The percolation rate of 0.015 m^3 /yr was selected for these stages. Table 5-9 reveals almost complete retention of U and Gd within the WP. The increase in % loss of uranium in Cases 11 and 12 reflects the fact that smaller total amount of fuel was accessible to percolating water. As a result, losses of uranium in Case 11 and 12 appear to be larger. However, the total amount of uranium loss was negligible (0.05%) .

Waste Package Operations _______________________________Calculation

Title: EQ6 Calculations for Chemical Degradation of Enrico Fermi Spent Nuclear Fuel Waste Packages
Document Identifier: BBA000000-01717-0210-00029 REV 00 Document Identifier: BBA000000-01717-0210-00029 REV 00

Figure 5-12. Case 10, Second Stage (N0281012): pH and Moles of Package Materials (Inside the DOE SNF Canister and Remaining from First Stage) as a Function of Time, J-13 Well Water Percolation Rate of 0.015 m^3 /year (molal for aqueous U and Gd and moles for solids)

In Cases 13 (Figure 5-13, N01A2204/N14B2012) and 14 (Figure 5-14, N01A22041N16B2011), the effects of water percolation rate into the WP were tested by increasing the rate from 0.0015 to 0.015 m^3 /year. Table 5-13 and Figure 5-13 show losses of the U and Gd in both runs were 0%.

Calculation

Title: EO6 Calculations for Chemical Degradation of Enrico Fermi Spent Nuclear Fuel Waste Packages Document Identifier: BBA000000-01717-0210-00029 REV 00 Page 40 of 51

Figure 5-13. Case 14, Second Stage (N16B2011): pH and Moles of Package Materials (Inside the DOE SNF Canister and Remaining from First Stage) as Function of Time with J-13 Well Water Percolation Rate of 0.0015 m³/year

In most EQ6 runs, we have suppressed minerals that generally do not form at low temperature; such mineral phases include muscovite, mica, which are thermodynamically stable, but kinetically inhibited relative to clays. A complete list of such minerals is listed in each EQ6input file. In some cases, hematite (the thermodynamically stable phase) was suppressed to cause

Title: EQ6 Calculations for Chemical Degradation **of** Enrico Fermi Spent Nuclear Fuel Waste Packages Document Identifier: BBA000000-01717-0210-00029 REV 00

formation of goethite; both phases form in rust. In Case 15 (Figure 5-14), goethite was simulated to form instead of hematite, otherwise, Case 15 is identical to Case 13. The two cases show minor differences in solution chemistry such as pH that could cause major effects on solubility of fissile and neutron absorber. However, one needs to consider that molar volume of hematite is about 30% higher than goethite, which could change effective void volume in the WP (Ref. 2).

Figure 5-14. Case 15, Second Stage (NH2B2012): pH and Moles of Package Materials (Inside the DOE SNF Canister and Remaining from First Stage) and Aqueous U and Soddyite as a Function of Time (Hematite Suppressed), J-13 Well Water Percolation Rate of 0.015 m³/year (molal for aqueous U and moles for solids)

Case 16 (N17A1203/N17{B,C}1011) consisted of a stage "A" in which steels degrade at an average rate and water percolation rate was set at $0.15 \frac{\text{m}^3}{\text{year}}$, in contrast with previous firststage runs (stage "A" of Cases 10 through 15) where steel degraded at high rates and water flux was at the rate of 0.5 m³/year (Figure 5-15). The second-stage of simulation was extended to 500,000 years. The simulation calculated practically no loss of U and Gd. The fast rate of glass degradation resulted in disappearance of HLW glass in about 1,400 years. In the later part of stage "A," and in early part of stage "B" the pH of the system was controlled by oxidation of Cr and Ni components of the WP's steel components. However, the pH did not get low enough to

Calculation

Title: EQ6 Calculations for Chemical Degradation of Enrico Fermi Spent Nuclear Fuel Waste Packages Document Identifier: BBA000000-01717-0210-00029 REV 00 Page 42 of 51

initiate dissolution of GdPO₄ (Figure 5-16).

$\frac{1}{2}$ Waste Package Operations Calculation

Title: EQ6 Calculations for Chemical Degradation of Enrico Fermi Spent Nuclear Fuel Waste Packages
Document Identifier: BBA000000-01717-0210-00029 REV 00 Document Identifier: BBA000000-01717-0210-00029 REV 00

Figure 5-16. Case 16, Second Stage (N17B1011): pH, Aqueous U, Soddyite and Moles Package Materials (Inside the DOE SNF Canister and Remaining from First Stage) as a Function of Time, J-13 Well Water Percolation Rate of 0.015 $m³/year$ (molal for aqueous U and moles for solids)

Case 17 (N18A1103/N18{B,C,D}1012) simulated a first-stage run in which steel components and HLW glass degraded at the average rates with water percolation rate of 0.15 *m³ lyr.* The second stage started with large amounts of HLW glass and steels left over from the first stage. Similar to Case 16, even when all steel components are degraded, the pH increased. However, the solution was not alkaline enough to dissolve principal uranium phase (soddyite). The second' stage simulation calculated no loss of U and Gd.

In an effort to calculate the effects of HLW glass on losses of U and Gd, Case 18 (N19A2004/Nl9{B,C,D}1112) was initiated. At stage one of this case water came in contact with steel components outside the DOE SNF canister. The second stage started with water coming in contact with HLW glass and all other components inside the 18-inch SNF canister with percolation rate of 0.015 m^3 /year. Figures 5-17 and 5-18 show that the pH of the water reached 7.8 with no steel left to buffer. The pH was controlled with rate of water flow through the WP. There was no loss of U and Gd.

Calculation

Title: EO6 Calculations for Chemical Degradation of Enrico Fermi Spent Nuclear Fuel Waste Packages Document Identifier: BBA000000-01717-0210-00029 REV 00 Page 44 of 51

Calculation

Title: EQ6 Calculations for Chemical Degradation of Enrico Fermi Spent Nuclear Fuel Waste Packages Document Identifier: BBA000000-01717-0210-00029 REV 00 Page 45 of 51

<u>Calculation</u>

r Title: EQ6 Calculations for Chemical Degradation of Enrico Fermi Spent Nuclear Fuel Waste Packages Document Identifier: BBA000000-01717-0210-00029 REV 00 Page 46 of 51

......

6. RESULTS

6.1 SUMMARY OF THE RESULTS

A principal objective of these calculations was to assess the chemical circumstances that could lead to removal of neutron absorbers (Gd) from the waste package, while fissile materials (U) remaining behind. Such circumstances could increase the probability of a nuclear criticality occurrence within the waste package. Gadolinium is assumed to be present as $GdPO₄$ that is combined with iron shot to produce Gd-doped iron shot which is distributed among the 4-inch stainless steel pipes containing the fuel pins in the 18-inch DOE SNF canister. Water with composition of J-13 well water is assumed to drip in through an opening at the top of the WP, pooling inside and eventually overflowing, allowing removal of soluble components through continual dilution. This calculation selected 18 EQ6 cases and examined the results to identify the reasons for the chemical changes during degradation of waste package materials and flushing by J-13 well water. It appeared that, even in unusual conditions, loss of Gd was insignificant, when the element was present in the package as solid GdPO₄. The scenarios and conditions of EQ6 were chosen to emphasize conditions that could create either acid or alkaline conditions, and to determine if these conditions are of sufficient duration to induce Gd loss. Nevertheless, the differences in the results were in all instances small.

Eighteen EQ6 reaction-path cases were constructed to span the range of possible Gd and fuel corrosion (Tables 5-8 and 5-9). Two general EQ6 scenarios were selected: single- and multiplestages. Cases I through 9 were single-stage cases, where high pH was achieved by simultaneous exposure of fuel to degrading glass. The single-stage EQ6 Cases 1 through 9 produced insignificant Gd loss; the total loss was $\leq 2.3\%$ in $\geq 2.5 \times 10^5$ years. Furthermore, when the HLW glass was allowed to degrade rapidly, the alkaline conditions produced high U loss (Table 5-9, Cases 3 through 7), reducing the chances of internal criticality. Some of these "alkaline" cases actually produced short-lived, very low pH (-3) when glass corrosion rates were set to low values, but steel corrosion rates were set to high values. These low-pH values may not be realistic, since the simple glass corrosion model does not allow a feedback between pH and corrosion rate (which would tend to increase pH).

Multiple-stage cases were Cases 10 through 18 of Table 5-9. These cases tested the effect of exposing the Gd and U to long-lived acidic conditions (pH *-5* to 6). The highest level of acidity was achieved during first-stage EQ6 simulations. In the first stage it was assumed that the DOE SNF canister was intact, and only the HLW glass and its container, the AS 16 outer web structure, and the outside surface of the DOE SNF canister were allowed to interact with the water dripping into the package. With a sufficiently, high drip rate, the alkaline components of the glass are removed during this stage. In the second stage, the Gd-doped iron shot, fuel, and other components within the DOE SNF canister are exposed to J-13 well water at a much lower drip rate, allowing pH to drop. When hematite formation was suppressed (in favor of goethite). somewhat lower pH was achieved. Cases 9 through 12 resulted in no significant loss of Gd, but a few percent loss of U (Table 5-9). However, in all cases the predicted major corrosion products are: an Fe-rich smectite clay (nontronite); hematite or goethite; pyrolusite; rutile; and

Title: EQ6 Calculations for Chemical Degradation of Enrico Fermi Spent Nuclear Fuel Waste Packages Document Identifier: BBA000000-01717-0210-00029 REV 00 Page 47 of 51

 $Ni₂SiO₄$ or NiFe₂O₄. The smectite and Fe oxide typically comprise over 90% of the corrosion product volume. The Gd enters into rhabdophane (hydrated GdPO4) as the iron shot corrodes, and the dominant U solid is soddyite $((UO₂)₂(SiO₄)·2H₂O)$. The detail of each run is explained in Section 5.3.

6.2 TBV DISCLAIMER

Existing data were used in the development of the results presented in this section. Therefore, the use of any data from this calculation for input into documents supporting procurement, fabrication, or construction is required to be identified and tracked as TBV in accordance with appropriate procedutes.

Title: EQ6 Calculations for Chemical Degradation of Enrico Fermi Spent Nuclear Fuel Waste Packages
Document Identifier: BBA000000-01717-0210-00029 REV 00 Document Identifier: BBA000000-01717-0210-00029 REV 00

7. REFERENCES

- I Department of Energy (DOE), Office of Environmental Management 1999. *Fermi (U-Mo) Fuel Characteristicsfor Disposal CriticalityAnalysis.* DOE/SNFIREP-035 Revision 0. Idaho Falls, Idaho: Idaho National Engineering and Environmental Laboratory. TIC: 242461.
- 2 Civilian Radioactive Waste Management System (CRWMS) Management & Operating Contractor (M&O) 1998. *EQ6 Calculationfor Chemical Degradation of Fast Flux Test Facility (FFTF) Waste Packages.* BBAOOOOOO-01717-0210-00028 REV 00. Las Vegas, Nevada: M&O. ACC: MOL.19981229.0081.
- 3 CRWMS M&O 1998.. *Total System Performance Assessment-Viability Assessment (TSPA-VA) Analyses Technical Basis Document. Chapter 10, Disruptive Events.* BOOOOOOO-01717-4301-00010 REV 00. Las Vegas, Nevada: M&O. ACC: MOL.19980724.0399.
- 4 CRWMS M&O 1998. *Evaluation of Codisposal ViabilityforAluminum-Clad DOE-Owned Spent Fuel: Phase II. Degraded Codisposal Waste Package Internal Criticality.* BBAOOOOOO-01717-5705-00017 REV 01. Las Vegas, Nevada: M&O. ACC: MOL.19980616.0098.
- *5* National Research Council of the National Academy of Sciences *1995. Technical Bases for Yucca Mountain Standards.* Washington, D.C.: National Academy Press. TIC: 104273.
- 6 Harrar, J.E.; Carley, J.F.; Isherwood, W.F.; and Raber, E. 1990. *Report of the Committee to Review the Use ofJ-13 Well Water in Nevada Nuclear Waste Storage Investigations.* UCID-21867. Livermore, California: Lawrence Livermore National Laboratory (LLNL). ACC: MOL.19980416.0660.
- 7 Wolery, T.J. 1992. *EQ3/6, A Software Packagefor Geochemical Modeling ofAqueous Systems: Package Overview and Installation Guide (Version 7. 0).* UCRL-MA- 110662 PT I. Livermore, California: LLNL. TIC: 205087.
- 8 Daveler, S.A. and Wolery, T.J. 1992. *EQPT, A Data File Preprocessor for the EQ3/6 Software Package: User's Guide, and Related Documentation (Version 7.0).* UCRL-MA-110662 PT II. Livermore, California: LLNL. TIC: 205240.
- 9 Wolery, T.J. 1992. *EQ3NR, A Computer Programfor Geochemical Aqueous Speciation-Solubility Calculations: Theoretical Manual, User's Guide, and Related Documentation (Version 7.0).* UCRL-MA-1 10662 PT III. Livermore, California: LLNL. TIC: 205154.

 $\ddot{}$

Title: EQ6 Calculations for Chemical Degradation of Enrico Fermi Spenit Nuclear Fuel Waste Packages **Document Identifier: BBA000000-01717-0210-00029 REV 00** Page 49 of 51

- 10 Wolery, T.J. and Daveler, SA 1992. *EQ6, A Computer Programfor Reaction Path Modeling ofAqueous Geochemical Systems: Theoretical Manual, User's Guide, and Related Documentation (Version 7.0).* UCRL-MA-1 10662 PT IV. Livermore, California: LLNL. TIC: 205002.
- 11 Spahiu, K. and Bruno, J. 1995. *A Selected Thermodynamic Databasefor REE to be Used in HLNWPerformance Assessment Exercises.* SKB Technical Report 95-35. Stockholm, Sweden: Swedish Nuclear Fuel and Waste Management Co. TIC: 225493.
- 12 CRWMS M&O 1998. *Electronic Media (CD): The Calculation Filesfor EQ6 Calculation for Chemical Degradation of Enrico Fermi Spent Nuclear Fuel Waste Packages.* BBAOOOOOO-01717-0210-00029 REV 00. Las Vegas, Nevada: M&O. ACC: MOL.19990507.0237.
- 13 CRWMS M&O 1998. *ViabilityAssessment ofa Repository at Yucca Mountain. Volume 3: Total system Performance Assessment.* BOOOOOOOO-01717-4301-00003 REV 01. Las Vegas, Nevada: M&O. ACC: MOL.19981007.0030.
- 14 Firsching, F.H. and Brune, S.N. 1991. "Solubility Products of the Trivalent Rare-Earth Phosphates." Jour. *Chem. Eng. Data,* 36, 93-95. American Chemical Society. TIC: 240863.
- 15 Yang, I.C.; Rattray, G.W.; and Yu, P. 1996. *Interpretation of Chemical and Isotopic Data from Boreholes in the Unsaturated-Zone at Yucca Mountain, Nevada.* Water Resources Investigations Report 964058. Denver, Colorado: U.S. Geological Survey. ACC: MOL.19980528.0216.
- 16 Weast, R.C., ed. 1977. *CRC Handbook of Chemistry and Physics, 58th Ed.* Cleveland, Ohio: CRC Press, Inc. TIC: 242376.
- 17 CRWMS M&O 1996. *Second Wtaste Package Probabilistic Criticality Analysis: Generation and Evaluation ofInternal Criticality Configurations.* BBAOOOOOO-01717- 2200-00005 REV 00. LasiVegas, Nevada: M&O. ACC: MOL.19960924.0193.
- 18 Hillner, E.; Franklin D.G.; and Smee J.D. 1994. *The Corrosion ofZircaloy-Clad Fuel Assemblies in a Geologic Repository Environment.* West Mifflin, Pennsylvania: Bettis Atomic Power Laboratory. TIC: 237127.
- 19 CRWMS M&O 1998. *EQ6 Calculationsfor Chemical Degradation of Pu-Ceramic Waste Packages.* BBAOOOOOO-01717-0210-00018 REV 00. Las Vegas, Nevada: M&O. ACC: MOL.19980918.0004.

Title: EQ6 Calculations for Chemical Degradation **of Enrico Fermi Spent** Nuclear **Fuel Waste Packages** Document Identifier: BBA000000-01717-0210-00029 REV 00

- 20 CRWMS M&O 1998. *EQ3/6 Software Installation and Testing Report for Pentium Based Personal Computers (PCs).* CSCI: LLYMP9602100. Las Vegas, Nevada: M&O. ACC: MOL.19980813.0191.
- 21 CRWMS M&O 1998. *EQ6 Calculationsfor Chemical Degradation ofPWR and MOX Spent Fuel Waste Packages.* BBAOOOOOO-01717-0210-00009 REV 00. Las Vegas, Nevada: M&O. ACC: MOL.19980701.0483.
- 22 CRWMS M&O 1999. DOE SRS HLW Glass Chemical Composition. BBA000000-01717-0210-00038 REV 00. Las Vegas, Nevada: M&O. ACC: MOL.19990215.0397.
- 23 DOE/RW 1992. *Characteristics of Potential Repository Wastes.* DOE/RW-0184-R1 vol. 1, p. 3.3-15, Table 3.3.8. Oak Ridge, Tennessee: Martin Marietta Energy Systems, Inc. ACC: HQO.19920827.0001.
- 24 CRWMS M&O *1995. Total System Performance Assessment - 1995: An Evaluation of the Potential Yucca Mountain Repository.* BOOOOOOOO-01717-2200-00136 REV 01. Las Vegas, Nevada: M&O.ACC: MOL.19960724.0188.
- 25 CRWMS M&O 1998. *Unsaturated-Zone Flow: Preliminary Draft Section 2.3 of TSPA-VA Document.* B00000000-01717-2200-00201. Las Vegas, Nevada: M&O. ACC: MOL.19980428.0202.
- 26 CRWMS M&O 1996. *Status Report on Degraded Mode CriticalityAnalysis of Immobilized Plutonium Waste Forms in a Geologic Repository.* AOOOOOOOO-01717-5705- 00013 REV 00. Vienna, Virginia: M&O. ACC: MOL.19970324.0023.
- 27 CRWMS M&O 1997. *Degraded Mode Criticality Analysis oflmmobilized Plutonium Waste Forms in a Geologic Repository.* AOOOOOOOO-01717-5705-00014 REV 01. Las Vegas, Nevada: M&O. ACC: MOL.19980422.0911.
- 28 Roberts, W.L.; Rapp, Jr., G.R; and Weber, J. 1974. *Encyclopedia ofMinerals.* New York, New York: van Nostrand Reinhold Co. TIC: 238571.
- 29 CRWMS M&O 1996. *Material Compositions and Number Densities For Neutronics Calculations.* BBAOOOOOO-01717-0200-00002 REV 00. Las Vegas, Nevada: M&O. ACC: MOL.19960624.0023.
- 30 Walker, F.W.; Parrington, J.R; and Feiner, F. 1989. *Nuclides and Isotopes, 14th ed., Chart of the Nuclides.* San Jose, Califomia: General Electric Co. TIC: 201637.
- 31 CRWMS M&O 1998. *Disposal CriticalityAnalysis Methodology Topical Report.* BOOOOOOOO-01717-5705-00095 REV 00. Las Vegas, Nevada: M&O. ACC: MOL.19980918.0005.

Title: EQ6 Calculations for Chemical Degradation of Enrico Fermi Spent Nuclear Fuel Waste Packages <u>Document Identifier: BBA000000-01717-0210-00029 REV 00</u> Page 51 of 51

8. ATTACHMENTS

Attachment I. Sketch SK-0117 REV 01 (1 page)

Attachment II. Sketch SK-0069 REV 02 *(1* page)

دی

Attachment III. Directory Listing of Files on Electronic Media (6 pages)

ATTACHMENT I. SKETCH SK-0117 REV 02

Attachment Ill. Directory Listing **of** Files on Electronic Media

This attachment contains the MS-DOS directory listing of the electronic media (Ref. 12).

Following file types are in the main directory

- 1) Excel files (extension $=$ xls), called out in the text and tables;
- 2) A draft copy of this calculation document, 315F.doc as of 05-02-99.

Following file types are in the "CD Files" directory

- 1) EQ6 input files (extension = 6i), as discussed in Section 5.3.1, have 8-character names N???????.6i;
- 2) EQ6 output files (text, extension $= 60$);
- 3) Tab-delimited text files (extension = txt), with names N??7????.elem????.txt. as discussed in Section 5.3.2; these contain total aqueous moles (*.elem_aqu.txt), total moles in minerals and aqueous phase $(*.$ elem m a.txt), total moles in minerals, aqueous phase, and remaining special reactants (*.elem.tot.txt), and the total moles in minerals alone (*.elem_min.txt). The *.elem_tot.txt and *.elem_min.txt also have the volume in cm³ of the minerals and total solids (including special reactants) in the system;
- 4) FORTRAN source files (extension $=$ for) for the version of EQ6 used in the calculations;
- *5)* MS-DOS/Win95/Win98 executables (extension = exe) for the version of EQ6 and runeq6 used in the calculations, and the autoexec.bat file that sets up the environment; and
- 6) EQ6 data files used for the calculations, with the text file data0.nuc.R8a, and the binary version datal.nuc.
- Directory of E:\

```
315F DOC 5,102,592 05-04-99 1:05p
315F.doc
CDFILE-5 <DIR> 05-10-99 2:39p
FERMI-24 XLS 153,088 03-24-99 4:23p
       2 file(s) 5,255,680 bytes
Directory of E:\cd files
                                      cd files
                                      Fermi_Fuel_kz.xls
```


BBAOOOOOO-01717-0210.00029 REV 00 IIi-l

 ~ 1

BBA000000-01717-0210-00029 REV 00 1II-2

NOS -280 TXT NOB_-282 TXT NO9 2211 6I N09_2211 60 NO9 -302 TXT N09-304 TXT-N09-306 TXT N09_-308 TXT N1O_2111 61 N10 2111 60 N10 -328 TXT NI1 -332 TXT N10_-334 TXT N10-336 TXT N11_1212 6I. Nll 1212 60 Nil -356 TXT Nll -358 TXT Nll -360 TXT Nil_-362 TXT N11 B121 6I Nil_B121 60 Nil -376 TXT Nl-378 TXT Nil1-380 TXT Nil_-382 TXT N12 2212 61 N12_2212 60 N12 -412 TXT N12_-414 TXT N12_-416 TXT N12 -418 TXT N13 2112 6I N13 2112 60 N13_-434 TXT N13_-436 TXT N13_-438 TXT Ni3 -440 TXT N13 A112 6I NI3 A112 60 N13 -456 TXT N13 -458 TXT N13_-460 TXT N13-462 TXT N13_B112 61 N13_B112 60 N13_-482 TXT N13-484 TXT N13_-486 TXT N13 -488 TXT N14B2012 6I N14B2012 60 N14B-50B TXT \sim N14B-510 TXT N14B-514 TXT N14B-516 TXT N16B2011 61 39,104 39.117 02-06-99 6:52p NOB 1211.elem tot.tx 42,585 02-05-99 3:50p NO9 2211.6i 4,824,485 02-06-99 7:37p nO9_2211.6o 48,111 02-06-99 7:37p N09_ 2211.elem aqu.txt 10/122 02 00 09 000 per competition at the 45.846 02-06-99 7:37p N09 2211.elem m a.tx 15,838 02-06-99 7:37p N09 2211.elem min.tx 45,851 42,587 4,889, 780 49,626 47,289 47,281 02-06-99 8:08p N10 2111.elem min.tx 47,294 42,58S 02-05-99 3:53p Nil 1212.6i 4,708,735 02-20-99 10:27a n11_1212.6o 16,091 02-06-99 .8:56p N11 1212.elem agu.txt 43.922 02-06-99 8:56p N11 1212.elem m a.tx 43,914 $.43,927$ 34,074 02-21-99 4:40p Nil B121. 6i 2,685,215 25,891 24,682 24,674 24,687 42,585 7,902,655 74.371 02-06-99 10:06p N12_2212.elem aqu.tx 74,371 02-06-99 10:06p A12_2212.elem_aqu.cx
70.858 02-06-99 10:06p N12 2212.elem m a.tx 70,850 02-06-99 10:06p 70.863 02-06-99 10:06p N12 2212.elem tot.tx 42,58S 02-05-99 3: 56p N13_2112.6i 3,304,413 02-06-99 10:24p n13 2112.60 34,981 02-06-99 10:24p N13 2112.elem aqu.txt 33,340 02-06-99 10:24p N13 2112.elem m a.txt 33,332 02-06-99 10:24p N13 2112.elem min.txt 33,345 02-06-99 10:24p N13 2112.elem tot.txt 42,759 02-08-99 9:53a N13_A112.6i 3,342,121 02-11-99 2:15p n13 a112.60 35,486 02-11-99 2:I5p N13 A112.elem aqu.txt 33.821 $02-11-99$ $2:15p$ N13 A112.elem m a. 33,813 33,826 37,019 4,229,452 37,506 35,745 35,737 35,750 02-15-99 3:S1p N13 B112.elem tot.txt 43,707 02-08-99 3:23p N14B2012.6i 5,099,083 02-09-99 9:03p nl4b2012.60 47,101 02-09-99 9:03p N14B2012.elem aqu.txt 44,884 02-09-99 9:03p N14B2012.elem m-a.txt 44,876 02-09-99 9:03p N1432012 .elem-min.txt 44, 809 02-09-99 9:03p N14B2012.elem tot.txt 43,707 02-08-99 3:23p N16B2011.6i 02-06-99 6:52p N08 1211.elem min.tx 02-06-99 7:37p N09 2211.elem tot.tx 02-05-99 3:51p N10 2111.6 02-06-99 8:08p n10 2111.6 02-06-99 8:08p N10_2111.elem aqu.tx 02-06-99 8:08p N10 2111.elem m a.tx 02-06-99 8:08p N10 2111.elem tot.tx 02-06-99 8:56p N11 1212.elem min.tx 02-06-99 8:56p N11_1212.elem_min.cx
02-06-99 8:56p N11 1212.elem tot.tx 02-21-99 5:51p n11 b121.6 02-21-99 S:51p N11 B121.elem aqu.txt 02-21-99 S:Slp Nil B121.elem m a.txt 02-21-99 S:5ip **Nil** B121. elem min.txt 02-21-99 S:51p NllB121.elem tot.txt 02-05-99 3:54p N12 2212.6 02-06-99 10: 06p nl2 2212.60 02-11-99 2:15p N13 A112.elem min.txt 02-11-99 2:15p N13 A112.elem tot.txt 02-15-99 lO:OOa N13 Bi12.6i 02-lS-99 3:52p nI3 bll2.6o 02-15-99 3:51p N13 B112.elem agu.txt 02-15-99 3:51p N13 B112.elem m a.txt 02-15-99 3:51p N13_B112.elem_m_a.cx
02-15-99 3:51p N13 B112.elem_min.tx N12_2212.elem_m_a.txt
N12_2212.elem_min_tx

BBAOOOOO0 1717-0210-00029 REV 00 **flI-3**

BBA000000-01717-0210-00029 REV 00 *III-4*

N19B-782 TXT N19B-784 TXT N19C1112 6I N19C1112 60 N19C-810 TXT N19C-812 TXT N19C-814 TXT N19C-816 TXT N19D1112 .61 N19D1112 60 N19D-840 TXT N19D-842 TXT N19D-844 TXT N19D-846 TXT N5 A1114 6I **NS** A1114 60 N5 A-876 TXT NS A-878 TXT NS A-880 TXT NS A-884 TXT NS B1114 61 NS B1114 60 NS B-904 TXT NS B-906 TXT NS B-910 TXT NS B-912 TXT N_5C1114 61 NS C1114 60 N5 C-936 TXT N5 C-938 TXT N5_C-940 TXT N5 C-942 TXT N5 D1114 61 N5 D1114 60 N5_D-968 TXT NSD-970 TXT NS D-972 TXT US D-974 TXT NS_E1114 61 *NSE1114 60* N5 E-998 TXT. NS_-1000 TXT NS -1004 TXT N5_-1006 TXT NS_F1114 61 **N5 F1114 60** NS -1030 TXT NS -1032 TXT N5 -1034 TXT N5_~1036 TXT **N5_G1114 6I** NS G1114 60 N5_~1062 TXT N5-1064 TXT NS_-1066 TXT NS_-1068 TXT NS H1114 61 66,521 02-07-99 12:56a N19B1112.elem min.tx 66,534 02-07-99 12:56a N19B1112.elem_tot.tx 37,151 02-08-99 9:35a N19C1112.6 6,902,402 57,201 54,504 54,496 54,509 37,403 6,381,646 50,636 48,251 02-09-99 11:11p N19D1112.elem m a.tx 48,243 02-09-99 11:11p N19D1112.elem min.tx 48,256 02-09-99 11:11p N19D1112.elem_tot.tx 42,582 02-09-99 11:51a N5_A1114.6i 8,105,217 02-19-99 8:00p n5_a1114.6 76,391 02-19-99 8:00p N5 A1114.elem aqu.tx 72,782 02-19-99 8:00p N5 A1114.elem m a.tx 72,774 02-19-99 8:00p NS_A1114.elem_min.tx 72,787 02-19-99 8:00p N5 A1114.elem tot.tx 39,351 02-10-99 9:41a NS B1114.6i 5,296,764 43,061 02-19-99 10:05p N5 B1114.elem aqu.tx 41,036 02-19-99 10:05p N5 B1114.elem m a.txt 41,028 02-19-99 10:05p N5 B1114.elem min.tx 41,041 02-19-99 10:05p N5 B1114.elem tot.txt 39,467 02-10-99 1:49p NSC1114.6i 6,364,301 02-20-99 12:37a n5_c1l4.60 50,636 02-20-99 12:37a NS C1114.elem aqu.txt 48,251 02-20-99 12:37a N5.C1114.elem m a.txt 48,243 02-20-99 12:37a N5 C1114. elem min.txt 48,256 02-20-99 12:37a N5 C1114.elem tot.txt 39,464 02-10-99 5:18p NS D1114.6i 6,405,422 02-20-99 3:09a n5 d1114.6d 51,141 02-20-99 3:08a N5 D1114.elem aqu.txt 48,732 02-20-99 46,724 48,737 02-20-99 3:08a NS D1114.elem tot.txt 38,122 6,340,325 50, 636 48,251 02-20-99 5:39a NS E1114.elem m a.txt 48,243 02-20-99 5:39a N5 E1114. elem min -txt 48,256 02-20-99 5:39a NS E1114.elem tot.txt 38,450 02-11-99 L2:14p NSF1114.6i 6,381,075 02-20-99 8:17a n5 f1114.60 51,141 02-20-99 8:17a N5_E1114.elem aqu.txt 48,732 02-20-99 8:17a N5 F1114.elem mz a.txt 48.724 02-20-99 8:17a N5 F1114.elem min.txt 48,737 38,746 6,452,423 51,646 49,213 49,205 49,218 37,595 02-08-99 10:57p n19c1112.6 02-08-99 10:57p N19C1112.elem aqu.tx 02-08-99 10:57p N19C1112.elem m a.tx 02-08-99 10:57p N19C1112.elem_min.tx 02-08-99 10:57p N19C1112.elem_tot.tx 02-09-99 1:46p N19D1112.6 02-09-99 11:12p n19d1112.6o 02-09-99 11:11p N19D1112.elem aqu.tx 02-19-99 10:05p n5 b1114.6 02-20-99 02-11-99 8:57a N5 E1114.6 02-20-99 02-20-99 5:39a N5^TE1114.elem agu.txt 02-20-99 8:17a N5 F1114.elem tot.txt 02-15-99 4:20p N5 G1114.6i 02-15-99 02-15-99 02-15-99 02-15-99 02-15-99 02-18-99 3:08a N5_D1114.elem m a.txt 3:08a N5 D1114.elem min.txt 5:40a nS elll4.6o 6:56p n5_g1114.6o 6:SSp NSG1114.elem aqu.txt ⁶ :SSp NS G1114.elem m a.txt $6:55p$ NS $G1114.$ elem min.txt 6:55p NS G1114.elem tot.txt 1:13p N5 H1114.6i

BBAOOOOOO-01717-0210-00029 REV 00 III-S

Directory of E:\cd files\~MSSETUP.T

Directory of E:\cd files\-MSSETUP.T\-MSSTFOF.T

Total files listed: 263 file(s) $9 dir(s)$

 $\ddot{}$

223,759,563 bytes
0 bytes free

BBA000000-01717-0210-00029 REV 00

III- 6