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Abstract

This three-volume report serves several purposes. The first volume provides
an introduction to the engineered materials effort for the Yucca Mountain
Site Characterization Project. It defines terms and outlines the history of
selection and characterization of these materials. A summary of the recent
engineered barrier materials characterization workshop is presented, and the
current candidate materials are listed. The second volume tabulates design
data for engineered materials, and the third volume is devoted to corrosion
data, radiation effects on corrosion, and corrosion modeling. The second and
third volumes are intended to be evolving documents, to which new data will
be added as they become available from additional studies. The initial
version of Volume 3 is devoted to information currently available for
environments most similar to those expected in the potential Yucca Mountain
repository. Each volume contains a separate list of references pertinent to it.



1. Degradation Mode Surveys

Surveys of degradation modes of a few candidate materials for high-level

radioactive waste disposal containers were conducted by LLNL in 1988."
Materials that were surveyed include austenitic Types 304L and 316L
stainless steels, high-nickel Alloy 825, and three copper-based alloys, namely
CDA 102 (oxygen-free copper), CDA 613 (Cu-7Al), and CDA 715 (Cu-30Ni).
The relevant modes of degradation which can be encountered under the
potential repository environment were discussed in detail in these surveys,
which were published in eight volumes as indicated below:

Volume 1 - Phase Stability

Volume 2 - Oxidation and Corrosion

Volume 3 - Localized Corrosion and Stress Corrosion Cracking of Austenitic
Alloys

Volume 4 - Stress Corrosion Cracking of Copper-Based Alloys

Volume 5 - Localized Corrosion of Copper-Based Alloys

Volume 6 - Effects of Hydrogen on Austenitic and Copper-Based Alloys

Volume 7 - Weldability of Austenitic Alloys

Volume 8 - Weldability of Copper-Based Alloys

To as practical an extent as possible, the literature was surveyed for and the
results were applied to the physical, chemical, metallurgical, and mechanical
conditions anticipated at the potential mined geologic repository. The
candidate materials were ranked based on a broad range of environmental
conditions as studied in numerous investigations cited in the literature.
Based on this review, Alloy 825 and CDA 715 appear to possess superior
overall properties for repository-relevant environmental conditions. For
example, considering the metal alone as the thermodynamic system, Alloy
825 has a thermodynamically stable austenitic structure, whereas Types
304L and 316L stainless steels are metastable. CDA 715 is a simple solid
solution of nickel in copper, and does not suffer from the problems of internal
oxidation encountered with CDA 102; CDA 613 depends on iron precipitates
for mechanical strength, which may grow in size over extended periods of
time.

Although pitting and crevice corrosion may be encountered with all these
candidate materials, Alloy 825 and CDA 715 seem to have the least
susceptibility to these forms of degradation. In addition, Alloy 825 appears
to be resistant to stress corrosion cracking under environmental conditions
known to produce stress corrosion cracking in Types 304L and 316L stainless
steels. Similarly, CDA 715 is the only copper-based alloy that appears to



possess favorable resistance to stress corrosion cracking over a broad range of
environmental conditions known to cause failure in CDA 102 and CDA 613.

Degradation modes of four different nickel-chromium-molybdenum alloys

were also surveyed by LLNL.** Materials included in this survey are Alloys
C-276, C-4, C-22, and 625. The types of degradation covered in this study are
general corrosion, localized corrosion including pitting and crevice corrosion,
stress corrosion cracking in chloride environments, hydrogen embrittlement,
and phase instability. While all four materials were found to exhibit
significantly better corrosion resistance than the previously surveyed six
austenitic and copper-based alloys, the corrosion resistances of these
materials are expected to be almost indistinguishable from each other under
the potential repository conditions. However, Alloy C-4 was judged to exhibit
the best overall performance in view of its microstructural stability.

More recently, degradation modes of iron-based corrosion-allowance
materials were also surveyed.” Based on this literature review it appears
that the addition of chromium significantly enhances the oxidation resistance
in these materials. As to the general corrosion resistance, the low alloy
steels, plain carbon steels, cast steels, and cast irons seem to corrode at
similar rates when exposed to an aqueous environment. However, in terms of
total corrosion performance, the ranking of the investigated materials from
most corrosion resistant to least corrosion resistant are austenitic cast iron,
12Cr, 9Cr-1Mo, carbon steel, low alloy steels, and cast iron.

2. Results of Corrosion Testing

The initial corrosion testing for selecting candidate materials was focused on
a thin-walled single metal container design for emplacement in a vertical
borehole. However, with the inception of the Advanced Conceptual Design
(ACD) phase, the current design is centered around an all-metallic
multibarrier waste package emplaced in a horizontal drift located in the
unsaturated zone. Type 304L stainless steel was considered to be the
reference material during the conceptual design phase. Alternate materials
such as Types 316L, 317L, 321, and 347 stainless steels, and Alloy 825 were

later included in the electrochemical corrosion test program.m Results
indicated that the corrosion potentials of these materials were insensitive to
temperature up to 90°C, and that spontaneous pitting did not occur when
they were tested in J-13 water.

The corrosion potential is the electrical potential that a metal assumes,

relative to a standard electrode, as it undergoes corrosion in the medium of
interest. This potential is a result of the balance between cathodic and
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anodic reactions, and its value is used to determine the status of the
corrosion processes. As the chloride content is increased in J-13 water, the
corrosion potential of these materials became more negative, and they
exhibited enhanced susceptibility to pitting corrosion. With respect to general
corrosion, no significant difference in corrosion rate was observed based on
weight-loss measurements and electrochemical tests in J-13 water at
temperatures up to 100°C for all materials tested. All materials showed
sufficiently low corrosion rates with no indication of spontaneous pitting,
suggesting that any one of these candidate materials could meet the
requirement of 300-1000 year substantially complete containment. Later,
stress corrosion cracking tests of Type 304L stainless steel were performed™®
at PNL and LLNL under irradiated and non-irradiated conditions
incorporating U-bend and slow strain rate specimens. This material was
susceptible to stress corrosion cracking when exposed to an irradiated
crushed tuff rock environment containing air and water vapor at 90°C. A
similar exposure at 50°C did not exhibit any failure after a 25-month test
duration. Solution-annealed Types 304L and 316L stainless steels were
tested at 150°C and 95°C in J-13 water, with neither material showing any
evidence of stress corrosion cracking. However, a sensitized Type 304
stainless steel did exhibit stress corrosion cracking in J-13 well water at
150°C.

In view of the superior corrosion resistance of Alloy 825, additional efforts
were focused on evaluating its resistance to localized corrosion, including

pitting.'""" Electrochemical polarization techniques were used to determine
the critical potential for passive film breakdown, a process that leads to
localized attack such as pitting corrosion. Results indicated that Alloy 825
becomes susceptible to pitting attack in aggressive environments containing
high chloride concentrations (10,000 ppm) at a low pH of 2.5, with the critical
pitting potential approching the corrosion potential.

Stress corrosion cracking tests of six candidate container materials were
performed™ at Argonne National Laboratory (ANL) by using slow strain rate
tests in simulated J-13 water at 93°C. These materials included Types 304L
and 316L stainless steels, Alloy 825, and three copper-based alloys, namely
CDA 122 (P-deoxidized Cu), CDA 614 (Al bronze), and CDA 715 (Cu-30%Ni).
In addition, fracture-mechanics-type crack growth rate (CGR) tests were also

conducted'*" incorporating Types 304L and 316L stainless steels and Alloy
825 at temperatures below boiling at ambient pressure in simulated J-13
well water. Crack growth rates using one-inch-thick compact tension
specimens were measured at various load ratios. However, environmentally-
assisted crack growth was not observed in any of the three materials under
the test conditions investigated.



Limited corrosion tests of low carbon structural steels such as AISI 1020 and
ASTM A-36 were performed in J-13 well water and in saturated steam at

100°C."” Tests were conducted in air-sparged J-13 water to attain more
oxidizing conditions representative of irradiated aqueous environments. A
limited number of irradiation corrosion and stress corrosion cracking tests
were also performed. Results indicated that the maximum corrosion rate
~occurs at 70-80°C, where the flux of oxygen to the steel surface is at a
maximum. Carbon steels appeared to be resistant to stress corrosion
cracking, but showed localized corrosion, with the localized corrosion factor
being on the order of 1-3 times the general corrosion rate. The crevice
corrosion rate was found to be as high as 15 times the general corrosion rate
in wet steam conditions. A 9Cr-1Mo steel was excluded from this testing
since this material is known to undergo hydrogen embrittlement in the
welded condition. Although a post-weld thermal treatment can reduce the
susceptibility to hydrogen embrittlement due to the formation of tempered
martensite, this extra operation was considered to be impractical and costly.

With respect to copper-based waste package container materials, numerous
feasibility assessment studies'®™ have been completed. Based on the
evaluations made so far, all three copper-based materials (CDA 102, CDA
613, and CDA 715) appear to be adequate for use as container materials, but
questions regarding the relevance and effects of gamma radiation on
corrosion behavior remain a big issue. In order to address this issue, all

three materials were tested® in 0.1 N NaNO, at 95°C. The interest in nitrate
solutions stems from the radiolytic effects on the expected environment.
Even though the potential repository environment is expected to be
unsaturated, in the presence of a liquid phase the fixed nitrogen will exist in
it as nitrite and nitrate ions. The total amount of nitrite and nitrate that can
be produced is limited by the gamma radiation dose rate, and the volume of
air irradiated. If a thin water film on the waste package container is
irradiated in contact with a relatively thicker air space, it is possible to
achieve a significant concentration of nitrate in the relatively small amount
of water in the film. Results indicate that although all three copper-based
materials are somewhat susceptible to pitting in 0.1 N NaNO, at 95° C, at
high (oxidizing) potentials, stable and protective passive films formed on the
alloy surface would provide resistance to both general and pitting corrosion.

3. Radiation Effects on Corrosion

- . . 21.27
Several investigations were performed to evaluate the effects of gamma
radiation on the corrosion mechanisms of candidate waste package container



materials. Results” indicate that for Types 304L and 316L stainless steels,
the corrosion potential is shifted in the positive direction as the gamma
radiation is introduced. These potential shifts are attributed to the
radiation-induced production of hydrogen peroxide. The results of
potentiodynamic anodic polarization study indicate that for Types 304L and
316L stainless steel, the pitting potentials were almost unchanged when
tested in chloride media under gamma radiation. However, since the
corrosion potential is increased under gamma irradiation, the difference
between the pitting and corrosion potentials is decreased significantly
compared to the value without irradiation. Thus, the susceptibility to pitting
corrosion is increased. Similar behavior has also been observed® for copper
and its alloys, which are known to be very catalytic toward the decomposition
of hydrogen peroxide. In solution, the surfaces of copper and its alloys
appear to be more oxidized in irradiated environments than those of
austenitic stainless steels. As to the corrosion potential shifts, the same
general behavior as for stainless steels is observed. However, the corrosion
potentials then decline to relatively less positive values, possibly due to a
reduced efficiency for catalytic decomposition of hydrogen peroxide.

Pure copper and copper-based materials such as CDA 101/102, CDA 613/614,
and CDA 715 were corrosion tested™' at the Westinghouse Hanford
Company under gamma irradiation. These materials were tested in moist air
at 95 and 150°C, and in J-13 water at 95°C for periods of up to 16 months.
The susceptibilities to general corrosion, crevice corrosion, and stress
corrosion cracking were evaluated. None of these materials exhibited any
significant corrosion tendency. In general, the pure copper was corroded
most uniformly, while the corrosion data for CDA 715 were least
reproducible.

More recently, numerous investigations were conducted”” to evaluate the
effects of temperature, relative humidity, and gamma dose rate on the
corrosion behavior of candidate container materials. Corrosion rates of
copper-based materials were found to be influenced by all three parameters.
The effect of moisture content was most significant in that nitrate phase,
principally Cu,NO,(OH),, as well as copper oxides, were evident at both
intermediate and low moisture contents. No nitrates, however, were
observed at higher temperature (150°C) and relative humidity (100%). While
both general and localized (pitting) corrosion were observed with pure copper
and its alloys, Alloy 825 did not suffer from these degradation modes. This is
consistent with experience, since Alloy 825 tends to resist attack by NO, and
nitric acids. '
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4. Modeling

Literature review on mechanisms and models of localized corrosion and

stress corrosion cracking of container materials was performed.” These
models fell into the following categories:

(a) Initiation of pits on passive surfaces of austenitics

(b) Propagation of pits on active metal surfaces

(c) Propagation of pits on surfaces covered by salt films

(d) Initiation of cracks at pits

(e) Propagation of cracks on active metal surfaces

(f) Propagation of cracks due to periodic fracture of passive films at crack tips
(g) Propagation of cracks due to film-induced cleavage of the base metal

(h) Crevice corrosion on active metal surfaces, and

(1) Crevices that behave like active-passive concentration cells

The modeling efforts were further extended”™ by additional literature
search to predict the long-term performance of candidate materials, in
particular the propensities to oxidation, uniform corrosion, and localized
corrosion including pitting and stress corrosion cracking. Based on this
review, the following needs have been identified:

(a) Development of a model of local environment, which will enable the
prediction of temperature of the container wall, the levels of species in
ground water concentrated by thermal refluxing, the concentrations of
radiolysis products, and the effects of microbial growth on the local
environment.

(b) Quantification of corrosion parameters, where applicable.

(c) Development of models to- predict the initiation and propagation of
localized attack such as pitting corrosion.

(d) Determination of crevice geometries

(e) Introduction of statistical techniques to model development.

In recent years, stochastic models of pitting corrosion have been explored,”
and found to be potentially useful in predicting damage of waste package
container materials. These computer models include simple
phenomenological relationships describing the environmental dependence of
the stochastic parameters, and can simulate pit initiation and propagation
under various environmental conditions. These models have been found
useful in providing insights into the pit nucleation and growth mechanisms.
Furthermore, these models should provide quantitative information needed
in developing performance assessment codes for the entire waste repository
system. However, very little quantitative validation of these models has been
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performed because of a lack of available data. Thus, a significant amount of
experimental effort should be initiated immediately for further development
and testing of these models, in particular, the determination of the pit depth
distributions as functions of time and potential repository environment.
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