
Verification and Uncertainty Analysis of Fuel Codes
Using Distributed Computing

By
D. Evens and R. Rock

Abstract

Of late, nuclear safety analysis computer codes have been held to increasingly high
standards of quality assurance. As well, best estimate with uncertainty analysis is taking
a more prominent role, displacing to some extent the idea of a limit consequence analysis.
In turn, these activities have placed ever-increasing burdens on available computing
resources.

A recent project at Ontario Hydro has been the development of the capability of using the
workstations on our Windows NT LAN as a distributed batch queue. The application
developed is called SheepDog. This paper reports on the challenges and opportunities
met in this project, as well as the experience gained in applying this method to
verification and uncertainty analysis of fuel codes.

SheepDog has been applied to performing uncertainty analysis, in a basically CSAU like
method. of fuel behaviour during postulated accident scenarios at a nuclear power station.
For each scenario, several hundred cases were selected according to a Latin Hypercube
scheme, and used to construct a response surface surrogate for the codes.

Residual disparities between code predictions and response surfaces led to the suspicion
that there were discontinuities in the predictions of the analysis codes. This led to the
development of "stress testing" procedures. This refers totwo procedures:
* coarsely scanning through several input parameters in combination, and
* finely scanning individual input parameters.
For either procedure, the number of code runs required is several hundred. In order to be
able to perform stress testing in a reasonable time, SheepDog was applied. The results
are examined for such considerations as continuity, smoothness, and physical
reasonableness of trends and interactions. In several cases, this analysis uncovered
previously unknown errors in analysis codes, and allowed pinpointing the part of the
codes that needed to be modified.

The challenges involved include the following.
* The usual choices of development language and environment had to be made.
* Significant learning curve for building Windows NT service programs.
* Activity by the distributed jobs was not permitted to interfere with the activity of the

local workstation user.

Currently: Sententia Research Inc.



179

* The workstation component of the system must be exceptionally robust.
* Codes to be run must be ported to Windows NT.

Some of the opportunities involved include the following.
* The amount of computing power is quite large.
* The marginal cost of utilising this computing power is very small since it makes use

of unused cycles on existing hardware.
* The system is easily scalable.
* Tbe system is easily customisable.

Results of the verification efforts will be discussed in another paper.

The Problem .
Recently a project at Ontario Power Generation (then Ontario Hydro) involved the
creation of a response surface to perform uncertainty analysis (UA) of fuel behaviour in
an essentially CSAU-like (Reference 1) method. The procedure for building a response
surface involved running the fuel code 300 times, varying the input parameters in a
carefully chosen manner, then fitting an algebraic function to the results. The computing
platform used for this project was an IBM RS6000 system with eight nodes. Running
300 cases sequentially on a single node required several hours.

It was noticed that, while the response surface could be made to fit the trend
exceptionally well, and to closely fit the details of the results for the bulk of test cases,
there were residual disparities between the code predicted values and the response
surface. Since there were a total of seven parameters involved in the UA work, it was
difficult to decide what was the source of these disparities. For example, it could have
been that it was simply necessary to work a bit harder at constructing the response
surface. Or it could have been that there was some kind of discontinuity in the code, and
that no amount of effort would make a simple algebraic function response surface a good
fit.

In an effort to explore this, each of the seven parameters was densely scanned. The range
to scan was chosen to correspond to roughly the two sigma band of that parameter. This
was chosen because UA efforts would probe a code throughout this range. A code must
produce acceptable results throughout this range for methods such as CSAU to work
acceptably. Each range was divided into 1000 cases. The intervals between cases were
chosen to be equally probable, according to the expected probability distribution for the
parameter. This was done because we already had a case generator program that
produced Latin Hypercube type data sets.

At this point, a problem arose. Even though each case took only a few minutes, running
several thousands of cases would produce a significant burden on the already highly
loaded RS6000 system. This load would be significant both from a CPU standpoint, and
from the standpoint of other resources such as disk space. Retaining the output files from
several thousands of code runs would have been prohibitive. As a result, such scanning



*180

was slow, difficult, and unpopular with the system manager and other users on thc
RS6000.

It was determined to perform exploratory tests with converting the analysis code to run
on desktop workstation running Windows NT. As others have found (Reference 2)
modern desktop workstations provide significant computing power. It was found that the
typical workstation produced real time throughput of analysis cases better than those of
the RS6000 system. The conclusion was that this was primarily due to the very large
load on the RS6000. However, even in comparing throughput on the basis of CPU
second per CPU second, a group of three or four workstations easily out produced a
single RS6000 node.

This meant that the analysis could be performed on workstations. However, it was
extremely inconverient to use many desktop machines to perform such tasks. The input
sets needed to be divided up and distributed to the various machines. The workstations
needed to be monitored to assure their progress was adequate and correct. The results
had to be collected and assembled. This process was error prone due to the numerous
manual steps. It was difficult to verify this process. Running the analysis cases
interfered with the normal work that workstation users wished to perform. These
considerations initially prevented desktop workstations from being used for any
significant amount of analysis work of this kind. It was simply too difficult.

The Solution
An effort was made to automate the process of using scvcral desktop workstations in this
manner. The application which resulted from this effort is called SheepDog. It is a
scheduler utility that allows the workstations on a LAN to act as a distributed batch
queue. Essentially, SheepDog is the very simplest possible of distributed parallel
computing machines.

ShecpDog Is currently in the prototype stage and Is being developed for more general
use.

The SheepDog architecture is pictured in Figure 1. The application has two major parts.
The first is the part installed on each workstation, and is called BQDog. Workstations on
which BQDog is installed are called dogs. The second part of SheepDog is the console,
or user interface, and is called BQShep. Figure 2 shows a typical screen from the
BQShep portion of the application.

SheepDog is essentially a client server application. It is unusual in that there is one
client, the Shep portion, and many servers, the Dog portions.

The single largest challenge to developing SheepDog was arranging that it be
automatically available. This was accomplished by making BQDog a WindowsNT
service program. Services are programs that WindowsNT can be directed to start
automatically at time of power on, and which run whether or not any user is logged into
the workstation. Services are commonly used on WindowsNT to provide a variety of



lei

functions. For example, virus scanning is commonly performed by installing a service on
each workstation. Thus SheepDog could be made available provided only that each
workstation was powered on.

Figure 1 SheepDog Connectivity Model

Dog Machine (BODog) Dog Machine (BODog) ONE Dog Machine (BQDog)

LAN Connection LAN Connection LAN Connection

Local Machine (BOShep)

Figure 2 BQShep Screen Capture

I ONZEVENSD- Ready
HONZKELLYB: Ready
HONZGABOURYG: Ready
HONZSIELM. Ready
HONZDENNIERD: Ready
HONZPETHERIP. Ready
HONZMUIRC: Ready

|HONZLIUY: Ready
HONZDANIELST: Ready

lHONZHAMMONME: Ready

One of the overriding requirements of the SheepDog project has been that no interference
with normal workstation work is permitted. Neither SheepDog itself nor the jobs run
through it are permitted to hamper the normal use of workstations. This has meant
several aspects of application development have received special emphasis.
* First, the program could not be allowed to leak resources. In other words, the BQDog

program must properly return to the operating system any resources such as memory,
file handles, process handles, etc. Since it is expected that BQDog will run on a
workstation, without monitoring and without adjustment, for extended times, any
such leak would eventually cause the workstation to crash. BQDog has been installed



182

. for more than a year on ten workstations in the department, and has caused no
problemns.
Second, the jobs run through SheepDog had to be executed at low priority.
WindowsNT has several lcvcls of priority, the user by default operating at a middle
priority. Experience has shown that users are typically unaware that low priority jobs
have been run through SheepDog, with two minor exceptions. First, they may notice
their hard disk light shows activity when they are not using their machines. And
second, they may notice their screen saver slows down. This is because screen savers
are typically run at the same low priority as are SheepDog jobs. As a result it is
typically requested of workstation users where SheepDog is installed that they set
their screen savers to a mode which does not use significant CPU.

* Third, jobs run through SheepDog must not use excessive amounts of any resource.
For example, programs which require large amounts of RAM, or many files to be
open at the same time, or that are excessively burdensome in terms of disk use, must
either not be run through SheepDog, or must be run outside of regular office hours.
SheepDog jobs must also be careful to clean up after themselves.

SheepDog is, in its present form at least, tied to WindowsNT. In fact, it is not even
possible to run it on any other version of windows, let alone other hardware platforms.
As a result, in order to run a program through SheepDog it is necessary to port the
program to run on WindowsNT. There are excellent development tools for WindowsNT.
For example, there are Visual Fortran and Visual C++, which were used in the SheepDog
project.

Potential Uses
The potential value of applying SheepDog is large. For example, a 266 MHz Pentium II
machine Is capable of' maintainIng about 70 mIllion floating point operations per second
(MegaFLOPS). With machines of this type, it would require approximately twenty to
thirty workstations to equal the power of a typical supercomputer.

At present, the typical workstation is totally idle for about two thirds of each day, and
significantly under used even during the heaviest of workstation use. Thus this potential
computing power is, at present, nearly completely unused.

The marginal costs of using this computing power is very small. The hardware is already
present, and its maintenance is already budgeted. The largest part of the marginal cost is
likely to be the time and effort involved in porting analysis code to WindowsNT.

The configuration of such a system is easy to customise. It is quite possible to arrange
that only certain workstations be used, that some machines not be used at some times of
the day, etc. It is very easy to add or remove machines from the system. It is easy to
upgrade individual machines. Thus it would be quite easy to arrange, for example, that a
high priority project was granted exclusive access.

Having such a powerful computing system available makes a variety of computational
techniques possible that were until recently either prohibitively expensive or prohibitively



183

slow. As well, certain tasks can be significantly speeded up, and automated. Here are
some examples.
* Running regression tests suites to examine the consequences of changes to analysis

codes. Automating such a process could allow a new version to be rapidly tested
against a benchmark version.

* Running multi-parameter searches to determine limiting cases. This has the potential
to remove unwarranted conservatism, while at the same time concentrating limited
resources on the areas where it is possible to most improve safety margin.

* Examining code predictions to determine the optimum operation condition. By doing
scans of combinations of parameters it may be possible to extend the life span of
components of nuclear stations by reducing damaging conditions. For example, it
might be possible to scan for combinations of parameters to reduce vibration during
normal operation.

* Running model building cases. It is often desirable to scan certain modelling
parameters, often in combination, to find best fits to data. This can require large
amounts of computer time.

* Running verification and stability test cases.
* Performing uncertainty analysis, particularly in the manner of the CSAU method or

the Bootstrap method (Reference 3).

Thus, SheepDog has the capability to decrease costs at the same time as increasing safety
margin.

An Example of Use
As an example of one application of SheepDog, some verification and stability tests are
discussed in the following. This method is generically referred to as "stress testing."
Generically, this takes two forms.

The first form is to coarsely scan through several parameters in combination, examining
the results for reasonableness and physically sensible trends. This work is reported on in
another paper at this conference.

The second form of stress testing is motivated by searching for discontinuities in code
output. A single input parameter is chosen. In the example presented, U02 thermal
conductivity is scanned. Its range and distribution of uncertainty is determined. In the
example, the MATPRO (Reference 4) reported error in thermal conductivity is +1-
0.2W/mK. The example treats this as the one sigma range in a normal distribution. A
total of 1000 cases were run for each parameter in each of several different scenarios.
The cases were chosen to have equal probability between them.

The code discussed in the example is a development version of ELESTRES-IST. This
new version of this code has not yet been released for use in safety analysis. It is
interesting to note that approximately 20,000 cases were run for this version of the code
during initial stress testing. This very likely exceeded the total number of cases run
through the code in its life to that point.



184

Figure 3 shows the results of running eleven cases through the code. Running a set of
cases like this would be quite typical of the effort involved in verification or validation
test runs of a code. The typical analyst would find little to be concerned about in this
graph. There is some sign of non-linear behaviour in that the curve seems to have a small
amount of flutter. The trend of decreasing thermal conductivity is increasing internal gas
pressures, with a maximum near -0.3 W/mK This trend seems to be reasonably well
behaved over a total of six sigma of thermal conductivity, from plus three to minus three.

Figure 4 shows a very different story. Figure 4 shows the full 1000 cases of scanning
thermal conductivity. This graph shows a number of troublesome features. Most
obvious and dramatic is the region of severe instability with an increment near -
0.2 W/mK. At its most extreme, this instability shows a discontinuity of more than
4 MPa. However, there are discontinuities and oscillatory behaviour in large portions of
the curve. with one significant discontinuity occurring right at the nominal value. Such
behaviour is troubling from several aspects:
* It is difficult to see how it could be physical.
* It is difficult to contemplate comparing such results with experimental data
* It is difficult to contemplate applying a CSAU like method.

These results were brought to the attention of the code developers. On examination of
the code they did indeed find a program fault. On correcting this fault, the stress test was
repeated, and the results are shown in Figure 5. Once again, this is a very different result
from the previous graph. The curve is now very smooth. And even the slight flutter from
the coarse scan has been removed. This code is now one in which we may have a great
deal more confidence. The curve is very reasonable physically. It would be direct to
compare to physical measurements. And applying a CSAU like method to the uncertainty
analysis of this code would be trouble free.

Stress testing through SheepDog has thus uncovered a bug in an analysis code which
would have been quite difficult to uncover otherwise. As well, it has allowed specific
parameter values to be determined that would manifest the bug. This has significantly
aided in locating the portion of the code that needed to be changed.

Summary
SheepDog is a batch job scheduler that allows the workstations on a WindowsNT LAN to
operate as a distributed batch queue. It allows calculation methods to be applied which
until quite recently were prohibitively expensive or slow. It is easy to install, easy to
customise, and easy to remove. Its cost of implementation is relatively small. Dramatic
savings of resources and time are possible if this method is applied to code qualification,
safcty analysis, and uncertainty analysis activities.



I

I

185

Figure 0 Proesure vs. Thorniot Conduotivity Increment Before BUS Fix

U'I

.I

4i

Et

1.

.8 ox. -OR -0.2 0 02 0.4 0.6 0.8ho

r cMa oC d~vkyymmram Cw/dq

Figure 4 Pressure vs. Thermal Conductivity Increment Before Bug Fix

Ie

S v x~~~~~~~~~S

Z~~~ .. *

1* * .

-0.8.0 -OA4 -0.2 0 0.2
ThviM&1Conducvty biiMeMM(WhnIQ

04 0.6 0.8



; I

.186

Figure 5 Pressure vs. Thermal Conductivity Increment After Bug Fix

I
I

i

40.8 0.8 40.4 402 0 0.2 OA 0.6 0.8
Therm Ma t hieam. honIM Q

References

1. Nuclear Engineering and Design, Topical Issue on Quantifying Reactor Safety
Margins, Vol. 119 (1990) No. 1.

2. Steven H. Langer, "A Comparison of the Floating-Point Performance of Current
Computers", Computers in Physics, Vol. 12, No. 4, JUIJAUG 1998, pp 338-345.

3. B. Effron and R. J. Tibshirani, An Introduction to the Bootstrap, Chapman & Hall,
1993, ISBN 0-412-04231-2.

4. SCDAP/REL4PS/MOD2 Code Manual, Volume 4: MATPRO - A Library of Materials
Propertiesfor Light-Water-ReactorAccidentAnalysis, Edited by J.K. Hohorst,
NUREG/CR-5273, 1990.


