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Abstract R6sum6

The computer code FEAST calculates stresses,
strains, and displacements. The code is two-
dimensional. That is, either plane or axisymmetric
calculations can be done. The code models elastic,
plastic, creep, and thermal strains and stresses.
Cracking can also be simulated. The finite element
method is used to solve equations describing the
following fundamental laws of mechanics: equilibrium;
compatibility; constitutive relations; yield criterion; and
flow rule. FEAST combines several unique features
'hat permit large time-steps In even severely non-linear
situations. The features include a special formulation
for permitting many finite elements to simultaneously
cross the boundary from elastic to plastic behaviour;
accomodation of large drops in yield-strength due to
changes in local temperature;and a three-step predictor-
corrector method for plastic analyses. These features
reduce computing costs. Comparisons against twenty
analytical solutions and against experimental mea-
surements show that predictions of FEAST are gen-
erally accurate to ± 5-

Le code d'ordinateur FEAST calcule les efforts, con-
traintes et d6placements. II s'agit d'un code a deux
dimensions permettant d'effectuer des calculs plans
ou axisymetriques. Le code 6labore des modeles d'ef-
forts et contraintes thermiques, de fluage et dlastiq ues
et plastiques. II peut 6lagement simuler la fissuration.
La m6thode des 6l6ments finis est utilis6e pour
r6soudre les equations repr6sentant les lois fondamen-
tales de la m6canique suivantes: I'dquilibre; la com-
patibilite; les relations constitutives; le critere de limite
d'6lasticitW; et la loi de l'dcoulement. Plusieurs carac-
tdristiques uniques sont r6unies dans le code FEAST
en vue de permettre de grands intervalles de ternps
m6me dans des situations manifestant une non-
linfarit6 s6vere. Les caract6ristiques en question
comprennent une disposition speciale par laquelle de
nombreux 6lements finis peuvent franchir simultane-
ment la limite du comportement elastique au comporte-
ment plastique; I'adaptation aux grandes baisses de
la limite conventionnelle d'6lasticite entratnees par
les variations de la temperature locale; et une m6thode
de prevision et correction trois tapes pour les
analyses plastiques. Les caract6ristiques ci-dessus
r6duisent le coOt du calcul. Les comparisons du code
FEAST avec vingt solutions analytiques et avec des
mesures experimentales indiquent que les pr6visions
FEAST sont generalement ustes a + 5 %.
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INTRODUCTION

FEAST* is a general-purpose finite-element code
for calculating static stresses. strains and
displacements in two-dimensional, non-linear
systems. It has been used for several analyses of
stresses in CANDU** fuel, including pellets,
sheaths, endcaps, endplates and plenums.
Reference 1 described some recent applications of
FEAST in design/analyses of CANDU fuel. These
included: hourglassing of UOz pellets; fatigue of
Zircaloy sheaths due to power-cy-cling;
elastic-plastic stress-concentrations at
sheath/endcap welds; creep collapse of sheaths;
cracking of plenums due to thermal stresses; and
stresses in endplates due to gravity.

The present.paper focusses on those theoretical
aspects of the finite element method that are
unique to FEAST. The paper first summarizes the
features and capabilities of FEAST, then describes
their theoretical details. The paper also compares
FEAST predictions to some analytical solutions and
to experimental measurements. Two illustrative
examples are given.

There are several other stress-analysis codes
(Refs. 2, 3), developed independently, that share
common features with FEAST. The purpose of the
present paper is not to make a detailed comparison
of the features of these codes, but to report a
portion of the Canadian modelling effort.

The incentive to develop FEAST came from
intended applications to nuclear fuel. Therefore,
the numerical scheme in FEAST was chosen to
minimize computing time in applications involving
the following: high temperatures (300-2000C);
extensive brittle cracking (up to half the volume
in the mesh); significant plastic flow (local
strain approaching 4%); high creep (e.g. 0.3% per
hour); and load-histories lasting many years.

FEAST contains no correlations specific to
nuclear fuel. Hence it can also be used to analyze
other components like pressure tubes, calandria
tubes, and even non-nuclear systems.

FEAST solves the classical equations of
equilibrium (Ref. 6). This ensures that internal
stresses balance each other and applied loads at
each point. FEAST also ensures compatibility
(Ref. 6) among neighbouring fibres. This means
that the calculated strains do not create
artificial holes, nor do they assign two different
points of the material to occupy the same physical
space. In addition, FEAST ensures that at each
point of the structure, the stress/strain law is
consistent with local conditions like temperature
and plasticity. The von-Mises equation (Ref. 7) is
used to determine if local stresses are elastic or
plastic. For elastic elements, the constitutive
relations are given by the multidimensional form of
the Hooke's law (Ref. 6). For plastic elements,
the von-Mises yield surface is combined with the
Levy-Hises flow rule (Ref. 7). This ensures that
the principal axes of increments in plastic
strains, coincide with the principal axes of total
stresses. In this paper, plastic strains refer to
instantaneous permanent strains. Permanent strains
that develop with time, are called creep. The
formulations for creep (Ref. 8) are similar to
those for plasticity and, in addition, allow for
dependence on time.

A three-step predictor-corrector method (Ref. 9)
contributes to large time-steps, thus to low
computing cost, while maintaining good accuracy for
linear and for non-linear problems. FEAST also
contains a special formulation (Ref. 10) for
elastic-plastic elements. This removes the usual
requirement that the time-step go through the knee
of the elastic-plastic curve.

For axisymmetric analysis, FEAST prints the
following results:

- radial and axial displacements of nodes,
- radial, circumferential, axial, shear, and

effective stresses of elements,
- yield strengths of elements,
- radial, circumferential, axial, shear, and

effective strains of elements,
- principal stresses and their directions,
- minimum and maximum values of the above

components of stresses and strains, and their
locations.

FEATURES

FEAST accounts for the effects of elastic,
plastic, creep, and thermal strains and stresses.
Cracking can also be simulated. Since the code is
twc.-dimensional, either plane or axisymmetric
calculations can be done. Because the finite
element method (Ref. 4) is used, complex
geometries, curved surfaces, and unusual
boundary-conditions can be accomodated easily and
accurately (Refs. 1, 5). Material properties like
Young's modulus and plastic modulus can differ in
different parts of the structure, depending on
local temperature, on prior heat-treatment, and on
local strain.

Similar parameters are also printed for
plane-stress calculations. In addition, FEAST
saves the strains and stresses on a magnetic tape,
for post-processing and for plotting of contours.

FRAMEVORK

The finite element method (Refs. 4, 5, 9)
divides the analyzed region into a number of
smaller, idealized, subregions called finite
elements. The elements are connected to each other
at the corner-points, called nodes. Figure 1 shows
some triangular elements and nodes. Equations
relating forces to displacements are formed for
each finite element. These equations account for
the shape, size, and location of each element, for

The user can specify arbitrary distributions of
forces, pressures, and temperatures. As well,
zero, non-zero, and/or limiting values of
displacement can be imposed on parts of the body.
These can all be specified as functions of time.

* FEAST - Finite Element Analyses for STresses

** CANDU - CANada Deuterium Uranium - is a
registered trademark of Atomic Energy of Canada
Limited



the type of load (e.g. axisymmetric expansion),
and for the physical processes (e.g. plasticity,
creep). Then these equations are assembled to
describe the entire system. The system equations
are modified to account for boundary conditions.
The equations are then solved to obtain
displacements, strains, and stresses.

The following paragraphs describe the theory
behind FEAST. 'Plane stress' calculations
represent a special case of 'axisymmetric'
calculations. Hence, the more general
'axisycmetric' option is used here to illustrate
the principles. 'Plane stress' calculations use
similar principles, and are not discussed in this
paper for brevity. Tensor notation usually
simplifies the description of the theory of the
finite element method. However, the matrix
notation (Ref. 4), though cumbersome, is more
widely understood, hence is used in this paper.
The symbols are defined towards the end of the
paper in the section 'Nomenclature'. For
axisymmetric structures, the matrices contain four
rows in the following order: radial,
circumferential, axial, and shear. Shear refers to
the r-z plane.

In the displacement approach given by
Zienkiewicz (Ref. 4), force-balance provides the
following equation for a finite element:

IdFae = [K]e d6]e + dFceo d dFdeo (1)

By using the principle of virtual work,
following equations can be obtained (Ref. 4):

the

{dC] = [B] d6}e

fdaj = [D] [dCje

[K]e = f [B]T [D] [B] dV

[dF~eo = - W [B]T [D] {deo dV

IdFIeo = f [B]T da. dV

(2)

(3)

(4)

(5)

(6)

Zienkienics (Ref. 4) gives the explicit equations
for [B]. The equations for the slope matrix ([D]),
and for the force vector dF, depend on the
physical process considered, e.g. elasticity,
plasticity, creep, cracking. Their derivations are
discussed later in this paper.

By repeated application of equation 4, the
stiffnesses ([K]e) of all finite elements are
obtained. They are then assembled into a global
stiffness matrix, which describes the stiffness of
the entire system.

This process gives a set of simultaneous linear
equations relating known external loads ({dRJ), to
unknown nodal displacements ({d6}), via the known
global stiffness ([K]), as follows:

fdR] = [K] {d5 + dF]5o + {dFJ0o (7)

Solution of equation 7 provides displacements,
strains, and stresses.

The above equations are equally valid for linear
and for nonlinear problems. Plasticity and creep
make the problem nonlinear. Hence FEAST solves
equation 7 incrementally. The total load is
divided into a series of smaller loads. The total
values of displacements, strains, and stresses are
the sums of previous total plus the current
increment.

Each increment of load is kept reasonably large
by using a three-step predictor-corrector method
(Ref. 9). It uses three iterations per load-step
(also called time-step). Figure 2 shows this
schematically. Point 0 represents the solution at
the end of the previous time-step. To discuss
Figure 2, let us assume that the temperature is
higher during the current time-step, giving
additional thermal strain and lower yield strength.
Points 1, 2 and 3 represent the solutions during
the current time-step, after iterations 1, 2, and 3
respectively.

The first iteration accounts for the drop in
yield strength due to increase in local
temperature. It also corrects for residual errors
from the previous solution.

The second
load-increment.
stiffness of the

iteration applies half the
This provides the average

system during the time-step.

The final iteration applies the full increment
in load. It uses the average stiffness calculated
in second iteration, and thus provides a reasonable
calculation of final displacements and stresses for
the .time-step.

FIGURE 1 TRIANGULAR FINITE ELEMENTS IN
A HYPOTHETICAL ENDCAP
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To solve equation 7, we now need to derive the
slope matrices, [D], and the force vectors, {dFJ,
for the modelled processes: elasticity, thermal
strain, cracking, plasticity and creep. These are
discussed in the following five sections. Table 
compiles the resulting equations for the slope
matrices (D]).

ELASTIC AND THERMAL STRAINS

If the stresses are in the elastic range, FEAST
uses the equations given by Zienkiewir.s (Ref. 4)
for slope D], see Table 1. Similarly, thermal
expansion is treated as an initial strain. This is
also calculated by the equations given by
Zienkiewicz (Ref. 4):

1. The components of stresses combine in such a
manner that the effective stress lies on the
yield surface;

2. The size of the yield surface depends on local
temperature;

3. Due to work-hardening and/or strain-softening,
the slope of the stress-strain curve is a
function of accumulated strain;

4. The principal axes for increments in plastic
strain coincide with the principal axes for
total stresses;

5. Plastic flow does not change the volume of the
material; and

6. Work done is positive during plastic flow, i.e.,
plastic strains are not recovered by removing
loads.

The above features require changes in the slope
matrix [DI of equation 3, and in the initial load
vector [dFJe of equation 6. This section

describes the pertinent equations used in FEAST for
[DI and dFJe of plastic material.

10

idcolt = mf (dw) {l, , , }T

Equation 8 is used in equation 5.

PREVIOUS TE

01_ 2

- T1
n

Lu I
KN EE

(8)

CURRENT
EMPERATURE

LOAD
INCREMENT

CIRCUMFERENTIAL RADIAL
CRACKS CRACKS

SHEATH -r

TRANSVERSE
CRACKS

PELLET

CIRCUMFERENTIAL RIDGES
AT PELLET INTERFACES

STRAIN

FIGURE 2 THE THREE ITERATIONS FOR THE
PLASTIC SOLUTION

FIGURE 3 EXAMPLES OF POSSIBLE CRACKS
IN A NUCLEAR FUEL ELEMENT

CRACKING

FEAST permits 'radial' cracks to develop in the
system, see Figure 3, if the hoop stress exceeds
the fracture stress. 'Plane stress' calcualtions
are done for cracked finite elements. The [D]
matrix for cracked elements is modified to give
zero hoop stress, see Table 1. In addition, one
must account for the redistribution of the hoop
stress that was present in the element prior to the
formation of the crack. The correction takes the
form of an initial stress. The resulting
incremental forces are given by (Ref. 11):

JdFjo = f [B]T o, - o, o OT dV (9)

These nodal forces are used in equation 6.

PLASTICITY

For plasticity calculations, FEAST considers
permanent strains that are instantaneous,
independent of strain-rate, and independent of
thermal activation.

FEAST accounts for the following six features
(Ref. 7) of incompressible plastic flow in ductile
materials:

The incremental theory of plasticity (Ref. 7)
shows good agreement with experiments. In the
incremental theory, the above physical principles
are expressed by the following three equations:

Total plastic strain:

[de) (deelas + {dc]P + delt

Levy-Mises flow rule (Ref. 7):

d = Werd)P WOP (de )P (dY)P

von-Mises yield function (Ref. 7):

(10)

(11)

2a (r v e)2 + ( _ ez)2

+ (a a ' )Z + 6 2

It is convenient to express the yield
(equation 12) in its incremental form:

2a (da) = ar (dar) + o (day)

+ at (d,5) + 2 (di)

(12)

function

(13)

3



%- I I~ . V I 

swtw cr THE Dur I] [D]u= MARSawmc
TO THE VARIOS MATERIAL BEInOmR THAT AN EIMM HAY EHIBIT

A.IS)t PLANE SRESS, C RADIALY CRMAED

Elastic --v v v 1 0 v O
behaviot er I 1 v D~c 0 0 0

behavle ID] (l+v)(1-2v) v v 1sV ° TF,: 2 E 2 
E [Dr1-2v 1V

Inst= [DP [D 3 -} la) * [D]Ptck - (D]etck - SS')[SiT,

behavixor where where
; - effective stress S-4SI+aS 3 +2S 4 +i aEP

a' - deriatoric stresses Si,1 T, 0 53 

S S S

m -1 +I(.IEP Si * 2 (ar + v)

S3 T= 2('r + ')

.

Time- a2-b2 b(b-a) bb-a) 0 -a O b 0

depeskt b(b-s) a-b2 b(b-a) 0 0 00 

crhee reeDJp - L b(b-a) b(b-a) a2-b2 0 [DfcreePc0- I b O O

whereotw I) f O O f (b-a2) 0 0 0 bN
2

1 +_ b _ c 2 (L) + _ f - a(a2 - b2) + 2b2 (b-a)

Elastdc ard [Dre UD]e + l-W) [D]P, |[DreP-rk - W[D~etck + (I - W) [D]P,ck .
plastic
behaviour where H is an estimate of the fraction of where W is an estimate of the fraction

stress Ixrent dwing which the el1 t of stress increment dwing which the
behaves elasticaly. elent behaves elastically.

Equations 10, 11, and 13 provide three linear
equations in three unknowns: fdc)P, d, and d.
By following the procedure given by Yamada
(Ref. 12), the three unknowns are eliminated by
simultaneously solving the three equations. Then,
equation 3 is used to express the elastic strains
in terms of stresses. This yields the following
expression:

da) [D]P de) + da.)

jT ~(14)
_a F d) [I, 1, 1, 0 1T

1 - 2v

Equation 14 provides an explicit relation
between stresses and strains. Compared with some
other formulations (Ref. 13) that require inversion
of matrices, equation 14 results in low computing
time.

The slope matrix, [D]P, is given in Table 1.
The last term in equation 14 represents thermal
stresses, and is similar to equation 8.

The vector fdaO0 simulates the reduction in flow
stress due to an increase in local temperature.
This feature was especially formulated for FEAST,

and aids in large time-steps.
solids, fdao) is given by:

[dao) _d- f}
ma

where m = 1 2 + ER
3 E

For axisymmetric

(15)

(16)

For radially cracked elements, fdao0 is given by:

}d) 2 Vd t s ) (17)

where:

[SI T } 0 , . S2 S4

S _9 a2 EP + arSl + az S + 2tS 4

Si = -E2 (0 + 0;)
1I- v2

S3 = E 2 (v a + a)
1- V

S4 _ E T
1 + V
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For plastic materials, D]P is used instead of
[D] in equation 3. The dea term of equation 6 is
obtained from equations 15 and 17.

ELASTIC AND PLASTIC BEHAVIOUR

Hany non-linear codes for stress analysis
require that all finite elements that start out
elastic at the beginning of a time-step, must also
stay elastic during that entire time-step. This
restraint simplifies the calculation of slope
matrices ([D]) for individual finite elements.
But it also means that each finite element must
go through the knee of the stress-strain curve, see
Figure 2. For applications typical of nuclear
fuel, this frequently results in a large number of
vary small time-steps, thus large computing cost.

A special formulation in FEAST avoids this cost.
Large time-steps are used. In each increment, many
elements are allowed to exhibit different
combinations of elastic and plastic behaviour.
Weighted stress-strain relations are used to
calculate the slope matrices ([D]) of finite
elements that go from elastic to plastic state
during a time-step. The resulting slope matrix is
given in Table 1. It is important to accurately
calculate the weighting function W. FEAST uses the
method described briefly in Reference 10 and in
more detail in Reference 14. The method consists
of first defining the load-path in the
six-dimensional stress-space. Then, the
intersection is found between the load-path and the
yield-surface. For the von-Hises yield function,
this results in a quadratic equation in the
six-dimensional space. Its solution is obtained by
the normal methods of algebra. Further details are
available from References 10 and 14. This is a
major feature of FEAST and permits large
calculation-steps.

BOUNDARY CONDITIONS AND SOLUTION PROCEDURE

We now have all the ingredients for equations
relating nodal forces to nodal displacements of the
entire system (equation 7). They are assembled
using the standard procedure (Ref. 4) of the finite
element method. Fresh equations are assembled for
each time-step, and for each iteration. The
appropriate terms in the stiffness matrix of the
system are modified to reflect the boundary
conditions, as suggested by Zienkiewics (Ref. 4).
This method requires less computing time than the
method of altering the size of the stiffness
matrix.

Equation 7 is solved by using the method of
Gaussian elimination and back-substitution. This
provides nodal displacements. Equation 2 then
gives strains, and equation 3 gives stresses.

ACCURACY

The predictions of FEAST have been compared
against closed-form solutions for about 20 cases.
They include combinations of plane-stress,
axisymmetry, elasticity, thermal stresses,
plasticity, drop in yield strength, and creep. The
agreement between FEAST and closed-form solutions
is usually within ± 5%.

Reference 1 reported the excellent agreement of
FEAST predictions with closed-form solution for
creep stresses in a long, thick, closed, internally
pressurized cylinder. This paper reports three
more comparisons: (i) concentrations of elastic
stresses near a circular hole in a rectangular
plate subjected to tension; (ii) elastic-plastic
stresses in the same plate; and (iii) elastic-
plastic stresses in a long, thick, internally
pressurized cylinder.

Y

(A) TEST CASE -oXCREEP

For creep calculations, FEAST considers
permanent strains that develop with time. The
model incorporates the following physical features
(Ref. 8): (i) creep does not change the volume of
the material; (ii) the principal axes for
increments in creep strains coincide with the
principal axes for total stresses; and
(iii) positive work is done by external forces.
These features are similar to those for plasticity,
ar.d their mathematical description (Ref. 8) is
provided by equations 10, 11, and 13.

The creep rate of the material, EC, is assumed
to be known as a function of local stress,
temperature and strain. That is,

.S

(8) RESULTS

A - -'.4 i-2a

1 -40.

J APPLIED
LOAD. a

-

D

0z

0
F

U
z

0

LEGEND

* FEAST PREDICTIONS AT CENTROIDS
OF ELEMENTS

A FEAST PREDICTIONS AT NODES
a

2

1

I

A

ANALYTICAL
- I

_ _ * ^ *

a a
(18)

0 I I I I I l
2 3 4 5 6 7

DISTANCE ALONG THE Y-AXIS (ria)
Above equation is combined with equations 10, 11
and 13. Then, mathematical manipulations are done
similar to plasticity, and an equation similar to
equation 14 is obtained. The resulting slope
matrix ([D]) for creep is given in Table 1.

FIGURE 4 ELASTIC STRESSES IN A PLATE:
FEAST VS. ANALYTICAL SOLUTION
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Case 1: Elastic Stresses in a Plate

Figure 4(a) shows the rectangular plate
simulated on FEAST. The plate has a small hole at
its center. Uniform uniaxial tension is applied
in the x direction. This results in non-uniform
stresses near the hole (Ref. 15). The
stress-concentration is defined as the local value
of normal stress in the x direction ( ), divided
by the applied tension (). Figure 4(b shows the
predictions of FEAST for stress concentrations at
different points along the y-axis. There is
adequate agreement between predictions of FEAST and
of closed-form solution (Ref. 15). The agreement
can be improved further, if needed, by refining the
mesh.

Case 3: Elastic-Plastic Stresses in a Cylinder

Case 3 studied the central region of a long,
thick, internally pressurized, axially loaded,
cylinder. Axial strain was not allowed, resulting
in conditions of plane strain. Figure 6 shows the
test case, and the results. Finite element
predictions are in reasonable agreement with
closed-form solutions (Ref. 17).

VALIDATION

A comparison is available against strain-gauge
measurements 'for compression tests on endcaps of
fuel elements. Figure 7 shows that the predictions
of the finite element code agree with measured
gradients for hoop strains, to within ± 5%.

A) TEST CASE
PEAK EFFECTIVE STRESS, a

APPLIED LOAD, a
AII7Z1hi~~~~~~~.

8)

0.

Cl)

U3

0

RESULTS

500[

400

A

A

aFEASTv ; 

A
CLOSED-FORM

300 -

ILLUSTRATIVE EXAMPLES

FEAST has been used for the following
applications in CANDU fuel:

- Estimate the hourglassing of U02 pellets. These
calculations are related to stress-corrosion-
cracking of sheaths.

- Determine stresses in Zircaloy sheaths at
circumferential ridges. This is related to
assessing the integrity of sheath during fatigue
due to power-cycling in a CANDU-600 reactor.

- Calculate stresses at welds between sheaths and
endcaps. This study was related to fuel
failures (Ref. 18) in Unit 3 of the Bruce
reactor, in 1984. The suspected cause of the
failures was delayed-hydrogen-cracking
(Ref. 18).

- Assess the influence of the location of
discontinuity in sheath/endcap weld, on the
load-carrying capacity of the bond.

- Check the stability of sheath during creep
collapse due to coolant pressure, on pellets of
small diameter.

- Assess thermal stresses in graphite plenums, to
explain the observed cracking at corners.

2001-

1001_

n l

0 s0 100 I50

APPLIED LOAD, a (MPa)

200

FIGURE 5 PEAK STRESS IN A PLATE FOR
ELASTIC-PLASTIC LOAD: FEAST VS.
ANALYTICAL SOLUTION

- Estimate stresses in
internal shape can
compromising integrity
reactor.

endcaps, to check if
be improved without

of fuel in the Pickering

Case 2: Elastic-Plastic Stresses in a Plate

Ir. the problem of Figure 4(a), the peak value of
effective (von-Mises) stress occurs at point xo,
y=a. Hence, plastic flow occurs first at that
point. We increased the tension applied on the
plate, until the peak effective stress was well in
the plastic range. Figure 5 shows predictions of
FEAST for the peak effective stress, as a function
of applied external load, and compares them to the
closed-form solution of Tuba (Ref. 16). Plastic
flow redistributes stresses, and the agreement
between Tuba's solution and FEAST improves as the
load increases.

- Calculate stresses in endplate due to gravity
loads on fuel elements, in order to estimate sag
of endplates due to creep at high temperatures.

Reference 1 discusses the first five studies
above. This paper gives a brief discussion of the
last two analyses.
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FIGURE 6 ELASTIC-PLASTIC STRESSES IN A
CLOSED-FORM SOLUTION

Example 1: Endcam Ootimization E

CYLINDER: FINITE ELEMENT VS.

xample 2: Endplate Stresses

This axisymmetric analysis investigated the
possibility of structural optimization of the
internal design of the endcap. It considered the
resistance of the endcap against ductile failure
due to concentric axial loads during refuelling.
Figure 8 shows the effective (von-Mises) stresses
in two hypothetical endcaps of Pickering-size fuel.
For reasons of commercial proprietary, the
geometries shown in the figure do not represent
real endcaps; they are used here to illustrate the
capabilities of FEAST. Compared to geometry 01,
geometry 2 gives a more uniform distribution of
effective stress. Geometry #2 also uses less
Zircaloy and provides more volume for storing
fission gas.

-

This study assessed the stresses in the endplate
of a Pickering fuel burdle. The endplate was
assumed to carry the gravity loads of the bundle
(elements plus endplates). Plane-stress conditions
were assumed, ignoring those bending moments which
are not In the plane of the endplate. Figure 9
shows the endplate, and the locations of the fuel
elements. As expected, the bottom half of the
endplate has the largest stresses. Stress
concentrations are highest at the corners at the
two ends of the bottom spoke. This is consistent
with the expected perturbations in stress-flow-
lines, at re-entrant corners (Ref. 6). The maximum
effective stress is 27 HPa.

7
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FIGURE 7 HOOP STRAIN IN SHEATH AND IN
ENDCAP: FINITE ELEMENT
VS. MEASUREMENTS

SUMMARY AND CONCLUSIONS

1. A finite element code, FEAST, is available for
calculating stresses in non-linear,
two-dimensional systems, i.e. for plane-stress
or for axisymmetric conditions.

2. It accounts for the following processes:
elasticity; thermal stresses; cracking;
plasticity; and creep.

3. The mathematical formulations are based on
fundamental principles of mechanics:
equilibrium; compatibility; Hooke's law;
von-Mises yield surface; and Levy-Mises flow
rule.

4. FEAST contains the following major features to
minimize computing-cost: three-step
predictor-corrector scheme for integration;
variable-stiffness method to calculate the slope
of the stress-strain curve; direct formulation
for the slope-matrices of plastic elements;
explicit equations for correcting residual
errors; and a rigorous estimate of the effective
stiffness of elements crossing the
elastic/plastic boundary during a time-step.

5. redictions of FEAST show reasonable agreement
with analytical solutions and with experimental
eata.

GEOMETRY 1

l

GEOMETRY 2

FIGURE 8 CONTOURS OF EFFECTIVE STRESS
IN TWO HYPOTHETICAL ENDCAPS

6. FEAST has been used for several analyses of
stresses in CANDU fuel, including pellets,
sheaths, endcaps, sheath/endcap welds, plenums,
and endcaps. It cr.n also be used for
applications other than CANDU fuel, e.g.,
pressure tubes and calandria tubes.
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Symbols

I I represents a column vector, in the following
order: radial, circumferential, axial ,
shear

1 I represents a rectangular matrix

* \ ~~FUEL
*M ELEMENT

END
PLATE

0
Is~~~~~~P

FIGURE 9 CONTOURS OF EFFECTIVE STRESS
(MPa) IN AN ENDPLATE, DUE TO
IN-PLANE GRAVITY LOADS

[B] matrix relating strains to displacements

d : infinitesimal increment

[D] : slope relating strain-matrix to
stress-matrix

E : Young's modulus

{F)

m

JR)

V

W

f')

: Force vector

: Stiffness matrix

: Factor defined by equation 16

: Vector of external forces at nodes

: Volume of the finite element

: Weighting Factor

: Coefficient of linear thermal expansion

: Vector of displacements at nodes

: Strain vector

NOMENCLATURE

Subscripts

o : initial value

r,B,z : polar coordinates

xyz : Cartesian coordinates

co : initial strain

cto : initial stress

y : yield strength

e'- : Creep strain rate

dX : Constant of proportionality in the flow
rule

v : Poisson's ratio

{a : Stress vector

det : Change in yield strength due to increase
in local temperature

: Shear stress

W : Temperature

Superscripts

c : creep

ck : crack

e : element

clas : elastic

i- : plastic

t. : thermal

1 : transpose

: deviatoric

: effective
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