

444 South 16th Street Mall Omaha NE 68102-2247

> December 5, 2003 LIC-03-0158

U. S. Nuclear Regulatory Commission ATTN: Document Control Desk Washington, DC 20555

References: 1. Docket No. 50-285

- 2. American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel Code, Section XI, 1998 Edition (through 2000 Addenda)
- 3. ASME OM Code 1998 Edition (through 2000 Addenda), Code for Operation and Maintenance of Nuclear Power Plants
- 4. Letter from OPPD (R. T. Ridenoure) to NRC (Document Control Desk) dated November 5, 2002, Submittal of the Fort Calhoun Station (FCS) Inservice Inspection (ISI) Program Plan for the Fourth 120 Month Interval (2003-2013), (LIC-02-0123)

# SUBJECT:Re-submittal of the Fort Calhoun Station (FCS) Inservice Testing<br/>(IST) Program Plan for the Fourth 120 Month Interval (2004-2013)

Pursuant to the requirements of 10 CFR 50.55a and the Reference 2 ASME Code, Omaha Public Power District (OPPD) is submitting Revision 1 of the FCS IST Program Plan previously submitted in Reference 4 for the plant's fourth 120-month inspection interval. The Revision 1 of FCS IST Program Plan incorporates the requirements of the ASME Section XI Code (1998 Edition, through 2000 Addenda) and the ASME OM Code (1998 Edition, through 2000 Addenda) for pump and valve testing. The Inservice Inspection Program, also submitted in Reference 4, is presently in NRC review and is not being revised by this submittal.

OPPD requests that the NRC complete review of the IST program prior to January 15, 2004. If the ISI program could also complete NRC review by January 15, 2004, OPPD would then implement the entire FCS ISI Program Plan for the fourth 120-month internal on February 15, 2004.

4047

U. S. Nuclear Regulatory Commission LIC-03-0158 Page 2

No commitments are made to the NRC in this letter.

If you have any questions or require additional information, please contact Dr. R. L. Jaworski at (402) 533-6833.

Sincerel R. T. Ridenoure ice President RTR/RLJ/rlj Attachment: Pump and Valve Inservice Testing Program Plan - Fourth Ten-Year Interval (Revision 1)

c: B. S. Mallett, NRC Regional Administrator, Region IV (w/o enclosure)
A. B. Wang, NRC Project Manager
J. G. Kramer, NRC Senior Resident Inspector (w/o enclosure)
Division Administrator - Public Health Assurance, State of Nebraska (w/o enclosure)

LIC-03-0158 Attachment Page 1

# ATTACHMENT

# Pump and Valve Inservice Testing Program Plan

Fourth Ten-Year Interval through September 25, 2013 Revision 1

-

# **Table of Contents**

\_\_\_\_

| Section |                                                           | Page |
|---------|-----------------------------------------------------------|------|
| 1.0     | INTRODUCTION                                              |      |
| 1.1     | Purpose                                                   | 3    |
| 1.2     | Scope                                                     | 3    |
| 1.3     | Program Basis                                             | 3    |
| 1.4     | References                                                | 4    |
| 2.0     | INSERVICE TESTING PLAN FOR PUMPS                          |      |
| 2.1     | Pump Inservice Testing Plan Description                   | 5    |
| 2.2     | Pump Plan Table Description                               | 5    |
| 2.3     | Pump Inservice Test Requirements                          | 6    |
| 3.0     | INSERVICE TESTING PLAN FOR VALVES                         |      |
| 3.1     | Valve Inservice Testing Plan Description                  | 7    |
| 3.2     | Valve Plan Table Description                              | 7    |
|         | ATTACHMENTS                                               |      |
| 1       | Inservice Testing Plan System and P&ID Listing            | 11   |
| 2       | Inservice Testing Plan General Notes                      | 13   |
| 3       | Inservice Testing Technical Positions and Tables Notes    | 15   |
| 4       | Relief Requests and Deferred Testing Justifications Index | 24   |
| 5       | Pump Relief Requests                                      | 27   |
| 6       | Valve Relief Requests                                     | 35   |
| 7       | Deferred Testing Justifications                           | 46   |
| 8       | Pump Tables                                               | -    |
| 9       | Valve Tables                                              | -    |

# **1.0 INTRODUCTION**

### 1.1 Purpose

The purpose of this Program Plan is to provide the requirements for the performance and administration of assessing the operational readiness of pumps and valves whose specific functions are required in shutting down the reactor to the cold shutdown condition, in maintaining the cold shutdown condition, or in mitigating the consequences of an accident.

This Program Plan establishes the requirements for the implementing procedures for inservice testing and evaluation of pumps and valves.

# 1.2 Scope

The Program Plan incorporates and complies with the requirements of the 1998 Edition, through 2000 Addenda of the American Society of Mechanical Engineers (ASME) Code for Operation and Maintenance of Nuclear Power Plants (ASME OM Code).

Fort Calhoun Station Inservice Testing Plan incorporates and complies with the 1998 (through 2000 Addenda) ASME OM Code. This Code includes subsections ISTA-General Requirements, ISTB-Inservice Testing of Pumps, ISTC-Inservice Testing of Valves, and Mandatory Appendix I-Inservice Testing of Pressure Relief Devices.

This Program Plan will be in effect through the fourth 120 month interval (through September 25, 2013) and will be updated as required in accordance with 10CFR50.55a(f) and Technical Specifications.

Attachments 8 and 9 provide a complete listing of those pumps and valves included in the program per the requirements of ISTA, ISTB, ISTC and Mandatory Appendix I of the 1998 Edition (through 2000 Addenda) of the ASME OM Code.

# 1.3 Program Basis

The inservice testing (IST) program components were identified using the Fort Calhoun safety classifications along with the references listed in section 1.4. These boundaries were used to classify all IST components (ASME Class 1, 2, 3 and NC).

After all components were identified and classified, the safety functions for each component were determined. The safety function reference of each component was identified and documented in the IST Program Basis Document and database utilizing reference sources such as the USAR, Technical Specifications, and System Design Basis Documents, etc.

Valves included in the IST Program were categorized in accordance with ISTC Section 1300. Pumps included in the IST Program were identified as either centrifugal or

reciprocating in accordance with ISTB Section 1100, and then grouped as either Group A or Group B in accordance with ISTB Section 1300.

Subsequent to determining component safety function, classification and categorization, ISTB, ISTC and Appendix I were utilized to assign test type and test frequencies for each pump and valve identified. Assignment of test frequency was performed on a most limiting basis considering all Technical Specification, USAR and licensing commitments.

Technical Positions are outlined in Attachment 3 of this Plan.

### 1.4 References

- 1.4.1 Fort Calhoun Station Technical Specifications.
- 1.4.2 Fort Calhoun Station Updated Safety Analysis Report.
- 1.4.3 10CFR50.55a Codes and Standards.
- 1.4.4 10CFR50, Appendix J, Primary Reactor Containment Leakage Testing for Water-Cooled Power Plants.
- 1.4.5 ASME OM Code 1998 Edition (through 2000 Addenda), Code for Operation and Maintenance of Nuclear Power Plants.
- 1.4.6 NRC Generic Letter No. 89-04, "Guidance on Developing Acceptable Inservice Testing Programs".
- 1.4.7 NRC NUREG-1482, Guidelines for Inservice Testing at Nuclear Power Plants (for guidance only).
- 1.4.8 NRC Safety Evaluation Report on Revisions 3 and 4 of the Fort Calhoun Station's Inservice Inspection/Testing Program Plan (1983-1993), dated December 22, 1988 and July 3 1989, respectively.
- 1.4.9 Fort Calhoun Station Piping and Instrument Diagrams.
- 1.4.10 Fort Calhoun Station Inservice Testing Basis Document.

# 2.0 INSERVICE TESTING PLAN FOR PUMPS

# 2.1 Pump Inservice Testing Plan Description

This program plan establishes the requirements for the performance, administration, and implementation of the Inservice Testing Plan for selected pumps at the Fort Calhoun Station. This Plan includes those pumps which are provided with an emergency power source and are required in shutting down the reactor to the cold shutdown condition, maintaining the cold shutdown condition, or mitigating the consequences of an accident.

This program plan meets the requirements of the 1998 Code Edition through 2000 Addenda OM Code Subsection ISTB, with the exception of specific relief requests contained in Attachment 5.

### 2.2 Pump Plan Table Description

The pumps included in the Fort Calhoun Station IST Plan are listed in Attachment 8. The information contained in these tables identifies those pumps required to be tested to the requirements of ISTB, the testing parameters and frequency of testing, and associated relief requests. The headings for the pump tables are delineated below:

*Component* – The unique pump number

*Description* – The name/description of the pump

P&ID – The Piping and Instrumentation Diagram on which the pump is shown

Class – The ASME Code classification of the pump (1, 2, 3, or NC for non-ASME)

*Group* – The ISTB pump group

A – Group A (those pumps in standby systems that are operated continuously or routinely during normal operation, cold shutdown, or refueling operations)

B - Group B (those pumps in standby systems that are not operated continuously or routinely except for testing)

*Type* – The type of pump Centrifugal Positive Displacement Vertical Line Shaft

*Test* – Test parameters measured N – Speed DP – Differential Pressure P – Discharge Pressure Q – Flow V – Vibration

Frequency – Test frequency Q – Quarterly Y2 – Once every two years

RR - Pump Relief Request. Relief request numbers for pumps are prefixed with "E".

*TP* – Pump Technical Position (See Attachment 3).

# 2.3 Pump Inservice Test Requirements

2.3.1 Frequency and scheduling of Pump Inservice Testing

Pump Inservice tests are conducted on each pump in the Program each quarter (for Group A and B tests) and once every two years (for comprehensive pump tests) unless the pump is declared inoperable or is not required to be operable.

2.3.2 Test Parameters

Speed (N) – Pump speed is only measured for variable speed pumps

Differential Pressure (DP) – Differential pressure is calculated from suction and discharge pressure or obtained by direct differential pressure measurement.

Discharge Pressure (P) – Discharge pressure is measured for positive displacement pumps

Flow Rate (Q) – Flow rate is measured using a rate or quantity meter installed in the pump test circuit.

*Vibration (V)* – Pump bearing vibration (in/sec peak velocity).

# 3.0 INSERVICE TESTING PLAN FOR VALVES

### 3.1 Valve Inservice Testing Plan Description

This Program establishes the requirements for the performance, administration and implementation of the Inservice Testing Plan for valves at Fort Calhoun Station. This Plan includes those valves which are required to perform a specific function in shutting down the reactor to the cold shutdown condition, in maintaining the cold shutdown condition, or in mitigating the consequences of an accident.

The pressure relief devices covered are those which protect system or portions of systems that perform a required function in shutting down the reactor to the cold shutdown condition, in maintaining the cold shutdown condition, or in mitigating the consequences of an accident.

This Plan establishes the test intervals and parameters to be measured. It meets the requirements of ISTC and Appendix I of the 1998, through 2000 Addenda of the ASME OM Code with the exception of the specific relief requests contained in Attachment 6.

Where the frequency requirements for valve testing have been determined to be impracticable, cold shutdown or refueling outage justifications have been identified and documented. These justifications are provided in Attachment 7.

### 3.2 Valve Plan Table Description

The valves included in the Fort Calhoun Station IST Plan are listed in Attachment 9. The information contained in these tables identifies those valves which are required to be tested to the requirements of ISTC and/or Appendix I, the test type, frequency of test, and any associated relief requests. Also included are any associated deferred testing justifications and technical position associated with the valve. Valves excluded per ISTC 1200 are not listed. The column headings for the valve tables are delineated below:

*System* – The system name for the valve.

*Component* – The unique valve number.

*Description* – Valve noun description/function.

*P&ID* - The Piping and Instrumentation Diagram on which the valve represented.

*Coord* - The coordinate location of the valve on the P&ID.

Size – The nominal pipe size for the valve in inches.

*Type* – The type of valve is indicated by the following abbreviations:

| Valve Type | Description    |
|------------|----------------|
| СК         | Check          |
| BF         | Butterfly      |
| GT         | Gate           |
| GL         | Globe          |
| RV         | Relief         |
| DI         | Diaphragm      |
| 3W         | 3 Way Solenoid |
| 2W         | 2 Way Solenoid |

Act – The valve actuator type is indicated by the following abbreviations:

| Actuator | Description        |
|----------|--------------------|
| MO       | Motor Operated     |
| AO       | Air Operated       |
| SO       | Solenoid Operated  |
| MA       | Manual             |
| SA       | Self Actuated      |
| НО       | Hydraulic Operated |

Class – The ASME Code classification of the valve (1, 2, 3, or NC for non-class).

Cat – The category assigned to the valve per the definitions of ISTC, 1300.

| Category | The second s |
|----------|----------------------------------------------------------------------------------------------------------------|
| A        | Valves with specific seat leakage requirement                                                                  |
| В        | Valves with no specific seat leakage requirement                                                               |
| C        | Self actuating (check valves, relief valves)                                                                   |
| D        | Actuated by an energy source capable of only one operation                                                     |

*Norm Pos* – The position(s) of the valve during normal power operations is indicated as follows:

| Position | Description          |
|----------|----------------------|
| 0        | Open                 |
| С        | Closed               |
| O/C      | Open/Closed          |
| SYS      | System dependent     |
| N/A      | Not Applicable       |
| NE ·     | Normally Energized   |
| ND       | Normally Deenergized |
| LO       | Locked Open          |
| LC       | Locked Closed        |
| A        | Automatic            |

Safe Pos – The safety function position(s) for valves is indicated as follows:

| Position | Description |
|----------|-------------|
| 0        | Open        |
| С        | Closed      |
| O/C      | Open/Closed |

A/P – Active or Passive valve function as indicated below:

| ***** # <b>A/P</b> = **** | Description Barting    |
|---------------------------|------------------------|
| Active                    | Active Valve Function  |
| Passive                   | Passive Valve Function |
| N/A                       | Not Applicable         |

Test – The tests performed to fulfill the requirements of ISTC, 3500 as indicated below.

| Test Type | Description                       |
|-----------|-----------------------------------|
| AT        | Category A Seat Leakage Test      |
| вто       | Category B Exercise Test Open     |
| BTC       | Category B Exercise Test Closed   |
| СТО       | Category C Exercise Test Open     |
| СТС       | Category C Exercise Test Closed   |
| CTD       | Category C Disassembly/Inspection |
| DT        | Category D Test                   |
| PIT       | Position Indication Test          |
| RT        | Relief Valve Test                 |
| FO        | Fail Safe Open Test               |
| FC        | Fail Safe Closed Test             |
| PC        | Partial Exercise Test             |
| DI        | Disassemble/Inspect               |

Freq – The frequency at which the valve test is performed to fulfill the requirements of ISTC Section 3500. The following abbreviations are used for test frequencies:

.

| Frequency | Description                     |
|-----------|---------------------------------|
| Q         | Quarterly                       |
| CS        | Cold Shutdown                   |
| RF        | Refueling                       |
| R3        | Every 3 <sup>rd</sup> Refueling |
| Y         | Annual                          |
| Y2        | Every Two Years                 |
| Y3        | Every Three Years               |
| Y5        | Every Five Years                |
| Y10       | Every Ten Years                 |
| AJ        | Appendix J                      |
| SAM       | Sampling                        |

RR/DTJ - A relief request number is listed when a specific code requirements is determined to be impracticable. Relief request numbers for valves are prefixed with "E". Deferred testing justifications refers to cold shutdown and refueling outage justifications. These justifications are listed when the test frequency is cold shutdown or refueling instead of quarterly and are prefixed with "J" (see Attachment 6 and 7).

*Note/TP* – A Program Plan Note or Technical Position is indicated when clarifying approaches and positions are presented. These positions are prefixed with "N" for Note and "TP" for Technical Position (see Attachment 3).

# **ATTACHMENT 1**

Inservice Testing Plan System and P&ID Listing

,

.

.

| Description                   | System | P&ID                |
|-------------------------------|--------|---------------------|
| Auxiliary Feedwater           | AFW    | 11405-M-253         |
| Compressed Air                | CA     | 11405-M-13          |
| Component Cooling Water       | CCW    | 11405-M-10          |
| Charging                      | СН     | E-23866-210-120/121 |
| Containment Spray             | CS     | E-23866-210-130     |
| Demineralized Water           | DW     | 11405-M-5           |
| Diesel Generator Fuel Oil     | FO     | 11405-M-262         |
| Feedwater                     | FW     | 11405-M-253         |
| Hydrogen Gas                  | HG     | 11405-M-42          |
| Instrument Air                | IA     | 11405-M-13          |
| Main Steam                    | MS     | 11405-M-252         |
| Nitrogen Gas                  | NG     | 11405-M-42          |
| Reactor Coolant               | RC     | E-23866-210-110     |
| Raw Water                     | RW     | 11405-M-100         |
| Diesel Generator Starting Air | SA     | B120F07001          |
| Safety Injection              | SI     | E-23866-210-130     |
| Primary Sample                | SL     | 11405-M-12          |
| Service Water                 | SW     | 11405-M-259         |
| Ventilating Air               | VA     | 11405-M-1           |
| Waste Disposal                | WD     | 11405-M-98          |

# Inservice Testing Plan System and P&ID Listing

# **ATTACHMENT 2**

Inservice Testing Plan General Notes

# **Inservice Testing Plan General Notes**

#### **1.0** Containment Isolation Valves

Containment isolation valves (CIV) falling within the scope of the Code are leakage tested in accordance with the ISTC 3620, Category A. The seat leakage testing performed on these valves meets the intent of Section XI, however the actual test procedures will be conducted in accordance with the 10CFR50, Appendix J, Type C, CIV test program. All CIV's have been categorized as A-Active or P-Passive, and will, as a minimum, be leakage tested per 10CFR50, Appendix J. Passive valves will in general have no other testing performed.

#### 2.0 Pressure Isolation Valves

The purpose of the plant Pressure Isolation Valves (PIV's) is to reduce the possibility of an inter-system LOCA which would occur by pressuring low pressure systems to pressures exceeding their design limits. These Category A valves will be leakage tested per ISTC 3630.

#### 3.0 Solenoid Valves Associated With Power Operated Valves

Solenoid valves associated with air or hydraulic operated valves are excluded from the IST Program, however they are identified within the IST Program Basis Document. These solenoid valves are considered skid mounted components tested when the major component is tested in accordance with ISTA 2000 and ISTC 1200. These solenoid valves are considered to demonstrate their performance as part of the operation of the valve assembly. Stroke time testing of the air or hydraulic operated valve demonstrates the acceptable performance of the associated solenoid valve.

#### 4.0 Exclusion of Selected Thermal Relief Valves

The O&M Code Section IST provides general requirements for periodic performance testing and monitoring of valves that are required to perform a specific function in shutting down a reactor to the safe shutdown condition, in maintaining the safe shutdown condition, or in mitigating the consequences of an accident. These general requirements apply to pressure relief devices that protect systems or portions of systems that perform one or more of these functions. FCS has determined that some thermal relief valves on safety-related systems do not fall within the scope of Section IST. Many safety-related systems, particularly those with heat exchangers, have been provided with thermal relief valves that function to protect isolated components, systems or portions of systems from fluid expansion caused by changes in fluid temperature. Clarification regarding the applicability of IST requirements to thermal relief valves was provided in a NRC SER (Reference ?). The SER stated in part, "Thermal relief valves installed to protect portions of safety-related systems may be included in this expanded scope. The relief valves that may be involved are those that meet the following criteria:

- a. they protect a portion of a safety-related system.
- b. the protected piping and/or component may be isolated during a plant operating mode where credit is taken for operation of the safety-related system.
- c. the protected section is subject to a mechanism that could over pressurize it when isolated, and
- d. the integrity of the protected section(eg., the absence of a rupture or stuck open relief valve) is required for the system to meet its safety function.

The licensee should justify exclusion of these thermal relief valves that do not protect portions of a safety system, that may be isolated during a plant operating mode where credit is taken for operation of the safety-related system"

The following information addresses the justification for exclusion of certain thermal relief valves from the scope of IST testing. The justification for exclusion are:

1. The relief valve protects Class 1, 2 or 3 (Class Code) systems/components that are not required to shutdown the plant/reactor, maintaining the plant/reactor in the shutdown condition, or mitigate an accident.

OR

2. The relief valve is installed on safety related system/components which are not isolated during the operating cycle and are therefore not subjected to a mechanism that that could cause over pressure. In addition, the integrity of the protected section (i.e., stuck open relief valve) is not required for the system to meet its safety function, nor will loss of integrity render the system inoperable.

OR

3. The relief valve is installed on safety related systems/components, which are not subjected to any overpressure mechanism due to system design.

# Justification for Exclusion from the FCS IST Program Plan:

AC-166, AC-167, AC-168, AC-169, AC-291, AC-292, AC-293, and AC-294

RCP RC-3A/B/C&D Seal Cooler CCW Inlet Relief Valves RCP RC-3A/B/C&D Lube Oil Cooler CCW Inlet Relief Valves

Justification: 1

The Reactor Coolant Pumps (RCPs) are not required for safe shutdown of the plant. The USAR assumes that only natural circulation is available for the RCS to cool down. Hence, the portion of the CCW system protected by these relief valves is not required. Although this portion of the CCW system is isolable, this portion of the CCW system is never isolated with the RCPs in operation.

AC-170 and AC-183

Sample Heat Exchanger SL-8A and SL-8B CCW Inlet Relief Valve (Secondary) Sample Heat Exchanger SL-3 CCW Inlet Relief Valve (Primary)

Justification: 1 & 2

These sample heat exchangers are not required for safe shutdown of the plant nor do they protect equipment which mitigate an accident. The inlet and. outlet isolation values are administratively controlled open during the operating cycle.

AC-173 and AC-178

Waste Gas Compressor WD-28A & B Seal Water Heat Exchanger CCW Inlet Relief Valves

Justification: 1 & 2

The Waste Gas Compressors are not required for safe shutdown of the plant nor do they protect equipment which mitigate an accident. The inlet and outlet isolation valves are administratively controlled open during the operating cycle.

#### AC-258

Letdown Heat Exchanger CH-7 CCW Inlet Relief Valve

Justification: 1 & 2

The Letdown Heat Exchanger is not required for safe shutdown of the plant nor is it utilized in mitigation of an accident. In addition, the portion of the system remains in service during the operating cycle and therefore is not subjected to an overpressurization mechanism.

AC-336, AC-337, and AC-338

Charging Pump CH-1A, B, & C Oil Cooler CCW Inlet Relief Valves

Justification: 2

This portion of the CCW system remains inservice during the operating cycle. Hence this section of the CCW system are administratively controlled open on the inlet and outlet piping of the cooler to the rest of the CCW system. This section of piping is not subjected to an overpressurization mechanism.

AC-1026, AC-1027 and AC-1059

Shutdown Cooling Heat Exchanger AC-4A & B CCW Relief Valves Spent Fuel Pool Heat Exchanger AC-8 CCW Relief Valve

Justification: 3

Due to the design of the isolation/flow control valves, these components and piping are not subjected to an overpressurization mechanism. The inlet isolation/flow control valves are Fisher Model 7620 series valves. The type 7600 series butterfly valve is a heavy-duty valve suitable for general control applications where extreme low leakage rates are not required. This valve design is not equipped with a valve seat.

CH-178, CH-179, and CH-180

Charging Pump CH-1A, B & C Suction Relief Valves

Justification: 2

This portion of the CVCS Charging system remains inservice during the operating cycle. If the charging pump is not inservice at the time, then the charging pumps remain unisolated and in the standby condition. These pumps are taken out of service routinely for maintenance due to the nature of positive displacement charging pumps. However, when the charging pump is isolated to be tagged out of service, the tagout requires that the system be drained and vented. Reference Computerized Tagging System for tagout of a charging pump. Hence this section of the CVCS Charging system remains open on the inlet and outlet piping of the charging pumps to the rest of the CVCS system. This section of piping is not subjected to an overpressurization mechanism.

CH-202

Reactor Coolant System Loop Charging System Bypass Valve/Thermal Relief

Justification: 2

CH-202 is the Bypass valve around CH-238. The Charging system loop injection headers into loop 1A and 1B are open during the operating cycle with at least 40 gpm charging flow. This system is not taken out of service. Hence, there is no overpressurization mechanism which requires CH-202 to open. Failure of this spring loaded check valve to the open position would not prevent this system from performing it's design function.

CH-219

Charging Pumps Suction Relief Valve on Common Suction Header from VCT

Justification: 2

This piping is continually in service during the operating cycle. There is no overpressurization mechanism which will challenge this relief valve.

CH-159, CH-223, and CH-224

VCT CH-14 Outlet Relief Valve Regenerative Heat Exchanger CH-6 Letdown Relief Valve Letdown Heat Exchanger CH-7 Letdown Relief Valve

Justification: 1

The letdown portion of the CVCS system is not required to shutdown the plant, maintain the plant shutdown, or mitigate an accident. Therefore, these thermal relief valves do not meet the requirements of Section XI.

JW-4-1 and JW-4-2

Expansion Tank JW-1-1 and JW-2-1 Pressure Caps

Justification: 3

These caps were not installed until 1988. There is no operational significance for these caps. The jacket water system runs at atmospheric pressure. These caps were installed to prevent the jacket water from burping onto the floor after the diesel generator is shutdown. If these caps would stick in the open or closed position, there would be no effect on the operation/operability of the cooling system. Based on this lack of safety significance and affect these caps have of the jacket water system, there is no applicability to the Section XI Program.

SI-222, SI-311 and SI-411

Safety Injection Tanks Fill/Drain Line Relief Valve SIRWT SI-5 Return Line Relief Valve Penetration M-22 Relief

Justification: 1

These portions of the Safety Injection system are not required to shutdown the plant, maintain the plant shutdown, or mitigate an accident. Therefore, these relief valves do not meet the requirements of Section XI.

SI-278, SI-279, SI-280, and SI-281

# Safety Injection Tank (SIT) SI-6A/B/C & D Outlet Relief Valves

### Justification: 3

These relief valves have a setpoint of 395 psig and are located on the discharge piping downstream of the Safety Injection Tanks (SIT) outlet isolation valves, (HCV-2914, HCV-2934, HCV-2954 and HCV-2974). The SIT valves are locked open during the operating cycle. Therefore overpressure protection is provided by the SIT relief valves (SI-209, SI-213, SI-217, and SI-221) which are set at a lower pressure of 275 psig. These relief valves are tested in the Section XI Program. There is no overpressure mechanism that subjects this portion of outlet piping to exceed the design pressure.

### Alternate Testing:

Tests and test frequency for thermal relief valves not included will be controlled under the FCS Preventive Maintenance (PM) Program and be conducted in a similar manner as the FCS IST Program Plan.

# **ATTACHMENT 3**

# Inservice Testing Plan Technical Positions and Table Notes

.

# Inservice Testing Plan Technical Position Index

| <b>Technical Position</b> | Description                                          |
|---------------------------|------------------------------------------------------|
| TP 01                     | <b>Bi-directional Testing Of Check Valves</b>        |
| TP 02                     | Valves With Both Active And Passive Safety Functions |
| TP 03                     | Skid Mounted Components                              |
| TP 04                     | Solenoid Valves                                      |
| TP 05                     | Fail Safe Testing                                    |
| TP 06                     | Pump Categories In Accordance With ISTB              |

#### **COMPONENT IDENTIFICATION/FUNCTION**

Bi-directional Check Valve Testing

#### **POSITION**

Fort Calhoun Station IST Program Plan lists the safety position for all valves. The test type specifies the exercise direction for each exercise test performed. For check valves, verification of the open and closed functions is performed regardless of safety function. In accordance with ISTC 5220, the following testing is performed:

1. Check valves having a safety function in both the Open and Closed directions

The check value is exercised to the full open or to the position required to fulfill its function with flow, and verified that the obturator has traveled to the seat on cessation or reversal of flow.

2. Check valves having a safety function in only the Open direction

The check valve is exercised to the full open or to the position required to fulfill its function with flow and verified to close.

3. Check valves having a safety function in only the Closed direction

The check valve is exercised to at least the partial open position (normal or expected system flow) with flow, and verified that the obturator has traveled to the seat on cessation or reversal of flow.

Observations are made by observing direct indicators or by other positive means. Check valves will be tested at an interval where it is practicable to perform both the open and closed tests.

#### **COMPONENT IDENTIFICATION/FUNCTION**

Testing of valves with both active and passive safety functions.

| HCV-344   | Containment Spray Header Isolation Valve       |
|-----------|------------------------------------------------|
| HCV-383-3 | Containment Sump Recirculation Isolation Valve |
| HCV-383-4 | Containment Sump Recirculation Isolation Valve |
| HCV-385   | SIRW Tank Recirculation Valve                  |
| HCV-386   | SIRW Tank Recirculation Valve                  |
| LCV-218-3 | Charging Pump Suction Header Isolation Valve   |
| LCV-383-1 | SIRW Tank Outlet Level Control Valve           |
| LCV-383-2 | SIRW Tank Outlet Level Control Valve           |

#### **POSITION**

The IST Program requires valves to be exercised to the position(s) required to fulfill their safety functions(s). In addition, valves with remote position indication shall have their position indication verified. The Code does not restrict position indication to active valves.

Several valves included in the plant are designed to perform passive safety functions during accident conditions and then, based on plant accident response, are designed to change positions to perform another (active) function. Once in their final position, there exists no conditions in which they would be required to be placed in their original passive position.

These valves are typically emergency core cooling system valves which require changing position during different phases of the accident. After the original passive safety function (e.g. provide flow path) is performed the valves are repositioned to perform the active safety function(e.g. provide containment isolation). These valves are not required to return to their original position.

Based on ASME Inquiry OMI 98-07, these valves with passive function in one direction and active in the other, will be exercised to only their active position. If these valves have position indication, the position indication verification will include verification of both positions.

#### COMPONENT\_IDENTIFICATION/FUNCTION

Skid Mounted Valves

SA-141, SA-142, SA-145, SA-146, SA-147, SA-148, SA-191, SA-192, SA-195, SA-196, SA-197, SA-198, SA-202, SA-203, SA-252, SA-253

#### **POSITION**

These valves are considered skid mounted and/or component subassemblies of a safety related major component (Diesel Generator). These valves will be verified operational based on satisfactory operational testing on the major component. Corrective actions will be in accordance with the Technical Specification Limiting Condition For Operation (LCO) for the major component. These components are excluded from the Inservice Testing program in accordance with ASME OM Code 1998, through 2000 Addenda ISTA 2000 and ISTC 1200.

#### **COMPONENT IDENTIFICATION/FUNCTION**

Solenoid Valves

#### **POSITION**

Solenoid-operated valves used to control an air-operated valve are excluded from the Inservice Testing Program in accordance with ASME OM Code 1998, through 2000 Addenda ISTA 2000 and ISTC 1200. These valves are considered skid-mounted and are integral to or support operation of the major component. These valves are tested as part of the major component test plan.

These valves do not have position indication and are used only to control air to/from the main valve's control air system. Degradation and/or failure of these valves is assessed during operability testing of the main valve. Although these solenoid valves are not individually stroke timed, their periodic exercising is performed when the main valve is tested.

#### **COMPONENT IDENTIFICATION/FUNCTION**

Fail Safe testing of Category A and B valves

#### **DESCRIPTION**

Fort Calhoun Station, IST Program valves that fail open or closed upon loss of actuator power use the failsafe mechanism to stroke the valve to its safety position. For example, an air-operated valve that fails closed may use air to open the valve against spring force. When the actuator control switch is placed in the closed position, air is vented from the diaphragm and the spring moves the obturator to the closed position.

For fail-safe valves, since placing the control switch in the OPEN position for fail-open valves, and the CLOSED position for fail-closed valves, results in a loss of actuator power, the fail-safe testing requirements of ASME OM Code 1998, through 2000 Addenda ISTC 3560 will be satisfied during stroke testing of the valve.

#### **COMPONENT IDENTIFICATION/FUNCTION**

Pump Categories per ISTB 1300

#### **POSITION**

Fort Calhoun Station has grouped the pumps tested in the IST Program in accordance with the requirements of ISTB 1300.

Group A pumps are those pumps in standby systems that are operated continuously or routinely during normal operation, cold shutdown, or refueling operations. The following pumps are categorized as Group A at Fort Calhoun Station:

| AC-3A  | Component Cooling Water Pump       |
|--------|------------------------------------|
| AC-3B  | Component Cooling Water Pump       |
| AC-3C  | Component Cooling Water Pump       |
| CH-1A  | Charging Pump                      |
| CH-1B  | Charging Pump                      |
| CH-1C  | Charging Pump                      |
| AC-10A | Raw Water Pump                     |
| AC-10B | Raw Water Pump                     |
| AC-10C | Raw Water Pump                     |
| AC-10D | Raw Water Pump                     |
| SI-1A  | Low Pressure Safety Injection Pump |
| SI-1B  | Low Pressure Safety Injection Pump |
| SI-3A  | Containment Spray Pump             |
| SI-3B  | Containment Spray Pump             |
| SI-3C  | Containment Spray Pump             |
| CH-4A  | Boric Acid Pump                    |
| CH-4B  | Boric Acid Pump                    |
|        |                                    |

External recirculation flow (minimum flow recirculation line) is not measured during quarterly testing of Group A pumps. The recirculation flow has a fixed resistance.

Group B pumps are those pumps in standby systems that are not operated routinely except for testing. The following pumps are categorized as Group B at Fort Calhoun Station:

| FW-6    | Auxiliary Feedwater Pump – Motor Driven   |
|---------|-------------------------------------------|
| FW-10   | Auxiliary Feedwater Pump – Turbine Driven |
| FO-4A-1 | Diesel Generator Fuel Oil Transfer Pump   |
| FO-4A-2 | Diesel Generator Fuel Oil Transfer Pump   |
| FO-4B-1 | Diesel Generator Fuel Oil Transfer Pump   |
| FO-4B-2 | Diesel Generator Fuel Oil Transfer Pump   |
| SI-2A   | High Pressure Safety Injection Pump       |
| SI-2B   | High Pressure Safety Injection Pump       |
| SI-2C   | High Pressure Safety Injection Pump       |

#### INSERVICE TESTING PROGRAM PLAN TABLE NOTES

- NOTE #1 (N 1) These valves are check valves associated with the Instrument Air (IA) accumulators attached to process valves that are specified for testing within the IST Program Plan. The IA check valves will be tested on the same schedule as the process valve to which it is attached.
- NOTE #2 (N 2) These valves are check valves associated with the Instrument Air (IA) accumulators on bubblers that are part of the level indication/control system for the Safety Injection Refueling Water Tank. The IST Program Plan addresses only the testing of the check valve in this system.
- NOTE #3 (N 3) These valves are check valves associated with the Instrument Air (IA) accumulators attached to HCV-238 and HCV-239 (located inside containment). The process valves are remotely stroke tested each quarter, but due to inaccessibility, the check valves (IA-HCV-238-C and IA-HCV-239-C) will be exercised at cold shutdown.
- NOTE #4 (N 4) These valves are check valves associated with the Instrument Air (IA) accumulators attached to PCV-6680A-1, PCV-6680A-2, PCV-6680B-1, PCV-6680B-2 and PCV-6682. The valves are located in Room 81. The dampers are not required to be tested; however, the IA accumulator check valves are required to be tested at cold shutdown.
- NOTE #5 (N 5) These valves are check valves on Instrument Air (IA) accumulators attached to HCV-480 and HCV-481. These check valves are exercised open and closed quarterly.

Fort Calhoun Station Inservice Testing Program Plan 4<sup>th</sup> Interval, Revision 0

# **ATTACHMENT 4**

# Inservice Testing Plan Relief Requests and Deferred Testing Justifications Index

# Inservice Testing Plan Relief Requests and Deferred Testing Justification Index

#### **Pump Relief Requests**

- E1 Measurement of Pump Inlet and Differential Pressure
- E2 Deleted
- E3 Deleted in 3<sup>rd</sup> Interval Program
- E4 Use of Pump Curves
- E5 Deleted

#### Valve Relief Requests

- E1 Deleted
- E2 Deleted
- E3 Deleted
- E4 Safety Injection Tank Check Valve Obturator Movement
- E5 Deleted in 3<sup>rd</sup> Interval Program
- E6 Deleted

#### **Deferred Testing Justification Index**

- J1 HPSI Suction Check Valve Testing during Refueling
- J2 PORV Exercise and Fail Safe Testing during Cold Shutdown
- J3 HPSI Pump Discharge Check Valve Testing during Refueling
- J4 LPSI Pump Discharge Check Valve Testing during Cold Shutdown
- J5 Charging Check Valves Testing during Cold Shutdown
- J6 Feedwater Inlet Check Valves Disassembly and Examination
- J7 Auxiliary Feedwater Injection Check Valve Testing during Cold Shutdown
- J8 Vessel Head and Pressurizer Vent Valves Exercise and Fail Safe Testing during Cold Shutdown
- J9 Shutdown Cooling Check Valve Testing during Cold Shutdown
- J10 HPSI to RC Loop Check Valve Testing during Cold Shutdown
- J11 HPSI to RC Loop Check Valve Testing during Refueling
- J12 Charging Check Valve Testing during Refueling
- J13 Letdown Valve Exercising during Cold Shutdown
- J14 Auxiliary Spray Check Valve Testing during Refueling
- J15 RC Pump Bleed Off Isolation Valves Exercise and Fail Safe Testing during Refueling
- J16 VCT/SIRWT Isolation Valves Exercise during Cold Shutdown
- J17 IA Accumulator Check Valve and Auxiliary Pressurizer Spray Isolation Valve Testing during Cold Shutdown
- J18 Boric Acid Isolation Valve Testing during Cold Shutdown
- J19 HPSI Injection Header Check Valve Testing during Refueling
- J20 IA Accumulator Check Valve and Containment Spray Isolation Valve Testing during Cold Shutdown
- J21 Shutdown Cooling Isolation Valve Testing during Cold Shutdown
- J22 SI Tank Leakage Coolers Isolation Valves Testing during Cold Shutdown
- J23 RCP Cooler Isolation Valves, Instrument Air Supply Check Valves Exercising during Cold Shutdown

# **Deferred Testing Justification Index (continued)**

- J24 Main Steam Isolation Check Valve Testing during Cold Shutdown
- J25 Main Steam Isolation Bypass Valve Testing during Cold Shutdown
- J26 Feedwater Isolation Valve Testing during Cold Shutdown
- J27 Instrument Air Containment Isolation Valves Testing during Cold Shutdown
- J28 Instrument Air Supply Check Valves Testing during Cold Shutdown
- J29 IA Accumulator Check Valve and SIRWT Minimum Recirculation Isolation Valves Testing during Cold Shutdown
- J30 Volume Control Tank Outlet Check Valve Testing during Cold Shutdown
- J31 Containment Spray Pumps Discharge Check Valves Testing during Cold Shutdown
- J32 Instrument Air Supply Header Check Valves Testing during Cold Shutdown
- J33 Main Steam Stop Check Valves Disassembly and Examination
- J34 Safety Injection/Instrument Air Valves Testing during Cold Shutdown
- J35 Nitrogen Supply to SIT Check Valves Testing during Cold Shutdown
- J36 Pressurizer Spray Check Valve Testing during Refueling
- J37 Nuclear Detector CCW Isolation Valves Exercise and Fail Safe Testing during Cold Shutdown
- J38 Containment Purge Inlet/Exhaust Isolation Valves Exercise and Fail Safe Testing during Cold Shutdown
- J39 LPSI/CS Pumps Minimum Recirculation Header Check Valve Disassembly and Examination

# ATTACHMENT 5

# **Pump Relief Requests**

### PUMP RELIEF REQUEST NUMBER: E1

System: Various

Pumps: Raw Water Pumps AC-10A, AC-10B, AC-10C, AC-10D Low Pressure Safety Injection Pumps SI-1A, SI-1B High Pressure Safety Injection Pumps SI-2A, SI-2B, SI-2C Containment Spray Pumps SI-3A. SI-3B, SI-3C Boric Acid Pumps CH-4A, CH-4B

Class: 2, 3

Impracticable Test Requirement: ISTB 5100 and Table ISTB-3000-1, Measurement of pump inlet and differential pressure.

**Basis for Relief:** The system design does not include instrumentation for direct measurement of inlet and differential pressure.

Alternative Testing: The Raw Water pump inlet pressure will be calculated based on the river level and the elevation of the pump suction bells. The pump differential pressure will then be calculated based on the measured discharge pressure and the calculated inlet pressure. Since (1) the river provides the required positive pressure at the suction of the pumps, (2) the river level does not change when a pump is started, and (3) at least one pump is usually in service, the calculated inlet pressure prior to starting a pump is the same as with a pump running.

The LPSI, HPSI and CS pumps take their suction directly from the Safety Injection and Refueling Water Tank and have inlet pressures due to the level of water in the tank above the pump inlets. The pump inlet pressures will be calculated based on the tank level and the difference in elevation between the tank and the pump inlets. Pump differential pressures will then be calculated by subtracting the calculated inlet pressure from the measured discharge pressures. Since the Safety Injection and Refueling Water Tank provides the required positive pressure at the suction of the pumps and since the tank level does not significantly change when a pump is started, the calculated pump inlet pressure prior to starting a pump is the same as with a pump running. Flow losses through the suction piping of these pumps are negligible. Since the losses would be the same from test to test, not including them in the test would still enable pump degradation to be identified.

The Boric Acid Pumps take their suction directly from the Boric Acid Tanks and have an inlet pressure due to the level of acid in the tanks above the pump inlet. The pump inlet pressure will be calculated based on the Boric Acid Storage Tank level and the elevation difference between the tank level and the pump inlet. Pump differential pressure will then be calculated by subtracting the calculated inlet pressure from the measured discharge pressure.

Pump Relief Request E1 is necessary to allow FCS to use current measurement methods (with increased accuracy) until potential plant modifications can be evaluated for feasibility to provide suction and/or differential pressure indications for subject pumps. These potential modifications will be initiated and evaluated within one refueling cycle (18 mo.)

FCS requests interim relief for a period of one refueling cycle for this item. Additional actions will be required after completion of the evaluations.
#### PUMP RELIEF REQUEST NUMBER: E2

(

This relief request (E2) has been deleted.

.

#### PUMP RELIEF REQUEST NUMBER: E3

This relief request (E3), was deleted in the 3<sup>Rd</sup> Interval IST Program Plan submittal.

.

#### PUMP RELIEF REQUEST NUMBER: E4

System: Component Cooling Water and Raw Water

Pumps: Component Cooling Water Pumps AC-3A, AC-3B, AC-3C Raw Water Pumps AC-10A. AC-10B, AC-10C, AC-10D

Class:

3

**Impracticable Test Requirement:** ISTB 5000, System resistance shall be varied until either the measured differential pressure or flow rate equals the corresponding reference value.

**Basis for Relief:** The Raw Water (RW) and Component Cooling Water (CCW) systems at Fort Calhoun Station (FCS) are designed such that the total pump flow cannot be adjusted to one specific value for the purpose of testing without adversely affecting the system flow balance and technical specification operability requirements. Therefore, the RW and CCW pumps must be tested in a manner that the RW and CCW loops remain properly flow balanced during and after the testing. In addition, certain supplied loads (e.g., cooling of Control Element Drive Mechanisms) must remain fully operable per Technical Specifications to maintain the required level of plant safety during power operation.

The RW and CCW systems loops are not designed with full flow test lines with single throttle valves. Therefore, the flow cannot be throttled to a fixed reference value every time a pump test is performed. Total pump flow rate can only be measured using the total flow indication as installed and read on the supply headers. There are no valves available in any of the loops, on either the supply or return lines, for the purpose of throttling total RW or CCW system flows. Only the flow of the served components are able to be individually throttled. The main loops of RW and CCW are piped in parallel with each other. Many loads are throttled to flow ranges specified in the FCS Design Basis Documents (DBD). All loads are aligned in parallel, and receive RW and CCW flow when the RW and CCW pumps are running regardless of which served components are in service. During power operation, certain loops of RW/CCW are required to be operable per Technical Specifications. Specific loops/components of RW/CCW cannot be taken out of service for testing without entering an action statement for a Limiting Condition for Operation (LCO). Also, exceeding certain individual component flows/temperatures (e.g., reactor coolant pump seals) can require plant shutdown in two hours, depending on the load in question.

Certain RW/CCW loops are flow balanced during each refueling outage (at a nominal 18month frequency) to ensure that all loads are adequately supplied. Flow ranges are specified for these loads in order to balance flows against each other. Once properly flow balanced, minimal flow adjustment can be made for any one particular load without adversely impacting the operability of the remaining loads (i.e., increasing flow for one load reduces flow for all of the others). Each time the system is flow balanced, proper individual component flows are produced, but this in turn does not necessarily result in one specific value for total flow. Because certain loads have an acceptable flow range, overall system full flow (the sum of the individual component flows) also has a range. Consequently, the Code requirements to quarterly adjust RW/CCW loop flow to one specific flow value for the performance of inservice testing conflicts with FCS system design and component operability requirements (i.e., flow balance) as required by Technical Specifications.

Alternative Testing: As discussed above in the Basis for Relief section, it is extremely difficult to return to a specific value of flow rate or differential pressure for testing of these pumps. Multiple reference points could be established according to the Code, but obtaining reference values at every possible point, even over a small range is not feasible. An alternative to the testing requirements of ISTB 5000, is to base the acceptance criteria on a reference pump curve. Flow rate and differential pressure are measured/calculated during inservice testing and compared to an established baseline reference curve. In addition, trending is accomplished by taking the ratio of the reference curve differential pressure versus flow and the actual differential pressure versus flow.

The following elements are used in developing and implementing the reference pump curves:

- A reference pump curve (differential pressure vs. flow) has been established for RW pumps AC-10A, AC-10B, AC-10C, and AC-10D, and for CCW pumps AC-3A, AC-3B, and AC-3C from data taken on these pumps when they were known to be operating acceptably. These pump curves represent pump performance close to the original manufacturer's pump test data. All subsequent test results are compared to these reference values.
- 2. Pump curves are based on four or more test points whenever possible and has at least one data point for each 20% of the maximum pump curve range. The range of the curves is adequate to bound the points of operation expected during subsequent testing. Rated capacities of these pumps are 6,000 7,000 gpm for the RW pumps and 4,500 5,500 gpm for the CCW pumps.
- 3. The reference baseline pump curves are compared to the manufacturer's pump curves validated during plant preoperational testing.
- 4. Review of the pump hydraulic data trend plots indicates close correlation with established pump reference curves, thus validating the adequacy of the pump curves to assess the pumps' operational readiness.
- 5. When a reference curve may have been affected by repair, replacement or servicing of a pump, a new reference curve shall be determined or the previous curve reconfirmed by an inservice test run before declaring the pump operable. Deviations between the previous and new reference curves shall be identified, and verification that the new curves represent acceptable pump operations shall be placed in the record of tests.
- 6. Only a small portion of the established reference curve is being used to accommodate flow rate variance due to flow balancing of various system loads.
- 7. Review of recent vibration data trend plots indicates that the change in vibration readings over the range of the pump curves being used is insignificant, therefore, only one fixed reference value has been assigned for each vibration measurement

location.

- 8. If test results fall in the alert range the frequency of testing is doubled until the cause of the deviation is determined and the condition corrected. If test results fall in the required action range, the pump shall be declared inoperable until the cause of the deviation has been determined and the cause corrected. Evaluations for deviations in the alert and required action ranges may be done graphically.
- 9. The design of the FCS RW and CCW systems and the Technical Specification requirements make it impracticable to adjust system flows to a fixed reference value for inservice testing without adversely affecting the system flow balance and Technical specification operability requirements. Proposed alternate testing using a reference pump curve for each pump provides adequate assurance and accuracy in monitoring pump condition to assess pump operational readiness and will adequately detect pump degradation. The proposed alternate testing will have no adverse impact on plant or public safety.

#### PUMP RELIEF REQUEST

#### NUMBER: E5

| System:      | Low Pressure Containment Injection and Containment Spray                                          |                                                                                                                                                                       |  |
|--------------|---------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Pumps:       | Low Pressure Safety Injection Pumps SI-1A, SI- 1B<br>Containment Spray Pumps SI-3A, SI- 3B, SI 3C |                                                                                                                                                                       |  |
| Class:       | 2                                                                                                 |                                                                                                                                                                       |  |
| Impracticabl | e Test Requirement:                                                                               | ISTB 5221(e), Vibration measurements shall be compared to both the relative and absolute criteria shown in the alert and required action ranges of Table ISTB-5200-1. |  |

Basis for Relief: Analysis of previous quarterly pump tests while operating with minimum recirculation flow found that the Low Pressure Safety Injection Pumps and the Containment Spray Pumps consistently exceed the >0.325 ips Alert Range limit when they are known to be operating acceptably. Based on analysis of the pump design and discussions with the pump vendor, pump experts and another utility with identical pumps, OPPD has concluded that the installed pumps are not designed to meet this vibration criteria when operation with only minimum recirculation flow.

Alternative Testing: During comprehensive pump testing, the requirements of ISTB 5221(e) will be fully implemented. During Group A quarterly testing, the >0.325 ips Alert Range limit and the >0.70 ips Required Action Limit will be replaced with an Alert Range limit of >0.80 ips and a Required Action Limit of >1.1 ips.

### **ATTACHMENT 6**

# Valve Relief Requests

٠

#### VALVE RELIEF REQUEST NUMBER: E1

•

Deleted

.

. ...

#### VALVE RELIEF REQUEST NUMBER: E2

Deleted

.

.

#### VALVE RELIEF REQUEST NUMBER: E3

.

5

Deleted

.

.

#### VALVE RELIEF REQUEST NUMBER: E4

| System:      | Safety Injection                                               |                                                                                                                                                                                                                                                                |
|--------------|----------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Valves:      | S1-207, SI-208, SI-211, SI-212, SI-215, SI-216, SI-219, SI-220 |                                                                                                                                                                                                                                                                |
| Class:       | 1                                                              |                                                                                                                                                                                                                                                                |
| Function:    | Safety Injection Tank Check Valves                             |                                                                                                                                                                                                                                                                |
| Impracticabl | e Test Requirement:                                            | ISTC 5221, Valve Obturator Movement valve<br>shall be exercised by initiating flow and observing<br>that the obturator has traveled to either the full open<br>position or to the position required to perform its<br>intended function(s) and verify closure. |

**Basis for Relief:** These valves cannot be exercised during power operation because a flow path does not exist due to the higher RCS pressure. The Safety Injection Tank pressure is less than RCS pressure during power operation. Also, these check valves cannot be exercised during Cold Shutdowns because the RCS does not contain sufficient volume to accept the flow required and a low temperature overpressure condition of the RCS could result.

Alternative Testing: These check valves will be full-stroke exercised in the open direction during Refueling Outages by "dumping" the Safety Injection Tanks to the Reactor Vessel. Test parameters such as SI tank level decrease vs. time, SI tank pressure, valve differential pressure, flow rate etc. are used to determine a flow coefficient. The minimum flow coefficient was determined using the safety analysis data provided by the NSSS vendor. Comparing this minimum flow coefficient as acceptance criteria to the flow coefficient determined by testing, assures FCS that the valve is able to perform its safety function. This method of testing the check valves complies with the guidance provided in Generic Letter 89-04, Attachment 1, Position 1.

Closure verification of these check valves will be performed in conjunction with their respective leakage test, performed each refueling.

Additionally, valves SI-208, SI-212, SI-216 and SI-220 will be partial-stroke exercised at Cold Shutdown frequency in the open direction using Shutdown Cooling flow.

.

#### VALVE RELIEF REQUEST NUMBER: E6

Deleted

.

## **ATTACHMENT 7**

# **Deferred Testing Justifications**

.

System: Safety Injection

Valve(s): SI-100, SI-113

Category: C

Class: 2

Function: High Pressure Safety Injection (HPSI) Pump Suction Check Valves

**Test Requirements:** ISTC-3510, Exercising Test Frequency. Active Category A, Category B, and Category C check valves shall be exercised nominally every 3 months.

**Basis for Justification:** These valves cannot be full-stroke exercised open Quarterly during plant operation or during Cold Shutdowns, since to do so would require a flow path to the Reactor Coolant System (RCS). That flow path cannot be utilized during power operation because the High Pressure Safety Injection (HPSI) pumps do not develop sufficient discharge pressure to overcome RCS pressure. This same flow path cannot be utilized during Cold Shutdowns because there is insufficient volume in the RCS to accommodate the flow required and a low temperature overpressure condition of the RCS could result.

Alternative Testing Frequency: These check valves will be partial-stroke exercised open, using the minimum recirculation flow path Quarterly during normal operations, and full-stroke exercised open and closed during Refueling Outages.

This method of partial-stroke exercising open Quarterly and full-stroke exercising open/close during Refueling Outages is in accordance with the requirements set forth in ISTC-3522.

System: Reactor Coolant

Valve(s): PCV-102-1, PCV-102-2

Category: B

Class: 1

Function: Pressurizer Power Operated Relief Valves (PORV)

**Test Requirements:** ISTC-3510, Exercising Test Frequency. Active Category A, Category B, and Category C check valves shall be exercised nominally every 3 months.

ISTC-3560, Fail Safe Testing. Valves with fail safe actuators shall be tested in accordance with the frequency of ISTC-3510.

**Basis for Justification:** These values can only be opened or closed when there is a pressure differential across the value. The values have solenoid pilot values that control their actuation. Since values of this type have a history in the industry of sticking open and the PORV's are not credited in the safety analysis for overpressure protection during power operations, it is impracticable to exercise these values or perform the fail safe test Quarterly during power operation. These values cannot be partial-stroke exercised since based on the value design, it is either fully open or fully closed.

Alternative Testing Frequency: The PORV's will be stroke-timed exercised in the open and closed direction and fail safe tested during the transition to Cold prior to entering Mode 4. The PORV's will be tested during the transition from Hot Shutdown to Cold Shutdown (as defined by FCS Technical Specifications) whenever practical, i.e., normal plant shutdown. During a Technical Specification mandated shutdown, the PORV's will be tested during plant startup prior to entering Mode 2.

System: Safety Injection

Valve(s): SI-102, SI-108, SI-115

Category: C

Class: 2

Function: HPSI Pump Discharge Check Valves

**Test Requirements:** ISTC-3510, Exercising Test Frequency. Active Category A, Category B, and Category C check valves shall be exercised nominally every 3 months.

**Basis for Justification:** These valves cannot be full-stroke or partial-stroke exercised open or closed during plant operation, Quarterly or during Cold Shutdowns, since to do so would require a flow path to the RCS. That flow path cannot be utilized during power operation because the HPSI pumps do not develop sufficient discharge pressure to overcome RCS pressure. This same flow path cannot be utilized during Cold Shutdowns because there is insufficient volume in the RCS to accommodate the flow required, and a low temperature overpressure condition of the RCS could result. Additionally, these valves cannot be exercised during Quarterly pump tests or minimum flow because the minimum flow lines branch off upstream of the check valves and no flow occurs through these valves.

Alternative Testing Frequency: These check valves will be full-stroke exercised open and closed during Refueling Outages when the Reactor Vessel head is removed. This will provide an expansion volume to accommodate the flow required.

#### DEFERRED\_TESTING JUSTIFICATION <u>NUMBER: J4</u>

System: Safety Injection

Valve(s): SI-121, SI-129

Category: C

Class: 2

Function: LPSI Pump Discharge Check Valves

**Test Requirements:** ISTC-3510, Exercising Test Frequency. Active Category A, Category B, and Category C check valves shall be exercised nominally every 3 months.

**Basis for Justification:** These check valves cannot be partial-stroke or full-stroke exercised in the open or closed direction Quarterly during power operation because there is no flow path available except during shutdown cooling. Additionally, these valves cannot be exercised open or closed during Quarterly pump tests or using the minimum flow line because the minimum flow lines branch off upstream of the check valves and no flow occurs through these valves.

Alternative Testing Frequency: These check valves will be full-stroke exercised open and closed during Cold Shutdown.

System: Charging

Valve(s): CH-143, CH-155, CH-156

Category: C

Class: 2

- **Function:** CH-143 Charging Pump Boric Acid Supply Check Valve CH-155- Charging Pump Boric Acid Gravity Feed Check Valve CH-156 - Charging Pump Safety Injection and Refueling Water Tank (SIRWT) Suction Check Valve
- **Test Requirements:** ISTC-3510, Exercising Test Frequency. Active Category A, Category B, and Category C check valves shall be exercised nominally every 3 months.

**Basis for Justification:** These check valves serve to permit direct feed of concentrated boric acid solution to the charging pump suction header. These check valves cannot be full-stroke or partial-stroke exercised open Quarterly during power operation. The only flow path through these valves is into the RCS; exercising would result in injecting highly concentrated boric acid into the RCS. Injecting concentrated boric acid into the RCS during power operation could cause an uncontrolled reactivity excursion, a plant shutdown, or a plant trip.

Alternative Testing Frequency: These check valves will be full-stroke exercised open and closed during Cold Shutdown.

System: Feedwater

Valve(s): FW-161, FW-162

Category: C

Class: 2

Function: Steam Generator Feedwater Inlet Check Valves

**Test Requirements:** ISTC-3510, Exercising Test Frequency. Active Category A, Category B, and Category C check valves shall be exercised nominally every 3 months.

**Basis for Justification:** These check valves function to prevent the loss of inventory of the Steam Generator in the event of a line break upstream between valves HCV-1385 (HCV-1386) and check valve FW-161 (FW-162). These check valves cannot be full-stroke exercised closed Quarterly during power operation because the valves are the only feedwater supply flow paths to the steam generators. During power operation, the feedwater paths to the steam generators must not be isolated as this would remove the "heat sink" for the Reactor Coolant System (RCS).

These valves are 16 inch duo-disk check valves. Although these valves have springs that provide limited closing force, the primary closing force during an applicable event would be associated with flow reversal/differential pressure resulting from a major loss of upstream pressure (e.g., a pipe rupture) during plant operation. Efforts to full-stroke exercise these valves closed during cold shutdown have proven to be impracticable. Limited differential pressure across the valve disk during such testing does not necessarily close the valve with sufficient force to allow positive verification of valve disk closure. This makes it impracticable to reach a valid conclusion regarding the closure capability of the valve with it installed in the system.

Alternative Testing Frequency: These valves will be exercised open and closed manually using disassembly and examination in accordance with ISTC-5221 (c). Since these valves are of the same manufacturer, design, service conditions, size, materials of construction and orientation they may be grouped together. In accordance with ISTC-5221 (c) (3) one valve from this group will be disassembled and examined at each refueling outage with all valves being disassembled and examined at least once every 8 years. During the disassembly process, the valve will be manually full stroke exercised to both the open and closed positions. Immediately prior to completing reassembly the valve will be reverified to stroke through its full range of motion.

If the valve is not capable of full stroke motion or have unacceptable degradation of valve internals, an analysis will be performed. If it is determined that other valves in the group may have similar failure mechanisms, they will be disassembled and examined during the same refueling outage.

System: Auxiliary Feedwater

Valve(s): FW-163, FW-164

Category: C

Class: 2

Function: Steam Generator Auxiliary Feedwater Injection Check Valves

**Test Requirements:** ISTC-3510, Exercising Test Frequency. Active Category A, Category B, and Category C check valves shall be exercised nominally every 3 months.

**Basis for Justification:** These check valves open for auxiliary feedwater (AFW) flow to the Steam Generators. Exercising these valves during power operation would result in cold water injection to a portion of the Steam Generators normally at 400° - 500° F, which would cause unnecessary and possibly damaging thermal stresses in the Steam Generators.

The check valves do not have a safety function in the closed direction, as there are two containment isolation valves upstream of each of the check valves which are normally closed. In addition, there is an AFW pump check valve upstream of the containment isolation valves which is exercised closed quarterly in accordance with the FCS IST Program Plan. As a result of the above mentioned IST tests, FCS has addressed adequately the concern of "thermal binding" of the AFW pumps and has determined that FW-163 and FW-164 do not provide a safety-related function in the reverse flow direction. It should also be noted that the discharge piping temperature upstream of FW-163 and FW-164 is monitored on a regular basis, further ensuring that the AFW pumps will not experience "thermal binding."

Alternative Testing Frequency: These check valves will be exercised to the open and closed positions during Cold Shutdown.

System: Reactor Coolant

Valve(s): HCV-176, HCV-177, HVC-178, HCV-179, HCV-180, HCV-181

Category: B

Class: 2

Function: Reactor Vessel Head and Pressurizer Vents

**Test Requirements:** ISTC-3510, Exercising Test Frequency. Active Category A, Category B, and Category C check valves shall be exercised nominally every 3 months.

ISTC-3560, Fail Safe Testing. Valves with fail safe actuators shall be tested in accordance with the frequency of ISTC-3510.

**Basis for Justification:** These valves are intended to be used to vent the Reactor Pressure Vessel (RPV) head and pressurizer. These valves are Target Rock solenoid valves, which have a history of sticking open when exercised. This could result in a small break Loss of Coolant Accident (LOCA) if these valves are stroke-timed at power. Therefore, partial or full-stroke exercising, or fail safe testing during normal operation (quarterly) is impracticable.

Alternate Testing Frequency: These valves will be stroke-timed exercised in the open and closed directions and fail safe tested closed during Cold Shutdown.

System: Safety Injection

Valve(s): SI-194, SI-197, SI-200, SI-203

Category: A/C

Class: 1

Function: Shutdown Cooling Injection Check Valves

**Test Requirements:** ISTC-3510, Exercising Test Frequency. Active Category A, Category B, and Category C check valves shall be exercised nominally every 3 months.

**Basis for Justification:** These check valves cannot be full-stroke exercised open or partial-stroke exercised Quarterly during power operation because no flow path is available at operating pressure due to system configuration. Since the Safety Injection (SI) pumps are not able to develop sufficient discharge pressure to overcome RCS pressure, the valves are not able to be exercised. Valves SI-194, SI-197, SI-200 and SI-203 are Pressure Isolation Valves (PIVs)as defined by NRC Generic Letter (GL) 89-04 and as listed in the FCS Technical Specifications.

Alternate Testing Frequency: These check valves are full-stroke exercised open and closed during Cold Shutdown when the Shutdown Cooling system is in service. These check valves will be leak tested during Cold Shutdown in accordance with the requirements of FCS Technical Specification 2.1, Table 2-9. This leakage test verifies the closure position of these check valves.

System: Safety Injection

Valve(s): SI-195, SI-198, SI-201, SI-204

Category: A/C

Class: 1

Function: High Pressure Safety Injection to Reactor Coolant Loop Check Valves

**Test Requirements:** ISTC-3510, Exercising Test Frequency. Active Category A, Category B, and Category C check valves shall be exercised nominally every 3 months.

**Basis for Justification:** These check valves cannot be full-stroke or partial-stroke exercised open Quarterly during power operation because the only flow path available is into the RCS. Since the HPSI pumps do not develop sufficient discharge pressure to overcome RCS operating pressure, the valves cannot be exercised during Cold Shutdown because the RCS does not contain an adequate expansion volume and a low temperature overpressurization (LTOP) of the RCS could result Valves SI-195, SI-198, SI-201 and SI-204 are pressure isolation valves (PIV's) as defined by NRC GL 89-04 and as listed in the FCS Technical Specifications.

Alternate Testing Frequency: These check valves will be full-stroke exercised open and closed during Refueling Outages when the RCS is depressurized and the Reactor Pressure Vessel (RPV) Head is removed in order to provide an expansion volume to accommodate the flow required. These check valves will be leak tested during Cold Shutdown in accordance with the requirements of FCS Technical Specification 2.1, Table 2-9. This leakage test verifies the closure position of these check valves.

System: Safety Injection

Valve(s): SI-196, SI-199, SI-202, SI-205, SI-343, CH-469

Category: C

Class: 1 - SI-196, SI-199, SI-202, SI-205, CH-469 2 - SI-343

Function: High Pressure Safety Injection to Reactor Coolant Loop Check Valves

**Test Requirements:** ISTC-3510, Exercising Test Frequency. Active Category A, Category B, and Category C check valves shall be exercised nominally every 3 months.

**Basis for Justification:** Valves SI-196, SI-199, SI-202, SI-205, and CH-469 function to prevent back flow through the Safety Injection (SI) pump discharge headers. These valves cannot be full-stroke or partial-stroke exercised open during power operation utilizing flow because the HPSI pumps do not develop sufficient discharge pressure to overcome RCS pressure. The charging pumps cannot be used during power operation because the flow path from the pumps would bypass the Regenerative Heat Exchanger and result in injecting cold water, causing thermal shock to the injection nozzles and a reactivity transient. This could result in an unnecessary plant trip. Check valve SI-343 cannot be partial-stroke exercised during Cold Shutdowns because using the HPSI pumps without an adequate vent path could cause an overpressurization of the RCS. The HPSI pumps are therefore tagged out to prevent inadvertent operation and potential overpressurization to the RCS.

Alternate Testing Frequency: Check valves SI-196, SI-199, SI-202, and SI-205 will be partial-stroke exercised open during Cold Shutdown using the Charging Pumps and full-stroke exercised open and closed during Refueling Outages when the HPSI pumps are able to be utilized.

Check valve CH-469 will be partial-stroke exercised open during Cold Shutdown using the charging pumps. Both check valves, CH-469 and SI-343, will be full-stroke exercised open and closed during Refueling Outages using the charging pumps and the HPSI pumps, as necessary.

System: Charging

Valve(s): CH-198, CH-203, CH-204

Category: C

Class: 1 - CH-203, CH-204 2 - CH-198

- Function: CH-198 Charging Pump Discharge to RCS Check Valve CH-203, CH-204 – Loop Charging Line to RCS Check Valves
- **Test Requirements:** ISTC-3510, Exercising Test Frequency. Active Category A, Category B, and Category C check valves shall be exercised nominally every 3 months.

**Basis for Justification:** These check valves cannot be full-stroke exercised open (or closed for CH-198) during plant operations Quarterly or during Cold Shutdowns, since to do so would require the charging and HPSI pumps to be run which would require a flow path to the RCS. That flow path cannot be utilized during power operation because the HPSI pumps do not develop sufficient discharge pressure to overcome RCS pressure. This same flow path cannot be utilized during Cold Shutdowns because there is insufficient volume in the RCS to accommodate the flow required and a low temperature overpressure condition of the RCS could result

Alternate Testing Frequency: These check valves CH-198, CH-203, and CH-204 will be partial-stroke exercised in the open direction Quarterly during power operation using the charging pumps. The check valves will be full-stroke exercised in the open and closed directions during Refueling Outages when the Reactor Pressure Vessel (RPV) head is removed, using the charging pumps and the HPSI pumps.

System: Charging

Valve(s): TCV-202, HCV-204

Category: A

Class: 1 – TCV-202 2 – HCV-204

Function: TCV-202 – Letdown Temperature Control Valve HCV-204 – Letdown Heat Exchanger Inlet Isolation Valve

**Test Requirements:** ISTC-3510, Exercising Test Frequency. Active Category A, Category B, and Category C check valves shall be exercised nominally every 3 months.

ISTC-3560, Fail Safe Testing. Valves with fail safe actuators shall be tested in accordance with the frequency of ISTC-3510.

**Basis for Justification:** These valves are used for RCS Loop 2A letdown isolation and temperature regulation. Exercising these valves or performing fail safe testing Quarterly during power operation could result in the termination of letdown flow. This would isolate the RCS purification process and could potentially cause a reactivity excursion. These valves cannot be partial-stroked because the valves are either fully open or fully closed.

Alternate Testing Frequency: These valves will be stroke-timed exercised in the closed direction and fail safe tested during Cold Shutdown in accordance with the FCS IST Program Plan implementing procedures.

System: Charging

Valve(s): CH-205

Category: C

Class: 1

Function: Auxiliary Pressurizer Spray Check Valve

**Test Requirements:** ISTC-3510, Exercising Test Frequency. Active Category A, Category B, and Category C check valves shall be exercised nominally every 3 months.

**Basis for Justification:** This check valve cannot be full-stroke exercised during plant operations Quarterly or during Cold Shutdowns, since to do so would require a flow path to the RCS. That flow path cannot be utilized during power operation because the HPSI pumps do not develop sufficient discharge pressure to overcome RCS pressure. This same flow path cannot be utilized during Cold Shutdowns because there is insufficient volume in the RCS to accommodate the flow required and a low temperature overpressure condition of the RCS could result

Alternate Testing Frequency: The check valves will be partial-stroke exercised in the open direction Quarterly during power operation using the charging pumps. The check valves will be full-stroke exercised in the open and closed directions during Refueling Outages when the RVP head is removed, using the charging pumps and the HPSI pumps.

System: Charging

Valve(s): HCV-206, HCV-241

Category: A

Class: 2

Function: Reactor Coolant Pump Control Bleed Off Isolation Valves

**Test Requirements:** ISTC-3510, Exercising Test Frequency. Active Category A, Category B, and Category C check valves shall be exercised nominally every 3 months.

ISTC-3560, Fail Safe Testing. Valves with fail safe actuators shall be tested in accordance with the frequency of ISTC-3510.

**Basis for Justification:** The Reactor Coolant Pump (RCP) seals serve as an RCS pressure boundary, therefore, seal failure could result in unisolable coolant leakage from the RCS. Isolation of the RCP seal bleed-off by stroking these valves closed would cause the seal bleed-off line relief valve (CH-208) to lift, directing reactor coolant directly to the Reactor Coolant Drain Tank (RCDT). If the leakage remained unchecked, the RCDT relief valve could lift directing reactor coolant to the Containment floor, causing a Ventilation Isolation Actuation Signal (VIAS). Additionally, the temporary isolation of pump seal flow (until the relief valve lifted) would eliminate the ability of the RCP seal to break down RCS pressure and could potentially cause localized overheating of the seals. The pump seals can be damaged by overheating if seal water flow is stopped while the pumps are running. It is impracticable to exercise these valves Quarterly or during any plant conditions that could result in abnormal seal wear. This could lead to failure of the RCP seals, creating unisolable leakage equivalent to a small break LOCA.

Alternate Testing Frequency: The valves will be stroke-timed exercised and fail safe tested in the closed direction during Cold Shutdown, when the RCS is depressurized and the RCP's are secured.

System: Charging

Valve(s): LCV-218-2, LCV-218-3

Category: B

Class: 2

**Function:** Volume Control Tank Outlet Isolation Valve and Charging Pump Suction from SIRWT Isolation Valves

**Test Requirements:** ISTC-3510, Exercising Test Frequency. Active Category A, Category B, and Category C check valves shall be exercised nominally every 3 months.

**Basis for Justification:** These valves function to provide Volume Control Tank (VCT) level control and switch charging suction to the Safety Injection and Refueling Water Storage Tank (SIRWT). The valves cannot be stroke-tested Quarterly because doing so would terminate charging flow to the RCS and would have the potential for disrupting pressurizer level regulation or boron concentration regulation. Pressurizer level regulation disruption can lead to RCS pressure transients and disruption of boron concentration could cause reactivity excursions.

Alternate Testing Frequency: Valve LCV-218-2 will be stroke-timed exercised in the closed direction and valve LCV-218-3 will be stroke-timed exercised in the open direction during Cold Shutdowns.

System: Charging

Valve(s): IA-HCV-240-C, HCV-240, HCV-249

Category: B - HCV-240, HCV-249 A/C - IA-HCV-240-C

Class: 1 - HCV-240, HCV-249 3 - IA-HCV-240-C

Function: IA-HCV-240-C – IA Accumulator Check Valve HCV-240, HCV-249 – Auxiliary Pressurizer Spray Inlet Isolation Valves

**Test Requirements:** ISTC-3510, Exercising Test Frequency. Active Category A, Category B, and Category C check valves shall be exercised nominally every 3 months.

ISTC-3560, Fail Safe Testing. Valves with fail safe actuators shall be tested in accordance with the frequency of ISTC-3510.

**Basis for Justification:** Valves HCV-240 and HCV-249 cannot be stroke-timed exercised or fail safe tested Quarterly during power operation because doing so will lead to large scale depressurization of the RCS and thermal shock of the pressurizer spray nozzle. The IA accumulator check valve (IA-HCV-240-C) cannot be full-stroke exercised in the open direction Quarterly during power operation, as exercising of the check valve will cause HCV-240 to cycle. This could cause large scale depressurization of the RCS and thermal shock of the pressurizer spray nozzle. The check valve (IAHCV-240-C) cannot be partial-stroke exercised for the same reason.

Alternate Testing Frequency: Valve IA-HCV-240-C will be exercised in the open and closed directions during Cold Shutdowns. Valves HCV-240 and HCV-249 will be stroke-timed in both the open and closed and fail safe tested closed directions during Cold Shutdowns.

System: Charging

Valve(s): HCV-268

Category: B

Class: 2

Function: Boric Acid to Charging Pump Suction Isolation Valves

**Test Requirements:** ISTC-3510, Exercising Test Frequency. Active Category A, Category B, and Category C check valves shall be exercised nominally every 3 months.

**Basis for Justification:** These valves serve to isolate concentrated boric acid from the charging pump suction header. These valves cannot be stroke-timed exercised Quarterly during-power operation because doing so would allow concentrated boric acid solution to be injected into the RCS. Boration of the primary system during normal power operation would cause reactivity transients and possibly result in a plant shutdown. These valves cannot be partial-stroked for the same reason.

Alternate Testing Frequency: This valve will be stroke-timed exercised in the open direction during Cold Shutdown.

System: Safety Injection

Valve(s): SI-323

Category: C

Class: 2

Function: High Pressure Safety Injection Header Check Valve

**Test Requirements:** ISTC-3510, Exercising Test Frequency. Active Category A, Category B, and Category C check valves shall be exercised nominally every 3 months.

**Basis for Justification:** This check valve functions to prevent back flow of charging flow to the lower design pressure HPSI piping when the alternate charging flow path is active. The only flow path available is into the RCS and since the HPSI pumps do not develop sufficient discharge pressure to overcome RCS operating pressure, this valve cannot be exercised Quarterly during power operation. This valve cannot be exercised during Cold Shutdowns because the RCS does not contain-an adequate expansion volume and a low-temperature overpressurization of the RCS could result. Additionally, this valve cannot be partial-stroke exercised during pump test or minimum flow because the minimum flow lines branch off upstream of the check valve and no flow occurs through this valve.

Alternate Testing Frequency: This check valve will be exercised open and closed during Refueling Outages.

System: Containment Spray

Valve(s): HCV-344, HCV-345 IA-HCV-344-C, IA-HCV-345-C

Category: B - HCV-344, HCV-345 C - IA-HCV-344-C, IA-HCV-345-C

Class: 2

Function: HCV-344, HCV-345 - Containment Spray Header Isolation Valves IA-HCV-344-C, IA-HCV-345-C - IA Accumulator Check Valves

**Test Requirements:** ISTC-3510, Exercising Test Frequency. Active Category A, Category B, and Category C check valves shall be exercised nominally every 3 months.

ISTC-3560, Fail Safe Testing. Valves with fail safe actuators shall be tested in accordance with the frequency of ISTC-3510.

**Basis for Justification:** Valves HCV-344 and HCV-345 serve as CS isolation. These valves cannot be stroke-tested Quarterly during power operation since the potential for spraying down the Containment is greatly increased. Spraying down the Containment could cause equipment damage, electrical grounds and unnecessary corrosion (due to electrical shorts) to equipment and equipment malfunctions and unnecessary plant trips. These valves represent the only boundary between the CS and SI pump headers and the CS nozzles when manual valves SI-I 77 and SI-178 are open. The valves cannot be partial-stroked for the same reason.

Valves IA-HCV-344-C and IA-HCV-345-C are the IA accumulator check valves for process valves HCV-344 and HCV-345, and function to allow the valves to be closed on loss of IA, if required. These check valves cannot be exercised Quarterly as required as this would stroke the process valves, HCV-344 and/or HCV-345.

Alternate Testing Frequency: Valve HCV-344 shall be stroke-timed in the open direction during Cold Shutdown. HCV-345 shall be stroke-timed in the open direction during Cold Shutdown. The IA check valves IA-HCV-344-C and IA-HCV-345-C shall be exercised in the open and closed direction during Cold Shutdown

System: Safety Injection

Valve(s): HCV-347, HCV-348

Category: A

Class: 1

Function: Shutdown Cooling from Loop Isolation Valves

**Test Requirements:** ISTC-3510, Exercising Test Frequency. Active Category A, Category B, and Category C check valves shall be exercised nominally every 3 months.

**Basis for Justification:** These valves cannot be stroke-timed exercised open or closed Quarterly during power operation because they are interlocked closed to ensure the integrity of the pressure boundary between Class 2501 and Class 301 piping when the RCS pressure is > 250 psia.

Alternate Testing Frequency: These valves will be stroke-timed exercised in the open and closed direction during Cold Shutdown prior to initiating Shutdown Cooling (<300°F and >250 psia) while the Steam Generator is still available for removing decay heat from the primary system.

System: Component Cooling Water

Valve(s): HCV-425A, HCV-425B, HCV-425C, HCV-425D

Category: A

Class: 2

Function: SI Tank Leakage Coolers Isolation Valves

**Test Requirements:** ISTC-3510, Exercising Test Frequency. Active Category A, Category B, and Category C check valves shall be exercised nominally every 3 months.

ISTC-3560, Fail Safe Testing. Valves with fail safe actuators shall be tested in accordance with the frequency of ISTC-3510.

**Basis for Justification:** These valves serve to isolate Containment Penetrations M-39 and M-53, Component Cooling Water (CCW) System penetrations. They cannot be stroke-timed exercised or fail safe tested Quarterly during power operation because failure of these valves in the closed position would terminate cooling flow to Safety Injection Tank leakage coolers. This would have the potential for lifting the relief valve (SI222) to the Reactor Coolant Drain Tank (RCDT) which could eventually cause reactor coolant to overflow to the Containment floor, causing a Ventilation Isolation Actuation Signal (VIAS). These valves cannot be partial-stroked because they are either fully opened or fully closed.

Alternate Testing Frequency: These valves will be stroke-timed exercised and fail safe tested in the closed direction during Cold Shutdowns.

#### System: Component Cooling Water/Instrument Air

# Valve(s): HCV-438A, HCV-438B, HCV-438C, HCV-438D, IA-HCV-438B-C, IA-HCV-438D-C

#### Category: A - HCV-438A, HCV-438B, HCV-438C, HCV-438D C - IA-HCV-438B-C, IA-HCV-438D-C

#### Class: 2 - HCV-438A, HCV-438B, HCV-438C, HCV-438D 3 - IA-HCV-438B-C, IA-HCV-438D-C

Function: RCP Cooler Isolation Valves, Instrument Air Supply Check Valves

# **Test Requirements:** ISTC-3510, Exercising Test Frequency. Active Category A, Category B, and Category C check valves shall be exercised nominally every 3 months.

**Basis for Justification:** These valves serve to isolate Containment Penetrations M-18 and M-19, RCP seal cooling water. Exercising these valves would isolate cooling water flow to the RC Pumps which could damage the pumps if they are operating. RC pump failure during power operation could result in a plant shutdown. Therefore, it is not practical to exercise these valves Quarterly during power operations. During some Cold Shutdowns, Reactor Coolant temperature may be held above 130° F and plant conditions may not allow further cool down or stopping all RC pumps. Exercising these valves during Cold Shutdowns when RC temperature is greater than 130° F or when any RC pump is running could result in RC pump damage. Therefore, it is not practical to exercise these valves when those plant conditions exist. These valves cannot be partial-stroked because they are either fully opened or fully closed.

The IA accumulator check valves cannot be exercised Quarterly during power operation as exercising these check valves will cause cycling of the process valves.

Alternate Testing Frequency: Valves HCV-438A HCV-438B, HCV-438C and HCV-438D will be stroke-timed exercised in the closed direction during Cold Shutdown, provided the RCS is depressurized, RCS temperature is less than 130° F, and the RCP's are secured. IA accumulator check valves (IA-HCV-438B-C, IA-HCV.438D-C) will be exercised open and closed during Cold Shutdown, provided the RCS is depressurized, RCS temperature is less than 130°F and the RCP's are secured.
System: Main Steam

Valve(s): HCV-1041A, HCV-1042A

Category: B

Class: 2

Function: Main Steam Isolation Check Valves

**Test Requirements:** ISTC-3510, Exercising Test Frequency. Active Category A, Category B, and Category C check valves shall be exercised nominally every 3 months.

ISTC-3560, Fail Safe Testing. Valves with fail safe actuators shall be tested in accordance with the frequency of ISTC-3510.

**Basis for Justification:** These valves serve to isolate the Main Steam (MS) headers. They cannot be exercised or fail safe tested Quarterly during power operation because doing so would isolate steam flow in the Steam Generators and result in a turbine and reactor trip. These valves cannot be partial-stroked because they are either fully opened or fully closed.

Alternate Testing Frequency: These valves will be stroke-timed exercised and fail safe tested in the closed direction during Cold Shutdown.

System: Main Steam

Valve(s): HCV-1041C, HCV-1042C

Category: B

Class: 2

Function: Main Steam Isolation Valve Bypass Isolation Valves

**Test Requirements:** ISTC-3510, Exercising Test Frequency. Active Category A, Category B, and Category C check valves shall be exercised nominally every 3 months.

**Basis for Justification:** These valves serve to isolate the Main Steam (MS) headers. They cannot be exercise tested Quarterly during power operation because doing so would isolate steam flow in the Steam Generators and result in a turbine and reactor trip. These valves cannot be partial-stroked because they are either fully opened or fully closed.

Alternate Testing Frequency: These valves will be stroke-timed exercised in the closed direction during Cold Shutdown.

System: Feedwater

Valve(s): HCV-1385, HCV-1386 HCV-1103, HCV-1104, HCV-1105, HCV-1106

Category: B

Class: 2 - HCV-1385, HCV-1386 N - HCV-1103, HCV-1104, HCV-1105, HCV-1106

**Function:** Feedwater Isolation Valves

**Test Requirements:** ISTC-3510, Exercising Test Frequency. Active Category A, Category B, and Category C check valves shall be exercised nominally every 3 months.

ISTC-3560, Fail Safe Testing. Valves with fail safe actuators shall be tested in accordance with the frequency of ISTC-3510.

**Basis for Justification:** Valves HCV-1385, HCV-1386, HCV-1103, HCV-1104, HCV-1105 and HCV-1106 cannot be stroke-timed exercised Quarterly during power operation because doing so would isolate feedwater to Steam Generators resulting in a reactor trip. Additionally, valves HCV-1105 and HCV-1106 cannot be fail safe tested during normal power operations for the same reason. These valves cannot be partial-stroked because they are either fully opened or fully closed.

Alternate Testing Frequency: These valves will be stroke-timed exercised in the closed direction during Cold Shutdown. Additionally, valves HCV-1105 and HCV-1106 will be fail safe tested during Cold Shutdown in conjunction with the stroke time exercise test.

System: Instrument Air

Valve(s): PCV-1849A, PCV-1849B

Category: A

Class: 2

Function: Instrument Air Containment Isolation Valves

**Test Requirements:** ISTC-3510, Exercising Test Frequency. Active Category A, Category B, and Category C check valves shall be exercised nominally every 3 months.

ISTC-3560, Fail Safe Testing. Valves with fail safe actuators shall be tested in accordance with the frequency of ISTC-3510.

**Basis for Justification:** These valves serve to isolate IA pressure (via Penetration M-73) to containment systems. PCV-1849A (inboard) and PCV-1849B (outboard) were added during the refueling and maintenance outage (Fuel Cycle 12) in 1988 by Modification MR-FC-88-11 (OSAR 87-10). Stroke-time exercising and fail safe testing cannot be performed Quarterly during power operations or Cold Shutdown with RCS temperature greater than 130° F and the RCS is not depressurized. The valves cannot be partial-stroked, because they are either fully opened or fully closed.

The closing of these valves could:

- (1) cause fluctuations in the pressure control of the pressurizer (PCV-103-1, PCV-103-2),
- (2) result in damage to RCP seals (HCV-241),
- (3) disrupt RCS letdown to the Chemical Volume Control System (CVCS) (TCV-202, LCV-101-1, LCV-101-2),
- (4) damage the Nuclear Detector instrumentation (HCV-467A/C),
- (5) cause level fluctuation in the SI Tank level (HCV-2916, HCV-2936, HCV-2956, HCV-2976), and
- (6) cause loss of the Steam Generator Blowdown (HCV-1387A and HCV-1388A).

The ripple effect caused by the exercise stroking of PCV-1849A/B would be detrimental during power operation or when in Cold Shutdown with RCS temperature greater than 130° F and not depressurized.

Alternate Testing Frequency: These valves will be stroke-timed exercised and fail safe tested in the closed direction during Cold Shutdown when the RCS temperature is less than 130° F with RCP's off and the RCS depressurized.

System: Instrument Air

Valve(s): IA-HCV-238-C, IA-HCV-239-C

Category: A/C

Class: 3

Function: Instrument Air Supply Check Valves

**Test Requirements:** ISTC-3510, Exercising Test Frequency. Active Category A, Category B, and Category C check valves shall be exercised nominally every 3 months.

**Basis for Justification:** These valves are the instrument air supply check valves on IA accumulators attached to HCV-238 and HCV-239, which are located inside the Containment. The process valves (HCV-238 and HCV-239) are remotely stroke-time exercised in both the open and closed directions Quarterly, but due to inaccessibility during power operation, the check valves are not able to be tested.

Alternate Testing Frequency: These check valves will be full-stroke exercised in the open and closed directions at Cold Shutdown.

System: Safety Injection/Instrument Air

Valve(s): IA-HCV-385-C, IA-HCV-386-C HCV-385, HCV-386

Category: A/C - IA-HCV-385-C, IA-HCV-386-C A - HCV-385, HCV-386

Class: 3 - IA-HCV-385-C, IA-HCV-386-C 2 - HCV-385, HCV-386

- Function: IA-HCV-385-C, IA-HCV-386-C Instrument Air Supply Check Valves HCV-385, HCV-386 – SIRWT Minimum Recirculation Isolation Valves
- **Test Requirements:** ISTC-3510, Exercising Test Frequency. Active Category A, Category B, and Category C check valves shall be exercised nominally every 3 months.

**Basis for Justification:** These valves (IA-HCV-385-C and IA-HCV-386-C) are check valves on IA accumulators attached to HCV-385 and HCV-386 (Safety Injection Mini Flow Bypass Isolation Valves). The test methodology for the IA accumulator check valves requires the process valves to be closed greater than one hour each. This isolates the SI minimum flow recirculation line, which, if the SI pumps start, could cause these pumps to operate at shutoff head. Therefore, the check valves are not able to be exercise tested Quarterly. Running the SI pumps at shutoff head could cause the pumps to overheat and cavitate. Prolonged closure of these valves could cause equipment damage.

These valves (HCV-385 and HCV-386) are Safety Injection Minimum Recirculation Flow isolation valves to the SIRWT (SI-5). The test methodology for these valves requires these valves to be stroke tested dosed which isolates the SI pump minimum recirculation flow path. During the time when one or both minimum-recirculation isolation valves are closed and a real or inadvertent start of a Safety Injection Pump occurs the pump would be deadheaded. This could cause damage to the SI pump and potentially degrade the margin of safety inherent to the SI system. Although the probability that a small Break LOCA would occur at the same time is very remote, Fort Calhoun Station has decided to stroke time exercise HCV-385 and HCV-386 during Cold Shutdown. It is also important to know that during normal operations, valves HCV-385 and HCV-386 are Normally Open, Fail Open, and are only required to close during a Recirculation Actuation Signal (RAS).

Fort Calhoun Station is confident that performing the stroke time exercising of HCV-385 and HCV-386 during Cold Shutdown, in accordance with the IST Program Plan, will provide an acceptable alternative test frequency and will provide a reasonable assurance of the ability of the valves to function as required during a design accident condition. .

## DEFERRED TESTING JUSTIFICATION NUMBER: J29

Alternate Testing Frequency: These check valves (IA-HCV-385-C and IA-HCV-386-C) will be full-stroke exercised in the open and closed directions at Cold Shutdown.

Valves HCV-385 and HCV-386 will be stroke-timed exercised in closed direction at Cold Shutdown.

System: Charging

Valve(s): CH-166

Category: C

Class: 2

Function: Volume Control Tank Outlet Check Valve

**Test Requirements:** ISTC-3510, Exercising Test Frequency. Active Category A, Category B, and Category C check valves shall be exercised nominally every 3 months.

**Basis for Justification:** This check valve serves to prevent a divergent path from the Boric Acid Injection system to the Volume Control Tank (VCT). A divergent path may reduce the concentration of boric acid required to be injected into the RCS.

This check valve cannot be full-stroke exercised in the closed direction Quarterly during power operation. The only flow path through this valve is to the RCS, and would result in injecting highly concentrated boric acid into the RCS. Injecting concentrated boric acid into the RCS during power operation could cause an uncontrolled reactivity excursion, a plant shutdown, or a plant trip.

Alternate Testing Frequency: This check valve will be full-stroke exercised in the open and closed directions during Cold Shutdown in accordance with the FCS IST Program Plan.

System: Containment Spray

Valve(s): SI-135, SI-143, SI-149

Category: C

Class: 2

Function: Containment Spray Pump Discharge Check Valves

**Test Requirements:** ISTC-3510, Exercising Test Frequency. Active Category A, Category B, and Category C check valves shall be exercised nominally every 3 months.

**Basis for Justification:** These valves cannot be full-stroke exercised open or close Quarterly during power operation because the only full flow path is into the CS headers. This would result in the spraying down of the equipment in containment, possibly causing equipment damage and requiring extensive cleanup. Also, these valves cannot be partial-stroke exercised during the Quarterly CS pump tests because the minimum flow lines branch off upstream of the check valves and therefore no flow occurs through these valves. Using the discharge tap downstream of the minimum flow lines will overflow the floor drains in the Auxiliary Building potentially creating an increase in radioactive contamination and background radiation levels.

Alternate Testing Frequency: These check valves will be full-stroke exercised in the open and closed directions during Cold Shutdown when the CS pumps are able to be aligned for shutdown cooling to the Shutdown Cooling Heat Exchangers (< 120° F primary temperature), in accordance with the FCS Technical Specifications.

System: Instrument Air

Valve(s): IA-PCV-6680A-1 -C, IA-PCV-6680A-2-C, IA-PCV-6680B-1 -C, IA-PCV-6680B-2-C, and IA-PCV-6682-C IA-HCV-1107A-C, IA-HCV-1107B-C, IA-HCV-1108A-C IA-HCV-1108B-C, IA-FCV-1368-C, and IA-FCV-1369-C

Category: A/C

Class: 3

Function: Instrument Air Head Supply Check Valves

**Test Requirements:** ISTC-3510, Exercising Test Frequency. Active Category A, Category B, and Category C check valves shall be exercised nominally every 3 months.

**Basis for Justification:** These valves (IA-PCV-6680A-1-C/-2-C, -6680B-1-C/-2-C and IA-PCV-6682-C) cannot be exercised Quarterly during power operation, as exercising these check valves will cause isolation of the Control Room (CR) air filtration dampers. Failure of the CR air filtration dampers in a non-conservative position would cause the CR filtration system to be inoperable. This would require the plant to be in Cold Shutdown per Technical Specification (TS) 2.12. Failure of the dampers in the OPEN position would not allow the CR to be isolated during a toxic gas release. This would result in entry into Technical Specification 2.0.1.

Check valves IA-HCV-1107A/B-C, -1108A/B-C, and FCV-1368-C/1369-C cannot be exercised Quarterly during power operation as exercising these check valves will cause possible isolation of AFW and render the AFW system inoperable for an extended period of time, possibly requiring the plant to be in Cold Shutdown per Technical Specification 2.5. Failure of the isolation valves in the open direction would not allow the required flow rate to the Steam Generator assuming loss of FW-10. This would result in entry into Technical Specification 2.0.1, i.e., Notification of Unusual Event (NOUE).

Alternate Testing Frequency: These check valves will be full-stroke exercised in the open and closed directions during Cold Shutdown.

System: Main Steam

Valve(s): HCV-1041B, HCV-1042B

Category: C

Class: 2

Function: Main Steam Stop Check Valves

**Test Requirements:** ISTC-3510, Exercising Test Frequency. Active Category A, Category B, and Category C check valves shall be exercised nominally every 3 months.

**Basis for Justification:** These check valves are swing type check valves which are installed to provide a positive isolation of the Steam Generators. If Main Steam (MS) header pressure is greater than Steam Generator pressure, the check valves prevent reverse back flow into a faulted Steam Generator. The corrective maintenance history of these two check valves has been limited to gasket/bolt/nut replacements since installation. In addition, the check valves are 28 inch carbon steel Ametek, Inc. type check valves which see flow during normal operations. OPPD has previously disassembled and inspected each of these check valves once and the check valves were acceptable. In order to assess the condition of the check valves during sample disassembly and examination and to provide a consistent and precise method of gauging the check valves' physical and mechanical condition, a check list was developed and incorporated into the surveillance tests used for sample disassembly and inspection. An example of items evaluated on the check list are:

- 1) Whether valve discs are initially seated
- 2) A determination of obstructions
- 3) Cracking or linear indications
- 4) Loose/missing/broken parts
- 5) Whether obstruction to moving parts
- 6) Wear/Corrosion/Erosion
- 7) Presence of foreign material
- 8) Misalignment (if any) and effect on valve operation
- 9) Mechanical damage
- 10) Hinge Pin condition
- 11) Disc/seat condition
- 12) Perform manual exercise of discs

Each check valve has been disassembled and inspected in the previous outages. The assessment of the valves' mechanical and physical condition is performed by FCS Inspectors qualified to VT-3 in accordance with ASME Section XI. In addition, the review/evaluation of any observed deficiencies/indications is performed by Engineering for a final acceptance of the valve's condition. In addition, a review of the installation of each check valve has been addressed using the "EPRI Applications Guideline for Check Valves in Nuclear Power Plants" and appropriate actions have been taken (i.e., Preventive Maintenance (PM) inspections) as a result of the completion of the design application for the check valves. Disassembly and reassembly of both valves (i.e., every Refueling Outage) introduces unnecessary potential for valve failure due to damage caused by maintenance without providing a commensurate increase in plant safety or check valve reliability. These check valves cannot be exercised Quarterly during power operation because doing so would cause steam to be isolated to the Main Steam header. causing the turbine to trip and resulting in a reactor trip. It is impractical to reverse flow test these check valves during Cold Shutdown; to do so would require the downstream side of the values to have reverse flow sufficient to close the 600 pound, 28-inch disks. To close these disks would require extensive modifications to the secondary side of the Main Steam system to permit sufficient dP to close the valve disks. Another method would be to fill the downstream side of the valve disks with fluid. To do this would require extensive piping and support modifications because of excessive loading on the Main Steam piping. To perform any type of successful reverse flow test on these check valves would require extensive plant modifications and manpower, and would subject the Main Steam system to potentially detrimental conditions, without providing a commensurate increase in public safety or check valve reliability.

Alternative Testing Frequency: These valves will be exercised open and closed manually using disassembly and examination in accordance with ISTC-5221 (c). Since these valves are of the same manufacturer, design, service conditions, size, materials of construction and orientation they may be grouped together. In accordance with ISTC-5221 (c) (3) one valve from this group will be disassembled and examined at each refueling outage with all valves being disassembled and examined at least once every 8 years. During the disassembly process, the valve will be manually full stroke exercised to both the open and closed positions. Immediately prior to completing reassembly, the valve will be reverified to stroke through its full range of motion.

If the valve is not capable of full stroke motion or has unacceptable degradation of valve internals, an analysis will be performed. Other valves in the group that may also be affected by this failure mechanism will be disassembled and examined or tested during the same refueling outage.

System: Safety Injection/Instrument Air

| Valve(s): | LCV-383-1, LCV-383-2, HCV-383-3, HCV-383-4<br>IA-LCV-383-1-C, IA-LCV-383-2-C                                                                                                     |
|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Category: | A - LCV-383-1, LCV-383-2, HCV-383-3, HCV-383-4<br>C - IA-LCV-383-1-C, IA-LCV-383-2-C                                                                                             |
| Class:    | 2 - LCV-383-1, LCV-383-2, HCV-383-3, HCV-383-4<br>3 - IA-LCV-383-1-C, IA-LCV-383-2-C                                                                                             |
| Function: | LCV-383-1, LCV-383-2; SIRWT Isolation Valves<br>HCV-383-3, HCV-383-4: Containment Sump Isolation Valves<br>IA-LCV-383-1-C, IA-LCV-383-2-C; Instrument Air Supply Check<br>Valves |

**Test Requirements:** ISTC-3510, Exercising Test Frequency. Active Category A, Category B, and Category C check valves shall be exercised nominally every 3 months.

## **Basis for Justification:**

#### Tech Spec Limitations

OP-ST-SI-3001, Attachment 5, prior to PC 42612 contained a caution stating that "Closing LCV-383-1 renders LPSI Pump SI-IB, HPSI Pump SI-2B, and CS pumps SI-3C and 3B INOPERABLE." The applicable Limiting Conditions for Operation (LCO) action statements of Technical Specifications 2.1.1, 2.3, 2.4 and 2.7 must be implemented.

Technical Specification 2.3(2) specifically states that during power operation, the Minimum Requirements may be modified to allow one of the following conditions to be true at any one time. If the system is not restored to meet the minimum

- a. One low-pressure safety injection pump may be inoperable provided the pump is restored to operable status within 24 hours.
- b. One high-pressure safety injection pump may be inoperable provided the pump is restored to operable status within 24 hours.

By performing this test at power, two provisions of Tech Spec 2.3(2) are violated concurrently, requiring entry into Technical Specification 2.0.1.

Operations reviewed the possibility of utilizing a dedicated operator during performance of this surveillance test. Using the guidance of the NRC Generic Letter 91-18, Operations Memo 93-11, and Standing Order G-100 (approved and issued), the following conclusions can be drawn. The Generic Letter information is explicit in stating that, generally, equipment is inoperable during surveillance. The use of a dedicated operator

must be reviewed to ensure that the operator and his necessary actions would result in a configuration where the system did not need to be considered inoperable. In the case of LCV-383-1 and -2, this determination cannot be made. Even if a dedicated operator were stationed at the valve and were to immediately return the valve to an open condition in the event of an accident signal, the open travel time of the valves is roughly 30 seconds. The sequencer timer for a HPSI pump is approximately 3 seconds, with LPSI pumps following shortly in less than 15 seconds. Adding in reaction time of the operator, even a few seconds, there is a high probability that more than one SI pump would start without a suction source. Practically speaking, the most prudent action to prevent equipment damage would be to place the respective pumps in pull-out. This, however, renders the pumps inoperable and the Tech Specs noted above apply. Thus, no positive operability determination can be made; instead, Tech Spec 2.0.1 again applies.

Testing of HCV-383-3 and -383-4 is performed in conjunction with the testing of LCV-383-1 and -383-2 (during the time frame when these valves are closed) because of the possibility that the check valves in the recirculation lines may not hold. If the check valve did not hold, and LCV-383-1 or -2 was left open, cycling HCV-383-3 or -4 to the open position could result in backing the SIRWT up into the containment sump. Among possible consequences of this is the violation of Technical Specification on SIRWT level. Consequently, it is preferable to close LCV-383-1/2 during cycling of HCV-383-3 or -4. Closing LCV-383-1/2 during power operation results in entry to Tech Spec LCO 2.0.1 (see discussion for LCV-383-1/2, above).

Testing of LCV-383-1-C and -383-2-C is performed to demonstrate the ability of the instrument air check value to isolate instrument air and continue to hold the value closed with backup nitrogen. The purpose of the test is to demonstrate the ability of nitrogen to hold the value closed, and therefore the test must be performed with LCV-383-1/2 in the closed condition. The closure of LCV-383-1/2 during power operation results in entry to Tech Spec 2.0.1 (see discussion for LCV-383-112, above). Therefore, testing of these check values must be deferred to a Cold Shutdown/Refueling condition.

Alternative Testing Frequency: Valves (LCV-383-1, LCV-383-2) will be stroke-time exercised in the closed direction at cold shutdown frequency.

Valves (HCV-383-3, HCV-383-4) will be stroke-time exercised in the open direction at Cold Shutdown frequency.

Valves (LCV-383-1-C, LCV-383-2-C) will be exercised in the open and closed directions at Cold Shutdown frequency.

System: Nitrogen Gas

Valve(s): NG-142, NG-144, NG-146, NG-148

Category: A/C

Class: 2

Function: Nitrogen supply to Safety Injection Tanks

**Test Requirements:** ISTC-3510, Exercising Test Frequency. Active Category A, Category B, and Category C check valves shall be exercised nominally every 3 months.

**Basis for Justification:** Check valves NG-142, NG-144, NG-146 and NG-148 function to prevent back flow through the check valves and the nitrogen  $(N_2)$  supply to the SI Tanks during an accident condition. The check valves prevent loss of N2 from the SI Tanks during an accident condition. These check valves cannot be full-stroke exercised Quarterly, as the containment would be inaccessible during power operation and the SI Tanks would be required to be made inoperable in order to perform this test. The SI Tanks are required to function in order to provide adequate protection to the plant personnel and the general public during a postulated loss of coolant accident (LOCA). Check valves will be partial-stroke exercised quarterly, during normal plant operations or using a PMO procedure as required in order to ensure that the check valves are partially stroke exercised at least quarterly.

Alternative Testing Frequency: Check valves, NG-142, NG-144, NG-146 and NG-148 will be partial-stroke exercised quarterly during power operations using normal plant operations/logs. The check valves will be full-stroke exercised open and closed during Cold Shutdowns.

System: Reactor Coolant

Valve(s): RC-374

Category: A/C

Class: 1

Function: Pressurizer Spray Line Check Valve

**Test Requirements:** ISTC-3510, Exercising Test Frequency. Active Category A, Category B, and Category C check valves shall be exercised nominally every 3 months.

**Basis for Justification:** This check valve (RC-374) functions to prevent or minimize a loss of flow through the Pressurizer Spray Line from the Pressurizer Auxiliary Spray Line to the Reactor Coolant System Cold Legs when Auxiliary Spray is required (i.e., during Hot Leg injection).

The check valve cannot be full-stroke exercised closed during plant operations Quarterly or during Cold Shutdowns, since to do so would require a flow path to the RCS using the Auxiliary Pressurizer Spray Line. That flow path cannot be utilized during power operation as it could cause a cold water injection event to the Pressurizer resulting in a large fluctuation of power due to the decreased temperature and could cause an uncontrolled reactivity addition. The increased reactivity could cause an increase in power and/or reactivity addition and ultimately a plant/reactor trip. The flow path (Pressurizer Auxiliary Spray) cannot be utilized during power operation or Cold Shutdown since to test RC-374 closed requires the High Pressure Safety Injection (HPSI) Pumps to be run. The HPSI pumps cannot be run during power operations as the pumps do not have enough suction pressure to overcome RCS pressure. In addition, the check valve is not able to be tested during Cold Shutdown because using the HPSI pumps without an adequate vent path could cause an overpressurization of the RCS. Using the Charging Pumps only to quantify leakage would not provide a sufficient flow to adequately verify check valve closure.

Alternative Testing Frequency: Check valve RC-374 will be exercised in the open and closed directions during Refueling Outages using the HPSI Pumps.

System: Component Cooling Water

Valve(s): HCV-467A, HCV-467B, HCV-467C, HCV-467D

Category: A

Class: 2

Function: Nuclear Detector Cooling Water Isolation Valves

**Test Requirements:** ISTC-3510, Exercising Test Frequency. Active Category A, Category B, and Category C check valves shall be exercised nominally every 3 months.

ISTC-3560, Fail Safe Testing. Valves with fail safe actuators shall be tested in accordance with the frequency of ISTC-3510.

**Basis for Justification:** These valves serve to isolate containment Penetrations M-15 and M-11, Component Cooling Water (CCW) penetrations. These valves cannot be stroke time exercised or fail safe tested Quarterly during power operation because failure of these valves during testing would render the Nuclear Detector Well Cooling Units inoperable and require the Plant to take emergency action within eight minutes. This would cause the Nuclear Instrumentation to have erratic indication. Should the Nuclear Detector Well Cooling Units fail, the LCO specified in Technical Specifications 2.13 would be entered and could result in a Plant shutdown. These valves are always open at power and therefore do not require exercising. The PSA analysis has shown that these valves have a low risk significance and are of minimum safety value. These valves would only be required to close during a Containment Isolation Actuation Signal coincident with a loss of CCW, a highly unlikely scenario. Testing these valves during power operation would not result in a commensurate increase is safety, but could result in undue hardship to the licensee.

Alternative Testing Frequency: These valves will be stroke time exercised and fail safe tested during Cold Shutdown.

System: Ventilating Air

Valve(s): PCV-742A, PCV-742B, PCV-742C, PCV-742D

Category: A

Class: 2

Function: Containment Purge Inlet/Exhaust Isolation Valves

**Test Requirements:** ISTC-3510, Exercising Test Frequency. Active Category A, Category B, and Category C check valves shall be exercised nominally every 3 months.

ISTC-3560, Fail Safe Testing. Valves with fail safe actuators shall be tested in accordance with the frequency of ISTC-3510.

**Basis for Justification:** These valves are 42 inch butterfly valves which are normally closed and locked closed during power operation or when Containment Integrity is required. These valves have a passive safety function in the closed direction during all conditions except Containment Purge operations. These valves are only required to function as "active" during Containment Purge operations.

These valves are required to be leakage tested per Appendix J every time they are exercised. Stroke time exercising and/or fail safe testing of these valves during normal plant operation could cause loss of Containment Integrity and is prohibited by Technical Specifications and administrative controls.

Alternative Testing Frequency: These valves will be stroke time exercised and fail safe tested during Cold Shutdown.

System: Safety Injection

Valve(s): SI-153

Category: C

Class: 2

Function: LPSI/CS Pumps Minimum Recirculation Header Check Valve

**Test Requirements:** ISTC-3510, Exercising Test Frequency. Active Category A, Category B, and Category C check valves shall be exercised nominally every 3 months.

**Basis for Justification:** This valve functions to prevent reverse flow into the Low Pressure Safety Injection (LPSI) pumps/Containment Spray (CS) pumps minimum recirculation header. Following a Recirculation Actuation Signal (RAS), this check valve could be exposed to higher downstream pressure when the recirculation header is isolated from the Safety Injection and Refueling Water Tank (SIRWT). This valve provides one line of defense to prevent High Pressure Safety Injection (HPSI) pump flow from "short-circuiting" back through the LPSI/CS pumps into the HPSI suction header. This valve also must open to pass sufficient minimum recirculation flow from the pumps.

This valve is a 6 inch duo disk check valve. Surveillance Test OP-ST-SI-3008 partial strokes this valve in the open direction on a quarterly frequency. This check valve cannot be full stroke exercised open or closed Quarterly during power operation or during cold shutdown since flow instrumentation is not installed in the line and it is not acceptable to operate multiple SI pumps that would be needed to establish full flow through this valve during power operation or during cold shutdown.

Alternative Testing Frequency: This valve will be exercised open and closed manually using disassembly and examination in accordance with ISTC-5221 (c). During the disassembly process, the valve will be manually full stroke exercised to both the open and closed positions. Immediately prior to completing reassembly the valve will be reverified to stroke through its full range of motion.

If the valve is not capable of full stroke motion or has unacceptable degradation of valve internals, an analysis will be performed. Other valves that may also be affected by this failure mechanism will be disassembled and examined or tested during the same refueling outage.

## **ATTACHMENT 8**

# **Pump Tables**

•

| SYSTEM: AFW - Auxilia |                        |          |      |        |     |      |     |                |                    |
|-----------------------|------------------------|----------|------|--------|-----|------|-----|----------------|--------------------|
|                       |                        | Code     |      | Test   |     | Code |     |                |                    |
| Component             | PID(Coord)<br>Comments | Class    | Disc | .Press | DP  | Flow | VIB | Speed          | ProcedureFreq Dev. |
| FW-10                 | M-253 (B5)             | 3        | No   | Yes    | Yes | Yes  | Yes | SE-ST-AFW-3006 | Q                  |
| AUXILIARY FEEDWATEF   | R PUMP; (TURBI         | NE-DRIVE |      |        |     |      |     |                |                    |
| FW-6                  | M-253 (C6)             | 3        | No   | Yes    | Yes | Yes  | No  | OP-ST-AFW-3009 | Q                  |
| AUXILIARY FEEDWATER   | R PUMP ; (MOTO         | R-DRIVEN |      |        |     |      |     |                |                    |

| YSTEM: CCW - Component Cooling Water System |                         |       |            |     |      |     |       |                |      |  |  |  |  |  |
|---------------------------------------------|-------------------------|-------|------------|-----|------|-----|-------|----------------|------|--|--|--|--|--|
|                                             | lest Parameters<br>Code |       |            |     |      |     |       |                |      |  |  |  |  |  |
| Component                                   | PID(Coord)              | Class | Disc.Press | DP  | Flow | VIB | Speed | Procedure      | Freq |  |  |  |  |  |
| AC-3A                                       | M-10 (E6)               | 3     | No         | Yes | Yes  | Yes | No    | OP-ST-CCW-3002 | Q    |  |  |  |  |  |
| COMPONENT COOLING                           | WATER PUMP              |       |            |     |      |     |       |                |      |  |  |  |  |  |
| AC-3B                                       | M-10 (D6)               | 3     | No         | Yes | Yes  | Yes | No    | OP-ST-CCW-3012 | Q    |  |  |  |  |  |
| COMPONENT COOLING                           | WATER PUMP              |       |            |     |      |     |       |                |      |  |  |  |  |  |
| AC-3C                                       | M-10 (C6)               | 3     | No         | Yes | Yes  | Yes | No    | OP-ST-CCW-3022 | Q    |  |  |  |  |  |
| COMPONENT COOLING                           | WATER PUMP              |       |            |     |      |     |       |                |      |  |  |  |  |  |

.

### SYSTEM: CH - Chemical and Volume Control

| Test Parameters   |                              |       |            |     |      |     |       |               |      |  |  |  |
|-------------------|------------------------------|-------|------------|-----|------|-----|-------|---------------|------|--|--|--|
| Component         | PID(Coord)<br>210-120-1 (A6) | Class | Disc.Press | DP  | Flow | VIB | Speed | Procedure     | Freq |  |  |  |
|                   | 210-120-1 (40)               | 4     | Yes        | No  | Yes  | Yes | No    | OP-ST-CH-3003 | Q    |  |  |  |
| CHARGING PUMP "A" |                              |       |            |     |      |     |       |               |      |  |  |  |
| CH-1B             | 210-120-1 (E6)               | 2     | Yes        | No  | Yes  | Yes | No    | OP-ST-CH-3003 | Q    |  |  |  |
| CHARGING PUMP "B" |                              |       |            |     |      |     |       |               |      |  |  |  |
| CH-1C             | 210-120-1 (C6)               | 2     | Yes        | No  | Yes  | Yes | No    | OP-ST-CH-3003 | Q    |  |  |  |
| CHARGING PUMP "C" |                              |       |            |     |      |     |       |               |      |  |  |  |
| CH-4A             | 210-121 (A3)                 | 2     | No         | Yes | Yes  | Yes | No    | OP-ST-CH-3003 | Q    |  |  |  |
| BORIC ACID PUMP   |                              |       |            |     |      |     |       |               |      |  |  |  |
| СН-4В             | 210-121 (B6)                 | 2     | Νο         | Yes | Yes  | Yes | No    | OP-ST-CH-3003 | Q    |  |  |  |

BORIC ACID PUMP

## SYSTEM: FO - (Diesel Generator) Fuel Oil System

| Test Parameters<br>Code |              |       |            |    |      |     |       |               |      |  |  |  |  |
|-------------------------|--------------|-------|------------|----|------|-----|-------|---------------|------|--|--|--|--|
| Component               | PID(Coord)   | Class | Disc.Press | DP | Flow | VIB | Speed | Procedure     | Freq |  |  |  |  |
| FO-4A-1                 | M-262-1 (D6) | 3     | Yes        | No | Yes  | Yes | No    | OP-ST-FO-3001 | Q    |  |  |  |  |
| D1 FUEL OIL TRANSFER    | PUMP #1      |       |            |    |      |     |       |               |      |  |  |  |  |
| FO-4A-2                 | M-262-1 (F6) | 3     | Yes        | No | Yes  | Yes | No    | OP-ST-FO-3001 | Q    |  |  |  |  |
| D2 FUEL OIL TRANSFER    | PUMP #1      |       |            |    |      |     |       |               |      |  |  |  |  |
| FO-4B-1                 | M-262-1 (C6) | 3     | Yes        | No | Yes  | Yes | No    | OP-ST-FO-3001 | Q    |  |  |  |  |
| D1 FUEL OIL TRANSFER    | PUMP #2      |       |            |    |      |     |       |               |      |  |  |  |  |
| FO-4B-2                 | M-262-1 (E6) | 3     | Yes        | No | Yes  | Yes | No    | OP-ST-FO-3001 | Q    |  |  |  |  |
| D2 FUEL OIL TRANSFER    | PUMP #2      |       |            |    |      |     |       |               |      |  |  |  |  |

| SYSTEM: RW - Raw W | Vater System |               | Test F     | Paran | neters |     |       |               |      |
|--------------------|--------------|---------------|------------|-------|--------|-----|-------|---------------|------|
| Component          | PID(Coord)   | Code<br>Class | Disc.Press | DP    | Flow   | VIB | Speed | Procedure     | Freq |
| AC-10A             | M-100 (A7)   | 3             | No         | Yes   | Yes    | Yes | No    | OP-ST-RW-3001 | Q    |
| RAW WATER PUMP     |              |               |            |       |        |     |       |               |      |
| AC-10B             | M-100 (A6)   | 3             | No         | Yes   | Yes    | Yes | No    | OP-ST-RW-3011 | Q    |
| RAW WATER PUMP     |              |               |            |       |        |     |       |               |      |
| AC-10C             | M-100 (A5)   | 3             | No         | Yes   | Yes    | Yes | No    | OP-ST-RW-3021 | Q    |
| RAW WATER PUMP     |              |               |            |       |        |     |       |               |      |
| AC-10D             | M-100 (A4)   | 3 ·           | No         | Yes   | Yes    | Yes | No    | OP-ST-RW-3031 | Q    |

.

.

• •

.

RAW WATER PUMP

•

SYSTEM: SI - Safety Injection System

|                     | , <b>,</b>     | Test Parameters<br>Code |            |            |            |            |          |                                |         |
|---------------------|----------------|-------------------------|------------|------------|------------|------------|----------|--------------------------------|---------|
| Component           | PID(Coord)     | Class                   | Disc.Press | DP         | Flow       | VIB        | Speed    | Procedure                      | Freq    |
| SI-1A               | 210-130 (B3)   | 2                       | No         | Yes        | Yes        | Yes        | No       | OP-ST-SI-3008                  | Q       |
| LOW PRESSURE SAFET  | Y INJECTION PU | IMP                     |            | 100        | 105        | 105        |          | 01-01-01-0000                  | 00      |
| SI-1B               | 210-130 (A3)   | 2                       | No         | Yes        | Yes        | Yes        | No       | OP-ST-SI-3008                  | Q       |
| LOW PRESSURE SAFETY | Y INJECTION PU | IMP                     | NO         | 103        | 103        | 105        | 140      | 07-31-31-3003                  | 03      |
| SI-2A               | 210-130-3 (E3) | 2                       | No<br>No   | Yes<br>Yes | Yes<br>Yes | Yes<br>Yes | No<br>No | OP-ST-SI-3007<br>OP-ST-SI-3008 | RO<br>Q |
| HIGH PRESSURE SAFET | Y INJECTION PL | JMP                     |            |            |            |            |          |                                |         |
| SI-2B               | 210-130-3 (C3) | 2                       | No<br>No   | Yes<br>Yes | Yes<br>Yes | Yes<br>Yes | No<br>No | OP-ST-SI-3007<br>OP-ST-SI-3008 | RO<br>Q |
| HIGH PRESSURE SAFET | Y INJECTION PL | JMP                     |            |            |            |            |          |                                |         |
| SI-2C               | 210-130-3 (D3) | 2                       | No<br>No   | Yes<br>Yes | Yes<br>Yes | Yes<br>Yes | No<br>No | OP-ST-SI-3007<br>OP-ST-SI-3008 | RO<br>Q |
| HIGH PRESSURE SAFET | JMP            |                         |            |            |            |            |          |                                |         |
| SI-3A               | 210-130 (C3)   | 2                       | No         | Yes        | Yes        | Yes        | No       | OP-ST-SI-3008                  | Q       |

|                              |                      |   | Νο       | Yes        | Yes        | Yes        | No       | OP-ST-SI-3003                  | CS      |
|------------------------------|----------------------|---|----------|------------|------------|------------|----------|--------------------------------|---------|
| CONTAINMENT SPRAY F          | PUMP                 |   |          |            |            |            |          |                                |         |
| SI-3B<br>CONTAINMENT SPRAY F | 210-130 (D3)<br>PUMP | 2 | No<br>No | Yes<br>Yes | Yes<br>Yes | Yes<br>Yes | No<br>No | OP-ST-SI-3008<br>OP-ST-SI-3003 | Q<br>CS |
| SI-3C                        | 210-130 (E3)         | 2 | No<br>No | Yes<br>Yes | Yes<br>Yes | Yes<br>Yes | No<br>No | OP-ST-SI-3008<br>OP-ST-SI-3003 | Q<br>CS |

.

•

CONTAINMENT SPRAY PUMP

## **ATTACHMENT 9**

.

•

## Valve Tables

SYSTEM: AFW - Auxiliary Feedwater System

|                |              | (<br>Pc      | Code<br>osition | 1       |          | _     |        |       |       |                                                                     | _                         |                    |
|----------------|--------------|--------------|-----------------|---------|----------|-------|--------|-------|-------|---------------------------------------------------------------------|---------------------------|--------------------|
| Component      | PID(Coord)   | Function C   | Class           | Туре Ас | tuator ( | Cat.  | Size I | Norm. | Fail. | Procedure                                                           | Test                      | Freq               |
| FCV-1368       | M-253-4 (C6) | Active       | 3               | GL      | A        | В     | 1      | A     | FO    | OP-ST-AFW-3006<br>OP-ST-AFW-3006<br>OP-ST-AFW-3006<br>OP-ST-VX-3002 | FSTO<br>STC<br>STO<br>PIT | Q<br>Q<br>Q<br>2YR |
| AUX FEEDPUMP   | FW-6 RECIRC  |              | /ALVE           |         |          |       |        |       |       |                                                                     |                           |                    |
| FCV-1369       | M-253-4 (B5) | Active       | 3               | GL      | A        | В     | 2      | A     | FO    | OP-ST-AFW-3006<br>OP-ST-AFW-3006<br>OP-ST-VX-3002                   | FSTO<br>STO<br>PIT        | Q<br>Q<br>2YR      |
| TURB-DRIVEN AU | JX FEED PUMI | P FW-10 REC  | CIRCU           |         | /ALVE    |       |        |       |       |                                                                     |                           |                    |
| FW-1525        | E-4144 (D3)  | Active       | 3               | RL      | R        | С     | 0.75   | NC    | N/A   | PE-ST-VX-3003                                                       | RV                        | OM*                |
| AUX FEEDWATE   | R PUMP FW-10 | ) : LUBE OIL | PUMP            | LO-56 ; | SUPPLY   | Y LII | NE RE  | L     |       |                                                                     |                           |                    |
| FW-163         | M-253-4 (F7) | Active       | 2               | СК      | С        | С     | 3      | NC    | N/A   |                                                                     |                           |                    |

|               |               |             |       |          |          |      |       |     |     | OP-ST-AFW-3007                                    | CVO                | CS            |
|---------------|---------------|-------------|-------|----------|----------|------|-------|-----|-----|---------------------------------------------------|--------------------|---------------|
| STEAM GENERA  | TOR RC-2B AU  | JXILIARY FE | EDWA  |          | ET CHE   | CK \ | /ALVI | E   |     |                                                   |                    |               |
| FW-164        | M-253-4 (F8)  | Active      | 2     | СК       | С        | С    | 3     | NC  | N/A | OP-ST-AFW-3007                                    | CVO                | CS            |
| STEAM GENERA  | TOR RC-2A; A  | UXILIARY F  | EEDW  | ATER INI | .ET ; Cl | HECI | K VAL | .VE |     |                                                   |                    |               |
| FW-173        | M-253-4 (C6)  | Active      | 3     | СК       | С        | С    | 4     | N/A | N/A | SE-ST-AFW-3006<br>OP-ST-AFW-3009                  | CVC<br>CVO         | Q<br>Q        |
| MOTOR-DRIVEN  | AUX FEED PU   | MP FW-6 DI  | SCHAI | RGE CHE  | CK VA    | LVE  |       |     |     |                                                   |                    |               |
| FW-174        | M-253-4 (C5)  | Active      | 3     | СК       | С        | С    | 4     | N/A | N/A | OP-ST-AFW-3009<br>SE-ST-AFW-3006                  | CVC<br>CVO         | Q<br>Q        |
| TURB-DRIVEN A | UX FEED PUM   | P FW-10 DIS | CHAR  | GE CHEC  |          | VE   |       |     |     |                                                   |                    |               |
| FW-658        | M-254-2 (D5)  | Active      | 3     | СК       | С        | С    | 1.5   | NC  | N/A | PE-ST-VX-3011                                     | INSP               | RO            |
| EMGY FEEDWAT  | TER STORAGE   | TNK FW-19;  | VACL  | JUM BRE  | AKER     |      |       |     |     |                                                   |                    |               |
| FW-672        | M-253-4 (B6)  | Active      | 3     | СК       | С        | С    | 2     | NC  | N/A | SE-ST-AFW-3006                                    | CVO                | Q             |
| AUX FEED PUM  | P (FW-10 TURB | ) RECIRC CH | HECK  | VALVE    |          |      |       |     |     |                                                   |                    |               |
| HCV-1107A     | M-253-1 (F8)  | Active      | 2     | GL       | A        | В    | 3     | NC  | FO  | OP-ST-AFW-3010<br>OP-ST-AFW-3010<br>OP-ST-VX-3002 | FSTO<br>STO<br>PIT | Q<br>Q<br>2YR |

•

STEAM GEN RC-2A ; AUXILIARY FEEDWATER INLET VALVE

Fort Calhoun Station Inservice Testing Program Plan 4<sup>th</sup> Interval, Revision 0

| HCV-1107B    | M-253-4 (E8)   | Active     | 2      | GL  | A  | В | 3 | NC | FO  | OP-ST-AFW-3010<br>OP-ST-AFW-3010<br>OP-ST-VX-3002 | FSTO<br>STO<br>PIT | Q<br>Q<br>2YR |
|--------------|----------------|------------|--------|-----|----|---|---|----|-----|---------------------------------------------------|--------------------|---------------|
| EMERG. FEEDW | ATER CONTRO    | DL FOR STE | AM GE  | N A |    |   |   |    |     |                                                   |                    |               |
| HCV-1108A    | M-253-4 (F7)   | Active     | 2      | GL  | A  | В | 3 | NC | FO  | OP-ST-AFW-3010<br>OP-ST-AFW-3010<br>OP-ST-VX-3002 | FSTO<br>STO<br>PIT | Q<br>Q<br>2YR |
| STEAM GEN RC | -2B ; AUXILIAR | Y FEEDWAT  | ER INI |     | /E |   |   |    |     |                                                   |                    |               |
| HCV-1108B    | M-253-4 (E7)   | Active     | 2      | GL  | A  | В | 3 | NC | FO  | OP-ST-AFW-3010<br>OP-ST-AFW-3006<br>OP-ST-VX-3002 | FSTO<br>STO<br>PIT | Q<br>Q<br>2YR |
| EMERGENCY CO |                | E FOR SG-B |        |     |    |   |   |    |     |                                                   |                    |               |
| HCV-1384     | M-253-4 (D7)   | Active     | 3      | GA  | Μ  | В | 4 | NC | FAI | OP-ST-AFW-3006<br>OP-ST-AFW-3006<br>OP-ST-VX-3002 | STC<br>STO<br>PIT  | Q<br>Q<br>2YR |

MAIN AND AUXILIARY FEEDWATER ; CROSSCONNECT VALVE

SYSTEM: CA - Compressed Air System

|              |             | (<br>Pc    | Code<br>ositio | n       |         |       |      |       |       |                                                                  |                          |                       |   |
|--------------|-------------|------------|----------------|---------|---------|-------|------|-------|-------|------------------------------------------------------------------|--------------------------|-----------------------|---|
| Component    | PID(Coord)  | Function ( | Class          | Туре А  | ctuator | Cat.  | Size | Norm. | Fail. | Procedure                                                        | Test                     | Freq                  | • |
| CA-555       | M-13 (F3)   | Passive    | 2              | GA      | н       | Α     | 4    | NO    | N/A   | IC-ST-AE-3174                                                    | LJ                       | OptB                  |   |
| CONTAINMENT; | SERVICE AIR | SUPPLY HEA | DER            | ; INBOA | RD ISO  | LATIO | N VA | LV    |       |                                                                  |                          |                       |   |
| HCV-1749     | M-13 (F4)   | Active     | 2              | GL      | A       | A     | 4    | NC    | FC    | OP-ST-CA-3001<br>OP-ST-CA-3001<br>IC-AE-ST-3174<br>OP-ST-VX-3003 | FSTC<br>STC<br>LJ<br>PIT | Q<br>Q<br>OptB<br>2YR |   |

.

.

CONTAINMENT SERVICE AIR HEADER ; OUTBOARD ISOLATION VALVE

## SYSTEM: CCW - Component Cooling Water System

|              |                | (<br>Po      | Code  |         |          |      |      |       |       |                |      |      |             |
|--------------|----------------|--------------|-------|---------|----------|------|------|-------|-------|----------------|------|------|-------------|
| Component    | PID(Coord)     | Function C   | lass  | Туре Ас | tuator ( | Cat. | Size | Norm. | Fail. | Procedure      | Test | Freq | Comments    |
| AC-101       | M-10-2 (E6)    | Active       | 3     | СК      | С        | с    | 12   | N/A   | N/A   |                |      |      |             |
| 3022         |                |              |       |         |          |      |      |       |       | OP-ST-CCW-3012 | CVC  | Q    | OP-ST-CCW-  |
|              |                |              |       |         |          |      |      |       |       | OP-ST-CCW-3002 | CVO  | Q    |             |
| COMP COOLING | WATER PUMF     | AC-3A DISC   | HARG  | SE CHEC | K VALV   | Έ    |      |       |       |                |      |      |             |
| AC-104       | M-10-2 (D6)    | Active       | 3     | СК      | С        | С    | 12   | N/A   | N/A   | OP-ST-CCW-3002 | CVC  | 0    | OP-ST-CCW-  |
| 3022         |                |              |       |         |          |      |      |       |       |                | CVC  | Q    | 06-01-0044- |
|              |                |              |       |         |          |      |      |       |       | OP-ST-CCW-3012 | CVO  | Q    |             |
| COMP COOLING | WATER PUMP     | AC-3B DISC   | HARG  | SE CHEC | K VALV   | Έ    |      |       |       |                |      |      |             |
| AC-107       | M-10-2 (C6)    | Active       | 3     | СК      | С        | С    | 12   | N/A   | N/A   | OP-ST-CCW-3002 | CVC  | Q    | OP-ST-CCW-  |
| 3012         |                |              |       |         |          |      |      |       |       | OD ST COW 2022 | 0.0  | 0    |             |
|              |                |              |       |         |          |      |      |       |       | OF-51-CCW-5022 | 000  | Q    |             |
| COMP COOLING | WATER PUMF     | AC-3C DISC   | HARG  | SE CHEC | CK VALV  | Έ    |      |       |       |                |      |      |             |
| AC-164       | M-10-1 (D6)    | Active       | 3     | RL      | R        | С    | 0.75 | NC    | N/A   | PE-ST-VX-3007  | RV   | ОМ   |             |
| CONTROL ROOM | I VA UNIT VA-∕ | 16A ; CCW IN | LET R | ELIEF V | ALVE     |      |      |       |       |                |      |      |             |
| AC-165       | M-10-1 (C6)    | Active       | 3     | RL      | R        | С    | 0.75 | NC    | N/A   | PE-ST-VX-3007  | RV   | ОМ   |             |
| CONTROL ROOM | I VA UNIT VA-4 | 16B ; CCW IN | LET R | ELIEF V | ALVE     |      |      |       |       |                |      |      |             |

| AC-283                                            | M-40-1 (F7)                                       | Active       | 2     | RL       | R       | С    | 0.75  | NC     | N/A | PE-ST-VX-3007                    | RV         | ОМ       |  |  |
|---------------------------------------------------|---------------------------------------------------|--------------|-------|----------|---------|------|-------|--------|-----|----------------------------------|------------|----------|--|--|
| CNTMT VA-1A COOLING COIL ; CCW INLET RELIEF VALVE |                                                   |              |       |          |         |      |       |        |     |                                  |            |          |  |  |
| AC-284                                            | M-40-1 (E7)                                       | Active       | 2     | RL       | R       | С    | 0.75  | NC     | N/A | PE-ST-VX-3007                    | RV         | ОМ       |  |  |
| CNTMT VA-1B CC                                    | CNTMT VA-1B COOLING COIL ; CCW INLET RELIEF VALVE |              |       |          |         |      |       |        |     |                                  |            |          |  |  |
| AC-285                                            | M-40-1 (E6)                                       | Active       | 2     | RL       | R       | С    | 0.75  | NC     | N/A | PE-ST-VX-3007                    | RV         | ОМ       |  |  |
| CNTMT VA-8A COOLING COIL ; CCW INLET RELIEF VALVE |                                                   |              |       |          |         |      |       |        |     |                                  |            |          |  |  |
| AC-286                                            | M-40-1 (E5)                                       | Active       | 2     | RL       | R       | С    | 0.75  | NC     | N/A | PE-ST-VX-3007                    | RV         | ОМ       |  |  |
| CNTMT VA-8B CC                                    | OOLING COIL ;                                     | CCW INLET    | RELIE | EF VALVE |         |      |       |        |     |                                  |            |          |  |  |
| AC-341                                            | M-10-2 (C3)                                       | Active       | 3     | RL       | R       | С    | 1     | NC     | N/A | PE-ST-VX-3001                    | RV         | ОМ       |  |  |
| COMP COOLING                                      | WTR SURGE                                         | TANK AC-2 N  | 2 REL | IEF VAL\ | /E TO Y | VEN  | T HEA | DER    |     |                                  |            |          |  |  |
| AC-364                                            | M-10-2 (D4)                                       | Active       | 3     | RL       | R       | С    | 2     | NC     | N/A | PE-ST-VX-3001                    | RV         | ОМ       |  |  |
| COMP COOLING                                      | WTR SURGE                                         | TANK AC-2; F | RECIR | CULATIC  | N REL   | IEF  | VALVE | Ξ;Τ    |     |                                  |            |          |  |  |
| AC-391                                            | M-10-2 (B4)                                       | Active       | 3     | СК       | С       | A/C  | 1.5   | NC     | N/A | SE-ST-CCW-3003<br>SE-ST-CCW-3003 | CVC<br>LT1 | Q<br>2YR |  |  |
| COMP COOLING                                      | WTR SURGE                                         | TANK AC-2 D  | EMINE | ERALIZEI | D MAKI  | E-Uf | P WAT | ER INL |     |                                  |            |          |  |  |

HCV-2808A M-10-4 (E5) Active 3 GL A B 1.5 NO FO

|                                          |                                           |             |       |    |   |   |     |    |    | OP-ST-CCW-3001<br>OP-ST-CCW-3001<br>OP-ST-VX-3005A | FSTO<br>STO<br>PIT | Q<br>Q<br>2YR |
|------------------------------------------|-------------------------------------------|-------------|-------|----|---|---|-----|----|----|----------------------------------------------------|--------------------|---------------|
| PSI PUMP SI-1A BRG CLR ; CCW INLET VALVE |                                           |             |       |    |   |   |     |    |    |                                                    |                    |               |
| HCV-2808B                                | M-10-4 (B5)                               | Active      | 3     | GL | A | В | 1.5 | NO | FO | OP-ST-CCW-3001<br>OP-ST-CCW-3001<br>OP-ST-VX-3005B | FSTO<br>STO<br>PIT | Q<br>Q<br>2YR |
| LPSI PUMP SI-1A                          | BRG CLR ; CO                              | CW OUTLET   | VALVE | Ξ  |   |   |     |    |    |                                                    |                    |               |
| HCV-2809A                                | M-10-4 (E4)                               | Active      | 3     | GL | A | В | 1.5 | NO | FO | OP-ST-CCW-3001<br>OP-ST-CCW-3001<br>OP-ST-VX-3005A | FSTO<br>STO<br>PIT | Q<br>Q<br>2YR |
| LPSI PUMP SI-1B                          | LPSI PUMP SI-1B BRG CLR ; CCW INLET VALVE |             |       |    |   |   |     |    |    |                                                    |                    |               |
| HCV-2809B                                | M-10-4 (B4)                               | Active      | 3     | GL | A | В | 1.5 | NO | FO | OP-ST-CCW-3001<br>OP-ST-CCW-3001<br>OP-ST-VX-3005B | FSTO<br>STO<br>PIT | Q<br>Q<br>2YR |
| LPSI PUMP SI-1B                          | BRG CLR ; CO                              |             | VALVE | Ξ  |   |   |     |    |    |                                                    |                    |               |
| HCV-2810A                                | M-10-4 (E3)                               | Active      | 3     | GL | A | В | 1.5 | NO | FO | OP-ST-CCW-3001<br>OP-ST-CCW-3001<br>OP-ST-VX-3005A | FSTO<br>STO<br>PIT | Q<br>Q<br>2YR |
| HPSI PUMP SI-2A                          | BRG CLR ; C                               | CW INLET VA | LVE   |    |   |   |     |    |    |                                                    |                    |               |
| HCV-2810B                                | M-10-4 (B3)                               | Active      | 3     | GL | A | В | 1.5 | NO | FO | OP-ST-CCW-3001<br>OP-ST-CCW-3001<br>OP-ST-VX-3005B | FSTO<br>STO<br>PIT | Q<br>Q<br>2YR |

.

| HPSI PUMP SI-2                            | HPSI PUMP SI-2A BRG CLR ; CCW OUTLET VALVE |            |      |    |   |   |     |    |    |                                                    |                    |               |  |  |
|-------------------------------------------|--------------------------------------------|------------|------|----|---|---|-----|----|----|----------------------------------------------------|--------------------|---------------|--|--|
| HCV-2811A                                 | M-10-4 (E2)                                | Active     | 3    | GL | A | В | 1.5 | NO | FO | OP-ST-CCW-3001<br>OP-ST-CCW-3001<br>OP-ST-VX-3005A | FSTO<br>STO<br>PIT | Q<br>Q<br>2YR |  |  |
| HPSI PUMP SI-2B BRG CLR ; CCW INLET VALVE |                                            |            |      |    |   |   |     |    |    |                                                    |                    |               |  |  |
| HCV-2811B                                 | M-10-4 (B2)                                | Active     | 3    | GL | A | В | 1.5 | NO | FO | OP-ST-CCW-3001<br>OP-ST-CCW-3001<br>OP-ST-VX-3005B | FSTO<br>STO<br>PIT | Q<br>Q<br>2YR |  |  |
| HPSI PUMP SI-2                            | HPSI PUMP SI-2B BRG CLR ; CCW OUTLET VALVE |            |      |    |   |   |     |    |    |                                                    |                    |               |  |  |
| HCV-2812A                                 | M-10-4 (E1)                                | Active     | 3    | GL | A | В | 1.5 | NO | FO | OP-ST-CCW-3001<br>OP-ST-CCW-3001<br>OP-ST-VX-3005A | FSTO<br>STO<br>PIT | Q<br>Q<br>2YR |  |  |
| HPSI PUMP SI-20                           | C BRG CLR ; C                              | CW INLET V | ALVE |    |   |   |     |    |    |                                                    |                    |               |  |  |
| HCV-2812B                                 | M-10-4 (B1)                                | Active     | 3    | GL | A | В | 1.5 | NO | FO | OP-ST-CCW-3001<br>OP-ST-CCW-3001<br>OP-ST-VX-3005B | FSTO<br>STO<br>PIT | Q<br>Q<br>2YR |  |  |
| HPSI PUMP SI-20                           | C BRG CLR ; C                              | CW OUTLET  | VALV | E  |   |   |     |    |    |                                                    |                    |               |  |  |
| HCV-2813A                                 | M-10-4 (E6)                                | Active     | 3    | GL | A | В | 1.5 | NO | FO | OP-ST-CCW-3001<br>OP-ST-CCW-3001<br>OP-ST-VX-3005A | FSTO<br>STO<br>PIT | Q<br>Q<br>2YR |  |  |

CNTMT SPRAY PUMP SI-3A BRG CLR ; CCW INLET VALVE

Fort Calhoun Station Inservice Testing Program Plan 4<sup>th</sup> Interval, Revision 0

4

.

|                        | HCV-2813B     | M-10-4 (B6)   | Active       | 3      | GL      | Α  | В | 1.5 | NO | FO | OP-ST-CCW-3001<br>OP-ST-CCW-3001<br>OP-ST-VX-3005B | FSTO<br>STO<br>PIT | Q<br>Q<br>2YB |
|------------------------|---------------|---------------|--------------|--------|---------|----|---|-----|----|----|----------------------------------------------------|--------------------|---------------|
|                        | CNTMT SPRAY P | UMP SI-3A BR  | G CLR ; CCW  |        | LET VAL | VE |   |     |    |    | 01-01-47-00000                                     |                    | 2110          |
|                        | HCV-2814A     | M-10-4 (E8)   | Active       | 3      | GL      | A  | В | 1.5 | NO | FO | OP-ST-CCW-3001<br>OP-ST-CCW-3001<br>OP-ST-VX-3005A | FSTO<br>STO<br>PIT | Q<br>Q<br>2YR |
| INLET CONT SPRAY SI-3B |               |               |              |        |         |    |   |     |    |    |                                                    |                    |               |
|                        | HCV-2814B     | M-10-4 (B8)   | Active       | 3      | GL      | A  | В | 1.5 | NO | FO | OP-ST-CCW-3001<br>OP-ST-CCW-3001<br>OP-ST-VX-3005B | FSTO<br>STO<br>PIT | Q<br>Q<br>2YR |
|                        | OUTLET CONT S | PRAY SI-3B    |              |        |         |    |   |     |    |    |                                                    |                    |               |
|                        | HCV-2815A     | M-10-4 (E7)   | Active       | 3      | GL      | A  | В | 1.5 | NO | FO | OP-ST-CCW-3001<br>OP-ST-CCW-3001<br>OP-ST-VX-3005A | FSTO<br>STO<br>PIT | Q<br>Q<br>2YR |
|                        | CNTMT SPRAY P | PUMP SI-3C BF | RG CLR ; CCV | V INLE |         | E  |   |     |    |    |                                                    |                    |               |
|                        | HCV-2815B     | M-10-4 (B7)   | Active       | 3      | GL      | A  | В | 1.5 | NO | FO | OP-ST-CCW-3001<br>OP-ST-CCW-3001<br>OP-ST-VX-3005B | FSTO<br>STO<br>PIT | Q<br>Q<br>2YR |
|                        | CNTMT SPRAY P | PUMP SI-3C BF | RG CLR ; CCV | ν ουτ  | LET VAL | VE |   |     |    |    |                                                    |                    |               |
|                        | HCV-2898A     | M-10-1 (D6)   | Active       | 3      | GL      | A  | В | 2   | NO | FC | OP-ST-CCW-3001<br>OP-ST-CCW-3001<br>OP-ST-VX-3005A | FSTC<br>STC<br>PIT | Q<br>Q<br>2YR |
.

| CONTROL ROOM   | I VA UNIT VA- | 46A ; CCW IN | LET V | ALVE  |   |   |   |    |    |                                                                      |                           |                    |
|----------------|---------------|--------------|-------|-------|---|---|---|----|----|----------------------------------------------------------------------|---------------------------|--------------------|
| HCV-2898B      | M-10-1 (D4)   | Active       | 3     | GL    | A | В | 2 | NO | FC | OP-ST-CCW-3001<br>OP-ST-CCW-3001<br>OP-ST-VX-3005B                   | FSTC<br>STC<br>PIT        | Q<br>Q<br>2YR      |
| CONTROL ROOM   | I VA UNIT VA- | 46A ; CCW O  | UTLET | VALVE |   |   |   |    |    |                                                                      |                           |                    |
| HCV-2899A      | M-10-1 (C6)   | Active       | 3     | GL    | A | В | 2 | NO | FC | OP-ST-CCW-3001<br>OP-ST-CCW-3001<br>OP-ST-VX-3005A                   | FSTC<br>STC<br>PIT        | Q<br>Q<br>2YR      |
| CONTROL ROOM   | I VA UNIT VA- | 46B ; CCW IN | LET V | ALVE  |   |   |   |    |    |                                                                      |                           |                    |
| HCV-2899B      | M-10-1 (C4)   | Active       | 3     | GL    | A | В | 2 | NO | FC | OP-ST-CCW-3001<br>OP-ST-CCW-3001<br>OP-ST-VX-3005B                   | FSTC<br>STC<br>PIT        | Q<br>Q<br>2YR      |
| CONTROL ROOM   | I VA UNIT VA- | 46B ; CCW OI | JTLET | VALVE |   |   |   |    |    |                                                                      |                           |                    |
| HCV-400A       | M-40-1 (C7)   | Active       | 2     | BU    | A | В | 8 | NO | FO | OP-ST-CCW-3005<br>OP-ST-CCW-3005<br>OP-ST-CCW-3005<br>OP-ST-VX-3007A | FSTO<br>STC<br>STO<br>PIT | Q<br>Q<br>Q<br>2YR |
| CNTMT VA-1A CC | DOLING COIL ; | CCW INLET    | VALVI | E     |   |   |   |    |    |                                                                      |                           |                    |
| HCV-400B       | M-40-1 (B7)   | Active       | 2     | BU    | A | В | 8 | NO | FO | OP-ST-CCW-3005<br>OP-ST-CCW-3005<br>OP-ST-VX-3007A                   | FSTO<br>STO<br>PIT        | Q<br>Q<br>2YR      |

.

CNTMT VA-1A COOLING COIL ; CCW INLET VALVE

| HCV-400C       | M-40-1 (C2)  | Active      | 2     | BL      | A      | В    | 8     | NO | FO | OP-ST-CCW-3005<br>OP-ST-CCW-3005<br>OP-ST-CCW-3005<br>OP-ST-VX-3007B | FSTO<br>STC<br>STO<br>PIT | Q<br>Q<br>Q<br>2YR |
|----------------|--------------|-------------|-------|---------|--------|------|-------|----|----|----------------------------------------------------------------------|---------------------------|--------------------|
| CNTMT VA-1A CO | DOLING COIL; | CCW OUTLE   | T VAL | VE      |        |      |       |    |    |                                                                      |                           |                    |
| HCV-400D       | M-40-1 (B2)  | Active      | 2     | BU      | A      | В    | 8     | NO | FO | OP-ST-CCW-3005<br>OP-ST-CCW-3005<br>OP-ST-VX-3007B                   | FSTO<br>STO<br>PIT        | Q<br>Q<br>2YR      |
| CONTAINMENT    |              | VA-1A COM   | P. CO | OLING W | ATER I | RETL | JRN I | SO |    |                                                                      |                           |                    |
| HCV-401A       | M-40-1 (C7)  | Active      | 2     | BU      | A      | В    | 8     | NO | FO | OP-ST-CCW-3005<br>OP-ST-CCW-3005<br>OP-ST-CCW-3005<br>OP-ST-VX-3007A | FSTO<br>STC<br>STO<br>PIT | Q<br>Q<br>Q<br>2YR |
| CONTAINMENT O  |              | VA-1B COO   | LING  | WATER S | UPPLY  | 'ISO | LATI  | ON |    |                                                                      |                           |                    |
| HCV-401B       | M-40-1 (B7)  | Active      | 2     | BU      | A      | В    | 8     | NO | FO | OP-ST-CCW-3005<br>OP-ST-CCW-3005<br>OP-ST-VX-3007A                   | FSTO<br>STO<br>PIT        | Q<br>Q<br>2YR      |
| CONTAINMENT O  |              | . VA-1B COM | P. CO | OLING W | ATER I | NLE. | TISC  | L  |    |                                                                      |                           |                    |
| HCV-401C       | M-40-1 (C3)  | Active      | 2     | BL      | A      | В    | 8     | NO | FO | OP-ST-CCW-3005<br>OP-ST-CCW-3005<br>OP-ST-CCW-3005<br>OP-ST-VX-3007B | FSTO<br>STC<br>STO<br>PIT | Q<br>Q<br>Q<br>2YR |

CNTMT VA-1B COOLING COIL ; CCW OUTLET VALVE

1

.

| HCV-401D       | M-40-1 (B3)   | Active    | 2      | BU      | A      | В    | 8   | NO | FO | OP-ST-CCW-3005<br>OP-ST-CCW-3005<br>OP-ST-VX-3007B                   | FSTO<br>STO<br>PIT        | Q<br>Q<br>2YR      |
|----------------|---------------|-----------|--------|---------|--------|------|-----|----|----|----------------------------------------------------------------------|---------------------------|--------------------|
| CONTAINMENT    | COOLING COIL  | VA-1B COM | P. CO  | OLING W | ATER F | RETL | IRN |    |    |                                                                      |                           |                    |
| HCV-402A       | M-40-1 (C6)   | Active    | 2      | BU      | A      | В    | 6   | NO | FO | OP-ST-CCW-3005<br>OP-ST-CCW-3005<br>OP-ST-CCW-3005<br>OP-ST-VX-3007A | FSTO<br>STC<br>STO<br>PIT | Q<br>Q<br>Q<br>2YR |
| CNTMT VA-8A CO | DOLING COIL ; | CCW INLET | VALV   | E       |        |      |     |    |    |                                                                      |                           |                    |
| HCV-402B       | M-40-1 (B6)   | Active    | 2      | BU      | A      | В    | 6   | NO | FO | OP-ST-CCW-3005<br>OP-ST-CCW-3005<br>OP-ST-VX-3007A                   | FSTO<br>STO<br>PIT        | Q<br>Q<br>2YR      |
| CNTMT VA-8A CO |               | CCW INLET | VALV   | E       |        |      |     |    |    |                                                                      |                           |                    |
| HCV-402C       | M-40-1 (C4)   | Active    | 2      | BL      | Α.     | В    | 6   | NO | FO | OP-ST-CCW-3005<br>OP-ST-CCW-3005<br>OP-ST-CCW-3005<br>OP-ST-VX-3007B | FSTO<br>STC<br>STO<br>PIT | Q<br>Q<br>Q<br>2YR |
| CNTMT VA-8A CO | DOLING COIL ; |           | ET VAI | _VE     |        |      |     |    |    |                                                                      |                           |                    |
| HCV-402D       | M-40-1 (B4)   | Active    | 2      | BU      | А      | В    | 6   | NO | FO | OP-ST-CCW-3005<br>OP-ST-CCW-3005<br>OP-ST-VX-3007B                   | FSTO<br>STO<br>PIT        | Q<br>Q<br>2YR      |

•

CNTMT VA-8A COOLING COIL ; CCW OUTLET VALVE

| HCV-403A      | M-40-1 (C5)   | Active      | 2      | BU        | А     | В    | 6   | NO | FO |                                                                      |                           |                         |
|---------------|---------------|-------------|--------|-----------|-------|------|-----|----|----|----------------------------------------------------------------------|---------------------------|-------------------------|
|               |               |             |        |           |       |      |     |    |    | OP-ST-CCW-3005<br>OP-ST-CCW-3005<br>OP-ST-CCW-3005<br>OP-ST-VX-3007A | FSTO<br>STC<br>STO<br>PIT | Q<br>Q<br>Q<br>2YR      |
| CNTMT VA-8B C | OOLING COIL   | ; CCW INLET | VALV   | E         |       |      |     |    |    |                                                                      |                           |                         |
| HCV-403B      | M-40-1 (B5)   | Active      | 2      | BU        | A     | В    | 6   | NO | FO | OP-ST-CCW-3005<br>OP-ST-CCW-3005<br>OP-ST-VX-3007A                   | FSTO<br>STO<br>PIT        | Q<br>Q<br>2YR           |
| CNTMT VA-8B C | OOLING COIL   | ; CCW INLET | VALV   | E         |       |      |     |    |    |                                                                      |                           |                         |
| HCV-403C      | M-40-1 (C4)   | Active      | 2      | BL        | A     | В    | 6   | NO | FO | OP-ST-CCW-3005<br>OP-ST-CCW-3005<br>OP-ST-CCW-3005<br>OP-ST-VX-3007B | FSTO<br>STC<br>STO<br>PIT | Q<br>Q<br>Q<br>2YR      |
| CNTMT VA-8B C |               | ; CCW OUTLI | ET VAI | LVE       |       |      |     |    |    |                                                                      |                           |                         |
| HCV-403D      | M-40-1 (B4)   | Active      | 2      | BU        | A     | В    | 6   | NO | FO | OP-ST-CCW-3005<br>OP-ST-CCW-3005<br>OP-ST-VX-3007B                   | FSTO<br>STO<br>PIT        | Q<br>Q<br>2YR           |
| CNTMT VA-8B C |               | ; CCW OUTLI | ET VAI | _VE       |       |      |     |    |    |                                                                      |                           |                         |
| HCV-425A      | M-40-3 (E3)   | Active      | 2      | GL        | A     | A    | 3   | NO | FC | IC-ST-AE-3139<br>OP-ST-CCW-3004<br>OP-ST-CCW-3004<br>OP-ST-VX-3006   | LJ<br>FSTC<br>STC<br>PIT  | OptB<br>CS<br>CS<br>2YR |
| SI LEAKAGE CO | OLERS SI-4A-[ | D; COMBINE  | D CCN  | / INLET I | HEADE | R;IN | BOA | RD |    |                                                                      |                           |                         |
| HCV-425B      | M-40-3 (E3)   | Active      | 2      | GL        | А     | А    | 3   | NO | FC |                                                                      |                           |                         |

•

|                |               |             |       |           |         |      |      |     |    | IC-ST-AE-3139<br>OP-ST-CCW-3004<br>OP-ST-CCW-3004<br>OP-ST-VX-3006 | LJ<br>FSTC<br>STC<br>PIT | OptB<br>CS<br>CS<br>2YR |
|----------------|---------------|-------------|-------|-----------|---------|------|------|-----|----|--------------------------------------------------------------------|--------------------------|-------------------------|
| SI LEAKAGE COO | OLERS SI-4A-[ | ); COMBINE  | o ccv | V INLET H | IEADE   | २;०  | UTBO | DAR |    |                                                                    |                          |                         |
| HCV-425C       | M-40-3 (E2)   | Active      | 2     | GL        | A       | Α    | 3    | NO  | FC | IC-ST-AE-3139<br>OP-ST-CCW-3004<br>OP-ST-CCW-3004<br>OP-ST-VX-3006 | LJ<br>FSTC<br>STC<br>PIT | OptB<br>CS<br>CS<br>2YR |
| SI LEAKAGE COO | OLERS SI-4A-D | ; COMBINE   | D CCM | V OUTLE   | T HEAD  | ER;  | INBO | DAR |    |                                                                    |                          |                         |
| HCV-425D       | M-40-3 (E2)   | Active      | 2     | GL        | A       | Α    | 3    | NO  | FC | IC-ST-AE-3139<br>OP-ST-CCW-3004<br>OP-ST-CCW-3004<br>OP-ST-VX-3006 | LJ<br>FSTC<br>STC<br>PIT | OptB<br>CS<br>CS<br>2YR |
| SI LEAKAGE COO | DLERS SI-4A-D | ; COMBINED  | D CCM | OUTLE     | T HEAD  | ER;  | OUT  | BOA |    |                                                                    |                          |                         |
| HCV-438A       | M-40-2 (F8)   | Active      | 2     | GL        | A       | A    | 6    | NO  | FO | IC-ST-AE-3118<br>OP-ST-CCW-3004<br>OP-ST-VX-3006                   | LJ<br>STC<br>PIT         | OptB<br>CS<br>2YR       |
| RCP RC-3A-D LU | BE OIL & SEAI | L CLRS; CCW | INLE  | T INBOAI  | RD ISO  | LATI | ON V | L   |    |                                                                    |                          |                         |
| HCV-438B       | M-40-1 (A6)   | Active      | 2     | GL        | A       | Α    | 6    | NO  | FO | IC-ST-AE-3118<br>OP-ST-CCW-3004<br>OP-ST-VX-3006                   | LJ<br>STC<br>PIT         | OptB<br>CS<br>2YR       |
| RCP RC-3A-D LU | BE OIL & SEAI | L CLRS; CCW | INLE  | т оитво   | DARD IS | SOLA |      | IV  |    |                                                                    |                          |                         |
| HCV-438C       | M-40-2 (F2)   | Active      | 2     | GL        | Α       | А    | 6    | NO  | FO | IC-ST-AE-3118                                                      | LJ                       | OptB                    |

|                |               |              |       |          |         |       |       |     |    | OP-ST-CCW-3004<br>OP-ST-VX-3006                                    | STC<br>PIT               | CS<br>2YR               |
|----------------|---------------|--------------|-------|----------|---------|-------|-------|-----|----|--------------------------------------------------------------------|--------------------------|-------------------------|
| RCP RC-3A-D LU | IBE OIL & SEA | L CLRS; CCW  | / OUT | LET INBO | DARD IS | SOL   | ATION | 1 V |    |                                                                    |                          |                         |
| HCV-438D       | M-40-1 (A3)   | Active       | 2     | GL       | A       | А     | 6     | NO  | FO | IC-ST-AE-3118<br>OP-ST-CCW-3004<br>OP-ST-VX-3006                   | LJ<br>STC<br>PIT         | OptB<br>CS<br>2YR       |
| RCP RC-3A-D LU | IBE OIL & SEA | L CLRS; CCW  | / OUT | LET OUT  | BOARD   | o isc | DL VL | V   |    |                                                                    |                          |                         |
| HCV-467A       | M-40-3 (E7)   | Active       | 2     | GL       | A       | A     | 1.5   | NO  | FC | IC-ST-AE-3111<br>OP-ST-CCW-3004<br>OP-ST-CCW-3004<br>OP-ST-VX-3006 | LJ<br>FSTC<br>STC<br>PIT | OptB<br>CS<br>CS<br>2YR |
| DET WELL COOL  | LING COILS VA | A-14A&B ; CO | MBIN  | ED CCW   | INLET I | HEA   | DER;  | IN  |    |                                                                    |                          |                         |
| HCV-467B       | M-40-1 (A3)   | Active       | 2     | GL       | A       | Α     | 1.5   | NO  | FC | IC-ST-AE-3111<br>OP-ST-CCW-3004<br>OP-ST-CCW-3004<br>OP-ST-VX-3006 | LJ<br>FSTC<br>STC<br>PIT | OptB<br>CS<br>CS<br>2YR |
| DET WELL COOL  | LING COILS VA | A-14A&B ; CO | MBINE | ED CCW   | INLET   | HEA   | DER;  | OU  |    |                                                                    |                          |                         |
| HCV-467C       | M-40-3 (E6)   | Active       | 2     | GL       | A       | Α     | 1.5   | NO  | FC | IC-ST-AE-3111<br>OP-ST-CCW-3004<br>OP-ST-CCW-3004<br>OP-ST-VX-3006 | LJ<br>FSTC<br>STC<br>PIT | OptB<br>CS<br>CS<br>2YR |
| DET WELL COOL  | ING COILS VA  | A-14A&B ; CO | MBINE | ED CCW   | OUTLE   | т не  | ADEI  | R;I |    |                                                                    |                          |                         |
| HCV-467D       | M-40-1 (A2)   | Active       | 2     | GL       | Α       | A     | 1.5   | NO  | FC | IC-ST-AE-3111<br>OP-ST-CCW-3004                                    | LJ<br>FSTC               | OptB<br>CS              |

|                |               |                         |       |          |        |      |      |     |    | OP-ST-CCW-3004<br>OP-ST-VX-3006                    | STC<br>PIT         | CS<br>2YR     |
|----------------|---------------|-------------------------|-------|----------|--------|------|------|-----|----|----------------------------------------------------|--------------------|---------------|
| DET WELL COOI  | LING COILS VA | <b>∖-14A&amp;B ; CO</b> | MBIN  | ED CCW   | OUTLE  | T HE | ADE  | R;0 |    |                                                    |                    |               |
| HCV-474        | M-10-3 (F8)   | Active                  | 3     | GL       | A      | В    | 2    | NO  | FO | OP-ST-CCW-3001<br>OP-ST-CCW-3001<br>OP-ST-VX-3006  | FSTO<br>STO<br>PIT | Q<br>Q<br>2YR |
| SI PUMPS SI-1A | &B,2A,B&C ; C | NTMT SPRAY              | ' PUM | PS SI-3A | -C BRG | CLF  | s cc | W   |    |                                                    |                    |               |
| HCV-478        | M-10-3 (D2)   | Active                  | 3     | BU       | A      | В    | 8    | NO  | FO | OP-ST-CCW-3001<br>OP-ST-VX-3005A                   | STC<br>PIT         | Q<br>2YR      |
| SPENT FUEL PO  | OL HT EXCH /  | AC-8 ; CCW C            | UTLE  | T VALVE  |        |      |      |     |    |                                                    |                    |               |
| HCV-480        | M-10-3 (C6)   | Active                  | 3     | BU       | Α΄     | В    | 14   | NC  | FO | OP-ST-CCW-3001<br>OP-ST-CCW-3001<br>OP-ST-VX-3005A | FSTO<br>STO<br>PIT | Q<br>Q<br>2YR |
| SHUTDOWN CO    | OLING HT EXC  | CH AC-4A ; CO           |       | LET VAL  | VE     |      |      |     |    |                                                    |                    |               |
| HCV-481        | M-10-3 (B7)   | Active                  | 3     | BU       | A      | В    | 14   | NC  | FO | OP-ST-CCW-3001<br>OP-ST-CCW-3001<br>OP-ST-VX-3005A | FSTO<br>STO<br>PIT | Q<br>Q<br>2YR |
| SHUTDOWN CO    | OLING HT EXC  | CH AC-4B ; CO           |       | LET VAL  | VE     |      |      |     |    |                                                    |                    |               |
| HCV-484        | M-10-3 (B4)   | Active                  | 3     | BU       | A      | В    | 14   | NC  | FO | OP-ST-CCW-3001<br>OP-ST-CCW-3001<br>OP-ST-VX-3005A | FSTO<br>STO<br>PIT | Q<br>Q<br>2YR |

٠

SHUTDOWN COOLING HT EXCH AC-4A; CCW OUTLET VALVE

| HCV-485      | M-10-3 (A5)  | Active        | 3     | BU       | Α    | в | 14 | NC | FO |                                                    |                    |               |
|--------------|--------------|---------------|-------|----------|------|---|----|----|----|----------------------------------------------------|--------------------|---------------|
|              |              |               |       |          |      |   |    |    |    | OP-ST-CCW-3001<br>OP-ST-CCW-3001<br>OP-ST-VX-3005A | FSTO<br>STO<br>PIT | Q<br>Q<br>2YR |
| SHUTDOWN CO  | OLING HT EXC | CH AC-4B ; CC | cw ol | JTLET VA | ALVE |   |    |    |    |                                                    |                    |               |
| HCV-489A     | M-10-3 (B2)  | Active        | 3     | BU       | A    | В | 10 | NO | FO | OP-ST-CCW-3001<br>OP-ST-CCW-3001<br>OP-ST-VX-3005A | FSTO<br>STO<br>PIT | Q<br>Q<br>2YR |
| COMP COOLING | HT EXCH AC-  | 1A; CCW INI   | ET V  | ALVE     |      |   |    |    |    |                                                    |                    |               |
| HCV-489B     | M-10-2 (A6)  | Active        | 3     | BU       | A    | В | 10 | NO | FO | OP-ST-CCW-3001<br>OP-ST-CCW-3001<br>OP-ST-VX-3005B | FSTO<br>STO<br>PIT | Q<br>Q<br>2YR |
| COMP COOLING | HT EXCH AC-  | -1A; CCW OL   | ITLET | VALVE    |      |   |    |    |    |                                                    |                    |               |
| HCV-490A     | M-10-3 (B2)  | Active        | 3     | BU       | A    | В | 10 | NO | FO | OP-ST-CCW-3001<br>OP-ST-CCW-3001<br>OP-ST-VX-3005A | FSTO<br>STO<br>PIT | Q<br>Q<br>2YR |
| COMP COOLING | HT EXCH AC-  | -1B ; CCW INI | ET V  | ALVE     |      |   |    |    |    |                                                    |                    |               |
| HCV-490B     | M-10-2 (A6)  | Active        | 3     | BU       | A    | В | 10 | NO | FO | OP-ST-CCW-3001<br>OP-ST-CCW-3001<br>OP-ST-VX-3005B | FSTO<br>STO<br>PIT | Q<br>Q<br>2YR |
| COMP COOLING | HT EXCH AC-  | -1B; CCW OL   | JTLET | VALVE    |      |   |    |    |    |                                                    |                    |               |
| HCV-491A     | M-10-3 (C2)  | Active        | 3     | BU       | Α    | В | 10 | NO | FO | OP-ST-CCW-3001                                     | FSTO               | Q             |

|              |             |              |       |       |   |     |    |    |     | OP-ST-CCW-3001<br>OP-ST-VX-3005A                   | STO<br>PIT         | Q<br>2YR      |
|--------------|-------------|--------------|-------|-------|---|-----|----|----|-----|----------------------------------------------------|--------------------|---------------|
| COMP COOLING | HT EXCH AC- | 1C; CCW INI  | ET V  | ALVE  |   |     |    |    |     |                                                    |                    |               |
| HCV-491B     | M-10-2 (B6) | Active       | 3     | BU    | A | В   | 10 | NO | FO  | OP-ST-CCW-3001<br>OP-ST-CCW-3001<br>OP-ST-VX-3005B | FSTO<br>STO<br>PIT | Q<br>Q<br>2YR |
| COMP COOLING | HT EXCH AC- | 1C ; CCW OL  | ITLET | VALVE |   |     |    |    |     |                                                    |                    |               |
| HCV-492A     | M-10-3 (C2) | Active       | 3     | BU    | A | В   | 10 | NO | FO  | OP-ST-CCW-3001<br>OP-ST-CCW-3001<br>OP-ST-VX-3005A | FSTO<br>STO<br>PIT | Q<br>Q<br>2YR |
| COMP COOLING | HT EXCH AC- | 1D ; CCW INI | ET VA | ALVE  |   |     |    |    |     |                                                    |                    |               |
| HCV-492B     | M-10-2 (C6) | Active       | 3     | BU    | A | В   | 10 | NO | FO  | OP-ST-CCW-3001<br>OP-ST-CCW-3001<br>OP-ST-VX-3005B | FSTO<br>STO<br>PIT | Q<br>Q<br>2YR |
| COMP COOLING | HT EXCH AC- | 1D ; CCW OL  | ITLET | VALVE |   |     |    |    |     |                                                    |                    |               |
| NG-113       | M-42-1 (D7) | Active       | 3     | СК    | С | A/C | 1  | NC | N/A | SE-ST-CCW-3003<br>SE-ST-CCW-3003                   | CVC<br>LT1         | Q<br>2YR      |

COMP COOLING WATER SURGE TANK AC-2 NITROGEN MAKEUP LINE

#### SYSTEM: CH - Chemical and Volume Control

|                |               | (<br>Pc     | Code<br>sitio | n        |         |      |      |       |                  |                                |            |        |
|----------------|---------------|-------------|---------------|----------|---------|------|------|-------|------------------|--------------------------------|------------|--------|
| Component      | PID(Coord)    | Function (  | Class         | Type Ac  | ctuator | Cat. | Size | Norm. | Fail.            | Procedure                      | Test       | Freq   |
| CH-129         | 210-121-1 (A6 | Active      | 3             | СК       | С       | С    | 3    | N/A   | N/A              | OP-ST-CH-3002<br>OP-ST-CH-3002 | CVC<br>CVO | Q<br>Q |
| BORIC ACID PUN | 1P CH-4A DISC | HARGE CHE   | ECK V         | ALVE     |         |      |      |       |                  |                                |            |        |
| CH-130         | 210-121-1 (B7 | Active      | 3             | СК       | С       | С    | 3    | N/A   | N/A              | OP-ST-CH-3002<br>OP-ST-CH-3002 | CVC<br>CVO | Q<br>Q |
| BORIC ACID PUN | 1P CH-4B DISC | HARGE CHE   | ECK V         | ALVE     |         |      |      |       |                  |                                |            |        |
| CH-143         | 210-121-2 (B5 | Active      | 2             | СК       | С       | С    | 3    | N/A   | N/A <sup>-</sup> | OP-ST-CH-3006                  | сvо        | CS     |
| BORIC ACID PUM | 1PS CH-4A & B | ; DISCHARC  | SE TO         | CHARG    | ING SU  | стю  | N HE | ADE   |                  |                                |            |        |
| CH-155         | 210-121-2 (A5 | Active      | 2             | СК       | С       | С    | 3    | N/A   | N/A              | OP-ST-CH-3006                  | CVO        | CS     |
| CHARG PUMPS (  | CH-1A,B&C SU  | CT HDR ; GF | avit          | Y FEED ( | CHECK   | VAL  | Έ    |       |                  |                                |            |        |
| CH-156         | 210-120-1 (E3 | Active      | 2             | СК       | С       | С    | 3    | N/A   | N/A              | OP-ST-CH-3006                  | сvо        | CS     |
| CHARG PUMPS (  | CH-1A,B&C SU  | CT HDR SAF  | ETYI          | NJECTIC  | ON & BO | RIC  | ACID | SUP   |                  |                                |            |        |
| CH-166         | 210-120-1 (C2 | Active      | 2             | СК       | С       | С    | 4    | NO    | N/A              | OP-ST-CH-3006                  | CVC        | CS     |

×

| VOLUME CONTR | OL TANK CH-14 ; OUTLET | CHEC  |      | Ξ |   |     |     |     |                                |            |          |
|--------------|------------------------|-------|------|---|---|-----|-----|-----|--------------------------------|------------|----------|
| CH-181       | 210-120-1 (F7 Active   | 2     | RL   | R | С | 1.5 | С   | N/A | PE-ST-VX-3002                  | RV         | ОМ       |
| CHARGING PUM | P CH-1C DISCHARGE REL  | IEF V | ALVE |   |   |     |     |     |                                |            |          |
| CH-182       | 210-120-1 (D7 Active   | 2     | RL   | R | С | 1.5 | С   | N/A | PE-ST-VX-3002                  | RV         | ОМ       |
| CHARGING PUM | P CH-1B DISCHARGE REL  | IEF V | ALVE |   |   |     |     |     |                                |            |          |
| CH-183       | 210-120-1 (B7 Active   | 2     | RL   | R | С | 1.5 | С   | N/A | PE-ST-VX-3002                  | RV         | ОМ       |
| CHARGING PUM | P CH-1A DISCHARGE REL  | IEF V | ALVE |   |   |     |     |     |                                |            |          |
| CH-187       | 210-120-1 (E7 Active   | 2     | СК   | С | С | 2   | N/A | N/A | OP-ST-CH-3003<br>OP-ST-CH-3003 | CVC<br>CVO | Q<br>Q   |
| CHARGING PUM | P CH-1C DISCHARGE CHE  | ECK V | ALVE |   |   |     |     |     |                                |            |          |
| CH-188       | 210-120-1 (C7 Active   | 2     | СК   | С | С | 2   | N/A | N/A | OP-ST-CH-3003<br>OP-ST-CH-3003 | CVC<br>CVO | Q<br>Q   |
| CHARGING PUM | P CH-1B DISCHARGE CHE  | CK V  | ALVE |   |   |     |     |     |                                |            |          |
| CH-189       | 210-120-1 (A7 Active   | 2     | СК   | С | С | 2   | N/A | N/A | OP-ST-CH-3003<br>OP-ST-CH-3003 | CVC<br>CVO | Q<br>Q   |
| CHARGING PUM | P CH-1A DISCHARGE CHE  | CK V  | ALVE |   |   |     |     |     |                                |            |          |
| CH-198       | 210-120-1A (B Active   | 2     | СК   | С | С | 2   | NO  | N/A | SE-ST-CH-3004<br>SE-ST-CH-3003 | CVC<br>CVO | RO<br>RO |

|               |                          |       |           |        |        |      |      |     | OP-ST-CH-3003                                   | PS                 | Q             |
|---------------|--------------------------|-------|-----------|--------|--------|------|------|-----|-------------------------------------------------|--------------------|---------------|
| REGENERATIVE  | HEAT EXCHANGER CH-6;     | CHAF  | RGING LI  |        | ECK V  | ALV  | E    |     |                                                 |                    |               |
| CH-203        | 210-120-1A (F Active     | 1     | СК        | С      | С      | 2    | NO   | N/A | SE-ST-CH-3003<br>OP-ST-CH-3003                  | CVO<br>PS          | RO<br>Q       |
| REACTOR COOL  | ANT SYSTEM LOOP 1A ; C   | HARC  | GING LINI | E CHEO | CK VA  | LVE  |      |     |                                                 |                    |               |
| CH-204        | 210-120-1A (CActive      | 1     | СК        | С      | С      | 2    | NO   | N/A | SE-ST-CH-3003<br>OP-ST-CH-3003                  | CVO<br>PS          | RO<br>Q       |
| REACTOR COOL  | ANT SYSTEM LOOP 2A ; C   | HARC  | SING LINI | E CHEO | CK VA  | LVE  |      |     |                                                 |                    |               |
| CH-205        | 210-120-1A (E Active     | 1     | СК        | С      | С      | 2    | N/A  | N/A | SE-ST-CH-3003                                   | сvо                | RO            |
| PRESSURIZER C | CH-4 ; AUXILIARY SPRAY C | HECK  | VALVE     |        |        |      |      |     |                                                 |                    |               |
| CH-223        | 210-120-1A (BActive      | 2     | RL        | R      | A/C    |      | NC   | N/A | IC-ST-AE-3102                                   | LJ<br>RV           | OptB<br>OM    |
| REGENERATIVE  | HEAT EXCHANGER CH-6;     | LETD  | OWN RE    | LIEF V | ALVE   | ; TO | PRES |     |                                                 |                    |               |
| CH-469        | 210-120-1A (DActive      | 1     | СК        | С      | С      | 2    | N/A  | N/A | SE-ST-CH-3003                                   | сvо                | RO            |
| PRESSURIZER F | RC-4 AUX SPRAY INLET VA  | LVE H | ICV-240 I | BYPAS  | S LINI | E CH | EC   |     |                                                 |                    |               |
| FCV-269       | 210-121-1 (C7 Active     | 2     | GL        | A      | В      | 3    | NC   | FC  | OP-ST-CH-3001<br>OP-ST-CH-3001<br>OP-ST-VX-3008 | FSTC<br>STC<br>PIT | Q<br>Q<br>2YR |

VOLUME CONTROL TANK CH-14 ; BORIC ACID MAKE-UP INLET VALVE

Fort Calhoun Station Inservice Testing Program Plan 4<sup>th</sup> Interval, Revision 0

. •

HCV-204 NO FC 210-120-1A (A Active 2 GL Α Α 2 IC-ST-AE-3102 LJ OptB **OP-ST-CH-3005** FSTC ĊS CS **OP-ST-CH-3005** STC **OP-ST-VX-3009** PIT 2YR LETDOWN HEAT EXCHANGER CH-7; INLET VALVE HCV-206 210-120-1A (EActive A 0.75 NO FC 2 GL Α OptB IC-ST-AE-3107 LJ ĊS **OP-ST-CH-3005** FSTC CS **OP-ST-CH-3005** STC **OP-ST-VX-3009** PIT 2YR RX COOLANT PUMPS RC-3A,B,C&D ; CONTROLLED BLEEDOFF ; OUTBOARD IS GL 2 NO FO HCV-238 210-120-1A (F Active Α B 1 OP-ST-CH-3001 FSTO Q **OP-ST-CH-3001** STC Q **OP-ST-CH-3001** STO Q OP-ST-VX-3008 PIT 2YR REACTOR COOLANT SYSTEM LOOP 1A ; CHARGING LINE STOP VALVE 210-120-1A (DActive FO HCV-239 GL 2 NO 1 Α B **OP-ST-CH-3001** FSTO Q OP-ST-CH-3001 STC Q **OP-ST-CH-3001** STO Q **OP-ST-VX-3008** PIT 2YR REACTOR COOLANT SYSTEM LOOP 2A ; CHARGING LINE STOP VALVE 2 NC FC HCV-240 210-120-1A (EActive 1 GL Α В **OP-ST-CH-3005** FSTC Q

> OP-ST-CH-3005 STC OP-ST-CH-3005 STO OP-ST-VX-3009 PIT

CS CS

2YR

| PRESSURIZER RC-4 ; AUXILIARY SPRAY INLET VALVE |                          |      |          |        |      |       |     |    |                                                                  |                           |                         |  |  |
|------------------------------------------------|--------------------------|------|----------|--------|------|-------|-----|----|------------------------------------------------------------------|---------------------------|-------------------------|--|--|
| HCV-241                                        | 210-120-1A (E Active     | 2    | GL       | A      | Α    | 0.75  | NO  | FC | IC-ST-AE-3107<br>OP-ST-CH-3005<br>OP-ST-CH-3005<br>OP-ST-VX-3009 | LJ<br>FSTC<br>STC<br>PIT  | OptB<br>CS<br>CS<br>2YR |  |  |
| RX COOLANT PU                                  | JMPS RC-3A,B,C&D ; CONT  | ROLL | ED BLEE  | DOFF ; | INB  | OARD  | ISO |    |                                                                  |                           |                         |  |  |
| HCV-247                                        | 210-120-1A (F Active     | 2    | GL       | S      | В    | 2     | NO  | FO | OP-ST-CH-3001<br>OP-ST-CH-3001<br>OP-ST-CH-3001<br>OP-ST-VX-3008 | FSTO<br>STC<br>STO<br>PIT | Q<br>Q<br>Q<br>2YR      |  |  |
| REACTOR COOL                                   | ANT SYSTEM LOOP 1A ; C   | HARG | ING LINE | STOP   | VAL  | .VE   |     |    |                                                                  |                           |                         |  |  |
| HCV-248                                        | 210-120-1A (DActive      | 2    | GL       | S      | В    | 2     | NO  | FO | OP-ST-CH-3001<br>OP-ST-CH-3001<br>OP-ST-CH-3001<br>OP-ST-VX-3008 | FSTO<br>STC<br>STO<br>PIT | Q<br>Q<br>Q<br>2YR      |  |  |
| REACTOR COOL                                   | ANT SYSTEM LOOP 2A ; C   | HARG | ING LINE | STOP   | VAL  | .VE   |     |    |                                                                  |                           |                         |  |  |
| HCV-249                                        | 210-120-1A (DActive      | 1    | GL       | S      | В    | 2     | NC  | FC | OP-ST-CH-3005<br>OP-ST-CH-3005<br>OP-ST-CH-3005<br>OP-ST-VX-3009 | FSTC<br>STC<br>STO<br>PIT | CS<br>CS<br>CS<br>2YR   |  |  |
| PRESSURIZER F                                  | RC-4 ; AUX SPRAY INLET V | ALVE | HCV-240  | ; BYPA | SS \ | /ALVE | E   |    |                                                                  |                           |                         |  |  |
| HCV-257                                        | 210-121-1 (D7 Active     | 2    | GL       | A      | В    | 2     | NO  | FC | OP-ST-CH-3001<br>OP-ST-CH-3001<br>OP-ST-VX-3008                  | FSTC<br>STC<br>PIT        | Q<br>Q<br>2YR           |  |  |

•

| BORIC ACID STORAGE TANK CH-11B ; RECIRCULATION VALVE |                         |        |         |        |   |   |    |     |                                                 |                    |                 |  |  |
|------------------------------------------------------|-------------------------|--------|---------|--------|---|---|----|-----|-------------------------------------------------|--------------------|-----------------|--|--|
| HCV-258                                              | 210-121-1 (B5 Active    | 2      | GA      | М      | В | 3 | NC | FAI | OP-ST-CH-3001<br>OP-ST-VX-3008                  | sto<br>Pit         | Q<br>2YR        |  |  |
| BORIC ACID STO                                       | DRAGE TANK CH-11B ; OUT | LET    | SOLATIO | N VALV | Έ |   |    |     |                                                 |                    |                 |  |  |
| HCV-264                                              | 210-121-1 (D4 Active    | 2      | GL      | A      | В | 2 | NO | FC  | OP-ST-CH-3001<br>OP-ST-CH-3001<br>OP-ST-VX-3008 | FSTC<br>STC<br>PIT | Q<br>Q<br>2YR   |  |  |
| BORIC ACID STO                                       | DRAGE TANK CH-11A ; REC |        |         |        |   |   |    |     |                                                 |                    |                 |  |  |
| HCV-265                                              | 210-121-1 (B3 Active    | 2      | GA      | м      | В | 3 | NC | FAI | OP-ST-CH-3001<br>OP-ST-VX-3008                  | STO<br>PIT         | Q<br>2YR        |  |  |
| BORIC ACID STO                                       | DRAGE TANK CH-11A ; OUT | LET    | SOLATIO | N VALV | Έ |   |    |     |                                                 |                    |                 |  |  |
| HCV-268                                              | 210-121-2 (B4 Active    | 2      | GA      | м      | В | 3 | NC | FAI | OP-ST-CH-3005<br>OP-ST-VX-3009                  | STO<br>PIT         | CS<br>2YR       |  |  |
| BORIC ACID PU                                        | MP TO CHARGING SUCTION  | N ISOI | L VALVE |        |   |   |    |     |                                                 |                    |                 |  |  |
| LCV-218-2                                            | 210-120-1 (C2 Active    | 2      | GA      | М      | В | 4 | NO | FAI | OP-ST-CH-3005<br>OP-ST-VX-3009                  | STC<br>PIT         | CS<br>2YR       |  |  |
| VOLUME CONTR                                         | ROL TANK CH-14 ; OUTLET | VALVI  | E       |        |   |   |    |     |                                                 |                    |                 |  |  |
| LCV-218-3                                            | 210-120-1 (E3 Active    | 2      | GA      | М      | В | 3 | NC | FAI | OP-ST-CH-3005<br>OP-ST-CH-3005<br>OP-ST-VX-3009 | STC<br>STO<br>PIT  | CS<br>CS<br>2YR |  |  |

CHARGING PUMPS CH-1A, B&C SUCT HDR ; SAFETY INJE CTION & BORIC AC

| TCV-202 | 210-120-1A (EActive | 1 | GL | Α | Α | 2 | NO | FC |               |      |      |
|---------|---------------------|---|----|---|---|---|----|----|---------------|------|------|
|         |                     |   |    |   |   |   |    |    | IC-ST-AE-3102 | LJ   | OptB |
|         |                     |   |    |   |   |   |    |    | OP-ST-CH-3005 | FSTC | ĊS   |
|         |                     |   |    |   |   |   |    |    | OP-ST-CH-3005 | STC  | CS   |
|         |                     |   |    |   |   |   |    |    | OP-ST-VX-3009 | PIT  | 2YR  |

REACTOR COOLANT SYSTEM LOOP 2A ; LETDOWN TEMPERATURE CONTROL VLV

•

# SYSTEM: DW - Demineralized Water System

|               |              | C<br>Pa    | ode<br>sition |         |          |      |        |       |       |                                                                  |                          |                       |
|---------------|--------------|------------|---------------|---------|----------|------|--------|-------|-------|------------------------------------------------------------------|--------------------------|-----------------------|
| Component     | PID(Coord)   | Function C | lass          | Type Ac | tuator C | Cat. | Size I | Norm. | Fail. | Procedure                                                        | Test                     | Freq                  |
| HCV-1559A     | M-5-2 (E5)   | Active     | 2             | DI      | A        | A    | 2.5    | NC    | FC    | OP-ST-DW-3001<br>OP-ST-DW-3001<br>IC-ST-AE-3180<br>OP-ST-VX-3010 | FSTC<br>STC<br>LJ<br>PIT | Q<br>Q<br>OptB<br>2YR |
| DEMIN WATER S | UPPLY;CONT   | AINMENT IS | OLATI         |         | /E       |      |        |       |       |                                                                  |                          |                       |
| HCV-1559B     | M-5-2 (E5)   | Active     | 2             | DI      | A        | Α    | 2.5    | NC    | FC    | OP-ST-DW-3001<br>OP-ST-DW-3001<br>IC-ST-AE-3180<br>OP-ST-VX-3010 | FSTC<br>STC<br>LJ<br>PIT | Q<br>Q<br>OptB<br>2YR |
| DEMIN WATER S | UPPLY;CON    | AINMENT IS | OLATI         |         | /E       |      |        |       |       |                                                                  |                          |                       |
| HCV-1560A     | M-5-2 (A4)   | Active     | 2             | DI      | A        | Α    | 2      | NC    | FC    | OP-ST-DW-3001<br>OP-ST-DW-3001<br>IC-ST-AE-3179<br>OP-ST-VX-3010 | FSTC<br>STC<br>LJ<br>PIT | Q<br>Q<br>OptB<br>2YR |
| DEAERATED WA  | TER SUPPLY ; | CONTAINME  | ENT IS        | OLATION | N VALVE  | Ξ    |        |       |       |                                                                  |                          |                       |
| HCV-1560B     | M-5-2 (A4)   | Active     | 2             | DI      | A        | А    | 2      | NC    | FC    | OP-ST-DW-3001<br>OP-ST-DW-3001<br>IC-ST-AE-3179<br>OP-ST-VX-3010 | FSTC<br>STC<br>LJ<br>PIT | Q<br>Q<br>OptB<br>2YR |

-----

DEAERATED WATER SUPPLY; CONTAINMENT ISOLATION VALVE

.

ς.

•

.

# SYSTEM: FO - (Diesel Generator) Fuel Oil System

| Component     | PID(Coord)     | (<br>Po<br>Function ( | Code<br>ositio<br>Class | n<br>Type Ac | tuator | Cat. | Size | Norm. | Fail. | Procedure                      | Test       | Freq   |
|---------------|----------------|-----------------------|-------------------------|--------------|--------|------|------|-------|-------|--------------------------------|------------|--------|
| FO-104        | M-262-1 (F6)   | Active                | 3                       | СК           | С      | С    | 1    | N/A   | N/A   | OP-ST-FO-3002<br>OP-ST-FO-3002 | CVC<br>CVO | Q      |
| TRANSFER PUM  | P FO-4A-2 ; DI | SCHARGE C             | HECK                    | <b>VALVE</b> |        |      |      |       |       |                                |            |        |
| FO-105        | M-262-1 (E6)   | Active                | 3                       | СК           | С      | С    | 1    | N/A   | N/A   | OP-ST-FO-3002<br>OP-ST-FO-3002 | CVC<br>CVO | Q<br>Q |
| TRANSFER PUM  | P FO-4B-2 ; DI | SCHARGE C             | НЕСК                    | VALVE        |        |      |      |       |       |                                |            |        |
| FO-106        | M-262-1 (D6)   | Active                | 3                       | СК           | С      | С    | 1    | N/A   | N/A   | OP-ST-FO-3001<br>OP-ST-FO-3001 | CVC<br>CVO | Q<br>Q |
| TRANSFER PUM  | P FO-4A-1 ; DI | SCHARGE C             | HECK                    | VALVE        |        |      |      |       |       |                                |            |        |
| FO-107        | M-262-1 (C6)   | Active                | 3                       | СК           | С      | С    | 1    | N/A   | N/A   | OP-ST-FO-3001<br>OP-ST-FO-3001 | CVC<br>CVO | Q<br>Q |
| TRANSFER PUM  | P FO-4B-1 ; DI | SCHARGE CI            | HECK                    | VALVE        |        |      |      |       |       |                                |            |        |
| FO-218        | M-262-1 (D7)   | Active                | 3                       | СК           | С      | С    | 2    | N/A   | N/A   | OP-ST-FO-3001                  | сvо        | Q      |
| DG-1 FOOT VAL | /E             |                       |                         |              |        |      |      |       |       |                                |            |        |
| FO-219        | M-262-1 (D8)   | Active                | 3                       | СК           | С      | С    | 2    | N/A   | N/A   | OP-ST-FO-3002                  | CVO.       | Q      |

۲

DG-2 FOOT VALVE

## SYSTEM: FW - Feedwater System

|               |                        | Р          | Code<br>ositior | า      |           |      |      | Co    | de    |                                |            |           |      |
|---------------|------------------------|------------|-----------------|--------|-----------|------|------|-------|-------|--------------------------------|------------|-----------|------|
| Component     | PID(Coord)<br>Comments | Function   | Class           | Type A | (ctuator) | Cat. | Size | Norm. | Fail. | Procedure                      | Test       | Freq      | Dev. |
| FW-1443       | M-253-4 (F8)           | Active     | 3               | RL     | R         | с    | 0.75 | NC    | N/A   | PE-ST-VX-3003                  | RV         | ОМ        |      |
| AUX FEEDWATE  | R TO RC-2A H           | EADER REL  | IEF VA          | LVE    |           |      |      |       |       |                                |            |           |      |
| FW-1444       | M-253-4 (F6)           | Active     | 3               | RL     | R         | С    | 0.75 | NC    | N/A   | PE-ST-VX-3003                  | RV         | ОМ        |      |
| AUX FEEDWATE  | R TO RC-2B HI          | EADER REL  | IEF VA          | LVE    |           |      |      |       |       |                                |            |           |      |
| FW-161        | M-253-1 (D4)           | Active     | 2               | СК     | С         | С    | 16   | NO    | N/A   | PE-ST-FW-3001                  | CVC        | RO        |      |
| STEAM GENERA  | TOR RC-2B ; II         |            | K VAL\          | /E     |           |      |      |       |       |                                |            |           |      |
| FW-162        | M-253-1 (D6)           | Active     | 2               | СК     | С         | С    | 16   | NO    | N/A   | PE-ST-FW-3001                  | CVC        | RO        |      |
| STEAM GENERA  | TOR RC-2A ; II         |            | < VAL\          | /E     |           |      |      |       |       |                                |            |           |      |
| HCV-1103      | M-253-1 (C3)           | Active     | N               | GA     | М         | В    | 16   | NO    | FAI   | OP-ST-FW-3002<br>OP-ST-VX-3011 | STC<br>PIT | CS<br>2YR |      |
| FEED REG VALV | E FCV-1101 O           | JTLET ISOL | ATION           | VALVE  |           |      |      |       |       |                                |            |           |      |
| HCV-1104      | M-253-1 (D3)           | Active     | Ν               | GA     | Μ         | В    | 16   | NO    | FAI   | OP-ST-FW-3002<br>OP-ST-VX-3011 | STC<br>PIT | CS<br>2YR |      |

| STM GEN RC-2B    | ; FEED REG V  | ALVE FCV-1 | 102 ; C | UTLET I | SOLATI |   |    |    |     |                                                 |                    |                 |
|------------------|---------------|------------|---------|---------|--------|---|----|----|-----|-------------------------------------------------|--------------------|-----------------|
| HCV-1105         | M-253-1 (C3)  | Active     | N       | GL      | A      | В | 6  | NC | FC  | OP-ST-FW-3002<br>OP-ST-FW-3002<br>OP-ST-VX-3011 | FSTC<br>STC<br>PIT | CS<br>CS<br>2YR |
| STM GEN RC-2A    | ; FEED REG B  | YPASS VAL  | /E      |         |        |   |    |    |     |                                                 |                    |                 |
| HCV-1106         | M-253-1 (E3)  | Active     | N       | GL      | A      | В | 6  | NC | FC  | OP-ST-FW-3002<br>OP-ST-FW-3002<br>OP-ST-VX-3011 | FSTC<br>STC<br>PIT | CS<br>CS<br>2YR |
| STM GEN RC-2B    | ; FEED REG B  | YPASS VAL\ | /E      |         |        |   |    |    |     |                                                 |                    |                 |
| HCV-1385         | M-253-1 (D3)  | Active     | 2       | GA      | М      | В | 16 | NO | FAI | OP-ST-FW-3002<br>OP-ST-VX-3011                  | STC<br>PIT         | CS<br>2YR       |
| S/G RC-2B ISOLA  | TION VALVE    |            |         |         |        |   |    |    |     |                                                 |                    |                 |
| HCV-1386         | M-253-1 (C6)  | Active     | 2       | GA      | м      | В | 16 | NO | FAI | OP-ST-FW-3002<br>OP-ST-VX-3011                  | STC<br>PIT         | CS<br>2YR       |
| S/G RC-2A ; FEED | OWATER ISOL   | ATION VALV | E       |         |        |   |    |    |     |                                                 |                    |                 |
| HCV-1387A        | M-253-1 (C3)  | Active     | 2       | GL      | A      | В | 2  | NO | FC  | OP-ST-BD-3000<br>OP-ST-BD-3000<br>OP-ST-VX-3011 | FSTC<br>STC<br>PIT | Q<br>Q<br>2YR   |
| STEAM GENERAT    | TOR RC-2B ; B | LWD ISOLAT |         | ALVE    |        |   |    |    |     |                                                 |                    |                 |
| HCV-1387B        | M-253-1 (B3)  | Active     | 2       | GL      | A      | В | 2  | NO | FC  | OP-ST-BD-3000                                   | FSTC               | Q               |

|                                             |                     |          |       |   |   |   |    |    | OP-ST-BD-3000<br>OP-ST-VX-3011                  | STC<br>PIT         | Q<br>2YR      |  |  |
|---------------------------------------------|---------------------|----------|-------|---|---|---|----|----|-------------------------------------------------|--------------------|---------------|--|--|
| STEAM GENERATOR RC-2B; BLWD ISOLATION VALVE |                     |          |       |   |   |   |    |    |                                                 |                    |               |  |  |
| HCV-1388A                                   | M-253-1 (C8) Active | 2        | GL    | A | В | 2 | NO | FC | OP-ST-BD-3000<br>OP-ST-BD-3000<br>OP-ST-VX-3011 | FSTC<br>STC<br>PIT | Q<br>Q<br>2YR |  |  |
| STEAM GENERA                                | TOR RC-2A ; BLWD I  | SOLATION | VALVE |   |   |   |    |    |                                                 |                    |               |  |  |
| HCV-1388B                                   | M-253-1 (B8) Active | 2        | GL    | A | В | 2 | NO | FC | OP-ST-BD-3000<br>OP-ST-FW-3002<br>OP-ST-VX-3011 | FSTC<br>STC<br>PIT | Q<br>Q<br>2YR |  |  |

STEAM GENERATOR RC-2A ; BLWD ISOLATION VALVE

### SYSTEM: IA - Instument Air System

|                  |               | (<br>Pc    | Code<br>Sitio | 1         |         |      |       |       |       |                                |            |          |
|------------------|---------------|------------|---------------|-----------|---------|------|-------|-------|-------|--------------------------------|------------|----------|
| Component        | PID(Coord)    | Function ( | Class         | Туре Ас   | tuator  | Cat. | Size  | Norm. | Fail. | Procedure                      | Test       | Freq     |
| IA-3092          | M-264-4 (B5)  | Passive    | 2             | GL        | н       | Α    | 0.5   | NC    | N/A   | IC-ST-AE-3103                  | LJ         | OptB     |
| PERSONNEL AIR    | LOCK (PAL) II | NNER DOOR  | SEAL          | S TEST    | TUBING  | SISC | LATI  | ON    |       |                                |            |          |
| IA-3093          | M-264-4 (B5)  | Passive    | 2             | GL        | Н       | Α    | 0.5   | NC    | N/A   | IC-ST-AE-3103                  | LJ         | OptB     |
| PERSONNEL AIR    | LOCK (PAL) C  | UTER DOO   | R SEA         | LS TEST   | TUBIN   | G IS | OLAT  | ION   |       |                                |            |          |
| IA-3094          | M-264-4 (B5)  | Passive    | 2             | BL        | н       | Α    | 0.5   | NC    | N/A   | IC-ST-AE-3103                  | LJ         | OptB     |
| PERSONNEL AIR    | LOCK (PAL) E  | MERGENCY   | ' AIR F       | PIPE INLE | ET ISOL | ATIO | ON VA | LV    |       |                                |            |          |
| IA-A/FIC-383-C   | M-264-4 (D3)  | Active     | 3             | СК        | С       | A/C  | 0.5   | N/A   | N/A   | IC-ST-IA-3001<br>IC-ST-IA-3001 | CVC<br>LT1 | Q<br>2YR |
| A/FIC-383 INSTRU | JMENT AIR ; C | HECK VALV  | E             |           |         |      |       |       |       |                                |            |          |
| IA-B/FIC-383-C   | M-264-4 (B3)  | Active     | 3             | СК        | С       | A/C  | 0.5   | N/A   | N/A   | IC-ST-IA-3001<br>IC-ST-IA-3001 | CVC<br>LT1 | Q<br>2YR |
| CHECK VALVE      |               |            |               |           |         |      |       |       |       |                                |            |          |
| IA-C/FIC-383-C   | M-264-4 (C3)  | Active     | 3             | СК        | С       | A/C  | 0.5   | N/A   | N/A   | IC-ST-IA-3001<br>IC-ST-IA-3001 | CVC<br>LT1 | Q<br>2YR |

•

.

.

| C/FIC-383 INSTRUMENT AIR ; CHECK VALVE |                      |           |         |       |         |     |     |                                  |            |           |  |  |  |
|----------------------------------------|----------------------|-----------|---------|-------|---------|-----|-----|----------------------------------|------------|-----------|--|--|--|
| IA-D/FIC-383-C                         | M-264-4 (A3) Active  | 3         | СК      | С     | A/C 0.5 | N/A | N/A | IC-ST-IA-3001<br>IC-ST-IA-3001   | CVC<br>LT1 | Q<br>2YR  |  |  |  |
| D/FIC-383 INSTR                        | UMENT AIR ; CHECK    | VALVE     |         |       |         |     |     |                                  |            |           |  |  |  |
| IA-FCV-1368-C                          | C-4175-8 (D7) Active | 3         | СК      | С     | A/C 0.5 | NC  | N/A | IC-ST-AFW-3001<br>IC-ST-AFW-3001 | CVC<br>LT1 | CS<br>2YR |  |  |  |
| AFW RECIRC VA                          | LVE FCV-1368 INSTR   | UMENT AIF | R CHECK | (VAL) | /E      |     |     |                                  |            |           |  |  |  |
| IA-FCV-1369-C                          | C-4175-8 (D7) Active | 3         | СК      | С     | A/C 0.5 | NC  | N/A | IC-ST-AFW-3001<br>IC-ST-AFW-3001 | CVC<br>LT1 | CS<br>2YR |  |  |  |
| AFW RECIRC VA                          | LVE FCV-1369 INSTR   | UMENT AIF | R CHECK | (VAL) | /E      |     |     |                                  |            |           |  |  |  |
| IA-HCV-1107A-C                         | C-4175-8 (E7) Active | 3         | СК      | С     | A/C 0.5 | NC  | N/A | IC-ST-AFW-3002<br>IC-ST-AFW-3002 | CVC<br>LT1 | CS<br>2YR |  |  |  |
| HCV-1107A INST                         | RUMENT AIR SUPPL     | Y CHECK V | ALVE    |       |         |     |     |                                  |            |           |  |  |  |
| IA-HCV-1107B-C                         | C-4175-8 (D7) Active | 3         | СК      | С     | A/C 0.5 | NC  | N/A | IC-ST-AFW-3002<br>IC-ST-AFW-3002 | CVC<br>LT1 | CS<br>2YR |  |  |  |
| HCV-1107B INST                         | RUMENT AIR SUPPL     | Y;CHECK   | VALVE   |       |         |     |     |                                  |            |           |  |  |  |
| IA-HCV-1108A-C                         | C-4175-8 (D7) Active | 3         | СК      | С     | A/C 0.5 | NC  | N/A | IC-ST-AFW-3002<br>IC-ST-AFW-3002 | CVC<br>LT1 | CS<br>2YR |  |  |  |

.

HCV-1108A INSTRUMENT AIR SUPPLY CHECK VALVE

Fort Calhoun Station Inservice Testing Program Plan 4<sup>th</sup> Interval, Revision 0

| IA-HCV-1108B-C | C-4175-8 (D7) Active   | 3     | СК    | С | A/C 0.5 | NC  | N/A | IC-ST-AFW-3002                 | cvc  | CS       |
|----------------|------------------------|-------|-------|---|---------|-----|-----|--------------------------------|------|----------|
|                |                        |       |       |   |         |     |     | IC-ST-AFW-3002                 | LT1  | 2YR      |
| HCV-1108B INST | RUMENT AIR SUPPLY ; CH | IECK  | VALVE |   |         |     |     |                                |      |          |
| IA-HCV-238-C   | C-4175-8 (F7) Active   | 3     | СК    | С | A/C 0.5 | N/A | N/A | IC ST 14 2002                  |      | 66       |
|                |                        |       |       |   |         |     |     | IC-ST-IA-3002                  | LT1  | 2YR      |
| HCV-238 INSTRU | IMENT AIR SUPPLY ; CHE | CK VA | LVE   |   |         |     |     |                                |      |          |
| IA-HCV-239-C   | C-4175-8 (F7) Active   | 3     | СК    | С | A/C 0.5 | N/A | N/A |                                | 01/0 | 00       |
|                |                        |       |       |   |         |     |     | IC-ST-IA-3002<br>IC-ST-IA-3002 | LT1  | 2YR      |
| HCV-239 INSTRU | IMENT AIR SUPPLY ; CHE | CK VA | LVE   |   |         |     |     |                                |      |          |
| IA-HCV-240-C   | C-4175-8 (E7) Active   | 3     | СК    | С | A/C 0.5 | N/A | N/A | IC CT 14 2002                  | 0.10 | 00       |
|                |                        |       |       |   |         |     |     | IC-ST-IA-3002<br>IC-ST-IA-3002 | LT1  | 2YR      |
| HCV-240 INSTRU | IMENT AIR SUPPLY ; CHE | CK VA | LVE   |   |         |     |     |                                |      |          |
| IA-HCV-2850-C  | C-4175-7 (D7) Active   | 3     | СК    | С | A/C 0.5 | NC  | N/A |                                | 0.40 | •        |
|                |                        |       |       |   |         |     |     | IC-ST-IA-3003<br>IC-ST-IA-3003 | LT1  | Q<br>2YR |
| HCV-2850 INSTR | UMENT AIR SUPPLY ; CHE | ECK V | ALVE  |   |         |     |     |                                |      |          |
| IA-HCV-2851-C  | C-4175-7 (D7) Active   | 3     | СК    | С | A/C 0.5 | NC  | N/A |                                |      | •        |
|                |                        |       |       |   |         |     |     | IC-ST-IA-3003<br>IC-ST-IA-3003 | LT1  | Q<br>2YR |
| HCV-2851 INSTR | UMENT AIR SUPPLY ; CHE | ECK V | ALVE  |   |         |     |     |                                |      |          |
| IA-HCV-2852-C  | C-4175-7 (D7) Active   | 3     | СК    | С | A/C 0.5 | NC  | N/A | IC CT 14 2002                  |      | 0        |
|                |                        |       |       |   |         |     |     | 10-21-1A-3003                  | CVC  | Q        |

|                |               |             |       |         |       |     |      |     |     | IC-ST-IA-3003                  | LT1        | 2YR       |
|----------------|---------------|-------------|-------|---------|-------|-----|------|-----|-----|--------------------------------|------------|-----------|
| HCV-2852 INSTR | UMENT AIR SU  | JPPLY ; CHE | CK VA | LVE     |       |     |      |     |     |                                |            |           |
| IA-HCV-2853-C  | C-4175-7 (D7) | ) Active    | 3     | СК      | с     | A/C | 0.5  | NC  | N/A | IC-ST-IA-3003<br>IC-ST-IA-3003 | CVC<br>LT1 | Q<br>2YR  |
| HCV-2853 INSTR | UMENT AIR SU  | JPPLY ; CHE | CK VA | LVE     |       |     |      |     |     |                                |            |           |
| IA-HCV-2898A-C |               | Active      | 3     | СК      | С     | A/C | 0.5  | NC  | N/A | IC-ST-IA-3008<br>IC-ST-IA-3008 | CVC<br>LT1 | Q<br>2YR  |
| CCW INLET VALV | /E HCV-2898A  | INSTRUMEN   | TAIR  | CHECK   | VALVE |     |      |     |     |                                |            |           |
| IA-HCV-2898B-C | M-100 (UNK)   | Active      | 3     | СК      | С     | A/C | 0.5  | NC  | N/A | IC-ST-IA-3008<br>IC-ST-IA-3008 | CVC<br>LT1 | Q<br>2YR  |
| CCW OUTLET VA  | ALVE HCV-2898 | BB INSTRUM  | ENT A | IR CHEC | K VAL | VE  |      |     |     |                                |            |           |
| IA-HCV-2899A-C | M-100 (UNK)   | Active      | 3     | СК      | С     | A/C | 0.5  | NC  | N/A | IC-ST-IA-3008<br>IC-ST-IA-3008 | CVC<br>LT1 | Q<br>2YR  |
| CCW INLET VAL  | /E HCV-2899A  | INSTRUMEN   | TAIR  | CHECK   | VALVE |     |      |     |     |                                |            |           |
| IA-HCV-2899B-C |               | Active      | 3     | СК      | С     | A/C | 0.5  | NC  | N/A | IC-ST-IA-3008<br>IC-ST-IA-3008 | CVC<br>LT1 | Q<br>2YR  |
| CCW OUTLET VA  | LVE HCV-2899  | B INSTRUM   | ENT A | IR CHEC | K VAL | VE  |      |     |     |                                |            |           |
| IA-HCV-2987-C  | C-4175-5 (C7) | Active      | 3     | СК      | С     | А   | 0.37 | N/A | N/A | IC-ST-IA-3005<br>IC-ST-IA-3005 | CVC<br>LT1 | CS<br>2YR |

į

1

| HCV-2987 INSTR | UMENT AIR SUPPLY ; CHE  | CK VA   | ALVE   |       |              |     |     |                                |            |           |
|----------------|-------------------------|---------|--------|-------|--------------|-----|-----|--------------------------------|------------|-----------|
| IA-HCV-344-C   | C-4175-5 (E7) Active    | 2       | СК     | С     | C 0.5        | N/A | N/A | OP-ST-SI-3002                  | CVC        | CS        |
| HCV-344 INSTRU | IMENT AIR SUPPLY ; CHEC |         |        |       |              |     |     |                                |            |           |
| IA-HCV-345-C   | C-4175-5 (E7) Active    | 2       | СК     | С     | C 0.5        | N/A | N/A | OP-ST-SI-3002                  | CVC        | CS        |
| HCV-345 INSTRU | IMENT AIR SUPPLY ; CHEC |         | _VE    |       |              |     |     |                                |            |           |
| IA-HCV-385-C   | C-4175-5 (E7) Active    | 3       | СК     | С     | A/C 0.5      | N/A | N/A | IC-ST-IA-3004<br>IC-ST-IA-3004 | CVC<br>LT1 | CS<br>2YR |
| HCV-385 INSTRU | IMENT AIR SUPPLY ; CHEC | CK VAL  | _VE    |       |              |     |     |                                |            |           |
| IA-HCV-386-C   | C-4175-5 (E7) Active    | 3       | СК     | С     | A/C 0.5      | N/A | N/A | IC-ST-IA-3004<br>IC-ST-IA-3004 | CVC<br>LT1 | CS<br>2YR |
| HCV-386 INSTRU | IMENT AIR SUPPLY ; CHEC | CK VAL  | VE     |       |              |     |     |                                |            |           |
| IA-HCV-400A-C  | C-4175-6 (F7) Active    | 3       | СК     | С     | C 0.25       | N/A | N/A | OP-ST-CCW-3005                 | сус        | Q         |
| CCW INLET VAL  | /E HCV-400A INSTRUMENT  | Γ AIR S | SUPPLY | CHEC  | VALVE        |     |     |                                |            |           |
| IA-HCV-400B-C  | C-4175-6 (F7) Active    | 3       | СК     | С     | C 0.25       | N/A | N/A | OP-ST-CCW-3005                 | cvc        | Q         |
| CCW INLET VAL  | /E HCV-400B INSTRUMENT  | T AIR S | SUPPLY | CHECH | <b>VALVE</b> |     |     |                                |            |           |
| IA-HCV-400C-TV | C-4175-6 (F3) Active    | 3       | СК     | С     | C 0.25       | NC  | N/A | OP-ST-CCW-3005                 | CVC        | Q         |

| HCV-400C INSTR                                              | RUMENT AIR SUPPLY ; TRIF | P VAL | VE      |       |    |       |     |     |                |     |   |  |
|-------------------------------------------------------------|--------------------------|-------|---------|-------|----|-------|-----|-----|----------------|-----|---|--|
| IA-HCV-400D-C                                               | C-4175-6 (F7) Active     | 3     | СК      | С     | С  | 0.25  | N/A | N/A | OP-ST-CCW-3005 | CVC | Q |  |
| CCW OUTLET VALVE HCV-400D INSTRUMENT AIR SUPPLY CHECK VALVE |                          |       |         |       |    |       |     |     |                |     |   |  |
| IA-HCV-401A-C                                               | C-4175-6 (F7) Active     | 3     | СК      | С     | С  | 0.25  | N/A | N/A | OP-ST-CCW-3005 | CVC | Q |  |
| CCW INLET VALVE HCV-401A INSTRUMENT AIR CHECK VALVE         |                          |       |         |       |    |       |     |     |                |     |   |  |
| IA-HCV-401B-C                                               | C-4175-6 (F7) Active     | 3     | СК      | С     | С  | 0.25  | N/A | N/A | OP-ST-CCW-3005 | CVC | Q |  |
| CCW INLET VAL                                               | VE HCV-401B INSTRUMENT   | AIR   | SUPPLY  | CHECK | VA | LVE   |     |     |                |     |   |  |
| IA-HCV-401C-TV                                              | C-4175-6 (F3) Active     | 3     | СК      | С     | С  | 0.25  | NC  | N/A | OP-ST-CCW-3005 | CVC | Q |  |
| HCV-401C INSTR                                              | RUMENT AIR SUPPLY ; TRIF | 'VAL  | VE      |       |    |       |     |     |                |     |   |  |
| IA-HCV-401D-C                                               | C-4175-6 (F7) Active     | 3     | СК      | С     | С  | 0.25  | N/A | N/A | OP-ST-CCW-3005 | CVC | Q |  |
| CCW OUTLET VA                                               | ALVE HCV-401D INSTRUME   | NT AI | R SUPPL | Y CHE | CK | VALVE |     |     |                |     |   |  |
| IA-HCV-402A-C                                               | C-4175-6 (E7) Active     | 3     | СК      | С     | С  | 0.25  | N/A | N/A | OP-ST-CCW-3005 | CVC | Q |  |
| CCW INLET VAL                                               | /E HCV-402A INSTRUMENT   |       | SUPPLY  | CHECK | VA | LVE   |     |     |                |     |   |  |
| IA-HCV-402B-C                                               | C-4175-6 (E7) Active     | 3     | СК      | С     | С  | 0.25  | N/A | N/A | OP-ST-CCW-3005 | CVC | Q |  |
| CCW INLET VAL                                               | VE HCV-402B INSTRUMENT   | AIR   | SUPPLY  | CHECK | VA | LVE   |     |     |                |     |   |  |

Fort Calhoun Station Inservice Testing Program Plan 4<sup>th</sup> Interval, Revision 0

| IA-HCV-402C-TV | C-4175-6 (E3) Active    | 3      | СК      | С      | С    | 0.25  | NC  | N/A | OP-ST-CCW-3005 | CVC | Q  |
|----------------|-------------------------|--------|---------|--------|------|-------|-----|-----|----------------|-----|----|
| HCV-402C INSTR | UMENT AIR SUPPLY ; TRIF | VAL    | /E      |        |      |       |     |     |                |     |    |
| IA-HCV-402D-C  | C-4175-6 (E7) Active    | 3      | СК      | С      | С    | 0.25  | N/A | N/A | OP-ST-CCW-3005 | CVC | Q  |
| CCW OUTLET VA  | ALVE HCV-402D INSTRUME  | NT AI  | R SUPPL | Y CHEC | CK \ | /ALVE | E   |     |                |     |    |
| IA-HCV-403A-C  | C-4175-6 (E7) Active    | 3      | СК      | С      | С    | 0.25  | N/A | N/A | OP-ST-CCW-3005 | CVC | Q  |
| CCW INLET VAL  | /E HCV-403A INSTRUMENT  | AIR    | SUPPLY  | CHECK  | VA   | LVE   |     |     |                |     |    |
| IA-HCV-403B-C  | C-4175-6 (E7) Active    | 3      | СК      | С      | С    | 0.25  | N/A | N/A | OP-ST-CCW-3005 | cvc | Q  |
| CCW INLET VAL  | /E HCV-403B INSTRUMENT  | AIRS   | SUPPLY  | CHECK  | VA   | LVE   |     |     |                |     |    |
| IA-HCV-403C-TV | C-4175-6 (E3) Active    | 3      | СК      | С      | С    | 0.25  | NC  | N/A | OP-ST-CCW-3005 | CVC | Q  |
| HCV-403C INSTR | UMENT AIR SUPPLY ; TRIP | VAL    | /E      |        |      |       |     |     |                |     |    |
| IA-HCV-403D-C  | C-4175-6 (E7) Active    | 3      | СК      | С      | С    | 0.25  | N/A | N/A | OP-ST-CCW-3005 | cvc | Q  |
| CCW OUTLET VA  | LVE HCV-403D INSTRUME   | NT All | R SUPPL | Y CHEC | СК \ | /ALVE |     |     |                |     |    |
| IA-HCV-438B-C  | C-4175-6 (D7) Active    | 3      | СК      | С      | С    | 0.5   | N/A | N/A | OP-ST-CCW-3004 | CVC | CS |
| HCV-438B INSTR | UMENT AIR SUPPLY ; CHE  | CK VA  | LVE     |        |      |       |     |     |                |     |    |
| IA-HCV-438D-C  | C-4175-6 (D7) Active    | 3      | СК      | С      | С    | 0.5   | N/A | N/A | OP-ST-CCW-3004 | CVC | cs |

.

| HCV-438D INSTR  | RUMENT AIR SUPPLY ; CHE | ECK V  | ALVE    |        |      |      |     |     |                                |            |           |                                |
|-----------------|-------------------------|--------|---------|--------|------|------|-----|-----|--------------------------------|------------|-----------|--------------------------------|
| IA-HCV-480-C    | C-4175-6 (B7) Active    | 3      | СК      | С      | С    | 0.5  | N/A | N/A | OP-ST-CCW-3001                 | CVC        | Q         |                                |
| CCW INLET VAL   | VE HCV-480 INSTRUMENT   | AIR SI | JPPLY C | HECK \ | /AL' | ٧E   |     |     |                                |            |           |                                |
| IA-HCV-481-C    | C-4175-6 (B7) Active    | 3      | СК      | С      | С    | 0.5  | N/A | N/A | OP-ST-CCW-3001                 | cvc        | Q         |                                |
| CCW INLET VAL   | VE HCV-481 INSTRUMENT   | AIR SI | JPPLY C | HECK \ | /AL  | VE   |     |     |                                |            |           |                                |
| IA-LCV-383-1-C  | C-4175-5 (E7) Active    | 3      | СК      | С      | С    | 0.37 | N/A | N/A | OP-ST-SI-3002                  | CVC        | CS        |                                |
| LCV-383-1 INSTR | RUMENT AIR SUPPLY ; CHE | ECK V  | ALVE    |        |      |      |     |     |                                |            |           |                                |
| IA-LCV-383-2-C  | C-4175-5 (E7) Active    | 3      | СК      | С      | С    | 0.37 | N/A | N/A | OP-ST-SI-3002                  | cvc        | CS        |                                |
| LCV-383-2 INSTR | RUMENT AIR SUPPLY ; CHE | ECK V  | ALVE    |        |      |      |     |     |                                |            |           |                                |
| IA-PCV-6680A-1- | P-49323 (N/A) Active    | 3      | СК      | С      | A    | 0.5  | NC  | N/A | IC-ST-IA-3007<br>IC-ST-IA-3007 | CVC<br>LT1 | CS<br>2YR | IC-ST-IA-3006<br>IC-ST-IA-3006 |
| IA-PCV-6680A-2- | P-49323 (N/A) Active    | 3      | СК      | с      | A    | 0.5  | NC  | N/A | IC-ST-IA-3007<br>IC-ST-IA-3007 | CVC<br>LT1 | CS<br>2YR | IC-ST-IA-3006<br>IC-ST-IA-3006 |
| IA-PCV-6680B-1- | P-49323 (N/A) Active    | 3      | СК      | с      | A    | 0.5  | NC  | N/A | IC-ST-IA-3007<br>IC-ST-IA-3007 | CVC<br>LT1 | CS<br>2YR | IC-ST-IA-3006<br>IC-ST-IA-3006 |

| IA-PCV-6680B-2- | P-49323 (N/A) A | Active      | 3     | СК      | С      | A   | 0.5 | NC  | N/A | IC-ST-IA-3007                  | CVC         | CS       | IC-ST-IA-3006                  |
|-----------------|-----------------|-------------|-------|---------|--------|-----|-----|-----|-----|--------------------------------|-------------|----------|--------------------------------|
|                 |                 |             |       |         |        |     |     |     |     | IC-ST-IA-3007                  | LII         | 218      | IC-ST-IA-3006                  |
| IA-PCV-6682-C   | P-49323 (N/A) A | Active      | 3     | СК      | С      | A   | 0.5 | NC  | N/A |                                | ~ ~         |          |                                |
|                 |                 |             |       |         |        |     |     |     |     | IC-ST-IA-3007<br>IC-ST-IA-3007 | LT1         | 2YR      | IC-ST-IA-3006<br>IC-ST-IA-3006 |
| PCV-6682 INSTR  | UMENT AIR SUP   | PLY HEAD    | ER CH | IECK VA | LVE    |     |     |     |     |                                |             |          |                                |
| IA-YCV-1045A-C  | C-4175-4 (B7) A | Active      | 3     | СК      | С      | A/C | 0.5 | N/A | N/A | OP-ST-MS-3001                  | CVC         | 0        |                                |
|                 |                 |             |       |         |        |     |     |     |     | OP-ST-MS-3001                  | LT1         | 2ŸR      |                                |
| YCV-1045A INST  | RUMENT AIR SU   | IPPLY ; CHE | ECKV  | ALVE    |        |     |     |     |     |                                |             |          |                                |
| IA-YCV-1045B-C  | C-4175-4 (B7) A | Active      | 3     | СК      | С      | A/C | 0.5 | N/A | N/A | OP-ST-MS-3001                  | cvc         | Q        |                                |
|                 |                 |             |       |         |        |     |     |     |     | OP-ST-MS-3001                  | LT1         | 2YR      |                                |
| YCV-1045B INST  | RUMENT AIR SU   | IPPLY ; CHE | ECK V | ALVE    |        |     |     |     |     |                                |             |          |                                |
| PCV-1849A       | M-264-1 (D8) A  | Active      | 2     | GL      | А      | Α   | 2   | NO  | FC  | IC-ST-AE-3173                  | ĹĴ          | OptB     |                                |
|                 |                 |             |       |         |        |     |     |     |     | OP-ST-CA-3002<br>OP-ST-CA-3002 | FSTC<br>STC | CS<br>CS |                                |
|                 |                 |             |       |         |        |     |     |     |     | OP-ST-VX-3004                  | PIT         | 2YR      |                                |
| CONTAINMENT I   | A SUPPLY INBO   | ARD PRESS   | SURE  | CONTRO  | OL VAL | VE  |     |     |     |                                |             |          |                                |
| PCV-1849A-20A   | M-264-1 (D8) A  | Active      | 2     | GL      | S      | Α   | 0.5 | 0   | FC  | IC-ST-AE-3173                  | LJ          | OptB     |                                |

| PCV-1849A-20B | M-264-1 (D8) | Active | 2 | GL | S | A | 0.5 | 0  | FC | IC-ST-AE-3173                                                    | LJ                       | OptB                    |
|---------------|--------------|--------|---|----|---|---|-----|----|----|------------------------------------------------------------------|--------------------------|-------------------------|
| PCV-1849B     | M-264-1 (F5) | Active | 2 | GL | A | A | 2   | NO | FC | IC-ST-AE-3173<br>OP-ST-CA-3002<br>OP-ST-CA-3002<br>OP-ST-VX-3004 | LJ<br>FSTC<br>STC<br>PIT | OptB<br>CS<br>CS<br>2YR |

CONTAINMENT INSTRUMENT AIR SUPPLY OUTBOARD PRESSURE CONTROL VALV

 $\nabla _{\omega}$ 

### SYSTEM: MS - Main Steam System

|               |               | Р           | Code<br>ositio | n      |            |      |      |       |       |                                                 |                    |                 |
|---------------|---------------|-------------|----------------|--------|------------|------|------|-------|-------|-------------------------------------------------|--------------------|-----------------|
| Component     | PID(Coord)    | Function    | Class          | Type A | Actuator ( | Cat. | Size | Norm. | Fail. | Procedure                                       | Test               | Freq            |
| HCV-1041A     | M-252-1 (F6)  | Active      | 2              | СК     | A          | В    | 28   | NO    | FC    | OP-ST-MS-3002<br>OP-ST-MS-3002<br>OP-ST-VX-3013 | FSTC<br>STC<br>PIT | CS<br>CS<br>2YR |
| STEAM GENERA  | TOR RC-2A ; M | IS ISOLATIO | ON VAL         | .VE    |            |      |      |       |       |                                                 |                    |                 |
| HCV-1041B     | M-252-1 (F6)  | Active      | 2              | СК     | С          | С    | 28   | N/A   | N/A   | PE-ST-MS-3001                                   | cvc                | RO1             |
| STEAM GENERA  | TOR RC-2A MS  | CHECK VA    | ALVE           |        |            |      |      |       |       |                                                 |                    |                 |
| HCV-1041C     | M-252-1 (F6)  | Active      | 2              | GL     | Μ          | В    | 2    | NC    | FAI   | OP-ST-MS-3002<br>OP-ST-VX-3013                  | STC<br>PIT         | CS<br>2YR       |
| MAIN STEAM BY | PASS VALVE    |             |                |        |            |      |      |       |       |                                                 |                    |                 |
| HCV-1042A     | M-252-1 (E6)  | Active      | 2              | СК     | A          | В    | 28   | NO    | FC    | OP-ST-MS-3002<br>OP-ST-MS-3002<br>OP-ST-VX-3013 | FSTC<br>STC<br>PIT | CS<br>CS<br>2YR |
| STEAM GENERA  | TOR RC-2B ; M | IS ISOLATIO | ON VAL         | .VE    |            |      |      |       |       |                                                 |                    |                 |
| HCV-1042B     | M-252-1 (E6)  | Active      | 2              | СК     | С          | С    | 28   | N/A   | N/A   | PE-ST-MS-3001                                   | cvc                | RO1             |
| STEAM GENERA  | TOR RC-2B MS  | CHECK VA    | LVE            |        |            |      |      |       |       |                                                 |                    |                 |

Fort Calhoun Station Inservice Testing Program Plan 4<sup>th</sup> Interval, Revision 0

| HCV-1042C      | M-252-1 (E6)   | Active | 2 | GL | М | В | 2 | NC | FAI | OP-ST-MS-3002<br>OP-ST-VX-3013 | STC<br>PIT | CS<br>2YR |
|----------------|----------------|--------|---|----|---|---|---|----|-----|--------------------------------|------------|-----------|
| MAIN STEAM BY  | PASS VALVE     |        |   |    |   |   |   |    |     |                                |            |           |
| MS-275         | M-252-1 (F8)   | Active | 2 | RL | R | С | 6 | NC | N/A | SE-ST-MS-3002                  | RV         | RO        |
| MAIN STEAM LIN | E "A" ; RELIEF | VALVE  |   |    |   |   |   |    |     |                                |            |           |
| MS-276         | M-252-1 (F8)   | Active | 2 | RL | R | С | 6 | NC | N/A | SE-ST-MS-3002                  | RV         | RO        |
| MAIN STEAM LIN | E "A" ; RELIEF | VALVE  |   |    |   |   |   |    |     |                                |            |           |
| MS-277         | M-252-1 (F7)   | Active | 2 | RL | R | С | 6 | NC | N/A | SE-ST-MS-3002                  | RV         | RO        |
| MAIN STEAM LIN | E "A" ; RELIEF | VALVE  |   |    |   |   |   |    |     |                                |            |           |
| MS-278         | M-252-1 (F7)   | Active | 2 | RL | R | С | 6 | NC | N/A | SE-ST-MS-3002                  | RV         | RO        |
| MAIN STEAM LIN | E "A" ; RELIEF | VALVE  |   |    |   |   |   |    |     |                                |            |           |
| MS-279         | M-252-1 (E8)   | Active | 2 | RL | R | С | 6 | NC | N/A | SE-ST-MS-3002                  | RV         | RO        |
| MAIN STEAM LIN | E "B" ; RELIEF | VALVE  |   |    |   |   |   |    |     |                                |            |           |
| MS-280         | M-252-1 (E7)   | Active | 2 | RL | R | С | 6 | NC | N/A | SE-ST-MS-3002                  | RV         | RO        |
| MAIN STEAM LIN | E "B" ; RELIEF | VALVE  |   |    |   |   |   |    |     |                                |            |           |
| MS-281         | M-252-1 (E7)   | Active | 2 | RL | R | С | 6 | NC | N/A | SE-ST-MS-3002                  | RV         | RO        |

1

| MAIN STEAM LIN   | IE "B" ; RELIEF | VALVE         |      |       |   |   |     |     |     |                                                   |                    |               |
|------------------|-----------------|---------------|------|-------|---|---|-----|-----|-----|---------------------------------------------------|--------------------|---------------|
| MS-282           | M-252-1 (E6)    | Active        | 2    | RL    | R | С | 6   | NC  | N/A | SE-ST-MS-3002                                     | RV                 | RO            |
| MAIN STEAM LIN   | IE "B" ; RELIEF | VALVE         |      |       |   |   |     |     |     |                                                   |                    |               |
| MS-291           | M-252-1 (F7)    | Active        | 2    | RL    | R | С | 2.5 | NC  | N/A | SE-ST-MS-3002                                     | RV                 | RO            |
| MAIN STEAM LIN   | IE "A" ; RELIEF | VALVE         |      |       |   |   |     |     |     |                                                   |                    |               |
| MS-292           | M-252-1 (E7)    | Active        | 2    | RL    | R | С | 2.5 | NC  | N/A | SE-ST-MS-3002                                     | RV                 | RO            |
| MAIN STEAM LIN   | IE "B" ; RELIEF | VALVE         |      |       |   |   |     |     |     |                                                   |                    |               |
| MS-351           | M-252-1 (E5)    | Active        | 3    | СК    | С | С | 2   | N/A | N/A | SE-ST-AFW-3006                                    | сvо                | Q             |
| MS LINE "B" TO A | AUX FEED PUN    | /IP FW-10 ; C | HECK | VALVE |   |   |     |     |     |                                                   |                    |               |
| MS-352           | M-252-1 (E5)    | Active        | 3    | СК    | С | С | 2   | N/A | N/A | SE-ST-AFW-3006                                    | cvo                | Q             |
| MS LINE "A" TO A | AUX FEED PUN    | /IP FW-10 ; C | HECK | VALVE |   |   |     |     |     |                                                   |                    |               |
| YCV-1045         | M-252-1 (C5)    | Active        | 3    | GL    | A | В | 2   | NC  | FO  | SE-ST-AFW-3006<br>SE-ST-AFW-3006<br>OP-ST-VX-3001 | FSTO<br>STO<br>PIT | Q<br>Q<br>2YR |
| AUX FEEDWATE     | R PUMP FW-1(    | ; INLET VAL   | .VE  |       |   |   |     |     |     |                                                   |                    |               |
| YCV-1045A        | M-252-1 (F5)    | Active        | 2    | GL    | A | В | 2   | NC  | FO  | OP-ST-MS-3001<br>OP-ST-MS-3001                    | FSTO<br>STC        | Q<br>Q        |
|              |                  |         |        |         |          |      |     |    |    | ÓP-ST-MS-3001<br>OP-ST-VX-3012                                   | STO<br>PIT                | Q<br>2YR           |
|--------------|------------------|---------|--------|---------|----------|------|-----|----|----|------------------------------------------------------------------|---------------------------|--------------------|
| MAIN STEAM L | INE "A" TO ; AU> | (FEEDWA | TER PL | JMP FW- | -10 ; SU | PPLY | VAL | VE |    |                                                                  |                           |                    |
| YCV-1045B    | M-252-1 (E5)     | Active  | 2      | GL      | A        | В    | 2   | NC | FO | OP-ST-MS-3001<br>OP-ST-MS-3001<br>OP-ST-MS-3001<br>OP-ST-VX-3012 | FSTO<br>STC<br>STO<br>PIT | Q<br>Q<br>Q<br>2YR |
|              |                  |         |        |         |          |      |     |    |    |                                                                  |                           |                    |

.

# MAIN STEAM LOOP "B"; AUX FEEDWATER PUMP FW-10; SUPPLY VALVE

•

.

•

# SYSTEM: NG - Nitrogen Gas System

.

|                  |              | C            | ode<br>sition | 1       |          |        |        |        |       |                                                                  |                          |                       |
|------------------|--------------|--------------|---------------|---------|----------|--------|--------|--------|-------|------------------------------------------------------------------|--------------------------|-----------------------|
| Component        | PID(Coord)   | Function C   | lass          | Type Ac | tuator ( | Cat. S | Size I | Norm.  | Fail. | Procedure                                                        | Test                     | Freq                  |
| HCV-2603A        | M-42-1 (D8)  | Active       | 2             | GL      | A        | A      | 1      | NC     | FC    | OP-ST-NG-3001<br>OP-ST-NG-3001<br>IC-ST-AE-3142<br>OP-ST-VX-3014 | FSTC<br>STC<br>LJ<br>PIT | Q<br>Q<br>OptB<br>2YR |
| SI TANKS SI-6A-6 | D; SUPPLY C  | UTBOARD IS   | OLAT          | ION VAL | VE       |        |        |        |       |                                                                  |                          |                       |
| HCV-2603B        | M-42-1 (D8)  | Active       | 2             | GL      | A        | Α      | 1      | NC     | FC    | OP-ST-NG-3001<br>OP-ST-NG-3001<br>IC-ST-AE-3142<br>OP-ST-VX-3014 | FSTC<br>STC<br>LJ<br>PIT | Q<br>Q<br>OptB<br>2YR |
| SI TANKS SI-6A-6 | D; SUPPLY I  | BOARD ISO    | LATIO         | N VALVE |          |        |        |        |       |                                                                  |                          |                       |
| HCV-2604A        | M-42-1 (D5)  | Active       | 2             | GL      | A        | Α      | 1      | NC     | FC    | OP-ST-NG-3001<br>OP-ST-NG-3001<br>IC-ST-AE-3143<br>OP-ST-VX-3014 | FSTC<br>STC<br>LJ<br>PIT | Q<br>Q<br>OptB<br>2YR |
| REACTOR COOL     | ANT DRAIN TA | ANK WD-1 ; P | RESS          | URIZER  | QUENC    | ΗΤΑ    | NK F   | RC-5 ; |       |                                                                  |                          |                       |
| HCV-2604B        | M-42-1 (D5)  | Active       | 2             | GL      | A        | A      | 1      | NC     | FC    | OP-ST-NG-3001<br>OP-ST-NG-3001<br>IC-ST-AE-3143<br>OP-ST-VX-3014 | FSTC<br>STC<br>LJ<br>PIT | Q<br>Q<br>OptB<br>2YR |

REACTOR COOLANT DRAIN TANK WD-1 ; PRESSURIZER QUENCH TANK RC-5 ;

| NG-142         | M-42-1 (E5)     | Active      | 2     | СК           | С      | A/C | 1    | NC | N/A | SE-ST-NG-3002<br>SE-ST-NG-3002 | CVC<br>LT1 | CS<br>2YR |
|----------------|-----------------|-------------|-------|--------------|--------|-----|------|----|-----|--------------------------------|------------|-----------|
| SAFETY INJECTI | ON TANK SI-6    | A; SUPPLY C | CHECK | <b>VALVE</b> |        |     |      |    |     |                                |            |           |
| NG-144         | M-42-1 (E6)     | Active      | 2     | СК           | С      | A/C | 1    | NC | N/A | SE-ST-NG-3002<br>SE-ST-NG-3002 | CVC<br>LT1 | CS<br>2YR |
| SAFETY INJECTI | ON TANK SI-6    | B;SUPPLY C  | CHECK | <b>VALVE</b> |        |     |      |    |     |                                |            |           |
| NG-146         | M-42-1 (E7)     | Active      | 2     | СК           | С      | A/C | 1    | NC | N/A | SE-ST-NG-3002<br>SE-ST-NG-3002 | CVC<br>LT1 | CS<br>2YR |
| SAFETY INJECTI | ON TANK SI-6    | C;SUPPLY (  | CHECH | <b>VALVE</b> |        |     |      |    |     |                                |            |           |
| NG-148         | M-42-1 (E7)     | Active      | 2     | СК           | С      | A/C | 1    | NC | N/A | SE-ST-NG-3002<br>SE-ST-NG-3002 | CVC<br>LT1 | CS<br>2YR |
| SAFETY INJECTI | ON TANK SI-6    | D;SUPPLY (  | CHECH | VALVE        |        |     |      |    |     |                                |            |           |
| NG-HCV-344-S2  | C-4175-5 (E2    | ) Active    | 2     | RL           | R      | С   | 0.75 | NC | N/A | PE-ST-VX-3006                  | RV         | ОМ        |
| HCV-344 NITROG | GEN SUPPLY ;    | RELIEF VAL  | ٧E    |              |        |     |      |    |     |                                |            |           |
| NG-HCV-400A-S2 | 2 C-4175-6 (F2) | ) Active    | 3     | RL           | R      | С   | 0.25 | NC | N/A | PE-ST-VX-3006                  | RV         | ОМ        |
| NITROGEN ACCU  | JMULATOR IA     | -93A LOW PF | RESSU | RE RELI      | EF VAI | LVE |      |    |     |                                |            |           |
| NG-HCV-400B-S2 | 2 C-4175-6 (F2) | ) Active    | 3     | RL           | R      | С   | 0.25 | NC | N/A | PE-ST-VX-3006                  | RV         | ОМ        |

| NITROGEN ACCUMULATOR IA-93B LOW PF  | RESUR | RE RELIE |         | /E  |      |    |     |               |    |    |
|-------------------------------------|-------|----------|---------|-----|------|----|-----|---------------|----|----|
| NG-HCV-401A-S2 C-4175-6 (F2) Active | 3     | RL       | R       | С   | 0.25 | NC | N/A | PE-ST-VX-3006 | RV | ОМ |
| NITROGEN ACCUMULATOR IA-93C LOW PF  | RESSI | JRE REL  | IEF VAL | VE  |      |    |     |               |    |    |
| NG-HCV-401B-S2 C-4175-6 (F2) Active | 3     | RL       | R       | С   | 0.25 | NC | N/A | PE-ST-VX-3006 | RV | ОМ |
| NITROGEN ACCUMULATOR IA-93D LOW PF  | RESSI | JRE REL  | IEF VAL | _VE |      |    |     |               |    |    |
| NG-HCV-402A-S2 C-4175-6 (E2) Active | 3     | RL       | R       | С   | 0.25 | NC | N/A | PE-ST-VX-3006 | RV | ОМ |
| NITROGEN ACCUMULATOR IA-93E LOW PF  | RESSI | JRE RELI | IEF VAL | .VE |      |    |     |               |    |    |
| NG-HCV-402B-S2 C-4175-6 (E2) Active | 3     | RL       | R       | С   | 0.25 | NC | N/A | PE-ST-VX-3006 | RV | ОМ |
| NITROGEN ACCUMULATOR IA-93F LOW PR  | RESSU | JRE RELI | EF VAL  | .VE |      |    |     |               |    |    |
| NG-HCV-403A-S2 C-4175-6 (E2) Active | 3     | RL       | R       | С   | 0.25 | NC | N/A | PE-ST-VX-3006 | RV | ОМ |
| NITROGEN ACCUMULATOR IA-93G LOW PF  | RESS  | JRE REL  | IEF VAI | LVE |      |    |     |               |    |    |
| NG-HCV-403B-S2 C-4175-6 (E2) Active | 3     | RL       | R       | С   | 0.25 | NC | N/A | PE-ST-VX-3006 | RV | ОМ |
| NITROGEN ACCUMULATOR IA-93H LOW PF  | RESSI | JRE REL  | IEF VAL | _VE |      |    |     |               |    |    |
| NG-HCV-438B-S2 C-4175-6 (D2) Active | 3     | RL       | R       | С   | 0.25 | NC | N/A | PE-ST-VX-3006 | RV | ОМ |
| CCW INLET VALVE HCV-438B NITROGEN A | CCUN  | ULATOF   | R SUPP  | LYL | .ow  |    |     |               |    |    |

Fort Calhoun Station Inservice Testing Program Plan 4<sup>th</sup> Interval, Revision 0

| NG-HCV-438D-S2  | 2 C-4175-6 (D2) Active  | 3    | RL       | R      | С  | 0.25 | NC | N/A | PE-ST-VX-3006 | RV | ОМ |
|-----------------|-------------------------|------|----------|--------|----|------|----|-----|---------------|----|----|
| CCW OUTLET VA   | LVE HCV-438D NITROGEN   | ACCI | JMULAT   | OR SUP | PL | YLOW | ,  |     |               |    |    |
| NG-HCV-480-S2   | C-4175-6 (B2) Active    | 3    | RL       | R      | С  | 0.25 | NC | N/A | PE-ST-VX-3006 | RV | ОМ |
| NITROGEN ACCU   | JMULATOR IA-91 LOW PRE  | SSUF | RE RELIE | F VALV | Е  |      |    |     |               |    |    |
| NG-HCV-481-S2   | C-4175-6 (B2) Active    | 3    | RL       | R      | С  | 0.25 | NC | N/A | PE-ST-VX-3006 | RV | ОМ |
| NITROGEN ACCL   | JMULATOR IA-92 LOE PRE  | SSUR | E RELIEF |        | Ξ  |      |    |     |               |    |    |
| NG-LCV-383-1-S2 | 2 C-4175-5 (E2) Active  | 3    | RL       | R      | С  | 0.75 | NC | N/A | PE-ST-VX-3006 | RV | ОМ |
| LCV-383-1 NITRO | GEN SUPPLY ; RELIEF VAI | LVE  |          |        |    |      |    |     |               |    |    |
| NG-LCV-383-2-S2 | 2 C-4175-5 (E2) Active  | 3    | RL       | R      | С  | 0.75 | NC | N/A | PE-ST-VX-3006 | RV | ОМ |
| LCV-383-2 NITRO | GEN SUPPLY ; RELIEF VAI | LVE  |          |        |    |      |    |     |               |    |    |

# SYSTEM: RC - Reactor Coolant System

|               |                | (<br>Pr     | Code   | <b>-</b> |          |      |        |       |       |                                                                  |                           |                       |
|---------------|----------------|-------------|--------|----------|----------|------|--------|-------|-------|------------------------------------------------------------------|---------------------------|-----------------------|
| Component     | PID(Coord)     | Function (  | Class  | Туре Ас  | tuator ( | Cat. | Size I | Norm. | Fail. | Procedure                                                        | Test                      | Freq                  |
| HCV-150       | 210-110-1A ([  | DActive     | 1      | GA       | М        | В    | 2.5    | NO    | FAI   | OP-ST-RC-3002<br>OP-ST-VX-3015                                   | STC<br>PIT                | Q<br>2YR              |
| PRESSURIZER R | C-4 ; RELIEF I | SOLATION V  | ALVE   |          |          |      |        |       |       |                                                                  |                           |                       |
| HCV-151       | 210-110-1A ([  | DActive     | 1      | GA       | Μ        | В    | 2.5    | NO    | FAI   | OP-ST-RC-3002<br>OP-ST-VX-3015                                   | STC<br>PIT                | Q<br>2YR              |
| PRESSURIZER R | C-4 ; RELIEF I | SOLATION V  | ALVE   |          |          |      |        |       |       |                                                                  |                           |                       |
| HCV-176       | D-4078 (E5)    | Active      | 2      | GL       | S        | В    | 1      | NC    | FC    | OP-ST-RC-3005<br>OP-ST-RC-3005<br>OP-ST-RC-3005<br>OP-ST-RC-3006 | FSTC<br>STC<br>STO<br>PIT | CS<br>CS<br>CS<br>2YR |
| REACTOR VESS  | EL RC-1 RCGV   | S HEAD VEN  | IT VAI | LVE      |          |      |        |       |       |                                                                  |                           |                       |
| HCV-177       | D-4078 (D5)    | Active      | 2      | GL       | S        | В    | 1      | NC    | FC    | OP-ST-RC-3005<br>OP-ST-RC-3005<br>OP-ST-RC-3005<br>OP-ST-RC-3006 | FSTC<br>STC<br>STO<br>PIT | CS<br>CS<br>CS<br>2YR |
| REACTOR VESSI | EL RC-1 RCGV   | 'S HEAD VEN |        | LVE HCV  | -176 BY  | PAS  | IS VAI | LVE   |       |                                                                  |                           |                       |
| HCV-178       | D-4078 (C5)    | Active      | 2      | GL       | S        | В    | 1      | NC    | FC    | OP-ST-RC-3005                                                    | FSTC                      | CS                    |

|              |                    |             |       |          |      |     |     |    |    | OP-ST-RC-3005<br>OP-ST-RC-3005<br>OP-ST-RC-3006                  | STC<br>STO<br>PIT         | CS<br>CS<br>2YR       |
|--------------|--------------------|-------------|-------|----------|------|-----|-----|----|----|------------------------------------------------------------------|---------------------------|-----------------------|
| PRESSURIZER  | RC-4 VENT ST       | OP VALVE    |       |          |      |     |     |    |    |                                                                  |                           |                       |
| HCV-179      | <b>D-4078 (B5)</b> | Active      | 2     | GL       | S    | В   | 1   | NC | FC | OP-ST-RC-3005<br>OP-ST-RC-3005<br>OP-ST-RC-3005<br>OP-ST-RC-3006 | FSTC<br>STC<br>STO<br>PIT | CS<br>CS<br>CS<br>2YR |
| PRESSURIZER  | RC-4 VENT VA       | LVE HCV-178 | TOR   | CGVS BY  | PASS | VAL | VE  |    |    | ·                                                                |                           |                       |
| HCV-180      | D-4078 (E3)        | Active      | 2     | GL       | S    | В   | 1   | NC | FC | OP-ST-RC-3005<br>OP-ST-RC-3005<br>OP-ST-RC-3005<br>OP-ST-RC-3006 | FSTC<br>STC<br>STO<br>PIT | CS<br>CS<br>CS<br>2YR |
| RCGVS VENT V | ALVE TO PRES       | SURIZER QU  | JENCH | H TANK F | RC-5 |     |     |    |    |                                                                  |                           |                       |
| HCV-181      | D-4078 (C3)        | Active      | 2     | GL       | S    | В   | 1   | NC | FC | OP-ST-RC-3005<br>OP-ST-RC-3005<br>OP-ST-RC-3005<br>OP-ST-RC-3006 | FSTC<br>STC<br>STO<br>PIT | CS<br>CS<br>CS<br>2YR |
| RCGVS VENT V | ALVE TO ; CON      |             |       | SPHERE   |      |     |     |    |    |                                                                  |                           |                       |
| PCV-102-1    | 210-110-1A (       | EActive     | 1     | GL       | S    | В   | 2.5 | NC | FC | OP-ST-RC-3004<br>OP-ST-RC-3004<br>OP-ST-RC-3004<br>OP-ST-RC-3004 | FSTC<br>STC<br>STO<br>PIT | CS<br>CS<br>CS<br>2YR |
| PZR POWER OF | PERATED RELI       | EF VALVE    |       |          |      |     |     |    |    |                                                                  |                           |                       |
| PCV-102-2    | 210-110-1A (       | EActive     | 1     | GL       | S    | В   | 2.5 | NC | FC |                                                                  |                           |                       |

.

.

.

|               |                      |       |    |   |     |   |     |     | OP-ST-RC-3004<br>OP-ST-RC-3004<br>OP-ST-RC-3004<br>OP-ST-RC-3004 | FSTC<br>STC<br>STO<br>PIT | CS<br>CS<br>CS<br>2YR |
|---------------|----------------------|-------|----|---|-----|---|-----|-----|------------------------------------------------------------------|---------------------------|-----------------------|
| PRESSURIZER;  | POWER OPERATED RELIE | F VAl | VE |   |     |   |     |     |                                                                  |                           |                       |
| RC-141        | 210-110-1A (F Active | 1     | RL | R | С   | 3 | N/A | N/A | SE-ST-RC-3002                                                    | RV                        | RO                    |
| PRESSURIZER R | C-4 RELIEF VALVE     |       |    |   |     |   |     |     |                                                                  |                           |                       |
| RC-142        | 210-110-1A (F Active | 1     | RL | R | С   | 3 | N/A | N/A | SE-ST-RC-3002                                                    | RV                        | RO                    |
| PRESSURIZER R | C-4 RELIEF VALVE     |       |    |   |     |   |     |     |                                                                  |                           |                       |
| RC-374        | 210-110-1A (E Active | 1     | СК | С | A/C | 4 | NO  | N/A | OP-ST-SI-3007<br>OP-ST-SI-3007                                   | CVC<br>LT                 | RO<br>2YR             |

•

PRESSURIZER RC-4 ; SPRAY LINE CHECK VALVE

i

ł

SYSTEM: RW - Raw Water System

|                 |              | Pé        | Code<br>ositior | <b>,</b> |          |      |        |       |       |                                                    |                    |               |
|-----------------|--------------|-----------|-----------------|----------|----------|------|--------|-------|-------|----------------------------------------------------|--------------------|---------------|
| Component       | PID(Coord)   | Function  | Class           | Туре Ас  | tuator ( | Cat. | Size I | Norm. | Fail. | Procedure                                          | Test               | Freq          |
| HCV-2808C       | M-10-4 (D5)  | Passive   | 3               | GL       | A        | В    | 1.5    | LC    | N/A   | OP-ST-RW-3003<br>OP-ST-RW-3003                     | EXC<br>EXO         | RO<br>RO      |
| LPSI PUMP SI-1A | BRG CLR ; R/ | W WATER I | NLET            | VALVE    |          |      |        |       |       |                                                    |                    |               |
| HCV-2808D       | M-10-4 (A5)  | Passive   | 3               | GL       | A        | В    | 1.5    | LC    | N/A   | OP-ST-RW-3003<br>OP-ST-RW-3003                     | EXC<br>EXO         | RO<br>RO      |
| LPSI PUMP SI-1A | BRG CLR ; R/ | W WATER   | OUTLE           |          | E        |      |        |       |       |                                                    |                    |               |
| HCV-2809C       | M-10-4 (D4)  | Passive   | 3               | GL       | A        | В    | 1.5    | LC    | N/A   | OP-ST-RW-3003<br>OP-ST-RW-3003                     | EXC<br>EXO         | RO<br>RO      |
| LPSI PUMP SI-1B | BRG CLR ; R/ | W WATER I | NLET            | VALVE    |          |      |        |       |       |                                                    |                    |               |
| HCV-2809D       | M-10-4 (B4)  | Passive   | 3               | GL       | A<br>,   | В    | 1.5    | LC    | N/A   | OP-ST-RW-3003<br>OP-ST-RW-3003                     | EXC<br>EXO         | RO<br>RO      |
| LPSI PUMP SI-1B | BRG CLR ; R/ | W WATER   | OUTLE           |          | E        |      |        |       |       |                                                    |                    |               |
| HCV-2850        | M-100-1 (B7) | Active    | 3               | BU       | A        | В    | 20     | N/A   | FO    | OP-ST-RW-3002A<br>OP-ST-RW-3002A<br>OP-ST-VX-3017A | FSTO<br>STO<br>PIT | Q<br>Q<br>2YR |

RAW WATER PUMP AC-10A ; DISCHARGE VALVE

| HCV-2851     | M-100-1 (B6)  | Active     | 3     | BU      | A | В | 20 | N/A | FO | OP-ST-RW-3002A<br>OP-ST-RW-3002A<br>OP-ST-VX-3017A                   | FSTO<br>STO<br>PIT        | Q<br>Q<br>2YR      |
|--------------|---------------|------------|-------|---------|---|---|----|-----|----|----------------------------------------------------------------------|---------------------------|--------------------|
| RAW WATER PU | MP AC-10B ; D | ISCHARGE \ | /ALVE |         |   |   |    |     |    |                                                                      |                           |                    |
| HCV-2852     | M-100-1 (B5)  | Active     | 3     | BU      | A | В | 20 | N/A | FO | OP-ST-RW-3002A<br>OP-ST-RW-3002A<br>OP-ST-VX-3017A                   | FSTO<br>STO<br>PIT        | Q<br>Q<br>2YR      |
| RAW WATER PU | MP AC-10C ; D | ISCHARGE \ | /ALVE |         |   |   |    |     |    |                                                                      |                           |                    |
| HCV-2853     | M-100-1 (B4)  | Active     | 3     | BU      | A | В | 20 | N/A | FO | OP-ST-RW-3002A<br>OP-ST-RW-3002A<br>OP-ST-VX-3017A                   | FSTO<br>STO<br>PIT        | Q<br>Q<br>2YR      |
| RAW WATER PU | MP AC-10D ; D | ISCHARGE \ | /ALVE |         |   |   |    |     |    |                                                                      |                           |                    |
| HCV-2874A    | M-100-1 (B6)  | Active     | 3     | BU      | A | В | 20 | NO  | FO | OP-ST-RW-3002A<br>OP-ST-RW-3002A<br>OP-ST-RW-3002A<br>OP-ST-VX-3017A | FSTO<br>STC<br>STO<br>PIT | Q<br>Q<br>Q<br>2YR |
| RAW WATER PU | MPS ; DISCH H | EADER ISOI | ATIO  | N VALVE |   |   |    |     |    |                                                                      |                           |                    |
| HCV-2874B    | M-100-1 (B6)  | Active     | 3     | BU      | A | В | 20 | NO  | FO | OP-ST-RW-3002B<br>OP-ST-RW-3002B<br>OP-ST-RW-3002B<br>OP-ST-VX-3017B | FSTO<br>STC<br>STO<br>PIT | Q<br>Q<br>Q<br>2YR |

RAW WATER PUMPS ; DISCH HEADER ISOLATION VALVE

| HCV-2875A    | M-100-1 (B6)  | Active      | 3      | BU      | A | В | 20 | NO | FO | OP-ST-RW-3002A<br>OP-ST-RW-3002A<br>OP-ST-RW-3002A<br>OP-ST-VX-3017A | FSTO<br>STC<br>STO<br>PIT | Q<br>Q<br>Q<br>2YR |
|--------------|---------------|-------------|--------|---------|---|---|----|----|----|----------------------------------------------------------------------|---------------------------|--------------------|
| RAW WATER PU | MPS ; DISCH H | IEADER ISOL | .ATIOI | N VALVE |   |   |    |    |    |                                                                      |                           |                    |
| HCV-2875B    | M-100-1 (B5)  | Active      | 3      | BU      | Α | В | 20 | NO | FO | OP-ST-RW-3002B<br>OP-ST-RW-3002B<br>OP-ST-RW-3002B<br>OP-ST-VX-3017B | FSTO<br>STC<br>STO<br>PIT | Q<br>Q<br>Q<br>2YR |
| RAW WATER PU | MPS ; DISCH H | IEADER ISOI | .ATIOI | N VALVE |   |   |    |    |    |                                                                      |                           |                    |
| HCV-2876A    | M-100-1 (B5)  | Active      | 3      | BU      | A | В | 20 | NO | FO | OP-ST-RW-3002A<br>OP-ST-RW-3002A<br>OP-ST-RW-3002A<br>OP-ST-VX-3017A | FSTO<br>STC<br>STO<br>PIT | Q<br>Q<br>Q<br>2YR |
| RAW WATER PU | MPS ; DISCH F | IEADER ISOI | _ATIOI | N VALVE |   |   |    |    |    |                                                                      |                           |                    |
| HCV-2876B    | M-100-1 (B5)  | Active      | 3      | BU      | А | В | 20 | NO | FO | OP-ST-RW-3002B<br>OP-ST-RW-3002B<br>OP-ST-RW-3002B<br>OP-ST-VX-3017B | FSTO<br>STC<br>STO<br>PIT | Q<br>Q<br>Q<br>2YR |
| RAW WATER PU | MPS ; DISCH H | IEADER ISOI | ATIO   | N VALVE |   |   |    |    |    |                                                                      |                           |                    |
| HCV-2877A    | M-100-1 (E4)  | Active      | 3      | BU      | A | В | 14 | NO | FO | OP-ST-RW-3002A<br>OP-ST-RW-3002A<br>OP-ST-RW-3002A<br>OP-ST-VX-3017A | FSTO<br>STC<br>STO<br>PIT | Q<br>Q<br>Q<br>2YR |

COMP CLG HT EXCHS AC-1A-D ; RAW WATER INLET HEADER ; ISOLATION V

| HCV-2877B     | M-100-1 (E4) | Active      | 3      | BU      | A        | В    | 14    | NO  | FO | OP-ST-RW-3002B<br>OP-ST-RW-3002B<br>OP-ST-RW-3002B<br>OP-ST-VX-3017B | FSTO<br>STC<br>STO<br>PIT | Q<br>Q<br>Q<br>2YR |
|---------------|--------------|-------------|--------|---------|----------|------|-------|-----|----|----------------------------------------------------------------------|---------------------------|--------------------|
| COMP CLG HT E | XCHS AC-1A-D | ; RAW WAT   | ER IN  | LET HEA | DER ; IS | SOLA | ATION | I V |    |                                                                      |                           |                    |
| HCV-2879A     | M-100-1 (C4) | Active      | 3      | BU      | A        | В    | 14    | NO  | FO | OP-ST-RW-3002A<br>OP-ST-RW-3002A<br>OP-ST-RW-3002A<br>OP-ST-VX-3017A | FSTO<br>STC<br>STO<br>PIT | Q<br>Q<br>Q<br>2YR |
| COMP CLG HT E | XCHS AC-1A-D | ; RAW WAT   | ER INI | LET HEA | DER ; IS | SOLA |       | IV  |    |                                                                      |                           |                    |
| HCV-2879B     | M-100-1 (C4) | Active      | 3      | BU      | A        | В    | 14    | NO  | FO | OP-ST-RW-3002B<br>OP-ST-RW-3002B<br>OP-ST-RW-3002B<br>OP-ST-VX-3017B | FSTO<br>STC<br>STO<br>PIT | Q<br>Q<br>Q<br>2YR |
| COMP CLG HT E | XCHS AC-1A-D | ; RAW WAT   | ER INI | LET HEA | DER ; IS | SOLA | ATION | IV  |    |                                                                      |                           |                    |
| HCV-2880A     | M-100-1 (E3) | Active      | 3      | BU      | A        | В    | 12    | NO  | FO | OP-ST-RW-3002A<br>OP-ST-RW-3002A<br>OP-ST-VX-3017A                   | FSTO<br>STO<br>PIT        | Q<br>Q<br>2YR      |
| COMP COOLING  | HT EXCH AC-  | 1A ; RAW WA | TER I  | NLET VA | LVE      |      |       |     |    |                                                                      |                           |                    |
| HCV-2880B     | M-100-1 (E1) | Active      | 3      | BU      | A        | В    | 12    | NO  | FO | OP-ST-RW-3002B<br>OP-ST-RW-3002B<br>OP-ST-VX-3017B                   | FSTO<br>STO<br>PIT        | Q<br>Q<br>2YR      |

COMP COOLING HT EXCH AC-1A ; RAW WATER OUTLET VALVE

•

.

| HCV-2881A    | M-100-1 (C3)            | Active      | 3      | BU       | A          | В | 12 | NO | FO | OP-ST-RW-3002A<br>OP-ST-RW-3002A<br>OP-ST-VX-3017A | FSTO<br>STO<br>PIT | Q<br>Q<br>2YR |
|--------------|-------------------------|-------------|--------|----------|------------|---|----|----|----|----------------------------------------------------|--------------------|---------------|
| COMP COOLING | HT EXCH AC-             | 1B ; RAW WA | TER I  | NLET VA  | LVE        |   |    |    |    |                                                    |                    |               |
| HCV-2881B    | M-100-1 (C1)            | Active      | 3      | BU       | A          | В | 12 | NO | FO | OP-ST-RW-3002B<br>OP-ST-RW-3002B<br>OP-ST-VX-3017B | FSTO<br>STO<br>PIT | Q<br>Q<br>2YR |
|              | GHT EXCH AC-            | 1B ; RAW WA | TER (  | OUTLET   | VALVE      |   |    |    |    |                                                    |                    |               |
| HCV-2882A    | M-100-1 (F3)            | Active      | 3      | BU       | <b>A</b> . | В | 12 | NO | FO | OP-ST-RW-3002A<br>OP-ST-RW-3002A<br>OP-ST-VX-3017A | FSTO<br>STO<br>PIT | Q<br>Q<br>2YR |
|              | HT EXCH AC <del>.</del> | 1C ; RAW WA | TER    | INLET VA | LVE        |   |    |    |    |                                                    |                    |               |
| HCV-2882B    | M-100-1 (F1)            | Active      | 3      | BU       | A          | В | 12 | NO | FO | OP-ST-RW-3002B<br>OP-ST-RW-3002B<br>OP-ST-VX-3017B | FSTO<br>STO<br>PIT | Q<br>Q<br>2YR |
|              | HT EXCH AC-             | 1C ; RAW WA | ATER ( | OUTLET   | VALVE      |   |    |    |    |                                                    |                    |               |
| HCV-2883A    | M-100-1 (B3)            | Active      | 3      | BU       | A          | В | 12 | NO | FO | OP-ST-RW-3002A<br>OP-ST-RW-3002A<br>OP-ST-VX-3017A | FSTO<br>STO<br>PIT | Q<br>Q<br>2YR |
|              | HT EXCH AC-             | 1D ; RAW WA | TER    | INLET VA | LVE        |   |    |    |    |                                                    |                    |               |
| HCV-2883B    | M-100-1 (B1)            | Active      | 3      | BU       | А          | В | 12 | NO | FO | OP-ST-RW-3002B                                     | FSTO               | Q             |

•

.

•

| -            |               |             |      |         |       |   |    |    |     | OP-ST-RW-3002B<br>OP-ST-VX-3017B                                     | STO<br>PIT                | Q<br>2YR           |
|--------------|---------------|-------------|------|---------|-------|---|----|----|-----|----------------------------------------------------------------------|---------------------------|--------------------|
|              | HT EXCH AC    | 1D ; RAW W/ | ATER | OUTLET  | VALVE |   |    |    |     |                                                                      |                           |                    |
| HCV-2893     | M-100-1 (E4)  | Active      | 3    | BU      | A     | В | 16 | NO | FO  | OP-ST-RW-3002A<br>OP-ST-RW-3002A<br>OP-ST-RW-3002A<br>OP-ST-VX-3017A | FSTO<br>STC<br>STO<br>PIT | Q<br>Q<br>Q<br>2YR |
| RAW WATER TO | CCW ; ISOLA   | TION VALVE  |      |         |       |   |    |    |     |                                                                      |                           |                    |
| HCV-2894     | M-100-1 (E4)  | Active      | 3    | BU      | A     | В | 16 | NO | FO  | OP-ST-RW-3002A<br>OP-ST-RW-3002A<br>OP-ST-RW-3002A<br>OP-ST-VX-3017A | FSTO<br>STC<br>STO<br>PIT | Q<br>Q<br>Q<br>2YR |
| RAW WATER TO | CCW ; ISOLA   | TION VALVE  |      |         |       |   |    |    |     |                                                                      |                           |                    |
| HCV-2898C    | M-10-1 (D6)   | Passive     | 3    | GL      | A     | В | 2  | LC | N/A | OP-ST-RW-3003<br>OP-ST-RW-3003                                       | EXC<br>EXO                | RO<br>RO           |
| CONTROL ROOM | N VA UNIT VA- | 46A ; RAW W | ATER | INLET V | ALVE  |   |    |    |     |                                                                      |                           |                    |
| HCV-2898D    | M-10-1 (D4)   | Passive     | 3    | GL      | A     | В | 2  | LC | N/A | OP-ST-RW-3003<br>OP-ST-RW-3003                                       | EXC<br>EXO                | RO<br>RO           |
| CONTROL ROOM | M VA UNIT VA- | 46A ; RAW W | ATER | OUTLET  | VALVE |   |    |    |     |                                                                      |                           |                    |
| HCV-2899C    | M-10-1 (C6)   | Passive     | 3    | GL      | A     | В | 2  | LC | N/A | OP-ST-RW-3003<br>OP-ST-RW-3003                                       | EXC<br>EXO                | RO<br>RO           |

RAW WATER INLET TO CONTROL ROOM AIR COND VA-46B

| HCV-2899D    | M-10-1 (C4)    | Passive      | 3     | GL       | Α       | В    | 2     | LC    | N/A | OP-ST-RW/-3003                 | FYC        | RO       |
|--------------|----------------|--------------|-------|----------|---------|------|-------|-------|-----|--------------------------------|------------|----------|
|              |                |              |       |          |         |      |       |       |     | OP-ST-RW-3003                  | EXO        | RO       |
| CONTROL ROO  | M VA UNIT VA   | 46B ; RAW V  | VATEF | R OUTLE  | T VALVI | Ξ    |       |       |     |                                |            |          |
| HCV-482A     | M-10-3 (C5)    | Passive      | 3     | BU       | Α       | В    | 14    | LC    | N/A | OP-ST-RW-3003<br>OP-ST-RW-3003 | EXC<br>EXO | RO<br>RO |
| SHUTDOWN CC  | OOLING HT EXC  |              |       |          |         |      |       |       |     |                                |            |          |
| HCV-482B     | M-10-3 (A4)    | Passive      | 3     | BU       | А       | В    | 14    | LC    | N/A |                                | EV0        |          |
|              |                |              |       |          |         |      |       |       |     | OP-ST-RW-3003<br>OP-ST-RW-3003 | EXC        | RO<br>RO |
| SHUTDOWN CC  | OLING HT EXC   | CH AC-4A ; B | ACK-L | JP RAW V | VATER   | Ουτ  | LET   | VALVE |     |                                |            |          |
| HCV-483A     | M-10-3 (B7)    | Passive      | 3     | BU       | Α       | В    | 14    | LC    | N/A | OD ST DW 2002                  | EVO        | PO       |
|              |                |              |       |          |         |      |       |       |     | OP-ST-RW-3003<br>OP-ST-RW-3003 | EXC        | RO       |
| SHUTDOWN CC  | OLING HT EXC   | CH AC-4B ; B | ACK-L | JP RAW V | VATER   | INLE | ET VA | LVE   |     |                                |            |          |
| HCV-483B     | M-10-3 (A5)    | Passive      | 3     | BU       | Α       | В    | 14    | LC    | N/A | OD OT DW 2002                  | EVO        | PO       |
|              |                |              |       |          |         |      |       |       |     | OP-ST-RW-3003<br>OP-ST-RW-3003 | EXC        | RO       |
| SHUTDOWN CC  | OLING HT EXC   | CH AC-4B ; B | ACK-L | JP RAW V | VATER   | Ουτ  | LET   | VALVE |     |                                |            |          |
| RW-115       | M-100-1 (B4)   | Active       | 3     | СК       | С       | С    | 20    | N/A   | N/A |                                | 0.40       | 0        |
|              |                |              |       |          |         |      |       |       |     | OP-ST-RW-3004<br>OP-ST-RW-3031 | CVC        | Q        |
| RAW WATER PL | JMP AC-10D ; [ | DISCHARGE    | CHEC  | K VALVE  |         |      |       |       |     |                                |            |          |
| RW-117       | M-100-1 (B5)   | Active       | 3     | СК       | С       | С    | 20    | N/A   | N/A |                                |            |          |

|               |               |            |       |              |    |   |      |     |     | OP-ST-RW-3004<br>OP-ST-RW-3021 | CVC<br>CVO | Q<br>Q |
|---------------|---------------|------------|-------|--------------|----|---|------|-----|-----|--------------------------------|------------|--------|
| RAW WATER PU  | MP AC-10C ; D | ISCHARGE C | CHECH | <b>VALVE</b> |    |   |      |     |     |                                |            |        |
| RW-121        | M-100-1 (B6)  | Active     | 3     | СК           | С  | С | 20   | N/A | N/A | OP-ST-RW-3004<br>OP-ST-RW-3011 | CVC<br>CVO | Q      |
| RAW WATER PU  | MP AC-10B ; D | ISCHARGE C | HECK  | <b>VALVE</b> |    |   |      |     |     |                                |            |        |
| RW-125        | M-100-1 (B7)  | Active     | 3     | СК           | С  | С | 20   | N/A | N/A | OP-ST-RW-3004<br>OP-ST-RW-3001 | CVC<br>CVO | Q      |
| RAW WATER PU  | MP AC-10A ; D | ISCHARGE C | HECK  | <b>VALVE</b> |    |   |      |     |     |                                |            |        |
| RW-220        | M-100-1 (F3)  | Active     | 3     | RL           | R  | С | 0.75 | NC  | N/A | PE-ST-VX-3008                  | RV         | ОМ     |
| CCW HEAT EXCH | ANGER AC-10   | C;PRESSUR  | E REI |              | VE |   |      |     |     |                                |            |        |
| RW-221        | M-100-1 (E3)  | Active     | 3     | RL           | R  | С | 0.75 | NC  | N/A | PE-ST-VX-3008                  | RV         | ОМ     |
| CCW HEAT EXCH | ANGER AC-1    | A;PRESSUR  | E REL | LIEF VAL     | νE |   |      |     |     |                                |            |        |
| RW-222        | M-100-1 (D3)  | Active     | 3     | RL           | R  | С | 0.75 | NC  | N/A | PE-ST-VX-3008                  | RV         | ОМ     |
| CCW HEAT EXCH | ANGER AC-18   | B;PRESSUR  | E REL | .IEF VAL     | νE |   |      |     |     |                                |            |        |
| RW-223        | M-100-1 (C3)  | Active     | 3     | RL           | R  | С | 0.75 | NC  | N/A | PE-ST-VX-3008                  | RV         | ОМ     |
| CCW HEAT EXCH | ANGER AC-1    | ); PRESSUR | E REI | LIEF VAL     | VE |   |      |     |     |                                |            |        |
| RW-254        | M-100-1 (A7)  | Active     | 3     | СК           | С  | С | 0.75 | N/A | N/A |                                |            |        |

.

|              |               |             |       |         |        |     |      |     |     | IC-ST-RW-3001                  | CVO       | Q        |
|--------------|---------------|-------------|-------|---------|--------|-----|------|-----|-----|--------------------------------|-----------|----------|
| RAW WATER PU | IMP AC-10A BA | CKUP SEAL   | WATE  | ER CHEC | K VAL  | VE  |      |     |     |                                |           |          |
| RW-255       | M-100-1 (A6)  | Active      | 3     | СК      | С      | С   | 0.75 | N/A | N/A | IC-ST-RW-3001                  | сvо       | Q        |
| RAW WATER PU | MP AC-10B BA  | CKUP SEAL   | WATE  | ER CHEC | K VALV | VE  |      |     |     |                                |           |          |
| RW-256       | M-100-1 (A5)  | Active      | 3     | СК      | С      | С   | 0.75 | N/A | N/A | IC-ST-RW-3001                  | сvо       | Q        |
| RAW WATER PU | MP AC-10C BA  | CKUP SEAL   | WATE  | ER CHEC | K VAL  | VE  |      |     |     |                                |           |          |
| RW-257       | M-100-1 (A4)  | Active      | 3     | СК      | С      | С   | 0.75 | N/A | N/A | IC-ST-RW-3001                  | cvo       | Q        |
| RAW WATER PU | MP AC-10D BA  | CKUP SEAL   | WATE  | ER CHEC | K VAL  | VE  |      |     |     |                                |           |          |
| SW-240       | M-259-2 (A2)  | Active      | 3     | СК      | С      | A/C | 0.5  | N/A | N/A | IC-ST-RW-3001<br>IC-ST-RW-3001 | CVC<br>LT | Q<br>2YR |
| RAW WATER PU | MP AC-10A PF  | RIMARY SEAL | WAT   | ER CHEC | CK VAL | VE  |      |     | •   |                                |           |          |
| SW-241       | M-259-2 (A4)  | Active      | 3     | СК      | С      | A/C | 0.5  | N/A | N/A | IC-ST-RW-3001<br>IC-ST-RW-3001 | CVC<br>LT | Q<br>2YR |
| RAW WATER PU | MP AC-10B PR  | RIMARY SEAL | - WAT | ER CHEC | CK VAL | .VE |      |     |     |                                |           |          |
| SW-242       | M-259-2 (A5)  | Active      | 3     | СК      | С      | A/C | 0.5  | N/A | N/A | IC-ST-RW-3001<br>IC-ST-RW-3001 | CVC<br>LT | Q<br>2YR |
| RAW WATER PU | MP AC-10C PF  | RIMARY SEAL | _ WAT | ER CHE  | CK VAL | .VE |      |     |     |                                |           |          |

.

SW-243 M-259-2 (A6) Active 3 CK C A/C 0.5 N/A N/A

| IC-ST-RW-3001 | CVC | Q   |
|---------------|-----|-----|
| IC-ST-RW-3001 | LT  | 2YR |

1

.

RAW WATER PUMP AC-10D PRIMARY SEAL WATER CHECK VALVE

1

# SYSTEM: SA - (Diesel Generator) Starting Air System

|                 |               | F           | Code<br>Positio | n    |          |      |        |       |       |               |       |      |          |
|-----------------|---------------|-------------|-----------------|------|----------|------|--------|-------|-------|---------------|-------|------|----------|
| Component       | PID(Coord)    | Function    | Class           | Туре | Actuator | Cat. | Size I | Norm. | Fail. | Procedure     | Test  | Freq |          |
| SA-127          | B120F07001-1  | Active      | 3               | RL   | R        | С    | 0.75   | NC    | N/A   | PE-ST-VX-3004 | RV    | ОМ   |          |
| STARTING AIR R  | ECEIVER SA-3  | A-1 ; RELIE |                 | /E   |          |      |        |       |       |               |       |      |          |
| SA-128          | B120F07001-1  | Active      | 3               | RL   | R        | С    | 0.75   | NC    | N/A   | PE-ST-VX-3004 | RV    | ОМ   |          |
| STARTING AIR R  | ECEIVER SA-3  | B-1 ; RELIE | EF VAL          | /E   |          |      |        |       |       |               |       |      |          |
| SA-129          | B120F07001-1  | Active      | 3               | RL   | R        | С    | 0.75   | NC    | N/A   | PE-ST-VX-3004 | RV    | ОМ   |          |
| STARTING AIR R  | ECEIVER SA-4  | B-1 ; RELIE | EF VALV         | /E   |          |      |        |       |       |               |       |      |          |
| SA-130          | B120F07001-1  | Active      | 3               | RL   | R        | С    | 0.75   | NC    | N/A   | PE-ST-VX-3004 | RV    | ОМ   |          |
| STARTING AIR RI | ECEIVER SA-4  | A-1 ; RELIE | EF VALV         | /E   |          |      |        |       |       |               |       |      |          |
| SA-141          | B120F07001-1  | Active      | 3               | SO   | А        | В    |        | N/A   | N/A   |               | 01.14 | •    |          |
| ACCEPT          |               |             |                 |      |          |      |        |       |       | 0P-51-DG-0001 | SKID  | Q    | DGSTART  |
| D-1 STARTING LI | NE #1 ISOLATI | ON VALVE    |                 |      |          |      |        |       |       |               |       |      |          |
| SA-142          | B120F07001-1  | Active      | 3               | SO   | Α        | в    |        | N/A   | N/A   |               | Skid  | 0    |          |
| ACCEPT          |               |             |                 |      |          |      |        |       |       | 06-01-00-0001 | OKIU  | Q    | DG START |

| DIESEL GENERA   | TOR DG-1 PRIMARY AIR SY  | STEN                   | I SOLEN | IOID VA | LVE |      |    |     |               |       |     |          |
|-----------------|--------------------------|------------------------|---------|---------|-----|------|----|-----|---------------|-------|-----|----------|
| SA-145          | B120F07001-1Active       | 3                      |         | А       | В   |      | NC | FC  |               | 01.14 | 0   | DO OTADT |
| ACCEPT          |                          |                        |         |         |     |      |    |     | OP-ST-DG-0001 | SKID  | Q   | DGSTART  |
| SECONDARY AIR   | RELAY VALVE              |                        |         |         |     |      |    |     |               |       |     |          |
| SA-146          | B120F07001-1Active       | 3                      |         | А       | в   |      | NC | FC  |               | 01.:  | 0   | DC START |
| ACCEPT          |                          |                        |         |         |     |      |    |     | OF-ST-DG-0001 | SKIU  | Q   | DG START |
| PRIMARY AIR RE  | LAY VALVE                |                        |         |         |     |      |    |     |               |       |     |          |
| SA-147          | B120F07001-1Active       | 3                      | DI      | А       | В   | 1.5  | NC | FC  | OB ST DC 0001 | Skid  | 0   |          |
| ACCEPT          |                          |                        |         |         |     |      |    |     | 0F-31-DG-0001 | SKIU  | Q   | DUSTANI  |
| SECONDARY ST    | ARTING AIR VALVE         |                        |         |         |     |      |    |     |               |       |     |          |
| SA-148          | B120F07001-1Active       | 3                      | DI      | Α       | В   | 1.5  | NC | FC  | OB-ST-DG-0002 | Skid  | 0   |          |
| ACCEPT          |                          |                        |         |         |     |      |    |     | 01-01-00-0002 | Onid  | 4   | DOUTAN   |
| PRIMARY START   | ING AIR VALVE            |                        |         |         |     |      |    |     |               |       |     |          |
| SA-177          | B120F07001-2Active       | 3                      | RL      | R       | С   | 0.75 | NC | N/A | PE-ST-VX-3004 | RV    | OM  |          |
| SECONDARY RE    | CEIVER SA-3A-2 RELIEE VA |                        |         |         |     |      |    |     |               |       | 0 m |          |
|                 |                          | <b>\L</b> . ♥ <b>L</b> |         |         |     |      |    |     |               |       |     |          |
| SA-178          | B120F07001-2Active       | 3                      | RL      | R       | С   | 0.75 | NC | N/A | PE-ST-VX-3004 | RV    | ОМ  |          |
| STARTING AIR RI | ECEIVER SA-3B-2 ; RELIEF | VALV                   | E       |         |     |      |    |     |               |       |     |          |
| SA-179          | B120F07001-2Active       | 3                      | RL      | R       | С   | 0.75 | NC | N/A | PE-ST-VX-3004 | RV    | ОМ  |          |

| STARTING AIR R | RECEIVER SA-4B-2 ; RELIEF | VAL  | /E      |   |        |     |     |               |      |    |          |
|----------------|---------------------------|------|---------|---|--------|-----|-----|---------------|------|----|----------|
| SA-180         | B120F07001-2Active        | 3    | RL      | R | C 0.75 | NC  | N/A | PE-ST-VX-3004 | RV   | ОМ |          |
| STARTING AIR R | RECEIVER SA-4A-2 ; RELIEF |      | Æ       |   |        |     |     |               |      |    |          |
| SA-191         | B120F07001-2Active        | 3    | SO      | A | В      | N/A | N/A |               | Skid | 0  | DC START |
| ACCEPT         |                           |      |         |   |        |     |     | OF-31-DG-0002 | SKIU | Q  | DGSTART  |
| D-2 STARTING L | INE #1 ISOLATION VALVE    |      |         |   |        |     |     |               |      |    |          |
| SA-192         | B120F07001-2Active        | 3    | SO      | A | В      | N/A | N/A |               | Skid | 0  | DC START |
| ACCEPT         |                           |      |         |   |        |     |     | OF-31-DG-0002 | SKIU | Q  | DGSTART  |
| DIESEL GENERA  | ATOR DG-2 PRIMARY AIR S   | YSTE | M SOLEN |   | LVE    |     |     |               |      |    |          |
| SA-195         | B120F07001-2Active        | 3    |         | Α | В      | NC  | FC  | OP ST DC 0002 | Skid | 0  | DC START |
| ACCEPT         |                           |      |         |   |        |     |     | 0F-31-DG-0002 | SKIU | Q  | DG START |
| SECONDARY AIF  | R RELAY VALVE             |      |         |   |        |     |     |               |      |    |          |
| SA-196         | B120F07001-2Active        | 3    |         | Α | В      | NC  | FC  |               | Skid | 0  | DC STADT |
| ACCEPT         |                           |      |         |   |        |     |     | OF-31-DG-0002 | SKIU | Q  | DG START |
| PRIMARY AIR RE | ELAY VALVE                |      |         |   |        |     |     |               |      |    |          |
| SA-197         | B120F07001-2Active        | 3    | DI      | А | B 1.5  | NC  | FC  | OD ST DO 0000 | Clid | 0  | DC STADT |
| ACCEPT         |                           |      |         |   |        |     |     | 08-21-DG-0002 | SKIQ | Q  | DG START |
| SECONDARY AIR  | R STARTING VALVE          |      |         |   |        |     |     |               |      |    |          |

•

| SA-198         | B120F07001-2Active       | 3      | DI       | А      | В    | 1.5  | NC  | FC  |               | Skid | 0   |          |
|----------------|--------------------------|--------|----------|--------|------|------|-----|-----|---------------|------|-----|----------|
| ACCEPT         |                          |        |          |        | •    |      |     |     | 06-21-06-0002 | SKIU | Q   | DG START |
| PRIMARY AIR ST | ARTING VALVE             |        |          |        |      |      |     |     |               |      |     |          |
| SA-202         | B120F07001-1Active       | 3      | СК       | С      | С    | 0.25 | N/A | N/A |               | Skid | 0   | DG START |
| ACCEPT         |                          |        |          |        |      |      |     |     | 01-01-00-0001 | ONIO | Q   | DOGIAN   |
| AIR RELAY VALV | E SA-145 CHECK VALVE     |        |          |        |      |      |     |     |               |      |     |          |
| SA-203         | B120F07001-1Active       | 3      | СК       | С      | С    | 0.25 | N/A | N/A | 0P-ST-DG-0001 | Skid | 0   | DG START |
| ACCEPT         |                          |        |          |        |      |      |     |     |               | Chiù | u.  | 0001/11  |
| AIR RELAY VALV | E SA-146 CHECK VALVE     |        |          |        |      |      |     |     |               |      |     |          |
| SA-252         | B120F07001-2Active       | 3      | СК       | С      | С    | 0.25 | N/A | N/A | OP-ST-DG-0002 | Skid | Q   | DG START |
| ACCEPT         |                          |        |          |        |      |      |     |     |               |      | -   | 2001     |
| AIR RELAY VALV | E SA-195 CHECK VALVE     |        |          |        |      |      |     |     |               |      |     |          |
| SA-253         | B120F07001-2Active       | 3      | СК       | С      | С    | 0.25 | N/A | N/A | OP-ST-DG-0002 | Skid | Q   | DG START |
| ACCEPT         |                          |        |          |        |      |      |     |     |               | 00   | -   |          |
| AIR RELAY VALV | E SA-196 CHECK VALVE     |        |          |        |      |      |     |     |               |      |     |          |
| SA-282         | B120F07001-1Active       | 3      | СК       | С      | A/C  | 0.5  | NC  | N/A | IC-ST-SA-3001 | CVC  | Q   |          |
|                |                          |        |          |        |      |      |     |     | IC-ST-SA-3001 | LT1  | 2YR |          |
| PRIMARY START  | ING AIR SYSTEM ; AIR REC | CEIVEI | R SA-4B- | 1;INLE | ET C | HECK | •   |     |               |      |     |          |
| SA-285         | B120F07001-1Active       | 3      | СК       | С      | A/C  | 0.5  | NC  | N/A | IC-ST-SA-3001 | CVC  | Q   |          |

|               |                                                                 |       |         |         |      |       |    |     | IC-ST-SA-3001                  | LT1        | 2YR      |  |  |
|---------------|-----------------------------------------------------------------|-------|---------|---------|------|-------|----|-----|--------------------------------|------------|----------|--|--|
| SECONDARY ST  | ECONDARY STARTING AIR SYSTEM ; AIR RECEIVER SA-3B-1 ; INLET CHE |       |         |         |      |       |    |     |                                |            |          |  |  |
| SA-288        | B120F07001-2Active                                              | 3     | СК      | С       | A/C  | 0.5   | NC | N/A | IC-ST-SA-3001<br>IC-ST-SA-3001 | CVC<br>LT1 | Q<br>2YR |  |  |
| PRIMARY START | ING AIR SYSTEM ; AIR REG                                        | CEIVE | R SA-4B | 2 ; INL | ET ( | CHECK | K  |     |                                |            |          |  |  |
| SA-291        | B120F07001-2Active                                              | 3     | СК      | С       | A/C  | 0.5   | NC | N/A | IC-ST-SA-3001<br>IC-ST-SA-3001 | CVC<br>LT1 | Q<br>2YR |  |  |

.

.

.

SECONDARY STARTING AIR SYSTEM ; AIR RECEIVER SA-3B-2 ; INLET CHE

# SYSTEM: SI - Safety Injection System

|                  |               | P           | Code<br>ositior | ı       |           |      |      |       |       |                                                 |                    |               |         |
|------------------|---------------|-------------|-----------------|---------|-----------|------|------|-------|-------|-------------------------------------------------|--------------------|---------------|---------|
| Component        | PID(Coord)    | Function    | Class           | Type A  | ctuator ( | Cat. | Size | Norm. | Fail. | Procedure                                       | Test               | Freq          |         |
| FCV-326          | 210-130-1 (A7 | Passive     | 2               | GL      | A         | В    | 12"  | LO    | FO    | OP-ST-VX-3019                                   | PIT                | 2YR           | Passive |
| SHUTDOWN CLG     | HT EXCHS AC   | -4A & 4B LI | PSI BY          | PASS FI | -ow co    | NTR  | OL V | ALVE  |       |                                                 |                    |               |         |
| HCV-2907         | 210-130-3 (C2 | Passive     | 2               | GA      | A         | В    | 6"   | LO    | FO    | OP-ST-VX-3019                                   | ΡΙΤ                | 2YR           | Passive |
| HPSI PUMP SI-2B  | ; SUCTION VA  | LVE         |                 |         |           |      |      |       |       |                                                 |                    |               |         |
| HCV-2908         | 210-130-3 (C4 | Passive     | 2               | GA      | A         | В    | 4"   | LO    | FO    | OP-ST-SI-3008                                   | PIT                | 2YR           | Passive |
| HPSI PUMP SI-2B  | ; DISCHARGE   | VALVE       |                 |         |           |      |      |       |       |                                                 |                    |               |         |
| HCV-2914         | 210-130-2 (B3 | Passive     | 2               | GA      | М         | В    | 12"  | LO    | FAI   | SE-ST-SI-3016                                   | PIT                | 2YR           | Passive |
| SAFETY INJECTIO  | ON TANK SI-6A | ; OUTLET    | VALVE           |         |           |      |      |       |       |                                                 |                    |               |         |
| HCV-2916         | 210-130-2 (C5 | Active      | 2               | GL      | A         | A    | 1    | NC    | FC    | OP-ST-SI-3001<br>OP-ST-SI-3001<br>OP-ST-VX-3018 | FSTC<br>STC<br>PIT | Q<br>Q<br>2YR |         |
| SAFETY INJECTION | ON TANK SI-6A | ; FILL/DRA  | IN VAL          | VE      |           |      |      |       |       |                                                 |                    |               |         |
| HCV-2917         | 210-130-3 (D2 | Passive     | 2               | GA      | A         | В    | 6"   | LO    | FO    | OP-ST-VX-3019                                   | PIT                | 2YR           | Passive |
| HPSI PUMP 2C SI  | UCTION ISOLA  | TION VALV   | E               |         |           |      |      |       |       |                                                 |                    |               |         |

Fort Calhoun Station Inservice Testing Program Plan 4<sup>th</sup> Interval, Revision 0

ļ

ļ

1

| HCV-2918        | 210-130-3 (D4 Passive     | 2      | GA | Α | В | 4"  | LO | FO  | OP-ST-SI-3008                                   | PIT                | 2YR           | Passive |
|-----------------|---------------------------|--------|----|---|---|-----|----|-----|-------------------------------------------------|--------------------|---------------|---------|
| HPSI PUMP 2C D  | ISCHARGE ISOLATION VA     | LVE    |    |   |   |     |    |     |                                                 |                    |               |         |
| HCV-2927        | 210-130-3 (F2 Passive     | 2      | GA | Α | В | 6"  | LO | FO  | OP-ST-VX-3019                                   | PIT                | 2YR           | Passive |
| HPSI PUMP 2A S  | UCTION ISOLATION VALVE    | =      |    |   |   |     |    |     |                                                 |                    |               |         |
| HCV-2928        | 210-130-3 (F4 Passive     | 2      | GA | A | В | 4"  | LO | FO  | OP-ST-SI-3008                                   | PIT                | 2YR           | Passive |
| HPSI PUMP SI-2A | DISCHARGE VALVE           |        |    |   |   |     |    |     |                                                 |                    |               |         |
| HCV-2934        | 210-130-2 (B6 Passive     | 2      | GA | М | В | 12" | LO | FAI | SE-ST-SI-3016                                   | PIT                | 2YR           | Passive |
| SAFETY INJECTI  | ON TANK SI-6B ; OUTLET \  | VALVE  |    |   |   |     |    |     |                                                 |                    |               |         |
| HCV-2936        | 210-130-2 (C7 Active      | 2      | GL | A | Α | 1   | NC | FC  | OP-ST-SI-3001<br>OP-ST-SI-3001<br>OP-ST-VX-3018 | FSTC<br>STC<br>PIT | Q<br>Q<br>2YR |         |
| SAFETY INJECTI  | ON TANK SI-6B ; FILL/DRAI | IN VAI | VE |   |   |     |    |     |                                                 |                    |               |         |
| HCV-2937        | 210-130-1 (A3 Passive     | 2      | GA | A | В | 14" | LO | FO  | OP-ST-VX-3019                                   | ΡΙΤ                | 2YR           | Passive |
| LPSI PUMP SI-1B | ; SUCTION VALVE           |        |    |   |   |     |    |     |                                                 |                    |               |         |
| HCV-2938        | 210-130-1 (A5 Passive     | 2      | GA | A | В | 8"  | LO | FO  | OP-ST-SI-3008                                   | PIT                | 2YR           | Passive |
| LPSI PUMP SI-1B | ; DISCHARGE VALVE         |        |    |   |   |     |    |     |                                                 |                    |               |         |

| HCV-2947        | 210-130-1 (B2 Passive    | 2      | GA      | Α    | В | 14" | LO | FO  | OP-ST-VX-3019                                   | PIT                | 2YR           | Passive |
|-----------------|--------------------------|--------|---------|------|---|-----|----|-----|-------------------------------------------------|--------------------|---------------|---------|
| LPSI PUMP SI-1A | A; SUCTION VALVE         |        |         |      |   |     |    |     |                                                 |                    |               |         |
| HCV-2948        | 210-130-1 (B5 Passive    | 2      | GA      | A    | В | 8"  | LO | FO  | OP-ST-SI-3008                                   | PIT                | 2YR           | Passive |
| LPSI PUMP SI-1A | A; DISCHARGE VALVE       |        |         |      |   |     |    |     |                                                 |                    |               |         |
| HCV-2954        | 210-130-2B (B Passive    | 2      | GA      | М    | В | 12" | LO | FA! | SE-ST-SI-3016                                   | PIT                | 2YR           | Passive |
| SAFETY INJECTI  | ON TANK SI-6C ; OUTLET   | VALVI  | E       |      |   |     |    |     |                                                 |                    |               |         |
| HCV-2956        | 210-130-2B (CActive      | 2      | GL      | A    | A | 1   | NC | FC  | OP-ST-SI-3001<br>OP-ST-SI-3001<br>OP-ST-VX-3018 | FSTC<br>STC<br>PIT | Q<br>Q<br>2YR |         |
| SAFETY INJECTI  | ON TANK SI-6C ; FILL/DRA | AIN VA | LVE     |      |   |     |    |     |                                                 |                    |               |         |
| HCV-2957        | 210-130-1 (C3 Passive    | 2      | GA      | A    | В | 12" | LO | FO  | OP-ST-VX-3019                                   | PIT                | 2YR           | Passive |
| CONTAINMENT S   | SPRAY PUMP 3A SUCTION    | ISOL   | ATION V | ALVE |   |     |    |     |                                                 |                    |               |         |
| HCV-2958        | 210-130-1 (C5 Passive    | 2      | GA      | A    | В | 8"  | LO | FO  | OP-ST-SI-3008                                   | PIT                | 2YR           | Passive |
| CONTAINMENT S   | SPRAY PUMP SI-3A DISCH   | IARGE  | VALVE   |      |   |     |    |     |                                                 |                    |               |         |
| HCV-2967        | 210-130-1 (D3 Passive    | 2      | GA      | A    | В | 12" | LO | FO  | OP-ST-VX-3019                                   | PIT                | 2YR           | Passive |
| CONTAINMENT S   | SPRAY PUMP SI-3B ; SUCT  |        | /ALVE   |      |   |     |    |     |                                                 |                    |               |         |
| HCV-2968        | 210-130-1 (D5 Passive    | 2      | GA      | А    | В | 8"  | LO | FO  |                                                 |                    |               |         |

-

14

|                 |                                     |       |          |     |   |     |    |     | OP-ST-SI-3008                                                    | PIT                      | 2YR                   | Passive |
|-----------------|-------------------------------------|-------|----------|-----|---|-----|----|-----|------------------------------------------------------------------|--------------------------|-----------------------|---------|
| CONTAINMENT     | SPRAY PUMP SI-3B ; DISC             | HARG  | E VALVE  |     |   |     |    |     |                                                                  |                          |                       |         |
| HCV-2974        | 210-130-2B (B Passive               | 2     | GA       | М   | В | 12" | LO | FAI | SE-ST-SI-3016                                                    | PIT                      | 2YR                   | Passive |
| SI-TANK SI-6D ; | OUTLET ISOLATION VALVI              | E     |          |     |   |     |    |     |                                                                  |                          |                       |         |
| HCV-2976        | 210-130-2B (CActive                 | 2     | GL       | A   | Α | 1   | NC | FC  | OP-ST-SI-3001<br>OP-ST-SI-3001<br>OP-ST-VX-3018                  | FSTC<br>STC<br>PIT       | Q<br>Q<br>2YR         |         |
| SAFETY INJECT   | ION TANK SI-6D ; FILL/DRA           | NN VA | LVE      |     |   |     |    |     |                                                                  |                          |                       |         |
| HCV-2977        | 210-130-1 (E3 Passive               | 2     | GA       | М   | В | 12" | LO | FO  | OP-ST-VX-3019                                                    | PIT                      | 2YR                   | Passive |
| CONTAINMENT     | SPRAY PUMP SI-3C ; SUC <sup>-</sup> |       | ALVE     |     |   |     |    |     |                                                                  |                          |                       |         |
| HCV-2978        | 210-130-1 (E5 Passive               | 2     | GA       | Α   | В | 8"  | LO | FO  | OP-ST-SI-3008                                                    | PIT                      | 2YR                   | Passive |
| CONTAINMENT     | SPRAY PUMP SI-3C ; DISC             | HARG  | E VALVE  |     |   |     |    |     |                                                                  |                          |                       |         |
| HCV-2983        | 210-130-1 (E8 Active                | 2     | GL       | A   | Α | 2   | NC | FC  | OP-ST-SI-3001<br>OP-ST-SI-3001<br>IC-ST-AE-3122<br>OP-ST-VX-3018 | FSTC<br>STC<br>LJ<br>PIT | Q<br>Q<br>OptB<br>2YR |         |
| SAFETY INJECT   | ION LEAKAGE TO ; CVCS I             | SOLA  | TION VAL | .VE |   |     |    |     |                                                                  |                          |                       |         |
| HCV-2987        | 210-130-3 (E8 Active                | 2     | GA       | A   | В | 4   | NO | FO  | OP-ST-SI-3001<br>OP-ST-SI-3001<br>OP-ST-SI-3001                  | FSTO<br>STC<br>STO       | Q<br>Q<br>Q           |         |

|                 |                         |        |         |         |       |       |    |     | OP-ST-VX-3018                                                    | PIT                       | 2YR                |         |
|-----------------|-------------------------|--------|---------|---------|-------|-------|----|-----|------------------------------------------------------------------|---------------------------|--------------------|---------|
| HPSI ALTERNAT   | E HEADER ISOLATION VA   | LVE    |         |         |       |       |    |     |                                                                  |                           |                    |         |
| HCV-2988        | 210-130-3 (D6 Active    | 2      | GL      | S       | В     | 2     | NC | FC  | OP-ST-SI-3001<br>OP-ST-SI-3001<br>OP-ST-SI-3001<br>OP-ST-VX-3019 | FSTC<br>STC<br>STO<br>PIT | Q<br>Q<br>Q<br>2YR |         |
| CHARGING PMP    | S CH-1A,B&C DISCH TO; H | IPSI H | EADER   | ISOL VI | .V HC | :V-30 | 8; |     |                                                                  |                           |                    |         |
| HCV-304         | 210-130-3 (D5 Passive   | 2      | GA      | A       | В     | 4"    | LO | FO  | OP-ST-VX-3019                                                    | PIT                       | 2YR                | Passive |
| HPSI PUMP SI-2  | B&C DISCHARGE CROSSC    | ONNE   | ECT VAI | .VE     |       |       |    |     |                                                                  |                           |                    |         |
| HCV-305         | 210-130-3 (E5 Passive   | 2      | GA      | A       | В     | 4"    | LO | FO  | OP-ST-VX-3019                                                    | PIT                       | 2YR                | Passive |
| HPSI PUMP SI-2/ | A&C DISCHARGE CROSSC    | ONNE   | ECT VAI | .VE     |       |       |    |     |                                                                  |                           |                    |         |
| HCV-306         | 210-130-3 (C6 Passive   | 2      | GA      | A       | В     | 4"    | LO | FO  | OP-ST-VX-3019                                                    | PIT                       | 2YR                | Passive |
| HPSI HEADER IS  | OLATION VALVE           |        |         |         |       |       |    |     |                                                                  |                           |                    |         |
| HCV-307         | 210-130-3 (F6 Passive   | 2      | GA      | A       | В     | 4'    | LO | FO  | OP-ST-VX-3019                                                    | ΡΙΤ                       | 2YR                | Passive |
| HPSI HEADER IS  | OLATION VALVE           |        |         |         |       |       |    |     |                                                                  |                           |                    |         |
| HCV-308         | 210-130-3 (D6 Active    | 2      | GA      | М       | В     | 2     | NC | FAI | OP-ST-SI-3001<br>OP-ST-SI-3001<br>OP-ST-VX-3018                  | STC<br>STO<br>PIT         | Q<br>Q<br>2YR      |         |

HPSI HEADER, CHARGING HEADER CROSSTIE VALVE

•

| HCV-311        | 210-130-2A (CActive     | 2 | GL | М | В        | 2 | NC | FAI | OP-ST-SI-3001<br>OP-ST-VX-3018                  | STO<br>PIT        | Q<br>2YR      |
|----------------|-------------------------|---|----|---|----------|---|----|-----|-------------------------------------------------|-------------------|---------------|
| HPSI TO RC LOC | OP 1B ; ISOLATION VALVE |   |    |   |          |   |    |     |                                                 |                   |               |
| HCV-312        | 210-130-2A (CActive     | 2 | GL | Μ | В        | 2 | NC | FAI | OP-ST-SI-3001<br>OP-ST-SI-3001<br>OP-ST-VX-3018 | STC<br>STO<br>PIT | Q<br>Q<br>2YR |
| HPSI TO RC LOC | OP 1B; ISOLATION VALVE  |   |    |   |          |   |    |     |                                                 |                   |               |
| HCV-314        | 210-130-2A (CActive     | 2 | GL | м | В        | 2 | NC | FAI | OP-ST-SI-3001<br>OP-ST-VX-3018                  | STO<br>PIT        | Q<br>2YR      |
| HPSI TO RC LOC | OP 1A ; ISOLATION VALVE |   |    |   |          |   |    |     |                                                 |                   |               |
| HCV-315        | 210-130-2A (CActive     | 2 | GL | Μ | В        | 2 | NC | FAI | OP-ST-SI-3001<br>OP-ST-SI-3001<br>OP-ST-VX-3018 | STC<br>STO<br>PIT | Q<br>Q<br>2YR |
| HPSI TO RC LOC | P 1A ; ISOLATION VALVE  |   |    |   |          |   |    |     |                                                 |                   |               |
| HCV-317        | 210-130-2A (CActive     | 2 | GL | м | В        | 2 | NC | FAI | OP-ST-SI-3001<br>OP-ST-VX-3018                  | STO<br>PIT        | Q<br>2YR      |
| HPSI TO RC LOC | P 2A ; ISOLATION VALVE  |   |    |   |          |   |    |     |                                                 |                   |               |
| HCV-318        | 210-130-2A (CActive     | 2 | GL | Μ | <b>B</b> | 2 | NC | FAI | OP-ST-SI-3001<br>OP-ST-SI-3001<br>OP-ST-VX-3018 | STC<br>STO<br>PIT | Q<br>Q<br>2YR |

•

.

٠

. . . . .

÷

| HPSI TO RC LOC | P 2A ; ISOLATION VALVE |   |    |   |   |   |    |     |                                                 |                   |               |
|----------------|------------------------|---|----|---|---|---|----|-----|-------------------------------------------------|-------------------|---------------|
| HCV-320        | 210-130-2A (CActive    | 2 | GL | М | В | 2 | NC | FAI | OP-ST-SI-3001<br>OP-ST-VX-3018                  | STO<br>PIT        | Q<br>2YR      |
| HPSI TO RC LOC | P 2B ; ISOLATION VALVE |   |    |   |   |   |    |     |                                                 |                   |               |
| HCV-321        | 210-130-2A (CActive    | 2 | GL | Μ | В | 2 | NC | FAI | OP-ST-SI-3001<br>OP-ST-SI-3001<br>OP-ST-VX-3018 | STC<br>STO<br>PIT | Q<br>Q<br>2YR |
| HPSI TO RC LOC | P 2B ; ISOLATION VALVE |   |    |   |   |   |    |     |                                                 |                   |               |
| HCV-327        | 210-130-2A (CActive    | 2 | GL | Μ | В | 4 | NC | FAI | OP-ST-SI-3001<br>OP-ST-SI-3001<br>OP-ST-VX-3018 | STC<br>STO<br>PIT | Q<br>Q<br>2YR |
| LPSI TO RC LOO | P 1B ; ISOLATION VALVE |   |    |   |   |   |    |     |                                                 |                   |               |
| HCV-329        | 210-130-2A (CActive    | 2 | GL | Μ | В | 4 | NC | FAI | OP-ST-SI-3001<br>OP-ST-SI-3001<br>OP-ST-VX-3018 | STC<br>STO<br>PIT | Q<br>Q<br>2YR |
| LPSI TO RC LOO | P 1A ; ISOLATION VALVE |   |    |   |   |   |    |     |                                                 |                   |               |
| HCV-331        | 210-130-2A (CActive    | 2 | GL | Μ | В | 4 | NC | FAI | OP-ST-SI-3001<br>OP-ST-SI-3001<br>OP-ST-VX-3018 | STC<br>STO<br>PIT | Q<br>Q<br>2YR |
| LPSI TO RC LOO | P 2A ; ISOLATION VALVE |   |    |   |   |   |    |     |                                                 |                   |               |
| HCV-333        | 210-130-2A (CActive    | 2 | GL | М | В | 4 | NC | FAI | OP-ST-SI-3001                                   | STC               | Q             |

:

----

|                |                          |       |          |        |      |      |        |     | OP-ST-SI-3001<br>OP-ST-VX-3018                                   | STO<br>PIT                | Q<br>2YR               |         |
|----------------|--------------------------|-------|----------|--------|------|------|--------|-----|------------------------------------------------------------------|---------------------------|------------------------|---------|
| LPSI TO RC LOC | P 2B ; ISOLATION VALVE   |       |          |        |      |      |        |     |                                                                  |                           |                        |         |
| HCV-335        | 210-130-1 (B6 Passive    | 2     | BU       | A      | В    | 12"  | LC     | FC  | OP-ST-VX-3019                                                    | ΡΙΤ                       | 2YR                    | Passive |
| SHUTDOWN CLO   | G HT EXCHS AC-4A&B ; INL | ET HE | EADER IS | OLATIC | DN V | ALVE |        |     |                                                                  |                           |                        |         |
| HCV-341        | 210-130-1 (C7 Passive    | 2     | BL       | A      | В    | 8"   | LC     | FC  | OP-ST-VX-3019                                                    | PIT                       | 2YR                    | Passive |
| SHUTDOWN CLO   | G HT EXCHS AC-4A&B ; OU  | TLET  | TEMPER   | ATURE  | CON  | ITRO | L VALV | Έ   |                                                                  |                           |                        |         |
| HCV-344        | 210-130-1 (D8 Active     | 2     | BL       | A      | В    | 8    | NC     | FO  | OP-ST-SI-3002<br>OP-ST-SI-3002<br>OP-ST-SI-3002<br>OP-ST-VX-3019 | FSTO<br>STC<br>STO<br>PIT | CS<br>CS<br>CS<br>2YR  |         |
| CONTAINMENT    | SPRAY HEADER ISOLATIO    | N VAL | VE       |        |      |      |        |     |                                                                  |                           |                        |         |
| HCV-345        | 210-130-1 (D8 Active     | 2     | BL       | A      | В    | 8    | NC     | FO  | OP-ST-SI-3002<br>OP-ST-SI-3002<br>OP-ST-VX-3019                  | FSTO<br>STO<br>PIT        | CS<br>CS<br>2YR        |         |
| CONTAINMENT    | SPRAY HEADER ISOLATIO    | N VAL | VE       |        |      |      |        |     |                                                                  |                           |                        |         |
| HCV-347        | 210-130-3 (F7 Active     | 1     | GA       | Μ      | A    | 10   | LC     | FAI | OP-ST-SI-3002<br>OP-ST-SI-3002<br>OI-SC-2<br>OP-ST-VX-3019       | STC<br>STO<br>LT<br>PIT   | CS<br>CS<br>2YR<br>2YR |         |

.

LPSI LOOP 2 ; SHUTDOWN COOLING ISOLATION VALVE

| HCV-348       | 210-130-2A (CActive     | 1      | GA    | Μ | А | 12 | LC | FAI | OP-ST-SI-3002<br>OP-ST-SI-3002<br>Normal Ops<br>OP-ST-VX-3019                     | STC<br>STO<br>LT<br>PIT         | CS<br>CS<br>2YR<br>2YR       |         |
|---------------|-------------------------|--------|-------|---|---|----|----|-----|-----------------------------------------------------------------------------------|---------------------------------|------------------------------|---------|
| LOOP 2 TO SH  | UTDOWN COOLING ; ISOL4  |        | VALVE |   |   |    |    |     |                                                                                   |                                 |                              |         |
| HCV-349       | 210-130-1 (B8 Passive . | 2      | GL    | A | В | 4" | NC | FC  | OP-ST-VX-3019                                                                     | PIT                             | 2YR                          | Passive |
| HPSI PUMP SI- | 2B ; ALTERNATE SUCTION  | VALVI  | E     |   |   |    |    |     |                                                                                   |                                 |                              |         |
| HCV-350       | 210-130-1 (B7 Passive   | 2      | GL    | A | В | 4" | NC | FC  | OP-ST-VX-3019                                                                     | PIT                             | 2YR                          | Passive |
| HPSI PUMPS S  | I-2A&C ; ALTERNATE SUCT |        | ALVE  |   |   |    |    |     |                                                                                   |                                 |                              |         |
| HCV-383-3     | 210-130-3 (B7 Active    | 2      | BU    | М | А | 24 | NC | FAI | IC-ST-AE-3833<br>OP-ST-SI-3002<br>OP-ST-VX-3018                                   | LJ<br>STO<br>PIT                | OptB<br>CS<br>2YR            |         |
| CONTAINMENT   | SUMP ; RECIRC ISOLATIO  | ON VAL | .VE   |   |   |    |    |     |                                                                                   |                                 |                              |         |
| HCV-383-4     | 210-130-3 (B7 Active    | 2      | BU    | Μ | A | 24 | NC | FAI | IC-ST-AE-3834<br>OP-ST-SI-3002<br>OP-ST-VX-3018                                   | LJ<br>STO<br>PIT                | OptB<br>CS<br>2YR            |         |
| CONTAINMENT   | SUMP ; RECIRC ISOLATIC  | N VAL  | VE    |   |   |    |    |     |                                                                                   |                                 |                              |         |
| HCV-385       | 210-130-1 (F4 Active    | 2      | GL    | A | A | 4  | NO | FO  | OP-ST-SI-3002<br>OP-ST-SI-3002<br>OP-ST-SI-3002<br>SE-ST-SI-3005<br>OP-ST-VX-3019 | FSTO<br>STC<br>STO<br>LT<br>PIT | CS<br>CS<br>CS<br>2YR<br>2YR |         |

•

SIRW TANK SI-5 RECIRCULATION VALVE

| HCV-386        | 210-130-1 (F4 Active    | 2    | GL      | Α       | Α  | 4  | NO | FO |                                                                                   |                                 |                              |
|----------------|-------------------------|------|---------|---------|----|----|----|----|-----------------------------------------------------------------------------------|---------------------------------|------------------------------|
|                |                         | -    |         |         |    | 7  | no |    | OP-ST-SI-3002<br>OP-ST-SI-3002<br>OP-ST-SI-3002<br>SE-ST-SI-3005<br>OP-ST-VX-3019 | FSTO<br>STC<br>STO<br>LT<br>PIT | CS<br>CS<br>CS<br>2YR<br>2YR |
| SIRW TANK SI-5 | RECIRCULATION VALVE     |      |         |         |    |    |    |    |                                                                                   |                                 |                              |
| LCV-383-1      | 210-130-1 (D1 Active    | 2    | BU      | A       | A  | 20 | NO | FO | OP-ST-SI-3002<br>OP-ST-SI-3002<br>OP-ST-SI-3002<br>SE-ST-SI-3005<br>OP-ST-VX-3019 | FSTO<br>STC<br>STO<br>LT<br>PIT | CS<br>CS<br>CS<br>2YR<br>2YR |
| SIRWT SI-5 OUT | LET HEADER LEVEL CONT   | ROL  | VALVE   |         |    |    |    |    |                                                                                   |                                 |                              |
| LCV-383-2      | 210-130-1 (D2 Active    | 2    | BU      | A       | A  | 20 | NO | FO | OP-ST-SI-3002<br>OP-ST-SI-3002<br>OP-ST-SI-3002<br>SE-ST-SI-3005<br>OP-ST-VX-3019 | FSTO<br>STC<br>STO<br>LT<br>PIT | CS<br>CS<br>CS<br>2YR<br>2YR |
| SIRWT SI-5 OUT | LET HEADER LEVEL CONT   | ROL  | VALVE   |         |    |    |    |    |                                                                                   |                                 |                              |
| PCV-2909       | 210-130-2 (B5 Active    | 2    | GL      | A       | A  | 1  | NC | FC | OP-ST-SI-3001<br>OP-ST-SI-3001<br>OP-ST-VX-3018                                   | FSTC<br>STC<br>PIT              | Q<br>Q<br>2YR                |
| SI LEAKAGE CO  | OLER SI-4A ; OUTLET PRE | SSUR | E CONTF | ROL VAI | VE |    |    |    |                                                                                   |                                 |                              |
| PCV-2929       | 210-130-2 (B8 Active    | 2    | GL      | A       | Α  | 1  | NC | FC | OP-ST-SI-3001                                                                     | FSTC                            | Q                            |

|                 |                         |       |         |         |     |   |     |     | OP-ST-SI-3001<br>OP-ST-VX-3018                  | STC<br>PIT         | Q<br>2YR      |
|-----------------|-------------------------|-------|---------|---------|-----|---|-----|-----|-------------------------------------------------|--------------------|---------------|
| SI LEAKAGE CO   | OLER SI-4B ; OUTLET PRE | SSUR  | E CONTR | ROL VAI | VE  |   |     |     |                                                 |                    |               |
| PCV-2949        | 210-130-2B (BActive     | 2     | GL      | A       | A   | 1 | NC  | FC  | OP-ST-SI-3001<br>OP-ST-SI-3001<br>OP-ST-VX-3018 | FSTC<br>STC<br>PIT | Q<br>Q<br>2YR |
| SI LEAKAGE CO   | OLER SI-4C ; OUTLET PRE | SSUR  | E CONTF | ROL VAI | _VE |   |     |     |                                                 |                    |               |
| PCV-2969        | 210-130-2B (B Active    | 2     | GL      | A       | A   | 1 | NC  | FC  | OP-ST-SI-3001<br>OP-ST-SI-3001<br>OP-ST-VX-3018 | FSTC<br>STC<br>PIT | Q<br>Q<br>2YR |
| SI LEAKAGE CO   | OLER SI-4D OUTLET PRES  | SURE  | CONTRO  | OL VAL  | VE  |   |     |     |                                                 |                    |               |
| SI-100          | 210-130-3 (C1 Active    | 2     | СК      | С       | С   | 6 | N/A | N/A | OP-ST-SI-3007<br>OP-ST-SI-3008                  | CVO<br>PS          | RO<br>Q       |
| HPSI PUMP SI-28 | B; SUCTION CHECK VALVE  | Ξ     |         |         |     |   |     |     |                                                 |                    |               |
| SI-102          | 210-130-3 (C4 Active    | 2     | СК      | С       | С   | 4 | N/A | N/A | OP-ST-SI-3007<br>OP-ST-SI-3007                  | CVC<br>CVO         | RO<br>RO      |
| HPSI PUMP SI-2  | 3 ; DISCHARGE CHECK VA  | LVE   |         |         |     |   |     |     |                                                 |                    |               |
| SI-104          | 210-130-3 (C4 Active    | 2     | СК      | С       | С   | 1 | N/A | N/A | OP-ST-SI-3008                                   | CVO                | Q             |
| HPSI PUMP SI-28 | 3; MINIMUM RECIRC CHEC  | CK VA | LVE     |         |     |   |     |     |                                                 |                    |               |
| SI-108          | 210-130-3 (D4 Active    | 2     | СК      | С       | С   | 4 | N/A | N/A | OP-ST-SI-3007                                   | CVC                | RO            |

.

|                 |                        |       |       |   |   |   |     |     | OP-ST-SI-3007                  | CVO        | RO       |
|-----------------|------------------------|-------|-------|---|---|---|-----|-----|--------------------------------|------------|----------|
| HPSI PUMP SI-2  | C DISCHARGE CHECK      |       |       |   |   |   |     |     |                                |            |          |
| SI-110          | 210-130-3 (E4 Active   | 2     | СК    | С | С | 1 | N/A | N/A | OP-ST-SI-3008                  | cvo        | Q        |
| HPSI PUMP SI-2  | C MINIMUM RECIRC CHEC  | K VAL | VE    |   |   |   |     |     |                                |            |          |
| SI-113          | 210-130-3 (E1 Active   | 2     | СК    | С | С | 8 | N/A | N/A | OP-ST-SI-3007<br>OP-ST-SI-3008 | CVO<br>PS  | RO<br>Q  |
| HPSI PUMPS SI-  | 2A&C SUCTION HEADER C  | HECK  | VALVE |   |   |   |     |     |                                |            |          |
| SI-115          | 210-130-3 (E4 Active   | 2     | СК    | С | С | 4 | N/A | N/A | OP-ST-SI-3007<br>OP-ST-SI-3007 | CVC<br>CVO | RO<br>RO |
| HPSI PUMP SI-2  | A DISCHARGE CHECK VAL  | .VE   |       |   |   |   |     |     |                                |            |          |
| SI-117          | 210-130-3 (F4 Active   | 2     | СК    | С | С | 1 | N/A | N/A | OP-ST-SI-3008                  | cvo        | Q        |
| HPSI PUMP SI-2  | A MINIMUM RECIRC CHEC  | K VAL | VE    |   |   |   |     |     |                                |            |          |
| SI-121          | 210-130-1 (A4 Active   | 2     | СК    | С | С | 8 | N/A | N/A | OP-ST-SI-3003<br>OP-ST-SI-3003 | CVC<br>CVO | CS<br>CS |
| LPSI PUMP SI-18 | B ; DISCHARGE CHECK VA | LVE   |       |   |   |   |     |     |                                |            |          |
| SI-129          | 210-130-1 (B4 Active   | 2     | СК    | С | С | 8 | N/A | N/A | OP-ST-SI-3003<br>OP-ST-SI-3003 | CVC<br>CVO | CS<br>CS |

.

.

.

.

LPSI PUMP SI-1A ; DISCHARGE CHECK VALVE

| SI-135       | 210-130-1 (C4 Active    | 2     | СК      | С        | С   | 8  | N/A | N/A |                                |            |           |           |
|--------------|-------------------------|-------|---------|----------|-----|----|-----|-----|--------------------------------|------------|-----------|-----------|
|              | <b>、</b>                |       |         |          |     |    |     |     | OP-ST-SI-3003<br>OP-ST-SI-3003 | CVC<br>CVO | CS<br>CS  |           |
| CONTAINMENT  | SPRAY PUMP SI-3A DISCH  | IARGE | E CHECK | ( VAL.VE | Ξ   |    |     |     |                                |            |           |           |
| SI-139       | 210-130-1 (D2 Active    | 2     | СК      | С        | A/C | 20 | N/A | N/A | PE-ST-SI-3006<br>SE-ST-SI-3005 | CVO<br>CVC | RO*<br>RO | SE-ST-SI- |
| 3027         |                         |       |         |          |     |    |     |     | OP-ST-SI-3008<br>SE-ST-SI-3005 | PS<br>LT   | Q<br>2YR  | SE-ST-SI- |
| 3027         |                         |       |         |          |     |    |     |     |                                |            |           |           |
| OUTLET CHECK | VALVE SIRWT             |       |         |          |     |    |     |     |                                |            |           |           |
| SI-140       | 210-130-1 (C2 Active    | 2     | СК      | С        | A/C | 20 | N/A | N/A | PE-ST-SI-3006<br>SE-ST-SI-3005 | CVO<br>CVC | RO*<br>RO | SE-ST-SI- |
| 3027         |                         |       |         |          |     |    |     |     | OP-ST-SI-3008<br>SE-ST-SI-3005 | PS<br>LT   | Q<br>2YR  | SE-ST-SI- |
| 3027         |                         |       |         |          |     |    |     |     |                                |            |           |           |
| OUTLET CHECK | VALVE SIRWT             |       |         |          |     |    |     |     |                                |            |           |           |
| SI-143       | 210-130-1 (D4 Active    | 2     | СК      | С        | С   | 8  | N/A | N/A | OP-ST-SI-3003<br>OP-ST-SI-3003 | CVC<br>CVO | CS<br>CS  |           |
| CONTAINMENT  | SPRAY PUMP SI-3B ; DISC | HARG  | E CHEC  | K VALV   | /E  |    |     |     |                                |            |           |           |
| SI-149       | 210-130-1 (E4 Active    | 2     | СК      | С        | С   | 8  | N/A | N/A | OP-ST-SI-3003<br>OP-ST-SI-3003 | CVC<br>CVO | CS<br>CS  |           |
| CONTAINMENT  | SPRAY PUMP SI-3C ; DISC | HARG  | E CHEC  | K VALV   | /E  |    |     |     |                                |            |           |           |
| SI-153       | 210-130-1 (E5 Active    | 2     | СК      | С        | С   | 6  | N/A | N/A |                                |            |           |           |
|                  |                          |        |          |        |      |       |      |     | PE-ST-SI-3007<br>PE-ST-SI-3007<br>OP-ST-SI-3008 | CVC<br>CVO<br>PS | RO<br>RO<br>Q     |
|------------------|--------------------------|--------|----------|--------|------|-------|------|-----|-------------------------------------------------|------------------|-------------------|
| LPSI PUMPS SI-1  | A&B ; CNTMT SPRAY PUM    | PS SI- | 3A,B&C ; | MINIM  | UM   | RECIF | २    |     |                                                 |                  |                   |
| SI-159           | 210-130-3 (B6 Active     | 2      | СК       | С      | С    | 24    | N/A  | N/A | PE-ST-SI-3004<br>PE-ST-SI-3004<br>SE-ST-SI-3027 | CVC<br>CVO<br>PS | RO*<br>RO*<br>RO* |
| CONTAINMENT S    | SUMP ; RECIRC CHECK VA   | LVE    |          |        |      |       |      |     |                                                 |                  |                   |
| SI-160           | 210-130-3 (B6 Active     | 2      | СК       | С      | С    | 24    | N/A  | N/A | PE-ST-SI-3004<br>PE-ST-SI-3004<br>SE-ST-SI-3027 | CVC<br>CVO<br>PS | RO*<br>RO*<br>RO* |
| CONTAINMENT S    | SUMP ; RECIRC CHECK VA   | LVE    |          |        |      |       |      |     |                                                 |                  |                   |
| SI-175           | 210-130-2 (B1 Active     | 2      | СК       | С      | С    | 12    | N/A  | N/A | PE-ST-SI-3005<br>PE-ST-SI-3005                  | CVC<br>CVO       | RO*<br>RO*        |
| SHUTDOWN COO     | DLING HT EXCH AC-4B ; OU | JTLET  |          | MTSPR  | AY N | 10ZZ  | LES; |     |                                                 |                  |                   |
| SI-176           | 210-130-2 (D1 Active     | 2      | СК       | С      | С    | 12    | N/A  | N/A | PE-ST-SI-3005<br>PE-ST-SI-3005                  | CVC<br>CVO       | RO*<br>RO*        |
| SHUTDOWN COO     | DLING HT EXCH AC-4A ; OU | JTLET  | TO CNT   | MT SPF | RAY  | NOZZ  | LES; |     |                                                 |                  |                   |
| SI-183           | 210-130-1 (E6 Passive    | 2      | GL       | н      | Α    | 2     | NC   | N/A | SE-ST-SI-3005                                   | LT               | 2YR               |
| SIRWT SI-5 ; CON | NTAINMENT SPRAY FLOW     | TEST   | ; STOP V | ALVE   |      |       |      |     |                                                 |                  |                   |
| SI-184           | 210-130-1 (D6 Passive    | 2      | GA       | н      | Α    | 6     | NC   | N/A |                                                 |                  |                   |

|                 |                          |       |        |       |       |     |    |     | SE-ST-SI-3005 | LT  | 2YR  |             |
|-----------------|--------------------------|-------|--------|-------|-------|-----|----|-----|---------------|-----|------|-------------|
| SIRWT SI-5 ; CO | NTAINMENT SPRAY RETUR    | RN VA | LVE    |       |       |     |    |     |               |     |      |             |
| SI-185          | 210-130-1 (E8 Passive    | 2     | GA     | н     | Α     | 2   | NC | N/A | IC-ST-AE-3122 | LJ  | OptB |             |
| SI TANKS SI-6A, | B,C&D ; DRAIN VALVE TO S | BIRWT | SI-5   |       |       |     |    |     |               |     |      |             |
| SI-187          | 210-130-2 (H5 Active     | 2     | RL     | R     | С     | 1.5 | NC | N/A | PE-ST-VX-3009 | RV  | ОМ   |             |
| LPSI HEADER R   | ELIEF VALVE              |       |        |       |       |     |    |     |               |     |      |             |
| SI-188          | 210-130-2A (DActive      | 2     | RL     | R     | С     | 1.5 | NC | N/A | PE-ST-VX-3009 | RV  | ОМ   |             |
| LPSI PUMPS SI-  | 1A&B ; SHUTDOWN COOLII   | NG SL | JCTION | RELIE | F VAL | VE  |    |     |               |     |      |             |
| SI-189          | 210-130-2A (B Active     | 2     | RL     | R     | С     | 1.5 | NC | N/A | PE-ST-VX-3009 | RV  | ОМ   |             |
| HPSI RELIEF VA  | LVE                      |       |        |       |       |     |    |     |               |     |      |             |
| SI-190          | 210-130-2A (BActive      | 2     | RL     | R     | С     | 1.5 | NC | N/A | PE-ST-VX-3009 | RV  | ОМ   |             |
| HPSI RELIEF VA  | LVE                      |       |        |       |       |     |    |     |               |     |      |             |
| SI-194          | 210-130-2A (DActive      | 1     | СК     | С     | A/C   | 6   | NC | N/A | SE-ST-SI-3015 | LT  | CS*  | PIV SEE     |
| NOTE #7         |                          |       |        |       |       |     |    |     | OP-ST-SI-3003 | cvo | CS   | SEE NOTE #7 |
| LPSI TO RC LOC  | P 2A ; CHECK VALVE       |       |        |       |       |     |    |     |               |     |      |             |
| SI-195          | 210-130-2A (DActive      | 1     | СК     | С     | A/C   | 2   | NC | N/A | OP-ST-SI-3007 | cvo | RO   | SEE NOTE #7 |

|                          |                     |   |    |   |     |   |     |     | SE-ST-SI-3015                  | LT        | CS*       | PIV SEE                    |
|--------------------------|---------------------|---|----|---|-----|---|-----|-----|--------------------------------|-----------|-----------|----------------------------|
| NOTE #7                  |                     |   |    |   |     |   |     |     |                                |           |           |                            |
| HPSI TO RC LOO           | OP 2A ; CHECK VALVE |   |    |   |     |   |     |     |                                |           |           |                            |
| SI-196                   | 210-130-2A (DActive | 1 | СК | С | С   | 2 | N/A | N/A | OP-ST-SI-3007<br>OP-ST-CH-3006 | CVO<br>PS | RO<br>CS  | SEE NOTE #7<br>SEE NOTE #7 |
| HPSI TO RC LOO           | OP 2A ; CHECK VALVE |   |    |   |     |   |     |     |                                |           |           |                            |
| <b>SI-197</b><br>NOTE #7 | 210-130-2A (DActive | 1 | СК | С | A/C | 6 | NC  | N/A | SE-ST-SI-3015                  | LT        | CS⁺       | PIV SEE                    |
|                          |                     |   |    |   |     |   |     |     | OP-ST-SI-3003                  | CVO       | CS        | SEE NOTE #7                |
| LPSI TO RC LOC           | OP 2B ; CHECK VALVE |   |    |   |     |   |     |     |                                |           |           |                            |
| SI-198                   | 210-130-2A (DActive | 1 | ск | с | A/C | 2 | NC  | N/A | OP-ST-SI-3007<br>SE-ST-SI-3015 | CVO<br>LT | RO<br>CS* | SEE NOTE #7<br>PIV SEE     |
| NOTE #7                  |                     |   |    |   |     |   |     |     |                                |           |           |                            |
| HPSI TO RC LOO           | OP 2B ; CHECK VALVE |   |    |   |     |   |     |     |                                |           |           |                            |
| SI-199                   | 210-130-2A (CActive | 1 | СК | С | С   | 2 | N/A | N/A | OP-ST-SI-3007<br>OP-ST-CH-3006 | CVO<br>PS | RO<br>CS  | SEE NOTE #7<br>SEE NOTE #7 |
| HPSI TO RC LOO           | OP 2B ; CHECK VALVE |   |    |   |     |   |     |     |                                |           |           |                            |
| <b>SI-200</b><br>NOTE #7 | 210-130-2A (DActive | 1 | СК | С | A/C | 6 | NC  | N/A | SE-ST-SI-3015<br>OP-ST-SI-3003 | LT<br>CVO | CS⁺<br>CS | PIV SEE<br>SEE NOTE #7     |
|                          |                     |   |    |   |     |   |     |     |                                |           |           |                            |

LPSI TO RC LOOP 1A; CHECK VALVE

| SI-201       | 210-130-2A (DActive   | 1 | СК | С | A/C | 2  | NC  | N/A |                                |           |           |                            |
|--------------|-----------------------|---|----|---|-----|----|-----|-----|--------------------------------|-----------|-----------|----------------------------|
|              |                       |   |    |   |     |    |     |     | OP-ST-SI-3007<br>SE-ST-SI-3015 |           | RO<br>CS* | SEE NOTE #7<br>PIV SEE     |
| NOTE #7      |                       |   |    |   |     |    |     |     |                                |           |           |                            |
| HPSI TO RC   | LOOP 1A ; CHECK VALVE |   |    |   |     |    |     |     |                                |           |           |                            |
| SI-202       | 210-130-2A (CActive   | 1 | СК | С | С   | 2  | N/A | N/A |                                | 0.40      |           |                            |
|              |                       |   |    |   |     |    |     |     | OP-ST-SI-3007<br>OP-ST-CH-3006 | PS        | RO<br>CS  | SEE NOTE #7<br>SEE NOTE #7 |
| HPSI TO RC   | LOOP 1A ; CHECK VALVE |   |    |   |     |    |     |     |                                |           |           |                            |
| SI-203       | 210-130-2A (DActive   | 1 | СК | С | A/C | 6  | NC  | N/A |                                |           |           |                            |
| NOTE #7      |                       |   |    |   |     |    |     |     | SE-ST-SI-3015                  | LT        | CS*       | PIV SEE                    |
|              |                       |   |    |   |     |    |     |     | OP-ST-SI-3003                  | CVO       | CS        | SEE NOTE #7                |
| LPSI TO RC I | LOOP 1B ; CHECK VALVE |   |    |   |     |    |     |     |                                |           |           |                            |
| SI-204       | 210-130-2A (DActive   | 1 | СК | С | A/C | 2  | NC  | N/A |                                |           | RO        |                            |
|              |                       |   |    |   |     |    |     |     | SE-ST-SI-3015                  | LT        | CS*       | PIV SEE                    |
| NOTE #7      |                       |   |    |   |     |    |     |     |                                |           |           |                            |
| HPSI TO RC   | LOOP 1B ; CHECK VALVE |   |    |   |     |    |     |     |                                |           |           |                            |
| SI-205       | 210-130-2A (CActive   | 1 | СК | С | С   | 2  | N/A | N/A |                                |           |           |                            |
|              |                       |   |    |   |     |    |     |     | OP-ST-SI-3007<br>OP-ST-CH-3006 | CVO<br>PS | RO<br>CS  | SEE NOTE #7<br>SEE NOTE #7 |
| HPSI TO RC   | LOOP 1B ; CHECK VALVE |   |    |   |     |    |     |     |                                |           |           |                            |
| SI-207       | 210-130-2A (F Active  | 1 | СК | С | A/C | 12 | NC  | N/A |                                |           |           |                            |
| 01-201       |                       | • | 0  | • |     |    |     |     | SE-ST-SI-3016                  | CVO       | RO        | SIT DUMP                   |
|              |                       |   |    |   |     |    |     |     | OP-ST-SI-3008                  |           | Q         | PIV                        |

| SAFETY INJECTI  | ON TANK SI-6C ; OUTLET C  | HEC  | <b>VALVE</b> |   |     |    |    |     |                                                 |                  |                  |                                   |
|-----------------|---------------------------|------|--------------|---|-----|----|----|-----|-------------------------------------------------|------------------|------------------|-----------------------------------|
| SI-208          | 210-130-2A (CActive       | 1    | СК           | С | A/C | 12 | NC | N/A |                                                 |                  | 50               |                                   |
| SEE NOTE #7     |                           |      |              |   |     |    |    |     | SE-ST-ST-3016                                   | CVO              | RU               | SII DUMP                          |
|                 |                           |      |              |   |     |    |    |     | OP-ST-SI-3013<br>OP-ST-SI-3013<br>OP-ST-SI-3003 | CVC<br>LT<br>PS  | CS⁺<br>CS⁺<br>CS | SEE NOTE #7<br>PIV<br>SEE NOTE #7 |
| SAFETY INJECTI  | ON TO LOOP 2A ; CHECK V   | ALVE |              |   |     |    |    |     |                                                 |                  |                  |                                   |
| SI-209          | 210-130-2B (E Active      | 2    | RL           | R | С   | 1  | NC | N/A | PE-ST-VX-3005                                   | RV               | ОМ               |                                   |
| SAFETY INJECTI  | ON TANK SI-6D ; RELIEF VA | ALVE |              |   |     |    |    |     |                                                 |                  |                  |                                   |
| SI-211          | 210-130-2A (F Active      | 1    | СК           | С | A/C | 12 | NC | N/A | SE-ST-SI-3016<br>OP-ST-SI-3008<br>OP-ST-SI-3008 | CVO<br>CVC<br>LT | RO<br>Q<br>Q     | SIT DUMP<br>PIV                   |
| SAFETY INJECTI  | ON TANK SI-6D ; OUTLET C  | HECH | <b>VALVE</b> |   |     |    |    |     |                                                 |                  |                  |                                   |
| SI-212          | 210-130-2A (CActive       | 1    | СК           | С | A/C | 12 | NC | N/A | SE ST SI 2016                                   | 010              | PO               |                                   |
| SEE NOTE #7     |                           |      |              |   |     |    |    |     | 32-31-31-3010                                   |                  | RU               | SIT DOMP                          |
|                 |                           |      |              |   |     |    |    |     | OP-ST-SI-3013<br>OP-ST-SI-3013<br>OP-ST-SI-3003 | CVC<br>LT<br>PS  | CS*<br>CS*<br>CS | SEE NOTE #7<br>PIV<br>SEE NOTE #7 |
| SI TO RC LOOP 2 | B CHECK VALVE             |      |              |   |     |    |    |     |                                                 |                  |                  |                                   |
| SI-213          | 210-130-2B (E Active      | 2    | RL           | R | С   | 1  | NC | N/A | PE-ST-VX-3005                                   | RV               | ОМ               |                                   |
| SAFETY INJECTI  | ON TANK SI-6C ; RELIEF VA | ALVE |              |   |     |    |    |     |                                                 |                  |                  |                                   |
| SI-215          | 210-130-2A (F Active      | 1    | СК           | С | A/C | 12 | NC | N/A |                                                 |                  |                  |                                   |

.

•

:

|                |                           |       |              |   |     |    |    |     | SE-ST-SI-3016<br>OP-ST-SI-3008                  | CVO<br>CVC       | RO<br>Q          | SIT DUMP                          |
|----------------|---------------------------|-------|--------------|---|-----|----|----|-----|-------------------------------------------------|------------------|------------------|-----------------------------------|
|                |                           |       |              |   |     |    |    |     | OP-ST-SI-3008                                   | LT               | Q                | PIV                               |
| SAFETY INJECT  | ION TANK SI-6B ; OUTLET ( | CHECI | < VALVE      |   |     |    |    |     |                                                 |                  |                  |                                   |
| SI-216         | 210-130-2A (CActive       | 1     | СК           | С | A/C | 12 | NC | N/A |                                                 |                  |                  |                                   |
| SEE NOTE #7    |                           |       |              |   |     |    |    |     | SE-ST-SI-3016                                   | CVO              | RO               | SIT DUMP                          |
|                |                           |       |              |   |     |    |    |     | OP-ST-SI-3013<br>OP-ST-SI-3013<br>OP-ST-SI-3003 | CVC<br>LT<br>PS  | CS*<br>CS*<br>CS | SEE NOTE #7<br>PIV<br>SEE NOTE #7 |
| SI TO RC LOOP  | 1A ; CHECK VALVE          |       |              |   |     |    |    |     |                                                 |                  |                  |                                   |
| SI-217         | 210-130-2 (E6 Active      | 2     | RL           | R | С   | 1  | NC | N/A | PE-ST-VX-3005                                   | RV               | ОМ               |                                   |
| SAFETY INJECT  | ON TANK SI-6B ; RELIEF V  | ALVE  |              |   |     |    |    |     |                                                 |                  |                  |                                   |
| SI-219 .       | 210-130-2A (F Active      | 1     | СК           | С | A/C | 12 | NC | N/A | SE-ST-SI-3016<br>OP-ST-SI-3008<br>OP-ST-SI-3008 | CVO<br>CVC<br>LT | RO<br>Q<br>Q     | SIT DUMP<br>PIV                   |
| SAFETY INJECTI | ON TANK SI-6A ; OUTLET (  | CHECH | <b>VALVE</b> |   |     |    |    |     |                                                 |                  |                  |                                   |
| SI-220         | 210-130-2A (CActive       | 1     | СК           | С | A/C | 12 | NC | N/A |                                                 |                  |                  |                                   |
| SEE NOTE #7    |                           |       |              |   |     |    |    |     | SE-ST-SI-3016                                   | CVO              | RO               | SIT DUMP                          |
| NOTE #7        |                           |       |              |   |     |    |    |     | OP-ST-SI-3013                                   | CVC              | CS*              | PIV SEE                           |
|                |                           |       |              |   |     |    |    |     | OP-ST-SI-3013<br>OP-ST-SI-3003                  | LT<br>PS         | CS*<br>CS        | PIV<br>SEE NOTE #7                |
| SAFETY INJECTI | ON TO LOOP 1B ; CHECK \   | /ALVE |              |   |     |    |    |     |                                                 |                  |                  |                                   |
| SI-221         | 210-130-2 (E3 Active      | 2     | RL           | R | С   | 1  | NC | N/A | PE-ST-VX-3005                                   | RV               | ОМ               |                                   |

SAFETY INJECTION TANK SI-6A ; RELIEF VALVE

| SI-298          | 210-130-1 (D7 Active     | 2      | RL       | R      | С    | 1     | NC    | N/A | PE-ST-VX-3009 | RV  | ОМ |
|-----------------|--------------------------|--------|----------|--------|------|-------|-------|-----|---------------|-----|----|
| SHUTDOWN HEA    | T EXCH AC-4A REACTOR     | COOL   | ANT INLE |        | NG R | ELIEI | F VAL |     |               |     |    |
| SI-299          | 210-130-1 (B7 Active     | 2      | RL       | R      | С    | 1     | NC    | N/A | PE-ST-VX-3009 | RV  | ОМ |
| SHUTDOWN COC    | DLING HT EXCH SI-4B ; OU | TLETI  | RELIEF V | ALVE T | °O;F | REAC  | то    |     |               |     |    |
| SI-300          | 210-130-1 (B4 Active     | 2      | СК       | С      | С    | 2     | N/A   | N/A | OP-ST-SI-3008 | cvo | Q  |
| CONTAINMENT S   | SPRAY PUMP SI-3C ; MINIM | IUM RI | ECIRC CI | HECK V | ALV  | Ξ     |       |     |               |     |    |
| SI-301          | 210-130-1 (D4 Active     | 2      | СК       | С      | С    | 2     | N/A   | N/A | OP-ST-SI-3008 | cvo | Q  |
| CONTAINMENT S   | PRAY PUMP SI-3B RECIRC   | LINE   | CHECK    | VALVE  |      |       |       |     |               |     |    |
| SI-302          | 210-130-1 (F4 Active     | 2      | СК       | С      | С    | 2     | N/A   | N/A | OP-ST-SI-3008 | cvo | Q  |
| CONTAINMENT S   | PRAY PUMP SI-3A MINIMU   | IM RE  | CIRC CH  | ECK VA | LVE  |       |       |     |               |     |    |
| SI-303          | 210-130-1 (E4 Active     | 2      | СК       | С      | С    | 2     | N/A   | N/A | OP-ST-SI-3008 | сvо | Q  |
| LPSI PUMP SI-1A | ; MINIMUM RECIRC CHEC    | K VAL  | VE       |        |      |       |       |     |               |     |    |
| SI-304          | 210-130-1 (A4 Active     | 2      | СК       | С      | С    | 2     | N/A   | N/A | OP-ST-SI-3008 | cvo | Q  |
| LOW PRESS SI P  | UMP SI-1B RECIRC LINE C  | НЕСК   | VALVE    |        |      |       |       |     |               |     |    |

| SI-306           | 210-130-1 (D7 Passive | 2        | GA       | Н                 | Α    | 6     | LC   | N/A | SE-ST-SI-3005                  | LT         | 2YR      |
|------------------|-----------------------|----------|----------|-------------------|------|-------|------|-----|--------------------------------|------------|----------|
| SIRWT SI-5 ; COI | NTAINMENT SPRAY RET   | URN VAL  | .VE      |                   |      |       |      |     |                                |            |          |
| SI-309           | 210-130-3 (F5 Active  | 2        | RL       | R                 | С    | 1     | NC   | N/A | PE-ST-VX-3009                  | RV         | ОМ       |
| LPSI PUMPS SI-1  | A&B ; SHUTDOWN CLG    | SUCT RE  | ELIEF VL | <b>.</b> V TO ; I | REAC | CTOR  | C    |     |                                |            |          |
| SI-310           | 210-130-1 (C7 Active  | 2        | RL       | R                 | С    | 1     | NC   | N/A | PE-ST-VX-3009                  | RV         | ОМ       |
| SHUTDOWN CLO     | GHT EXCHS AC-4A&B ; C | OUTLET C | CROSSC   | ONNEC             | TR   | ELIEF | VLV; |     |                                |            |          |
| SI-323           | 210-130-3 (E6 Active  | 2        | СК       | С                 | С    | 4     | N/A  | N/A | SE-ST-SI-3010<br>OP-ST-SI-3007 | CVC<br>CVO | RO<br>RO |
| HPSI HEADER CI   | HECK VALVE            |          |          |                   |      |       |      |     |                                |            |          |
| SI-342           | 210-130-1 (E7 Passive | 2        | GL       | Н                 | A    | 1     | LC   | N/A | SE-ST-SI-3005                  | LT         | 2YR      |
| SHUTDOWN COO     | DLING TO ; CVCS PURIF | ICATION  | ISOLAT   | ION VL            | /    |       |      |     |                                |            |          |
| SI-343           | 210-130-3 (D6 Active  | 2        | СК       | С                 | С    | 2     | N/A  | N/A | SE-ST-CH-3003                  | CVO        | RO       |
| CROSS TIE BYPA   | ASS VALVE HCV-2988 OI | UTLET LI | NE CHE   | CK VAL            | VE   |       |      |     |                                |            |          |
| SI-410           | 210-130-2 (F-2        | Passive  | 2        | GL                | н    | Α     | 2    | NC  | N/A<br>IC-ST-AE-3122           | LJ         | OptB     |
| SI TANKS DRAIN   | LINE ISOLATION VALVE  | E        |          |                   |      |       |      |     |                                |            |          |
| SI-411           | 210-130-2 (F-2        | Active   | 2        | RL                | R    | Α     | 2    | NC  | N/A<br>IC-ST-AE-3122           | LJ         | OptB     |

.

Penetration M-22 Relief Valve

5

1

## SYSTEM: SL - Primary Sample System

|                |             | C           | ode<br>sition |         |         |      |        |       |       |                                                                  |                          |                       |     |
|----------------|-------------|-------------|---------------|---------|---------|------|--------|-------|-------|------------------------------------------------------------------|--------------------------|-----------------------|-----|
| Component      | PID(Coord)  | Function C  | lass          | Туре Ас | tuator( | Cat. | Size l | Norm. | Fail. | Procedure                                                        | Test                     | Freq                  |     |
|                |             |             |               |         |         |      |        |       |       |                                                                  |                          |                       |     |
| HCV-2504A      | M-12-1 (F7) | Active      | 2             | GL      | A       | А    | 0.5    | NO    | FC    | OP-ST-SL-3001<br>OP-ST-SL-3001<br>IC-ST-AE-3145<br>OP-ST-VX-3021 | FSTC<br>STC<br>LJ<br>PIT | Q<br>Q<br>OptB<br>2YR | PIV |
| RC SAMPLE LINE | E CONTAINME | NT ISOL VAL | VE (IN        | ISIDE)  |         |      |        |       |       |                                                                  |                          |                       |     |
| HCV-2504B      | M-12-1 (F7) | Active      | 2             | GL      | A       | A    | 0.5    | NO    | FC    | OP-ST-SL-3001<br>OP-ST-SL-3001<br>IC-ST-AE-3145<br>OP-ST-VX-3021 | FSTC<br>STC<br>LJ<br>PIT | Q<br>Q<br>OptB<br>2YR | PIV |
| REACTOR COOL   | ANT SAMPLE  | LINE ; CNTM | T ISOL        | ATION V | ALVE    |      |        |       |       |                                                                  |                          |                       |     |
| HCV-2506A      | M-12-1 (D7) | Active      | 2             | GL      | A       | В    | 0.5    | NO    | FC    | OP-ST-SL-3002<br>OP-ST-SL-3002<br>OP-ST-VX-3022                  | FSTC<br>STC<br>PIT       | Q<br>Q<br>2YR         |     |
| SG RC-2A SAMPI | LE CONTAINM | ENT ISOL VA | LVE (I        | NSIDE)  |         |      |        |       |       |                                                                  |                          |                       |     |
| HCV-2506B      | M-12-1 (D7) | Active      | 2             | GL      | A       | В    | 0.5    | NO    | FC    | OP-ST-SL-3002<br>OP-ST-SL-3002<br>OP-ST-VX-3022                  | FSTC<br>STC<br>PIT       | Q<br>Q<br>2YR         |     |

STEAM GENERATOR RC-2A BLWD ; CNTMT ISOLATION VALVE

Fort Calhoun Station Inservice Testing Program Plan 4<sup>th</sup> Interval, Revision 0

Ÿ

1

| HCV-2507A     | M-12-1 (C7)  | Active      | 2      | GL      | A | В | 0.5 | NO | FC | OP-ST-SL-3002<br>OP-ST-SL-3002<br>OP-ST-VX-3022 | FSTC<br>STC<br>PIT | Q<br>Q<br>2YR |
|---------------|--------------|-------------|--------|---------|---|---|-----|----|----|-------------------------------------------------|--------------------|---------------|
| SG RC-2B SAMP | PLE CONTAINM | IENT ISOL V | ALVE ( | INSIDE) |   |   |     |    |    |                                                 |                    |               |
| HCV-2507B     | M-12-1 (C7)  | Active      | 2      | GL      | А | В | 0.5 | NO | FC | OP-ST-SL-3002<br>OP-ST-SL-3002<br>OP-ST-VX-3022 | FSTC<br>STC<br>PIT | Q<br>Q<br>2YR |

.

.

STEAM GENERATOR RC-2B BLWD ; CNTMT ISOLATION VALVE

F

## SYSTEM: VA - Ventilating Air System

|              |               | (<br>Po       | Code<br>ositior | ı        |          |        |      |       |       |                                                                     |                          |                       |         |
|--------------|---------------|---------------|-----------------|----------|----------|--------|------|-------|-------|---------------------------------------------------------------------|--------------------------|-----------------------|---------|
| Component    | PID(Coord)    | Function (    | Class           | Type Ac  | tuator ( | Cat. S | Size | Norm. | Fail. | Procedure                                                           | Test                     | Freq                  |         |
| A/HCV-742    | M-1-2 (D8)    | Passive       | 2               | DI       | A        | A      | 1    | NO    | FO    | IC-ST-AE-3138<br>OP-ST-VX-3024A                                     | lj<br>Pit                | OptB<br>2YR           | Passive |
| CPHS; CHANNE | L "A" SENSING | G LINE; OUTE  | BOARE           | ISOLAT   |          | LVE    |      |       |       |                                                                     |                          |                       |         |
| B/HCV-742    | M-1-2 (D8)    | Passive       | 2               | DI       | A        | Α      | 1    | NO    | FO    | IC-ST-AE-3150<br>OP-ST-VX-3024A                                     | LJ<br>PIT                | OptB<br>2YR           | Passive |
| CPHS; CHANNE | L "B" SENSING | GLINE ; OUT   | BOARI           | DISOLAT  | TION VA  | LVE    |      |       |       |                                                                     |                          |                       |         |
| C/HCV-742    | M-1-2 (D8)    | Passive       | 2               | DI       | A        | А      | 1    | NO    | FO    | IC-ST-AE-3151<br>OP-ST-VX-3024A                                     | LJ<br>PIT                | OptB<br>2YR           | Passive |
| CPHS; CHANNE | L "C" SENSING | G LINE ; OUTI | BOARI           | D ISOLAT |          | LVE    |      |       |       |                                                                     |                          |                       |         |
| D/HCV-742    | M-1-2 (C8)    | Passive       | 2               | DI       | A        | A      | 1    | NO    | FO    | IC-ST-AE-3152<br>OP-ST-VX-3024A                                     | LJ<br>PIT                | OptB<br>2YR           | Passive |
| CPHS; CHANNE | L "D" SENSING | G LINE ; OUTI | BOARI           | D ISOLAT | TION VA  | LVE    |      |       |       |                                                                     |                          |                       |         |
| HCV-746A     | M-1-1 (D2)    | Active        | 2               | BL       | A        | A      | 2    | NC    | FC    | OP-ST-VA-3001A<br>OP-ST-VA-3001A<br>IC-ST-AE-3148<br>OP-ST-VX-3024A | FSTC<br>STC<br>LJ<br>PIT | Q<br>Q<br>OptB<br>2YR |         |

CONTAINMENT PRESSURE RELIEF; INBOARD ISOLATION VALVE

ŀ

| HCV-746B      | M-1-2 (C7)   | Active        | 2       | BL     | A       | Α    | 2    | NC    | FC | OP-ST-VA-3001A<br>OP-ST-VA-3001A<br>IC-ST-AE-3148<br>OP-ST-VX-3024A                   | FSTC<br>STC<br>LJ<br>PIT        | Q<br>Q<br>OptB<br>2YR      |
|---------------|--------------|---------------|---------|--------|---------|------|------|-------|----|---------------------------------------------------------------------------------------|---------------------------------|----------------------------|
| CONTAINMENT F | PRESSURE RE  | ELIEF ISOLAT  |         | ALVE   |         |      |      |       |    |                                                                                       |                                 |                            |
| HCV-820A      | M-1-2 (B8)   | Active        | 2       | GL     | S       | Α    | 1    | NC    | FC | OP-ST-VA-3001A<br>OP-ST-VA-3001A<br>IC-ST-AE-3140<br>OP-ST-VX-3024A                   | FSTC<br>STC<br>LJ<br>PIT        | Q<br>Q<br>OptB<br>2YR      |
| CNTMT HYDROG  | SEN ANALYZE  | R VA-81A; INI | LET OI  | JTBOAR | D ISOL/ |      | N VA | LVE   |    |                                                                                       |                                 |                            |
| HCV-820B      | M-1-1 (C2)   | Active        | 2       | GL     | S       | Α    | 1    | NC    | FO | OP-ST-VA-3001A<br>OP-ST-VA-3001A<br>OP-ST-VA-3001A<br>IC-ST-AE-3140<br>OP-ST-VX-3024A | FSTO<br>STC<br>STO<br>LJ<br>PIT | Q<br>Q<br>Q<br>OptB<br>2YR |
| CNTMT HYDROG  | SEN ANALYZEI | R VA-81A ; IN | ILET IN | IBOARD | ISOLAT  | ION  | VAL  | /E    |    |                                                                                       |                                 |                            |
| HCV-821A      | M-1-2 (A8)   | Active        | 2       | GL     | S       | Α    | 1    | NC    | FC | OP-ST-VA-3001B<br>OP-ST-VA-3001B<br>IC-ST-AE-3131<br>OP-ST-VX-3024B                   | FSTC<br>STC<br>LJ<br>PIT        | Q<br>Q<br>OptB<br>2YR      |
| CNTMT HYDROG  | SEN ANALYZEI | R VA-81A ; O  | UTLET   | OUTBO  | ARDISC  | DLAT |      | /ALVE |    |                                                                                       |                                 |                            |
| HCV-821B      | M-1-1 (A2)   | Active        | 2       | GL     | S       | Α    | 1    | NC    | FO | OP-ST-VA-3001B<br>OP-ST-VA-3001B<br>OP-ST-VA-3001B<br>IC-ST-AE-3131                   | FSTO<br>STC<br>STO<br>LJ        | Q<br>Q<br>Q<br>OptB        |

-

•

ŕ

|                                                     |                     |               |        |          |        |       |      |      |    | OP-ST-VX-3024B                                                                        | PIT                             | 2YR                        |
|-----------------------------------------------------|---------------------|---------------|--------|----------|--------|-------|------|------|----|---------------------------------------------------------------------------------------|---------------------------------|----------------------------|
| CNTMT HYDROC                                        | GEN ANALYZE         | R VA-81A ; O  | UTLE   | T INBOAF | RD ISO | LATIC | N NC | ALVE |    |                                                                                       |                                 |                            |
| HCV-881                                             | M-1-1 (B2)          | Active        | 2      | BU       | A      | A     | 4    | NC   | FO | OP-ST-VA-3001A<br>OP-ST-VA-3001A<br>OP-ST-VA-3001A<br>IC-ST-AE-3169<br>OP-ST-VX-3024A | FSTO<br>STC<br>STO<br>LJ<br>PIT | Q<br>Q<br>OptB<br>2YR      |
| CONTAINMENT HYDROGEN PURGE; INBOARD ISOLATION VALVE |                     |               |        |          |        |       |      |      |    |                                                                                       |                                 |                            |
| HCV-882                                             | M-1-1 (B2)          | Active        | 2      | BU       | A      | Α     | 4    | NC   | FO | OP-ST-VA-3001A<br>OP-ST-VA-3001A<br>OP-ST-VA-3001A<br>IC-ST-AE-3130<br>OP-ST-VX-3024A | FSTO<br>STC<br>STO<br>LJ<br>PIT | Q<br>Q<br>Q<br>OptB<br>2YR |
| CONTAINMENT                                         | HYDROGEN P          | URGE; INBO    | ARD IS | SOLATIO  | N VALV | Έ     |      |      |    |                                                                                       |                                 |                            |
| HCV-883A                                            | M-1-1 (C2)          | Active        | 2      | PG       | A      | A     | 1    | NC   | FO | OP-ST-VA-3001A<br>OP-ST-VA-3001A<br>OP-ST-VA-3001A<br>IC-ST-AE-3157<br>OP-ST-VX-3024A | FSTO<br>STC<br>STO<br>LJ<br>PIT | Q<br>Q<br>OptB<br>2YR      |
| CNTMT HYDROG                                        | GEN ANALYZE         | R VA-81B ; IN | ILET I | NBOARD   | ISOLA  | τιον  | VAL  | VE   |    |                                                                                       |                                 |                            |
| HCV-883B                                            | M-1-2 (B8)          | Active        | 2      | GL       | S      | Α     | 1    | NC   | FC | OP-ST-VA-3001A<br>OP-ST-VA-3001A<br>IC-ST-AE-3157<br>OP-ST-VX-3024A                   | FSTC<br>STC<br>LJ<br>PIT        | Q<br>Q<br>OptB<br>2YR      |
| HYDROGEN SAM                                        | <b>APLING SYSTE</b> | EM ISOL VA-8  | 31B IN | LET OUT  | BOARD  | ) ISO | LATI |      |    |                                                                                       |                                 |                            |

.

)

| HCV-884A                                                        | M-1-1 (C2)   | Active       | 2      | Gl      | Δ      | Δ | 1  | NC | FO |                                                                                       |                                 |                            |
|-----------------------------------------------------------------|--------------|--------------|--------|---------|--------|---|----|----|----|---------------------------------------------------------------------------------------|---------------------------------|----------------------------|
| 101-00-17                                                       | M-1-1 (02)   | , louve      | L      |         |        |   | ·  | NO |    | OP-ST-VA-3001B<br>OP-ST-VA-3001B<br>OP-ST-VA-3001B<br>IC-ST-AE-3158<br>OP-ST-VX-3024B | FSTO<br>STC<br>STO<br>LJ<br>PIT | Q<br>Q<br>Q<br>OptB<br>2YR |
| CNTMT HYDROGEN ANALYZER VA-81B ; OUTLET INBOARD ISOLATION VALVE |              |              |        |         |        |   |    |    |    |                                                                                       |                                 |                            |
| HCV-884B                                                        | M-1-2 (B8)   | Active       | 2      | GL      | S      | Α | 1  | NC | FC | OP-ST-VA-3001B<br>OP-ST-VA-3001B<br>IC-ST-AE-3158<br>OP-ST-VX-3024B                   | FSTC<br>STC<br>LJ<br>PIT        | Q<br>Q<br>OptB<br>2YR      |
| CNTMT HYDROGEN ANALYZER VA-81B; OUTLET OUTBD ISOLATION VALVE    |              |              |        |         |        |   |    |    |    |                                                                                       |                                 |                            |
| PCV-742A                                                        | M-1-1 (D2)   | -1           | 2      | BU      | A      | Α | 42 | LC | FC | IC-ST-AE-3187<br>OP-ST-VA-3002<br>OP-ST-VA-3002<br>OP-ST-VX-3024A                     | LJ<br>FSTC<br>STC<br>PIT        | OptB<br>CS<br>CS<br>2YR    |
| CONTAINMENT F                                                   | PURGE AIR; O | UTLET INBO   | ARD IS | SOLATIO | N VALV | E |    |    |    |                                                                                       |                                 |                            |
| PCV-742B                                                        | M-1-2 (C7)   | -1           | 2      | BU      | A      | A | 42 | LC | FC | IC-ST-AE-3187<br>OP-ST-VA-3002<br>OP-ST-VA-3002<br>OP-ST-VX-3024A                     | LJ<br>FSTC<br>STC<br>PIT        | OptB<br>CS<br>CS<br>2YR    |
|                                                                 | PURGE EXHAI  | UST ISOL VAI | LVE    |         |        |   |    |    |    |                                                                                       |                                 |                            |
| PCV-742C                                                        | M-1-1 (C2)   | -1           | 2      | BU      | A      | A | 42 | LC | FC | IC-ST-AE-3188<br>OP-ST-VA-3002<br>OP-ST-VA-3002<br>OP-ST-VX-3024A                     | LJ<br>FSTC<br>STC<br>PIT        | OptB<br>CS<br>CS<br>2YR    |

k

| CONTAINMENT F                                                | PURGE AIR ; II | NLET INBOAF  | RD ISC | DLATION | VALVE  |       |       |    |    |                                                                     |                          |                         |  |
|--------------------------------------------------------------|----------------|--------------|--------|---------|--------|-------|-------|----|----|---------------------------------------------------------------------|--------------------------|-------------------------|--|
| PCV-742D                                                     | M-1-2 (B8)     | -1           | 2      | BU      | A      | A     | 42    | LC | FC | IC-ST-AE-3188<br>OP-ST-VA-3002<br>OP-ST-VA-3002<br>OP-ST-VX-3024A   | LJ<br>FSTC<br>STC<br>PIT | OptB<br>CS<br>CS<br>2YR |  |
| CONTAINMENT PURGE AIR; INLET OUTBOARD ISOLATION VALVE        |                |              |        |         |        |       |       |    |    |                                                                     |                          |                         |  |
| PCV-742E                                                     | M-1-1 (F2)     | Active       | 2      | DI      | A      | Α     | 1     | A  | FC | OP-ST-VA-3001A<br>OP-ST-VA-3001A<br>IC-ST-AE-3146<br>OP-ST-VX-3024A | FSTC<br>STC<br>LJ<br>PIT | Q<br>Q<br>OptB<br>2YR   |  |
| RADIATION MONITORING CABINET; OUTLET INBOARD ISOLATION VALVE |                |              |        |         |        |       |       |    |    |                                                                     |                          |                         |  |
| PCV-742F                                                     | M-1-2 (E8)     | Active       | 2      | Di      | A      | Α     | 1     | NO | FC | OP-ST-VA-3001A<br>OP-ST-VA-3001A<br>IC-ST-AE-3146<br>OP-ST-VX-3024A | FSTC<br>STC<br>LJ<br>PIT | Q<br>Q<br>OptB<br>2YR   |  |
| RADIATION MON                                                | IITORING CAB   | INET ; OUTLE | έτ ου  | TBOARD  | ISOLA  | TION  | I VAL | VE |    |                                                                     |                          |                         |  |
| PCV-742G                                                     | M-1-1 (E2)     | Active       | 2      | DI      | A      | A     | 1     | NO | FC | OP-ST-VA-3001B<br>OP-ST-VA-3001B<br>IC-ST-AE-3147<br>OP-ST-VX-3024B | FSTC<br>STC<br>LJ<br>PIT | Q<br>Q<br>OptB<br>2YR   |  |
| RADIATION MON                                                | IITORING CAB   | INET ; INLET | INBO   | ARD ISO | LATION | I VAL | .VE   |    |    |                                                                     |                          |                         |  |
| PCV-742H                                                     | M-1-2 (E8)     | Active       | 2      | DI      | A      | A     | 1     | NO | FC | OP-ST-VA-3001B<br>OP-ST-VA-3001B<br>IC-ST-AE-3147<br>OP-ST-VX-3024B | FSTC<br>STC<br>LJ<br>PIT | Q<br>Q<br>OptB<br>2YR   |  |

P

:

| RADIATION MONITORING CABINET; INLET OUTBOARD ISOLATION VALVE    |              |              |       |        |       |   |   |     |     |               |    |      |  |
|-----------------------------------------------------------------|--------------|--------------|-------|--------|-------|---|---|-----|-----|---------------|----|------|--|
| VA-280                                                          | M-1-2 (A8)   | Active       | 2     | BU     | Н     | Α | 4 | LC  | N/A | IC-ST-AE-3169 | LJ | OptB |  |
| CONTAINMENT HYDROGEN PURGE; OUTBOARD ISOLATION VALVE TO ; CNTMT |              |              |       |        |       |   |   |     |     |               |    |      |  |
| VA-287                                                          | M-1-2 (B6)   | Active       | 3     | RL     | R     | С | 2 | NC  | N/A | PE-ST-VX-3010 | RV | ОМ   |  |
| CNTMT HYDROGEN PURGE FAN VA-80A ; RECIRC RELIEF VALVE           |              |              |       |        |       |   |   |     |     |               |    |      |  |
| VA-288                                                          | M-1-2 (B5)   | Active       | 3     | RL     | R     | С | 2 | N/A | N/A | PE-ST-VX-3010 | RV | ОМ   |  |
| CNTMT HYDROG                                                    | SEN PURGE FA | AN VA-80B; R | ECIRO | RELIEF | VALVE |   |   |     |     |               |    |      |  |
| VA-289                                                          | M-1-2 (A8)   | Active       | 2     | BU     | Н     | Α | 4 | LC  | N/A | IC-ST-AE-3130 | LJ | OptB |  |
| CNTMT HYDROGEN PURGE; OUTBOARD ISOLATION VALVE TO ; CNTMT HYDRO |              |              |       |        |       |   |   |     |     |               |    |      |  |

F

----

SYSTEM: WD - Waste Disposal System

|               |               | C<br>Po    | Code<br>sition | ľ        |          |        |        |        |       |                                                                    |                          |                       |
|---------------|---------------|------------|----------------|----------|----------|--------|--------|--------|-------|--------------------------------------------------------------------|--------------------------|-----------------------|
| Component     | PID(Coord)    | Function C | lass           | Туре Ас  | tuator ( | Cat. S | Size I | Norm.  | Fail. | Procedure                                                          | Test                     | Freq                  |
| HCV-500A      | M-6-2 (A6)    | Active     | 2              | DI       | A        | Α      | 4      | NO     | FC    | OP-ST-WDL-3001<br>OP-ST-WDL-3001<br>IC-ST-AE-3120<br>OP-ST-VX-3025 | FSTC<br>STC<br>LJ<br>PIT | Q<br>Q<br>OptB<br>2YR |
| RCDT PUMPS WI | D-2A&B ; DISC | HARGE HEA  | DER;           | ISOLATIO | ON VAL   | VE     |        |        |       |                                                                    |                          |                       |
| HCV-500B      | M-6-2 (A6)    | Active     | 2              | DI       | A        | Α      | 4      | NO     | FC    | OP-ST-WDL-3001<br>OP-ST-WDL-3001<br>IC-ST-AE-3120<br>OP-ST-VX-3025 | FSTC<br>STC<br>LJ<br>PIT | Q<br>Q<br>OptB<br>2YR |
| RCDT PUMPS WI | D-2A&B DISCH  | ARGE HEAD  | DER;C          | OUTBOA   | RD ISO   | LATI   | ON V   | ALVE   |       |                                                                    |                          |                       |
| HCV-506A      | M-7-1 (A6)    | Active     | 2              | DI       | A        | Α      | 2      | NO     | FC    | OP-ST-WDL-3001<br>OP-ST-WDL-3001<br>IC-ST-AE-3108<br>OP-ST-VX-3025 | FSTC<br>STC<br>LJ<br>PIT | Q<br>Q<br>OptB<br>2YR |
| CONTAINMENT S | UMP PUMPS     | ND-3A&B DI | SCHA           | RGE HE/  | ADER ;   | OUT    | BOAF   | rd Iso |       |                                                                    |                          |                       |
| HCV-506B      | M-7-1 (A6)    | Active     | 2              | DI       | A        | Α      | 2      | NO     | FC    | OP-ST-WDL-3001<br>OP-ST-WDL-3001<br>IC-ST-AE-3108<br>OP-ST-VX-3025 | FSTC<br>STC<br>LJ<br>PIT | Q<br>Q<br>OptB<br>2YR |

CONTAINMENT SUMP PUMPS WD-3A&B ; DISCHARGE HEADER ; ISOLATION VA

;

.

| HCV-507A      | M-98-3 (F7)   | Active       | 2     | DI      | A       | Α    | 3     | NO     | FC | OP-ST-WDL-3001<br>OP-ST-WDL-3001<br>IC-ST-AE-3114<br>OP-ST-VX-3025 | FSTC<br>STC<br>LJ<br>PIT | Q<br>Q<br>OptB<br>2YR  |
|---------------|---------------|--------------|-------|---------|---------|------|-------|--------|----|--------------------------------------------------------------------|--------------------------|------------------------|
| GAS VENT HEAD | ER; OUTBOA    | RD ISOLATIO  | N VAL | VE      |         |      |       |        |    |                                                                    |                          |                        |
| HCV-507B      | M-98-3 (F7)   | Active       | 2     | DI      | A       | A    | 3     | NO     | FC | OP-ST-WDL-3001<br>OP-ST-WDL-3001<br>IC-ST-AE-3114<br>OP-ST-VX-3025 | FSTC<br>STC<br>LJ<br>PIT | Q<br>Q.<br>OptB<br>2YR |
| GAS VENT HEAD | ER ; ISOLATIO | ON VALVE     |       |         |         |      |       |        |    |                                                                    |                          |                        |
| HCV-508A      | M-98-3 (C7)   | Active       | 2     | DI      | А       | А    | 0.5   | NC     | FC | OP-ST-WDL-3001<br>OP-ST-WDL-3001<br>IC-ST-AE-3125<br>OP-ST-VX-3025 | FSTC<br>STC<br>LJ<br>PIT | Q<br>Q<br>OptB<br>2YR  |
| REACTOR COOL  | ANT DRAIN TA  | ANK WD-1 ; C | UTBO  | ARD SAI | MPLE IS | SOL  | ATION | I VALV |    |                                                                    |                          |                        |
| HCV-508B      | M-98-3 (C6)   | Active       | 2     | DI      | A       | Α    | 0.5   | NC     | FC | OP-ST-WDL-3001<br>OP-ST-WDL-3001<br>IC-ST-AE-3125<br>OP-ST-VX-3025 | FSTC<br>STC<br>LJ<br>PIT | Q<br>Q<br>OptB<br>2YR  |
| REACTOR COOL  | ANT DRAIN TA  | ANK WD-1 ; S | AMPL  | EISOLAT |         | ALV8 | Ē     |        |    |                                                                    |                          |                        |
| HCV-509A      | M-98-3 (B7)   | Active       | 2     | DI      | A       | Α    | 0.5   | NC     | FC | OP-ST-WDL-3001<br>OP-ST-WDL-3001<br>IC-ST-AE-3124<br>OP-ST-VX-3025 | FSTC<br>STC<br>LJ<br>PIT | Q<br>Q<br>OptB<br>2YR  |

;

.

PRESSURIZER QUENCH TANK RC-5; OUTBOARD SAMPLE ISOLATION VALVE

| HCV-509B | M-98-3 (B6) | Active | 2 | DI | Α | Α | 0.5 | NC | FC |                |      |      |
|----------|-------------|--------|---|----|---|---|-----|----|----|----------------|------|------|
|          |             |        |   |    |   |   |     |    |    | OP-ST-WDL-3001 | FSTC | Q    |
| •        |             |        |   |    |   |   |     |    |    | OP-ST-WDL-3001 | STC  | Q    |
|          |             |        |   |    |   |   |     |    |    | IC-ST-AE-3124  | LJ   | OptB |
|          |             | •      |   |    |   |   |     |    |    | OP-ST-VX-3025  | PIT  | 2YR  |

.

.

.

.

PRESSURIZER QUENCH TANK RC-5 ; SAMPLE ISOLATION VALVE

.

Fort Calhoun Station Inservice Testing Program Plan 4<sup>th</sup> Interval, Revision 0

ļ

÷