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INTRODUCTION

Discontinuum analysis of rock masses has evolved to a state where
several different numerical methods are presently available. It
is difficult to distinguish one method from another, and the :
techniques tend to overlap. Nevertheless, there are distinguish-
ing features of the various discontinuum analysis techniques, and
it is important to recognize the distinctions when choosing a
"method for a particular analysis. A summary review of discontin-
uum analysis methods is presented herein to assist in defining
the capabilities and limitations of a particular method for a
specific problem.

The distinguishing feature of a discontinuum analysis method com-
pared to a continuum analysis approach is that the discontinuum
method explicitly represents the discontinuities of the rock mass
in the numerical formulation. Continuum methods account for the
presence of discontinuities by an "equivalent continuum" repre-
sentation. At the present time, equivalent continuum models can
only give a limited representation for the behavior of jointed
rock (i.e., these models cannot fully account for the various
displacements associated with jointed media, such as sliding,

. separation, and rotation along joints). Recent advancements in
material models for equivalent continuum [e.g., Muhlhaus (1988)
and Pariseau (1988)] suggest that the development of more repre-
sentative equivalent continuum models for jointed rock is quite
possible. This area of research shows great potential and may.
eventually provide a solution to the basic problem of discontin-
uum analysis—i.e., the difficulty with modeling every joint in
the rock mass.

Discontinuum analysis methods fall into two general groups. The
first group consists of continuum codes which have been modified
to represent discontinuous features explicitly. Special algo-
rithms, commonly called interface elements or slidelines, are in-
corporated in these codes to simulate the presence of the fea-
tures. The second group consists of discontinuum codes which are
numerical techniques designed specifically to analyze the behav--
ior of discontinuous or particulate systems. §Several different
numerical schemes have been utilized in the development of the
codes in each of these groups but, in general, computational pro-
cedures used in both groups have similar features. The similar-
ity is primarily in the type of computational solution method in-
corporated in the code. .




SOLUTION METHOD

Table 1 presents a categorization of the various techniques ac-
cording to computational solution method. As shown in this
table, two general methods are used in both groups to solve for
the mechanical motion of discontinuum systems: the implicit me-
chanical solution approach, and the explicit mechanical solution
approach. Each approach provides a different method to solve me-
chanical equilibrium equations for either static or dynamic anal-
ysis. These approaches are commonly used in continuum analysis,

as well.

NUMERICAL CODES FOR DISCONTINUUM ANALYSIS

Table 1

CONTINUUM CODES WITH

INTERFACE ELEMENTS
implicit explicit
mechanical mechanical
solution solution

EXAMPLES

*finite element/finite
difference method with
slidelines

*boundary element
(e.g., displacement
discontinuity method)

DISCONTINUUM CODES

"kinematic implicit explicit
stability mechanical mechanical
solution solution
EXAMPLES
*key-block *discontinuum *distinct
method deformation element
analysis method




In the implicit approach, the equations describing the motion for
all elements in the problem are solved simultaneously. - For a
linear-elastic, static analysis, the implicit solution is per- -

- formed once but, for non-linear problems, several iterations of
the complete set of equations may be required to converge to the -
equilibrium solution state. For non-linear dynamic analysis, the
implicit scheme requires convergence to a solution state at each
timestep. The timestep can be arbitrarily large with regard to
numerical stability, but can still be restricted by the path de-
pendency of the non-linear behavior of the system.

The system of equations in the implicit method are solved directly
using a standard matrix method—for example, Gauss elimination or -
a similar method. The solution method accounts for non-lineari-
ties by using an iterative procedure, such as the modified or un-
modified Newton-Raphson method. The implicit approach is not well
suited for problems that involve frequent changes to the connec-
tivity between elements from, for example, highly non-linear be-
havior or dynamic loading. This is because the stiffness matrix
must be reformulated every time a change in connectivity occurs.

'In the explicit approach, unknown values of the variables relat-
ing to each element in the problem are calculated from known val-
ues in that element and its immediate neighbors. The equations ‘
relating these values are solved locally for each timestep*—
there is no need to solve a complete system of equations. The
reason for this independence of equations can be understood by
considering that, in a physical system, there is a maximum speed
at which information can propagate. For example, in an elastic
solid, this speed corresponds to the compressional wave speed.

In the explicit approach, the calculational timestep is selected
sufficiently small that information cannot propagate further than
one element during one timestep. If this timestep restriction is
always satisfied, then the dependence of each element on its im-
mediate neighbors is fulfilled, and the equations for each ele-
ment can be solved independently. The equations are solved in

*This "timestep" may be a physically realistic timestep for dy-
namic analysis or a calculational increment progressing to an
equilibrium state for a static analysis.



the explicit approach by direct integration* using a numerical
differencing scheme. The central difference method is generally
preferred over other differencing schemes because it is second-
order accurate.

The timestep limitation in the explicit approach restricts the
computation efficiency for solving linear problems because many
calculational timesteps may be required to reach the equilibrium
state. However, for non-linear analyses with an explicit pro-
gram, there is little appreciable increase in computer time over
the linear analysis, whereas an implicit program becomes much
less efficient and may take several iterations to reach the solu-
tion, solving the complete system of equations at each step. The
explicit approach, in this instance, proves more advantageous,
particularly when the non-linear behavior is associated with a
dynamic analysis.

The explicit solution approach is directly suitable for dynamic
analysis because the explicit time-marching scheme provides a
reliable and efficient means for performing transient calcula-
tions. The method has also been adapted for static and quasi-
static calculations by the use of two techniques, dynamic relaxa-
tion (Otter et al., 1966) and the conjugate gradient method
(Consus et al., 1965), which facilitate the convergence to a
static equilibrium or steady-state failure (collapse). 1In dy-
namic relaxation, the nodes of each element are moved in accor-
dance to Newton’s law of motion while, in the conjugate gradient
method, convergence is achieved on the basis of a numerical iter-
ative technique which does not involve reformulation of a stiff-
ness matrix.

*For dynamic calculations, an alternative approach to direct in-
tegration for either implicit or explicit solution is a method
called modal superposition [see, for example, Bathe and Wilson
(1976)). 1In this method, the equations of motion are first

. transformed into a generalized system of linear displacement
equations known as a generalized eigenproblem. The eigenproblem
yields n eigensolutions or n modes of displacement. Once these
‘modes are known, they can be incorporated directly into each
element and represent the response to loading. When many time-
steps are required in the dynamic analysis, this approach can be
more effective than direct integration. However, the approach
is limited to problems involving linear behavior of the ele-
ments. . ‘




Cundall (1987) has shown that dynamic relaxation is better suited
to model non-linear problems near failure than are iterative
methods and can model collapse problems in a more realistic and
efficient manner. With the conjugate gradient method, conver-
gence for non-linear problems, particularly at failure, is not
always guaranteed. While convergence is more certain with dy-
namic relaxation, the damping of inertial motion in this approach
can still cause difficulties with problems at the collapse state
because the viscous damping can introduce body forces which re-
tard steady-state collapse. Cundall (1982 and 1987) describes
the use of adaptive damping as an effective method to overcome .
this difficulty in dynamic relaxation. Adaptive damping continu-
ously adjusts the viscosity such that the power absorbed by damp-
ing is a constant proportion of the rate of change of kinetic en-
ergy in the system. Therefore, as the kinetic energy approaches
a constant or zero, the damping power also tends to zero.

Finally, because the explicit approach effectively "freezes" the
strain-state of each element at each timestep, the non-linear
material behavior can be followed directly, in incremental form,
without the need for iterations. It is generally recognized by
developers of non-linear constitutive models for numerical codes
that the explicit procedure is more tractable than the implicit
approach for constitutive model implementation (St. John,. 1988).
A comparison between explicit and implicit solution approaches is
given in more detail by Cundall et al. (1980). Table 2 summar-
izes the principal distinctions between the two approaches.

Several continuum codes with interface elements have been devel-
oped using both the implicit and explicit approaches. Appendices
I and II, respectively, contain partial lists of references for
currently available codes of each type. Most of these codes are
based on finite element or finite difference formulations and a
trend toward the explicit scheme is seen in those codes applied
to the analysis of geologic systems because of the complexity of
the non-linear constitutive models. Both implicit and explicit
boundary element codes are also available to model the response
of media with distinct discontinuities. 1Implicit boundary ele-
ment programs are generally used for static analysis while, for
dynamic calculations, an explicit approach is often taken wherein
a limiting timestep 1is used.




Table 2

COMPARISON OF CHARACTERISTICS OF EXPLICIT AND IMPLICIT SCHEMES

[Cundall et al., 1980]

EXPLICIT

IMPLICIT

Time-step must be smaller than
a critical value for stability.

Time-step can be arbitrarily large,
with unconditionally stable schemes,

Small amount of computational
effort per time-step.

Large amount of computational
effort per time-step, '

No significant numerical damping
introduced.

Numerical damping dependent on
time-step present with uncondi-
tionally stable schemes.

No iterations necessary to follow
nonlinear constitutive law.

[terative procedure necessary to
follow nonlinear constitutive law.

Provided thaf the time-step
criterion is always satisfied, -
nonlinear laws are always

followed in the correct physical

vay.

Always necessary to demonstrate
that the above mentioned iterative
procedure is
a) stable
b) follows the physically
correct path (for path-"
sensitive problems).

Matrices are never formed.
Memory requirements are always
at a minimum. No bandwidth
limitations. . :

Stiffness matrices must be stored.
Ways must be found to overcome
associated problems such as band-
width. Memory requirements tend
to be large. :

Since matrices are never formed,
large displacements and strains
are accommodated without
additional computing effort.

Additional computing effort needed
to follow large displacements and
strains. '




Although not as many discontinuum codes exist as do continuum
codes, several are available or currently under development.

Most of the discontinuum codes are based on a direct integration,
explicit solution scheme and are described as, generically, the
distinct element method. A partial list of references to expli-
cit distinct element codes is provided in Appendix III. One al-
ternative form of distinct element method based on a solution
achieved by modal superposition has also been developed [see, for
example, Williams et al. (1985) in Appendix III}. Implicit dis-
continuum codes have only recently been developed and are not at
as advanced a state as are distinct element codes. References to
implicit discontinuum codes are given in Appendix IV.

In addition to the explicit and implicit solution schemes for
discontinuum analysis, another technique has been developed based
on static limit equilibrium theory. This approach primarily uses
vector analysis to establish whether it is kinematically possible
for any block in a blocky system to move and become detached from.
the system. Appendix V lists references to kinematic stability
codes. The key-block method [Goodman and Shi (1985) in Appendix
V] is one common example. The key-block is defined as the most
unstable block in the system, and the stability of this block is
considered to control the stability of the block system.

DISTINGUISHING FEATURES

As the preceding discussion indicates, the distinction among dis-
continuum analysis techniques based on numerical solution method
alone cannot be clearly made. Most of the techniques, whether
derived from continuum codes by adding interface elements or de-
veloped specifically for analysis of particulate behavior, use
similar solution algorithms. The only unique approach is the
kinematic stability technique. Nevertheless, distinctions be-
tween the various techniques do exist and it is important to
identify and categorize these distinctions as an aid in determin-
ing the appropriateness of a specific discontinuum analysis tech-
nique for a particular problem application. :

Four elements of discontinuum analysis are identified to disting-
uish the various techniques: These are:

(1) representation of the geometry of the discontinuous
structure;

(2) description for deformability and strength of in- -
tact material (i.e., the material surrounding the
discontinuities);




(3) description for compatibility across discontinui-
ties (i.e., across the discontinuity at contacts
with the surrounding intact material); and

(4) algorithm used to monitor and update the discontin-
uity contacts. :

The relevance of each element to discontinuum analysis and the
descriptions for these elements in the various analysis tech-
niques are provided in the following sections. :

Representation of Geometry of Discontinuous Structure -— A prin-
cipal motivation for the development of discontinuum analysis
techniques is the recognition that the orientation and location
of the discontinuity structure has a significant effect on the
mechanical behavior of a geologic system. The geometry of the
discontinuous structure (e.g., the dip, strike and location of
faults and joints) alone can be a sufficient kinematic mechanism
to drive the response of a2 jointed rock mass. The description of
this structure in the numerical technique is, therefore, an im-
portant element in the discontinuous analysis.

The development of a joint generator (or block generator depend-
ing on the perspective of the numerical technique) is a key input
factor for the discontinuum analysis. Because parameters charac-
terizing discontinuities, such as joint sets, vary throughout
space, these parameters are usually described probablistically.
Several statistical joint generators have been developed and are
currently being evaluated for application to discontinuum analy-
sis. The review presented by Heliot (1988) provides a thorough
summary of current joint generators.

The primary question in the development of a statistical joint

_ generator is the definition of input parameters. The general con-
sensus among developers is to define parameters independently for
each set of joints. Parameters commonly used define the orienta-
tion (dip and strike), extent or length, and location (often spe-
cified by the spacing between joints). Most of the joint models
developed to date have been two-dimensional and thus assume joints
are oriented normal to the plane of analysis. Three-dimensional
generators have typically been based on spatial variability of
joint set parameters as measured in the field. Alternatively,
three-dimensional models have been developed which consider joint
traces as being defined by lines of intersections of Poisson
discs.



The incorporation of a joint generation model in the discontinuum
analysis technique is complicated by the fact that the analysis
technique requires a description for the connectivity between the
discontinuum components. This is required in order to have a
well-formed topological structure for use in the mechanical cal-
culations. < The discontinuous rock mass defined by joint geom-
etrical data must then be translated into a systematically con-
nected blocky model defined by its topological data.

The incorporation of the topological data structure in the dis-
continuous analysis technique provides a primary distinction be-
tween continuum codes with interface elements and discontinuum
codes. The data structure for discontinuum codes, such as the
distinct element method and the key-block method, are devised
specifically to incorporate the topological data required. for a
blocky system. The distinct element codes UDEC (in two dimen- -
sions) and 3DEC (in three dimensions), for example, include auto--
matic joint generators which provide the means for creating
joints statistically in sets based on geological data. The de-
rived joint geometry is then used to create automatically a topo-
logical data structure for both blocks and joints (or contacts
between blocks). Key-block.methods can formulate topological
data based on either a disc generation model or a joint orienta-
tion and spacing generation model [e.g., see Chan (1986) and
Goodman and Chan (1983) in Appendix V].

Continuum codes with interface elements, on the other hand, gen-
erally do not include this topological connectivity directly in
the data structure for the code. As a consequence, these codes
are typically used for problems involving only a few non-inter-
secting, or occasionally intersecting, discontinuities (e.qg.,
major faults or bedding planes) and have difficulty with simula-
tions of many multiple intersecting discontinuities.

Deformability and Strength of Intact Material — Discontinuum an-
alysis methods focus primarily on the effect of the mechanical
behavior of the discontinuities on the response of the medium.
Additionally, though, the behavior of the material surrounding
the discontinuities can have a significant influence on this re-
sponse. The influence of the intact material changes as the ap-
plied loading conditions change. For example, near a free sur-
face in jointed rock, movements arise predominantly from slip and
opening of joints. 1In these regions, the deformation of the in-
tact material is negligible. On moving away from the free sur-
face, toward the interior of the rock mass, joint displacements
diminish in comparison with deformations of the intact rock, and
the stress distribution is determined largely by the elastic and
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strength properties of the rock. For dynamic analysis, the cor-
rect boundary conditions are especially important so that inci-
dent waves are propagated toward a rock structure, and reflected
waves are absorbed. In these instances, deformability of the in-
tact materials is required near the boundary to provide the cor-
rect propagation velocity and the correct driving impedance for
absorbing boundaries.

Continuum models, in general, are designed to simulate accurately
the deformation and strength characteristics of deformable intact
material. 1In finite element and finite difference formulations,
the intact regions are divided into a mesh of interconnected ele-
ments. Elastic and elastoplastic constitutive models are then
specified to describe the deformation and strength behavior of
each element. The order of each element defines the accuracy of
the element to represent various kinematic modes of deformation.
For example, triangular or quadrilateral plane-strain elements
are commonly used in finite element and finite difference methods
for linear elastic calculations. These elements,- however, are
too stiff for plasticity applications and will give inaccurate
answers. . Mixed discretization of elements in the finite differ-
ence approach is shown by Marti and Cundall (1982) to be one pro-
cedure which ensures accurate solutions. 1In this approach, ad-
jacent triangular elements are paired, and volumetric strains are
averaged, while the deviatoric strains are unchanged. 2ienkiewicz
(1977) proposed a similar modified element for the finite element
method. It is important to recognize the influence of the kine-
matic constraints of the element, particularly for problem condi-
tions involving high applied stress relative to the strength of
the rock. When the loading approaches the collapse condition for
the intact medium, the element discretization for the material
can produce unacceptable results if the correct discretization is
not used.

Another consideration for the representation of deformability is
the form of the algorithm used to describe material strain in the
model. It is common practice in many codes to assume that
strains, both elastic and plastic, are infinitesimal, and that
the initial geometry of a deforming body is not appreciably al-
tered during the deformation process. Most codes based on impli-~
cit solution methods assume infinitesimal (small) strain condi-
tions because the assumption of finite strain generally requires
continued reformulation of the stiffness matrix, which decreases
computational efficiency. Explicit codes can incorporate finite
strain logic more readily, with only a minor increase in computa-
tion time. The accuracy of small strain codes for mechanical an-
alyses decreases with increased deformation. The limiting condi-
tion for a small-strain assumption should be recognized before
.performing the analysis.




Different degrees of deformability have been incorporated into
discontinuum codes. Originally, many of these codes were devel-
oped assuming all deformation was concentrated at the discontinu-
ities—i.e., the material surrounding the discontinuities (the
blocks) were treated as rigid bodies. Rigid block codes work
well for problems where stress levels within the blocks are low
and displacements between blocks are much higher than the defor-
mation within the blocks. Rigid block models based on the dis-
tinct element method have been used successfully to examine slope
stability, explosive cratering and particle flow. [For examples,
see, Cundall (1976), Butkovich et al. (1988), and Board and Mark-
ham (1987) in Appendix III.] The kinematic stability techniques,
such as the key block approach, may also be considered as rigid
block models.

Simple deformability of blocks was introduced into discontinuum
codes by Cundall et al., 1978 (Appendix III). With simply- '
deformable blocks, the distinct element method can model problems
involving higher stress regimes. Simple deformability is an ex-
tension of rigid blocks whereby each block can also deform about
its centroid. Simply-deformable blocks have been used for pro-
jectile penetration, ice-structure interaction, and hopper flow.
The distinct element methods based on modal superposition are
generalized versions of the scheme for simply-deformable blocks
[e.g., Hocking et al. (1985), Williams and Mustoe (1987) and Wil-
liams (1988) in Appendix III}. The implicit discontinuum code,
known as discontinuum deformation analysis, also is derived on
the basis of s1mp1y-deformab1e blocks [see Shi and Goodman (1988)
in Appendix 1IV].

Full deformability in the distinct element method was introduced
by Cundall et al. (1978, Appendix III) in order to provide a more
accurate representation of the deformation modes of discontinuous
materials subjected to high and transient stresses. Each block
is subdivided into a mesh of finite difference zones (triangular
zones in 2-D and tetrahedral zones in 3-D). Each individual
block, then, is a separate continuum model identical to an expli-
cit, finite difference, continuum formulation. UDEC and 3DEC in-
corporate fully-deformable (finite strain) block logic which has
been validated for static and dynamic analysis of a variety of
problems [for examples, see Appendix III and Hart et al. (1987)].

Rigid and simply-deformable block models are not well suited for
dynamic analysis involving high frequency shock waves (say,
greater than 50 Hz). Experience with numerical analysis has
shown that a minimum of approximately ten elements per wavelength
is normally required to obtain meaningful results from a dynamic
calculation (i.e., the element size must be smaller than approxi-




mately one-tenth of the wavelength) [Kuhlmeyer and Lysmer, 1973].
In continuum codes, this requires refinement of the mesh to sat-
isfy the restriction on element size for a specific frequency of
input wave. For a discontinuum code with rigid or simply-deform-
able blocks, this requires reduction of the block size to meet
the wavelength criterion. Thus, for high frequency input, the
required block size could be much smaller than the actual joint
spacing. With fully-deformable blocks, refinement is only neces-
sary for the continuum mesh within each block.

A simple illustration of the influence of frequency on element
size is given in Fig. 1. The model consists of a row of blocks
for which a sinusoidal wave is applied at the left boundary, A,
and monitored at the right boundary, B. The blocks can only move
in the x-direction and have the following properties:

block size, s : 1.0 unit

normal stiffness between 10.0 units
blocks, kp

block mass, p 1.0 unit

The blocks are rigid and cannot separate at
contacts. ’

Fig. 1 Rigid Block Model with Sinusoidal Wave Applied at A and -
Monitored at B v | co
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The speed of the wave traveling through the blocks:
Cp = (kp s/p)1/2 = 3,16 units

For a base input frequency, f, of 0.05 units, the wavelength is

A = Co/f = 63.25 units. The input wave at A and the monitored
wave at B are shown in Fig. 2. If the frequency is increased by
a factor of eight, to 0.4 units, a divergence between input and
monitored waves occurs, as shown by Fig. 3. This discrepancy in
the waves is caused by the high frequency of the input. The
wavelength in this instance is only 7.9 units, which is less than
ten times the element size. ,

(eiQee=4)
e.0
4.0

0

Velocity

Time

Fig. 2 Wave Transmission in Rigid Block Model for Input Fre-
quency of 0.05 Units
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Fig. 3 Wave Transmission in Rigid Block Model for Input
Frequency of 0.4 Units

Velocity

The blocks can be made fully deformable by subdividing each block
into four triangular zones, as shown in Fig. 4. The properties
are adjusted such that the wave speed remains constant at 3.16
units, to match the rigid block simulation. This time divergence
of the input and monitored waves does not occur for the input
frequency of 0.4 units (see Fig. 5). 1In this instance, the ratio
of wavelength to element size is 15.8/1.

Control over the refinement of the mesh in fully-deformable
blocks permits the accurate solution of high frequency dynamic

analysis in the same manner as in continuum codes. 1In discontin-

uum analysis, where the wavelength is small, relative to the
joint spacing, fully-deformable blocks can give an accurate solu-
‘tion for the wave propagation without introducing fictitious
joints (blocks) to satisfy the requirements for accurate wave at-
tenuation.

T P
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Fig. 4 Defdrméble Block Model (Four Zones per Block)

" (o10%e=4)
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Fig. 5 Wave Transmission in Deformable Block Model for Input
Frequency of 0.4 Units -




Compatibility Across Discontinuities — A distinction can be made
in the approach taken by a discontinuum analysis technique to
satisfy compatibility conditions enforced between the interacting
bodies in the model—i.e., compatibility across the discontinu-
ity. Compatibility conditions must be satisfied for slideline
interfaces in continuum codes, as well as for contacts between
interacting particles in discontinuum codes. Slideline inter-
faces in continuum codes and contacts in discontinuum codes, in
reality, are lists of surface elements or nodal points from one
or more bodies arranged in some data structure. These elements
are continually examined for the purpose of identifying if one
body has penetrated the boundary of another body. Compatibility
must be satisfied when contact is determined. The compatibility
requirement is also important because it affects the representa-
tion for displacement and separation between contacts. Thus, the
requirement impacts the description for joint material behavior
used in the analysis technique.

Several different types of algofithms have been develdped'fo en-
force compatibility across discontinuities. Some of the more
common methods are: -

(1) special finite element joint elements:;
. (2) master-slave (or symmetric interaction) elements;
(3) Lagrange multipliers; |
(4) penalty functions; and
(5) linear spring and.damper algorithms.

Thin joint elements, developed specifically to model sliding in-
terfaces, are customized finite elements designed for this pur-
pose (e.g., see Goodman and Dubois, 1972). These elements are
integral parts of a finite element mesh and thus satisfy compati-
bility as any other element. The elements have a special consti-
tutive model to approximate gap and friction behavior. However,
joint elements have limited applicability because of their fixed
connectivity. They cannot properly model large tangential motion
or rotation between two bodies. They are analogous to infinites-
imal strain elements and become inaccurate for motion exceeding
10% of the dimension representing the contact area. Several im-
plicit finite element codes with slideline elements have incor-
porated this logic [e.g., D’Appolonia (1981), Ewing and Rainey
(1976) and Goodman (1976) in Appendix I]}.

1]




-17-~

Master-slave and symmetric interaction elements have been used in
several continuum codes with slideline logic. In the master-
slave algorithm, one of the two mating surfaces defines the mas-
ter, and the other defines the slave. Local element stresses for
the slave side are used to compute forces for the slave nodes
.which have penetrated the master side. These are resolved into
normal and shear components. The shear component is limited by
Coulomb slip, while the normal component is used to calculate a
residual force required to move the slave node to the master sur-
face. This force is controlled so that the velocity of the slave
node will eventually be the same as the velocity of the master
surface. Master-slave algorithms permit large slip but can in-
troduce asymmetry to the movement. Symmetric interaction algo-
rithms overcome this problem by duplicating and reversing master-
slave elements and calculating the average motion. Master-slave
slidelines have been used principally in explicit continuum codes
[e.g., Stone et al. (1985), Biffle (1984) and Key (1986) in Ap-
pendix II]. : :

Other methods developed to satisfy compatibility at contacts also
allow arbitrary friction corresponding to Coulomb slip and a gap’
closure constraint. Lagrange multipliers have been used by spe-
cifying the multipliers to correspond to the normal and fric-
tional forces required to impose the constraints on positions and
velocities at the contacts. Relative displacements of nodes on
either side of a contact or slideline are monitored and, if over-
lap of the two surface is indicated by the relative displacement,
then the relative normal displacement is constrained to be a spe-
cified gap distance. The normal force imposed to satisfy the
"constraint is the Lagrange multiplier. Likewise, frictional con-
straints are applied if the gap is closed and the coefficient of
friction is non-zero. The multipliers are introduced into a
functional describing the displacement constraints. The func-
tional is minimized to provide the equilibrium solution, as in
classical mechanics. This approach has limitations in that the
existence and uniqueness of the multipliers is not guaranteed for
systems with friction (LOtstedt 1979). Also, the computation of
the multipliers is very complicated and time-consuming for large
systems. References by Bechtel National (1981) and Morgan
(1981), in Appendix I, describe the implementation of Lagrange
multipliers in implicit continuum codes with slideline logic.

The penalty function approach has been applied in several differ-
ent discontinuum codes to enforce compatibility. This approach
is used in a similar fashion to the Lagrange multiplier approach
to minimize a functional which describes the displacement con-
straints at the contacts. Penalty coefficients act in a manner
analogous to very stiff strings which optimize the minimizing of
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the functional. 1In physical terms, the coefficients push the
penetrating block back to the surface along the shortest path.

- Coulomb’s law is also used to limit shear stress along the con-
tact. The penalty function approach has been used in implicit
discontinuum codes [e.g., Shi and Goodman (1988) and Gussmann
(1988) in Appendix IV] and is referenced in the modal superposi-
tion method for distinct elements [Williams et al. (1985) in Ap-
pendix IXII], although the procedure is not described. :

Linear spring and damper algorithms are mathematically similar to
penalty functions, but they equate the spring stiffness in physi-
cal terms to the normal and shear stiffnesses of the joint. This
approach was proposed by Cundall (1971, Appendix III) for the '
distinct element method. The springs act as penalty functions'
which are added to the equations of motion to yield a solution
where violation of the contact overlap constraints are kept
small. The damper connected to each spring damps. out high fre-
quency oscillations. The damping can pose difficulties with ap-
proaching the correct solution, particularly for problems involv-
ing collapse. However, Cundall (1987) has developed techniques
to minimize the adverse effects of damping. The spring and
damper approach, used with an explicit solution algorithm, is
well suited to simulate both the elastic and failure response of
actual joints. The approach has been used extensively with di-
rect integration distinct elements (e.g., see the distinct ele-
ment references in Appendix III).

Contact Monitoring and Update — At each calculational step in a
discontinuum analysis technique, discontinuities must be examined
for the features of one body penetrating the boundary of another
body. This examination process requires that the location of
each surface contact point be tracked relative to the surface
element with which it is likely to come in contact. The process
used to monitor contacts will affect both the computational ef-
ficiency of the technique and the ability to represent large
translational and rotational movements along the discontinuities.

Monitoring and updating locations of contacts between discontinu-
ous bodies can be a very time-consuming process, especially in a °
multi-jointed system. The monitoring process requires a data
structure which defines the existing connectivity and potential
connectivity between boundaries of discontinuous bodies. Several
different data structures have been developed for this purpose.




In many of the implicit continuum codes with interface elements,
the connectivity between surface nodes of adjacent elements is
fixed. This permits an efficient monitoring of contacts because
only small displacements are permitted such that the contacts
will not change. This type of data structure has limited appli-
cation, though, because the fixed connectivity prevents the anal-
ysis of large tangential or rotational motion. It is noted that
some distinct element codes have this restriction imposed on con-
tact updating [e.g., see Dowding et al. (1983) in Appendix III].

The data structure typically used in explicit continuum codes
with interface elements permits large translation and rotation,
but requires the user to specify, in advance, the nodes along
each element which have the potential for contact with an adja-
cent element [e.g., see Key (1986) and Itasca (1987) in Appendix
II). This restriction inhibits the modeling of multiple inter-
secting jointed systems because all the potential contacts may
not be identified. .

For this reason, the pre-processing of multi-jointed systems with
a kinematic stability technique, such as the key block method,
has been proposed to select the most unstable jointed region
[i.e., key block(s)] for modeling with interface elements. Then,
only a few key-block joints need be modeled. :

It should be noted that kinematic stability techniques only ana-
lyze the conditions necessary for the onset of motion. It is as-
sumed that this motion will continue indefinitely—i.e., that the
forces do not change with motion. Methods such as key block

- theory, alone, cannot provide information on stresses and dis-
placements of a rock mass and cannot calculate the combined re-
sponse of the rock matrix and the discontinuities. The continuum
code with interface elements, then, supplements the kinematic
stability technique by simulating the change in forces after key
block motion begins. '

Automatic algorithms for monitoring and updating contacts have
been developed for distinct element codes. The original rigid
block codes employ a system of "cells" which are used for course
classification of blocks and contact nodes. Only a limited
search of cells in the vicinity of contact edges (interfaces) is
required to locate potential contacts. The procedure is de-
scribed by Cundall (1974) in Appendix III for two-dimensional an-
alysis. This approach is used in 3DEC, and the three-dimensional
algorithm is described by Cundall (1988), in Appendix III. The
approach updates the contact information in each cell and thus
allows blocks to come into and out of contact continually.  This
permits the simulation of large translation and rotation of
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blocks. The approach is well suited for problems involving par-
ticle flow, and several of the distinct element codes developed
for this purpose use a form of this algorithm (see the references
by Cundall, Walton and Taylor in Appendix III for examples).

Cundall (1980, Appendix III) proposed a different data structure
in which the topological properties of the data structure corre-
spond closely to the properties of the physical system of blocks
that they represent. Thus, the connectivity of the physical sys-
tem is built into the data structure, which consists of linked
lists of voids between blocks as well as lists of blocks. It is
then a simple matter to scan the local voids surrounding a block
in order to obtain a list of all possible contacts. This scheme
is considerably more efficient than the cell scheme, but it re-
quires well-developed connectivity. The main application of this
approach is for a system of initially connected blocks, such as a
jointed rock mass. The scheme is used in UDEC and works extreme- -
ly well for two-dimensional analysis of jointed rock. Unfortu-
nitely, the data structure does not translate to three dimen-
sions.
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